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ABSTRACT 

Pleurotus pulmonarius is an edible mushroom, which secretes lignocellulolytic 

enzymes, like laccase and lignin peroxidases. These enzymes enable the fungus to grow 

on a variety of different substrates such as lignocellulosic waste. In this study white rot 

fungi Pleurotus pulmonarius was tested for lignin peroxidase production in a 

submerged liquid fermentation. To enhance the enzyme production the influence of 

different parameter such as culture composition, inoculum size and agitation speed were 

investigated. The optimum cultivation condition for highest lignin peroxidase activity of 

95.54± 2.26 U/ml was obtained in the presence of 1% (w/v) yeast, 1% (w/v) glucose 

and 1% (w/v) sawdust at agitation speed of 120 rpm and inoculum size of 2  discs.   

An aqueous two-phase system composed of recyclable random copolymer of 

ethylene oxide (EO)-propylene oxide (PO) and potassium phosphate salt was employed 

for the recovery of Pleurotus pulmonarius lignin peroxidase from submerged liquid 

fermentation. Lignin peroxidase partitioned in ATPS system was examined under 

various parameters such as polymer molecular weight, phase composition, volume ratio 

(VR), system pH and addition of sodium chloride. The result showed that the highest 

enzyme purification factor was achieved by ATPS composed of 18.80% (w/w) EOPO 

3900, 7.11% (w/w) potassium phosphate with volume ratio of 0.82 at pH 7. 

Furthermore, the result showed that purification of lignin peroxidase is not influenced 

significantly by addition of sodium chloride. The purification factor of 9.22±1.07 and 

yield of 80.47% were achieved from the bottom phase of this optimized ATPS system 

with enzyme activity of 22.37±2.30 U/ ml. 
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The recycling of EOPO was conducted at the end of recovery process. A recovery 

of more than 80% of the EOPO 3900 polymer was obtained from the ATPS. The result 

indicated that there is no significant difference in the purification factor and partitioning 

efficiency of purified lignin peroxidase in the ATPS system using fresh or recycled 

polymer. 
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ABSTRAK 

Pleurotus pulmonarius  merupakan sejenis cendawan yang boleh dimakan dan 

merembeskan enzim-enzim lignocellulolytic terutamanya enzim laccase dan lignin 

peroxidase. Enzim-enzim ini membolehkan fungus untuk bertumbuh dalam pelbagai 

substrat seperti bahan-bahan buangan lignocellulosic. Dalam kajian ini, keupayaan 

fungus white rot Pleurotus pulmonarius untuk menghasilkan lignin peroxidase dalam 

keadaan penapain cecair secara bertenggelam telah dikaji. Untuk meningkatkan 

produksi enzim, parameter pengaruhan seperti komposisi kultur, saiz inokulum dan 

kelajuan pengocakan turut dikaji. Keadaan optimum pemupukan enzim lignin 

peroxidase yang mencatatkan hasil sebanyak 95.54± 2.26 U/ml telah diperoleh dengan 

penggunaan 1% yis, 1% glucose dan 1% habuk kayu dalam kelajuan pengocakan 

sebanyak 120 rpm dan saiz inokulum 2 x 10mm. 

Satu kaedah aqueous two-phase yang terdiri daripada ko-polimer rawak yang 

boleh dikitar semula, ethylene oxide (EO)-propylene oxide (PO) dan garam potassium 

phosphate telah diaplikasikan bagi pemulihan enzim lignin peroxidase Pleurotus 

pulmonarius daripada penapain cecair secara bertenggelam. Lignin peroxidase yang 

berpetak dalam kaedah ATPS telah dikaji  di bawah beberapa parameter seperti jisim 

molekul polimer, composisi fase, nisbah jumlah(VR), sistem pH dan penambahan of 

garam semula jadi.  Faktor purifikasi sebanyak 9.22±1.07 dan hasil sebanyak 80.47% 

telah dicapai pada fasa bawah yang telah dioptimasikan; fasa bawah juga mencatatkan 

aktiviti enzim sebanyak 22.37±2.30 U/ ml. 

Kitaran semula EOPO telah dilakukan pada peringkat akhiran proses pemulihan 

enzim. Kadar pengitaran yang melebihi 80% daripada polimer EOPO 3900 telah 
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berjaya diperoleh daripada kaedah ATPS.  Kajian  juga menunjukkan bahawa tiada 

perbezaan signifikasi dalam faktor purifikasi dan kecekapan pemetakan dalam 

pemulihan enzim lignin peroxidase  berasaskan kaedah ATPS yang mengaplikasikan 

polimer baru atau polimer kitaran semula.  
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1. CHAPTER 1: INTRODUCTION 

1.1. Introduction 

Mushrooms have been used throughout the world since ancient times (Wasser and 

Weis, 1999) due to their ability to produce a wide range of valuable products with 

different characteristics such as anticoagulant and antifungal protein, anti-tumour 

compounds and ligninolytic enzymes. The white-rot fungus Pleurotus pulmonarius 

belongs to the Pleurotaceace family and is well known as oyster mushroom (Toyama 

and Ogawa, 1974). 

Pleurotus pulmonarius has been widely studied because of its ability to produce 

variety of ligninolytic and cellulolytic enzymes such as laccase, lignin peroxidase, 

manganese peroxidase, xylanase and cellulose (Massadeh and Modallal, 2007). Lignin 

peroxidase (LiP) is one of the enzymes that have been extensively studied. This enzyme 

was first discovered in 1983 from Phanerochaete chrysosporium during the studies on 

the mechanism of the lignin biodegradation (Glenn and Gold, 1985; Tien and Kirk, 

1984). 

Lignin peroxidase is gaining more attractive for biotechnological application 

because of the high potential to degrade varied range of compound such as 

lignocellulose; lignin related aromatic compounds and other non-lignin related 

compounds. Applications of LiP are biobleaching, bioremediation of variety of organic 

waste byproduct and biopulping (Glenn and Gold, 1985). In addition, lignin peroxidase 

has high potential application in cosmetic product as well as dermatological preparation 

for skin due to its ability to break the melanin structure in the skin (Roushdy et al., 

2011). The wide application of lignin peroxidase however is being restricted; as there is 
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lack of the simple, cost effective and robust methods for lignin peroxidase production 

(Jing et al., 2007; Jing, 2010).  

Submerged fermentation is the most economical methods to produce large amount 

of mycelial biomass and subsequently extracellular enzyme (Xu et al., 2011). Several 

agricultural substrate or by-product, which contains high concentration of soluble 

carbohydrates and enzyme inducer, has been used in submerged fermentation of 

different microorganism to accelerate the lignocellulolytic enzyme production 

(Elisashvili et al., 2001; Moldes et al., 2004; Reddy et al., 2003). Besides, it has been 

reported that the production of extracellular LiP can be influenced by culture condition 

such as growth media composition, heat shock, agitation speed and inoculum size 

(Darah and Ibrahim, 1990; Papagianni, 2004; Nigam et al., 2012; Conesa et al., 2002; 

Martinez, 2002; Valderrama et al., 2003).  

The extraction and purification of desired product from fermentation broth is 

considered as the most expensive part of downstream process (Naganagouda and 

Mulimani. 2008). Ultrafiltration, chromatography and precipitation are some 

conventional methods, which have been widely used in bioproduct purification (Wood, 

1980). However, these methods are not efficient for purification because of multi-step 

process, high operation cost, low yield, and long cycle time involved (Mayolo-deloisa et 

al., 2009). To overcome the disadvantages of conventional methods, aqueous two- 

phase system can be a suitable separation method with higher efficiency. 

Aqueous two-phase system (ATPS) provide an ideal condition for recovery of 

several biomolecules such as protein, enzyme, amino acid, biopharmaceuticals product 

(Ratanapongleka , 2010; Sinha et al., 1996; Chavez-Santoscoy et al., 2010) which have 

been broadly used in field of biotechnology. In addition, aqueous two-phase system can 
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be used for separation of cell organelles, viruses and biological membrane due to the 

high water concentration in both phases, which provide gentle environment for such 

biomolecules (Walter and Johansson, 1994; Azevedo et al., 2009). Aqueous two-phase 

method has some advantages over the conventional methods such as simplicity, 

biocompatibility, low operation cost and easy scale up process (Benavides and 

Ritopalomares, 2008). 

Normally, for the large-scale isolation of macromolecules, polyethylene glycol 

(PEG)/salt or PEG/dextran systems are being used. However, an ineffectual recycling 

ability of phase-forming chemical in the mentioned systems is a main disadvantage of 

conventional ATPS. Moreover, it has been reported that additional operations such as 

filtration, diafiltration and crystallization, are needed to remove the phase forming 

chemical from the desired protein in conventional ATPS (Johansson et al., 1997). These 

drawbacks have limited the application of conventional systems in the large scale 

process. 

Recently, thermoseparating ethylene oxide-propylene oxide copolymer and 

potassium phosphate has been successfully applied for primary purification of 

biomolecules The ATPS could be easily recycled at low cost when the EOPO is used as 

a copolymer. For this aim, the EOPO from primary system subjected to the temperature 

greater than the LCST (lower critical solution temperature) to induce the 

termoseparation (Johansson et al., 1997). Afterward the recovered EOPO can be reused 

in new primary ATPSs. Moreover, the use of recyclable polymer makes this system 

more economical and environmental friendly (Show et al., 2011). 
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1.2. Objective 

The objectives of this research were: 

1. to optimize the production of lignin peroxidase in submerged fermentation  

2. to investigate the application of aqueous two-phase system (ATPSs) for lignin 

peroxidase purification and recovery. 

3. to investigate the recycling of phase component in an aqueous two-phase 

system. 
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2. CHAPTER 2: LITERATURE REVIEW 

2.1. Pleurotus pulmonarius (Fr.) Quel 

Pleurotus pulmonarius (synonym Pleurotus sajor-caju), a white-rot fungus, are an 

edible mushroom (Wasser and Weis, 1999) that belongs to the order Agaricales and 

family Pleurotaceace. (Toyama and Ogawa, 1974). Pleurotus pulmonarius (Figure 2.1) 

is first being discussed by Lucien Quélet on 1872. It is known as “Houbitake” and 

“Feng Wei Gu” in Japanese and Chinese, respectively (Toyama and Ogawa, 1974). The 

Indian scholar, Yan Dai Ke, found this fungus for the first time at the foot of Himalayan 

Mountain. It was then distributed in China from Indian and Australia (Zhuang et al., 

1993). 

Naturally, this fungus grows on tissues of Euphorbia royleans, in the foothills 

around Himalayas (Jandaik and Kapoor, 1976). Pleurotus pulmonarius grows on 

stumps and trunks of a wide range of deciduous trees, usually in the form of overlapped 

leafs (Wasser and Weis, 1999). The optimum temperature for Pleurotus pulmonarius in 

order to fruit faster and produce larger mushrooms is 25℃, however it is able to survive 

in tropical temperature of 28-30℃  as well (Quimio, 2001). Southeast Asian countries 

(tropical areas) such as India and Malaysia are popular places for this species to grow. 

Yeast extract, artificial logs, rubber wood sawdust (Gern et al., 2008), using bark 

and trunks of banana trees, cereal straw (Bano et al, 1988; Mizuno and Zhuang, 1995) 

are among several substrates which  can grow oyster mushroom.  
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Figure 2-1: The picture of Pleurotus pulmonarius (Y.S.Tan)  

 

Table 2-1: Scientific classification of Pleurotus pulmonarius (http://en.wikipedia.org) 

Kingdom Fungi 

Division Basidiomycota 

Class Agaricomycetes 

Order Agaricales 

Family Pleurotaceace 

Genus Pleurotus 

Species Pleurotus pulmonarius 
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Pleurotus pulmonarius contains vitamin C (33mg), vitamin B1 (0.2 - 0.3 mg), 

vitamin B2 (1.1 - 1.4 mg) and niacin (18.2 – 21.3 mg) per 100g, in the dry matter 

(Mizuno and Zhuang, 1995). It also contains protein (21%) and eight kinds of amino 

acids essential for humans, including high level of lysine and threonine. Fresh fruiting 

bodies of Pleurotus pulmonarius contain low level of glycogenic polysaccharide (lipid 

and starch) and 80-90% moisture. Rich nutrient content, flavor and taste of Pleurotus 

pulmonarius has made it one of the most treasured fungus (Mizuno and zhuang, 1995).  

Apart from its good taste, it might also be useful in antitumor drugs development and 

other pharmaceutical applications (Mizuno and zhuang, 1995).  

Pleurotus pulmonarius produces different kind of ligninolytic and cellulolytic 

enzymes such as laccase, lignin peroxidase, manganese peroxidase, xylanase and 

cellulose. Ligninolytic enzymes have made Pleurotus pulmonarius one of the most 

studied fungus among its family (Massadeh and Modallal, 2007).  

An important ability of white rot fungi is to produce effective enzymes in 

degrading lignin, such as extracellular polyphenol oxidases particularly lignin 

peroxidases, manganese peroxidases and laccases (Revankar and Lele, 2007). The 

isolated lignin peroxidases and manganese peroxidases from Pleurotus pulmonarius are 

widely used in bioremediation of different kind of organic waste byproducts such as 

textile dyes, polyethylene, pesticides and herbicides, dynamite, PAHs, dioxins and oil- 

contaminated soil (Glenn and Gold, 1983). Pleurotus pulmonarius is also capable of 

processing lignocellulose, which is highly present in agroindustrial wastes. 
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2.2. Lignin  

Lignin is complex, heterogeneous, three- dimensional, natural polymer, which is 

the main component of wood and provides a structural support for woody plants 

(Higuchi, 1990; Whetten and Sederoff, 1995). After cellulose, lignin is the most 

abundant aromatic polymer in biosphere. Wood comprised primarily of 45% cellulose, 

25-30% hemicellulos and 25% lignin (Perez et al., 2002). These three types of polymers 

are strongly linked together by non-covalent forces. Lignin acts as a cementing 

component to connect cells and harden the cell walls of xylem tissue and provides water 

transportation through vessels and tracheids from root to branches (Higuchi et al., 

1994). The process of impregnated of the wood cellulose with lignin is called 

lignification, which greatly increased the hardness and strength of the cell wall and give 

the necessary rigidity to the tree. 

2.2.1. Structure of lignin 

Lignin is a structurally complex aromatic biopolymer and non-water soluble. 

Aromatic rings of this biopolymer has made it resistant to microbial enzymes (Heim 

and Schmidt 2006). Lignin is made of many phenyl propanoid units which act as 

precursor in lignin polymerization. Propanoid units have three different types which are 

p-coumaryl alcohol, coniferyl alcohol (guaiacyl unit) and sinapyl alcohol (syringyl unit) 

(Ahammed, 2002). These three types of phenyl propanoid units are differing in the 

number of methoxyl group on the aromatic ring (Figure 2.2).In order to degrade lignin, 

oxidative attack on the carbon-carbon and either interunit bonds is required. Cellulose 

microfibrils are coated with lignin polymer especially within secondary walls. 

Depolymerization of lignin is necessary in order to enter the cellulose and 

hemicellulose. There are only few numbers of filamentous fungi with the ability of 
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using lignin as the only source of carbon and energy. The extracellular oxidase and 

peroxidase are the two enzymes believed to have an important role in the initial 

depolymerisation of lignin. Eventually, fragments with small molecular weight are then 

metabolized to water and carbon dioxide (Cullen and Kersten 2004). 

 

Figure 2-2: Structure of three phenyl propanoid precursors (Ahammed, 2002) 

 

2.2.2. Lignin polymerization  

In order to polymerize lignin, precursors of phenylpropanoid have to polymerize 

first in the cell wall (Higuchi 1985). These precursors (three different types) are 

different in the number of methoxyl group on the aromatic ring. After deposition of 

polysaccharides, the lignin will then polymerize. This process begins with conversion of 

phenylpropanoid precursor to phenoxy radicals by enzymatic oxidation of electrons. A 

complex cross linked-network of lignin polymer is then formed by coupling of radicals 

with each other and other radicals, resulting in the final structure of the lignin polymer. 

(Adler 1977). 



10 

 

2.2.3. Lignin degrading microorganisms 

Lignin is an insoluble polymer; therefore the initial steps of its biodegradation 

must be occurred extracellular (Feijoo et al., 1995). Due to its hydrophobicity, complex 

random structure and lack of regular hydrolysable bonds, lignin degradation process has 

a long time cycle and only few numbers of microorganisms such as white rot fungi and 

specific groups of bacteria are able to degrade it. (Buswell et al., 1987; Coll et al., 1993; 

Mester and Field 1998). 

2.2.3.1. Lignin degrading fungi 

The wood rotting fungi have capacity to degrade lignin efficiently (Eriksson et al., 

1990). This group of fungi can be divided into three groups which are soft rot fungi, 

brown rot fungi and white rot fungi according to the morphology of wood decay. 

a) Soft rot fungi 

Soft rot fungi belong to the ascomycetes and euteromycete. Soft rot fungi are less 

important than white and brown rot fungi, due to their low ability to degrade the wood 

composition. Despite of high level of cellulose and hemicellulose degradation by these 

fungi, the amount of lignin degradation is little. The rate of decay on softwood may be 

low and the extent of the degradation is minimal compare to the decay by white or 

brown rot fungi in the same period of time (Eriksson et al., 1990). 

b) Brown rot fungi  

Brown rot fungi are members of the Basidiomycetes. They are the major 

components of forest soils and responsible for most of the destructive decay of wood 

(Worral et al., 1997). They preferentially attack cellulose. The brown fungi rot is named 
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such because the decayed wood has brown color. The main features of brown rot fungi 

are rapid depolymerization of holocellulose. This ability seems to be normal for brown 

rot fungi (Eriksson et al., 1990). 

c) White rot fungi 

White rot fungi are the only specialized group of fungi, either pathogenic and/or 

saprophytic, are able to efficiently degrade lignin (Blanchette, 1984; Schwarze et al., 

2007). White rot fungi include several member of species of basidiomycetes also some 

of the ascomycetes. These groups are the biggest agent of lignin decomposer in nature 

due to their capability to degrade all the main component of the wood. Lignin 

degradation by white rot fungi revealed that lignin peroxidase (LiP), manganese 

peroxidase (MnP) and laccase are extracellular ligninolytic enzymes responsible for 

initiating the lignin depolymerization (Kondo et al., 1994; Ohkuma et al., 2001; Ikehata 

et al., 2004). 

White rot fungi required a co- metabolisable carbon source in order to break down 

lignin. These sources of carbon are within wood as breakdown products of cellulose and 

hemicellulose (Blanchette 1984; Schwarze and Fink, 1997). Typically white rot appears 

as a spongy, stringy, or laminated structure in affected wood, where lignin and 

polysaccharides present in sound wood are removed in equal proportions. The white rot 

fungi are of considerable ecological interest because they play such an important role in 

decomposing woody material in forests. 

2.2.3.2. Lignin degrading bacteria  

Lignin-degrading enzymes may come from both bacteria and fungi. There are 

several other bacteria that produce enzyme to degrade lignin. For example, 
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Pseudomonas putida produce vanillate o-demethylase-oxido-reductase. While the more 

common lignin peroxidase and laccase are produced by Streptomyces viridosporus and 

Bacillus subtilis, respectively (Tuomela et al., 2000).  

2.3. Lignin peroxidase (LiP) 

Lignin peroxidase (LiP) was discovered in 1983 from Phanerochaete 

chrysosporium. This enzyme is extracellular metabolites that required hydrogen 

peroxide (H2O2) as an inducer to catalyze several  reactions (Tien and Kirk 1984, Glenn 

and Gold 1985). Lignin peroxidase is a monomeric hemoglycoprotein (38-46 

kDa)(Doyle and Smith 1996), which is used to degrade lignin. This extracellular 

enzyme is produced by many wood-degrading fungi (Kirk and Farrell, 1987). 

According to Tien (1986), the size of lignin produced by Streptomyces 

viridosporuscan is approximately 37KDa which are similar to plant peroxidase in 

mechanism and structure. Lignin peroxidase produced by bacteria is able to utilize 

hydrogen peroxide and organic peroxide to oxidize a variety of substrates (Tien, 1986). 

Lignin peroxidase is a glycoprotein that contains about 15% carbohydrate and an iron 

protoporphyrin IX (heme). Typical lignin peroxidase is a protein with 38-46 kDa with 

an isoelectric point varies between pH 3 and 5 (Tuisel et al., 1990; Asther et al., 1992). 

The lignin peroxidase contains multiple isoenzymes. The numbers of isoemzyme 

present are differing between species and also strain depending on culture condition and 

purification/fractionation techniques (Buswell et al., 1987; Kirk and Farrell, 1987). 

Lignin peroxidase has a very low pH optima and high redox potential in compare with 

other peroxidases. Lignin peroxidase has no substrate specificity, reacting with a wide 

range of phenolic and non-phenolic aromatic compounds. Analysis of decayed wood 
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showed that the oxidation of lignin resulting in cleavage of C𝛼-C𝛽 bond, the aryl 

C𝛼  bond, hydroxylation of aromatic ring and side chain (Zavarzina et al., 2011). The 

enzyme is capable to oxidize lignin monomers, dimers and trimmers as well as 

polycyclic aromatic compound such as benzopyrene with reduction potential higher 

than 1.3 volts (Haemmerli et al., 1986).  

2.3.1. Application of lignin peroxidase  

Recently, using enzymes obtained from various plant and microbial sources for 

the treatment or removal of environmental and industrial pollution has attracted high 

attention. Enzymatic processes have various advantages over conventional biological, 

physical, and chemical treatment processes. The strong emphasis on the use of enzymes 

is because of their high efficiency, high selectively and environmentally benign 

reaction. Lignin peroxidase play important role in biotechnology due to its potential 

application in the biodegrading of lignin, phenolic compound, bioremediation of waste 

water and catalyzing difficult chemical (Doyle et al., 1998). In addition, lignin 

peroxidase has an application in food industry due to their ability to generate natural 

aromatic flavor (Lesage-Meessen et al., 1996; Lomascolo et al., 1999; Barbosa et al., 

2008). The applications of lignin peroxidase in different sectors are shown in Table 2-2. 
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Table 2-2: Lignin peroxidase applications in different sectors 

Sector Lignin peroxidase (LiP) Application References 

Food industry Source of natural aromatics  

Production of vanillin 

Lesage-Meessen et al., 
1996 ;Lomascolo et al., 
1999; Barbosa et al., 
2008  
 

Bioremediation Degradation of azo, heterocyclic, 
reactive and polymeric dyes. 

Mineralization of environmental 
contaminants 

Xenobiotic and pesticides 
degradation 

Bumpus and Aust, 
1987; Abraham et al., 
2002; Ohtsubo et al., 
2004; Robles-
Hernández et al., 2008;  

Gomes et al. 2009; Wen 
et al. 2009  

 

Organic synthesis, 
Medical, 
Pharmaceutical, 
Cosmetics and 
Nanotechnology 

Functional compounds synthesis 
Cosmetics and dermatological for 
skin Bioelectro-catalytic activity at 
atomic resolution  

 

Christenson et al., 
2004;  
Higuchi, 2004; Belinky 
et al., 2005; Barbosa et 
al., 2008  
 

Pulp and paper industry Decolouriment of kraft pulp 
 
 Mill effluents  
 

Ferrer et al., 1991;  
Bajpai, 2004;  
Sigoillot et al., 2005  
 

(Modified from Maciel et al., 2010) 

 

2.4. Aqueous two-phase systems (ATPS) 

Aqueous two-phase systems (ATPS) are a purification system, which are formed 

by mutual incompatibility of two polymers or a polymer and a salt in aqueous solution 

(Albertsson, 1986). This system first reported by Dutch microbiologist M. Beijerinck 

who obtained a two-phase system after trying to mix certain properties of gelatin, agar 
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and water (Beijerinck, 1910). However, in 1956 Swedish biochemist, P. A. Albertsson 

achieved rediscovery of this system as an important separation technique by applying 

this technique to separate various biomolecules (Albertsson 1956). Later, ATPS has 

been successfully used for the separation of different biological products such as 

proteins, nucleic acids, microorganisms, plant and animal cells (Albertsson, 1986; Hatti-

Kaul, 2000; Johansson, 1985).  

Aqueous two phase systems involving two operation steps, which are 

equilibration and phase separation (Figure2-3). Rapid mixing of the phase components 

can create two equilibrium phases. This step is followed by separation of the liquid 

phases. The phase separation under gravity is not as rapid as in water-organic solvent 

system, and time required varies from a few minutes to a few hours (Hatti-kaul 2000). 

This is due to rather low differences in the densities of two liquid phases (about 0.05 to 

0.15 g/cm3) (Hustedt et al., 1985), their viscosities and the time required by small 

droplet, formed during mixing, into larger droplets (Walter et al., 1994). In order to 

quicken the separation process, low speed centrifugation is commonly used (Hatti-kaul 

2000). 
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Figure 2-3 Photographic sequence of the phase separation phenomenon of PEG/Dextran 

system (Forciniti et al., 2000). 

 

The distribution of biomolecules between the phases is variable and usually 

controlled by the properties of the partitioned biomolecule such as size, net charge and 

surface properties (Albertsson, 1986). In spite of small molecules, the macromolecules 

are not evenly distributed between two phases in the system and usually directed to one 

phase or to the interface. In addition to the physico-chemical properties of biomolecules 
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there are other factors that play a part in the partitioning of desiered biomolecules such 

as, electrostatic interaction, hydrophobicity, biospecific affinity interaction and 

conformational effects between the phase components and biomolecule (Albertsson et 

al., 1990; Albertsson, 1986). 

Generally, aqueous two-phases (ATPS) are formed when two incompatible water-

soluble polymers differing in their chemical structure, or a polymer and a salt in water, 

are mixed above a certain critical concentration (Albertsson, 1986). Formation of two 

phases presented by binodial curve as shown in Figure 2-4. According to binodial curve, 

the mixture proportion above the curve gives two phases and below the binodial 

provides only one phase (Albertsson, 1986). 

 

Figure 2-4 Schematic phase diagram of ATPS (Raja et al., 2011) 

Successful microbial fermentation process depends upon proper recovery of 

desired biomolecule from the mixture of a large number of interfering substances. Some 
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byproduct like protein, enzyme, nucleic acid, cell organelles, antibiotics, antigens are 

sensitive to pH, temperature, surface charge and osmotic pressure, therefore, to enhance 

the recovery and functionality of target biomolecule, the extraction methods should be 

compatible to the product (Banik et al., 2003). The conventional purification techniques 

such as chromatography, ultrafiltration and precipitation are time-consuming, expensive 

and have a multi-steps protocol. According to Scope (1993), these separation techniques 

such as precipitation and ultrafiltration may result in undesired purity (Scop, 1993).  

Aqueous two-phase system (ATPS) is an alternative method, which has been 

broadly used in field of biotechnology for purification and recovery of sensitive 

biomolecules (Ratanapongleka, 2010). In addition, aqueous two-phase system can use 

to separate of cell organelles, viruses and biological membrane due to the high water 

concentration in both phases (Walter and Johansson, 1994; Azevedo et al., 2009). 

2.4.1. Advantages of aqueous two-phase (ATPS) 

ATPS has been reported as an interesting method for isolation of desired 

biomolecule compared to conventional methods for several reasons. ATPS provides the 

mild environment condition for separation of desired product since it contains high 

water content in each of the two-phases (70 to 90%) (Ratanapongleka and Phetsom, 

2011) which allows the biomolecule retain its biological conformation (Walter and 

Johansson, 1994). Moreover, ATPS is known as a convenient method to substitute the 

time-consuming purification methods since it has the ability to combine the early 

downstream steps into the single steps process (Madhusudhan et al., 2008; Mazzola et 

al., 2008). Aguilar et al., (2006), compared ion exchange chromatography with ATPS 

composed of PEG/phosphate for purification of penicillin acylase, the result indicated 

the significant reduction of operation steps by using ATPS.  
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Other advantages of applying ATPS include lower investment cost, high yield and 

ease of scaling up (Albertsson, 1986). The study conducted by Nit-sawang et al., (2006) 

showed the high papain recovery yield of 88% from wet Carica papaya by using 

PEG/ammonium sulphate. However, the reduction of papain recovery yield to 49% was 

observed using multiple step precipitation method.The whole process of recovery can 

be considered as an economical and environmental friendly method due to the simple 

and low cost phase’s component. Furthermore, using recyclable phase component can 

make the whole system more economical and may also minimize the problem of 

downstream pollution (Hustedt 1985; Veide et al., 1989; Louwrier, 1999). 

2.4.2. Factors effecting partition behavior  

The biomolecule characteristic such as size, electrochemical properties, surface 

hydrophobicity and hydrophilicity, and conformational characteristics can alter partition 

behavior of target compound as intrinsic properties. Furthermore extrinsic properties 

such as type, molecular weight and concentration of phase forming components, ionic 

strength, pH and temperature, have an effect on the partition behavior of target 

compound (Albertsson, 1987). Therefore, the optimum ATPs purification system can be 

achieved by manipulating the extrinsic and intrinsic properties (Rito-Palomares, 2004) 

2.4.3. Polymer/salt ATPS 

Aqueous two-phase system has several types such as polymer-polymer, polymer-

salt, surfactant based and alcohol-salt. Most of the ATPS systems are based on 

polymer/salt. Polymer/salt composition are the most cost effective in comparison to 

polymer/polymer system, as a result, this form of ATPS has a wide application in 

biotechnology. The most common form of polymer/salt system is polyethylene glycol 
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(PEG)/potassium phosphate. The PEG/Phosphate is more preferred for industrial 

application due to their advantage such as lower viscosity, needing a short time of phase 

separation and also the low cost (Hatti-Kaul, 2000). Several types of other polymers 

have been studied such as dextran, starch derivatives and hydroxypropyl starch. Another 

alternative is using recyclable polymers such as thermo sensitive, pressure sensitive, pH 

sensitive and light sensitive polymers, which are shown in Table 2.3.  

Table 2-3: List of different recyclable polymers using in ATPS 

Polymer Type of Polymer Extractive 
Polymer 
Recycle 
Rate (%) 

Reference 

EOPOa 
HM-EOPOb 

NIPAMVI/ 
HM-EOPOc 

 
 

Thermo sensitive 
 

L-asparaginase 
Apolipoprotein 

A1 
BSA 

81.3-84.7 
-------- 

 
53/92 

Zhu, 2007. 
Johansson, 1999. 
Persson, 2000. 

PEG/NH4NH2CO Pressure-
sensitive 

Amino acide -------- Van Berlo et al., 
2000. 

PNBC/P ADBd pH-sensitive Lysozyme, 
BSA 

98/97 Biao et al., 2009. 

PNNC/PADBe Light sensitive BSA, L-Tyr 98/97 Wang et al., 2008 

(Liu et al., 2011) 

a. EOPO: ethylene oxide–propylene oxide polymers. b HM-EOPO: a hydrophobically modified random 
polymer of EO and PO with aliphatic C14H29- groups coupled to the end of the polymer.c NIP AM-VI: 
copolymers of 1-vinylimidazole (VI) with N- isopropylacrylamide (NIPAM).d PNBC: copolymer 
synthesized by using n-isopropylacrylamide, n-Butyl acrylate, chlorophyllin sodium copper salt as 
monomers; PADB: copolymer synthesized by using acrylic acid, 2-(dimethylamino) ethyl methacrylate, 
and n-butyl methacrylate as monomers, and ammonium persulfate and sodium hydrogen sulfite as 
initiators.)e PNNC: copolymer synthesized by using N-isopropylacrylamide, N-vinyl- 2-pyrrolidone, 
chlorophyllin sodium copper salt as monomers, and 2,2’-azo- bisisobutyronitrile as initiator. 
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2.4.4. Application of aqueous two-phase system (ATPS) 

It has been reported that ATPS has been widely applied for purification of 

extracellular macromolecule such as pectinases, β -galactosidase, α-amylase and 

cellulose from various fermentation process (Antov and Pericin, 2000; Johansson and 

Reczey, 1998; Anderson et al., 1985; Alam et al., 1989; Stredansky et al., 1993; 

Persson et al., 1984). Apart from using ATPS techniques to purify different protein 

from bacterial and fungal culture, this method has been successfully applied for 

recovery of viral or plasmid gene therapy vector (Garca-Perez et al., 1998), inclusion 

bodies and viral coat protein for the protein vaccines (Rito-Palomares, 2004) (Table 

2.4). 
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Table 2-4: Application of ATPSs 

ATPS Application Reference 

PEG/dextran Separation of polymerase chain reaction (PCR) 
inhibitory 
Substances from bacterial cells 

Lantz et al., 
1996 
 
Cole, 1991 

 
 
 
PEG/phosphate 

Recovery of viral coat proteins from 
recombinant E. coli 
Isolation of membrane proteins 
 
Preparation of highly purified fractions of small 
inclusion bodies  
 
Recovery of aroma compounds under product 
inhibition conditions 

Rito-Palomares 
and 
Middelberg, 
2002 
 
Walker and 
Lyddiatt, 1998 
 
Rito-Palomares 
et al., 2000 

PEG/sulphate 
 
 
 
 
 
 
 
 

Drowning-out crystallisation of sodium sulphate 
 
Recovery of metal ions from aqueous solutions 
 
Recovery of food coloring dyes from textile 
plant wastes 
 
Partition of small organic molecules 

Taboada et al., 
2000 
Rogers et al., 
1996 
Huddleston et 
al., 1998   
 
Rogers et al., 
1998 
 

EOPO/Phosphate Recovery of lipase derived from Burkholderia 
Cenocepacia 
 
Extraction of Lysozyme from 
hen egg white 
 

Show et al., 
2012 
 
Dembczynski et 
al., 2010 

Modified from (Dreyer, 2008) 

2.5. Properties of ethylene oxide -propylene oxide (EOPO) 

Random copolymers of ethylene oxide (EO) and propylene oxide (PO) are water 

soluble and thermo stable that can form two phases with other polymers and different 

salts which allowed the replacement of PEG in ATPS system. (Show et al., 2012). 

EOPO copolymer has a lower critical solution temperature (LCST) of 60℃ and can 
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used for recovery of protein. When EOPO is used in ATPS, the process divided in two 

recovery stages, which are called primary recovery and secondary recovery. In primary 

EOPO/salt ATPS the target protein is partition in the top phase (EOPO rich phase) .In 

the secondary recovery stage the EOPO rich phase removed from the system and heated 

up to the lower critical solution temperature(LCST). The new two phases is formed 

where the bottom phase contains of the concentrated EOPO and top phase consist of 

target protein and water. The thermoseprating copolymer from the secondary ATPS can 

be reused in further ATPS system (Show et al., 2012). 

2.6.  Concluding remarks 

Different purification methods are available for biomolecules purification. 

However, ATPS is a better choice for the separation and purification of protein since the 

extraction of ATPS is relatively rapid and the processing capacity of ATPS is relatively 

high as compared to other existing purification methods.  

Although ATPS have been successfully applied for the industrial recovery of wide 

variety of enzyme from different natural sources such as mushroom and bacteria 

(Ratanapongleka, 2010) to our knowledge, there is no report on extraction and 

purification of lignin peroxidase from Pleurotus pulmonarius using polymer/salt 

systems.  
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3. CHAPTER 3: MATERIALS AND METHODS 

3.1. Materials 

Ethylene oxide-propylene oxide (EOPO) with different molecular weights (2500, 

3900 and 12000 g/ml), veratryl alcohol (3, 4-dimethoxy benzyl alcohol) and bovine 

serum albumin were purchased from Sigma-Aldrich Company (USA). Di-potassium 

hydrogen phosphate (K2HPO4) and potassium di-hydrogen phosphate (KH2PO4) were 

obtained from Merck. All chemicals used were analytic grade.  

3.2. Fungi strain  

The mycelium of Pleurotus pulmonarius was obtained from Mycology laboratory, 

Institute of Biological Science, University of Malaya. The mycelium plate were 

incubated at the ranged of 27±  2℃ for 14 days. The mycelia stock culture were 

maintained in to potato dextrose agar (PDA) plate and subcultured routinely. The pure 

culture was kept on potato dextrose agar slant and liquid paraffin oil for long-term 

storage. 

3.3. Preliminary plate assay  

Three wells were made in the fungi plate and labeled as A, B and C. Each wells 

were filled with different solutions. Well A was filled with 95% (v/v) ethanol which act 

as a control, well B was filled with 0.1% (v/v) syringaldazine to determine the presence 

of laccase activity and a mixture of 1% (v/v) pyrogalic acid and 0.4% (v/v) hydrogen 

peroxide with 1:1 ratio was added to the well C to test on the presence of lignin 

peroxidase (Figure 3.1). The experiment was done in three replicates. The changes of 

the colors after 30 minutes were observed and recorded.  
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Figure 3-1: Preliminary plate screening for lignin peroxidase and laccase activity 

 

3.4. Submerge liquid fermentation  

3.4.1. Optimization of different media for submerged fermentation  

Submerge fermentation is the best technique to obtain mushroom extracellular 

product (Xu et al., 2011). The submerge culture of Pleurotus pulmonarius was 

performed by inoculating mycelia agar blocks (1×1  cm)  taken from 14 days old culture 

of fungus in 250ml Erlenmeyer flasks filled with 100 ml different media composition 

(Figure 3.2). Different type of culture media contains different type of substrates have 

been developed in order to obtain the optimum lignin peroxidase production (Table 

3.1).  
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Table 3-1: Different media composition for lignin peroxidase production 

PDB + 1% Glucose 

PDB + 1% Sawdust 

PDB + 1% Yeast + 1% Sawdust 

 PDB + 1% Glucose + 1% Sawdust 

PDB + 2% Glucose1+ 1% Sawdust 

1% Yeast + 1% Glucose +1% Sawdust 

1% Yeast + 0.5% Glucose 0.5% Sawdust 

 

All the flasks were incubated in a shaking incubator at 120 rpm and 27±2 ºC for 9 

days. All the experiments were done in triplicate. After 9 days of submerged 

fermentation, the media were filtered through Whatman filter paper (No.1) to obtain the 

filtrated liquid. The filtrate was kept in sterilized polypropylene tubes and stored at 4℃ 

for further use. 

3.4.2. Effect of agitation speed on lignin peroxidase production 

The effects of different shaking speed at 50rpm, 80 rpm and 120 rpm on the lignin 

peroxidase (LiP) production were tested for the culture media.  

3.4.3. Effect of inoculum size on lignin peroxidase production 

The liquid culture media contained three different inoculum sizes of 2%, 5% and 

10 % (v/v) mycelia agar blocks were evaluated at incubation length of 9 days, 120 rpm 

and 27±2ºC. 
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Figure 3-2: Flow chart of steps involved in submerged fermentation of Pleurotus 

pulmonarius 
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3.5.  Determination of lignin peroxidase activity 

The activity of lignin peroxidase was determined followed the method by  Have et 

al., (1998) veratraldehyde (VAD) in the presence of hydrogen peroxide (H2O2) 

measured at 310 nm wavelength (Have et al., 1998). 

The enzyme reaction mixture contained 0.2ml of crude enzyme in 2.4ml of 

100mM sodium tartrate (pH 3.0) and 0.2ml veratryl alcohol (30mM). The reaction was 

initiated by adding 0.2ml of freshly prepared 0.5mM H2O2. The formation of 

veratraldehyde was measured after 5 minutes of incubation at room temperature and the 

absorbance were measured at wavelength 310 nm by using spectrophotometer. The 

reagent blank contained 2.6 ml 100 mM sodium tartrate buffer, 0.2 ml of 30 mM 

veratryl alcohol and 0.2ml of 0.5 mM hydrogen peroxide, H2O2. The enzyme blank 

contained 2.4ml of 100 mM sodium tartrate buffer and 0.2ml of tested enzyme. The 

lignin peroxidase activity was calculated using the following formula (Equation 1). 

Thus, one unit of LiP was defined as a µmol of VAD released per minute. 

( ) 

 0.0003  1 1000 1
0.0313 0.2 5min 1 166.18

LiP activity U mL

final absorbance dilution factor mole
mg g

µ
µ

=

⎛ ⎞⎛ ⎞+⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠

 (1) 

Veratraldehyde stock solution = 100µg/ml          Veratraldehyde  MW = 166.18  𝜇g
 

3.6. Measurement of soluble protein 

The protein concentration of crude enzyme was measured using method described 

by Bradford (1976). This method is based on the reaction between Coomassie Brilliant 

Blue G-250 reagent and proteins in the solution and evaluated by measuring the 

absorbance of the solution at 595 nm wavelengths with spectrophotometer. 
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In this method, 0.2 ml of crude enzyme was pipetted into 5 ml Coomassie Briliant 

Blue reagent. The blank contained 0.2 ml of distilled water and Coomassie Brilliant 

Blue reagent .The mixture then mixed by vortex and the absorbance was read within 1 

hour at wavelength of 595nm. The bovine serum albumin (BSA) was used as standard 

to determine the protein concentration. The final soluble protein concentration was 

calculated as followed ( Equation 2) 

( )  1 1Soluble  protein
0.007 0.2 1000

final absorbance mgmg mL
ml gµ

⎛ ⎞⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

 (2) 

BSA stock solution = 1000 µg/10 ml  

 

3.7. Aqueous two-phase system  

3.7.1. Ethylene oxide propylene oxide phase diagram  

The binodial phase diagram for the ethylene oxide propylene oxide (EOPO) 

12000, 3900, 2500 and phosphate was determined by cloud point method (Albertsson, 

1986). Predetermine amount of EOPO (50% (w/w)) stock solution was weighted into 

the centrifuge tube and 40% potassium phosphate (KH2PO4=18.3 g/100 ml; 

K2HPO4=21.70 g/100 ml) at pH 7 was added to the tube and mixed. The turbid mixture 

become clear by adding the distilled water and the mass of mixture was measured. The 

binodial phase diagram divided a region of component concentrations that formed two 

immiscible aqueous phases, which were above the curve and those that formed one 

phase which were located below the curve (Selvaraj, 2011). 
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3.7.2. Tie lie length (TLL) 

The TLL was deliberated by analyzing the top and bottom phase composition. 

The salt concentration and polymer concentration were determined by conductivity and 

refractive index measurement, respectively.  

The TLL that was depicted the two phase composition and calculated as below 

(Equation 3): 

2 2TLL p c= Δ +Δ         (3) 

In this equation ∆p and ∆c showed the difference between polymer and salt 

concentration, respectively, at the top and bottom phase. 

3.8. Preparation of aqueous two-phase system (ATPS) 

In this study, EOPO/phosphate was used to investigate the partitioning behavior 

of lignin peroxidase. Two phase system were prepared in a 15 ml centrifuge tube and 

50% (w/w) EOPO stock solution and 40 % (w/w) potassium phosphates was added 

followed by 1 g crude enzyme extract. The final weight of system was adjusted to 10 g 

by addition of distilled water. The systems were thoroughly mixed and then centrifuged 

at 4000 rpm for 10 minutes to accelerate the formation of two phases. After formation 

of two phases with volume ratio 1:1, the top phase and bottom phase were pipetted out 

and measured the concentration of lignin peroxidase. The protein concentration in each 

phase was determined by Bradford assay. The system parameters of the ATPS such as 

TLL, VR and pH can be then manipulated to get an optimum purification performance 

(Rito-Palomares, 2004; Rosa et al., 2010). All experiment was carried out in triplicate. 
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3.9. Optimization of different parameters in aqueous two phase system 

3.9.1. Optimization of volume ratio (VR) 

The effect of VR on PFT , five different systems lying on the same TLL with 

different VR  (0.29, 0.82, 1.0, 2.1 and 3.75) were tested. The final concentration of the 

phase component in all these VR were the same. 

3.9.2. Optimization of pH  

The effects of different pH values (pH 6-9) on the purity of lignin peroxidase 

were tested. The pH in ATPS was measured according to Lin et al., (2012). This was 

controlled by mixing different compositions of two potassium phosphates (KH2PO4 and 

K2HPO4) with an accuracy of pH ±0.5. 

3.9.3. Optimization of NaCl concentration  

The effect of the addition of natural salt (sodium chloride NaCl) from 1% to 4% 

(w/w) on PFT were evaluated.  

3.10. Determination of partition coefficient (k), specific activity (SA), volume 

ratio (VR), purification factor (pFT) and yield 

The partitioning activity of lignin peroxidase was assessed by parameter including 

partition coefficient, specific activity, purification factor and yield. The partition 

coefficient (K) was calculated as activity of Lignin peroxidase in two phases (Equation 

4): 

T

B

CK
C

=           (4) 
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Where CT and CB shows the LiP activities (U/ml) in top and bottom phase, 

respectively. 

In order to estimate the purification process, specific activity calculated as below 

(Equation 5): 

SA U mg( ) =
Total enzyme activity U ml( )

Total protein concentration mg ml( )
    (5) 

The purification factor defined as an enzyme specific activity at the top phase 

divided by specific activity of crude enzyme before ATPS. The PFT was calculated 

according to (Equation 6): 

PFT =  Specific activity of collected phase 
   Specific activity of crude enzyme

     (6)
 

The volume ratio (VR) was defined as the ratio of volume in the top phase (VT) to 

the volume of the bottom phase (VB) (Equation 7): 

T
R

B

VV
V

=           (7) 

The recovery yield in enzyme rich phase calculated as (Equation 8): 

( )% 100%T T
T

B B T T

C VY
C V C V
⎛ ⎞

= ×⎜ ⎟+⎝ ⎠  

       (8) 

Where CT and CB shows the LiP activities (U/mL) in top and bottom phase 

respectively, VT and VB are the volume ratio in top and bottom phase 
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3.11. Recycling of the phase component 

For recycling of EOPO, the polymer rich phase was taken out from the 

centrifuged tube and transferred into the new tube. The top phase was diluted with 

distilled water (ratio1:1) and incubated in water bath at 65 ℃  for 15 minutes to induce 

the thermosepration. At the next step the diluted top phase sample was centrifuged for 

10 min at 4000rpm. Once the phase separation of the phase sample was attained the 

secondary ATPS contained water at the top phase and concentrated EOPO at the bottom 

phase formed. The water phase was withdrawn from the copolymer phase and then the 

new fresh polymer was added, plus salt and protein to provide the optimum condition 

for first recovery in further studies (Show et al., 2012). The schematic diagram for this 

ATPS is exhibited in Figure 3.3.  

The mass of EOPO bottom phase was weighted and recorded to determined 

polymer recovery. The concentration of EOPO polymer recovered was measured in 

refractive index by using refrectometer. The polymer recovery (R pol) is calculated as 

(Equation 9)  

R pol =
M thermosep

M initial

×100%        (9) 

Where, M thermosep represent the mass of EOPO recovered in lower phase after 

thermoseparation process and M initial is the total EOPO mass in the top phase of the   

primary system . 
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Figure 3-3: Schematic diagram of the recycling EOPO in an aqueous two-phase 

(Persson et al., 2000) 

3.12. Characterization of protein 

The molecular weight of protein that obtained from ATPS was characterized by 

using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 

according to the method described by Laemmli and Favrel (1973) .The experiment was 

carried out by acetone precipitation of protein samples in order to remove the salt which 

affects the electrophoresis process. One milliliter of partially purified protein sample 

and crude enzyme were mixed with 4 ml of cold acetone solution. The mixture was 

vortexed and allowed to precipitate at -20℃  for one hour. This was followed by 

centrifugation at 4000 rpm for 10 minutes. The supernatant was decanted and the pellet 

was resuspended in 100 𝜇𝑙 of distilled water. The concentrated sample was mixed with 

10X sample buffer in 17:3 ratio followed by heating the sample in boiling water bath 

for 2 minutes. A heated sample solution (20𝜇𝑙) was loaded per well on the gels. The 

samples were analyzed in an acrylamide gel consisting of 12% (w/v) resolving gel and 

4.5% (w/v) stacking gel (Appendix A). Electrophoresis was run at 110V and 36mA for 

approximately 85 minutes. 
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Unstained protein molecular weight markers ranged from 14.4 to 116.0 KDa were 

loaded into the gel as a standard. After electrophoresis, the gel was stained with solution 

consisted of 0.05 % (v/v) Coomassie Brilliant Blue R-250, 10 % (v/v) methanol and 10 

% (v/v) acetic acid. It was then destained using the same buffer solution without 

Coomassie Brilliant Blue. The native-PAGE was then carried out to determine the 

lignin peroxidase (LiP) activity. The method for the native-PAGE was to leave out the 

SDS and β-mercaptoethanol from the SDS-PAGE protocol. The bands from the native-

PAGE were excised and subjected to lignin peroxidase (LiP) activity test (Have et al., 

1998). 

3.13. Statistical analysis 

Mean values of triplicate data for all the parameters tested were obtained and 

objected to one-way analysis of variance (ANOVA). The statistical significance was 

accepted at p<0.05 using Duncan’s multiple range test (Appendix B). 

  



36 

 

4. CHAPTER 4: RESULTS AND DISCUSSION 

4.1. Preliminary plate screening 

The preliminary plate-screening assay is an important method to assess whether 

the selected fungi are able to produce desired enzyme. This procedure conducted for the 

mycelium from 10th till 14th day to determine the best day for lignin peroxidase 

production for submerged fermentation. The colour change of the substrate from 

colourless to dark pink and dark brown after 30 minutes illustrated the high productivity 

of laccase and lignin peroxidase, respectively in selected fungi (Figure 4.1).  

According to the result, laccase activity was strongest at day 10th and 11th but after 

that the enzyme lost their activity (Table 4.1). For lignin peroxidase activity, the result 

showed the obvious increase in color intensity from the 10th to 14th day of mycelium; 

however the enzyme lost their activity after day 14th.  Therefore, the 14th days old 

mycelium with high potential of enzyme production was chosen for submerge 

fermentation. 

Table 4-1: The preliminary screening of the plate to determine laccase and lignin 

peroxidase activity 

Day 10th 11th 12th 13th 14th 

Control  ___ ___ ___ ___ ___ 
Laccase  ++ ++ ___ + ___ 
LiP +++ +++ +++ +++ ++++ 

(colour intensity determined by + (low), ++ (intermediate), +++ (high), ++++ (very 

high), - indicates no colour changes). 
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Figure 4-1: Preliminary plate screening of Pleurotus pulmonarius.  The changes of well 

colour to yellow indicate the presence of lignin peroxidase and the changes to pink-

purple colour indicates the presence of laccase 

 

4.2. Optimization of lignin peroxidase (LiP) production in submerge 

fermentation  

The effects of different media, agitation speed and inoculum size were 

investigated to optimize the LiP production. These factors were selected based on 

previous studies which were shown to have an important influence on lignin peroxidase 

production in submerge fermentation (Sing and Chen, 2008)  
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4.2.1. Effect of media composition on LiP production  

The effect of different media composition was studied .The experiment was 

conducted for a total of 14 days in the 120 rpm at 27℃  and the crude enzyme was 

harvested on 3, 7, 10 and 14 th days after incubation.  

 

Figure 4-2:Lignin peroxidase activities of Pleurotus pulmonarius cultivated in different 
media. 

(*1=PDB + 1% Glucose, *2=PDB + 1% Sawdust, *3=PDB + 1% Yeast + 1% Sawdust, 
*4=PDB + 1% Glucose +1% Sawdust, *5 =PDB + 2% Glucose + 1% Sawdust, *6=1% 
Yeast + 1% Glucose +1% Sawdust, *7=0.5Yeast + 0.5% Glucose +1% Sawdust). 

Note: Lignin peroxidase activity (U/ml) with different letter(s) were significantly 
different by Turkey’s HSD (p<0.05). Uses Harmonic Mean Sample Size=3.00. 

 

From Figure 4.2, the media contained 1% yeast + 1% glucose +1% sawdust 

showed the highest enzyme activity of 95.54 ± 2.26 U/ml in submerge fermentation. 

This medium provided the optimal condition for lignin peroxidase production as having 

appropriate amount of glucose as a carbon source and yeast as a nitrogen source and 
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sawdust. Massadeh et al., (2010) showed that addition of glucose as a carbon source 

induced the lignolytic enzyme production such as laccase, LiP and manganese 

peroxidase (MnP) in Pleurotus pulmonarius. 

Kapich et al., (2004) stated that lignocellulosic substrate such as wheat straw and 

hemp woody core induced the production of P. chrysosporium lignin peroxidase under 

submerge culture with no limitation in carbon and nitrogen source. Moreover, 

lignocellulosic waste such as sawdust might contain significant amount of soluble 

carbohydrates (C:N = 95:1), which enhances the enzyme production (Elisashvili et al. 

2002). Besides, Pleurotus species generally live in nature on dead wood as saprophytes 

and served as a primary degrader and wood decomposer (Nieto and Chegwin, 2008). 

Hence, it is believed that the sawdust, which added to the liquid media, may provide a 

similar environment as their natural growing habitat of Pleurotus pulmonarius, to 

induce the production of lignin peroxidase.  

4.2.2. Effect of agitation speed on LiP activity 

The productions of lignin peroxidase by Pleurotus pulmonarius were carried out 

at different agitation speeds of 50 rpm, 80 rpm and 120 rpm. The results revealed that 

the highest lignin peroxidase activity of 71.50 ± 2.14 U/ml was observed at 120 rpm 

agitation speed (Figure 4.3). At lower speed of 50 rpm and 80 rpm, enzyme activity was 

found to be 57.61±1.65 U/ml and 33.52±1.90 U/ml, respectively. According to 

Purwanto et al., (2009), low agitation speed reduced fungi enzyme production due to 

insufficient amount of oxygen supply and uneven distribution of nutrient (Akhavan 

sepahy and Jabalameli, 2011). 
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Agitation speed plays an important role in productivity of system since it 

facilitates the mixing of fermentation broth as well as increases the oxygen transfer. 

Agitation not only has the beneficial effect but also some negative influences on 

production broth such as cell destruction, changing the cell morphology and  foam 

production at high agitation speed (Nigam et al., 2012).  

 

Figure 4-3: Effect of agitation speed on lignin peroxidase production 

Note: Lignin peroxidase activity (U/ml) with different letter(s) were significantly 
different by Turkey’s HSD (p<0.05).  Sample Size=3.00 

 

4.2.3. Effect of inoculum size on LiP activity 

Inoculum size is one of the factors affected lignin peroxidase production. The 

fungal culture morphology, fungal growth and enzyme activity, are influenced by 

inoculum concentration (Darah and Ibrahim, 1996; Papagianni, 2004). 
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In this study, different inoculum sizes (2%, 5% and 10% (v/v)) were evaluated to 

obtain optimum level of enzyme activity. The highest lignin peroxidase activity of 

91.44 ± 4.65 U/ml (Figure 4.4) was observed with inoculum size of 2 % (v/v). The 

result showed that lignin peroxidase production was increased with decrease at 

inoculume size. Shafique et al., (2009) reported that inoculum size have an undesired 

effect on the enzyme activity. The reason might be due to the mycelia overgrowth, 

anaerobic condition forms that suppress the enzyme production. In addition, high 

amount of inoculum size resulted in competitive consumption of substrate for growth 

and metabolic processes.  

 

Figure 4-4: Effect of inoculums size on lignin peroxidase production  

Note: Lignin peroxidase activity (U/ml) with different letter(s) were significantly 
different by Turkey’s HSD (p<0.05).  Sample Size=3.00. 
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4.3. The phase diagrams of ethylene oxide-propylene oxide (EOPO)-phosphate 

system 

In this study, ethylene oxide-propylene oxide with three different molecular 

weights (EOPO 2500, 3900 and 12000) were tested. The phase diagrams of EOPO-

phosphate with comparable tie-line lenght (TLL) are shown in Figures 4.5, 4.6 and 4.7. 

These systems were constructed using different molecular weights of EOPO 2500, 3900 

and 12000 g/mol with an increasing trend of TLL at constant volume ratio (VR=1) at pH 

7. The curved line separates the working area into two-phase areas called binodial 

curve. All the points above this line construct two-phase mixture and the points below 

the curve do not give two phase. As the phase diagrams showed the binodials of all 

three copolymer are positioned toward lower polymer concentration and closed to the 

salt axis, indicated that the EOPO copolymer is not included in the salt-rich phase 

(Show et al., 2012). 
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Figure 4-5: Phase diagram for EOPO12000/potassium phosphate system at pH 7 and 

room temperature 

 

Figure 4-6: Phase diagram for EOPO 3900/potassium phosphate system at pH 7 and 

room temperature 
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Figure 4-7: Phase diagram for EOPO 2500/potassium phosphate system at pH 7 and 

room temperature. 

For the recovery of lignin peroxidase, a total of 15 systems composed by EOPO 

of molar mass 2500, 3900, 12000 and potassium phosphate were selected from the 

phase diagram. For each molecular weight, 5 systems with different TLL were selected 

to determine the lignin peroxidase recovery by ATPS. The pH of potassium phosphate 

and the volume ratio were kept constant during the experiment at pH7.0 and volume 

ratio at 1.0. The system was prepared in final weight of 10 g. The system composition 

and TLL of all 15 tested systems are shown in Table 4-2. 
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Table 4-2: System selected for the evaluation of the lignin peroxidase recovery 

System Molecular Weight of 
EOPO 

g/mol 

EOPO % 
w/w 

PO4 % w/w Tie Lie 
Length 

(TLL) 
     

1 2500 14.50 8.90 24.41 

2 16.50 10.00 34.00 

3 18.00 10.75 39.05 

4 19.50 11.40 41.78 

5 20.60 12.00 45.02 

     
6 3900 16.90 5.64 28.98 

7 17.45 6.15 34.71 

8 18.80 7.11 42.08 

9 21.00 7.60 45.23 

10 22.32 8.11 48.31 

     
11 12000 18.00 8.00 32.66 

12 18.20 9.20 37.76 

13 20.00 10.40 42.53 

14 21.00 12.00 43.46 

15 22.00 13.20 46.21 

 

The enzyme partitioning in the ATPS depended upon the size of the biomolecule, 

hydrophobicity, and ionic composition of the phases, molecular length and molecular 

mass of polymer (Banik et al., 2003). Thus, altering the conditions such as pH, ionic 

strength and concentration of phase component, can modify the partition coefficient of 

protein, and then obtain highest lignin peroxidase purification factor and yield. 
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4.4. The effect of EOPO molecular weight on purification factor  

Tanaka et al., (1991); Kavakçıoğlu and Tarhan (2012), reported that the partitions 

of the biomolecules in the ATPS extremely depends on the polymer molecular mass and 

the system composition. These parameters changing the number of hydrophobic 

interactions between the polymer and the hydrophobic area of target protein as well as 

hydrophobic interactions between the polymer and other biomolecules which are being 

partition in the system. 

The changes in concentration and EOPO molecular masses would affect the 

purification of a lignin peroxidase in ATPS system. In order to study the influence of 

both concentration and EOPO molecular mass on LiP purification, the other parameters 

such as pH and volume ratio of all systems were kept constant at 7.0 and 1.0, 

respectively. As shown in Table 4.3, for all 15 phase composition (ATPSs) with 

different molecular mass of EOPO the desired enzyme has shown more tendency to 

partition in salt-rich phase (partition coefficient is lower than 1.0). The highest 

purification factor was observed in EOPO 3900 with 3.69±0.22 in bottom phase and 

recovery yield of 90.40%. 

From the studies by Ng et al., (2012) and Show et al., (2012), EOPO (3900 MW) 

with 50% of propylene oxide (PO) content were more suitable for protein partitioning as 

compared to EOPO with 80% PO content (12000, 2500 MW). Ng et al., (2012), has 

reported that EOPO polymers exhibit different degree of hydrophobicity by varying PO 

content. As the PO content increases, the hydrophobicity of EOPO increases as a result 

of the longer hydrocarbon chain of PO monomers. Moreover, they reported that the 

EOPO with the 50% PO gave the highest cyclodextrin glycosyl transferase purification 

factor in ATPS.  
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However, in this study when the PO composition increased, there was no 

improvement in purification factors and the enzyme was participated at the bottom 

phase. This indicated that the lignin peroxidase was the hydrophobic enzyme but it 

contains only a few areas of hydrophobicity in surface. This can be evaluated by 

different methods such as reversed-phase chromatography (RPC), hydrophobic 

interaction chromatography (HIC), and ammonium sulfate precipitation, which was 

described by Hachem et al., (1996). 

In order to evaluate the hydrophobicity of LiP, ammonium sulfate precipitation 

(Appendix A) has been conducted. From the Figure 4.8, LiP is not soluble in 

ammonium sulfate salt  which well indicating that LiP is not a strong hydrophobic 

enzyme and the hydrophobic bonding’s between the EOPO polymer was less stronger 

compared to others interaction. Thus, the enzyme showed a totally different trend by 

partitioning in the bottom salt phase as compared to other strong hydrophobic enzyme, 

which will participate mainly in the top phase. 
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Figure 4-8: Lignin peroxidase precipitated in ammonium sulfate salt 
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Table 4-3: Partitioning of LiP in different concentrations of EOPO/phosphate system 

EOPO Molecular 
Weights 

Tie Lie 
Lenght 

Purification Factor Yield 

 

 

 

 

2500 

 

System 

Top Phase 
Purification 
Factor 

Bottom Phase 
Purification 
Factor 

Bottom Phase 
Yield (%) 

     

1 24.41 0.00±0.00 0.00±0.00 78.5% 

2 34.00 0.60±0.12 1.52±0.34 75.3% 

3 39.05 0.00±0.00 0.00±0.00 0.00% 

4 41.78 0.00±0.00 0.00±0.00 0.00% 

5 45.02 0.00±0.00 1.11±0.60 71.0% 

      

 

3900 

6 28.98 1.61±0.22 1.47±0.02 89.5% 

7 34.71 0.24±0.04 2.79±0.06 85.0% 

8 42.08 0.78±0.30 3.69±0.22 90.4% 

9 45.23 0.00±0.00 2.06±0.10 90.5% 

 

 

12000 

10 48.31 0.00±0.00 1.58±0.30 90.9% 

     

11 32.66 0.05±0.00 0.58±0.0 88.0% 

12 37.76 0.03±0.00 0.50±0.04 87.9% 

13 42.53 0.12±0.02 0.33±0.03 64.5% 

14 43.46 0.12±0.02 0.79±0.06 26.8% 

 15 46.21 0.05±0.00 0.50±0.02 30.3% 
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From our data, both top and bottom phase showed low purification factor 

suggested that the enzyme migrated towards the interface. Ibarra-Herrera et al., (2011) 

also reported that with the increase in polymer molecular weight, the highest recovery 

of alfalfa proteins shifted from top phase to interface and bottom phase and such a 

behavior can attribute to decrease in free volume of top phase. In this study, increase of 

EOPO molecular mass to 12000 and reduction in free volume at both top and bottom 

phase leading the enzyme partition mainly to interface 

4.5. Effect of volume ratio on purification factor  

To examine the effects of volume ratio value on partitioning of lignin peroxidase 

the best TLL of 28.98 % (w/w) at different VR values were tested and shown in Figure 

4.9. 

 

Figure 4-9: Influence of VR on bottom phase PFT of LiP. The VR from 0.29 to 3.75 are 

shown 

Note: purification factors with different letter(s) were significantly different by 
Turkey’s HSD (p<0.05). 
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Basically, the partitioning behavior of protein will not change by altering the 

volume ratio as, the relative partitioning of each protein is constant (Ashipala and He, 

2008). However, the result indicated that among the 5 different volume ratios tested 

(0.29, 0.82, 1, 2.1 and 3.75), the highest purity of LiP was observed at VR of 0.82, with 

PFT of 9.22± 1.07, and 22.37±2.6 U/ml LiP activity. This result well indicated that 

volume ratio 0.82 provided enough space for enzyme partitioning due to the fine 

balance between top and bottom phase volume ratio (Show et al., 2012).  

Moreover, this might be due to the reduction of free volume in top phase which 

resulted in more protein partitioned toward salt-rich bottom phase. Besides, the 

contamination will concentrate more at top phase and decreased the protein purity 

(Benavides and Rito-Palomares, 2004). Therefore, as the concentration of 

contamination in top phase increased, the lignin peroxidase enzyme tends to partition 

into the salt-rich bottom phase. However, low PFT was observed at VR 0.29. In low 

volume ratio, the bottom phase density is higher and this is not a favorable condition for 

enzymes and hence protein will shift to intermediate phase. In high volume ratio of 

3.75, the lowest purification factor of 1.32±0.33 was obtained due to low free volume in 

bottom phase. Therefore, the ATPS with volume ratio of 0.82 with notably high 

purification factor in bottom phase was selected for future study.  

Furthermore, according to Ooi et al., (2009) the low purification factor would 

happened in low volume ratio, as there was great reduction in free volume which causes 

the loss of enzyme from the top phase. This also suggested that the protein had migrated 

to the intermediate phase or bottom phase and hence the purification factors of bottom 

phase in volume ratio of 0.82 are high. 

 



52 

 

4.6. Effect of pH on purification factor  

The ATPS were tested at different pH ranges from pH 6 to pH 9 in order to obtain 

the best pH for lignin peroxidase purification. The pH in ATPS was measured according 

to Lin et al., (2012). This was achieved by mixing a different composition of potassium 

di-phosphate salt (KH2PO4) and di-potassium phosphate salt (K2HPO4) with an 

accuracy of ± 0.5 of pH. Figure 4.10 indicated that an increase in the system pH 

generally increased the purification fold of lignin peroxidase. However, this increase 

followed by a gradual drop at pH 8.0 and pH 9. 0. 

Banik et al., (2003) described that the changes in pH influences the ionizable 

group of molecules, which in return alter the surface charge of the molecule and hence 

its partition coefficient. Moreover, pH can be used to adjust the partition coefficient 

values, since the net charge of protein changes with acidity or basicity of the solution. 

Lignin peroxidase is an acidic enzyme with isoelectric points of 3.2-4.0 (Renganathan et 

al., 1985; Leisola et al., 1987). According to Abbot and Hatton, (1988), the protein with 

negative surface charge has more tendency to partition to the top phase while positively 

charge protein prefer to partition to the bottom. Therefore, when the pH of the system 

increased above the pI, the enzyme surface charge becomes negative and preferably 

migrated into polymer rich top phase whereas, positively charged protein would 

partition into salt-rich bottom phase (Forciniti et al., 1992). Moreover, it has been 

reported that EOPO tends to have positive charge at pH above 7, which allows it to 

interact with the enzyme (Li et al., 2002). However, it was observed that if the pH 

higher than isoelectric point, the enzyme should be partition at top phase. Interestingly, 

at present experiment the enzyme participated at the bottom level revealing a very 
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important fact that ionic interactions are not responsible for partitioning of LiP toward 

the bottom salt-rich phase.  

In order to explain this result, Flory-Huggins theory is used as a simple analytic 

expression for the partition coefficient. This theory demonstrated that any difference 

between top phase and bottom phase density would lead to uneven distribution of solute 

in the system. Under such a condition, solute shows more preference to the phase with 

high number of molecules per unit volume (density). The entropic effects on solute 

partitioning are larger for EOPO-salt system, when the polymer is effectively localized 

in the top phase, causing the density of the top phase to be lower than the salt-rich 

phase. Thus, a strong hydrophobic force driving the solute toward bottom polymer free 

phases (Johansson et al., 1998; Mageste et al., 2009). Rodriguez-Duran et al., (2012) 

reported tannase from Aspergillus niger also partitioned in bottom salt rich phase 

despite their negative surface charge (pI: 3.8) in system at pH 7. Therefore, the 

partitioning of tannase in ATPS is driven by entropic contribution rather than 

electrostatic interaction (Rodriguez-Duran et al., 2012). 
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Figure 4-10: Influence of pH on bottom phase PFT (■) and Ka (▴) of LiP. The pH from 6 

to 9 is shown. 

Note:  Purification factors and partition coefficiant with different letter(s) were 
significantly different by Turkey’s HSD (p<0.05). 

 

4.7. Effect of NaCl on purification factor 

The best ATPS system was used to study the effect of adding NaCl, ranging from 

0% (w/w) to 4% (w/w), on purification factor of LiP. Table 4.4 showed the effect of 

NaCl concentration on the purification fold of LiP. It is observed that the purification 

fold of enzyme is almost remained constant in the range of 9.20 indicated that different 

concentrations of NaCl in the system does not changed the partitioning of LiP.   
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Table 4-4: Influence of NaCl concentration on PFT on bottom phase.  

Note: Means with the same letter are not significantly different. 

According to Walter et al., (1985), partitioning of biomolecule in two phases and 

subsequently the PFT can be changed by addition of salt into ATPS. This was due to the 

unequal distribution of ion between phases which leading to an electrostatic potential 

difference between the phases. This phenomenon may increase the probability of 

changing the partition coefficient of specific protein according to their surface charge 

(Albertsson, 1977; Johansson et al., 1999). However, in this case, the results of 

purification factor suggested that NaCl could not promote the partitioning of LiP to the 

top phase of 18.80% EOPO / 7.11% PO4 system.  

Moreover, the ATPS phase diagram and phase component properties will be 

affected by addition of natural salt to the system, which lead to change in partitioning of 

target protein (Guo-qing et al., 2005; Abbott and Hatton.,1988). Though, the volume 

ratio of the system in this study did not change with variation in NaCl concentration, 

which indicated that the addition of NaCl have no significant influence on phase 

diagram. Naganagouda and Mulimani (2008) reported similar results that addition of 

NaCl in the PEG/phosphate system had no significant effect on 𝛼-galactosidase enzyme 

partitioning and purification factor. 

 

NaCl concentration 
%(w/w) 

PFT 

  
0 9.22 (a) 
1 9.20 (a) 
2 9.29 (a) 
3 9.25 (a) 
4 9.22 (a) 
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Table 4.5:  Summary of optimized parameters for ATPs 

System parameters PFT (Optimum) Yield LiP activity 
U/ml 

Crude _____ _____ 34.95±0.84 

 
Molecular weight 

(EOPO 3900) 
 

3.69±0.22 90.40% 27.37±0.04 

Volume ratio (0.82) 9.22±1.07 80.47% 22.37±2.60 

System pH (pH7.0) 9.22±2.04 80.47% 27.11±1.57 

Note: The influences of ATPS parameters on partitioning of LiP were investigated. The 
table summarizes the optimum bottom phase LiP extraction results achieved in each 
parameter. 

 

Results from this study have demonstrated that lignin peroxidase from Pleurotus 

pulmonarius can be purified using ATPS. Table 4.5 shows that the optimal parameters 

for LiP purification were EOPO-3900 MW, VR of 0.82, and pH of 7.0. Thus, final 

bottom phase purification factor (PFT) of 9.22±2.04 with recovery yield of 80.47% was 

obtained under such condition. The previous studies showed that another large-scale 

method for LiP purification involving DEAE column resulted in a purification fold of 

5.63 purification fold and recovery yield of 31.86% (Yadav et al., 2009). Hence, ATPs 

method is an alternative to current conventional methods of LiP extraction. 

4.8. Recycling of copolymer 

The main objective of using thermoseparating copolymer is to recover the target 

protein in the solution free from copolymer and recycle the copolymer (Persson et al ., 

2000). The recycling of EOPO from primary phase system was performed successfully. 
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Table 4.6 shows the LiP purification factor, volume ratio and total recovery of 

copolymer at the first extraction and primary system prepared from the recovered 

EOPO. 

From the result, it could be seen that there is no difference between the VR   in 

the system prepared from fresh EOPO and the primary system prepared from recycled 

EOPO. This might be due to the fact that the EOPO and potassium phosphate 

concentration in the first extraction system were approximately the same as those in 

ATPS prepared from recycled EOPO (Persson et al., 2000). Moreover, the purification 

factor from the first extraction and system using the recycled EOPO.are in the range of 

9.18 to 9.22.  

Persson et al., (2010) reported recovery of more than 75% EOPO at first 

recycling process from the ATPS system composed of EOPO and sodium perchlorate. 

However, in this study the target enzyme partitioned in the bottom phase, the recycling 

of the copolymer has been successfully accomplished. The result showed the recovery 

of more than 80% of the EOPO from the ATPS system. 

Table 4-5: The recovery percentage of EOPO and the PFT  and VR  of the LiP for the first 

extraction and the subsequent recycling step 

 PFT VR EOPO Recovery 
(%) 

First recovery 9.22 ± 1. 07 0.82 -------- 

First recycling  9.18 ± 0.62 0.80 81.25% 
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4.9. Characterization of lignin peroxidase by SDS-PAGE and native-PAGE 

analysis  

The purity of lignin peroxidase recovered from bottom phase in ATPS was 

assessed by 12% SDS and native polyacrylamide gel electrophoresis analysis. As shown 

in Figure 4.11, the crude enzyme contained multiple bands, showing undesired proteins 

present in the original crude enzyme (Lane 1, Figure 4-11). The sample obtained from 

the bottom phase showed a band (Lane 2, Figure 4-11) both the gels carried out with 

SDS-PAGE and native-PAGE analysis with molecular mass of approximately 46-47 

kDa. The band (lane 3, Figure 4-11) obtained from native-PAGE, was then assessed for 

lignin peroxidase (LiP) activity test as described by Have et al. (1998). The lignin 

peroxidase activity test of the band showed positive LiP activity of 5.35±  1.19 U/ml. 

Lane 4 showed the purified LiP from the system conducted by recycled EOPO. The 

SDS-PAGE result showed that there was no variation in the molecular weight of LiP 

recovered from ATPS composed of fresh and recycled polymer. 

Lignin peroxidase is a protein reported to have molecular weight in the range of 

38-47 kDa (Tuisel et al., 1990; Asther et al., 1992).  Vares et al. (1995) also reported 

the lignin peroxidase produced by Phlebia radiate consisted of two distinct bands at 45 

to 46 kDa and 44kDa in SDS-PAGE. Yang et al., (2005) reported the purified lignin 

peroxidase from Penicilluim decumbens P6 possessed a subunit molecular weight of 

46.3 kDa. 
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Figure 4-11: SDS-PAGE analysis on the recovery of lignin peroxidase by 12% gel. The 

molecular weight of standard protein marker ranged 14.4 to 116 kDa. Lane 1: crude 

enzyme; Lane2: Sample of first ATPS conducted by using fresh EOPO; Lane 3: native-

PAGE of bottom phase sample; Lane 4: sample of recycling ATPS conducted by using 

recovered EOPO from first ATPS; Lane 5 standard protein marker 
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5. CHAPTER 5: GENERAL DISCUSSION, CONCLUSION AND 

RECOMMENDATIONS FOR FUTURE STUDY 

5.1 Conclusion 

In conclusion, aqueous two-phase system was demonstrated to be a convenient 

purification method for lignin peroxidase from Pleurotus pulmonarius. After several 

optimizations the highest LiP activity of 95.54 ± 2.26 U/ml was observed in the liquid 

medium with 1% yeast, 1% glucose and 1% sawdust, 2 plugs (1x1 cm) of mycelium 

and with120 rpm agitation speed.  

In order to purify the LiP from fermentation process, the partitioning of enzyme 

was investigating in the EOPO thermoseparating polymer/potassium phosphate two-

phase mixture. The primary recovery of LiP was accomplished. Under optimized 

condition EOPO 3900/potassium phosphate system contained of 42.8 %( w/w) TLL, VR 

of 0.82 at pH7.0 the desired enzyme with purification factor of 9.22 ±2.32 and yield of 

80.47% was achieved in the salt-rich bottom phase. However, in the first extraction step 

the enzyme had partitioned in bottom phase of system. The result demonstrated that, the 

addition of natural salt to the system had no significant effect on partitioning of LiP.  

5.2 Recommendations for future research  

Lignin peroxidase has been successfully purified by using ATPSs in this study, 

further research works are still required to carry out in order to improve performance 

and its commercial applications.  
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1. Back-extraction step can be added to EOPO/phosphate ATPS for the recovery of 

lignin peroxidase from salt rich bottom phase. The high purity product able to be 

purified since further purification step has been proceeds.  

2. As aqueous two phase system is the primary purification methods the ion exchange 

chromatoghrapy and fast protein liquid chromatography (FPLC) can use 

simultaneously for better extraction.  

3. The larger volume of ATPS would allow higher amount of crude to be purified and 

thereby increases the efficiency. Hence, the ATPS could be further scaled-up with 

an aim to achieve a superior purification process of LiP. 

4. The purified lignin peroxidase can then be tested for melanin decolorization since 

the lignin peroxidase from the P. chrysosporium was reported to successfully 

decoloured the melanin. Furthermore, the purified lignin peroxidase can be tested 

for biological activities such as fibrinolytic and anti-coagulant properties.  
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APPENDIX A 

A-1: Determination of Lignin Peroxidase Activity (Have et al., 1997)  

Reagent 

• 100 mM sodium tartarate buffer pH 3.0  
• 30mM of veratryl alcohol;  
• 0.5 mM H2O2 

Procedure for Preparation of Veratraldehyde (3, 4-Dimethoxybenzaldehyde) 

Standard Plot 

Veratraldehyde (VAD) was used as the standard curve to determine the LiP 

activity.  The veratraldehyde (VAD) solution containing 10- 200µg VAD in a volume 

up to 1.5mL was pipette into 12 different test tubes. Each test tube was added with 

buffer until reached a final volume of 3.0mL and the test tubes were mixed with a 

vortex. Finally, 0.5mL of 0.5 mM hydrogen peroxide was added and the reaction was 

read at wavelength of 310nm. 

 

Figure A-1: Standard curve for veratraldehyde. 
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From the standard curve, the lignin peroxidase activity was determined as the unit 

of activity in µmol of VAD released per minute, thus 

( )  0.0003  1 1000 1 
0.0313 0.2 5min 1 166.18

final absorbance dilution factor moleLiP activity U mL
mg g

µ
µ

⎛ ⎞⎛ ⎞+⎛ ⎞⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠

 

Procedure for Determination of Lignin Peroxidase Activity 

The reaction mixture consisted of 2.4mL 100mM Sodium Tartrate buffer pH 3.0, 

0.2mL of enzyme sample and 0.2mL of 30 mM veratryl alcohol pH3.0. LiP activity was 

measured by oxidation of veratryl alcohol to veratrylaldehyde in the presence of H2O2 at 

pH 3.0. The reaction was initiated using 0.2mL of 0.5mM H2O2. The enzyme activity 

was measured at the wavelength of 310nm after 5 minutes.  The usual reagent blank and 

enzyme blank were included. Reagent blank consisted of 2.6mL buffer, 0.2mL substrate 

and 0.2mL H2O2, whereas enzyme blank consisted of 2.8 buffer, 0.2mL of enzyme 

sample. 

Table A-1: Assay mixtures for determination of lignin peroxidase activity 

Column Volume 

Substrate blank 2.6mL sodium tartrate buffer+ 0.2mL of  30mM veratryl alcohol+ 

0.2mL of 0.5mM H2O2 

Enzyme blank 2.8mL sodium tartrate buffer+ 0.2mL 0f enzyme 

Reaction mixture 2.4mL sodium tartrate buffer+ 0.2mL of enzyme+ 0.2mL of  30mM 

veratryl alcohol+ 0.2mL of 0.5mM H2O2 
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A-2: Determination of Soluble Protein Concentration 

Bradford Reagent 

1. Coomassie Brilliant Blue G-250 (100mg) was dissolved in 50 mL of 95% 

ethanol.  

2. 100 mL 85% (w/v) phosphoric acid was added to the above solution. 

3. Resulting solution was made up to the final volume of 1 L. 

4. The solution must be stored in a dark bottole and in a refrigerator.   

Procedure for preparation of protein calibration plot (Bradford, 1976) 

Bovine serum albumin solution containing 10 to 100𝜇g/mL protein was prepared 

and the final volume was made up to 1 mL with distilled water in each test tube. Blank 

contained only 1 mL distilled water without bovine serum albumin. Coomassie briliant 

Blue reagent (5mL) was added to each test tube and mixed thoroughly. Absorbance was 

taken at 595 nm after 30 minutes and the weight of protein was plotted against the 

change of absorbance to generate a standard curve.  
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Figure A-2 Protein Standard curve 

Determination of soluble protein (Bradford, 1976) 

Sample (0.2mL) was mixed with 5 mL of Coomassie Briliant Blue reagent. Blank 

was only 0.2 mL of distilled water with 5 mL of coomassie Briliant Blue reagent. 

Absorbance was taken at 595 nm and amount of protein in the sample was calculated by 

using the protein calibration plot with the following formula: 

( )  1 1Soluble  protein
0.007 0.2 1000

final absorbance mgmg mL
ml gµ

⎛ ⎞⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

 (2) 

BSA stock solution = 1000 µg/10 ml  

 

A-3: Sodium Dodecyl Sulphate-polyacrylamide Gel Electrophoresis (SDS-

PAGE)  

The casting and running protein gels according to Laemmli and Favrel, (1973) 
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Resolving gel (12mL) for 2 gel  

1. 3.60 ml 40% bis acrylamide 

2. 3.00 ml resolving gel buffer  

3. 0.12 ml of 10%SDS 

4. 5.22 mL of dH2O 

5. 50𝜇l of APS 

6. 10  𝜇𝑙  of TEMED  

Stacking gel (6 mL) for 2 gel  

1. 0.75 mL 40% bis acrylamide 

2. 1.50 mL Stacking  gel buffer  

3. 0.06 mL of 10%SDS 

4. 3.59 mL of dH2O 

5. 20 𝜇L of APS 

6. 10 𝜇𝐿  of TEMED  

 1.5 M Tris-HCL pH 8.8 (Resolving Gel Buffer)  

1. 27.23g Tris-HCL in 80 mL of dH2O 

2. Adjust the pH to pH 8.8 by using HCL 

3. Top up to 150 mL using dH2O 

0.5 M Tris-HCL pH 6.8 (Stacking Gel Buffer) 

1. 6.1 Tris-HCL in 80 mL of dH2O 

2. Adjust the pH to pH 6.8 by using HCL 

3. Top up to 150 mL using dH2O 
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10% Ammonium Persulphate (SDS) 

1. 1g of SDS in 10 mL of dH2O 

SDS-PAGE Running Buffer (Tank Buffer) 

1. 3.03 g Trisbase 

2. 14.4 g Glycine 

3. 1 g SDS 

4. Top up to 1 L using dH2O 

10%(w/v) Ammonium persulfatte (APS) 

1. 0.011 g Ammonium persulfatte in 100 𝜇𝐿 dH2O 

SDS-PAGE Coomassie Briliant Blue R-250 

1. 0.1 g Coomassie Brilant Blue R-250 

2. 255 mL of dH2O 

3. 255 mL of methanol 

4. 50 mL glacial acetic acid  

SDS-PAGE Coomassie Destaining Solution  

1. 600 mL of dH2O 

2. 300 mL of methanol (30%) 

3. 100 mL glacial acetic acid (10%) 
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APPENDIX B 

SPSS Statistical Analysis 

• SPSS data for media optimization 

For One Way Anova, the p-value <0.05, which showed that there were significant 

differences between the groups. 
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• SPSS data for agitation speed  

For One Way Anova, the p-value <0.05, which showed that there were 

significant differences between the groups 

 



85 

 

• SPSS data for Inoculum size  

For One Way Anova, the p-value <0.05, which showed that there were 

significant differences between the groups 
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• SPSS data for volume ratio 

For One Way Anova, the p-values was less than 0.05, which showed that there 

was significant differences between the groups. 
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• SPSS data for natural salt (NaCl) 

For One Way Anova, the p-values was more than 0.05, which showed that there 

was no significant differences between the groups. 

 

•  
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• SPSS data for different pH  

For One Way Anova, the p-value was less than 0.05, which showed that there was 

significant differences between the groups. 

 

 


