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ABSTRACT  

Morphologies and morphometries as diagnostic characters are shown 

statistically to be able to differentiate between species and intraspecific variants. 

Intraspecific variants or morphovariants exist in nature but the variations they possessed 

are not enough to consider them as species (differentiation index values for 

morphovariants is 50% less than the values for species). These variations are due to 

genetic difference resulting from cross-fertilisations between different individuals of the 

same species. Such variations are necessary tools for future species diversification.  

The 28S rDNA are able to group members of the major dactylogyridean families 

together showing the monophyly of these families within the Dactylogyridea. The 

phylogenetic trees also indicate the heterogeneity of the monogeneans currently placed 

under the Ancyrocephalidae, dividing them into two groups according to their macro-

environment, freshwater and marine ecosystems with the exception of Cichlidogyrus 

and Scutogyrus spp. It is proposed that the two groups are separated with the freshwater 

members (Ancyrocephalus, Actinocleidus, Cleidodiscus, Urocleidus and Onchocleidus)  

remaining in Ancyrocephalidae and a new family be created to accommodate the marine 

members, i.e. Haliotrema, Bravohollisia, Caballeria, Pseudohaliotrema, 

Metahaliotrema, Euryhaliotrema, Euryhaliotrematoides, Tetrancistrum, 

Haliotrematoides, Ligophorus and Aliatrema as well as freshwater members from the 

cichlids, i.e. Cichlidogyrus, Scutogyrus and Onchobdella. The cichlid hosts have been 

postulated to have a marine origin. This analysis seems to confirm the familial status of 

Heteronchocleididae, Ancylodiscoididae, Neocalceostomatidae and 

Pseudodactylogyridae. However the positions of the different monogeneans in 

phylogenetic trees do not correspond with the hypothesized evolutionary history of the 



 
 

morphological characteristics of the different dactylogyridean groups in particular the 2- 

and 4-anchor monogeneans.  

The host relationships based on Cytochrome b and monogenean relationships 

based on 28S rDNA support the well established parasitophyletic rule that related host 

species harbours related monogenean parasites. The specificity of some monogenean 

species suggests they have co-evolved and co-speciated within their host groups. 

However there are cases of monogenean being acquired via host transfer: for example 

Dactylogyrus spp. from a cyprinid host are probably acquired by an anadromous marine 

fish and the subsequent speciation of the Dactylgoyrus spp. on the marine fish 

Lateolabrax sp. give rise to the present distribution patterns of Dactylogyrus. Besides 

host transfer, some monogeneans species might have failed to speciate and this is 

probably what happened in the case of some species of heteronchocleidids on the 

anabantoid-channid fish group.  

This study shows that for a good statistical differentiation of the species and 

morphovariants, large morphometric data sets are necessary. The same is true when 

molecular data is used, one of the limitation in this thesis is the absence of some genera 

(Dogielus and Thaparogyrus are not represented in the Dactylgoyridae) and the lack of 

species representation in some (Pseudomurraytrematidae is represented by one 

species.). This study also notes the limitation of depending solely on 28S rDNA for 

reconstructing phylogenetic relationships.   

 

 

 

 



 
 

ABSTRAK  

Morfologi dan morfometri telah ditunjuk dengan kaedah statistik bahawa ia 

boleh digunakan sebagai ciri diagnostik untuk membezakan species dan variasi 

intraspesifik. Kumpulan variasi intraspesifik wujud dalam alam semulajadi tetapi tidak 

mempunyai variasi yang mencukupi untuk membolehkan mereka dipertimbangkan 

sebagai spesies benar (nilai indeks pembezaan untuk variasi intraspesifik adalah 50% 

kurang daripada nilai untuk spesies). Variasi ini besar kemungkinan disebabkan oleh 

perbezaan genetik yang berpunca daripada pembiakan silang antara individu spesies 

yang sama. Variasi ini adalah diperlukan untuk diversifikasi spesies. Pokok filogenetik 

yang dibina daripada 28S rDNA dapat membezakan ahli-ahli dari famili utama 

dactylogyridean dengan menujukkan ‘monophyly’ famili-famili ini dalam 

Dactylogyridea. Pokok filogenetik juga menunjukkan kepelbagaian monogenean yang 

kini diletakkan dalam Ancyrocephalidae, membahagikan mereka kepada dua kumpulan 

mengikut persekitaran makro mereka, iaitu ekosistem air tawar dan air masin dengan 

pengecualian seperti spesies Cichlidogyrus dan Scutogyrus. Ia adalah dicadangkan 

bahawa dua kumpulan ini dibahagikan dengan ahli-ahli air tawar (Ancyrocephalus, 

Actinocleidus, Cleidodiscus, Urocleidus and Onchocleidus) kekal dalam 

Ancyrocephalidae dan satu family baru harus dibina untuk ahli-ahli air masin seperti 

Haliotrema, Bravohollisia, Caballeria, Pseudohaliotrema, Metahaliotrema, 

Euryhaliotrema, Euryhaliotrematoides, Tetrancistrum, Haliotrematoides, Ligophorus 

dan Aliatrema serta ahli-ahli air tawar dari cichlid, i.e. Cichlidogyrus, Scutogyrus dan 

Onchobdella. Adalah dipostulasikan bahawa cichlid mempunyai origin air masin. 

Analisis ini juga mengesahkan status famili Heteronchocleididae, Ancylodiscoididae, 

Neocalceostomatidae dan Pseudodactylogyridae. Walau bagaimanapun, posisi 

monogenean-monogenean dalam pokok filogenetik adalah tidak serasi dengan hipotesis 

sejarah evolusi ciri-ciri morfologi kumpulan-kumpulan dactylogyridean, teruatamnya 



 
 

bagi monogenean dengan 2- dan 4-anchor. Hubungan perumah berdasarkan 

Cytochrome b dan hubungan monogenean berdasarkan 28S rDNA menyokong hokum 

parasitophyletik di mana spesies perumah yang berhubungan rapat akan mempunyai 

parasit monogenean yang juga berhubungan rapat. Spesifisiti sesetengah spesies 

monogenean mencadangkan mereka telah menjalani koevolusi bersama dengan 

perumah mereka. Walau bagaimanapun, terdapat kes di mana monogenean dapat 

diperolehi melalui ‘pemindahan perumah’: sebagai contoh  Dactylogyrus spp. dari 

perumah cyprinid kemungkinan besar telah diperolehi oleh satu spesies ikan air masin 

dan proses spesiasi Dactylgoyrus spp. yang seterusnya dalam ikan air masin 

Lateolabrax sp. telah menyumbang kepada corak taburan Dactylogyrus hari ini. Selain 

‘pemindahan perumah’, sesetengah spesies monogenean mungkin mengalami kegagalan 

untuk menjalani spesiasi dan ini mungkin telah berlaku pada kes sesetengah 

heteronchocleidid dalam ikan anabantoid-channid. Kajian ini juga menunjukkan bahawa 

data set morfometri yang besar adalah diperlukan untuk pembezaan spesies dan variasi 

intraspesifik menggunakan kaedah statistik. Ini juga didapati benar dalam penggunaan 

data molekular, salah satu had limitasi dalam thesis ini ialah kekurangan data molekular 

dari sesetengah genera (Dogielus dan Thaparogyrus tidak diwakili dalam 

Dactylgoyridae) dan spesies (Pseudomurraytrematidae hanya diwakili oleh satu 

spesies). Kajian ini juga mendapati had limitasi dalam membina semula hubungan 

filogenetik dengan berdasarkan 28S rDNA sahaja. 
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CHAPTER 1 

GENERAL INTRODUCTION 

1.1 Monogenea Carus, 1863 

 Monogenea along with the Cestoda, Trematoda (Digenea and Aspidogastrea) 

and the highly diverse, heterogenous and mainly free-living turbellarians are members 

of the Platyhelminthes. The Monogenea, one of the most diverse classes of 

Platyhelminthes is currently grouped together with the Cestoda under 

Cercomeromorpha (‘hooked larva’) which with the Trematoda form the Neodermata 

(new dermis, referring to the syncytial epidermis found in these 3 group) (Cavalier-

Smith, 1998).  

 

Monogeneans are characterized by having a body proper and haptor with sizes 

ranging from <0.5mm to 1-2cm long, four eyespots, head organs (except in the 

Polystomatoidea), one or more than one testes e.g. Myxinidocotyle spp. 

(Gyrodactylidea: Acanthocotylidae), Choricotyle spp. (Mazocraeidea: Diclidophoridae), 

Nasicola spp. (Capsalidea: Capsalidae) and a single ovary. Monogeneans have a direct 

life cycle without any intermediate hosts. They are soft-bodied and cannot withstand 

desiccation and are hence found mainly as parasites on aquatic or aquatic-related 

organisms such as fish (freshwater and marine), frogs (see Lim & Du Preez, 2001, 

Vande Vusse, 1976), turtles (see Du Preez & Lim, 2000; Pichelin, 1995; Richardson & 

Brooks, 1987), squids and octopus (see Llewellyn, 1984), copepods (Bychowsky, 1957) 

and even on the eyes of the aquatic mammal, the hippopotamus (see Thurston & Law, 

1965). Monogeneans can be found on body surface, scales, fins, gills and nasal cavity, 

pharyngeal cavity and stomach of fishes (see Gusev & Fernando, 1973; Ergens, 1988; 



 
 

Bychowsky, 1957; Paperna, 1963; Pariselle, Lambert & Euzet, 1991), and in the cloaca, 

urinary bladder, conjunctival cavity, oral cavity and intestine of turtles (Du Preez & 

Lim, 2000; Richardson & Brooks, 1987; Rohde & Pearson, 1980; Rohde, 1965; Rohde, 

1963) as well as the urinary bladder of frogs (see Lim & Du Preez, 2001; Du Preez & 

Kok, 1995).   

 

Monogeneans have their greatest diversity on fishes. Currently in Malaysia, over 

200 species of monogeneans have been described from 59 species of fish (35 and 25 

species of freshwater and marine fish, respectively), 3 species of turtles and 1 species of 

frog (see Lim, 1998; 2002; 2003; 2006; Lim & Gibson, 2007; 2008a; 2008b; 2009; 

2010; Lim, Tan & Gibson, 2010; Tan & Lim, 2009; Du Preez & Lim, 2000; Lim & Du 

Preez, 2001; Pariselle, Lim & Lambert, 2001a; 2001b; 2002a; 2002b; 2003; 2004; 

2005a; 2005b; 2006). To date monogenean species belong to three subclasses, the 

Polystomatoinea, the Oligonchoinea and the Polyonchoinea (Lim, pers. com.; Lim, 

1998). The subclass Polystomatoinea consists of monogeneans from turtles and 

amphibians while the other two subclasses, Oligonchoinea and Polyonchoinea consist of 

monogeneans from marine and freshwater fishes. The Polyonchoinea, with 3 orders, 8 

families, 32 genera and 204 species, is the largest of the three subclasses. Within this 

subclass, the order Dactylogyridea Bychowsky, 1937 is the most diverse order. In 

Malaysia, the Dactylogyridea make up about 90% of the total monogenean species 

described to date. This is probably because Lim & Furtado (1983, 1984, 1985, 1986a, 

1986b), Lim (1986, 1987a, 1987b, 1989,  1990, 1991, 1992, 1994, 1995a. 1995b, 1995c, 

1996, 2002; 2003; 2006), Lim & Gibson (2007; 2008a; 2008b; 2009; 2010), Pariselle, 

Lim & Lambert (2001a; 2001b; 2002a; 2002b; 2003; 2004; 2005a; 2005b; 2006), Du 

Preez & Lim (2000), Lim & Du Preez (2001), Tan & Lim (2009) and Lim, Tan & 

Gibson (2010) have concentrated on this group of monogenean. There are still many 



 
 

more species from the Polyonchoinea, as well as from Polystomatoinea and 

Oligonchoinea waiting to be discovered, described and documented (Lim, 1998). 

 

To date not all the available host species have been examined for monogeneans. 

For instance it has been estimated that in Peninsular Malaysia, there are 272 freshwater 

fish species (Lim et al., 1993), 294 marine fish species (Scott, 1959), 15 species of 

turtles (see Gregory & Sharma, 1997) and 155 species of frogs (see Kiew, 1984) but the 

host species examined for monogeneans so far represent only about 12%, 7%, 20% and 

0.6% of freshwater and marine fish species, turtles and frogs, respectively (Lim, 1998; 

Lim & Gibson, 2009; Lim, unpublished data). Lim (1998) further estimated that 83%, 

92% and 94% of monogeneans are yet to be described from these hosts, respectively.   

 

Up till the 1960s, Bychowsky (1957) and Yamaguti (1965; 1966) had recorded 

approximately 957 and 1,350 described monogenean species in the world, respectively. 

During 1980s, an estimated number of 2200 spp. of monogeneans has been documented 

(Kurochkin, 1985). Since then, the number of known monogeneans species have been 

increasing gradually as more research are done and many more species have been 

described. Many authors (Lim, 1998; Poulin, 2002; Whittington, 1998; Justine, 2007; 

Kritsky, 2007) had estimated that only 10-20% of the monogenean species have been 

described and several thousands are yet to be discovered and described. Although 

amphibians and turtles are also hosts to the monogeneans, these are left out from 

previous estimates focusing only on those parasitizing fishes.  Current numbers of valid 

fish species, amphibian species and turtle species worldwide are estimated to be 

approximately 32,000 (Froese & Pauly, 2011), 6,771 (Frost, 2011) and 452 (Rhodin et 

al., 2010), respectively. Since most of the monogeneans species are highly host specific, 



 
 

a conservative prediction of the monogenean species can be done by assuming that each 

fish, amphibian and turtle species is parasitized by three, one and three species of 

monogenean, respectively, giving an estimated number of 32,000 x 3 = 96,000 

monogenean spp. for fish, 6,771 monogenean spp. for amphibians and 452 x 3 = 1,356 

monogenean spp. for turtles (Lim, unpublished data).  Rohde (2005) estimated that there 

are 10,000 known monogenean species. Lim (unpublished data) based on these 

estimates by Rohde (2005) noted that the known monogenean species are only 

approximately 9 % of the total estimated monogenean species.  

 

1.2 Current status in the study of monogeneans 

To date, most of the studies on monogeneans are concentrated mainly in 

taxonomy (e.g. Lim, 1995a; 1995b; 1995c; 1996; 1998; 2002; 2003, 2006; Lim & 

Gibson, 2007; Du Preez & Lim, 2000; Lim & Du Preez, 2001; Tan & Lim, 2009; Lim, 

Tan & Gibson, 2010), with some studies on ecological distribution (e.g. Wootten, 1974; 

Koskivaara & Voltonen, 1992; Simkova et al., 2001b, Simkova et al., 2000), 

physiology, diet and nutrition (e.g. Halton et al., 1998; Buchmann et al., 1987), 

functional morphology (e.g. Kearn et al., 1995; Halton & Gustafasson, 1996; Wong et 

al., 2006a), ontogeny (e.g. Muñoz & Zamora, 2011; Malmberg, 1990), histopathology 

(e.g. Morrison et al., 2001; Bullard et al., 2001; Tinsley et al., 2002), control/treatment 

of diseases (e.g. Yoshinaga et al., 2000; Cowell et al., 1993; Ellis & Wanatabe, 1993; 

Liang & Leong, 1992; Bondadreantaso et al., 1995; see also Lio-Po & Lim, 2002). 

There are also studies on characterisation of biomaterial from monogeneans (e.g. Wong 

et al., 2006a; 2008), on relationships of monogeneans using molecular data (e.g. 

Mollaret et al., 2000a; Mollaret et al., 2000b; Mollaret et al., 1997; Jovelin & Justine, 

2001), geometric morphometrics of monogeneans (e.g. Vignon & Sasal, 2010; Vignon, 



 
 

2011) and describing new methods for the collection and preservation of monogeneans 

(e.g. Justine et al., 2012; Koskova et al., 2010; Wong et al., 2006b).  

 

1.3 Approaches in taxonomic investigations on monogeneans  

 The most extensive work done on monogeneans remains in the area of 

taxonomy. However, only 9% of the estimated numbers of monogeneans are known. A 

quick review of the current taxonomic literature within the last 20 years revealed that 

the approaches used in characterisation and classification of organisms includes 

observations of morphological and anatomical character, cytological investigation 

(karyotyping), biochemical determination (analysis of immunological data and 

isozymes and allozymes banding) and more recently the use of molecular data (RAPD, 

AFLP, RFLP and PFGE profiles, protein and DNA sequences) (see also Quicke, 1993). 

Of these, morphological and anatomical characters are most commonly used in species 

identifications.  

 

This is also true for the monogeneans, where the characterisation and 

classification of monogeneans are mainly done by using morphological characters 

obtained from light microscopy (e.g. Bychcowsky, 1957; Yamaguti, 1965; 1966; Gusev, 

1985; Lim & Furtado, 1984, 1986a, 1986b, Lim, 1987; 1991; 1992; 1994; 1996; 2002; 

2003; 2006) with occasional information from SEM (e.g. Malmberg & Fernholm, 1991; 

Antonelli et al., 2010; Hodova et al., 2010; Williams & McKenzie, 1995; Shinn et al., 

1993; Wong et al., 2006a; Wong et al., 2008), TEM (e.g. Arafa, 2011; Wong et al., 

2006a; Wong et al., 2008; Shinn et al., 2003; Harris et al., 1997) and confocal scanning 

laser microscopy (e.g. Arafa et al., 2007; Zurawski et al., 2003; Cable et al., 1996).  



 
 

Although morphological characters are most commonly used, ontogenic characters (e.g. 

Llewellyn, 1963; Lambert, 1980; Malmberg, 1990), spermatozoon ultrastructure and 

spermiogenesis (e.g. Justine, 1992; Justine et al., 1993; Fournier & Justine, 1994; 

Mollaret et al., 1998; Quilichini et al., 2009), distribution pattern in/on host, host 

specificity, pathogenicity (e.g. Jorgensen et al., 2007; Simkova et al., 2006a; Sterud et 

al., 2002; Simkova et al., 2001a; Simkova et al., 2001b; Lim, 1987a) have also been 

used.  

 

More recently there are increasing number of DNA sequences from monogenean 

being uploaded into the GenBank and currently there are approximately 3236 sequences 

on monogeneans in the GenBank (from year 1991 to May 2012) (see later; Section 

1.3.2). Essentially there is thus a need to re-examine the use of morphologies and 

examine the use of molecular data in determining species validity and relationships (in 

particular phylogenetic relationships) based on reconstructed relationships trees.  

 

1.3.1 Morphological characters 

The most commonly used diagnostic characters in taxonomy is morphology and 

species have been described almost exclusively on these visually observable 

morphological features as noted in a quick search done on publications in systematic 

journal such as Systematic Parasitology (Lim, pers. com.). This use of morphological 

characters has resulted in the ‘splitters’ who use even the slightest differences in 

morphological characters to ‘create’ new species and at the other end of the spectrum 

are the ‘lumpers’ who lumps even remotely similar species some with good diagnostic 

characters as one species. The use of morphological characters seems to depend on the 



 
 

researchers, creating subjectivity in this important field of taxonomy that very much 

needs objectivity. To overcome issues based on too much reliance on morphologies 

such as divergence and convergence (Mayr & Ashlock, 1991), researchers have 

included information from developmental biology, physiology, biochemistry and lately 

molecular biology to augment, confirm or refute interpretations based on morphological 

features (Cavalier-Smith, 1998). One good example is the relationships of monogeneans 

which have shifted from being a subclass within Trematoda (together with Digenea), to 

a class of its own but closely allied to the Trematoda in the 1960s and finally based on 

developmental biology the Monogenea become associated as a sister group with the 

Cestoda under the Cercomeromorpha based on having larvae with hooks (see Section 

1.1).   

 

The validity and the reliability of morphologies as diagnostic features is an on-

going debate. Problems related to the use of morphological characters become 

especially crucial in the use of morphological characters in tracking evolutionary history 

(see Gusev, 1978; Kritsky & Boeger, 1989) prior to the advent of PCR and also in use 

even now (Domingues & Boeger, 2008). Taxonomists are looking for ways to ensure 

that morphological characters are used objectively (Soo & Lim, 2012; Tan et al., 2010; 

Dmitrieva et al., 2007; Rubtsova et al., 2007; Sarabeev & Balbuena, 2004).  

 

Questions related to the use of morphologies include: Are the morphological 

characters species-specific, generic-specific and family-specific diagnostic characters or 

are they just intraspecific differences?  Related to this is the question of whether similar 

morphologies are due to convergence in evolution or as a result of common descent? 



 
 

And also whether differences in morphological features are caused by divergence and 

adaptation to environmental factors rather than a result of gene differences? 

 

Metric data are always given in descriptions of new species and the general 

practice is to provide average (min-max range) of metric data.  However these data are 

usually not analysed resulting in a loss of information. Lim (1987a) noticed wide ranges 

in metric data in species descriptions whether many or few specimens are measured, 

raising question on the significance of these wide metric ranges and also whether the 

observed variations are intraspecific or interspecific variations. Lim (1987a) noted the 

presence of morphovariants amongst the dactylogyrids. In fact morphological variations 

within a species have resulted in the interpretation of the same species as different (see 

Lim, 1987a). If they are intraspecific variants, how common are such variants within a 

community? Are they simple continuum of metric variations or are they well defined 

variants? What are the implications of the presence of these variants in terms of 

evolution? These morphovariants usually give taxonomists a big headache deciding 

whether such species are different. Is there a reliable way to determine whether the 

observed variations amongst morphologically similar co-existing congeners are 

intraspecies variations or interspecies variations?  

 

Since the use of morphological characters in taxonomy have raised the question 

of subjectivity and information from morphological characteristics such as in the form 

of morphometric measurements which usually consist of data sets with multiple 

variables, an objective method is very much needed to analyse such information. 

Principal Component Analysis (PCA) can be used in attempts to remove subjectivity in 

the use of morphological characters in taxonomy and solve the problems of analyzing 



 
 

multivariate data sets as it can extract significant information and identify patterns from 

data sets with multiple dimensions (multiple variables) by highlighting their similarities 

and dissimilarities (Jolliffe, 2002). PCA is also one of the most widely employed and 

useful tools in the field of exploratory analysis.  

Since patterns in data such as multivariate morphometric data sets can be hard to 

find, PCA is a powerful tool for detecting these patterns in such data by reducing the 

number of dimensions without much loss of information. Thus, PCA method is suitable 

to be used to provide the objectivity which is especially necessary in the cases to 

analyse monogenean species with very similar morphologies. In fact, PCA have been 

used to lend some objectivity in discriminating morphologically similar species (e.g. 

Sarabeev & Balbuena, 2004; Rubtsova et al., 2006; Dmitrieva et al., 2007; Rubtsova et 

al., 2007) as well as to detect morphovariants within species (e.g. Mariniello et al., 

2004; Tan et al., 2010; Poisot & Desdevises, 2010). However there are still limitations 

in the published data (cf Tan et al., 2010; Marinello et al., 2004) of this type of PCA 

analysis where there is a need to measure a large number of specimens so that 

conclusions can be valid. Prior to this study, the number of specimens used to represent 

one species are variable and can be as low as only 5 specimens (see Marinello et al., 

2004). 

 

1.3.2 Molecular characters  

The issues caused by morphologies (Section 1.3.1) have resulted in a shift to the 

use of molecular data (DNA sequences). For studies related to monogenean, molecular 

data in the form of DNA sequences are most commonly used for inferring relationships 

(Mollaret et al., 1997; Justine et al., 2002; Jovelin & Justine, 2001; Mollaret et al., 

2000a; Mollaret et al., 2000b; Verneau et al., 2002; Olson & Littlewood, 2002; 

Sinnappah et al., 2001; Whittington et al., 2004; Šimková et al., 2003; Šimková et al., 



 
 

2004; Plaisance et al., 2005; Šimková et al., 2006b; Wu et al., 2006; Wu et al., 2007a; 

2007b; Wu et al., 2008; Mendlova et al., 2010; Mendlova et al., 2012; Tan et al., 2011) 

and differentiating species with high degree of morphological similarities or cryptic 

species (Desdevises et al., 2000; Glennon et al., 2008; Hansen et al., 2003; Huyse & 

Volckaert, 2002; Kuusela et al., 2008; Wu et al., 2005).   

 

Molecular data in inferring relationship 

Molecular data are used in greater frequencies but mainly in reconstructing the 

relationships of monogeneans (Table 1.1). Is the information derived from molecular 

data such as DNA sequences which have been widely used to determine relationships at 

higher taxonomic levels be able to help us understand and resolve relationships in 

different group of monogeneans? In order to answer this question, DNA sequences from 

dactylogyridean monogeneans (see later; Sections 1.4 & 1.5) obtained in the duration of 

this study and DNA sequences deposited in the GenBank will be analysed to determine 

relationships of monogeneans within the Dactylogyridea (see Materials & Methods; 

Chapter 2). 

 

Molecular data for species differentiation 

As already noted molecular data have been used to differentiate species with 

high degree of morphological similarities. Besides using DNA sequences to infer 

relationships, this study also examine whether the DNA data can offer more information 

concerning the species. For example can the DNA data such as 28S rDNA be used to 

assist in differentiating morphologically closely related species? In other words can 

molecular biology be used to assist in decision making whether the morphologically 



 
 

similar species are the same or different species? This is based on the premise that 28S 

rDNA sequences are basically highly conserve then it will suggest that members of the 

same species will have 100% similar 28S rDNA even if variations are present. In the 

course of this study an opportunity arose which enables this assumption to be put to the 

test (see Chapter 6) (also Lim, Tan & Gibson, 2010 & Appendix E).  

 

However, to date the use of molecular data for species characterisation is 

hampered by the current lack of enough monogeneans with enough DNA sequences. 

Currently there are only approximately 3,236 DNA sequences  on 819 monogenean 

species available in the GenBank compared to the estimated number of over 2,200 

known monogenean species and the global estimated total number of 104,127 

monogenean species (see Section 1.2; Lim, pers. com.; unpublished data). Furthermore 

the sequences known for monogeneans are usually short and limited to the partial 

conserve regions such as the 28S rDNA (most available data), 18S rDNA, internal 

transcribed spacers (ITS) regions, Cytochrome b and Cytochrome Oxidase I (COI) 

(Table 1.2) (see also GenBank). This give rise to controversial interpretations based on 

DNA sequences used are usually representing only a partial portion of a single gene 

present in the organism studied. By examining these partial gene sequences, one is 

therefore looking at a very small portion of the information that goes into making an 

organism what it is (Unnasch & Zimmerman, 1995).  

 

 

 

 



Table 1.1 Previous studies on the relationships of monogeneans at different taxonomic levels based on molecular data 

Title & Authority Type of 
molecular 
data used 

Groups studied and species used Overall conclusions 

Phylogenetic analysis of 
the Monogenea and their 
relationships with 
Digenea and Eucestoda 
inferred from 28S rDNA 
sequences (Mollaret et 
al., 1997) 

 

partial 28S 
rDNA 

Groups studied: Monogenea: Monopisthocotylea: 1 Acleotrema sp., 1 
Tetrancistrum sp., 1 Haliotrema sp., 1 Troglocephalus sp., 1 Neoheterocotyle 
sp., 1 Merizocotyle sp., 1 Entobdella sp., 1 Benedenia sp., 1 Encotyllabe sp.; 
Polyopisthocotylea: 1 Zeuxaptera sp., 1 Gotocotyla sp., 1 Pricea sp.; 
Digenea: 1 Schistosoma sp., 1 Heterobilharzia sp., 1 Echinostoma sp., 1 
Lepidapedon sp.; Eucestoda: 1 Hymenolepis sp., 1 Proteocephalus sp., 1 
Caryophyllaeus sp. 

Outgroup: Tricladida: 1 Polycelis sp., 1 Bipalium sp. 

- the Digenea and not the Monogenea 
(Monopisthocotylea & Polyopisthocotylea) 
form the sister group of the cestodes 

- the Monopisthocotylea & Polyopisthocotylea 
are each monophyletic but the Monogenea do 
not form a monophylum 

- the sister group of the Digenea + Cestoda is 
the Polyopisthocotylea & Monopisthocotylea 
are the sister group of all other parasitic 
flatworm 

Phylogenetic position of 
the monogeneans 
Sundanonchus, 
Thaparocleidus and 
Cichlidogyrus inferred 
from 28S rDNA 
sequences (Mollaret et 
al., 2000b) 

 

 

 

 

partial 28S 
rDNA 

Groups studied: 1 Sundanonchus sp., 1 Thaparocleidus sp., 1 Cichlidogyrus 
sp. 

Other species used: Ancyrocephalidae: 1 Tetrancistrum sp., 1 Ligophorus 
sp., 1 Haliotrema sp.; Diplectanidae: 1 Furnestinia sp., 1 Acleotrema sp. 

Outgroups: Capsalidae: 1 Trochopus sp., 1 Encotyllabe sp., 1 Benedenia sp., 
1 Capsala sp., 1 Tristoma sp., 1 Entobdella sp.; Monocotylidae: 1 
Troglocephalus sp., 1 Neoheterocotyle sp., 1 Calicotyle sp., 1 Merizocotyle 
sp.; Udonellidae: 1 Udonella sp. 

 

 

 

- Diplectanidae were the sister-group to a 
clade including Sundanonchus and the 
Ancyrocephalinae 

- Sundanonchus was the sister-group to the 
Ancyrocephalidae suggesting the validity of 
Sundanonchidae 



 
 

Phylogeny of the 
Monopisthocotylea and 
Polyopisthocotylea 
(Platyhelminthes) 
inferred from 28S rDNA 
sequences (Mollaret et 
al., 2000a) 

 

partial 28S 
rDNA 

Groups studied: Monopisthocotylea: Ancyrocephalidae (3 spp.), 
Diplectanidae (2 spp.), Capsalidae (6 spp.), Monocotylidae (4 spp.), 
Udonellidae (1 sp.); Polyopisthocotylea: Polystomatidae (6 spp.), 
Hexabothriidae (2 spp.), Mazocraeidae (2 spp.), Hexostomatidae (1 sp.), 
Plectanocotylidae (1 sp.), Diclidophoridae (3 spp.), Octomacridae (1 sp.), 
Gastrocotylidae (2 spp.), Neothoracocotylidae (1 sp.), Gotocotylidae (1 sp.), 
Microcotylidae (5 spp.), Heteraxinidae (1 sp.), Axinidae (1 sp.) 

Outgroups: Gyrocotylidea (1 sp.), Cestoda (2 spp.), Digenea (6 spp.), 
Aspidogastrea (2 spp.), Turbellaria (7 spp.), Catenulida (1 sp.) 

- Within Monopisthocotylea, 
Ancyrocephalidae, Diplectanidae, Capsalidae, 
Monocotylidae, Udonellidae are found to be 
monophyletic 

- Within Polyopisthocotylea, the 
polystomatids were the sister-group of all 
others; Hexobothrium was the most basal and 
the mazocraeids were the sister groups of all 
other studied polyopisthocotyleans 

A paedomorphic parasite 
associated with a 
neotenic amphibian host: 
phylogenetic evidence 
suggests a revised 
systematic position for 
Sphyranuridae within 
Anuran and turtle 
Polystomatoineans 
(Sinnappah et al., 2001) 

partial 18S 
rDNA 

Groups studied: Polystomatidae: 2 Polystoma spp., 1 Eupolystoma sp., 1 
Protopolystoma sp., 1 Pseudodiplorchis sp., 1 Polystomoides sp., 1 
Neopolystoma sp.; Sphyranuridae: 1 Sphyranura sp. 

Other species used: Diclidophoridae: 1 Diclidophora sp., 1 Choricotyle sp.;  

Microcotylidae: 1 Microcotyle sp. 

Outgroups: Bothriocephalidae: 2 Bothriocephalus spp.; 
Ancistrocephalidae: 1 Triaenophorus sp. 

- Polystomatoineans were shown to be 
monophyletic and consist of two clades, the 
amphibian monogeneans clade and the turtle 
polystomatids clade. 

- Polystomatoineans may have coevolved with 
amphibian hosts. 

- the genus Sphyranura initially assigned to 
the family Sphyranuridae is found nested 
within polystomatids, suggesting its 
systematic status must be revised. 

Phylogenetic 
relationships within the 
Polyopisthocotylean 
monogeneans 
(Platyhelminthes) 
inferred from partial 28S 
rDNA sequences (Jovelin 
& Justine, 2001) 

 

partial 28S 
rDNA 

Groups studied: Polyopisthocotylea: Chimaericolidae (1 sp.), 
Discocotylidae (1 sp.), Diplozoidae (1 sp.), Diclidophoridae (2 spp.), 
Gastrocotylidae (2 spp.), Gotocotylidae (1 sp.), Plectanocotylidae (3 spp.), 
Microcotylidae (5 spp.), Pyragraphoridae (1 sp.) 

Outgroups: Mazocraeidae (2 spp.), Polystomatidae (5 spp.) 

- the polytomy between Gastrocotylinea, 
Discocotylinea and Microcotylinea is partially 
resolved: Gastrocotylinea are the sister group 
of an unresolved group including the 
Microcotylinea, Discocotylinea and 
Plectanocotylidae. 

- Inclusion of Plectanocotylidae in the 
suborder Mazocraeinea is rejected. 

- Monophyly of Microcotylinea and 
Plectanocotylidae is confirmed but monophyly 



 
 

of Discocotylinea is questioned by the 
exclusion of Diplozoon. 

A view of early 
vertebrate evolution 
inferred from the 
phylogeny of polystome 
parasites (Monogenea: 
Polystomatidae) 
(Verneau et al., 2002) 

partial 18S 
rDNA 

Groups studied: Polystomatidae: 2 Eupolystoma spp., 9 Polystoma spp., 1 
Metapolystoma sp., 1 Sundapolystoma sp., 1 Neodiplorchis sp., 2 
Protopolystoma spp., 1 Pseudodiplorchis sp., 1 Sphyranura sp., 3 
Neopolystoma spp., 4 Polystomoides spp., 1 Concinnocotyla sp. 

Other species used: Microcotylidae: 1 Microcotyle sp.; Diclidophoridae: 1 
Diclidophora sp., 1 Choricotyle sp. 

Outgroup: Cestoda: 2 Bothriocephalus, 1 Triaenophorus sp. 

 

- the monophyly of the polystomatid lineages 
from chelonian and lissamphibian hosts 
indicate that polystomatids from turtles are 
switched from an aquatic amniote 

- within polystomatids from lissamphibians, 
polytomy is observed for caudatan, 
neobatrachian, pelobatid and pipid 
polystomatid lineages 

- this suggest the first polystomatids of 
amphibians originated during the evolution 
and diversification of lissamphibian orders 
and suborders 

Phylogenetics of the 
Monogenea – evidence 
from a medley of 
molecules (Olson & 
Littlewood, 2002) 

 

 

 

 

 

 

partial 28S 
rDNA, 
partial 18S 
rDNA  

Groups studied: 27 families of Monogenea: Chimaericolidea: 
Chimaericolidae (1 sp.); Diclybothriidea: Hexabothriidae (2 spp.); 
Mazocraeidea: Discocotylinea: Discocotylidae (1 sp.); Diplozoidae (2 spp.); 
Octomacridae (1 sp.); Gastrocotylinea: Allodiscocotylidae (1 sp.); 
Gastrocotylidae (2 spp.); Gotocotylidae (4 spp.); Neothoracocotylidae (3 
spp.); Protomicrocotylidae (1 sp.); Hexostomatinea: Hexostomatidae (1 sp.); 
Mazocraeinea: Mazocraeidae (2 spp.); Plectanocotylidae (3 spp.); 
Microcotylinea: Diclidophoridae (6 spp.); Heteraxinidae (3 spp.); 
Microcotylidae (10 spp.); Pyragraphoridae (1 sp.); Polystomatidea: 
Polystomatidae (7 spp.); Capsalidea: Capsalidae (11 spp.); Dactylogyridea: 
Dactylogyrinea: Dactylogyridae (7 spp.); Diplectanidae (2 spp.); 
Pseudomurraytrematidae (1 sp.); Tetraonchinea: Sundanonchidae (1 sp.); 
Gyrodactylinea: Gyrodactylidae (1 sp.); Anoplodiscidae (1 sp.); Udonellidae 
(1 sp.); Monocotylidea: Monocotylidae (33 spp.) Outgroups: Cestoda: 
Gyrocotylidea: Gyrocotylidae (2 spp.); Eucestoda: Lytocestidae (1 sp.); 
Echinobothriidae (1 sp.); Haplobothriidae (1 sp.); Diphyllobothriidae (1 sp.); 
Spathebothriidae (1 sp.); Eutetrarhynchidae (1 sp.); Tentacularidae (1 sp.) 

- Maximum parsimonyand minimum 
evolution trees were rooted against sequences 
from the Cestoda, forcing the Monogenea to 
appear monophyletic 

- The Polyonchoinea showed greatest 
resolution with a general pattern of 
((Monocotylidae(Capsalidae(Udonellidae + 
Gyrodactylidea)))((Anoplodiscidae+Sundanon
chidae)(Pseudomurraytrematidae 1 
Dactylogyridae))) 

- The Heteronchoinea readily split into the 
Polystomatoinea + Oligonchoinea, and 
Chimaericolidae & Hexabothriidae were 
successively the most basal of oligonchoinean 
taxa 



 
 

Phylogenetic positions of 
the Bothitrematidae and 
Neocalceostomatidae 
(Monopisthocotylean 
Monogeneans) inferred 
from 28S rDNA 
sequences (Justine et al., 
2002) 

 

partial 28S 
rDNA 

Groups studied: Bothitrematidae: 1 Bothitrema spp.; 
Neocalceostomatidae: 1 Neocalceostoma sp. 

Other species used: Ancyrocephalidae: 1 Tetrancistrum sp., 1 Haliotrema 
sp., 1 Ligophorus sp., 1 Thaparocleidus sp., 1 Cichlidogyrus sp., 1 
Pseudohaliotrema sp., 1 Bravohollisia sp.; Pseudodactylogyridae: 1 
Pseudodactylogyrus sp.; Anoplodiscidae: 1 Anoplodiscus sp.; 
Sundanonchidae: 1 Sundanonchus sp. 

Outgroup: Diplectanidae: 1 Acleotrema sp., 1 Furnestinia sp. 

- Bothitrema, Anoplodiscus and Sundanonchus 
formed a very robust clade that was the sister 
group to a group that included all other 
species examined 

- Molecular results that suggest inclusion of 
the families Bothitrematidae, 
Anoplodiscoididae and Sundanonchidae in the 
same group partially contradict a previous 
morphological analysis of Boeger & Kritsky 
in which the first 2 were placed in the 
Gyrodactylidea and the third in the 
Dactylogyridea. 

Phylogenetic 
relationships of the 
Dactylogyridae 
Bychowsky, 1933 
(Monogenea: 
Dactylogyridea): the need 
for the systematic 
revision of the 
Ancyrocephalinae 
Bychowsky, 1937 
(Simkova et al., 2003) 

 

 

 

 

partial 18S 
rDNA 

Groups studied: Ancyrocephalinae: 1 Thylacicleidus sp., 1 
Pseudohaliotrema sp., 1 Cleidodiscus sp., 1 Ancyrocephalus sp., 1 Urocleidus 
sp.; Dactylogyrinae: 2 Dactylogyrus spp.; Ancylodiscoidinae: 2 
Thaparocleidus spp.; Pseudodactylogyrinae: 3 Pseudodactylogyrus spp., 1 
Pseudodactylogyroides sp.; Pseudomurraytrematidae: 1 
Pseudomurraytrema sp.; Diplectanidae: 1 Diplectanum sp., 2 Lamellodiscus 
spp., 1 Furnestinia sp. 

Other species used: Tetraonchinea: 1 Tetraonchus sp., 1 Sundanonchus sp., 
1 Anoplodiscus sp. 

Outgroups: Monocotylidea: 1 Calicotyle sp., 1 Leptocotyle sp., 1 
Dictyocotyle sp., 1 Troglocephalus sp.; Capsalidea: 1 Capsala sp., 1 
Encotyllabe sp., 1 Benedenia sp.; Gyrodactylidea: 1 Gyrodactylus sp., 1 
Udonella sp.; Trematoda: 1 Fasciola sp.; Tricladida: 1 Girardia sp. 

 

 

- relationships of Diplectanidae and 
Dactylogyridae with Pseudomurraytrematidae 
are not resolved 

- relationships between the 
Pseudodactylogyrinae, Ancyrocephalinae, 
Ancylodiscoidinae & Dactylogyrinae indicate 
paraphyly of the Ancyrocephalidae sensu 
Bychowsky & Nagibina (1978) 

- the non-monophyly of the 
Ancyrocephalinae, previously suggested by 
Kritsky & Boeger (1989) using morphological 
characters, indicates that classification of the 
Dactylogyridae needs to be revised 



 
 

 

Molecular phylogenetic 
analysis of the genus 
Gyrodactylus 
(Platyhelminthes: 
Monogenea) inferred 
from rDNA ITS region: 
subgenera versus species 
groups (Matejusova et 
al., 2003) 

 

partial 18S 
rDNA, ITS 
region 

Groups studied: 37 Gyrodactylus spp., 1 Gyrdicotylus sp., 1 
Macrogyrodactylus sp., 1 Gyrodactyloides sp. 

Other species used: 1 Udonella sp., 1 Encotyllabe sp., 1 Benedenia sp., 1 
Capsala sp., 1 Dictyocotyle sp., 1 Calicotyle sp., 1 Leptocotyle sp., 1 
Troglocephalus sp., 1 Pseudohaliotrema sp., 1 Pseudodactylogyrus sp., 1 
Pseudomurraytrema sp. 

Outgroup: 1 Sundanonchus sp., 1 Anoplodiscus sp. 

- The genus Gyrodactylus appeared to be a 
monophyletic group and Within the genus, 
there were 3 major groups recognized 

- None of the 6 subgenera appeared to be 
monophyletic, and the most basal subgenus 
G.(Gyrodactylus) was paraphyletic 

- The grouping of species based on the 
morphology of the ventral bar and marginal 
hooks seems to have sufficient power to infer 
relationships between the Gyrodactylus 
species 

A preliminary 
phylogenetic analysis of 
the Capsalidae 
(Platyhelminthes: 
Monogenea: 
Monopisthocotylea) 
inferred from large 
subunit rDNA sequences 
(Whittington et al., 2004) 

partial 28S 
rDNA 

Groups studied: Capsalidae: Benedeniinae: 4 Benedenia spp., 2 
Neobenedenia spp.; Encotyllabinae: 2 Encotyllabe spp.; Trochopodinae: 1 
Trochopus sp.; Entobdellinae: 5 Entobdella spp.; Capsalinae: 2 Capsala 
spp., 1 Tristoma sp. 

Outgroups: Monocotylidae: 1 Dendromonocotyle sp., 1 Calicotyle sp.; 
Udonellidae: 1 Udonella sp. 

 

- Capsalinae, Encotyllabinae, Entobdellinae 
and Trochopodinae are monophyletic but 
Benedeniinae is paraphyletic. 

- Neobenedenia, currently in the 
Benedeniinae, should perhaps be placed in a 
separate subfamily. 

Molecular phylogeny of 
congeneric monogenean 
parasites (Dactylogyrus): 
a case of intrahost 
speciation (Simkova et 
al., 2004) 

partial 18S 
rDNA & 
ITS1 

Groups studied: Dactylogyridae: 51 Dactylogyrus spp.  

Other species used: Pseudodactylogyrinae: 2 Pseudodactylogyrus spp., 1 
Pseudodactylogyroides sp.; Ancyrocephalinae: 1 Thylocicleidus sp., 1 
Pseudohaliotrema sp. 

 Outgroup: Ancylodiscoidinae: 1 Thaparocleidus sp.; Ancyrocephalinae: 1 
Cleidodiscus sp. 

- 3 main Dactylogyrus lineages were 
recognized, i.e. Dactylogyrus of Cyprininae, 
Dactylogyrus of Gobioninae, Rasborinae, 
Cyprininae and Dactylogyrus of Leuciscinae, 
Alburninae and Cyprininae 

- Cyprininae could be the plesiomorphic hosts 
for Dactylogyrus. 



 
 

 - Dactylogyrus diversification can be mainly 
explained by sympatric intrahost speciation. 

Phylogenetic position of 
the monogeneans 
Pseudodactylogyrus, 
Heteronchocleidus & 
Trianchoratus inferred 
from the 5’ terminal 
sequences of 28S rDNA 
(Ding & Liao, 2005) 

 

partial 28S 
rDNA 

Groups studied: 1 Pseudodactylogyrus sp., 1 Heteronchocleidus sp., 1 
Trianchoratus sp. 

Other species used: 1 Onchocleidus sp., 1 Quadriacanthus sp., 1 
Thaparocleidus sp., 1 Haliotrema sp., 1 Ancyrocephalus sp., 1 
Pseudohaliotrema sp., 1 Tetrancistrum sp., 4 Dactylogyrus spp., 1 
Pseudodactylogyroides sp. 

- the Heteronchocleidus and Trianchoratus are 
sister groups 

- the genera Heteronchocleidus, 
Trianchoratus, Ancyrocephalus & 
Pseudodactylogyrus display a close 
relationship 

- the Heteronchocleidus, Trianchoratus & 
Pseudodactylogyrus should belong to the 
Ancyrocephalidae 

A molecular phylogeny 
of the Dactylogyridae 
sensu Kritsky & Boeger 
(1989) (Monogenea) 
based on the D1-D3 
domains of large subunit 
rDNA (Simkova et al., 
2006b) 

 

 

 

 

 

 

partial 28S 
rDNA 

Groups studied: Ancyrocephalinae: 1 Pseudohaliotrema sp., 1 
Tetrancistrum sp., 3 Haliotrema spp., 1 Euryhaliotrema sp., 7 
Euryhaliotrematoides spp., 1 Aliatrema sp., 1 Urocleidus sp., 1 Cleidodiscus 
sp., 1 Actinocleidus sp., 1 Ancyrocephalus sp.; Pseudodactylogyrinae: 2 
Pseudodactylogyrus spp.; Dactylogyrinae: 9 Dactylogyrus spp.; 
Pseudomurraytrematidae: 1 Pseudomurraytrema sp. 

Other species used: Tetraonchinea: 1 Anoplodiscus sp., 1 Tetraonchus sp. 

Outgroup: Monocotylidea: 1 Dendromonocotyle sp., 1 Clemacotyle sp., 1 
Decacotyle sp., 1 Troglocephalus sp., 1 Dictyocotyle sp., 1 Calicotyle sp., 1 
Merizocotyle sp., 1 Empruthotrema sp. 

- Dactylogyridae sensu Kritsky & Boeger 
(1989) is monophyletic  

- Ancyrocephalidae & Ancyrocephalinae are 
polyphyletic 

- Freshwater species of Ancyrocephalinae & 
Ancylodiscoidinae were positioned at the base 
of Dactylogyridae 

- Dactylogyrinae formed a monophyletic 
group, sister to a clade including the 
Pseudodactylogyrinae and the tropical and 
subtropical Ancyrocephalinae 



 
 

The radiation of 
Haliotrema (Monogenea: 
Dactylogyridae: 
Ancyrocephalinae): 
molecular evidence and 
explanation inferred from 
LSU rDNA sequences 
(Wu et al., 2006) 

 

partial 28S 
rDNA 

Groups studied: 9 Haliotrema spp. 

Other species used: Dactylogyridae: 1 Euryhaliotrema sp., 1 Ligophorus 
sp., 2 Metahaliotrema spp., 1 Scutogyrus sp., 1 Bravohollisia sp., 1 
Cichlidogyrus sp., 1 Ancyrocephalus sp., 4 Protogyrodactylus spp., 1 
Pseudodactylogyrus sp.; Ancylodiscoididae: 4 Thaparocleidus spp. 

Outgroup: Diplectanidae: 1 Murraytrema sp., 1 Sinodiplectanotrema sp., 2 
Pseudorhabdosynochus spp., 2 Diplectanum spp. 

- Haliotrema is non-monophyly where 9 
Haliotrema spp. were dispersed to form 4 
clades with species from other genera 

-3 major groups were defined to explain the 
radiation of Haliotrema spp. 

- propose to transfer H. spirotubiforum & 
Haliotrema sp. ZHDDb to Euryhaliotrema as 
new combination based on molecular results 
& morphology of male copulatory organ 
(MCO) 

- propose to erect a new genus to 
accommodate the Haliotrema spp. with horn-
liked shaped MCO. 

The radiation of 
Thaparocleidus 
(Monogenoidea: 
Dactylogyridae: 
Ancylodiscoidinae): 
phylogenetic analyses 
and taxonomic 
implications inferred 
from ribosomal DNA 
sequences (Wu et al., 
2008) 

 

 

 

partial 28S 
rDNA 

Groups studied: 14 Thaparocleidus spp.  

Other species used: Ancylodiscoididae: 1 Bychowskyella sp., 3 
Pseudancylodiscoides spp., 1 Quadriacanthus sp. 

Outgroup: Diplectanidae: 2 Diplectanum spp., 2 Pseudorhabdosynochus 
spp. 

- Thaparocleidus is not a monophyletic group 

- 3 clades can be observed for Thaparocleidus 
spp. from Silurus astus, which is consistent 
with results of previous morphological 
analyses 

- Pseudancylodiscoides spp. were more 
closely related to Thaparocleidus spp. from S. 
astus  

- propose to erect a new genus to 
accommodate Thaparocleidus from S. astus 
and Pseudancylodiscoides 



 
 

 

The evaluation for 
generic-level monophyly 
of Ancyrocephalinae 
(Monogenea, 
Dactylogyridae) using 
ribosomal DNA sequence 
data (Wu et al., 2007a) 

 

partial 28S 
rDNA, 
partial 18S 
rDNA,  

ITS1 

Groups studied: Ancyrocephalinae: 1 Aliatrema sp., 5 Bravohollisia spp., 1 
Caballeria sp., 19 Cichlidogyrus spp., 2 Euryhaliotrema spp., 8 
Euryhaliotrematoides spp., 18 Haliotrema spp., 2 Ligophorus spp., 2 
Metahaliotrema spp., 4 Protogyrodactylus spp., 4 Scutogyrus spp. 

Outgroup: Ancylodiscoidinae: 6 Thaparocleidus spp. 

- 18 Haliotrema spp. were highly dispersive to 
form several clades 

- based on molecular evidence & MCO 
characters, it is proposed to transfer H. 
kurodai, H. spirotubiforum, H. anguiformis to 
the Aliatrema as new combinations and to 
combine Bravohollisia & Caballeria into one 
genus  

- Scutogyrus is polyphyletic and its status 
should be questioned 

- the vagina characters make little contribution 
for understanding the generic-level 
monophyly but useful for species 
determination 

- since phylogenetically closely related species 
from the same or closely related host species 
may have similar MCO characters but distinct 
haptoral characters, it is dangerous to erect a 
genus mainly based on different haptoral 
characters 

A preliminary 
phylogenetic analysis of 
the Diplectanidae inferred 
from the C1-D2 domains 
of 28S rDNA sequences 
(Wu et al., 2007b) 

 

partial 28S 
rDNA 

Groups studied: Diplectanidae: 1 Acleotrema sp., 3 Calydiscoides spp., 7 
Diplectanum spp., 2 Lamellodiscus spp., 1 Lepidotrema sp., 1 Lobotrema sp., 
5 Pseudorhabdosynochus spp. 

Other species used: 1 Euryhaliotrema sp., 2 Haliotrema spp., 2 
Sinodiplectanotrema spp., 1 Pseudomurraytrema sp. 

Outgroup: Monocotylidae: 1 Calicotyle sp., 1 Clemacotyle sp., 1 Decacotyle 
sp., 1 Dendromonocotyle sp., 1 Dictyocotyle sp. 

- Sinodiplectanotrema should be transferred 
from the Ancyrocephalidae to Diplectanidae 
as new combination of the subfamily 
Murraytrematoidinae 

- Murraytrematoidinae is not monophyletic 
and should be abolished, Lobotrema and 
Murraytrema from the Murraytrematoidinae 
should be transferred to Diplectaninae 

- the monophyly of the new combined 
subfamily Diplectaninae sensu Domingues, 



 
 

2004 could not be confirmed but monophyly 
of Lamellodiscinae was confirmed 

Looks can deceive: 
Molecular phylogeny of a 
family of flatworm 
ectoparasites 
(Monogenea: Capsalidae) 
does not reflect current 
morphological 
classification (Perkins et 
al., 2009) 

 

partial 28S 
rDNA, 
Histone 3, 
Elongation 
Factor 1 α 

Groups studied: Capsalidae: 6 Benedenia spp., Dioncopseudobenedenia sp., 
Pseudonitzschia sp., Neobenedenia sp., Megalobenedenia sp., Encotyllabe sp., 
Interniloculus sp., Mediavagina sp., Allobenedenia sp., Capsala sp., Tristoma 
sp., Capsaloides sp., Nasicola sp., Nitzschia sp., Entobdella sp., 
Macrophyllida sp., Neoentobdella sp., Benedeniella sp., Listrocephalos sp. 

Other species used: Gyrodactylus sp., Udonella sp., Acanthocotyle sp., 
Asthenocotyle sp., Pseudoleptobothrium sp., Dermophthirius sp., Calicotyle 
sp., Dendromonocotyle sp., Microcotyloides sp. 

 

 

 

- the Capsalidae was monophyletic, forming 
sister group with Gyrodactylidae and 
Udonellidae  

- the Capsalinae was monophyletic, but not for 
the Benedeniinae, Entobdellinae and 
Trochopodinae 

- Monophyly was supported for Capsala, 
Entobdella, Listrocephalos, 

Neobenedenia and Tristoma, but Benedenia 
and Neoentobdella were polyphyletic 

Molecular phylogeny of 
monogeneans parasitizing 
African freshwater 
Cichlidae inferred from 
LSU rDNA sequences 
(Mendlova et al., 2010) 

partial 28S 
rDNA 

Groups studied: 13 Cichlidogyrus spp., 3 Enterogyrus spp., 2 Onchobdella 
spp. & 1 Scutogyrus sp. 

Other species used: Ancyrocephalidae: 1 Actinocleidus sp., 1 
Ancyrocephalus sp., 2 Bravohollisia spp., 1 Cleidodiscus sp., 2 
Euryhaliotrematoides spp., 1 Haliotrema sp., 1 Ligophorus sp., 1 Urocleidus 
sp.; Ancylodiscoididae: 3 Thaparocleidus spp.; Pseudodactylogyridae: 2 
Pseudodactylogyrus spp.; Protogyrodactylogyridae: 2 Protogyrodactylus 
spp.; Dactylogyridae: 4 Dactylogyrus spp. 

Outgroup: Tetraonchinea: 1 Tetraonchus sp.; 1 Anoplodiscus sp. 

- Both Enterogyrus and Onchobdella were 
found to be monophyletic 

- The phylogenetic position of Scutogyrus 
longicornis was placed within the 
Cichlidogyrus species, suggesting the non-
monophyly of Cichlidogyrus & therefore, 
taxonomical revision of the species recently 
considered to be Scutogyrus was proposed 

-  Cichlidogyrus, Enterogyrus, Onchobdella & 
Scutogyrus do not 

form a monophyletic group, Enterogyrus and 
Onchobdella form a clade with 
Protogyrodactylus, i.e., the parasite species 
does not live in cichlids, which suggests that 
endoparasitism in cichlid monogeneans is not 



 
 

an ancestral feature 

Relationships of the 
Heteronchocleidids 
(Heteronchocleidus, 
Eutrianchoratus & 
Trianchoratus) as 
inferred from ribosomal 
DNA nucleotide 
sequence data (Tan et al., 
2011) 

partial 28S 
rDNA 

Groups studied: 10 Trianchoratus spp., 2 Eutrianchoratus spp. & 1 
Heteronchocleidus sp. 

Other species used: Dactylogyridae: 5 Dactylogyrus spp., 1 Dactylogyroides 
sp.; Pseudodactylogyridae: 4 Pseudodactylogyrus spp.; Ancyrocephalidae: 
1 Ancyrocephalus sp.; Ancylodiscoididae: 4 Thaparocleidus spp., 1 
Quadriacanthus sp., 1 Bychowskyella sp., 1 Cornudiscoides sp. 

Outgroups: Diplectanidae: 3 Diplectanum spp.; Gyrodactylidae: 3 
Gyrodactylus spp. 

- members of Heteronchocleidus, 
Eutrianchoratus & Trianchoratus form a 
monophyletic clade and Heteronchocleidinae 
is raised to family status as 
Heteronchocleididae 

- there are 2 lineages, the Heteronchocleidus-
Eutrianchoratus clade with retention of bars 
& Trianchoratus clade with no bar 

- the ancestral heteronchocleidids could be 
present on both the ancestral forms of their 
fish hosts, anabantoids and channids, and 
subsequent speciation and extinction of some 
of the heteronchocleidids on different hosts 
gave rise to the present-day distribution 
patterns of the heteronchocleidids.  

 

 

 

 

 



Table 1.2 Different types and number of DNA sequences from monogeneans available 
in the GenBank 

Type of DNA sequences  
available in Genbank 

Number of sequences 
available 

Number of monogenean 
species from which 
sequences are obtained 

Partial 28S rDNA 558 415 

Partial 18S rDNA 334 241 

Internal Transcribed 
Spacer (ITS) regions 
(ITS1 and /or ITS2) 

439 125 

Cytochrome Oxidase I 
(COI) 

620 79 

Cytochrome b 135 8 

Others (different 
combination of partial 
18S, ITS1, ITS2 & 28S 
rDNA, complete 
mitochondrial genome, 
histone 3 gene, elongation 
factor 1 alpha gene, Hox4 
gene, NADH 
dehydrogenase subunit 4 
gene, etc.) 

1150 279 

 

 

 

 

 

 



 
 

1.4 Dactylogyridea Bychowsky, 1937 

Prior to identifying the research questions concerning the issues to be 

investigated and hypotheses to be tested (Section 1.5), a short account of the current 

taxonomic status of the focus group of this study, the order Dactylogyridea Bychowsky, 

1937 (Subclass Polyonchoinea) will be given below. The order Dactylogyridea is 

chosen as the focus of this study because this order is probably the most problematic 

since it is the most diverse order in Polyonchoinea and also harbours most of the 

smaller and smallest monogenean species. The order Dactylogyridea is also the most 

investigated monogenean groups especially in Malaysia. 

 

Taxonomic status of Dactylogyridea Bychowsky, 1937 

Dactylogyridea is the most diverse order within Polyonchoinea Bychowsky, 

1937 (Bychowsky, 1957). The status and relationships of the different families and 

subfamilies within the Dactylogyridea are still in constant debate (see Kritsky & 

Boeger, 1989; Lim, pers. com.; Lim et al., 2001). The number of families and 

subfamilies and their status and generic compositions within the Dactylogyridea vary 

according to researchers (e.g. Yamaguti, 1963; Lebedev, 1988; Bychowsky & Nagibina, 

1978; Gusev, 1978, 1985; Kritsky & Boeger, 1989; Boeger & Kritsky, 1993; Lim, 

1998; Lim et al., 2001). The family compositions in Dactylogyridea according to 

different authors are summarised in Table 1.3. 

 

 

 



 
 

Table 1.3 Classification of different families/subfamilies of Dactylogyridea Bychowsky, 
1937 according to different authors. 

Superfamily Dactylogyroidea Yamaguti, 1963 (sensu Yamaguti, 1963) 

                     Family Protogyrodactylidae Johnston & Tiegs, 1922 

                     Family Calceostomatidae Parona & Perugia, 1890 

                     Family Diplectanidae Bychowsky, 1957 

                     Family Bothitrematidae Bychowsky, 1957 

                     Family Dactylogyridae Bychowsky, 1933 

                                 Subfamily Dactylogyrinae Bychowsky, 1933 

                                 Subfamily Ancyrocephalinae Bychowsky, 1937 

                                 Subfamily Geneticoenterinae Yamaguti, 1963 

                                 Subfamily Linguadactylinae Bychowsky, 1957 

Superfamily Tetraoncoidea Yamaguti, 1963 

                     Family Tetraoncidae Bychowsky, 1957 

                     Family Tetraoncoididae Bychowsky, 1951 

 

Superorder Dactylogyria Lebedev, 1988 (sensu Lebedev, 1988) 

                   Order Dactylogyridea Bychowsky, 1937 

                             Suborder Dactylogyrinea Bychowsky, 1957 

                                             Family Dactylogyridae Bychowsky, 1933 

                                             Family Diplectanidae Bychowsky, 1957 

                                             Family Ancyrocephalidae Bychowsky, 1937 

                                             Family Neodactylodiscidae Kamegai, 1972 

                             Suborder Calceostomatinea Gusev, 1977 

                                             Family Calceostomatidae Parona & Perugia, 1890 

                    Order Tetraonchidea Bychowsky, 1957 

                                             Family Tetraonchidae Bychowsky, 1937 

                                             Family Amphibdellatidae Carus, 1885 

                                             Family Tetraonchoididae Bychowsky, 1951 

                                             Family Bothitrematidae Bychowsky, 1957 

 



 
 

Superoder Pedunculanchorea Malmberg, 1990 (sensu Malmberg, 1990) 

                  Family Pseudodactylogyridae Gusev, 1965 

                  Family Linguadactylidae Bychowsky, 1957 

                  Family Ancyrocephalidae Bychowsky, 1937 

                  Family Diplectanidae Bychowsky, 1957 

                  Family Dactylogyridae Bychowsky, 1933 

                  Family Amphibdellatidae Carus, 1885 

                  Family Tetraonchidae Monticelli, 1903 

Superorder Anchorea Malmberg, 1990 

                  Family Ooegyrodactylidae Harris, 1983 

                  Family Gyrodactylidae Cobbold, 1864 

                  Family Tetraonchoididae Bychowsky, 1951 

                  Family Bothitrematidae Bychowsky, 1957 

                  Family Sundanonchidae Malmberg, 1990 

 

Order Dactylogyridea Bychowsky, 1937 (sensu Kritsky & Boeger, 1989; Boeger & 
Kritsky, 1993, 1997) 

    Suborder Amphibdellatinea Boeger & Kritsky, 1993 

               Family Amphibdellatidae Carus, 1885 

    Suborder Tetraonchinea Bychowsky, 1937 

               Family Tetraonchidae Monticelli, 1903 

               Family Neotetraonchidae Bravo-Hollis, 1968 

    Suborder Dactylogyrinea Bychowsky, 1937 

               Family Dactylogyridae Bychowsky, 1933 

                     Subfamily Dactylogyrinae Bychowsky, 1933 

                    Subfamily Heterotesinae Euzet & Dossou, 1979 

                    Subfamily Ancyrocephalinae Bychowsky & Nagibina, 1978 

                    Subfamily Ancylodiscoidinae Gusev, 1961 

 

 



 
 

                    Subfamily Pseudodactylogyrinae Ogawa, 1986 

                    Subfamily Linguadactylinae Bychowsky, 1957 

                    Subfamily Linguadactyloidinae Thatcher & Kritsky, 1983 

                    Subfamily Hareocephalinae Young, 1968 

                    Subfamily Anacanthorinae Price, 1967 

               Family Diplectanidae Monticelli, 1903 

               Family Pseudomurraytrematidae Kritsky, Mizelle & Bilqees, 1978 

     Suborder Neodactylodiscinea Boeger & Kritsky, 1993 

               Family Neodactylodiscidae Kamegai, 1972 

     Suborder Calceostomatinea Gusev, 1977 

               Family Calceostomatidae Parona & Perugia, 1890 

 

Order Dactylogyridea Bychowsky, 1937 (sensu Lim, 1998; Lim, Timofeeva & 
Gibson, 2001) 

Suborder Dactylogyrinea Bychowsky, 1937 

          Family Ancyrocephalidae Bychowsky, 1937 

              Subfamily Ancyrocephalinae Bychowsky, 1957 

              Subfamily Heteronchoclidinae Price, 1968 

          Family Ancylodiscoididae Gusev, 1961 

          Family Dactylogyridae Bychowsky, 1933 

          Family Diplectanidae Monticelli, 1903 

          Family Neocalceostomatidae Lim, 1995 

          Family Pseudodactylogyridae Le Brun, Lambert & Justine, 1986 

Suborder Tetraonchoinea Bychowsky, 1937 

          Family Sundanonchidae Malmberg, 1990    

 

 



 
 

In 1957, Bychowsky included three families, Calceostomatidae, Diplectanidae 

and Dactylogyridae in suborder Dactylogyrinea Bychowsky, 1937 within the order 

Dactylogyridea Bychowsky, 1937, with three subfamilies (Linguadactylinae 

Bychowsky, 1957, Dactylogyrinae and Ancyrocephalinae Bychowsky, 1937) within the 

Dactylogyridae. Later, Ancylodiscoidinae Gusev, 1961, Heteronchocleidinae Price, 

1968 and Anacanthorinae Price, 1967 were included in Dactylogyridae by Gusev (1961) 

and Price (1968), respectively. In 1978, Bychowsky and Nagibina removed 

Ancyrocephalinae from Dactylogyridae and raised it to full family status and re-

assigned Ancylodiscoidinae, Linguadactylinae Bychowsky, 1957 and Hareocephalinae 

Young, 1968 which were originally grouped in the Dactylogyridae as subfamilies 

within Ancyrocephalidae. This move was also supported by Gusev (1978).  

 

In 1978, Kritsky, Mizelle & Bilqees assigned the subfamily 

Pseudomurraytrematinae into Dactylogyridae, which was later raised to family status by 

Beverley-Burton (1984). Thatcher & Kritsky (1983) erected Linguadactyloidinae 

Thatcher & Kritsky, 1983 as a subfamily within the Dactylogyridae to accommodate the 

new genus Linguadactyloides. Heterotesiidae Euzet & Dossou, 1979 was included in 

Dactylogyrinea by Euzet & Dossou (1979). Ogawa (1986) proposed 

Pseudodactylogyrinae with Pseudodactylogyrus Gusev, 1965 as type-genus in 

Dactylogyridae, which was raised to family Pseudodactylogyridae by Le Brun et al. 

(1986). By 1989, there are seven families in Dactylogyridea (i.e. Calceostomatidae, 

Diplectanidae, Dactylogyridae, Ancyrocephalidae, Pseudomurraytrematidae, 

Heterotesiidae and Pseudodactylogyridae).  

 



 
 

However, in 1989 Kritsky & Boeger proposed two options to resolve the 

paraphyly of Ancyrocephalidae based on cladistic analysis of morphological characters. 

One of their proposed options was to raise all the subfamilies of Ancyrocephalidae, viz., 

Linguadactyloidinae, Linguadactylinae, Hareocephalinae, Ancylodiscoidinae, 

Anacanthorinae (see revision by Bychowsky & Nagibina, 1978) to family status. 

However they opted for the option to reduce Ancyrocephalidae, Heterotesiidae and 

Pseudodactylogyridae to subfamily status and to include them (Ancyrocephalinae, 

Heterostesiidinae and Pseudodactylogyrinae) and 5 other subfamilies formerly listed 

within them (Linguadactylinae, Linguadactyloidinae, Hareocephalinae, 

Ancylodiscoidinae and Anacanthorinae) into Dactylogyridae including of course 

Dactylogyrinae. This option of theirs essentially revert the status of these monogeneans 

back to their status prior to the revision by Bychowsky & Nagibina in 1978 (see Kritsky 

& Boeger, 1989; Table 1.1). Therefore by 1989, the Dactylogyridea has four families 

viz. Dactylogyridae (with 9 subfamilies) (sensu Kritsky & Boeger, 1989), 

Calceostomatidae, Pseudomurraytrematidae and Diplectanidae (with 4 subfamilies) 

(sensu Oliver, 1987).  The proposal of Kritsky & Boeger (1989) (see also Boeger & 

Kritsky, 1993, 1997) found support in Šimková et al. (2003, 2006b) and Wu et al. 

(2007a). 

 

Lim (1998, pers. com.) and Lim et al. (2001) on the other hand, vehemently 

disagree with the inclusion of members of the Ancyrocephalidae into Dactylogyridae by 

Kritsky & Boeger (1989) and suggested Dactylogyridae and Ancyrocephalidae be left 

intact within the Dactylogyridea. Lim et al. (2001) suggested that more ‘weight’ should 

be given to the presence of four anchors and absence of “needle-like structure” in the 

members of the Ancyrocephalidae. Furthermore, Dactylogyridae (sensu Bychowsky & 

Nagibina, 1978) is typified by Dactylogyrus Diesing, 1850 with two anchors and two 



 
 

unique “needle-like structure” and should be exclusive to monogenean species with two 

anchors, two “needle-like” structures, 14 marginal hooks and one or two bars such as 

Dactylogyrus, Dogielus Bychowsky, 1936, Dactylogyroides Gusev, 1963, and 

Thaprogyrus Gusev, 1976 (Lim, pers. com.; unpublished data).  

 

In 1995 the family Neocalceostomatidae Lim, 1995 was included in 

Dactylogyridea, and in 2001, Lim, Timoofeeva & Gibson, raised Ancylodiscoidinae to 

family status within Dactylogyidea. By 2001 therefore the Dactylogyridea accepted by 

Lim (pers. com.) is as listed in Table 1.1 which is essentially that of Bychowsky & 

Nagibina (1978) with extra families of Ancylodiscoididae and Neocalceostomatidae 

Lim, 1995.  As a result of this present study (see Appendix B) Heteronchocleidinae has 

been raised to family status within the Dactylogyridea.  The status of the 

Dactylogyridae and Ancyrocephalidae is thus an issue in the study of monogeneans. 

 

1.5 Objectives and scope of study 

1.5.1 Objectives 

  The overall idea of this thesis is to examine the information obtainable from 

morphological and molecular characteristics of monogeneans in order to understand the 

morphological and molecular diversities at different levels of organismatic organisation 

from population to species. In order to do this it is necessary to obtain morphometric 

data from individuals from different groups of organisms and molecular data from 

different species and individuals.  

 



 
 

In this study, morphometric data from two types of species populations, 

different congeneric species from a group of related host species (Trianchoratus Price 

& Berry, 1966 from channid species) and a group of co-existing monogenean species 

(Caballeria Bychowsky & Nagibina, 1970 and Bravohollisia Bychowsky & Nagibina, 

1970) from Pomadasys hasta (Bloch) are collected and analysed in order to answer the 

aforementioned questions about whether the use of morphologies are reliable species 

diagnostic characters and how to distinguish intraspecies variations or interspecies 

differences (see Chapter 2; Materials & Methods). 

 

As already noted molecular characterisations have been used notably for 

determining relationships at higher taxonomic levels and the use of molecular data for 

species differentiations are limited mainly because such studies will warrant molecular 

data from different individuals of the same species. In this study, molecular data are 

used to examine relationships of the different monogenean species within the 

Dactylogyridea Bychowsky, 1957 (see Section 1.4) and an attempt to use molecular 

data to distinguish between two closely related species (see Chapter 6; Appendix E).  

1. In this study the following questions are examined: Amount of morphometric 

variations within and between different species and the factors influencing these 

variations. The existences of variations are noted in the wide ranges of 

measurements observed in taxonomic descriptions (see Section 1.3.1).  

(a) Can these variations be objectively differentiated statistically?  What do 

they indicate? How much variations exist between species and within 

species? In other words, how much differences must exist before 

morphovariants can be considered as different species? 



 
 

(b) Do intraspecific morphovariants have a specific distribution pattern? 

What are the possible factors influencing the occurrences and number of 

intraspecific variants? Do intraspecific morphovariants have a genetic 

basis?  

 

2. Currently most studies on the relationships of dactylogyrideans based on 

molecular data have limited number of DNA sequences (in the Genbank there 

are currently approximately 558 partial 28S rDNA sequences belonging to 

various species of monogeneans; see Table 1.2). This study attempts to use as 

many DNA sequences as possible. Previously the main limiting factor was the 

computational time taken to build and generate the relationships trees. We were 

able to purchase and use the Linux version of PAUP*4.0b10 (Swofford, 2002) in 

HPC (high performance computer) which have shortened the computational 

time considerably (see Chapter 2; Materials & Methods). In this section the 

following questions are examined: 

(a) How the different members of the dactylogyrideans will be grouped 

based on molecular data (28S rDNA)? What are the relationships of 

dactylogyrideans based on molecular data? Can relationships tree 

generated based on molecular data explain the evolutionary 

diversification of morphological characteristics among 

dactylogyrideans? 

  (b) Are there any correlation between the dactylogyrideans and their fish 

hosts based on molecular information? If correlations exist what is the 

basis for the correlations? Will such data reveal how monogeneans are 

acquired – through inheritance or host transfer? 



 
 

 

1.5.2 Scope and delimitation of study 

This study is delimited to the Dactylogyridea (Section 1.4). As already noted 

this Order of monogenean is probably the largest group comprising of monogeneans 

with 2 to 4 anchors, 14-16 marginal hooks and 0-2 bars (which if present can be single 

bar or separate ‘segmented’ bar) (Lim, pers. com.). This delimitation is partly due to the 

need to optimize the techniques for molecular biology and also time spent is needed for 

the collection of fresh materials, morphometric data and molecular data (see Chapter 2; 

Materials & Methods).  This study has been limited by the number of DNA sequences 

to 28S rDNA mainly because the need to use external sequences from the Genbank 

meaning that only the most available sequences from the Genbank for monogenean, 

which is the 28S rDNA will be used.  

 

 

 

 

 

 

 

 

 

 



 
 

CHAPTER 2 

 

MATERIALS AND METHODS 

 

2.1 Introduction 

This chapter provides the methodology used to accomplish the objectives of this study 

which is primarily to investigate the morphometric and molecular characterisations of 

monogenean species. The sites and methods of fish collection, the methods used for the 

collection and preparation of monogeneans for morphological and molecular studies as well as 

the methods used to analyse morphological and molecular data are given in this chapter. 

 

2.2 Collection of fish hosts 

 Fish hosts were collected from different localities in Peninsular Malaysia from 

freshwater and marine habitats such as riverine system, freshwater lake/reservoir, inshore 

coastal area, brackish mangrove area, offshore islands and aquaculture farm (Table 2.1). 

 

2.2.1 Fish collection sites 

a) Freshwater systems   

i) Selai River (Endau-Rompin) (2o 21’ N; 103o 18’ E) 

 Endau-Rompin is a national forest reserve (national park) in the state of Johor, 

Peninsular Malaysia which contains one of the world oldest tropical rainforests. The Selai river 

region is located at the southwestern to south-central portion of Johor’s Endau-Rompin National 

Park. Fish specimens were caught from the Selai river using hook and lines, electro-fishing 

methods and cast net. 

 



 
 

ii) Sangga Besar River (Kuala Sepetang) (4o 85’ N; 100o 55’ E) 

 Kuala Sepetang, a fishing village in the state of Perak, is located within the Matang 

Mangrove Forest Reserve area. The forested area of Matang mangrove consists of six major 

islands, Pulau Kalumpang, Pulau Selinsing, Pulau Sangga Kecil, Pulau Sangga Besar, Pulau 

Terong and Pulau Pasir Hitam. The major rivers draining these areas are Selinsing river, Sangga 

Besar river, Sangga Kecil river, Larut river, Terong river and Jarum Mas river. Fish specimens 

were collected from the brackish water of Sangga Besar river using trawl net. 

 

iii) Bukit Merah Reservoir (5o 1’ N; 100o 39’ E) 

 Bukit Merah is originally a 7,000 acre freshwater lake where a reservoir is being built. 

It is located at the north-west of Peninsular Malaysia in the state of Kedah. Fish specimens were 

caught from the reservoir lake using hook and line, gillnet and various traps. 

 

iv) Freshwater aquaculture farm in Sungai Bakau (3o 19’ N; 101o 32’ E) 

 Fish specimens were bought from a freshwater fish farm in Sungai Bakau, Rawang 

which are one of the freshwater aquaculture farms located at the outskirts of Kuala Lumpur. 

Freshwater fishes are cultured in small ponds measuring about 3-4 acres and also big ponds 

measuring up to 18 acres which are disused mining pools. There are approximately 100 ponds 

in this farm but not all are utilised.  

 

 

 

 

 



 
 

b) Marine systems 

i) Off Langkawi Island (6o 28’ N; 99o 47’ E) 

 Langkawi Island is situated in the Andaman Sea, some 30 km off the mainland coast of 

northwestern Peninsular Malaysia. Fish hosts were collected from the brackish mangrove area 

in the riverine system around the island as well as from the offshore sea. Gillnets were used in 

catching the fish specimens. 

 

ii) Off Carey Island (2o 47’ N; 101o 24’ E) 

 Carey Island is an island in Selangor, Peninsular Malaysia. Carey Island is located to 

the south of Port Klang and north of Banting town. It is a huge island separated from the 

Selangor coast by the Langat River, connected by a bridge from Chondoi and Teluk Panglima 

Garang near Banting. Fish specimens were caught using gillnet from the brackish mangrove 

area, along the Langat river until the river mouth which connect to the Straits of Malacca. 

 

iii) Marine aquaculture farm off Pulau Ketam (6o 24’ N; 100o 7’ E) 

Fish specimens were obtained from a commercial cage culture farm off Pulau Ketam, 

which is located off the southwestern coast of Malaysia in the Straits of Malacca.  Floating 

cages are widely used in coastal areas around Pulau Ketam since these sites are protected from 

strong winds, rough weather and have sufficient water movements with appropriate water 

quality.   

 

 

 



 
 

Table 2.1 Fish host species collected from different localities of freshwater and marine habitats 
in Peninsular Malaysia 

Locality Fish host family Fish species 
Endau-Rompin Anabantidae Anabas testudineus 
 Osphronemidae Betta sp. 
  Trichogaster trichopterus 
 Bagridae Hemibagrus nemurus 
  Mystus nigriceps 
  Mystus sp. 
 Balitoridae Homaloptera orthogoniata 
  Vaillantella sp. 
 Channidae Channa gachua 
  Channa lucius 
 Clariidae Clarias teijsmanni 
  Clarias batrachus 
  Clarias sp. 
 Cyprinidae Cyclocheilichtys apogon 
  Hampala macrolepidota 
  Labiobarbus sp. 
  Luciosoma setigerum 
  Mystacoleucus marginatus 
  Osteochilus hasseltii 
  Osteochilus microcephalus 
  Osteochilus wandersii 
  Osteochilus sp. 
  Parachela oxygastroides 
  Poropuntius deauratus 
  Puntius binotatus 
  Puntius gonionotus 
  Puntius lateristriga 
  Puntius sp. 
  Rasbora elagans 
  Rasbora marginatus 
  Rasbora sp. 
  Tor sp. 
  Parachela oxygastroides 
  Mystacoleucus marginatus 
 Hemiramphidae Hemirhamphodon pogonognathus 
  Hemirhamphodon sp. 
 Mastacembelidae Mastacembelus sp. 
 Notopteridae Notopterus notopterus 
 Pristolepidae Pristolepis fasciatus 
 Siluridae Silurichthys hasselti 
  Silurichthys sp. 
Kuala Sepetang Plotosidae Plotosus canius 
 Ariidae Arius maculatus 
  Arius caelatus 
  Arius sagor 
Bukit Merah Channidae Channa lucius 
  Channa striata 
  Channa micropeltis 
 Helostomatidae Helostoma temminckii 
 Osphronemidae Trichogaster leeri 
  Belontia hasseltii 
 Anabantidae Anabas testudineus 
 Eleotridae Oxyeleotris marmoratae 



 
 

 Notopteridae Notopterus notopterus 
 Bagridae Mystus nigriceps 
Sungai Bakau Cyprinidae Hypophthalmichthys nobilis 
  Ctenopharyngodon idella 
Langkawi Island Carangidae Alepes melanoptera 
  Carangoides armatus 
  Carangoides praeustus 
  Scomberoides commersonnianus 
  Scomberoides tol 
  Carangoides sp. 
 Triacanthidae Triacanthus biaculeatus 
 Mugilidae Liza vaigiensis 
  Valamugil seheli 
 Gerreidae Gerres filamentosus 
  Gerres abbreviatus 
 Scombridae Rastrelliger kanagurta 
 Engraulididae Stolephorus sp. 
 Mullidae Upeneus sulphureus 
 Leiognathidae Leiognathus brevirostris 
  Leiognathus equulus 
  Secutor sp. 
 Clupeidae  Anodontostoma chacunda 
 Pristigasteridae Ilisha megaloptera 
 Pomadasyidae Pomadasys hasta 
 Pomacentridae Abudefduf vaigiensis 
 Siganidae Siganus canaliculatus 
  Siganus javus 
 Sciaenidae Johnius carutta 
  Gelama sp. 
  Dendrophysa russelli 
  Pennahia anea 
 Lutjanidae Lutjanus johnii 
  Lutjanus russeli 
  Lutjanus vita 
 Toxotidae Toxotes jaculator 
 Scatophagidae  Scatophagus argus 
 Serranidae Cephalopholis boenak 
 Hemiramphidae Hemiramphus far 
 Dasyatidae Dasyatis sp. 
 Centropomidae Lates calcarifer 
 Ephippidae Ephippus orbis 
 Tetraodontidae  Tetraodon nigroviridis 
  Lagocephalus spadiceus 
 Nemipteridae Nemipterus sp. 
 Ariidae Arius venosus 
  Arius sagor 
  Arius maculatus 
  Arius caelatus 
  Osteogeneiosus militaris 
 Megalopidae Megalops cyprinoides 
 Sphyranenidae Sphyraena jello 
 Drepanidae Drepane punctate 
 Platycephalidae Platycephalus indicus 
 Sparidae Acanthopagrus berda 
  Strongylura strongyloides 
 Ambassidae Ambassis gymnocephalus 
 Polynemidae Eleutheronema tetradactylum 



 
 

 Belonidae Tylosurus crocodilus 
 Bothidae Pseudorhombus natalensis 
Carey Island Mugilidae Liza subviridis 
 Polynemidae Eleuteronema tetradactylum 
 Sciaenidae Johnius amblycephalus 
  Pennahia argentata 
  Protonibea diacanthus 
  Johnius vogleri 
  Panna macrodon 
  Pennahia aneas 
 Terapontidae Terapon jarbua 
  Terapon theraps 
 Echeneidae Echeneis naucrates 
 Tetraodonthidae Takifugu oblongus 
  Tetraodon nigroviridis 
 Gerreidae Gerres filamentosus 
 Drepanidae Drepane punctata 
 Scatophagidae Scatophagus argus 
 Ambassidae Ambassis vachelli 
 Carangidae Scomberoides sp. 
Pulau Ketam Haemulidae Pomadasys hasta 
 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

2.3 Collections of monogeneans  

The fish specimens were killed by severing the spinal cord with a sharp needle either at 

the collection site or after being transferred back to the laboratory. The gills were removed and 

placed in petri dishes containing clean local water. The freshly excised gills were gently scraped 

with a bent needle to dislodge the monogeneans. The dislodge monogeneans were collected 

under a dissecting microscope using a small fine pipette.  

 

2.3.1 Preparation of monogeneans for morphological characterisation 

For morphological study, the monogeneans specimens were prepared onto glass slides 

for investigations of their soft and hard parts. The monogeneans were dropped onto a clean 

glass slide with a small drop of water. A cover slip was gently dropped onto the monogenean 

specimen. Excess water on the slide was dried off. Some specimens were flattened and mounted 

in modified ammonium picrate glycerine (Lim, 1991) and later made into unstained permanent 

mounts in Canada balsam while some other specimens were flattened to varying degrees to best 

expose the soft anatomical structures and stained in Gomori’s triple stain, following Lim 

(2006). There were also some specimens treated with SDS (Sodium Dodecyl Sulphate) to 

expose the hard anatomical structure of the reproductive organs and sclerotised structures of the 

haptor following Wong, Tan & Lim (2006) (Appendix F) to assist in the identification of the 

monogeneans. The collected monogeneans were identified mainly on the basis of the shapes and 

sizes of the hard sclerotised parts of the haptoral armaments and reproductive organs. The new 

species found in this study were also described (see also Chapter 3) (Tan & Lim, 2009; 

Appendix D). 

 

 

 



 
 

 

2.3.2 Preparation of monogeneans for molecular characterisation 

For molecular study, the collected monogenean specimens were preserved in 75% 

ethanol in micro-centrifuge tubes. Monogeneans were then removed from ethanol, transferred 

individually using fine pipette onto glass slide with a drop of distilled water and covered with a 

cover slip and examined and identified under a light microscope equipped with phase contrast 

and Leica image analysis software (Qwin Plus). 

 

Protocol for DNA extraction from monogeneans  

The identified monogenean specimens were removed from the glass slide and put 

individually in separate 0.5 ml Eppendorf tube and DNA extracted using DNEasy extraction kit 

from Qiagen. Five µl of lysate from the DNA extraction was used as template in PCR reactions 

to amplify the partial D1-D2 domain of the 28S rDNA, using either pair of primers, C1 (5’-

ACCCGCTGAATTTAAGCAT-3’) and C2 (5’-CTCTCTYTYCAAAGTTCTTTTC-3’) (Justine 

et al., 2002). PCR reactions (50 µl) were performed in 1.5 mM MgCl2, PCR buffer (Fermentas), 

200 µM of each deoxyribonucleotide triphosphate, 1.0 µM of each PCR primer, and 1U of Taq 

polymerase (Fermentas) in a thermocycler (Biometra) using the following conditions: an initial 

denaturation at 95ºC for 4 min, followed by 35 cycles of 95ºC for 1 min, 50ºC for 1 min and 

72ºC for 1 min, followed by a final extension at 72ºC for 10 min. Ten µl of aliquots from the 

amplicons were examined in 1.3% agarose gels, stained with ethidium bromide and view under 

a UV illuminator.  

 

 

 

 



 
 

 

2.4 Data collection  

Two types of data, i.e. morphological and molecular data were collected in this study to 

answer questions and achieve the objectives as outline in Section 1.5 (Chapter 1). 

Morphological data in the form of morphometric measurements were taken from two types of 

species populations, different congeneric species from a group of related host species 

(Trianchoratus Price & Berry, 1966 from channid host species) and a group of co-existing 

monogenean species (Caballeria Bychowsky & Nagibina, 1970 and Bravohollisia Bychowsky 

& Nagibina, 1970) from Pomadasys hasta (Bloch) to answer the questions such as how much 

variations must occur especially before two different groups of morphologically similar 

organisms are considered to be different species, how much variations are present within a 

species population and possible factors causing these variations within the populations (see 

Section 1.5.1). 

 

DNA sequences were collected from monogeneans of the order Dactylogyridea to infer 

the relationships of dactylogyridean monogeneans from different families, genera and species 

based on molecular data (see Section 1.5.1). 

 

2.4.1 Morphometric data 

The morphometrical parameters taken for the 3 different groups of monogeneans are 

shown in Figs. 2.1 & 2.2. They are inner root (IR), outer root (OR), inner length (IL), outer 

length (OL) and point (pt) for the anchors, i.e. 4 developed anchors in Bravohollisia and 

Caballeria (Fig. 2.1) and 3 developed anchors in Trianhcoratus (Fig. 2.2). Parameters for the 

bars (width and length), copulatory organ (initial length and total length) and marginal hook 

(length) are also taken for Bravohollisia and Caballeria only (Fig. 2.1).  



 
 

 

 

Morphometric data from 5 Bravohollisia spp. and 3 Caballeria spp. 

Morphometric measurements were obtained from five species of Bravohollisia viz. 

B.rosetta Lim, 1995, B.reticulata Lim, 1995, B. gussevi Lim, 1995, B. Kritskyi Lim, 1995, 

Bravohollisia n. sp. and three species of Caballeria viz. C. liewi Lim, 1995, C. intermedius 

Lim, 1995 and C. pedunculata Bychowsky & Nagibina, 1970 from Pomadasys hasta (Bloch). 

Bravohollisia n. sp. is a previously unknown Bravohollisia species which can be observed in 

this study to possess highly similar haptoral sclerotised parts (anchors, bars and hooks) with the 

existing B. kritskyi but differ in the morphology of copulatory organ. These specimens of 

Bravohollisia and Caballeria were collected during a previous study to survey the distribution 

pattern of Bravohollisia and Caballeria on Pomadasys hasta from Pulau Ketam and deposited 

in the parasite collection of Fish Parasite Laboratory, University of Malaya (see also Chuan, J., 

Unpublished master thesis). 

 

In this study, the morphometric measurements were taken from the sclerotised hard 

parts of Bravohollisia and Caballeria viz. four well-developed anchors (two dorsal anchors and 

two ventral anchors), two bars (dorsal and ventral bar), marginal hook as well as the copulatory 

organ of each of the Bravohollisia and Caballeria specimens. Five parameters were taken: inner 

root (IR), outer root (OR), inner length (IL), outer length (OL) and point (pt), for each of the 

four well-developed anchors, two parameters were taken: length (BL) and width (BW) for each 

of the two bars, one parameter was taken: length (ML) for marginal hook and two parameters 

were taken: initial length (CIL) and total length (CTL) for copulatory organ (Fig. 2.1) using 

Leica image analysis software (QWin Plus) resulting in a total of 27 variables per monogenean 

(the numbers attached to the parameters denote the position of the anchors and bars, 1 and 2 for 

the two dorsal anchors and 3 and 4 for the two ventral anchor; 1 for dorsal bar and 2 for ventral 



 
 

bar). A total of 744 specimens of Bravohollisia and 295 specimens of Caballeria were 

measured (Table 2.2).   

 

Morphometric data from 4 species Trianchoratus Price & Berry, 1966  

Morphometric measurements were obtained from four Trianchoratus species found on 

two species of channid hosts. T. malayensis Lim, 1986 and T. pahangensis Lim, 1986 are found 

on Channa lucius (Cuvier) and T. ophicephali Lim, 1986 is on C. striata (Bloch). In 2009, 

Trianchoratus longianchoratus Tan & Lim, 2009 was collected and described from C. lucius 

during the course of this study and this species is similar to the previous 3 Trianchoratus 

species from channid hosts but different from the Trianchoratus species of the anabantoid hosts 

in possessing very similar morphological characteristics, especially the three developed anchors 

and copulatory organs (see Tan & Lim, 2009; Appendix D). 

 

These four Trianchoratus species were collected from three different localities viz. the 

riverine swamp-lake Tasik Bera, Endau-Rompin and Bukit Merah Reservoir (see Table 2.3). 

These Trianchoratus specimens include type and voucher specimens of the Trianchoratus 

species collected in the current study (from Endau-Rompin & Bukit Merah: 101 specimens of T. 

malayensis, 136 specimens of T. pahangensis, 250 specimens of T. ophicephali and  29 

specimens of T. longianchoratus, as well as from the specimens deposited in the Parasite 

Collection at the Zoological Museum of University of Malaya (UMZD) (from Tasik Bera: T. 

malayensis (31 specimens), T. pahangensis (50 specimens) and  T. ophicephali (79 specimens).   

 

         

 



 
 

                              

Figure 2.1 An example of parameters taken from (a) anchor, (b) copulatory organ, (c) bar and 
(d) marginal hook of Bravohollisia and Caballeria spp. 

 

                  

Figure 2.2 A well-developed anchor of Trianchoratus species showing the basic measurements 
taken for morphometric analysis. 
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Briefly, Trianchoratus species possess three well-developed anchors (two ventral 

anchors and one dorsal anchor), one comma-shaped vestigial dorsal anchor and 14 marginal 

hooks. Although the Trianchoratus species have morphologically similar copulatory organs 

which are different in terms of size they are subjected to distortions due to orientations and 

hence difficult to measure. They are therefore not included in the analysis. The vestigial anchor 

and marginal hooks are also not considered because they are either obscured by the larger well-

developed anchors or are not disposed properly to be measured. In this study 5 parameters were 

taken: inner root (IR), outer root (OR), inner length (IL), outer length (OL) and point (pt), for 

each of the three well-developed anchors (Fig. 2.2) using Leica image analysis software (QWin 

Plus) resulting in a total of 15 variables per monogenean (the numbers attached to the 

parameters denote the position of the anchors, 1 and 2 for the two ventral anchors and 3 for the 

dorsal anchor). The measurements of the two ventral anchors are treated as separate datasets. A 

total of 448 specimens of Trianchoratus specimens were measured (Table 2.3).   

 

 

 

 

 

 

 

 

 

 

 



 
 

Table 2.2 Distribution patterns according to different host size (fish standard length: 40-
100mm=small, 100-150mm=medium, 150-200mm=large) of the 744 individuals of 
Bravohollisia spp. and 295 individuals of Caballeria used in the morphometric analysis.  

Bravohollisia and 
Caballeria spp. 

No. of individuals used in this study according to host size  

Small host                 Medium host              Large host                        Total 

B. rosetta       50                                   50                              50                                150 
B. reticulata       80                                   50                              50                                180 
B. gussevi       50                                   50                              50                                150 
B. kritskyi       50                                   50                              50                                150  
Bravohollisia n. sp.       14                                   50                              50                                114 
C. liewi       50                                   50                              50                                150 
C. intermedius       21                                   21                              44                                  86 
C. pedunculata         8                                   21                              30                                  59 
Grand total                                                                                                     1039 
 

 

 

 

Table 2.3 Host and locality distribution patterns of the 448 individuals of Trianchoratus spp. 
used in the morphometric analysis.  

Trianchoratus spp. Host species Locality No. of individuals used 
in this study 

T. malayensis Channa lucius Bukit Merah 58 
  Endau-Rompin 36 
  Tasik Bera 25 
Total   119 
T. pahangensis Channa lucius Bukit Merah 113 
  Endau-Rompin 4 
  Tasik Bera 42 
Total   159 
T. longianchoratus Channa lucius Bukit Merah 25 
T. ophicephali Channa striata Bukit Merah 95 
  Tasik Bera 50 
Total   145 
Grand total   448 
 

 

 



 
 

2.4.2 Molecular sequence data 

Monogenean sequences from present study 

The remaining 40 µl of each amplicon from PCR amplification (Section 2.3.2) was 

purified using DNA purification kit (Qiagen) and subjected to automated DNA sequencing 

(ABI 3730 DNA Sequencer, First Base Laboratories) using the same primers used for PCR 

amplification. The partial 28S rDNA of 62 monogenean species were sequenced (see Table 

2.4). 

 

Monogenean sequences (partial 28S rDNA) from GenBank 

A survey was also done to identify partial 28S rDNA sequences of dactylogyridean 

monogenean species from GenBank which were related to this study. A total of 126 partial 28S 

rDNA sequences from monogenean of the Order Dactylogyridea which were comparable to the 

partial 28S rDNA sequences collected in this study (see section 2.6.1) were obtained from the 

Genbank (see Table 2.4). 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2.4 List of partial 28S rDNA sequences of dactylogyridean monogenean species used in this study with their host species, locality and GenBank accession 
numbers. (*sequences collected from present study) (**names used in original paper/GenBank). 
Monogenean species Host species Locality GenBank No. 
Heteronchocleididae Price, 1968    
Trianchoratus malayensis Channa lucius Bukit Merah, Malaysia HQ719218* 
Trianchoratus pahangensis Channa lucius Bukit Merah, Malaysia HQ719219* 
Trianchoratus longianchoratus Channa lucius Bukit Merah, Malaysia HQ719220* 
Trianchoratus ophicephali Channa striata Bukit Merah, Malaysia HQ719215* 
Trianchoratus acleithrium Helostoma temminkii Peninsular Malaysia HQ719214* 
Trianchoratus leerium Trichopodus leerii (Trichogaster leerii**) Peninsular Malaysia HQ719216* 
Trianchoratus trichogasterium 
 

Trichopodus trichopterus  
(Trichogaster trichopterus**) 

Endau-Rompin, Malaysia HQ719217* 

Trianchoratus gussevi Anabas testudieus Bukit Merah, Malaysia HQ719221* 
Trianchoratus gussevi CHN Anabas testudieus Hainan, China AY841875 
Trianchoratus parvulus Anabas testudieus Bukit Merah, Malaysia HQ719223* 
Trianchoratus grandis Anabas testudieus Bukit Merah, Malaysia HQ719222* 
Eutrianchoratus inequalis Belontia hasselti Bukit Merah, Malaysia HQ719225* 
Eutrianchoratus cleithrium Belontia hasselti Bukit Merah, Malaysia HQ719224* 
Heteronchocleidus buschkieli Macropodus opercularis Guangdong, China AY841876 
Dactylogyridae Bychowsky, 1933    
Dactylogyrus apogonae Cyclocheilicththys apogon Endau-Rompin, Malaysia Present study* 
Dactylogyrus aristichthys Hypophthalmichthys nobilis Rawang, Malaysia Present study* 
Dactylogyrus hampalai Hampala macrelipidota Endau-Rompin, Malaysia Present study* 
Dactylogyrus sclerovaginalis Systomus binotatus (Puntius binotatus**) Endau-Rompin, Malaysia Present study* 
Dactylogyrus cheligenitalis Osteochilus hasselti Endau-Rompin, Malaysia Present study* 
Dactylogyrus elegani Rasbora elagans Endau-Rompin, Malaysia Present study* 
Dactylogyrus quadribrachiatus Hampala macrelipidota Endau-Rompin, Malaysia Present study* 
Dactylogyrus damansari Systomus binotatus  (Puntius binotatus**) Endau-Rompin, Malaysia Present study* 
Dactylogyrus laterstriga Systomus laterstriga (Puntius laterstriga**) Endau-Rompin, Malaysia Present study* 
Dactylogyrus spirocopulatrium Systomus binotatus  (Puntius binotatus**) Endau-Rompin, Malaysia Present study* 
Dactylogyrus lamellatus Ctenopharyngodon idellus Endau-Rompin, Malaysia Present study* 
Dactylogyrus sp. LAB 
 

Labiobarbus sp. Endau-Rompin, Malaysia Present study* 



 
 

Monogenean species Host species Locality GenBank No. 
Dactylogyrus inversus Lateolabrax japonicus Japan Present study* 
Dactylogyrus gotoi Lateolabrax japonicus Japan Present study* 
Dactylogyrus hemiramphodonus Hemiramphodon pogonognothus Endau-Rompin, Malaysia Present study* 
Dactylogyrus temperasi Cyclocheilicththys apogon Endau-Rompin, Malaysia Present study* 
Dactylogyrus puntii Systomus gonionotus (Puntius gonionotus**) Endau-Rompin, Malaysia Present study* 
Dactylogyrus sp. Rasbora sp. Endau-Rompin, Malaysia Present study* 
Dactylogyrus extensus Cyprinus carpio Czech Republic AJ969944 
Dactylogyrus cryptomeres Gobio gobio Czech Republic AJ969947 
Dactylogyrus hemiamphibothrium Gymnocephalus cernuus Czech Republic AJ969946 
Dactylogyrus inexpectatus Carassius auratus Czech Republic AJ969945 
Dactylogyrus nanus Rutilus rutilus Czech Republic AJ969942 
Dactylogyrus kikuchii Lateolabrax japonicus China AY548929 
Dactylogyrus petruschewskyi Megalobrama amblycephala China AY548927 
Dactylogyrus sphyrna Rutilus rutilus Czech Republic AJ969943 
Dactylogyrus pekinensis Megalobrama amblycephala Guangdong, China EF100535 
Dactylogyrus quanfami Cirrhinus moliorella Guangdong, China EF100536 
Dactylogyrus hypophalmichthys Hypophthalmichthys molitrix Chongqing, China EF100532 
Dactylogyrus parabramis Megalobrama terminalis Guangdong, China EF100534 
Dactylogyroides longicirrus Systomus sophore (Puntius sophore**) India GU903482 
Pseudodactylogyridae Le Brun, Lambert 
& Justine, 1986 

   

Pseudodactylogyroides marmoratae Oxyeleotris marmoratae Bukit Merah, Malaysia Present study* 
Pseudodactylogyrus bini Anguilla anguilla Austria AJ969949 
Pseudodactylogyrus anguillae Anguilla anguilla Slovak Republic AJ969950 
Pseudodactylogyrus sp. UK Anguilla anguilla United Kingdom AF382057 
Pseudodactylogyrus sp. XHY Anguilla anguilla China EF100540 
Ancyrocephalidae Bychowsky, 1937    
Bravohollisia gussevi Pomadasys hasta Pulau Ketam, Malaysia Present study* 
Bravohollisia reticulata Pomadasys hasta Pulau Ketam, Malaysia Present study* 
Bravohollisia rosetta 
 

Pomadasys maculatus Guangdong, China DQ537364 

    



 
 

Monogenean species Host species Locality GenBank No. 
Bravohollisia maculatus Pomadasys maculatus Guangdong, China DQ537363 
Bravohollisia parvianchoratus Pomadasys maculatus Guangdong, China DQ537362 
Bravohollisia kritskyi Pomadasys hasta Pulau Ketam, Malaysia Present study* 
Bravohollisia sp. Pomadasys hasta Pulau Ketam, Malaysia Present study* 
Caballeria pedunculata Pomadasys hasta Pulau Ketam, Malaysia Present study* 
Caballeria liewi Pomadasys hasta Pulau Ketam, Malaysia Present study* 
Caballeria intermedius Pomadasys hasta China DQ537366 
Pseudohaliotrema sp. Siganus sp. Langkawi, Malaysia Present study* 
Pseudohaliotrema sphincteroporus Siganus doliatus Australia AF382058 
Ancyrocephalus paradoxus Stizostedion lucioperca Czech Republic AJ969952 
Haliotrema spirotubiforum Lutjanus stellatus Guangdong, China DQ157656 
Haliotrema anguiformis Lutjanus monostigma Guangdong, China DQ537375 
Haliotrema subancistroides Gerres filamentosus Guangdong, China DQ157648 
Haliotrema chenhsintaoi Branchiostegus auratus Guangdong, China DQ537371 
Haliotrema bihamulatum Upeneus quadrilineatus Guangdong, China DQ537378 
Haliotrema platycephali Platycephalus indicus Shangdong, China DQ157662 
Haliotrema johnstoni Upeneus luzonius Hainan, China DQ157664 
Haliotrema shenzhenensis Lutjanus argentimaculatus Guangdong, China DQ537372 
Haliotrema kurodai 
Haliotrema nanaoensis                                                                

Sparus macrocephalus 
Lutjanus argentimaculatus 

Guangdong, China 
Guangdong, China 

DQ537376 
DQ537373 

Haliotrema eukurodai 
Haliotrema geminatohamula 
Haliotrema digyroides 
Haliotrema fleti 
Haliotrema grossecurvitubus 
Haliotrema cromileptis 
Haliotrema epinepheli 

Acanthopagrus schlegelii 
Leiognathus brevirostris 
Gerres macrosoma 
Lethrinus nebulosus 
Sparus macrocephalus 
Cromileptes altivelis 
Epinephelus sexfasciatus 

Not stated in GenBank 
Guangdong, China 
Guangdong, China 
Guangdong, China 
Not stated in GenBank 
Hainan, China  
Not stated in GenBank 

EU836202 
DQ157649 
DQ537377 
DQ157661 
EU836204 
DQ537379 
EU836201 

Haliotrema macasarensis 
Haliotrema aurigae 
 

Platycephalus indicus 
Chaetodon auriga 

Not stated in GenBank 
Australia 

EU836207 
AY820621 

    
    



 
 

Monogenean species Host species Locality GenBank No. 
Haliotrema leporinus Acanthurus nigrofuscus South China Sea EU836206 
Haliotrema angelopterum Chaetodon kleinii Palau AY820620 
Haliotrema scyphovagina 
Haliotrema ctenochaeti 

Forcipiger flavissimus 
Ctenochaetus strigosus 

Polynesia, French 
Not stated in GenBank 

AY820622 
EU836199 

Haliotrema macracantha Acanthurus nigroris Not stated in GenBank EU836208 
Haliotrema pratasensis Acanthurus olivaceus South China Sea EU836209 
Metahaliotrema geminatohamula Scatophagus argus Guangdong, China DQ157646 
Metahaliotrema mizellei Scatophagus argus Guangdong, China DQ157647 
Euryhaliotrema perezponcei Lutjanus guttatus Mexico HQ615996 
Euryhaliotrema johnii Lutjanus rhodopterus Guangdong, China DQ157657 
Euryhaliotrema sp. HBDD Lutjanus russelli Guangdong, China DQ537374 
Euryhaliotrematoides annulocirrus Chaetodon vagabundus Australia AY820613 
Euryhaliotrematoides sp. HQDD Lutjanus rhodopterus Guangdong, China DQ537369 
Euryhaliotrematoides triangulovagina Chaetodon kleinii Palau AY820619 
Euryhaliotrematoides pirulum Chaetodon lunula Polynesia, French AY820618 
Euryhaliotrematoides microphallus Heniochus chrysostomus Palau AY820617 
Euryhaliotrematoides grandis Chaetodon vagabundus Palau AY820616 
Euryhaliotrematoides berenguelae Chaetodon citrinellus Polynesia, French AY820615 
Euryhaliotrematoides aspistis Chaetodon vagabundus Australia AY820614 
Tetrancistrum sp. Siganus fuscescens Heron Island, Australia AF026114 
Cichlidogyrus pouyaudi Tylochromis intermedius Senegal, Africa HQ010039 
Cichlidogyrus falcifer Hemichromis fasciatus Senegal, Africa HQ010024 
Cichlidogyrus acerbus Sarotherodon galilaeus Senegal, Africa HQ010036 
Cichlidogyrus tilapiae Hemichromis fasciatus Senegal, Africa HQ010029 
Scutogyrus longicornis Oreochromis niloticus Senegal, Africa HQ010035 
Haliotrematoides plectridium Lutjanus guttatus Mexico HQ615994 
Haliotrematoides spinatus Lutjanus guttatus Mexico HQ615995 
Haliotrematoides guttati Lutjanus guttatus Mexico HQ615993 
Ligophorus vanbenedenii 
 

Mugil cephalus Guangdong, China DQ157655 

    
    



 
 

Monogenean species Host species Locality GenBank No. 
Ligophorus leporinus Mugil cephalus Guangdong, China DQ537380 
Aliatrema cribbi Chaetodon citrinellus Polynesia, French AY820612 
Onchobdella aframae Hemichromis fasciatus Senegal, Africa HQ010033 
Onchobdella bopeleti Hemichromis fasciatus Senegal, Africa HQ010034 
Actinocleidus recurvatus Lepomis gibbosus Slovak Republic AJ969951 
Cleidodiscus pricei Ameiurus nebulosus (Ictalurus nebulosus**) Czech Republic AJ969939 
Urocleidus similis Lepomis gibbosus Slovak Republic AJ969938 
Onchocleidus sp. Lepomis macrochirus China AY841873 
Calceostomatidae Parona & Perugia, 1890    
Calceostomatidae sp. Eugerres axillaris Mexico FJ971977 
Ancylodiscoididae Gusev, 1961    
Ancylodiscus malayensis Plotosus canius Matang, Malaysia Present study* 
Malayanodiscoides bihamuli Notopterus notopterus Bukit Merah, Malaysia Present study* 
Bifurcohaptor lanchangensis Mystus sp. Endau-Rompin, Malaysia Present study* 
Quadriacanthus kobiensis Clarias batrachus Endau-Rompin, Malaysia Present study* 
Bychowskyella pseudobagri Pseudobagrus fulvidraco Guangdong, China EF100541 
Cornudiscoides sp. Mystus sp. Endau-Rompin, Malaysia Present study* 
Cornudiscoides facicirrus Mystus nigriceps Bukit Merah, Malaysia Present study* 
Cornudiscoides proximus Mystus vittatus India GQ925913 
Thaparocleidus notopteri Notopterus notopterus Bukit Merah, Malaysia Present study* 
Thaparocleidus magnicirrus Silurus astus Guangdong, China EF100549 
Thaparocleidus obscura Silurus astus Chongqing, China EF100551 
Thaparocleidus mutabilis Silurus astus Guangdong, China EF100550 
Thaparocleidus omegavagina Silurus astus Guangdong, China EF100552 
Thaparocleidus infundibulovagina Silurus astus Chongqing, China EF100548 
Thaparocleidus vistulensis Silurus glanis Czech Republic AJ969941 
Thaparocleidus siluri Silurus glanis Czech Republic AJ969940 
Thaparocleidus asoti Silurus astus Chongqing, China DQ157669 
Thaparocleidus varicus Silurus astus Chongqing, China DQ157668 
Thaparocleidus cochleavagina 
 
 

Silurus astus Guangdong, China EF100547 



 
 

Monogenean species Host species Locality GenBank No. 
Thaparocleidus campylopterocirrus Pangasianodon hypophthalmus (Pangasius sutchi**) Guangdong, China EF100546 
Pseudancylodiscoides sp. HSY4 Pseudobagrus fulvidraco Guangdong, China EF100544 
Pseudancylodiscoides sp. HSY3 Pseudobagrus fulvidraco Guangdong, China EF100543 
Pseudancylodiscoides sp. HSY1 Pseudobagrus fulvidraco Guangdong, China EF100542 
Hamatopeduncularia sp. Arius maculatus Langkawi, Malaysia Present study* 
Hamatopeduncularia papernai Arius maculatus Langkawi, Malaysia Present study* 
Hamatopeduncularia simplex Osteogeneiosus militaris Langkawi, Malaysia Present study* 
Hamatopeduncularia venosus Arius venosus Langkawi, Malaysia Present study* 
Hamatopeduncularia malayanus Arius caelatus Matang, Malaysia Present study* 
Hamatopeduncularia isosimplex Arius sagor Matang, Malaysia Present study* 
Chauhanellus osteogenosus Osteogeneiosus militaris Matang, Malaysia Present study* 
Chauhanellus digitalis Arius sagor Matang, Malaysia Present study* 
Chauhanellus poculus Arius maculatus Matang, Malaysia Present study* 
Chauhanellus pulutanus Arius maculatus Matang, Malaysia Present study* 
Neocalceostomatidae Lim, 1995    
Neocalceostoma sp. Malaysia Arius venosus Malaysia AF387510 
Neocalceostomoides hamatum Arius sagor Matang, Malaysia Present study* 
Pseudomurraytrematidae Kritsky, Mizelle 
& Bilqees, 1978 

   

Pseudomurraytrema sp. USA Catostomus ardens USA AF382059 
Diplectanidae Bychowsky, 1957    
Diplectanum penangi Lates calcarifer Hainan, China DQ054821 
Diplectanum grouperi Epinephelus coioides Guangdong, China AY553628 
Diplectanum umbrinum Johnius amblycephalus Guangdong, China EF100560 
Diplectanum blairense (=Paradiplectanum 
blairense**) 

Sillago sihama Hainan, China AY553627 

Diplectanum sillagonum (=Paradiplectanum 
sillagonum**) 

Sillago sihama Hainan, China AY553626 

Diplectanum veropolynemi 
 
 

Polynemus sextarius Guangdong, China AY553625 

    



 
 

Monogenean species Host species Locality GenBank No. 
Lamellodiscus japonicus Sparus macrocephalus Guangdong, China EF100561 
Lamellodiscus pagrosomi Pagrosomus major Hainan, China EF100562 
Lamellodiscus spari Lates calcarifer China DQ054823 
Lamellodiscus acanthopagri Acanthopagrus australis Not given in the original paper DQ054822 
Lepidotrema longipenis Terapon jarbua Guangdong, China EF100563 
Pseudorhabdosynochus lantauensis Epinephelus brunneus Guangdong, China AY553624 
Pseudorhabdosynochus coioidesis Epinephelus coioides Guangdong, China AY553623 
Pseudorhabdosynochus epinepheli Epinephelus brunneus Guangdong, China AY553622 
Pseudorhabdosynochus latesi 
(=Pseudorhabdosynochus latesis**) 

Lates calcarifer Guangdong, China AY553621 

Pseudorhabdosynochus shenzhenensis Epinephelus coioides Not given in the original paper DQ054830 
Laticola seabassi (=Pseudorhabdosynochus 
seabassi**) 

Lates calcarifer Guangdong, China AY553620 

Calydiscoides sp. Nemipterus bathybius Guangdong, China EF100558 
Calydiscoides indianus Nemipterus japonicus Guangdong, China EF100557 
Lobotrema sciaenae Nibea albiflora Guangdong, China EF100556 
Lobotrema sp. Johnius sp. Carey Island, Malaysia Present study* 
Laticola paralatesi Lates calcarifer China DQ054826 
Laticola lingaoensis Lates calcarifer China DQ054825 
Murraytrema bychowskyi (=M. pricei**) Nibea albiflora Guangdong, China DQ157672 
Sinodiplectanotrema malayanum  Pennahia anea Langkawi, Malaysia GU573891* 
Sinodiplectanotrema sp. HGY Nibea albiflora Guangdong, China EF100778 
Acleotrema sp. Kyphosus vaigienis Australia AF026118 
Sundanonchidae Malmberg, 1990    
Sundanonchus triradiacatus Pristolepis fasciatus Endau-Rompin, Malaysia Present study* 
Sundanonchus foliaceus Channa micropeltes Bukit Merah, Malaysia Present study* 
Sundanonchus tomanorum Channa micropeltes Bukit Merah, Malaysia Present study* 
Sundanonchus micropeltis Channa micropeltes Bukit Merah, Malaysia Present study* 
Tetraonchidae Bychowsky, 1937    
Tetraonchus monenteron Esox lucius Czech Republic AJ969953 
    
    



 
 

    
Monogenean species Host species Locality GenBank No. 
Outgroups    
Gyrodactylidae van Beneden & Hesse, 
1863 

   

Gyrodactylus salaris Salmo salar Norway FJ971996 
Gyrodactylus derjavini Oncorhynchus mykiss Denmark FJ971994 
Gyrodactylus macracanthus Misgurnus anguillicaudatus Australia FJ971995 
    
 

 

 

 

 

 

 

 

 

 

 

 



 
 

Fish hosts sequence (partial Cytochrome b) from GenBank 

Cytochrome b sequences of fish species were obtained from GenBank to determine 

the relationships of the fish hosts of the dactylogyrideans (see Table 2.5). It should be noted 

that only Cytochrome b sequences from the fish hosts of the dactylogyrideans analysed in 

this study (see Table 2.4) are obtained from GenBank to reconstruct the relationship trees 

of the hosts. It is also beyond the scope of the study to provide a full phylogeny of the fish 

species. Thus, this does not mean that the other fish groups which are not included in the 

current study do not possess monogeneans.  

 

However, Cytochrome b sequences are not available in the GenBank for all the fish 

hosts of the dactylogyrideans analysed in this study (see Table 2.4) and in order to generate 

the host relationship trees, Cytochrome b sequences of related fish species are used. For 

example, Cytochrome b sequences are not available for Lutjanus guttatus (Steindachner), 

Heniochus chrysostomus (Cuvier), Tylochromis intermedius (Boulenger) and Hemichromis 

fasciatus (Peters) but available for Lutjanus stellatus (Akazaki), L. argentimaculatus 

(Forsskål), Heniochus diphreutes (Jordan), Tylochromis polylepis (Boulenger) and 

Hemichromis bimaculatus (Gill) and these latter sequences are used in this study (Table 

2.5).  

 

 

 

 



 
 

Table 2.5 List of partial Cytochrome b sequences of fish host species used in this study with their 
GenBank accession numbers. (*names used in original paper/GenBank). 
Host order/family Host species GenBank No. 
Order    
Perciformes   
Family   
Nemipteridae Scolopsis ciliate (Scolopsis ciliates*) AF240753 
 Nemipterus marginatus AF240754 
Channidae  Channa bleheri AY763770 
 Channa maculate FJ415743 
 Channa asiatica AF480933 
 Channa marulius (Channa marulia*) AY763771 
 Channa striata GU288564 
 Channa micropeltes GU288555 
 Channa lucius GU288553 
 Parachanna obscura AY763772 
Anabantidae Anabas testudineus AY763727 
 Ctenopoma acutirostre AY763728 
 Ctenopoma kingsleyae AY763729 
 Ctenopoma petherici AY763733 
 Microctenopoma ansorgii AY763736 
 Microctenopoma fasciolatum AY763738 
 Sandelia capensis AY763741 
Helostomatidae Helostoma temminkii (Helostoma temminckii*) AY763742 
Osphronemidae Belontia hasselti AY763743 
 Belontia signata AY763744 
 Trichogaster fasciata (Colisa fasciatus*) AY763745 
 Trichogaster labiosa (Colisa labiosus*) AY763746 
 Trichogaster lalius (Colisa lalia*) AY763747 
 Trichogaster leerii AF519695 
 Trichogaster pectoralis AY763758 
 Trichogaster trichopterus AY763759 
 Macropodus opercularis AF519698 
 Macropodus spechti (Macropodus concolor*) AF763760 
 Trichopsis pumila AY763765 
 Trichopsis vittata AF519697 
 Trichopsis schalleri AY763766 
Serranidae Epinephelus coioides DQ354156 
 Epinephelus bruneus FJ594964 
 Epinephelus itajara EU823102 
 Anyperodon leucogrammicus AY963557 
 Promicrops lanceolatus DQ486927 
 Cromileptes altivelis DQ683362 
Latidae Lates calcarifer DQ010541 
 Lates niloticus AB117106 
Terapontidae Terapon jarbua AM265626 
 Rhynchopelates oxyrhynchus AP011064 
Sciaenidae Argyrosomus regius DQ197924 

 
 
 
 
 
 



 
 

 Larimichthys crocea EU363519 
 Bairdiella ronchus GQ220025 
 Stellifer illecebrosus GQ220023 
 Nebris microps GQ220022 
 Pennahia argentata HQ890946 
 Nibea albiflora HQ890947 
 Seriphus politus GQ220019 
 Macrodon mordax GQ220015 
Sparidae Sparus aurata DQ198005 
 Pagellus bogaraveo DQ197972 
 Lithognathus mormyrus DQ197961 
 Diplodus vulgaris DQ197947 
 Diplodus sargus DQ197946 
 Sparodon durbanensis AF240733 
 Rhabdosargus thorpei AF240732 
Haemulidae Pomadasys incises DQ197981 
 Pomadasys maculatus EF512297 
 Pomadasys perotaei EF456016 
 Plectorhinchus mediterraneus DQ197979 
 Plectorhinchus octolineatum DQ197977 
Lutjanidae Lutjanus russellii DQ900671 
 Lutjanus stellatus DQ900662 
 Lutjanus argentimaculatus DQ900675 
 Lutjanus johnii DQ900683 
Scatophagidae Scatophagus argus AB276967 
Mullidae Mullus surmuletus DQ197965 
 Mullus barbatus EU036452 
Siganidae Siganus fuscescens AB276833 
 Siganus javus AB276853 
 Siganus canaliculatus AB276851 
 Siganus doliatus AB276961 
 Siganus virgatus AB276949 
Cichlidae Tylochromis polylepis AF370639 
 Hemichromis bimaculatus AF370635 
 Sarotherodon galilaeus AJ845008 
 Oreochromis niloticus AB018989 
 Australoheros kaaygua HQ197686 
 Neolamprologus modestus HM049954 
Centrarchidae Lepomis gibbosus JF742829 
 Lepomis cyanellus JF742828 
 Lepomis macrochirus AY828968 
 Ambloplites cavifrons JF742823 
 Pomoxis annularis JF742839 
 Pomoxis nigromaculatus JF742840 
Percidae Sander volgensis (Stizostedion volgense*) AY374292 
 Sander lucioperca (Stizostedion lucioperca*) AY374291 
 Gymnocephalus cernua (Gymnocephalus 

cernuus*) 
AF045356 

 Percina stictogaster 
 
 
 
 
 

AF045355 



 
 

 Perca flavescens AF045357 
Gobiidae Bathygobius soporator JN575299 
 Bathygobius lineatus JN575300 
 Bathygobius curacao JN575297 
 Bathygobius ramosus JN575317 
 Acentrogobius janthinopterus AB253463 
Eleotridae Oxyeleotris selheimi AY722238 
 Oxyeleotris nullipora AY722249 
 Oxyeleotris marmorata AY722251 
 Oxyeleotris lineolata AY722237 
 Butis amboinensis AB021232 
Apogonidae Apogon doederleini EU380969 
 Apogon maculatus EU380971 
 Apogon semilineatus AB018995 
 Flowleria aurita EU380973 
Lateolabracidae Lateolabrax japonicus AF240741 
 Lateolabrax latus AF240743 
Malacanthidae Branchiostegus albus EU861053 
 Branchiostegus argentatus EU861054 
 Branchiostegus japonicus EU861052 
Chaetodontidae Chaetodon ornatissimus HQ329584 
 Chaetodon meyeri HQ329544 
 Chaetodon auripes AP006004 
 Chaetodon quadrimaculatus EU823099 
 Heniochus diphreutes AP006005 
Nandidae  Badis ruber AY330953 
 Dario hysginon AY330962 
 Nandus oxyrhynchus AY330965 
 Nandus nandus AY330963 
   
Order   
Osteoglossiformes   
Family    
Notopteridae Notopterus notopterus AY504822 
 Papyrocranus afer AY504823 
 Chitala ornata AF201583 
 Xenomystus nigri AF201614 
Order   
Siluriformes   
Family   
Plotosidae Plotosus canius DQ119445 
 Porochilus rendahli DQ119425 
 Plotosus lineatus DQ119351 
Ariidae Osteogeneiosus militaris FJ013168 
 Arius oetik FJ626195 
 Arius maculatus FJ626194 
 Arius leptonotacanthus FJ626193 
 Hexanematichthys sagor (Arius sagor*) FJ626203 
Bagridae Mystus vittatus 

 
 
 
 
 

DQ119356 



 
 

 Pelteobagrus fulvidraco AY912321 
 Pelteobagrus vachellii AY912371 
 Pelteobagrus nitidus AY912357 
 Mystus pulcher DQ119441 
 Mystus cavasius DQ119437 
 Bagrichthys macropterus DQ119455 
 Pseudobagrus tenuis AY912391 
 Pseudobagrus truncatus AY912417 
 Pseudobagrus pratti AY912413 
Siluridae Silurus asotus DQ119376 
 Silurus microdorsalis DQ321756 
 Silurus meridionalis AF416892 
 Ompok bimaculatus FJ711331 
 Ompok pabo FJ711292 
 Ompok pabda FJ711257 
Clariidae Clarias gariepinus DQ646371 
 Clarias fuscus AF416885 
 Prophagorus nieuhofii DQ119377 
 Gymnallabes typus DQ119368 
   
Order   
Cypriniformes   
Family   
Cyprinidae Cyclocheilichthys apogon JQ346138 
 Hypophthalmichthys nobilis (Aristichthys 

nobilis*) 
AF051855 

 Hypophthalmichthys molitrix AF051866 
 Hampala macrolepidota HM536790 
 Osteochilus hasselti JQ346148 
 Rasbora elegans HM224350 
 Systomus sophore (Puntius sophore*) EU241461 
 Ctenopharyngodon idella HM238042 
 Labiobarbus lineatus HM536789 
 Gobio gobio AY953007 
 Carassius auratus GU135604 
 Rutilus rutilus HM560167 
 Megalobrama amblycephala AF051867 
 Megalobrama terminalis AF051872 
 Cirrhinus molitorella GU086538 
   
Order   
Anguilliformes   
Family   
Anguillidae Anguilla mossambica AF074864 
 Anguilla marmorata AF074863 
 Anguilla anguilla AF006714 
 Anguilla japonica AF006702 
 Anguilla malgumora AF006719 
   
  

 
 
 
 

 



 
 

   
Order   
Mugiliformes   
Family   
Mugilidae Mugil cephalus EU036450 
 Liza aurata EF439540 
 Chelon labrosus EF427544 
 Liza affinis EU083808 
 Liza ramada EU224059 
   
Outgroup   
Order   
Salmoniformes    
Family   
Salmonidae  Salmo salar EF584212 
 Oncorhynchus mykiss FJ435601 
 Oncorhynchus kisutch FJ435609 
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There are also instances where the Cytochrome b sequences for some fish host 

species which are present in the GenBank but not suitable for current analysis due to the 

shorteness of the length of the overall comparable segment of the Cytochrome b sequences. 

For example, Cytochrome b sequences of Nemipterus spp., Upeneus spp., Lethrinus 

nebulosus (Forsskål) and Silago sihama (Forsskål) from the GenBank are not included in 

current analysis due to the above mentioned reason. It should also be noted that more 

species have been chosen to provide a stronger relationship tree for the hosts which are 

included in Table 2.5. For example, Siganus javus (Linnaeus), S. canaliculatus (Park) and 

S. virgatus (Valenciennes) are added for the Siganidae; Oxyeleotris selhemi (Macleay), O. 

nullipora (Roberts), O. lineolata (Steindachner) and Butis amboinensis (Bleeker) are added 

for the Eleotridae. Thus, a total of 176 partial Cytochrome b sequences were obtained from 

GenBank to infer the relationship of the fish hosts (Table 2.5). 

 

2.5 Data analysis for morphometric data  

2.5.1 Principal component analysis (PCA)  

PCA was used to analysed morphometric data in this study based on its objectivity 

as a statistical method and its suitability in analysing multivariate data sets (Jolliffe, 2002) 

(see Section 1.4; Chapter 1). In this study, morphometric data with multiple variables were 

analysed using PCA available in R (Version 2.8.1; R Core Development Team 2008). R is 

a language and environment for statistical computing and graphics. It includes an effective 

data handling and storage facility, graphical facilities for data analysis and a well-

developed, simple and effective programming language. R provides a wide variety of 

classical statistical tests viz. principal component analysis (PCA), discriminant analysis 
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(DA), multivariate analysis of variance (MANOVA), biplots, boxtest, time-series analysis, 

classification and clustering. PCA and biplots are the two main analyses used in this study.  

 

PCA was first used to group and differentiate the morphologically highly similar 

Trianchoratus spp. (4 species), Bravohollisia spp. (5 species) and Caballeria spp. (3 

species) based on their total morphometric data sets. The total data set of Trianchoratus 

analysed consist of 15 parameters collected from 448 individuals, whilst for the 

Bravohollisia and Caballeria spp., the total data set consist of 27 parameters measured 

from anchors, bars, marginal hook and copulatory organ from 1039 individuals (Section 

2.4.1). The different morphometric data sets of Bravohollisia and Caballeria species, i.e. 

anchors, bars and copulatory organ data set were also analysed separately to test the 

effectiveness of the different morphological characters in grouping and differentiating the 

Bravohollisia and Caballeria species.  

 

Within group analysis was also done for each of the four Trianchoratus spp., five 

Bravohollisia spp. and three Caballeria spp. based on their morphometric data sets to 

determine if there are any noticeable variations within each of these species (intraspecific 

variations). The possible factors influencing the occurrences of these intraspecific 

variations were also explored. The effects of locality and host factors on the occurrences 

and distribution patterns of intraspecific variations within Trianchoratus spp. were 

investigated. Similar analyses were done to determine if there exist any intraspecific 

variations among the individuals of Bravohollisia and Caballeria species collected from 

Pomadasys hasta of different sizes. This is to test if the presence and distribution of 
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intraspecific variations within Bravohollisia and Caballeria species are affetcted by host 

factors such as host size. 

 

All the results from PCA were presented as scatterplots. Biplots were also used to 

aid interpretation of the principal component (PC) axes and determine the main 

distinguishing characters which differentiate among the different species or individuals. All 

the morphometric data in excel format were imported into R. The R programming scripts 

used to perform PCA and biplots are given in Appendix A. 

2.5.2 Differentiation Index, Φ   

Intraspecific and interspecific differences can be quantified as Differentiation Index, 

Φ. The magnitude of this index provides a measure of the amount of differences among 

species and differences among morphometric variants. The Differentiation Index is 

calculated based on Euclidean distance which is represented by the two principal 

components, the horizontal and vertical components that provide clear clustering of the 

different species or morphometric variants on the PCA scatterplot using R. Euclidean 

distance is used as it is the simplest and most commonly used distance function which can 

be easily measured from the different points (representing different individuals) in the PCA 

scatterplots. 

Comparison between the Differentiation Index of species and morphovariants 

provides a measure for the amount of differences that exist between species and their 

detected morphovariants. This information derived from the differentiation index calculated 

in this study can be used as an attempt to answer the question of how much differences 

must exist before morphovariants can be considered as different species. 
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The Differentiation Index, Φ, for the different species of Bravohollisia, Caballeria 

and Trianchoratus and their morphovariants (Table 3.3 to 3.6) were calculated according to 

the method shown below: 

Geometrically, Φij is the ratio of the square induced by the Euclidean distance 

between the mean of species i and j to the average square induced by the Euclidean distance 

within species i and j. The horizontal and vertical components of the distance are 

represented by the two principal components that provide clear clustering of the different 

species on the PCA plot. The magnitude of Φij therefore provides a measure of the amount 

of between species differentiation relative to within species differentiation.  
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2.6 Analysis of DNA sequences  

The 191 partial 28S rDNA sequences from monogeneans and 176 partial 

Cytochrome b sequences of the fish hosts were edited and aligned with Clustal X 

(Thompson et al., 1997) using default parameter and verified/edited visually by BioEdit 

version 7.0.5.3 (Hall, 1999). The aligned and edited sequences were tested for best-fit 

model of nucleotide substitution and model parameters using Akaike Information Criterion 

as implemented by Modeltest 3.7 (Posada & Crandall, 1998). Model parameters obtained 

include empirical base frequencies, proportion of invariable sites (pinvar), rate matrix 

(rmat) for the selected substitution model and the shape parameter of the gamma 

distribution. 

 

2.6.1 Phylogenetic Analysis Using Parsimony (PAUP*) 

The relationships of the dactylogyridean monogeneans and fish hosts were 

constructed using neighbor-joining (NJ), maximum parsimony (MP) and maximum 

likelihood (ML) method as implemented in PAUP* (version 4.0b10; Swofford, 2002) based 

on the aligned partial 28S rDNA and partial cytochrome b sequences respectively. 

PAUP*4.0b10 is the most widely used software package for the inference of evolutionary 

trees among phylogeneticists (Hall, 2001). Other than the parsimony method, 

PAUP*4.0b10 also support distance matrix and likelihood methods.  

For MP analyses, all characters were unordered and equally weighted. For NJ and 

ML analyses, the selected best-fit model and parameters by Modeltest 3.7 (Posada & 

Crandall, 1998) were used to construct NJ and MP relationship trees. NJ, MP and ML 

relationship trees were built using a faststep search where tree searches in each replication 

were performed using one random-sequence-addition and with no branch swapping 

(Swofford, 2002). Bootstrap procedures (for NJ, MP, and ML analyses) were performed to 
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assess the robustness of the inferred relationships. For NJ and MP analyses, bootstrapping 

were conducted with 10,000 replications while for ML analysis, 100 replications were 

performed due to long computational time.  

A total of 3 relationship trees (NJ, MP and ML) were generated for the 

dactylogyridean monogeneans and also for the fish hosts based on partial 28S rDNA and 

Cytochrome b respectively. The relationship trees generated for the monogenean were used 

to test if the relationships of the dactylogyrideans inferred from molecular data are 

congruent with their relationships based on morphological characteristics, whilst the 

relationship trees generated for the fish hosts are used to determine if there is any 

correlation between the relationships of the dactylogyridean monogeneans and the 

relationships of their hosts (see Section 1.7). All relationship trees were displayed and 

edited using TreeView 1.6.6 (http://taxonomy.zoology.gla.ac.uk/rod/rod.html/).  

The molecular data from the monogeneans and fish hosts obtained in this study and 

GenBank (Sections 2.4.2) were first analysed using PAUP* (version 4.0b10; Swofford, 

2002) in personal computer (PC).  Due to the large amount of molecular data where a total 

of 191 partial 28S rDNA sequences (monogeneans) and 176 partial Cytochrome b 

sequences (fish hosts) were analysed, the computational time needed has become 

unrealistically long which can take up to several weeks to months. Thus, high performance 

computing (HPC) services provided by the University of Malaya High Performance 

Computing (UMHPC) were used in this study to overcome the issue of long computational 

time. All the relationship trees in this study were constructed with the Linux version of 

PAUP*4.0b10 (Swofford, 2002) using a high performance computer (HPC) SGI Altix 1300 

(32 Cores).   
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CHAPTER 3 

RESULTS & DISCUSSION 

MORPHOMETRIC CHARACTERS IN DACTYLOGYRIDEAN 

MONOGENEANS TAXONOMY  

3.1 Introduction  

Currently information on species diversity is based mainly on morphometric 

characters. Morphometric data is used in all species descriptions to date and this can be 

observed in many systematic journals such as Systematic Parasitology for instance. In fact 

almost all species descriptions include range of morphometric information denoting 

observed variations within the species population (Lim, pers. com.). Although there are few 

analyses done to determine if the variations can be used to statistically differentiate related 

species especially congeners (e.g. Geets et al., 1999; Mariniello et al., 2004; Dmitrieva et 

al., 2007), it is not common in such studies to discuss or determine which variables are of 

species importance (interspecific variations) or which are merely displaying population 

variations (intraspecific variations).  

 

In this study, PCA (see Section 2.5.1) has been used to determine if morphometries 

can be used to differentiate species and the important diagnostic morphometric features in 

differentiating species. The results of the PCA analyses (Section 2.5.1) are presented as 

scatterplots in Figures 3.1 to 3.8, 3.11, 3.12, 3.15, 3.17, 3.19 & 3.21 to 3.23. The main 

distinguishing features are given in Tables 3.1 & 3.2 and biplot figures (Figs. 3.9, 3.10, 

3.13, 3.14, 3.16, 3.18 & 3.20). In order to decide whether the morphovariants within the 

species populations are not different species, it is necessary to determine the range of 

variations that are present for each morphovariant group within species population and 
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amount of variations between species in these natural population by calculating the 

Differentiation Indices, Φ (see Section 2.5.2) and the results are tabulated in Tables 3.3 to 

3.6. The spread of the scatterplots for each species is also examined to determine the 

number of morphovariant groups within the species population and the morphometric 

characteristics that delimit these morphovariant groups. Another task is to determine the 

factors (such as micro- and macro-environment) that give rise and affect the 

morphovariants within a species population. To do this the distribution of morphovariants 

in the different host individuals is mapped out as in Tables 3.7 & 3.8 and will be discussed 

in Section 3.4 of this chapter. 

 

3.2 PCA scatterplots and biplots for 12 monogenean species based on morphometric 

data (Figs. 3.1 – 3.10) 

The results of the PCA analyses (in R statistical software; see Section 2.5.1) of the 

morphometric data (see Section 2.4.1) from two types of species populations, co-existing 

monogenean species of Bravohollisia Bychowsky & Nagibina, 1970 and Caballeria 

Bychowsky & Nagibina, 1970 from Pomadasys hasta (Bloch) as well as congeneric 

monogenean species of Trianchoratus Price & Berry, 1966 from a group of related channid 

host species are presented as scatterplots and biplots (Figs. 3.1 – 3.10).  

 

 

 

 

 



76 
 

3.2.1 Interspecies morphometric variations 

The results of the scatterplots and biplots generated from the morphometric data of 

744 individuals of Bravohollisia, 295 individuals of Caballeria and 448 individuals of 

Trianchoratus (see Section 2.4.1) are given in Figs. 3.1 to 3.10. In the analyses for the 

Trianchoratus, only the morphometric data for the anchors are used. The morphometric 

data for the other features are not used because bars are absent and the copulatory organs 

are subjected to distortion due to orientations and hence are difficult to measure (see Tan et 

al., 2010).   

3.2.1.1 PCA scatterplots for Bravohollisia and Caballeria species 

3.2.1.1.1 PCA scatterplots for Bravohollisia and Caballeria species based on 

morphometric data of all hard parts 

The 1039 individuals of Bravohollisia and Caballeria individuals are differentiated 

into eight groups, with five groups of Bravohollisia and three groups of Caballeria (Fig. 

3.1). Four of the Bravohollisia groups correspond to four Bravohollisa spp., with 150 

specimens as B. rosetta, 180 specimens as B. reticulata, 150 specimens as B. gussevi and 

150 specimens as B. kritskyi. However, there is one group of Bravohollisia individuals (115 

specimens) which does not correspond to any previously described Bravohollisia spp. from 

Pomadasys hasta (see Lim, 1995b). Current results have shown that these 115 specimens 

are a previously unknown Bravohollisia species and are different from B. kritskyi, B. 

rosetta, B. reticulata and B. gussevi (Fig. 3.1). Thus, this previously unknown 

Bravohollisia species from P. hasta is recognised as a new species and referred to as 

Bravohollisia n. sp. from here on.   
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Figure 3.1 PCA plot of five Bravohollisia and three Caballeria species. The horizontal and 

vertical barplots indicate one-dimensional summary of the PC axes. 
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The other remaining three groups observed in the PCA scatterplot of Figure 3.1 

correspond to the three Caballeria spp., C. pedunculata, C. intermedius and C. liewi. The 

C. pedunculata is clearly shown to be separated from the C. liewi and C. intermedius while 

the individuals of C. liewi and C. intermedius are shown to be partially overlapped. 

Nonetheless, current PCA result has clearly shown that the Bravohollisia species can be 

effectively differentiated from the Caballeria species based on their morphometric data. 

These results provide evidence which confirmed the observation by Lim (1995b) that 

Bravohollisia and Caballeria are two distinct and valid genera. Thus current results refute 

the suggestion by Wu et al. (2007a) to combine the Bravohollisia and Caballeria into one 

genus mainly based on their similar copulatory organ characters. 

 

3.2.1.1.2 PCA scatterplots of Bravohollisia and Caballeria species based separately on 

anchors, bars and copulatory organ  

The morphometric data from each of the different morphological characters, i.e. 

anchors, bars and copulatory organ of Bravohollisia and Caballeria species are analysed 

separately using PCA (see Section 2.5.1). This is to show the variations in each of these 

different morphological characters and their effectiveness in differentiating the 

Bravohollisia and Caballeria species.  

 

By using morphometric data from anchors, the individuals of Bravohollisia spp. are 

separated into four groups on the scatterplots which correspond to B. reticulata, B. rosetta, 

B. gussevi and the Bravohollisia n. sp. – B. kritskyi group (Fig. 3.2). Thus, morphometric 

data from anchors did not manage to differentiate the Bravohollisia n. sp. – B. kritskyi 

group. From analysis of morphometric data of bars, the individuals of different 

Bravohollisia spp. are not fully resolved and no distinct groups are formed (Fig. 3.3). 
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Lastly, the analysis of morphometric data from copulatory organ is shown to differentiate 

the Bravohollisia individuals into five distinct groups which correspond to the each of the 

five respective Bravohollisia species, i.e. B. rosetta, B. reticulata, B. gussevi, B. kritskyi 

and Bravohollisia n. sp. (Fig. 3.4). Thus, this study shows that the copulatory organ is the 

only morphological character which can be effectively used to differentiate among all the 

five Bravohollisia species. 

 

From the analysis of morphometric data of anchors, the Caballeria individuals are 

differentiated into three groups, i.e. C. intermedius, C. liewi and C. pedunculata (Fig. 3.5). 

However, analyses of morphometric data from bars (Fig. 3.6) and copulatory organ (Fig. 

3.7) showed the individuals of Caballeria can only be separated into two groups, i.e. C. 

liewi group and the C. intermedius – C. pedunculata group from the analysis of 

morphometric data of bars while C. pedunculata group and the C. intermedius – C. liewi 

group can be observed from the analysis of morphometric data of copulatory organ. These 

results showed that anchors are the major distinguishing morphological character which can 

be effectively used to differentiate among these three Caballeria species. 
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Figure 3.2 PCA plot of the five Bravohollisia species using morphometric data from dorsal and 
ventral anchors. The horizontal and vertical barplots indicate one dimensional summary of the PC 
axes. 

 

Figure 3.3 PCA plot of the five Bravohollisia species using morphometric data from dorsal and 
ventral bars. The horizontal and vertical barplots indicate one dimensional summary of the PC 
axes. 
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Figure 3.4 PCA plot of the five Bravohollisia species using morphometric data from copulatory 
organ. The horizontal and vertical barplots indicate one dimensional summary of the PC axes. 

 

Figure 3.5 PCA plot of the three Caballeria species using morphometric data from dorsal and 
ventral anchors. The horizontal and vertical barplots indicate one dimensional summary of the PC 
axes. 
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Figure 3.6 PCA plot of the three Caballeria species using morphometric data from dorsal and 
ventral bars. The horizontal and vertical barplots indicate one dimensional summary of the PC 
axes. 

 

Figure 3.7 PCA plot of the three Caballeria species using morphometric data from copulatory 
organ. The horizontal and vertical barplots indicate one dimensional summary of the PC axes.



 
 

3.2.1.2 PCA scatterplots for Trianchoratus spp. based on morphometric data of 3-

developed anchors 

The PCA scatterplot (Fig. 3.8) shows the 448 individuals of Trianchoratus are 

differentiated into four groups which correspond to four different Trianchoratus 

species:  119 individuals as T. malayensis, 159 as T. pahangensis, 145 as T. ophicephali 

and 25 as T. longianchoratus. 

 

Figure 3.8 PCA plot of four species of Trianchoratus. The horizontal and vertical 
barplots indicate one-dimensional summary of the PC axes. 

 

 

 

 

 

3.2.1.3 Biplots of morphometric data  



 
 

The biplots indicate that morphometric measurements from the copulatory organ 

are the main distinguishing features for the five species of Bravohollisia and three 

species of Caballeria (Fig. 3.9; Table 3.1) while inner length and outer length of the 

three well-developed dorsal anchor (IL3 and OL3) are the main distinguishing features 

for the four species of Trianchoratus (Fig. 3.10; Table 3.2). Thus, current results from 

the scatterplots showed that morphometric data can be used to differentiate the five 

species of Bravohollisia and three species of Caballeria (Fig. 3.1), four species of 

Trianchoratus (Fig. 3.2) and the distinguishing or diagnostic features among the 

different species can also be determined statistically. 
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Figure 3.9 Biplot of the first two principal components for the five Bravohollisia and three 
Caballeria species with mean coordinates of the species indicated. 
 
 



 
 

 
Figure 3.10 Biplot of the first two principal components for the four species of 
Trianchoratus, with mean coordinates of the species indicated. Only vectors (IL1, OL1, 
IR1, OR1 and pt1) from one ventral anchor are shown.  
 

3.2.2 Intraspecific morphometric variations  

3.2.2.1 Bravohollisia and Caballeria species using morphometric data of all hard 

parts  

The PCA scatterplots resulted from the analysis of morphometric data from 

individuals within each Bravohollisia and Caballeria species are presented in Figure 

3.11 and 3.12. From the PCA scatterplots, it can be observed that individuals within 

Bravohollisia rosetta (150 specimens), B. reticulata (180 specimens), B. gussevi (150 

specimens), Bravohollisia n. sp. (115 specimens), Caballeria liewi (150 specimens), C. 

intermedius (86 specimens) and C. pedunculata (59 specimens) are separated into two 

groups along PC1. This shows two groups of intraspecific morphovariants are present 

within these Bravohollisia and Caballeria species. Individuals which formed these two 

groups of morphovariants are found to correspond to the size of the fish host. This 

indicates that the presence of these morphovariants are host-size dependent.  

 

For B. rosetta, B. reticulata and B. gussevi, individuals from small fish host 

formed a group distinct from individuals from medium and large fish host (Fig. 



 
 

3.11).The major distinguishing character for these two host dependent groups is the 

total length of copulatory organ (COTL) (Fig. 3.13; Table 3.1). For C. intermedius, C. 

liewi and C. pedunculata, individuals from large fish host formed a distinct group from 

individuals of small and medium fish host (Fig. 3.12). The major distinguishing 

characters for these two host dependent groups are the total length of copulatory organ 

(COTL) and the length of dorsal and ventral bars (BL1 & BL2) for C. intermedius and 

C. liewi, whilst for C. pedunculata, the major distinguishing character is dorsal and 

ventral bars (BL1 & BL2) (Fig. 3.14; Table 3.1). 

 

Although it is shown that there are also two groups of morphovariants present 

within Bravohollisia n. sp., the distribution pattern of individuals from fish hosts of 

different sizes is different for Bravohollisia n. sp. where the individuals from small fish 

hosts and the individuals from large fish host form two distinct groups while individuals 

from medium fish hosts are found to overlap with individuals from both the small and 

large fish hosts (Fig. 3.11). This means that the medium fish host possesses both the two 

morphovariants present within Bravohollisia n. sp. According to biplot of the PCA 

scatterplot, the major distinguishing character for these two host dependent 

morphometric variants from Bravohollisia n. sp. is the total length of copulatory organ 

(COTL) (Fig. 3.13; Table 3.1). 

 

 

 

Lastly for Bravohollisia kritskyi, no cluster is observed from the PCA scatterplot 

(Fig. 3.11). There are no distinct separation of individuals along both, the PC1 and PC2. 

This means morphometric variation is not present within individuals of B. kritskyi 

collected from fish hosts of different sizes.  



 
 

 

Figure 3.11 Individual PCA plots of the five Bravohollisia species, with host size information 
(Fish standard length: 40-100mm=small, 100-150mm=medium, 150-200mm=large). Except for 
B.kritskyi, individuals in the other four species generally show separation into two groups: small 
and medium-large along PC1, which is an index of overall size. 
 
 
 



 
 

 
 

 
Figure 3.12 Individual PCA plots within each of the three Caballeria species, with host 
size information (Fish standard length: 40-100mm=small, 100-150mm=medium, 150-
200mm=large). 



 
 

 
 
 

 
Figure 3.13 Biplots of the PCA plot for each of the five Bravohollisia species with host 
size variation. 
 
 
 
 
 

 



 
 

 
Figure 3.14 Biplots of the PCA plot for each of the three Caballeria species with host 
size variation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 

Table 3.1 Interspecies and intraspecies grouping observed for the Bravohollisia and 
Caballeria species with their distinguishing morphometric characters and possible 
factors affecting the intraspecific variants. 
Monogenean spp. 
(Bravohollisia and 
Caballeria spp.) 

Number of groups 
observed in PCA 
scatterplot 

Distinguishing 
morphometric 
characters 

Factors 
affecting 
intraspecific 
variants 

Interspecies variations:    
Total datasets (n=1039 
specimens) : All 27 
parameter measured 

   

5 Bravohollisia spp. : B. 
rosetta (n=150), B. 
reticulata (n=180), B. 
gussevi (n=150), B. kritskyi 
(n=150), Bravohollisia n. 
sp. (n=115) and 3 
Caballeria spp. : C. liewi 
(n=150), C. intermedius 
(n=86), C. pedunculata 
(n=59) 
 

 
 
 

8 groups 
 
 
 
 
 
 
 
 
 

 
 
 
Copulatory organ 

 
 
 
- 

    
Selected datasets:    
5 Bravohollisia spp.: B. 
rosetta (n=150), B. 
reticulata (n=180), B. 
gussevi (n=150), B. kritskyi 
(n=150), Bravohollisia n. 
sp. (n=115) 

   

i)Anchors, bars, marginal 
hooks 

4 groups (Bravohollisia 
n. sp. - B. kritskyi group 
not resolved) 
 

Inner length of 
dorsal anchors 
(ILD1 & ILD2) 

- 

ii)Bars No distinct groups are 
formed 
 

- - 

iii)Anchors 4 groups (Bravohollisia 
n. sp. - B. kritskyi group 
not resolved) 

Inner length of 
dorsal anchors 
(ILD1 & ILD2) 

- 

iv)Copulatory organ 
 
 
 
 
 
 
 
 
 
 
 
 
 

5 groups (all 5 
Bravohollisia spp. are 
distinguished) 
 

Total length of 
copulatory organ 
(COTL) 
 
 
 
 
 
 
 
 

- 



 
 

    

3 Caballeria spp. : C. liewi 
(n=150), C. intermedius 
(n=86), C. pedunculata 
(n=59) 

   

i)Anchors, bars, marginal 
hooks 

2 groups (C. intermedius 
- C. pedunculata group 
not resolved) 

Inner length of 
dorsal anchors 
(ILD1 & ILD2) 
and length of 
dorsal bar (BL1) 
 

- 

ii)Bars 2 groups (C. intermedius 
- C. pedunculata group 
not resolved) 

length of dorsal 
bar (BL1) 
 
 
 
 

- 

iii)Anchors 3 groups (all 3 
Caballeria spp. are 
distinguished) 

Inner length of 
dorsal anchors 
(ILD1 & ILD2) 
 

- 

iv)Copulatory organ 2 groups (C. intermedius 
– C. liewi group not 
resolved) 

Total length of 
copulatory organ 
(COTL) 
 
 
 
 

- 

    

Intraspecies variations:    

Bravohollisia rosetta 
(n=150) 

2 groups Total length of 
copulatory organ 
(COTL) 
 

Host size 

B. reticulata(n=180) 2 groups Total length of 
copulatory organ 
(COTL) 
 

Host size 

B. gussevi (n=150) 2 groups Total length of 
copulatory organ 
(COTL) 

Host size 

B. kritskyi (n=150) 
 
 
 
 
 
 
 
 
 
 
 

No distinct groups are 
formed 
 
 
 
 
 
 

- - 



 
 

Bravohollisia n. sp. (n=115) 2 groups Total length of 
copulatory organ 
(COTL) 
 

Host size 

Caballeria liewi (n=150) 2 groups Total length of 
copulatory organ 
(COTL) & length 
of dorsal and 
ventral bar (BL1 
& BL2) 
 

Host size 

C. intermedius (n=86) 2 groups Total length of 
copulatory organ 
(COTL) & length 
of dorsal and 
ventral bar (BL1 
& BL2 
 

Host size 

C. pedunculata (n=59) 2 groups Total length of 
copulatory organ 
(COTL) & length 
of dorsal and 
ventral bar (BL1 
& BL2 

Host size 

 

 

3.2.2.2 Trianchoratus species using morphometric data of 3-developed anchors 

 The PCA scatterplots generated based on morphometric data of 3-developed 

anchors for each of the four Trianchoratus species show that there are 3 groups 

observed within T. malayensis and T. pahangensis, 2 groups within T. ophicephali and 

no distinct group can be observed for T. longianchoratus (Figs. 3.15, 3.17, 3.19 & 3.21). 

These results show intraspecific morphovariants are present within T. malayensis, T. 

pahangensis and T. ophicephali.  

 

 

 

 

 



 
 

The intraspecific morphovariants of T. malayensis and T. ophicephali are shown 

to be locality dependent. In other words, individuals of T. malayensis and T. ophicephali 

from different locality possess three well-developed anchors of different sizes. For 

example, T. malayensis from Bukit Merah has the largest overall size of the three well-

developed anchors, followed by T. malayensis from Tasik Bera with medium size 

anchors and T. malayensis from Endau-Rompin, which has the smallest size anchors 

(Fig. 3.15). The distinguishing character for these three locality-dependent 

morphovariants is the inner length of the well-developed dorsal anchor (IL3) (Fig. 3.16; 

Table 3.2). For T. ophicephali, the intraspecific morphovariants from the two localities, 

Bukit Merah and Tasik Bera (Fig. 3.17) are distinguished by two main traits: IL1 and 

IL3 (Fig. 3.18; Table 3.2).  

 

Figure 3.15 PCA plot of T. malayensis, with geographical origin of data indicated. The 
horizontal and vertical barplots indicate one-dimensional summary of the PC axes.  



 
 

 
Figure 3.16 Biplot of the first two principal components for T. malayensis at three 
locations, with mean coordinates of the morphovariants. Only vectors (IL1, OL1, IR1, 
OR1 and pt1) from one ventral anchor are shown.  

 
Figure 3.17 PCA plot of T. ophicephali with geographical origin of data indicated. The 
horizontal and vertical barplots indicate one-dimensional summary of the PC axes. 



 
 

 
Figure 3.18 Biplot of the first two principal components for T. ophicephali, with mean 
coordinates of the morphovariants at two locations indicated. Only vectors (IL1, OL1, 
IR1, OR1 and pt1) from one ventral anchor are shown.  

 

The three intraspecific morphovariants within T. pahangensis can be observed to 

be present in all three localities, Bukit Merah, Tasik Bera and Endau-Rompin (Fig. 

3.19). This shows that the morphovariants are not dependent on locality. It should be 

noted that the T. pahangensis individuals from two C. lucius (Host 1 and Host 2) from 

Bukit Merah are colour-coded in Figure 3.19. The scatterplot (Fig. 3.19) shows that 

Host 1 possess variant 1 and variant 3 while Host 2 has variant 2 and variant 3. These 

results suggest that intraspecific morphovariants of T. pahangensis appear to be 

dependent on host factors. The biplot indicates that the outer length and inner root of the 

ventral anchors (OL1 and IR1) are the distinguishing characters (Fig. 3.20; Table 3.1) 

for these host dependent morphovariants. 



 
 

 

Figure 3.19 PCA plot of T. pahangensis with geographical origin of data indicated. Two host 
individuals from Bukit Merah are also labeled (Black dots = Host 1; Grey dots = Host 2) to 
show the distribution pattern of morphovariants.  

 
Figure 3.20 Biplot of the first two principal components for T. pahangensis, with mean 
coordinates of the morphovariants at three locations. Only vectors (IL1, OL1, IR1, OR1 and 
pt1) from one ventral anchor are shown.  

 

 

 

Variant 1 Variant 2 

Variant 3 



 
 

Even though intraspecific morphovariants appear to be present within the PCA 

scatterplot of T. longianchoratus (Fig. 3.21), it is difficult to define the variants due to 

small sample size (25 specimens) and thus it would be premature to declare the number 

of intraspecific morphometric variants present until more samples of T. longianchoratus 

are analysed. Therefore, it is shown that larger sample size is a necessary requirement to 

statistically define intraspecific morphometric variants within species populations.  

 

 

Figure 3.21 PCA plot of T. longianchoratus. The horizontal and vertical barplots indicate 
one-dimensional summary of the PC axes. 
 
 
 
 
 
 
 
 
 
 
 



 
 

Table 3.2 Interspecies and intraspecies grouping observed for the four Trianchoratus 
species with their distinguishing morphometric characters and possible factors affecting 
the intraspecific variants. 
Monogenean spp. 
(Trianchoratus spp.) 

Host spp. Number of 
groups observed 
in PCA 
scatterplot 

Distinguishing 
morphometric 
characters 

Factors 
affecting 
intraspecific 
variants 

Interspecies 
variations: 

    

4 Trianchoratus spp. 
(n=448): T. malayensis 
(n=119), T. 
ophicephali (n=145), 
T. pahangensis 
(n=159), 
T.longianchoratus 
(n=25)  

Channa 
lucius & C. 
striata 

4 groups Inner length 
(IL3) and outer 
length (OL3) of 
the well-
developed 
dorsal anchor 

- 

Intraspecies 
variations: 

    

T. malayensis (n=119) Channa 
lucius 

3 groups Inner length 
(IL3) of the 
well-developed 
dorsal anchor 

Locality  

T. ophicephali (n=145) C. striata 2 groups Inner length of 
the well-
developed 
dorsal 
anchor(IL3) and 
ventral anchor 
(IL1) 

Locality  

T. pahangensis 
(n=159) 

C. lucius 3 groups Outer length 
(OL1)and inner 
(IR1) root of 
well-developed 
ventral anchor 

Host  

T.longianchoratus 
(n=25) 

C. lucius Needs further 
confirmation 

- - 

  

 

 

 

 

 

 

 



 
 

3.3 Amount of variations between and within congeneric species (differentiation 

index, Φ) 

In this section, the variations between different species and morphovariants of 

Bravohollisia, Caballeria and Trianchoratus are quantified respectively as interspecies 

and intraspecies differentiation index, Φ (see Section 2.5.2). These interspecies and 

intraspecies differentiation indexes are compared to show the amount of variations 

which exist between species and morphovariant and these results can be used to answer 

the question of how much variation should be present amongst different groups of 

morphologically similar organisms before they can be considered to be different 

species.  

 

3.3.1 Bravohollisia and Caballeria species 

 For Bravohollisia and Caballeria species, the value of interspecies 

differentiation index ranges from 14 to 192 (Tables 3.3 & 3.4). The smallest value of 

the interspecies differentiation index, Φ = 14, is observed between C. liewi – C. 

intermedius while the highest value, Φ = 192 can be observed from Bravohollisia n. sp. 

– B. rosetta. This result indicates that C. liewi and C. intermedius are morphologically 

most similar among the three Caballeria spp. while Bravohollisia n. sp. and B. rosetta 

are morphologically most different among the five Bravohollisia spp.  

 

 

 

 

 

 

 



 
 

Table 3.3 Matrix of pairwise interspecies differentiation index, Φ, measures among the 
five Bravohollisia species. 
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Table 3.4 Matrix of pairwise interspecies differentiation index, Φ, measures among the 
three Caballeria species. 

 C. intermedius C. liewi C. pedunculata 

C. intermedius 0   

C. liewi 14 0  

C. pedunculata 28 29 0 

 

 

For the morphovariants of Bravohollisia and Caballeria species, the highest 

value for intraspecies differentiation index is only 7.3 (Tables 3.5). Comparison 

between the interspecies and intraspecies differentiation index shows the values of 

interspecies differentiation index among different Bravohollisia species (ranges from 19 

to 192) and Caballeria species (ranges from 14 to 29) (Tables 3.3 & 3.4) are far greater 

than the intraspecies differentiation index among the morphovariants within 

Bravohollisia species (ranges from ≥ 1 to 7.3) and Caballeria species (ranges from ≥ 1 

to 6.8) (Tables 3.5).  

 

 

 

 



 
 

Table 3.5 Matrix of pairwise differentiation index, Φ, measures among morphovariants within 
Bravohollisia, Caballeria and Trianchoratus species shown accordingly with variation in host 
size and locality.  
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3.3.2 Trianchoratus species 

 For Trianchoratus, comparison between the interspecies and intraspecies 

differentiation index are done with the example of T. malayensis. Results which are 

similar to those for Bravohollisia and Caballeria species can be observed where the 

values of interspecies differentiation index among the four Trianchoratus species which 

ranges from 28 to 139 (Table 3.6) are found to be far greater than the intraspecies 

differentiation index among the morphovariants within T. malayensis which ranges 

from ≥ 1 to 3.9 (Table 3.5). Thus, there are also marked differences between species and 

morphovariants of Trianchoratus.  

 

Table 3.6 Matrix of pairwise interspecies differentiation index, Φ, measures among the four 
Trianchoratus species.  
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3.4 Mapping of the distribution patterns of the intraspecific morphovariants  

Current results showed the presence of morphovariants within the community of 

3 genera of monogenean species, i.e. Bravohollisia, Caballeria and Trianchoratus 

(Figs. 3.11, 3.12, 3.15, 3.17 & 3.18). The numbers of morphovariants present for each 

of these monogenean species are different and the distribution of the various 

morphovariants seems to be affected by different factors such as locality and host (host 

size) (Sections 3.2.1.2 & 3.2.2.2). For example, Bravohollisia n. sp., B. rosetta, B. 

reticulata, B. gussevi, Caballeria intermedius, C. liewi and C. pedunculata possess two 

morphovariants which are influenced by host size (Table 3.1), Trianchoratus 

ophicephali possess two locality dependent morphovariants while T. malayensis and T. 

pahangensis possess three morphovariants which are locality and host dependent, 

respectively (Table 3.2). For the non-locality dependent morphovariants from T. 

pahangensis, a breakdown of the different morphovariants according to host was done 

to examine if the different morphovariants can be found on the same host (with similar 

macro- and micro-environment). Similar analysis was also done for the Bravohollisia n. 

sp. where its medium size hosts are observed to possess the two types of 

morphovariants (see Section 3.2.2.2). 

 

The breakdown of the different morphovariants according to host shows the 

presence of more than one morphovariant of T. pahangensis within a Channa lucius 

host. This is shown in Table 3.7 where Host 1 from Bukit Merah, Host 5 from Endau 

Rompin, Host 10 and Host 12 from Tasik Bera possess variant 1 and variant 3; Host 2 

from Bukit Merah possesses variant 2 and variant 3; Host 11 and Host 13 from Tasik 

Bera possess variant 1 and variant 2; Host 4 from Bukit Merah possesses all 3 variants. 

Similar results can also be observed in Bravohollisia n. sp. from medium size hosts 



 
 

where both the morphovariants of Bravohollisia n. sp. are present in a Pomadasys hasta 

host. This is exemplified by Host 1, Host 5 and Host 6 which possess variant 1 and 

variant 2 of Bravohollisia n. sp. (Table 3.8). 

 

Table 3.7 Distribution patterns of morphovariants of Trianchoratus pahangensis found 
in fish individuals from different localities. 
Host Locality Trianchoratus pahangensis 

Variant 1 Variant 2 Variant 3 

Channa lucius 1 Bukit Merah √ - √ 

Channa lucius 2 Bukit Merah - √ √ 

Channa lucius 3 Bukit Merah - √ - 

Channa lucius 4 Bukit Merah √ √ √ 

Channa lucius 5 Endau-Rompin √ - √ 

Channa lucius 6 Endau-Rompin - - - 

Channa lucius 7 Endau-Rompin - √ - 

Channa lucius 8 Endau-Rompin - - - 

Channa lucius 9 Tasik Bera - √ - 

Channa lucius 10 Tasik Bera √ - √ 

Channa lucius 11 Tasik Bera √ √ - 

Channa lucius 12 Tasik Bera √ - √ 

Channa lucius 13 Tasik Bera √ √ - 

 

 

 

 

 

 



 
 

 

Table 3.8 Distribution patterns of morphovariants of Bravohollisia n. sp. found in fish 
individuals of different sizes. 
Host size (Fish 

standard length) 

Host Bravohollisia n. sp. 

Variant 1 Variant 2 

Medium (100-

150mm) 

Pomadasys hasta 1 √ √ 

Pomadasys hasta 2 - - 

Pomadasys hasta 3 - √ 

Pomadasys hasta 4 - - 

Pomadasys hasta 5 √ √ 

Pomadasys hasta 6 √ √ 

Pomadasys hasta 7 - - 

Pomadasys hasta 8 - - 

Pomadasys hasta 9 - - 

Pomadasys hasta 10 √ - 

Pomadasys hasta 11 √ - 

Pomadasys hasta 12 √ - 

Pomadasys hasta 13 √ - 

Pomadasys hasta 14 √ - 

 

Thus, current results indicate that these morphovariants with similar macro- and 

micro-environment (within single host) could be genetically different. Despite being 

hermaphrodite, the monogeneans have been shown to prefer mating via cross 

fertilisation (Lim, 2002). This phenomenon most probably has provided the basis for 

variation in genetic materials which subsequently leads to the occurrences of 

morphovariants with possible genetic differences. 

 



 
 

 

3.5 Summary of chapter  

Current results show that morphometries of the sclerotised hard parts of the 

monogenans can be used for species differentiations as shown in the above statistical 

analyses (PCA). The important diagnostic features can also be detected statistically in 

the biplots (Section 3.2.1). PCA is also effective in removing subjectivity in species 

differentiation based on morphologies. This study is part of a database initiative which 

enables the storage of morphometric data and the potential use of the stored data for 

species differentiation can be done once the system is complete and such a system can 

serve as a convenient model of species classification tool in the future for assignments 

of species. However such an automatic system to aid species identification needs the 

authentication by large amount of data.  

 

Morphometric variations within a species population or related group of species 

can be detected when large data sets are available. This is shown within the five species 

of Bravohollisia, three species of Caballeria and four species of Trianchoratus (Section 

3.2.2). The present distribution patterns of the morphovariants (Tables 3.1 & 3.2) 

indicates that there are two morphovariants in B. rosetta, B. reticulata, B. gussevi, 

Bravohollisia n. sp, C. liewi, C. intermedius, C. pedunculata, T. ophicephali and three 

morphovariants in T. malayensis and T. pahangensis. The numbers of morphovariants 

present within each of these monogenean species vary possibly due the amount of 

genetic diversity within each species population (Lim, 2002; Lim pers. com.) (see 

General Discussion). 

 

 

 



 
 

The differentiation indices, Φ basically provides us with an estimated amount of 

variations that exist between different species and amongst different morphovariants 

within species population (Section 3.3). The differentiation indices thus suggested that 

the range for interspecific variations is 14 – 192 and for intraspecific variations, it is 1 – 

7.3 (Tables 3.5 – 3.8). These amount of variations existing between species and between 

morphovariants show that there are some minimum genetic differences must be 

achieved before complete speciation occurs (Lim, pers. com.) (see General Discussion). 

 

The statistical analyses shown in this study requires morphometric data from 

many specimens for accurate results or else one can mistake morphovariants as different 

species. The information resulting from morphometric analysis of Trianchoratus is 

already published in Tan et al. (2010) (Appendix C).  The results obtained for the co-

existing congeners and non-congeners of Bravohollisia and Caballeria on Pomadasys 

hasta will be published soon.  

 

3.6 Limitations  

There are limitations to this chapter in (1) the number of specimens collected for 

morphometric measurements and (2) the lack of morphometric data to map the 

distribution patterns of the different morphovariants within a monogenean population.  

These limitations are elaborated as below: 

 

 

 

 

 



 
 

1. There is a need to collect morphometric data from larger sample size (more specimens).  

The statistical analyses shown in this study requires morphometric data from large 

sample size for accurate results, especially to determine the presence of morphovariants 

within a monogenean species population. As exemplified in this study, it is difficult to 

determine the presence of intraspecific morphovariants of Trianchoratus 

longianchoratus due to small sample size (Section 3.2.2.2).   

2. In order to map the distribution patterns of morphovariants, morphometric data needs to 

be collected from all the monogeneans within a population. This has been done for the 

four Trianchoratus species in this study (Section 3.2.2.2). However, due to their large 

population size (with an average ranges from 500 to over 1000 individuals), not all the 

Bravohollisia and Caballeria individuals within a population are measured and 

analysed. Future studies which measure and analyse all the Bravohollisia and 

Caballeria individuals within a population should be carried out to fully map out the 

distribution patterns of morphovariants of Bravohollisia and Caballeria species. 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

CHAPTER 4 

RESULTS & DISCUSSION 

MOLECULAR CHARACTERISTICS (PARTIAL 28S rDNA) OF 

DACTYLOGYRIDEAN MONOGENEANS  

 

4.1 Introduction 

This chapter deals with the results of the analysis of molecular data (see Section 

2.6) of monogenean species in the order Dactylogyridea (see Section 1.4 & Table 2.4). 

As already noted molecular data are mainly used to infer relationships amongst the 

different groups of organisms (see Section 1.3.2). Many of the previous molecular 

studies on relationships focus only on certain dactylogyridean groups (e.g. Mendlová et 

al., 2011; Šimková et al., 2004; Wu et al., 2006; see also Table 1.1). Even in the rare 

attempts to determine the relationships of various families and subfamilies within the 

Dactylogyridea, each subfamily and family was represented by very few species as 

exemplified by 2 Dactylogyrus spp. and 2 Thaparocleidus spp. were used to represent 

Dactylogyrinae Bychowsky, 1933 and Ancylodiscoidinae Gusev, 1961 respectively, in 

Šimková et al. (2003) and Šimková et al. (2006).  

 

One of the aims of this study is to determine how the different members of the 

dactylogyrideans are grouped together based on molecular data (partial 28S rDNA). The 

relationships of the monogeneans and status of the different families within the 

Dactylogyridea are also examined using information from partial 28S rDNA. In this 

study, partial 28S rDNA (the most available sequences for monogeneans) (see Table 

1.2) from 190 dactylogyridean species obtained in the course of this study and from the 



 
 

GenBank (see Section 2.4.2) are used to reconstruct the relationship trees of the 

dactylogyrideans.  

 

To avoid any controversies arising from the use of terms that might suggest 

support either for cladistic or evolutionary systematics (at least for the time being) 

neutral term such as relationship tree is used for the dendogram generated instead of 

cladogram or phylogram, although PAUP*4.0b10 (a software usually used by cladists) 

is used to generate dendogram in this study.  

 

4.2 Partial 28S rDNA sequences of dactylogyrideans 

In this study, sequence alignment of the partial 28S rDNA of 191 monogenean 

species with 306 alignable positions shows there are 218 variable sites and 192 of these 

variable sites are considered to be parsimony informative. Based on Modeltest 3.7, the 

current dataset of aligned sequences resulted in the best likelihood score for the 

Tamura-Nei model with invariable sites and rate heterogeneity (TrN+I+G). Base 

frequencies are unequal where A=0.2611, C =0.1631, G=0.2097, T=0.3662 and the 

estimated proportion of invariable sites (pinvar) is 0.2546. The rate matrix (rmat) for the 

selected substitution model is [A-C]=1.0000, [A-G]=3.3425, [A-T]=1.0000, [C-

G]=1.0000, [C-T]=3.5677, [G-T]=1.0000. The shape parameter of the gamma 

distribution is α = 0.7627. This model and parameters are used in NJ and ML analyses 

(see Section 2.6.1).  

 

 



 
 

4.3 Monogenean groups in MP, ML and NJ trees (Figs. 4.1, 4.2, 4.3 & 4.4) 

Three relationship trees, i.e. MP, ML and NJ trees are generated in this study 

(Figs. 4.1, 4.2, 4.3). Eight major groups are observed in MP, ML and NJ relationship 

trees generated (Figs. 4.1, 4.2, 4.3 & 4.4). In MP and NJ relationship trees (Figs. 4.1 & 

4.3), there are seven major nodes whilst in the ML relationship tree (Fig. 4.2), there are 

six major nodes (Fig. 4.4). To facilitate discussion, the groups formed in all the three 

relationship trees are named according to the families of the group (see below). 

 

4.3.1 MP, ML and NJ trees (Figs. 4.1, 4.2 & 4.3; Table 4.1) 

In MP, ML and NJ relationship trees, memberships for each of the eight 

observed groups are the same and the compositions of each group are found to 

correspond to the different dactylogyridean families (see also Table 4.1). The eight 

observed groups are the Sundanonchidae–Tetraonchidae group, Diplectanidae–

Pseudomurraytrematidae group; Ancyrocephalidae I group, Ancyrocephalidae II group, 

Ancyrocephalidae III–Calceostomatidae group, Ancylodiscoididae–

Neocalceostomatidae group, Dactylogyridae group and Heteronchocleididae–

Pseudodactylogyridae group at different nodes in the relationship trees (Figs. 4.1, 4.2, 

4.3 & 4.4).  

 

From the MP, ML and NJ relationship trees (Figs. 4.1, 4.2, 4.3 & 4.4), it can be 

observed that the Sundanonchidae–Tetraonchidae group separated early at Node 1 (N1) 

while the Diplectanidae–Pseudomurraytrematidae group is formed at Node 2 (N2). For 

the Ancylodiscoididae–Neocalceostomatidae group, it is formed at Node 4 (N4) in MP 

and NJ trees (Figs. 4.1 & 4.3) while it can be observed to form sister group with the 

Ancyrocephalidae I group at Node 3 (N3) in ML tree (Fig. 4.2). The Dactylogyridae 



 
 

group is shown to be separated at Node 5 (N5), Node 4 (N4) and Node 6 (N6) in MP, 

ML and NJ trees, respectively (Figs. 4.1, 4.2, 4.3 & 4.4). The Heteronchocleididae–

Pseudodactylogyridae group is formed at Node 5 (N5) in ML and NJ trees (Figs. 4.2 & 

4.3) while in MP tree (Fig. 4.1) it is formed at Node 6 (N6).  

 

Three ancyrocephalid groups, i.e. Ancyrocephalidae I group, Ancyrocephalidae 

II group and the Ancyrocephalidae–Calceostomatidae group, can be observed in the 

MP, ML and NJ relationship trees (Figs. 4.1, 4.2, 4.3 & 4.4). The Ancyrocephalidae I 

group is formed at Node 3 (N3) in MP, ML and NJ trees. The Ancyrocephalidae II 

group and Ancyrocephalidae–Calceostomatidae group are formed at Node 7 (N7) in MP 

and NJ trees (Figs. 4.1 & 4.3) and at Node 6 (N6) in ML tree (Fig. 4.2).  

 

4.4 Memberships in the different family groups in the relationship trees 

A total of eight groups are formed in the MP, ML and NJ relationship trees. As 

noted above these groups are related in a similar manner in the MP, ML and NJ trees 

with only a few exceptions such as the Heteronchocleididae–Pseudodactylogyridae 

group is sister group of Ancyrocephalidae II group and Ancyrocephalidae–

Calceostomatidae group in MP and ML trees while in NJ tree, Dactylogyridae group is 

sister group of Ancyrocephalidae II group and Ancyrocephalidae–Calceostomatidae 

group. Also the Ancyrocephalidae I group and Ancylodiscoididae–Neocalceostomatidae 

group only form sister group in ML tree but not in MP and NJ trees (Figs. 4.1, 4.2, 4.3 

& 4.4). In the section below members of the family groupings will be discussed.  



 
 

                  

(a) Maximum parsimony (MP)               (b)  Maximum likelihood     (ML)                              

                                                                          

                                      Neighbour-joining (NJ) 

Figure 4.4 Simplified tree of (a) maximum parsimony (MP), (b) maximum likelihood (ML) and (c) 
Neighbour-joining (NJ) showing the interrelationships among different families within the order 
Dactylogyridea Bychowsky, 1937 used in this present study. (N1-N7 = major nodes in the relationship trees). 
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Table 4.1 A summary of the major grouping observed in the maximum parsimony (MP), maximum likelihood (ML) and neighbor-joining (NJ)  
relationship trees with the memberships within each of the major group formed. 

Nodes in relationship trees  Groups 
separated at 
each node  

Membership within the groups separated at each node Monogenean family 
within the group   MP ML NJ 

Node 1 
(N1)  

Node 1 
(N1) 

Node 1 
(N1) 

Sundanonchidae
–Tetraonchidae 
group 

Tetraonchus: T. monenteron Diesing, 1858 
 

Tetraonchidae 

Sundanonchus: S. foliaceus Lim & Furtado, 1985, S. triradiacatus Lim & 
Furtado, 1985, S. tomanorum Kritsky & Lim, 1995 and S. micropeltis Lim & 
Furtado, 1985 
 

Sundanonchidae 

Node 2 
(N2)  

Node 2 
(N2) 

Node 2 
(N2) 

Diplectanidae–
Pseudomurraytr
ematidae group 

Pseudorhabdosynochus: P. coioidesis Bu, Leong, Wong, Woo & Foo, 1999, P. 
latesi Tripathi, 1955, P. lantauensis Beverley-Burton & Suriano, 1981, P. 
shenzhenensis Yang, Zeng & Gibson, 2005, P. epinepheli Kritsky & Beverley-
Burton, 1986 
Acleotrema: Acleotrema sp. 
Laticola: L. paralatesi Nagibina, 1976, L. seabasi Wu, Li, Zhu & Xie, 2005, L. 
lingaoensis Yang, Kritsky, Sun, Zhang, Shi & Agrawal, 2006 
Diplectanum: D. veropolynemi Nagibina, 1976, D. grouperi Bu, Leong, Wong, 
Woo & Foo, 1999 and D. penangi Liang & Leong, 1991, D. umbrinum Tripathi, 
1955, D. blairense Gupta & Khanna, 1974 (=Paradiplectanum blairense), D. 
sillagonum Tripathi, 1957 (=Paradiplectanum sillagonum) 
Lobotrema: L. sciaenae Bychowsky & Nagibina, 1977 and Lobotrema sp. 
Lepidotrema: L. longipenis Yamaguti, 1934 
Murraytrema: M. pricei Bychowsky, 1977 (=M. bychowskyi) 
Sinodiplectanotrema: S. malayanum Lim, Tan & Gibson, 2010, 
Sinodiplectanotrema sp.HGY 
Lamellodiscus: L. pagrosomi Murray, 1931, L. spari Zhukov, 1970, L. 
japonicus Ogawa & Eugusa, 1978 and L. acanthopagri Roubal, 1981 
Calydiscoides: C. indianus Karyakarte & Das, 1978, Calydiscoides sp. 
 

Diplectanidae 

Pseudomurraytrema: Pseudomurraytrema sp. 
 

Pseudomurraytrematidae 

Node 3 Node 3 Node 3 Ancyrocephalid Actinocleidus: A. recurvatus Mizelle & Donahue, 1944 Ancyrocephalidae 



 
 

(N3)  (N3) (N3) ae I group Urocleidus: U. similis Mueller, 1936 
Ancyrocephalus: A. paradoxus Creplin, 1839 
Onchocleidus: Onchocleidus sp. 
Cleidodiscus: C. pricei Mueller, 1936 
 

Node 4 
(N4) 

Node 4 
(N4) 

Ancylodiscoidid
ae–
Neocalceostoma
tidae group 

Thaparocleidus: T. notopterus Jain, 1955, T. cochleavagina Gusev & Strelkov, 
1960, T. omegavagina Hwang, 1964, T. obscura Gusev & Strelkov, 1960, T. 
mutabilis Gusev & Strelkov, 1960, T. asoti Yamaguti, 1937, T. magnicirrus 
Gusev & Strelkov, 1960, T. vistulensis Siwak, 1932, T. siluri Zandt, 1924, T. 
infundibulovagina Yamaguti, 1942, T. varicus Akhmerov, 1952, T. 
campylopterocirrus Zeng, 1988 
Cornudiscoides: C. proximus Gusev, 1976, C. facicirrus Lim, 1987, 
Cornudiscoides sp. 
Chauhanellus: C. digitalis Lim, 1994, C. poculus Lim, 1994, C. osteogeneiosi 
Lim, 1994, C. pulutanus Lim, 1994 
Hamatopeduncularia: H. simplex Bychowsky & Nagibina, 1969, H. malayanus 
Lim, 1996, H. isosimplex Lim, 1996, H. venosus Lim, 1996, H. papernai Lim, 
1996, Hamatopeduncularia sp. 
Ancylodiscus: A. malayensis Lim, 1994 
Pseudancylodiscoides: Pseudancylodiscoides sp.HSY1, Pseudancylodiscoides 
sp.HSY3, Pseudancylodiscoides sp.HSY4 
Quadriacanthus: Q. kobiensis Ha Ky, 1968 
Bychowskyella: B. pseudobagri Achmerow, 1952 
Malayanodiscoides: M. bihamuli Lim & Furtado, 1986 
Bifurcohaptor: B. lanchangensis Lim, 1987 
 

Ancylodiscoididae 

Neocalceostomoides: N. hamatum Lim, 1995 
Neocalceostoma: Neocalceostoma sp. 

Neocalceostomatidae 



 
 

Node 5 
(N5)  

Node 4 
(N4) 

Node 6 
(N6) 

Dactylogyridae 
group 

Dactylogyrus: D. hemiamphibothrium Ergens, 1956, D. pekinensis Gusev, 1962, 
D. petruschewskyi Gusev, 1955, D. parabramis Akhmerov, 1952, D. 
hypophalmichthys Akhmerov, 1952, D. cryptomeres Bychowsky, 1934, D. 
kikuchii Gusev, 1965, D. nanus Dogiel & Bychowsky, 1934, D. sphyrna 
Linstow, 1878, D. inversus Goto & Kikuchi, 1917, D. lamellatus Akhmerov, 
1952, D. temperasi Lim, pers. com., D. gotoi Gusev, 1965, D. apogonae Lim, 
pers. com., D. aristichthys Long & Yu, 1958, D. quanfami Ky, 1971, D. 
hampalai Lim, pers. com., D. quadribrachiatus Lim, pers. com., D. 
sclerovaginalis Lim & Furtado, 1986, D. elegani Lim, pers. com., D. lampam 
Lim, 1992, D. laterstriga Lim, pers. com., D. spirocopulatrium Lim, pers. com., 
D. damansari Lim, pers. com., D. hemiramphodonus Lim, pers. com., D. 
cheligenitalis Lim & Furtado, 1984, D. extensus Mueller & Van Cleave, 1932, 
D. inexpectatus Gusev, 1955, Dactylogyrus sp.LAB, Dactylogyrus sp. 
Dactylogyroides: D. longicirrus Tripathi, 1959 

Dactylogyridae  

Node 6 
(N6)  

Node 5 
(N5) 

Node 5 
(N5) 

Heteronchocleid
idae–
Pseudodactylog
yridae group 

Heteronchocleidus: H. buschkieli Bychowsky, 1957 
Eutrianchoratus: E. inequalis Lim, 1989 and E. cleithrium Lim, 1989 
Trianchoratus: T. pahangensis Lim, 1986, T. longianchoratus Tan & Lim, 
2009, T. ophicephali Lim, 1986, T. malayensis Lim, 1986, T. acleithrium Lim, 
1986, T. gussevi Lim, 1986, T. leerium Lim, 1986, T. trichogasterium Lim, 
1986, T. parvulus Lim, 1986, T. grandis Lim, 1986 

Heteronchocleididae 

Pseudodactylogyrus: Pseudodactylogyrus sp. XHY, Pseudodactylogyrus sp. 
UK, P. bini Kikuchi, 1929 and P. anguillae Yin & Sproston, 1948 
Pseudodactylogyroides: P. marmoratae Lim, 1995 

Pseudodactylogyridae 

Node 7 
(N7)  

Node 6 
(N6) 

Node 7 
(N7) 

Ancyrocephalid
ae II group 

Bravohollisia: B. maculatus Venkatanarasaiah, 1984, B. gussevi Lim, 1995, B. 
parvianchoratus Venkatanarasaiah, 1984, B. kritskyi Lim, 1995, B. rosetta Lim, 
1995, B. reticulata Lim, 1995 and Bravohollisia sp. 
Caballeria: C. pedunculata Bychowsky & Nagibina, 1970, C. intermedius Lim, 
1995 and C. liewi Lim, 1995 
Haliotrema: H. fleti Young, 1968, H. grossecurvitubus Li & Chen, 2005, H. 
cromileptis Young, 1968, H. epinepheli Young, 1968, H. chenhsintaoi Chang, 
2001, H. macasarensis Yamaguti, 1963, H. platycephali Yin & Sproston, 1948, 
H. johnstoni Bychowsky & Nagibina, 1970, H. aurigae Yamaguti, 1968, H. 

Ancyrocephalidae 



 
 

leporinus Sun, Kritsky & Yang, 2007, H. angelopterum Plaisance, Bouamer & 
Morand, 2004, H. bihamulatum Zhang, 2001, H. scyphovagina Yamaguti, 1968, 
H. ctenochaeti Young, 1968, H. macracantha Yamaguti, 1968 and H. 
pratasensis Sun, Kritsky & Yang, 2007 
Pseudohaliotrema: P. sphincteroporus Yamaguti, 1953 and Pseudohaliotrema 
sp. 
Tetrancistrum: Tetrancistrum sp. 

Ancyrocephalid
ae III–
Calceostomatida
e group 

Euryhaliotrematoides: E. annulocirrus Yamaguti, 1968, E. microphallus 
Yamaguti, 1968, E. berenguelae Plaisance & Kritsky, 2004, E. grandis Mizelle 
& Kritsky, 1969, E. aspistis Plaisance & Kritsky, 2004, E. triangulovagina 
Yamaguti, 1968, E. pirulum Plaisance & Kritsky, 2004, Euryhaliotrematoides 
sp.HQDD 
Euryhaliotrema: E. johnii Tripathi, 1959, E. perezponcei Garcia-Vargas, Fajer-
Avila & Lamothe-Argumedo, 2008, Euryhaliotrema sp. 
Haliotrema: H. spirotubiforum Zhang, 2001 and H. anguiformis Zhang, 2001, 
H. kurodai Ogawa & Egusa, 1978, H. nanaoensis Yao, Wang, Xia & Chen, 
1998, H. eukurodai Zhang & Ding, 1994, H. subancistroides Zhang, 2001, H. 
geminatohamula Bychowsky & Nagibina, 1970, H. digyroides Zhang, 2001, H. 
shenzhenensis Wang, Liu & Zhou, 2003 
Ligophorus: L. vanbenedenii Parona & Perugia, 1890, L. leporinus Zhang & Ji, 
1981 
Aliatrema: A. cribbi Plaisance & Kritsky, 2004 
Metahaliotrema: M. geminatohamula Pan, Zhang & Ding, 1995 and M. mizellei 
Venkatanarasaiah, 1981 
Onchobdella: O. aframae Paperna, 1968 and O. bopeleti Bilong Bilong & 
Euzet, 1995 
Cichlidogyrus: C. pouyaudi Pariselle & Euzet, 1994, C. falcifer Dossou & Birgi, 
1984, C. acerbus Dossou, 1982 and C. tilapiae Paperna, 1960 
Haliotrematoides: H. plectridium Kritsky & Mendoza-Franco, 2009, H. spinatus 
Kritsky & Mendoza-Franco, 2009 and H. guttati Garcia-Vargas, Fajer-Avila & 
Lamothe-Argumedo, 2008 
Scutogyrus: S. longicornis Paperna & Thurston, 1969 
 

Ancyrocephalidae 

Calceostomatidae sp. Calceostomatidae 



 
 

4.4.1 Sundanonchidae – Tetraonchidae group 

In Sundanonchidae – Tetraonchidae group, there are four Sundanonchus spp. 

(Sundanonchus foliaceus Lim & Furtado, 1985, S. triradiacatus Lim & Furtado, 1985, 

S. tomanorum Kritsky & Lim, 1995 and S. micropeltis Lim & Furtado, 1985) and 

Tetraonchus monenteron Diesing, 1858 which correspond to the family 

Sundanonchidae and Tetraonchidae respectively (Figs. 4.1, 4.2, 4.3). Based on the fact 

that these two families are sister group in all the three relationship generated, 

Tetraonchidae and Sundanonchidae are expected to be closely related. Morphologically 

the Tetraonchidae and Sundanonchidae possess similar copulatory complex, vagina 

apparatus, single intestinal track, 16 tetraonchid-gyrodactylid type of marginal hooks 

and the X-shaped vitellarian ducts (Lim & Furtado, 1985). Similar results were obtained 

from analyses by Kritsky & Lim (1995) and Boeger & Kritsky (1997) using 

morphological data and by Šimková et al (2003) using and molecular data. 

 

4.4.2 Diplectanidae – Pseudomurraytrematidae group (Figs. 4.5, 4.6 & 4.7) 

 There are 28 members within Diplectanidae – Pseudomurraytrematidae group 

where 27 of them (from 10 genera) correspond to the family Diplectanidae and one 

member (Pseudomurraytrema sp.) corresponds to the family Pseudomurraytrematidae 

(Figs. 4.1, 4.2 & 4.3). In this section, only the interrelationships among the 27 members 

within the Diplectanidae will be discussed since Pseudomurraytrematidae is represented 

by one Pseudomurraytrema sp. in this study. Three subGroups can be observed within 

the Diplectanidae – Pseudomurraytrematidae group (Figs. 4.5, 4.6 & 4.7).  

 

 



 
 

 

 

 

 

 

 

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 Maximum parsimony (MP) tree depicting the interrelationships within the 
Diplectanidae Bychowsky, 1957. 
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Figure 4.6 Maximum likelihood (ML) tree depicting the interrelationships within the 
Diplectanidae Bychowsky, 1957. 
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Figure 4.7 Neighbour-joining (NJ) tree depicting the interrelationships within the 
Diplectanidae Bychowsky, 1957. 
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  4.4.2.1 Pseudorhabdosynochus, Acleotrema, Laticola & Diplectanum (SubGroup 1) 

SubGroup 1 consists of five Pseudorhabdosynochus spp., P. coioidesis Bu, 

Leong, Wong, Woo & Foo, 1999, P. latesi Tripathi, 1955, P. lantauensis Beverley-

Burton & Suriano, 1981, P. shenzhenensis Yang, Zeng & Gibson, 2005 and P. 

epinepheli Kritsky & Beverley-Burton, 1986, one Acleotrema sp., three species of 

Laticola, L. paralatesi Nagibina, 1976, L. seabasi Wu, Li, Zhu & Xie, 2005 and L. 

lingaoensis Yang, Kritsky, Sun, Zhang, Shi & Agrawal, 2006 and three species of 

Diplectanum, D. veropolynemi Nagibina, 1976, D. grouperi Bu, Leong, Wong, Woo & 

Foo, 1999 and D. penangi Liang & Leong, 1991.   

 

Within SubGroup 1, Pseudohabdosynochus spp. with quadriloculate copulatory 

organ can be observed to cluster together while Acleotrema sp. and Laticola spp. with 

copulatory organ composed of two nested tube form sister group (Fig. 4.8). There are 

also D. grouperi, D. penangi and D. veropolynemi which clustered among the 

Pseudohabdosynochus spp. Pseudorhabdosynochus, Acleotrema, Laticola and 

Diplectanum in SubGroup 1 also correspond to members of the subfamily Diplectaninae 

Monticelli, 1903. The close relationship of Laticola and Pseudorhabdosynochus shown 

in SubGroup 1 was also shown by Yang et al. (2006) and Domingues & Boeger (2008) 

in their analyses based on morphological data.  

 

 

 

 

 



 
 

 

 

 

 

 

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8 Interrelationships within the Diplectanidae Bychowsky, 1957 with morphological 
characteristics of different genera (*using NJ tree as example).    
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4.4.2.2 Lobotrema, Lepidotrema, Murraytrema, Sinodiplectanotrema & Diplectanum 

(SubGroup 2) 

Within SubGroup 2, there are two species of Lobotrema, L. sciaenae 

Bychowsky & Nagibina, 1977 and Lobotrema sp., Lepidotrema longipenis Yamaguti, 

1934, Murraytrema pricei Bychowsky, 1977 (=M. bychowskyi), three Diplectanum spp., 

D. umbrinum Tripathi, 1955, D. blairense Gupta & Khanna, 1974 (=Paradiplectanum 

blairense) and D. sillagonum Tripathi, 1957 (=Paradiplectanum sillagonum) and two 

Sinodiplectanotrema spp., S. malayanum Lim, Tan & Gibson, 2010 and 

Sinodiplectanotrema sp. HGY. It should be noted that Sinodiplectanotrema has been 

officially re-assigned to Diplectanidae (see Lim et al., 2010) from Ancyrocephalidae 

(see Zhang, 2001). Although Wu et al. (2007) noted the possibility that 

Sinodiplectanotrema was a diplectanid based on molecular data, Sinodiplectanotrema 

was not re-assign to the Diplectanidae. Lim et al. (2010) has provided both 

morphological and molecular evidences that Sinodiplectanotrema belongs to the 

Diplectanidae (see also Appendix E). 

 

Lobobtrema and Murraytrema in SubGroup 2 are members of the subfamily 

Murraytrematoidinae Oliver, 1982 which do not possess any accessory adhesive organs 

(squamodiscs or lamellodiscs). The two Sinodiplectanotrema species analysed in this 

study are shown to be closely related to Murraytrema and Lobotrema (see Figs. 4.5, 4.6 

& 4.7). In a study on Sinodiplectanotrema based on morphological and molecular data, 

Lim et al. (2010) had also observed that Sinodiplectanotrema is morphologically similar 

to members of Murraytrematoidinae in lacking squamodiscs and lamellodiscs.  

 

 

 



 
 

4.4.2.3 Lamellodiscus & Calydiscoides (SubGroup 3) 

SubGroup 3 corresponds to the subfamily Lamellodiscinae (sensu Domingues & 

Boeger, 2008) where it consists of four species of Lamellodiscus, L. pagrosomi Murray, 

1931, L. spari Zhukov, 1970, L. japonicus Ogawa & Eugusa, 1978 and L. acanthopagri 

Roubal, 1981 and two Calydiscoides spp., C. indianus Karyakarte & Das, 1978 and 

Calydiscoides sp. (Figs. 4.5, 4.6 & 4.7). These Lamellodiscus and Calydiscoides in 

SubGroup 3 are characterised by the presence of lamellodiscs instead of squamodiscs 

and copulatory organ of simple tube with accessory piece (Fig. 4.8).  

 

4.4.3 Ancyrocephalidae groups (Figs. 4.9, 4.10 & 4.11) 

In MP, ML and NJ relationship trees, the ancyrocephalid monogeneans are split 

into three groups which in Figs. 4.9, 4.10 & 4.11 are depicted as Ancyrocephalidae I, 

Ancyrocephalidae II and Ancyrocephalidae III–Calceostomatidae group. The members 

of the three different groups of ancyrocephalid are discussed below. 

 

4.4.3.1 Ancyrocephalidae I  

This group is made up of ancyrocephalid species of Actinocleidus, Urocleidus, 

Ancyrocephalus, Cleidodiscus and Onchocleidus. The members of Group 3 are all 

freshwater monogeneans but from different biogeographical regions (see Table 2.4). 

Could this close relationship be due to their freshwater origin? or are members of this 

group brought together because they are closely related. In this analysis only one 

species per genus is available for analysis (Figs. 4.9, 4.10 & 4.11) and more species are 

needed for a proper analysis of the relationships within this group.  

 



 
 

 

 

         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9 Maximum parsimony (MP) tree depicting the interrelationships within the 
Ancyrocephalidae groups (sensu Bychowsky & Nagibina, 1978; Gusev, 1978). 
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Figure 4.10 Maximum likelihood (ML) tree depicting the interrelationships within the 
Ancyrocephalidae groups (sensu Bychowsky & Nagibina, 1978; Gusev, 1978). 
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Figure 4.11 Neighbour-joining (NJ) tree depicting the interrelationships within the 
Ancyrocephalidae groups (sensu Bychowsky & Nagibina, 1978; Gusev, 1978). 
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4.4.3.2 Ancyrocephalidae II  

The ancyrocephalids genera in this group include Bravohollisia, Caballeria, 

Haliotrema, Pseudohaliotrema and Tetrancistrum. Within Ancyrocephalidae II, four 

subGroups can be observed in MP and NJ trees (Figs. 4.9 & 4.11) while there are three 

subGroups in ML tree (Fig. 4.10).   

 

4.4.3.2.1 Bravohollisia & Caballeria (SubGroup 1) 

SubGroup 1 consists of seven Bravohollisia spp., B. maculatus 

Venkatanarasaiah, 1984, B. gussevi Lim, 1995, B. parvianchoratus Venkatanarasaiah, 

1984, B. kritskyi Lim, 1995, B. rosetta Lim, 1995, B. reticulata Lim, 1995 and 

Bravohollisia sp. and three Caballeria spp., C. pedunculata Bychowsky & Nagibina, 

1970, C. intermedius Lim, 1995 and C. liewi Lim, 1995. The close relationships of 

Bravohollisia and Caballeria have been noted by Lim (1995b) where these two genera 

share similar morphological characteristics with the presence of haptoral reservoirs, net 

like structure near tip of anchors and copulatory organ without accessory piece (Fig. 

4.12).  

 

Bravohollisia and Caballeria are also morphologically different as indicated by 

the presence of haptoral digits in Caballeria (see Lim, 1995b). The present results from 

analysis of the morphometric data have shown that the sclerotised hard parts can be 

effectively used to differentiate between the species of Bravohollisia and Caballeria 

(see Section 3.2.1.1) and this is supported by results from current molecular analysis 

showing the Caballeria spp. form a monophyletic group which is distinct from 

Bravohollisia spp. (Figs. 4.9, 4.10 & 4.11). Therefore, Bravohollisia and Caballeria are 

two distinct genera and suggestion by Wu et al. (2007a) to combine Bravohollisia and 



 
 

Caballeria into one genus should be rejected. Wu et al. (2007a) also failed to realise 

Caballeria is different from Bravohollisia in possessing haptoral digits (see Lim, 

1995b).  

 

4.4.3.2.2 Pseudohaliotrema & Tetrancistrum (SubGroup 2) 

SubGroup 2 consists of members from two genera. They are two 

Pseudohaliotrema spp., P. sphincteroporus Yamaguti, 1953 and Pseudohaliotrema sp. 

as well as a Tetrancistrum sp. (Figs. 4.9, 4.10 & 4.11). The Pseudohaliotrema and 

Tetrancistrum can be observed to possess similar morphological characteristics in 

ventral anchors with broad, expanded and massive roots and copulatory organ with 

accessory piece (Fig. 4.12). 

 

4.4.3.2.3 Haliotrema (SubGroup 3/SubGroup 3 and SubGroup 4) 

Ancyrocephalidae II consists of 16 Haliotrema spp. which are either present in 

SubGroup 3 in ML tree (Fig. 4.10) or in SubGroup 3 and SubGroup 4 in MP and NJ 

trees (Figs. 4.9 & 4.11). These 16 Haliotrema spp. are H. fleti Young, 1968, H. 

grossecurvitubus Li & Chen, 2005, H. cromileptis Young, 1968, H. epinepheli Young, 

1968, H. chenhsintaoi Chang, 2001, H. macasarensis Yamaguti, 1963, H. platycephali 

Yin & Sproston, 1948, H. johnstoni Bychowsky & Nagibina, 1970, H. aurigae 

Yamaguti, 1968, H. leporinus Sun, Kritsky & Yang, 2007, H. angelopterum Plaisance, 

Bouamer & Morand, 2004, H. bihamulatum Zhang, 2001, H. scyphovagina Yamaguti, 

1968, H. ctenochaeti Young, 1968, H. macracantha Yamaguti, 1968 and H. pratasensis 

Sun, Kritsky & Yang, 2007.  

 

This Haliotrema group in Ancyrocephalidae II could most probably be the true 

Haliotrema group as it consists of the highest number of Haliotrema spp. compare to 



 
 

any other subGroups within the Ancyrocephalidae groups (Ancyrocephalidae I, 

Ancyrocephalidae II and Ancyrocephalidae III–Calceostomatidae group) (Figs. 4.9, 

4.10 & 4.11). However, the DNA sequences of the type species of Haliotrema, H. 

australe Johnston & Tiegs, 1922 is needed to further confirm this.  

 

4.4.3.3 Ancyrocephalidae III – Calceostomatidae group  

In MP, ML and NJ relationship trees generated, the memberships within this 

group are consistent and three subGroups are observed (Figs. 4.9, 4.10 & 4.11).  

 

4.4.3.3.1 Euryhaliotrematoides, Euryhaliotrema, Ligophorus, Aliatrema & 

Haliotrema (SubGroup 1) 

SubGroup 1 includes all Euryhaliotrematoides spp., Euryhaliotrema spp., five 

species of Haliotrema, H. spirotubiforum Zhang, 2001 and H. anguiformis Zhang, 2001, 

H. kurodai Ogawa & Egusa, 1978, H. nanaoensis Yao, Wang, Xia & Chen, 1998, H. 

eukurodai Zhang & Ding, 1994, two Ligophorus spp., L. vanbenedenii Parona & 

Perugia, 1890 and L. leporinus Zhang & Ji, 1981 and Aliatrema cribbi Plaisance & 

Kritsky, 2004. These genera in SubGroup 1 (with the exception of Haliotrema and 

Ligophorus spp.) can be observed to possess similar morphological characteristic where 

the base of copulatory organ expanded to form bulb or funnel shape, i.e. 

Euryhaliotrema (bulb shape), Aliatrema (funnel shape), Euryhaliotrematoides (funnel 

shape) (Fig. 4.12). 

 



 
 

 

 

 

 

         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12 Interrelationships within the Ancyrocephalidae (sensu Bychowsky & Nagibina, 1978; 
Gusev, 1978) with morphological characteristics of different genera (*using NJ tree as example). 
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4.4.3.3.2 Metahaliotrema, Onchobdella, Haliotrema & Calceostomatidae (SubGroup 

2)  

SubGroup 2 consists of two Metahaliotrema spp., M. geminatohamula Pan, 

Zhang & Ding, 1995 and M. mizellei Venkatanarasaiah, 1981, two species of 

Onchobdella, O. aframae Paperna, 1968 and O. bopeleti Bilong Bilong & Euzet, 1995, 

three Haliotrema spp., H. subancistroides Zhang, 2001, H. geminatohamula 

Bychowsky & Nagibina, 1970 and H. digyroides Zhang, 2001 and a Calceostomatidae 

sp. The main morphological characteristic share by the members of SubGroup 2 (with 

the exception in Haliotrema spp. and Calceostomatidae sp.) are two pairs of anchors 

unequal in size where one pair is larger than the other as found in Metahaliotrema and 

Onchobdella spp. (Fig. 4.12).  

 

4.4.3.3.3 Cichlidogyrus, Haliotrematoides, Scutogyrus & Haliotrema (SubGroup 3) 

SubGroup 3 includes four species of Cichlidogyrus, C. pouyaudi Pariselle & 

Euzet, 1994, C. falcifer Dossou & Birgi, 1984, C. acerbus Dossou, 1982 and C. tilapiae 

Paperna, 1960, three Haliotrematoides spp., H. plectridium Kritsky & Mendoza-Franco, 

2009, H. spinatus Kritsky & Mendoza-Franco, 2009 and H. guttati Garcia-Vargas, 

Fajer-Avila & Lamothe-Argumedo, 2008, Scutogyrus longicornis Paperna & Thurston, 

1969 and Haliotrema shenzhenensis Wang, Liu & Zhou, 2003. All the members (except 

Haliotrema shenzhenensis) in SubGroup 3 share the main morphological characteristic 

where they possess bars with special feature such as auricles, projections or pockets, i.e. 

two auricles on dorsal bar of Cichlidogyrus and Scutogyrus and two submedial pockets 

on ventral bar of Haliotrematoides (Fig. 4.12). 

 

 

 



 
 

4.4.3.3.4 Summation for Ancyrocephalidae III – Calceostomatidae group  

The Haliotrema spp. in Ancyrocephalidae III– Calceostomatidae group are 

shown to cluster with members from genus Aliatrema Plaisance & Kritsky, 2004, 

Euryhaliotrema Kritsky & Boeger, 2002, Haliotrematoides Kritsky, Yang & Sun, 2009 

and Metahaliotrema Yamaguti, 1953 (Figs. 4.9, 4.10 & 4.11). These genera are erected 

to accommodate species previously recognised as Haliotrema spp. in studies where 

revisions and transfer of Haliotrema spp. were done to restrict the size of the genus 

Haliotrema (Kritsky & Boeger, 2002; Plaisance & Kritsky, 2004; Kritsky, Yang & Sun, 

2009).  

 

The current clustering pattern of the Haliotrema spp. in Ancyrocephalidae III – 

Calceostomatidae group with Aliatrema, Euryhaliotrema, Haliotrematoides and 

Metahaliotrema indicates a high possibility that these Haliotrema spp. could be 

misidentified. For instance, H. spirotubiforum, H. kurodai and H. anguiformis which are 

found clustered with Aliatrema could be Aliatrema species mistakenly identified as 

Haliotrema. Similarly, H. nanaoensis and H. eukurodai which are grouped with the 

Euryhaliotrema group could be Euryhaliotrema species whilst H. subancistroides, H. 

geminahamula and H. digyroides which are found clustered with Metahaliotrema group 

could be Metahaliotrema species. Lastly, H. shenzhenensis which is clustered with 

Haliotrematoides group could be a Haliotrematoides species. Thus, results from current 

molecular analyses indicate that there is a need to re-examine the status of these 

Haliotrema spp. mentioned above. 

 

 

 



 
 

4.4.4 Ancylodiscoididae – Neocalceostomatidae group (Figs. 4.13, 4.14 & 4.15) 

In this section, the interrelationships among the 33 members within the 

Ancylodiscoididae and two members from Neocalceostomatidae are discussed. Within 

the Ancylodiscoididae–Neocalceostomatidae group, five subGroups can be observed in 

the MP, ML and NJ trees (Figs. 4.13, 4.14 & 4.15).  

 

4.4.4.1 Thaparocleidus (SubGroup 1) 

SubGroup 1 consists of Thaparocleidus cochleavagina Gusev & Strelkov, 1960, 

T. omegavagina Hwang, 1964, T. obscura Gusev & Strelkov, 1960, T. mutabilis Gusev 

& Strelkov, 1960, T. asoti Yamaguti, 1937, T. magnicirrus Gusev & Strelkov, 1960, T. 

vistulensis Siwak, 1932, T. siluri Zandt, 1924, T. infundibulovagina Yamaguti, 1942, T. 

varicus Akhmerov, 1952 and T. notopterus Jain, 1955 (only in NJ tree; Fig. 4.15).  

 

4.4.4.2 Cornudiscoides, Pseudancylodiscoides & Bifurcohaptor (SubGroup 2) 

SubGroup 2 includes Cornudiscoides proximus Gusev, 1976, C. facicirrus Lim, 

1987 and Cornudiscoides sp., three Pseudancylodiscoides spp., and Bifurcohaptor 

lanchangensis Lim, 1987. These three genera in SubGroup 2 share similar 

morphological characteristics such as dorsal anchors either without roots 

(Bifurcohaptor) or only with inner root (Cornudiscoides), ventral anchor smaller than 

dorsal anchors and a blind sac-like seminal vesicle (Fig. 4.9). Members of SubGroup 1 

(Thaparocleidus spp.; see above) and SubGroup 2 which possess blind sac-like seminal 

vesicle are closely related and form sister group in MP and NJ trees (Figs. 4.13 & 4.15).   

 



 
 

 

 

 

 

         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13 Maximum parsimony (MP) tree depicting the interrelationships within the 
Ancylodiscoididae-Neocalceostomatidae group (sensu Lim, Timofeeva & Gibson, 
2001) (*=members of Neocalceostomatidae). 
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Figure 4.14 Maximum likelihood (ML) tree depicting the interrelationships within the 
Ancylodiscoididae-Neocalceostomatidae group (sensu Lim, Timofeeva & Gibson, 
2001) (*=members of Neocalceostomatidae). 
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Figure 4.15 Neighbour-joining (NJ) tree depicting the interrelationships within the 
Ancylodiscoididae-Neocalceostomatidae group (sensu Lim, Timofeeva & Gibson, 
2001) (*=members of Neocalceostomatidae). 
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4.4.4.3 Malayanodiscoides & Thaparocleidus (SubGroup 3) 

In SubGroup 3, there are two Thaparocleidus spp. (T. campylopterocirrus Zeng, 

1988 and T. notopterus) in MP and ML trees (Figs. 4.13 & 4.14) while only T. 

campylopterocirrus is present in SubGroup 3 of NJ tree (Fig. 4.15). These 

Thaparocleidus spp. are clustered with Malayanodiscoides bihamuli Lim & Furtado, 

1986 (Figs. 4.13, 4.14 & 4.15). The presence of T. campylopterocirrus and T. 

notopterus in SubGroup 3 indicates the possible non-monophyly of the Thaparocleidus 

which need further investigation in future studies by analysing more sequences from 

Thaparocleidus spp. For Malayanodiscoides bihamuli which is from a monotypic 

genus, its relationship with other ancylodiscoidids can only be further confirmed when 

more species from this genus are available. 

 

4.4.4.4 Bychowskyella & Quadriacanthus (SubGroup 4) 

The two members which consistently present in SubGroup 4 are Bychowskyella 

pseudobagri Achmerow, 1952 and Quadriacanthus kobiensis Ha Ky, 1968 (Figs. 4.13, 

4.14 & 4.15). These two members are characterised by their dorsal and ventral anchors 

which are without roots and seminal vesicle a dialation of vas deferens (Bychowskyella 

and Quadriacanthus) (Fig. 4.16).  

 

4.4.4.5 Chauhanellus, Hamatopeduncularia, Ancylodiscus, Neocalceostomoides & 

Neocalceostoma (SubGroup 5) 

In SubGroup 5, there are four Chauhanellus spp., C. digitalis Lim, 1994, C. 

poculus Lim, 1994, C. osteogeneiosi Lim, 1994 and C. pulutanus Lim, 1994, six 

Hamatopeduncularia spp., H. simplex Bychowsky & Nagibina, 1969, H. malayanus 



 
 

Lim, 1996, H. isosimplex Lim, 1996, H. venosus Lim, 1996, H. papernai Lim, 1996 and 

Hamatopeduncularia sp. and Ancylodiscus malayensis Lim, 1994 of Ancylodiscoididae 

and Neocalceostomoides hamatum Lim, 1995 & Neocalceostoma sp. from 

Neocalceostomatidae (Figs. 4.13, 4.14 & 4.15).  

 

The Chauhanellus and Hamatopeduncularia spp. are shown to be closely related 

and form sister groups (Figs. 4.13, 4.14 & 4.15). This close relationship of 

Chauhanellus and Hamatopeduncularia is expected since both genera possess similar 

morphological characteristics where they possess anchors with expanded outer roots, 

bars with protuberances and seminal vesicle a dialation of vas deferens but differ in the 

presence of extensible haptoral digits on haptor of Hamatopeduncularia but not in 

Chauhanellus (Lim, 1995) (Fig. 4.16). Current results also showed that Ancylodiscus 

malayensis is not found clustered within the Chauhanellus and Hamatopeduncularia 

group. This is most probably due to  Ancylodiscus being unique in having two seminal 

vesicles, both the blind sac-like seminal vesicle and the dactylogyrid type seminal 

vesicle (a dialation of vas deferens) (Fig. 4.16).  

 

Neocalceostomoides hamatum and Neocalceostoma sp. from 

Neocalceostomatidae are also found in SubGroup 5 with the Ancylodiscoididae (Figs. 

4.13, 4.14 & 4.15) although both families are morphologically different 

(Neocalceotsomatidae possess 2 anchors while Ancylodiscoididae possess 4 anchors). 

This current position of Neocalceostomatidae could be due to only two 

neocalceostomatids are included in this study (see Table 2.4). Thus more members of 

Neocalceostomatidae are needed to ascertain its relationships with the other 

dactylogyridean families in future studies. 

 



 
 

 

 

 

 

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16 Interrelationships within the Ancylodiscoididae (sensu Lim, Timofeeva & 
Gibson, 2001) with morphological characteristics of different genera (*using NJ tree as 
example).    
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4.4.5 Dactylogyridae group (Figs. 4.17, 4.18 & 4.19) 

This group consists of 30 Dactylogyrus spp. and one Dactylogyroides 

longicirrus Tripathi, 1959 from the family Dactylogyridae (sensu Bychowsky & 

Nagibina, 1978; Timofeeva, Gerasev & Gibson, 1997; Lim, 1998; Lim et al., 2001). 

The other dactylogyrid genera such as Dogielus and Thaprogyrus are not included in 

this study due to their low numbers of species and to date there are no partial 28S rDNA 

sequences for these monogeneans in the Genbank.  

 

Dactylogyroides longicirrus can be observed to consistently form sister group 

with all the Dactylogyrus spp. analysed in this study (Figs. 4.17, 4.18 & 4.19). The 

interrelationships among the Dactylogyrus spp. within the Dactylogyridae group are 

shown to be varied in the NJ, MP and ML relationship trees (Figs. 4.17, 4.18 & 4.19). 

In the NJ tree, there are four subGroups within the Dactylogyridae group (Fig. 4.19) 

while in MP and ML trees, five subGroups can be observed (see Figs. 4.17 & 4.18). In 

the MP and ML trees, all the Dactylogyrus spp. possess similar clustering except for the  

position of D. quadribrachiatus where it is found in different subGroups within the MP 

and ML trees (Figs 4.17 & 4.18). 

 

4.4.5.1 Dactylogyridae in NJ tree  

In NJ tree (Fig. 4.19), SubGroup 1 consists of Dactylogyrus spp. from Oriental 

region (D. pekinensis Gusev, 1962, D. petruschewskyi Gusev, 1955, D. parabramis 

Achmerow, 1952, D. kikuchii Gusev, 1965 and D. hypophalmichthys Achmerow, 1952) 

and Europe (D. hemiamphibothrium Ergens, 1956, D. cryptomeres Bychowsky, 1934, 

D. nanus Dogiel & Bychowsky, 1934 and D. sphyrna Linstow, 1878).  

 



 

 

 

 

 

         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.17 Maximum parsimony (MP) tree depicting the interrelationships within the 
Dactylogyridae group (sensu Bychowsky & Nagibina, 1978; Lim, 1998). 
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Figure 4.18 Maximum likelihood (ML) tree depicting the interrelationships within the 
Dactylogyridae group (sensu Bychowsky & Nagibina, 1978; Lim, 1998). 
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Figure 4.19 Neighbour-joining (NJ) tree depicting the interrelationships within the 
Dactylogyridae group (sensu Bychowsky & Nagibina, 1978; Lim, 1998). 
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All the Dactylogyrus spp. in SubGroups 2 & 3 are from Peninsular Malaysia 

except for D. quanfami Ky, 1971, D. inversus Goto & Kikuchi, 1917 and D. gotoi 

Gusev, 1965 which are from China and Japan. D. extensus Muller & Van Cleave, 1932 

and D. inexpectatus Izjumova, 1955 in SubGroup 4 are also from Oriental region.  

 

4.4.5.2 Dactylogyridae in MP and ML trees  

Similar trends can also be observed in MP and ML trees (Figs. 4.17 & 4.18) 

where SubGroup 1 consists of Dactylogyrus spp. from Oriental origin and Europe, 

SubGroups 2, 3 & 4 consist of Dactylogyrus spp. from Peninsular Malaysia (except for 

D. quanfami Ky, 1971, D. inversus Goto & Kikuchi, 1917 and D. gotoi Gusev, 1965) 

while SubGroup 5 consists of Dactylogyrus spp. from Oriental region (Figs. 4.17 & 

4.18).  

 

4.4.5.3 Summation for Dactylogyridae group  

These trends show that Dactylogyrus spp. from the same biogeographical region 

are more related to each other. This could be due to the fact that the lineages of 

Dactylogyrus spp. from different biogeographical regions must have diverged from each 

other very early in their evolutionary history and subsequently evolve and speciate 

separately. Šimková et al. (2007) had also shown that the different lineages of 

Dactylogyrus spp. had separated from each other in a very short period of time in their 

evolutionary history which might also have contributed to the current observed trend in 

the different groups of Dactylogyrus spp. from different biogeographical regions. 

 

 

 



 

4.4.6 Heteronchocleididae – Pseudodactylogyridae group (Figs. 4.20, 4.21 & 4.22) 

This group consists of 13 members (from three genera, i.e. Heteronchocleidus, 

Eutrianchoratus and Trianchoratus) and five members (from two genera, i.e. 

Pseudodactylogyrus and Pseudodactylogyroides) which correspond to the family 

Heteronchocleididae and Pseudodactylogyridae, respectively. Three subGroups can be 

observed in Heteronchocleididae – Pseudodactylogyridae group (Figs. 4.20, 4.21 & 

4.22). 

 

4.4.6.1 Trianchoratus (SubGroup 1) 

Within SubGroup 1, it can be observed that species with relatively shorter and 

less sharply recurved anchor points (T. pahangensis Lim, 1986, T. longianchoratus Tan 

& Lim, 2009, T. ophicephali Lim, 1986 and T. malayensis Lim, 1986) are clustered 

together while species with longer and more sharply recurved anchor points (T. 

acleithrium Lim, 1986, T. gussevi Lim, 1986, T. leerium Lim, 1986, T. trichogasterium 

Lim, 1986, T. parvulus Lim, 1986 and T. grandis Lim, 1986) are in another separate 

cluster (Figs. 4.20, 4.21 & 4.22). Thus this results show the Trianchoratus spp. are 

grouped according to the general shape of their three developed anchors. Similar 

observations were also noted in previous studies by Lim (1986) and Tan & Lim (2009) 

based on morphological characteristic of Trianchoratus spp. Therefore, the 

interrelationships of the heteronchocleidids obtained from molecular data (28S rDNA) 

in this study are congruent with the classification of the heteronchocleidids based on 

morphological characteristics by Lim (1986), Lim (1989) and Tan & Lim (2009).  

 

 

 



 

 

 

 

 

                    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.20 Maximum parsimony (MP) tree depicting the interrelationships within the 
Heteronchocleididae-Pseudodactylogyridae group. 
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Figure 4.21 Maximum likelihood (ML) tree depicting the interrelationships within the 
Heteronchocleididae (sensu Tan, Fong & Lim, 2011).               

 

 

Pseudodactylogyrus anguillae 

Ancyrocephalidae II  

Calceostomatidae 

Ancyrocephalidae III  

Ancylodiscoididae  

Neocalceostomatidae 

Pseudomurraytrematidae 

Ancyrocephalidae I 

Diplectanidae 

Tetraonchidae 

Sundanonchidae 

Outgroup 

Dactylogyridae 

Trianchoratus trichogasterium 

Heteronchocleidus buschkieli 

Eutrianchoratus inequalis 
Eutrianchoratus cleithrium 

Trianchoratus longianchoratus 
Trianchoratus pahangensis 

Trianchoratus ophicephali 

Trianchoratus acleithrium 
Trianchoratus malayensis 

Trianchoratus gussevi 
Trianchoratus gussevi CHN 

Trianchoratus leerium 

Trianchoratus parvulus 
Trianchoratus grandis 

Su
bG

ro
up

 1
 

Su
bG

ro
up

 2
 

Su
bG

ro
up

 3
 Pseudodactylogyrus sp.  XHY 

Pseudodactylogyroides marmoratae 
Pseudodactylogyrus bini 

Pseudodactylogyrus sp. UK 



 

 

 

 

 

                    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.22 Neighbour-joining (NJ) tree depicting the interrelationships within the 
Heteronchocleididae (sensu Tan, Fong & Lim, 2011).               
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4.4.6.2 Heteronchocleidus & Eutrianchoratus (SubGroup 2) 

SubGroup 2 consists of Heteronchocleidus buschkieli Bychowsky, 1957, 

Eutrianchoratus inequalis Lim, 1989 and E. cleithrium Lim, 1989 where 

Heteronchocleidus buschkieli is shown to form sister group with E. inequalis and E. 

cleithrium (Figs. 4.20, 4.21 & 4.22). All these members within SubGroup 2 possess 

connective bar i.e. Heteronchocleidus buschkieli possess two connective bars, E. 

inequalis and E. cleithrium possess one connective bar while the Trianchoratus group 

(see above) do not possess any connective bar (Fig. 4.23). This result shows that the 

heteronchocleidids which possess one to two connective bars (Heteronchocleidus and 

Eutrianchoratus) are more related to each other. 

 

4.4.6.3 Pseudodactylogyrus & Pseudodactylogyroides (SubGroup 3) 

Within SubGroup 3, there are species from the genera Pseudodactylogyrus i.e. 

Pseudodactylogyrus sp. XHY, Pseudodactylogyrus sp. UK, P. bini Kikuchi, 1929 and 

P. anguillae Yin & Sproston, 1948 and Pseudodactylogyroides i.e. 

Pseudodactylogyroides marmoratae Lim, 1995. In MP tree (Fig. 4.20), the four species 

of the Pseudodactylogyrus used in this study form a monophyletic group which is 

related to its sister group the Pseudodactylogyroides. Similar finding was reported in 

previous studies using molecular data by Šimková et al. (2003), Šimková et al. (2004) 

and Ding & Liao (2005) where Pseudodactylogyrus and Pseudodactylogyroides were 

shown to form sister group.  

 

 

 

 



 

 

 

                                  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.23 Neighbour-joining (NJ) tree depicting the interrelationships within the 
Heteronchocleididae and Pseudodactylogyridae with their generic morphological 
characteristics. 
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4.4.6.4 Summation for Heteronchocleididae–Pseudodactylogyridae group 

The heteronchocleidids and pseudodactylogyrids form sister group (Figs. 4.20, 

4.21 & 4.22). The sister group relationship of Heteronchocleididae and 

Pseudodactylogyridae has never been shown in any previous studies. It is reasonable to 

accept that Pseudodactylogyridae and Heteronchocleididae are closely related as 

members of these two families are characterised by having ventral anchors in different 

stages of development. For example the heteronchocleididids have 3 well developed and 

one reduced anchor (see Lim, 1986), whereas in the pseudodactylogyrids the ventral 

anchors are poorly developed in Pseudodactylogyroides and completely absent in 

Pseudodactylogyrus (only two dorsal anchors are present) (see Lim, 1995a).  

 

4.5 Discussion  

In the following sections, interrelationships of the different dactylogyridean 

families depicted in the relationships trees generated in this study (Section 4.3.1) are 

discussed with reference to the morphological characteristics of the dactylogyrideans to 

see if there are any interesting trends (Section 4.5.1). The status and validity of the 

various dactylogyridean families are also discussed using information obtained from 

molecular data (Section 4.5.2).  

 

4.5.1 Relationship of dactylogyridean families 

Sundanonchidae–Tetraonchidae group and Diplectanidae–

Pseudomurraytrematidae group are morphologically very different from the other 

dactylogyridean families. These two groups are also shown to be the first two groups 

separated in MP, ML and NJ relationships trees indicating that they are distantly related 

to the other dactylogyridean families (Figs. 4.1, 4.2, 4.3 & 4.4). The Sundanonchidae–



 

Tetraonchidae group are characterised by having 16 marginal hooks, cross-vitellaria and 

a single sac-like intestine (Lim & Furtado, 1985) while the Diplectanidae–

Pseudomurraytrematidae group possess ovary that overlaps the intestinal caecum, 

morphological characteristics which are not present in the other dactylogyridean 

families.  

 

After the separaration of Sundanonchidae–Tetraonchidae group and 

Diplectanidae–Pseudomurraytrematidae group, the third and fourth groups which are 

formed in the relationships trees are the Ancyrocephalidae I group (see later) and 

Ancylodiscoididae–Neocalceostomatidae group (Figs. 4.1, 4.2, 4.3 & 4.4). The 

separation of Ancylodiscoididae–Neocalceostomatidae group at this point indicates that 

it is least related to the remaining groups in the relationships trees, i.e. Dactylogyridae 

group, Heteronchocleididae–Pseudodactylogyridae group, Ancyrocephalidae II group 

and Ancyrocephalidae–Calceostomatidae group. This could be due to the unique 

characteristics of ancylodiscoidids in having variable types of seminal vesicle, i.e. 

dactylogyrid type seminal vesicle, blind-sac like seminal vesicle or both while all the 

other dactylogyridean families included in this study only possess dactylogyrid type 

seminal vesicle. 

 

It can be observed that the families from Node 4 (in ML tree) and Node 5 (in 

MP and NJ trees) onwards are families where the characteristics of anchors are highly 

plastic and heterogeneous. There are Dactylogyridae group with 2 anchors + 2 needle-

like structures, Heteronchocleididae–Pseudodactylogyridae group with variable types of 

anchors, i.e. heteronchocleidids and Pseudodactylogyroides (Pseudodactylogyridae) 

with 4 anchors (2 developed anchors + 2 reduced anchors) and Pseudodactylogyrus 



 

(Pseudodactylogyridae) with 2 anchors while the Ancyrocephalidae II group and 

Ancyrocephalidae–Calceostomatidae group possess 4 developed anchors. 

 

Within the group of families which are having anchors with high plasticity 

mentioned above, the Acyrocephalidae II group and Ancyrocephalidae–

Calceostomatidae group are shown to be more related to the Heteronchocleididae–

Pseudodactylogyridae group compare to the Dactylogyridae group as they form sister 

group in MP and ML trees (Figs. 4.1, 4.2 & 4.4). It is reasonable to accept that the 

Heteronchocleididae–Pseudodactylogyridae group is closely related to the four anchors 

Acyrocephalidae as all the members of Heteronchocleididae–Pseudodactylogyridae 

group possess 4 anchors (three developed and one reduced anchors in 

Heteronchocelididae and two developed and two reduced anchors in 

Pseudodactylogyroides) except the Pseudodactylogyrus with 2 anchors. The 

Dactylogyridae group is shown to be less related to the Ancyrocephalidae, 

Heteronchocleididae and Pseudodactylogyridae as it possesses the unique pair of 

“needle-like” structures which is not present in other dactylogyridean families (Figs. 

4.1, 4.2 & 4.4). 

 

It is also noted that Ancyrocephalidae is the only family with its members 

present in three separate groups (Ancyrocephalidae I group, Ancyrocephalidae II group 

& Ancyrocephalidae–Calceostomatidae group) within the MP, NJ and ML trees 

generated. This indicates that ancyrocephalids are not a monophyletic group and highly 

heterogeneous. The heterogeneity of the Ancyrocephalidae has also been reported in 

previous studies based on morphology (Gusev, 1978; Kritsky & Boeger, 1989; 1993; 

Lim, 1998; Lim et al., 2001) and molecular data (Plaisance et al., 2005; Šimková et al., 



 

2003; 2006b; Wu et al., 2006). The status of Ancyrocephalidae and the other 

dactylogyridean families are discussed in the next section. 

 

4.5.2 Status of dactylogyridean families 

4.5.2.1 Status of Heteronchocleididae  

The heteronchocleidids have been assigned to the subfamily 

Heteronchocleidinae in the family Dactylogyridae by Price (1968), subfamily 

Ancyrocephalinae in the family Ancyrocephalidae by Gusev (1978) and subfamily 

Heteronchocleidinae in the family Ancyrocephalidae by Lim (1989). However, results 

from this study show that the heteronchocleidids form a monophyletic group (Figs. 

4.20, 4.21 & 4.22). This confirms that the heteronchocleidids which possess three well-

developed anchors and one reduced anchor are unique and this finding is in agreement 

with the relationships proposed by Lim (1986, 1987a & 1989). Lim (1987a, 1989) noted 

the relative homogeneity between the three heteronchocleidid genera and the possibility 

of raising Heteronchocleidinae to family status. The relationships trees (Figs. 4.20, 4.21 

& 4.22) from the present study support the move and Heteronchocleidinae is herein 

raised to family status, Heteronchocleididae. This result is already published in Tan et 

al. (2011) (see also Appendix B).  

 

4.5.2.2 Status of Pseudodactylogyridae 

Although Pseudodactylogyrus and Pseudodactylogyroides are shown to cluster 

in the same subGroup and thus closely related, Lim (1995a) suggested that these two 

genera should not belong to the same family as Pseudodactylogyrus has two anchors 

while Pseudodactylogyroides has four anchors. The arrangement of anchors in these 

two genera is also different as the anchors of Pseudodactylogyrus exemplified by P. 

anguillae, are medial peduncular anchor (Le Brun et al., 1986), whereas the large 



 

anchors of Pseudodactylogyroides marmoratae are lateral peduncular anchors (see Lim, 

1995a). Lim (1995a) predicted that a new family may eventually be erected to 

accommodate Pseudodactylogyroides and proposed that Pseudodactylogyroides should 

be assigned to family Ancyrocephalidae.  

 

However, it should be noted that Pseudodactylogyrus and 

Pseudodactylogyroides are both genera with low numbers of species where only three 

species have been described for each of this genus (see Lim, 1995a; Ogawa, 1984; 

Ogawa, 1986). In fact, molecular data from only two Pseudodactylogyrus spp. and one 

Pseudodactylogyroides species are analysed in this study. The possibility of re-

assigning these two genera into two separate families as suggested by Lim (1995a) 

based on their morphological differences can only be determined until more species of 

these two genera are described in the future. Despite their morphological differences, 

results from this study show that the Pseudodactylogyrus and Pseudodactylogyroides 

are closely related (Figs. 4.20, 4.21 & 4.22) and support the current placement of these 

two genera under the family Pseudodactylogyridae (see Ogawa, 1986; Le Brun et al., 

1986).  

 

4.5.2.3 Status of Ancylodiscoididae 

The subfamily Ancylodiscoidinae was erected by Gusev (1961) within the 

family Dactylogyridae to accommodate monogeneans from the siluriforms. In 1978, 

Bychowsky & Nagibina transferred Ancylodiscoidinae into the family 

Ancyrocephalidae. Lim (1998) re-assigned the ancylodiscoidid genera with a 

dactylogyrid-type seminal vesicle e.g. Bychowskyella, Quadriancanthus, Chauhanellus, 

Hamatopeduncularia, into the Ancyrocephalinae, leaving the genera with blind sac-like 

seminal vesicle e.g. Anchylodiscus, Bifurcohaptor, Cornudiscoides, Malayanodiscoides, 



 

Pseudancylodiscoides, Thaparocleidus in the Ancylodiscoidinae (see also Lim, 1991, 

1992, 1994, 1996; Lim & Lerssutthichawal, 1996). Later Lim et al. (2001) raised the 

Ancylodiscoidinae to family status and grouped within this family the monogeneans 

from siluriforms and notopterids (two species of Thaprocleidus, one species of 

Malayanodiscoides and two species of Notopterodiscoides; see Lim & Furtado, 1986). 

 

The current result indicates that the genera previously re-assigned to the 

Ancyrocephalinae by Lim (1998) (Bychowskyella, Quadriancanthus, Chauhanellus and 

Hamatopeduncularia) do not cluster with any of the ancyrocephalids 

(Ancyrocephalidae I group, Ancyrocephalidae II group & Ancyrocephalidae–

Calceostomatidae group) but are clustered in the same group with the other 

ancylodiscoidids (Figs. 4.13, 4.14 & 4.15). These results unambiguously support the 

move by Lim et al. (2001) and further confirmed the validity of familial status of 

Ancylodiscoididae.  

 

4.5.2.4 Status of Neocalceostomatidae and Calceostomatidae 

Neocalceostoma and Neocalceostomoides have been placed in subfamily 

Calceostomatinae under family Dactylogyridae (Kritsky et al., 1978) and in family 

Calceostomatidae Parona & Perugia, 1890 under suborder Calceostomatinea (Boeger & 

Kritsky, 1993). However, Lim (1995c) separated Neocalceostoma and 

Neocalceostomoides from Calceostomatidae into Neocalceostomatidae based on the fact 

that Neocalceostoma and Neocalceostomoides are morphologically different from the 

calceostomatids (see Lim, 1995c). Although Lim (1995c) separated Neocalceostoma 

and Neocalceostomoides from Calceostomatidae into Neocalceostomatidae, Kearn et al. 

(1995) decided to include the Australian Neocalceostomoides into Calceostomatidae. 

Result from this study show Neocalceostomatidae and Calceostomatidae are not related 



 

therefore supporting the separation of Neocalceostomatidae from Calceostomatidae by 

Lim (1995c) (Figs. 4.1, 4.2, 4.3 & 4.4).  

 

4.5.2.5 Status of Ancyrocephalidae 

The three ancyrocephalid groups (Ancyrocephalidae I group, Ancyrocephalidae 

II group & Ancyrocephalidae III–Calceostomatidae group) formed in this current study 

show members from these groups are highly heterogeneous. The heterogeneity of the 

Ancyrocephalidae has caused a lot of controversies especially in the way researchers 

had tried to resolve its artificial grouping within the Dactylogyridea. Kritsky & Boeger 

(1989) and Boeger & Kritsky (1993, 1997) had also shown similar relationships for the 

members of the Ancyrocephalidae based on analysis of morphological data. Based on 

the analysis of morphological data, it is confusing what Kritsky & Boeger (1989) are 

trying to say. Kritsky & Boeger (1989) had suggested a major revision of the 

Ancyrocephalidae. They provided two options of either reducing Ancyrocephalidae to 

subfamily status or raising all the subfamilies within the Ancyrocephalidae to family 

status. They chose to reduce the Ancytrocephalidae and reassigned Ancyrocephalinae, 

Linguadactylinae, Linguadactyloidinae, Heterotesiinae, Pseudodactylogyrinae, 

Hareocephalinae, Ancylodiscoidinae and Anacanthorinae into the family 

Dactylogyridae in order to make the groups monophyletic (see Section 1.4). Lim (1998) 

and Lim et al. (2001) however did not agree with this move given that Dactylogyrus, 

the type genus of Dactylogyridae, possess a pair of unique needle-like structure which is 

not present in any ancyrocephalids.   

. 

Results from this study indicate that the Ancyrocephalidae needs revision but 

not by reducing Ancyrocephalidae but by creating a new family to accommodate 



 

members of Ancyrocephalidae II group & Ancyrocephalidae III–Calceostomatidae 

group and leaving the Ancyrocephalidae for members of Ancyrocephalidae I group 

which include Ancyrocephalus, the type genus of Ancyrocephalidae as it is common in 

Linnean taxonomy that as the numbers of a taxon increase, the status of the taxon would 

be altered accordingly (see Section 6.6; General Discussion). 

 

4.5.2.6 Status of Dactylogyridae  

The current result supports the suggestion by Lim (1998), Timofeeva et al. 

(1997) and Lim et al. (2001) that the Dactylogyridae should include monogeneans with  

two anchors, two unique ‘needle-like’ structure (considered to be hooks by some and 

anchors by others), 14 marginal hooks and one to two bars. The revison by Kritsky & 

Boeger (1989) served only to cause the family Dactylogyridae to become more 

heterogeneous and artificial by including the four anchors ancyrocephalids into 

Dactylogyridae. Lim et al. (2001) also suggested that the Ancyrocephalidae (sensu 

Bychowsky & Nagibina, 1978) should be left intact within the Dactylogyridea until 

further studies are done on more members of the Ancyrocephalidae.  A much better 

option suggested by Kritsky & Boeger (1989) would have been their other suggestion of 

raising the status of the subfamilies of the Ancyrocephalidae.  

 

 It should also be noted that the relationship trees based on molecular data 

obtained from previous studies (e.g. Šimková et al., 2003, 2006b) for the 

dactylogyridean families are almost similar to that obtained  in the current study despite 

these previous studies using few representatives in their analysis (cf. Figs. 4.1, 4.2 & 

4.3). In these previous analyses, members from major dactylogyridean groups of 

Dactylogyrinae, Pseudodatcylogyrinae, Ancylodiscoidinae, Pseudomurraytrematidae 

and Diplectanidae formed distinct yet related groups and the Ancyrocephalinae are 



 

clustered in two groups (Šimková et al., 2003; 2006b). Despite the clustering of 

dactylogyrids and ancyrocephalines as distinctly different groups, Šimková et al. (2003, 

2006b) had interpreted their relationships trees according to Kritsky & Boeger (1989) 

by considering the polyphyletic ancyrocephalines as Dactylogryidae. As already noted 

above (Section 4.5.2.5), Kritsky & Boeger (1989) and Boeger & Kritsky (1993) tried to 

resolve what they considered to the paraphyly of the Ancyrocephalidae by including all 

the subfamilies within the Ancyrocephalidae into the Dactylogyridae.  Could the 

approach of these cladists to introduce strict monophyly into the current monogenean 

classification based on ranked Linnean system causes more conflict than resolving 

paraphyly and polyphyly? (see Section 6.6; General Discussion). 

 

4.6 Summary of chapter  

Eight major groups can be observed in the MP, ML and NJ relationship trees 

generated in this study using partial 28S rDNA sequences from 191 dactylogyridean 

monogeneans. The memberships for each of the eight groups are the same and 

correspond to the different dactylogyridean families and genera (Table 4.1). These 

groupings of different individuals of dactylogyrideans corresponding to their respective 

family as well as some at generic level show the partial 28S rDNA can be used to group 

the dactylogyrideans and indicate there are molecular diversities within partial 28S 

rDNA sequences among the dactylogyrideans (see General Discussion).  

 

The groupings formed in the MP, ML and NJ trees have also provided 

information to examine the relationships and status of the different dactylogyrideans 

especially at family level (Sections 4.4 & 4.5.1). For example, based on information 

derived from the relationship trees generated in this study, the subfamily 

Heteronchocleidinae Price, 1968 was raised to family status, Heteronchocleididae (see 



 

Tan et al., 2011) (Section 4.5.2.1). The validity of the family Ancylodiscoididae, 

Neocalceostomatidae and Pseudodactylogyridae are also confirmed based on 

information from partial 28S rDNA (Sections 4.5.2.2, 4.5.2.3 & 4.5.2.4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

CHAPTER 5 

RESULTS & DISCUSSION 

 FISH HOST RELATIONSHIP BASED ON PARTIAL  

CYTOCHROME b SEQUENCES AND FISH-MONOGENEAN 

RELATIONSHIP 

 

5.1 Introduction 

This chapter deals with the fish hosts of the dactylogyridean. In this study the 

relationship of the fish host species are inferred using partial Cytochrome b sequences 

(see Section 2.4.2). The relationship of these fish hosts (Section 5.2.1) are used to assist 

in discussing the correlation with the distribution pattern of the dactylogyridean 

monogeneans (Section 5.3). The main objective of doing so is to determine if there is 

any association between the dactylogyridean monogeneans and their fish hosts. 

 

5.2 Partial Cytochrome b sequences of fish hosts 

In this study, 176 partial Cytochrome b sequences from fish species belonging to 

34 families and the partial Cytochrome b sequences of three fish species from 

Salmonidae, viz. Salmo salar (Linnaeus), Oncorhynchus mykiss (Walbaum) and O. 

kisutch (Walbaum) (as outgroup) (Table 2.4) are analysed by PAUP*4.0b10 in High 

Performance Computer (HPC) (see Sections 2.5 & 2.6.2.2). Three clustering methods of 

neighbor-joining (NJ), maximum parsimony (MP) and maximum likelihood (ML) are 

used to generate the three relationship trees (Figs. 5.1, 5.2 & 5.3). In the sequence 

alignment of the partial Cytochrome b of these 179 fish species, 692 alignable positions 

containing 451 variable sites were obtained and 377 of these variable sites were 



 

considered to be parsimony informative. Based on Modeltest 3.7, the current dataset of 

aligned sequences resulted in the best likelihood score for the general time reversible 

model with invariable sites and rate heterogeneity (GTR+I+G). Base frequencies are 

unequal where A=0.3465, C =0.3908, G=0.0559, T=0.2068 and the estimated 

proportion of invariable sites (pinvar) is 0.3227. The rate matrix (rmat) for the selected 

substitution model is [A-C]=0.1059, [A-G]=3.5164, [A-T]=0.2532, [C-G]=0.3328, [C-

T]=3.1356, [G-T]=1.0000. The shape parameter of the gamma distribution is α = 

0.4168. This model and parameters are used in NJ and ML analyses.  

 

5.3 Relationship of the fish hosts (Figs. 5.1, 5.2 & 5.3) 

The NJ, MP and ML relationship trees generated using partial Cytochrome b 

sequences show that the 176 species of fish hosts form distinct separate groups which 

correspond to their respective family (Figs. 5.1, 5.2 & 5.3). It can also be observed that 

there are consistently two major groups formed in the NJ, MP and ML relationship 

trees. The first group consists of 26 families from the order Perciformes and the second 

group correspond to the non-Perciformes group which consist of members from eight 

families. 

 

5.3.1 Perciformes group 

Within the Perciformes group, different number of subGroups can be observed 

in the NJ, MP and ML trees, i.e., seven subGroups in MP tree (Fig. 5.1), nine 

subGroups in ML tree (Fig. 5.2) and five subGroups in NJ tree (Fig. 5.3).  

 

 

 



 

5.3.1.2 MP tree (Fig. 5.1) 

In MP tree, the subGroups formed within the Perciformes group are almost 

similar with the NJ tree except for the two extra subGroups formed by Malacanthidae 

and Chaetodontidae (SubGroup 4 in MP tree) and Cichlidae and Mugilidae (SubGroup 

6 in MP tree) (Fig. 5.1). All the members in the other subGroups are similar to the 

subGroups formed in NJ trees except for position of the family Haemulidae, 

Scatophagidae and Sciaenidae. Thus, the membership of the Perciformes families 

within the seven subGroups observed in MP tree is as follow: SubGroup 1 = 

Helostomatidae, Anabantidae, Osphronemidae, Nandidae and Channidae; SubGroup 2 = 

Nemipteridae, Scatophagidae, Sciaenidae, Sparidae, Lutjanidae and Siganidae; 

SubGroup 3 = Serranidae, Latidae and Haemulidae; SubGroup 4 = Malacanthidae and 

Chaetodontidae; SubGroup 5 = Terapontidae, Mullidae, Centrarchidae, Lateolabracidae 

and Percidae; SubGroup 6 = Cichlidae and Mugilidae; SubGroup 7 = Gobiidae, 

Eleotridae and Apogonidae (Fig. 5.1). 

 

5.3.1.3 ML tree (Fig. 5.2) 

In ML tree, there are nine subGroups formed within the Perciformes group (Fig. 

5.2). The first subGroup consists of fish species from families which are similar to those 

in the NJ tree, viz., Helostomatidae, Anabantidae, Osphronemidae, Channidae and 

Malacanthidae. The second subGroup contains members from the family Scatophagidae 

and Mugilidae. The third subGroup possesses similar groupings which can also be 

observed in NJ and MP trees, where members of Nemipteridae, Sparidae, Siganidae and 

Lutjanidae are present. The fourth subGroup contains the sister group of Serranidae and 

Latidae (also observed in NJ and MP trees) as well as members of the Nandidae which 

are shown to form sister group with the Osphronemidae in NJ and MP trees. The fifth 

subGroup is made up of fish species from Haemulidae, Mullidae and Cichlidae while 



 

the sixth subGroup consists of members from Terapontidae, Percidae, Lateolabracidae 

and Centrarchidae where these families can also be observed to be grouped together in 

NJ and MP trees. The seventh and eighth subGroups are the Sciaenidae and 

Chaetodontidae, respectively. Lastly, the ninth subGroup contains members from 

Gobiidae, Eleotriidae and Apogonidae, where these three families are also grouped 

together in NJ and MP trees. 

 

5.3.1.1 NJ tree (Fig. 5.3) 

In NJ tree, there are 5 subGroups within the Perciformes group (Fig. 5.3). 

SubGroup 1 consists of fish species from the family Helostomatidae, Anabantidae, 

Osphronemidae, Nandidae, Channidae and Malacanthidae. All of these families in 

SubGroup 1 are primarily freshwater families except Malacanthidae. SubGroup 2 

includes members from the family Nemipteridae, Sparidae, Chaetodontidae, Lutjanidae 

and Siganidae which are all marine species while SubGroup 3 consists of families with 

mostly freshwater fish species (Latidae and Cichlidae) or with some freshwater and 

mostly marine species (Serranidae). SubGroup 4 includes both marine fish species from 

Haemulidae, Terapontidae, Mullidae, Lateolabracidae, Mugilidae and freshwater fish 

species from Centrarchidae and Percidae. Lastly, SubGroup 5 consists of members from 

Scatophagidae, Sciaenidae, Gobiidae, Eleotridae and Apogonidae which are all 

primarily marine species. Despite currently being assigned in the order Mugiliformes, 

the Mugilidae is consistently grouped with the perciforms families in this analysis (Fig. 

5.3) (Figs. 5.1 & 5.2; see above). It should also be noted that the Mugilidae was 

previously a perciform family (Nelson, 1994; Kottelat et al., 1993). Thus, based on 

current results from molecular data, Mugilidae is referred to as a perciform family in 

this study. 

 



 

5.3.2 Non-Perciformes group 

Within the non-Perciformes group, there are members from Anguilliformes 

(Anguillidae), Osteoglossiformes (Notopteridae), Siluriformes (Ariidae, Plotosidae, 

Bagriidae, Clariidae & Siluridae) and Cypriniformes (Cyprinidae). The Siluriformes are 

either forming sister group with Cyprinidae in MP tree (Fig. 5.1) or with Anguillidae + 

Notopteridae in NJ tree (Fig. 5.3). The Anguillidae and Notopteridae are shown to be 

closely related where they consistently form sister group in MP, ML and NJ trees (Figs. 

5.1, 5.2 & 5.3). 

 

5.4 Fish – monogenean distribution patterns 

Table 5.1 shows the dactylogyridean monogeneans analysed in this study (see 

Chapter 4) are from 115 species of marine and freshwater fish hosts. It should be noted 

that this table is compiled based on the dactylogyrideans analysed in Chapter 4 and it is 

not a complete list of the dactylogyrideans and their hosts. A review on the 

dactylogyridean monogeneans found on marine and freshwater fish of Peninsular 

Malaysia and oriental biogeography region which include Indo China and Southeast 

Asia has been done by Lim (1998). 

 

5.4.1 Perciformes  

Perciformes is one of the largest fish order with over 10,000 species (Nelson, 

1994; Froese & Pauly, 2012). Members of perciformes from 26 families (see Table 2.5) 

with information regarding the partial 28S rDNA sequences of their dactylogyridean 

monogeneans (see Chapter 4) are included in this study. The dactylogyridean 

monogeneans found in these 26 perciforms families range from members of 

Ancyrocephalidae, Diplectanidae, Heteronchocleididae, Pseudodactylogyridae and 

Dactylogyridae (Table 5.1). 



 

Table 5.1 Fish host of the monogeneans analysed in this study with information of the host order, family and species as well as the monogenean family 
(*names used in original paper/GenBank). 

Host order/family Host species Monogenean Monogenean family 
Order     
Perciformes    
Family    
Channidae  Channa lucius  Trianchoratus malayensis Heteronchocleididae 
  T. pahangensis Heteronchocleididae 
  T. longiancchoratus Heteronchocleididae 
 Channa striata T. ophicephali Heteronchocleididae 
 Channa micropeltes Sundanonchus foliaceus Sundanonchidae 
  S. tomanorum Sundanonchidae 
  S. micropeltis Sundanonchidae 
Anabantidae Anabas testudineus T. gussevi Heteronchocleididae 
  T. parvulus Heteronchocleididae 
  T. grandis Heteronchocleididae 
Helostomatidae Helostoma temminkii (Helostoma 

temminckii*) 
T. acleithrium Heteronchocleididae 

Osphronemidae Trichogaster leerii T. leerium Heteronchocleididae 
 Trichogaster trichopterus T. trichogasterium Heteronchocleididae 
 Macropodus opercularis Heteronchocleidus buschkieli Heteronchocleididae 
 Belontia hasselti Eutrianchoratus inequalis Heteronchocleididae 
  E. cleithrium Heteronchocleididae 
Serranidae Epinephelus coioides Diplectanum grouperi Diplectanidae 
  Pseudorhabdosynochus coioidesis Diplectanidae 



 

  Pseudorhabdosynochus 
shenzhenensis 

Diplectanidae 

 Epinephelus bruneus Pseudorhabdosynochus lantauensis Diplectanidae 
  P. epinepheli Diplectanidae 
 Epinephelus sexfasciatus Haliotrema epinepheli Ancyrocephalidae 
 Cromileptes altivelis Haliotrema cromileptis Ancyrocephalidae 
Latidae Lates calcarifer Diplectanum penangi Diplectanidae 
  Lamellodiscus spari Diplectanidae 
  Pseudorhabdosynochus latesi 

(Pseudorhabdosynochus latesis*) 
Diplectanidae 

  Laticola seabassi 
(Pseudorhabdosynochus seabassi*) 

Diplectanidae 

  L. paralatesi Diplectanidae 
  L. lingaoensis Diplectanidae 
Nemipteridae Nemipterus japonicus Calydiscoides indianus Diplectanidae 
 Nemipterus bathybius Calydiscoides sp. Diplectanidae 
Terapontidae Terapon jarbua Lepidotrema longipenis Diplectanidae 
Sciaenidae Johnius amblycephalus Diplectanum umbrinum Diplectanidae 
 Johnius sp.  Lobotrema sp. Diplectanidae 
 Nibea albiflora Lobotrema sciaenae Diplectanidae 
  Murraytrema bychowskyi (M. 

pricei*) 
Diplectanidae 

  Sinodiplectanotrema sp. HGY Diplectanidae 
 Pennahia anea Sinodiplectanotrema malayanum Diplectanidae 
Sparidae Sparus macrocephalus Haliotrema kurodai Ancyrocephalidae 
  H. grossecurvitubus Ancyrocephalidae 



 

  Lamellodiscus japonicus Diplectanidae 
 Pagrosomus major Lamellodiscus pagrosomi Diplectanidae 
 Acanthopagrus schlegelii Haliotrema eukurodai Ancyrocephalidae 
 Acanthopagrus australis Lamellodiscus acanthopagri Diplectanidae 
Haemulidae Pomadasys hasta Bravohollisia gussevi Ancyrocephalidae 
  B. reticulata Ancyrocephalidae 
  B. kritskyi Ancyrocephalidae 
  Bravohollisia sp. Ancyrocephalidae 
  Caballeria liewi Ancyrocephalidae 
  C. pedunculata Ancyrocephalidae 
  C. intermedius Ancyrocephalidae 
 Pomadasys maculatus B. rosetta Ancyrocephalidae 
  B. maculatus Ancyrocephalidae 
  B. parvianchoratus Ancyrocephalidae 
Lutjanidae Lutjanus russellii Euryhaliotrema sp. HBDD Ancyrocephalidae 
 Lutjanus stellatus Haliotrema spirotubiforum Ancyrocephalidae 
 Lutjanus monostigma Haliotrema anguiformis Ancyrocephalidae 
 Lutjanus argentimaculatus Haliotrema shenzhenensis Ancyrocephalidae 
  H. nanaoensis Ancyrocephalidae 
 Lutjanus guttatus Euryhaliotrema perezponcei Ancyrocephalidae 
  Haliotrematoides plectridium Ancyrocephalidae 
  H. spinatus Ancyrocephalidae 
  H. guttati Ancyrocephalidae 
 Lutjanus rhodopterus Euryhaliotrema johnii Ancyrocephalidae 
  Euryhaliotrematoides sp. HQDD Ancyrocephalidae 
Scatophagidae Scatophagus argus Metahaliotrema mizellei Ancyrocephalidae 



 

  M. geminatohamula Ancyrocephalidae 
Mullidae Upeneus quadrilineatus Haliotrema bihamulatum Ancyrocephalidae 
 Upeneus luzonius H. johnstoni Ancyrocephalidae 
Siganidae Siganus sp. Pseudohaliotrema sp. Ancyrocephalidae 
 Siganus doliatus P. sphincteroporus Ancyrocephalidae 
 Siganus fuscescens Tetrancistrum sp. Ancyrocephalidae 
Cichlidae Tylochromis intermedius Cichlidogyrus pouyaudi Ancyrocephalidae 
 Hemichromis fasciatus C. falcifer Ancyrocephalidae 
  C. tilapiae Ancyrocephalidae 
  Onchobdella aframae Ancyrocephalidae 
  O. bopeleti Ancyrocephalidae 
 Sarotherodon galilaeus C. acerbus Ancyrocephalidae 
 Oreochromis niloticus Scutogyrus longicornis Ancyrocephalidae 
Centrarchidae Lepomis gibbosus Actinocleidus recurvatus Ancyrocephalidae 
  Urocleidus similis Ancyrocephalidae 
 Lepomis macrochirus Onchocleidus sp. Ancyrocephalidae 
Percidae Sander lucioperca (Stizostedion 

lucioperca*) 
Ancyrocephalus paradoxus Ancyrocephalidae 

 Gymnocephalus cernua (Gymnocephalus 
cernuus*) 

Dactylogyrus hemiamphibothrium Dactylogyridae 

Eleotridae Oxyeleotris marmorata  Pseudodactylogyroides 
marmoratae 

Pseudodactylogyridae 

Lateolabracidae Lateolabrax japonicus Dactylogyrus inversus  
  D. gotoi  
  D. kikuchii  
Malacanthidae Branchiostegus auratus Haliotrema chenhsintaoi Ancyrocephalidae 



 

Chaetodontidae Chaetodon auriga Haliotrema aurigae Ancyrocephalidae 
 Chaetodon kleinii Haliotrema angelopterum Ancyrocephalidae 
  Euryhaliotrematoides 

triangulovagina 
Ancyrocephalidae 

 Forcipiger flavissimus Haliotrema scyphovagina Ancyrocephalidae 
 Chaetodon citrinellus Euryhaliotrematoides berenguelae Ancyrocephalidae 
  Aliatrema cribbi Ancyrocephalidae 
 Chaetodon vagabundus Euryhaliotrematoides annulocirrus Ancyrocephalidae 
  E. grandis Ancyrocephalidae 
  E. aspistis Ancyrocephalidae 
 Chaetodon lunula Euryhaliotrematoides pirulum Ancyrocephalidae 
 Heniochus chrysostomus Euryhaliotrematoides microphallus Ancyrocephalidae 
Nandidae  Pristolepis fasciatus Sundanonchus triradiacatus Sundanonchidae 
Gerreidae Gerres filamentosus Haliotrema subancistroides Ancyrocephalidae 
 Gerres macrosoma Haliotrema digyroides Ancyrocephalidae 
 Eugerres axillaris Calceostomatidae sp.  
Leiognathidae Leiognathus brevirostris Haliotrema geminatohamula Ancyrocephalidae 
Lethrinidae Lethrinus nebulosus Haliotrema fleti Ancyrocephalidae 
Acanthuridae Acanthurus nigrofuscus Haliotrema leporinus Ancyrocephalidae 
 Ctenochaetus strigosus Haliotrema ctenochaeti Ancyrocephalidae 
 Acanthurus nigroris Haliotrema macracantha Ancyrocephalidae 
 Acanthurus olivaceus Haliotrema pratasensis Ancyrocephalidae 
Sillaginidae Sillago sihama Diplectanum blairense 

(Paradiplectanum blairense*) 
Diplectanidae 

  Diplectanum sillagonum 
(Paradiplectanum sillagonum*) 

Diplectanidae 



 

Polynemidae Polydactylus sextarius (Polynemus 
sextarius*) 

Diplectanum veropolynemi Diplectanidae 

Kyphosidae Kyphosus vaigiensis Acelotrema sp. Diplectanidae 
    

Order     
Osteoglossiformes    
Family     
Notopteridae Notopterus notopterus Malayanodiscoides bihamuli Ancylodiscoididae 
  Thaparocleidus notopteri Ancylodiscoididae 
    
Order    
Siluriformes    
Family    
Plotosidae Plotosus canius Ancylodiscus malayensis Ancylodiscoididae 
Ariidae Osteogeneiosus militaris Hamatopeduncularia simplex Ancylodiscoididae 
  Chauhanellus osteogenosus Ancylodiscoididae 
 Arius maculatus Hamatopeduncularia sp. Ancylodiscoididae 
  H. papernai Ancylodiscoididae 
  C. poculus Ancylodiscoididae 
  C. pulutanus Ancylodiscoididae 
 Hexanematichthys sagor (Arius sagor*) H. isosimplex Ancylodiscoididae 
  C. digitalis Ancylodiscoididae 
  Neocalceostomoides hamatum Neocalceostomatidae 
 Arius venosus H. venosus Ancylodiscoididae 
  Neocalceostoma sp. Neocalceostomatidae 
 Arius caelatus H. malayanus Ancylodiscoididae 



 

Bagridae Mystus nigriceps Cornudiscoides facicirrus Ancylodiscoididae 
 Mystus sp. Bifurcohaptor lanchangensis Ancylodiscoididae 
  Cornudiscoides sp. Ancylodiscoididae 
 Mystus vittatus Cornudiscoides proximus Ancylodiscoididae 
 Pseudobagrus fulvidraco Bychowskyella pseudobagri Ancylodiscoididae 
  Pseudancylodiscoides sp. HSY1 Ancylodiscoididae 
  Pseudancylodiscoides sp. HSY3 Ancylodiscoididae 
  Pseudancylodiscoides sp. HSY4 Ancylodiscoididae 
Siluridae Silurus astus Thaparocleidus magnicirrus Ancylodiscoididae 
  T. obscura Ancylodiscoididae 
  T. mutabilis Ancylodiscoididae 
  T. omegavagina Ancylodiscoididae 
  T. infundibulovagina Ancylodiscoididae 
  T. asoti Ancylodiscoididae 
  T. varicus Ancylodiscoididae 
  T. cochleavagina Ancylodiscoididae 
 Silurus glanis T. vistulensis Ancylodiscoididae 
  T. siluri Ancylodiscoididae 
Pangasiidae Pangasianodon hypophthalmus (Pangasius 

sutchi*) 
T. campylopterocirrus Ancylodiscoididae 

Clariidae Clarias batrachus Quadriacanthus kobiensis Ancylodiscoididae 
Ictaluridae Ameiurus nebulosus (Ictalurus nebulosus*) Cleidodiscus pricei Ancyrocephalidae 
    
 
 
 

   



 

Order 
Cypriniformes    
Family    
Cyprinidae Cyclocheilichthys apogon Dactylogyrus apogonae Dactylogyridae 
  D. temperasi Dactylogyridae 
 Hypophthalmichthys nobilis (Aristichthys 

nobilis*) 
D. aristichthys Dactylogyridae 

 Hypophthalmichthys molitrix D. hypophalmichthys Dactylogyridae 
 Hampala macrolepidota D. hampalai Dactylogyridae 
  D. quadribrachiatus Dactylogyridae 
 Osteochilus hasselti D. cheligenitalis Dactylogyridae 
 Rasbora elegans D. elegani Dactylogyridae 
 Rasbora sp. Dactylogyrus sp. Dactylogyridae 
 Systomus sophore (Puntius sophore*) Dactylogyroides longicirrus Dactylogyridae 
 Ctenopharyngodon idella D. lamellatus Dactylogyridae 
 Labiobarbus sp. Dactylogyrus sp. LAB Dactylogyridae 
 Gobio gobio D. cryptomeres Dactylogyridae 
 Carassius auratus D. inexpectatus Dactylogyridae 
 Cyprinus carpio D. extensus Dactylogyridae 
 Rutilus rutilus D. nanus Dactylogyridae 
  D. sphyrna Dactylogyridae 
 Megalobrama amblycephala D. petruschewskyi Dactylogyridae 
  D. pekinensis Dactylogyridae 
 Megalobrama terminalis D. parabramis Dactylogyridae 
 Cirrhinus molitorella D. quanfami Dactylogyridae 
 Systomus binotatus (Puntius binotatus*) D. damansari Dactylogyridae 



 

  D. spirocopulatrium Dactylogyridae 
  D. sclerovaginalis Dactylogyridae 
 Systomus laterstriga (Puntius laterstriga*) D. laterstriga Dactylogyridae 
 Systomus gonionotus (Puntius gonionotus*) D. puntii Dactylogyridae 
Cobitidae Misgurnus anguillicaudatus Gyrodactylus macracanthus Gyrodactylidae 
Catostomidae Catostomus ardens Pseudomurraytrema sp. USA Pseudomurraytrematidae 
    
Order    
Anguilliformes    
Family    
Anguillidae Anguilla anguilla  Pseudodactylogyrus sp. UK Pseudodactylogyridae 
  Pseudodactylogyrus sp. XHY Pseudodactylogyridae 
  P. bini Pseudodactylogyridae 
  P. anguillae Pseudodactylogyridae 
Order    
Mugiliformes    
Family    
Mugilidae Mugil cephalus Ligophorus vanbenedenii Ancyrocephalidae 
  L. leporinus Ancyrocephalidae 
    
Order    
Beloniformes    
Family    
Hemiramphidae Hemiramphodon pogonognothus Dactylogyrus hemiramphodonus Dactylogyridae 

    
    



 

Order 
Scorpaeniformes    
Family    
Platycephalidae Platycephalus indicus Haliotrema platycephali Ancyrocephalidae 
  H. macasarensis Ancyrocephalidae 
    
Order    
Esociformes    
Family     
Esocidae Esox lucius Tetraonchus monenteron Tetraonchidae 
    
Order    
Salmoniformes     
Family    
Salmonidae  Salmo salar Gyrodactylus salaris Gyrodactylidae 
 Oncorhynchus mykiss G. derjavini Gyrodactylidae 
    
    



 
 

5.4.1.1 Chaetodontidae, Lutjanidae, Sparidae, Scatophagidae & Mugilidae 

From the host relationship trees (Figs. 5.1, 5.2 & 5.3), the perciformes hosts of 

the closely related ancyrocephalid genera (Euryhaliotrematoides, Aliatrema, 

Haliotrema, Haliotrematoides, Euryhaliotrema, Ligophorus and Metahaliotrema in 

Group 8; see Section 4.2.3) are shown to be closely related as well. In NJ tree, fish 

species from the family Chaetodontidae (hosts to Euryhaliotrematoides, Aliatrema, 

Haliotrema), Lutjanidae (hosts to Haliotrematoides, Euryhaliotrema, 

Euryhaliotrematoides, Haliotrema) and Sparidae (hosts to Haliotrema) are shown to be 

related where they are found in the same subGroup (SubGroup 2) (Fig. 5.3). In MP tree, 

fish hosts from Lutjanidae, Sparidae and Scatophagidae (hosts to Metahaliotrema) are 

shown to be related and present in the same subGroup (SubGroup 2) (Fig. 5.1). Also in 

ML tree, the closely related grouping of Lutjanidae + Sparidae (SubGroup 3) and 

Scatophagidae + Mugilidae (hosts to Ligophorus) (SubGroup 2) can be observed (Fig. 

5.2). 

 

5.4.1.2 Serranidae, Latidae, Sparidae & Nemipteridae 

For fish species from the family Serranidae and Latidae, they are shown to be 

closely related where they consistently form sister group in MP and NJ tree (Figs. 5.1 & 

5.3). The Serranidae and Latidae are hosts to the diplectanids analysed in this study, i.e. 

Pseudorhabdosynochus spp. and Diplectanum spp. which are shown to be closely 

related (see Section 4.2.2). The Sparidae and Nemipteridae, hosts of closely related 

diplectanids, i.e. Lamellodiscus spp. and Calydiscoides spp. (see Section 4.2.2), are 

shown to form sister group in the NJ tree (Fig. 5.3) and present in the same subGroup in 

the MP and ML trees (Figs. 5.1 & 5.2).  

 



 
 

5.4.1.3 Gobiidae, Apogonidae & Eleotriidae  

Perciforms species from Gobiidae, Apogonidae and Eleotriidae are host to the 

pseudodactylogyrids, i.e. Pseudodactylogyrus spp. (Gobiidae) and 

Pseudodactylogyroides spp. (Apogonidae and Eleotriidae) (Gussev, 1965; Ogawa, 

1984; 1986; Lim, 1995) (Table 5.1). Although one species of Pseudodactylogyroides 

from Oxyeleotris sp. (Eleotriidae) and four species of Pseudodactylogyrus from an 

Anguilla sp. (Anguilliformes; see later; Section 5.4.2) are included in this study, the fish 

species from Apogonidae and Gobiidae are included in the host relationship tree to 

provide a better understanding of the host-pseudodactylogyrid relationship. From the 

host relationship trees of NJ, MP and ML, it can be observed that Apogonidae, Gobiidae 

and Eleotridae are consistently grouped in the same subGroup (Figs. 5.1, 5.2 & 5.3). 

This indicates that these three families are closely related as similar to their closely 

related pseudodactylogyrid monogeneans (see Section 4.4.6.3).  

 

5.4.1.4 Lateolabracidae, Percidae & Hemiramphidae 

Fish species from Lateolabracidae (Lateolabrax sp.), Percidae (Gymnocephalus 

sp.) and Hemiramphidae (Hemirhamphodon sp.) are host to Dactylogyrus spp., viz. D. 

inversus Goto & Kikuchi, 1917, D. gotoi Gusev, 1965 and D. kikuchii Gusev, 1965 

from Lateolabrax sp. (Lateolabracidae), D. hemiamphibothrium Ergens, 1956 from 

Gymnocephalus sp. (Percidae) and. D. hemiramphodonus Lim, pers. com. from 

Hemirhamphodon sp. (Hemiramphidae) (Lim, pers. com.) (Figs. 5.1, 5.2 & 5.3) (see 

Table 2.5). Current results from the host relationship trees show that the Lateolabrax sp. 

(Lateolabracidae) and Gymnocephalus sp. (Percidae) are grouped together with the 

other Perciformes families. Although harbouring similar dactylogyrids monogenean 

(Dactylogyrus spp.) as the cyprinid hosts (see later; Section 5.4.4), the Lateolabrax sp. 



 
 

(Lateolabracidae) and Gymnocephalus sp. (Percidae) are shown to be not related to the 

Cypriniformes. Hemiramphidae is not represented in the current host relationship trees 

(Figs. 5.1, 5.2 & 5.3). 

 

5.4.1.5 Osphronemidae, Helostomatidae, Anabantidae & Channidae 

The NJ, MP and ML host relationship trees generated using partial Cytochrome 

b sequences show that the anabantoids (Osphronemidae, Helostomatidae, Anabantidae) 

and channids are consistently present in the same subGroup, indicating that they are 

closely related (Figs. 5.1, 5.2 & 5.3). This supports the relatedness of the anabantoids 

and channids postulated by various ichthyologists based on the similar morphological 

characteristics such as possessing accessory breathing organs and ecological habitats 

(Nelson, 1994; Lim, 1997). Thus, current results show the closely related 

heteronchocleidid species (see Section 4.2.6) are found on closely related anabantoid 

and channid hosts species. 

 

5.4.1.6 Channidae & Nandidae 

It should be noted that instead of harbouring heteronchocleidids, Channa 

micropeltes (Cuvier) from Channidae are host to members of Sundanonchidae, i.e. 

Sundanonchus micropeltis Lim & Furtado, 1985, S. foliaceus Krtisky & Lim, 1995 and 

S. tomanorum Krtisky & Lim, 1995 (see Lim & Furtado, 1985; Krtisky & Lim, 1995). 

The Sundanonchus spp. are also found previously on nandid hosts, as exemplified by S. 

triradicatus Lim & Furtado, 1985 on Pristolepis fasciatus (Bleeker) (Nandidae) (Lim & 

Furtado, 1985). Current host relationship trees generated using NJ and MP analyses 

show that the Nandidae and Channidae are closely related where they are found in the 



 
 

same subGroup (Figs. 5.1 & 5.2). Thus, Sundanonchus spp. are shown to be present on 

the related channid and nandid hosts.   

 

5.4.1.7 Centrarchidae & Percidae  

The freshwater perciformes hosts of the closely related ancyrocephalid genera, 

i.e. Actinocleidus, Urocleidus, Ancyrocephalus and Onchocleidus (see Section 4.2.3) are 

shown to be closely related in the host relationship trees (Figs. 5.1, 5.2 & 5.3). From the 

NJ, MP and ML host relationship trees, fish species from the family Centrarchidae 

(hosts to Actinocleidus, Urocleidus, Onchocleidus) and Percidae (hosts to 

Ancyrocephalus) are consistently present in the same subGroup (Figs. 5.1, 5.2 & 5.3).  

 

5.4.2 Anguilliformes 

Fish species from Anguillidae, i.e. Anguilla sp. possess Pseudodactylogyrus spp. 

(Pseudodactylogyridae). Despite harbouring closely related pseudodactylogyrids, 

current host relationship trees (Figs. 5.1, 5.2 & 5.3) show Anguillidae is distantly 

related to other fish hosts of pseudodactylogyrids from Apogonidae, Gobiidae and 

Eleotridae (Section 5.4.1.3).  

 

5.4.3 Siluriformes and Osteoglossiformes  

The distribution patterns of the host-ancylodiscoidid included in this study show 

that all the ancylodiscoidid monogeneans are found on Siluriformes hosts (Siluridae, 

Bagridae, Clariidae, Plotosidae, Ariidae) except two ancylodiscoidid species which are 

found on an Osteoglossiformes host (Notopteridae). From the host relationship trees 

(Figs. 5.1, 5.2 & 5.3), it is shown that all the fish host families from the Siluriformes are 



 
 

clustered in the same group. This indicates that the Siluriformes hosts which harbour the 

related ancylodiscoidids are closely related as well. Within this Siluriformes group, fish 

species from the family Ariidae and Plotosidae can be observed to be closely related 

where these two families form sister group in NJ and MP trees (Fig. 5.1 & 5.2). 

Similarly, the ancylodiscoidid monogeneans, Chauhanellus and Hamatopeduncularia 

spp. from fish species of Ariidae and Ancylodiscus sp. from fish species of Plotosidae 

are shown to be closely related in the monogenean relationships trees where they are 

present in the same subGroup (see Section 4.4.4).  

 

It should be noted that ancylodiscoidids are also found on osteoglossiformes host 

from Notopteridae. This is exemplified in the current study by Thaparocleidus notopteri 

Lim & Furtado, 1986 and Malayanodiscoides bihamuli Lim & Furtado, 1986 from 

Notopterus notopterus (another ancylodiscoidid genus from notopterids, 

Notopterodiscoides is not analysed in this study; see Lim & Furtado, 1986a).  

 

5.4.4 Cypriniformes 

From the host relationship trees (Figs. 5.1, 5.2 & 5.3), all the cypriniform hosts 

included in this study are shown to be closely related where they consistently form a 

monophyletic group. The dactylogyrids (Dactylogyrus and Dactylogyroides) found on 

these cyprinid hosts are shown to be closely related as well (see Section 4.4.5). It should 

also be noted that there are Dactylogyrus spp. which are present on non-cyprinid hosts 

(see above; Section 5.4.1.4). 

 

 



 
 

5.5 Discussion 

Current analysis of the fish hosts relationships and distribution patterns of the 

dactylogyridean monogeneans included in this study indicate that these 

dactylogyrideans are host-specific (see Gusev, 1978; Lim, 1987a; Lim, 1998 and Lim et 

al., 2001). This is exemplified by the presence of dactylogyrids on cyprinid hosts 

(Section 5.4.4), ancylodiscoidids on the siluriforms (Section 5.4.3), heteronchocleidids 

on the related anabantoids and channids (Section 5.4.1.5) (see also Lim, 1986; Lim, 

1989; Tan et al., 2011) and pseudodactylogyrids on the related gobiids, eleotridids and 

apogonids (Section 5.4.1.3). The presence of diplectanids and marine ancyrocephalids 

on their respective perciforms families (Sections 5.4.1.1 & 5.4.1.2) as well as the 

freshwater ancyrocephalids on their related freshwater fish hosts (Percidae & 

Centrarchidae) (Section 5.4.1.7) also supports the fact that related host species harbour 

related monogeneans.  

 

Current results also show the unusual presences of dactylogyrideans on 

apparently unrelated hosts. There are Dactylogyrus spp. on non-cyprinid hosts (Section 

5.4.1.4), ancylodiscoidids on non-siluriform hosts (Section 5.4.3) and 

pseudodactylogyrids on the distantly related anguilliform and perciform (gobiids + 

eleotriidids + apogonids) hosts (Sections 5.4.1.3 & 5.4.2). The non-cyprinids, i.e. 

Gymnocephalus cernuus (Percidae) and Hemiramphodon pogonognothus 

(Hemiramphidae) (which might have shared similar freshwater habitats with the 

Cypriniformes) could have acquired the Dactylogyrus from cyprinid hosts. For the 

marine non-cyprinid host of Dactylogyrus, i.e. Lateolabrax japonicus (Lateolabracidae), 

this anadromous fish host might have acquired the Dactylogyrus spp. from cyprinid 

hosts during their migration into freshwater habitat (Lim, 2005).  

 



 
 

As for the presence of ancylodiscoidids (Thaparocleidus, Malayanodiscoides 

and Nototperodiscoides) on Notopteridae (Osteoglossiformes), it suggests that the 

notopterid hosts have most probably acquired their ancylodiscoidids from siluriform 

hosts since some siluriformes hosts possess similar characteristics such as sharing 

similar habitats (swampy areas and rivers) with the notopterids and both are air-

breathing fish (Nelson, 1974). The presence of Pseudodactylogyrus spp. on distantly 

related Anguilidae (Anguilliformes) (Section 5.4.2) and Gobiidae (Perciformes) 

(Section 5.4.1.3) also indicates Pseudodactylogyrus spp. could be acquired by 

Anguillidae from Gobiidae or vice versa as these two families are catadromous fishes 

with overlapping habitat during their migration between marine to freshwater habitats.  

 

It can be noted that there are absences of dactylogyrideans on their related hosts. 

This is exemplified by the absence of heteronchocleidids from Channa micropeltes 

(Channidae), indicating that the heteronchocleidids could be lost (species loss) during 

the dispersion of C. micropeltes which later enable it to capture a new group of 

monogenean species, Sundanonchus spp. probably from a Pristolepis sp. (Section 

5.4.1.6) (see also Lim & Furtado, 1985). It is also interesting to note that only one 

heteronchocleidid genus is present on each anabantoid and channid host species with no 

specificity of any of the three heteronchocleidid genera (Heteronchocleidus, 

Eutrianchoratus and Trianchoratus) to any anabantoid and channid species (Section 

5.4.1.5).  

 

Therefore, current results indicate that there are associations between the fish 

host relationships and distribution patterns of the dactylogyridean monogeneans as 

shown in the host specificity of dactylogyrideans where related hosts harbour related 

monogeneans, the unusual presences of dactylogyrideans on unrelated fish host species 



 
 

and the absences of dactylogyrideans on their related hosts (species loss). These 

associations between the dactylogyridean monogeneans and their fish hosts mentioned 

above suggest that ecological processes such as co-evolution (related hosts harbour 

related monogeneans), host transfer (unusual presences of dactylogyrideans on 

unrelated fish host species) and failure to speciate (absences of dactylogyrideans on 

their related hosts) could have taken place during the diversification and dispersion of 

the dactylogyrideans (see General Discussion). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

CHAPTER 6 

GENERAL DISCUSSION 

DIVERSIFICATIONS & STATUS OF DACTYLOGYRIDEA  

 

6.1 Introduction 

In this Chapter, a synthesis of the salient findings discussed in Chapters 3 to 5 

will be done to encapsulate what is known to date about the diversification and status of 

the monogeneans in particular the Dactylogyridea. The significance of the 

morphological and morphometrical variations of species at the population level will be 

discussed in relation to speciation processes. In this chapter, an attempt is made to 

determine if the phylogenetic relationships of the monogeneans based on 28S rDNA 

sequences will be able to explain the morphological diversifications of the 

monogeneans or is the role of 28S rDNA in phylogenetic reconstruction overstated. The 

associations of the dactylogyrideans with their fish hosts might help to elucidate the 

evolutionary history of the diversifications of monogenean and might explain the 

unusual distribution patterns of some of the monogeneans.  Issues encountered in the 

present different classification systems proposed for the dactylogyrideans will be 

discussed in the light of the current results particularly from Chapter 4. Finally aspects 

arising from this study which requires more investigation will be included and discussed 

under Future Studies.  

 

It should also be noted that some results of this study had already been published 

in partial requirement for Ph.D. from this university (Tan & Lim, 2009; Tan, Khang & 

Lim, 2010; Tan, Fong & Lim, 2011). These 3 papers dealt with the analyses of the 

morphological, morphometrical and molecular characteristics of heteronchocleidines. 



 
 

Two other papers published in connection with this Ph.D., viz., Wong, Tan & Lim 

(2006) & Lim, Tan & Gibson (2010) are from my supervisor’s related studies. 

 

6.2 Diversifications of dactylogyrideans 

Morphological and morphometrical differences are observed amongst different 

congeneric species and different individuals of a species (Chapter 3) (Lim, pers. com.). 

These differences, in particular, the morphometrical differences provide the necessary 

variations for the   diversification of the monogeneans (Section 6.3). This study has 

shown that metric measurements of morphological features can be used to distinguish 

between morphologically similar species (PCA, Section 3.2.1) and hence could be used 

for differential diagnoses of species.  The morphometric data of the different 

monogenean individuals supports that morphometric variations do exist in the 

monogenean species at population level (Section 3.2.2). These morphovariants or 

morphometic variants seem to be affected by host locations or/and host individuals and 

that different species are affected differently by these two environmental factors 

(Sections 3.2.2.1 & 3.2.2.2).  

 

The number of morphovariants within each species population not constant and 

vary according to species: 3 morphovariants in Trianchoratus malayensis and T. 

pahangensis, 2 morphovariants in T. ophicephali, 2 morphvariants in Bravohollisia 

rosetta, B. reticulata, B. gussevi, Bravohollisia n. sp., Caballeria liewi, C. intermedius 

and C. pedunculata (see Section 3.2; Tables 3.1 & 3.2). The fact that different species 

have different number of morphovariants suggests that the amount of variability 

(genetic variations) is different in different species.  



 
 

Lim (pers. com.) noted the diversity of certain morphologies in some group of 

monogeneans and the lack of diversity of the same morphologies in other monogeneans 

(cf stable male copulatory organ features in sundanonchids and tetraonchids and the 

diverse male copulatory organs in Dactylogyrus spp. (Lim, pers. com.).  It will be 

interesting to see if the numbers of morphovariants do reflect genetic variations at 

generic and familial levels (see Future studies).  

 

In this investigation we have tried to determine if all the different 

morphovariants are present in all host individuals (Section 3.4) and although there are 

some indication that this is the case, current investigation is limited by the way the data 

was collected for analysis (see Section 3.6) and more data are necessary for a more 

definite conclusion (see Future studies). As already noted morphovariants are highly 

likely to be due to genetic differences as monogeneans are known to prefer cross-

fertilisation (Lim, pers. com.; Lim, 2002) which provides the variations observed in the 

different morphovariants within the populations (see later).  

 

The amount of variations or differences found amongst the different 

morphovariants within a species population are low as indicated by their low 

differentiation indices, Φ (an index used to detect amount of variations) as compared to 

the Φ for species (Φ =1 – 7.3 for morphovariants cf Φ =14 – 192 for congeneric species) 

(Section 3.3; Tables 3.3– 3.6). The indices show that although the variations within the 

population are real, the amount of differences are almost 50% less than that for species 

and hence not large enough to consider them as species (Section 3.3). 

 



 
 

At the moment we know very little about the molecular diversity of 

monogeneans at population level although molecular data are available for different 

monogenean species. An attempt was made to use 28S rDNA sequences to determine 

whether two morphologically similar monogenean species are the same species or 

different species. The conserved 28S rDNA of 3 different individuals of the same 

species (Sinodiplectanotrema malayanum) are 100% similar (see Lim, Tan & Gibson, 

2010; Appendix E) supporting the argument 28S rDNA of different individuals of the 

same species should be 100% similar. The 28S rDNA of different individuals of a 

species are not readily available and hence the molecular diversifications of 

monogeneans cannot be discussed herein.  

 

6.3 Significance of variations in speciation process of monogeneans  

Speciation is the evolutionary process by which new biological species arise 

(DeQueiroz, 1998). For speciation process to occur the speciating populations must be 

isolated from one another and possess enough variations (Lim, pers. com.). There are 

four modes of speciation in nature, i.e. allopatric (a population splits into two 

geographically isolated populations which undergone different selective pressure, 

independent genetic drift and mutations), peripatric (a subform of allopatric speciation 

where new species are formed in isolated, smaller peripheral populations that are 

prevented from exchanging genes with the main population), parapatric (two diverging 

populations are only partially separated where individuals of each species may come 

into contact from time to time, but with mechanisms that prevent inter-breeding) and 

sympatric (formation of two or more descendent species from a single ancestral species 

while inhabiting the same geographic region) (Templeton, 1981; Barraclough & Volger, 

2000).  



 
 

As already noted above (Section 6.2), monogeneans cross-fertilisation (Lim, 

2002; Lim, pers. com.) provides the necessary genetic differences in morphovariants. 

Hypothetically it is possible for the morphovariants to eventually become new species if 

there are ecological barriers to isolate them. This study shows that probable isolating 

mechanisms are already present within the ecosystem of the parasites. The presence of 

the locality dependent morphovariants and host factor dependent morphovariants 

(Section 3.2.2) suggest these factors might served as ecological barriers or isolating 

mechanisms for eventual speciation of these morphovariants into new species. 

However, it is not possible in this study to determine which types of speciation has 

monogeneans undergone and how these speciation processes can take place amongst the 

monogeneans.  

 

6.4 Can relationships trees generated from molecular data explain the evolutionary 

diversification of morphological characteristics among dactylogyrideans? 

In this study a total of 190 species belonging to 53 genera and 11 families are 

used to generate the 3 relationship trees (Section 4.3). These dactylogyridean 

monogeneans (Lim, pers. com.) are diverse in terms of the number of anchors (2 to 4), 

bars (1, 2 or 0), marginal hooks (14 to 16), the presence of needles, squamodiscs or 

lamellodiscs as well as in the anatomical structures (e.g. bifurcating intestinal caeca 

which end blindly or confluent to single sac-like intestine of the sundanonchid-

tetronchid). The relationship trees generated indicate in general that the ancyrocephalids 

are heterogeneous and this is supported by the splitting of the ancyrocephalids into 3 

main groups (Section 4.5.2.5); that Dactylogyridae is unique (Section 4.5.2.6); the 

validity of Ancylosidcoididae (Section 4.5.2.3) and the grouping of heteronchocleidids 

(Section 4.5.2.1; see also Tan et al., 2011). However as already noted the current 



 
 

relationship trees support the validity of the different family groups except for the 

ancyrocephalids which in this study we suggest should be split into two groups with one 

group, the freshwater forms retaining under the Ancyrocephalidae while the other 

groups which are more associated with the marine 4 anchor forms should be assigned to 

a new family (see later; Section 6.6).  

 

When the morphological characteristics of the dactylogyridean monogeneans are 

superimposed onto the relationship tree generated from molecular data, the 

sundanonchid-tetronchid with 16 marginal hooks and single intestinal track and 

diplectanids with squamodiscs or lamellodics (this can be secondarily lost in some 

groups) and ovary overlapping the caeca are shown to diverged early from the other 

monogeneans on the relationship tree (Fig. 6.1). These groups are indeed different with 

features not found in the other dactylogyrideans. The other dactylogyridean groups 

observed in the relationship tree are highly heterogeneous especially in the anchors 

where family with 2 anchors, 2 needle-like structures (Dactylogyridae) and family with 

2 anchors (Neocalceostomatidae) are grouped among the families with 4 anchors 

(Ancylodiscoididae, Ancyrocephalidae I, Ancyrocephalidae II, Ancyrocephalidae III–

Calceostomatidae and Heteronchocleididae) as well as a family with members with 2 

and 4 anchors (Pseudodactylogyridae) (Fig. 6.1). 

 Therefore, current relationship trees generated from molecular data are not able 

to explain how the present morphological characteristics or structures evolved and what 

the ancestral form of dactylogyridean is like. For example based on current relationship 

tree and examining the diversity of the number of anchors, marginal hooks and needles 

it is not possible to pinpoint when the 14 marginal hooks and 16 marginal hooks split 

and when the 4 anchors and 2 anchors split: current relationship tree suggest that the 2  



 
 

   

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 Figure 6.1 Interrelationships among different families within the order Dactylogyridea 
Bychowsky, 1937 with their morphological characteristics (*using MP tree as example). 

 

 

4 anchors, 14 marginal hooks, 
usually 2 bars (ventral bar may be 
separated into 2 parts), patches or 
onchium may be present, intestinal 
caeca confluent posteriorly, 
seminal vesicle  a dilation of vas 
deferens, blind-sac like or both 

2 anchors, 14 marginal hooks, 0 to 
1 bar, intestinal caeca NOT 
confluent posteriorly, seminal 
vesicle a dilation of vas deferens 

Ancylodiscoididae 

Neocalceostomatidae 

2 or 4 
anchors, 14 
marginal 
hooks 

Ancyrocephalidae I 

4 anchors, 14 
marginal hooks, 2 
bars, seminal 
vesicle a dilation of 
vas deferens 

Freshwater species 

Vas deferens can be 
intercaecal or not intercaecal 

A very 
heterogeneous 
group with 
different 
numbers of 
anchors 
(developed 
and/or reduced) 

Ovary do not 
overlap  
caecum, 2 to 4 
anchors, 14 
marginal hooks, 
accessory 
adhesive organ 
(squamodiscs 
or 
lamellodiscs) 
absent 

2 to 4 
anchors, 14 
marginal 
hooks, 
bifurcated 
intestinal 
track – blind 
or reunited 

Tetraonchidae 

Sundanonchidae 

4 anchors, 16 
marginal 
hooks, X-
shaped 
vitellarian 
ducts, single 
intestinal 
track 

2 bars 

usually 1 bar (dorsal bar usually 
absent, rudimentary when present) 

Pseudomurraytrematidae 

Diplectanidae accessory adhesive organ (squamodiscs or 
lamellodiscs) can be present or absent, 
intestinal caeca  NOT confluent posteriorly 

accessory adhesive organ 
(squamodiscs or lamellodiscs) 
absent, intestinal caeca confluent 
posteriorly 

Ovary overlap  
caecum, 4 anchors, 
14 marginal hooks, 
accessory adhesive 
organ (squamodiscs 
or lamellodiscs) can 
be present or 
absent 

Ancyrocephalidae II   

Ancyrocephalidae III 

Calceostomatidae 

Outgroup - Gyrodactylidae 

Heteronchoclididae   

Pseudodactylogyridae 

2 or 4 anchors 
where reduced 
anchors  are 
present, 14 
marginal hooks, 
variable 
number of bars 
(0, 1 or 2) 

3 developed anchors 
& 1 reduced anchor, 
0, 1 or 2 bars present 

2 developed anchors 
or 2 developed 
anchors + 2 reduced 
anchors, 1 bar, patches 
present on developed 
anchors 

4 anchors, 14 
marginal 
hooks, 2 bars 

Vas deferens can be 
intercaecal or not intercaecal 

Vas deferens can be 
intercaecal or not intercaecal 

Dactylogyridae 
2 anchors, 2 
needle-like 
structures, 1 to 
2 bars 



 
 

anchors form evolved 3 times in the evolution of the dactylogyrideans (Fig. 6.1; see also 

Section 4.5.1) if one assumes that the 2 anchors are derived from ancestral 

dactylogyrideans with 4 anchors. The relationship tree is also not able to explain how 

the two types of seminal vesicles (dactylogyrid-type and blind sac ancylodiscoidid type) 

evolved. The presence of the needles in Dactylogyridae is also controversial – some 

argued that they are anchors, and some that they are marginal hooks or a feature of 

unknown origin – the relationship trees generated are not able to suggest much. They 

could be anchors and this seems to be supported by the presence of dactylogyridae 

within the 4 anchor dactylogyrideans such as the heteronchochoclidis and 

ancyrocephalids with ‘labile’ anchors.  But structurally the needles are different from 

the vestigial anchor of the heteronchocleidines (Lim pers comm., Lim).   

 

The relationship trees generated from molecular data are not able to explain the 

relationships of the different morphological features. Therefore are we giving the 28S 

rDNA too much weight as a marker of relationships? Or is our analysis flawed because 

not all the monogeneans are represented in this analysis due to the lack of DNA 

information and also there might be species out there still undescribed as suggested by 

Lim that only about 10% of the monogeneans have been described in Malaysia for 

instance (Lim., 1998). Or is this analysis showing us that more sequences from other 

parts of the genome should also be incorporated? Using more morphological data did 

give us more information about the relationships. Perhaps more DNA data might give 

us a better picture of the molecular diversity which might mirror the morphological 

diversity. There are now currently other DNA sequences in the Genbank (Table 1.2) but 

only a few such sequences are available and most data are from the 28S rDNA (Table 

1.2).  



 
 

In conclusion we need more sequences from more monogenans before a proper 

relationship tree can be generated. This could be one reason why there are so much 

controversies and contradictory results from molecular analyses. The use of 

morphological information is still valid and has been statistically shown to be reliable 

diagnostic tool and therefore morphological information should thus not be pushed 

aside in favour of DNA results. The inability of the DNA results to explain 

morphological diversity shows that tree generated by DNA data should be used with 

great caution and more DNA data from more monogenean species are needed.  

 

6.5 Dactylogyridean-host relationships 

Several ecological processes such as co-evolution, host transfer and failure to 

speciate have been used to explain parasite-host relationships (Lim, pers. com.; Lim, 

1997; 2005; Huyse & Volckaert, 2005; Dick & Patterson, 2007). These ecological 

processes are also shown in this study to play an important role in affecting the 

diversification and distribution patterns of dactylogyrideans (see below).   

 

6.5.1 Co-evolution  

It is well established that the majority of monogeneans are highly host specific 

(Gusev, 1976; Poulin, 1992; 2002; Lim, 1998; 2005; Sasal et al., 1999). Host specificity 

can be defined as the phenomenon produced by parasite-host couplings and indicates 

the degree to which a parasite occurs in association with a single host species (Dick & 

Patterson, 2007). The host specificity of monogeneans indicates the long term 

evolutionary association of the monogeneans and their hosts where co-evolution (the 

process of reciprocal, adaptive genetic change in two or more species) (see Woolhouse 

et al., 2002) could have occurred (Lim, 2005). The dactylogyrideans are host specific 



 
 

and related host species can be observed to harbour related dactylogyrideans as 

exemplified in this study by the presence of dactylogyrids on cyprinid hosts, 

ancylodiscoidids on the siluriforms (see also Lim et al., 2001), heteronchocleidids on 

anabantoids and channids (see also Lim, 1986; Lim, 1989; Tan et al., 2011) as well as 

diplectanids and marine ancyrocephalids on the perciforms (Section 5.5). Therefore the 

dactylogyridean-host relationships support the Fahrenholz’s rule (parasito-phyletic 

rules) that related host species harbour related parasite species (Farenholz, 1913) and 

indicate possible evolutionary link between the fish hosts and their dactylogyrideans. 

Thus, co-evolution could be used to explain why related dactylogyrideans are found on 

related group of host species observed in this study. 

 

6.5.2 Host transfer or host switching 

The presence of Dactylogyrus spp. on non-cyprinids (Lim, pers. com.), 

ancylodiscoidids on non-siluriforms (Lim & Furtado, 1986a) and Pseudodactylogyrus 

spp. on the distantly related Anguillidae (Anguilliformes) and Gobiidae (Perciformes) 

(Sections 5.4.1.4 & 5.5) could be the result of host transfer, a process where parasites 

are acquired through close ecological (environmental) association between host and 

potential host species (Lim, 2005; Lim, pers. com.). For example, Dactylogyrus spp. 

and ancylodiscoidids could be acquired by non-cyprinids and non-siluriforms, 

respectively, whilst Pseudodactylogyrus spp. could be acquired by Anguillidae from 

Gobiidae or vice versa, through host transfer due to sharing of similar habitat or 

ecosystem (Section 5.5).  

 

 

 



 
 

6.5.3 Failure to speciate 

Parasite species could be lost due to failure to speciate (Johnson et al., 2003) 

leading to their extinction in certain host species as indicated by the distribution patterns 

of the 3 genera of heteronchocleidids (Section 5.5) where Heteronchocleidus are found 

on Chinese Macropodus (anabantoid), Malaysian Trichopsis (anabantoid) and African 

Ctenopoma (anabantoid), Eutrianchoratus on Malaysian Belontia (anabantoid) and 

African Parachanna (channid) and Trianchoratus on Malaysian and Indian 

anabantoids, Malaysian and Thai Helostoma and Malaysian channids (see also Tan et 

al., 2011; Lim, pers. com.). These distribution patterns suggest that the ancestral form of 

the heteronchocleidids could be present on both the ancestral anabantoids and channids. 

During subsequent speciation process, failure to speciate and extinction of the 

heteronchocleidids within their hosts could result in the survival of only one group of 

heteronchocleidids on each of the anabantoid and channid species (see also Tan et al, 

2011).  

 

6.6 Dactylogyridean systematics  

6.6.1 Status of Dactylogyridea – present controversies 

From Figure 6.1 (Section 6.3.1) it can be seen that the molecular data are not 

able to explain the morphological diversities of the different dactylogyridean families. 

In fact, Kritsky & Boeger (1989) assumption of monophyly of the dactylogyrideans 

(especially the ancyrocephalids) by putting them all (except Diplectanidae, 

Sundanonchidae and Tetraonchidae) back into the Dactylogyridae cause more problems 

and this move is not supported by the relationship trees generated in this study (Section 

4.3). The inclusion of all the 4 anchor monogeneans into the Dactylogyridae did not 

resolve the paraphyly issue of ancyrocephalids (Sections 4.5.2.5 & 4.5.2.6). The 



 
 

relationship trees obtained show that Dactylogyridae is unique and include only the 

monogeneans with 2 anchors, 1-2 bars, 14 marginal hooks and 2 needles (Sections 4.3 

& 4.5).  The relationship trees also show that ancyrocephalids are heterogeneous and 

should be divided into two groups (Section 6.4.1.1). 

 

As already noted it is not easy to determine how the 16 marginal hooks can 

completely disappeared during the evolution of the major groups of dactylogyridean 

separated from the Sundanonchidae-Tetraonchidae group (Lim, pers. com.) (Section 

6.3.1).  The possible explanation is that it is still being retained as needle-like structures 

within the Dactylogyridae but again how do we explain the number of anchors present 

in the Dactylogyridae (2 anchors) and the other dactylogyrideans (4 anchors) and also 

explain why the other 2 anchor dactylogyrideans (Neocalceostomatidae and 

Pseudodactylogyrus spp.) are not closely related to the Dactylogyridae (Section 6.3.1)? 

Is the current interpretation too premature? This could be the case since the analysis 

itself lacks representations from all members of the Dactylogyridea as exemplified by 

the missing of other genera, e.g. Dogielus and Thaprogyrus from Dactylogyridae, 

Neocalceostomatidae is represented by 2 members, Pseudodactylogyrus and 

Pseudodactylogyroides are represented by 4 and 1 member, respectively (see Table 2.4; 

Section 4.4).                       

 

6.6.1.1 Ancyrocephalidae – paraphyly and separation into Ancyrocephalidae and 

Haliotrematidae n. fam.  

The Ancyrocephalidae is not a cohesive monophyletic group and clustered in 

three separate groups based on current results from molecular data (Section 4.4.3). The 

non-monophyly of the Ancyrocephalidae has also been shown previously in relationship 



 
 

trees based on morphological characters from various studies by Kritsky & Boeger 

(1989), Boeger & Kritsky (1993) and Boeger & Kritsky (1997). The non-monophyly of 

Ancyrocephalidae has led Kritsky & Boeger (1989) to reduce the family status of 

Ancyrocephalidae and include all its members (subfamilies) into the family 

Dactylogyridae. This move has caused the Dactylogyridae to be heterogeneous (Section 

1.4).  

 

The non-monophyly of Ancyrocephalidae could be a result from incorporating 

the Linnean classification system based on morphological characteristics into the 

relationships tree generated based on cladistic system which is not compatible to each 

other. The Linnean classification system and the cladistic system have several 

conceptual differences (Mayr & Bock, 2002). For instance, in cladistic system the taxon 

are not classified into ranks while there are clear hierarchies of ranks in the Linnean 

system. The cladistic methods are also based solely on dichotomous branching pattern 

where ancestral taxon splits up and ancestral species cannot exist as terminal species. 

Thus, cladistic system recognizes only monophyletic taxon which contains all of its 

descendants.  

 

It has been shown by various authors that the strict adherence of monophyly for 

grouping of taxa in cladistic system is problematic (Horandl, 2006; Brummit, 2002; 

2003; Brummitt & Sosef, 1998). In fact, it has been shown that most evolutionary 

processes result in descendants without extinction of the parental group (Horandl, 

2006). The coexistence of the ancestral species and descendant species results 

automatically in paraphyly of the parental group. Thus, paraphyly has been recognized 



 
 

as natural and inevitable in an evolutionary process (Horandl & Stuessy, 2010; Horandl, 

2006; Brummit, 2002; 2003; Brummitt & Sosef, 1998). 

 

Despite these facts, to date the relationship trees generated using cladistic 

methods in the study of systematic of dactylogyridean monogenean based on 

morphological and molecular data (Lim, pers. com.; Kritsky & Boeger, 1989; Boeger & 

Kritsky, 1993; 1997; Simkova et al., 2003; 2006b; Wu et al., 2006; 2007a; 2007b) are 

interpreted according to cladistic system which place the search for strict monophyly as 

their ultimate aim. All the taxon which is found to be non-monophyletic are considered 

unnatural and revisions are needed. There are no other alternative and to date there has 

not been any suggestion to accept paraphyly in monogenean systematic.  

 

Based on morphological data, Kritsky & Boeger (1989) has attempted to push 

for monophyly of the Ancyrocephalidae by changing the composition of Dactylogyridae 

to return it to its former composition of the pre-1978 when the data on monogeneans are 

only growing and poorly known (Lim, pers. com.). The relationship trees from current 

study based on molecular sequences of 191 species have shown that the authors are 

wrong in trying to ‘push’ their cladistic view into a Linnean system. When they do this, 

Kritsky & Boeger (1989) has caused confusion in the ranked Linnean system which has 

well defined characteristics to define the various groupings. Not only that they have not 

achieved monophyly for the Ancyrocephalidae, but at the same time their revision 

makes the family of Dactylogyridae (under the Linnean system) unnatural and 

heterogeneous as it has to accommodate the 4 anchors monogeneans, the 

Ancyrocehalidae and the two anchor monogeneans, the Dactylogyridae. Although when 

Dactylogyridae was first erected, it did include both 2 and 4 anchor forms, by 1978 the 



 
 

Dactylogyridae was limited to accommodate monogeneans with 2 anchors and 2 needle-

like structures with Dactylogyrus as the type species and the 4 anchor forms were all 

included under the Ancyrocephalidae. Current relationship trees also indicate the 

monophyly of the Ancylodiscoididae (see Lim et al., 2001).  

Base on the results from current study, 2 possible options are proposed to 

resolve the paraphyly issue and heterogeneity of Ancyrocephalidae. The 2 possible 

options are elaborated as below: 

1) Establishing 2 families – Ancyrocephalidae and Haliotrematidae n. fam. 

In the first option, revision is proposed to resolve the heterogeneity of 

Ancyrocephalidae (Lim, pers. com.). Despite the revision done by Kritsky & Boeger 

(1989) (Section 1.4), the Ancyrocephalidae remains to be paraphyletic. Although the 

members of the ancyrocephalid genera included in this study are shown to be clustered 

in three separate groups based on partial 28S rDNA sequences, it should be noted that 

the type genus of the Ancyrocephalidae, the genus Ancyrocephalus is present in 

Ancyrocephalidae I group (Section 4.4.3.1). Thus in order to resolve the heterogeneity 

of Ancyrocephalidae, it is proposed that the family Ancyrocephalidae be amended to 

only include the genera in Ancyrocephalidae I group, i.e. Ancyrocephalus, 

Actinocleidus, Cleidodiscus, Urocleidus and Onchocleidus. At the same time, a new 

family should be erected to accommodate genera in Ancyrocephalidae II and 

Ancyrocephalidae III group (which essentially is one group without considering the 

only one member of Calceostomatidae; see Sections 4.4.3.2 & 4.4.3.3). A new family, 

Haliotrematidae n. fam., is hereby tentatively proposed for Ancyrocephalidae II and 

Ancyrocephalidae III group. By doing so, monophyly can be achieved for the 

Ancyrocephalidae and the newly erected family, the Haliotrematidae n. fam. 

 



 
 

2) Acceptance of the paraphyly of Ancyrocephalidae 

In the second option, the paraphyly of Ancyrocephalidae can be explained as 

evidence which have shown that the parental taxon does not experience extinction but 

co-exist with the descendent species as also shown by previous authors (Horandl & 

Stuessy, 2010; Horandl, 2006; Brummitt, 2002; 2003; Brummitt & Sosef, 1998). In the 

case of the 4 anchors Ancyrocephalidae, it is most probably the ancestral form which 

still exists after giving rise to its descendent, the other 4 anchors and 2 anchors form 

(e.g. Heteronchocleididae, Pseudodactylogyridae, Ancylodiscoididae, Dactylogyridae & 

Neocalceostomatidae). This has caused the family Ancyrocephalidae (the ancestral 

taxon) to be paraphyletic (Sections 4.5.1 & 6.2.3.1). Thus it is reasonable to accept the 

co-existence of parental and descendent taxon as terminal species and paraphyly is an 

inevitable phenomenon in the evolutionary process of the ancyrocephalid monogeneans 

(Lim, pers. com.). 

 

6.7 Future studies 

This study has shown several limitations due to constraints in obtaining 

morphometric and molecular data from more monogenean specimens and need to be 

rectified. It is shown in this study that large amount of morphometric data are needed 

for PCA to accurately detect the presence of morphovariants (Section 3.2.2). In fact, 

there is a need to collect morphometric data from every individual within a monogenean 

species population to determine the total number of morphovariants. Although this was 

done for Trianchoratus species population from different localities, larger sample size is 

needed especially for T. longianchoratus which has low abundance (Section 3.2.2.2; see 

also Tan et al., 2010). Despite current results showing the presence of morphovariatnts 

within Bravohollisia and Caballeria species (Section 3.2.2.1), not all the individuals 



 
 

within the Bravohollisia and Caballeria species population are measured for 

morphometric data due to their large population size (high abundance). Thus, to 

determine the total numbers of morphovariant in future studies, morphometric data has 

to be collected from all the individuals within Bravohollisia and Caballeria species 

population.  

Similarly, morphometric data of monogenean population from a single host is 

needed to determine if morphovariants are present within a single host. This information 

is important as it can be used to indicate that the morphovariants present in the same 

host (with similar macro- and micro-environment) could possess genetic basis. Due to 

limited morphometric data of monogeneans from single host population, current results 

can only show some indications that morphovariants could be caused by genetic 

variations in two monogenean species (Trianhcoratus pahangensis and Bravohollisia n. 

sp.; Section 3.4).  Thus, morphometric data of monogeneans from single host 

population should be collected from more monogenean species in future studies to 

determine the role of genetic variations in affecting the presence of morphovariants. 

 

This study shows variations within monogenean species population can be 

detected based on morphometric data analysed by PCA and differentiation indices 

(Section 3.3). In contrast, molecular data of monogeneans is currently inadequate to be 

used to detect variations at species population level (Section 6.2). Comparison of the 

28S rDNA of 3 different individuals of the same species (Sinodiplectanotrema 

malayanum) are also shown to be 100% similar (see Lim et al., 2010), indicating that 

28S rDNA being conserved are not suitable to detect variations at population level. 

Therefore, DNA sequences from other parts of the genome should be examined in 

future studies to search for suitable molecular sequences which can detect variations at 



 
 

population level and until then, morphometric data are more readily available for the 

detection of variations within monogenean species population. 

 

Current results show relationship trees generated from molecular data are unable 

to fully explain the evolutionary diversification of morphological characteristics among 

dactylogyrideans (Section 6.4). This could be due to not all the dactylogyridean groups 

are well represented in this study. For example, Neocalceostomatidae is represented by 

2 members, Pseudodactylogyridae with 5 members while Pseudomurraytrematidae and 

Calceostomatidae with 1 member each (Table 2.4). It should also be noted that 

Dactylogyridae is only represented by 2 genera (Dactylogyrus and Dactylogyroides) 

where other dactylogyrid genera such as Dogielus and Thaprogyrus are not represented 

(Section 4.3.1.5). All these could have resulted in generating relationship trees which do 

not reflect the actual relationships of the dactylogyrideans. Thus, DNA sequence data 

from more species are needed to represent the different dactylogyridean groups in future 

studies so that the interrelationships of the dactylogyrideans can be properly assessed. 

The need for more taxa data versus more characters have been well debated by Hillis et 

al. (2003). 

 

Molecular diversity of dactylogyrideans shown in this study strongly suggests 

the possible existence of unique segments within the DNA sequences of the 

dactylogyrideans. In fact, an analysis using INVERTER (a tandem repeats finder 

software) (Wirawan et al., 2010) reveals the presence of genus specific short DNA 

segments (5-6 base pairs) within the partial 28S rDNA sequences of the dactylogyridean 

monogeneans (preliminary results not shown). These short DNA segments could most 

probably be part of the tandem repeat in DNA sequences. A tandem repeat in DNA is a 



 
 

sequence of two or more contiguous, approximate copies of a pattern of nucleotides. 

These tandem repeats evolve very rapidly where the type of repeats present and their 

number of repeats are highly diverse and variable. These characteristics make tandem 

repeats the ideal candidates as molecular markers or species diagnostic tool in various 

studies (e.g. Nathues et al., 2011; Hilty et al., 2006).  

 

In fact there is very little information regarding the tandem repeats of 

monogenenas. To date, only two studies have been done on the tandem repeats of 

monogeneans where only a few gyrodactylids species were studied (see Matejusova et 

al., 2001; Collins & Cunningham, 2000). Thus more studies on tandem repeats should 

be done for the dactylogyrideans as well as other monogeneans in the future. The genus 

specific short DNA segments observed in partial 28S rDNA sequences from current 

study most probably indicates the presence of molecular markers. These molecular 

markers can be potentially used as diagnostic tools in the future study of monogenean 

taxonomy in view of the high number of estimated monogenean species which are yet 

to be described (Section 1.1). 

 

 

 

 

 

 

 

 

 

 



 
 

SUMMARY 

The main objectives of this thesis are (1) to evaluate the relevance of 

morphological and morphometric characters in diagnosis and the significance of the 

observed intraspecific variations using statistical methods and (2) to appraise the current 

use of molecular data in reconstructing phylogenetic relationships.  Morphological and 

morphometric data are most commonly used diagnostic characters in the 

characterisation of monogeneans. Wide ranges in morphometric data are often observed 

in species descriptions raising question on its significance in the species population. The 

use of morphological and morphometric data in description has been deemed subjective 

by many and the validity and reliability of morphologies as diagnostic features are an 

on-going debate. A possible solution is to use statistical tool to analyse morphometric 

data to see whether species and intraspecific morphovariants can be delimited using 

morphometric data.  Recently more molecular data (especially 28S rDNA) are 

becoming available for inferring phylogenetic relationships. However despite the 

increase in molecular data there are still discrepancies in the phylogenetic relationships 

reconstructed based on molecular data. In this study an attempt is made to determine 

relationships of the monogeneans based on molecular data from as many species and 

genera as possible. The molecular data used (partial 28S rDNA) are data sequenced in 

this study (64 sequences) as well as data from the GenBank (127 sequences). There are 

also only a few studies where molecular data are used for differentiating species and a 

related study provided data for the use of molecular data to support the separation of 

morphologically similar species (Lim, Tan & Gibson, 2010). 

 

 



 
 

Current results from Principal Component Analysis (PCA) show that 

morphometries of the sclerotised hard parts of the monogenans can be used to 

differentiate morphologically similar species as indicated by the differentiation of the 

744 Bravohollisia into 5 spp., 295 Caballeira into 3 spp. and 448 Trianchoratus spp. 

into 4 spp. (see Section 3.2.1 Chapter 3). The important diagnostic features can also be 

detected in the biplots produced from the PCA results (see Section 3.2.1.3) and these are 

congruent with the features used in description of the species.  Thus, statistical 

analytical tools such as PCA can remove subjectivity in the use of morphologies in 

differentiating species and this result indicates that morphologies and morphometries 

are still relevant diagnostic characters. The subplots within the scatterplots for each 

species indicate that variations do occur within the species population and these 

variations can be group into variant groups or morphovariant group. Morphometric 

variations can be detected in four species of Bravohollisia, three species of Caballeria 

and three species of Trianchoratus.  The numbers of morphovariant groups vary 

between species: for example there are two morphovariants in B. rosetta, B. reticulata, 

B. gussevi, Bravohollisia n. sp, C. liewi, C. intermedius, C. pedunculata, T. ophicephali 

and three morphovariants each in T. malayensis and T. pahangensis. The varying 

numbers of morphovariants present within each of these monogenean species are 

possibly due the amount of genetic diversity within each species population (Lim, 2002; 

Lim, pers. com.; Chapter 6).  The analysis of morphometric data for the Trianchoratus 

has been published (Tan, Khang & Lim, 2010).  

 

Differentiation indices, Φ, are calculated to provide an estimate of the amount of 

variations existing amongst the different species and amongst different morphovariants 

within species population. The indices show that although the variations within the 

population are real, the amount of variations are almost 50% less than that for species 



 
 

(Φ =1 – 7.3 for morphovariants cf Φ =14 – 192 for congeneric species). The PCA 

results and the Differentiation indices, Φ, indicate that within a species populations 

genetic differences are present although not enough to differentiate them as species. 

These morphovariants are the results of sexual reproduction (cross-fertilisation) within a 

species population and these diversities in variations probably form the basic DNA 

materials for future speciation (Lim, pers. com.; Lim, 2002; Chapter 6). 

 

Previous molecular studies on relationships of dactylogyrideans focus only on 

certain groups and some groups were represented by only very few species as shown in 

the review done (Chapter 1).  In this study, the most available molecular data (partial 

28S rDNA) from 190 dactylogyridean species (cf to 51 sequences in Šimková et al., 

2004 and 47 sequences in Wu et al., 2007a) are used to reconstruct the relationship trees 

of the dactylogyrideans to determine how the different members of the dactylogyrideans 

are grouped based on partial 28S rDNA. Eight major groups can be observed in the MP, 

ML and NJ relationship trees and the memberships for each of the eight groups 

correspond to the different dactylogyridean families and genera. The present analysis 

indicates the need to change the status of some of the families within the 

Dactylogyridea: for example subfamily Heteronchocleidinae should be raised to family 

status and the ancyrocephalids should be split into two groups (see later). This analysis 

also supports the validity of the family Ancylodiscoididae, Neocalceostomatidae and 

Pseudodactylogyridae. The uniqueness of the Dactylogyridae is also supported in this 

analysis which contradicts the postulation and interpretation of Kritsky and Boeger 

(1989). The results for the heteronchocleidids are already published in Tan, Fong and 

Lim (2011).  

.  



 
 

The host relationships are done to show the relatedness of the fish host of the 

dactylogyrideans for inference to the host-dactylogyridean relationship (Chapter 5).  

The analysis shows that the fish species are congruent with the current knowledge based 

on morphologies (Section 5.3). The current analysis of host-monogeneans relationships 

(Chapter 5) also supports the accepted associations between the fish host relationships 

and distribution patterns of the dactylogyridean monogeneans especially that of their 

host-specificity and in most cases the host-monogenean relationships are in agreement 

with the parasitophyletic rule that related hosts harbour related parasites as exemplified 

by the presence of Dactylogyrus only on cyprinids and ancylodisocidids on the 

siluriforms. The host-monogenean relationships in particular host specificity indicate 

ancient relationships and suggest that co-evolution had occurred between the host-

specific monogneans and their host species (Section 6.5.1). The unusual presence  of  

Dactylogyrus  spp. on non-cyprinid hosts (in the monogenean relationships trees these 

Dactylogyrus are related to the Dactylogyrus of the cyprinids) and the absences of some 

heteronchocleidids on the related anabantoid and channid fish groups (the anabantoid 

and channid are shown to be related in the host relationships trees) suggest that  host 

transfer (from freshwater cyprinids to the migrating marine Lateolabrax sp. into the 

freshwater system) and failure to speciate might have occurred in evolutionary history 

giving rise to the present day diversification and distribution patterns of 

dactylogyrideans (Lim, 2005; Tan et al., 2011) (Chapter 5 and 6).  

 

The results from this study which are presented and discussed in the various 

chapters are synthesised and their significance discussed in Chapter 6. Morphological 

and morphometric information are still valid characters in differential diagnosis as 

indicated by the PCA scatterplot results. However such analyses require a substantial 

amount of data (Section 2.4.1; Tables 2.2 & 2.3). The morphometric variants could be 



 
 

due to genetic variabilities resulting from cross-fertilisation amongst the hermaphrodite 

monogenean species (Lim, pers. com & unpublished data; Lim, 2002).  The 

morphological and morphometric variations indicate that similar variations in the past 

evolutionary history could give rise to the the species diversification and speciation 

process for the dactylogyrideans and these current variations could form the basis for 

future diversifications of the monogeneans if the right isolating mechanisms are present 

(Section 6.3).  

 

However the reconstructed tree from molecular data is limited in its ability to 

explain the possible evolutionary relationships of the different diagnostic characters and 

the possible evolutionary diversification of the morphological characters amongst the 

dactylogyrideans (Section 6.4). This is probably due to incomplete data since some 

groups are not represented or poorly represented for example Pseudomurraytrematidae 

is only presented by one unknown species (Table 2.4) and some groups such as 

Dogielus and Thaparogyrus are not represented at all in the analysis and probably also 

due to the use of only one molecular sequence 28S rDNA.  Although basically the 

dactylogyrideans are related based on the present reconstructed tree, the present 

reconstructions did not take into consideration the other monogenean groups such as the 

polystomatideans which might show a different relationships. This molecular analysis is 

not possible without the use of PAUP in HPC (High Performance Computer) because of 

the large amount of data. The limitation in the reconstructed tree could be due to the use 

of the tree-building software PAUP. Other softwares might provide some insights into 

the relationships not revealed using PAUP.  

 

 



 
 

Kritsky and Boeger (1989) in an attempt to make ancyrocephalids monophyletic 

had proposed that all the ancyrocephalids be grouped under the family Dactylogyridae 

which Lim vehemently disagree noting that Dactylogyridae as defined by Bychowsky & 

Nagibina (1978) and Gusev (1978) are unique in having 2 needles, 2 anchors and 14 

marginal hooks (Section 1.4).  Furthermore Lim (pers. com.) suggested that they are 

wrong in using a Linnean system (ranked system) of naming and incorporate it into the 

cladistic classification which is basically rankles (Section 6.6.1.1). It is suggested in this 

study that the heterogeneity of the ancyrocephalidae could be resolved by separating the 

group into two with the Ancyrocephalidae housing the freshwater ancyrocephalids 

(Ancyrocephalus, Actinocleidus, Cleidodiscus, Urocleidus and Onchocleidus) and a new 

family to house the marine ancyrocpehalids viz. Haliotrema, Bravohollisia, Caballeria, 

Pseudohaliotrema, Metahaliotrema, Euryhaliotrema, Euryhaliotrematoides, 

Tetrancistrum, Haliotrematoides, Ligophorus and Aliatrema as well as freshwater 

members from the cichlids, i.e. Cichlidogyrus, Scutogyrus and Onchobdella (Section 

6.6.1.1). The ancestors of cichlid hosts have been postulated to have a marine origin 

since some of the most primitive species of Cichlidae have high salinity tolerance and 

prefer to live in estuarine environments (Murray, 2001). 

 

In this present study statistical analytical methods are used on the morphometric 

data from 12 monogenean species with individuals ranging from 59 – 180 individuals 

per species (none of the previously reported studies have used this large amount of 

morphometric data) (Section 2.4.1). This is also the first time that differentiation index 

is used to estimate variations amongst species and morphovariants (Section 3.3). 

However shapes of the different sclerotised parts have not been taken into consideration 

and the shape might provide more information on the relatedness of the different 

individuals and species (Lim, pers. com). In this study, a total of 191 sequences (62 



 
 

from present study and 129 from GenBank) belonging to 190 species representing 53 

genera and 12 families are used to reconstruct phylogenetic trees using PAUP and HPC 

has to be used (for example analysis using PC can take more than 5 weeks to go 

through). The present study indicates that there are limitations and delimitations in this 

study which should be looked into and these include the need to collect large amount of 

morphometric data which is needed for PCA to accurately detect the presence of 

morphovariants within species popuplation, more DNA sequences from other parts of 

the genome should be examined for suitable molecular sequences which can detect 

variations at population level and DNA sequence data from more species are needed to 

represent the different dactylogyridean groups (Section 6.7). 
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