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ABSTRACT

Conventionally, data embedding is a feature dependent process, where a feature of

the host is modified to insert a payload while satisfying some properties. This dependency

limits the interchangeability among data embedding methods. In other words, the appli-

cability of a conventional data embedding method is restricted to certain types of signal.

This restriction is observed in the most of the surveyed methods. Hence, a universal data

embedding method applicable to any digital signal is nonexistent, albeit such method can

potentially be applied in applications where feature extraction is technically challenging.

For example, a cloud storage receives various multimedia contents. In addition, some

contents are encrypted or compressed, which complicates the feature extraction process

for data embedding purposes.

In this study, the conventional data embedding methods are surveyed and evaluated

in terms of interchangeability (Chapter 2). The problem of limited interchangeability is

overcome by the proposed concept of universal data embedding, which is realized by a

novel parser referred to as universal parser (Chapter 3). This parser segments the host

signal into partitions of unified length referred to as IC’s (Imaginary Codewords). The-

oretically, it is shown that the entropy (and hence redundancy) of IC’s changes based on

the length utilized in the segmentation process. Thus, the defined redundancy is replaced

by payload using four proposed methods.

The first method, uREADS (Chapter 4), is based on mapping IC’s to GRC (Golomb-

Rice Codewords). Then, GRC’s are modified to accommodate external information.

However, uREADS has inconsistent and low carrier capacity. These problems are over-

came by the second method, urDEED (Chapter 5), which applies a similar mapping to

GRC’s, but with different way to handle the side information. urDEED offers consis-

tent average carrier capacity of 0.169 bpb (bit per bit), and it is universally applicable to
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any encrypted signal. However, the mapping of IC’s to GRC’s involves the sophisticated

processes in handling the side information. Also, this method is not applicable to high

entropy signal. To overcome this problem, DeRand (Chapter 6) is proposed, which is

based on histogram mapping. DeRand achieves a carrier capacity up to 0.4 bpb while

being able to control the distortion in high entropy hosts such as random signals.

The conventional concept of data embedding is further generalized to the novel con-

cept of data fusion in (Chapter 7). Here, unlike conventional data embedding, which

implies the processing of two signals only, namely, the host and the payload, the pro-

posed data fusion can conceptually fuse two or more signals. A novel DSC (Dual Seman-

tic Code) is proposed as a mean to realize data fusion, where each DSC codeword can

accommodate two independent data simultaneously. The proposed data fusion achieves

scalable carrier capacity, which can be further traded-off with file-size.

All in all, the discussion in (Chapter 8) shows that the proposed data embedding

methods are universal and superior to the conventional methods in terms of interchange-

ability. In addition, the proposed methods preserve file-size and they are reversible. Also,

data fusion and DeRand offer scalable distortion and scalable carrier capacity.
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Abstrak

Secara umumnya, data embedding adalah process yang bergantung kepada ciri, di

mana ciri-ciri yang dipilih dari hos diubah-suai untuk menyimpan payload sementara

memuaskan sifat-sifat yang ditetapkan. Pergantungan ini mengehadkan kesalingbole-

htukaran antara kaedah-kaedah data embedding. Dengan lain perkataan, kebolehan kaedah

konvensional data embedding dibatas oleh signal yang digunakan. Batasan ini didapati

dalam kebanyakan kaedah data embedding yang dikaji. Dalam kesusasteraan, tidak ada

kaedah universal data embedding yang boleh digunakan dalam sebarang signal digital.

Kaedah universal sedemikian menpunyai potensi untuk digunakan dalam aplikasi yang

sukar dalam pengekstrakan ciri, misalnya aplikasi cloud storage yang menyimpan pelba-

gai jenis kandungan multimedia yang berbeza. Sering kali, kandungan multimedia akan

disulitkan atau dimampatkan, menjadikan process pengekstrakan ciri lebih sukar untuk

mancapai tujuan data embedding.

Dalam kajian ini, kaedah konvensional data embedding ditinjau and dinilai dari segi

kesalingbolehtukaran (Bab 2). Konsep universal data embedding direalisasikan dengan

menggunakan novel parser yang turut dirujuk sebagai universal parser (Bab 3), untuk

mengatasi masalah batasan kesalingbolehtukaran ini. Parser ini membahagikan signal hos

kepada segmen-segmen yang sama panjang dan bahagian - bahagian ini dirujuk sebagai

IC’s (Imaginary Codewords). Secara teori, entropi (dan redundansi) bagi IC’s berubah

mengikut kepanjangan segmen. Dengan itu, redundansi yang ditakrifkan boleh diganti

dengan payload, dengan menggunakan empat kaedah yang dicadangkan di dalam tesis

ini.

Kaedah pertama bernama uReads (Bab 4), dicadang berdasarkan pemetaan IC’s ke

GRC (Golumb-Rice Codewords). Kemudiannya, GRC’s akan diubah-suai untuk menam-

pung external information. Namun demikian, prestasi uReads adalah tidak konsisten

dan kapasitinya adalah rendah. Masalah-masalah yang diperhatikan di atas telah diatasi
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oleh kaedah kedua, iaitu urDEED (Bab 5). Khususnya, urDEED mempunyai pemetaan

yang serupa dengan GRC’s, tetapi menggunakan cara pengendalian side information yang

berbeza. urDEED menawarkan kapasiti yang konsisten, iaitu 0.169 bpb (bit per bit), dan

urDEED boleh digunakan dalam sebarang signal yang telah disulitkan. Walau demikian,

pemetaan IC’s ke GRC’s melibatkan process yang kompleks untuk mengendali side in-

formation. Di samping itu, kaedah ini tidah boleh digunakan dalam entropi signal yang

tinggi. Untuk mengatasi masalah ini, DeRand (Bab 6), yang menggunakan histogram

mapping telah dicadangkan. DeRand mencapai kapasiti sebanyak 0.4 bpb dan berkebole-

han untuk mengawal distorsi di dalam entropi signal yang tinggi, contohnya signal-signal

yang rawak.

Konsep konvensional data embedding ini telah digeneralisasikan kepada konsep novel

data fusion (Bab 7). Berbeza dengan kaedah konvensional data embedding yang hanya

mengimplikasikan process di antara dua signal sahaja, iaitu signal hos dan signal payload;

konsep data fusion mempunyai kebolehan untuk bergabung lebih daripada dua signal.

Justeru itu, kaedah novel DSC (Dual Semantic Code) telah dicadangkan untuk mereal-

isasikan data fusion, di mana setiap DSC codeword boleh menampung dua data pada

masa yang sama. Kaedah data fusion yang dicadangkan dapat mencapai kapasiti yang

berskala, menggunakan trade-off dengan saiz fail.

Pada keseluruhannya, perbincangan di (Bab 8) menunjukkan cadangan-cadangan

kaedah data embedding di tesis ini adalah universal dan mempunyai prestasi yang lebih

baik berbanding dengan kaedah-kaedah konvensional, dari segi kesalingbolehtukaran.

Tambahan pula, kaedah-kaedah yang dicadangkan adalah reversible dan dapat mengekalkan

saiz fail. Di samping itu, data fusion dan DeRand juga menawarkan kebolehan untuk

mencapai distorsi dan kapasiti yang berskala.
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CHAPTER 1

INTRODUCTION

The digital revolution comprehensively invades our daily lifestyle thanks to advanced yet

low cost capturing, processing and storing devices and technologies. The revolution is

also induced by the advances in the communication networks, which allow the exchange

of multimedia contents reliably and economically. These advances trigger the generation

of massive multimedia contents that play core roles in our daily life, where optimum uti-

lization of these contents requires efficient digital data management. To this end, the con-

cept and applications of data embedding offer a digital right management framework to

achieve data annotation, classification, indexing, ownership authentication and integrity

preservation1. The concept of data embedding is detailed in the following section.

1.1 Overview on Data Embedding

Conceptually, data embedding is based on modifying a host in order to embed a

payload (Figure 1.1) (Cover & Thomas, 1991). This process is independent from the

content or features of the payload. For that, data embedding can be utilized in various

applications, in which the payload has different functionality. However, the features of

the host play significant role in data embedding. In particular, the modification of the

features of the host should be achieved solely in certain domain or medium. Hence, data

embedding is a feature dependent process (Karim & Wong, 2014). Traditionally, this

feature dependency aims at reducing the detectability of the existence of the embedded

payload. For that, data embedding is referred by the term “data hiding” or “information

hiding” in the literature (Petitcolas, Anderson, & Kuhn, 1999).

1Various examples on the application of data embedding are detailed in (Cover & Thomas, 1991).
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On the other hand, the feature dependency of data embedding process limits the

interchangeability among data embedding methods. In other words, the applicability of a

data embedding method is restricted by the domain or medium in which it operates. This

is a common observation among most conventional data embedding methods as detailed

in Chapter 2.

For example, methods that embed data in the compressed domain cannot be applied

(i.e., without re-designing them) to embed data in the encrypted domain. Similarly, meth-

ods that embed data in the pixels of a raw image cannot be applied to embed data in

coefficients of compressed audio, and so on. While a non-interchangeable data embed-

ding method is viable in its designated domain and medium, such method is infeasible

when applied to other domains and media. This infeasibility of the conventional feature-

dependent data embedding methods is a significant problem because multimedia content

is massively generated nowadays.

For example, a user went for a picnic with her children on a sunny beautiful day.

The golden lights of the sun were wonderfully penetrating the white clouds in the blue

sky, so she took some pictures of this wonderful view using a smart phone. Later on, the

children had their lunch and started playing around, so she recorded this joyful moments

by capturing a video using the smart phone. In the midst of such happy atmosphere,

she recorded a voice message and share it online with other relatives and close friends.

At the end of this wonderful day, she needed to annotate her private data captured at

the picnic. Unfortunately, annotating these multimedia data in a one step using a single

data embedding application is impossible based on the current technology, because each

class of data should be processed by its designated data embedding method. Thus, the

user needed to embed data in the photos by the software implementation of method A,

and had to buy another software, which is based on method B, to embed data in the

captured videos. However, the user could not afford the cost to buy another software,
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Figure 1.1: The conventional concept of data embedding

which embeds data in audio based on method C. Later on, when the user compressed all

the captured multimedia contents of this particular outing for archiving purposes, none

of method A, B, or C can be deployed to embed data into the compressed file. In this

scenario, the reason of disappointment of the user is the absence of interchangeability

among the majority of the existing data embedding methods. While this scenario is about

leisure and entertainment, the absence of interchangeability has significant impact on

other aspects, such as in the commercialized cloud storage services.

In cloud storage, users rent/buy online storage space, followed by uploading their

private contents. These contents are mixture of data in various media, formats and coding

structures. Hence, generally, it is almost impossible to practically decode and extract

features (for data embedding purposes) of each file uploaded to the cloud. In particular, it

is more challenging to extract features from the encrypted or compressed form, as well as

data in uncommon format. Thus, the cloud administrator (i.e., a third party which has no

access to the original format of the data) cannot annotate, index or classify the files stored

online. For that, in this scenario, the application of the conventional non-interchangeable

data embedding methods is not feasible and requires the user to reveal some features of

his/her uploaded file, which may consist of some private information, to facilitate the

selection of method applicable to the file in question.
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1.2 Problem Statements

The problem of the limited interchangeability among most conventional data em-

bedding methods is studied. The cause of this problem is the high2 dependency on the

features of the considered hosts in the conventional data embedding methods. For that,

the applicability of most the data embedding methods are restricted by a certain domain,

medium and coding format structure. Consequently, some potential applications using

data embedding cannot be achieved as detailed in Section 2.8. In general, there is no

universal data embedding method that is reversibly and interchangeably applicable to any

digital signal.

1.3 Objectives of Study

This study aims at generalizing the conventional concept of data embedding towards

universal data embedding. To achieve this goal, efforts are channeled to the following:

1. Studying the novel concept and theory of the universal data embedding

2. Putting forward a general framework that establishes the foundation for practical

implementation of universal data embedding

3. Designing, implementing and evaluating a set of universal data embedding meth-

ods, which are based on the proposed concept and framework of universal data

embedding

4. Achieving data embedding with un-conventional hosts that are not considered (or

utilized) for data embedding in the existing literatures, such as random signals.

2The word “high” indicates that feature-dependency is an inevitable phenomenon in data embedding
but decreasing such dependency is expected to increase interchangeability.
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1.4 Scope and Limitations of Study

This study is concerned about reversible data embedding. The targeted hosts involve

theoretically all media, domains and coding structures. Features such as the carrier ca-

pacity and file-size preservation are considered. It is assumed that there are no attacks

or transmission error, which the modified host can be exposed to. Thus, the robustness

against attacks or transmission error is not considered. In addition, the degree of distor-

tion in the host due to data insertion is ignored because the proposed methods map the

hosts into some significantly different forms3.

1.5 Contributions of Study

This study is the first that considers the interchangeability aspect of data embedding

in the existing literatures. In particular, the limited interchangeability among data em-

bedding methods is analyzed (Chapter 2). The novel concepts of universal domain and

universal data embedding are put forward to overcome the restricted interchangeability

in the conventional methods (Chapter 3). Here, a novel framework to achieve universal

data embedding is proposed. The theoretical and implementation aspects of the proposed

universal parser are detailed, which establishes the foundation to achieve four proposed

universal data embedding methods. In particular, the structure of the GRC codewords are

modified (Chapters 4 and 5) to embed payload. In addition, the universal parser enables a

random signal to be exploited for data embedding purposes (Chapter 6). Furthermore, the

concept of data fusion is proposed to generalize the concept of data embedding and a new

set of novel VLC codewords called DSC (Chapter 7) is proposed to realize data fusion.

3Except in Chapter 6, distortion is measured merely to visualize the scalability property of the proposed
method.
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1.6 Organization of Thesis

This thesis is organized as follows. In Chapter 2, conventional data embedding meth-

ods in the current literatures are surveyed. Then, an analysis on the interchangeability of

the surveyed methods is presented. In Chapter 3, the methodology to overcome the lim-

itation of interchangeability among existing data embedding methods is presented. The

general framework for universal data embedding purposes, which decreases the depen-

dency on the host features, is presented. The criteria to evaluate the performance of

universal data embedding methods are also presented. Chapter 4 proposes a universal

data embedding method based on GRC (Golomb-Rice Code). The performance of this

method is further improved in Chapter 5, where the proposed method is applied to the

encrypted signals. In Chapter 6, a universal data embedding method in random signal

is put forward. A generalization of the concept of the conventional data embedding to-

wards data fusion is proposed in Chapter 7. In Chapter 8, the discussions on the proposed

methods are presented. Chapter 9 presents the conclusions and future work.
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CHAPTER 2

LITERATURE SURVEY

2.1 Overview

In this chapter, various well-known conventional data embedding methods are sur-

veyed. Particularly, the survey includes difference expansion, histogram shifting, trans-

form based, bitstream mapping, LSB substitution, hybrid and generalized data embed-

ding methods. Then, the surveyed methods are analyzed in terms of interchangeability.

Throughout this study, the term “interchangeability” refers to the ability to apply the

data embedding method in question interchangeably to signals in various domains, me-

dia and formats. In addition, the terms “interchangeability” and “applicability” are used

exchangeably.

2.2 Difference Expansion Based Methods

In DE (Difference Expansion) based methods, pixels are manipulated directly in the

spatial domain for data embedding purposes (Tian, 2003; Kim, Sachnev, Shi, Nam, &

Choo, 2008). In particular, the pixels are grouped into pairs. Then, the difference and

average value of each pair are computed. Finally, the difference is expanded to accom-

modate one bit from the payload. The application of this class of methods is restricted to

the spatial domain of an image. The subsequent enhancements on DE do not consider im-

proving their interchangeability, but focuses on output image quality and carrier capacity.

For example, Alattar (2004) proposes for applying DE to a group of three or four adjacent

pixels in order to increase the embedding capacity. Thodi and Rodríguez (2007) propose

to achieve DE in the prediction errors of the pixels for better utilization of the correla-

tion among pixels, where DE is combined in this method with histogram shifting. This
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method is further improved by Hu, Lee, and Li (2009) by defining the locations of manip-

ulated pixels (for data embedding purposes) based on the values of the payload. Li, Yang,

and Zeng (2011) propose an adaptive DE method which further improves the embedding

capacity to embed more bits in the smooth areas of the image. Zhou and Au (2012) pro-

pose a strategy to define the number of embeddable bits in an image using DE to ensure

certain quality. Li, Li, Yang, and Zeng (2013) propose generalized algorithms for data

embedding using DE. While the embedding capacity is improved, the interchangeability

of all aforementioned methods is still restricted to an image represented in the spatial

domain. Although Chen, Xiang, and Luo (2013) propose to apply DE to embed data

in the coefficients of integer discrete cosine transform of audio signals, their method is

only applicable in the frequency domain. Hence, the interchangeability of this method is

restricted to the audio signal represented in the frequency domain.

All in all, despite DE has received much attention in the data embedding community,

improving the interchangeability of DE methods has not been considered in the existing

literature due to the dependency of DE on certain histogram features. Therefore, DE

methods cannot be applied directly to, e.g., bitstream, compressed, encrypted domains.

2.3 Histogram Shifting Based Methods

In the conventional HS (Histogram Shifting) based methods, the histogram of an

image is manipulated to vacate bins. The empty bins (i.e., with zero occurrence in the

histogram) are obtained by shifting some intensity levels by means of increasing or de-

creasing the adjacent bins by some constant. The resulting empty bins are utilized for data

embedding. Conventionally, the intensity level that is of the highest occurrence in the his-

togram is chosen for data embedding. Then, the process of data embedding commences

by scanning the pixels and verify their intensity levels. If the intensity level of a pixel is of

the highest occurrence in the histogram, this pixel is utilized for data embedding. In par-
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ticular, to embed “1”, the pixel is mapped to the intensity level (i.e., adjacent bin) that has

zero occurrence (i.e., of empty bin) in the histogram. However, to embed “0”, no mapping

is performed (Ni, Shi, Ansari, & Su, 2006). Here, the applicability of the conventional

HS methods is restricted to the spatial representation of an image (i.e., as an array of raw

pixel values). The same applicability restriction is observed in the subsequent HS-based

data embedding methods. For example, Lee, Suh, and Ho (2006) propose to achieve HS

by generating a difference image (i.e., from the original image), followed by applying HS

to the difference image. This method is superior to that proposed by Li et al. (2013) in

terms of embedding capacity and lowers distortion in the modified image due to better

exploitation of the correlation among pixels. Hong, Chen, and Shiu (2009) propose to

embed data in the prediction errors of the image, which results in higher carrier capacity

than the aforementioned HS methods. Wu and Huang (2012) propose a method to select

the intensity levels for histogram shifting purposes such that the distortion in the modified

image is suppressed. Obviously, the applicability of these methods is restricted, similar to

the conventional HS. This observation includes other HS-based data embedding methods,

such as (Xuan et al., 2008; Fujiyoshi, Sato, Jin, & Kiya, 2007; Fallahpour, 2008; Kim,

Lee, Lee, & Lee, 2009; Tsai, Hu, & Yeh, 2009; Tai, Yeh, & Chang, 2009; Luo, Chen,

Chen, Zeng, & Xiong, 2010; Hong, Chen, Chang, & Shiu, 2010; Gao, An, Yuan, Tao, &

Li, 2011).

On the other hand, although HS-based data embedding methods are applicable to

other domains and media, the applicability of these methods are still restricted. For

example, HS is applied to the coefficients in an audio signal by the method proposed

by Li, Lei, Liu, and Yan (2006) and hence its applicability is restricted to the temporal

representation of an audio. As another example, HS is applied to embed data in the

frequency domain, particularly in quantized transformed coefficients of a video by the

method proposed by Shahid and Puech (2013) Also, Chen, Zhang, and Yu (2013) pro-
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pose to achieve HS in the entropy coding and quantization stages in JPEG. Hence, the

applicability of the these two methods are restricted to the frequency representation of

video and image, respectively.

Similar to the development in DE, the performance of HS has been improving over

years in terms of embedding capacity and output image quality. However, its interchange-

ability remains restricted.

2.4 Transformed Based Methods

In TB (Transformed Based) data embedding methods, the host is first transformed

into another domain, or in other words, content represented in the transformed form is

considered. The features in the new domain are utilized to achieve data embedding. For

example, Coltuc and Chassery (2007), Wang, Li, Yang, and Guo (2010), Peng, Li, and

Yang (2012), and Coltuc (2012) propose a method to reversibly transform a set of integers

(image pixel values in the spatial domain) to another set of integers using the proposed

transformation. In the new set of integers, each integer is utilized to accommodate one

bit from the payload. In terms of interchangeability, the applicability of these methods is

restricted to the spatial domain in the case of image. The restricted applicability is also

observed in the methods proposed by (Ogihara, Nakamura, & Yokoya, 1996; Huang, Shi,

& Shi, 2000; Chen, Zhang, Ma, & Yu, 2013) and (Xuan et al., 2002; Bhat, Sengupta,

& Das, 2010; Wassermann, 2013), which are solely applicable to coefficients of DCT

(Discrete Cosine Transform) and DWT (Discrete Wavelet Transform), respectively.

2.5 Bitstream Mapping Based Methods

In BS (BitStream mapping) based methods, a pre-defined look-up table of code-

words is utilized to parse the bitstream of a particular host. The parsing process defines

two subsets from the look-up table, namely, the set of codewords that actually occurs (i.e.,

used) in the bitstream, and the set of remaining (if any) codewords that are absent. Then,
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data embedding is achieved by mapping the used codewords to un-used ones. Mobasseri,

Berger, Marcinak, and NaikRaikar (2010) and Qian and Zhang (2012) proposed to apply

BS data embedding to JPEG compressed image. In their approaches, the VLC (Vari-

able Length Codewords) in the bitstream of an image is parsed and classified into used

and un-used (i.e., absent) VLC’s, followed by embedding data using the aforementioned

mapping. The applicability in these methods is restricted to image compressed by the

JPEG standard. Xu and Wang (2011) apply the similar approach to embed data in the

bitstream of H.264/AVC, where Exp-Golomb codewords are utilized in the same man-

ner. Thus, the applicability of this method is restricted to video compressed using the

H.264/AVC standard.

2.6 LSB Substitution Based Methods

In LSB (Least Significant Bit) substitution based data embedding, the LSB of an

integer value is substituted by one bit from the payload. This process is preceded by com-

pressing the original LSB bitplane for lossless restoration (Fridrich, Goljan, & Du, 2001;

Dittmann, Steinebach, & Ferri, 2002; Celik, Sharma, Tekalp, & Saber, 2005). Although

any digital data can appear in binary form and hence LSB substitution can be achieved,

LSB substitution is not completely universal. This is because, LSB substitution methods

depend on the definition of the position of LSB. In other words, the coding structure of the

binary data must be known before hand in order to achieve LSB substitution. Therefore,

the applicability of this method is restricted to the defined LSB bitplane of a signal.

2.7 Hybrid and Generalized Methods

In this section, it is shown that some methods combine two (or more) data embed-

ding methods under a single operational framework in order to improve interchangeabil-

ity. Here, each method operates in a specific context (i.e., domain/medium). The analysis

of the context and the decision to apply the appropriate method to each context increase
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the overall complexity of the data embedding process. However, in general, the combina-

tion of multiple methods increases interchangeability. For example, Shih and Wu (2003)

propose a hybrid data embedding method that operates simultaneously in the spatial and

frequency domains. They split an image into spatial and frequency domains, and embed

data into each domain independently. Particularly, in the spatial domain, some pixels

are selected based on their spatial activity features, followed by replacing bits in the se-

lected bitplanes with the payload. On the other hand, in the frequency domain, some

DCT coefficients are selected and manipulated to accommodate another part of the pay-

load. The coefficients are selected such that the distortion caused by the manipulation is

imperceptible. The applicability of this method is restricted by the spatial and frequency

representations of the image. Thus, the applicability of this method is better than those of

DE, HS, BS and LSB substitution.

Stankovic, Orovic, and Zaric (2010) propose a method that manipulates features in

the spatial and frequency domains using a unified scheme. Hence, unlike the method

proposed by Shih and Wu (2003), no combination of different methods is required to

process data in the two aforementioned domains. Therefore, this method is a generalized

scheme for data embedding in the spatial and frequency domains. Here, both features in

the spatial and frequency domains are considered to select the positions where the payload

is embedded. Then, the coefficients (obtained by applying short-time Fourier transform

to the selected pixels) are modified to embed data. This method is applicable to the

spatial/temporal and frequency domains of image, audio and video signals. Obviously, the

applicability of this method is the highest among all surveyed data embedding methods.

However, this method is still infeasible in other domains such as the compressed and

encrypted domains. Hence, this method is not universal.
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2.8 Problem Analysis

Generally, the applicability of the surveyed data embedding methods are found to

be restricted. In other words, each of the surveyed methods is solely applicable to its

designated domain and cannot be interchangeably applied to signals defined in a different

domain.

This limited interchangeability is due to the feature-dependency of these methods. In

particular, a conventional data embedding method is designed to modify certain features

in certain domain(s). The requirement to define features in a certain domain restricts the

operation of a data embedding method in different domain.

In the current literature, universal data embedding is of nonexistent due to the afore-

mentioned feature-dependency in the conventional methods. Since the features of data

in some applications are not or cannot be defined, devising a universal data embedding

method is vital. For example, in a cloud storage, users upload various contents of dif-

ferent formats, domains and media. Practically, it is almost impossible to define features

of every data stored in the cloud. Furthermore, if the data are compressed or encrypted,

the feature extraction process becomes more challenging. In this case, the cloud admin-

istrator, who has no access to the original format (or features) of the data, cannot utilize

the conventional data embedding methods to annotate, index, archive, embed metadata or

other relevant information in the data (or files stored) in the cloud.

As another scenario, technically, some hosts such as streams of data sent over the

communication networks are still not exploited for data embedding purposes due to the

limited interchangeability in the conventional data embedding methods. Also, data em-

bedding in texts, for example, is still format/language dependent (Yee, Wong, & Chee,

2012). For that, there are many languages in which their texts remain unexplored for data

embedding purposes. In these two cases, a universal data embedding can be deployed.
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Finally, the low interchangeability among the existing data embedding methods pre-

vents the realization of a universal data embedding method that can by utilized to embed

data into any stream of data stored in any file system. Embedding data in host stored in

a particular file system requires a library of various combined data embedding methods,

where each of these methods is applied to a particular type of data. This requires the

definition of features for each type of data, which is infeasible when multimedia data is

considered. The aforementioned applications emphasize the need of a universal data em-

bedding.

2.9 Summary

The well-known classes of data embedding methods, including difference expansion,

histogram shifting, transformed based, bitstream mapping, LSB substitution and hybrid

methods, are surveyed and analyzed in terms of interchangeability. The analysis shows

that conventional data embeding methods are of limited interchangeability. This low in-

terchangeability is an intrinsic feature in these methods because they are tailored for the

applications in certain hosts with specific features. Hence, increasing the interchange-

ability requires the re-designing of these methods. On the other hand, there are many

applications that need a universal data embedding method to realize the intended use. For

that, the consideration of the concept and applications of the universal data embedding

are significant and justify the need of this study.
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CHAPTER 3

UNIVERSAL DOMAIN AND UNIVERSAL PARSER

3.1 Overview

In this chapter, a general framework to realize universal data embedding is proposed.

This framework is based on the proposed concepts of universal domain and universal

parser. The definition of the universal domain and the theoretical features of the universal

parser are studied in detail, where the universal parser is utilized later to achieve four

different universal data embedding methods. These methods are presented in the sub-

sequent chapters. This chapter ends with the presentation of the criteria to evaluate the

performance of the proposed universal data embedding methods.

3.2 Introduction

In general, formats and features of digital signals (or signals hereinafter) are under

continuous consideration and development. For example, coding structures, compression

standards and encryption schemes vary according to such development. Hence, in order

for a universal data embedding method to operate independently from such unpredictable

changes, there should be a common domain in which any signal (regardless its underlying

features) can be defined, where data embedding can be achieved solely in such a common

domain. This domain is named as the universal domain.

In this study, the universal domain is devised such that any signal can be defined in

that domain. In other words, given any set of features in the signal, these features can be

defined as a subset of the universal domain. Consequently, any data embedding method

that operates solely in the universal domain is a universal data embedding method. The

universal data embedding is achieved by the proposed framework, which is detailed in the
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Figure 3.1: The proposed framework of universal data embedding, where the actual
mapping and embedding processes are realized in four proposed methods, namely, uRE-
ADS (Chapter 4), urDEED (Chapter 5), DeRand (Chapter 6) and Data fusion (Chapter 7).

following section.

3.3 Proposed Framework of Universal Data Embedding

In this study, a general framework (Figure 3.1) that governs any universal data em-

bedding method is proposed. Initially, the input signal (i.e., host) contains some unintel-

ligible features in its specific domain (Section 3.3.1). Hence, this signal is defined in the

universal domain (Section 3.3.2). Next, the signal is parsed by the proposed parser re-

ferred to as the universal parser (Section 3.3.3). This parser imposes some features in the

signal to achieve data embedding. After that, based on the imposed features, the signal is

mapped and modified to accommodate payload by four proposed methods, namely, uRE-

ADS (Chapters 4), urDEED (Chapters 5), DeRand (Chapters 6) and data fusion (Chap-

ters 7). In the following sections, the features of the input signal, universal domain and

universal parser are detailed.
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3.3.1 Input Signal

Throughout this study, the input signal (i.e., the host) is denoted by X , which is

defined as follows.

Definition 1. Suppose A is a set of alphabets, the set X = {x1x2 · · ·xg · · ·xN} is a finite,

stationary and statistically independent sequence of symbols derived from A, where N is

the number of symbols in X, g is the unique position of the symbol xg in X, xg ∈ A and

N ≥ 2

Generally, the methods proposed in Chapters 4-7 are theoretically applicable to any set of

alphabets considered. However, the scope of this study is restricted by the digital domain

hence A= {0,1}.

3.3.2 Universal Domain

Conventionally, a signal X is defined in a certain domain, media and/or coding for-

mat. For example, a video camera that captures a scene generates raw sequence of frames

defined in the temporal and spatial domains. Such video signal lives in domains that dif-

fer from that of, e.g., a text signal. Hence, a data embedding method applicable to raw

video cannot be applied to another type of signal (such as raw texts) unless both intersect

into a common domain. Based on this observation, it is assumed that a universal data

embedding should operate in the universal domain in which any signal X lives.

The universal domain is denoted by UA and X ⊂ UA. As such, the domain of a

universal data embedding function is defined over UA. Formally, UA is a universal set,

which is defined as follows.

Definition 2. Given a non-empty set of alphabets A, the universal set UA is a collection
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of all possible sequences of alphabets in A with length L≥ 1, namely:

UA =
∞⋃

L=1

AL (3.1)

where AL is the set of all sequences of length L generated by performing the following

Cartesian product:

AL =

|A|L⋃
L=2

A×AL−1 = {XL
j }
|A|L
j=1, (3.2)

such that A1 =A, and XL
j is sequence of L ordered symbols (i.e., L-tuple), which is defined

as follows:

XL
j = {xL

1, jx
L
2, j · · ·xL

g, j · · ·xL
G, j} (3.3)

Here, the g-th singleton in XL
j is notated as xL

g, j, where 1≤ g≤G = L. For example, if the

set of alphabets A= {0,1}, then A2 ∈U{0,1} = {X2
1 ,X

2
2 ,X

2
3 ,X

2
4 }, where X2

1 = {02
1,102

2,1},

X2
2 = {02

1,212
2,2}, X2

3 = {12
1,302

2,3} and X2
4 = {12

1,412
2,4}. The subscript j and superscript L

are omitted when there is no confusion. Definition 3.2 leads to the following corollary.

Corollary 1. If the set of alphabets A is empty, i.e., A = φ , then the universal set Uφ is

also empty, i.e., Uφ = φ .

Proof. If A= φ , then ∀AL, AL = φ×AL−1 = φ , where L> 1. Hence, Uφ =
⋃

∞
L=1 φ L = φ

Now, given any sequence of symbols X (i.e., signal), the following conditions must be

satisfied in order to define X in the universal domain.

Definition 3. Given a sequence X derived from the set of alphabets AL, if the following

are satisfied for ∀ xg ∈ X:

(1) The position/index of each symbol xg within X is uniquely defined;
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Figure 3.2: The universal domain UA

(2) The conditional probability P({xg}|{xg−1}|{xg−2}|· · · |{x1}) = 0,

then X is defined in the universal domain UA

Informally, each element in the universal domain is a sequence of independent sym-

bols originating from A where their positions are uniquely defined. Generally, satisfying

the conditions (1) and (2) of Definition 3 is sufficient to define any finite signal X in UA.

However, other features, which include but not limited to the coding scheme of the signal

(e.g., type of file or file format), media (e.g., audio, image, text) and domain of the signal

(e.g., spatial, frequency, temporal) are not required to define the signal X in UA. For that,

the universal domain intersects with all media and domains as illustrated in Figure 3.2.

Thus, any signal can be defined in the universal domain.

3.3.3 Universal Parser

Given X in the universal domain, the only extractable features from X are those

defined in conditions (1) and (2) in Definition 3. These features include the definition

of the set of stationery symbols in X and their unique positions. Otherwise, no features
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(such as domain,media and coding format) are available. Hence, X should be modeled

by imposing features on X . Then, X is manipulated based on the imposed features for

data embedding purposes. Noteworthy, the modeling of X does not change its original

features captured by Definition 3 because this modeling is reversible.

The modeling is achieved by a parser referred to as universal parser. By applying

the universal parser, a set of imaginary codewords (IC’s) is obtained by partitioning the

bitstream of X into fixed length non-overlapping segments (each of length L bits) where

each L-bits segment eventually becomes the IC. The total number of IC’s is denoted by

λL and it is computed as follows:

λL =

⌈
N
L

⌉
, (3.4)

where 1 ≤ L ≤ N and dYe rounds Y to the nearest integer towards positive infinity. The

last IC in the bitstream is called the end-of-signal IC, which may not be of length L. The

sequence number of end-of-signal is recorded as side information and treated as part of

the payload. Formally, the universal parser is defined as an ordering function as follows:

Definition 4. Given X, the universal parser is an ordering function D(X ,L) that partitions

X into non-overlapping ordered tuples where each tuple consists of L symbols from X such

that:

D(X ,L) = XL = {T L
1 ,T

L
2 , · · · ,T L

λL
}. (3.5)

Informally, T L
t is an imaginary codeword (IC) of length L. Formally, T L

t is t-th ordered

tuple that consists of L elements from X and is defined as follows:

T L
t = (x1

t ,x
2
t , · · · ,xL

t ). (3.6)
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Here, the following equation relating the cardinalities holds true:

|{{x1
1},{x2

1, · · · ,xL
1}}|+|{{x1

2},{x2
2, · · · ,xL

2}}|+ · · ·+

|{{x1
λL
},{x2

λL
, · · · ,xL

λL
}}|= |X |,

(3.7)

where xl
t is at position l in the tuple T L

t , l ≤ L, {{x1
t },{x2

t , · · · ,xL
t }} is the Kuratowski’s

representation of the tuple T L
t and |U | is the cardinality of the set U. Here, the following

relation also holds true:

⋂
{T L

t }λL
v=1 =

⋂
{{x1

t },{x2
t , · · · ,xL

t }}λL
t=1 = φ , (3.8)

where each element xl
t is unique with respect to its position l

In the following theorems, it is proven that the entropy of XL depends on L.

Theorem 1. Suppose X is a discrete uniformly distributed set of elements such that the

probabilities p(x1) = p(x2) = · · ·= p(xN) =
1
N . If a universal parser orders X such that

XL = D(X ,L) (3.9)

and

XL+1 = D(X ,L+1), (3.10)

then

I(T L
t )> I(T L+1

j ) (3.11)

holds true ∀T L
t ∈XL and ∀T L+1

j ∈XL+1 where I(T L
t ) and I(T L+1

j ) are the self-information (Shannon,

2001) of the tuples T L
t and T L+1

j , respectively.
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Proof. Since X is discrete and uniformly distributed, ∀T L
t ∈ XL,

P(T L
t ) =

1
λL

, (3.12)

and ∀T L+1
j ∈ XL+1,

P(T L+1
j ) =

1
λL+1

(3.13)

hold true. Increasing L to L+1 results in

λL > λL+1. (3.14)

Hence,

1
λL

<
1

λL+1
. (3.15)

By taking the logarithm of both sides of Inequality (3.15), the following is derived:

log2

[
1

λL

]
< log2

[
1

λL+1

]
(3.16)

⇒− log2

[
1

λL

]
>− log2

[
1

λL+1

]
(3.17)

⇒− log2(P(T
L

t ))>− log2(P(T
L+1
j )) (3.18)

and hence I(T L
t )> I(T L+1

j )

Inequality (3.18) indicates that the amount of self-information associated with the

outcome of the elements ordered at length L is higher than that of L+1. In other words,
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XL has higher entropy than XL+1 as shown in the next theorem.

Theorem 2. If a universal parser is utilized to order X into XL and XL+1 as defined in

Eq. (3.9) and Eq. (3.10), respectively, then

H(XL)> H(XL+1) (3.19)

where X is a set of discrete and uniformly distributed symbols, H(XL) and H(XL+1) are

the entropies of the set of tuples XL and XL+1, respectively, for 1≤ L≤ N.

Proof. Initially, H(XL) is defined as (Vaseghi, 2006; Rabbani & Jones, 1991):

H(XL) =
1
L

λL

∑
t=1

P(T L
t )×θ(T L

t ) (3.20)

where p(T L
t ) is the probability of the tuple T L

t in XL and θ(T L
t ) is the length of the code-

word required to encode the tuple T L
t . Since X is discrete and uniformly distributed,

P(T L
t ) and θ(T L

t ) are constants ∀T L
t . That is,

P(T L
t ) =

1
λL

(3.21)

and

θ(T L
t ) = log2(λL). (3.22)

Hence, Eq. (3.20) becomes:

H(XL) =
λL× log2(λL)

L×λL
(3.23)

⇒ H(XL) =
log2(λL)

L
(3.24)
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Next, Inequality (3.19) is proven based on Inequality (3.14):

log2(λL)> log2(λL+1) (3.25)

⇒ log2(λL)

L
>

log2(λL+1)

L
(3.26)

However:

log2(λL+1)

L
>

log2(λL+1)

L+1
. (3.27)

Hence, the following holds true by transitivity:

log2(λL)

L
>

log2(λL+1)

L+1
. (3.28)

Therefore, Inequality (3.28) can be rephrased according to Eq. (3.24) as:

H(XL)> H(XL+1) (3.29)

Corollary 2. The following inequality holds true:

H(X1)> H(X2)> · · ·> H(XN) (3.30)

Proof. Inequality (3.30) follows directly from Inequality (3.29)
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Corollary 3. The upper and lower bounds of Inequality (3.30) are given as follows:

log2(λ1)> H(X2)> · · ·> H(XN−1)> 0 (3.31)

Proof. The upper and lower bounds of Inequality (3.30) are defined by taking the limits

of Eq. (3.24) to 1 and ∞, respectively, as follows:

lim
L→1

log2(λ1)

L
= log2(λ1) (3.32)

lim
L→∞

log2(λ∞)

L
= 0 (3.33)

Example 1. An example on the change of the entropy H(XL) (as L changes) is presented.

Given an ordered tuple X = (a1,a2,a3,a4). X can be processed by the universal parser

as follows:

At L = 1, X1 = D(X ,1) has 4 tuples, namely, T 1
1 = “a1”, T 1

2 = “a2”, T 1
3 = “a3” and

T 1
4 = “a4”. Hence, λ1 = 4 and H(X1) =

log2(4)
1 = 2 bits/tuple.

At L = 2, X2 has 2 tuples, namely, T 2
1 = “a1a2”, T 2

2 = “a3a4”. Hence, λ2 = 2 and H(X2) =

log2(2)
2 = 0.5 bits/tuple.

At L = 3, X3 has 2 tuples, namely, T 3
1 = “a1a2a3”, T 3

2 = “a4∆∆” where ∆ denotes an

arbitrary symbol that can be ignored. Hence, λ3 = 2 and H(X3) =
log2(2)

3 = 0.3 bits/tuple.

At L= 4, X4 has 1 tuple, namely, T 4
1 = “a1a2a3a4”. Hence, λ4 = 1 and H(X4)=

log2(1)
4 = 0

bits/tuple.

Corollary 4. As a consequence of Inequality (3.31), the following inequality holds true:

R1 < R2 < · · ·< RN (3.34)
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where RL is the amount of redundancy in a set of tuples XL and it is defined as follows:

RL = Θavg(XL)−H(XL) (3.35)

where Θavg(XL) is the average length of the codewords encoding the tuples of XL and

H(XL) is defined in Eq. (3.24)

Corollary 5. Since X can be modeled into XL by Eq. (3.5) for 1 ≤ L ≤ N, then the

following holds true:

µ ≥ N +1 > 2, (3.36)

where µ is the number of possible models1 to which X can be transformed.

Proof. By applying the universal parser, X can be transformed into N models by using

Eq. (3.5) where in each model, the symbols of X are ordered into tuples of unified lengths

L. On the other hand, there is at least one parser D̂(X ,σ) that differs from the universal

parser, i.e., D̂(X ,σ) 6= D(X ,L) where σ is a parsing coefficient (say a seed to generate a

sequence of random lengths each less than N). By applying D̂(X ,σ), the symbols of X

are ordered into tuples of non-unified lengths. Hence, by considering the two classes of

parsers together, i.e., D̂(X ,σ) and D(X ,L), there are at least N+1 models to which X can

be transformed. On the other hand, by Definition (4), N ≥ 2 and hence N +1 > 2, which

proves Inequality (3.36)

For example, suppose a JPEG image is represented by a bitstream of length N bits. Using

Eq. (3.5), the image can be modeled into N different ways. On the other hand, one addi-

1A model refers to a pattern by which X can be represented by ordering (i.e., grouping) the symbols
of X .
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tional model can be obtained by applying the standard (i.e., format-compliance) parser to

the image.

Generally, Inequality (3.36) indicates that for any set of symbols X of length N bits,

X can be transferred into at least N + 1 different models. When the universal parser is

applied, the maximum number of models is limited to N models, where each model is ob-

tained by setting L in Eq. (3.5) to a certain value. Changing the length L leads to a change

in the entropy H(XL) of a set of tuples as shown in Theorem 2. In this context, the length

L that defines the largest redundancy RL is referred to as the optimum L. Throughout this

study, the optimum L is defined empirically. Here, the removed redundancy generates

venues, which are utilized for universal data embedding. Following the proposed frame-

work of universal data embedding in Figure 3.1, the mapping and embedding of payload

are achieved in four different ways, which are detailed in Chapters (4∼7).

3.4 Evaluation Criteria

Generally, the performance of a universal data embedding method is evaluated in

terms of carrier capacity, reversibility, interchangeability and file-size persevering.

The carrier capacity is defined as the ratio of the size of the embedded payload to the

size of the host and presented in the unit of bpb (bits per bit).

The ability to perfectly extract the embedded payload and reconstruct the original

host is referred to as reversibility. This feature is significant in applications where data

loss is prohibited such as in medical and military imaging applications (Li et al., 2013).

Reversibility is achieved with the aid of side information, which are either embedded

along with the payload or appended as an extra data to the signal.

The ability to achieve data embedding to any signal regardless of its underlying

coding structure/domain/media is referred to as interchangeability (or universal appli-

cability). This is the core objective of this study. In universal data embedding, universal
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applicability is verified empirically by executing the implementation code of the proposed

method to its completion for any input signal X such that bpb > 0 is obtained.

The ability to generate a modified signal of the exact same size as the original one

is referred to as file-size preserving. This feature is significant in applications of lim-

ited bandwidth or storage capacity such as communication networks, DVD-RW and flash

memories where file-size preservation is crucial. For example, after increasing the file-

size due to data embedding, video contents originally fitted in a single DVD may no

longer fit in a disc of the same capacity, hence requiring at least 2 DVDs to store the

same contents. On the other hand, bitstream size (i.e., packet length) expansion caused

by embedding data in network packets may significantly affect the network traffic, where

the situation gets more complicated when fragmentation occurs at the routers.

3.5 Summary

The problem of nonexistent of universal data embedding method can be overcame

by defining generic operations of data embedding which are commonly applicable in the

proposed universal domain. The universal domain is a common domain that intersects

with any other domain. For that, any digital signal lives (i.e., can be defined) in the

universal domain. Signals in the universal domain are modeled in a way such that new

features are defined using the universal parser. In particular, the universal parser changes

the entropy (and consequently the redundancy) of the signal based on the partitioning

length L. This change in redundancy is exploited to embed external data (i.e., a payload)

by proposing four methods in the following chapters.

28

Univ
ers

ity
 of

 M
ala

ya



CHAPTER 4

DATA EMBEDDING USING GOLOMB-RICE CODE

4.1 Overview

In this section, the first proposed universal data embedding method is proposed and

named as uREADS (universal Reversible data Embedding method for Any Digital Sig-

nal). In this method, the imaginary codewords (obtained by the universal parser) are

mapped to GRC’s (Golomb-Rice codewords). Then, GRC’s are manipulated to accom-

modate the payload. In particular, each IC is mapped to an mGRC (modified Golomb-

Rice Code), which is formed by grouping two GRC’s that differ only in their LSB’s. The

LSB is utilized to embed external payload by means of modulation. Despite inserting

external information into it, uREADS preserves the size of the original signal by treating

excessive data (due to GRC mapping) as part of the payload. The payload and the original

signal can be reconstructed independently from the modified signal. Experimental results

suggest that uREADS is applicable to any digital signal and it offers up to 0.074 bpb of

carrier capacity.

4.2 Introduction

Data are widely generated nowadays in various formats thanks to the availability

of sophisticated capturing devices at affordable prices. However, most, if not all, ex-

isting data embedding methods are features dependent and hence they are not readily

interchangeable. The applicability of these methods is restricted by either the domain or

media of the signal in question. For example, methods designed to operate in the spatial

domain (Hartung & Girod, 1998) are not applicable to the frequency domain (Cox, Kil-

ian, Leighton, & Shamoon, 1996), and vice versa. In addition, the methods applicable to a
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specific frequency domain for image (Cox et al., 1996) are not applicable to the frequency

domain for audio (Bassia, Pitas, & Nikolaidis, 2001). Hence, changing the domain or

media requires a re-design of the data embedding method. In addition, the increasing

number of standards and formats for signal in various domains emphasize the need of a

universally interchangeable data embedding method that is applicable to any digital sig-

nal. Stankovic et al. (2010) propose a unified watermarking method applicable to audio

(in time domain) and an image (in frequency domain). This method is still not com-

pletely interchangeable because it is not applicable to compressed audio/image. Shih and

Wu (2003) propose a hybrid method to embed data into spatial and frequency domains of

an image, but yet independent and different method is considered for each domain. Since

any digital signal can be represented in the bitstream domain, embedding data directly in

the bitstream domain will overcome the aforementioned interchangeability problem. The

bitstream domain is recognized as an important sub-area of data hiding (Mobasseri et al.,

2010; Xu, Wang, & Shi, 2014). Although the data embedding method proposed by Wong,

Au, and Wong (2001) operates in the bitstream domain, they need to decode (partially)

the bitstream to access the quantized coefficients in the frequency domain for data em-

bedding purposes. Hence, they are not completely applicable in the bitstream domain. To

overcome this drawback, Mobasseri et al. (2010) and Xu et al. (2014) embed data directly

in the bitstream domain without the need of partial decoding (i.e., de-compression). Fea-

tures of the entropy coder (i.e., Huffman code) are utilized to achieve the embedding in

the JPEG bitstream. However, this method is not applicable to bitstream generated by a

different entropy coder (e.g., Arithmetic coding), as well as bitstream of an audio, text

or any other content. In this chapter, a universal Reversible data Embedding method for

Any Digital Signal (uREADS) is proposed. uREADS defines the input signal in the uni-

versal domain and applies the universal parser to generate IC’s (imaginary codewords).

These codewords are statistically mapped into modified version of Golomb-Rice codes
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Figure 4.1: The proposed framework of uREADS, where the input signal is defined in the
universal domain

(mGRC). Here, an mGRC is formed by grouping two GRC’s that differ only in their

LSB’s. The LSB is utilized to accommodate one bit of the payload. uREADS is univer-

sally applicable to any digital signal and it is reversible in which case both the host and

payload can be perfectly restored. The extraction of the payload is achieved without the

need to restore the original signal, and vice versa. Despite inserting additional external

information into it, uREADS preserves the size of the original signal. The performance

of uREADS is verified empirically.

4.3 The Proposed uREADS

Figure 4.1 summarizes the procedures in uREADS and each procedure is discussed

briefly as follows: 1) The universal parser is unaware about the source coding applied to

generate the input signal X . It merely parses X into virtually correlated IC’s. Here, the bits

in IC’s are correlated differently and independently from the actual correlation obtained

by the applied source coding. However, reversibility is ensured by maintaining the relative

order of each bit. 2) The IC’s are then mapped into a set of modified GRC’s according to

their probability of occurrences. 3) To preserve the original file-size, any excessive data

caused by the mapping are embedded into the IC’s. 4) Side information and other header

components are embedded for reversibility purposes. Finally, the payload is embedded

into the remaining (available) IC’s. The procedures of uREADS are further detailed in

following sections.
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4.3.1 Universal Parser

The universal parser supposes that the bitstream is uncorrelated. Thus, each bit is

read sequentially while keeping its order unchanged for reversibility purposes. The as-

sumption made (i.e., bits are uncorrelated) implies that X is virtually free of codewords.

Hence, the universal parser imposes a virtual correlation among the bits, forming a set

of IC’s, as detailed in Section 3.3.3. Here, the Probability of Occurrence (PoO) of each

IC is computed. IC’s are then sorted in descending order according to their PoO’s. The

order is embedded as side information S along with the payload. The size of S is propor-

tional to the number of bins in the histogram of the IC’s that have counts larger than zero,

and hence S increases when L increases. To achieve reversibility, L, S, and the reminder

length r in GRC (defined in Section 4.3.2) are stored as side information.

4.3.2 Mapping IC’s to modified GRC’s

In this stage, the IC’s are entropy coded by a modified version of GRC’s. Here,

it should be noted that this entropy coding does not aim at compressing X . In other

words, the entropy coding is utilized for data embedding purposes. The entropy coding

process starts with the construction of the histogram of the set of IC’s. Then, IC’s of

higher PoO’s are coded by GRC’s of shorter length, and vice versa. For reversibility

purposes, the sorted IC’s (based on their PoO’s) are stored as side information along with

the augmented payload.

By definition, each GRC consists of three pre-defined parts, namely; (1) quotient

part (q) which consists of a sequence of zeros of length j; (2) termination bit of constant

value “1”, and; (3) remainder part (b) which consists of an arrangement of bits of constant

length r (Golomb, 1966; Weinberger, Seroussi, & Sapiro, 2000). Hence, any GRC is of

the following form:

(q1b) = (0102 . . .0 j1b1b2 . . .br). (4.1)
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Conventionally, j ≥ 0 and hence q may or may not exist in a GRC codeword. This

conventional form of GRC’s is modified in two aspects to form mGRC (modified GRC).

The first modification is imposing the condition j > 0, implying that the quotient part

must exist in any GRC. Hence, the minimum length of |GRC| is r+2 bits. For example,

if r = 2, then the set of mGRC’s consists of (0100),(0101),(0110),(0111),(00100) and

so forth. The second modification is grouping a pair of GRC’s that differ only in the

LSB for data embedding. Here, use the terms LSB of GRC and polarity of GRC are used

interchangeably. For example 0100 and 0101 are combined to form one mGRC = 010p,

where p is the polarity and it is utilized for data embedding as detailed in Section 4.3.3.

In order to preserve the file-size of the original signal after mapping, |mGRC|= r+2 = L

must hold true.

4.3.3 Data Embedding

Practically, mapping IC’s into modified GRC’s mostly increases the size of the bit-

stream, i.e., the mapping results in |mGRC|> L . In order to preserve the file-size, the ex-

cessive data is first embedded into modified GRC’s, and the remaining modified GRC’s

are utilized for embedding the header and payload as detailed in the following subsec-

tions.

4.3.3 (a) Embedding Excessive Data

Generally, by grouping each two GRC’s to form a single mGRC, the length of re-

sulting codewords increases by 1 bit per 2(r−1) codewords. For example, for r = 3,

the codeword mGRC=0111p is followed by the codeword mGRC=00100p. Here, the

size of the later codeword increases by 1 bit in comparison to the first codeword, i.e.,

mGRC=00100p. Such increment causes some codewords to be of length |mGRC|> r+2,

and mapping any IC’s to such lengthy GRC’s causes file-size increment. Therefore,

|mGRC|= r+2= L is imposed for each codeword to preserve the file-size of the bitstream
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(after the mapping). This is achieved by removing excessive zero(s) in the quotient part

of codeword of |GRC|> r+2 and embedding them in the codeword(s) that follows. The

number of removed zeros is denoted by Ri
0 and it is computed as Ri

0 = |mGRCi|−(r+2),

where mGRCi refers to the i-th mGRC. When there is no confusion, the subscript i may

be dropped. The process of removing the excessive zeros Ri
0 and embedding them into

the codewords that follows are performed by Algorithm 1. Here, RGRC denotes the num-

ber of mGRC’s such that ∀mGRC, |mGRC|> L. As an example, assume two mGRC’s

(i.e., mGRC1 and mGRC2) as shown in Figure 4.2. Here, r = 2 bits hence mGRC1 has

2 excessive zeros, i.e., R1
0 = 00. Thus, the size of mGRC1 should be reduced from 6 to

4 bits in order to preserve the original file-size. The reduction is achieved by removing

the first two 0’s from the quotient part of mGRC1. The removed 0’s are embedded as

payload in mGRC1 and mGRC2, respectively, as detailed in Figure 4.2. After embedding

all excessive zeros, the bitstream of the host now consists of fixed-length codewords each

of length |GRC|= r+ 2. In a rare case, a codeword GRC (or more) with excessive data

may come at the end of the bitstream, where no subsequent codewords can be utilized for

embedding Ri
0. When this occurs, the count of such codeword(s) is recorded as RmGRC in

the header, and Ri
0 is embedded in the header as well.

4.3.3 (b) Embedding Header and Payload

After embedding the excessive data Ri
0, the header and the payload are embedded

in the remaining mGRC’s. The available mGRC’s are recognized by inspecting their

MSB’s. If MSB=1 in a mGRC, it signifies that such mGRC has been utilized to accom-

modate a removed (excessive) zero, and hence, it is not eligible for data embedding. If

MSB=0, then such mGRC is eligible for data embedding. The embedding is carried out

by modulating the polarity of such mGRC using the payload (1 bit per mGRC). For sim-

plicity, p is set to 1 to embed “1” and 0 to embed “0” from the payload. For example, if
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Algorithm 1 Embedding of excessive data
1: Let i = 1, Ri

0 = 0, p= 0
2: Compute Ri

0
3: if Ri

0>0 then
4: Flip p
5: Flip the termination bit
6: Remove Ri

0 from qi in the codeword mGRCi
7: Flip the MSB of mGRCi and MSB’s of Ri

0 codewords that follow
8: Set the polarity of mGRCi and Ri

0 codewords that follow to the current p
9: else

10: Increase i = i+1
11: if i = EOF then
12: Stop
13: else
14: Go to Step (2)
15: end if
16: end if

Algorithm 2 Restoration of excessive data
1: Let i = 1, Ri

0 = 0, p= 0
2: Read the termination bit of mGRCi
3: if termination bit=0 then
4: Read p in mGRCi
5: Set Ri

0 = Ri
0 +1

6: Read p of the next codeword mGRCi+1
7: if p of mGRCi= p of mGRCi+1 then
8: Set Ri

0 = Ri
0 +1

9: Go to Step (6)
10: else
11: Flip MSB of mGRCi and the Ri

0 codewords that follow
12: Append Ri

0 zero to qi in mGRCi
13: Increase i = i+1
14: if i = EOF then
15: Stop
16: else
17: Go to Step (2)
18: end if
19: end if
20: end if
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Figure 4.2: An example on embedding excessive data in the proposed uREADS

mGRC= 0010p, to embed “0”, mGRC= 00100, and vice versa. Since each mGRC can

hold 1 bit of information, the raw carrier capacity Craw = |λL|, where λL is defined in

Eq. (3.4).

4.3.4 Restoration of Original Bitstream & Extraction of Payload

The restoration process includes retrieving two types of data. The first type is head-

er/payload data, and the second type is the original bitstream. Here, retrieval can be

achieved independently in any order. In particular, it is not required that the original bit-

stream is restored first in order to restore the header/payload, and vice versa. To restore

the header/payload, the MSB of each codeword (of fixed length r + 2) is checked. If

MSB=1, then such codeword does not accommodate any header/payload data. Hence,

it is skipped to the next codeword. If MSB=0, then one bit of the header/payload is re-

stored by reading the polarity of this codeword. The restoration process continues until it

36

Univ
ers

ity
 of

 M
ala

ya



reaches ICλL . The restoration of the original bitstream is achieved in two stages: (Stage I)

Restoring the removed (excessive) zeros from the quotient part for codewords of original

lengths |GRC|> r+2. This restoration is achieved by Algorithm 2; (Stage II) Restoring

the original IC’s. The restoration starts by reconstructing the header data as detailed at

the beginning of this section. Then the table of sorted IC’s (according to their PoO’s) and

their corresponding GRC’s are rebuilt. Then the bitstream is parsed from the beginning,

and each mGRC is mapped to its original IC until ICλL is reached.

4.4 Experimental Results

Experiments are carried out to verify the performance of uREADS by implementing

it in C programming language. Three types of data are tested, namely, text, image and

audio, each encoded/compressed by different source coding schemes. In particular, the

experiment on text involves Microsoft Word and Latex. The effective carrier capacities (in

bpb) result by applying uREADS to aforementioned test signals are recorded in Table 4.1.

Here, the effective carrier capacity Ce is defined as:

Ce =
Craw− (Header data+R′0)

size of signal (bits)
(4.2)

where R′0 = ∑
λL
i=1 Ri

0 and Craw is the raw capacity. It is observed the considered text

bitstreams can successfully accommodate payload at (L,r)=(4,2). However, the carrier

capacity varies, where MS-Word signal achieves Ce = 0.031 and Latex signal achieves

Ce = 0.051 bpb.

The experiments on image are carried out using the gray-scale Lenna image of size

512×512 pixels with 8 bits pixel depth. The experiment involves the bitstreams of lossy

compressed image (by standard JPEG and JPEG2000 at quality factor = 90 and 50, re-

spectively), losslessly compressed by (JPEG-LS) and un-compressed Bitmap. As shown

in Table 4.1, Ce > 0 is attained for most of these bitstreams at (L,r)=(6,4), except that of
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JPEG2000 due to the variation in the distribution of IC’s in the histograms of the original

bitstreams. Such a variation (among the bitstreams of Lenna) affects the obtained Ce,

which ranges from 0.018 to 0.023 bpb as shown in Table 4.1.

Last but not least, experiments on audio are carried out on an audio bitstream of

length 2 seconds at sampling rate of 44.1KHz with 16 bits per sample. The experiment

involves the bitstream of lossy compression by MP3 (MPEG-1 layer III) at 117 Kbit

(VBR), the bitstream of losslessly compressed by FLAC (Free Lossless Audio Codec)

and un-compressed stream coded by WAVE (Wave Audio File format). It is shown in

Table 4.1 that Ce > 0 is attained for all audio bitstreams but at different (L, r) settings for

the same reason discussed earlier. It is observed that Ce varies between 0.526 ×10−4 to

0.042 bpb for all the audio formats considered. The high Ce in WAVE format is due to the

PoO of IC’s in its bitstream. In particular, 96% of the IC’s are mapped to the first GRC

of mGRC, which is of length r+2. Therefore, more Ce is obtained as a consequence of

reducing Ri
0.

In terms of file-size preserving, for all test signals considered, uREADS does not cause

any increment in file-size when compared to its original counterpart. This suggests that,

by using uREADS, more information can be carried within the input signal without in-

creasing its size. The experiments also verified that uREADS is a universal data embed-

ding method because it can handle any type of signal stored can be defined in the universal

domain. However, uREADS results achieves inconsistent carrier capacity. In addition, L

and R are manually tuned to suite the statistical features of the considered host. These

problems are addressed in the next chapter.

4.5 Summary

A novel data embedding method universally applicable to any digital signal was

proposed. Features of the source coder were ignored and virtual correlation was imposed
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Table 4.1: The performance of uREADS on different bitstreams

Stream L (bits) r (bits) Ce (bpb)
MS-Word 4 2 0.031
Latex 4 2 0.051
JPEG-baseline 6 4 0.018
JPEG-LS 6 4 0.018
JPEG-2000 5 3 0.023
BMP 6 4 0.018
MP3 7 5 0.526 ×10−4

FLAC 3 1 0.074
WAVE 3 1 0.042

on the sequence of bits by grouping them into IC’s using the universal parser. Then, the

IC’s were mapped probabilistically to the modified Golomb-Rice codewords, which in

turn utilized for data embedding. The proposed method is able to preserve bitstream size

of the original signal while holding external information. It is also completely reversible

where the original signal and embedded payload can be obtained independently. In the

best case scenario, Ce = 0.074 bpb was achieved. However, the performance of this

method in terms of carrier capacity is low and inconsistent. In addition, the parameter L

and R vary among the signals and require manual tuning.
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CHAPTER 5

DATA EMBEDDING IN ENCRYPTED DOMAIN

5.1 Overview

In the previous chapter, the proposed universal data embedding method suffers from

inconsistent and low effective carrier capacity. In addition, the segmentation length L (in

the universal parser) and the remainder part must be manually tuned. To overcome these

problems, it is proposed in this chapter a universal data embedding method referred to as

urDEED (universal reversible Data Embedding in Encrypted Domain). Here, although

urDEED follows the proposed framework of universal data embedding hence urDEED

is theoretically applicable to any signal X , data embedding in the encrypted domain is

considered because the conventional methods require partial access to the features of

the signal prior to encryption which may lead to unauthorized viewing/accessing to the

original (i.e., un-encrypted) signal. Thanks to the definition of X in the universal domain,

urDEED operates completely in the encrypted domain, i.e., it requires no features of

the signal prior to the encryption process. This motivates the application of urDEED to

the encrypted signals in which case universal data embedding is required. In particular,

urDEED exploits the coding redundancy of the encrypted signal by partitioning it into

IC’s. Then, IC’s are entropy encoded by using Golomb-Rice codewords (GRC’s). Finally,

each GRC is modified to accommodate two bits from the augmented payload. urDEED

is designed to preserve the same file-size as that of the original input (encrypted) signal

by embedding the quotient part of the GRC’s as side information. Moreover, urDEED

is consistently reversible and universally applicable to any digital signal encrypted by

any encryption method. Also, this method offers higher and stable carrier capacity than
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the pervious one proposed in Chapter 4, i.e., uREADS. In addition, the data embedding

algorithm assumes consistent setting of L and R. Experimental results show that urDEED

achieves an average carrier capacity of ∼ 0.169 bits per every bit of the encrypted (host)

signal.

5.2 Introduction

Multimedia contents are increasingly produced and communicated in recent years

thanks to the availability of efficient capturing devices at low cost and the existence of

ubiquitous network environment. To this end, encryption is applied as the main concep-

tual and technical method to preserve privacy, integrity and access control of multimedia

contents. Practically, encrypted data are unintelligible. Hence, it is difficult for a third

party to extract features, if any available, from an encrypted signal without the legitimate

decryption key. However, data management system for encrypted signal by a third party

is highly demanded nowadays. For example, data are increasingly stored remotely in

on-line storage servers (such as cloud storage), which are managed by a third party and

the data are often encrypted to avoid unauthorized viewing. Here, data embedding can be

adopted directly for managing encrypted signal because it allows the insertion of extra in-

formation, such as the particulars of the owner, copyright information and other relevant

metadata, directly into an encrypted signal.

Date embedding is based generally on modifying some features of the host in or-

der to embed the payload (Lei, Soon, & Li, 2011; Cheddad, Condell, Curran, & Kevitt,

2010; Xu, Wang, & Wang, 2011; Lusson, Bailey, Leeney, & Curran, 2013; Wong, Qi,

& Tanaka, 2007). However, the extraction of features, if any available, is technically

challenging in the encrypted domain because the encrypted signal is unintelligible. For

that, most of the existing data embedding methods in the encrypted domain require partial

access to other domains, which may reveal the pre-encryption features of the signal and
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hence may possibly lead to security breach. In other words, the existing methods rely

significantly on the underlying coding structure of the content, the type of media, or the

properties of the domain in which the signal is defined prior to encryption. For exam-

ple in the method proposed by Zhao, Kou, Li, Dang, and Zhang (2010), features of an

image in the frequency domain (i.e., DCT domain) are exploited to achieve irreversible

data embedding in the encrypted domain. The encryption is achieved by manipulating se-

lected DCT coefficients, which is guided by the public-key structure without determining

a specific standard or method. On the other hand, Lian, Liu, Ren, and Wang (2007) pro-

posed a data embedding method for encrypted H.264/AVC compressed videos. In their

method, motion and residual information are partially encrypted, followed by the modi-

fication of the prediction modes in an INTRA frame and flipping sign of the coefficients.

Then, data embedding is achieved by utilizing the non-zero coefficients in the frequency

domain. Similarly, Cancellaro et al. (2011) achieve the same commutative property in

images stored by using coefficients of the tree structured Haar transform. In the method

proposed by Zhang (2012), Hong, Chen, and Wu (2012) and Zhang (2011), an image is

encrypted by applying XOR operation on its pixels using a pseudo-randomly generated

bit sequence determined by a key. Then, payload is embedded by modifying group of

pixels in a pre-defined manner. The reversibility property in these methods is achieved by

exploiting the spatial correlation among pixel values.

Strictly speaking, a practical data embedding method in the encrypted domain should

operates solely in the encrypted domain, where features of the signal prior to the encryp-

tion stage should be kept unknown to the data embedder. However, such requirement is

not considered in most existing methods because they are designed to exploit selected fea-

tures of the original signal in its pre-encryption stage to realize data embedding. For that,

the existing methods are not operating solely in the encrypted domain, but instead they

involve two or more domains. In addition, reversibility is not consistently achieved by
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the methods proposed by Zhang (2012), Hong et al. (2012) and Zhang (2011). Hence, the

aforementioned methods are not viable in applications where any loss of data is prohib-

ited such as medical, military, and forensic. More importantly, they are not interchange-

able and hence the proposed algorithms are not applicable when considering standard

encryption methods such as AES (Kim, 2012), Triple-DES (Merkle & Hellman, 1981) or

Blowfish (Mousa, 2005).

In this chapter, a novel Universal Reversible Data Embedding method in the En-

crypted Domain (urDEED) is proposed. Our method operates solely in the universal

domain, which intersects with the encrypted domain as shown in Figure 3.2. Hence, it is

not required to exploit features of the signal prior the encryption in order to achieve data

embedding. Here, the coding redundancy in the encrypted signal is exploited by entropy

coding the signal and the resulting codewords are modified for data embedding purposes.

Performance of the proposed urDEED is verified empirically. urDEED achieves the fol-

lowing features: (1) complete interchangeability, and hence, it is applicable to any signal

encrypted by any encryption scheme; (2) consistent reversibility, in which both the orig-

inal encrypted signal and the embedded data can be losslessly restored, whereas the re-

versibility in the methods proposed by Zhang (2012), Hong et al. (2012) and Zhang (2011)

is conditional, and; (3) complete file-size preservation to that of the original encrypted (in-

put) signal despite external data is embedded into it. In general, urDEED is the first data

embedding method applicable to any encrypted signal, in which no pre-encryption feature

is needed for reversible data embedding.

5.3 Applications of Data Embedding in Encrypted Domain

Ideally, data embedding in encrypted domain should be a process of manipulating

an encrypted signal directly to accommodate payload without decrypting the signal or

requiring any knowledge about its features prior to the encryption stage. Here, the data
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embedder can be a third party who is not authorized to access to the original content of the

signal (i.e., plaintext) and hence has no access to its features in the pre-encryption stage.

For example, in medical imaging, an image is encrypted to protect privacy of the pa-

tient. However, a third-party who manages these image (e.g., system administrator, clerk,

nurse) should be able to embed external relevant metadata directly into the encrypted im-

age. Here, the data embedder should neither need to decrypt the image nor exploit any

known feature(s) of the original signal in order to achieve data embedding. As another

application, in the cloud computing scenario, users of the facility may encrypt their data

to protect privacy. Hence, embedding the genre/classification information, ownership in-

formation, data retrieval information or any other relevant information into the encrypted

data by cloud-computing service provider should be achieved practically without the need

to decrypt the data. Another possible application is to preserve the integrity of encrypted

signal by computing the hash value of the encrypted signal and embedding the hash di-

rectly into the encrypted signal. Similarly, CRC (Cyclic Redundancy Check) or other

error-correction information can be embedded in the encrypted signal to serve the same

purpose. The aforementioned applications justify the needs of data embedding method in

encrypted domain.

5.4 Framework of urDEED

In general, an encrypted signal appears random and it should be unintelligible to any

party. As such, it is difficult to parse the bitstream of an encrypted signal into a mean-

ingful form. Based on this observation, a framework (Figure 5.1), which hypothetically

defines some features in the encrypted signal in order to process it, is proposed. In partic-

ular, the universal parser models the signal into imaginary codewords, which are in turn

entropy coded to exploit coding redundancy (Gonzalez & Woods, 2002; Vaseghi, 2006;

Rabbani & Jones, 1991). In this method, GRC is considered for entropy coding purposes.
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Figure 5.1: Flow of operations in urDEED

Next, the variable-length GRC’s are converted into fixed-length GRC’s in order to pre-

serve file-size to that of the original (encrypted) signal. Finally, payload is embedded into

the fixed-length GRC’s. Here, the processing of side information and the venue of data

embedding in GRC’s differ from those applied in uREAD. The detail of each aforemen-

tioned operation is described in the following sub-sections.

5.4.1 Parsing Signal By Universal Parser

Since the extraction of features from unintelligible encrypted signal is technically

challenging, new feature(s) are assigned to the encrypted signal and achieve data embed-

ding by modifying these features. The assignment of new features is achieved by the

universal parser (Section 3.3.3), which converts the encrypted signal into a set of imag-

inary codewords (IC’s) by partitioning the bitstream of the encrypted signal into fixed

length non-overlapping segments (each of length L bits). The features of IC’s, i.e., tuples,

are presented in Section 3.3.3

5.4.2 Entropy Coding

In urDEED, the set of imaginary codewords (IC’s) are entropy coded for three pur-

poses: (A) to represent the IC’s in a format that can be modified in order to embed the aug-

mented payload; (B) to preserve the original file-size of the encrypted signal, and; (C) to

remove some redundant data in order to make room for accommodating the augmented

payload. Hence, it should be noted that entropy coding in urDEED does not aim at com-
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pressing the encrypted signal. In this chapter, Golomb-Rice codewords (GRC’s) (Eq. 4.1)

are utilized for entropy coding purposes. The entropy coding process starts with the con-

struction of the histogram of the set of IC’s. Then, IC’s of higher occurrences in the

bitstream are coded by GRC’s of shorter length, and vice versa. For reversibility pur-

poses, the sorted IC’s (based on their frequencies) are stored as side information along

with the augmented payload. Here, j > 0 is imposed for the set of GRC’s, as described

in Section 4.3.3 (a). However, no other modification is made to the set of GRC’s.

5.4.3 Unifying the Length of GRC’s

As described in the Section 4.3.3 (a), GRC’s are variable-length codewords. Hence,

some GRC’s are of length > L and they cause file-size increment. In order to preserve the

file-size of the original encrypted signal, it is imposed that all GRC’s must be of constant

length L = r+2 bits. Hence, when the length L > r+2 bits, the quotient part q of each

GRC is trimmed and appended to the augmented payload. In this chapter, the trimmed

q’s are processed differently from the method uREAD presented in Section 4.3.3 (a), as

detailed in the following sub-sections.

5.4.3 (a) Trimming q’s

Trimming is achieved by removing j bits in the order from left to right, (i.e., the

entire quotient part q) of each GRC. The trimmed q is replaced with a dummy value of

0. The trimmed q’s may be flipped to mark the end of a codeword and the beginning of

another codeword as shown in the next sub-section. Thus, after the trimming process, all

GRC’s are in the general form of (01b) = (01b1b2. . . br). For example, if L = 4 and given

GRC = (000100), then such GRC is trimmed to (0100), where the trimmed 000, i.e., the

entire quotient part, is appended to the augmented payload.
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5.4.3 (b) Appending Trimmed q’s to Augmented Payload

Given GRCi = (qi1bi) such that ∀GRCi, |GRCi|> r+2 for i = 1,2, · · · ,n, the quotient

part of these GRC’s are appended to the augmented payload as qiqi+1qi+2qi+3 · · ·qn (as-

suming n is an even number), where qi is the logic inverse of qi−1. The logical inverse

operation plays a crucial role in signifying the end of the quotient part for a GRCi. In par-

ticular, the length of zero-run (or one-run) determines the number of zeros (i.e., length j)

in the original quotient part (which was earlier trimmed from GRCi), and the change from

‘0’ to ‘1’ (and vice versa) marks the beginning of the next quotient part, i.e., GRCi+1.

This appending operation is further illustrated in the following examples.

Example 2. Constant length scenario

Given {(0100),(0101),(0110)} as the set of GRC’s. The corresponding q’s are 0, 1, and

0, respectively. Note that the original q of the second GRC (i.e., 0101) is 0, but it is logi-

cally inversed (i.e., flipped) to q = 1.

Example 3. Variable length scenario

Suppose {(00000 1 00), (00 1 01), (000 1 10), (000 1 00)} is a set of GRC’s. Then,

q of these GRC’s are appended to the augmented payload as 00000, 11, 000 and 111,

respectively.

5.4.4 Data Embedding in Derived GRC

The augmented payload now consists of the trimmed quotient parts, side informa-

tion (i.e., sorted IC’s and λL), and the actual payload as illustrated in Figure 5.2. This

augmented payload is then embedded in the set of fixed-length GRC’s. Each fixed length

GRC = (01b) = (01b1b2 . . .br) can accommodate two bits from the augmented payload.

In particular, the dummy “0” and the termination bit, i.e., “1” that follows, in the trimmed
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Figure 5.2: Layout of the augmented payload

GRC are replaced by the information (i.e., two bits) to be embedded. In other words, a

modified GRC becomes (u1u2b1b2 · · ·br) where u1 and u2 are the two bits obtained from

the augmented payload.

The first component of the augmented payload (i.e., the trimmed quotient parts) is

embedded, followed by the side information. Here, the length of those trimmed q’s is at

least λL bits (since j > 0 is enforced), and the length of the side information is L×M bits

where M is the number of the imaginary codewords that actually occur (i.e., frequency

of occurrence greater than zero) and 1≤M ≤ 2L. Finally, the payload is embedded. The

length of the embeddable external payload is referred to as the effective carrier capacity

Ce and it is computed as follows:

Ce = (λL×2)− [κ +(L×M)] bits, (5.1)

where κ is the size (in bits) of trimmed quotient parts in the augmented payload and

κ ≥ λL. Note that achieving Ce > 0 implies that the following inequality must hold true:

λL×2 > κ +(L×M). (5.2)

Here, Inequality (5.2) depends on two factors: (a) λL, which depends on the chosen length

for each imaginary codeword (i.e., L), and; (b) κ , which depends on the distribution of

the imaginary codewords. If the distribution of the imaginary codewords is concentrated

around a few arrangements (among the total of 2L arrangements), then κ is small, and vice

versa. Hence, choosing L that satisfies Inequality (5.2) plays the major role in controlling
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Figure 5.3: Example on data embedding in urDEED

the effective carrier capacity Ce.

5.5 Example on Data Embedding/Extracting in urDEED

Figure 5.3 shows an example to walkthrough the proposed data embedding method.

This example is based on a segment of random bitstream X shown in Stage (a) but the

description is general enough to handle the entire encrypted content (i.e., sequence of

bits). Here, the set of imaginary codewords (IC’s) is generated by applying the universal

parser, which partitions X in segments, each of 3 bits (i.e., L = 3), and X3 = D(X ,3). In

this example, N = 36 and hence λ3 =
36
3 = 12 IC’s.

In Stage (b), the IC’s are sorted according to their frequency of occurrences, start-

ing with IC of the highest occurrence. Then, the mapping table (from IC’s to GRC’s) is

constructed and this table is stored as part of the augmented payload in the actual imple-

mentation (as shown in Stage (d)). In this example, three GRC’s are generated, each of

length n = 1 for its remainder part. Since IC = 101 occurs 7 times (i.e., highest occur-

rence), it is assigned to the first GRC = 010. In similar fashion, IC= 010 occurs 4 times

and hence it is assigned to GRC= 011. The longest GRC= 0010 is assigned to IC= 001

because it occurs only once.

In Stage (c), the set of imaginary codewords are mapped into GRC’s as stipulated
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by the mapping table. In Stage (d), the various components of the augmented payload

are concatenated, which include the set of trimmed q’s (generated in Stage (e)), the set of

sorted IC’s in the table and payload of two bits “11”. Note that the length of GRC = 0010

is 4 bits, which is longer than L = 3 bits. Hence in Stage (e), the quotient part of each

GRC is trimmed and added to the augmented payload in order to preserve the original

size of the input encrypted signal. Thus, GRC1 = 011 and q1 = 0, and GRC2 = 010 and

q2 = 1 , which is the logical inverse of q1. For GRC3 = 0010, q3 = 00 are derived, which

is the logical inverse of q2, and so on. The derived q’s are concatenated to form the first

component of the augmented payload as shown in Stage (d). Next, a dummy value of “0”

is assigned to each modified (or fixed-length) GRC. Finally, in Stage (f), data embedding

is achieved by embedding the augmented payload in the set of fixed-length GRC’s derived

in Stage (e). Here, each GRC accommodates two bits of the payload. These two bits are

embedded by replacing the dummy “0” and the constant “1” in each modified GRC.

Note that the effective carrier capacity in this example is computed as follows: λ3 =

12, κ = 13, L = 3 and M = 3. Hence, Ce = (12× 2)− [13+(3× 3)] = 2 bits. Here,

Ce is of small amount because there are only a few IC’s in the bitstream considered.

For simplicity, data embedding is achieved in this example without coding L and M at

the beginning of the augmented payload. Empirically, it is observed in the experimental

results (Section 5.6) that maximum Ce is consistently achieved at L = 3 and hence the

length of the side information is at most L×M = 3× 2L = 24 bits for this particular

setting.

The extraction of the payload and restoration of the original encrypted signal in

urDEED are almost the opposite of the embedding process. The same example is used to

briefly walkthrough the decoding process:

(1) Encoded bitstream in Stage (f), i.e., Output, is stored in the memory for reconstruction

purposes.
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(1.a) The original GRC’s are reconstructed by examining the dummy 0’s and b’s of the set

of GRC’s obtained in Stage (f). A change from 0 to 1 (or vice versa) marks the beginning

of the quotient part for the next GRC where the length of zero-run (or one-run) indicates

the original number of zeros in the quotient part of the current GRC. This is equivalent to

performing the reversed steps of Stage (f), (e+d) and (c). The process is repeated until n

zeros (from trimmed quotient parts) are restored.

(1.b) Next, the first two bits (i.e., originally the dummy ‘0’ and termination bit ‘b’) from

each of the remaining fixed-length GRC’s are examined to extract the side information.

After retrieving 24 bits (in the case of L = 3), the table in Stage (b) is re-generated by

utilizing the extracted side information.

(1.c) The processes are repeated for the remaining GRC’s to retrieve the actual payload.

(2) Based on the re-generated table, GRC’s are losslessly re-mapped into IC’s using the

reverse steps from Stage (c) to (a).

5.6 Experimental Results

As a proof of concept, the proposed method is implemented using C programming

language. The performance of urDEED is verified from the following aspects: (1) inter-

changeability; (2) reversibility; (3) effective carrier capacity, and; (4) ability to preserve

file-size. Since urDEED is applied to encrypted signal, the distortion of the signal due to

data embedding (i.e., by applying urDEED) is irrelevant and hence not measured. How-

ever, it is verified that the embedded augmented payload can be perfectly extracted and the

original input (encrypted) signal can be losslessly reconstructed. In addition, the recon-

structed (encrypted) signal can be decrypted, which verified that the proposed urDEED

is completely reversible. As mentioned earlier, there is no prior work operating in the

encrypted domain that offers the same features. Hence, the performance of the proposed

urDEED is compared to that of Zhang (2012) because it is the closest match in the current
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literature. The following sub-sections detail the performances of urDEED.

5.6.1 Interchangeability

Interchangeability means that urDEED is applicable to any encrypted signal inde-

pendently from the features of: (A) the original media of the signal, and; (B) the applied

encryption scheme. To verify (A), urDEED is applied to encrypted signals which are

originally three different media, namely, image, audio, and text. The image is Tiffany,

which is a gray-scale raw image of 512×512 pixels, the audio is of Waveform Audio File

Format (wave) of 2 seconds in length with bit rate of 1411Kbps, and the texts are two

Microsoft Word© documents of size 12.7 and 292 KBytes.

To verify (B), each of the aforementioned media is encrypted by various encryp-

tion algorithms. The considered encryption schemes are Blowfish (Mousa, 2005), Ad-

vanced Encryption Standard (AES) (Kim, 2012), Rivest’s cipher (RC) 2,4,6 (Gogniat

et al., 2008), Data Encryption Standard (DES) (McLoone & McCanny, 2003), Triple-

DES (Merkle & Hellman, 1981), Serpent (Najafi, Sadeghian, Saheb Zamani, & Val-

izadeh, 2004), Twofish (Su, Wuu, & Jhang, 2007), RSA (Sun, Wu, Ting, & Hinek,

2007), CAST (Adams, Heys, Tavares, & Wiener, 1999), Information Concealment En-

gine (ICE) (Rompay, Knudsen, & Rijmen, 1998), MARS (Mohamed, El-Etriby, & Abdul-

kader, 2012), MISTY (Wen & Yin, 2010) and Tinny Encryption Algorithm (TEA) (Moon,

Hwang, Lee, Lee, & Lim, 2002). In addition to these methods, hybrid cascade encryp-

tion algorithms, such as AES-TwoFish-Serpent, are also applied. The output ciphertext

of each encryption scheme is manipulated by urDEED to embed the augmented payload.

Table 5.2 records the experimental results using urDEED to embed the augmented

payload into the encrypted image, audio and texts. Results show that, generally, urDEED

is interchangeably applicable to a signal encrypted by various encryption methods be-

cause the program is able to execute to its completion and the effective carrier capacity
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of value Ce > 0 is achieved. This suggests that the limitation of interchangeability in the

existing methods of Zhang (2012), Chen, Zhang, Ma, and Yu (2013), Alattar (2004) is

addressed by the proposed urDEED.

For fair comparison purposes, external information is embedded into two images

(i.e., Lenna and Man of dimensions 512×512 pixels) encrypted using Zhang’s XOR op-

erations described in (Zhang, 2012) and the results are recorded in the second column of

Table 5.3. In terms of interchangeability, Zhang’s method is restricted to one encryption

scheme (i.e., XOR-based encryption proposed in (Zhang, 2012)) while urDEED is uni-

versally applicable to any encryption scheme. Also, Zhang’s method (Zhang, 2012) is

only applicable to image stored in the spatial domain while the proposed method can be

applied to any signal coded in any domain.

5.6.2 Reversibility

Reversibility is the ability to perfectly reconstruct the original encrypted signal. The

reversibility in urDEED is due to the utilization of the lossless GRC for data embedding,

and this reversible functionality is verified by using various media and various encryption

algorithms. On the other hand, Zhang’s method (Zhang, 2012) is not able to guarantee a

perfect reconstruction of the original image due to the dependency of correlation among

neighboring pixels.

5.6.3 Effective carrier capacity

The effective carrier capacity Ce depends on the length L as shown in Eq. (5.1).

To find the optimum L, which achieves the maximum Ce, urDEED is applied to Lenna

image (512× 512 grayscale, raw) encrypted by Blowfish (Hu et al., 2009) using different

L values as the representative case. Table 5.1 shows the resulting Ce at each L. It is

observed that Ce at L=4 is 91323 bits, which is lower than its counterpart at L=3. Ce

decreases to 3224 bits at L=5. It is observed that Ce < 0 for L ∈ {6,7,8}, which indicates
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Table 5.1: Effective carrier capacity of urDEED for various L in encrypted Lenna image

L 3 4 5 6 7 8
Ce 352452 91323 3224 -30866 -44394 -49105

that there is no venue for embedding extra information in the encrypted image. This is

due to the expansion of side information including the increment in the length of the set of

trimmed q’s and expansion of the table. Hence, all available data embedding venues are

utilized to accommodate the side information. This poor performance at L>3 is generally

observed for all test signals considered. Thus, based on the results, it is concluded that

the optimum length for L is 3 bits where the maximum Ce is achieved, in general, for all

types of signal. However, it should be noted that this conclusion is limited by applying

GRC’s.

Table 5.2 presents the effective carrier capacity (Ce) obtained by applying urDEED

to various encrypted signals. Here, the results are collected by using L = 3. Generally,

in the case of image, Ce is in the range of [334709,401431] bits. Such variation in Ce

is due to the differences in statistical features resulting from the application of various

encryption algorithms to the image. Table 5.2 also shows the effective embedding rate

in terms of bpb, which is defined as the ratio of Ce to the original size of the encrypted

signal. It is observed that the effective embedding rate is between 0.167 and 0.169 bpb. In

the case of audio, Ce is in the range of [472252,518858] bits or in other words, between

0.167 and 0.184 bpb. The results are consistently close to that of applying urDEED to

image.

Similar trend is also observed in the case of text, in which two files of different

sizes are considered. The consideration of different sizes is to verify the effect of the

original size on the performance of urDEED. It is observed that when the smaller size is

considered, Ce is in the range of [17630,19706] bits. For the larger size, Ce is in the range
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Table 5.2: Effective carrier capacity of urDEED when applied to different media en-
crypted by using various encryption schemes

Image Audio Text
Encryption Method Ce bpb Ce bpb Ce bpb
Blowfish-448 335809 0.168 474112 0.168 17703 0.170
AES-128 335971 0.168 473672 0.168 17650 0.170
AES-192 335216 0.168 474659 0.168 17956 0.173
AES-256 336221 0.168 472252 0.167 17878 0.172
RC2-1024 336190 0.168 473750 0.168 17891 0.172
RC4-2048 335574 0.168 474963 0.168 17929 0.172
RC6-2048 336445 0.168 476807 0.169 17864 0.172
DES-56 335700 0.168 473870 0.168 17709 0.170
TDES-256 336216 0.168 473393 0.167 17743 0.171
Serpent-256 400422 0.167 472349 0.167 400316 0.167
Twofish-256 400621 0.167 473286 0.167 17630 0.169
Blowfish-AES-256 401167 0.168 474274 0.168 401370 0.168
Serpent-Flowfish-AES-256 401137 0.168 473432 0.168 400755 0.168
AES-Serpent-256 401431 0.168 474554 0.168 400309 0.167
AES-TwoFish- Serpent-256 400916 0.168 473057 0.167 400971 0.168
Serpent-TwoFish-256 399502 0.167 473573 0.168 400531 0.167
RSA-1024 367767 0.168 518858 0.184 19706 0.189
CAST-256 334709 0.167 473877 0.168 17994 0.173
ICE-64 336440 0.168 475146 0.168 17771 0.171
MARS-1248 336901 0.169 475569 0.168 17977 0.173
MISTY-128 335999 0.168 473432 0.168 18060 0.174
TEA-128 336019 0.168 474186 0.168 18084 0.174

of [400309,401370] bits. Hence, Ce is proportional to the size of the input signal because

Ce depends on λL, which depends on the total number of bits N as shown in Eq. (3.4).

Nevertheless, the effective embedding rate is approximately the same in both cases. In the

case of the smaller file-size document, the effective embedding rate ranges from 0.169 to

0.189 bpb, while this range is between 0.167 and 0.168 bpb in the case of the larger file-

size document. This suggests that urDEED offers a consistent effective embedding rate

regardless of the type of media and the encryption algorithm in use. These results also

suggest that urDEED is able to embed payload into an encrypted signal without causing

file-size increment or data loss.

The second column of Table 5.3 compares the average effective embedding rate be-

tween Zhang’s method (Zhang, 2012) and the proposed urDEED for two images (i.e.,
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Lenna and Man). Here, the average effective embedding rate of (Zhang, 2012) is 0.006

bpb, which is based on the best reported results in (Zhang, 2012) at the expense of sacrific-

ing the reversibility property (i.e., perfect reconstruction is not possible at this embedding

rate). However, urDEED achieves, on average, 0.173 bpb, which outperforms the carrier

capacity of Zhang’s by 28.8% and urDEED is completely reversible.

5.6.4 File-Size Preserving

It is verified that the input signal (ciphertext) and the processed signal (chiphertext

with extra payload embedded) are of the exact same file-size. This is an expected out-

come because urDEED trims the quotient part of each GRC and embeds them along with

the payload as detailed in Section 5.4.3. Although Zhang’s method (Zhang, 2012, 2011)

and its improvement (Hong et al., 2012) also preserve the file-size to that of the input en-

crypted image, it is clear that the proposed urDEED offers more features. These features

include higher effective carrier capacity, applicability across different media, applicability

across different encryption algorithms, and complete reversible functionality. Table 5.3

summarizes the functional comparison between Zhang’s method and the proposed ur-

DEED.
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5.7 Summary

The inconsistent carrier capacity of uREADS was overcame by urDEED by handling

the excessive data in GRC’s efficiently. Also, urDEED overcame the problem of manual

tuning the parameters of L and r. In particular, empirically, it is observed that the con-

sistent setting of (L,r) = (3,1) results in an average effective carrier capacity of ∼ 0.169

bpb. In addition, urDEED achieved the following: (1) universally applicable to any en-

crypted signal and operational solely in the encrypted domain; (2) completely reversible,

and; (3) file-size preserving while hosting external information in the encrypted signal.
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CHAPTER 6

DATA EMBEDDING IN RANDOM DOMAIN

6.1 Overview

In previous chapter, it is shown that urDEED is interchangeably applicable to any

signal with consistent high carrier capacity. However, this method depends on the statisti-

cal features of the signal to define redundancy. Hence, when redundancy is low, urDEED

is infeasible because the size of side information (generated for reversibility) occupies

all venues for data embedding hence the embedding of a payload is impossible. In this

chapter, a universal data embedding method based on histogram mapping called DeRand

(Data embedding in Random domain) is proposed. DeRand theoretically defines redun-

dancy in any digital signal by applying the universal parser (Section 3.3.3) so that high

entropy random signals can certainly be utilized for data embedding. First, DeRand re-

cursively parses a random signal into a set of tuples each of certain length until there exist

some tuples of zero occurrences, i.e., count= 0. Then, tuple association is performed

where a tuple of count> 0 is associated with a tuple of count= 0. In particular, a tuple of

count> 0 is mapped to a pre-assigned tuple of count= 0 to embed “1”, while the tuple is

left unmodified to embed “0”. DeRand is universal, reversible, applicable to any random

signal and scalable in terms of carrier capacity and signal quality. Experimental results

show that DeRand achieves carrier capacity up to 4909 bits in a random signal of the size

256 Kbytes, in other words, 0.0023 bpb. In addition, the quality of the processed signal

ranges from 0.0075 to 395.67 in terms of MSE.
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6.2 Introduction

Multimedia data is massively generated nowadays thanks to the advanced yet low

cost capturing and storage technologies. In addition to the conventional network traffic

such as web accesses, email communication, and transmission of e-commerce data, these

multimedia data are communicated and shared among various users across continents.

The advent of innovative social network services at no cost and the deployment of online

content store further multiplied the utilization of network. For example, it is reported that

240,000 photos and 100 hours of videos are uploaded each minute to Facebook (IACP,

2014) and Youtube (Statistics, 2014), respectively. Thus, the communication channels,

including Internet and cellular phone networks, convey a mixed streams of information

(appearing in various formats and coding structures) sent from multiple sources. These

streams appear as random data when being transmitted over the communication channels.

Generally, any unintelligible data can be considered as a random data (or random signal

hereinafter) from the perspective of a third party who has no access to its original (intel-

ligible) form. These random data include encrypted signal, records in database, and data

uploaded to cloud-storage, which need to be managed for efficient utilization of the com-

munication bandwidth and storage space. Here, for digital data management purposes,

data embedding technologies provide conveniences to achieve annotation, authentication,

watermarking, etc. However, fundamentally, data embedding is a feature-dependent pro-

cess, where features of a host are modified in certain domain and coding structure in

order to embed data (Lei et al., 2011; Cheddad et al., 2010; Xu et al., 2011; Lusson et al.,

2013; Wong et al., 2007). For example: (a) the methods proposed by Luo et al. (2011),

Chang and Kieu (2010) and Yang, Chung, and Liao (2012) manipulate the features of

the host image in the spatial domain; (b) the methods proposed by Chang, Lin, Tseng,

and Tai (2007), Chang, Chen, and Chung (2002) and Lin and Lin (2009) process the
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host image in the frequency domain; (c) the method proposed by Wong, Tanaka, Tak-

agi, and Nakajima (2009) is restricted to compressed video; (d) the method proposed

by Malik, Ansari, and Khokhar (2007) is applicable only to audio; (e) the method pro-

posed by Borges, Mayer, and Izquierdo (2008) embeds data in text, and; (f) the methods

proposed by Zhao et al. (2010), Zhang (2012), Hong et al. (2012) and Zhang (2011) are

restricted to encrypted signals. Therefore, the interchangeability among most data em-

bedding methods is generally restricted by its domain or media with certain features. In

other words, the definition of feature is necessary to achieve data embedding by these

methods. On the other hand, it is technically challenging to extract features from a ran-

dom signal, which is unintelligible. Generally, data embedding in the random domain has

not been considered in the current literature.

Ong, Wong, and Tanaka (2014) put forward a reversible data embedding method

that offers scalability in terms of carrier capacity and perceptual quality in image. In

this method, the ability to control the perceptual quality (in the host image) is utilized to

achieve perceptual encryption (viz., image scrambling), where the semantic of the image

is intentionally masked by the designed substitution operation. Here, the payload is em-

bedded into the image, along with the side information required to restore the original

image. The substitution operation is achieved by modifying the histogram of the image.

In particular, the probability P(x) of each intensity level x in the image is analyzed. Ba-

sically, x is classified into two sets based on its probability, namely, G1 = {x : P(x)> 0}

and G2 = {x : P(x) = 0}. Hence, to embed “1”, x∈G1 is mapped to y∈G2, and to embed

“0”, the value x ∈ G1 is left unmodified, i.e., no mapping is performed. This method suc-

cessfully overcomes the underflow and overflow problems in the conventional histogram

shifting methods (Ni et al., 2006; Jung, Ha, & Ko, 2011). However, it fails to embed data

when the entire range of intensity levels is occupied, i.e., P(x)> 0 for all x ∈ [0,2L−1],

where it is assumed that the parsing length, i.e., L, is the pixel bit depth. In such case,
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Ong et al. (2014) partition the image into non-overlapping blocks and handles each block

individually. Furthermore, this method is verified only with images, and it depends on

the statistical features of the image in the spatial domain. Hence, it is not feasible to be

applied for handling a random signal, which consists of high entropy data.

In this chapter, a universal, reversible and scalable data embedding method that is

applicable to any random signal based on histogram mapping is proposed. Unlike the

traditional histogram mapping methods, the proposed method can certainly define redun-

dancy in any given signal by applying the universal parser (Section 3.3.3), even when all

bins in the histogram are occupied, i.e., P(x)> 0 for all x ∈ [0,2L−1]. In particular, the

universal parser recursively partitions the signal into segments using increasing length.

Theoretically, it is proven that as the length of the segments increases, the probability

of defining redundancy (i.e., ∃x′|P(x′) = 0) increases. In other words, the amount of re-

dundancy changes as the length of the segments changes. This change in redundancy is

exploited to embed a payload into the random signal by histogram mapping. The pro-

posed data embedding method achieves the following properties: (1) applicable to any

random signal; (2) reversible, and; (3) scalablel in terms of carrier capacity and progres-

sive quality degradation. Generally, the proposed method is the first of its kind to achieve

reversible data embedding in random signal and the first universal data embedding method

that offers scalability in carrier capacity and quality degradation.

6.3 Applications of Data Embedding in Random Domain

It is assumed that any unintelligible signal which losses its semantic due to inten-

tional encryption or un-intentional loss of access to the original format is called a random

signal. This includes signals generated by a random number generator. Hence, random

signals occupy a significant percentage among all digital signals exchanged through the

communication channels and those stored in the storage systems. Unfortunately, the ran-
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dom signals are, by and large, still left unexplored in the applications of information

processing. For that, data embedding in the random domain contributes in filling up this

deficiency through some applications, such as data hiding for covert communication (i.e.,

steganography) in random signals. On the other hand, reversible data embedding enables

the insertion of external information while preserving the file size of the original signal.

This feature can be exploited to reduce the bandwidth required to communicate/store the

random signal by embedding (or hosting) one segment of a random signal into another

random signal. Hence, compression is gained and the total size of the random signals

is reduced. The reduction in total signal size is a significant contribution in bandwidth

utilization, especially for massive data transmission and storage purposes. As another

application, a third party (e.g., a cloud administrator who has no access to the original

format of the data) needs to embed data in random signals for annotation and manage-

ment purposes, which include the insertion of a hash value in its corresponding random

signal for integrity checking. The aforementioned potential applications justify the need

to consider data embedding in the random domain.

6.4 Theoretical Study on Histogram Mapping

In this section, data embedding by histogram mapping is studied theoretically. Recall

that the universal parser (Section 3.3.3) parses the set X into XL by the ordering function

D(X ,L), which partitions X into tuples each of length L as follows:

D(X ,L) = XL = {T L
1 ,T

L
2 , · · · ,T L

t=N
L
}, (6.1)

where T L
t denotes the t-th L-tuple that appears in X . The set XL satisfies XL ⊆ AL where

AL is the set of all possible arrangements of alphabets with length L, which has the cardi-
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nality:

|AL|= |A|×|A|×· · · |A|︸ ︷︷ ︸
L

= |A|L (6.2)

Definition 5. The complement set ẊL of XL is defined as follows:

ẊL = AL\XL, (6.3)

where the cardinality |ẊL|= |AL|−|XL| holds true

Based on Definition 5, AL = XL∪ ẊL.

Corollary 6. Given the set XL ⊆ AL, the probability of occurrences of the elements in XL

is computed as:

P(XL) =
|XL|
∑
t=1

P(T L
t ∈ XL) =

|XL|
|AL| . (6.4)

Proof. Since the elements of X are uniformly distributed, the tuples in XL are also uni-

formly distributed. As XL ⊆ AL, each tuple assumes the constant probability of P(T L
t ) =

1
|AL| . Hence, ∑

|XL|
t=1

1
|AL| =

|XL|
|AL|

Corollary 7. Following the previous corollary,

P(ẊL) = 1− |XL|
|AL| (6.5)

The histogram of AL is denoted by the symbol H(AL) and defined as:

H(AL) = {hT L
t
}|A

L|
t=1 , (6.6)

where hT L
t

is the count of the tuple T L
t in AL. To facilitate the discussion without lost of
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Figure 6.1: Since “00” does not exist, it can be utilized for data embedding using his-
togram mapping. For example, “11” is mapped to “00” to embed “1”, and the value
remains intact (i.e., no mapping is performed) to embed “0”.

generality, it is assumed that AL consists of uniformly distributed elements where hT L
t
=

1 ∀T L
t ∈ AL. That is, each tuple occurs exactly once in AL.

Let A= {0,1} be the set of alphabets, d ∈ {0,1} be the 1-bit payload to be embedded

in a tuple in XL, and ẊL 6= φ . The process of data embedding using histogram mapping is

achieved by selecting a tuple T L
t ∈ XL and a tuple Ṫ L

t ∈ ẊL, followed by the mapping:

T L
t ←


Ṫ L

t , if d = “1”,

T L
t , otherwise.

(6.7)

Figure 6.1 presents an example of data embedding using the proposed histogram map-

ping. Here, X2 = {01,10,11}, Ẋ2 = {00} and the frequency of occurrences H(A2) =

{h00 = 0,h01 = 1,h10 = 1,h11 = 1}. As an illustration, the tuples T 2
1 = 01 and Ṫ 2

1 = 00

are selected from the sets X2 and Ẋ2, respectively, for data embedding using histogram

mapping. The tuple T 2
1 = 01 is mapped to Ṫ 2

1 = 00 to embed “1”, but left unmodified

to embed “0”. In other words, X2 and Ẋ2 encodes “1” and “0”, respectively. Note that

T 2
1 = 01 and Ṫ 2

1 = 00 should be saved as side information for perfect restoration of the
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Figure 6.2: All 22 = 4 bins (possible arrangements) are occupied in the histogram. Hence,
data embedding using histogram mapping cannot be achieved directly with this particular
histogram.

Figure 6.3: Using the universal parser, the elements in Figure 6.2 are parsed at L = 4.
Data embedding using histogram mapping can be achieved similar to Figure 6.1.

original X2.

As another example, Figure 6.2 shows the histogram H(A2)= {h00 = 1,h01 = 1,h10 =

1,h11 = 1}, where the probability of all tuples are greater than 0. Thus, in this example,

the cardinality of Ẋ2 is zero. However, there must be at least one tuple Ṫ L
t ∈ ẊL (i.e.,

|ẊL|≥ 1) in order to achieve data embedding by histogram mapping. In other words, data

embedding by histogram mapping fails when |ẊL|= 0, which is the case in the example
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shown in Figure 6.2. To overcome this problem, XL is redefined to vacate room in the

histogram for mapping. The following theorem shows that increasing L in the universal

parser (Section 3.3.3) increases the probability to achieve |ẊL|> 0.

Theorem 3. Given two sets ẊL and ẊL+K , the following inequality holds true for K,L> 0:

P(ẊL)< P(ẊL+K). (6.8)

Proof. Since AL and AL+K are finite sets, the following holds true:

1
|AL| >

1
|AL+K| . (6.9)

On the other hand, since X is also a finite set, there are more segments in XL when com-

pared to XL+K and hence the following inequality holds true:

|XL|> |XL+K|. (6.10)

Therefore,

|XL|×
1
|AL| > |XL+K|×

1
|AL+K| . (6.11)

Hence, based on Corollary 6:

P(XL)> P(XL+K) (6.12)

Now,

−P(XL)<−P(XL+K) (6.13)
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and,

1−P(XL)< 1−P(XL+K) (6.14)

Based on Corollary 7, Eq. (6.14) can be re-expressed as follows:

P(ẊL)< P(ẊL+K) (6.15)

Informally, Theorem 3 states that the probability of the elements in the complement set

ẊL increases when the original signal X is parsed at a larger L.

Based on Theorem 3, the histogram mapping in the example shown in Figure 6.2 is

achievable by increasing the value of L from 2 to 4. Hence, the newly obtained histogram

(viz., frequency of occurrences) based on L = 4 (see Figure 6.3) is H(A4) = {h0000 =

0,h0001 = 0,h0010 = 0,h0011 = 1,h0100 = 0,h0101 = 0,h0110 = 0,h0111 = 0,h1000 = 0,h1001 =

0,h1010 = 0,h1011 = 1,h1100 = 0,h1101 = 0,h1110 = 0,h1111 = 0}. As expected, many tu-

ples from A4 are of zero count in the histogram of X4 as shown in Figure 6.3. Thus, the

cardinality of the set Ẋ4 is 14. Hence, for the set X = {00,01,10,11}, histogram map-

ping is feasible at X4 but impossible at X2. The next theorem shows that data embedding

by histogram mapping can be certainly achieved in X when it is parsed at the maximum

length L = N, i.e., the limiting case of XL=N .

Theorem 4. A finite set X with N elements induces the set XN using Eq. (6.1) (i.e.,

D(X ,N)) and the inequality |ẊN |≥ 1 holds true.

Proof. Since the cardinality of the set of alphabets |A|≥ 2, the cardinality below holds
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true:

|AN |= |A|N≥ 2N . (6.16)

Since, |ẊN |= |AN |−|XN | and the cardinality |XN |= 1 (based on Eq. (6.1)), the following

holds true:

|ẊN |= |AN |−1≥ 2N−1≥ 1 (6.17)

for the fact that N is an integer with N > 0. Therefore, |ẊN |≥ 1

Theorem 4 ensures that histogram mapping is always viable in any set X if the set is

parsed at length L = N to XN using Eq. (6.1). Informally, this theorem shows that the

histogram mapping can be universally applied to any discrete signal X regardless of its

media, domain, underlying coding structure and statistical features.

Theorem 5. Given two sets XL and XL+K , the following inequality holds true for L,K > 0:

|ẊL|< |ẊL+K| (6.18)

Proof. Since

|AL|= AL < AL+K = |AL+K|, (6.19)

then,

|AL|−|XL|< |AL+K|−|XL| (6.20)

Based on Eq. (6.10),

|AL|−|XL|< |AL+K|−|XL|< |AL+K|−|XL+K| (6.21)
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Thus, by transitivity:

|AL|−|XL|< |AL+K|−|XL+K| (6.22)

Therefore, by Definition 5:

|ẊL|< |ẊL+K| (6.23)

Informally, Theorem 5 indicates that increasing L to L+K results in |ẊL+K|> |ẊL|. In

other words, there are more tuples in ẊL+K than ẊL that can be utilized for histogram

mapping.

6.5 The Proposed DeRanD

In this section, the proposed DeRanD (Data embedding in Random Domain) method

is presented. Figure 6.4 presents the schematic diagram of the proposed DeRand. In

Stage 1, the input signal X is parsed by the universal parser (Section 3.3.3) to generate

XL. In Stage 2, the tuple association is performed, which includes the construction of

histograms for XL and ẊL. In Stage 3, histogram mapping is applied based on the input

payload D. The following subsections further detail the operations involved in each stage.

6.5.1 Parsing by using Universal Parser

The input signal X is parsed by using the universal parser (Section 3.3.3) defined

in Eq. (6.1). Here, the user is prompted to select an initial value of L. However, if the

selected L results in |ẊL|= 0, the value of L is increased to L← L+1 (based on Theorem 3)

and the parsing process is performed again. In other words, L is increased repeatedly until

|ẊL|> 0 is achieved. This stage is captured by steps 1 to 10 in Algorithm 3. Ideally, the

initial value of L is unity. However, it is less probable to obtain |ẊL|> 0 with a small value
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Figure 6.4: The schematic diagram of the proposed DeRand.

of L. Hence, it is recommended to initiate the algorithm at L = 7 based on the empirical

findings presented in Section 6.6.

6.5.2 Tuples Association

Once the signal X is parsed at a length L such that |ẊL|> 0, the process of tuple

association takes part. This includes the construction of two sets, namely, AL and BL,

where 1≤ |AL|, |BL|≤min{|XL|, |ẊL|}. The set AL = {T L
P(i)}

ρ

i=1 ⊆ XL consists of ρ tuples

that are of the highest occurrences in H, where ρ is a positive integer such at ρ ≤ ρ̂

for ρ̂ = min{|XL|, |ẊL|}. Here, P(i) is the index sorted accordingly to the probability of

occurrence of T L
P(i) in H such that T L

P(1) has the highest occurrence among the tuples in XL,

followed by T L
P(2), and so forth. On the other hand, the set BL = {Ṫ L

i }
ρ

i=1 ⊆ ẊL consists

of any ρ tuples from the set ẊL. Next, a tuple T L
P(i) ∈ AL is associated with a unique tuple

Ṫ L
i ∈ BL. For example, if X2 = {00,11}, then these two tuples are associated with the two

tuples in Ẋ2 = {01,10}. A possible association is “00" with “01", and “11" with “10".

The process of tuple association is achieved by invoking steps (11) to (12) in Algorithm 3.

This association is utilized for data embedding as detailed in the next sub-section.

For scalability purposes, ρ ∈ [1, ρ̂] is selected by the user. Here, as ρ increases, more

tuples from XL are utilized for data embedding and hence the carrier capacity increases.
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However, increasing ρ causes more distortion (e.g., sum of bit-wise absolute difference)

in the modified signal. Therefore, there is a trade-off between the carrier capacity and

distortion, similar to the conventional data embedding method.

6.5.3 Data Embedding

The process of data embedding commences by reading a tuple T L
t . Then, it is verified

if T L
t = T L

P(i) ∈ AL holds true for 1 ≤ t ≤ N
L . Next, to embed d = “1” ∈ D, the tuple T L

t

is mapped to Ṫ L
i , where D is the payload in binary representation. In order to embed

d = “0” ∈ D, no mapping is performed. This process continues until all the N
L tuples of

XL are mapped or when all bits in D are embedded. The process of tuple association is

achieved by invoking steps (13) to (25) in Algorithm 3. Note that N, L, ρ , AL and BL

should be stored as the side information for perfect reconstruction of the original signal

XL. For the current implementation, the signal X is concatenated to the side information

S, i.e., X ← S⊕X . For file-size preserving purposes, |S|= N +L+ρ + |AL|+|AL| bits of

the original input signal, i.e., the number of bits occupied by S, is removed and embedded

as part of the payload.

6.5.4 Extraction of Payload and Restoration of X

During decoding, payload extraction and reconstruction of the original signal X are

performed by first reading N,L,ρ,AL and BL, which are the stored side information as

discussed in Section 6.5.3. Next, ρ × 2 associated tuples are defined by reading each

tuple T L
t and its corresponding (viz., associated) tuple Ṫ L

t from AL and BL, respectively.

The modified signal X ′ is then segmented into tuples each of L bits, and each tuple τ is

analyzed. In particular, if τ = T L
t ∈ AL, then “0” is extracted. On the other hand, if τ =

Ṫ L
t ∈ BL, then “1” is extracted and this tuple is restored to its associated T L

t . When τ /∈ AL

and τ /∈ BL, it implies that no information is embedded. Regardless of the membership of

τ , the decoder continues to read the next tuple that follows and repeat the aforementioned
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Algorithm 3 The Embedding Process of DeRand
1: Let the user pick L ∈ [1,N]
2: Set i← 1 and t← 1
3: Generate XL = D(X ,L)
4: Construct |ẊL|
5: if |ẊL|=0 then
6: L← L+1
7: Go to Step 2
8: else
9: Go to Step 11

10: end if
11: Let the user pick ρ ∈ [1, ρ̂]
12: Construct the sets AL = {T L

P(i)}
ρ

i=1 ⊆ XL and BL = {Ṫ L
i }

ρ

i=1 ∈ ẊL

13: Read one tuple T L
t from XL

14: if T L
t = T L

P(i) ∈ AL then
15: Read one bit d from payload D
16: if d = 1 then
17: T L

t ← Ṫ L
i

18: end if
19: end if
20: t← t +1
21: if t > N

L then
22: Halt
23: else
24: Go to Step 13
25: end if

analysis until all N
L tuples are considered.

6.6 Experimental Results and Discussion

In this section, the performance of DeRand is studied empirically. Ten random se-

quences of integers in the range of [0,255] are generated as the random signals for ex-

periment purposes. For the rest of the discussion, the phrase random test signal refers

to the randomly generated test signal. Each random test signal is visualized as an im-

age in Figure 6.5 using the resolution of 512× 512 pixels. For additional comparison

purposes, DeRand is applied to the standard test image Lenna, which act as the repre-

sentative non-random test signal. The experiments are carried out using Matlab (version

7.12.0.635-R2011a) operating on OS X 10.9.2 (13C1021) platform and the performance

of DeRand is evaluated based on three criteria, namely, carrier capacity, signal quality,
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Figure 6.5: The set of 10 random signals each visualized as an 8-bit image. These random
signals are generated by using Matlab function “randn”, which is based on the ziggurat
method for random variables generation (Marsaglia & Tsang, 2000).

and file-size increment.

6.6.1 Carrier capacity

Hereinafter, carrier capacity Craw refers to the number of bits from the set D embed-

dable into the host signal X . The amount of Craw indicates the efficiency of DeRand in

defining redundancy (or venue) in X to accommodate D. Here, Craw depends on three

factors, namely, the statistical features of X , L and ρ .

First, the results when setting ρ = 1, viz., only one tuple (i.e., T L
1 ) is allowed to

be mapped to Ṫ L
1 , are considered. When using Lenna as the representative non-random
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test signal, Craw = 1201,1532,419 and 67 bits are achieved for L = 9, 10, 13 and 22,

respectively. Here, Craw is low (with respect to the size of the signal |X |) because only

one tuple is allowed for mapping. In addition, the side information for ρ = 1 consumes

|S|= |T L
1 |+|Ṫ L

1 |+L+N +ρ bits of the carrier capacity. To facilitate the discussion, the

effective carrier capacity Ce is defined as follows:

Ce = Craw− (|AL|+|BL|+L+N +ρ). (6.24)

Results reveal that Ce is 1174, 1502, 380 and 1 bits when L = 9, 10, 13 and 22, respec-

tively, for the case of Lenna. Nonetheless, it is observed that the low effective carrier

capacity (e.g., Ce = 1 bit at L = 22) is a general trend in all test signals when they are

parsed at large L’s. In particular, the number of occurrences of T L
1 in the finite set XL

reduces when L increases. Hence, the number of mapped tuples and Craw decrease when

L increases.

On the other hand, the effective carrier capacity Ce increases when ρ increases. Ta-

ble 6.1 records the value of Ce attained by setting ρ to different values when L = 8 and

13. For example, Ce = 380 at ρ = 1 as reported earlier. However, the effective carrier

capacity is increased to Ce = 13217 bits by setting ρ = 50. In general, Ce consistently

increases when ρ increase as suggested by Table 6.1. Similar trend is observed when ρ

increased for different L. In order to study the trend of Ce due to increasing ρ , Figure 6.6

plots ∆Ce(ρ) = Ce(ρ +1)−Ce(ρ), where ∆Ce(ρ) refers to the effective carrier capacity

when using the parameter ρ . Here, ∆Ce(ρ) generally decreases when ρ increases. This

is because, as ρ increases, the newly utilized tuples for histogram mapping are of small

number of occurrences in H. At the same time, the side information increases as sug-

gested by Eq. (6.24). For that, Ce is small for large ρ . This suggests that the complete

utilization of the range ρ ∈ [1, ρ̂] (e.g., by setting ρ = ρ̂) is not required to obtain high Ce
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Table 6.1: The effective carrier capacity Ce and SSIM of the test image Lenna achieved
by using various values of ρ with L = 8 and L = 13.

L ρ Ce (bits) SSIM
10 35114 0.5604

8 20 60187 0.2923
30 83933 0.2471
40 106216 0.2439
50 13217 0.4038

100 31986 0.2578
150 38557 0.2245
200 43776 0.2062
250 47894 0.1917
300 46594 0.1917
350 49955 0.1792
400 52929 0.1706
450 59208 0.1536

13 500 61331 0.1459
550 63192 0.1368
600 64877 0.1313
650 66402 0.1266
700 67760 0.1217
750 69012 0.1186
800 70163 0.1145
850 71217 0.1099
900 72177 0.1075
950 73036 0.1038
1000 73814 0.0999
1050 74526 0.0964
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Figure 6.6: Change in effective carrier capacity ∆Ce(ρ) for the test image Lenna parsed
at L = 13.

because as ρ approaches to ρ̂ , Ce increases insignificantly.

Among the parameters considered, the highest effective carrier capacity of Ce =
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Figure 6.7: The average capacity of 10 test (random) signals for ρ = 1 versus L

106216 bits is achieved with (L,ρ)=(8,40) as reported in Table 6.1. Note that Ce(8,40)>

E(13,1050). This is because, the number of mapped tuples at L = 8 is significantly larger

than that of L = 13. The results in Table 6.1 also suggest that Ce is scalable, depending

on the parameter values of (L,ρ).

Next, for the random test signals, the effect of the high entropy nature of these sig-

nals (i.e., low redundancy) on Craw and Ce are apparent. For example, it is observed

in Figure 6.7 that as L increases, the average value of Craw decreases generally, where

the horizontal axis presents the average Craw for each L considered. Here, maximum of

the averages of Craw (i.e., 15 bits) is obtained when (L,ρ)=(14,1). Note that |ẊL|= 0 for

L < 14 due to the high entropy nature of the random signals. Similar to the Lenna image,

Craw of the random signals also increase when ρ increases. Table 6.2 records Craw for

various values of ρ using R5 as the representative test random signal parsed at L = 15.

Results suggest that, by increasing ρ from 1 to 50, Craw increases from 10 to 417 bits. Ta-

ble 6.2 shows that Craw increases up to 3369 bits when ρ = 500. However, this increment

in Craw results in file size increment. This is because, in general, Ce < 0 (see Eq. (6.24))

in the random signals. In other words, the size of the side information is always larger

than Craw. Thus, Craw is insufficient to embed the side information along with the pay-

load D. To realize data embedding in such case, the side information is appended to the
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Table 6.2: carrier capacity Craw, MSE and the percentage of file size increment for the
representative random test signal R5 achieved by using various values of ρ with L = 15
and L = 16.

L ρ Craw (bits) MSE File-size increment %
50 417 50.81 0.08

100 783 90.07 0.15
150 1133 112.66 0.23
200 1483 149.02 0.30

15 250 1833 202.53 0.37
300 2169 265.10 0.44
350 2469 273.85 0.51
400 2769 291.76 0.58
450 3069 305.14 0.65
500 3369 324.26 0.73
50 623 56.64 0.09

100 1173 94.19 0.16
150 1710 134.18 0.24
200 2210 169.64 0.32

16 250 2710 209.00 0.39
300 3210 247.30 0.47
350 3710 281.54 0.55
400 4210 315.15 0.62
450 4666 364.92 0.70
500 4909 395.67 0.78

modified signal, therefore causing file-size increment as detailed in Section 6.6.3.

On other hand, it is observed that Craw(16,ρ)≥C(15,ρ) when considering the same

values of ρ . For example, Table 6.2 shows that Craw(16,500) = 4909 ≥ C(15,500) =

3369. This trend holds true for all values of ρ at L = 16 and 15. This is because the

random signals are generated in the range [0,255], i.e., 8-bit integer. Hence, the proba-

bility of having similar tuples at L = 8α (i.e., multiple of 8 such as 16,24,32, · · ·) is high.

On the other hand, it is observed that the amount of increment in Craw decreases as ρ

increases. Figure 6.8 shows the plot of ∆Craw(ρ) = Craw(ρ + 1)−Craw(ρ) using R5 as

the representative random test signal parsed at L = 16, where Craw(ρ) refers to the carrier

capacity when using the parameter ρ . Generally, as ρ increases, the increment in Craw

decreases. For example, at L = 16, as ρ increases from 50 to 100, Craw increases from

623 to 1173 bits. However, as ρ increases from 300 to 350, Craw merely increases from
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Figure 6.8: Change in capacity ∆Craw(ρ) for the representative random test signal R5
parsed at L = 16.

3210 to 3710 bits. This is because, as ρ increases, the newly utilized tuples for histogram

mapping have low number of occurrences in the histogram of XL. Similar trend is also

observed for the other nine random test signals, and the discussion is omitted here.

6.6.2 Signal Quality

In this section, the distortion in the modified signal due to the application of DeRand

is evaluated. First, Lenna is considered as the representative non-random test signal.

Here, it should be emphasized that SSIM is considered merely as a mean to visualise

the scalability feature of DeRand in terms of output signal quality. It is observed that

the distortion is generally subtle (i.e., high SSIM value) when ρ = 1. This is expected

because only one tuple in XL is utilized for histogram mapping while the remaining tuples

remain unchanged. For example, at L = 9,10,13 and 22, the corresponding SSIM values

are 0.8775,0.8299,0.9087 and 0.9744, respectively. Here, the change in quality depends

on L. In particular, when L is small, the number of tuples in XL (and consequently the

number of modified tuples) is high. For that, high distortion occurs in the modified image,

such as the aforementioned cases of L = 9 and 10. However, as L increases, the number

of tuples in XL decreases and hence less tuples are modified. For that, at a relatively large

L (e.g., L = 13 and 22), SSIM is high, indicating that the distortion is less severe for larger
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Figure 6.9: Change in visual quality ∆SSIM(ρ) for the test image Lenna parsed at L = 13.

L.

On the other hand, the distortion is more severe as ρ increases. The last column of

Table 6.1 records the SSIM attained by different ρ values for Lenna parsed at L = 13.

Here, by increasing ρ from 1 to 50, SSIM decreases from 0.9087 to 0.4038. Here, SSIM

decreases because more tuples are mapped (i.e., modified) when ρ increases. Gener-

ally, as ρ increases, the degree of distortion increases, where the most severe distortion

occurs when (L,ρ)=(13,1050) with SSIM= 0.0964 as recorded in Table 6.1. Here, the

value L defines the maximum possible distortion. For example, in Table 6.1, at L = 8,

the lowest SSIM (viz., maximum distortion) is 0.2439 when ρ = 40. This is because, at

L = 8, it is impossible to increase ρ to more than 40 due to the fact that |Ẋ8|= 40. Fig-

ure 6.9 shows the plot of ∆SSIM(ρ) = SSIM(ρ)− SSIM(ρ +1), where ∆SSIM(ρ) refers

to SSIM when using the parameter ρ . Here, similar to the effective carrier capacity Ce,

∆SSIM(ρ) decreases as L increases for the same reason mentioned in the previous section.

Figure 6.10 shows the output Lenna image produced by DeRand. Here, the distortion is

controlled, i.e., scalable, by using the parameters L and ρ . In particular, DeRand offers a

wide range of distortion by setting the aforementioned parameters. Specifically, the SSIM

value ranges from 0.038 using (L,ρ)=(16,5000) to 0.975 using (L,ρ)=(22,1). It should
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Figure 6.10: Output of the test image Lenna processed by DeRand using various com-
binations of L and ρ . The value L for 6.10(b), 6.10(c) and 6.10(d) are 10,12 and 22,
respectively. For the second, third and forth rows, L = 8,13 and 16, respectively.

be noted that this range of progressive degradation in image quality is wider than that

attained by Ong et al. (2014), which spans the interval of [0.040,0.771].

Secondly, the random test signals are considered for data embedding. Instead of

SSIM, the signal quality is measured by MSE (mean square error). Here, the random test

signals behave similar to the Lenna test image when ρ = 1, where the average MSE of all
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Figure 6.11: The average MSE of 10 test (random) signal for ρ = 1 versus L

random test signals decreases as L increases as shown in Figure 6.11. Here, the maximum

of the averages of MSE is 1.5 and it is obtained when (L,ρ)=(14,1). This suggests that

the modified image resembles its original counterpart. Among the 10 randomly generated

test signals, it is observed that the minimum MSE is 0.0075, which is obtained with R6 at

(L,ρ) = (23,1). This is because, in general, only small number of tuples in the random

test signal are mapped (regardless the value of L), which leads to limited distortion.

On the other hand, as shown in Table 6.2, MSE increases from 1.5 to 50.81 in the

random test signal R5 (parsed at L = 15) when ρ increases from 1 to 50. This increment

in MSE is directly proportional to the increment of Craw due to the increment of ρ , and

the maximum distortion attained is MSE= 395.67 at (L,ρ)=(16,500). Figure 6.12 shows

the graph of ∆MSE(ρ) = MSE(ρ +1)−MSE(ρ), where ∆MSE(ρ) refers to MSE when

using the parameter ρ . It is observed that ∆MSE(ρ) increases when ρ ≤ 250 because

many tuples are utilized for histogram mapping. However, ∆MSE(ρ) shows no significant

change for ρ ≥ 300. This is because, the tuples are of low number of occurrences for

ρ ≥ 300. Hence, the number of tuples utilized for histogram mapping is low. For that,

the variation in distortion, i.e., ∆MSE(ρ), is smaller than those at ρ ≤ 250. This suggests

that the increase in distortion is higher for smaller ρ , and vice versa. Similar trends are

observed in other random test signals.
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Figure 6.12: Change in visual quality ∆MSE(ρ) for the representative random test signal
R5 parsed at L = 16.

6.6.3 File-Size Preserving

File-size preserving refers to the scenario where the size of the modified signal is

similar to that of its original counterpart. This feature is important when the bandwidth

of the communication channel is limited. In DeRand, this feature is conditional. Partic-

ularly, for the test image Lenna (i.e., non-random signal), DeRand completely preserves

the file-size because all the side information can be embedded along with the payload.

For random signal, DeRand increases the file-size because there is no venue to embed all

the side information. In other words, only concatenation X← S⊕X is performed without

removing |S| bits from the original input signal X . However, the file-size increment is

insignificant. Table 6.2 records the percentage of file-size increment for R5 as the rep-

resentative random test signal. Here, for (L,ρ)=(15,50), the file-size is increased merely

by 0.08%. This percentage increases gradually as ρ increases and it reaches ∼ 0.73%

for ρ = 500. The increment in file-size for L = 16 is slightly higher than that of L = 15.

For example, when ρ = 500, the file-size is increased by ∼ 0.78% for L = 16, which is

0.05% higher than that of L = 15 using the same ρ . This slight increment is due to the

side information, which is proportional to L as expressed by Eq. (6.24). Generally, the

average of the file-size increment in Table 6.2 is only 0.42%.
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Table 6.3: Functional comparison between the proposed DeRand and

and (Ong et al., 2014)’s method.
DeRand (Ong et al., 2014)

Reversibility Yes Yes

Universal Yes No

Scalable
Yes Yescarrier capacity?

File-Size Preserving
Yes Yes(Non-Random Signals)

File-Size Preserving
No (< 0.42%) Failed to embed(Random Signals)

Progressive
Yes Yesquality degradation?

Distortion Range (SSIM)
[0.038,0.975] [0.040,0.771](Non-Random Signals)

Distortion Range (MSE)
[0.0075,395.67] Failed to embed(Random Signals)

Applicable
Yes Noto Random Signals

6.6.4 Functional Comparison with Existing Methods

For completion of discussion, Table 6.3 shows a functional comparison between the

proposed DeRand and the method proposed by Ong et al. (2014). Here, both methods are

reversible. However, DeRand is universal but the method proposed by Ong et al. (2014)

is only applicable to image represented by an array of pixel values. DeRand and (Ong et

al., 2014)’s method offer scalability in terms of carrier capacity and quality degradation.

On the other hand, (Ong et al., 2014)’s method fails to embed any data in random signal.

However, by design, DeRand achieves its objective of embedding data in random signals.

In addition, DeRand is file-size preserving for non-random signals and only increases

the file-size insignificantly (in average 0.42% only) for random signals as detailed in

Section 6.6.3. Furthermore, when handling image (i.e., non-random signal), DeRand

offers a range of distortion with SSIM spanning the interval of [0.038,0.975], which is

wider than the interval of [0.040,0.771] attained by (Ong et al., 2014)’s method. This

suggests that DeRand offers more scalability in terms of quality degradation. On the
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other hand, DeRand can control the distortion of the modified random test signals and the

observed range is [0.0075,395.67] in terms of MSE. However, the range of the quality

degradation in the method proposed by Ong et al. (2014) could not be studied when it is

applied to the random signals because this method fails to embed data. It should be noted

that more distortion (than those reported in Table 6.1) could be attained theoretically by

applying DeRand. However, a lower signal quality (i.e., more severe distortion) could

not be achieved empirically due to the limitation in memory. In particular, the histogram

of a signal parsed at L > 16 could not be handled since there are more than 216 bins in

the histogram to consider. Nonetheless, it should be recalled that SSIM is merely used

as a mean to illustrate the scalable capability of DeRand, and the targeted signals of this

chapter are the random signals. All in all, this functional comparison suggests that the

proposed DeRand is superior to that proposed by Ong et al. (2014).

6.7 Summary

A novel universal histogram mapping method that defines redundancy in any digital

signal for data embedding purposes was proposed. Theoretically, Theorem 3 establishes

a mean to define redundancy based on the universal parser, and Theorem 4 shows that

finding such redundancy is always possible for any digital signal. As such, even for

high entropy signal such as random signal, the proposed histogram mapping can still be

applied. Practically, these theorems are utilized to design the proposed data embedding

method called DeRand, which is universally applicable to any digital signal including

random signal. DeRand is the first universal reversible data embedding method applicable

to the random signal. Experimental results show that DeRand achieves scalable carrier

capacity (up to 4909 bits when processing random bit sequence of length 256 Kbytes) and

scalable distortion with MSE spanning the range of [0.0075,395.67] with insignificant

average file-size increment of 0.42%.
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CHAPTER 7

DATA FUSION USING DUAL SEMANTIC CODE

7.1 Overview

In the previous chapters, the proposed universal data embedding methods are based

on the conventional concept of data embedding. In particular, the concept considers the

processing of two signals, namely, a payload and a host, which are associated by data

embedding defined in Section 1.1. For that, the feasibility of this concept is limited. In

particular, this concept cannot be generalized to the applications of data association such

as metadata. In this chapter, the novel concept of data fusion is put forward, where any

two or more signals are associated under the proposed framework. Data fusion aims at

addressing the limitation of interchangeability among the conventional data association

methods such as data embedding and metadata. First, the signals are mapped to the uni-

versal domain. Then, the signals are parsed by the universal parser and encoded losslessly

by the proposed DSC (Dual Semantic Code), where each codeword of DSC can accom-

modate two pieces of data simultaneously. Hence, data fusion is achieved by mapping

a segment of each signal to different parts of a DSC codeword using two proposed cod-

ing schemes, namely, the basic and partial coding schemes. In the basic coding scheme,

all segments of the largest signal (in terms of size for storage) are mapped to the DSC

codewords. However, in the partial coding scheme, only segments of high probability

of occurrences are mapped to the DSC codewords. The proposed coding schemes are

universally applicable to any signal, such as image, video, audio and text. Experimental

results suggest that the basic coding scheme achieves, on average, a fusion bit-rate of

0.640 bpb (bits per bit). On the other hand, the partial coding scheme achieves, on av-

86

Univ
ers

ity
 of

 M
ala

ya



erage, a fusion bit-rate of 0.060 bpb in the file-size preserving mode. The fusion bit-rate

can also be traded for compression purposes.

7.2 Introduction

Data association is a common phenomenon that occurs in many information sys-

tems. This phenomenon is of high significance as associated data are massively gener-

ated nowadays for various purposes. For example, applications such as data archival,

retrieval, protection and integrity checking are based on the processing of auxiliary infor-

mation, which are in turn associated with the data in question in some manner (Pereira,

Vetro, & Sikora, 2008). Emerging applications such as semantic web and cloud com-

puting also utilize various types of metadata that are closely associated to the data being

processed (Leuf, 2004). In addition, the application of watermarking (Kamran, Khan, &

Malik, 2014), steganography (Yuan, 2014), and fingerprinting (Wu & Satoh, 2013) can be

perceived as the process of associating two sets of data to serve the purposes of copyright

protection, covert communication, and illegal duplication detection, respectively.

Conventionally, the problem of processing associated data is application-oriented.

For example, metadata management is not categorized under the same framework of wa-

termarking, although they consider the problem of processing associated data. Hence, the

applicability of metadata is restricted by the intended applications, and similar argument

holds true for watermarking, steganography, and other applications of data association.

Thanks to the advancement of low-cost data capturing devices and storage technolo-

gies, data and their associated data are frequently generated nowadays. Various metadata

management and data embedding methods are applied to handle these associated data.

The unification of these methods under a single framework is significant because it re-

sults in a universal data association method that can be deployed to conveniently associate

two or more sets of data of any format stored in any file system. As another example of
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application, metadata can be associated with its corresponding data by the cloud adminis-

trator without suffering from increment in data size (e.g., caused by appending metadata

to the header of the data in question). In addition, the universally applicable property in

the proposed method eliminates the need to extract features from the contents stored in

the cloud, where feature extraction is one of the technical challenges faced by the con-

ventional feature-dependent data embedding methods. In general, a universal method

that processes associated data without relying on the features of the data has not been

considered in the current literature.

In this chapter, a novel concept referred to as data fusion is proposed. The con-

cept of data fusion generalizes the concept of data embedding. In particular, the con-

ventional concepts of data embedding, including difference expansion (Tian, 2003), his-

togram shifting (Li et al., 2013), LSB substitution (Celik et al., 2005), and codeword

mapping (Mobasseri et al., 2010), are limitedly applicable to signals of certain features.

In other words, they are of restricted interchangeability due to feature-dependency. How-

ever, data fusion generalizes the concept of data embedding to achieve any kind of data

association. Hence, data fusion is a universal process. In addition, the aforementioned

data embedding methods are limited to associate two data only, i.e., payload and host.

However, data fusion can be applied to associate two or more data. Furthermore, the pro-

posed data fusion has no restriction on the intended application of data association. For

that, the applications of data fusion can be tailored for metadata, watermarking, finger-

printing and any application that associates data. The proposed data fusion operates in a

domain referred to as the universal domain, in which any signal can be represented. As

such, data fusion can be interchangeably applied to any associated data or signals. The

process of data fusion is realized by applying the universal parser (Section 3.3.3) to any

two associated (or to be associated) signals defined in the universal domain. Then, the

parsed signals are encoded by a proposed coding method referred to as DSC (Dual Se-
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mantic Code). Here, each codeword of DSC can simultaneously accommodate symbols

from two different signals. The mapping to DSC is achieved by two proposed coding

methods, namely, the basic coding scheme and partial coding scheme.

7.3 Data Association

Fundamentally, the amount of information (i.e., entropy) is zero if a single symbol

is sent alone (i.e., without an association with at least another different symbol) over a

communication channel. Thus, data association is an inherent feature that serves various

purposes. In Section 7.3.1, the representative applications that associate or based on

assoiated data are surveyed. Then, the notion of associated data is formally defined in

Section 7.3.2.

7.3.1 Survey on Associated Data

Data association can occur naturally among two or more sets of data for essential

functions. For example, any set of data should be associated with a name (or index/-

pointer), in addition to the end-of-file information for proper storage and retrieval pur-

poses. Traditionally, auxiliary information is associated with its corresponding data, such

as the type of file (i.e., the underlying coding structure of the signal), time of creation and

modification, accessibility permissions, and so on (Gal & Toledo, 2005; Chen, Zhang,

& Yu, 2013). The purposes of data association are to facilitate data indexing, retrieval,

archiving, etc. as detailed in (Alattar, 2004; Hu et al., 2009). Conventionally, associated

or auxiliary information is commonly referred to as metadata (Alattar, 2004; Hu et al.,

2009; Li et al., 2011). Table 7.1 shows examples of metadata for various classes of in-

formation, such as image (Stvilia, Jörgensen, & Wu, 2012; Li et al., 2013), text (Blake

& Knudson, 2002), video (e.g., YouTube, Daily Motion) (Kinsella, Passant, & Breslin,

2011), audio (Smith & Schirling, 2006; Fallahpour, 2008) and web pages, where metadata

plays the vital role of facilitating the search processes in search engines (Wu & Huang,
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Table 7.1: Examples of metadata in various classes of information

Data Metadata
Image dimension of image, pixel depth
Video tags (or keywords), description of content
Audio artist, album, year, track number, copyright information

Text name of the author, publisher information, summary (or abstract)
Web pages Description and keywords meta tags

2012; Xuan et al., 2008). Due to its significance in various application, some standards for

metadata were put forward, including IIM (Information Interchange Model) (Sandhaus &

Boll, 2011), XMP (Extensible Metadata Platform) (Jeszenszky, 2007), Exif (Exchange-

able image file format) (Fan, Cao, & Kot, 2013) and Dublin Core (Tseng, 2005).

In audio, image and video signals, metadata is embedded (or accommodated) in

the header of the file ((NISO-U.S.), 2004). However, the header is generally vulnerable

to unauthorized access, intentional tampering and un-intentional alteration. For that, the

conventional metadata management is infeasible in applications where the associated data

needs protection. For example, in watermarking, a watermark is associated with its corre-

sponding data for copyright protection. Here, the embedded watermark should be robust

against intentional/un-intentional removal or modification. Also, the watermark should

be hidden in its corresponding data. Obviously, the conventional metadata management

does not satisfy these requirements. To this end, date embedding is adopted as an alter-

native solution to associate data for applications such as watermarking, steganography,

media broadcast monitoring, tamper detection, ownership authentication, device control,

metadata storage and others as detailed in Cover and Thomas (1991).

In data embedding, two (correlated or un-correlated) sets of data, i.e., a host and a

payload, are associated. The process of data embedding is achieved by modifying fea-

tures in the host to accommodate the payload. Therefore, data embedding is a feature

dependent process, where the interchangeability among the conventional data embedding
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methods is often restricted, as discussed in Chapter 2.

7.3.2 Definition of Associated Data

Definition 6. Given a set of alphabets A and two sources of information, namely, D1 =

{a} and D2 = {b} such that a and b are singletons and a,b∈A, D1 and D2 are associated

in an ordered set D12 = {a,b} if there exists a function S(X) such that:

S(D12) =


True, if (D12\D1 =D2) and (D12\D2 =D1);

False, otherwise,

(7.1)

where the symbol “\" refers to the set difference, the cardinalities of D1, D2 and D12 are

|D1|= 1, |D2|= 1 and |D12|= 2, respectively

Here, the function S(X) indicates the validity of the association among the elements

of the ordered set X based on some rules. For example, if the English dictionary is

considered to define the rules, the set X = {B,E,E} has an association among its symbols,

which is the English word “BEE". Thus, based on the English dictionary, S({B,E,E}) =

True. However, based on the French dictionary, the symbols in X has no association.

Hence, based on the French dictionary, S({B,E,E}) = False. Defining the rules that

govern the function S is beyond of the scope of this study. However, generally, data

association is a relative feature that depends on the rules of the function S(X).

Definition 7. The order of data association in a set D1,2,···,B is the number of sources for

the information associated in D1,2,···,B, and it is measured by the function O as follows:

O(D1,2,···,B) = |D1,2,···,B|= |D1|+|D2|+ · · ·+ |DB|, (7.2)

where |Z| is the cardinality of the set Z
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For the previous example, O(D12) = 2, i.e., the set D12 is of second order associa-

tion. In this chapter, our study is limited to apply data fusion to second order associated

data due to the limitation of the proposed dual semantic coding, which is detailed in Sec-

tion 7.4.1. However, in theory, the concept of data fusion is generally applicable to any

order higher than unity.

7.4 Data Fusion

In this section, the proposed concept and methods of data fusion are presented. Con-

ceptually, data fusion is applied to data defined in the universal domain UA. In this

chapter, the second order data fusion is considered and applied to digital signals, i.e.,

A = {0,1}. However, the proposed method is generally applicable to any set of alpha-

bets. Practically, data fusion is achieved in two major stages. The first stage is modeling

the signals where the modeling is strictly optional in order to preserve (or reduce) the size

of the resulting fused signals to that of the larger (i.e., between the two to be fused) signal

in terms of storage size. The second stage is fusing the (modeled, if applicable) signals.

Given two signals X and X̄ to be fused, the modeling stage aims at locating re-

dundancy in one of these two signals. Here, the signal of larger size (say X without lost

generality) is chosen for modeling. The modeling is achieved by the universal parser (Sec-

tion 3.3.3). Initially, any signal defined in UA has zero redundancy because the entropy

of such signal is assumed to be 1
|A| , as shown in Section 3.3.2. Using the universal parser,

redundancy is located by partitioning the symbols of X into non-overlapping segments,

where each segment is of fixed-length L for 1 ≤ L ≤ N. The modeling is achieved by

the ordering function as detailed in Section 3.3.3. Such modelling changes the entropy

of the partitioned sequences such that H(XL) > H(XL+1) (Section 3.3.3). Hence, the re-

dundancy RL satisfies the condition of RL < RL+1. This change in redundancy can be

optionally utilized for data fusion.
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In the second stage, sequences in the set XL are fused with X̄ using the order-2 data

fusion function Ξ2 as follows:

Ξ
2 : XL× X̄ →C, (7.3)

or, in other words,

Ξ
2 : {T L

1 ,T
L

2 , · · · ,T L
λL
}×{x̄1, x̄2, · · · , x̄λL}→ {c1,c2, · · · ,cλL}, (7.4)

where C is a set of DSC (Dual Semantic Code) detailed in the next section.

7.4.1 Dual Semantic Code

In this section, an entropy coding method dedicated for data fusion referred to as

DSC (Dual Semantic Code) is proposed. DSC is a set of codewords in which case each

codeword can accommodate two symbols. This set is generated in two steps: The first

step generates a set of general expressions; the second step derives a set of codewords

from each general expression. These two steps are detailed in the following sub-sections.

7.4.1 (a) Generating General Expressions (GE)

A general expression (GE) is a set of ordered terms, namely, d,z and y, arranged

based on the rules R1 and R2 as illustrated in Figure 7.1. Each general expression starts

and ends based on the rules in Figure 7.1 for unique decodability purposes as detailed

in Al-Wahaib and Wong (2010). Here, the terms d, z and y are referred to as the starting

bits, information bits, and ending bits, respectively. Generally, a GE starts with d, which

could be single or multiple (consecutive or non-consecutive) terms in the expression,

followed by a single z, which could be immediately after a single d or in between multiple

d’s, and a GE always ends with a single y.
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R1 A general expression always starts with d, followed by z and ends with y.

R2 In any codeword derived from a general expression, d can be an individual
arrangement, or multiple similar arrangements repeated in consecutive or non-
consecutive order while z and y are always single arrangements.

R3 d is a particular element in the set of all possible arrangements P. In other
words, {d} ⊂ P such that |{d}|= 1 where |I| denotes the cardinality of the
set I.

R4 z can assume any element in the set Z := P\{d}.

R5 y can assume any element in the set Y := P\{d}.

Figure 7.1: Rules of generating general expression

For example, the first five GE’s are dzy, ddzy, dzdy, dddzy, dzddy, ddzdy, and the pos-

sible arrangements of GE’s can be generated endlessly as illustrated in Figure 7.2. Each

GE derives a sub-set of codewords by assigning an arrangement of bits to d,z and y. Gen-

erally, two different sets of codewords can be generated, namely; (1) EBI (Ending Bits

Independent) codewords, and; (2) EBD (Ending Bits Dependent) codewords (Al-Wahaib

& Wong, 2010). In this study, only EBI codewords are considered and they are detailed

in the next sub-section.

7.4.1 (b) Deriving EBI Codewords from GE

An EBI codeword is generated by deterministically assigning arrangement of bits to d

and z only, while dummy bits are assigned to y, which are updated later during the actual

implementation of data fusion. Such assignment results in the set of codewords C.

Generally, a codeword cq ∈C is generated by assigning a combination of n bits from a set

P to each term in a general expression based on the rules R3, R4 and R5 in Figure 7.1.

Here, P is the set of all possible binary sequences of length n, with the cardinality |P|=

2n for n ≥ 2. In this study, n = 2 is selected to achieve the minimum possible length

of the codewords, and hence P = {00,01,10,11}. Based on R2 in Figure 7.1, d can

take any of element (i.e., combination of two bits) in P. However, z and y can only
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Figure 7.2: The generation of DSC, which is achieved in two stages: (1) generating gen-
eral expression, and; (2) assigning arrangement of bits to general expressions to produce
EBI codewords

assume elements from the set P\d based on R4 and R5 in Figure 7.1. For example, if

d = 00, then z,y ∈ {01,10,11}. Hence, for GE of dzy, the first EBI codeword is c0 =

00,01,y, the second codeword is c1 = 00,10,y, and so on, where the commas (i.e., “,")

are included here to illustrate the arrangement of bits assigned to each individual term in

cq. However, hereinafter, these commas are removed. Thus, the set of EBI codewords is

C = {0001y,0010y,0011y,0100y,0110y,0111y,1000y, · · ·}. Figure 7.2 shows some EBI

codewords of GE=dzy and GE=ddzy.

Before achieving data fusion, y is either un-defined temporarily or given any dummy

arrangement from P\d based on R5. Here, although y is un-defined in cq, this codeword

is still uniquely decodable because d and z are unique in each codeword cq ∈ C (Al-

Wahaib & Wong, 2010). However, y is required to exist in cq (regardless the element of

P assigned to y) to indicate that the end of a codeword is reached based on R1. During

data fusion, y is changed based on the data to be fused.

The length of an EBI codeword is denoted by ζ and it depends on the number of terms in

GE utilized in the derivation of that particular codeword. Specifically, if ω is the number

of occurrences of the term d in a GE, then ζ is defined as:

ζ = (ω +2)×n bits, (7.5)

where ω ≥ 1. Hence, if n = 2 and ω = 1, then ζ = 6 bits is the minimum length of any

DCS codeword, where such codeword is derived from GE=dzy. Note that in DSC, it is
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possible for two (or more) different GE’s to generate codewords of similar length ζ but

of different arrangements. For such GE’s, the value of ω is the same. For example, ζ of

all codewords generated by the GE’s dddzy, ddzdy and dzddy are 10 bits.

Hence, given a set of GE’s all assuming the same ω , the total number of codewords of

similar length that can be generated (based on ω) is denoted by ψω and defined as follows:

ψω = ω×|d|×|P\d| codewords, (7.6)

where all these codewords are of identical length ζ . In particular, if n = 2, then:

ψω = ω×12 codewords. (7.7)

For example, the total number of codewords of ζ = 10 is ψ3 = 3× 12 = 36. These

codewords are derived from the GE’s dddzy, ddzdy and dzddy.

In order to reduce the length of a signal encoded by DSC, it is desirable to encode most

tuples of the signal by short codewords. This can be achieved by encoding the tuples

based on their PoO (probability of occurrences), such that tuples of high PoO are encoded

by short codewords, and vice versa.

7.4.2 Coding Schemes for Data Fusion

In this section, DSC (Dual Semantic Code) generated in Section 7.4.1 is utilized for data

fusion. The purpose of applying DSC is because each DSC codeword is capable in ac-

commodating two different symbols simultaneously as detailed in Section 7.4.2 (a). DSC

is the first coding method that has such capability. However, generally, any codewords

that has similar capability as that of DSC can also be utilized for data fusion purposes.

The proposed flow of operations in data fusion using DSC is summerized in Figure 7.3.

Here, assume that two sequences X and X̄ are to be fused, where |X |> |X̄ | is assumed.
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Figure 7.3: The flow of data fusion operations using dual semantic code

Then, the universal parser (Section 3.3.3) is applied to X for deriving XL. Next, the set XL

is scanned and PoO’s of the tuples are computed. Finally, the tuples in XL are fused with

bits from X̄ by coding them using DSC based on PoO of the segments of XL. Particularly,

data fusion is achieved by utilizing the EBI codewords as detailed in the next sub-sections.

7.4.2 (a) Data Fusion using EBI

An EBI codeword cq can accommodate two different symbols simultaneously by mapping

one symbol to the dz part of cq and the other symbol to the y part of the same cq, where

this y is un-defined or assumes a dummy value before achieving data fusion.

Given an EBI codeword cq = d z y, this codeword is utilized to fuse T L
t ∈XL and {x̄t , x̄t+1}

as follows:

Ξ
2 : T L

t ×{x̄t , x̄t+1}→ cq. (7.8)

Informally, T L
t is mapped to the starting and information bits (i.e., dz terms) and {x̄t , x̄t+1}
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Figure 7.4: Data fusion of a tuple T L
t from X and two bits x̄t , x̄t+1 ∈ X̄ in EBI codeword cq

is mapped to the ending bits (i.e., y term) of cq as illustrated in Figure 7.4. Here, the

mapping of {x̄t , x̄t+1} to y is based on the three-state property of y, which in turn based on

R5 in Figure 7.1. In other words, y can assume any element (arrangement of bits) in the

set P\d, where cardinality of |P\d|= 3. For example, if d = {00}, then y ∈ {01,10,11}.

However, if d = {10}, then y ∈ {00,01,11}, and so on. These states are referred to as

{S1,S2,S3}, where S1 <S2 <S3 holds true when considering these arrangements as

binary numbers. For example, if d = {10}, then {S1 = 00,S2 = 01,S3 = 11}, and so

on. The next two sub-sections propose two coding schemes based on data fusion using

EBI.

7.4.2 (b) Basic Coding Scheme

In this coding scheme, all segments of XL are mapped to EBI codewords. If modeling

is applied (to reduce the length of the resultant codewords), then the sorted segments of

XL (in descending order) are stored as side information. Next, the EBI codewords are

assigned to the segments of XL based on their PoO’s in the histogram of XL as detailed in

Section 7.4.1 (b). Finally, data fusion is achieved by utilizing the codewords as detailed

in Section 7.4.2 (a).

For example, if the tuple T L
t = {1,1,1,1,1,1,1,1} has the highest PoO in XL, then EBI

codeword c1 = 0001y is assigned to it. Hence, to fuse this tuple with {0,0}, the following

mapping occurs:

Ξ
2 : (T L

t ,{0,0}) : {1,1,1,1,1,1,1,1}→ 0001, (7.9)
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and {0,0} is converted to the binary number 002 so that

mod (002,3) = 0. (7.10)

Thus, the 0-th element in P \ d, i.e., 01, is assigned to y, and the resultant codeword

c1 = 000101. Data fusion using this coding scheme may results in file-size increment,

i.e., T (Ξ2)> T (X) where T (Ξ2) is the size (in bits) of the assemble of codewords that

accommodates the fused signals, and T (X) is the size of the original X . Such file-size

increment is observed in our empirical study (Section 7.5). To avoid file-size increment,

the partial coding scheme is proposed and presented in the next sub-section.

7.4.2 (c) Partial Coding Scheme

This coding scheme has two aims, namely: (1) achieving data fusion with a gain in data

compression or achieving data fusion while preserving the file-size of X , and; (2) realizing

scalability. In order to achieve these objectives, only some segments in XL with high

PoO’s are selected and mapped to short EBI codewords. For example, assume a segment

T L
t ∈ XL is mapped to an EBI codeword cq such that Tcq < L. In this case, compression is

gained while data fusion is achieved in cq as shown in Section 7.4.2 (a). The amount of

removed bits due to the mapping of T L
t to cq is denoted by Πcq and defined as:

Πcq = L−Tcq bits. (7.11)

The partial coding first defines three sets, namely, AL, B and C . The set AL consists of all

possible arrangements (tuples) of L bits and hence the cardinality |AL|= 2L. For example,

if L = 3, then A3 = {000,001,010 · · · ,111} and |A3|= 23 = 8. The set B consists of all

tuples that actually occur in XL, i.e., the tuples with PoO > 0 sorted in descending order

based on their PoO. Formally, B = {bi : bi is a tuple in XL with PoO(bi)> 0}. The set C
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is the set that consists of all tuples that do not occur in XL, i.e., C =AL\B. For example,

if the set XL = {000,000,001}, then B = {000,001} and C = {010,011,100, · · · ,111}.

Then, data fusion is achieved by Algorithm 4, where t is the sorted PoO of T L
t in the

histogram of XL and the set |QC| is defined later in this section. Here, Step (18), which is

optional, increases the number of fused bits but sacrifices compression. However, without

invoking Step (18), data compression is achieved. Note that, in Algorithm 4, c is a flag

indicating that the immediate next codeword is an EBI codeword. In the decoding stage,

the decoder searches for this flag to correctly decode the EBI codewords.

In order to guarantee that tuples are mapped to codewords in which they satisfy Tcq < L,

the set QC is defined such that the mapping is achieved solely with codewords in the set

QC. Hence,

Ξ
2 : XL× X̄ → QC ⊂C. (7.12)

The set QC consists of all EBI codewords that satisfies T (cq)< L where |QC|≤ |B|. The

set of codewords in QC is defined using Algorithm 5.

For example, if L= 10 is considered, then all DSC of the length ζ ≤ 10 bits are utilized for

data fusion. This includes the union of all codewords of 6, 8 and 10 bits in length. Based

on Eq. (7.7), the number of codewords with length 6, 8 and 10 bits are 12, 24 and 36, re-

spectively. These codewords are QC = {0001y,0010y, · · · ,1110y,000001y,000010y, · · · ,

111100y,00000001y,00000010y, · · · ,11111100y}, which account to |QC|= 12 + 24 +

36 = 72 codewords. In this case, only 72 patterns of the highest PoO’s are mapped to

codewords in QC, or in other words, codewords of length ζ > 10 are not utilized.

An example of data fusion using the partial coding scheme is presented in Figure 7.5.

Here, the set X8 = {{00000000},{00000000},{11111111}}, where L = 8 bits and the

set X̄ = {01}. Note that B = {00000000,11111111}. Hence, any tuple (from the re-

maining 28 tuples) that does not occur in X8 can be selected as the flag c. In this example,
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Figure 7.5: Example of partial coding using EBI codeword

c= {10101010} is selected. Since the first two groups in X8 are T 8
1 = T 8

2 = {00000000},

i.e., they are adjacent and identical, the following mappings are achieved: T 8
1 is mapped

to c = {10101010} but T 8
2 , is mapped to cq = 0001y, where QC = {0001y} in this ex-

ample. Next, T 8
2 is fused with X̄ = {01} as detailed in Section 7.4.2 (a). Thus, data

fusion results in Ξ2 = {000110,11111111}. Note that the last tuple T 8
3 = {11111111}

is not mapped to any EBI codeword because it is a single tuple, i.e., there is no

neighbouring tuple of identical pattern. Thus, the actual output of the fused data is

Ξ2 = {10101010,000110,11111111}, as shown in Figure 7.5. In this example, the size

T (X8) = 16 bits before data fusion and reduces to T (Ξ2) = 14 bits (i.e., compressed)

after data fusion using the partial coding scheme. In this example, Step (18) in the encod-

ing algorithm is skipped, and for that, data compression is gained. Nevertheless, L and c

are stored as side information.

In the decoding stage, the bitstream is partitioned into segments of L = 8 bits. Here, the

length L and flag c are derived from the side information. If the encountered segment is c,

this implies that the following segment is an EBI codeword cq. Thus, the inverse mapping

is applied to cq as follows:

dz→ T 8
2 , (7.13)

and
y→ X̄ (7.14)
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Algorithm 4 Data Fusion in Partial Coding Scheme
1: Generate X and XL based on L
2: Generate C
3: if |C |> 0 then
4: Select any element c ∈ C
5: Merge L and c with X̄
6: Go to step 12
7: else
8: L← L+1
9: Generate the new set X based on L

10: Go to step 3
11: end if
12: Generate set QC based on L (Algorithm 5)
13: Scan two adjacent segments T L

t ,T L
t+1 ∈ XL

14: if (T L
t = T L

t+1) and (i≤ |QC|) then
15: Map T L

t → c
16: Map T L

t+1→ ci ∈CQ

17: Fuse T L
t+1 and {x̄t , x̄t+1} using cq as detailed in Section (7.4.2 (a))

18: Concatenate Πcq bits from X̄ , starting from x̄r+2, to cq
19: else if All non-overlapping pairs in XL are scanned then
20: Halt
21: else
22: Go to step 13
23: end if

Algorithm 5 Generating the Set QC

1: ω ← 1 and ζ ← 6
2: Suppose QC contains all codewords of length ζ = 6, i.e., |QC|= ψ1 = 12 (Eq. 7.7)
3: if L−ζ > 1 then
4: ω ← ω +1
5: Compute ψω in Eq. (7.7)
6: Go to step 10
7: else
8: Halt
9: end if

10: Add all codewords of length ζ +2 to QC
11: |QC|← |QC|+ψω

12: Go to step 3
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while
c→ T 8

2 . (7.15)

On the other hand, the partial coding scheme is scalable. Here, scalability is defined as

the ability to control the size of the fused data, i.e., T (Ξ2). Such flexibility enables three

modes of operation, namely, compression, file-size preserving, and partial compression.

As the names imply, each mode changes the size of the fused data.

Compression is gained by skipping Step (18) in the encoding algorithm. Here, data fusion

is achieved solely by using EBI codewords where the venues generated by removing Πcq

bits (due to mapping some segments in XL to short EBI codewords) are not utilized for

data fusion.

On the other hand, file-size preserving is achieved by utilizing the removed bits (i.e., Πcq

bits in total) for data fusion. Here, Step (18) is invoked and hence all removed bits are

replaced by segments of the smaller signal. In other words, the size of the fused data is

larger than that achieved in the “compression" mode by Πcq bits, and no compression is

gained.

Last but not least, partial compression is achieved when only selected removed bits are

replaced by the fused data. This amount is denoted by πcq where π < Πcq , and it is pre-

defined by the data fuser. Hence, Step (18) is invoked where Πcq is reduced to πcq . Here,

the size of the fused data is increased, and the compression ratio is decreased but still

greater than unity. All these three modes are selectively achievable during the actual data

fusing process. However, there is a trade-off between the size of the fused data and the

size T (Ξ2).

7.4.3 Discussion

Data fusion is achieved by mapping two different symbols, namely, T L
t and {x̄t , x̄t+1},

into a single codeword cq ∈ C. However, the codeword cq is completely different from
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the two symbols that it accommodates. That is, cq 6= T L
t and cq 6= {x̄t , x̄t+1}. Here, data

fusion does not aim at hiding data into a host as in data embedding. For that, quality as-

sessment is not applicable to the codewords resulting from data fusion. This is one aspect

supporting the claim that data fusion is different from data embedding. Other differences

between data embedding and data fusion are summarized in Table 7.2. In data fusion, the

terms “host" and “payload" are not used because data fusion is not based on modifying

features of a signal in order to accommodate the other. Instead, the signals (to be fused)

are mapped to a new entity (i.e., cq) where such mapping depends solely on the basic

features of the signals after defining them in the universal domain (Section 3.3.2). On

the other hand, conceptually, the data embedding process is limited to two signals only,

namely, the host and the payload. In the proposed concept of data fusion, the number

of signals to be fused can be more than 2. Since any signal is defined in the universal

domain, data fusion is a universally interchangeable process. However, data embedding

depends on the features of the host in a certain domain, medium and coding format to

embed the payload. For that, the interchangeability of data embedding is restricted. The

comparison in Table 7.2 also suggests that data fusion is a generalization of data embed-

ding. Such flexibility can be exploited to fuse any associated data together, for example,

metadata or watermark with the relevant data. Thus, the problems of data embedding and

metadata storage can be unified under the umbrella of data fusion.

The process of data fusion is completely reversible in which both T L
t and {x̄t , x̄t+1} can be

perfectly extracted from cq. The reversibility property is achieved by the inverse mapping

of Eq. (7.8). Also, the integrity of all components of DSC codeword must be ensured for

correct decodability. In other words, if either the first part of a codeword (i.e., dz which

accommodates T L
t ) or the second part (i.e., y which accommodates {x̄t , x̄t+1}) is lost, then

cq cannot be correctly decoded. Other coding methods such as GRC (Golomb-Rice code)

(Rice & Plaunt, 1971) do not have integrity for the data they are fusing . For example,
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Table 7.2: Comparison between data embedding and the proposed data
fusion

Data Embedding Data Fusion

Number of Signals 2 only Any number of associated
signals with order O≥ 2

Components Host and Any two signals
Payload say (a and b)

Concept Host is modified a and b are fused
to embed Payload in c

Feature Features of Basic features induced
Dependency Host in the Universal domain

Distortion Imperceptible c is similar to
neither a nor b

Interchangeability Restricted Universal

assume a GRC = “0101” is to be fused with “00”. Data fusion can be simply achieved

by concatenating “00” to such GRC, which results in “010100”. However, if “00” is

lost (e.g., due to communication error), this GRC (i.e., “0101”) is still decodable where

the error is undetected. On the other hand, assume DSC = “0011y” is to be fused with

“00”. Here, “00” is mapped to “01” as discussed in Section 7.4.2 (a). Hence, the resultant

codeword of the fused data is “001101”. Now, assume that 1 bit is lost from the fused

data, i.e., the codeword becomes “00110”. Such codeword cannot be decoded correctly

because it is incomplete. The same is true when the last 2 bits, i.e., “01”, are lost. It is

concluded that, the capability to provide integrity to the fused data for correct decoding

is a unique feature of DSC.

Table 7.3 presents a functional comparison between the proposed data fusion and con-

ventional data embedding methods. The comparison in Table 7.3 includes the follow-

ing aspects: reversibility, universal applicability, compressibility, file-size preservation,

scalability in handling data embedding/fusion (depending on the method), and number

of passes required to achieve data embedding/fusion. In general, the conventional data

embedding methods considered and the proposed data fusion are reversible and file-size
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preserving. The proposed data fusion is superior to the aforementioned data embedding

methods in terms of universal applicability, compressibility and scalability. However, all

the aforementioned data embedding methods require lower number of passes to achieve

data embedding. Hence, it is expected that the execution time for these methods are

shorter than that of the proposed data fusion.

106

Univ
ers

ity
 of

 M
ala

ya



Ta
bl

e
7.

3:
Fu

nc
tio

na
lc

om
pa

ri
so

n
be

tw
ee

n
th

e
pr

op
os

ed
da

ta
fu

si
on

an
d

co
nv

en
tio

na
ld

at
a

em
be

dd
in

g
m

et
ho

ds

M
et

ho
d

R
e v

er
si

bl
e?

U
ni

ve
rs

al
?

C
om

pr
es

si
bi

lit
y?

Fi
le

-S
iz

e
Pr

es
er

vi
ng

?
Sc

al
ab

ili
ty

?
N

um
be

ro
fP

as
se

s
L

SB
(C

el
ik

et
al

.,
20

05
)

X
×

×
X

×
1

H
S(

L
ie

ta
l.,

20
13

)
X

×
×

X
×

1
D

E
(T

ia
n,

20
03

)
X

×
×

X
×

1
C

M
(M

ob
as

se
ri

et
al

.,
20

10
)

X
×

×
X

×
2

D
at

a
Fu

si
on

X
X

X
1

X
X

2
1

In
th

e
pr

op
os

ed
da

ta
fu

si
on

,
th

e
co

m
pr

es
si

on
an

d
fil

e-
si

ze
pr

es
er

vi
ng

ar
e

tw
o

di
ff

er
en

t
op

er
at

in
g

m
od

es
th

at
ca

n
be

se
le

ct
iv

el
y

ch
os

en
in

th
e

pa
rt

ia
l

co
di

ng
sc

he
m

e.

107

Univ
ers

ity
 of

 M
ala

ya



Table 7.4: Information of test signals considered for empirical study
Raw Compressed Encrypted

Image 3 (BMP) 3 (JPEG) 3 (AES-256)
Video 3 (AVI) 3 (H.264) 3 (AES-256)
Audio 3 (WAV) 3 (MP3) 3 (AES-256)

Text 3 (Doc,Latex) 3 (ZIP) 3 (AES-256)

7.5 Experimental Results

In this section, data fusion is studied empirically by applying the proposed basic and

partial coding schemes to a set of 36 test signals. These signals are of different media

and coding schemes to verify the viability of the proposed coding schemes to various

formats. Table 7.4 records the detailed information of each class of signals, along with

the number of considered signals from each class. Particularly, the classes of signals are

image, video, audio and text. Each class consists of a set of signals coded in different

ways, namely, raw, compressed and encrypted.

The set of images include 3 standard test images, namely, Lenna, Baboon and Man, from

(USC-SIPI, 2014). This set is utilized to derive two additional sets, each consisting of

3 images. The first set consists of the raw (un-compressed) images in BMP (BitMap)

format. The second set consists of JPEG compressed images obtained by setting the

quality factor to 90. The third set consists of encrypted images using AES (Advanced

Encryption Standard) with key length of 256 bits.

The set of videos consists of three standard test videos, namely, Foreman (of dimension

176 × 144, 29.97 fps), Carphone (of dimension 176 × 144, 29.97 fps) and Suzie (of

dimension 176 × 144, 29.97 fps). The raw uncompressed videos are in AVI (Audio

Video Interleave), the compressed videos are in the H.264/MPEG-4 AVC format of the

targeted bit-rate of 192 kbps, and AES-256 is deployed to encrypt videos.

The set of audios consists of segment of three different classical musics, namely, Audio1

(length of 2 seconds), Audio2 (length of 5 seconds) and Audio3 (length of 3 seconds).
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Each raw uncompressed audio is in the WAV (Waveform Audio file) format with a sam-

pling rate of 44,100 samples per second. The compressed audios are in the MP3 format

with bit-rate of 128Kbps, and AES with key length of 256 bits is considered to encrypt

the audio files.

The set of texts consists of three texts, namely, Text1 (54 KB) in MS-Word format, Text2

(6 KB) in Latex format, and Text3 (13 KB) in MS-Word format. The set of compressed

texts is generated by using Zip (version 12.0 Pro (8252) for Windows operating system),

while the set of encrypted texts were generated by using AES-256 with a key of length

256 bits. All the aforementioned signals are fused with a randomly generated signal.

The experiments are carried out using C programming language. The performance of the

two proposed coding schemes are evaluated based on the following criteria: fusibility,

fusion bit-rate, and compression gain. It is verified that the proposed basic and partial

coding schemes are reversible, and the fused signals can be perfectly restored from the

DSC codewords. The following sub-sections detail the performance of the proposed cod-

ing schemes.

7.5.1 Fusibility

Fusibility is the ability to define the data fusion function Ξ2 over any two sequences X

and X̄ such that Eq. (7.4) holds true. Practically, the fusibility is verified by running the

implemented data fusion program to its completion for any two inputs X and X̄ . Fig-

ures 7.10, 7.11 7.13 and 7.12 show that data fusion can be applied to all classes of signal

considered in the raw, compressed and encrypted forms, where the average achieved FBR

is higher than zero for both the basic and partial coding schemes. This suggests that data

fusion is a universal process. In other words, by applying the proposed coding schemes,

the fusibility between any two signals is not restricted in general.
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7.5.2 Fusion Bit-Rate

Given two signals X and X̄ to be fused by Ξ2 such that |X |> |X̄ |, FBR (Fusion Bit-Rate)

is the bpb ratio of the size of X̄ to the size of X . Here, high FBR indicates that more

data are fused. Hence, the higher FBR, the better data fusion performance. This ratio is

measured based on the applied coding scheme as detailed in the next sub-sections.

7.5.2 (a) Fusion Bit-Rate in Basic Coding Scheme

In basic coding scheme, FBR is defined as

FBR =
|XL|
|X | , (7.16)

Generally, since |XL| depends on the length L, changing L will affect FBR. Specifically,

as L increases, the number of segments in |XL| decreases, and hence FBR decreases. On

the other hand, as L increases, the side information T (S) increases as follows:

T (S) = 2L×L, (7.17)

Figures 7.6 and 7.7 show the effect of changing L on FBR and T (S) in the encrypted

Lenna test image. In Figure 7.6, it is shown that as L increases, FBR decreases. This is

because the increment in L reduces the number of segments that are mapped to the EBI

codewords. Hence, the venues for data fusion is reduced. Figure 7.7 shows that as L

increases, the side information T (S) also increases as defined in Eq. (7.17). The side

information increment causes file-size increment. Similar effect on FBR and T (S) are

observed for other test signals when L changes. Based on Figures 7.6 and 7.7, the opti-

mum performance in this coding scheme is achieved at a relatively small L. In particular,

the optimum performance is achieved when L = 6 bits for all types of signal, except for

raw images that achieve the best results when L = 8 bits. Table 7.5 records FBR achieved
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Figure 7.6: The effect of L on FBR in basic coding scheme for the encrypted Lenna test
image
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Figure 7.7: The effect of L on the size of side information in basic coding scheme for the
encrypted Lenna test image

Table 7.5: FBR (bpb) for the three test images achieved by the proposed two coding
schemes

Coding Method Signal Raw Compressed Encrypted
Lenna 1.58500 2.11335 1.58500

Basic scheme Baboon 3.17001 2.11333 1.58500
Man 1.54532 2.11334 1.15899

Lenna 0.00036 0.00046 0.03710
Partial scheme Baboon 0.01905 0.00038 0.03340

Man 1.58500 0.00023 0.02575

by applying the proposed basic coding scheme to the test images.

For raw images, the basic coding scheme achieves FBR that ranges from 1.58500 to

3.17000 bpb. FBR ranges from 2.11333 to 2.11335 bpb for compressed images, and FBR
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ranges from 1.58500 to 1.15899 bpb for the encrypted images. It is worth mentioning that

such trend of variation in FBR is also observed in all other test signals. It is observed that

this variation in FBR is based on the size of each specific signal (i.e., |X |) and the value

of L. However, the class and type of the considered signal has no effect on FBR.

7.5.2 (b) Fusion Bit-Rate in Partial Coding Scheme

In partial coding scheme, FBR is defined as

FBR =
(|QC|×log2(3)+Λ)−T (S)

|X | , (7.18)

where T (S) is the size of the size information defined as

T (S) = (|QC|×L)+L, (7.19)

and Λ is defined as

Λ =
|XL|
∑
q=1

Πcq. (7.20)

Here, the side information is concatenated to the smaller signal X̄ , and they are fused with

the larger signal X . On the other hand, FBR in the partial coding scheme depends on the

value of L in the universal parser. Figure 7.8 shows the effect of changing the length L on

FBR for the Man test image encoded by the partial coding scheme. Here, as L increases,

the cardinality |XL|= λL decreases, and hence the number of codewords decreases. Thus,

FRB decreases (Eq. (7.18)) as L increases.

On the other hand, FBR depends on |QC| as suggested by Figure 7.9. Here, when |QC|

increases, the side information T (S) increases, and hence FBR decreases (Eq. (7.18)).

Similar effects of L and QC on FBR are observed for all test signals. Nevertheless, only

the highest FBR of each test signal (results of parsing the signal at various L and setting

various |QC| values) is considered and presented hereinafter. All FBR results presented
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Figure 7.8: The effect of L on FBR in the partial coding scheme for the Man test image
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Figure 7.9: The effect of |QC| on FBR in the partial coding scheme for the Man test image

in this sub-section are obtained when the proposed data fusion operates in the file-size

preserving mode.

Table 7.5 records the FBR achieved by applying the proposed partial coding scheme to

the test images. Here, for raw images, FBR ranges from 0.00036 to 1.58500 bpb. For

compressed images, FRB ranges from 0.00023 to 0.00046 bpb, and for encrypted images,

FBR ranges from 0.02575 to 0.03710 bpb. Such variation in FBR is also observed in

other test signals in various formats and the range depends on |QC| and Λ in Eq. (7.18).

However, in the partial coding scheme, the effect of T (S) on FBR is insignificant because

the size of the generated side information in this coding scheme is relatively small in

comparison to that of the basic coding scheme as defined by Eq. (7.19).
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Figure 7.10: The graphs of FBR versus size of Baboon test signal
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Figure 7.11: The graphs of FBR versus size of Foreman test signal

Nonetheless, for compressed texts, it is observed that its FBR is negative, i.e., FBR<0.

In particular, in these signals, the FBR ranges from −0.00041 to 0.00023 bpb. This

is an expected result because these signals are small in size. Hence, the probability of

encountering two adjacent segments with identical pattern in |XL| is low (Section 7.4.2

(c)). Thus, only a few number of segments are mapped to EBI codewords, which results

in a relatively small number of venues (i.e., in EBI codewords) for data fusion purposes.

For that, the size of the side information is larger than the venues attained for data fusion,

which lead to FBR< 0 as shown in Eq. (7.18). Hence, data fusion using the partial coding

scheme is not applicable to signals that are small in size. Instead, the basic coding scheme

should be applied to achieve FBR>0.
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Figure 7.12: The graphs of FBR versus size of text1 test signal

In addition, in the partial coding scheme, it is observed that FBR is directly proportional

to the size of the test signal. Such property is observed for all test signals, except for

audio. On the other hand, generally, as the size of the signal increases, FBR increases

accordingly. Figure 7.10 shows the graph of the size versus FBR in the Baboon image.

Here, FBR is 0.00038 bpb when it is compressed, i.e., 113 KB in size. However, FBR

increases to 0.02000 bpb in the raw image format, which is of size 257 KB. As such,

the maximum FBR among the images is 0.03340 bpb, which is attained by the encrypted

image that has the largest size (i.e., 578 KB). Similar trend is observed in all other signals

(except audios). Figure 7.11 shows the graph of the size versus FBR in the encrypted

foreman video, which is of the largest size among the raw, compressed and encrypted

formats (i.e., 774 KB), and it achieves the maximum FBR of 0.01785 bpb. Figure 7.12

shows the graph of the size versus FBR in the encrypted text (i.e., Text1), which has the

largest size, i.e., 491 KB, and it achieves the maximum FBR of 0.03678 bpb. Generally,

FBR is directly proportional to the size because |XL| in Eq. (7.18) depends on the number

of segments, i.e., λL.

In the case of audio signal (Figure 7.13), it is observed that FBR achieved by the com-

pressed audio is larger than that of the raw audio, although the size of the compressed

audio is smaller than that of the raw audio. This is because in the raw audio (i.e., wav for-

115

Univ
ers

ity
 of

 M
ala

ya



50 100 150 200 250 300 350 400 450
0

0.02

0.04

0.06

0.08

0.1

0.12

size (KB)

F
B

R
 (

b
p
b
)

compressed

raw

encrypted

Figure 7.13: The graphs of FBR versus size of Audio1 test signal
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Figure 7.14: Graph of Λ versus the size of Baboon, Foreman, Audio1 and Text1 test
signals

mat), the number of removed bits by compression Λ (Eq. 7.20) is relatively small due to

its statistical features. Hence, in the case of raw audio, Λ contributes in a smaller amount

to FBR when compared to that of the compressed audio. Figure 7.14 shows the amount

of contribution of Λ to FBR (in bpb) for the same test signals in Figures 7.10, 7.11, 7.13

and 7.12. Here, Λ of the compressed audio is 0.45670 bpb. However, the raw audio

has a lower rate of 0.02740 bpb. This is because the tuples of the compressed audio in

XL are concentrated around few patterns in the histogram of XL, which increases Λ (i.e.,

more compression is gained) when these tuples are encoded by DSC. For that, FBR of

the compressed audio in Figure 7.13 is higher than that of the raw audio.
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For other signals (i.e., except audio), Λ increases as the size of the signal increases. For

example, the compressed image and video have lower Λ (0.00180 and 0.00300 bpb, re-

spectively) than that of the raw image and video (0.25000 and 0.31470 bpb, respectively)

as suggested by Figure 7.14. Therefore, for the images and videos considered, the com-

pressed versions offer lower FBR when compared to their raw counterparts.

7.5.2 (c) Comparison of FBR between The Basic and Partial Coding Schemes

Figure 7.15 shows the graph of the average FBR of the test signals achieved by the ba-

sic and partial coding schemes. Generally, it is observed that FBR of the basic coding

scheme is higher than that of the partial coding scheme. In particular, it is concluded that,

on average, the basic and partial coding schemes achieve FBR of 0.640 and 0.060 bpb,

respectively. Here, the basic coding scheme achieves higher FBR than the partial coding

scheme because all tuples of the set XL are mapped to EBI codewords in the basic coding

scheme where each codeword accommodates data from X̄ . On the other hand, in the par-

tial coding scheme, less tuples from XL are mapped to EBI codewords. Hence, the basic

coding scheme is superior to the partial coding scheme in terms of FBR performance.

This suggests that, for applications where the amount of data to be fused is high, it is

recommended to deploy the basic coding scheme.

7.5.3 Compressibility

Essentially, data fusion does not aim at achieving data compression. However, gaining

compression while fusing data is considered as an extra advantage. The partial coding

scheme can be switched from the file-size preserving mode to the compression mode by

setting Λ = 0 in Eq. (7.18). Table 7.6 records the average compression ratio of all test

signals manipulated by the partial coding scheme, where all compression ratios are greater

than 1. These results suggest that gaining compression while fusing data can always be

achieved by setting Λ = 0. However, in this coding scheme, FBR reduces because the
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Figure 7.15: Comparison between the basic coding scheme and the partial coding scheme
in terms of average FBR

removed bits are not utilized for data fusion. For example, in the raw Lenna image, at

L = 10 and |QC|= 12, FBR=0.00019 bpb while achieving compression. However, at the

same L and |QC|, this image achieves FBR=0.00036 bpb in the file-size preserving mode.

This indicates that FBR drops by∼ 47.2% due to compression. The drop of FBR depends

on the statistical features of each signal considered. Generally, it is observed in Table 7.6

that, on average, FRB drops for image, video, audio and text signals by 57.9%,41.7%,

70.4% and 53.5%, respectively. Hence, the trade-off is between FBR and compression

ratio.

7.6 Summary

In this chapter, the conventional concept of data embedding was generalized by the pro-

posed concept of data fusion. In particular, the proposed data fusion establishes a univer-

sal framework for merging associated data into a single entity. Specifically, the universal
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Table 7.6: Average compression ratios, FBR (in bpb) and the drop in FBR (%) for all test
signals when considering the compression mode in the partial coding scheme.

Compression Ratio FBR Drop in FBR (%)†

Lenna 1.01049 0.08823 51.0
Baboon 1.01257 0.09621 45.9

Man 1.03513 0.01590 76.9
Foreman 1.00490 0.00247 33.3

Carphone 1.00803 0.00664 46.1
Suzie 1.01042 0.00808 45.6

Audio1 1.00528 0.00443 57.8
Audio2 1.01158 0.01075 75.5
Audio3 1.01246 0.01365 77.9

Text1 1.01929 0.00980 65.2
Text2 1.02495 0.01905 55.4
Text3 1.02454 0.01877 55.4

†The drop is relative to the results obtained when
considering the file size preserving mode.

interchangeability property is attained by defining the associated data and carrying out

data fusion in the universal domain. Then, the universal parser (Section 3.3.3) models

the associated data, followed by encoding them using dual semantic code. Two coding

schemes were proposed, namely, the basic and partial coding schemes. Experimental

results verified that signals of various classes can be fused by using both the proposed

basic and partial coding schemes. Therefore, data fusion is achievable for any two sets of

digital signal. The basic coding scheme achieves an average data fusion bit rate of 0.640

bpb. The partial coding scheme achieves an average FBR of 0.060 bpb with a trade-off

between data fusion bit rate and file size. In particular, the partial coding scheme offers

three operating modes, namely: (1) file-size-preserving; (2) compression, and; (3) partial

compression. Notably, a compression ratio of up to 1.03513 is observed while achieving

a FBR of 0.01590 bpb.
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CHAPTER 8

DISCUSSIONS

8.1 Overview

In this section, the performance of the proposed methods in Chapters 4∼7 are discussed.

The discussion here focuses mainly on verifying the achievement of the objectives stated

in Chapter 1. In particular, it is verified that the proposed methods are universal, reversible

and file-size preserving. In addition, the achieved carrier capacities of the proposed meth-

ods are compared.

8.2 Interchangeability

The theoretical and empirical verifications throughout this study show that the proposed

uREADS, urDEED, DeRand and data fusion methods are universal data embedding meth-

ods. Theoretically, these methods exploits only two features, which are common among

all signals, to achieve data embedding. These features are: (1) the size of the considered

signal, and; (2) the position of its alphabets. Defining these two features for any signal X

is sufficient for parsing by the universal parser. In other words, except these two features,

the proposed methods operate independently from all features defined in certain domain,

media or coding structure. Empirically, the experiments performed on various classes of

signal verify the applicability of the universal parser and the proposed methods to any

digital signal.

8.3 Carrier Capacity

The experimental results presented in Sections 4.4, 5.6.3, 6.6.1 and 7.5.2 show that all

proposed methods are able to achieve some positive effective carrier capacity for any in-

put signal X . This suggests that the proposed methods successfully define venues for
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Table 8.1: Comparison of the maximum carrier capacity obtained by the proposed meth-
ods Method Carrier Capacity (bpb)

DeRand (Chapter 6) 0.405
urDEED (Chapter 5) 0.174
uREADS (Chapter 4) 0.074
Data Fusion (Chapter 7) 0.060

payload insertion regardless of the features of the considered signal. However, the carrier

capacity varies among the proposed methods as shown in Table 8.1. Here, the maximum

bpb value in the file-preserving mode of each corresponding method is recorded for direct

comparison purposes. In general, DeRand records the maximum bpb value because this

method is based on histogram mapping where no look-up table is required for perfect

restoration of the original host. Thus, the amount of side information (required for re-

versibility) is relatively low in comparison to other methods, such as uREADS, urDEED

and data fusion. Among methods that depend on look-up table, urDEED achieves the best

bpb value of 0.174. This is because urDEED processes the side information of GRC’s in

a more efficient manner in comparison to the most relevant method, i.e., uReads. Finally,

data fusion records the minimum bpb value of 0.060. This low bpb value is due to the

dependency of urDEED on DSC’s, which consists of lengthy codewords that cannot be

utilized for data fusion in file-size preservation mode, i.e., using the partial coding scheme

(Section 7.4.2 (c)). Consequently, as the number of utilized codewords decreases, the re-

sultant FBR (in bpb) is decreased. These results suggest that, DeRand is superior to other

methods in terms of carrier capacity.

8.4 Reversibility

It was verified that all the aforementioned proposed methods are revisable, where the

original host can be perfectly restored from its modified counterpart. This reversibility

is achieved at the cost of storing side information. For example, uREADS, urDEED and

data fusion generate look-up tables, which are embedded along with the payload (or the
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signal of the smallest size in data fusion), as detailed in Sections 4.3.3 (a), 5.4.2 and 7.4.2

(c), respectively. DeRand generates side information, which consists of the set of mapped

bins in the histogram, as shown in Section 6.5.3. The embedding of side information

along with the payload reduces the effective carrier capacity.

8.5 File-Size Preserving

Conventionally, reversible data embedding methods aim at minimizing file-size expan-

sion. However, the file-size is likely to be expanded due to reversible data embedding,

particularly when a compressed content is utilized as the host (Mobasseri et al., 2010;

Wong et al., 2009; Xuan et al., 2007). Practically, in the scenario where the storage

medium is limited in capacity (e.g., 4.7GB for a single-layer DVD, a USB flash memory)

or cost (e.g., expensive cellular network), an expansion in bitstream size caused by data

embedding may require additional storage medium or higher network traffic.

In the proposed methods, it was verified that the size of the modified host (or signal of

the largest size in data fusion) is exactly of the same size as its original counterpart, ex-

cept DeRand which causes an average file-size increment by 0.41%. Hence, the file-size

preservation property is successfully achieved while achieving universal data embedding.

However, in some proposed methods such as uREADS and urDEED (Sections 4.3 and

5.4), file-size preservation is an achieved at the expense of longer execution time for data

embedding. In particular, uREADS and urDEED need to parse the host three times in

order to embed data, where the final pass is to process and embed excessive data (if any)

to preserve the file-size. In data fusion, file-size preservation is achieved at the expense

of lower FBR because some DSC’s cannot be utilized as they cause file-size increment

(Section 7.4.2 (c)).

122

Univ
ers

ity
 of

 M
ala

ya



8.6 Summary

In this study, a universal domain was first established so that any digital signal can be rep-

resented in it. Next, the concept and implementation of universal parser was proposed as

a mean to define redundancy in any signal when represented in the universal domain. This

redundancy is exploited to embed data universally in any signal based on the proposed

framework for universal data embedding. This framework established the foundation of

four proposed universal data embedding methods, namely, uREADS, urDEED, DeRand,

and the proposed data fusion method. Generally, the main objectives of this study were at-

tained. In particular, the proposed methods are interchangeable and universally applicable

to any digital signal. Furthermore, the proposed methods are reversible hence inserting/-

fusing data causes no data loss. In terms of carrier capacity, all the proposed methods

offer some amount of positive carrier capacities. Hence, defining venues for data embed-

ding/fusion is achievable by the proposed methods. The carrier capacities vary among

the proposed methods, where DeRand achieves the highest carrier capacity. Finally, the

proposed methods are able to modify the input signal X to accommodate/fuse additional

data without increasing its file-size.
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CHAPTER 9

CONCLUSIONS AND FUTURE WORK

9.1 Conclusions

Data embedding is the process of modifying features of a host in order to embed a pay-

load. Conventionally, data embedding is a feature-dependent process and hence each

data embedding method is specifically designed to modify a host of certain features.

The feature-dependency of the conventional data embedding methods restricts their inter-

changeability. Hence, each method operates solely in a certain domain, medium or coding

format. The restricted interchangeability of the conventional data embedding methods

limits the applicability of these methods, hence multiple data embedding methods are re-

quired to embed data in different multimedia contents. As digital multimedia contents

are massively being generated in various formats, the interchangeability of data embed-

ding should be considered. In this study, the problem of the limited interchangeability

among most of the conventional data embedding methods was considered. Generally, in

the current literature, a universal data embedding is nonexistent.

This study aimed at studying the novel concept and implementation of universal data em-

bedding, which can be interchangeably applied to any digital signal. Generally, universal

data embedding methods were designed to operate in a domain referred to as the universal

domain in which all digital signals live. The general framework of universal data embed-

ding is proposed, and it consists of four stages, namely, defining the signal in the universal

domain, universal parsing, mapping and data embedding. Generally, any signal is defined

in the universal domain by extracting two features, namely, the size of the signal and the

unique position of the symbols of the signal. The universal parser segments the signal
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into partitions of unified length. Theoretically, it has been proven that this partitioning

process changes the entropy and hence redundancy of the signal (based on the length L),

where this redundancy can be replaced by the payload. The mapping and data embedding

were achieved by four proposed methods, namely, uREADS, urDEED, DeRand and data

fusion

The proposed uREADS (Chapter 4) is based on mapping the universally parsed signal

to a set of modified GRC’s, which are processed to accommodate a payload. uREADS

embeds external information and excessive zeros (if any) in the quotient part of GRC

using Algorithm 1 in order to preserve the size of the modified signal. This method

is completely reversible and universally applicable to any digital signal. In addition,

uREADS achieves on average carrier capacity of 0.030 bpb. However, in uREADS, some

parameters, such as L and R are manually tuned.

The proposed urDEED (Chapter 5) is based on mapping the universally parsed signal to

a set of modified GRC’s. Unlike uREADS, urDEED proposes a novel scheme to embed

the excessive zeros in the quotient part along with the payload. This scheme allows the

definition of constant optimum values for L and r, which are 3 and 1, respectively. ur-

DEED can be effectively applied to the encrypted signals, viz., urDEED operates solely

in the encrypted domain. In contrast, the conventional data embedding methods in the

encrypted domain, such as the method proposed by (Zhang, 2012), requires partial de-

cryption or knowledge of the features of the signal prior to the encryption. Hence these

methods are not solely operational in the encrypted domain. In addition, unlike Zhang’s

method (Zhang, 2012), urDEED can operate independently from the encryption scheme

applied to the signal. In other words, urDEED can operate in any signal encrypted by

any encryption scheme. Also, urDEED is superior to Zhang’s method (Zhang, 2012) in

terms reversibility, universal applicability and carrier capacity, where urDEED achieves

an average carrier capacity of ∼ 0.169 bpb while ensuring perfect reconstruction of the
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original signal. However, urDEED is not applicable to signals of high entropy such as

random signals because when urDEED is applied to these signals, all venues for data

embedding is occupied by the side information.

The proposed DeRand (Chapter 6) is based on histogram mapping. DeRand overcomes

the inability of urDEED to embed data in high entropy signals. Practically, DeRand is ap-

plicable to any signal, including those that are random in natural or of undefined feature,

such as signals exchanged over the communication networks. DeRand applies the univer-

sal parser recursively to define redundancy in a signal regardless of its original statistical

features. Theoretically, it is shown that the universal parser can certainly define empty

bins in the histogram of any signal. The defined empty bins are utilized for data embed-

ding, where non-vacant bins are mapped to vacant bins. It was verified that the proposed

DeRand can successfully embed data in high entropy signals such as randomly generated

signals. DeRand is reversible and universally applicable to any signal X . In addition, its

performance in terms of carrier capacity and visual quality is scalable. The maximum

carrier capacity obtained at file-size preserving mode is 0.405 bpb at SSIM=0.262.

Data fusion (Chapter 7) is proposed as a novel concept that generalizes the concept of

data embedding. In particular, data fusion realizes the concept of associating any two

(or more) signals into a single entity regardless their features. Hence, data fusion is not

limited by the concept of data embedding, which is embedding a payload into a host

by means of modifying the host’s features. In addition, the number of signals to fuse

can exceed two signals. The applications of data fusion can be tailored for metadata

management, watermarking, fingerprinting and any application that processes associated

data. Data fusion is achieved in the universal domain, where the universal parser is ap-

plied to define redundancy in the signal of the largest size (between the two involved in

data fusion). The tuples obtained by the universal parser are mapped to DSC, which is

a novel entropy coding in which case each codeword can accommodate two independent
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data simultaneously. The mapping to DSC is achieved by two proposed coding schemes,

namely, basic and partial coding schemes. The basic coding scheme is based on mapping

all tuples to DSC’s. This may cause a file-size increment. However, the average FBR

for this coding scheme is 0.640 bpb. The partial coding scheme is based on the selection

of some tuples for mapping DSC’s such that no file-size increment occurs. Here, three

modes are achievable by using this coding scheme, namely, file-size preserving, compres-

sion and partial compression. In the file-size preserving mode, the average FBR is 0.060

bpb. In the compression mode, it is observed that the compression ratio is up to 1.03513

while achieving a FBR of 0.01590 bpb.

Generally, all the proposed methods are reversible and file-size preserving. The perfor-

mance of the proposed methods varied in terms of carrier capacity. Last but not least, all

the proposed methods are universal and interchangeably applicable to any signal.

9.2 Future Work

Generally, the contributions made in this study can be exploited to extend the applications

of data embedding. Particularly, the proposed universal data embedding methods can

be deployed to achieve the applications of data association. In addition, the practical

utilization of data fusion in metadata management shall be considered. Also, DSC can

be potentially applied in the security related areas, such as steganography. Furthermore,

DSC can be invoked as an entropy coding scheme for data compression. Technically,

the generated side information by the proposed methods should be reduced in order to

increase the effective carrier capacity. Last but not least, the complexity of the universal

data embedding methods should be decreased for the deployment on smart tablet, smart

phone, and battery-powered devices.
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APPENDIX A

LIST OF ACRONYMS AND ANNOTATIONS

Table A.1: LIST OF ACRONYMS AND ANNOTATIONS

Symbol Meaning

X The input signal

xg A symbol of position g in X

F The universal set of features

F A subset of features

A A set of alphabets

AL A set of all possible arrangements of alphabets (derived from A of length L)

UA The universal domain of alphabets derived from A

N The size of the input signal X

IC Imaginary Codeword

λL The total number of tuples of length L

L The partitioning length in the universal parser

T L
t A tuple of L symbols of position t in XL

Θavg The average length of codewords that encode XL

D The ordering function in the universal parser

P(X) The probability of X

H(X) The entropy of X

I(X) The self-information of X

θ(T L
v ) The length of a codeword required to encode T L

v

Continued on Next Page. . .
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Table A.1 – Continued

Symbol Meaning

ρL The amount of redundancy in XL

GRC Golomb-Rice Code

DSC Dual Semantic Code

MRI Measurement of Relative Interchangeability

Craw The raw carrier capacity

Ce The effective carrier capacity

µ The number of possible models to which X can be transformed to

ζ A non-ideal coding scheme

σ A parsing coefficient

S The side information

j The length of quotient part in GRC

κ The length of trimmed quotient parts in GRC’s (urDEED)

M The number of IC’s of count “0” in the histogram (urDEED)

ρ A scalability parameter in DeRand

AL A set of tuples in XL of length ρ in DeRand

BL A set of tuples in ẊL of length ρ in DeRand

GE General Expression

ζ The size of EBI codeword

ω The number of occurrences of term d in GE

µ The number of possible models to which X can be transformed to

O The order of data association

P The set of all possible binary sequences of length n

Continued on Next Page. . .
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Table A.1 – Continued

Symbol Meaning

ψω The total number of codewords generated by a set of GE

Ξ The fusion function

S The state of y in EBI

T (X) The size (in bits) of X

Πcq The amount of removed bits due to mapping T L
t to cq

C A set of DSC codewords

cq A single codewords of position q in C

QC A set consists of all EBI of T (cq)< L

Λ The total number of removed bits in the partial coding scheme

R The amount of redundancy

d Starting bits in DSC

z Information bits in DSC

y Ending bits in DSC
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