TABLE OF CONTENTS

ABSTRACT	ii
ABSTRAK	iv
ACKNOWLEDGMENT	vi
DEDICATION	vii
TABLE OF CONTENTS	viii
LIST OF TABLES	xvi
LIST OF FIGURES	xviii
LIST ABBREVIATIONS	xxix
LIST OF NOTATIONS	xxxiii

CHAPTERS

1 REVIEW AND INTRODUCTION

1.1	History and Evolution of OCDMA Technology	1
1.2	Overview on Multiple Access Techniques	3
	1.2.1 Time Division Multiple Access (TDMA)	4
	1.2.2 Frequency Division Multiple Access (FDMA)	4
	1.2.3 Wavelength Division Multiple Access (WDMA)	5
	1.2.4 Code Division Multiple Access (CDMA)	7
1.3	Problem Statements	9
	1.3.1 OCDMA Impairments and Challenges	10
	1.3.2 Conventional Solutions	11
	1.3.3 Deficiencies of Existing Work	13
1.4	Motivations and Objectives of the Work	16
1.5	Contributions	20
1.6	Scope of Work and Comparative Study	23
1.7	Thesis Organization	26
1.8	Summary	30

2 OPTICAL CODE DIVISION MULTIPLE ACCESS TECHNIQUE

Characte	eristics, Properties and Merits of OCDMA	32
Spread-S	Spectrum Techniques	34
2.2.1	Direct Sequences Spread-Spectrum	35
2.2.2	Frequency Hopping Spread-Spectrum	35
OCDMA	A Architecture and Equipment	36
2.3.1	Transmitter Model	41
2.3.2	Receiver Model	42
OCDMA	A Encoder and Decoder	43
2.4.1	Fiber Delay Lines	43
2.4.2	Arrayed Waveguide Grating and Planar	44
	Light-wave Circuit	
2.4.3	Super-structured Fiber Bragg Grating	45
	Character Spread-S 2.2.1 2.2.2 OCDMA 2.3.1 2.3.2 OCDMA 2.4.1 2.4.2 2.4.3	 Characteristics, Properties and Merits of OCDMA Spread-Spectrum Techniques 2.2.1 Direct Sequences Spread-Spectrum 2.2.2 Frequency Hopping Spread-Spectrum OCDMA Architecture and Equipment 2.3.1 Transmitter Model 2.3.2 Receiver Model OCDMA Encoder and Decoder 2.4.1 Fiber Delay Lines 2.4.2 Arrayed Waveguide Grating and Planar Light-wave Circuit 2.4.3 Super-structured Fiber Bragg Grating

2.5	OCDMA	Encoding and Decoding Techniques	45
	2.5.1	Coherent Coding	46
		2.5.1.1 Temporal Phase Coding	46
		2.5.1.2 Spectral Phase Coding	47
	2.5.2	Incoherent Coding	47
		2.5.2.1 Temporal Spreading Coding	48
		2.5.2.2 Spectral Intensity Coding	48
2.6	OCDMA	Codes	49
	2.6.1	Prime Codes	49
	2.6.2	Maximal Length Sequences	50
	2.6.3	Walsh-Hadamard Codes	50
2.7	OCDMA	Detection Techniques	51
	2.7.1	Coherent Detection	52
	2.7.2	Direct Detection	52
2.8	Codes Co	orrelations Properties	53
	2.8.1	Cross Correlation	53
	2.8.2	Auto Correlation	54
2.9	Multi-Us	er Interference Reduction Techniques	55
	2.9.1	Time Gating	56
	2.9.2	Thresholding	56
2.10	OCDMA	Network and Topology	57
	2.10.1	Access Network	57
	2.10.2	Metropolitan Area Network	58
2.11	Packet Sy	witched Network	59
	2.11.1	Random Process	60
	2.11.2	Traffic Arrival	61
2.12	Summary	Į.	62

3 SYSTEM DEVELOPMENT, CONFIGURATIONS AND DESIGN CONSIDERATIONS

3.1	Tree Dia	agram of Work	64
	3.1.1	Standard OCDMA System	66
	3.1.2	Intensity Modulation Direct Detection System	66
	3.1.3	External Modulation (NRZ-MZM System)	70
	3.1.4	Differential Phase Shift Keying	70
		(NRZ-DPSK System)	
	3.1.5	Differential Quadrature Phase Shift Keying	75
		(NRZ-DQPSK System)	
3.2	System	Development and Descriptions	78
	3.2.1	Transmitter Architecture	78
	3.2.2	MUI Reduction	84
	3.2.3	Encoder and Decoder	85
	3.2.4	Receiver Architecture	91

3.3	Design Co	onfigurations	and Considerations	92
	3.3.1	Design Par	ameters	93
		3.3.1.1	Simulation Parameters	93
			3.3.1.1.1 MAN Transmission Distance	94
			3.3.1.1.2 Transmission Bit Rate	94
			3.3.1.1.3 Number of Active Users	95
		3.3.1.2	System Parameters	95
			3.3.1.2.1 Laser Source	96
			3.3.1.2.2 Gain Controlled Amplifier	97
		3.3.1.3	Code Set Parameters	97
		3	3.3.1.3.1 Code Weight	98
			3.3.1.3.2 Chip Length	99
			3.3.1.3.3 Chip Spacing	101
	3.3.2	Performance	ce Parameters	103
		3.3.2.1 I	Bit Error Rate	104
		3.3.2.2 I	Received Power	104
		3.3.2.3 I	Eye Diagram	105
		3.3.2.4 I	Dispersion Value	106
		3.3.2.5	Noise Power Density	107
		3.3.2.6	Signal-to-Noise Ratio	108
	3.3.3	Noise Sour	ces and Interferences Considerations	108
		3.3.3.1	inter Symbol Interference	109
		3.3.3.2	Phase Noise and Beat Noise	110
		3.3.3.3	Shot Noise	110
		3.3.3.4	Thermal Noise	111
		3.3.3.5 I	Multi-User Interference	112
3.4	Encoding	Scheme and	Code Set Parameters	112
	3.4.1	Seven Chip	os Model	113
		3.4.1.1	Unipolar Encoding	114
		3.4.1.2	Bipolar Phase Encoding	114
	3.4.2	Twenty Fiv	ve Chips Model	114
		3.4.2.1	Bipolar Phase Shift	116
		3.4.2.2	Multilevel Phase Shift	116
	3.4.3	Twenty Ch	ips Model	117
	3.4.4	Eighteen C	hips Model	118
	3.4.5	Fifteen Chi	ips Model	118
	3.4.6	Sixteen Ch	ips Model	120
	5.4.7	I hirty One	Chips Model	121
2.5	3.4.8	Sixty Three	e Chips Model	122
3.5	Summary			126

SYSTEM 4.1 Evaluation of Encoding/Decoding in Four Channels System 128 4.1.1 Twenty Five Chips Model 130 - Encoded/decoded Signal and 130 **Optical Spectrum** - System Performance over Received 134 Power and Input Power 4.1.2 Twenty Chips Model 135 - Encoded/Decoded Signal and 135 **Optical Spectrum** - System Performance over Received 138 Power and Input Power 4.1.3 **Eighteen Chips Model** 138 - Encoded/Decoded Signal 138 - System Performance over Received 140 Power and Input Power 4.1.4 Fifteen Chips Model 140 - Encoded/Decoded Signal and 140 **Optical Spectrum** - System Performance over Received 142 Power and Input Power 4.1.5 Sixteen Chips Model 143 - Encoded/Decoded Signal and 143 **Optical Spectrum** - System Performance over Received 145 Power and Input Power 4.1.6 Thirty One Chips Model 146 - Encoded and Decoded Signal 146 4.2 Optimization in Two Channels Sixteen Chips System 147 - Optimal MUI Reduction 149 - Optimal BER based on User 1 152 (Tradeoff BER based on User 2) - Optimal BER based on User 2 153 (Tradeoff BER based on User 1) 4.3 Optimization in Two Channels Seven Chips System 153 - Optimal MUI Reduction 154 - Optimal BER based on User 1 161 (Tradeoff BER based on User 2) - Optimal BER based on User 2 161 (Tradeoff BER based on User 1) 4.4 Back-to-Back System Evaluation 162 - Two Channels System 163 - Four Channels System 163 4.5 Effect of Design Parameters to System Performance 165 4.5.1 **Code Set Parameters** 165 - Code Weight 165 - Chips Length 166

4

	4.5.2	System Parameters	167
		- Gain Controlled Amplifier	167
		- Laser Power	169
		- Pulse Type	170
	4.5.3	Simulation Parameters	171
		- MAN Transmission Distance	172
		- Twenty Five Chips Model	172
		- Twenty Chips Model	174
		- Eighteen Chips Model	175
		- Fifteen Chips Model	176
		- Sixteen Chips Model	177
		- Transmission Bit Rate	178
4.6	Enhance	ment of System Performance	181
		- Optimal MUI Reduction	181
		- Optimal OC Model	183
4.7	Compari	son on the Encoding Schemes	184
		- Unipolar and Bipolar Encoding	184
		- OC ₂₅ and OC ₂₀ Models	185
		- OC_{25} and OC_{18} Models	187
		- OC_{25} and OC_{15} Models	188
		- OC_{25} and OC_{16} Models	189
4.8	Summar	у	190
4.9	Contribu	ition	191
4.10	Enhance	ment	192
4.11	Compara	ative Study	193
4.12	Conclusi	ion	197

5 APPLICATION ON OCDMA METROPOLITAN AREA NETWORK

5.1	Four Channels, NRZ-MZM System	200
	- BER over MAN Transmission Distance	200
	and Measured SNR	
	- Demonstration on BER Improvement	201
	- Dispersion Compensating Fiber	202
	- Encoding/Decoding Scheme	202
5.2	Four Channels, DPSK System	203
	- BER over MAN Transmission Distance	204
	and Measured SNR	
	- Demonstration on BER Improvement	205
	- Differential Approach	205
	- Dispersion Compensating Fiber	206
	- Encoding/Decoding Scheme	207
	- Analysis and Improvement of Eye Diagram	208
	- Effect of Modulation Technique	208
	- Effect of Transmission Distance	209

5.3	Four Channels, DQPSK System	210
	- BER over MAN Transmission Distance	211
	and Measured SNR	
	- Demonstration on BER Improvement	212
	- Differential Approach	212
	- Dispersion Compensating Fiber	213
	- Encoding/Decoding Scheme	213
	- Multilevel Phase shift	214
5.4	Evaluation of Performance on Different Encoding Schemes	215
5.5	Performance Enhancement and Evaluation	216
	- Single Channel Before Transmission	217
	- Multi-Wavelength System	218
5.6	Investigation on Physical Layer Parameters	219
	5.6.1 Noise Power Density	220
	- Bit Error Rate and SNR	221
	- Analysis of Eye Diagram	222
	5.6.2 Chromatic Dispersion	223
	- Bit Error Rate	224
	- Analysis of Eye Diagram	225
	- Effect of Modulation Technique	225
	and Distance via Multilevel	
	Phase Shift	
	- Effect of Modulation Technique	228
	and Bit Rate via Multilevel	
	Phase Shift	
	- Effect of Modulation Technique	230
	and Bit Rate without	
	Optimization	
5.7	Code Mismatch and Inconsistency of User Performance	232
	- BER over MAN Transmission Distance	232
	and Measured SNR	
	- Analysis of Eye Diagram	233
	- Effect of Distance for OC ₃₁ Model	234
	- Effect of Distance for OC ₁₅ Model	235
5.8	Summary	236
5.9	Contribution	237
5.10	Enhancement	238
5.11	Comparative Study	238
5.12	Conclusion	240

6 EVALUATION OF SUSTAINABILITY AND FEASIBILITY IN MULTIPLE USERS METROPOLITAN AREA NETWORK

6.1	Implement	ation in Four Users System	243
	6.1.1	NRZ-MZM System under Aggregated Traffic	243
	6.1.2	NRZ-DPSK System under Aggregated Traffic	244
	6.1.3	NRZ-DQPSK System	245
		- Measured SNR and Aggregated Traffic	245
		- Analysis of Eye Diagram	247
		- Effect of Transmission Rate	248
		without MUI Reduction	
		- Effect of Transmission Distance	248
		without MUI Reduction	
6.2	Implement	ation in Eight Users System	250
	6.2.1	NRZ-MZM System	251
		- Demonstration on BER Improvement	251
		- Analysis of Eye Diagram	252
		- Measurement of Sample-Time	253
	6.2.2	NRZ-DPSK System	254
		- Measured SNR and Aggregated Traffic	254
		- Demonstration on BER Improvement	255
		- Dispersion Compensating Fiber	256
		- Encoding/decoding Scheme	256
		- Analysis of Eye Diagram	258
		- Effect of Transmission Rate	258
		without MUI Reduction	
	6.2.3	NRZ-DOPSK System	260
		- Measured SNR and Aggregated Traffic	260
		- Analysis of Eve Diagram	262
		- Effect of Transmission Distance	262
		without Optimization	
		- Effect of MUI Reduction and	263
		OC Model at Different Bit Rate	
6.3	Implement	ation in Twelve Users System	267
	6.3.1	NRZ-DPSK System	268
		- BER at Measured SNR	268
		- Analysis of Eye Diagram	269
		- Effect of Transmission Distance	270
		- Effect of Transmission Distance	270
		without MUI Reduction	
	6.3.2	NRZ-DOPSK System	271
		- BER at Measured SNR	272
		- Analysis of Eye Diagram	272
		- Effect of OC Model and MUI	273
		Reduction	
		- Effect of OC Model	274
6.4	Summarv		275
6.5	Contributio	ons	276
6.6	Enhancem	ents	276
6.7	Comparati	ve Study	277
6.8	Conclusion	1	282

7 CONCLUSION

7.1	Introduct	tion	283
	7.1.1	Contributions	285
	7.1.2	Enhancements and Comparative Study	287
7.2	Recomm	endations for Future Work	289
7.3	Summar	у	297

BIBLIOGRAPHY	300
BIODATA	316
PUBLICATION	317
APPENDIX	318