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ABSTRACT 

This study was conducted to evaluate the genotoxicity of atrazine and endosulfan as a 

potential endocrine disruptor chemicals (EDCs) in Oreochromis niloticus by using 

micronucleus test and RAPD assays, as well as to determine vitellogenin gene expression in 

male O. niloticusfor 96 hours exposure period. O. niloticus was exposed to atrazine at 

concentration of 0.50 mg/L, 2.50 mg/L, and 4.75 mg/L, and to endosulfan concentration of 

1.50 µg/L, 3.60 µg/L, and 7.00 µg/L. In the micronucleus test, athigh concentration of 

atrazine and endosulfan, there was a significant increase of the frequency of micronucleus 

and nuclear abnormalites. These results showed that exposure to atrazine and endosulfan 

significantly increased genetic toxicity in O. niloticus blood cells. A subsequent RAPD 

assay also showed that atrazine and endosulfan induced genotoxic effect in O. niloticusby 

changing the DNA profiling as compared to control test. The five RAPD primers tested 

produced unique polymorphic band patterns and generated RAPD profile variations that 

displayed the disappearance of bands and appearance of new bands of amplified DNA in 

the atrazine and endosulfan-treated genomic DNA. There was also induction of vitellogenin 

transcript observed in male O. niloticus upon treatment to all atrazine concentrations and 

high concentrations of endosulfan. These results suggested that atrazine and endosulfan are 

potentially harmful to fishes as EDCs as the chemicals have been shown to cause 

genotoxicity effect and vitellogenin expression in male O. niloticus.      

 

 

 

 



 

iv 
 

ABSTRAK 

Kajian ini telah dijalankan untuk menilai kesan genotoksik atrazine dan endosulfan yang 

berpotensi sebagai bahan kimia mengganggu endokrin (EDCs) ke atas Oreochromis 

niloticus dengan menggunakan ujian mikronukleus dan RAPD, dan mengenalpasti ekspresi 

gen vitellogenin pada O. niloticus jantan selepas didedahkan dengan bahan-bahan kimia ini 

selama 96 jam.O. niloticus didedahkan kepada atrazine pada kepekatan 0.50 mg/L, 2.50 

mg/L, dan 4.75 mg/L, serta kepada endosulfan pada kepekatan 1.50 µg/L, 3.60 µg/L, dan 

7.00 µg/L.  Di dalam ujian mikronukleus, terdapat peningkatan secara signifikan terhadap 

frekuensi mikronukleus dan keabnormalan nukleus apabila ikan didedahkan pada 

kepekatan atrazine dan endosulfan yang tinggi.Hasil ujian ini menunjukkan pendedahan 

ikan kepada atrazine dan endosulfan telah menyebabkan peningkatan ketoksikan genetik 

secara signifikan di dalam sel-sel darah O. niloticus.Ujian RAPD juga menunjukkan 

bahawa atrazine dan endosulfan mampu untuk mendorong kesan genotoksik untuk berlaku 

ke atas O. niloticus dengan melihat kepada perubahan profil DNA berbanding dengan ujian 

kawalan.Lima primer RAPD yang digunakan menghasilkan jalur-jalur polimorfik yang 

unik, dan variasi pada profil RAPD memaparkan kehilangan jalur dan kehadiran jalur baru 

yang terhasil daripada amplifikasi DNA genomik ikan yang terdedah kepada atrazine dan 

endosulfan.Hasil kajian juga menunjukkan terdapatnya penghasilan transkrip vitellogenin 

di dalam ikan jantan apabila ikan didedahkan kepada kesemua kepekatan atrazine dan pada 

kepekatan tinggi endosulfan.Hasil-hasil ujian mencadangkan bahawa atrazine dan 

endosulfan berpotensi untuk memberikan bahaya kepada ikan sebagai EDCs, 

memandangkan kedua-dua bahan kimia ini telah menunjukkan kesan genotoksik dan 

ekspresi vitellogenin di dalam O. niloticus jantan. 
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CHAPTER 1 

INTRODUCTION 

 

Chemicals that can either mimic endogenous hormones, interfere with 

pharmacokinetics, or act by other mechanisms are referred to endocrine disruptor chemicals 

(EDCs). The term ―endocrine disruptors‖ is used because the substance is not naturally 

produced in the body, but it can mimic or antagonize natural hormones which can alter the 

normal endocrine system (Larkin et al., 2003; Shammas, 2007). EDCs have the potential to 

be harmful not only toanimalsbut also humans. It is thought that EDCs are responsible for 

endocrine disruption in wildlife as seen in fish (Al-Sabti and Metcalfe, 1995; Ayllon and 

Garcia-Vazquez, 2001), and amphibians (Miyahara et al., 2003), besides causingsome 

reproductive problems in both human and rodents (Fan et al., 2007), and also increase the 

frequency of occurrence of certain types of cancer in human (Brusick, 1994; Fan et al., 

2007). Therefore, it has becomea major concern to the public nowadays, since people 

started to be aware about the effect of such compound to their health.A lot of researches 

have been done to study the effect of EDCs on human and animal. Because hormone 

receptor system in human is similar with animals, thus effects observed in wildlife can be 

extrapolated to humans (Shammas, 2007).   

 

Exposure of toxic substances can cause DNA damages,such as DNA base 

modifications, strand breaks, depurination and cross-linkages (Frenzilli et al., 2004; Sayed 

et al., 2013), in living cells. A growing interest to detect genotoxicity caused by  genotoxic 

agents, such as EDCs, has led to the development of sister chromatid exchange, 
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chromosomal aberration, comet assay, micronucleus (MN) test, and nuclear abnormalities 

(NA) to detect genotoxicity directly (Al-Sabti and Metcalfe, 1995; Ayllon and Garciz-

Vazquez, 2001; Mohanty et al., 2011), or by using molecular approaches especially 

polymerase chain reaction (PCR) basedtechniques such as random amplified polymorphic 

DNA (RAPD), denaturing gradient gel electrophoresis (DGGE), and single stranded 

conformational polymorphisms (SSCP)(Tice et al., 2000; Cajaraville et al., 2003; Atienzar 

and Jha, 2006).  

 

MN test and comet assay are among the tests which have been used widely since 

these tests give reliable results, simple and sensitive (Ayllon and Garcia-Vazquez, 2001). 

The presence of MN in cells reflects structural and/or numerical chromosomal aberrations 

during mitosis, thus indicate genotoxic effect of the toxic agents (Ventura et al., 2008). 

Genotoxicity study in fish using MN test and NA is a suitable measure to detect the 

presence and absence of genotoxins in water, as well as to assess the water quality 

(Talapatra and Banerjee, 2007). Another reliable technique to assess genotoxicity caused by 

EDCs is using RAPD. This technique is a modification of conventional PCR. RAPD offers 

great scope to detect and compare changes between normal and genotoxicant exposed 

group of animals in studies related to genotoxicity (Mohanty et al., 2011). The genoxicity 

in exposed group of test studies to genotoxicants is determined by the gain of new bands 

and loss of bands (Atienzar and Jha, 2006). The advantage of RAPD in genotoxicity studies 

includes ease, speed and low cost of experiment when the focus is to detect genomic 

mutations (Mohanty et al., 2011). 
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It has been demonstrated that most EDCs act as xenoestrogens, which can mimic, 

alter, or antagonize the action of endogenous estrogen, and thus disrupt the reproductive 

capacities of various animals (Livingstone et al., 2000; Marin and Matozzo, 2004; Huang et 

al., 2010). In fish, the synthesis of vitellogenin (Vtg), which is the female-specific egg-yolk 

proteinscan be stimulated in male fish when exposed to EDCs (Sabo-Attwood et al., 2007). 

In reproductively active female fish, endogenous 17β-estradiol (E2)stimulates the liver to 

produce Vtg. While in male fish and immature females, there are necessary E2receptors and 

genetic machinery to produce vitellogenin (Sumpter and Jobling, 1995). Therefore, Vtg 

induction in male and immature fish has been used as biomarker both in laboratory and 

field studies to detect the estrogenic activity of chemicals suspected as being endocrine 

active (Arukwe and Goksøyr, 2003; Ortiz-Zarragoitia and Cajaraville, 2005).  

 

The study of EDCs in aquatic environment especially in fish is important because 

fish is one of major protein consumed by human. Possibility for human to require the 

effects of toxic chemical can be achieved through the contaminated fish. There was a study 

done by Skerfving and colleagues (1974), which indicated the induction of chromosomal 

damage in lymphocyte of persons after consuming contaminated fish. Such cause is due to 

the exposure of methyl mercury from the fish. There are a lot of studies which utilized 

fishes as models to study aquatic toxicology because they responded similarly to higher 

vertebrate when exposed to toxicity by chemical contaminants and they also are good bio-

indicators for pollutant effects (Ventura et al., 2008).  
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Oreochromis niloticus, which is commonly known as the Nile tilapia, have been 

used in many researches to study genotoxicity. The fish can be found in estuaries in most 

part of the world (Vijayan et al, 1996). In Malaysia, the fish have been crossed 

amongOreochromis sp.(Musa et al., 2009).The increasing demand in market and its 

economical value makes it worth to use this fish as a model of study in aquatic toxicology, 

particularly to study EDCs. The advantages of using O. niloticus as a biological model in 

toxicology studies are due to its sensibility to environment alteration, high growth rate, its 

ability to adapt to diverse diets and it has high resistance towards diseases (Ventura et al., 

2008). 

 

1.1 Objectives of Research 

 

The objective of this research is to determine genotoxic effects of selected 

chemicals and their potential to affect endocrine system in the fish. In order to achieve the 

main objective, the measurable objectives of this study are stated as follow: 

i. To observe the genotoxic effect through the occurrence of MN and NA in the blood 

cells of O. niloticusafter exposure to EDCs. 

ii. To determinechanges in RAPD banding pattern in O. niloticus after exposure to 

EDCs.  

iii. To study the expression of vitellogenin after exposure to EDCs, especially in 

maleO. niloticus.  
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Endocrine Disruptor Chemicals (EDCs) 

 

 The endocrine system consists of glands, hormones and receptors. The glands 

produce hormones, such as adrenocorticotropic hormone, coricostreoid, adrenalin, estrogen, 

testosterone, androgen, insulin, triiodothyronine, and thyroxin (Shammas, 2007). These 

hormones regulate about every biological functions in the body which include; (1) 

reproduction and embryo development, (2) growth and maturation, (3) energy production, 

use and storage, (4) electrolytes regulation to control the balance and maintenance of water 

and salt, (5) reaction to stimuli, such as fright and excitement, and (6) behavior of human 

being and animals (US EPA, 2001; Larkin et al., 2003; Pait and Nelson, 2003). Receptors 

in endocrine system recognize and response to the hormones. Receptors regulate the 

response so that the biological functions work properly. Any disruption to the balance can 

cause change in the reaction as well as unwanted harm to the body. The disruption may be 

caused by certain chemicals and they are known as endocrine disruptor chemicals (EDCs) 

(Larkin et al., 2003). The term ―endocrine disruptors‖ is used to describe substances that 

are not produced in the body and which can mimic or antagonize natural hormones 

(Shammas, 2007).  
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Humans and animals shared similar hormone receptor systems, and effects observed 

in wildlife species raise concerns of potential human health effects (Brusick, 1994; 

Shammas, 2007). Thus, EDCs are one of the toxicant contaminants which have been 

extensively studied in this few decades to identify their effects in wildlife, especially in 

fishes as model systems (Al-Sabti and Metcalfe, 1995; Vos et al., 2000; Obiakor et al, 

2012). EDCs are synthetic or naturally occurring chemicals that interfere with the balance 

of normal hormone function in animals, including humans. There are three groups of 

endocrine disruptors. They can mimic, block or trigger a hormone response (Jesperson, 

2003). EDCs can mimic hormones which respond like normal hormones inside the body. 

The second groups are blocker chemicals which interfere with naturally occurring hormone 

functions by preventing the natural hormone to send its message. The last group is trigger 

chemicals. Endocrine disruptors which belong to this group caused alteration of the normal 

endocrine system, or alter the synthesis, metabolism and activity of hormones (Shammas, 

2007). This is because trigger chemicals attach to protein receptors, then they trigger an 

abnormal response in the cell and led growth at the wrong time (Jesperson, 2003). Some 

effects attribute from the disruption of endocrine system balance have caused reduced 

fertility, hatchability and viability of offspring, as well as impaired hormone activity and 

altered sexual behavior (Larkin et al., 2003).    

 

The characteristics of EDCs are explained as 1) chemicals that can mimic the sex 

steroid hormones estrogen and androgens by binding to hormone receptors or influencing 

cell signaling pathways, 2) block, prevent, and alter hormonal binding to hormone receptors 

or influence cell signaling pathways, 3) alter production and breakdown of natural 

hormones, and 4) modify levels and function of hormone receptors (Larkin et al., 2003; 
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Shammas, 2007). EDCs can be herbicides, inseticides, metals, alkylphenols, pesticides, and 

mixtures of chemicals. Among existing EDCs, insecticides and herbicides have been 

extensively used especially in agricultural area, where the chemicals are an important 

strategy for the increment of production and controlling plagues and diseases. The 

accumulation rate of such chemicals in aquatic environment depends on several causes. It 

can be on the kind of associated food chain, on availability and persistent of the 

contaminant in the water, or on the physical and chemical characteristics of the 

agrochemical (Larkin et al., 2003). A numbers of chemicals have been studied to see their 

potential to cause endocrine disruption, which include atrazine and endosulfan.    

 

Atrazine (2-chloro-4-ethylamino-6-Isopropylamino-s-triazine) is an herbicide which 

belongs to triazine group. Triazine is the oldest herbicide and is widely used in the world 

where it commands around 30% of the pesticide market in the world (Tomita and Beyruth, 

2002). Atrazine is extensively used in agricultural fields such as corn, sorghum, sugar cane, 

pineapples, and the usage also extended to landscape vegetation (Nwani et al., 2010). It is 

considered as moderately toxic to aquatic species but it is mobile in the environment and it 

has high stability in water. Besides, atrazine also is highly persistent in aquatic 

environments. When the water has high acidity and high dissolving organic matter, the 

chances of atrazine to be persistent in water is also increased. The presence of atrazine in 

water source is due to runoff from herbicide used on row crops (Shammas, 2007). Thus it 

appears as one of pesticides detected in streams, rivers, ponds, reservoirs, and ground water 

(Brusick, 1994; Nwani et al, 2010). The appearance of atrazine in aquatic environment can 

be directly due to careless application in the agricultural area or due to the proximity of 

such area to water places.  
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The residual of atrazine herbicide which leaches into the soil and into near water 

resources due to agricultural activities can give adverse effect to the stability of aquatic 

ecosystems, especially the potential to promote damage to the genetic material of fishes. 

The effects of atrazine is not only limited to fishes. This compound has shown to be 

genotoxic and mutagenic actions in plants (Mohammed and Ma, 1999), and a cause of 

cytotoxicity effect in snails (Mona et al, 2013). In vitro studies on the effect of atrazine to 

mammalian cells have shownchromosomal aberration, DNA damage and cytogenetic 

effectto human lymphocytes(Meisner et al., 1993; Ribas et al., 1995; Clements et al., 1997; 

Lioi et al., 1998). In the fish, atrazine has been reported to affect fish kidney morphology 

(Fisher-Scherl et al, 1991), swimming behavior (Saglio and Trijasse, 1998) and alter 

hormonal pathway in various taxa (Moore and Waring, 1998; Spanò et al, 2004; Thibaut 

and Porte, 2004).Another report related to the occurrence of endocrine disruption showed 

that atrazine caused alteration of hepatic metabolism, and induction of estrogenic effects 

and oxidative stress on juvenile rainbow trout in vivo, where the effects are linked (Thibaut 

and Porte, 2004).    

 

Endosulfan (6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-2,4,3-

benzodioxathiepin-3-oxide),is another potential EDC which has been shown to cause harm 

towards aquatic inhabitants. Endosulfan is an organochlorine pesticide that is widely used 

in agriculture (Da Cuňa et al., 2011). The characteristics of organochlorine include being 

very persistent, non-biodegradable and capable of biomagnifications as they move up in the 

food chain thereby making the compounds belonging to this group among the most 

hazardous with respect to environmental pollution. Endosulfan is used in agriculture field 

to increase agricultural productivity. It is extensively used throughout the whole world as a 
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contact and stomach pesticides as well as acaricide on field cereal crops oilseed, coffee, 

vegetables, and fruit crops. Therefore their presence in water bodies could affect aquatic 

life. Endosulfan contamination is frequently found in the environment at considerable 

distances from the point of its original application. Furthermore, it also has been detected in 

the atmosphere, soils, sediments, surface and rain waters, and food stuffs(Jaffery et al, 

1990).  

 

Compared to atrazine, endosulfan is extremely toxic to fish and aquatic 

invertebrates. Endosulfan residues or its metabolites are associated with mortality of fish in 

continental aquatic system. The half-life of endosulfan is 35 to 150 days (Romeo and 

Quijano, 2000). During this period, endosulfan degrades into endosulfan sulfate. 

Endosulfan sulfate is a principle metabolites from the process and highly toxic to some 

aquatic species compared to the parent compound (Shimmel et al, 1977; Rao and Murty, 

1982). For the release of endosulfan in water bodies, the recommended safe limit is 74 µg/L 

(US EPA, 2001). However this concentration is 15 times more than the required 

concentration to cause reproductive damage in the red-spotted newt (Park et al, 2001). Even 

at low concentration, endosulfan is capable of causing oxidative damage and immune-

suppression as seen in O. mossambicus (Kumar et al, 2011).Endosulfan as an 

organochlorine has the possibility to cause several physiological impairments which 

include immune system (Banerjee and Hussain, 1987), excretory system (Singh and 

Pandey, 1989), and reproductive system (Sinha et al, 2001).        
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For the past years, studies related to the effects of EDCs in aquatic organisms have 

been done in Malaysia. Most studies relate the environmental pollution cause by pesticides, 

especially organochlorines and their effects to aquatic organisms (Abu Zeid et al., 2005; Hii 

et al, 2007). Organochlorines are considered to be the most hazardous with respect to 

environmental pollution but they are still widely used in most agricultural places in the 

world (Ilyas and Javed, 2013). Apart from being highly toxic, they also exhibit potential for 

endocrine disruption in aquatic organisms. In Malaysia, organochlorine pesticides such as 

endrin aldehyde, heptachlor epoxide, lindane, aldrin,dichlorodiphenyltrichloroethane 

(DDT), and endosulfan have been found in agricultural sites such as paddy field and 

vegetable farms (Zakaria et al., 2003; Abu Zeid et al., 2005). The presence of 

organochlorine pesticides in water and sediment samples taken from the sites showed that 

environmental contaminations are high at places involve with agricultural activities 

(Zakaria et al., 2003).  

 

Endosulfan is one of the most studied organochlorines in the world, including 

Malaysia. Exposure of sublethal dose of endosulfan to African catfish (Claria gariepinus) 

showed highest accumulation in the livers followed by the intestines, the gill, brain and 

skeletal muscles (Abu Zeid et al., 2005). Reports of endosulfan in aquatic environment 

showed several effects such as hematological and behavioral changes in the Asian swamp 

eel (Monopterus albus)(Hii et al, 2007), increase fatalities of freshwater species (Liong et 

al., 1988), and reduce survival and reproduction performance of Moina macrocopa (Chuah 

et al, 2007). Apart from endosulfan, atrazine is also among the pesticide which is widely 

used in Malaysia, especially in plantations. The study of atrazine in Malaysia mostly 

involved the presence of this pesticide in water source and means of removing it (Ahmad et 
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al., 2008; Ali et al., 2012). Atrazine is considered as a low toxic herbicide, but the presence 

of atrazine in surface water and groundwater shows the impacts of water quality and poses 

environmental pollution, even though its use is in a limited amount of compound despite its 

use is within the permitted dosage (Plakas et al., 2006; Ahmad et al., 2008).     

 

2.2 Genotoxic Effects of EDCs in the Aquatic Environment 

  

 Genotoxicity is a branch of toxicology studies where it deals with the study of 

deleterious effects of toxic agents in the environment on the structure and function of DNA. 

The term ―genotoxicity‖ is used in general to describe alteration to the gross structure, or 

content of chromosomes (clastogenicity), or base pair sequence (mutagenicity) by exposure 

to toxic contaminants. The focus of genotoxicity studies is to determine direct DNA 

damage, due to concern of the effects of genotoxins on the health of an organism and the 

possible implications to future generations if the germline is affected (Mohanty et al., 

2011). The effects of genotoxicity in living systems can be seen in three types of genetic 

lesions. The first type of genotoxic effects are single gene mutations, or point mutations, 

which alter the nucleotide sequence of DNA, and may involve either the base substitution 

or frameshift mutations. Secondly, the structural chromosomal mutations or genomic 

mutations, which involve changes in chromosomal structure such as breaking of 

chromosome, or translocation of an arm, commonly known as clastogenensis. The third 

effects are numerical changes in the genome, aneuploidy and/or polyploidy (Cajaraville et 

al., 2003; Mohanty et al., 2011).  
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 It is important to know the extent of genotoxicity in aquatic environment. This is 

because many toxic and potentially toxic chemical substances, either from natural source or 

man-made, are released into the environment daily (Obiakor et al, 2012). In genotoxic 

pollution of freshwater, the genotoxicants are mostly introduced into the water bodies 

through industrial, agricultural, domestic, and urban activities (Zakaria et al., 2003; Naeem 

et al, 2011; Naz and Javed, 2012). Current awareness of the potential hazards of EDCs in 

the aquatic environment has developed interest to study their effects in aquatic animals, 

especially in fish (Nwani et al., 2010; Obiakor et al., 2012). Recent reports have 

demonstrated the toxicity and effects of EDCs to fish under laboratory and field conditions 

(Nwani et al., 2011; Bűcker and Da Conceição , 2012; Ilyas and Javed, 2013).   

 

There are a lot of tests to study the genotoxic effect of EDCs in fish in vivo and in 

vitro. MN test is the most common methods to study genotoxicity in fish since this method 

is simple and cost-effective (Ventura et al, 2008). This technique was first described by 

Schmidt (1975). Most studiesevaluate the genotoxic damage to blood erythrocytes of the 

fish when using this test (Udroiu, 2006). It is considered as a sensitive tool to measure the 

action of mutagenic chemicals, especially of those that cause clastogenic changes in 

exposed organisms. In most studies, after exposure to different EDCs under field and 

laboratory conditions, erythrocytes of fishes present significant increase of MN formation 

(Hughes and Hebert, 1991; Minissi et al., 1996; Souza and Fontanetti, 2006; Ventura et al., 

2008; Nwani et al., 2011; Sponchiado et al., 2011). As a complement to the MN test, 

occurrence of morphological alteration, or also known as NA in blood erythrocytes is 

performed together as a possible indicator to genotoxicity (Carrasco et al., 1990;Ayllon and 

Garcia-Vazquez, 2001; Baršienė et al., 2006;Ventura et al., 2008).  
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Genotoxicity in fish also can be determined by assessing genetic patterns directly 

using RAPD. RAPD is a modification of PCR developed by Williams et al (1990). This 

technique is a molecular genetic based method which allows evaluation of molecular level 

(DNA) variation in populations (Belfiore and Anderson, 2001) since the amplified 

segments of DNA are random (Atienzar and Jha, 2006). This method is popular for 

comparing the DNA of biological systems that have not had the attention of the scientific 

community, or in a system in which relatively few DNA sequences are compared. The 

method does not require cloning, sequencing or any other form of the molecular 

characterization of the genome of the species in question.  

 

The principle of RAPD is that short synthetic oligonucleotides (10 bases long) of 

random sequence as primers, which bind selectively at several priming sites on the 

complementary sequence in the template genomic DNA. This mechanism promotes 

generation of several discrete DNA products if the priming sites are within an amplifiable 

distance of each other. The profile of amplified DNA primarily depends on nucleotide 

sequence homology between the template DNA and oligonucleotide primer at the end of 

each amplified product (Bardakci, 2001). If two template genomic DNA sequences are 

different, different banding patterns are produced in the PCR products (Atienzar and Jha, 

2006). Polymorphism result from mutation or chromosomal rearrangement such as 

insertions/deletions either at or between the primer binding sites will be detected as 

presence and absence of bands in the RAPD profile (Bardakci, 2001).    
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Originally, RAPD has been used in genetic mapping, taxonomy and phylogeny 

(Welsh and McClelland, 1990; Williams et al., 1990; Caetano-Anolles et al., 1991), since 

the RAPD technique surveys numerous loci in the genome (Clark and Lanigan, 1993; 

Bardakci, 2001). RAPD methodlogy has also been applied for genotoxicity assessment. The 

first study measuring genotoxic effects using the RAPD assay was done by Savva et al 

(1994). The study used rats exposed to benzo [a] pyrene and revealed the appearance and 

disappearance of bands in comparison to control patterns in the RAPD profiles. These 

changes observed in the fingerprint of exposed animals were supposed to be produced due 

to the presence of DNA adducts, mutations or DNA breaks. RAPD has been a useful tool to 

detect genotoxic potential of some chemicals and metals, including EDCs (Mona et al., 

2013, Sayed et al., 2013). More recently, this technique has been applied in genotoxicity 

assessment in fish (Becerril et al., 1999; Castaňo et al., 2003; Abumourad et al., 2012; 

Sayed et al., 2013; Salem et al., 2014).   

 

RAPD has numerous advantages over conventional methods such as hybridisation-

based protocols. First, there is no requirement to have prior knowledge about the genome 

under study and very little source material (about 10 ng per reaction) is required to perform 

the assay. Thus it is useful when screening of rare and valuable samples. Next, RAPD used 

a single random oligonucleotide primer, which means when employing different primers, 

banding profiles can be generated that differ in complexity. In genotoxicity studies, RAPD 

give several advantages such as it has the potential to detect a wide range of DNA damage 

(e.g. DNA adducts, DNA breakage) as well as mutation (point mutation and large 

rearrangement). In addition, this technology is cheap and does not require specialized and 

expensive equipment (Atienzar and Jha, 2006).     
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2.3 Vitellogenin as a Biomarker for Water Contamination 

 

Genotoxicity of EDCs, mostly of estrogenic compounds in wildlife is linked with 

estrogenic-modulating effects of the chemicals (Choi et al., 2010). As it is important to 

know the extent of genotoxicity of EDCs towards the aquatic inhabitants, especially in fish, 

certain biomarkers are required to study it. Biomarkers are measurement of body fluids, 

cells or tissues that indicate in biochemical or cellular terms the presence of contamination 

or the magnitude of the host response (Livingstone at al., 2000). One of the important 

biomarkers to study genotoxicity is Vitellogenin (Vtg). Vtg is used as a biomarker to study 

disruption on endocrine system which involves the interfering of protein levels production. 

Vtg is important as a precursor to develop yolk protein and it can be used to determine 

estrogenic effect in blood plasma or liver of fish tissues in mature female fish. Vtg is 

generally synthesised in response to endogenous estrogens.  

 

Various mechanisms of action have been proposed to indicate disruption of the 

endocrine system due to contaminants. It is likely that EDCs affect reproduction either by 

disrupting the synthesis, or degradation of exogenous hormones, or by directly activating 

steroid hormone receptor-mediated gene activation pathways (Larkin et al., 2003). 

Interaction of xenobiotics with hormone-binding proteins induced vitellogenesis, which is a 

kind of estrogen receptor (ER)-responsive process, and produce vitellogenin as an after 

result. This interaction has been a center of focus where numerous studies have been 

conducted to see its relevance (Arukwe and Goksøyr, 2003). For example, when 17β-

estradiol (E2) is released into the bloodstream and stored in developing oocytes, females 
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undergoing oogenesis normally have high levels of Vtg. In males and juvenile fish, Vtg 

gene is naturally quiescent, which means the gene is present but normally not activated. 

Exposure to E2 induced Vtg gene in males and juvenile fish (Larkin et al, 2003).  

 

 The presence of Vtg in blood or Vtg transcript in the liver of male or juvenile fish 

may be taken to indicate past or current exposure to estrogen or estrogenic EDCs. Hence, 

induction of Vtg in males or juveniles is a well-known effect of xenobiotics contamination 

in fish, and thus Vtg has been extensively used as a biomarker both in the laboratory and 

field studies (Arukwe and Goksøyr, 2003). So it is possible to used juvenile fish to establish 

whether xenobiotics metabolism affects the endocrine control of maturation of fish. This is 

because developmental stages that involve important hormonal changes such as early 

development and puberty are prone to endocrine disruption. Endocrine parameters in 

immature fish are relatively constant and provide easy assessment for xenobiotic-induced 

alterations (Salaberria et al, 2009).   

 

Generally Vtg is produced only in the liver, but the gene for Vtg is present in other 

tissues besides the liver such as the gonad. Most of EDCs act as xenoestrogens. When 

EDCs are introduced in the endocrine system, EDCs will have their own specific gene 

profiles because they may bind with low affinity to more than one steroid resulting in a 

complex gene activation pattern (Larkin et al., 2003). Several methodologies have been 

developed for determination of Vtg which includes immunotechniques like 

radioimmunoassay, enzyme-linked immunosorbent assays (ELISA), western blot and 

immunobiochemistry. These techniques are based on the use of specific antibodies. There 
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are also other techniques which involves powerful molecular tools such as various PCR, 

including quantitative real time PCR (qPCR), Northen blotting and protein expression 

studies by proteomic approaches (Denslow et al, 1999; Arukwe and Goksøyr, 2003; Marin 

and Matozzo, 2004).  

 

Researches on vitellogenin as biomarker for xenotoxicant contamination in aquatic 

environment have been widely studied in fish. qPCR technique has been used to quantify 

zona radiata and Vtg mRNA levels in rainbow trout (Oncorhynchus mykiss) treated with 

17β-estradiol (E2) and α-zearelenol (Celius et al., 2000). Estrogenic compounds such as 4-

nonylphenol, 4-(tert -octyl)phenol, BPA, and E2 exposed to male killifish produced plasma 

Vtg in a dose dependent manner (Pait and Nelson, 2003). Exposure to benzo[a]pyrene and 

hexachlorobenzene resulted in the induction of Vtg in male Nile tilapia (Rodas-Ortíz et al., 

2008). Currently, Vtg studies have been done in Malaysia. For examples, Om et al (2013) 

used the MALDI-TOF technique to identify Vtg in male giant grouper (Epinephelus 

lanceolatus) treated with E2. Vtg has also been studied in Asian sea bass (Lates 

calcarifer)using ELISA (Fazielawanie et al., 2011).  

  

It is likely that EDCs will have their own specific gene expression profiles since 

they may bind with low affinity to more than one steroid receptor. A complex gene 

activation pattern resulted by this mechanism (Larkin et al, 2003). In order to determine 

gene expression, a direct technique like qPCR has been widely accepted in most studies to 

quantify gene expression, such as Vtg gene. It is a fairly new technology that came in the 

early 1990s (Higuchi et al., 1993; Heid et al., 1996). This method is more accurate and 



 

18 
 

sensitive compared to Northern blotting to measure gene expression. The qPCR reaction is 

a used mRNA monitored in real time by fluorescence either by SYBR green dye that 

fluoresces when it is intercalated into DNA or by a fluorescent probe that is complementary 

in sequence to the cDNA of interest. The fluorescence level increases with each PCR cycle 

as the amplified product increases. By using special software, the amount of PCR product 

can be monitored in ‗real time‘ to identify the log-linear phase of the reaction. During the 

log linear phase, the increasing fluorescence signal is directly proportional to the initial 

amount of target mRNA in the sample. Expression levels of a gene can then be determined 

relative to other genes, or can be quantified by using a standard curve (Larkin et al, 2003).  

 

A number of advantages have been proposed regarding qPCRsuch as the small 

amount of total RNA required (100 ng), the elimination post-PCR processing and radio-

isotope labeling, the simplicity of the assay and most important is the sensitivity of the 

assay compared to ribonuclease protection assays, Northern blot or slot-blot hybridization, 

and competitive reverse transcription PCR for measuring gene expression. This is due to a 

single copy of mRNA of interest is enough to generate gene expression profile of interest. 

In addition, it is possible to generate the measurement of several genes at once 

(multiplexing), thus reducing time and making it a high throughput assay. The assay is also 

able to measure differences in gene expression over 7-8 log values (Larkin et al., 2003). 
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2.4 Oreochromis niloticus as a Test system in Aquatic Toxicology Studies 

 

Fishes can accumulate pesticides in concentrations much higher than those found in 

waters where they receive xenotoxicants due to bioaccumulation as chemicals or they are 

connected to the particulate materials in suspension. These particulate materials can be 

ingested by organisms present in the environment and when the organisms are linked to the 

food chain, it leads to the accumulation of the pollutants in fish. Therefore fish is suitable as 

bioindicators of environmental pollutions. Blood of fish is usually used as sample to study 

the genotoxicity in fish since it is a pathophysiological reflector of whole body (Ventura et 

al, 2008).  

 

Species of fishes like O.niloticusare excellent test-system to study genotoxicity and 

toxicity in marine.O. niloticus is one of the species which have been used widely in many 

studies as bioindicator of genotoxicity and environmental monitoring (Alves-Costa et al, 

2006; Bűcker and Da Conceição, 2012). This is because O. niloticus has been a good 

biological model for toxicological studies due to diverse characteristics, such as their high 

growth rate, efficiency in adapting to diverse diets, great resistance to diseases and to 

handling practices, easy reproduction in captivity and prolific rate, and good tolerance to a 

wide variety of environmental conditions (Fontainhas-Fernandes, 1998). The fish can be 

found in estuaries all around the world. Due to its red colour, sometimes it can be confused 

with red snapper. In Malaysia, the fish have been cross-bred among Oreochromis sp. to 

produce red hybrid tilapia (O. niloticus)(Musa et al, 2009). 
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Studies of the effects of EDCs to O. niloticus have been done in the past. It was 

revealed that this speciesis susceptible to genotoxic and xenoestrogenic effects by EDCs 

(Ventura et al., 2008; Huang et al., 2010). BPA and nonylphenol have been shown to affect 

the estrogen receptor expression and induce male reproductive abnormalities in O. niloticus 

(Huang et al., 2010). It was found that atrazine is both mutagenic and genotoxic to O. 

niloticus based on the presence of mn and NA in the erythrocytes of the fish after exposure 

to this chemical. Atrazine is also able to cause DNA fragmentation in organisms exposed to 

that chemical (Ventura et al., 2008). Based on the study to determine the accumulation of 

endosulfan in the tissue of O. niloticus and Lates niloticus, a total of endosulfan level 

ranging between 0.02 and 0.2 mg/kg of fresh weight was obtained. The toxicity of the diets 

has caused accumulation of endosulfan in the fishes (Henry and Kishimba, 2006).  

 

 

 

 

 

 

 

 

 

 



 

21 
 

CHAPTER 3 

METHODOLOGY 

 

3.1 Experimental Fish Specimen and Chemicals 

 

Hundred freshwater O. niloticus were obtained from Pusat Pengembangan 

Akuakultur, Bukit Tinggi from September 2012 until February 2013. The age of the fish 

was around six to eight months. The specimens were18.45 ± 0.85 cm in length and 146.63 

± 42.45 g in weight, respectively. The fishes were kept in glass aquaria in a flow of 

dechlorinated and well aerated water. The water temperature was at 22 ± 2 °C.Reverse 

osmosis water was used during acclimatization to laboratory conditions for two weeks. The 

fishes were fed on normal diet with artificial fish pellets during acclimatization. The fecal 

matter and other waste materials were siphoned off twice a week to reduce ammonia 

content in water. The test pesticides used in the study were atrazine and endosulfan. 

 

3.2 Exposure to Atrazine and Endosulfan  

 

There are a total of 24 male O. niloticus selected among hundred of fishes obtained 

for this study. The experiment was carried out in triplicatewith a total of three fishes used in 

every treatment, including control test for atrazine and endosulfan.Atrazine (PESTANAL®, 

Sigma-Aldrich, Germany) was exposed to O. niloticus via the water. There are three 
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different concentrations of atrazine exposure being studied according to the LC50 (96 hours) 

from the previous study (Nwani et al, 2010). The concentrations applied were 4.75 mg/L, 

2.50 mg/L and 0.50 mg/L of atrazine. Atrazine in powdered form was dissolved in 0.1% 

(w/v) phosphate buffer saline (PBS) (Salaberria et al, 2009). The experiment was carried 

out with exposure period of 96 hours.  

 

Another test pesticide used for this experiment was endosulfan (PESTANAL®, 

Sigma-Aldrich, Germany). The pesticide was exposed in three concentrations where the 

LC50 based on several studies conducted previously (Kumar et al, 2011; Da Cuňa et al., 

2013). A 1000 μg/L of endosulfan stock was prepared beforehand. O. niloticus were 

exposed to 7.00 μg/L, 3.60 μg/L and 1.50 μg/L of endosulfan for 96 hours. O. 

niloticusunexposed to atrazine and endosulfan was used as control test.  

  

3.3 Fish Sampling 

 

After 96 hours of exposure, the fishes were sacrificed to collect blood and livers for 

the assays. Blood samples were collected from the spinal section. Meanwhile, whole liver 

of the fish was collected and weighed, and followed by washingthe liver samples with 0.1% 

(w/v) PBS to remove the blood and unwanted tissues. The liver was kept in a 5 ml bottle 

containing 1 ml of RNA later to avoid RNA degradation and stored in -40°C for 

preservation.   
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3.4 Genotoxicity Assessment by MN Test and NA 

 

Blood smears were prepared immediately after sampling. After fixing with absolute 

ethanol for 20 min, slides were air-dried overnight and then stained with 5% Giemsa 

solution for 20 min. The slides were then washed with distilled water. Three slides per 

exposure concentration and control were prepared. From each slides, 1000 cells were 

scored under 1000x magnification. A total of 3000 cells were scored to determine the 

frequencies of micronucleated cells.Nuclear abnormality shapes were scored according to 

the following categories: (1) blebbed nuclei, (2) lobed nuclei, (3) notched nuclei, and (4) 

binucleated cells. The result was expressed as mean value for all individual abnormality 

observed. The appearances of NA were observed as describe by Carrasco et al (1990). The 

appearance of blebbed nuclei showed a relatively small evagination of the nuclear 

envelope, which seems to contain euchromatin. Meanwhile, lobed nuclei are those 

presenting larger evaginations than the blebbed nuclei. A notched nucleus has an 

appreciable depth, but absence of nuclear material and cells bearing binucleated nuclei 

observed as those presenting two nuclei in a cell. 
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3.5 Genomic DNA and RNA Extractions  

 

3.5.1 Homogenizing Sample and Phase Separation 

 

Genomic DNA was isolated from fresh liver tissue according to TRIzol® reagent 

protocol provided by the manufacturer (Life Technologies, USA).  Approximately 100 mg 

of liver tissue was cut into small pieces and homogenized by using a power homogenizer 

(Fisher Brand, USA). The homogenize sample was incubated for 5 minutes at room 

temperature to permit complete dissociation of the nucleoprotein complex. After that, 0.2 

ml of chloroform per 1 mL of TRIzol® reagent used for homogenization was added into the 

tube and shaken vigorously for 15 seconds. The sample was incubated for another 3 

minutes at room temperature before it was centrifuged at 12,000 x g for 15 minutes at 4°C. 

There were three layers of phases formed in the solution after centrifugation which are 

aqueous phase, interphase and organic phenol-chloroform phase. The aqueous phase was 

transferred out from the tube and placed in a new tube for RNA extraction. 

 

3.5.2 Isolation of DNA from liver of O. niloticus 

 

DNA was isolated from the interphase and organic phenol-chloroform phase layer. 

After removing the aqueous layer, the remaining solution was used to isolate DNA by first 

adding 0.3 mL of 100% ethanol per 1 mL of TRIzol® reagent used for the initial 

homogenization and mixed before incubating the sample at room temperature for 3 
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minutes. Then the tube containing the sample was centrifuged at 2,000 x g for 5 minutes at 

4°C to pellet the DNA. The phenol-chloroform supernatant was removed from the tube and 

then the step proceeded to DNA wash. 

 

DNA was washed twice with 1 mL of sodium citrate/ethanol solution (0.1 M 

sodium citrate in 10% (v/v) ethanol, pH 8.5) and the sample was incubated for 30 minutes 

at room temperature with periodically mixing. Then, the tube was centrifuged at 2,000 x g 

for 5 minutes at 4°C and the supernatant was discarded. These steps were repeated once. 

After that, 1 mL of 75% (v/v) ethanol was added into the tube and the sample was 

incubated at room temperature for 20 minutes. During the incubation period, the sample 

was periodically mixed. Later, the tube was centrifuged at 12,000 x g for 5 minutes at 4°C. 

The supernatant was removed and the DNA pellet was air-dried for 10 minutes. 

 

The next procedure involved resuspension of DNA where the DNA pellet was 

dissolved in 100 µL of ultrapure distilled water (GIBCO, USA) and incubated at 55°C in a 

waterbath. Then the sample was centrifuged at 12,000 x g for 10 minutes. Finally, the 

supernatant containing DNA was transferred into a new tube.The concentration and purity 

of DNA was determined using Nanodrop at 260 nm and 260/280 absorption. The DNA was 

stored in -40°C until used for PCR amplification. 
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3.5.3 RNA Isolation Procedure 

 

RNA isolation from liver was done using TRIzol® reagent protocol provided by the 

manufacturer (Life Technologies, US). By using aqueous phase layer which was kept 

during phase separation step, 500 µL of isopropyl alcohol was added and mixed gently. The 

tube was then centrifuged at 7,500 x g for 5 minutes at 4°C and supernatant was carefully 

removed from the tube. 

 

The second step involved RNA with 75% (v/v) ethanol and the sample was 

centrifuged at 7,500 x g for 5 minutes at 4°C, supernatant was removed and RNA was air 

dried for 10 minutes. Next, the RNA pellet was dissolved in 150 µL of ultrapure distilled 

water (GIBCO, USA) and the sample was incubated at 57°C in the waterbath for 5 minutes.  

 

RNA was purifiedusing RNA Purification kit (Fermentas, USA).The procedure was 

done as provided by the manufacturer‘s protocol (Fermentas, USA). A total of 10 μL of 

reaction mixture containing 1.0 μL of 10X reaction buffer and MgCl2 (Fermentas, USA), 

1.0 μL of DNase 1 (Fermentas, USA), 1.0 μL RNA and 7.0 μL of ultrapure distilled water 

(GIBCO, USA). The reaction mixture was incubated at 37°C for 15 minutes. Then 1 μL of 

25 mM EDTA was added and incubated at 65°Cfor 10 minutes. The RNA concentration 

was determined by Nanodrop at 260 nm before proceeding to reverse transcription step.  
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3.6 RAPD Test and Analysis 

 

DNA amplification was performed in a final volume of 25 μL. The reaction mixture 

contained 2.5 μL of 10x reaction buffer (1
st
Base), 2.0 μL of 2 mM MgCl2 (1

st
Base), 0.5 μL 

of dNTP mix (dATP, dTTP, dCTP, dGTP) (1
st
Base), 1.5 μL of 0.5 μM primer, 0.5 μL Taq 

polymerase (1
st
Base), 17.0 μL of ultrapure water (GIBCO, USA)  and 1.0 μL of the 20 

ng/µL extracted DNA. Five primers were used for PCR analysis (Table 3.1). These primers 

were purchased from Shanghai Genecore Biotechnology Co., Ltd. 

 

Table 3.1: RAPD primer sequences used in the RAPD method analysis. 

Name Sequence (5‘->3‘) Base MW GC% Tm (°C) 

OPA 8 GTGACGTAGG 10 3038 60.0 22.3 

OPA 13 CAGCACCCAC 10 3069 60.0 22.3 

OPB 8 GTCCACACGG 10 3020 60.0 22.3 

OPA 12 TCGGCGATAG 10 3038 60.0 22.3 

OPC 11 AAAGCTGCGG 10 3038 60.0 22.3 

 

 

     The pre-amplification PCR procedure was treatment at 94°C for 5 min, followed by 35 

cycles of denaturation at 94°C for 45 seconds, annealing at 27.5°C for 45 seconds and 

extension at 72°C for 1 minute and 30 seconds. Then, the final extension proceeded at 72°C 

for 5 minutes. A 3 μL aliquot of the PCR product was analyzed on a 1% (w/v) agarose gel 
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in 1.0 x TBE buffer. The gel was pre-stained with ethidium bromide (EtBr) prior 

electrophoresis. Electrophoresis is performed at a constant voltage of 100 V for 35 minutes 

and visualized under UV light. Sizes of DNA bands produced were estimated by 

comparison with the standard markers  GeneRuler
TM

1 kb DNA ladder (ThermoScientific, 

USA) and GeneRuler
TM

100 bp DNA ladder (ThermoScientific, USA) and by referring to 

previous studies (Atienzar et al., 2002; Mohanty et al., 2011; Abumourad et al., 2012; 

Aksakal et al., 2013).  

 

 In RAPD analysis, the present and absent of RAPD bands were observed to define 

all genetically damaged DNA samples when comparing against control DNA (Abumourad 

et al., 2012). The gain or loss of bands was scored 1 or 0 respectively (Atienzar and Jha, 

2006). Genomictemplate stability (GTS) was calculated for each experimental group of fish 

with the chosen primer, as follows:  

GTS (%) = (1 – a/n) × 100  

where ―a‖ is the number of RAPD polymorphic profiles detected in each sample treated and 

―n‖ is the number of total bands in the control. Polymorphisms observed in the RAPD 

profile include disappearance of a normal band and appearance of a new band in 

comparison with control profile. The average was then calculated for each experimental 

group exposed to different EDCs. The GTS value of control was set to 100% and treated 

samples were calculated according to control (Atienzar et al., 1999). 
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Distance based phylogeny was generated by combining data from all primers with 

the software package PHYLIP (Felsenstein, 1989), using the program pars (parsimony) and 

then a majority-rule consensus tree was generated by CONSENSE. Finally, dendogram was 

produced with the PHYLIP program DRAWGRAM and viewed by using TREEVIEW 

software.  

 

3.7 Vitellogenin Expression Assessment by qPCR 

 

 Reverse transcription of RNA was done according to High-capacity cDNA Reverse 

Transcription Kit manual (Applied Biosystem, USA). A total of 20 μL reaction mixture was 

prepared where 2X Reverse Transcription (RT) Master Mix was prepared first. 2X RT 

Master Mix contains 2.0 μL of 10X RT Buffer, 0.8 μL of 25X dNTP mix, 2.0 μL of RT 

Random Primers, 1.0 μL of MultiScribe™ Reverse Transcriptase, 1.0 μL of RNase 

inhibitor, and 3.2 μL of nuclease-free water.  A total of 10 μL of RNA sample was used for 

cDNA reverse transcription reaction. Reverse transcription of cDNA started with treatment 

at 42°C for 15 minutes, then the temperature was increased to 99°C for 5 minutes, before 

cooling at 5°C for 5 minutes. 

 

 After reverse transcription step, target cDNA was amplified by using a set of Vtg 

primers, Vtg aa (NHK Bioscience) and β-actin (NHK Bioscience) as reference gene (Table 

3.2). The total volume of real-time PCR reaction mixture was 20 µL. The reaction mixture 

contains 10.0 µL of Ssofast EverGreen Supermix, 1.0 µL of forward primer (VtgaaF), 1.0 
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µL of reverse primer (VtgaaR), 7.0 µL of RNase/Dnase-free water, and 1.0 µL of 0.5 µM 

cDNA, The thermal-cycling parameters were as follows: 15 minutes at 95°C, then 40 

cycles of 20 seconds at 95°C, 20 seconds at 60°C and 20 seconds at 72°C. Flourescence 

data were collected at the end of each cycle. Following the amplification reaction, a melting 

curve analysis was carried out between 60°C and 95°C, fluorescence data were collected 

each 0.1°C. The C(t) is selected to be in the linear phase of amplification.    

 

Table 3.2: Primer used to analyze gene expression of Vtg in O. niloticus. 

Primers Sequence (5‘->3‘) Bases 

Vtgaa F GAATGTGAATGGGCTGGAAATAC 23 

Vtgaa R TTTGTTTGATCTGGATGTCAGCTT 24 

β-actin F CCTGACAGAGCGTGGCTACT 20 

 β-actin R TCCTTGATGTCACGCACGAT 20 

 

 

3.8 Statistical Analysis 

 

All statistical analysis was done by using SPSS 14. The one-way analysis of 

variance (ANOVA), followed byTukeywas used to compare the mean differences in MN 

and NA frequency, GTSand induction of Vtgbetween exposure concentrations against the 

control test.  
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CHAPTER 4 

RESULTS 

 

4.1 Micronucleus Test and Nuclear Abnormalities 

 

 The results obtained by analyzing irregularities (MN and NA) in erythrocytes of O. 

niloticus (Figure 4.1B-F), after exposure to atrazine and endosulfan were shown at Table 

4.1 and Table 4.2 respectively. The formation of MN as described by Moron et al. (2006) 

was shown as not connected to the main nucleus, has the same colour and intensity of the 

main nucleus, and sizes with less than one third of the main nucleus size (arrow at Figure 

4.1B). The type of NA found were erythrocytes with alterations on nuclear morphology, 

classified according to Carrasco et al. (1990) as notched nuclei (arrow at Figure 4.1C),  

blebbed nuclei (arrow at Figure 4.1D), lobed nuclei (arrow at Figure 4.1E), and  binucleated 

cells (arrow at Figure 4.1F). From the experiment, the control test also showed nuclear 

alterations similar to those found in both chemicals tests, but in lower frequency (Table 4.1 

and Table 4.2)  
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Figure 4.1: Genotoxic effect in erythrocytes of O. niloticus. 

Normal erythrocytes were shown in (A). Genotoxic effect of  erythrocytes were observed 

with (B) micronuclei, (C) notched nuclei, (D) blebbed nuclei, (E) lobed nuclei, and (F) 

binucleated cells, which were shown by arrows.    

(A) (B) 

(C) (D) 

(E) (F) 
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The result of MN and NA in erythrocytes of O.niloticus exposed to different 

concentration of atrazine and endosulfan were shownin Figure 4.1B-F. Normal erythrocyte 

cells were shown in Figure 4.1A. The normal cells have main nucleus which appeared 

round and without any MN presence. Erythrocyte cells containing the presence of MN was 

observed as shown in Figure 4.1B. The criteria of MN obtained in this experiment were in 

corcondance with description by Ventura et al. (2008). Based on Figure 4.1C-F,the kinds of 

NA most frequently observed in O. niloticus erythrocytes submitted to atrazine exposition 

for 96 hours were: cells with ―blebbed‖ nuclei, cells with ―lobed‖ nuclei, cells with 

―notched‖ nuclei, and binucleated cells, and the appearance of each NAwere observed as 

describe by Carrasco et al (1990).   
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Table 4.1:The frequency of MN and NA (average and standard deviation) in O. niloticus 

after exposure to atrazine. 

Concentrations Control 0.50mg/L  2.50mg/L  4.75 mg/L  

MN 0.07 ± 0.02
a
 0.14 ± 0.03

b
 0.24 ± 0.02

c
 0.36 ± 0.04

d
 

NA 0.09 ± 0.03
a
 0.13 ± 0.05

a
 0.23 ± 0.04

b
 0.28 ± 0.07

b
 

Blebbed nuclei 0.02± 0.02
a
 0.03± 0.01

a,b
 0.04± 0.03

b,c
 0.05± 0.02

c
 

Lobed nuclei 0.04± 0.01
a
 0.04± 0.01

a
 0.07± 0.02

b
 0.10± 0.07

c
 

Notched nuclei 0.03± 0.01
a
 0.05± 0.02

a
 0.09± 0.02

b
 0.10± 0.04

b
 

Binuclear 

cells 

0.00± 0.00
a
 0.02± 0.01

b
 0.02± 0.02

b
 0.02± 0.01

b
 

Different superscriptsindicate significant differences among treatments (p<0.05, One-way 

ANOVA, followed by Tukey‘s multiple comparison).Means by columnsfollowed by the 

different letter are significantly different at the P< 0.05 level as determined by Tukey‘s 

multiple comparison tests. 
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Figure 4.2:Frequency of MN and total NAin O. niloticusafter atrazine exposure. 

 

Control was untreatedO. niloticus. Mean and standard deviation a, b, c, d: indicating a 

significant difference (P<0.05) between means recorded for different atrazine 

concentrations.  
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Figure 4.3:Frequency of NAin O. niloticusafter atrazine exposure. 

 

O. niloticus untreated with atrazine was used as control test. Mean and standard deviation a, 

b, c: indicating a significant difference (P<0.05) between means recorded for different 

atrazine concentrations.  
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Based on the results obtained for atrazine exposed to O. niloticus for 96 hours, there 

was a significant difference (P<0.05) for the frequencies of MN between control and 

treated group (0.50 mg/L, 2.50 mg/L and 4.75 mg/L atrazine). Meanwhile for NA, the 

frequencies showed significant differences (P<0.05) at concentration 2.50 mg/L and 4.75 

mg/L atrazine when compared to the control test. In contrast, there was no significant 

difference showed at concentration 0.50 mg/L atrazine with control group (Table 4.1 and 

Figure 4.2). The highest frequencies of MN and NA among the three tested concentrations 

recorded were O. niloticus exposed to 4.75 mg/L (0.36 ± 0.04 and 0.28 ± 0.07 

respectively). The data also showed that for 96 hours exposure at this concentration, the 

formation of micronuclei and NA were both significantly increased (P<0.05).  

 

The 4.75 mg/L atrazine concentration showed the highest rates cells with blebbed 

nuclei, lobed nuclei and notched nuclei (0.05 ± 0.02, 0.10 ± 0.04 and 0.10 ± 0.04 

respectively) and the rates were significant (P<0.05) when compared with the control test 

(Table 4.1). However, the data showed that the increase of cells with blebbed nuclei and 

notched nuclei at 4.75 mg/L atrazine was not significant (P<0.05) when compared to 2.50 

mg/L atrazine. Meanwhile, binuclear cells were observed high at concentration 2.50 mg/L 

atrazine (0.02 ± 0.02) and the rate was significant (P<0.05) when compared to the control 

test, but not to the other test concentrations (Table 4.1 and Figure 4.3). 
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Table 4.2:The frequency of MN and NA (average and standard deviation) in O. niloticus 

after exposure to endosulfan. 

Concentrations  Control 1.5 μg/L 3.6μg/L 7μg/L 

MN 0.08± 0.02
a
 0.10± 0.02

a
 0.18± 0.02

b
 0.23± 0.02

c
 

NA 0.04± 0.01
a
 0.10± 0.05

a,b
 0.18± 0.06

b
 0.30± 0.12

c
 

Blebbed nuclei 0.01± 0.00
a
 0.02± 0.01

a,b
 0.03 ± 0.02

b,c
 0.04± 0.02

c
 

Lobed nuclei 0.02± 0.01
a
 0.05± 0.02

a,b
 0.09± 0.06

b,c
 0.13± 0.06

c
 

Notched nuclei 0.02± 0.01
a
 0.04± 0.01

a,b
 0.05± 0.02

b
 0.11± 0.04

c
 

Binuclear 

cells 

0.00± 0.00
a 
 0.01± 0.01

a
 0.02± 0.01

a
 0.03± 0.02

a
 

Different superscripts indicating significant differences among treatments (P<0.05, One-

way ANOVA, followed by Tukey‘s multiple comparison).Means by columnsfollowed by 

the different letter are significantly different at the P< 0.05 level as determined by Tukey‘s 

multiple comparison tests. 
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Figure 4.4:Frequency of MN and total NAin O. niloticusafter exposure for 96 hours to 

endosulfan. 

Untreated O. niloticusto endosulfan was used as control test. Mean and standard deviation 

a, b, c: indicating a significant difference (P<0.05) between means recorded for different 

endosulfan concentrations. 
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Figure 4.5:Frequency of NAin O. niloticusafter exposure for 96 hoursto endosulfan. 

Control was untreatedO. niloticusto endosulfan. Mean and standard deviation a, b, c: 

indicating a significant difference (P<0.05) between means recorded for different 

endosulfan concentrations. 
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Results from Table 4.2 showed that there were significant differences (P<0.05) for 

the frequencies of MN and NA between control and treated group (3.60 µg/L and 7.00 µg/L 

endosulfan). Although the frequency of MN and NA were observed to increase between 

control and 1.50 µg/L endosulfan, it was not significantly different (P<0.05). The highest 

frequencies of MN and NA were shown at concentration 7.00 µg/L endosulfan (0.23± 0.02 

and 0.30± 0.12 respectively) in erythrocytes of O. niloticus exposed for 96 hours, and the 

formation of nuclear alterations at this concentration also increased significantly (P<0.05) 

(Table 4.2 and Figure 4.4).   

 

 NA observed in erythrocytes of O. niloticus after exposure to endosulfan for 96 

hours were the same as observed in O. niloticus exposed to atrazine (Figure 4.1C-F). From 

Table 4.2, the concentration 7.00 µg/L showed the highest rates of cells with notched nuclei 

(0.11± 0.04) and it increased significantly (P<0.05) when compared to the control test and 

the tested endosulfan concentrations exposed at 3.60 µg/L and 1.50µg/L. The frequencies 

of cells with blebbed and lobed nuclei were also high at concentration 7.00 µg/L endosulfan 

(0.04± 0.02 and 0.13± 0.06 respectively) and it was observed to increase significantly 

(P<0.05), when compared to the control test and 1.50 µg/L endosulfan but there was no 

significant difference when compared to 3.60 µg/L endosulfan. The cells bearing 

binucleated were also high at concentration 7.00 µg/L endosulfan (0.03± 0.02) but it was 

not significantly differentwhen compared to the control test and the other tested endosulfan 

concentrations (Table 4.2 Figure 4.5).     
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4.2 Genotoxicity Assessment by Using RAPD 

 

A total of five RAPD primers were used on genomic DNA to all treated and 

untreated samples to generate RAPD profiles as shown from Figure 4.6 to Figure 4.10. Of 

the five RAPD primers used in this experiment, only OPA13 (5‘-CAGCACCCAC-3‘) gave 

smear, but there was also visible band patterns observed (Figure 4.6). The other four RAPD 

primers (OPA8, OPB8, OPA12, and OPC11) produced reproducible and distinguishable 

banding profile between non-exposed and exposed samples. The banding patterns were 

varied among RAPD primers and gave a total of 31 bands (untreated control treatments) 

whose molecular weights ranged approximately from 1900 to 250 bp (Figure 4.6 - 4.10). 
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Figure 4.6: RAPD profiles generated by OPA13 (5‘-CAGCACCCAC-3‘). 

Figure 4.6 showed DNA polymorphic patterns in O. niloticus with DNA from control, (C), 

A1: 0.50 mg/L atrazine exposed fish; A2: 2.50 mg/Latrazine exposed fish; A3: 4.75 mg/L  

atrazine exposed fish; E1: 1.50 µg/L endosulfan exposed fish; E2: 3.60 µg/L endosulfan 

exposed fish and E3: 7µg/L endosulfan exposed fish. Lane M1 and M2 indicate molecular 

weight markers (1 kb ladder and 100 bp ladder respectively). Arrows indicate gain/loss 

differences for amplification products and the size for the amplified fragments in base pairs 

(bp). 
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Figure 4.7: RAPD profiles generated by OPA8 (5‘-GTGACGTAGG-3‘). 

Figure 4.7 showed DNA polymorphic patterns in O. niloticus with DNA from control, (C), 

A1: 0.5 µg/L atrazine exposed fish; A2: 2.50 mg/L atrazine exposed fish; A3: 4.75 µg/L  

atrazine exposed fish; E1: 1.50 µg/L endosulfan exposed fish; E2: 3.60 µg/L endosulfan 

exposed fish and E3: 7µg/L endosulfan exposed fish. Lane M1 and M2 indicate molecular 

weight markers (1 kb ladder and 100 bp ladder respectively). Arrows indicate gain/loss 

differences for amplification products and the size for the amplified fragments in base pairs 

(bp).  
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Figure 4.8: RAPD profiles generated by OPB8 (5‘-GTCCACACGG-3‘). 

Figure 4.8 DNA polymorphic patterns in O. niloticus with DNA from control, (C), A1: 0.5 

µg/L atrazine exposed fish; A2: 2.50 mg/Latrazine exposed fish; A3: 4.75 µg/L  atrazine 

exposed fish; E1: 1.50 µg/L endosulfan exposed fish; E2: 3.60 µg/L endosulfan exposed 

fish and E3: 7µg/L endosulfan exposed fish. Lane M1 and M2 indicate molecular weight 

markers (1 kb ladder and 100 bp ladder respectively). Arrows indicate gain/loss differences 

for amplification products and the size for the amplified fragments in base pairs (bp). 
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Figure 4.9: RAPD profiles generated by OPA12 (5‘-TCGGCGATAG-3‘). 

Figure 4.9 showed DNA polymorphic patterns in O. niloticus with DNA from control, (C), 

A1: 0.5 µg/L atrazine exposed fish; A2: 2.50 mg/Latrazine exposed fish; A3: 4.75 µg/L  

atrazine exposed fish; E1: 1.50 µg/L endosulfan exposed fish; E2: 3.60 µg/L endosulfan 

exposed fish and E3: 7µg/L endosulfan exposed fish. Lane M1 and M2 indicate molecular 

weight markers (1 kb ladder and 100 bp ladder respectively). Arrows indicate gain/loss 

differences for amplification products and the size for the amplified fragments in base pairs 

(bp). 
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Figure 4.10: RAPD profiles generated by OPC11 (5‘-AAAGCTGCGG-3‘). 

Figure 4.10 showed DNA polymorphic patterns in O. niloticus with DNA from control, 

(C), A1: 0.5 µg/L atrazine exposed fish; A2: 2.5 µg/L atrazine exposed fish; A3: 4.75 mg/L 

atrazine exposed fish; E1: 1.50 µg/L endosulfan exposed fish; E2: 3.60 µg/L endosulfan 

exposed fish and E3: 7µg/L endosulfan exposed fish. Lane M1 and M2 indicate molecular 

weight markers (1 kb ladder and 100 bp ladder respectively). Arrows indicate gain/loss 

differences for amplification products and the size for the amplified fragments in base pairs 

(bp). 
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Table 4.3: The number of RAPD DNA fragmentsproduced in all treatments and their approximate molecular weights (bp). 

   Treatment 

 

Primer 
Control 

Atrazine (mg/L) Endosulfan (µg/L) 

0.50 2.50 4.75 1.50 3.60 7.00 

a b a b a b a b a b a b 

OPA13 7 1000 1000, 

800 

1000 1100, 

800 

1900, 

1000, 

1400, 

800 

0 1400, 

1100, 

800, 700 

0 1400, 

1100, 

800 

1500, 

600 

1400, 

800, 

700 

OPA8 5 0 0 0 0 0 1500, 

1400, 

900 

0 0 0 900 0 900 

OPB8 10 450 1500 0 1500 450 1500 0 1500 600. 

450 

1500 0 1500 

OPA12 4 0 1900 

 

0 1900 0 0 0 1900 0 1900 0 1900 

OPC11 5 0 450 

 

0 0 0 0 0 0 0 450 0 450 

TOTAL 31 2 5 

 

1 4 3 6 0 6 2 7 2 7 

a + b  7 

 

5 9 6 9 9 

(a) DNA band disappearance for all primers as compared to control test. 

(b) DNA band appearance for all primers as compared to control test. 

(a + b) Total of DNA band appearance and disappearance. 
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RAPD profiles showed differences between untreated male O. niloticus and treated 

samples with apparent changes (disappearance and/or appearance) in the number and size 

of the amplified DNA fragments for different primers (Table 4.3). The numbers of band 

disappearance and appearance were the highest in the sample exposed to 4.75 µg/L atrazine 

and 7.00 µg/L endosulfan. In both concentrations, there were nine polymorphic bands 

yielded. For endosulfan samples, the numbers of bands disappeared and appeared were 

increased with increasing concentration of the toxicant, although the numbers of 

polymorphic bands were same in 3.60 µg/L endosulfan and 7.00 µg/L endosulfan. As for 

atrazine samples, the bands disappearance and appearance were showed high in the lowest 

concentration examined (0.50 mg/L atrazine) where the numbers of polymorphic bands 

observed were seven, compared to 2.50 mg/L atrazine samples which yielded five 

polymorphic bands.       
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Table 4.4: Changes of GTS (%) all primers in O. niloticus exposed to atrazine and endosulfan. 

Primer Control Atrazine concentration (mg/L) Endosulfan concentration (µg/L) 

0.50 2.50 4.75 1.50 3.60 7.00 

OPA 13 

 

100.00 57.14 57.14 42.86 42.86 57.14 28.57 

OPA 8 

 

100.00 100.00 100.00 40.00 100.00 80.00 80.00 

OPB 8 

 

100.00 80.00 100.00 80.00 90.00 70.00 90.00 

OPA 12 

 

100.00 75.00 75.00 100.00 75.00 75.00 75.00 

OPC 11 

 

100.00 80.00 100.00 100.00 100.00 80.00 80.00 

Mean ± SD 

 

100.00 ± 0.00
a
 78.43 ± 15.29

a
 86.43 ± 19.63

a
 72.57 ± 29.60

a
 81.57 ± 23.94

a
 72.43 ± 9.50

a
 70.71 ± 24.18

a
 

Superscript indicating a significant difference (P<0.05) between means GTS (%) recorded for atrazine and endosulfan exposure in O. 

niloticus.Means by each column followed by the same letter are not significantly different at the P< 0.05 level as determined by Tukey‘s 

multiple comparison tests. 



 

51 
 

This statistical qualitative analysis allowed the correlation of genomic stability 

variations with exposure concentration to the chosen EDCs. The resulting mean and SD for 

GTS percentage (Table 4.4)showed that the genome stability was slightly reduced with 

increasing endosulfan concentration, where GTS value for O. niloticus exposed to 1.50 

μg/L, 3.60 μg/L and 7.00 μg/L endosulfan were 81.57 ± 23.94, 72.43 ± 9.50 and  70.71 ± 

24.18, respectively. On the other hands, GTS values for O. niloticus exposed to atrazine 

were shown with varied genomic stability. The result showed that O. niloticus treated with 

0.50 mg/L, 3.50 mg/L and 4.75 mg/L atrazine gave GTS value of 78.43 ± 15.29, 86.43 ± 

19.63 and 72.57 ± 29.60, respectively. For this result, GTS value for 0.50 mg/L atrazine 

was slightly lower as compared to GTS value for 2.50 mg/L atrazine.    
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Figure 4.11:  Dendogram representing the relationship among exposed concentrations of 

atrazine and endosulfan on male O. niloticus based on RAPD analysis. 

The scale bar represents 0.1 substitutions per nucleotide site. Control: untreated male O. 

niloticus; atz0.5: male O. niloticus exposed to 0.5 µg/L atrazine; atz2.5: male O. niloticus 

exposed to 2.5 µg/L atrazine; atz4.75: male O. niloticus exposed to 4.75 mg/L atrazine; 

end1.5: male O. niloticus exposed to 1.50 µg/L endosulfan; end3.6: male O. niloticus 

exposed to 3.60 µg/L endosulfan; and end7.0: male O. niloticus exposed to 7.00 µg/L 

endosulfan.    
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 Dendogram of Figure 4.11 showed a possible relationship between treated O. 

niloticus with atrazine and endosulfan and untreated O. niloticus based on the RAPD 

profiles obtained. Based on the dendogram, there were three branches and one cluster. 

Samples treated with endosulfan at concentration 1.50 µg/L which served as an outgroup. It 

showed that, at this concentration, the result was not significant as compared to the control 

test and the other concentrations tested. From the cluster, it showed that control samples 

have the closest relationship with samples exposed to endosulfan at concentration 3.6 µg/L, 

followed by 7.00 µg/L endosulfan and 4.75 mg/L atrazine (Figure 4.9). These relationships 

showed that the potential of genotoxicity effects caused by endosulfan and atrazine to O. 

niloticus was significant as compared to the control test. This data was correlated to the 

results obtained from genotoxic assessment by micronuclei assays (Table 4.1 and 4.2) and 

the significant increased (P<0.05) in male O. niloticus after exposure to these 

concentrations (Table 4.5).   

 

4.3 Expression Level of Vtg Gene in Male O. niloticus 

 

Amplification efficiencies of the reference gene and the target were 1.963 and 1.962 

respectively. Meanwhile, the percentage of amplification efficiencies of the reference and 

the target were 96.3% and 96.2% respectively. Since the amplification efficiencies of the 

target and the reference gene were similar but the efficiency is not equal to 2, a modified 

form of 2
-∆∆CTmethod was used by replacing the 2 in the equation by 1.96. Therefore, the 

formula 1.96
-∆∆CT was used to determine the relative expression of the target gene in 

different samples.    
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Figure 4.12: Normalized Vtg gene expression in male O. niloticus after atrazine 

exposure for 96 hours. 

(*) indicating significant difference from control values (P<0.05, One-way ANOVA, 

followed by Tukey‘s multiple comparison).  
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Figure 4.12: Normalized Vtg gene expression in male O. niloticus after endosulfan 

exposure for 96 hours. 

(*) indicating significant difference from control values (P<0.05, One-way ANOVA, 

followed by Tukey‘s multiple comparison).  
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Table 4.5: Measurement of Vtg from liver O. niloticus exposed to atrazine and endosulfan for 96 hours. 

Treatments Control Atrazine (mg/L) Endosulfan (µg/L) 

0.50 2.50 4.75 1.50 3.60 7.00 

Vtg expression 

(mean ± SE) 

0.00 ± 0.00
a
 1.50 ± 0.80

b,c
 2.70 ± 0.40

c
 5.10 ± 0.30

d
 0.50 ± 0.20

a,b
 1.70 ± 0.60

b,c
 8.60 ± 0.90

e
 

Different superscipts indicating significant differences among treatments.  Significant difference was analyzed by using One-way ANOVA, 

followed by Tukey‘s multiple comparison tests. Significant difference was ascertain at P<0.05.Means within each column followed by the 

different letters are significantly different at the P<0.05 level as determined by Tukey‘s multiple comparison tests. 
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The induction of Vtg in male O. niloticus following exposure to different 

concentrations of atrazine and endosulfan was investigated in this experiment. Samples 

exposed to 0.50 mg/L, 2.50mg/L and 4.75 mg/L atrazine were expressing Vtg at 

approximately 1.50, 2.70 and 5.10-fold, respectively (Table 4.5). It was found that Vtg 

production levels were significantly higher in all atrazine concentration tested (0.50 mg/L, 

2.50 mg/L and 4.75 mg/L) as compared to untreated male O. niloticus (P<0.05) (Figure 

4.12). Meanwhile, in samples exposed to endosulfan, the 3.60 µg/L and 7.00 µg/L  

endosulfan caused significant increases compared to the control group (P<0.05) (Figure 

4.13). At concentration 3.60 µg/L and 7.00 µg/L endosulfan, the samples were expressing 

Vtg at approximately 1.70 and 8.60-fold respectively than the control group. In contrast, no 

statistically significant difference was observed in the 1.50 µg/L endosulfan treatment 

group (Table 4.5). 
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CHAPTER 5 

DISCUSSION 

 

 The aims of this study were to assess genotoxicity effects and Vtg gene expression 

on O. niloticus after exposure to EDCs. Atrazine and endosulfan were chosen to assess their 

potential as endocrine disruptors and genotoxic effects to the target species. Previous 

studies regarding genotoxicity in fish to atrazine showed variability in response based on 

the concentration and time-dependent to the control test by verifying through different 

assays (Elia et al., 2002; Spanò et al., 2004; Nwani, et al., 2011). Endosulfan also is a 

concern since this chemical is harmful to fish species and other aquatic organisms. This 

chemical was demonstrated to have genotoxic effect to Hyla pulchella tadpoles when the 

samples were exposed in vivo at two sampling times, 48 ad 96 hours (Lajmanovich, et al., 

2005). For this study, the concentration dependent relationship was evaluated to see the 

genotoxicity properties and estrogenic disruption which could occur to O. niloticus after 

exposure to atrazine and endosulfan for 96 hours. 

 

5.1 Genotoxic Effect in O. niloticus 

 

Atrazine and endosulfan were observed to have genotoxic effects to erythrocytes of 

O. niloticus. Atrazine and endosulfan concentrations tested showed a positive relation of 

dose reply of O. niloticus. There was an increase in the induction of MN and total NA in 

erythrocytes of O. niloticus with exposure to increasing concentrations of atrazine (Figure 
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4.2). This result is in agreement with previous studies that indicate that the higher atrazine 

concentration associate with higher percentile rate of cells bearing micronuclei and NA 

(Ventura, et al., 2008; Nwani, et al., 2011). At the 4.75 mg/L atrazine, there was a high 

incident of cells with micronuclei and NA, demonstrating the high mutagenicity of atrazine 

in that concentration for O. niloticus. It was in accordance with those previously reported 

by Nwani et al (2011), at the 4.74 mg/L atrazine, there was increased in DNA single strand 

breaks in the form of comet assay in blood and gill cells of Channa punctatus.  

 

Significant increase for the formation of micronuclei at the 0.50 mg/L atrazine was 

observed, while the frequency of NA showed no significant difference compared to the 

control test at this concentration. However, findings from other researches showed that NA 

can significantly increase when exposed to O. niloticus at 0.05 mg/L concentration. 

Ventura et al. (2008) reported when atrazine was exposed to O. niloticus at 25 µg/L 

concentration, there was significant increase (P<0.05) to the frequency of MN and NA. 

Similar result was also shown when cadmium was treated to O. niloticus at 0.50 mg/L, 

where there was significant increase (P<0.05) of MN and NA frequencies as compared to 

control test (Őzkan et al., 2011). Therefore, it was justified as many chemical compounds 

may simultaneously induce the formation of both MN and other NA, or they may cause 

only one of these changes (Carrasco et al, 1990; Pacheco et al., 1998). 
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The induction of MN and NA were elevated significantly at 3.60 µg/L and 7.00 

µg/L endosulfan concentrations. There was a high rate of micronuclei and total NA 

formation in O. niloticus at 7.00 µg/L endosulfan. These findings were corroborated to 

researches developed by some authors (Lajmanovich et al, 2005; Neuparth et al, 2006), 

where there was an increase in MN and NA in the erythrocytes of the test system studied in 

a concentration dependent manner following 96 hours exposure. It was also demonstrated 

that embryotoxicity and DNA strand breaks were observed in Crassostea gigas embryos at 

higher endosulfan concentration, and followed in a concentration dependant manner 

(Wessel et al., 2007). In contrast, at the lowest endosulfan concentration tested (1.50 µg/L), 

there was no significant difference for the frequency of MN and NA as compared to control 

test (Figure 4.3). Hence, endosulfan at this concentration slightly induced genotoxicity in 

O. niloticus as compared to the other treatment.    

 

In this study, the total frequency of NA was directly proportional at the 2.50 mg/L 

and 4.75 mg/L atrazine concentrations, and at the 3.60 µg/L and 7.00 µg/L endosulfan 

concentrations. If each specific kind of nuclear alterations was considered, the 4.75 mg/L 

atrazine and the 7.00 µg/L endosulfan concentration showed the highest frequency of cells 

with blebbed nuclei, cell with lobed nuclei, and cells with notched nuclei. This result 

presents that at the 4.75 mg/L atrazine and 7.00 µg/L endosulfan, there was a high potential 

to induce the morphological changes of nuclear membrane (Ventura, et al., 2008). The 

induction of binucleated cells was observed high at 2.50 mg/L atrazine and 7.00 µg/L 

endosulfan. In this way, the action of atrazine and endosulfan may cause the failure of 

tubuline polymerization which could lead to the formation of binucleated cells in the 

erythrocytes of O. niloticus (Ventura et al, 2008).    
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MN test has been widely used in aquatic toxicology field to evaluate the 

genotoxicity of many compounds in polluted aquatic ecosystems (Ventura et al, 2008; 

Bűcker and Da Conceição, 2012). Since the results were based on the frequency of MN and 

NA, therefore these assays have been proposed as a monitoring system for potential 

genotoxity of an agent rather than by using chromosomal assay (Guha and Khuda-Bukhsh, 

2002). Most methods developed for assessing MN and NAutilized blood as the sample. 

Blood smears could provide thousands of scorable erythrocytes. Hence, micronuclei assays 

in fish blood could provide endpoints in genotoxicity assessments which are simple, cost-

effective and rapid (Baršienė, et. al, 2006).  

 

The formation of MN could be originated from either acentric chromosome 

fragments or chromosome loss due to whole chromosome that lag behind at anaphase 

during nuclear division (Fenech, 2007). The lag at cell division may cause by lack of 

centromere, damage in centromere or defect in cytokinesis. (Baršienė, et al, 2006). 

According to the data (Table 4.1 and 4.2), the tested atrazine and endosulfan concentrations 

induced the formation of MN in O. niloticus. The induction may be related to chromosomal 

delays at anaphase, characterized by a bad functioning in the spindle, or the cause may due 

to the presence of acentric chromosome fragments (Al-Sabti and Meltcafe, 1995; Baršienė, 

et. al, 2006).       
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The occurrence of NA was taken into consideration when assessing MN analysis. 

The formation of NA may be associated to failure during cell division, cell death processes, 

and to genotoxicity and/or mutagenicity (Fenech, 2000). Notched cells which occur in 

erythrocytes of O. niloticus may probably be associated with aneuploids (Ghadially, 1982). 

The binucleated cells may have been originated from the failure to form mitotic fuse caused 

by aneugenic action of chemicals, and for this case, the cause were atrazine and endosulfan 

(Fernandes et al., 2007; Ventura et al., 2008). Although the mechanisms responsible for the 

formation of cells with blebbed nuclei and cells with lobed nuclei were poorly understood 

and have not fully been explained, these abnormalities are considered to be indicators of 

genotoxic damage (Őzkan, et al., 2011).   

 

All tested atrazine concentrations and high concentrations of endosulfan induced 

mutagenic and genotoxic effects in O. niloticus, which agreed with the finding from 

previous studies (Clements et al., 1997, Ventura et al., 2008, Nwani et al, 2011). Thus, 

atrazine concentration at 0.50 mg/L, 2.50 mg/L and 4.75 mg/L,and endosulfan 

concentration at 3.60 µg/Land 7.00 µg/L induced micronuclei and NA. The increase in 

number of MN and NA could be potentially induced due to clastogenic effects of atrazine 

and endosulfan in the test system (Al-Sabti and Metcalfe, 1995; Ventura et al., 2008). 
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5.2 Changes in RAPD Band Pattern in O. niloticus 

 

Subsequent RAPD analysis was investigated to determine the potential of atrazine 

and endosulfan genotoxicity in O. niloticus. Different and distinctive band pattern were 

observed from O. niloticus. Primers used in O .niloticus exposed to atrazine and endosulfan 

also yielded RAPD pattern differing from the control fish. This indicated that there was 

polymorphic region created in the O. niloticus genome when exposed to these chemicals 

(Abumourad et al., 2012). At highest concentration of atrazine and endosulfan studied (4.75 

mg/L and 7.00 µg/L respectively), RAPD profiles showed increase in the disappearance of 

bands and the appearance of new bands, as well as a closer genetic distance relationship to 

the control test. This is relevant as high concentration of environmental pollutants can have 

deleterious effects as well as acute toxicity damaging cells, tissues and organs in living 

organisms (Conte et al., 1998). Moreover, the genotoxicity of atrazine is in accordance with 

findings found from the previous studies (Abbas and Ali, 2007; Mona et al., 2013), where 

atrazine caused appearance of new diagnostic bands due to high atrazine concentration. In 

addition, RAPD analysis data was correlated with micronuclei analysis in this study, thus 

confirmed that O. niloticus exposed to high concentration of atrazine and endosulfan 

yielded high genotoxicity to this species. 

 

The gain or loss of different bands in the treated samples can be explained as a 

result of changes in primer binding sites, structural rearrangements in DNA caused by 

different types of DNA damages under the effect of atrazine and endosulfan exposures 

(Abumourad et al, 2012; Mona et al., 2013). These chemicals could cause these effects in 



 

64 
 

DNA, probably due to an increase of free radical activity or free radical life span in 

organisms following exposure to chemicals and could deteriorate antioxidant defensive 

system by Reactive Oxygen Species, as proposed by several authors (Lai and Singh, 2004; 

Lee et al., 2004; Guier et al., 2006, Abumourad et al., 2012).  

 

The disappearance of some bands from normal O. niloticus may be correlated with 

the level of DNA damage after exposure to atrazine and endosulfan, as observed when O. 

niloticus was treated with ammonia (Abumourad et al., 2012). It can be explained that 

atrazine and endosulfan may interact with genomic DNA at specific sites, which lead to hot 

spot DNA damage and potentially to hot spot mutations, hence resulting in the 

disappearance of bands in the RAPD profiles (Vogelstein and Kinzler, 1992; Atienzar, et 

al., 2002; Sayed et al., 2013). The appearance of new bands may also relate to the level of 

DNA damage and the efficiency of DNA repair and replication (Atienzar et al., 1999). 

Appearing bands may be seen due to variations in the DNA sequences caused by mutations, 

large deletions and homologous recombinations (Atienzar et al., 1999), or may be due to 

different DNA structural changes such as breaks, transpositions, and deletions, which allow 

accessibility of primers to bind on some new oligonucleotide priming sites (Arillo et al., 

1981; Abumourad et al., 2012, Cansaran-Duman et al., 2012).  

 

Changes in the RAPD patterns are expressed as decreases in GTS, a qualitative 

measure reflecting the change in the number of RAPD profiles generated by the 

concentration of chemicals (Rocco et al., 2013). In this study, GTS reflects the genotoxicity 

for the concentration of atrazine and endosulfan used in relation to profiles obtained from 
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the control specimens. In this experiment, assessment of GTS showed that changes in the 

RAPD pattern in O. niloticus treated with endosulfan were decreased when applied to 

higher concentrations. This data was supported by research on genotoxity of zebrafish 

when exposed to the drug concentrations used (Rocco et al., 2013). Changes in RAPD 

patternsinduced by genotoxins could be regarded as modifications in GTSand such 

genotoxic effects can be directly compared to the alterationsin some parameters including 

DNA mutation or chromosomal rearrangement such as insertions/deletions either at or 

between the primer binding sites which observed as presence and dissapearance of DNA 

bands in the RAPD profile (Bardakci, 2001).  

 

RAPD profile for atrazine treated O. niloticus showed variation in the mean GTS 

percentage at concentration 0.50 mg/L and 2.50 mg/l. It was possible that at 2.50 mg/L 

atrazine tested, this chemical may induced high level of DNA damage as compared to 0.50 

mg/L atrazine, but the GTS value does not necessarily decreased since GTS may be related 

to different kinds of DNA damage, such as DNA adducts, mutations and rearrangement, 

thus it would be difficult to anticipate a dose-dependant relationship (Rocco, 2014). In 

Table 4.4, mean GTS percentage was not significant. This can be caused by lack of 

replicate for RAPD amplification for each treated samples. In order to give more significant 

mean GTS percentage value, genomic DNAs for all samples for all sample shoud be at least 

amplified twice before qualitative and quantitave analysis were done (Abumourad et al., 

2012).    
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5.3 Vtg Gene Expression in Male O. niloticus 

 

Vtg gene expression was also investigated in this study, as induction of Vtg in 

males and immature female fishes has been widely known to be a very useful biomarker to 

detect disruption of estrogen signaling by EDCs (Scholz et al., 2004; Reinen, et al., 2010). 

The induction of Vtg gene expression in male O. niloticus by atrazine and endosulfan 

showed that these chemicals were capable of interfering with the normal function of 

endocrine system of male O. niloticus. At 7.00 µg/L endosulfan, the Vtg gene was 

expressed at the highest followed by 4.75 mg/L atrazine, as compared to the control and the 

other concentrations tested. Thus, the endocrine system of male O. niloticus was highly 

disrupted by estrogenic effect of endosulfan as compared to atrazine. 

 

 The finding that atrazine induced Vtg in male O. niloticusis in contrast to the 

finding from studies on male carp hepatocytes in vitro (Sandersen et al., 2001) and in adult 

goldfish  (Spanò et al., 2004). Following the result obtained in this study, atrazine which 

inducedVtg in male O. niloticus was supported by previous researches, where atrazine 

increased the circulating concentration of Vtg when administered orally to European quail 

(De la Casa-Resino et al., 2012), and this chemical was shownto produceVtg in male 

Xenopus laevis (Miyahara et al, 2003) and Bufo marinus (McCoy et al, 2002). It was 

suggested that O. niloticus is sensitive to atrazine estrogenic effect following concentration 

dependent manner, hence there is potential for this chemical toinduce feminization in male 

fish.  
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Based on the result, endosulfan was potentially harmful in aquatic environments as 

this chemical was shown to be toxic to O. niloticus. It has been demonstrated that 

endosulfan could severely affects the reproductive function and the synthesis of Vtg in the 

liver of other aquatic life, as shown in the zebrafish (Han et al., 2011, Wing et al., 2013), 

Cichlasoma dimerus (Da Cuňa et al, 2013), muddy loach (Min et al, 2010), and rainbow 

trout (Bisson and Hontela, 2002). In contrast, exposure to endosulfan at lower 

concentration failed to induce measurable levels of Vtg in male O. niloticus. This result 

supports a report from a study on sheepshead minnow (Cyprinodon variegatus), where the 

tested endosulfan concentrations applied were below 1.50 µg/L (Hemmer et al., 2001). The 

induction of vitellogenin was increased in the concentration-dependent manner for atrazine 

and endosulfan, which suggested that both chemicals were potential to disrupt the 

endocrine system and may cause feminization in male fish.  
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CHAPTER 6 

 

CONCLUSION 

 

6.1 Conclusion 

 

 Genotoxic effects of atrazine and endosulfan has been shown to have affected O. 

niloticus as the test subject for this experiment. Upon exposure to different concentrations 

of atrazine and endosulfan, the frequency of MN and NA in erythrocytes of O. niloticus 

were increased in a concentration dependent manner at 96 hours exposure. The response of 

concentrations tested for both chemicals against MN formation was summarized as below; 

Control < end 1.50 µg/L < atz 0.50 mg/L< end 3.60 µg/L < atz 2.50 mg/L< end 7.00 µg/L < 

atz 4.75 mg/L 

and the summary of NA formation when the concentration of atrazine and endosulfan was 

increased was shown below; 

Control < end 1.50 µg/L < atz 0.50 mg/L< end 3.60 µg/L < atz 2.50 mg/L< atz 4.75 mg/L < 

end 7.0 µg/L 

where, atrazine and endosulfan at highest concentration being tested (4.75 mg/L and 7.00 

µg/L respectively) were showed to have the highest incident of MN and NA in O. niloticus 

blood cells. Therefore it was indicated that the genotoxicity in O. niloticus was the highest 

at these concentrations.  
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A subsequent RAPD assay also showed that atrazine and endosulfan induced 

genotoxic effect in O. niloticus. The five primers tested produced unique polymorphic band 

patterns and generated RAPD profile variations that displayed the disappearance of bands 

and appearance of new bands of amplified DNA in the atrazine and endosulfan-treated 

genomic DNA. At 4.75 mg/L atrazine, 3.60 µg/L endosulfan and 7.00 µg/L endosulfan, the 

number of bands disappearing and appearing were the highest at these concentrations. It 

was further verified through the dendogram created based on the RAPD profiles. Thus, it 

was showed the chance that RAPD band to disappear and new bands appeared was 

increased when O. niloticus was exposed with high concentration of genotoxicants.     

 

Atrazine and endosulfan were also shown to induce Vtg in male O.niloticus with a 

concentration-dependent manner after being exposed to 96 hours. The summary of this 

finding was shown as below; 

Control < end 1.50 µg/L < atz 0.50 mg/L< end 3.60 µg/L < atz 2.50 mg/L< atz 4.75 mg/L < 

end 7.0 µg/L 

where, the expression of Vtg in male O. niloticus was the highest at 4.75 mg/L atrazine and 

7.00 µg/L endosulfan as compared to the other concentration tested. Therefore, when the 

concentration of atrazine and endosulfan was increased, it was possible that the level of Vtg 

in male O. niloticus was also increasingly induced.   
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In summary, the finding obtained in this study suggested atrazine and endosulfan 

have the potential to be endocrine disruptor chemicals. Considering the genotoxic effect 

and Vtg expression results of atrazine and endosulfan, the action to induce mechanisms that 

lead to genotoxic properties may be possible due to atrazine and endosulfan clastogenic 

effect and estrogenic effect. Thus, exposure of EDCs to aquatic environment might posses 

threat to the aquatic livings especially, since these chemicals can gives adverse effect by 

interfering the stability of aquatic ecosystems due to their potentiality in promoting damage 

in the genetic material of fishes and also interrupt their reproductive system.  

 

6.2 Recommendations and Future Works 

 

Although MN test could provide rapid analysis, a more sensitive method is 

suggested to evaluate the genotoxicity of atrazine and endosulfan in O. niloticus in order to 

affirm the results. Comet assay has been usually applied along MN test to study the 

genotoxicity of EDCs in fish. This method is considered more sensitive than MN test 

(Bűcker and Da Conceição, 2012). Therefore, further studies will include comet assay to 

study the genotoxicity effect of atrazine and endosuflan in O. niloticus.  

 

RAPD test has proven to be useful when studying the genotoxic effect of atrazine 

and endosulfan as seen in the present study. However, there was limited information to 

support the finding about genotoxicity in endosulfan exposed test system by using RAPD, 

while the present study found that this technique was applicable to determine genotoxicity 
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in endosulfan treated O. niloticus at high concentration. In order to affirm this finding and 

also to provide more knowledge, further studies with other species, should be developed to 

see the potential of genotoxic effect of endosulfan by RAPD assay. 

 

 The result presented here indicates that male O. niloticus respond to atrazine and 

endosulfan by producing Vtg. Therefore, it was suggested that both chemicals has been 

shown to potentially disrupt endocrine signaling and exhibit estrogenic effect in fish, which 

later may lead to fish feminization. Furthermore, Vtg was proven to be a useful biomarker 

or indicator of EDCs exposure in aquatic environment. However, a number of reports on 

the effect of atrazine causing production of Vtg especially in male aquatic vertebrates have 

been published, yet there is inconsistency in the effect reported, and between studies in 

different laboratories, as obtained in this current study.Hence, new tests are suggested to 

study the effect of atrazine on Vtg induction in males by applying other parameters and 

techniques, and also by using other test systems which can be used as supporting data to 

study the genotoxicity of EDCs, especially in fish.  
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APPENDIX A 

 

Statistical analysis for MN test and NA. 

 

i) Atrazine samples 

 

Oneway 

 ANOVA 
 

  
Sum of 
Squares df 

Mean 
Square F Sig. 

MN Between 
Groups 

3474.333 3 1158.111 145.776 .000 

Within Groups 254.222 32 7.944   

Total 3728.556 35    

NA Between 
Groups 

1797.861 3 599.287 28.804 .000 

Within Groups 665.778 32 20.806   

Total 2463.639 35    

Blebbed Between 
Groups 

68.444 3 22.815 6.006 .002 

Within Groups 121.556 32 3.799   

Total 190.000 35    

Lobed Between 
Groups 

200.306 3 66.769 16.780 .000 

Within Groups 127.333 32 3.979   

Total 327.639 35    

Notched Between 
Groups 

234.889 3 78.296 13.110 .000 

Within Groups 191.111 32 5.972   

Total 426.000 35    

Binuclear Between 
Groups 

14.333 3 4.778 4.556 .009 

Within Groups 33.556 32 1.049   

Total 47.889 35    
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Post Hoc Tests 

 

 

Multiple Comparisons 
 

Tukey HSD  

Dependent 
Variable 

(I) Atrazine 
concentrations 

(J) Atrazine 
concentrations 

Mean 
Difference 

(I-J) 
Std. 
Error Sig. 

95% Confidence 
Interval 

      
Lower 
Bound 

Upper 
Bound 

MN control atz 4.75 -26.000(*) 1.329 .000 -29.60 -22.40 
  atz 2.5 -15.000(*) 1.329 .000 -18.60 -11.40 

  atz 0.5 -5.889(*) 1.329 .001 -9.49 -2.29 

 atz 4.75 control 26.000(*) 1.329 .000 22.40 29.60 

  atz 2.5 11.000(*) 1.329 .000 7.40 14.60 

  atz 0.5 20.111(*) 1.329 .000 16.51 23.71 
 atz 2.5 control 15.000(*) 1.329 .000 11.40 18.60 

  atz 4.75 -11.000(*) 1.329 .000 -14.60 -7.40 

  atz 0.5 9.111(*) 1.329 .000 5.51 12.71 

 atz 0.5 control 5.889(*) 1.329 .001 2.29 9.49 

  atz 4.75 -20.111(*) 1.329 .000 -23.71 -16.51 
  atz 2.5 -9.111(*) 1.329 .000 -12.71 -5.51 

NA control atz 4.75 -17.889(*) 2.150 .000 -23.71 -12.06 

  atz 2.5 -13.889(*) 2.150 .000 -19.71 -8.06 

  atz 0.5 -5.000 2.150 .113 -10.83 .83 

 atz 4.75 control 17.889(*) 2.150 .000 12.06 23.71 
  atz 2.5 4.000 2.150 .265 -1.83 9.83 
  atz 0.5 12.889(*) 2.150 .000 7.06 18.71 

 atz 2.5 control 13.889(*) 2.150 .000 8.06 19.71 

  atz 4.75 -4.000 2.150 .265 -9.83 1.83 

  atz 0.5 8.889(*) 2.150 .001 3.06 14.71 

 atz 0.5 control 5.000 2.150 .113 -.83 10.83 
  atz 4.75 -12.889(*) 2.150 .000 -18.71 -7.06 

  atz 2.5 -8.889(*) 2.150 .001 -14.71 -3.06 

Blebbed control atz 4.75 -3.333(*) .919 .005 -5.82 -.84 

  atz 2.5 -2.889(*) .919 .018 -5.38 -.40 

  atz 0.5 -.889 .919 .769 -3.38 1.60 
 atz 4.75 control 3.333(*) .919 .005 .84 5.82 

  atz 2.5 .444 .919 .962 -2.04 2.93 

  atz 0.5 2.444 .919 .056 -.04 4.93 

 atz 2.5 control 2.889(*) .919 .018 .40 5.38 

  atz 4.75 -.444 .919 .962 -2.93 2.04 
  atz 0.5 2.000 .919 .151 -.49 4.49 
 atz 0.5 control .889 .919 .769 -1.60 3.38 

  atz 4.75 -2.444 .919 .056 -4.93 .04 

  atz 2.5 -2.000 .919 .151 -4.49 .49 
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Table multiple comparisons, continued.      

      

Lobed control atz 4.75 -5.889(*) .940 .000 -8.44 -3.34 

  atz 2.5 -3.111(*) .940 .012 -5.66 -.56 
  atz 0.5 -.444 .940 .965 -2.99 2.10 

 atz 4.75 control 5.889(*) .940 .000 3.34 8.44 

  atz 2.5 2.778(*) .940 .028 .23 5.33 

  atz 0.5 5.444(*) .940 .000 2.90 7.99 

 atz 2.5 control 3.111(*) .940 .012 .56 5.66 
  atz 4.75 -2.778(*) .940 .028 -5.33 -.23 

  atz 0.5 2.667(*) .940 .037 .12 5.21 

 atz 0.5 control .444 .940 .965 -2.10 2.99 

  atz 4.75 -5.444(*) .940 .000 -7.99 -2.90 

  atz 2.5 -2.667(*) .940 .037 -5.21 -.12 

Notched control atz 4.75 -6.333(*) 1.152 .000 -9.45 -3.21 
  atz 2.5 -5.222(*) 1.152 .000 -8.34 -2.10 

  atz 0.5 -1.778 1.152 .425 -4.90 1.34 

 atz 4.75 control 6.333(*) 1.152 .000 3.21 9.45 

  atz 2.5 1.111 1.152 .770 -2.01 4.23 

  atz 0.5 4.556(*) 1.152 .002 1.43 7.68 
 atz 2.5 control 5.222(*) 1.152 .000 2.10 8.34 

  atz 4.75 -1.111 1.152 .770 -4.23 2.01 

  atz 0.5 3.444(*) 1.152 .026 .32 6.57 

 atz 0.5 control 1.778 1.152 .425 -1.34 4.90 

  atz 4.75 -4.556(*) 1.152 .002 -7.68 -1.43 
  atz 2.5 -3.444(*) 1.152 .026 -6.57 -.32 

Binuclear control atz 4.75 -1.333(*) .483 .044 -2.64 -.03 

  atz 2.5 -1.667(*) .483 .008 -2.97 -.36 

  atz 0.5 -1.222 .483 .074 -2.53 .09 

 atz 4.75 control 1.333(*) .483 .044 .03 2.64 
  atz 2.5 -.333 .483 .900 -1.64 .97 
  atz 0.5 .111 .483 .996 -1.20 1.42 

 atz 2.5 control 1.667(*) .483 .008 .36 2.97 

  atz 4.75 .333 .483 .900 -.97 1.64 

  atz 0.5 .444 .483 .794 -.86 1.75 

 atz 0.5 control 1.222 .483 .074 -.09 2.53 
  atz 4.75 -.111 .483 .996 -1.42 1.20 

  atz 2.5 -.444 .483 .794 -1.75 .86 

*  The mean difference is significant at the .05 level. 
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Homogeneous Subsets 

 
 MN 
 

Tukey B  

Atrazine concentrations N 

Subset for alpha = .05 

1 2 3 4 

control 9 6.67    

atz 0.5 9  12.56   

atz 2.5 9   21.67  

atz 4.75 9    32.67 

Means for groups in homogeneous subsets are displayed. 
a  Uses Harmonic Mean Sample Size = 9.000 
 
 

 NA 
 

Tukey B  

Atrazine concentrations N 

Subset for alpha = .05 

1 2 

control 9 7.00  

atz 0.5 9 12.00  

atz 2.5 9  20.89 

atz 4.75 9  24.89 

Means for groups in homogeneous subsets are displayed. 
a  Uses Harmonic Mean Sample Size = 9.000. 
 

 Blebbed 
 

Tukey B  

Atrazine concentrations N 

Subset for alpha = .05 

1 2 3 

control 9 1.56   

atz 0.5 9 2.44 2.44  

atz 2.5 9  4.44 4.44 

atz 4.75 9   4.89 

Means for groups in homogeneous subsets are displayed. 
a  Uses Harmonic Mean Sample Size = 9.000. 
 

 Lobed 
 

Tukey B  

Atrazine concentrations N 

Subset for alpha = .05 

1 2 3 

control 9 3.44   

atz 0.5 9 3.89   

atz 2.5 9  6.56  

atz 4.75 9   9.33 

Means for groups in homogeneous subsets are displayed. 
a  Uses Harmonic Mean Sample Size = 9.000. 
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 Notched 
 

Tukey B  

Atrazine concentrations N 

Subset for alpha = .05 

1 2 

control 9 3.00  

atz 0.5 9 4.78  

atz 2.5 9  8.22 

atz 4.75 9  9.33 

Means for groups in homogeneous subsets are displayed. 
a  Uses Harmonic Mean Sample Size = 9.000. 
 
 

 Binuclear 
 

Tukey B  

Atrazine concentrations N 

Subset for alpha = .05 

1 2 

control 9 .00  

atz 0.5 9  1.22 

atz 4.75 9  1.33 

atz 2.5 9  1.67 

Means for groups in homogeneous subsets are displayed. 
a  Uses Harmonic Mean Sample Size = 9.000. 
 

ii) Endosulfan samples 

Oneway 

 ANOVA 
 

  
Sum of 

Squares df 
Mean 

Square F Sig. 

micronuclei Between Groups 1046.444 3 348.815 105.746 .000 

 Within Groups 105.556 32 3.299   

 Total 1152.000 35    

NA Between Groups 2667.111 3 889.037 20.692 .000 

 Within Groups 1374.889 32 42.965   

 Total 4042.000 35    

Blebbed nuclei Between Groups 51.222 3 17.074 7.612 .001 

 Within Groups 71.778 32 2.243   

 Total 123.000 35    

Lobed nuclei Between Groups 529.111 3 176.370 10.830 .000 

 Within Groups 521.111 32 16.285   

 Total 1050.222 35    

Notched nuclei Between Groups 380.750 3 126.917 29.383 .000 

 Within Groups 138.222 32 4.319   

 Total 518.972 35    

Binuclear cells Between Groups 7.861 3 2.620 2.220 .105 

 Within Groups 37.778 32 1.181   

 Total 45.639 35    
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Post Hoc Tests 

Multiple Comparisons 
 

Tukey HSD  

Dependent 
Variable (I) Concentration 

(J) 
Concentration 

Mean 
Differenc

e (I-J) 
Std. 
Error Sig. 

95% Confidence 
Interval 

      
Lower 
Bound 

Upper 
Bound 

micronuclei 7 microgram/L 3.6 microgram/L 4.667(*) .856 .000 2.35 6.99 
  1.5 microgram/L 11.889(*) .856 .000 9.57 14.21 

  control 2 13.222(*) .856 .000 10.90 15.54 

 3.6 microgram/L 7 microgram/L -4.667(*) .856 .000 -6.99 -2.35 

  1.5 microgram/L 7.222(*) .856 .000 4.90 9.54 

  control 2 8.556(*) .856 .000 6.24 10.88 
 1.5 microgram/L 7 microgram/L -11.889(*) .856 .000 -14.21 -9.57 

  3.6 microgram/L -7.222(*) .856 .000 -9.54 -4.90 

  control 2 1.333 .856 .417 -.99 3.65 

 control 2 7 microgram/L -13.222(*) .856 .000 -15.54 -10.90 

  3.6 microgram/L -8.556(*) .856 .000 -10.88 -6.24 
  1.5 microgram/L -1.333 .856 .417 -3.65 .99 

NA 7 microgram/L 3.6 microgram/L 10.000(*) 3.090 .014 1.63 18.37 

  1.5 microgram/L 17.111(*) 3.090 .000 8.74 25.48 

  control 2 23.111(*) 3.090 .000 14.74 31.48 

 3.6 microgram/L 7 microgram/L -10.000(*) 3.090 .014 -18.37 -1.63 
  1.5 microgram/L 7.111 3.090 .119 -1.26 15.48 
  control 2 13.111(*) 3.090 .001 4.74 21.48 

 1.5 microgram/L 7 microgram/L -17.111(*) 3.090 .000 -25.48 -8.74 

  3.6 microgram/L -7.111 3.090 .119 -15.48 1.26 

  control 2 6.000 3.090 .231 -2.37 14.37 

 control 2 7 microgram/L -23.111(*) 3.090 .000 -31.48 -14.74 
  3.6 microgram/L -13.111(*) 3.090 .001 -21.48 -4.74 

  1.5 microgram/L -6.000 3.090 .231 -14.37 2.37 

Blebbed 
nuclei 

7 microgram/L 3.6 microgram/L 
1.111 .706 .407 -.80 3.02 

  1.5 microgram/L 2.111(*) .706 .026 .20 4.02 

  control 2 3.222(*) .706 .000 1.31 5.14 
 3.6 microgram/L 7 microgram/L -1.111 .706 .407 -3.02 .80 

  1.5 microgram/L 1.000 .706 .499 -.91 2.91 

  control 2 2.111(*) .706 .026 .20 4.02 

 1.5 microgram/L 7 microgram/L -2.111(*) .706 .026 -4.02 -.20 

  3.6 microgram/L -1.000 .706 .499 -2.91 .91 
  control 2 1.111 .706 .407 -.80 3.02 
 control 2 7 microgram/L -3.222(*) .706 .000 -5.14 -1.31 

  3.6 microgram/L -2.111(*) .706 .026 -4.02 -.20 

  1.5 microgram/L -1.111 .706 .407 -3.02 .80 
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Table multiple comparisons, continued.      

        

Lobed nuclei 7 microgram/L 3.6 microgram/L 3.444 1.902 .287 -1.71 8.60 

  1.5 microgram/L 7.333(*) 1.902 .003 2.18 12.49 
  control 2 10.111(*) 1.902 .000 4.96 15.27 

 3.6 microgram/L 7 microgram/L -3.444 1.902 .287 -8.60 1.71 

  1.5 microgram/L 3.889 1.902 .193 -1.27 9.04 

  control 2 6.667(*) 1.902 .007 1.51 11.82 

 1.5 microgram/L 7 microgram/L -7.333(*) 1.902 .003 -12.49 -2.18 
  3.6 microgram/L -3.889 1.902 .193 -9.04 1.27 

  control 2 2.778 1.902 .473 -2.38 7.93 

 control 2 7 microgram/L -10.111(*) 1.902 .000 -15.27 -4.96 

  3.6 microgram/L -6.667(*) 1.902 .007 -11.82 -1.51 

  1.5 microgram/L -2.778 1.902 .473 -7.93 2.38 

Notched 
nuclei 

7 microgram/L 3.6 microgram/L 
5.333(*) .980 .000 2.68 7.99 

  1.5 microgram/L 7.000(*) .980 .000 4.35 9.65 

  control 2 8.667(*) .980 .000 6.01 11.32 

 3.6 microgram/L 7 microgram/L -5.333(*) .980 .000 -7.99 -2.68 

  1.5 microgram/L 1.667 .980 .340 -.99 4.32 

  control 2 3.333(*) .980 .009 .68 5.99 
 1.5 microgram/L 7 microgram/L -7.000(*) .980 .000 -9.65 -4.35 

  3.6 microgram/L -1.667 .980 .340 -4.32 .99 

  control 2 1.667 .980 .340 -.99 4.32 

 control 2 7 microgram/L -8.667(*) .980 .000 -11.32 -6.01 

  3.6 microgram/L -3.333(*) .980 .009 -5.99 -.68 

  1.5 microgram/L -1.667 .980 .340 -4.32 .99 

Binuclear cells 7 microgram/L 3.6 microgram/L .222 .512 .972 -1.17 1.61 

  1.5 microgram/L .667 .512 .569 -.72 2.05 

  control 2 1.222 .512 .100 -.17 2.61 

 3.6 microgram/L 7 microgram/L -.222 .512 .972 -1.61 1.17 
  1.5 microgram/L .444 .512 .821 -.94 1.83 
  control 2 1.000 .512 .227 -.39 2.39 

 1.5 microgram/L 7 microgram/L -.667 .512 .569 -2.05 .72 

  3.6 microgram/L -.444 .512 .821 -1.83 .94 

  control 2 .556 .512 .701 -.83 1.94 

 control 2 7 microgram/L -1.222 .512 .100 -2.61 .17 
  3.6 microgram/L -1.000 .512 .227 -2.39 .39 

  1.5 microgram/L -.556 .512 .701 -1.94 .83 

*  The mean difference is significant at the .05 level. 
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Homogeneous Subsets 

 Micronuclei 
 

Tukey HSD  

Concentration N 

Subset for alpha = .05 

1 2 3 

control 2 9 7.22   

1.5 microgram/L 9 8.56   

3.6 microgram/L 9  15.78  

7 microgram/L 9   20.44 

Sig.  .417 1.000 1.000 

Means for groups in homogeneous subsets are displayed. 
a  Uses Harmonic Mean Sample Size = 9.000. 
 

 NA 
 

Tukey HSD  

Concentration N 

Subset for alpha = .05 

1 2 3 

control 2 9 3.44   

1.5 microgram/L 9 9.44 9.44  

3.6 microgram/L 9  16.56  

7 microgram/L 9   26.56 

Sig.  .231 .119 1.000 

Means for groups in homogeneous subsets are displayed. 
a  Uses Harmonic Mean Sample Size = 9.000. 
 

 Blebbed nuclei 
 

Tukey HSD  

Concentration N 

Subset for alpha = .05 

1 2 3 

control 2 9 .56   

1.5 microgram/L 9 1.67 1.67  

3.6 microgram/L 9  2.67 2.67 

7 microgram/L 9   3.78 

Sig.  .407 .499 .407 

Means for groups in homogeneous subsets are displayed. 
a  Uses Harmonic Mean Sample Size = 9.000. 
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 Lobed nuclei 
 

Tukey HSD  

Concentration N 

Subset for alpha = .05 

1 2 3 

control 2 9 1.33   

1.5 microgram/L 9 4.11 4.11  

3.6 microgram/L 9  8.00 8.00 

7 microgram/L 9   11.44 

Sig.  .473 .193 .287 

Means for groups in homogeneous subsets are displayed. 
a  Uses Harmonic Mean Sample Size = 9.000. 
 

 Notched nuclei 
 

Tukey HSD  

Concentration N 

Subset for alpha = .05 

1 2 3 

control 2 9 1.56   

1.5 microgram/L 9 3.22 3.22  

3.6 microgram/L 9  4.89  

7 microgram/L 9   10.22 

Sig.  .340 .340 1.000 

Means for groups in homogeneous subsets are displayed. 
a  Uses Harmonic Mean Sample Size = 9.000. 
 

 Binuclear cells 
 

Tukey HSD  

Concentration N 

Subset for 
alpha = 

.05 

1 

control 2 9 .00 

1.5 microgram/L 9 .56 

3.6 microgram/L 9 1.00 

7 microgram/L 9 1.22 

Sig.  .100 

Means for groups in homogeneous subsets are displayed. 
a  Uses Harmonic Mean Sample Size = 9.000. 
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APPENDIX B 

RAPD band pattern scoring. 

Table I: Loss/gain matrix of the bands on the gel picture for atrazine samples in Figure 4.4-4.8. 

Primer 
Sample 

(Atz) 

Marker (bp) 

1900 1600 1500 1400 1200 1100 1000 950 900 800 750 700 600 550 500 450 400 350 270 250 

OPA8 

Control 1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 1 

0.5  1 0 1 0 1 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 

2.5  1 0 1 0 1 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 

4.75  0 0 1 1 1 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1 

OPA13 

Control 1 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 

0.5  1 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 

2.5  1 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 

4.75  1 0 1 1 1 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 

OPB8 

Control 0 1 0 1 1 0 0 1 0 1 0 1 1 0 1 1 0 0 1 0 

0.5  0 1 1 1 1 0 0 1 0 1 0 1 1 0 1 0 0 0 1 0 

2.5  0 1 1 1 1 0 0 1 0 1 0 1 1 0 1 1 0 0 1 0 

4.75  0 1 1 1 1 0 0 1 0 1 0 1 1 0 1 0 0 0 1 0 

OPA12 

Control 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 

0.5  1 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 

2.5  1 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 

4.75  0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 

OPC11 

Control 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1 1 0 0 

0.5  0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 1 1 1 0 0 

2.5  0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1 1 0 0 

4.75  0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1 1 0 0 
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Table I, continued. 

 

Primer Sample (Atz) TOTAL 
Gain 

difference 
(a) 

Loss 
difference 

(b) 
a + b 

OPA8 

Control 7 0 0 0 

0.5  8 2 1 3 

2.5  8 2 1 3 

4.75  7 2 2 4 

OPA13 

Control 5 0 0 0 

0.5  5 0 0 0 

2.5  5 0 0 0 

4.75  8 3 0 3 

OPB8 

Control 10 0 0 0 

0.5  10 1 1 2 

2.5  11 1 0 1 

4.75  10 1 1 2 

OPA12 

Control 4 0 0 0 

0.5  5 1 0 1 

2.5  5 1 0 1 

4.75  4 0 0 0 

OPC11 

Control 5 0 0 0 

0.5  6 1 0 1 

2.5  5 0 0 0 

4.75  5 0 0 0 
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Table II: Loss/gain matrix of the bands on the gel picture for endosulfan samples in Figure 4.4-4.8. 

Primer 
Sample 
(End) 

Marker (bp) 

1900 1600 1500 1400 1200 1100 1000 950 900 800 750 700 600 550 500 450 400 350 270 250 

OPA8 

Control 1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 1 

1.5  1 0 1 1 1 1 1 0 0 1 0 1 1 0 0 0 1 0 0 1 

3.6  1 0 1 1 1 1 1 0 0 1 0 0 1 0 0 0 1 0 0 1 

7  1 0 0 1 1 0 1 0 0 1 0 1 0 0 0 0 1 0 0 1 

OPA13 

Control 1 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 

1.5  1 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 

3.6  1 0 0 0 1 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 

7  1 0 0 0 1 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 

OPB8 

Control 0 1 0 1 1 0 0 1 0 1 0 1 1 0 1 1 0 0 1 0 

1.5  0 1 1 1 1 0 0 1 0 1 0 1 1 0 1 1 0 0 1 0 

3.6  0 1 1 1 1 0 0 1 0 1 0 1 0 0 1 0 0 0 1 0 

7  0 1 1 1 1 0 0 1 0 1 0 1 1 0 1 1 0 0 1 0 

OPA12 

Control 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 

1.5  1 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 

3.6  1 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 

7  1 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 

OPC11 

Control 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1 1 0 0 

1.5  0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 1 1 0 0 

3.6  0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 1 1 1 0 0 

7  0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 1 1 1 0 0 
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Table II, continued. 

 

Primer 
Sample 
(End) 

TOTAL 
Gain 

difference 
(a) 

Loss 
difference 

(b) 
a + b 

OPA8 

Control 7 0 0 0 

1.5  10 4 0 4 

3.6  10 3 0 3 

7  8 3 2 5 

OPA13 

Control 5 0 0 0 

1.5  5 0 0 0 

3.6  6 1 0 1 

7  6 1 0 1 

OPB8 

Control 10 0 0 0 

1.5  11 1 0 1 

3.6  9 1 2 3 

7  11 1 0 1 

OPA12 

Control 4 0 0 0 

1.5  5 1 0 1 

3.6  5 1 0 1 

7  5 1 0 1 

OPC11 

Control 5 0 0 0 

1.5  5 0 0 0 

3.6  6 1 0 1 

7  6 1 0 1 
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APPENDIX C 

 

Statistical Analysis for GTS (%) 

 

Oneway 

 

 ANOVA 
 

Genomic template stability  

 
Sum of 

Squares df Mean Square F Sig. 

Between Groups 3221.731 6 536.955 1.370 .261 

Within Groups 10971.534 28 391.841   

Total 14193.266 34    

 

 

Post Hoc Tests 

 

 Multiple Comparisons 
 

Dependent Variable: Genomic template stability  
Tukey HSD  

(I) Concentration 
(J) 
Concentration 

Mean 
Difference 

(I-J) Std. Error Sig. 95% Confidence Interval 

     Lower Bound Upper Bound 

Control 0.50 mg/L atz 21.57200 12.51943 .607 -18.1413 61.2853 
 1.50 mg/L atz 13.57200 12.51943 .928 -26.1413 53.2853 

 4.75 mg/L atz 27.42800 12.51943 .332 -12.2853 67.1413 

 1.50 
microgram/L 

18.42800 12.51943 .758 -21.2853 58.1413 

 3.60 
microgram/L 

27.57200 12.51943 .326 -12.1413 67.2853 

 7.00 
microgram/L 

29.28600 12.51943 .261 -10.4273 68.9993 

0.50 mg/L atz Control -21.57200 12.51943 .607 -61.2853 18.1413 

 1.50 mg/L atz -8.00000 12.51943 .995 -47.7133 31.7133 

 4.75 mg/L atz 5.85600 12.51943 .999 -33.8573 45.5693 
 1.50 

microgram/L 
-3.14400 12.51943 1.000 -42.8573 36.5693 

 3.60 
microgram/L 

6.00000 12.51943 .999 -33.7133 45.7133 

 7.00 
microgram/L 7.71400 12.51943 .996 -31.9993 47.4273 
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Table multiple comparison continued, 
       

1.50 mg/L atz Control -13.57200 12.51943 .928 -53.2853 26.1413 

 0.50 mg/L atz 8.00000 12.51943 .995 -31.7133 47.7133 

 4.75 mg/L atz 13.85600 12.51943 .921 -25.8573 53.5693 

 1.50 
microgram/L 

4.85600 12.51943 1.000 -34.8573 44.5693 

 3.60 
microgram/L 

14.00000 12.51943 .917 -25.7133 53.7133 

 7.00 
microgram/L 15.71400 12.51943 .866 -23.9993 55.4273 

4.75 mg/L atz Control -27.42800 12.51943 .332 -67.1413 12.2853 

 0.50 mg/L atz -5.85600 12.51943 .999 -45.5693 33.8573 

 1.50 mg/L atz -13.85600 12.51943 .921 -53.5693 25.8573 

 1.50 
microgram/L 

-9.00000 12.51943 .990 -48.7133 30.7133 

 3.60 
microgram/L 

.14400 12.51943 1.000 -39.5693 39.8573 

 7.00 
microgram/L 

1.85800 12.51943 1.000 -37.8553 
41.5713 

 

1.50 
microgram/L 

Control 
-18.42800 12.51943 .758 -58.1413 21.2853 

 0.50 mg/L atz 3.14400 12.51943 1.000 -36.5693 42.8573 

 1.50 mg/L atz -4.85600 12.51943 1.000 -44.5693 34.8573 

 4.75 mg/L atz 9.00000 12.51943 .990 -30.7133 48.7133 

 3.60 
microgram/L 

9.14400 12.51943 .989 -30.5693 48.8573 

 7.00 
microgram/L 

10.85800 12.51943 .975 -28.8553 50.5713 

3.60 
microgram/L 

Control 
-27.57200 12.51943 .326 -67.2853 12.1413 

 0.50 mg/L atz -6.00000 12.51943 .999 -45.7133 33.7133 

 1.50 mg/L atz -14.00000 12.51943 .917 -53.7133 25.7133 
 4.75 mg/L atz -.14400 12.51943 1.000 -39.8573 39.5693 

 1.50 
microgram/L 

-9.14400 12.51943 .989 -48.8573 30.5693 

 7.00 
microgram/L 

1.71400 12.51943 1.000 -37.9993 41.4273 

7.00 
microgram/L 

Control 
-29.28600 12.51943 .261 -68.9993 10.4273 

 0.50 mg/L atz -7.71400 12.51943 .996 -47.4273 31.9993 

 1.50 mg/L atz -15.71400 12.51943 .866 -55.4273 23.9993 

 4.75 mg/L atz -1.85800 12.51943 1.000 -41.5713 37.8553 

 1.50 
microgram/L 

-10.85800 12.51943 .975 -50.5713 28.8553 

 3.60 
microgram/L 

-1.71400 12.51943 1.000 -41.4273 37.9993 
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Homogenous Subsets 
 
 
 Genomic template stability 
 

Tukey HSD  

Concentration N 

Subset for 
alpha = 

.05 

1 

7.00 microgram/L 5 70.7140 

3.60 microgram/L 5 72.4280 

4.75 mg/L atz 5 72.5720 

0.50 mg/L atz 5 78.4280 

1.50 microgram/L 5 81.5720 

1.50 mg/L atz 5 86.4280 

Control 5 100.0000 

Sig.  .261 

Means for groups in homogeneous subsets are displayed. 
a  Uses Harmonic Mean Sample Size = 5.000. 
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APPENDIX D 

 

Melt curve analysis of reaction (qPCR). 

 

 

Figure I: Melt peak of atrazine sample (red) and β-actin (green). 

 

Figure II: Melt peak of endosulfan sample (red) and β-actin (green). 
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APPENDIX E 

 

Standard curve from serial dilutions to determine amplification efficiency. 

 

 

Figure I: Standard curve of β-actin (reference gene). 

  

 

Figure II: Standard curve of samples. 
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APPENDIX F 

 

Statistical analysis for vitellogenin gene expression. 

 

Oneway 

 ANOVA 
 

Relative gene expression  

 
Sum of 

Squares df Mean Square F Sig. 

Between Groups 165.864 6 27.644 96.506 .000 

Within Groups 4.010 14 .286   

Total 169.875 20    

 

Post Hoc Tests 

 Multiple Comparisons 
 

Dependent Variable: Relative gene expression  
Tukey HSD  

(I) 
Concentrato
ns (J) Concentratons 

Mean 
Difference 

(I-J) Std. Error Sig. 95% Confidence Interval 

     
Lower 
Bound 

Upper 
Bound 

CONTROL 1.5 microgram/L -.54667 .43700 .863 -2.0388 .9455 
 3.6 microgram/L -1.70667(*) .43700 .021 -3.1988 -.2145 

 7 microgram/L -8.64333(*) .43700 .000 -10.1355 -7.1512 

 atz 0.5 -1.50667(*) .43700 .047 -2.9988 -.0145 

 atz 2.5 -2.65000(*) .43700 .000 -4.1422 -1.1578 

 atz 4.75 -5.12000(*) .43700 .000 -6.6122 -3.6278 

1.5 
microgram/L 

CONTROL 
.54667 .43700 .863 -.9455 2.0388 

 3.6 microgram/L -1.16000 .43700 .182 -2.6522 .3322 

 7 microgram/L -8.09667(*) .43700 .000 -9.5888 -6.6045 
 atz 0.5 -.96000 .43700 .355 -2.4522 .5322 

 atz 2.5 -2.10333(*) .43700 .004 -3.5955 -.6112 

 atz 4.75 -4.57333(*) .43700 .000 -6.0655 -3.0812 

3.6 
microgram/L 

CONTROL 
1.70667(*) .43700 .021 .2145 3.1988 

 1.5 microgram/L 1.16000 .43700 .182 -.3322 2.6522 

 7 microgram/L -6.93667(*) .43700 .000 -8.4288 -5.4445 

 atz 0.5 .20000 .43700 .999 -1.2922 1.6922 

 atz 2.5 -.94333 .43700 .373 -2.4355 .5488 
 atz 4.75 -3.41333(*) .43700 .000 -4.9055 -1.9212 
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Table multiple comparisons, continued. 
       

7 
microgram/L 

CONTROL 
8.64333(*) .43700 .000 7.1512 10.1355 

 1.5 microgram/L 8.09667(*) .43700 .000 6.6045 9.5888 

 3.6 microgram/L 6.93667(*) .43700 .000 5.4445 8.4288 

 atz 0.5 7.13667(*) .43700 .000 5.6445 8.6288 

 atz 2.5 5.99333(*) .43700 .000 4.5012 7.4855 

 atz 4.75 3.52333(*) .43700 .000 2.0312 5.0155 

atz 0.5 CONTROL 1.50667(*) .43700 .047 .0145 2.9988 
 1.5 microgram/L .96000 .43700 .355 -.5322 2.4522 

 3.6 microgram/L -.20000 .43700 .999 -1.6922 1.2922 

 7 microgram/L -7.13667(*) .43700 .000 -8.6288 -5.6445 

 atz 2.5 -1.14333 .43700 .193 -2.6355 .3488 

 atz 4.75 -3.61333(*) .43700 .000 -5.1055 -2.1212 

atz 2.5 CONTROL 2.65000(*) .43700 .000 1.1578 4.1422 

 1.5 microgram/L 2.10333(*) .43700 .004 .6112 3.5955 

 3.6 microgram/L .94333 .43700 .373 -.5488 2.4355 
 7 microgram/L -5.99333(*) .43700 .000 -7.4855 -4.5012 

 atz 0.5 1.14333 .43700 .193 -.3488 2.6355 

 atz 4.75 -2.47000(*) .43700 .001 -3.9622 -.9778 

atz 4.75 CONTROL 5.12000(*) .43700 .000 3.6278 6.6122 

 1.5 microgram/L 4.57333(*) .43700 .000 3.0812 6.0655 

 3.6 microgram/L 3.41333(*) .43700 .000 1.9212 4.9055 

 7 microgram/L -3.52333(*) .43700 .000 -5.0155 -2.0312 

 atz 0.5 3.61333(*) .43700 .000 2.1212 5.1055 
 atz 2.5 2.47000(*) .43700 .001 .9778 3.9622 

*  The mean difference is significant at the .05 level. 
 
 

Homogeneous Subsets 

 Relative gene expression 
 

Tukey HSD  

Concentratons N 

Subset for alpha = .05 

1 2 3 4 5 

CONTROL 3 .0000     

1.5 microgram/L 3 .5467 .5467    

atz 0.5 3  1.5067 1.5067   

3.6 microgram/L 3  1.7067 1.7067   

atz 2.5 3   2.6500   

atz 4.75 3    5.1200  

7 microgram/L 3     8.6433 

Sig.  .863 .182 .193 1.000 1.000 

Means for groups in homogeneous subsets are displayed. 
a  Uses Harmonic Mean Sample Size = 3.000. 

 

 


