LIST OF FIGURES

Figure 1.1	Architectural model of wireless CDMA network.
Figure 1.2	The multiple-access techniques and design issues in an optical network.
Figure 1.3	The classifications of wavelength division multiplexing techniques.
Figure 1.4	Implementation of multiple wavelengths in a WDM system.
Figure 1.5	Optical labels used in a MPLS enabled OCDMA system.
Figure 1.6	The key components used in an OCDMA system.
Figure 1.7	The encoder (transmitter), decoder (receiver) and the correlation process (code-matching) in an OCDMA system.
Figure 1.8	The conventional solutions, design issues and system limitations in OCDMA.
Figure 1.9	The motivations, objectives and scope of work for MAN optimization.
Figure 2.1	Connections in an OCDMA system by using star topology.
Figure 2.2	Encoder (transmitter) and decoder (receiver) models in an OCDMA system.
Figure 2.3	Different code sets transmit at multiple wavelengths.
Figure 2.4	Mapping of the source and destination nodes by different codes.
Figure 2.5	Key functional blocks in an optical packet switched network.
Figure 2.6	The key elements in an optical switch and label processing.
Figure 2.7	The encoded signals in a direct-sequence OCDMA by using FDLs.
Figure 2.8	FDL-based coherent, direct-sequence OCDMA system.
Figure 2.9	Optical correlations for matched and unmatched codes at the receiver.
Figure 2.10	The connections of terminal equipment in a local area network.
Figure 2.11	Architectural model of a metropolitan area network.
Figure 2.12	Modes of traffic and arrival rates in a packet-switched network.

- Figure 2.13 Traffic patterns in an optical packet-switched network.
- Figure 3.1 The key design considerations in a real optical network.
- Figure 3.2 The key design parameters and performance parameters using various OC models in different systems for MAN optimization.
- Figure 3.3 Integrated formulation (four key aspects) to be applied in a standard OCDMA system for optimization.
- Figure 3.4 Simplified equivalent system model 1 (transmitter).
- Figure 3.5 Simplified equivalent system model 1 (receiver).
- Figure 3.6 Simplified equivalent system model 2 (transmitter).
- Figure 3.7 Simplified equivalent system model 2 (receiver).
- Figure 3.8 Simplified equivalent system model 3 (transmitter).
- Figure 3.9 Simplified equivalent system model 3 (receiver).
- Figure 3.10 Simplified equivalent system model 4 (transmitter).
- Figure 3.11 Simplified equivalent system model 4 (receiver).
- Figure 3.12 Standard optical encoder/decoder in an OCDMA system.
- Figure 3.13 A standard OCDMA system in star configuration.
- Figure 3.14 The simplified equivalent MZM structure.
- Figure 3.15 A standard multiple-access network without MUI reduction.
- Figure 3.16 The working principles of a FBG.
- Figure 3.17 Simplified equivalent structure of FBG and the signal propagations.
- Figure 3.18 Development of OC models and generation of unique sequences based on the design parameters and grating configurations.
- Figure 3.19 Correlation process at the decoder and the recovered signal.
- Figure 3.20 Summary of simulation parameters.
- Figure 3.21 The code weights in an optical code sequences.
- Figure 3.22 Code patterns for $OC_{(1,4,10,25)}$.
- Figure 3.23 Code sequences with 7 chips, variable weight.

- Figure 3.24 Chipping pattern of $OC_{(1,10,13,28)}$.
- Figure 3.25 Bipolar impulse sequences.
- Figure 3.26 Bipolar pulse sequences.
- Figure 3.27 BER estimation models.
- Figure 3.28 Standard parameters in an eye diagram measurement.
- Figure 3.29 Simplified schematic diagram of a photo detector.
- Figure 3.30 Unique sequences generated by OC₂₅ model.
- Figure 3.31 Unique sequences generated by OC₂₀ model.
- Figure 3.32 Unique sequences generated by OC_{18} model.
- Figure 3.33 Unique sequences generated by OC₁₅ model.
- Figure 3.34 Unique sequences generated by OC_{16} model.
- Figure 3.35 Unique sequences generated by OC₃₀ model.
- Figure 3.36 Grating configurations for OC_{63} model.
- Figure 3.37 The decoded signals (unique sequences) by using different OC models before optimization.
- Figure 3.38 Development of optimized MAN and key design considerations.
- Figure 4.1 Development of an intensity modulation, direct detection system and the design considerations for MAN optimization.
- Figure 4.2 Signals observed at different stages using OC_{25} in 10 km transmission before optimization.
- Figure 4.3 Signal observation at different stages using OC_{25} in 50 km transmission before optimization.
- Figure 4.4 Optical spectrum measured at encoder and decoder using OC₂₅.
- Figure 4.5 BER over received power and input power using RZ-OOK-OC₂₅ in a four-channel system.
- Figure 4.6 Signals observed at different stages using OC_{20} in 40 km transmission before optimization.
- Figure 4.7 Optical spectrum measured at encoder and decoder using OC_{20} .
- Figure 4.8 BER over received power and input power using RZ-OOK-OC₂₀ in a four-channel system.

Figure 4.9	Signals observed at different stages using OC_{18} in 40 km transmission before optimization.
Figure 4.10	Estimation of optimal sample time, ps in a four-channel system at bit rate of 2.5 Gbps.
Figure 4.11	BER over received power and input power using RZ-OOK-OC $_{18}$ in a four-channel system.
Figure 4.12	Signals observed in 40 km transmission using OC_{15} before optimization.
Figure 4.13	Optical spectrum and eye diagram measured at encoder/decoder using OC_{15} .
Figure 4.14	BER over received power using RZ-OOK-OC $_{15}$ in a four-channel system.
Figure 4.15	Signals observed at different stages in 40 km transmission using OC_{16} before optimization.
Figure 4.16	Optical spectrum and eye diagram measured at encoder/decoder using OC_{16} .
Figure 4.17	BER over received power using RZ-OOK-OC $_{16}$ in a four-channel system.
Figure 4.18	Signals observed at different stages using OC_{31} in 10 km transmission before optimization.
Figure 4.19	Received power over DCF length measured at 50 km and 100 km transmissions at $P_{r(max)}$ and $P_{r(min)}$.
Figure 4.20	Optimal dispersion compensating fiber lengths in 5 km to 50 km transmissions measured at $P_{r(max)}$ and $P_{r(min)}$ in a two-channel, 16 chips (variable code weights) system.
Figure 4.21	Optimal dispersion compensating fiber lengths in 60 km to 100 km transmissions measured at $P_{r(max)}$ and $P_{r(min)}$ in a two-channel, 16 chips (variable code weight) system.
Figure 4.22	Optimal BER (user 1) and tradeoff BER (user 2) measured at $P_{r(max)}$ and $P_{r(min)}$ using 16 chips.
Figure 4.23	Optimal BER (user 2) and tradeoff BER (user 1) measured at $P_{r(max)}$ and $P_{r(min)}$ using 16 chips.
Figure 4.24	Encoded/decoded signals, eye diagram, phase shifts and chipping patterns measured in a two-channel, 7 chips system.
Figure 4.25	Received power over dispersion compensating fiber lengths measured at 50 km and 100 km transmissions.

Figure 4.26	Optimal dispersion compensating fiber lengths in 5 km to 50 km transmissions measured at $P_{r(max)}$ and $P_{r(min)}$ in a two-channel, 7 chips (variable code weights) system.
Figure 4.27	Optimal dispersion compensating fiber lengths in 60 km to 100 km transmissions measured at $P_{r(max)}$ and $P_{r(min)}$ in a two-channel, 7 chips (variable code weights) system.
Figure 4.28	Optimal dispersion compensating fiber lengths in 5 km to 40 km transmissions measured at $P_{r(max)}$ and $P_{r(min)}$ in a two-channel, 7 chips system with reduction of $P_{in(peak)}$.
Figure 4.29	Optimal BER (user 1) and tradeoff BER (user 2) measured at $P_{r(max)}$ and $P_{r(min)}$ by using 7 chips.
Figure 4.30	Optimal BER (user 2) and tradeoff BER (user 1) measured at $P_{r(max)}$ and $P_{r(min)}$ by using 7 chips.
Figure 4.31	Back-to-back measurement in a two-channel, 7 chips (variable code weights) system.
Figure 4.32	Back-to-back measurement in a four-channel, 25 chips (constant code weight) system.
Figure 4.33	Effect of code weights in a two-channel, variable code weights system.
Figure 4.34	Effect of chip lengths and code weights in a two-channel system.
Figure 4.35	Effect of gain controlled amplifier measured before transmission in a two-channel, 7 chips system.
Figure 4.36	Effect of input power in a four-channel, 25 chips system (left) and two-channel, 7 chips system (right).
Figure 4.37	Effect of pulse type (Gaussian) in a two-channel, 7 chips system to the encoded/decoded signal, eye diagram and optical spectrum.
Figure 4.38	Effect of transmission distances in a four-channel system using OC_{25} with (left) and without (right) MUI reduction.
Figure 4.39	Effect of transmission distances in a four-channel system using OC_{20} with MUI reduction.
Figure 4.40	Effect of transmission distances in a four-channel system using OC_{18} with MUI reduction.
Figure 4.41	Effect of transmission distances in a four-channel system using OC_{15} with MUI reduction.
Figure 4.42	Effect of transmission distances in a four-channel system using OC_{16} with MUI reduction.

Figure 4.43	BER over received power measured at different transmission bit rates in a two-channel system.
Figure 4.44	Encoded/decoded and recovered signals measured in a two- channel, 7 chips system at 2.5 Gbps.
Figure 4.45	Effect of transmission bit rates in a four-channel system using OC_{20} model (left) and OC_{25} model (right).
Figure 4.46	System performance enhancement with MUI reduction in a four- channel system using OC_{25} model measured at $P_{r(max)}$ and $P_{r(min)}$.
Figure 4.47	Received power over MAN distances with and without MUI reduction measured at $P_{r(max)} \text{and} P_{r(min)}.$
Figure 4.48	System performance enhancement with MUI reduction in a two- channel, 16 chips (variable code weights) system measured at $P_{r(max)}$ and $P_{r(min)}$ based on optimal and tradeoff results for user 1 (left) and user 2(right).
Figure 4.49	System performance enhancement using 7 chips and 16 chips in a two-channel system (variable code weights) measured at $P_{r(max)}$ and $P_{r(min)}$ based on optimal and tradeoff results for user 1 (left) and user 2 (right).
Figure 4.50	Comparative analysis on unipolar and bipolar encodings (three different schemes) in a two-channel system using 7 chips.
Figure 4.51	Comparative analysis of OC_{20} and OC_{25} in a four-channel system at 5 Gbps.
Figure 4.52	Comparative analysis of OC_{20} and OC_{25} in a four-channel system at 2.5 Gbps over MAN transmission distances with MUI reduction measured at $P_{r(max)}$ and $P_{r(min)}$.
Figure 4.53	Comparative analysis of OC_{18} and OC_{25} in a four-channel system at 2.5 Gbps over MAN transmission distances with MUI reduction measured at $P_{r(max)}$ and $P_{r(min)}$.
Figure 4.54	Comparative analysis of OC_{15} and OC_{25} in a four-channel system at 2.5 Gbps over MAN transmission distances with MUI reduction measured at $P_{r(max)}$ and $P_{r(min)}$.
Figure 4.55	Comparative analysis of OC_{16} and OC_{25} in a four-channel system at 2.5 Gbps over MAN transmission distances with MUI reduction measured at $P_{r(max)}$ and $P_{r(min)}$.
Figure 5.1	Application in MAN by using integrated optimization formulation.
Figure 5.2	BER improvement in a four-user, NRZ-MZM system using different OC models.

Figure 5.3	Required SNR for a specific BER in a four-user, NRZ-MZM system.
Figure 5.4	BER improvement in a four-user, NRZ-MZM system with and without MUI reduction using different OC models.
Figure 5.5	BER improvement using NRZ-MZM-OC ₂₅ model and the measured threshold values.
Figure 5.6	BER improvement in a four-user, NRZ-DPSK system using OC_{25} and OC_{20} models.
Figure 5.7	The required SNR for a specific BER in a four- user, NRZ-DPSK system (with precoding) and RZ-OOK system (without precoding).
Figure 5.8	BER improvement by comparing NRZ-DPSK (with precoding) and RZ-OOK (without precoding) using OC_{25} and O_{20} models.
Figure 5.9	Optimization in a four-user, DPSK system for 5 km to 100 km transmissions.
Figure 5.10	BER improvement using different encoding schemes in a four- user, DPSK system and the PDF of symbol error rate (SER) estimation.
Figure 5.11	Effect of optimization in a four-user system measured in 5 km and 100 km transmissions at 10 Gbps using Sechant source (transmitter).
Figure 5.12	Effect of transmission distances and filtering in a RZ-OOK system.
Figure 5.13	BER improvement using OC ₂₅ in a four-user, DQPSK system.
Figure 5.14	The required SNR for a specific BER in a four-user, NRZ-DQPSK- OC_{25} system.
Figure 5.15	BER improvement in a four-user, RZ-OOK-OC ₂₅ system (without precoding).
Figure 5.16	SNR required for a specific BER in a four-user, NRZ-DQPSK with MUI reduction.
Figure 5.17	Multilevel phase shifts in a four-user, NRZ-DQPSK system using OC_{25} and OC_{20} models with MUI reduction
Figure 5.18	SNR and BER measured in an eight-user system using different encoding schemes.
Figure 5.19	BER improvement using OC_{25} in different modulation systems measured before transmission without MUI reduction.

Figure 5.20	BER improvement using NRZ-MZM-OC ₂₅ in comparison with multi-wavelength system with MUI reduction.
Figure 5.21	Effect of noise power density on BER in a four-user, NRZ-DPSK system measured in 5 km and 100 km transmission.
Figure 5.22	BER and SNR measured in a four-user, NRZ-DQPSK system at different noise power densities.
Figure 5.23	Effect of noise power density in 5 km and 100 km transmissions using NRZ-DQPSK-OC model.
Figure 5.24	Effect of dispersion levels in 10 km and 20 km transmissions at 40 Gbps without MUI reduction using different modulation techniques and OC models.
Figure 5.25	Effect of modulation techniques and transmission distances at 10 Gbps using multilevel phase shift in 10 km and 50 km transmissions.
Figure 5.26	Effect of modulation techniques and transmission distances at 10 Gbps using multilevel phase shift in 100 km transmission.
Figure 5.27	Effect of modulation techniques and transmission bit rates using multilevel phase shift at 40 Gbps.
Figure 5.28	Effect of modulation techniques and transmission bit rates with MUI reduction at 10 Gbps (without optimization in encoding scheme).
Figure 5.29	Effect of modulation techniques and transmission bit rates with MUI reduction at 40 Gbps (without optimization in encoding scheme).
Figure 5.30	Inconsistency of user performances in NRZ-DQPSK-OC ₃₁ (left) and NRZ-DQPSK-OC ₁₅ (right) system.
Figure 5.31	BER measured at user 4 using OC_{31} model and user 1 using OC_{15} model in NRZ-DQPSK system.
Figure 5.32	Inconsistency of user performances where user 1 achieves satisfactory performance whereas other users encounter similar deterioration patterns.
Figure 5.33	Eye diagrams measured in a four-user, DQPSK system in 5 km and 100 km transmissions using OC_{15} model.
Figure 6.1	Investigation on the feasibility of integrated formulation in MAN optimization under higher aggregated traffic and user numbers.
Figure 6.2	BER improvement in 4-user, NRZ-MZM-OC system at 20 Gbps and 40 Gbps.

Figure 6.3	BER over transmission distances in a four- user system using NRZ-DPSK-OC measured at 10 Gbps, 20 Gbps and 40 Gbps without MUI reduction.
Figure 6.4	SNR required for a specific BER in a four-user system measured at 20 Gbps ad 40 Gbps without MUI reduction using NRZ-DQPSK-OC.
Figure 6.5	BER over transmission distances and the required SNR in a four- user system using NRZ-DQPSK-OC at 10 Gbps, 20 Gbps and 40 Gbps without MUI reduction.
Figure 6.6	Eye diagrams measured in a four-user, NRZ-DQPSK system at 10 Gbps and 20 Gbps without MUI reduction and optimization.
Figure 6.7	Eye diagrams measured in a four-user, NRZ-DQPSK system at 40 Gbps without MUI reduction and optimization.
Figure 6.8	NRZ-DQPSK-OC in a four-user system at 40 Gbps without MUI reduction.
Figure 6.9	8-user, NRZ-MZM-OC system at 10 Gbps with and without MUI reduction.
Figure 6.10	Eye openings and Q-value over sample time in eight-user, NRZ-MZM system.
Figure 6.11	Sample time and PDF used for BER estimation in 8-user, NRZ-MZM system.
Figure 6.12	SNR required for a specific BER in an eight-user system using NRZ-DPSK measured at 10 Gbps.
Figure 6.13	BER improvement in an eight-user, NRZ-DPSK system measured at 10 Gbps, 20 Gbps and 40 Gbps with and without MUI reduction.
Figure 6.14	BER improvement using MUI reduction in an eight-user, DPSK system measured at 10 Gbps.
Figure 6.15	BER improvement using integrated formulation in an eight-user, DPSK system measured at 10 Gbps.
Figure 6.16	Effect of user numbers to BER in an eight-user, DPSK system for 5 km to 100 km transmissions.
Figure 6.17	Eye diagram measurements on the effect of transmission rates without MUI reduction in an eight-user, DPSK system.
Figure 6.18	SNR required for a specific BER in an eight-user, DQPSK-OC system without MUI reduction.

Figure 6.19	BER over transmission distances and SNR required at 20 Gbps and 40 Gbps without MUI reduction in an eight-user DQPSK system.
Figure 6.20	SNR required for a specific BER in an eight-user, NRZ-DQPSK-OC with MUI reduction.
Figure 6.21	Eye diagram measurements in an eight-user, NRZ-DQPSK system at 10 Gbps without optimization.
Figure 6.22	Eye diagram measurements in an eight-user, NRZ-DQPSK system at 40 Gbps without MUI reduction and optimization.
Figure 6.23	Eye diagram measurements in an eight-user, NRZ-DQPSK system at 10 Gbps and 20 Gbps without MUI reduction and optimization.
Figure 6.24	Eight-user, NRZ-DQPSK system at 40 Gbps without MUI reduction.
Figure 6.25	Eight-user, NRZ-DQPSK system measured at 40 Gbps without MUI reduction in 100 km transmission.
Figure 6.26	BER over transmission distances and the required SNR for a specific BER in a twelve-user, NRZ-DPSK-OC system measured at 10 Gbps.
Figure 6.27	Effect of user numbers in NRZ-DPSK-OC system measured at 10 Gbps.
Figure 6.28	Eye diagram measurements in a twelve-user, NRZ-DPSK system at 10 Gbps.
Figure 6.29	Eye diagram measurements in a twelve-user, NRZ-DPSK system at 10 Gbps without MUI reduction and optimization.
Figure 6.30	BER over transmission distances and SNR required for a specific BER in a twelve- user, DQPSK system measured at 10 Gbps with MUI reduction.
Figure 6.31	The eye diagrams observed in a twelve-user, DQPSK system at bit rate of 10 Gbps without optimization.
Figure 6.32	Eye diagram measurements on the effect of different OC models without MUI reduction (before transmission) in a DQPSK system.
Figure 7.1	Optimization formulation to be integrated in the all optical label swapping (AOLS) enabled router.
Figure 7.2	OCDMA based label processing in the AOLS enabled router.
Figure 7.3	The optimized formulation to be integrated into an optical label enabling switching system.

- Figure 7.4 The optimized formulation to be integrated into the hybrid OCDMA switching architecture.
- Figure 7.5 Multiple-access via OCDMA technique in an optical label processing network.
- Figure 7.6 The architectural model of a label edge router.