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ABSTRACT 

 

Two new alkaloids of the mersinine type, mersiphyllines A (37) and B (38), 

were isolated from the polar fraction of the alkaloid extract of K. singapurensis 

following repeated fractionation via gel-permeation chromatography. The structures of 

these alkaloids were elucidated based on NMR spectroscopy, formation of an alkaloid-

borane complex 40, as well as X-ray diffraction analysis.  

Concise partial syntheses of several new indole alkaloids isolated from 

Tabernaemontana, Alstonia, and Leuconotis species were carried out. These include, 

lirofoline A (44) from ibogaine (46), alstolucine A (91) from alstolucine B (94), and 

()-eburnamaline (96) from (+)-eburnamonine (98). 

Some transformations of the ring-opened Aspidosperma alkaloid, leuconolam 

(54) were investigated, inter alia, its reactions with base leading to enolate-mediated 

ring closure to yield the epimeric pentacylic meloscine-like compounds (74 and 76), its 

reaction with acids leading to transannular closure to the pentacyclic, doubly 

spirocyclic, 6,7-dehydroleuconoxine (63), or to the tetracyclic amino lactam-lactone 

(78). Bromination (Br2/CHCl3) of leuconolam (54) was shown to proceed via a two-step 

sequence involving the intermediacy of 6,7-dehydroleuconoxine (63). Other reactions 

investigated include enolate-mediated -oxygenation, hydroboration, and reaction with 

trifluoroacetic acid. These studies led to concise semisynthesis of leuconoxine (56), and 

the new leuconoxine alkaloids, leuconodines A (67) and F (72). The results from these 

reactions also led to the realization that the original assignment of epi-leuconolam as 55 

was incorrect. This was confirmed upon carrying out an X-ray diffraction analysis, 

which showed that ‘epi-leuconolam (55)’ is in actual fact 6,7-dehydroleuconoxine (63).      

The original stereochemical/configurational assignments of the alkaloids 

scholaricine (114a) and alstoumerine (118a) were reinvestigated (NMR, derivatization, 



iii 
 

X-ray diffraction analysis) and the structures revised accordingly (to 114b and 118b, 

respectively). The revised structure of alstoumerine (118b) was necessary for the 

structure elucidation of the new bisindole, lumutinine C (116).  

X-ray diffraction analyses were carried out for the macroline-macroline 

bisindole alkaloids, perhentinine (104) (via formation of the dimethyl diiodide salt of 

the ring E-cyclized hemiketal form, 104b) and macralstonine (105), and the results were 

then applied to support the configurational assignment of C-20 in the new Alstonia 

bisindoles, perhentidines AC (101103).      

Andransinine (119) (in all probability an artifact derived from the alkaloid 

andranginine (120) during isolation of alkaloids from A. angustiloba and K. pauciflora), 

was found to exhibit polymorphism in the solid state, forming crystals with different 

crystal systems and space groups in different solvent systems. In addition, it undergoes 

spontaneous resolution when crystallized in ethyl acetate, forming racemic 

conglomerate crystals. 

X-ray diffraction analyses of a number of new indole and bisindole alkaloids 

isolated from various plants of the genus Alstonia, Kopsia, Leuconotis, and 

Tabernaemontana were carried out. These include: the bisindole alkaloids, leuconoline 

(124) from L. griffithii, and lumusidines A (125) and B (126) (via its dimethyl diiodide 

salts, 125a and 126a) from A. macrophylla, the novel indole alkaloids voatinggine (128) 

and tabertinggine (129) from T. corymbosa, grandilodines A (135) and B (136) from K. 

grandifolia, and leuconodines B (68) and E (71) from L. griffithii.  
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ABSTRAK  

(BAHASA MALAYSIA VERSION) 

 
Dua alkaloid baru jenis mersinine, mersiphylline A (37) dan B (38), telah 

diasingkan daripada fraksi kutub ekstrak alkaloid K. singapurensis, berikutan fraksi 

berulangan menggunakan kromatografi gel penjerapan. Struktur alkaloid yang 

dinyatakan dikenalpasti menggunakan teknik spekstroskopi NMR, pembentukan 

kompleks alkaloid-borane 40, serta analisis pembelauan sinar-X.  

Sintesis separa untuk beberapa alkaloid indola yang diasing daripada spesis 

Tabernaemontana, Alstonia, and Leuconotis telah dijalankan. Ini termasuk lirofoline A 

(44) daripada ibogaine (46), alstolucine A (91) daripada alstolucine B (94), dan ()-

eburnamaline (96) daripada (+)-eburnamonine (98). 

Beberapa transformasi alkaloid Aspidosperma, leuconolam (54) telah disiasat. 

Ini termasuk, tindak balas dengan alkali secara perantaraan enolat, yang membawa 

kepada penutupan  gelang kepada sebatian jenis meloscine (74 and 76), tindak balas 

dengan asid menghasilkan sebatian gandaan dua spirosiklik, 6,7-dehydroleuconoxine 

(63) secara penutupan ‘transannular’, atau kepada sebatian tetrasiklik amino laktam-

lakton (78). Pembrominan (Br2/CHCl3) leuconolam (54) menunjukkan bahawa 

tindakbalas ini berlaku dalam dua langkah, yang melibatkan 6,7-dehydroleuconoxine 

(63) sebagai perantaraan. Tindak balas yang lain termasuk pengoksigenan- dengan 

perantaraan enolat, penghidroboranan, dan tindak balas dengan TFA. Tindakbalas yang 

dinyatakan telah membawa kepada sintesis separa leuconoxine (56), dan alkaloid 

leuconoxin yang baru, leuconodine A (67) and F (72). Keputusan daripada penyelidikan 

ini juga membawa kepada kesedaran bahawa penentuan asal untuk struktur epi-

leuconolam sebagai 55 adalah salah. Keputusan ini disahkan dengan menjalankan 
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analisis pembelauan sinar-X, yang menunjukkan bahawa ‘epi-leuconolam (55)’ 

sebenarnya adalah 6,7-dehydroleuconoxine (63).      

Stereokimia/konfigurasi asal untuk alkaloid scholaricine (114a) dan 

alstoumerine (118a) telah disiasat semula (NMR, penyediaan terbitan, analisis 

pembelauan sinar-X) dan struktur yang dinyatakan telah dikemaskini dengan 

sewajarnya (kepada 114b dan 118b). Struktur alstoumerine (118b) yang telah 

dikemaskini adalah amat penting dalam penentuan struktur alkaloid bisindola yang 

baru, lumutinine C (116). 

Analisis pembelauan sinar-X telah dijalankan untuk alkaloid macroline-

macroline, perhentinine (104) (melalui pembentukan garam dimetil diiodida gelang E-

tertutup bentuk hemiketal, 104b) dan macralstonine (105). Keputusan yang diperolehi 

daripada analisis yang dinyatakan telah digunakan untuk membantu dalam penentuan 

konfigurasi C-20 untuk alkaloid bisindola yang baru daripada Alstonia, perhentidine 

AC (101103).      

Andransinine (119) (kebarangkalian merupakan artifak yang berasal daripada 

alkaloid andranginine (119) semasa proses pengasingan alkaloid daripada A. 

angustiloba dan L. griffithii), didapati mempamerkan sifat ‘polymorphism’ dalam 

keadaan pepejal, membentuk hablur dengan sistem hablur serta kumpulan ruangan yang 

berbeza dalam pelarut yang berlainan. Tambahan pula, ia akan menjalani resolusi secara 

spontan semasa penghabluran di dalam etil asetat, menghasilkan hablur racemic 

konglomerat.  

Analisis pembelauan sinar-X untuk beberapa alkaloid indola dan bisindola baru 

yang diasingkan daripada pelbagai tumbuhan dengan genus Alstonia, Kopsia, 

Leuconotis, dan Tabernaemontana telah dilakukan. Ini termasuk: alkaloid bisindola, 

leuconoline (124) daripada L. griffithii, dan lumusidine A (126) dan B (126) (melalui 

pembentukan garam dimetil diiodida, 125a dan 126a) daripada A. macrophylla, alkaloid 
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indola istimewa, voatinggine (128) dan tabertinggine (129) daripada T. corymbosa, 

grandilodine A (135) and B (136) daripada K. grandifolia, dan leuconodine B (68) dan 

E (71) daripada L. griffithii. 
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CHAPTER ONE 

General Introduction to the Alkaloids 
 

Alkaloids have a wide distribution in the plant kingdom. More than 20% of all 

plant species produce alkaloids.
1 

Among the plant kingdom which produce alkaloids 

includes angiosperma, aspidosperma, gymnosperms, club mosses (Lycopodium), 

horsetails (Equisetum), mosses, and algae.
27

 Alkaloids also occur in microorganisms 

(bacteria, fungi), many marine animals (sponges, slugs, worms, bryozoa), arthropods, 

amphibians (toads, frogs, salamanders), and also in a few birds, and mammals.
29

 As of 

2001, a total of 26,900 alkaloids have been isolated from various sources.
10

 Among 

notable alkaloids include reserpine, an antihypertensive alkaloid from Rauwolfia 

serpentina, vinblastine, an antitumor alkaloid from Catharanthus roseus, morphine 

from Papaver somniferum, which exhibits nacrotic effects, atropine from Atropa 

belladonna, which acts as muscle relaxant, cocaine from the leaves of cocoa plant, 

which is a local anesthetic and a potent central nervous system stimulant, and strychnine, 

a nerve stimulant from Strychnos nux-vomica.
11
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1.1 Definition of Alkaloid 

 

In 1819, a German pharmacist Carl F. W. Meissner introduces the term alkaloid. 

This term is usually applied to basic, nitrogen-containing compounds of plant origin. 

The first modern definition of alkaloid is by Winterstein and Trier who described these 

compounds as basic nitrogen containing compounds of either plant or animal origin.
12 

Alkaloids were defined as compounds meeting additional four qualifications as follows: 

i. Nitrogen is present as part of the heterocyclic ring system 

ii. The compound occurrence is restricted to plant kingdom 

iii. The compound has complex molecular structure 

iv. The compound  manifests significant physiological activity 

Several nitrogenous compounds from plants or from other living organisms 

which do not confer to the above mentioned criteria are termed ‘pseudoalkaloids’. This 

type of classifications which separates nitrogeneous compounds into true alkaloid and 

pseudoalkaloid based on biogenesis is very arbitrary. 

  In 1983, Pelletier suggested a simple general definition of an alkaloid: “An 

alkaloid is a cyclic compound containing nitrogen in a negative oxidation state which is 

of limited distribution in living organisms.”
13

 This definition encompasses compounds 

with nitrogen as part of a heterocyclic system as well as those with extracyclic bond 

nitrogen such as colchicines or capsaicin. However, compounds such as amino acids, 

amino sugars, peptides, nucleic acids, porphyrind, and vitamins or simple widely 

wimple widely distributed plant bases such as methyl amine, trimethylamine, -

phenylethyl amine derivatives, and other straight chain alkyl amines such as hordenine 

and ephedrine are not considered alkaloids because their nitrogen is not involved in the 

heterocyclic ring.
1
 More recently, Hesse has defined alkaloids as nitrogen containing 

organic substances of natural origin with a greater or lesser degree of basic character.
14
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1.3 Classification of Alkaloids  

 

Five distinct alkaloid classes were put forward according to the position of the 

N-atom in the main structural element:
14

  

i. Heterocyclic alkaloids 

ii. Alkaloids with exocyclic N-atoms and aliphatic amines  (e.g., cassaine, 

capsaicine) 

iii. Putrescine, spermidine, and spermine alkaloids (e.g., paucine, inandenin-12-

one, chaenorhin) 

iv. Peptide alkaloids (e.g., integerrine, mucronine A) 

v. Terpene and steroid alkaloids (e.g., aconitine, conessine) 

 

 Among the five classes, the heterocyclic alkaloids constitute the largest group. 

These can be further divided into 15 subclasses based on the carbon-nitrogen skeleton 

as shown below:
14 

 

a. Pyrrolidine  i.  Pyridine 

b. Indole  j.  Pyrrolizidine 

c. Piperidine k.  Indolizidine 

d. Tropane l.  Quinolizidine 

e. Imidazole m.  Pyrazine 

f. Isoquinoline n.  Pteridine 

g. Quinoline o.  Purine bases 

h. Quinazoline  
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1.4 Indole Alkaloids 

 

Indole alkaloids constitute an important class of natural products, and include a 

large number of pharmacologically important substances, such as the antitumour 

alkaloids, vinblastine and vincristine, the antihypertensive alkaloid, reserpine, the 

hallucinatory alkaloid, lysergic acid, and the cardio-arrhythmic alkaloid, ajmalicine.
15 

They are defined as natural products containing an indole nucleus or an oxidized, 

reduced, or substituted equivalent of it. The number of indole alkaloids of known 

structure amounts to approximately 5191 (2001).
10

 This figure includes both those 

compounds that incorporate the actual indole chromophore and those containing its 

derivatives, namely, dihydroindole, indolenine, -methyleneindoline, pseudoindoxyl, 

and oxindole. Also members of this group are alkaloids in which the nucleus 

incorporates an additional benzene or pyridine ring, for instance, carbazole or - and -

carbolines and their derivatives.  

 

1.5 Structural Classes of the Monoterpenoid Indole Alkaloids 

 

To further subclass the indole alkaloids, criteria such as structural and biogenetic 

pathways are applied. They can be divided into two main categories. First category 

comprises the simple indole alkaloids which do not present a structural uniformity, 

possessing only the indole nucleus or a direct derivative of it as a common feature (e.g., 

harmane, 1). 
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The indole bases of the second category contain two structural units, viz., 

tryptamine (2) (or tryptophan, 3) with the indole nucleus, and a C9 or C10 monoterpene 

moiety derived from secologanin (4). 

 

 

 

 The majority of the indole alkaloids from plants of the Apocynaceae belong to 

this category and can be classified into nine main types depending on the structural 

characteristic of their skeletons (Scheme 1.1).
1618
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Scheme 1.1. The three major skeletal classes from loganin 

 

Following Hesse,
1618

 eight main types have been defined: vincosan, 

vallesiachotaman, corynanthean, strychnan, aspidospermatan (all belonging to the class 

I skeleton with an intact secologanin), plumeran, eburnan (belonging to the class II 

skeleton, corresponding to a rearranged secologanin), and ibogan (belonging to the class 

III skeleton, corresponding to a further rearranged monoterpene). A ninth type, tacaman 

(with class III skeleton) was added by Verpoorte and Van Beek to account for the 

isolation of a few tacamines.
1920

 The nine main skeletal types are given in Table 1.1. 
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Table 1.1. Classification of indole alkaloids 
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Table 1.1, continued. Classification of indole alkaloids 
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1.6 Biogenesis of the Monoterpenoid Indole Alkaloids 

 

The biogenesis of indole alkaloids is shown in Scheme 1.2. Although there are 

more than 1000 known structural types of indole alkaloids, they are nevertheless all 

derived from a common intermediate, namely, strictosidine (8). Wenkert, Scott, and 

others
21,22 

suggested that 8 is transformed to geissoschizine (9), ajmalicine (10) and 

preakuammicine (11), and eventually to stemmadenine (13), whose isomerization and 

collapse via enamine 14 provides didehydrosecodine (15), from which the 

Aspidosperma, Iboga, and Vinca/Eburnea alkaloids are in turn derived. 



12 
 

 

Scheme 1.2. Biogenesis of indole alkaloids. 
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1.7 Objectives 

 

The objectives of the present research include the following: 

i) Structure elucidation of selected alkaloids with difficult stereochemical 

issues (e.g., the mersiphyllines from Kopsia singapurensis)  

ii) Investigations of reactions of selected alkaloids (e.g., leuconolam from 

Leuconotis species) 

iii) Implementation of viable partial syntheses of selected alkaloids (e.g., 

lirofoline A from Tabernaemontana corymbosa) 

iv) Structure elucidation of several indole alkaloids via partial synthesis (e.g., 

alstolucine A from Alstonia spatulata and ()-eburnamaline from Leuconotis 

griffithii) 

v) Reinvestigation of the stereochemical assignment of several indole alkaloids 

(e.g., scholaricine and alstoumerine from Alstonia species) 

vi) Determination of absolute configuration of several bisindole alkaloids via 

chemical transformations and X-ray diffraction analyses (e.g., perhentinine, 

macralstonine, and perhentidines A – C from Alstonia species) 

vii) X-ray diffraction analyses of a number of new indole and bisindole alkaloids 

(from Alstonia, Kopsia, Leuconotis, and Tabernaemontana species).  
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CHAPTER TWO 

Mersiphyllines A and B, Two New Pentacyclic Alkaloids of the 

Mersinine Group. Determination of Relative Configuration at a 

Quaternary Center via Formation of an AlkaloidBorane Complex 

 

2.1  Introduction 

 

The alkaloids of the mersinine group represent a novel subclass of the 

monoterpenoid indole alkaloids.
2326

 To date these alkaloids have been found 

exclusively and for the first time in only one species, a variant of the Malayan Kopsia 

singapurensis.
25 

These alkaloids are characterized by a novel pentacyclic skeleton 

incorporating a quinolinic chromophore, and from a biogenetic viewpoint can be 

considered to have arisen from an aspidofractinine precursor 19 via formation of an 

aziridinium intermediate 20, followed in succession by aziridinium ring opening and 

reduction as shown in Scheme 2.1.
23

  

 

 

Scheme 2.1 
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There are a total of 16 mersinine-type alkaloids, representing variations in 

aromatic substitution, functional groups, and stereochemistry.
25

 The mersinine alkaloids 

can be divided into two broad stereochemical groups, viz., those with cis-D/E ring 

junction stereochemistry and a C-20CO2Me group (e.g., mersinines A (21) and B 

(22)), and those with trans-D/E ring junction stereochemistry and a C-20CO2Me 

group (e.g., mersinine C (23)).
25

 The relative configurations at C-2, C-7, and C-21 are 

all R, based on extensive NOE experiments,
23,24

 as well as an X-ray diffraction study of 

mersinine A (21).
27 
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2.2 Results and Discussion 

 

Two additional alkaloids, mersiphyllines A (37) and B (38), were obtained from 

the leaf extract of K. singapurensis.
28

 These polar alkaloids proved difficult to purify as 

they resisted resolution by conventional chromatography, as well as HPLC. Eventually, 

mersiphyllines A and B were successfully separated by repeated passage through 

Sephadex G-75, with MeOH as the eluent (gel permeation chromatography). The 

separation process was very time consuming and laborious and yielded only 0.5 mg of 

37 and 0.2 mg of 38 in each separation. Many repeated separations were performed in 

order to obtain sufficient amounts for further spectroscopic analysis and chemical 

transformations. 

Mersiphylline A (37) was initially obtained as a light yellowish oil, and 

subsequently, as colorless block crystals from EtOH, mp 184186 
o
C, []

25
D –59 (c 
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0.43, CHCl3). The UV spectrum (219, 245, and 287 nm) was similar to those of the 

other mersinine alkaloids,
24

 while the IR spectrum showed bands at 3463, 1746, and 

1717 cm
–1

, due to OH, ester/acid and carbamate functionalities, respectively. The EIMS 

showed an [M]
+
 at m/z 486, which analyzed for C24H26N2O9, differing from mersinines 

AC (2123) by 14 mass units. The 
13

C NMR data (Table 2.1) accounted for all 24 

carbon resonances, and confirmed the presence of a carbamate (C 154.4) and two 

carboxyl functions (C 170.8 and 175.4, attributable to ester and/or acid groups), in 

addition to a low-field quaternary resonance (C 87.3) due to C-16, which is  to both a 

nitrogen and an oxygen atom. The 
1
H NMR data (Table 2.1) showed signals due to two 

adjacent aromatic hydrogens (AB doublets at H 6.65, 6.74), two olefinic hydrogens (H 

5.86), a methylenedioxy function (H 6.01, 6.02), two singlets due to carbamate and 

ester methoxy groups (H 3.77, 3.81), and two broad OH singlets, H 5.25 and 16.35, 

which undergo exchange with D2O. The COSY and HMQC data showed the presence 

of NCH2CH2, NCH2CH=CH, CHCH2CH2 partial structures, as well as an isolated 

aminomethine corresponding to H-21. These, and the HMBC data (three-bond 

correlations from H-2 to C-8, C-6, C-16; H-5 to C-7; H-9 to C-7; H-15 to C-17; H-19 to 

C-2, C-17; H-21 to C-3, C-15, C-17, C-19) (Figure 2.1) indicated that 37 has the same 

carbon skeleton as the mersinines (e.g., mersinines AC, 2123).
2325

  

 

 

Figure 2.1. Selected HMBCs of 37. 
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However, instead of the presence of the two characteristic methyl ester groups, 

one at C-16 and the other at C-20, as is the case in the other mersinine alkaloids,
24 

the 

1
H NMR data showed the presence of only one ester function, and two OH signals (one 

strongly deshielded), although two carboxyl functionalities associated with ester and/or 

acid functions were present (C 170.8 and 175.4). One of the two carbonyl resonances 

must therefore be due to an acid group. In the HMBC spectrum, the ester methyl 

hydrogens at H 3.77 showed a clear three-bond correlation to the carbonyl resonance at 

C 170.8, indicating that this carbonyl (C-22) is associated with the methyl ester 

function. On the other hand, clear three-bond correlations were observed from H-21 and 

H-19 to the carbonyl carbon at C 175.4 (C-17) indicating that this carbonyl is 

associated with the acid group attached to C-20. In both mersiphylline A (37) and 

mersiphylline B (38) (which differs from mersiphylline A (37) only in the aromatic 

substitution, i.e., 12-OMe instead of 11,12-methylenedioxy, Table 2.1), the EIMS 

showed, in addition to the [M]
+
 peaks, strong fragment peaks due to MCO2 and 

MCOOH (m/z 442 and 441, respectively, in the case of 37, and m/z 428 and 427, 

respectively, in the case of 38), while the acid functionality in 37 can be readily 

esterified with TMSCHN2 in MeOH/PhCH3 (replacement of low field acid signal at C 

16.35 by a methyl ester signal at H 3.71 in the methyl ester product), providing 

additional proof for the presence of the carboxylic acid function in 37. The 
1
H NMR 

spectra of mersiphyllines A (37) and B (38) are shown in Figures 2.2 and 2.3, 

respectively. 
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Table 2.1. 
1
H (400 MHz) and 

13
C (100 MHz) NMR data () of compounds 37, 38, and 

40 
Position 37

a
 38

a
 40

b
 

C H C H C H 

2 48.0 2.60 m 48.5 2.66 m 46.7 2.66 dd (12.6, 6.6) 

3 52.7 3.89 m 52.9 4.14 br d (16) 66.1 4.24 ddd (16, 4, 1) 

  3.51 br d (16)  3.59 br d (16)  3.75 m 

5 50.2 3.37 m 51.1 3.80 m 59.7 3.46 dd (10, 6) 

5  2.60 m  2.72 m  2.85 ddd (13, 10, 5) 

6 39.0 2.08 dd (13, 4.5) 38.8 2.14 dd (13, 4.5) 37.3 1.99 dd (13, 5) 

6  2.78 td (13, 6)  2.84 td (13, 6)  3.29 td (13, 6) 

7 44.7  44.5  43.6 

8 129.0  136.3  129.1  

9 117.2 6.74 d (8.2) 116.2 6.90 d (8) 115.7 6.44 d (8.6) 

10 103.9 6.65 d (8.2) 125.0 7.17 t (8) 104.0 6.66 d (8.6) 

11 147.8  111.7 6.94 d (8) 148.2  

12 139.8  152.6  140.4  

13 119.3  125.7  119.5  

14 127.1 5.86 m 126.9 5.89 m 127.1 5.99 m 

15 133.4 5.86 m 133.3 5.89 m 132.1 5.89 ddd (9.5, 2.4, 1) 

16 87.3  87.4  87.4 

17 175.4  175.9  169.4  

18 20.4 0.84 m 20.4 0.75 s 20.6 0.79 m 

18  1.45 m  1.44 m  1.43 m 

19 23.9 0.84 m 24.2 0.82 m 24.8 0.79 m 

19  2.84 m  2.74 m  2.46 m 

20 44.1  44.7  43.2  

21 70.7 3.35 s 70.4 3.49 s 73.4 3.85 m 

22 170.8  170.6   170.5  

12-OMe   56.6 3.88 s   

22-OMe 53.0 3.77 s 53.1 3.75 s 53.1 3.74 s 

NCO2Me 53.3 3.81 s 53.1 3.75 s 53.2 3.79 s 

NCO2Me 154.4  155.9  154.5  

OCH2O 101.6 6.01 d (1.3) 

6.02 d (1.3) 

  102.1 6.02 d (1.2) 

6.03 d (1.2) 

16-OH  5.25 br s  5.32 br s  5.36 br s 

17-OH  16.35 s  15.27 br s   

aCDCl3; 
bCD2Cl2; assignments based on COSY, HMQC, and HMBC. 
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Figure 2.2. 
1
H NMR spectrum (CDCl3, 400 MHz) of mersiphylline A (37). 
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Figure 2.3. 
1
H NMR spectrum (CDCl3, 400 MHz) of mersiphylline B (38). 
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The reciprocal NOEs observed for H-9/H-21 and H-19/H-21 (Figure 2.4), 

permitted assignment of the relative configurations at C-7 and C-21, which were similar 

to those in mersinines A (21) and B (22).
23,24

 The configuration at the quaternary C-16 

was deduced to be similar to that in 22, i.e., S, from the characteristic C-16OH shift of 

H 5.25 and the C-2 shift of C 48.0.
23 

The presence of Wenkert-Bohlmann bands
29

 in 

the IR has been previously invoked to signify the presence of a trans-D/E ring junction, 

with a -oriented N-4 lone pair, in mersinine C (23), mersifoline C (29), mersidasine F 

(35) and mersidasine G (36).
24,25 

This conclusion was also supported by the NOE 

enhancement observed for H-3, H-5, and H-9 on irradiation of H-21. In the case of 

37 and 38, although Wenkert-Bohlmann bands were not detected (possibly due to 

intramolecular H-bonding involving the N-4 lone pair, vide infra), these NOEs were 

also observed, suggesting the presence of a trans-C/D junction. Irradiation of H-2 

resulted in enhancement of H-6, H-18, and 16-OH, while irradiation of H-18 

resulted in enhancement of H-2 (Figure 2.4). These observations indicated a -

orientation for H-2 (2S), and represents a significant departure from the previous 

mersinine alkaloids, where the orientation of H-2 is  (2R) as indicated by the observed 

H-2/H-21 or H-6/H-18 NOEs. This may also be reflected to some extent by the 

noticeable departure in the 
1
H (H-6, H-18, H-19) and 

13
C (C-6) NMR data 

compared to those of the mersinines (vide supra). 

The remaining issue concerns the relative configuration at the carboxyl bearing 

quaternary center, C-20. In this instance the observed NOEs were insufficient to 

unambiguously assign the configuration.  
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Figure 2.4. Selected NOEs of 37. 

 

An early indication that the orientation of the acid group is  was from the 

observation of the deshielded, low-field, acid-H signal at C 16.35, suggesting 

intramolecular H-bonding to N-4 (with its -oriented lone pair in view of the trans-D/E 

fusion mentioned earlier). 

In the event, a second line of evidence was obtained which provided cogent 

proof of 20R configuration. In an attempt to reduce the acid group, alkaloid 37 was 

treated with BH3.THF.
3032

 Instead of the alcohol 39, an unexpected alkaloid-borane 

complex 40 was obtained (Scheme 2.2), as deduced from the data.  

The mass-spectral data clearly showed boron incorporation ([M]
+
, m/z 498), 

while the IR spectrum showed the characteristic BH stretching frequencies at 2431, 

2376, and 2285 cm
–1

 (Figure 2.5).
33

 The 
1
H and 

13
C NMR data (Table 2.1) of the 

complex 40 were essentially similar to those of 37, except for loss of the low field acid 

signal in 
1
H NMR data, and the distinct downfield shifts of the C-3, C-5, and C-21 

signals in the 
13

C NMR data (and the corresponding H-3, H-5, and H-21 signals in the 

1
H NMR data), an effect somewhat reminiscent of that shown by alkaloid N-oxide 

derivatives, suggesting that N-4 has been rendered electron-deficient.  
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Figure 2.5. IR spectrum (neat) of mersiphylline A-borane complex 40. 

 
 

 

 

 

BH2 stretching 
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Scheme 2.2 

 

A likely formulation for the alkaloid-borane complex 40 is one in which BH2 

has been incorporated into the molecule via formation of an O=COboron, as well as a 

dative N-4B bond, linked at the carboxyl oxygen and at N-4, respectively, as shown 

in 40. Such a structure would be compatible with the MS, IR, and NMR data (the BH 

hydrogens were not observed in the 
1
H NMR spectrum due to broadening

34,35
). 

Additional confirmation was obtained by accurate mass measurements of both the 

C24H27N2O9
11

B ([M]
+
) as well as the C24H26N2O9

10
B ([M – H]

+
) peaks in HREIMS, 

which were in excellent agreement with the proposed constitution of the complex.  

The formation of the alkaloid-borane complex 40 is presumably via the 

proposed pathway shown in Scheme 2.3. Reaction of the alkaloid with BH3.THF gives 

in the first instance, the acid-borane complex 41, which on loss of H2, followed by 

intramolecular interception by N-4 of the resulting organoborane intermediate 42, 

furnishes the alkaloid-borane complex 40 (This unexpected diversion accounts for the 

exclusive formation of 40 at the expense of the alcohol 39,
 
normally formed via the 
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intermediacy of trialkoxyboroxine 43 and its subsequent hydrolysis to 39
31,36,37

) 

(Scheme 2.3). 

The formation of the alkaloid-borane complex 40 is only possible if the C-20 

carboxylic acid function has a -orientation (20R) (C-20COOH and N-4 lone pair syn). 

The alkaloid-borane complex 40 also showed a better resolved 
1
H NMR spectrum with 

less overlap compared to that of mersiphylline A (37) allowing for better NOE data to 

be obtained (Table 2.1). The 
1
H NMR spectrum of 40 is shown in Figure 2.6. Attempts 

to obtain a 
11

B NMR on the alkaloid-borane complex 40 was unsuccessful due to 

insufficient amount of material available (the formation of the alkaloid-borane complex 

is also reversible, if left in solution in CDCl3 or EtOH over a prolonged period).  

 

Scheme 2.3
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Figure 2.6. 
1
H NMR spectrum (CD2Cl2, 400 MHz) of mersiphylline A-borane complex 40.
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Finally, to obtain support for the above deduction, as well as to secure 

unambiguous proof of the structure, X-ray diffraction analysis was carried out for 37 

(Figure 2.7) which provided confirmation of the structure and relative configuration 

deduced from all the above observations. 

Suitable crystals of 37 were obtained by slow evaporation in EtOH. The 

structure and relative configuration of 37 is shown in Figure 2.7. From the X-ray crystal 

structure, it can be seen that 37 exists as a zwitterion [(N-4H)

C-17OO)


] in the 

solid state. It can also be seen that 37 co-crystallizes with the solvent used during 

crystallization. Hydrogen bonding between the EtOH molecule with C-17OO

 can also 

be seen from the crystal structure.  

                                                                        

 

                                                   Figure 2.7. X-ray crystal structure of 37.  

 

With the structure of mersiphylline A (37) thus established, the structure of 

mersiphylline B (38) follows readily from the spectroscopic data. 
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2.3 Conclusion 

 

Mersiphyllines A (37) and B (38) represent yet another addition to the mersinine 

group of alkaloids, constituting a new and distinct stereochemical group, with a trans 

D/E ring junction stereochemistry, a -oriented carboxylic acid functionality linked to 

the quaternary C-20 (20R), and a -oriented hydrogen at C-2 (2S). Although several 

examples of related organoborane complexes exist in the literature, such as the 

condylocarpine-BH3 adduct,
38 

various simple cyclic borane derivatives of amino acids,
33

 

and the chiral oxazaborolidines (or CBS reagent),
34

 the present example nevertheless 

represents the first instance where the formation of an alkaloid-borane complex has 

been invoked to underpin a difficult stereochemical assignment at a quaternary 

stereogenic center in an alkaloid. 
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CHAPTER THREE 

A Biomimetic Partial Synthesis of Lirofoline A 

 

3.1 Introduction 

 

Lirofolines A (44) and B (45) were new alkaloids recently isolated from two 

Tabernaemontana species.
39

 Both 44 and 45 were isolated from the stem-bark extract of 

T. corymbosa, while 45 was also isolated from the stem-bark extract of T. divaricata 

(single flower variety) (isolation and structure by K. H. Lim and H. S. Pang). 

 

 

 

The lirofolines are characterized by a novel pentacyclic skeleton, previously 

unencountered as a natural product. After the structures were solved by the application 

of spectroscopic methods, a search in the literature indicated that the basic ring system 

has been encountered previously as unwanted minor side products in reactions in the 

ibogaine and catharanthine series (chemical transformations of ibogaine (46) to 

voacangine (47)
40 

 (Scheme 3.1) and coupling of catharanthine (48) and its derivatives 

with vindoline
41 

(Scheme 3.2)).
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Scheme 3.1 

 

 

Scheme 3.2 

 

The 
1
H and 

13
C NMR data of lirofolines A (44) and B (45) are summarized in 

Table 3.1, while the 
1
H NMR spectra of 44 and 45 are shown in Figures 3.1 and 3.2, 

respectively. 
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Table 3.1. 
1
H and 

13
C NMR data () of lirofolines A (44)

 
and B (45)

a 

Position 44 45 

C H C H 

2 153.7  152.6 

3 53.5 2.72 dt (10, 3) 53.5 2.67 dt (10, 2.5) 

  3.27 dt (10, 3)  3.27 dt (10, 2.5) 

5 67.1 4.88 d (12) 67.2 4.92 d (12) 

5  4.94 d (12)  4.98 d (12) 

6 182.9 10.1 (s) 192.5 

7 111.8  108.0 

8 127.0  126.8 

9 103.1 7.74 br d (2.4) 103.9 7.36 d (2) 

10 156.8  156.6 

11 112.8 6.88 dd (8.8, 2.4) 111.6 6.90 dd (8.5, 2) 

12 109.8 7.12 d (8.8) 110.0 7.17 d (8.5) 

13 129.9  129.8  

14 25.5 1.81 m 25.4 1.81 m 

15 31.1 1.90 dddd (12.5, 10, 4, 2) 31.2 1.91 dddd (13, 10, 4, 2.5)  

15  1.20 ddt (12.5, 6.8, 2)  1.18 ddt (13, 7.5, 2) 

16 29.7 3.55 br dt (12, 2) 31.8 3.67 dt (12, 2) 

17 33.4 1.70 m 32.4 1.58 m 

17  2.20 br t (12)  2.29 tdd (12, 2.5, 2) 

18 11.7 0.96 t (7.3) 11.7 0.96 t (7.5) 

19 27.4 1.59 m 27.3 1.60 m 

  1.59 m  1.60 m 

20 37.8 1.72 m 37.7 1.73 dq (10, 7.5) 

21 51.8 2.85 br s 51.9 2.82 br s 

22   67.0 4.73 dd (17, 4) 

    4.78 dd (17, 4) 

10-OMe 55.8 3.89 s 55.9 3.90 s 

22-OH    4.15 br s 

 aCDCl3, 400 and 100 MHz, respectively; assignments based on COSY, HMQC, and HMBC. 
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Figure 3.1. 
1
H NMR spectrum (CDCl3, 400 MHz) of natural lirofoline A (44).

42 
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Figure 3.2. 
1
H NMR spectrum (CDCl3, 400 MHz) of lirofoline B (45).

43 
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3.2 Results and Discussion 

 

Based on the previous observations (vide supra), it follows that the ring system 

of the lirofolines in all probability arises from similar precursors and in like fashion, 

viz., via scission of the C-5C-6 bond of an oxidized derivative to the iminium ion 

intermediate 49, followed by intramolecular bond formation between C-5 and N-1 

(Scheme 3.3).  

 

 

Scheme 3.3 

 

Based on this supposition, and with limited, but sufficient amounts of the 

requisite precursor (ibogaine (46), ca. 50 mg) available from our ongoing work in 

alkaloid chemistry, we decided to carry out such a biomimetic conversion of ibogaine 

(46) to lirofoline A (44) under Polonovski conditions.  

The 
1
H and 

13
C NMR data of ibogaine (46) are summarized in Table 3.2, while 

the 
1
H NMR spectrum of 46 is shown in Figure 3.3. 

The first step in the Polonovski approach to this biomimetic transformation 

involved oxidation of ibogaine (46) to its N-oxide 50, using m-chloroperbenzoic acid 

(m-CPBA) in CH2Cl2 at 30
 o

C to give 74% of 50 (Scheme 3.4).  
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Ibogaine N-oxide (50) was obtained as a colorless oil, with [D +71 (c 0.16, 

CHCl3). The UV spectrum (210, 224, 280, 297, and 307 nm) showed absorption 

maxima characteristic of an indole chromophore, while the IR spectrum showed the 

presence of an NH (3149 cm
–1

) function. The HRESIMS of 50 showed an [M  H]

 at 

m/z 327.2080, which is consistent with the molecular formula C20H26N2O2  H (16 mass 

units higher than that of 46). The 
1
H NMR data showed characteristic downfield shifts 

for H-3, H-5, and H-21, while the same downfield shifts were observed for C-3, C-5, 

and C-21 in 
13

C NMR data, when compared with those of ibogaine (46). The 
1
H and 

13
C 

NMR data of 50 are summarized in Table 3.2, while the 
1
H NMR spectrum of 50 is 

shown in Figure 3.4. 

With ibogaine N-oxide (50) to hand, a Polonovski transformation was carried 

out. Ibogaine N-oxide (50) on treatment with acetic anhydride (10 equiv in 50 ml 

CH2Cl2, added dropwise at 10 

C for 30 min), followed by hydrolysis (NaOH) gave a 

single major product 51 in 70% yield. High dilution used in this reaction was necessary 

to obtain optimum yields for this reaction based on our previous work on related 

Polonovski transformations.
44  

In the presence of acetic anhydride, cleavage of the C-5C-6 bond takes place, 

leading to the iminium ion 52. The iminium ion 52 then undergoes a concerted 

conjugate addition by acetate anion, followed by intramolecular bond formation 

between C-5 and N-1 to give 53. Basic hydrolysis with 10% NaOH during work up 

leads to the alcohol 51.   Attempted purification and characterization of the alcohol 51 

was not successful due to its facile decomposition during chromatography, upon 

exposure to air, and in CDCl3.  
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Table 3.2. 
1
H and 

13
C NMR data () of ibogaine (46) and ibogaine N-oxide (50)

a
 

Position 46 50 

C H C H 

2 142.9  139.8  

3 49.9 2.97 dt (9, 3) 70.3 3.54 br d (12) 

  3.07 dt (9, 2)  3.79 br d (12) 

5 54.2 3.14 m 76.9 3.71 br d (11.5) 

  3.37 m  3.93 m 

6 20.7 2.61 m 21.1 3.08 m  

  3.32 m  2.94 m 

7 109.1  107.2  

8 129.7  128.1  

9 100.3 6.93 d (2) 100.0 6.82 d (2) 

10 153.9  153.9  

11 110.8 6.77 dd (8.5, 2) 111.8 6.78 dd (8.7, 2.3) 

12 110.6 7.13 d (8.5) 111.5 7.19 d (8.7) 

13 130.1  130.3  

14 26.5 1.84 m 26.1 2.17 m 

15 32.1 1.20 ddt (13, 5, 2.5) 31.6 1.49 m 

  1.79 m  2.26 m 

16 41.5 2.88 ddd (11, 4, 1.5) 37.0 3.24 m 

17 34.2 1.64 ddd (13, 6.5, 4) 30.4 1.82 m  

  2.03 ddt (13, 11, 2.5)  1.97 m 

18 11.9 0.89 t (7) 13.0 0.93 t (7.8) 

19 27.8 1.47 m 31.2 2.10 m 

  1.54 m   

20 41.9 1.54 m 43.1 1.69 m 

21 57.5 2.84 br s 72.4 3.49 br s 

NH  7.54 br s  9.71 br s 

10-OMe 56.0 3.85 s 56.1 3.83 s 

aCDCl3, 400 and 100 MHz, respectively; assignments based on COSY, HMQC, and HMBC. 
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Figure 3.3. 
1
H NMR spectrum (CDCl3, 400 MHz) of ibogaine (46).  
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Figure 3.4. 
1
H NMR spectrum (CDCl3, 400 MHz) of ibogaine N-oxide (50).
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To reduce decomposition, the crude product mixture was quickly filtered 

through a short pad of silica gel followed immediately by the oxidation step. Only a 
1
H 

NMR spectrum was obtained due to the tendency of alcohol 51 to decompose in CDCl3. 

In the 
1
H NMR spectrum (Figure 3.5), the characteristic pair of AB doublets due to H-5, 

which are observed downfield at  4.88 and 4.78 (J = 11.4 Hz), provided firm evidence 

for the formation of the lirofoline skeleton. Recovery of alcohol 51 after the NMR 

experiment was not successful due to its rapid decomposition. 

The next step involves oxidation of the alcohol 51 to an aldehyde. The first 

choice oxidation reagent Dess-Martin periodinane,
45

 however, did not give any 

significant product. Alcohol 51 was successfully oxidized with tetra-n-

propylammonium perruthenate (TPAP, 5 mol %) in the presence of excess N-

methylmorpholine N-oxide (NMO, 20 equiv) and 4 Å molecular sieves (Ley 

oxidation)
46

 to give lirofoline A (44) in 30% yield (Scheme 3.4).  

The spectroscopic data (
1
H and 

13
C NMR, IR, UV) and other properties ([D 

and Rf of TLC in different solvent systems) of semisynthetic 44 were indistinguishable 

from those of the natural 44. The 
1
H NMR spectrum of semisynthetic 44 is shown in 

Figure 3.6.  

Further attempts to further transform lirofoline A (44) to lirofoline B (45) could 

not be carried out due to the limited amount of 44 available.  
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Figure 3.5. 
1
H NMR spectrum (CDCl3, 400 MHz) of alcohol 51. 
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Figure 3.6. 
1
H NMR spectrum (CDCl3, 400 MHz) of semisynthetic lirofoline A (44).
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Scheme 3.4 

 

3.3 Conclusion 

 

A biomimetic partial synthesis of lirofoline A (44) has been achieved from 

ibogaine (46) under Polonovski conditions. Despite the above transformation, the 

possibility that the lirofolines isolated from the natural sources could be artifacts was 

rendered unlikely by the observation that repeated extractions of fresh material of T. 

divaricata consistently provided 45, while 44 was isolated from an entirely different 

Tabernaemontana species (T. corymbosa). Furthermore, subjecting the putative 

precursor of the lirofolines, ibogaine (46) or its N-oxide 50, to reaction under the 

conditions of the extraction, resulted only in recovery of the intact starting materials, 

with no evidence of any transformation into either 44 or 45.
39 
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CHAPTER FOUR 

Transformations of Leuconolam and Partial Synthesis of  

Some Leuconoxine-type Alkaloids 

 

4.1 Introduction 

 

The ring-opened Aspidosperma alkaloid, leuconolam (54) and its C-21 epimer, 

epi-leuconolam (55) were first isolated from the bark extract of Leuconotis 

griffithii.
4749

 Subsequently the related diazaspiro pentacyclic alkaloid leuconoxine (56) 

was reported from the Indonesian L. eugenefolia.
50

 Since then, closely related alkaloids 

were also found in other genus such as Kopsia.
25

 These alkaloids include rhazinilam 

(57),
51 

rhazinal (58),
52 

 rhazinicine (59),
53

 and arboloscine (60).
54
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Another new indole alkaloid recently reported from Kopsia (K. singapurensis) 

was mersicarpine (61), which is characterized by a novel tetracyclic carbon skeleton, 

containing a seven-membered imine ring.
55

 The structure of 61 represents a departure 

from the rhazinilam-leuconolam group of alkaloids which coexists with 54 in the stem-

bark extract of the plant. From a biogenetic viewpoint, it appears to have lost the two-

carbon tryptamine bridge corresponding to C-5 and C-6, normally present in the other 

monoterpenoid indole alkaloids. In addition, the presence of the lactam-containing ring 

D suggested an affinity to leuconoxine (56), although a further rearrangement appears to 

have occurred leading to loss of the two-carbon chain and formation of the seven-

membered imine-containing ring C. Since the initial report of the isolation and structure 

elucidation of 61, several total syntheses have also been subsequently reported which 

have provided confirmation of the proposed structure.
56

 A possible biogenetic pathway 

from a leuconolam precursor was also presented in the initial report, in which the key 

step was the formation of a benzylic carbocation 62 from a dehydroleuconoxine 

precursor, 63, followed by a 1,2-alkyl shift leading to the iminium ion intermediate 64 

(Scheme 4.1).
55

 It was noted that the halogenated marine alkaloids, chartellamides A 

and B (65 and 66) from the marine bryozoan Chartelle papyraceae,
57

 possess a structure 

displaying a remarkable resemblance to the 6-5-7 ring system of 61 and in addition 

incorporate a -lactam unit corresponding to that present in the proposed intermediate 

64, providing additional support for the proposed pathway.  
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Scheme 4.1 
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Recently, six new leuconoxine-type alkaloids, leuconodines AF (6772), and a 

nor-rhazinilam derivative, nor-rhazinicine (73), were isolated from the stem-bark 

extract of L. griffithii,
58

 representing the latest additions to this group of Aspidosperma 

alkaloids. 

The availability of leuconolam (54) (one of the major alkaloids in L. griffithii), 

presented the opportunity to explore its chemistry, in particular to attempt various 

transformations aimed at transannular cyclization to leuconoxine (56) and its congeners.  
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4.2 Results and Discussion 

 

4.2.1 Base-induced transformations 

 

In an earlier report,
49

 treatment of leuconolam (54) with KOH in EtOH/MeOH 

gave the cyclized product 74 (the optical antipode of the 21-hydroxy derivative of ()-

meloscine 75)
59

 as the sole product in high yield.
 
 At the time of this report, no evidence 

was presented to support the stereochemical assignments. We decided to reinvestigate 

this transformation. 

When the reaction was repeated by the use of stronger bases, such as 

NaOMe/MeOH or NaHMDS/THF, the reaction did not proceed, and led only to the 

recovery of starting material. When the reaction was repeated using the original 

conditions employed in the earlier report (KOH in EtOH/MeOH for 6 h), two products 

74 and 76 were formed, with the former obtained as the major product (12 and 3%, 

respectively). The reaction was also accompanied by recovery of unreacted 54 (20%) 

(The original report claimed formation of a single product, 74, with a yield of 80%.
49 

We were not able to reproduce the reported yield.).  
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The major product 74 was obtained as a colorless oil, and subsequently as 

colorless block crystals (mp 266268 

C) from CCl4/MeOH, with []

25
D = 198 (c 0.06, 

CHCl3). The UV spectrum showed absorption maxima at 210, 253, and 287 nm, 

indicating the presence of a dihydroquinolone chromophore,
59 

while the IR spectrum 

showed the presence of OH (3226 cm
1

) and lactam carbonyl functions (1667 cm
1

). 

The ESIMS of 74 showed an [M H]

 at m/z 327, and HRESIMS measurements gave 

the molecular formula as C19H22N2O3  H. The 
1
H and 

13
C NMR data of 74 are similar 

to those reported earlier.
49

 The attachment of C-16 to C-7 was supported by the 

observed three-bond correlation from H-16 to C-6 in the HMBC spectrum. The 

orientation of H-16 was assigned as  from the observed NOE enhancement between H-

6 and H-16 (Figure 4.1). The 
1
H and 

13
C NMR data of 74 are summarized in Table 

4.1, while the 
1
H NMR spectrum of 74 is shown in Figure 4.2. 

 

 

Figure 4.1. Selected NOEs of 75. 
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Table 4.1. 
1
H and 

13
C NMR data () of compounds 74 and 76

a
  

Position 74
 

76
 

C H C H 

2 170.5  170.7 

3 37.2 2.94 m 36.6 3.08 m 

  4.23 dt (13, 7.5)  4.03 dt (13, 7.5) 

5 171.0  171.1 

6 50.0 2.69 d (17.7) 41.5 2.35 d (18) 

6  3.03 d (17.7)  2.75 d (18) 

7 50.6  50.0 

8 122.0  133.0 

9 129.1 7.39 dd (8, 1.5) 123.9 6.85 br d (7.8) 

10 123.8 7.23 td (8, 1.5) 123.6 7.19 td (7.8, 1.5) 

11 129.0 7.10 td (8, 1.5) 127.9 7.01 td (7.8, 1.5) 

12 116.1 6.76 dd (8, 1.5) 117.0 7.69 d (7.8) 

13 136.0  137.2 

14 19.6 1.59 m 17.7 1.66 m 

  1.59 m  1.66 m 

15 28.0 1.44 m 30.0 1.20 td (14.5, 6.8)  

  1.81 dt (14.5, 4.5)  1.82 dt (14.5, 4.5) 

16 51.9 2.91 m 46.3 3.07 dd (13.7, 5.5) 

17 32.2 2.20 ddd (14, 10.5, 2)  30.4 1.56 m 

  2.32 dd (14, 2.5)  2.17 dd (13.7, 5)  

18 7.4 0.67 t (7.6) 8.8 0.89 t (7.3) 

19 26.3 0.96 dq (14, 7.6) 24.0 1.41 m 

  1.08 dq (14, 7.6)  1.59 m 

20 46.7  50.3 

21 100.8  99.2 

NH  8.41 br s  7.65 br s 

21-OH  2.38 br s  2.90 br s 

aCDCl3, 400 and 100 MHz, respectively; assignments based on COSY, HMQC, and HMBC. 
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Figure 4.2. 
1
H NMR spectrum (CDCl3, 400 MHz) of compound 74. 
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The minor product 76 was obtained as a colorless oil, and subsequently as 

colorless block crystals (mp 250252 
o
C) from CH2Cl2/hexanes, with []

25
D = 150 (c 

0.01, CHCl3). The UV (210, 251, 306 nm) and IR data (3322, 1712, 1667 cm
1

) were 

similar to those of 74 indicating the presence of similar chromophores and 

functionalities. The ESIMS of 76 showed an [M H]

 at m/z 327, and HRESIMS 

measurements gave the molecular formula as C19H22N2O3  H. As in the case of 74, a 

three-bond correlation from H-16 to C-6 was also observed. A major difference in the 

NMR data of 76 compared with the previous compound 74, was the notable absence of 

NOE between H-6 and H-16, which suggested that in 76, the orientation of H-16 is . 

The 
1
H and 

13
C NMR data of 76 are summarized in Table 4.1, while the 

1
H NMR 

spectrum of 76 is shown in Figure 4.3. 
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Figure 4.3. 
1
H NMR spectrum (CDCl3, 400 MHz) of compound 76. 
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Since suitable crystals of both 74 and 76 were obtained, X-ray diffraction 

analyses were carried out which confirmed the structures and relative configurations 

assigned based on the NMR data (Figure 4.4). 

 

                                                                   

      

Figure 4.4. Left: X-ray crystal structure of 74. Right: X-ray crystal structure of 76. 

 

The formation of 74 and 76 can be rationalized based on an intramolecular 

Michael addition from the presumably more stable E-enolate which approaches from 

the -face to form the major product 74, while the minor product 76 resulted from 

attack by the presumably less stable Z-enolate (Scheme 4.2).  
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Scheme 4.2 

 

4.2.2 Acid-induced transformations 

 

It was initially envisaged that treatment of leuconolam (54) with acid should 

result in a facile transannular closure to give a dehydroleuconoxine derivative 63 which 

could serve as a possible starting compound for further elaboration to leuconoxine (56) 

and its recently discovered congeners (leuconodines) or to mersicarpine (61) (Scheme 

4.3). 

 

 

Scheme 4.3 
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Treatment of leuconolam (54) with aqueous HCl (5%) did not result in any 

reaction, leading only to recovery of starting material. When the same reaction was 

carried in a two-phase medium in the presence of a phase-transfer catalyst 

(tetraethylammonium chloride, TEACl), both epi-leuconolam (55) (45%) and 

leuconolam (54) (35%) were obtained. Careful examination of the product mixture 

revealed the formation of a minor product (compound A), with a yield of 1.5%. 

Repeating the two-phase experiment (5% HCl/CH2Cl2, TEACl) with epi-leuconolam 

(55), resulted in the isolation of leuconolam (54) (15%) and epi-leuconolam (55) (84%). 

When leuconolam (54) was treated with 10-camphorsulfonic acid (CSA) in 

anhydrous CH2Cl2, epi-leuconolam (55) was obtained in yield of 62%, accompanied by    

2% of the previously noted minor product (compound A). Similar treatment of 54 with 

CSA in anhydrous MeOH resulted in the formation of O-methylleuconolam (77)
49

 in 94% 

yield, accompanied by 2% of compound A. Treatment of 54 with conc. HCl (few drops) 

in anhydrous MeOH gave only 77 with a reduced yield of 63%. Treatment of 54 with p-

toluenesulfonic acid (PTSA) in anhydrous MeOH also yielded the O-methyl derivative 

77 as the major product (94%) with compound A detected as the minor product (1%). 

When leuconolam (54) was treated with PTSA in anhydrous CH2Cl2, an 

inversion in the product distribution was noted, with compound A obtained as the major 

product (42%), and epi-leuconolam (55) as the minor product (5%). These results are 

summarized in Table 4.2. The 
1
H and 

13
C NMR data of O-methylleuconolam (77) are 

summarized in Table 4.3, while the 
1
H NMR spectrum of 77 is shown in Figure 4.5. 
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Table 4.2. Summary of reactions of leuconolam (54) with acids 

Entry 
Starting 

material 
Reaction conditions 

Products 

54 55 Compound A 77 

1 54 5% HCl, rt, 8 h No reaction 

2 54 
5% HCl/CH2Cl2  

TEACl, rt, 14 ha 
35% 47% 1.5%  

3 54 HCl/MeOH, rt, 12 h 4%    63% 

4 54 
CSA/CH2Cl2, rt,  

14 ha 
10%  62% 2%  

5 54 

CSA/CH2Cl2, rt, 11 h  

(4 equiv MeOH 

added) 

 19%  54% 

6 54 CSA/MeOH, rt, 14 h 4%   2% 94% 

7 54 
PTSA/MeOH, rt,  

14 h 
4%   0.8% 94% 

8 54 
PTSA/CH2Cl2, rt,  

14 h 
3%  5% 42%  

9 55 
5% HCl/CH2Cl2  

TEACl, rt, 12 ha 
15% 84%   

10 55 CSA/CH2Cl2, rt, 15 h No reactionb 

11 55 
PTSA/CH2Cl2, rt,  

10 h 
 1% 70%  

12 77 
PTSA/CH2Cl2, rt,  

10 h 
No reactionc 

aProlonged reaction time leads to reduced overall yields; btraces of 54 and compound A detected from TLC; ctraces of 54 and 55 

detected from TLC. 
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Table 4.3. 
1
H and 

13
C NMR data () of O-methylleuconolam (77)

a
 

Position C H 

2 178.6  

3 35.9 2.61 td (12.5, 4) 

  4.18 td (12.5, 4) 

5 166.8  

6 131.9 6.33 

7 151.0  

8 133.1  

9 126.7 7.26 ddd ( 7.5, 1, 0.5) 

10 127.0 7.34 m 

11 129.9 7.41 m 

12 128.6 7.42 m  

13 135.7  

14 19.6 1.49 m 

   

15 32.5 1.50 m 

  2.05 ddd (15, 5, 2) 

16 28.0 2.17 td (15, 6) 

  1.50 m 

17 26.2 1.75 m  

  1.50 m 

18 7.3 0.55 t (7.5) 

19 24.1 1.28 dq (13.6, 7.5) 

  1.54 m 

20 45.5  

21 97.4  

NH  8.25 br s 

21-OMe 49.9 3.15 s 

aCDCl3, 400 and 100 MHz, respectively; assignments based on COSY, HMQC, and comparison with literature. 
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Figure 4.5. 
1
H NMR spectrum (CDCl3, 400 MHz) of O-methylleuconolam (77). 
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The results of the reaction of leuconolam (54) with acid, as summarized in Table 

4.2 presented some puzzling features. The formation of epi-leuconolam (54) and 

leuconolam (54) when leuconolam (54) or epi-leuconolam (55) was treated with 

aqueous acid under two-phase conditions (entries 2 and 9, Table 4.2) suggested the 

possibility that the products obtained derived from reversible formation of the N-4C-

21 iminium ion, followed by nucleophilic capture by water to give a mixture of 55 and 

54, with 55 (epi-leuconolam) predominating in both instances. This would appear to 

suggest that 55 is the thermodynamically more stable product under such conditions. 

When the acid-induced reaction was carried out in MeOH (entries 3, 6, and 7, Table 4.2) 

in the presence of either HCl, CSA, or PTSA, virtually quantitative conversion to O-

methylleuconolam (77, 21-OMe) was observed, suggesting efficient trapping of the 

iminium ion from the -face by MeOH. The exclusive formation of the C-21 -oriented 

methyl ether product is puzzling, especially since the -OH epimer (epi-leuconolam, 55) 

appeared to be the thermodynamically preferred product. Another discrepancy was 

noted when comparing entries 4 and 10, Table 4.2. The reaction of leuconolam (54) 

with CSA in CH2Cl2 gave epi-leuconolam (55) as the major product, but when epi-

leuconolam (55) was exposed to the same conditions, no reaction occurred (cf. entries 2 

and 9, Table 4.2). Other inconsistencies were subsequently noted for the hydrogenation 

and bromination reactions of leuconolam (54) and epi-leuconolam (55). For instance, 

while epi-leuconolam (55) was smoothly hydrogenated, leuconolam (55) was by 

comparison unreactive, whereas in the case of the bromination reaction, both 54 and 55 

apparently reacted to give the same bromine addition product. Furthermore 

debromination (Zn/AcOH) of the bromine addition product apparently yielded epi-

leuconolam (55). These puzzling and apparently inconsistent results led us to reevaluate 

the earlier structure elucidation for leuconolam (54) and epi-leuconolam (55). 
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Leuconolam (54) was first reported from the Malayan Leuconotis species, L. 

griffithii and L. eugenefolia.
47,49

 The structure was confirmed by an X-ray diffraction 

analysis which showed that the N-1C-2 lactam, as well as the C-6C-7 double bond, 

were out of plane with benzene ring, therefore minimizing conjugation.
47

 The hydroxyl 

group attached to C-21 was shown to be -oriented, while the ethyl side chain attached 

to C-20 was syn to the C-21 hydroxyl group.   

Epi-leuconolam was first isolated as a minor alkaloid from L. griffithii and L. 

eugenefolia.
47,49

 It has subsequently been detected as a minor alkaloid in Kopsia 

griffithii.
60

 The structure was assigned as the C-21 epimer of leuconolam (i.e., 55) based 

on EIMS and NMR data. In the initial report, the EIMS (measured on a Kratos MS 3074 

Mass Spectrometer) apparently showed an [M]

 at m/z 326, which was also the base 

peak, and which analyzed for C19H22N2O3 by HREIMS, indicating an isomeric 

relationship with leuconolam (54).
47,49

 This was confirmed by a subsequent independent 

EIMS measurement (on a VG ProSpec Mass Spectrometer) which also showed the [M]

 

as a base peak at m/z 326, and which also analyzed for C19H22N2O3.
60

 In both instances, 

a strong [M – H2O]

 peak at m/z 308 was also detected. The 

1
H NMR spectrum showed 

features, which in many ways indicated the alkaloid’s isomeric relationship with 

leuconolam (54). A sharp singlet at H 6.02 ppm showed the presence of an isolated 

olefinic proton corresponding to H-6, while the triplet centered at H 0.76 ppm indicated 

the presence of an ethyl side chain. A notable difference observed in the 
1
H NMR 

spectrum of epi-leuconolam when compared with that of 54 however, was the absence 

of the characteristic indolic NH and C-21OH signals (Table 4.4). The 
13

C NMR 

spectrum of epi-leuconolam accounted for all the 19 carbons and showed a close 

similarity to the spectrum of leuconolam (54), except for small differences in the 

chemical shifts (Table 4.5).
47,49
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It was also demonstrated by the original investigators that epi-leuconolam (55) 

was likely an artifact due to the presence of acid, as extraction carried out under neutral 

or basic conditions did not result in the isolation of this compound, whereas extraction 

under acidic conditions resulted in its isolation.
47,49

 In our hands, although leuconolam 

(54) was obtained as the major compound, epi-leuconolam was invariably also detected, 

albeit as a minor alkaloid, since brief exposure to traces of acid could not be avoided 

under the conditions used for the isolation and purification. 

Since the structure of 54 rested firmly on an X-ray diffraction analysis (which 

we have repeated, Figure 4.6), we decided to reinvestigate the structure of epi-

leuconolam using a natural sample from our concurrent work in alkaloid chemistry 

(natural sample courtesy of C. Y. Gan
58

).  

                                             

                                            Figure 4.6. X-ray crystal structure of 54. 

 

LC-ESIMS analysis of epi-leuconolam gave an [M  H]

 peak at m/z 309, which 

indicated a molecular ion (m/z 308), 18 mass units less than that obtained previously by 

EIMS. HRESIMS gave the formula C19H20N2O2  H. The measurement was repeated by 

GC-EIMS, which also gave the molecular ion at m/z 308 (instead of the previously 

observed m/z 326 peak detected by direct probe EIMS). Banwell and co-workers have 
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also reported syntheses of rhazinal (58),
61

 rhazinilam (57), leuconolam (54), and epi-

leuconolam.
62

 The latter two compounds were obtained by oxidation of rhazinilam (57) 

(excess PCC, 18 
o
C, 4 Å molecular sieves), followed by aqueous workup 

(EtOAc/MeOH/H2O) of the reaction product mixture.
62

 The EIMS of the synthetic epi-

leuconolam showed a base peak at m/z 308, with the m/z 326 ion detected as a very 

weak peak (< 1%).  

In the original report, it was noted that the IR spectrum of epi-leuconolam 

showed a strong broad absorption at 3400 cm
1

 attributed to NH and OH.
47,49

 We have 

recorded the IR spectrum of epi-leuconolam and leuconolam (54) (Figure 4.7). It can be 

seen that while the IR spectrum of leuconolam (54) showed a broad absorption at ca. 

3260 cm
1

, epi-leuconolam did not show any significant absorption in the 3400 cm
1

 

region (the same result was obtained by Banwell and co-workers
62

). In addition, the UV 

spectra of leuconolam (54) (207, 220, 287 nm) and epi-leuconolam (203, 252, 350 nm) 

were markedly different indicating the presence of different chromophores (Figure 4.8).    

The 
1
H and 

13
C NMR data for epi-leuconolam have been reported on a number 

of occasions and were each time in agreement with those of the original report.
47,49,60,62

 

We have also carried out additional 2-D NMR experiments (COSY, HMQC, HMBC) 

for epi-leuconolam, which indicated the presence of similar correlations as those in 

leuconolam (54). 
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Figure 4.7. Top: IR spectrum of leuconolam (54). Bottom: IR spectrum of ‘epi-

leuconolam’. 
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Figure 4.8. Top: UV spectrum of leuconolam (54). Bottom: UV spectrum of ‘epi-

leuconolam’. 
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In view of the above results, we decided to undertake X-ray diffraction analysis 

of the alkaloid which has to date been assigned as epi-leuconolam (55) (natural sample, 

suitable crystals were obtained from CH2Cl2/hexanes solution). The X-ray diffraction 

analysis revealed that the alkaloid previously assigned as ‘epi-leuconolam (55)’ is in 

actual fact 6,7-dehydroleuconoxine (63) (Figure 4.9).  

 

       

   

  

Figure 4.9. X-ray crystal structure of 63. 
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The previously observed molecular ion at m/z 326 in EIMS was in all probability 

an artifact due to facile cleavage of the initially formed molecular ion followed by 

equally facile capture by water present as a contaminant in the sample, as shown in 

Scheme 4.4.  The presence of water also accounts for the observation of the broad 

absorption at 3400 cm
1

 in the IR spectrum which was attributed to the presence of 

NH/OH groups, while the revised structure, 6,7-dehydroleuconoxine (63), is now 

compatible with the UV spectrum. 

 

 

Scheme 4.4 

 

The revised structure also accounted for Banwell’s transformation of rhazinilam 

(57) to leuconolam (54) and ‘epi-leuconolam’ (or 6,7-dehydroleuconoxine (63)),
62

 since 

the use of excess PCC, followed by the aqueous workup, resulted in an acidic medium 

which triggered the transannular closure of leuconolam (54) to 6,7-dehydroleuconoxine 

(63). 

The 
1
H and 

13
C NMR data of leuconolam (54), ‘epi-leuconolam’ reported by 

Goh et al.,
49

 Banwell et al.,
62

 and from the present study (natural), and of semisynthetic 

6,7-dehydroleuconoxine (63) from the current study, are summarized in Tables 4.4 and 

4.5, respectively. The 
1
H NMR spectra of leuconolam (54), ‘epi-leuconolam’ (natural, 

present study), and semisynthetic 6,7-dehydroleuconoxine (63) (present study), are 

shown in Figures 4.10, 4.11, and 4.12, respectively. 
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           Table 4.4. Comparison of 
1
H NMR data () of leuconolam (54), ‘epi-leuconolam’, and 6,7-dhydroleuconoxine (63) in CDCl3 

 

Position 

leuconolam (54)
 

‘epi-leuconolam’ 
6,7-dehydroleuconoxine 

(63)

Goh 

et al.
a,49

 

Present 

study
b
 

Goh 

et al.
 a,49

 

Banwell 

et al.
c,62

 

Present 

study
 
(natural)

d,58 

Present study 

(semisynthetic)
b
 

3 2.96 dt (12, 4) 2.94 td (12.5, 4.5) 3.07 dt (10, 4.4) 3.27 – 3.00 m 3.22 ddd (15, 9.6, 6) 3.22 ddd (15, 9.5, 6) 

 3.98 dd (12, 4) 3.98 dd (12.5, 4.5) 4.44 dt (10, 4.4) 4.50 m 4.46 ddd (15, 12, 4) 4.46 ddd (15, 12, 4) 

6 5.79 s 5.77 s 6.20 s 6.21 s 6.22 s 6.22 s 

9 7.20 dd (6, 2) 7.18 dd (7.5, 1.5) 7.45 br d (8.5) 7.45 d (7.8) 7.46 ddd (7.5, 1, 0.6) 7.46 dd (7.5, 1) 

10 7.33 m 7.36 td (7.5, 1.5) 7.12 t (8.5) 7.11 t (7.8) 7.12 td (7.5, 1) 7.12 td (7.5, 1) 

11 7.33 m 7.33 td (7.5, 1.5) 7.33 t (8.5) 7.33 t (7.8) 7.33 td (7.5, 1) 7.33 td (7.5, 1) 

12 7.92 dd (6, 2) 7.91 dd (7.5, 1.5) 8.16 br d (8.5) 8.16 d (7.8) 8.16 ddd (7.5, 1, 0.6) 8.15 dd (7.5, 1) 

14 1.65 – 1.37 m 1.48 m 1.30 – 1.79 m 1.85 – 0.75 m 1.79 m 1.80 m 

 1.65 – 1.37 m 1.48 m 1.30 – 1.79 m 1.85 – 0.75 m 2.04 m 2.05 m 

15 1.65 – 1.37 m 1.57 m  1.30 – 1.79 m 1.85 – 0.75 m 1.10 td (14, 7) 1.10 td (14, 7) 

 1.79 dt (12.5, 5) 1.79 td (13.5, 4.5) 1.30 – 1.79 m 1.85 – 0.75 m 1.66 ddd (14, 6, 1.5) 1.66 ddd (14, 6, 1.5) 

16 2.00 t (12.5) 1.99 td (14, 1.7) 2.66 dd (5.5, 2.5) 2.62 m 2.62 ddd (15, 5, 2) 2.63 ddd (15, 5, 2) 

 2.14 dd (12.5, 6) 2.12 dd (14, 7.3) 3.16 dd (5.5, 2.5) 3.27–3.00 m 3.09 td (15, 6) 3.09 dd (15, 6) 

17 1.65 – 1.37 m 1.40 br t (14.5) 2.03 – 2.13 dd (5.5, 2.5) 2.05 m 1.71 td (15, 5) 1.71 td (15, 5) 

 1.65 – 1.37 m 1.60 td (14.5, 7.3) 2.03 – 2.13 dd (5.5, 2.5) 2.05 m 2.09 ddd (15, 6, 2) 2.11 dd (15, 6, 2) 

18 0.55 t (8) 0.55 t (7.5) 0.73 t (7) 0.75 t (7.2) 0.76 t (7.4) 0.76 t (7.4) 

19 1.65 – 1.37 m 1.23 dq (13.6, 7.5) 1.30 – 1.79 m 1.85–0.75 m 1.35 dq (13.6, 7.4) 1.35 dq (13.6, 7.4) 

 1.65 – 1.37 m 1.60 m 1.30 – 1.79 m 1.85–0.75 m 1.45 dq (13.6, 7.4) 1.46 dq (13.6, 7.4) 

NH 7.89 br s 7.71 br s Not observed Not observed Not observed Not observed 

21-OH 5.13 br s
 4.99 br s Not observed Not observed Not observed Not observed 

                            a270 MHz; b600 MHz; c300 MHz; d400 MHz; b,dassignments based on COSY, HMQC, and HMBC. 
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Table 4.5. Comparison of 
13

C NMR data () of leuconolam (54), ‘epi-leuconolam’, and 

6,7-dehydroleuconoxine (63) in CDCl3 

Position 

leuconolam (54)
 

‘epi-leuconolam’ 



6,7-dehydroleuconoxine 

(63)

Goh 

et al.
a,49

 

Present 

study
b
 

Goh 

et al.
a,49

 

Banwell 

et al.
c,62

 

Present 

study
 

(natural)
 d,58

 

Present study 

(semisynthetic)
b
 

2 178.3 177.8 176.1 175.8 176.1 176.3 

3 35.6 35.3 37.0 37.0 37.0 37.2 

5 166.8 166.5 173.5 173.2 173.5 173.8 

6 128.3 128.1 118.2 118.1 118.2 118.4 

7 156.1 155.6 164.2 164.1 164.2 164.5 

8 133.5 133.1 123.5 123.4 123.5 123.7 

9 126.5 129.3
 

121.6 124.2 121.6 121.8 

10 126.9 126.3 124.3 121.4 124.3 124.6 

11 129.7 129.4 131.6 131.4 131.6 131.8 

12 129.6 126.6 115.9 115.8 115.9 116.2 

13 135.3 135.0 148.6 148.6 148.6 148.9 

14 20.0 19.7 16.8 16.8 16.8 17.0 

15 32.4 24.5 26.0 26.1 26.0 26.3 

16 28.0 32.1 33.1 34.1 33.1 34.4 

17 25.7 25.4 30.4 30.4 30.4 30.7 

18 7.3 6.9 8.3 8.2 8.3 8.5 

19 24.4 27.3 34.1 33.0 34.1 33.4 

20 45.2 44.9 44.6 44.5 44.6 44.8 

21 93.8 93.6 93.7 93.6 93.7 93.9 

a68 MHz; b150 MHz; c75 MHz; d100 MHz; b,dassignments based on COSY, HMQC, and HMBC. 
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Figure 4.10. 
1
H NMR spectrum (CDCl3, 600 MHz) of leuconolam (54). 
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Figure 4.11. 
1
H NMR spectrum (CDCl3, 400 MHz) of ‘epi-leuconolam’ (natural, present study).
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Figure 4.12. 
1
H NMR spectrum (CDCl3, 600 MHz) of semisynthetic 6,7-dehydroleuconoxine (63). 
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With the problem regarding the misassigned structure of ‘epi-leuconolam’ 

resolved, the next issue to be addressed is the structure of compound A, obtained in the 

acid-induced transformations of leuconolam (54).   

Compound A was obtained as a yellowish oil and subsequently as yellowish 

block crystals from CH2Cl2/hexanes (mp 179182 
o
C) with []

25
D = 116 (c 0.52, 

CHCl3). The UV spectrum showed absorption maxima at 212, 240, and 340 nm, while 

the IR spectrum showed the presence of NH2 (3483 and 3397 cm
1

) and carbonyl 

functions (1743 and 1709 cm
1

). The EIMS of compound A showed an [M]

 at m/z 326, 

while HREIMS measurements gave the molecular formula C19H22N2O3 (DBE 10).  

The 
13

C NMR data (Table 4.6) accounted for all 19 carbon resonances, and 

confirmed the presence two carbonyl functions at C 166.8 (lactam carbonyl) and 170.6 

(lactone carbonyl), in addition to a low-field quaternary resonance (C 102.1) due to C-

21, which is  to both a nitrogen and an oxygen atom.  

The 
1
H NMR data (Table 4.6) showed signals due to four adjacent aromatic 

hydrogens (H 6.65, 6.66, 6.96, and 7.09) corresponding to an ortho-disubstituted 

aromatic moiety, one olefinic proton (H 6.14), and a broad two-H singlet due to an 

amino group NH2 (H 3.94, exchangeable with D2O). The COSY and HMQC data 

showed the presence of NCH2CH2CH2, C=OCH2CH2, and CH2CH3 partial structures, as 

well as an isolated vinylic hydrogen, corresponding to H-6 (Figure 4.13).  

Comparison of the NMR data of compound A (Table 4.6) with those of the 

starting leuconolam (54) (Tables 4.4 and 4.5) indicated that the N-4C-5C-6, N-4C-

3C-14C-15, C-16C-17C=O partial structures, as well as the C-20 ethyl side chain 

have remained intact. The attachment of C-5 and C-3 to N-4 was supported by the 
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observed correlations from H-6 and H-3 to C-21 (low-field quaternary resonance at C 

102.1) indicated the connection of C-21 to N-4. The observed three-bond correlations 

from H-15 to C-17, C-19, and C-21, indicated attachment of C-15, C-17, and C-19 to 

the quaternary C-20, as well as the attachment of C-20 to C-21. It remains to complete 

the assembly of the molecule by cleavage of the N-1 amide function to a free primary 

amine and attachment of the carboxyl oxygen to C-21, to reveal the amino lactam-

lactone as shown in 78.  

 

 

Figure 4.13. Selected HMBCs and NOE of 78. 

 

The 
1
H and 

13
C NMR data of compound 78 are summarized in Table 4.6, while 

the 
1
H NMR spectrum of compound 78 is shown in Figure 4.14. 
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Table 4.6. 
1
H and 

13
C NMR data () of compound 78

a
 

Position C H 

2 170.6 

3 35.9 2.82 ddd (13, 4, 2)  

  4.09 ddd (13, 11, 4) 

5 166.8 

6 121.9 6.14 s 

7 155.7 

8 118.0 

9 128.9 6.96 dd (8, 1.5) 

10 118.4 6.65 td (8, 1.5)  

11 130.8 7.09 td (8, 1.5) 

12 116.6 6.65 dd (8, 1.5) 

13 144.1 

14 19.8 1.58 m 

15 25.5 1.53 m  

  1.43 m 

16 26.3 2.20 ddd ( 19, 10, 1.2) 

  2.44 ddd (19, 6, 1.5) 

17 25.6 1.28 m 

  1.45 m 

18 7.1 0.68 t (7.6) 

19 25.0 1.26 m  

  1.51 m 

20 37.9 

21 102.1 

NH2  3.94 br s 

aCD2Cl2, 400 and 100 MHz, respectively; assignments based on COSY, HMQC, and HMBC. 

 



 

7
6
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 4.14. 
1
H NMR spectrum (CD2Cl2, 400 MHz) of amino lactam-lactone 78. 
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                                                            Figure 4.15. X-ray crystal structure of 78 

                                                             [Flack parameter,
63

 x = 0.06(0.06);  

                                                                Hooft parameter,
64

 y = 0.02(0.03)]. 

 

In order to provide firm proof of the proposed structure, X-ray diffraction 

analysis was carried out which confirmed the structure proposed and yielded the 

absolute configuration, as shown in Figure 4.15 (since compound 78 co-crystallized 

with the solvent (CH2Cl2) used during crystallization, the presence of heavy atoms in 

the crystal lattice facilitated the determination of the absolute configuration of 78 

despite the use of Mo K radiation).  

The crystal structure showed that the NH2 group is oriented away from the 

lactone moiety and proximate to the vinylic H-6 (Figure 4.15), which is also supported 

by the observed reciprocal NOE observed between NH2 and H-6 (Figure 4.14). 

With the structure of 6,7-dehydroleuconoxine (63) (previously misassigned as 

epi-leuconolam, 55) and that of compound A (78) firmly established, the results of the 

reaction of leuconolam (54) (and 6,7-dehydroleuconoxine (63)) with acid (Table 4.7) 

become intelligible.   
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Table 4.7. Summary of reactions of leuconolam (54) with acids (updated) 

Entry 
Starting 

material 
Reaction conditions 

Products 

54 63 78 77 

1 54 5% HCl, rt, 8 h No reaction 

2 54 
5% HCl/CH2Cl2  

TEACl, rt, 14 ha 
35% 45% 1.5%  

3 54 HCl/MeOH, rt, 12 h 4%    63% 

4 54 CSA/CH2Cl2, rt, 14 ha 10%  62% 2%  

5 54 
CSA/CH2Cl2, rt, 11 h  

(4 equiv MeOH added) 
 19%  54% 

6 54 CSA/MeOH, rt, 14 h 4%   2% 94% 

7 54 PTSA/MeOH, rt, 14 h 4%   0.8% 94% 

8 54 
PTSA/CH2Cl2, rt,  

14 h 
3%  5% 42%  

9 63 
5% HCl/CH2Cl2  

TEACl, rt, 12 ha 
15% 84%   

10 63 CSA/CH2Cl2, rt, 15 h No reactionb 

11 63 
PTSA/CH2Cl2, rt,  

10 h 
 1% 70%  

12 77 
PTSA/CH2Cl2, rt,  

10 h 
No reactionc 

aProlonged reaction time leads to reduced overall yields; btraces of 54 and 78 detected from TLC;  ctraces of 54 and 63 detected from 

TLC. 
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The formation of 6,7-dehydroleuconoxine (63) with recovered leuconolam (54), 

when leuconolam (54) was treated with aqueous acid under two-phase conditions (entry 

2, Table 4.7) in all probability derives from reversible formation of the N-4C-21 

iminium ion 79, followed by transannular cyclization to the doubly spirocyclic 

dehydroleuconoxine (63) (Scheme 4.5). The reversible nature of this reaction is 

indicated by the formation of 54 with recovered 63, when 63 was subjected to the same 

reaction conditions (entry 9, Table 4.7). When the acid-induced reaction was carried out 

in the polar, protic, nucleophilic MeOH (entries 3, 6, and 7, Table 4.7) in the presence 

of either HCl, CSA, or PTSA, virtually quantitative conversion to O-methylleuconolam 

(77) was observed, suggesting efficient trapping of the iminium ion from the -face by 

the larger and more nucleophilic MeOH. With the larger and more nucleophilic MeOH, 

approach from the less hindered convex -face is overwhelmingly favored (Figure 4.16), 

and the nucleophilic addition step is virtually irreversible, the O-methylleuconolam (77) 

once formed is stable under the reaction conditions (77 does not react when exposed to 

acid, entry 12, Table 4.7).  

 

 

Figure 4.16. Iminium ion 79. 
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Scheme 4.5 

 

When the reaction was carried out in PTSA/CH2Cl2, a change in the product 

distribution was observed with the amino lactam-lactone 78, obtained as the major 

product (42%) and 6,7-dehydroleuconoxine (63) as the minor product (5%). TLC 

monitoring of the progress of reaction showed that the amino lactam-lactone 78 was 

formed, subsequent to the formation of 63, suggesting that 78 originated from the first-

formed 63. Further confirmation was provided by the observation that treatment of 63 

with PTSA/CH2Cl2, resulted in the formation of the lactam-lactone 78 as the major 

product in 70% yield (entry 11, Table 4.7).  

A possible pathway for the formation of 78 from 63 is shown in Scheme 4.6 

involving protonation of N-1, fragmentation to the iminium ion 79, intramolecular 

attack by the lactam carbonyl oxygen, followed by cleavage to yield 78. This pathway is 

rendered less likely on geometric grounds as examination of models showed that the 

key intermediate 80 is too strained to exist and therefore unlikely to form.  
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Scheme 4.6 

 

An alternative pathway is shown in Scheme 4.7, which involves the formation of 

a transient epi-leuconolam intermediate (55), followed in succession by protonation of 

the C-2 lactam carbonyl and nucleophilic addition of the appositely oriented C-21-OH 

on the C-2 carbonyl function, leading eventually to N-1C-2 cleavage to yield 

compound 78. 
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Scheme 4.7 

 

A third possible pathway is shown in Scheme 4.8, involving acidic hydrolysis of 

the N-1 lactam, followed in succession by fragmentation to the iminium ion 81, and 

finally, facile intramolecular capture of the iminium ion 81 by the carboxylic acid group, 

leading eventually to the amino lactam-lactone product 78. The fact that the starting 

dehydroleuconoxine 63 is comparatively more strained than the product 78 (as shown 
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by examination of models) constitutes additional support for the proposed amide 

hydrolysis under relatively mild conditions. 

 

 

Scheme 4.8 

 

In view of the facile acid-induced transannular cyclization of leuconolam (54) to 

6,7-dehydroleuconoxine (63), a two-step sequence involving cyclization followed by 

hydrogenation yielded leuconoxine (56) in ca. 55% overall yield from leuconolam (54). 

This transformation represents a partial synthesis of leuconoxine (56) from leuconolam 

(54) (Scheme 4.9) (leuconoxine (56) was previously obtained by bioconversion of 

rhazinilam (57) with Beauveria bassiana LMA (ATCC 7159), but with very low yield 

(0.6%)
65

). The 
1
H and 

13
C NMR data of 56 are summarized in Table 4.8. The 

1
H NMR 
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spectrum of natural 56 and semisynthetic 56 are shown in Figures 4.17 and 4.18, 

respectively.  

 

  

Scheme 4.9 

 

During the course of the present study, an alkaloid corresponding to 6,7-

dehydroleuconoxine (63) (NMR data identical to ‘epi-leuconolam’ or 6,7-

dehydroleuconoxine) was reported as a minor alkaloid from the stem-bark extract of 

Melodinus henryi.
66

 In view of the above, the possibility that this alkaloid is an artifact 

due to the action of traces of acid on leuconolam (54) which may have been present 

cannot be discounted. 
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Table 4.8. 
1
H and 

13
C NMR data () of leuconoxine (56)

a
 

Position C H 

2 172.9  

3 36.8 2.80 m 

  3.95 ddt (13, 4.4, 2.3) 

5 170.8  

6 37.6 2.68 d (17) 

  2.87 dd (17, 7.3) 

7 41.9 3.82 d (7.3) 

8 135.4  

9 123.8 7.17 dd (7.6, 1) 

10 125.5 7.14 td (7.6, 1) 

11 128.0 7.25 td (7.6, 1) 

12 120.1 7.77 dd (7.6, 1) 

13 142.1  

14 20.1 1.60 m 

  1.60 m 

15 26.2 1.60 m 

  1.97 ddd (14, 12, 5) 

16 29.4 2.49 ddd (19, 6, 1.4) 

  2.78 ddd (19, 14, 6.5) 

17 26.6 1.60 m 

  1.86 ddd (14, 6.5, 1.4) 

18 7.3 0.93 t (7.4) 

19 26.9 1.37 dq (13.4, 7.4) 

  1.78 dq (13.4, 7.4) 

20 38.1  

21 92.5  

aCDCl3, 400 and 100 MHz, respectively; assignments based on COSY, HMQC, and comparison with literature. 
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Figure 4.17. 
1
H NMR spectrum (CDCl3, 400 MHz) of natural leuconoxine (56).

58 
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Figure 4.18. 
1
H NMR spectrum (CDCl3, 400 MHz) of semisynthetic leuconoxine (56).
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4.2.3 Bromination of leuconolam  

 

Treatment of leuconolam (54) with Br2 in CHCl3 gave the dibromoleuconoxine 

derivative, 6,7-dibromoleuconoxine (82) as the sole product in about 90% yield.
49 

 

6,7-Dibromoleuconoxine (82) was obtained as a white amorphous solid (mp 

98102 
o
C), with []

25
D = 38 (c 0.62, CHCl3). The UV spectrum showed absorption 

maxima at 208, 227, and 292 nm, while the IR spectrum showed the presence of two 

lactam carbonyls at 1691 and 1709 cm
1

. The ESIMS of 82 showed an [M  H]

 peak at 

m/z 467, and HRESIMS measurements gave the molecular formula C19H21N2O2
79

Br2  

H. The 
1
H and 

13
C NMR data of 82 were similar to those of 82 previously reported by 

Goh et al.
49

 The configuration of the 6,7-dibromoleuconoxine was assigned as 6,7-

dibromoleuconoxine (82) by analogy to leuconoxine and its congeners, where H or OH 

substituents attached to C-7 in the diazaspiro leuconoxine skeleton has to be -oriented 

(7-substituted analogs are highly strained and none are known). In addition, the 

observed NOE between H-6 and H-9 is only possible if H-6 has the -configuration. 

The 
1
H and 

13
C NMR data of 82 are summarized in Table 4.9, while the 

1
H NMR 

spectrum of 82 is shown in Figure 4.19. 
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Table 4.9. 
1
H and 

13
C NMR data () of 6,7-dibromoleuconoxine (82)

a
 

Position C H 

2 172.4 

3 38.7 2.73 m 

  4.08 ddd (13.5, 4, 2) 

5 164.3  

6 50.6 5.17 s 

7 63.7  

8 136.9  

9 126.5 7.33 m 

10 123.8 7.24 dt (7.2 , 1) 

11 130.4 7.36 m 

12 120.9 7.80 dd (7.2, 1) 

13 139.2 

14 19.6 1.56 m 

  1.60 m 

15 24.5 1.62 m 

  2.75 m  

16 29.4 2.64 m  

  2.82 m 

17 25.5 2.03 m 

  2.23 m 

18 7.0 0.94 t (7) 

19 28.0 1.73 m 

  1.98 m 

20 39.2  

21 100.5  

aCDCl3, 400 and 100 MHz, respectively; assignments based on COSY, HMQC, and comparison with literature. 
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Figure 4.19. 
1
H NMR spectrum (CDCl3, 400 MHz) of 6,7-dibromoleuconoxine (82). 
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Monitoring of the progress of the bromination reaction by TLC indicated that 

two products, in addition to the starting leuconolam (54), were detected at a very early 

stage of the reaction.
 

These were 6,7-dibromoleuconoxine (82) and 6,7-

dehydroleuconoxine (63). This observation suggested a two-step sequence involving 

transannular cyclization to 63, followed by bromine addition to furnish 82 (Scheme 

4.10). This was supported by the observation that treatment of 6,7-dehydroleuconoxine 

(63) with Br2/CHCl3 proceeded smoothly to yield the same dibromoleuconoxine 

product, 82. Reaction monitoring by TLC showed only the presence of 6,7-

dehydroleuconoxine (63) and the dibromoleuconoxine addition product, 82. 

Furthermore debromination of the dibromo addition product led smoothly to 6,7-

dehydroleuconoxine (63) (Scheme 4.10).  

 

 

Scheme 4.10 

 

The bromination of alkenes is a well-known reaction, which usually yields 

trans-dibromo products as a consequence of anti-addition of bromine. The generally 

accepted mechanism invokes the intermediacy of a bromonium ion intermediate 83 

(Table 4.11). In this instance however, a cis-dibromo addition product was clearly 

obtained as the sole product. Deviations from trans selectivity (usually giving rise to 

cis/trans mixtures of addition products) have nevertheless been previously observed 

(e.g., in acenaphthylene).
67 

Deviations from trans selectivity are explained by the 
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intermediacy of non-bridged cationic species such as the -bromocarbenium ion 84,
68

 or 

more recently by the intermediacy of the tribromide adduct 85 (Scheme 4.11).
69

  

 

 

Scheme 4.11 

 

The formation of exclusively cis-dibromo addition product in the present 

instance can be explained by acid-catalyzed epimerization of the trans addition product 

(formed either with exclusive trans selectivity via the bromonium ion 84, or, from 

cis/trans mixtures formed via intermediacy of the -bromocarbenium ion 84, or the 

tribromide adduct 85) (Scheme 4.12).  

 

 

Scheme 4.12 
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4.2.4 Reaction with BH3 

 

It was at first envisaged that a hydroboration reaction on dehydroleuconoxine (63) 

might lead to 6-hydroxyleuconoxine (or leuconodine A (67)), a new leuconoxine type 

alkaloid from L. griffithii.
58

 However, when 63 was treated with BH3.SMe2 (5 equiv) in 

THF at rt,
32,70,71

 a complex mixture of products was obtained from which two 

leuconoxine-type derivatives arising from reduction of the C-2 lactam carbonyl viz., 86 

(completely reduced product, 37%) and 87 (partially reduced product, 6%) were 

successfully isolated (Scheme 4.13).  

 

 

Scheme 4.13 

 

Compound 86 was obtained as a yellowish oil, and subsequently as yellowish 

needles from MeOH (mp 128132 
o
C), with []

25
D = 584 (c 0.35, CHCl3). The UV 

spectrum showed absorption maxima at 209, 246, and 388 nm, while the IR spectrum 

showed a conjugated lactam carbonyl at 1641 and 1682 cm
1

. The ESIMS of 86 showed 

an [M  H]

 at m/z 295, in agreement with the molecular formula C19H22N2O  H. A 

notable difference in the 
1
H NMR spectrum of 86 when compared with that of 6,7-

dehydroleuconoxine (63) was the presence of additional two proton signals due to a 

methylene group adjacent to a heteroatom at H 3.55, 3.81, attributable to H-2 (based on 

HMQC). Also, the characteristic C-2 lactam carbonyl signal observed in the 
13

C NMR 

spectrum of 63 was now replaced by a signal at C 40.8 attributed to C-2 in 86. These 
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observations clearly indicated deoxygenation at C-2 of 86. The 
1
H and 

13
C NMR data of 

86 are summarized in Table 4.10, while the 
1
H NMR spectrum of 86 is shown in Figure 

4.20. 

Compound 87 was obtained as a fluorescent yellowish oil, and subsequently as a 

fluorescent yellowish rods (mp 198200 
o
C), with []

25
D = 667 (c 0.33, CHCl3). The 

UV spectrum showed absorption maxima at 209, 245, and 394 nm, while the IR 

spectrum showed an OH band at 3343 cm
1

 and  a lactam carbonyl at 1666 cm
1

. The 

ESIMS of 87 showed an [M  H]

 at m/z 311, in agreement with the molecular formula 

C19H22N2O2  H. Notable differences in the 
1
H NMR spectrum of 87 when compared 

with that of 6,7-dehydroleuconoxine (63) were the presence of a low field proton signal 

at H 5.52 due to H-2, and a broad OH signal at H 4.02. The 
13

C NMR spectrum 

showed the absence of the characteristic C-2 lactam signal, while displaying an 

additional resonance at C 76.1, attributed to C-2. These observations indicated that the 

C-2 carbonyl in 63 has been reduced to an OH in 87. The C-2 configuration was 

assigned as S, based on the observed NOE between C-2 and C-12. of The 
1
H and 

13
C 

NMR data of 87 are summarized in Table 4.10, while the 
1
H NMR spectrum of 87 is 

shown in Figure 4.21.  
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Table 4.10. 
1
H and 

13
C NMR data () of compounds 86 and 87

a
 

Position 86 87 

C H C H 

2 40.8 3.55 ddd (15.4, 11, 7.8)  76.1 5.52 br s 

  3.81 dd (15.4, 7.8)   

3 39.0 3.05 ddd (13.5, 4.5, 2)  35.8 3.67 ddd (14, 4, 2)  

  4.31 ddd (13, 11, 4.5)  3.99 ddd (14, 11, 4) 

5 173.7  177.1  

6 116.9 6.16 s 117.3 5.67 s 

7 166.1  166.1  

8 122.5  120.0  

9 122.4 7.36 dd (7.5, 1) 122.7 6.99 dd (7.8, 1) 

10 119.7 6.83 td (7.5, 1) 119.3 6.68 br t (7.8) 

11 131.3 7.24 td (7.5, 1) 131.3 7.15 td (8.2, 1) 

12 109.7 6.75 dd (7.5, 1) 108.2 6.60 br d (8.2) 

13 157.0  153.7  

14 20.1 1.56 m 18.1 1.54 m 

  1.56 m  1.84 m  

15 27.4 1.69 m  24.0 0.87 m 

  2.00 m  1.73 m 

16 17.0 1.69 m  23.8 1.73 m 

  2.00 m  1.81 m 

17 25.4 1.15 m  21.5 1.31 m  

  1.53 m  2.36 td (14.5, 4) 

18 8.3 0.67 t (7.6) 8.3 0.55 t (7.4) 

19 29.6 1.14 dq (13.2, 7.6) 29.6 0.97 dq (13.1, 7.4) 

  1.38 dq (13.2, 7.6)  1.27 dq (13.1, 7.4) 

20 41.4  42.3  

21 94.5  94.7  

OH    4.02 br s 

aCDCl3, 400 and 100 MHz, respectively; assignments based on COSY, HMQC, and HMBC. 
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Figure 4.20. 
1
H NMR spectrum (CDCl3, 400 MHz) of compound 86. 
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Figure 4.21. 
1
H NMR spectrum (CDCl3, 400 MHz) of compound 87. 
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Since suitable crystals of compounds 86 and 87 were obtained, X-ray diffraction 

analyses were carried out, confirming the gross structures proposed by NMR data. The 

X-ray crystal structures of compounds 86 and 87 are shown in Figures 4.22 and 4.23, 

respectively. 

 

 

                                                                   Figure 4.22. X-ray crystal structure of 86. 

 

                                                   

                    

                                                                    Figure 4.23. X-ray crystal structure of 87. 
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A possible mechanism for the formation of compounds 86 and 87 is shown in 

Scheme 4.14. Since boranes are electron-deficient species, they behave as Lewis 

acids.
71,72

 Reduction proceeds with an electrophilic attack on the C-2 lactam carbonyl to 

form complex 88. After a hydride transfer, an alkaloid-borane complex 89 was 

generated, followed in succession by elimination and reduction to give 86. 

Alternatively, the presence of traces of water in the system will result in quenching of 

the alkaloid-borane complex 89 to give compound 87.  

 

 

Scheme 4.14 
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4.2.5 Partial syntheses of leuconodines A and B 

 

Since hydroboration of 63 did not furnish leuconodine A (67), a direct -

oxygenation of leuconoxine (56) at C-6, via enolate mediated oxidation was next 

attempted.   

It turned out however, that treatment of leuconoxine (56) with lithium 

diisopropylamide (LDA) in THF at 
o
C, followed by oxidation of the lactam enolate 

with O2,
73

 gave compound 90 as the sole product (21%), accompanied by a significant 

amount of unreacted 56 (69%). 

The enolate mediated oxidation occurred at C-16 instead of at C-6, possibly due 

to the formation of the more stable 6-membered enolate (Scheme 4.15). 

 

 

Scheme 4.15 

 

 

 



101 
 

 

Compound 90 was obtained as a colorless oil, and subsequently as colorless 

needles from CH2Cl2/hexanes (mp 184186) with []
25

D = 29 (c 0.16, CHCl3). The 

UV spectrum showed absorption maxima at 210, 241, and 374 nm, while the IR 

spectrum showed the presence of an OH (3417 cm
1

) and carbonyl functions (1691 

cm
1

, broad). The ESIMS of 90 showed an [M  H]

 peak at m/z 327, in agreement with 

the molecular formula C19H22N2O3  H. Notable differences in the 
1
H NMR spectrum of 

90 when compared with that of 56 include the downfield shift of H-16 from H 2.78 and 

2.49 in 56 to H 4.45 in 90 and the presence of an OH peak at H 3.28 (exchangeable 

with D2O) in 90.  The 
13

C NMR data showed that the resonance due to C-16 had shifted 

downfield (C 64.9), when compared to that of 56. These results strongly suggested that 

oxidation had occurred at C-16. The relative configuration at C-16 was assigned as R, 

based on the observed NOE between H-16 and H-15. The 
1
H and 

13
C NMR data of 90 

are summarized in Table 4.11, while the 
1
H NMR spectrum of 90 is shown in Figure 

4.24. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



102 
 

 

 

 

Table 4.11. 
1
H and 

13
C NMR data () of compound 90

a
 

Position C H 

2 175.0 

3 36.8 2.69 ddd (13.5, 4.5, 1.5) 

  3.81 m  

5 171.0 

6 37.4 2.56 d (17) 

  2.77 dd (17, 7.8) 

7 42.4 3.83 d (7.8) 

8 135.3 

9 124.0 7.22 m 

10 126.3 7.13 m 

11 128.0 7.21 m 

12 120.9 7.60 br d (7.8) 

13 140.9 

14 20.0 1.51 m 

  1.56 m 

15 28.1 1.66 m 

  1.82 ddd (14.5, 11, 4) 

16 64.9 4.45 dd (13, 6)  

17 35.9 1.50 m  

  2.26 dd (13, 6) 

18 7.5 0.88 t (7.3) 

19 29.3 1.38 dq (14.5, 7.1) 

  1.66 m 

20 38.9 

21 93.7 

16-OH  Not observed 

aCDCl3, 400 and 100 MHz, respectively; assignments based on COSY, HMQC, and HMBC. 

 

 



 

1
0
3
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 4.24. 
1
H NMR spectrum (CDCl3, 400 MHz) of compound 90. 
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Since suitable crystals of 90 were obtained from CH2Cl2/hexanes, an X-ray 

diffraction analysis was carried out, which confirmed the above observations, as well as 

yielding the relative configuration (Figure 4.25).  

 

                                                

                                            Figure 4.25. X-ray crystal structure of 90. 

 

Leuconodine A (67) was eventually obtained by treatment of leuconolam (54) 

with excess trifluoroacetic acid (TFA). Treatment of leuconolam (54) with TFA (2 

equiv) resulted in transannular cyclization to 6,7-dehydroleuconoxine (63) (Scheme 

4.16). The use of excess TFA (20 equiv) gave a mixture of two products, viz., 63 (30% 

yield) and leuconodine A (67) (25% yield) (Scheme 4.16).  

The formation of 63 and 67 in the presence of excess TFA is rationalized in 

Scheme 4.17. In the presence of excess TFA, conjugate addition by the TFA anion to 

the conjugated iminium ion 79, competes with transannular cyclization to 63, leading 

eventually to leuconodine A (67). Dess-Martin periodinane (DMP) oxidation of 

leuconodine A (67) gave another newly found leuconoxine alkaloid, leuconodine F (72) 

(76% yield) (Scheme 4.17). 
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Scheme 4.16 

 

 

Scheme 4.17 
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Leuconodine A (67) was obtained as a colorless oil, and subsequently as 

colorless block crystals from EtOH/CH2Cl2 (mp 134137 
o
C) with []

25
D = 19 (c 0.21, 

CHCl3). The UV spectrum showed absorption maxima at 209, 241, and 277 nm, while 

the IR spectrum showed the presence of OH (3357 cm
1

) and C=O (1676 cm
1

, lactam) 

functionalities. The EIMS of 67 showed an [M]

 at m/z 326, while HREIMS 

measurements gave the molecular formula as C19H22N2O3. The 
13

C NMR data (Table 

4.12) showed a total of 19 carbon resonances, in agreement with the molecular formula. 

The 
1
H and 

13
C NMR spectra of 67 were somewhat similar to those of the known 

alkaloid, leuconoxine (56). The 
1
H NMR spectrum of 67 showed a broad OH singlet at 

H 5.11 (exchangeable with D2O), while the 
13

C NMR spectrum of alkaloid 67 indicated 

the absence of the resonance at C 37.6, which was replaced by a lower field resonance 

at C 75.1 (an indication of oxygenation). The methine singlets at H 3.90 and 4.51 were 

assigned to H-7 and H-6, respectively, based on the observed three-bond correlations 

from H-7 to C-5 and C-9, and from H-6 to C-8 and C-21. The HMQC spectrum showed 

a H-C correlation between the methine singlet at H 4.51 and the carbon resonance at C 

75.1, suggesting that oxygenation had occurred at C-6. The relative configuration of C-7 

in 67 was deduced to be S, by analogy to leuconoxine (56) and its congeners, where any 

substituents attached to C-7 in the diazaspiro leuconoxine skeleton have to be -

oriented. The C-6 configuration was assigned as R, based on the small coupling constant 

observed between H-6 and H-7 (J ~ 0 Hz), i.e., dihedral angle ~ 90
o
, as well as from the 

observed reciprocal NOEs between H-6 and H-9. The 
1
H and 

13
C NMR data of 67 are 

summarized in Table 4.12, while the 
1
H NMR spectrum of natural 67

58
 and 

semisynthetic 67 are shown in Figures 4.26 and 4.27, respectively. 
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Table 4.12. 
1
H and 

13
C NMR data () of leuconodines A (67) and F (72)

a
 

Position 67 72 

C H C H 

2 173.1  172.2 

3 36.8 2.89 ddd (13, 11, 4) 37.8 3.10 ddd (13, 11, 4) 

  3.99 ddd (13, 5, 2)  4.11 ddt (13, 5, 2.3) 

5 172.0  157.5  

6 75.1 4.51 s 192.5  

7 49.6 3.90 s 53.4 4.23 s 

8 132.1  126.2  

9 124.5 7.27 dd (7.8, 1) 125.1 7.22 dd (7.6, 1) 

10 125.4 7.13 td (7.8, 1) 125.9 7.16 td (7.6, 1) 

11 128.3 7.25 td (7.8, 1) 129.9 7.37 td (7.6, 1) 

12 119.6 7.87 dd (7.8, 1) 121.0 7.82 dd (7.6, 1) 

13 141.9  142.6  

14 19.4 1.70 m 20.1 1.71 m 

  1.70 m  1.71 m 

15 27.3 1.64 m 26.3 1.71 m 

  1.92 m  2.05 m 

16 30.2 2.53 ddd (19, 6, 1.4) 29.5 2.59 ddd (19, 6, 1.4) 

  2.78 ddd (19, 14, 6.5)  2.86 ddd (19, 14, 6.5) 

17 27.5 1.60 m 26.6 1.66 td (14, 6) 

  1.94 m  1.98 ddd (14, 6.5, 1.4) 

18 7.7 0.90 t (7.3) 7.3 0.92 t (7.4) 

19 28.5 1.49 dq (13, 7.3) 27.7 1.23 dq (13, 7.4) 

  1.96 m  1.49 dq (13, 7.4) 

20 36.7  37.6  

21 93.5  88.0  

6-OH  not observed
b
   

aCDCl3, 400 and 100 MHz, respectively; 
b
6-OH was observed at H 5.11 as a broad singlet in natural 67;58 assignments based on 

COSY, HMQC, and HMBC. 
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Figure 4.26. 
1
H NMR spectrum (CDCl3, 400 MHz) of natural leuconodine A (67).
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Figure 4.27. 
1
H NMR spectrum (CDCl3, 400 MHz) of semisynthetic leuconodine A (67). 
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Since suitable crystals of compound 67 were obtained from EtOH/CH2Cl2, an X-

ray diffraction analysis was carried out (Figure 4.28), confirming all of the above 

observations. It can be seen that 67 co-crystallized with the solvent molecule used 

during crystallization (EtOH). The EtOH molecule formed a hydrogen bond with the C-

5 lactam carbonyl. 

 

                 

   

Figure 4.28. X-ray crystal structure of 67. 
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Leuconodine F (72) was obtained as a colorless oil, and subsequently as 

colorless block crystals from MeOH (mp 246250 
o
C) with []

25
D = 94 (c 0.05, 

CHCl3). The UV spectrum displayed absorption maxima at 203, 232, 254, and 350 nm, 

while the IR spectrum showed, in addition to the lactam carbonyl functions (1689 cm
1

, 

broad), a band at 1715 cm
1

 due to a ketone. The presence of the ketone carbonyl 

function was also indicated by the carbon resonance at C 192.5 in the 
13

C NMR 

spectrum. The EIMS of 72 showed an [M H]

 at m/z 325, while HREIMS 

measurements gave the molecular formula as C19H20N2O3  H, differing from 

leuconoxine (56) by 14 mass units, suggesting 72 to be an oxo-derivative of 

leuconoxine (56). The 
1
H and 

13
C NMR data were generally similar to those of 

leuconoxine (56), except for the absence of the signals due to H-6. The signal due to H-

7 was now observed as a singlet at H 4.23 indicating that H-7 was unusually deshielded 

as a result of its proximity to the ketone carbonyl function. This confirmed the location 

of the ketone function at C-6. The 
1
H and 

13
C NMR data of 72 are summarized in Table 

4.12, while the 
1
H NMR spectrum of natural 72

58
 and semisynthetic 72 are shown in 

Figures 4.29 and 4.30, respectively. 
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Figure 4.29. 
1
H NMR spectrum (CDCl3, 400 MHz) of natural leuconodine F (72).
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Figure 4.30. 
1
H NMR spectrum (CDCl3, 400 MHz) of semisynthetic leuconodine F (72). 
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Since suitable crystals of compound 72 were obtained from CH2Cl2/hexanes, an 

X-ray diffraction analysis was carried out (Figure 4.31), confirming all of the above 

observations.  

 

 

 

 

 

Figure 4.31. X-ray crystal structure of 72. 

 

 

 

 

 



115 
 

4.3 Conclusion 

 

Several reactions of the ring-opened Aspidosperma alkaloid, leuconolam (54), 

were investigated. The based-induced reaction of leuconolam (54) resulted in enolate-

mediated transannular closure to give two epimeric pentacyclic meloscine-like products 

(74 and 76), while the acid-induced reactions (HCl in two-phase medium, CSA in 

CH2Cl2) resulted in transannular closure to give 6,7-dehydroleuconoxine (63). A two-

step sequence from leuconolam (54), comprising acid-induced closure, followed by 

catalytic hydrogenation, provided a concise semisynthesis of leuconoxine (56). When 

the acid-induced reaction of leuconolam (54) (or 6,7-dehydroleuconoxine (63)) was 

carried out with PTSA in CH2Cl2, the product was the amino lactam-lactone 78, while 

the acid-induced reactions in the presence of MeOH as solvent furnished O-

methylleuconolam (77) as the sole product in high yields. The original assignment of 

the structure of epi-leuconolam (55) was revised to 6,7-dehydroleuconoxine (63) based 

on X-ray diffraction analysis. Bromination (Br2/CHCl3) of leuconolam (54) proceeds in 

two steps via intermediacy of 6,7-dehydroleuconoxine (63) to furnish the 6,7-

dibromoleuconoxine adduct (82). Concise semisynthesis of the new leuconoxine-type 

alkaloids, leuconodines A and F (67 and 72, respectively), was achieved by treatment of 

leuconolam (54) with excess TFA (which gave leuconodine A (67) as the minor 

product), followed by oxidation of 67 to leuconodine F (72).  

 

 

 

 

 

 



116 
 

CHAPTER FIVE 

Partial Syntheses of the New Strychnan Alkaloid, Alstolucine A,  

and the New Eburnane Alkaloid, ()-Eburnamaline 

 

5.1 Alstolucine A 

 

5.1.1 Introduction 

 

Alstolucine A (91) is a new strychnan-type alkaloid obtained from the leaf 

extract of Alstonia spatulata (isolation and structure by S. J. Tan).
74

  

 

 

 

Alstolucine A (91) was obtained as a light yellowish oil, with []
25

D438 (c 

0.12, CHCl3). The UV spectrum showed absorption maxima at 230, 298, and 328 nm, 

characteristic of a -anilinoacrylate chromophore.
75

 The IR spectrum (thin film) showed 

a broadened band at 3378 cm
1 

due to the indolic NH function, another band at 1742 

cm
1 

due to a carbonate group (OCO2), and a band at 1683 cm
1 

due to an ,-

unsaturated ester function. The ESIMS of 91 showed an [M  H]

 peak at m/z 413, and 

HRESIMS measurements yielded the molecular formula C23H29N2O5  H (DBE 11). 

The 
13

C NMR data (Table 5.1) showed all 23 carbon resonances, comprising 

three methyl, five methylene, eight methine, and seven quaternary carbons. The 
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presence of conjugated ester and carbonate functionalities were supported by the 

observed quaternary carbon signals at δC 167.9 and 155.0, respectively, while the 

signals due to the two olefinic quaternary carbons at δC 167.9 (C-2) and 103.6 (C-16) 

were consistent with the presence of the -anilinoacrylate moiety. Two downfield 

signals at δC 76.5 and 63.8 were associated with the presence of oxymethine and 

oxymethylene moieties, respectively.  

The 
1
H NMR data (Table 5.1) showed the presence of an unsubstituted aromatic 

moiety, an indolic NH as a broad singlet at δH 8.92, an oxymethine at δH 4.76, an 

oxymethylene at δH 4.21, and three methyl groups. The highest field methyl at δH 1.33 

(t, J = 7.0 Hz) was associated with the oxymethylene at δH 4.21, constituting part of an 

ethoxy moiety, while the methyl at δH 1.34 (d, J = 6.0 Hz) was adjacent to the 

oxymethine at δH 4.76 (m) as shown by the COSY spectrum. The remaining methyl at 

δH 3.77 (s) was associated with the conjugated methyl ester function.  

The COSY, HMQC, and HMBC data revealed the structure of alstolucine A 

(91). The relative configuration at the various centers were established from the 

observed NOEs as well as analysis of the vicinal coupling constants, except for the 

carbon bearing the carbonate group at C-19, for which the NOE data proved 

inconclusive. A partial synthesis of 91 was therefore carried out, and the results 

obtained were used to establish the configuration at C-19. The 
1
H and 

13
C NMR data of 

alkaloid 91 are summarized in Table 5.1, while 
1
H NMR spectrum of alkaloid 91 is 

shown in Figure 5.1. 

An ideal starting material that bears a close resemblance to alstolucine A (91) 

would be the known alkaloid, N(4)-demethylalstogustine (92)
76

 or its C-19 epimer 

(93).
77

 Acylation of either 92 or 93 should lead to 91 (Scheme 5.1), which would then 

allow confirmation of the C-19 configuration of 91. However, since both 92 and 93 

were not available, another choice of starting material was indicated.  
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Scheme 5.1 

 

An alternative starting material for the partial synthesis of alstolucine A (91) is 

alstolucine B (94),
74

 a new alkaloid isolated from the same study. An advantage of using 

94 as starting compound is that the structure and relative configuration of 94 can be 

established by NMR and X-ray diffraction analysis. The 
1
H and 

13
C NMR data of 

alkaloid 94 are summarized in Table 5.1, while the 
1
H NMR spectrum of alkaloid 94 is 

shown in Figure 5.2. The X-ray crystal structure of 94 is shown in Figure 5.3.  
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Table 5.1. 
1
H and 

13
C NMR data () of alstolucines A (91) and B (94)

a
 

Position 91 94 

C H C H 

2 167.9  172.2 

3 58.9 4.04 m 60.6 3.87 br t (3.0) 

5 53.5 3.00 m 54.0 2.87 m 

5  3.20 ddd (11.4, 8.7, 6.6)  3.05 m 

6 45.6 2.00 m 43.4 1.83 m 

6  2.29 ddd (12.0, 8.0, 6.5)  3.04 m 

7 58.1  56.7 

8 135.3  135.4 

9 120.8 7.20 br d (7.5) 119.6 7.15 br d (8.0) 

10 120.9 6.90 br t (7.5) 121.1 6.90 td (8.0, 1.0) 

11 127.8 7.14 td (7.5, 1) 127.6 7.11 td (8.0, 1.0) 

12 109.6 6.82 br d (7.5) 109.7 6.80 br d (8.0) 

13 144.1  144.2  

14R 27.4 1.18 dt (13.6, 2.6) 31.7 1.47 dt (13.0, 3.0) 

14S  2.24 dt (13.6, 3.5)  2.12 dt (13.0, 3.0) 

15 27.0 3.09 m 30.8 3.47 m 

16 103.6  96.5  

18 17.2 1.34 d (6.0) 29.2 2.30 s 

19 76.5 4.76 m 208.5  

20 41.2 2.11 m 50.0 2.87 m 

21 47.6 2.67 dd (14.0, 6.0) 45.6 2.64 t (12.0) 

21  3.03 dd (14.0, 11.8)  2.83 dd (12.0, 4.0) 

22 155.0    

23 63.8 4.21 m   

  4.21 m   

24 14.3 1.33 t (7.0)  3.68 s 

CO2Me 51.0 3.77 s 50.9 8.93 br s 

CO2Me 167.9   167.2 3.90 s 

NH  8.92 br s  4.15 br s 

aCDCl3, 400 and 100 MHz, respectively; assignments based on COSY, HMQC, and HMBC. 
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Figure 5.1. 
1
H NMR spectrum (CDCl3, 400 MHz) of natural alstolucine A (91).
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Figure 5.2. 
1
H NMR spectrum (CDCl3, 400 MHz) of alstolucine B (94).
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                                                  Figure 5.3. X-ray crystal structure of 94. 

 

In the event, the C-20 configuration of alstolucine B (94) as revealed by the X-

ray diffraction analysis is 20R, which is opposite to that of alstolucine A (91, 20S). The 

first step in the transformation therefore requires epimerization of 94 to the C-20 epimer 

95, followed in succession by reduction to 92 (or 93), and acylation to 91 (Scheme 5.2). 

 

 

Scheme 5.2 
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5.1.2 Results and discussion 

 

The partial synthesis was therefore carried out as outlined in Scheme 5.2. In the 

first step, treatment of alstolucine B (94) with NaOMe/MeOH (0 
o
C, 3 h) gave a 2:1 

mixture of 94 and its C-20 epimer, 95 (Scheme 5.3).  

Compound 95 was obtained as a light yellowish oil, with []
25

D 371 (c 0.35, 

CHCl3). The UV spectrum showed absorption maxima at 229, 297, and 328 nm, while 

the IR spectrum (thin film) showed bands at 3378 (NH), 1704 (C=O), and 1678 (,-

unsaturated ester) cm
1

. The ESIMS of 95 showed an [M H]

 at m/z 339, and 

HRESIMS measurements yielded the molecular formula C20H22N2O3. The 
1
H and 

13
C 

NMR data of 95 were identical to those of alstolucine B (94), except for differences in 

the chemical shift of H-20 in the 
1
H NMR spectrum, and differences in the shifts of C-

19, C-20, and C-21 in the 
13

C NMR spectrum. Compound 95 is therefore the C-20 

epimer of alstolucine B (94). The
 1

H and 
13

C NMR data of 95 are summarized in Table 

5.2, while the 
1
H NMR spectrum of 95 is shown in Figure 5.4. 

Reduction of 95 with NaBH4 in MeOH (0 
o
C, 1 h) gave two products: the major 

product (85%) was identical to N(4)-demethylalstogustine (92),
76

 while the minor 

product (10%) was the corresponding C-19 epimer 93 (Scheme 5.3).
77

  

The []D, UV, IR, MS, 
1
H and 

13  
C NMR data of N(4)-demethylalstogustine (92) 

and its C-19 epimer 93 are identical to those reported in the literature.
76,77

 The 
1
H and 

13
C NMR data of 92 and 93 are summarized in Table 5.2, while the 

1
H NMR spectra of 

92 and 93 are shown in Figures 5.5 and 5.6, respectively. 

Subsequent treatment of N(4)-demethylalstogustine (92) with ethyl 

chloroformate and triethylamine in CH2Cl2 (5 equiv in 5 ml CH2Cl2, rt, 30 min) gave, 

after silica gel chromatography, an acylated derivative which was identical ([]D, 
1
H 
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and 
13

C NMR, MS) with alstolucine A (91) (Scheme 5.3). The 
1
H NMR spectrum of 

semisynthetic 91 is shown in Figure 5.7. 

 

Table 5.2. 
1
H and 

13
C NMR data () of compounds 92, 93, and 95

a
 

Position 92 93 95 

C H C H C H 

2 167.6  168.1  168.7  

3 59.1 4.07 m 59.2 4.04 m 58.6 4.05 m 

5 53.9 3.05 ddd (11, 6, 

4.5) 

53.8 2.99 ddd (11, 6.7, 

4) 

53.1 2.96 ddd  

(11.0, 6.4, 5.5) 

5  3.24 ddd (11, 9, 

6) 

 3.18 ddd (11, 9, 

6.7) 

 3.16 dt (11.0, 7.0) 

6 46.7 2.02 ddd (12.4, 6, 

5) 

45.9 1.98 ddd (12.8, 6, 

4) 

45.2 2.01 ddd  

(12.5, 6.5, 5.5) 

6  2.32 m  2.39 ddd (12, 9, 7)  2.34 ddd  

(12.5, 7.5, 6.7) 

7 58.6  58.2  58.3  

8 135.7  135.6  135.0  

9 120.9 7.20 br d (7.5) 120.8 7.20 br d (7.5) 120.8 7.19 br d (7.7) 

10 121.2 6.91 br t (7.5) 121.1 6.91 br t (7.5) 121.2 6.91 td (7.7, 1.0) 

11 128.0 7.16 br t (7.5) 127.9 7.15 br t (7.5) 128.0 7.15 td (7.7) 

12 109.7 6.85 br d (7.5) 109.7 6.83 br d (7.5) 109.8 6.84 br d (7.7) 

13 143.8  144.1  144.2  

14R 27.4 1.22 dt (13.7, 2.3) 27.6 1.19 dt (13.6, 2.7) 26.6 1.19 dt (13.7, 2.4) 

14S  2.29 m  2.23 dt (13.6, 3.4)  2.18 dt (13.7, 3.3) 

15 29.3 3.00 m 27.8 2.95 m 27.4 3.38 m 

16 102.9  103.4  102.6  

18 20.3 1.16 d (6.2) 20.2 1.26 d (6.2) 29.4 2.26 s 

19 71.1 3.62 m 69.9 3.80 m 210.0  

20 45.5 1.83 m 43.4 2.03 m 49.5 3.02 ddd  

(10.0, 6.0, 2.8) 

21 48.4 2.66 dd (14, 6) 47.4 2.71dd (14, 6) 47.0 2.81 dd (14.0, 6.0) 

21  2.94 t (14)  3.09 dd (14, 11)  3.28 dd  

(14.0, 10.0) 

CO2Me 51.5 3.82 s 51.3 3.80 s 51.2 3.77 s 

CO2Me 167.9  168.1  168.0  

NH  8.52 br s  8.65 br s  8.82 br s 

aCDCl3, 400 and 100 MHz, respectively; assignments based on COSY, HMQC, and HMBC. 
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Figure 5.4. 
1
H NMR spectrum (CDCl3, 400 MHz) of compound 95.  
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Figure 5.5. 
1
H NMR spectrum (CDCl3, 400 MHz) of N(4)-demethylalstogustine (92). 
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Figure 5.6. 
1
H NMR spectrum (CDCl3, 400 MHz) of 19-epi-N(4)-demethylalstogustine (93). 
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Figure 5.7. 
1
H NMR spectrum (CDCl3, 400 MHz) of semisynthetic alstolucine A (91). 
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5.1.3 Conclusion 

 

  A partial synthesis of alstolucine A (91) was successfully carried out. The C-19 

configuration of 91 was found to be 19R, based on chemical correlation with N(4)-

demethylalstogustine (92),
76,77

 whose configuration was established by X-ray 

diffraction.
79

  

 

 

Scheme 5.3 
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5.2 ()-Eburnamaline 

 

5.2.1 Introduction 

 

The alkaloid ()-eburnamaline (96) was obtained as a minor alkaloid from 

Leuconotis griffithii (isolation and structure by C. Y. Gan).
80

 It bears some similarity to 

the known alkaloid, ()-eburnamine (97),
49,81,82

 but with an additional -OH group on 

C-17.  

 

 

 

()-Eburnamaline (96) was obtained as a light yellowish oil, with []
25

D  (c 

0.21, CHCl3). The UV spectrum (230 and 280 nm) showed the presence of an indole 

chromophore, while the IR spectrum indicated the presence of hydroxyl groups at 3370 

cm
1

. The EIMS of 96 showed an [M]

 at m/z 312, with a prominent fragment peak due 

to loss of H2O at m/z 294, while the HREIMS showed an [M]

 at 312.1827, which 

analyzed for C19H24N2O2 (DBE 9, 16 mass units higher than ()-eburnamine (97)). The 

NMR data of 96 (Table 5.3) showed a close resemblance to those of 97,
49,81,82

 except for 

some notable differences associated with changes involving ring E. First, compared 

with 97, a doublet was observed at  3.90 (C 71.7) which indicated the presence of an 

oxymethine. This doublet coupled to the other oxymethine hydrogen (H-16) which 

required it to be vicinal to C-16. Alkaloid 96 is therefore the 17-hydroxy congener of 



131 
 

97. This conclusion is consistent with the loss of the H-17 signals seen in 97, and the 

presence of a CHCH fragment in 96, in place of the CHCH2 fragment seen in the COSY 

spectrum of 97.  

The configuration at C-16 in the 16-hydroxysubstituted eburnan alkaloids can be 

deduced from the presence or absence of paramagnetic deshielding exerted by the 

oxygen of the C-16OH substituent.
8386

 The relative configuration at the hydroxy-

substituted C-17 was deduced to be R (OH) based on the following evidence. First, 

the reciprocal NOEs observed for H-16/H-17, H-17/H-15, and H-17/H-18 are only 

consistent with a -oriented C-17OH (H-17). Second, the observed J16-17 of 3 Hz is 

in agreement with an equatorially-disposed H-17 (an axial or -oriented H-17 would 

result in H-17 and H-16 being trans-diaxial). Third, the resonances for H-21 and H-19 

were shifted downfield ( 4.02; 1.79, 2.30) when compared to those of ()-eburnamine 

(97) ( 3.48; 1.27, 1.89), as a result of paramagnetic deshielding exerted by the 

proximate oxygen of the -oriented C-17OH (Figure 5.8). The 
1
H and 

13
C NMR data 

for alkaloid 96 are summarized in Table 5.3, while 
1
H NMR spectrum of alkaloid 96 is 

shown in Figure 5.9. 

 

 

 

Figure 5.8. Paramagnetic deshielding exerted by C-17OH. 
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The cis-diol configuration at C-16 and C-17 for alkaloid 96 is a rather 

uncommon structural feature and as such, further proof is required to further 

substantiate the cis-diol configuration assigned. To this end a partial synthesis of 96 was 

carried out in order to obtain additional support for this uncommon structural feature. In 

addition, with more of 96 available from partial synthesis, suitable crystals can be 

obtained for X-ray diffraction analysis.  

A concise route to 96 is one based on ()-eburnamonine (98)
87

 as the starting 

compound (
1
H and 

13
C NMR data of alkaloid 98 are summarized in Table 5.3, while the 

1
H NMR spectrum of alkaloid 98 is shown in Figure 5.10). As shown in Scheme 5.4, 

oxidation of 98 to 17-hydroxyeburnamonine (99), followed by reduction of the lactam 

should furnish alkaloid 96.  

 

 

 

Scheme 5.4 
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Table 5.3. 
1
H and 

13
C NMR data () of ()-eburnamaline (96) and ()-eburnamonine 

(98)
a
 

Position 96 98 

C H C H 

2 131.5  132.0  

3 44.8 2.35 m 44.2 2.41 m 

  2.53 br d (13)  2.53 m 

5 50.9 3.14 ddd (14, 12, 6) 50.5 3.20 ddd (14, 11, 6) 

  3.22 dd (14, 6)  3.32 dd (14, 6) 

6 16.7 2.42 ddd (16, 6, 2) 16.4 2.41 m 

  2.88 dddd (16, 12, 6, 2)  2.88 m 

7 105.6  112.4  

8 128.7  130.0  

9 118.0 7.45 dd (7, 1) 117.9 7.42 dd (7, 2) 

10 120.2 7.13 td (7, 1) 123.7 7.27 td (7, 2) 

11 121.3 7.17 td (7, 1) 124.2 7.31 td (7, 2) 

12 112.3 7.79 dd (7, 1) 116.1 8.37 dd (7, 2) 

13 137.2  134.0  

14 20.0 1.29 m 20.5 brd (13) 

  1.70 dt (13, 3.6)  1.74 br qt (13, 3) 

15 21.9 0.66 td (13, 3.6) 26.8 1.01 td (13.5, 3) 

  1.37 br d (13)  1.48 br d (13.5)  

16 77.0 5.54 d (3) 119.7  

17 71.7 3.90 d (3) 116.7 2.56 d (17) 

    2.65 d (17) 

18 6.9 0.89 t (7.7) 9.0 0.92 t (7) 

19 22.9 1.79 dq (14.5, 7.7) 27.5 1.63 dq (14, 7) 

  2.30 dq (14.5, 7.7)  2.03 dq (14, 7) 

20 40.8  37.3  

21 55.8 4.02 br s 55.8 3.92 s 

aCDCl3, 400 and 100 MHz, respectively; assignments based on COSY, HMQC, and HMBC. 
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Figure 5.9. 
1
H NMR spectrum (CDCl3, 400 MHz) of natural ()-eburnamaline (96).

58 
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Figure 5.10. 
1
H NMR spectrum (CDCl3, 400 MHz) of ()-eburnamonine (98).
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5.2.2  Results and discussion  

 

The partial synthesis was carried out based on the proposed route outlined in 

Scheme 5.4. The first step involved an -oxygenation of 98 at the adjacent C-17 of ()-

eburnamonine (98) via enolate-mediated oxidation.  

Treatment of 98 with LDA in THF at 
o
C, followed by oxidation of the lactam 

enolate with O2,
69

 gave the desired ()-17-hydroxyeburnamonine (99) as the sole 

product (26%), accompanied by recovery of unreacted 98 (60%). The high recovery of 

98 may be due to quenching of the lactam enolate by water present in the oxygen gas. 

Attempts to improve the yield by prior drying of the oxygen gas via passage through 

CaCl2 or activated SiO2, did not result in significant improvement of the yields. A 

significant improvement in the yield (83%) was achieved with the use of ()-

camphorsulfonyl oxaziridine in place of gaseous oxygen in the enolate oxidation.
88

 

(Scheme 5.5). 

()-17-Hydroxyeburnamonine (99) was obtained as a light yellowish oil, with 

[]
25

D 126 (c 0.62, CHCl3). The UV spectrum (229 and 282 nm) showed the presence 

of an indole chromophore, while the IR spectrum indicated the presence of an OH and 

carbonyl group at 3382 and 1703 cm
1

, respectively. The HRESIMS showed an [M  

H]

 at 311.1760, which analyzed for C19H22N2O2  H (16 mass units higher than 98). 

The 
1
H and 

13
C NMR data (Table 5.4) were generally similar with those of 98, except 

for the downfield shifts of H-17 and C-17 to H 4.15 and C 75.1, respectively, and the 

presence of an OH ( 4.78) in the 
1
H NMR spectrum. The assignment of the 

configuration at C-17 in 99 was based on the observed downfield shift of the H-21 and 

H-19 signals (compared to 98)
82,87

 as a result of paramagnetic deshielding by the -

oriented C-17OH, as well as from the observed H-17/H-15, H-18 NOEs. The 
1
H and 
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13
C NMR data of compound 99 are summarized in Table 5.4, while 

1
H NMR spectrum 

of 99 is shown in Figure 5.11. 

Treatment of 99 in the presence of LiAlH4 in THF under reflux gave two 

epimeric products, 96 (54%) and 100 (39%) (Scheme 5.5).
82

 The major product showed 

[]D, TLC Rf, ESIMS, and 
1
H and 

13
C NMR data which were identical with those of 96. 

The 
1
H NMR spectrum of semisynthetic 96 is shown in Figure 5.12. 

The minor product 100 was obtained as white amorphous solid, and 

subsequently as colorless crystals from CH2Cl2 (mp 190193 

C) with []

25
D 44 (c 

0.62, MeOH). The UV spectrum (229 and 281 nm) showed the presence of an indole 

chromophore, while the IR spectrum indicated the presence of OH groups at 3448 cm
1

. 

The HRESIMS of 100 gave [M  H]

 at 313.1915, corresponding to the formula 

C19H24N2O2  H, which was similar to that of 96. Compound 100 was assigned as the 

16-OH epimer of 99 based on the observed downfield shift of H-15 compared to those 

of 96 due to paramagnetic deshielding, as well as the virtual absence of the H-16H-17 

vicinal coupling (J16-17 ≈ 0), in agreement with the required H-16H-17 dihedral angle 

of ca. 90

 in 100. The 

1
H and 

13
C NMR data for compound 100 are summarized in 

Table 5.4, while the 
1
H NMR spectrum of compound 100 is shown in Figure 5.13.  
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Scheme 5.5 

Table 5.4. 
1
H and 

13
C NMR data () of compounds 99 and 100

a 

Position 99  100
b 

C H C H 

2 131.6  130.5  
3 44.7 2.35 m 45.2 2.55 m 

  2.62 br d (11)  2.55 m 

5 50.3 3.26 m  51.5 3.23 dd (14, 6) 

  3.30 m  3.14 m 

6 16.6 2.40 dd (16, 6) 16.6 2.85 m 

  2.83 dddd (16, 14, 6, 2)  2.66 m 

7 113.0  105.5  
8 130.5  129.1  
9 118.4 7.40 dd (7, 1) 110.2 7.34 br d (7.5) 

10 124.2 7.26 m 121.4 7.20 td (7.5) 

11 124.4 7.29 m 120.3 7.16 td (7.5) 

12 116.4 8.29 dd (7, 1) 118.7  br d (7.5) 

13 134.6  135.4  
14 20.2 1.37 br d (13.5) 20.4 1.33 m 

  1.77 dt (13.5, 3.5)  1.33 m 

15 23.0 1.51 br d (13.7) 22.3 1.47 td (14, 3.5) 

  0.70 td (13.7, 3.5)   1.37 m 

16 169.0 4.78 br s  79.9 5.74 br s 

17 75.1 4.15 s 73.4 3.84 br s 

     

18 7.1 0.89 t (7.4) 7.1 0.92 t  (7.3) 

19 21.2 1.96 dq (14.6, 7.4) 23.1 2.29 dq (14.5, 7.3)  

  2.22 dq (14.6, 7.4)  1.71 dq (14.5, 7.3)  

20 41.9  39.0  
21 55.6 4.17 br s 56.4 4.04 br s 

16-OH    Not observed 

17-OH  4.78 br s  Not observed 
aCDCl3, 400 and 100 MHz, respectively; blow solubility in CDCl3; assignments based on COSY, HMQC, and HMBC. 
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Figure 5.11. 
1
H NMR spectrum (CDCl3, 400 MHz) of ()-17-hydroxyeburnamonine (99). 
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Figure 5.12. 
1
H NMR spectrum (CDCl3, 400 MHz) of semisynthetic ()-eburnamaline (96). 
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Figure 5.13. 
1
H NMR spectrum (CDCl3, 400 MHz) of compound 100. 
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As a sufficient amount of ()-eburnamaline (96) was made available, attempts 

were made to obtain suitable crystals for X-ray analysis, but to no avail. However, the 

16-OH epimeric compound 100 crystallized readily in CH2Cl2, and therefore an X-ray 

diffraction analysis was carried out which yielded the absolute configuration of 

compound 100 (Figure 5.14). The absolute configuration at C-16 and C-17 of 

compound 100 were found to be 16S and 17R, respectively. With the absolute 

configuration of the 16-OH epimer 100 determined, the absolute configuration of C-16 

and C-17 of ()-eburnamaline (96) could be readily deduced as 16R and 17R, 

respectively. 

Compound 100 was first obtained as white amorphous solid, and subsequently 

as colorless needles from slow evaporation from CH2Cl2 solution. The crystal structure 

obtained showed that 100 co-crystallized with the solvent. The presence of heavy atoms 

(CH2Cl2) in the unit cell enabled measurement of the Flack parameter,
63

 which in turn 

permitted the determination of the absolute configuration (Figure 5.14).  

 

                                                     

 

                                                         Figure 5.14. X-ray crystal structure of 100  

                                                           [Flack parameter: x = 0.06(0.06)]. 
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5.2.3 Conclusion 

 

The partial synthesis of ()-eburnamaline (96) was achieved via a concise two-

step oxidation-reduction sequence from ()-eburnamonine (98). The absolute 

configuration of ()-eburnamaline (96) was determined via correlation with its C-16 

epimer 100, for which crystal data was available from an X-ray diffraction analysis. 
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CHAPTER SIX 

Absolute Configuration of Perhentinine and Macralstonine  

and Determination of C-20 Configuration in the  

New Alstonia Bisindoles, Perhentidines AC 

 

6.1  Introduction 

 

Perhentidines AC (101103) are new bisindole alkaloids from the stem-bark 

extract of Alstonia macrophylla and Alstonia angustifolia (isolation and structure by S. 

H. Lim and S. J. Tan).
89 

 

 

 

Examination of the 
1
H and 

13
C NMR data of alkaloids 101103 (Tables 6.1 and 

6.2), indicated that these bisindoles are constituted from the union of macroline units, 

with the upper half corresponding to an E-seco-macroline (or alstomicine) moiety, and 

the lower half corresponding to a type B macroline (12-substituted alstophylline or 9-

substituted-10-methoxyalstonerine). The 
1
H and 

13
C NMR data of alkaloids 101103 
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are shown in Tables 6.1 and 6.2, while the 
1
H NMR spectra of alkaloids 101103 are 

shown in Figures 6.16.3. 

 

Table 6.1. 
1
H NMR data () of perhentidines AC (101103)

a
 

Position 101 102 103 

3 4.14 m 3.98 m 4.14 m 

5 3.48 d (7.6) 3.63 m 3.45 m 

6 2.57 d (17) 2.58 d (17) 2.56 d (17) 

6 3.29 m 3.37 dd (17, 7) 3.29 dd (17, 7) 

9 7.56 d (7.5) 7.56 d (8) 7.56 d (7.5) 

10 7.16 t (7.5) 7.14 m 7.16 t (7.5) 

11 7.26 m 7.22 m 7.24 m 

12 7.36 d (7.5) 7.32 d (8) 7.34 d (7.5) 

14 
 2.01 m 1.48 m 2.04 m 

14 2.46 m 2.26 m 2.50 m 

15 2.27 m 2.11 m 2.21 m 

16 1.66 m 1.88 m 1.60 m 

17a 3.88 dd (11, 2) 4.09 m 3.83 dd (11, 2) 

17b 3.91 dd (11, 2) 4.49 d (12) 3.90 m 

18 1.55 s 1.40 s 1.30 s 

20 3.26 m 3.55 m 3.42 m 

21a 2.92 dd (13, 10.5) 3.05 m 2.60 t (12) 

21b 3.26 m 3.17 m 3.23 dd (12, 4) 

N1Me 3.69 s 3.57 s 3.69 s 

N4Me 2.36
b
 s 2.36 s 2.37 s 

3' 3.80 m 3.72 m 3.77 m 

5' 3.05 d (7) 3.01 m 2.87 d (7) 

6' 2.40 m 2.34 m 2.26 d (17) 

6' 3.23 dd (17, 7) 3.20 m 3.18 dd (17, 7) 

9' 7.22 d (8.6) 7.20 d (8.6)  

10' 6.75 d (8.6) 6.76 d (8.6)  

11'   6.83 d (9) 

12'   7.07 d (9) 

14'  
 1.75 td (12, 4) 1.70 td (12.5, 3.5) 1.75 m 

14' 2.01 m 1.99 m 2.04 m 

15' 2.50 m 2.51 m 2.50 m 

16' 1.84 m 1.82 m 1.75 m 

17' 4.14 m 4.12 m 4.08 dd (11, 4) 

17' 4.39 t (11) 4.37 t (11) 4.32 t (11) 

18' 2.06 s 2.05 s 2.06 s 

21' 7.49 s 7.48 s 7.49 s 

N1Me' 3.58 s 3.53 s 3.53 s 

N4Me' 2.37
b
 s 2.24 s 2.24 s 

10'-OMe   3.89 s 

11'-OMe 3.83 s 3.94 s  
aCDCl3, 400MHz; bassignments are interchangeable; assignments based on COSY, HSQC, and HMBC. 
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Table 6.2. 
13

C NMR data () of perhentidines AC (101103)
a 

Position 101 102 103 

2 132.8 132.9 133.1 

3 53.2 53.2 53.3 

5 59.5 59.6 59.3 

6 22.1 22.5 22.1 

7 106.1 106.1 106.2 

8 126.4 126.5 126.5 

9 118.4 118.2 118.3 

10 118.9 118.9 118.8 

11 121.0 121.1 120.8 

12 108.8 109.2 108.8 

13 137.1 137.4 137.1 

14 32.2 32.7 32.0 

15 31.5 32.4 31.7 

16 42.6 42.2 42.7 

17 66.8 66.1 66.7 

18 31.8 34.4 32.6 

19 212.9 214.7 213.3 

20 55.5 52.7 53.9 

21 26.0 26.3 28.8 

N1Me 29.1 29.1 28.9
c
 

N4Me 41.3
b
 41.4 41.3 

2' 133.5 133.7 133.9 

3' 53.9 53.9 53.9 

5' 54.6 54.7 54.4 

6' 22.5 22.77 25.2 

7' 105.8 105.3 105.3 

8' 122.9 123.3 126.2 

9' 116.0 115.9 118.0 

10' 104.8 104.3 151.2 

11' 153.6 153.9 106.4 

12' 110.9 110.2 107.1 

13' 136.3 136.2 133.0 

14' 32.2 32.1 32.3 

15' 22.7 22.85 22.7 

16' 38.4 38.6 38.3 

17' 67.6 67.8 67.6 

18' 24.9 25.1 25.0 

19' 195.2 195.6 195.5 

20' 121.0 121.2 121.0 

21' 157.2 157.5 157.5 

N1Me' 32.3 32.5 29.0
c
 

N4Me' 41.9
b
 41.8 41.6 

10'-OMe   56.9 

11'-OMe 56.7 56.7 
aCDCl3, 100 MHz; b,cassignments are interchangeable; assignments based on COSY, HSQC, and HMBC.
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Figure 6.1. 
1
H NMR spectrum (CDCl3, 400 MHz) of perhentidine A (101).  
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Figure 6.2. 
1
H NMR spectrum (CDCl3, 400 MHz) of perhentidine B (102).  
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Figure 6.3. 
1
H NMR spectrum (CDCl3, 400 MHz) of perhentidine C (103).  
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Although the gross structures could be established from the NMR data, 

including the relative configurations at the stereogenic centers, the relative 

configuration at C-20 for these alkaloids could not be determined directly (except for 

perhentidine C (103)), as the combined NMR data (including NOESY) were insufficient 

for establishing the configuration (the signals of H-20 in both perhentidines A and B 

were observed as multiplets, while the signal of one of the C-21 hydrogens in 

perhentidine A (101), and of both the C-21 hydrogens in perhentidine B (102) were also 

observed as multiplets). Since the perhentidines are regioisomers of the previously 

isolated Alstonia bisindoles, perhentinine (104)
90

 and the E-seco form (106) of 

macralstonine (105),
9195

 determination of the C-20 configuration of these bisindole 

alkaloids, 104 and 105 would be useful in facilitating the assignment of C-20 

configuration in the regioisomeric perhentidines. Establishment of the configuration at 

C-20 for both 104 and 105 was therefore carried out by X-ray diffraction analysis, and 

the results obtained were used to facilitate the assignment of the C-20 configuration of 

the perhentidines.  
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6.2 Determination of the Configuration at C-20 of Perhentinine and 

Macralstonine  

 

6.2.1 Perhentinine 

 

 The bisindole alkaloid perhentinine (104) was first isolated from the bark extract 

of A. macrophylla by Y. M. Choo in 2004.
90

 The structure was established based on 

interpretation of the spectral data (NMR, MS, UV, and IR) which indicated constitution 

from the union of an E-seco-macroline (or alstomicine) moiety and a 12-substituted 

alstophylline, the connection between the two moieties being mediated by a methylene 

bridge. The data were however insufficient to establish the configuration at C-20.  

Since NOE data were of little assistance as the H-20 and H-21 signals in 

perhentinine were observed as multiplets, the O-acetyl derivative 104a was prepared, in 

anticipation of an improved resolution of the H-10 and H-21 signals. Fortuitously, the 

H-20 and H-21 signals of the O-acetyl derivative were clearly resolved, and analysis of 

the coupling constants (J20-21a = 11.0, J20-21b = 3.5 Hz; H-20 and H-21a trans-diaxial) 

and the observed NOEs (H-21a/H-15; H-21b/H-14, H-20; 18-Me/H-17, H-20) allowed 

assignment of the configuration at C-20 as S (Figure 6.4).  

 

 

Figure 6.4. Selected NOEs of 104a. 
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The 
1
H and 

13
C NMR data of 104 and 104a are summarized in Tables 6.3 and 

6.4, respectively, while the 
1
H NMR spectra of 104 and 104a are shown in Figures 6.5 

and 6.6, respectively.
 

 

Table 6.3. 
1
H NMR data () of perhentinine (104) and O-acetylperhentinine (104a)

a
 

Position 104
b
 104a

c
 Position 104

b
 104a

c
 

3 4.09 dd (4, 2) 4.00 m 3' 3.79 t (3) 3.80 br s 

5 3.46 d (7) 3.26 m 5' 2.99 d (7) 3.02 d (7) 

6 2.54 m 2.44 d (17) 6' 2.28 m 2.54 m 

6 3.32 m 3.14 dd (17, 7) 6' 3.08 m 3.14 dd (16.5, 7) 

9 7.52 d (8) 7.54 br d (7.5) 9' 6.90 s 6.87 s 

10 7.13 td (8, 1) 7.13 td (7.5, 1) 12' 6.69 s 6.69 s 

11 7.22 td (8, 1) 7.22 td (7.5, 1) 14'  
 1.75 td (12, 3) 1.75 m 

12 7.32 d (8) 7.32 br d (7.5) 14' 2.04 m 2.06 m 

14 
 1.98 m 1.86 m 15' 2.54 m 2.53 dt (11.5, 6) 

14 2.41 m 1.86 m 16' 1.84 dt (11, 4) 1.88 m 

15 2.14 m 2.14 m 17' 4.13 ddd  (11, 4, 1) 4.14 dd (11, 2) 

16 1.57 m 1.88 m 17' 4.37 t (11) 4.41 t (11) 

17a 3.95 dd (11, 3)  4.28 dd (11, 3.5) 18' 2.05 s 2.07 s 

17b 4.01 dd (11, 2) 4.58 t (11) 21' 7.51 s 7.51 s 

18 1.72 s  1.71 s N1Me' 3.55 s 3.57 s 

20 3.32 m  3.08 td (11, 3.5) N4Me' 2.25 s 2.30 s 

21a 2.41 m 2.31 m 11'-OMe 3.87 s 3.88 s 

21b 3.08 m 2.97 dd (13.5, 3.5)    

N1Me 3.65 s 3.64 s    

N4Me 2.34 s 2.28 s    

OCOMe  2.06 s    

aCDCl3; 
b400 MHz; c600 MHz; assignments based on COSY, HSQC, and HMBC.  
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Table 6.4. 
13

C NMR data () of perhentinine (104) and O-acetylperhentinine (104a)
a 

Position 104
b
 104a

c
 Position 104

b
 104a

c
 

2 132.9 133.8 2' 131.1 131.5 

3 53.1 53.5 3' 53.7 53.8 

5 59.2 54.2 5' 54.7 54.7 

6 22.6 21.8 6' 22.0 22.8 

7 105.9 106.8 7' 105.4 105.6 

8 126.3 126.6 8' 120.1 119.2 

9 118.2 118.3 9' 118.7 119.4 

10 119.0 118.7 10' 119.1 118.7 

11 120.9 120.7 11' 153.6 153.7 

12 108.7 108.8 12' 91.3 91.4 

13 137.0 137.0 13' 136.5 136.7 

14 32.3 30.3 14' 32.4 32.4 

15 31.5 31.3 15' 22.8 22.9 

16 43.1 43.6 16' 38.3 38.4 

17 66.5 63.5 17' 67.7 67.8 

18 31.1 31.7 18' 24.9 25.4 

19 213.2 213.1 19' 195.4 195.6 

20 54.5 54.1 20' 120.8 121.1 

21 32.0 33.2 21' 157.4 157.7 

N1Me 29.0 29.2 N1Me' 28.9 29.0 

N4Me 41.7 42.1 N4Me' 41.2 41.9 

OCOMe  21.1 11'-OMe 55.5 55.6 

OCOMe  171.4    

aCDCl3; 
b100 MHz; c150 MHz; assignments based on COSY, HSQC, and HMBC.  
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Figure 6.5. 
1
H NMR spectrum (CDCl3, 400 MHz) of perhentinine (104). 
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Figure 6.6. 
1
H NMR spectrum (CDCl3, 600 MHz) of O-acetylperhentinine (104a).
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Additional confirmation by X-ray diffraction analysis was next attempted. 

However, attempts to obtain suitable crystals of perhentinine (104) were singularly 

unsuccessful. Eventually, it was found that treatment of 104 with excess MeI provided 

suitable crystals (recrystallized from hot MeOH), which, upon X-ray diffraction 

analysis, revealed the formation of the dimethyl diiodide salt of the ring-E cyclized 

(hemiketal) form of perhentinine 104b (Figure 6.7), from which the absolute 

configuration at C-20 of the precursor E-seco-compound, perhentinine (104), could be 

established as 20S.  

 

 

 

 

 

Figure 6.7. X-ray crystal structure of 104b  

[Flack parameter:
63

 x = 0.04(0.03), Hooft parameter:
64

 y = 0.022(0.07)]. 
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6.2.2 Macralstonine  

 

 

 

Macralstonine (105) was first isolated by Sharp from the bark extract of A. 

macrophylla,
91

 and subsequently investigated in detail by Hesse and Schmid,
92

 who 

observed that macralstonine exists as an equilibrium mixture of acyclic (ketone, 106) 

and cyclized (hemiketal, 105) forms in CHCl3 solution. We have confirmed this by 

analysis of high-field NMR data (600 MHz) of macralstonine. Thus, in CDCl3 solution, 

the ratio of acyclic to cyclized form was 2.32:1, while in CD2Cl2, it was 1.14:1, and in 

THF-d8, it was detected only as the cyclized hemiketal form 105, albeit with poor 

solubility in this solvent. The two forms were readily distinguishable with the use of 2-

D NMR methods. (The 
1
H and 

13
C NMR data of 105 and 106 (in CDCl3 and THF) are 

summarized in Tables 6.5 and 6.6, respectively, while the 
1
H NMR spectra of 105 and 

106 in CDCl3, CD2Cl2, and THF are shown in Figures 6.8, 6.9, and 6.10, respectively).
 
 

The E-seco-macralstonine (106) could be trapped by conversion to its O-acetyl 

derivative 106a,
92

 in which case the NMR data of the pure O-acetyl-E-seco-

macralstonine could be determined (The 
1
H and 

13
C NMR data of 106a are summarized 

in Tables 6.5 and 6.6, respectively, while the 
1
H NMR spectrum of 106a is shown in 

Figure 6.11).  
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Table 6.5. 
1
H NMR data () of compounds 105, 106, and 106a

a
  

Position 105
a
 106

a
 105

b
 106a

a
 

3 3.95 m 4.00 m 3.91 m 3.90 m 

5 2.93 d (6) 3.59 m 2.84 d (7) 3.43 d (6) 

6a 2.13 m  2.56 d (17) 2.20 d (16.2) 2.49 d (17) 

6b 2.63 dd (17, 10) 3.35 dd (17, 7.5) 2.76 dd (16.2, 7) 3.33 dd (17, 7) 

9 7.33 (7.5) 7.51 d (7.5) 7.22 d (7.5) 7.53 d (7.5) 

10 7.00 m 7.12 t (7.5) 6.84 t (7.5) 7.12 td (7.5, 1) 

11 7.09 m 7.21 t (7.5) 7.01 t (7.5) 7.19 td (7.5, 1) 

12 7.09 m 7.30 d (7.5) 7.10 d (7.5) 7.29 d (7.5) 

14a 1.87 m 1.44 d (12)  1.83 m 1.28 d (12) 

14b 2.86 td (13, 3.5)  2.35 m  2.92 td (12.5, 4) 1.89 m 

15 1.77 m 2.01 m 1.62 m 2.03 m 

16 1.77 m 1.90 m 1.63 m 2.23 m 

17a 3.49 m  4.12 dd (12, 3)  3.27 td (11.5, 5) 4.59 m 

17b 4.52 t (11.5)  4.43 d (12)  4.49 t (11.5) 4.59 m 

18 1.51 s 1.68 s 1.40 s 1.59 s 

20 1.91 m 3.39 td (11, 4) 1.74 m 3.06 td (11, 4) 

21a 2.43 m 2.39 m 2.42 dd (13.5, 10.5) 2.37 m 

21b 3.06 dd (14, 3.5) 3.00 m 2.99 dd (13.5, 3.5) 3.15 m 

N1Me 3.47 s 3.56 s 3.45 s 3.55 s 

N4Me 2.28 s 2.38 s 2.21 s 2.31 s 

OCOMe    2.15 s 

3' 3.75 m 3.79 m 3.78 m 3.81 m  

5' 3.00 m 3.00 m 3.03 d (7) 3.03 m 

6'a 2.33 m 2.35 m  2.26 d (16.2) 2.39 m 

6'b 3.00 m  3.17 dd (16.5, 7) 3.09 dd (16.2, 7) 3.17 m 

9' 6.74 s 6.90 s 6.72 s 6.90 s 

12' 6.40 s 6.69 s 6.42 s 6.69 s 

14'a
 
 1.76 m  1.77 m  1.69 m 1.78 m  

14'b 2.01 m  2.01 m  1.99 m 2.07 m  

15' 2.60 m 2.60 m 2.47 m 2.59 m 

16' 1.87 m 1.87 m 1.83 m 1.89 m 

17'a 4.19 dd (11, 3)  4.14 dd (12, 3)  4.14 dd (11.5, 3) 4.14 d (11) 

17'b 4.38 m  4.38 t (12)  4.37 t (11.5) 4.39 t (11) 

18' 2.07 s 2.09 s 1.98 s 2.09 s 

21' 7.52 s 7.53 s 7.57 s 7.54 s 

N1Me' 3.50 s 3.59 s 3.51 s 3.57 s 

N4Me' 2.13 s 2.24 s 2.13 s 2.26 s 

11'-OMe 3.92 s 3.65 s 3.59 s 3.91 s 

a600MHz; bCDCl3;
 cTHF-d8; assignments based on COSY, HSQC, and HMBC.  
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Table 6.6.
 13

C NMR data () of compounds 105, 106, and 106a
a 

Position 105
b
 106

b
 105

c
 106a

b
 

2 133.3 132.6 134.4 133.4 

3 54.0 53.1 54.7 53.2 

5 55.5 59.6 56.7 53.6 

6 22.7 22.4 23.3 22.1 

7 106.5 105.9 106.7 106.6 

8 126.45 126.36 127.3 126.5 

9 117.9 118.0 117.9 118.0 

10 118.4 118.9 118.6 118.7 

11 120.2 121.0 120.4 120.8 

12 108.5 109.0 109.0 109.0 

13 136.8 137.2 137.7 137.2 

14 26.9 33.0 27.4 31.5 

15 25.9 32.3 26.6 31.5 

16 44.0 42.1 45.5 41.9 

17 61.4 66.2 61.5 62.6 

18 29.5 33.9 29.1 32.7 

19 99.0 214.5 98.5 213.9 

20 45.6 53.8 46.9 53.9 

21 28.8 32.49 29.6 31.8 

N1Me 29.07 29.14 28.7 29.1 

N4Me 41.69 41.4 41.7 42.1 

OCOMe    21.3 

OCOMe    171.4 

2' 131.2 131.5 131.7 131.3 

3' 53.76 53.8 54.4 53.9 

5' 54.7 54.7 55.4 54.7 

6' 22.5 22.8 22.9 22.9 

7' 105.1 105.6 105.7 105.5 

8' 119.7 119.1 120.6 120.1 

9' 118.8 119.5 119.3 119.4 

10' 120.1 120.2 121.9 119.0 

11' 153.9 153.8 154.8 153.9 

12' 91.4 91.2 91.9 91.3 

13' 136.1 136.6 137.1 136.7 

14' 32.4 32.47 33.3 32.4 

15' 22.9 22.9 23.6 22.8 

16' 38.5 38.4 39.5 38.4 

17' 67.87 67.85 68.2 67.8 

18' 25.0 25.1 24.6 25.1 

19' 195.5 195.8 193.9 195.7 

20' 121.2 121.2 121.9 121.1 

21' 157.4 157.7 157.3 157.6 

N1Me' 28.7 29.04 28.6 29.0 

N4Me' 41.77 41.74 42.1 41.9 

11'-OMe 55.3 55.6 55.1 55.5 
a150 MHz; bCDCl3; 

cTHF-d8; assignments based on COSY, HSQC, and HMBC. 
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Figure 6.8. 
1
H NMR spectrum (CDCl3, 600 MHz) of macralstonine (105) and E-seco-macralstonine (106). 
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Figure 6.9. 
1
H NMR spectrum (CD2Cl2, 400 MHz) of macralstonine (105) and E-seco-macralstonine (106). 
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Figure 6.10. 
1
H NMR spectrum (THF-d8, 600 MHz) of macralstonine (105). 
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Figure 6.11. 
1
H NMR spectrum (CDCl3, 600 MHz) of O-acetyl-E-seco-macralstonine (106a). 
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The relative configuration at C-20 in the O-methyl congener of macralstonine, 

107, isolated from the Thai A. macrophylla was established as 20R based on its NOESY 

spectrum.
93,95

 In the case of macralstonine (105), however, NOE was not feasible due to 

the observation of H-20 and H-21 as multiplets.  

 

 

 

In the case of the O-acetyl-E-seco-macralstonine derivative 106a, H-20 was 

clearly seen as a triplet of doublets (J20-21a = 11.0, J20-21b = 4.0 Hz; H-20 and H-21a 

trans-diaxial) at H 3.06 and this, coupled with the observed NOEs (H-20/H-14, H-18; 

H-21a/H-15, H-9'; H-21b/H-16, H-17, H-9'), allowed assignment of the C-20 

configuration as R (Figure 6.12). 

 

 

Figure 6.12. Selected NOEs of 106a. 
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In the event, macralstonine crystallized as the cyclized hemiketal form (105) 

from CH2Cl2/MeOH solution.
 
X-ray analysis was therefore carried out and confirmed 

the 20R absolute configuration (Figure 6.13). 

The X-ray crystal structure of 105 also showed that it existed as the cyclized 

form in the solid state. Repeating the X-ray diffraction experiment using different 

crystals yielded the same outcome as the first experiment.  

 

 

 

 
 

Figure 6.13. X-ray crystal structure of 105  

[Flack parameter:
63

 x = 0.1(0.4); Hooft parameter:
64

 y = 0.30(0.14)]. 
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With the C-20 configuration of both perhentinine and macralstonine determined 

via their acetate derivatives (104a and 106a), the same approach can be used for the 

determination of the C-20 configuration in the perhentidines.  

 

6.3 Determination of the Configuration at C-20 of Perhentidines AC 

 

The gross structures of the perhentidines AC (101103) were established via 

extensive application of 2D NMR techniques, including determination of the relative 

configurations at the various stereogenic centers, with the exception of the configuration 

at C-20.
89 

Examination of the 
1
H NMR data of perhentidines A (101) and B (102) showed 

that the signals of H-20 in both alkaloids were observed as multiplets (Table 6.1). 

Furthermore, the signal of one of the C-21 hydrogens in perhentidine A (101), and of 

both the C-21 hydrogens in perhentidine B (102), were also observed as multiplets. 

Acetylation of alkaloids 101 and 102 yielded the O-acetyl derivatives 101a and 102a, in 

which the signals for H-20 and H-21 of both the compounds were clearly resolved 

(Table 6.7). The signal due to H-20 in O-acetylperhentidine A (101a) was seen as a 

triplet of doublets at H 2.99 with J = 10.7 and 3.8 Hz (i.e., J20-21a = J15-20 = 10.7 Hz, J20-

21b = 3.8 Hz). The signal of one of the hydrogens on C-21 was observed as a doublet of 

doublets at H 2.83 (J21a-21b = 14 Hz, J20-21a = 10.7 Hz). The large coupling constant of 

10.7 Hz due to the coupling between H-20 and H-21a, suggested that the conformation 

adopted about the C-20C-21 bond was one that places the two vicinal hydrogens at C-

20 and C-21 anti (trans-diaxial) to one another. The preferred anti conformation was 

likely due to the presence of three bulky groups, two on C-20, and one on C-21, which 

resulted in steric hindrance to free rotation about the C-20C-21 bond. The observation 

that H-20 is trans-diaxial to H-21a, coupled with the observed NOE interactions 
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between H-21a and H-15; H-20 and H-14, H-21b; H-21b and H-14; 18-Me and H-17, 

H-20 (Figure 6.14) allowed the configuration at C-20 in the acetate derivative 101a, and 

therefore in perhentidine A (101) as well, to be assigned as 20S. 

 

                                    

Figure 6.14. Selected NOEs of 101a.  

 

In the case of O-acetylperhentidine B (102a), the signal due to H-20 was also seen 

as a triplet of doublets at H 3.23 with J = 11 and 5 Hz. The observed H-20H-21a 

coupling of 11 Hz, indicated a trans-diaxial disposition of the two hydrogens, as in the 

case of O-acetylperhentidine A acetate (101a). In this instance however, the definitive 

NOEs, which allowed the assignment of the configuration at C-20, were different from 

those observed in 101a. Thus, in the case of O-acetylperhentidine B (102a), NOEs were 

observed between H-20 and H-14, H-21b; H-21a and H-15; H-21b and H-16, H-17; H-

18 and H-14, H-15, H-20 (Figure 6.15). These NOEs are consistent with the assignment 

of the C-20 configuration in 102a (and therefore 102) as 20R.  
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Figure 6.15. Selected NOEs of 102a 

 

The 
1
H and 

13
C NMR data of compounds 101a and 102a are summarized in 

Tables 6.7 and 6.8, respectively, while the 
1
H NMR spectra of compounds 101a and 

102a are shown in Figures 6.16 and 6.17, respectively. 
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Table 6.7. 
1
H NMR data () of compounds 101a103a

a
 

Position 101a
b
 102a

b
 103a

c
 

3 4.03 m 3.88 m 4.07 m 

5 3.25 m 3.44 m 3.25 m 

6 2.50 m 2.52 m 2.48 m 

6 3.25 m 3.35 dd (17, 8) 3.25 m 

9 7.57 d (8) 7.58 d (7.5) 7.58 br d (7.5) 

10 7.15 t (8) 7.14 t (7.5) 7.16 td (7.5, 1) 

11 7.23 t (8) 7.22 t (7.5) 7.23 td (7.5, 1) 

12 7.34 d (8) 7.31 d (7.5) 7.33 br d (7.5) 

14 
 1.94 m 1.32 m 1.94 m 

14 1.94 m 1.81 m 1.94 m 

15 2.25 m 2.14 m 2.21 m 

16 1.94 m 2.21 m 1.87 m 

17a 4.15 dd (11, 3.5) 4.63 m 4.22 dd (11, 4) 

17b 4.53 dd (11, 9) 4.63 m 4.49 dd (11, 9) 

18 1.59 s 1.30 s 1.34 s 

20 2.99 td (10.7, 3.8) 3.23 td (11, 5) 3.15 m 

21a 2.83 dd (14, 10.7) 3.04 m 2.48 m 

21b 3.17 dd (14, 3.8) 3.32 dd (14, 5) 3.15 m 

N1Me 3.66 s 3.55 s 3.67 s 

N4Me 2.35 s 2.28 s 2.37 s 

OCOMe 2.03 s 2.16 s 1.99 s 

3' 3.79 m 3.72 m 3.81 m 

5' 3.05 m 3.01 m 2.81 d (7) 

6' 2.40 d (16) 2.35 d (16) 2.26 d (16) 

6' 3.23 m 3.18 dd (16, 7) 3.11 m 

9' 7.23 d (8.5) 7.19 d (8.5) 
10' 6.76 d (8.5) 6.77 d (8.5)  
11'   6.83 d (8.7) 

12'   7.07 d (8.7) 

14'  
 1.74 m 1.71 td (12, 3.5) 1.75 m 

14' 1.98 m 1.99 m 2.08 m 

15' 2.48 m 2.50 m 2.48 m 

16' 1.84 m 1.82 m 1.69 m 

17' 4.13 dd (11.5, 3.5) 4.12 dd (11, 3) 4.09 m 

17' 4.39 t (11.5) 4.37 t (11) 4.31 t (11) 

18' 2.06 s 2.06 s 2.06 s 

21' 7.49 s 7.50 s 7.50 s 

N1Me' 3.48 s 3.52 s 3.53 s 

N4Me' 2.27 s 2.24 s 2.31 s 

10'-OMe   3.88 s 

11'-OMe 3.85 3.92 s  
aCDCl3, 

b600 MHz; c400 MHz; assignments based on COSY, HSQC, and HMBC. 
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Table 6.8. 
13

C NMR data () of compounds 101a103a
a 

Position 101a
b
 102a

b
 103a

c
 

2 133.6 133.6 133.1 

3 53.5 53.2 53.7 

5 54.6 53.3 55.0
d
 

6 21.7 22.1 21.8 

7 107.0 106.7 107.1 

8 126.7 126.7 126.8 

9 118.4 118.0 118.5 

10 118.8 118.6 118.7 

11 120.7 120.7 120.7 

12 108.8 109.1 108.9 

13 137.0 137.2 137.2 

14 30.3 31.3 30.1 

15 30.8 31.6 31.2 

16 43.0 42.0 43.3 

17 63.7 62.6 64.0 

18 32.2 34.1 32.9 

19 212.8 214.1 213.1 

20 54.8 52.4 53.2
d
 

21 26.2 25.6 29.0 

N1Me 29.1 28.9 29.1
e
 

N4Me 41.9 41.9 41.6
f
 

OCOMe 21.2 21.3 21.2 

OCOMe 171.3 171.6 171.2 

2' 133.8 133.6 133.8 

3' 53.9 53.8 54.0 

5' 54.6 54.6 54.4 

6' 22.5 22.7 25.3 

7' 105.8 105.2 105.3 

8' 122.9 123.2 126.3 

9' 116.1 115.8 118.0 

10' 104.7 104.5 151.2 

11' 153.5 153.8 106.5 

12' 110.9 110.0 107.3 

13' 136.3 136.1 133.1 

14' 32.2 32.0 32.2 

15' 22.7 22.8 22.8 

16' 38.4 38.5 38.5 

17 67.7 67.7 67.5 

18' 25.0 25.0 25.1 

19' 195.3 195.5 195.7 

20' 121.0 121.1 120.9 

21' 157.2 157.4 157.8 

N1Me 32.2 32.4 29.2
e
 

N4Me 42.1 41.7 42.2
f
 

10'-OMe   56.9 

11'-OMe 56.6 56.6  
aCDCl3; 

b150 MHz; c100 MHz; d–fassignments are interchangeable; assignments based on COSY, HSQC, and HMBC. 
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Figure 6.16. 
1
H NMR spectrum (CDCl3, 600 MHz) of O-acetylperhentidine A (101a).  
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Figure 6.17. 
1
H NMR spectrum (CDCl3, 600 MHz) of O-acetylperhentidine B (102a).  
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In the case of perhentidine C (103), the relative configuration of C-20 in 103 can 

be deduced directly from analysis of the coupling constants and the observed NOEs of 

the parent compound. In the case of 103, and unlike 101 and 102, the H-21 resonances 

were well resolved in the 
1
H NMR spectrum, whereas the resonances of H-20 and H-21 

were multiplets in the O-acetyl derivative 103a (Table 6.7). As before, the signal due to 

one of the hydrogens on C-21 was observed as a triplet at H 2.60 (J21a-21b = J21a-20 = 12 

Hz) indicating a preferred conformation about the C-20C-21 bond which places the 

two vicinal hydrogens anti (trans-diaxial) to one another due to steric hindrance caused 

by the presence of three bulky groups. This, coupled with the observed NOE 

interactions between H-21a and H-15, H-6'; H-21b and H-14; 18-Me and H-16, H-17, 

H-20 (Figure 6.18) allowed the configuration at C-20 to be assigned as 20S.  

 

         

Figure 6.18. Selected NOEs of 103. 

 

The 
1
H and 

13
C NMR data of 103a are summarized in Tables 6.7 and 6.8, 

respectively, while the 
1
H NMR spectrum of 103a is shown in Figure 6.19. 
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Figure 6.19. 
1
H NMR spectrum (CDCl3, 400 MHz) of O-acetylperhentidine C (103a).  

 

 

 



175 
 

6.4 Comparison of NMR Data between Alkaloids 101104, and 106  

 

Since we now have two bisindole alkaloids, viz., perhentinine (104) (and its 

cyclized hemiketal derivative in the form of its dimethyl diiodide salt, 104b) and 

macralstonine (105) (and its ring-opened form as its acetate derivative, 106a) that 

possess opposite C-20 configuration, and for which we have obtained X-ray crystal 

structure data, these two alkaloids can therefore serve as model compounds for 

comparison of the perhentidines. 

It was observed that in the NMR spectra of the parent bisindoles (101104, 106), 

the signals of the C-17 oxymethylene hydrogens are well separated in the case of the 

20R bisindoles, 102 and 106 (17b17a ~ 0.30.4 ppm), whereas these signals 

were very close in the 20S compounds, 101, 103, and 104 (17b17a ~ 0.020.07 

ppm) (Figure 6.20). In the case of the O-acetyl derivatives (101a104a106a) however, 

this trend was reversed, and a clear distinction could be observed between the 20S and 

20R series. Thus, the signals due to the C-17 oxymethylene hydrogens in the acetate 

derivatives of the 20S series (101a, 103a, and 104a) were observed as well separated 

AX doublet of doublets (17b17a ~ 0.30.4 ppm), while those in the O-acetyl 

derivatives of the 20R series (102a and 106a) were invariably observed as overlapped 

multiplets (17b17a ~ 0 ppm) (Figure 6.20). This not only provided additional 

strong support for the assignment of the C-20 configurations in alkaloids 101105 based 

on analysis of the NMR coupling constants and NOE data (vide infra), but in addition 

could serve as a potentially general method for the determination of the configuration at 

C-20 in related bisindoles with a similar constitution and branching of the monomeric 

units.



 

1
7
6
 

 
Figure 6.20. Partial 

1
H NMR spectrum (400 MHz) of alkaloids 101105 and 106, and acetates 101a104a and 106a.
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6.5 Conclusion 

 

In conclusion, we have established complete and firm structure assignment of the 

new macroline-macroline bisindoles perhentidines A (101), B (102), and C (103), 

including the determination of the configuration at C-20. We have also obtained X-ray 

confirmation (determination of absolute configuration) of the structures of the 

previously isolated bisindole alkaloids, perhentinine (104) and macralstonine (105), 

which has also facilitated the firm assignment of the structures of perhentidines AC 

(101103).  
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CHAPTER SEVEN 

Reinvestigation of the Stereochemical Assignment of Scholaricine and 

Alstoumerine Revision of Configurational Assignment of C-20 of 

Scholaricine and C-16 and C-19 of Alstoumerine 

 

7.1 Scholaricine 

 

 
 
In the course of the ongoing investigations of indole alkaloids (e.g., see Chapter 

5), the NMR data of many strychnan alkaloids were compared (9294, 

108114).
75,96103 

It emerged from such a comparison that the configuration at C-20 

attributed to the alkaloid scholaricine (114) required re-examination. Specifically, the 

resonances of C-2, C-14, and C-16 in the akuammicine-type alkaloids with C-20S are 

characteristically observed at δC 172, 31, and 96, respectively, while those with C-20R 

are usually found at δC 168, 27, and 103, respectively (Table 7.1). An attempt was 

previously made to rationalize the C-14 and C-16 shifts on the basis of the -gauche 

effects.
77

 However, this analysis can only be applied in cases where the piperidine ring 

adopts a chair conformation, which is not always the case for this group of alkaloids.
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The indole alkaloid scholaricine (114) was first reported by Atta-ur-Rahman and 

co-workers from the leaf extract of Alstonia scholaris, but without any stereochemical 

assignments.
102

 The configuration at C-20 was subsequently assigned as 20R by 

Yamauchi et al.
98

 from the observation that the same ketone product 115, was obtained 

from the oxidation of scholaricine (114) and 19-epi-scholaricine (113), following the 

method used by Hesse for the assignment of the C-19 and C-20 configurations of 19-

epi-alstogustine.
79

  

Comparison of the 
13

C NMR data of scholaricine (114) showed resonances for 

C-2, C-14, and C-16 at δC 172.1, 30.8, and 96.3, respectively, which correspond to the 

C-20S series of these strychnan derivatives (Tables 7.1 and 7.2). The C-20S 

configuration was also supported by the observed H-21/H-5, H-6 and H-20/H-14S 

NOEs (axial H-20 in chair ring D). To secure unambiguous confirmation, an X-ray 

diffraction analysis was carried out (Figure 7.1) using a sample of 114 from our 
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previous study of another Alstonia species,
104

 which confirmed the configuration (C-

20S) deduced from the NMR data (
13

C NMR and NOEs).  

Scholaricine (114) was recrystallized by slow evaporation from EtOAc solution. 

From the crystal structure, an intramolecular hydrogen bond was observed between C-

19OH and the C-17 carbonyl oxygen (Figure 7.1). 

 

 

Figure 7.1. X-ray crystal structure of 114. 

 

 

 

The 
1
H and 

13
C NMR data of alkaloid 114 (obtained from the current study) are 

summarized in Table 7.2, while the 
1
H NMR spectrum of alkaloid 114 is shown in 

Figure 7.2. 



 

1
8
1
 

     Table 7.1. 
13

C NMR data () of compounds 9294, and 108114 found in the literature
a
 

Position 92
97

 

(20R) 

93
99,100 

(20R)
 

94
75

 

(20S) 

108
75 

(20S)
 

109
75 

(20R)
 

110
75 

(20R)
 

111
98,103 

(20S)
 

112
77 

(20R)
 

113
98

 

(20R) 

114
102

 

(20R)
b 

2 167.6 168.1 172.2 171.8 168.5 168.7 172.6 167.1 168.5 172.2
c
  

3 59.1 59.2 60.6 60.4 58.5 58.6 61.0 58.9 60.2 60.2 

5 53.9 53.8 54.0 53.6 52.7 53.1 54.2 53.5 54.4 53.9 

6 46.7 45.9 43.4 43.0 44.8 45.2 46.0 46.0 46.6 43.4 

7 58.6 58.2 56.7 57.1 58.9 58.3 57.3 59.2 59.5 58.0 

8 135.7 135.6 135.4 136.4 136.1 135.0 135.8 136.2 138.2 132.2 

9 128.0 127.9 119.6 111.3 112.4 120.8 121.4 113.3 112.3 111.3 

10 121.2 121.1 121.1 122.2 122.2 121.2 119.8 121.9 122.3 122.4 

11 120.9 120.8 127.6 115.8 116.0 128.0 127.6 110.3 115.8 115.1 

12 109.7 109.7 109.7 141.7 141.8 109.8 109.6 144.4 143.1 137.0 

13 143.8 144.1 144.2 132.2 132.2 144.2 143.8 132.4 132.9 141.8 

14 27.4 27.6 31.7 31.5 26.4 26.6 31.2 27.0 28.2 31.0 

15 29.3 27.8 30.8 30.7 27.4 27.4 28.9 29.2 27.9 28.9 

16 102.9 103.4 96.5 96.5 102.3 102.6 96.9 103.1 104.5 96.7 

18 20.3 20.2 29.2 29.3 29.4 29.4 19.8 20.2 21.3 19.7 

19 71.1 69.9 208.5 208.5 209.8 210.0 68.4 71.0 69.2 68.5 

20 45.5 43.4 50.0 49.6  49.3  49.5 43.7 45.8 44.9 46.0 

21 48.4 47.4 45.6 45.4 46.5 47.0 48.2 48.1 49.2 48.2 

CO2Me 51.5 51.3 50.9 51.0 51.3 51.2 51.8 51.5 50.7 51.8 

CO2Me 167.9 168.1 167.2 167.5 167.8 168.0 168.9 167.8 168.0 169.1
c
 

12-OMe        55.5  
        aCDCl3; 

bprevious configurational assignment; cthe original assignments by Atta-ur-Rahman et al. for C-2 and CO2Me were c169.1 and 172.2, respectively.102
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Table 7.2. 
1
H and 

13
C NMR data () of scholaricine (114) (current study)

a
 

Position C H 

2 172.1 

3 60.7 3.91 t (3) 

5 53.7 2.89 m 

5  3.07 m 

6 43.1 1.90 dd (13, 6) 

6  2.89 m 

7 57.4  

8 136.7  

9 110.9 6.69 dd (8, 1) 

10 122.3 6.81 t (8) 

11 115.6 6.76 br d (8) 

12 142.0  

13 131.9  

14R 30.8 1.45 dt (13, 3) 

14S  2.01 m 

15 28.7 3.45 br d (3) 

16 96.3  

18 19.6 1.17 d (6) 

19 68.4 3.29 dq (9, 6) 

20 45.7 1.78 m 

21 47.9 2.01 m 

21  2.89 m 

CO2Me 51.9 3.88 s 

CO2Me 169.1  

NH  8.59 br s 

aCDCl3, 400 MHz; assignments based on COSY and HMQC. 
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Figure 7.2. 
1
H NMR spectrum (CDCl3, 400 MHz) of scholaricine (114). 
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7.2 Alstoumerine 

 

Lumutinine C (116) is a new bisindole alkaloid isolated from the stem-bark 

extract of Alstonia macrophylla (isolation and structure by S. H. Lim).
105

 Lumutinine C 

(116) represents a ring A/F fused macroline-sarpagine type bisindole alkaloid.  

 

 

 

After discounting the signals due to the upper macroline-derived half, the 

monomeric unit corresponding to the lower half was deduced from NMR spectroscopic 

data to comprise an alkaloid of the sarpagine type, specifically, a 10-hydroxy- or 10-

methoxyalstoumerine (117). The 
1
H and 

13
C NMR data of lumutinine C (116) are 

summarized in Table 7.3, while the 
1
H NMR spectrum of 116 is shown in Figure 7.3. 
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Table 7.3. 
1
H and 

13
C NMR data () of lumutinine C (116)

a 

Position C  Position C  

2 133.4  2' 139.3  

3 54.0 3.74 m 3' 48.7 3.82 m 

5 55.2 2.99 m 5' 56.4 2.87 m 

6 22.8 2.45 d (16) 6' 27.9 2.71 m 

6  3.28 m 6'  3.22 m 

7 107.0  7' 102.1  

8 126.4  8' 125.0  

9 118.1 7.50 d (7.5) 9' 111.4  

10 119.0 7.10 t (7.5) 10' 147.7  

11 120.9 7.17 t (7.5) 11' 112.6 6.71 d (9) 

12 108.9 7.25 d (7.5) 12' 107.7 7.01 d (9) 

13 136.9  13' 132.4  

14 
 26.7 1.18 m 14'  

 38.6 1.66 m 

14  2.35 td (13, 3) 14'  1.89 m 

15 30.4 1.87 m 15' 29.2 2.82 m 

16 43.5 2.00 m 16' 45.0 1.55 m 

17 62.3 3.67 dd (11.5, 4) 17' 64.5 3.42 m 

17  4.62 t (11.5) 17'  3.61 dd (12, 3)  

18 25.4 1.35 s 18' 22.5 1.34 d (6) 

19 99.0  19' 67.3 4.46 q (6) 

20 37.2 1.97 m 20' 149.3  

21 26.8 2.75 m 21' 136.1 6.44 s 

  3.25 m N1Me' 29.4 3.48 s 

N1Me 29.3 3.40 s    

N4Me 41.8 2.26 s    

aCDCl3, 400 and 100 MHz, respectively; assignments based on COSY, HMQC, and HMBC. 
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Figure 7.3. 
1
H NMR spectrum (CDCl3, 400 MHz) of lumutinine C (116). 
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Comparison of the NMR data with those reported for alstoumerine (118a)
106

 

showed a general agreement for the non-indole portion of the molecule, providing 

support for such a conclusion. Despite this, some inconsistencies were noted regarding 

the earlier structure elucidation of alstoumerine (118a). 

Alstoumerine (118), a sarpagine-type alkaloid, was first reported by Atta-ur-

Rahman and co-workers from the leaf extract of A. macrophylla collected in Sri 

Lanka.
106

 The structure of 118a was deduced based on NMR spectral data.  

The configuration of the hydroxy-substituted C-19 was previously determined 

using Horeau’s procedure
107

 and was assigned as 19R, while the configuration of C-16 

was assigned as 16S with the hydroxymethyl group pointing towards the indole moiety 

and H-16 pointing away from the indole moiety. This was despite the observation of the 

resonance due to H-16 at δH 1.63 and those for the C-17 oxymethylene hydrogens at δH 

3.46 and 3.64. The resonances of H-16 and H-17 are of diagnostic significance for the 

determination of C-16 configuration in the sarpagine type alkaloids.
108111

 The observed 

resonance for H-16 upfield at δH 1.63 is indicative of shielding due to it being located 

within the shielding zone of the aromatic moiety, which in turn requires H-16 to be 

oriented towards the indole moiety with the hydroxymethyl group directed away from 

the indole unit. The original assignment of the C-16 configuration of alstoumerine 

(118a), therefore, requires amendment to 16R (118b). In the case of lumutinine C (116), 

the resonance due to H-16 was observed at δH 1.55, while the resonance due to the C-

17 oxymethylene hydrogens were seen at δH 3.42 and 3.61. These values were similar 

to those in alstoumerine (118) and require H-16 to be directed towards the indole 

moiety (16R).  

Since we were in possession of authentic alstoumerine (118) from our past and 

ongoing work in alkaloid chemistry,
109

 a rigorous configurational assignment of 

alkaloid 118 was carried out. The 
1
H and 

13
C NMR data of alstoumerine (118) are 
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summarized in Table 7.4. The 
1
H NMR spectrum of 118 is shown in Figure 7.4. In 

addition to the chemical shift considerations mentioned above, the 16R configuration of 

alstoumerine (118b) was further confirmed by NOE experiments, which showed strong 

NOE between H-16 and H-6, requiring H-16 to be directed towards the indole moiety 

and hence proximate to H-6.  

 

Table 7.4. 
1
H and 

13
C NMR data () of alstoumerine (118)

a
 

Position C H 

2 139.5  

3 48.6 3.83 dd (10, 2) 

5 56.2 3.03 t (6) 

6 25.4 2.69 d (15) 

7 102.5 

8 127.3 

9 118.1 7.48 br d (8) 

10 118.9 7.10 td (8, 1) 

11 121.0 7.19 td (8, 1) 

12 108.7 7.28 br d (8) 

13 137.4  

14 38.8 1.61 m 

15 29.6 2.78 br s 

16 44.4 1.61 m 

17 64.7 3.46 dd (12, 5) 

  3.51 dd (12, 4) 

18 22.5 0.36 d (7) 

19 67.4 4.52 d (7) 

20 149.1  

21 136.4 6.54 d (1) 

NMe 29.3 3.58 s 

aCDCl3, 400 and 100 MHz, respectively; assignments are based on COSY, HMQC, and HMBC. 
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Figure 7.4. 
1
H NMR spectrum (CDCl3, 400 MHz) of alstoumerine (118).  
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The C-19 configuration was also reinvestigated, by repeating the determination 

using Horeau’s procedure.
107

 Alstoumerine (118) (1 equiv) was added to a solution of 

racemic 2-phenylbutyric anhydride (4 equiv) in anhydrous pyridine (1 ml). The 

resulting mixture was stirred for 20 h at rt. Water (3 ml) was then added and the mixture 

was allowed to stand for 30 min. The pH of the solution was adjusted to pH 9 by drop-

wise addition of NaOH (0.1 M), after which the solution was extracted with CH2Cl2. 

The aqueous layer was acidified to pH 3 using 1.0 M HCl and extracted with CH2Cl2. 

Evaporation of the solvent from the organic phase gave the unreacted 2-phenylbutyric 

acid: []
25

D 3.1 (c 1.66, C6H6); []
25

D 3 (c 1.66, CHCl3). The optical rotation of the 

unreacted 2-phenylbutyric acid was found to be negative (R), indicating the S 

configuration at C-19 in alstoumerine (118b). The determination was repeated several 

times to confirm that the correct result was obtained each time. 

The present determination therefore yielded a result (19S), which was opposite 

to that of the previous report (19R).
106

 In view of the two major discrepancies noted, an 

X-ray diffraction analysis was carried out (Figure 7.5), which confirmed the structure 

and absolute configuration of alstoumerine (118b). 

 

 

 

 Alstoumerine (118b) crystallized readily on standing in CHCl3 solution. The 

presence of heavy atoms (CHCl3) in the unit cell enabled measurement of the Flack
63
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parameter, which in turn permitted determination of the absolute configuration (Figure 

7.5).  

 

       

                                                Figure 7.5. X-ray crystal structure of 118b 

                                                                          [Flack parameter,
63

 x = 0.01(0.04);  

                                                                           Hooft parameter,
64

 y = 0.01(0.04)]. 

 

With the correct structure of alstoumerine (118b) unequivocally established, the 

structure of lumutinine C follows accordingly as shown in 116.  
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CHAPTER EIGHT 

Andransinine – An Example of Spontaneous Resolution  

of a Racemic Alkaloid Mixture 

 

8.1 Introduction 

 

8.1.1 Crystallization of racemates and enantiomers  

  

Chirality is a concept well known to all chemists concerned in any way with 

structure. It has numerous implications ranging from those affecting physical properties 

of matter to those related to biological mechanisms. The terminology of several 

concepts regarding chirality will be defined in following paragraphs.
112

  

The geometric property of a rigid object (or spatial arrangement of points or 

atoms) of being nonsuperposable on its mirror image is called chirality. A chiral object 

may exist in two enantiomorphic forms, which are mirror image of one another. Such 

forms lack inverse symmetry elements, that is, a center, a plane, and an improper mirror 

plane, a centre of inversion or a rotoinversion axis. Objects that possess one or more of 

these inverse symmetry elements are superposable on their mirror images; they are 

achiral. All objects necessarily belong to one of these categories; a hand, a spiral 

staircase, and a snail shell are all chiral, while a cube and a sphere are achiral.  

According to Lord Kelvin, “two equal and similar right hands are homochirally 

similar. Equal and similar right and left hands are heretochirally similar”.
113

 All of the 

foregoing definitions remain valid at the molecular level; there are achiral, as well as 

chiral molecules. The latter exist in two enantiomeric forms. The term enantiomer is 

used to designate either a single molecule, a homochiral collection of molecules, or 
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even a heterochiral collection that contains an excess of one enantiomer and whose 

composition is defined by its enantiomeric purity, or the enantiomeric excess, ee. 

The oldest known manifestation of molecular chirality is optical activity, or 

rotator power, the properties that are exhibited by the rotation of the plane of polarized 

light. Two enantiomers of a given compound have a rotator powers of equal absolute 

value, but of opposite sign, or sense. One is positive, or dextrorotatory, while the other 

is negative, or levorotatory. The absolute designations of sign are arbitrary inasmuch as 

they are wavelength, temperature, and solvent dependent, but the relative designations 

are always valid. That is, a given enantiomer may be () at one wavelength and () at 

another, while the other enantiomer will always have the opposite sign at the 

corresponding wavelength.  

The expression optically active substance may signify a pure enantiomer or a 

mixture containing an excess of one of the two. The composition of a mixture of two 

enantiomers may be characterized by its optical purity, which may in turn be determined 

from the ratio of the optical rotation of the mixture to that of the pure enantiomer. The 

optical purity (experimental value) is generally equal to the enantiomeric purity, which 

reflects the real composition. A pure enantiomer is often called optically pure.  

The absolute configuration is the spatial arrangement of the atoms of a 

physically identified chiral molecule entity (or group) and its stereochemical description 

(e.g., R or S, P or M, D or L, etc.), whereas the absolute structure is the spatial 

arrangement of the atoms of a physically identified non-centrosymmetric crystal and its 

description by way of unit-cell dimensions, space group and representative coordinates 

of all atoms. 

An equimolar mixture of two enantiomers whose physical state is unspecified or 

unknown is called racemate. It does not exhibit optical activity. The chemical name or 

formula of a racemate is distinguished from those of the enantiomers by the prefix (±). 
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The separation of the two enantiomers that constitute a racemate is called a 

resolution, or an optical resolution. When the separation is not complete, a mixture is 

obtained which is often called either a partially resolved racemate or a partially resolved 

enantiomer.  

Crystalline racemates may belong to one of three different classes. In the first, 

the crystalline racemate is a conglomerate, that is, a mechanical mixture of crystals of 

the two pure enantiomers (racemic conglomerate). The process of its formation on 

crystallization of a racemate is called spontaneous resolution, since pure or nearly pure 

enantiomers can often be obtained from the conglomerate by sorting. One of the most 

famous examples is the separation of a racemic conglomerate of sodium ammonium 

tartarate salt by Pasteur.
114

  

The second and most common type of crystalline racemate is that in which the 

two enantiomers are present in equal quantities in a well-defined arrangement within the 

crystal lattice. The resultant homogeneous solid phase corresponds to a true crystalline 

addition compound, which is called a racemic compound (also referred to as a ‘true 

racemate’).  

The third possibility corresponds to the formation of a solid solution between the 

two enantiomers, coexisting in an unordered manner in the crystal lattice. The term 

pseudoracemate (or racemic solid solution) is used to designate this case.  

 

8.1.2 Space groups 

 

A crystallographic space group is the set of geometrical symmetry operations 

that take a three-dimensional periodic object into itself. The space groups in three 

dimensions are made from combinations of the 32 crystallographic point groups with 

the 14 Bravais lattices, each of the latter belonging to one of 7 lattice systems.
112,115

 This 

http://en.wikipedia.org/wiki/Crystallographic_point_group
http://en.wikipedia.org/wiki/Bravais_lattice
http://en.wikipedia.org/wiki/Lattice_system
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results in a space groups being some combination of the translational symmetry of a unit 

cell including lattice centering, the point group symmetry operations of reflections, 

rotation, and improper rotations (also called rota-inversion), and the screw axis and 

glide plane symmetry operations. The combination of all these symmetry operations 

results in a total of 230 unique space groups describing all possible crystal symmetries. 

All of the 230 space groups are collected in a book known as the International Tables 

for Crystallography. They are represented by the symmetry-elements diagram and 

general position diagram, notated with the Hermann-Mauguin symbols and other 

relevant information.
116

 

This results in a space groups being some combination of the translational 

symmetry of a unit cell including lattice centering, the point group symmetry operations 

of reflections, rotation, and improper rotations (also called rota-inversion), and 

the screw axis and glide plane symmetry operations. 

There are 230 ways of arranging objects repetitively in a three-dimensional 

network. These 230 space groups may be divided among the 32 crystal classes 

according to their symmetry. The 11 enantiomorphous crystal classes encompass 65 

space groups which are devoid of inverse symmetry elements. Thus, an enantiomer (or 

enantiomerically pure compounds) may only crystallize in one of these 65 groups (e.g., 

P21, P212121, C2, and P42).
112

  

While an enantiomer necessarily crystallizes in an enantiomorphous system, the 

inverse of this statement is not true. A racemate, in principle, may crystallize in any 

space groups, even in a chiral space groups; the optical activity of the crystal does not 

necessarily imply any optical activity of the molecules in the liquid state (a circular 

staircase may be built out of achiral blocks). In fact, in almost all cases, racemates 

crystallize in those space groups that possess elements of inverse symmetry (165 

possibilities, e.g., P  , P21/c, C2/c, and Pna21).
112

 

http://en.wikipedia.org/wiki/Screw_axis
http://en.wikipedia.org/wiki/Glide_plane
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The Tables shown below represents the division of the 32 crystal classes 

according to property (Table 8.1),
117,118

 and the relationship between the molecular 

properties, the nature of the solution, and the nature of possible crystals (Table 8.2).
117 

 

Table 8.1. Division of the 32 crystal classes according to property
117,118 

 Crystal characteristic 
 

Flack classification Crystal class 

1 Centrosymmetric Achiral 
CA 

(Centrosymmetric Achiral) 

  , 2/m, mmm, 4/m, 

4/mmm,   ,   m, 6/m, 

6/mmm, m  , m  m 

2 Non- centrosymmetric Achiral 
NA  

(Non-centrosymmetric Achiral) 

m, mm2,   , 4mm,   2m, 

3m,   , 6mm,   2m,   3m 

3 Non- centrosymmetric Chiral 
NC  

(Non-centrosymmetric Chiral) 

1, 2, 222, 4, 422, 3, 32, 6, 

622, 23, 432 

 

Table 8.2. Relationship between molecular properties, nature of the solution, and nature 

of possible crystals
117

 

Solution Chiral molecul Achiral Molecule 

 
Enantiopure  

chiral 
Enantiomeric mixture Homogeneous 

Molecular 

composition 

of the single 

crystal 

Enantiopure  

chiral 

Enantiopure 

chiral 
Enantiomeric mixture   

Crystal 

structure 
Achiral 

Non-centro-

symmetric 

chiral 

Conglomerate 

(collection of 

resolved 

crystals) 

Inversion 

twinned 

Non-

centrosymmetric 

achiral 

Racemic 

Disordered 

solid 

solution 

Non-

centro-

symmetric 

chiral 

Non-

centro-

symmetric 

achiral 

Centro-

symmetric 

achiral 

Flack 

classification 
 NC NC NC NA 

NA or 

CA 
    

Examples 

Not 

known 

in 

nature 

P212121 P61 and P65 
P21 

(twinned) 
Pc 

P21 or 

P21/c 
Any P3121 Pn P21/c 

 

8.1.3 X-ray radiation/source 

 

Copper (Cu K,  = 1.54184 Å) and molybdenum (Mo K,  = 0.71073 Å) are 

the two most common sources used for X-ray diffraction experiments.
115 

Copper X-ray tubes produce a higher flux of incident photons (for the same 

power settings) and these are diffracted more efficiently than molybdenum radiation. 

Hence, copper radiation is particularly useful for small or otherwise weakly diffracting 
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crystals, especially if the absorption effects are moderate. For crystals with long unit 

cell dimensions, reflections are further apart when the longer-wavelength copper 

radiation is used, and this can minimize reflection overlap. If absolute configuration 

determination is needed, but the crystals do not contain elements heavier than silicone, 

then copper radiation is essential. 

On the other hand, molybdenum radiation has less absorption effects, and this 

can be crucial if elements of a high atomic number are present. Molybdenum radiation 

allows the collection of data to a higher resolution, and is likely to cause fewer 

restrictions if low-temperature or other attachments are required.  

 

The following illustrative examples on when to use Cu or Mo X-ray source
115

: 

- a well-diffracting organic compound containing iodine: 

use Mo to minimize absorption 

- a poorly diffracting organic compound (CHNO): 

use Cu to maximize diffracted intensity 

- an organic compound (CHNO) with b > 50 Å: 

use Cu to minimize overlap 

- absolute configuration of C19H22N2O3 

feasible only with Cu 

- most metal complexes, etc. 

use Mo to minimize absorption 

- high-resolution studies 

use Mo 

 

The Chemistry Department, University of Malaya operates two X-ray 

diffractometers for small molecule crystallography studies. The first X-ray 
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diffractometer is the Bruker SMART APEX II, commissioned in December 2007, only 

has Mo K X-ray radiation. The second X-ray diffractometer, Agilent SuperNova Dual, 

comissioned more recently (April 2011) is a hybrid instrument with two different X-ray 

sources, Mo K and Cu K. The author has full access to the Bruker X-ray 

diffractometer, but only very limited access to the Agilent X-ray diffractometer. 

 

8.1.4 Glossary of terms 

 

Below is the glossary of terms which will be used in the subsequent chapter. 

Many of the definitions of terms given in this glossary are drawn from the IUPAC Basic 

Terminology of Stereochemistry,
118 

which have been summarized and reworded by 

Flack et al.
119

 

 

Absolute configuration: The spatial arrangement of the atoms of a physically identified 

chiral molecular entity (or group) and its stereochemical description (e.g., (R) or (S), (P) 

or (M), or D or L, etc.). 

 

Absolute structure: The spatial arrangement of the atoms of a physically identified non 

centrosymmetric crystal and its description by way of unit-cell dimensions, space group, 

and representative coordinates of all atoms. 

 

Chiral: Having the property of chirality. 

 

Chirality: The geometric property of a rigid object (or spatial arrangement of points or 

atoms) of being nonsuperposable by pure rotation and translation on its image formed 

by inversion through a point; the symmetry group of such an object contains no 
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symmetry operations of the second kind (inversion through a point,   ; reflection 

through a plane, m; roto-inversion,   ). When the object is superposable by pure rotation 

and translation on its inverted image, the object is described as being achiral; the 

symmetry group of such an object contains symmetry operations of the second kind. 

Barron
120

 provides a more general definition of chirality: ‘True chirality is exhibited by 

systems that exist in two distinct enantiomorphic states that are interconverted by space 

inversion but not by time reversal combined with any proper spatial rotation’.  

 

Chirality sense: The property that distinguishes enantiomorphs. The specification of two 

enantiomorphic forms by reference to an oriented space, e.g., of a screw, a right 

threaded one or a left threaded one. The expression opposite chirality is short for 

opposite chirality sense. 

 

Enantiomer: One of a pair of chiral molecular entities of opposite chirality sense. 

 

Enantiomerically pure/enantiopure: A sample in which all molecules have (within 

limits of detection) the same chirality sense. 

 

Enantiomorph: One of a pair of chiral objects or models that are non-superposable 

mirror images of each other.  

 

Flack parameter: The Flack parameter, x encodes the relative abundance of the 

‘strength’ and sign of the measured resonant scattering signal measured in units of f" 

(the imaginary component of the atomic scattering factor) in an inversion twin.
63

 In 

short, by determining x for all data (usually found between 0 and 1), if the value is near 

0 with a small standard uncertainty, the absolute structure given by the structure is 
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likely correct, and if the value is near 1, then the inverted structure is likely correct. If 

the value is near 0.5, the crystal may be racemic or twinned.  

 

Hooft parameter: A new probabilistic procedure introduced in 2008, based on Bijvoet-

pair intensity differences that can be used to establish the absolute structure.
64

 Hooft 

parameter, y behaves like the Flack parameter,
63

 in that it will have a value of 0 for the 

correct absolute structure model (with a small standard uncertainty), and 1 for the 

inverted model. 

 

Inversion twin: An inversion twin consists of centrosymmetrically related crystalline 

domains. The symmetry operation relating domain structures in an inversion twin is that 

of a centre of symmetry. In an inversion twin, the crystal lattice (i.e., the lattice 

translations after removing the atoms) is maintained throughout the whole volume of the 

sample, but the atoms and molecules take up either one spatial arrangement or the 

inverted one depending on the position within the crystal. A visual model of an 

inversion twin, applicable to chiral crystal structures, is to imagine the individual 

components of a racemic conglomerate being stuck together with their lattices being 

perfectly oriented. The inversion-twinned crystal is an oriented solid-state mixture of 

inverted structures. Inversion-twinned crystals do not form from an enantiopure sample 

of a substance. 

 

Racemate: An equimolar mixture of a pair of enantiomers. It does not exhibit optical 

activity in solution. The chemical name or formula of a racemate is distinguished from 

those of the enantiomers by the prefix (±) or rac or by the symbols (RS) or (SR).  

 

Racemic: Pertaining to a racemate. 
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Racemic compound: A crystalline racemate in which the two enantiomers are present in 

equal amounts in a well-defined arrangement within the lattice of a homogeneous 

crystalline addition compound. 

 

Racemic conglomerate: An equimolar mechanical mixture of crystals, each one of 

which contains only one of the two enantiomers present in a racemate. The process of 

its formation on crystallization of a racemate is called spontaneous resolution, since 

pure or nearly pure enantiomers can often be obtained from the conglomerate by 

sorting. 

 

Relative configuration: The configuration of any stereogenic centre with respect to any 

other stereogenic centre contained within the same molecular entity.  
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8.2 Andransinine  

 

Andransinine (119) is an andranginine (120)
121,122

 derivative recently isolated 

from the leaf extract of Alstonia angustiloba.
123

 

 

 

 

Compound 119 was isolated as a light yellowish oil. The UV spectrum was 

characteristic of an indole chromophore with absorption maxima at 223 and 284 nm, 

while the IR spectrum indicated the presence of NH (3387 cm
1

) and ester carbonyl 

(1732 cm
1

) functions. In addition, the presence of Wenkert-Bohlmann bands were 

noted at 2740 and 2885 cm
1

. The ESIMS of 119 showed an [M H]

 m/z 381 and 

HRESIMS measurements yielded the molecular formula C23H28N2O3 (DBE 11). The 

13
C NMR data (Table 8.3) showed 23 carbon resonances, comprising two methyl, seven 

methylene, six methine, and eight quaternary carbons. An ester carbonyl resonance was 

observed at C 171.8, while olefinic resonances due to a trisubstituted double bond were 

observed at C 126.0 and 134.0, in addition to the characteristic peaks due to the indole 

moiety. The 
1
H NMR data (Table 8.3) showed the presence of an unsubstituted indole 

moiety from the presence of four aromatic resonances (H 7.50, d, J = 8 Hz, H-9; 7.11, t, 

J = 8 Hz, H-10; 7.17, t, J = 8 Hz, H-11; 7.33, d, J = 8 Hz, H-12), an indolic NH as a 

broad singlet at H 8.17, a methoxy group associated with a methyl ester function as a 

singlet at H 3.63, a vinylic hydrogen at H 5.74, and an ethoxy group (H 3.19, m, 1H, 

CH3CHHO; 3.33, m, 1H, CH3CHHO; 1.11, t, J = 7 Hz, CH3CH2O). In addition, an 
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isolated aminomethine was observed as a singlet at H 3.79 (C 63.4). The 
1
H and 

13
C 

NMR data were similar to those of andranginine (120),
121

 the difference in the present 

alkaloid being replacement of the C-14, C-15 double bond by an ethoxy substituent at 

C-15.  

Andranginine (120) was previously isolated as an optically inactive alkaloid 

from Craspidospermum verticillatum,
121

 and the relative configuration was established 

by X-ray diffraction analysis.
122

 The observed NOE between H-21 and the hydrogens of 

the ethoxy group (H-22 and H-23) in 119 (Figure 8.1) indicated an -oriented H-15 and 

permitted the assignment of the relative configuration at C-15 as R. The observed H-

21/H-3, H-6 and H-15/H-19 NOEs (Figure 8.1) were also in accord with the relative 

configuration of andransinine as depicted in 119, as is the observed Wenkert-Bolmann 

bands in the IR spectrum, which is consistent with the trans disposition of H-21 and the 

N-4 lone pair.
29

  

 

 

Figure 8.1. Selected NOEs of 119. 
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Table 8.3.
 1

H and 
13

C NMR data () of andransinine (119)
a 

Position C H 

2 137.9 

3 50.0 2.80 m 

3  3.08 m 

5a 57.0 3.17 m  

5b  3.31 m 

6 18.6 2.76 m 

6  3.12 m 

7 114.8 
8 127.6 
9 118.4 7.50 d (8) 

10 121.9 7.11 t (8) 

11 119.5 7.17 t (8) 

12 110.8 7.33 d (8) 

13 134.8 
14a 32.4 1.95 br dd (14, 3) 

14b  2.07 m 

15 78.0 3.78 m 

16 48.5 
17a 32.4 2.07 m 

17b  2.49 dd (13, 3) 

18 22.2 2.05 m 

18  2.20 m 

19 126.0 5.74 d (5) 

20 134.0 
21 63.4 3.79 s 

22 62.2 3.19 m 

  3.33 m 

23 15.4 1.11 t (7) 

CO2Me 52.4 3.63 s 

CO2Me 171.8 
NH  8.17 br s 

aCDCl3, 400 and 100 MHz, respectively; assignments based on COSY, HMQC, and HMBC. 

 

Since andransinine (119) crystallized readily from EtOAc to give good quality 

colorless block crystals (mp 212214 °C), an X-ray diffraction analysis was carried out 

(Mo K radiation) which confirmed all of the observations above (Figure 8.2). The 

crystal system is monoclinic, with a space group of P21 (a chiral space group). The 

crystal data and structure refinement parameters of 119 are summarized in Table 8.4. 

 



205 

 

               

 

                                                  Figure 8.2. X-ray crystal structure of andransinine (119). 

 

Table 8.4. Crystal data and structure refinement parameters of alkaloid 119 

Empirical formula C23H28N2O3 

Molecular formula C23H28N2O3 

Molecular weight, Mr 380.47 

Melting point 212214 °C 

Temperature during diffraction experiment, T 100 K 

X-ray source Mo K 

Crystal system Monoclinic 

Space group P21  

a 8.5064(2) Å 

b 9.1496(2) Å 

c 12.5255(2) Å 

α 90.00°  

β 96.0070(10)°  

γ 90.00° 

Volume, V 969.51(3) Å
3
 

No. of molecule per unit cell, Z 2 

Density (calcd) 1.303 mg/mm
3
 

F(000) 408.0 

Crystal size 0.44 × 0.21 × 0.17 mm 

2range for data collection 3.26 to 54.98° 

Index ranges 10 ≤ h ≤ 11, 11 ≤ k ≤ 11, 16 ≤ l ≤ 16  

Reflections collected 8915 

Independent reflections 2366[Rint = 0.0211] 

Data/restraints/parameters 2366/1/255  

Goodness-of-fit on F
2
 1.025  

Final R indexes [I ≥ 2σ (I)] R1 = 0.0302, wR2 = 0.0759  

Final R indexes [all data] R1 = 0.0321, wR2 = 0.0774  

Largest diff. peak/hole / e Å
3

 0.22/0.18  
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From the crystal data shown above, it can be seen that compound 119 crystallized 

in a chiral space group (monoclinic, P21). Crystallization of 119 in a chiral space group 

was initially puzzling as it suggested the possibility that compound 119 is an 

enantiomerically pure compound. This is in contrast to the parent alkaloid, andranginine 

(120), which was obtained as an optically inactive racemate. The crystal system is 

monoclinic, with the observed space group of P2/c (centrosymmetric space group), 

which is consistent with a racemate.
112,115,117

   

Compound 119 initially isolated from A. angustiloba also gave inconsistent 

results for the specific rotation with values of []
25

D varying from +11 to 8 (the 

compound was re-purified each time before measurement) which contributed to the 

initial confusion. Compound 119 (and a minor amount of the methoxy derivative 121) 

was however, subsequently isolated as a racemate ([]
25

D = ) from the bark extract of 

Kopsia pauciflora, which indicated that the earlier inconsistent values obtained for 119 

from A. angustiloba, was likely a result of racemate contamination (which has been 

subsequently borne out by HPLC, vide infra). 

The 
1
H NMR spectrum of 119 obtained from A. angustiloba and K. pauciflora 

are shown in Figures 8.3 and 8.4, respectively.  

Recrystallization of 119 (from K. pauciflora) from EtOAc gave similar colorless 

block crystals with similar melting points as that obtained previously (mp 212214 °C). 

An X-ray diffraction analysis was carried out, and the results obtained indicated a 

similar crystal system (monoclinic, space group of P21) with the sample of 119 from A. 

angustiloba.  

 

 



 

2
0
7
 

 

 

 

Figure 8.3. 
1
H NMR spectrum (CDCl3, 400 MHz) of (±)-andransinine (119) obtained from A. angustiloba. 
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Figure 8.4. 
1
H NMR spectrum (CDCl3, 400 MHz) of (±)-andransinine (119) obtained from K. pauciflora. 
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A non-enzymatic pathway (involving a Diels-Alder cycloaddition of a secodine-

type precursor as the key step) was presented to account for the isolation of racemic 

andranginine (120) from Craspidospermum verticillatum which was supported by the 

observation that thermolysis of the putative precursor, precondylocarpine acetate (121), 

at 100 
o
C in EtOAc solution, resulted in the formation of racemic 120, while carrying 

out the thermolysis in MeOH led to the formation of the methoxy derivative, 122 

(Scheme 8.1).
121

 It is therefore likely that both andransinine (119) and 122 are artifacts, 

formed by a similar pathway since the precursor alkaloid, precondylocarpine (121) or its 

acetate 123 was present among the alkaloids isolated and denatured ethanol was used in 

the extraction of the plant materials (K. pauciflora).
58

    

 

 

Scheme 8.1 

 

Examination of all the diffraction evidence, unit cell (Figures 8.5, 8.6, and 8.7), 

space group (Table 8.4), and structure determination, showed the presence of only one 

enantiomer. 
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Figure 8.5. Packing diagram of 119 viewing down the a-axis. 

 

 

Figure 8.6. Packing diagram of 119 viewing down the b-axis. 
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Figure 8.7. Packing diagram of 119 viewing down the c-axis. 

  

Compound 119 was also subjected to crystallization in different solvent systems, 

such as CH2Cl2/hexanes and MeOH. Physical examination of these crystals under the 

microscope did not yield any useful information. However, from the melting point 

determination, it can be seen that the crystals obtained from the EtOAc solution had a 

higher melting point, when compared with those of crystals obtained from 

CH2Cl2/hexanes and MeOH (Table 8.5). This suggested the formation of a racemic 

conglomerate.
112,124

 Crystals obtained from these solvents were then subjected to X-ray 

diffraction analyses. The physical data and X-ray diffraction analysis results are 

summarized in Table 8.5. 
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Table 8.5. Crystal data of andransinine (119) 

 
Crystals obtained from 

EtOAc solution 

Crystals obtained from 

CH2Cl2/hexanes solution 

Crystals obtained from 

MeOH solution 

Physical 

appearance 

Colorless block crystals 

(Figure 8.8) 

Colorless needles 

(Figure 8.9) 

Colorless lath crystals 

(Figure 8.10) 

Melting 

point 
212214 °C 186190 

o
C 204206 

o
C 

Crystal 

system 
Monoclinic Monoclinic Orthorhombic 

Unit cell 

dimension 

a = 8.4914(10) Å 

b = 9.1548(11) Å 

c = 12.4788(15) Å 

 

 =  = 90
o
,  = 95.838(3)

o
  

 

a = 39.082(4) Å 

b = 8.5880(11) Å 

c = 24.128(3) Å  

 

 =  = 90
o
,  = 

105.802(7)
o
 

 

a = 8.6828(2) Å 

b = 21.4082(4) Å 

c = 11.2277(2) Å  

 

 =  =  = 90
o
  

 

Space group 

P21 

(Non-centrosymmetric 

Chiral) 

C2/c 

(Centrosymmetric 

Achiral) 

Pna21 

(Non-centrosymmetric 

Achiral) 

Molecular 

composition 

of the single 

crystal 

Enantiopure chiral Enantiomeric mixture Enantiomeric mixture 

 

 

Figure 8.8. Andransinine (119) crystals obtained from EtOAc solution. 
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Figure 8.9. Andransinine (119) crystals obtained from CH2Cl2/hexanes solution. 

 

 

Figure 8.10. Andransinine (119) crystals obtained from MeOH solution. 
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From the X-ray data (Table 8.5), crystals obtained from EtOAc solution constitute 

a racemic conglomerate (an equimolar mechanical mixture of crystals, each one of 

which contains only one of the two enantiomers present in a racemate), while crystals 

from CH2Cl2/hexanes or MeOH solutions correspond to a racemic compound (or a 

crystalline racemate in which the two enantiomers are present in equal quantities in a 

well-defined arrangement within the crystal lattice). 

Thus, it can be seen that 119 isolated from A. angustiloba and K. pauciflora are 

racemates, which spontaneously resolved to form racemic conglomerate crystals in 

EtOAc (Table 8.5), but formed racemic compound crystals when recrystallized using 

different solvent systems such as CH2Cl2/hexanes or MeOH. This can be clearly seen in 

the partial unit cell for both crystals obtained from CH2Cl2/hexanes and MeOH 

solutions (Figure 8.11). 

Both batches of andransinine (119) were then subjected to chiral phase HPLC 

analysis,
125

 using a Chiralpack AD-H column (4.6 x 150 mm; 5 m; Daicel, Japan), 

with the solvent system of n-hexane/EtOH/diethylamine (DEA) (85:15:0.2) eluting in 

isocratic mode. 

The HPLC chromatogram showed that both batches of andransinine (119) 

showed two major peaks (Figure 8.12) at retention time of ca. 3 and 7 min, which 

correspond to a pair of enantiomers. However, the HPLC chromatogram of 119 

obtained from Alstonia angustiloba showed in addition to the presence of two major 

peaks, the presence of some minor peaks (Figure 8.12, Left). These minor peaks were 

not detected in the HPLC chromatogram of 119 obtained from K. pauciflora (Figure 

8.12, Right). Thus, the presence of optical activity of 119 obtained from A. angustiloba, 

was likely a result of racemate contamination. 
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Figure 8.11. Top: Partial unit cell for crystals of 119, obtained from CH2Cl2/hexanes 

solution. Bottom: Partial unit cell for crystals of 119, obtained from MeOH solution. It 

can be seen that (±)-andransinine are present in both of the unit cell.  
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Figure 8.12. Left: HPLC chromatogram of (±)-andransinine (119) obtained from A. 

angustiloba. Right: HPLC chromatogram of (±)-andransinine (119) obtained from K. 

pauciflora. (Daicel Chiralpak AD-H (5 μm, 4.6 x 150 mm); mobile phase, n-

hexane/EtOH/DEA = 85:15:0.2; flow rate: 0.8 ml/min). 

 

Since (±)-andransinine (119) crystallized from EtOAc are racemic 

conglomerates, any of these crystals will yield an absolute configuration when the X-ray 

diffraction analysis is carried out using Cu K radiation. Accordingly, a suitably large 

crystal (ca. 0.43 x 0.35 x 0.28 mm) was picked from the EtOAc solution containing 

conglomerates of 119. It was then cut in half (ca. 0.20 x 0.35 x 0.28 mm). This half 

crystal was then subjected to X-ray diffraction analysis using Cu K radiation. The 

absolute configuration of this crystal was determined to be (15R,16S,21R)-andransinine 

(Scheme 8.2). 

The remaining half of the andransinine (119) crystal (ca. 0.23 x 0.35 x 0.28 mm) 

was dissolved in a minimum amount of EtOH and then subjected to chiral phase HPLC 

analysis (Scheme 8.2). 
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Scheme 8.2 

 

Racemic conglomerate 

crystals of 119 

One crystal was selected 

and cut into half 

Chiral phase 

HPLC analysis 

(Chiracel AD-H) 

X-ray diffraction 

analysis  

(Cu K radiation) 

 

 

X-ray crystal structure of (15R,16S,21R)- 
andransinine (119a) 

[Flack parameter,
63

 x = 0.15(0.12); 

 Hooft parameter,
64

 y = 0.03(0.04)]. 

 
 

HPLC chromatogram of  

(15R,16S,21R)-andransinine (119a). 
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It can be seen from the HPLC chromatogram that the retention time of the 

partially-dissolved crystal is ca. 3 min (Scheme 8.2), which corresponds to the first peak 

shown in the chromatogram in Figure 8.12. We can therefore conclude that the first 

peak in the HPLC chromatogram corresponds to (15R,16S,21R)-andransinine (119a), 

and the second peak (7 min) corresponds to (15S,16R,21S)-andransinine (119b) (Figure 

8.12). 

As attempts to obtain pure enantiomers from the conglomerate by mechanical 

sorting under the microscope was unsuccessful (lack of sufficient morphological 

differentiation), separation of both enantiomers was carried out using the same column 

and same solvent system as used previously in the analysis. Both enantiomers were 

successfully separated with >99% ee (Figure 8.13). 

 

  

Figure 8.13. Left: HPLC chromatogram of (15R,16S,21R)-andransinine/()-

andransinine (119a). Right: HPLC chromatogram of (15S,16R,21S)-andransinine/()-

andransinine (119b). (Daicel Chiralpak AD-H (5 μm, 4.6 x 150 mm); mobile phase, n-

hexane/EtOH/DEA = 85:15:0.2; flow rate: 0.8 ml/min). 
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The optical rotation for both enantiomers was determined. The specific rotation 

for (15R,16S,21R)-andransinine (119a) was found to be []
25

D 85 (c 0.10, CHCl3), 

while that for (15S,16R,21S)-andransinine (119b) was found to be []
25

D 85 (c 0.07, 

CHCl3). Both enantiomers were recrystallized and the crystals obtained were subjected 

to an X-ray diffraction analysis, using Cu K radiation. The absolute configuration for 

both enantiomers are shown in Figure 8.14. 

 

                                                  

   

 

Figure 8.14. Left: X-ray crystal structure of (+)-andransinine (119a) [Flack parameter,
63

 

x = 0.10(0.12); Hooft parameter,
64

 y = 0.07(0.08)]. Right: X-ray crystal structure of ()-

andransinine (119b) [Flack parameter,
63

 x = 0.08(0.12); Hooft parameter,
64

 y = 

0.04(0.06)]. 
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8.3 Conclusion 

 

(±)-Andransinine (119), an artifact obtained during isolation of alkaloids from A. 

angustilaoba and K. pauciflora, was found to exhibit polymorphism in the solid state, 

forming crystals with different crystal systems and space groups in different solvent 

systems (Scheme 8.3). In addition, it undergoes spontaneous resolution when 

crystallized in EtOAc, forming racemic conglomerate crystals (Scheme 8.3). To the best 

of our knowledge this represents the first example encountered in alkaloids.  

 

 

Scheme 8.3 

 

Resolution of racemic (±)-andransinine (119) was carried out using chiral phase 

HPLC to afford the enantiomers, 119a and 119b, which were obtained with >99% ee. 

X-ray diffraction analysis yielded the absolute configuration of each enantiomer. 
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CHAPTER NINE 

X-Ray Diffraction of New Indole and Bisindole Alkaloids 

 

X-ray diffraction analyses were carried out on several new indole and bisindole 

alkaloids isolated from various plants in the family Apocynaceae. The author was 

responsible for crystallizing all of these alkaloids, carried out the diffraction 

experiments, and solved the structures. 
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9.1 Bisindole Alkaloids 

9.1.1 Leuconoline 

 

The new eburnane-sarpagine type bisindole alkaloid, leuconoline (124), was 

obtained from the stem-bark extract of Leuconotis griffithii.
126

 Suitable crystals of 124 

were obtained from the slow evaporation of 124 in EtOAc solution. The structure of 124 

is shown in Figure 9.1, while the crystal data and structure refinement parameters are 

summarized in Table 9.1. 

 

       

                                                                    Figure 9.1. X-ray crystal structure of 124. 
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Table 9.1. Crystal data and structure refinement parameters of leuconoline (124) 

Empirical formula C40H46N4O4  

Molecular formula C40H46N4O4 

Molecular weight, Mr 646.81  

Melting point 223224 

C 

Temperature during diffraction experiment, T 100 K 

X-ray source Mo K 

Crystal system Orthorhombic  

Space group P212121  

a 7.0778(2) Å 

b 13.0650(4) Å 

c 37.7977(12) Å 

α 90.00°  

β 90.00°   

γ 90.00°   

Volume, V 3495.21(18) Å
3
 

No. of molecule per unit cell, Z 4  

Density (calcd) 1.229 mg/mm
3
 

F(000) 1384  

Crystal size 0.37 × 0.08 × 0.05 mm 

2range for data collection 4.32 to 49.5°  

Index ranges 8 ≤ h ≤ 8, 15 ≤ k ≤ 15, 44 ≤ l ≤ 42  

Reflections collected 26153  

Independent reflections 3428[Rint = 0.0728]  

Data/restraints/parameters 3428/0/439  

Goodness-of-fit on F
2
 1.168  

Final R indexes [I ≥ 2σ (I)] R1 = 0.0644, wR2 = 0.1358  

Final R indexes [all data] R1 = 0.0716, wR2 = 0.1387  

Largest diff. peak/hole / e Å
3

 0.454/0.237  
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9.1.2 Lumusidines A and B  

 

Lumusidines A (125) and B (126) are new macroline-macroline type bisindole 

alkaloids isolated from the stem-bark extract of Alstonia macrophylla.
127

 The structures 

and relative configurations of both alkaloids were successfully determined via NMR 

spectroscopy, except for C-19 (in the case of 125 and 126) and C-20 (in the case of 

125).  

Attempts to obtain suitable crystals for both bisindole alkaloids were 

unsuccessful. Eventually, conversion of lumusidines A (125) and B (126) to their 

dimethyl diiodide salts 125a and 126a, via treatment with iodomethane, followed by 

crystallization from hot MeOH, furnished suitable crystals. X-ray diffraction analyses of 

these crystals yielded the absolute configuration of the salts, 125a and 126a, which in 

turn yielded the absolute configuration of lumusidines A (125) and B (126). The 

structures and absolute configuration of the dimethyl diiodide salts 125a and 126a are 

shown in Figures 9.2 and 9.3, respectively. 

The crystal data and structure refinement parameters of the dimethyl diiodide 

salt 125a are summarized in Table 9.2, while the crystal data and structure refinement 

parameters of the dimethyl diiodide salt 126a are summarized in Table 9.3. 
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Figure 9.2. X-ray crystal structure of 125a 

[Flack parameter:
63

 x = 0.01(0.03); Hooft parameter:
64

 y = 0.010(0.015)]. 
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Table 9.2. Crystal data and structure refinement parameters of compound 125a 

Empirical formula C45H62I2N4O7  

Molecular formula C45H56 N4O4


I2
2

.3H2O 

Molecular weight, Mr 1024.79  

Melting point > 198 °C dec 

Temperature during diffraction experiment, T 100 K  

X-ray source Mo K 

Crystal system Monoclinic  

Space group P21  

a 15.8916(2) Å 

b 8.92620(10) Å 

c 17.1572(3) Å 

α 90.00° 

β 112.2430(10)°   

γ 90.00°   

Volume, V 2252.67(5) Å
3
 

No. of molecule per unit cell, Z 2  

Density (calcd) 1.511 mg/mm
3
 

F(000) 1044.0  

Crystal size 0.18 × 0.12 × 0.10  

2range for data collection 2.56 to 50°  

Index ranges 18 ≤ h ≤ 18, 10 ≤ k ≤ 10, 20 ≤ l ≤ 20  

Reflections collected 17429  

Independent reflections 7729[Rint = 0.0469]  

Data/restraints/parameters 7729/10/550  

Goodness-of-fit on F
2
 1.030  

Final R indexes [I ≥ 2σ (I)] R1 = 0.0505, wR2 = 0.1373  

Final R indexes [all data] R1 = 0.0592, wR2 = 0.1492  

Largest diff. peak/hole / e Å
3

 3.90/0.77  

Flack parameter 0.01(0.03) 

Hooft parameter 0.052(0.011) 

 



 

229 

 

 

 

 

 

 

Figure 9.3. X-ray crystal structure of 126a 

[Flack parameter:
63

 x = 0.01(0.03); Hooft parameter:
64

 y = 0.052(0.011)]. 
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Table 9.3. Crystal data and structure refinement parameters of compound 126a 

Empirical formula C45H64I2N4O8 

Molecular formula C45H58 N4O5


I2
2

.3H2O 

Molecular weight, Mr 1042.82 

Melting point 230−234 °C 

Temperature during diffraction experiment, T 100 K 

X-ray source Mo K 

Crystal system Monoclinic 

Space group C2 

a 28.5993(5) Å 

b 11.4265(2) Å 

c 18.3052(4) Å 

α 90.00°  

β 127.1400(10)°  

γ 90.00°  

Volume, V 4768.59(16) Å
3
 

No. of molecule per unit cell, Z 2  

Density (calcd) 0.404 mg/mm
3
 

F(000) 540.0  

Crystal size 0.42 × 0.21 × 0.07 mm 

2range for data collection 2.8 to 51°  

Index ranges 34 ≤ h ≤ 34, 13 ≤ k ≤ 13, 22 ≤ l ≤ 22  

Reflections collected 19239  

Independent reflections 8792[Rint = 0.0350]  

Data/restraints/parameters 8792/1/600  

Goodness-of-fit on F
2
 1.338  

Final R indexes [I ≥ 2σ (I)] R1 = 0.0703, wR2 = 0.1874  

Final R indexes [all data] R1 = 0.0782, wR2 = 0.1938  

Largest diff. peak/hole / e Å
3

 1.82/0.69  

Flack parameter 0.05(0.03) 

Hooft parameter 0.052(0.011) 
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9.1.3 Lumusidine D 

 

Lumusidine D (127) was isolated from the stem-bark extract of Alstonia 

macrophylla.
127

 Suitable crystals of 127 were obtained from the slow evaporation of 

127 in CH2Cl2/hexanes solution. The structure and relative configuration of 127 are 

shown in Figure 9.4, while the crystal data and structure refinement parameters are 

summarized in Table 9.4. 

 

 

 

 

Figure 9.4. X-ray crystal structure of 127. 
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Table 9.4. Crystal data and structure refinement parameters of lumusidine D (127) 

Empirical formula  C43H50N4O4  

Molecular formula  C43H50N4O4 

Molecular weight, Mr 686.87  

Melting point > 270 
o
C dec 

Temperature during diffraction experiment, T   100 K 

X-ray radiation Mo K 

Crystal system  Orthorhombic  

Space group  P212121  

a  9.8540(5) Å 

b  14.1678(7) Å 

c  25.6785(12) Å  

α  90.00°  

β  90.00°  

γ 90.00°  

Volume, V 3585.0(3) Å
3
  

No. of molecule per unit cell, Z 4  

Density (calcd) 1.273 mg/mm
3
 

F(000)  1472.0  

Crystal size  0.23 × 0.05 × 0.04 mm 

2 range for data collection  3.18 to 52.88°  

Index ranges  12 ≤ h ≤ 12, 17 ≤ k ≤ 17, 32 ≤ l ≤ 32  

Reflections collected  31050  

Independent reflections  4140[Rint = 0.1502]  

Data/restraints/parameters  4140/0/467  

Goodness-of-fit on F
2
  1.069  

Final R indexes [I>=2σ (I)]  R1 = 0.0670, wR2 = 0.1375  

Final R indexes [all data]  R1 = 0.1211, wR2 = 0.1706  

Largest diff. peak/hole / e Å
3

  0.38/0.45  
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9.2 Indole Alkaloids 

 

9.2.1 Indole alkaloids from Tabernaemontana corymbosa 

 

9.2.1.1 Voatinggine and tabertinggine 

 

Voatinggine (128) and tabertinggine (129) are new alkaloids which possess an 

unprecedented pentacyclic skeleton. Voatinggine (128) is characterized by a 5-6-6 ring 

system for the monoterpenoid portion, while tabertinggine (129) possess a 6-5-6 ring 

system fused to the indolic portion.  

 

 

 

Suitable crystals of voatinggine (128) were obtained from the slow evaporation 

of 128 in CH2Cl2/MeOH solution. The structure and absolute configuration of 128 are 

shown in Figure 9.5, while the crystal data and structure refinement parameters are 

summarized in Table 9.5. 
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Figure 9.5. X-ray crystal structure of 128  

[Flack parameter:
63

 x = 0.17(0.19);  Hooft parameter:
64

 y = 0.10(0.15)]. 
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Table 9.5. Crystal data and structure refinement parameters of voatinggine (128) 

Empirical formula C19H22N2O2 

Molecular formula C19H22N2O2 

Molecular weight, Mr 310.39 

Melting point 186188 
o
C 

Temperature during diffraction experiment, T 100 K 

X-ray source Cu K 

Crystal system Monoclinic 

Space group P21 

a 9.6564(3) Å 

b 8.3932(2) Å 

c 9.8414(3) Å 

α 90.00° 

β 102.188(3)° 

γ 90.00° 

Volume, V 779.65(4) Å
3
 

No. of molecule per unit cell, Z 2 

Density (calcd) 1.322 mg/mm
3
 

F(000) 332.0 

Crystal size 0.35 × 0.17 × 0.14 mm 

2range for data collection 9.2 to 148.44° 

Index ranges 11 ≤ h ≤ 10, 10 ≤ k ≤ 10, 12 ≤ l ≤ 10 

Reflections collected 5115 

Independent reflections 3066[Rint = 0.0160] 

Data/restraints/parameters 3066/1/214 

Goodness-of-fit on F
2
 1.098 

Final R indexes [I ≥ 2σ (I)] R1 = 0.0373, wR2 = 0.1061 

Final R indexes [all data] R1 = 0.0376, wR2 = 0.1064 

Largest diff. peak/hole / e Å
3

 0.32/0.20 

Flack parameter, x 0.17(0.19) 

Hooft parameter, y 0.10 (0.04) 
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Suitable crystals of tabertinggine (129) were obtained from the slow evaporation 

of 129 in CHCl3/hexanes solution. The crystals obtained were very unstable when 

removed from the mother liquor, as the crystals will transform from colorless block 

crystals to white amorphous in matter of minutes when exposed to air. Thus, the 

crystallization of 129 had to be carried out prior to mounting the crystal onto the X-ray 

diffractometer. The structure and absolute configuration of 129 are shown in Figure 9.6, 

while the crystal data and structure refinement parameters are summarized in Table 9.6. 

 

 

 

 

Figure 9.6. X-ray crystal structure of 129  

[Flack parameter:
63

 x = 0.17(0.19); Hooft parameter:
64

 y = 0.10(0.15)]. 
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Table 9.6. Crystal data and structure refinement parameters of tabertinggine (129) 

Empirical formula C20H23Cl3N2O2 

Molecular formula C19H20N2O. CHCl3. H2 O 

Molecular weight, Mr 429.75 

Melting point 186188
o
C 

Temperature during diffraction experiment, T 100 K 

X-ray source Mo K 

Crystal system Orthorhombic  

Space group P212121  

a 6.7462(2) Å 

b 9.3007(3) Å 

c 32.0517(9) Å 

α 90.00°  

β 90.00°  

γ 90.00°  

Volume, V 2011.06(10) Å
3
 

No. of molecule per unit cell, Z 4  

Density (calcd) 1.419 mg/mm
3
 

F(000) 896.0  

Crystal size 0.36 × 0.12 × 0.02 mm 

2range for data collection 4.56 to 54.98°  

Index ranges 8 ≤ h ≤ 8, 12 ≤ k ≤ 12, 41 ≤ l ≤ 41  

Reflections collected 18791  

Independent reflections 4605[Rint = 0.1101]  

Data/restraints/parameters 4605/0/257  

Goodness-of-fit on F
2
 0.951  

Final R indexes [I ≥ 2σ (I)] R1 = 0.0588, wR2 = 0.1092  

Final R indexes [all data] R1 = 0.0945, wR2 = 0.1228  

Largest diff. peak/hole / e Å
3

 0.29/0.39  

Flack parameter, x 0.05(0.09) 

Hooft parameter, y 0.10(0.04) 
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9.2.1.2 Alkaloid 130 

 

Alkaloid 130 possesses a rare isoxazole in the ring system. Attempts to obtain 

suitable crystals for alkaloid 130 were unsuccessful. Eventually conversion of a small 

amount of alkaloid 130 (0.3 mg) to its methyl iodide salt 130a via treatment with 

iodomethane, furnished suitable crystals on recrystallization from hot MeOH. X-ray 

diffraction analysis on these crystals yielded the absolute configuration of compound 

130a, which in turn yielded the absolute configuration of alkaloid 130. The structure 

and absolute configuration of the methyl iodide salt 130a are shown in Figure 9.7, while 

the crystal data and structure refinement parameters are summarized in Table 9.7. 

 

 

 

 

Figure 9.7. X-ray crystal structure of 130a  

[Flack parameter:
63

 x = 0.00(0.03); Hooft parameter:
64

 y = 0.005(0.0016)]. 

 



 

239 

 

 

Table 9.7. Crystal data and structure refinement parameters of compound 130a 

Empirical formula C19H22N2O4I 

Molecular formula C19H22N2O4

I

 

Molecular weight, Mr 469.29 

Melting point 214218
o
C 

Temperature during diffraction experiment, T 100 K 

X-ray source Mo K 

Crystal system Orthorhombic  

Space group P212121  

a 7.6879(8) Å  

b 13.0251(14) Å  

c 18.905(2) Å  

α 90.00°  

β 90.00°  

γ 90.00°  

Volume, V 1893.1(4) Å
3
 

No. of molecule per unit cell, Z 4  

Density (calcd) 1.647  mg/mm
3
 

F(000) 940.0 

Crystal size 0.20 × 0.20 × 0.02 mm 

2range for data collection 3.8 to 52.72° 

Index ranges 8 ≤ h ≤ 9, 8 ≤ k ≤ 16, 23 ≤ l ≤ 23 

Reflections collected 5892  

Independent reflections 3636[Rint = 0.0519]  

Data/restraints/parameters 3636/0/228  

Goodness-of-fit on F
2
 0.674  

Final R indexes [I ≥ 2σ (I)] R1 = 0.0422, wR2 = 0.1050  

Final R indexes [all data] R1 = 0.0586, wR2 = 0.1160  

Largest diff. peak/hole / e Å
3

 1.02/0.93  

Flack parameter, x 0.00(0.03) 

Hooft parameter , y 0.005(0.0016) 
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9.2.1.3 Alkaloids 131 and 132 

 

Alkaloids 131 and its N-oxide derivative 132 are new iboga-type alkaloids. 

Alkaloid 131 is presumably the C-19 oxidation of the known alkaloid, (19S)-

hydroxyibogamine (133).
128 

Suitable crystals of 131 were obtained from the slow evaporation of 131 in 

CH2Cl2/hexanes solution. The structure of 131 is shown in Figure 9.8, while the crystal 

data and structure refinement parameters are summarized in Table 9.8. 

 

 

 

 
 
 

Figure 9.8. X-ray crystal structure of 131. 
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Table 9.8. Crystal data and structure refinement parameters of alkaloid 131 

Empirical formula C19H22N2O 

Molecular formula C19H22N2O 

Molecular weight, Mr 294.39 

Melting point 195199 
o
C 

Temperature during diffraction experiment, T 100 K 

X-ray source Mo K 

Crystal system Tetragonal  

Space group P41  

a 10.1845(18) Å  

b 10.1845(18) Å 

c 14.613(3) Å 

α 90.00°  

β 90.00°  

γ 90.00°  

Volume, V 1515.7(5) Å
3
 

No. of molecule per unit cell, Z 4  

Density (calcd) 1.290 mg/mm
3
 

F(000) 632.0  

Crystal size 0.52 × 0.13 × 0.02 mm 

2range for data collection 4 to 52.66°  

Index ranges 12 ≤ h ≤ 12, 12 ≤ k ≤ 12, 11 ≤ l ≤ 17  

Reflections collected 8061  

Independent reflections 1609[Rint = 0.0804]  

Data/restraints/parameters 1609/1/200  

Goodness-of-fit on F
2
 0.877  

Final R indexes [I ≥ 2σ (I)] R1 = 0.0363, wR2 = 0.0623  

Final R indexes [all data] R1 = 0.0567, wR2 = 0.0672  

Largest diff. peak/hole / e Å
3

 0.16/0.17  
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Suitable crystals of 132 were obtained from the slow evaporation of 132 in 

MeOH solution. The structure of 132 is shown in Figure 9.9, while the crystal data and 

structure refinement parameters are summarized in Table 9.9. 

 

 

 

 

Figure 9.9. X-ray crystal structure of 132. 
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Table 9.9. Crystal data and structure refinement parameters of alkaloid 132 

Empirical formula C20H28N2O4 

Molecular formula C19H22N2O2.CH3OH.H2O 

Molecular weight, Mr 360.44 

Melting point > 188 
o
C dec 

Temperature during diffraction experiment, T 100 K 

X-ray source Mo K 

Crystal system Orthorhombic  

Space group P212121  

a 6.5750(4) Å  

b 14.2730(8) Å 

c 19.3071(10) Å 

α 90.00°  

β 90.00°  

γ 90.00°  

Volume, V 1811.87(18) Å
3
  

No. of molecule per unit cell, Z 4  

Density (calcd) 1.321 mg/mm
3
 

F(000) 776.0  

Crystal size 0.52 × 0.26 × 0.12 mm 

2range for data collection 3.54 to 52.82°  

Index ranges 8 ≤ h ≤ 8, 17 ≤ k ≤ 17, 23 ≤ l ≤ 24  

Reflections collected 13798  

Independent reflections 3710[Rint = 0.0759]  

Data/restraints/parameters 3710/0/250  

Goodness-of-fit on F
2
 1.018  

Final R indexes [I ≥ 2σ (I)] R1 = 0.0498, wR2 = 0.1001  

Final R indexes [all data] R1 = 0.0784, wR2 = 0.1165  

Largest diff. peak/hole / e Å
3

 0.22/0.24  
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9.2.1.4 Alkaloid 134 

 

Alkaloid 134 is a new eburnane alkaloid which possesses an additional ring 

having an ether bridge between C-15 and C-18. Suitable crystals of 134 were obtained 

from the slow evaporation of 134 in CH2Cl2/hexanes solution. The structure and 

absolute configuration of 134 are shown in Figure 9.10, while the crystal data and 

structure refinement parameters are summarized in Table 9.10.
 

 

 

 

 

Figure 9.10. X-ray crystal structure of 134 

[Flack parameter:
63

 x = 0.08(0.18); Hooft parameter:
64

 y = 0.05(0.06)] 
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Table 9.10. Crystal data and structure refinement parameters of alkaloid 134 

Empirical formula C19H20N2O2 

Molecular formula C19H20N2O2  

Molecular weight, Mr 308.37  

Melting point > 252
 o
C dec 

Temperature during diffraction experiment, T 100 K 

X-ray source Cu K 

Crystal system Orthorhombic  

Space group P212121  

a 11.73280(10) Å 

b 13.07670(10) Å 

c 19.2454(2) Å  

α 90.00°  

β 90.00°  

γ 90.00°  

Volume, V 2952.75(5) Å
3
 

No. of molecule per unit cell, Z 8  

Density (calcd) 1.387 mg/mm
3
 

F(000) 1312.0  

Crystal size 0.48 × 0.23 × 0.23 mm 

2range for data collection 8.18 to 148.66°  

Index ranges 14 ≤ h ≤ 14, 15 ≤ k ≤ 16, 23 ≤ l ≤ 22  

Reflections collected 10671  

Independent reflections 5866[Rint = 0.0163]  

Data/restraints/parameters 5866/0/415  

Goodness-of-fit on F
2
 1.071  

Final R indexes [I ≥ 2σ (I)] R1 = 0.0354, wR2 = 0.0902  

Final R indexes [all data] R1 = 0.0358, wR2 = 0.0906  

Largest diff. peak/hole / e Å
3

 0.30/0.18  

Flack parameter, x 0.08(0.18) 

Hooft parameter , y 0.05(0.06) 
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9.2.2 Alkaloids from Kopsia grandifolia 

 

 

9.2.2.1 Grandilodines A and B  

 

 

The grandilodines A (135) and B (136) are new alkaloids isolated from the stem-

bark extract of Kopsia grandifolia.
129 

 

 

 

Crystals of grandilodine A (135) were obtained from the slow evaporation of 

135 in CH2Cl2/MeOH solution. The structure of 135 is shown in Figure 9.11, while the 

crystal data and structure refinement parameters are summarized in Table 9.11. 

 
 

 
 

Figure 9.11. X-ray crystal structure of 135. 
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Table 9.11. Crystal data and structure refinement parameters of grandilodine A (135) 

Empirical formula C24H30N2O6 

Molecular formula C24H30N2O6 

Molecular weight, Mr 442.50 

Melting point 120122 
o
C 

Temperature during diffraction experiment, T 100 K 

X-ray source Mo K 

Crystal system Orthorhombic  

Space group P212121  

a 8.0067(2) Å  

b 11.2455(3) Å  

c 24.1247(7) Å 

α 90.00°  

β 90.00°  

γ 90.00° 

Volume, V 2172.17(10) Å
3
 

No. of molecule per unit cell, Z 4  

Density (calcd) 1.353 mg/mm
3
 

F(000) 944.0  

Crystal size 0.61 × 0.20 × 0.15 mm 

2range for data collection 4 to 55°  

Index ranges 10 ≤ h ≤ 10, 14 ≤ k ≤ 14, 30 ≤ l ≤ 31  

Reflections collected 18782  

Independent reflections 2846[Rint = 0.0671]  

Data/restraints/parameters 2846/0/292  

Goodness-of-fit on F
2
 1.024  

Final R indexes [I ≥ 2σ (I)] R1 = 0.0401, wR2 = 0.0910  

Final R indexes [all data] R1 = 0.0516, wR2 = 0.0969  

Largest diff. peak/hole / e Å
3

 0.27/0.27  
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Crystals of grandilodine B (136) were obtained from the slow evaporation of 

135 in CH2Cl2/hexanes solution. The structure of 136 is shown in Figure 9.12, while the 

crystal data and structure refinement parameters are summarized in Table 9.12. 

 

 

 

 
 

Figure 9.12. X-ray crystal structure of 136. 
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Table 9.12. Crystal data and structure refinement parameters of grandilodine B (136) 

Empirical formula C24H26N2O7 

Molecular formula C24H26N2O7 

Molecular weight, Mr 454.47 

Melting point 204206 
o
C 

Temperature during diffraction experiment, T 100 K 

X-ray source Mo K 

Crystal system Monoclinic  

Space group P21  

a 8.6505(2) Å 

b 8.0985(2) Å 

c 15.3926(4) Å 

α 90.00°  

β 90.057(2)°  

γ 90.00°  

Volume, V 1078.34(5) Å
3
 

No. of molecule per unit cell, Z 2  

Density (calcd) 1.400 mg/mm
3
 

F(000) 480.0  

Crystal size 0.47 × 0.28 × 0.08 mm 

2range for data collection 2.64 to 55°  

Index ranges 11 ≤ h ≤ 11, 10 ≤ k ≤ 10, 20 ≤ l ≤ 19  

Reflections collected 10203  

Independent reflections 2655[Rint = 0.0497]  

Data/restraints/parameters 2655/1/301  

Goodness-of-fit on F
2
 0.990  

Final R indexes [I ≥ 2σ (I)] R1 = 0.0335, wR2 = 0.0759  

Final R indexes [all data] R1 = 0.0404, wR2 = 0.0790  

Largest diff. peak/hole / e Å
3

 0.21/0.20  
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9.2.2.2 Alkaloid 137 

 

 

Crystals of the new alkaloid 137 were obtained from the slow evaporation of 

137 in CH2Cl2/MeOH solution. The structure of 137 is shown in Figure 9.13, while the 

crystal data and structure refinement parameters are summarized in Table 9.13. From 

the crystal structure, an intramolecular hydrogen bond was observed between the C-

16OH and the amide carbonyl. 

 

 
 
 

 
 

 

Figure 9.13. X-ray crystal structure of 137. 
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Table 9.13. Crystal data and structure refinement parameters of alkaloid 137 

Empirical formula C23H24N2O7 

Molecular formula C23H24N2O7 

Molecular weight, Mr 440.44 

Melting point 206208 
o
C 

Temperature during diffraction experiment, T 100 K 

X-ray source Mo K 

Crystal system Monoclinic  

Space group P21  

a 9.9492(5) Å 

b 8.2037(4) Å 

c 13.0494(7) Å 

α 90.00° 

β 109.845(3)° 

γ 90.00°  

Volume, V 1001.84(9) Å
3
 

No. of molecule per unit cell, Z 2  

Density (calcd) 1.460 mg/mm
3
 

F(000) 464.0  

Crystal size 0.58 × 0.15 × 0.06  

2range for data collection 3.32 to 55°  

Index ranges 12 ≤ h ≤ 12, 10 ≤ k ≤ 10, 16 ≤ l ≤ 16  

Reflections collected 9224  

Independent reflections 2462[Rint = 0.0536]  

Data/restraints/parameters 2462/1/291  

Goodness-of-fit on F
2
 1.142  

Final R indexes [I ≥ 2σ (I)] R1 = 0.0504, wR2 = 0.1186  

Final R indexes [all data] R1 = 0.0588, wR2 = 0.1220  

Largest diff. peak/hole / e Å
3

 0.35/0.32  
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9.2.2.3 Alkaloid 138 

 

 

Alkaloid 138 is the first example of an aspidofractinine-type alkaloid which has 

lost one carbon in the piperidine ring D, resulting in five-membered lactam ring D. 

Crystals of 138 were obtained from the slow evaporation of 138 in 

CH2Cl2/MeOH solution. It can be seen that 138 co-crystallized with the solvent used 

during crystallization (MeOH). The structure of 138 is shown in Figure 9.14, while the 

crystal data and structure refinement parameters are summarized in Table 9.14. 

 

 

 

 

Figure 9.14. X-ray crystal structure of 138. 
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Table 9.14. Crystal data and structure refinement parameters of alkaloid 138 

Empirical formula C21H26N2O4 

Molecular formula C20H22N2O3.CH3OH 

Molecular weight, Mr 370.44 

Melting point 180182 
o
C 

Temperature during diffraction experiment, T 100 K 

X-ray source Mo K 

Crystal system Orthorhombic  

Space group P212121  

a 6.7581(2) Å 

b 11.4548(3) Å 

c 23.3157(6) Å 

 90.00°  

 90.00°  

 90.00°  

Volume, V 1804.93(9) Å
3
 

No. of molecule per unit cell, Z 4  

Density (calcd) 1.363 mg/mm
3
 

F(000) 792.0  

Crystal size 0.58 × 0.25 × 0.13 mm 

2range for data collection 3.5 to 54.96°  

Index ranges 8 ≤ h ≤ 8, 14 ≤ k ≤ 14, 30 ≤ l ≤ 30  

Reflections collected 16954  

Independent reflections 2385[Rint = 0.0513]  

Data/restraints/parameters 2385/0/251  

Goodness-of-fit on F
2
 1.113  

Final R indexes [I ≥ 2σ (I)] R1 = 0.0332, wR2 = 0.0856  

Final R indexes [all data] R1 = 0.0399, wR2 = 0.0993  

Largest diff. peak/hole / e Å
3

 0.25/0.25  
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9.2.2.4 Alkaloid 139 

 

 

Alkaloid 139 is notable for having incorporated an additional five-membered 

ring fused to the piperidine ring D of an aspidofractinine carbon skeleton. Crystals of 

139 were obtained from the slow evaporation of 139 in CH2Cl2/hexanes solution. It can 

also be seen that 139 co-crystallized with the solvent used during crystallization 

(CH2Cl2). The absolute structure of 139 is shown in Figure 9.15, while the crystal data 

and structure refinement parameters are summarized in Table 9.15. 

 

 

Figure 9.15. X-ray crystal structure of 139 

[Flack parameter:
63

 x = 0.02(0.12);  Hooft parameter:
64

 y = 0.00(0.07)]. 
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Table 9.15. Crystal data and structure refinement parameters of alkaloid 139 

Empirical formula C25H28Cl2N2O3 

Molecular formula C24H26N2O3.CH2Cl2 

Molecular weight, Mr 475.39 

Melting point 268270 
o
C 

Temperature during diffraction experiment, T 100 K 

X-ray source Mo K 

Crystal system Orthorhombic  

Space group P212121  

a 6.6620(4) Å 

b 9.8110(5) Å 

c 34.4440(18) Å  

 90.00° 

 90.00° 

 90.00° 

Volume, V 2251.3(2) Å
3
 

No. of molecule per unit cell, Z 4  

Density (calcd) 1.403 mg/mm
3
 

F(000) 1000.0  

Crystal size 0.42 × 0.04 × 0.02 mm 

2range for data collection 2.36 to 52.76°  

Index ranges 8 ≤ h ≤ 8, 12 ≤ k ≤ 12, 42 ≤ l ≤ 42  

Reflections collected 19611  

Independent reflections 4609[Rint = 0.1662]  

Data/restraints/parameters 4609/0/294  

Goodness-of-fit on F
2
 0.853  

Final R indexes [I ≥ 2σ (I)] R1 = 0.0600, wR2 = 0.1277  

Final R indexes [all data] R1 = 0.1258, wR2 = 0.1664  

Largest diff. peak/hole / e Å
3

 0.35/0.35  

Flack parameter 0.02(0.12) 

Hooft parameter 0.00(0.07) 
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9.2.2.5 Alkaloid 140 

 

 

Alkaloid 140 is a new alkaloid isolated from the stem-bark extract of Kopsia 

grandifolia. Suitable crystals of 140 were obtained from the slow evaporation of 140 in 

CH2Cl2/MeOH solution. The structure of 140 is shown in Figure 9.16, while the crystal 

data and structure refinement parameters, are summarized in Table 9.16. 

 

 

 
 
 
 

 
 

 

Figure 9.16. X-ray crystal structure of 140. 
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Table 9.16. Crystal data and structure refinement parameters of alkaloid 140 

Empirical formula C19H22N2O2 

Molecular formula C19H22N2O2 

Molecular weight, Mr 310.39 

Melting point 190192 
o
C 

Temperature during diffraction experiment, T 100 K 

X-ray source Mo K 

Crystal system Monoclinic  

Space group P21  

a 14.2796(4) Å 

b 7.9986(2) Å 

c 15.7780(5) Å 

 90.00°  

 116.781(2)°  

 90.00°  

Volume, V 1608.81(8) Å
3
 

No. of molecule per unit cell, Z 4  

Density (calcd) 1.281 mg/mm
3
 

F(000) 664.0  

Crystal size 0.72 × 0.22 × 0.10 mm 

2range for data collection 2.9 to 54.98°  

Index ranges 18 ≤ h ≤ 18, 10 ≤ k ≤ 10, 20 ≤ l ≤ 20  

Reflections collected 15425  

Independent reflections 3962[Rint = 0.0983]  

Data/restraints/parameters 3962/1/417  

Goodness-of-fit on F
2
 0.957  

Final R indexes [I ≥ 2σ (I)] R1 = 0.0409, wR2 = 0.0877  

Final R indexes [all data] R1 = 0.0526, wR2 = 0.0915  

Largest diff. peak/hole / e Å
3

 0.25/0.23  

 

 

 



 

258 

 

 

9.2.2.6  (19R)-Hydroxyeburnamenine 

 

 

(19R)-Hydroxyeburnamenine (141) is a new eburnane alkaloid. Crystals of 141 

were obtained from the slow evaporation of 141 in CH2Cl2/MeOH solution. The 

structure of 141 is shown in Figure 9.17, while the crystal data and structure refinement 

parameters are summarized in Table 9.17. 

 

          

 

  

Figure 9.17. X-ray crystal structure of 141. 
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Table 9.17. Crystal data and structure refinement parameters of (19R)-

hydroxyeburnamenine (141) 

Empirical formula C19H22N2O 

Molecular formula C19H22N2O 

Molecular weight, Mr 294.39 

Melting point 162164 
o
C 

Temperature during diffraction experiment, T 100 K 

X-ray source Mo K 

Crystal system Monoclinic  

Space group P21  

a 8.63910(10) Å 

b 7.92600(10) Å 

c 11.5438(2) Å 

 90.00°  

 98.4100(10)°  

 90.00°  

Volume, V 781.945(19) Å
3
 

No. of molecule per unit cell, Z 2  

Density (calcd) 1.250 mg/mm
3
 

F(000) 316.0  

Crystal size 0.34 × 0.16 × 0.15 mm 

2range for data collection 3.56 to 55°  

Index ranges 11 ≤ h ≤ 11, 10 ≤ k ≤ 10, 14 ≤ l ≤ 14  

Reflections collected 6701  

Independent reflections 1920[Rint = 0.0384]  

Data/restraints/parameters 1920/1/201  

Goodness-of-fit on F
2
 1.095  

Final R indexes [I ≥ 2σ (I)] R1 = 0.0373, wR2 = 0.0852  

Final R indexes [all data] R1 = 0.0451, wR2 = 0.1035  

Largest diff. peak/hole / e Å
3

 0.26/0.20  
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9.2.2.7 Alkaloid 142 

 

 

Alkaloid 142 may be an artifact of the alkaloid 141, in view of the presence of 

an ethoxy group in the structure, and the use of EtOH during extraction.
130

 Crystals of 

142 were obtained from the slow evaporation of 142 in CH2Cl2/MeOH solution. The 

structure of 142 is shown in Figure 9.18, while the crystal data and structure refinement 

parameters are summarized in Table 9.18. 

 

 

 

 

Figure 9.18. X-ray crystal structure of 142. 
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Table 9.18. Crystal data and structure refinement parameters of alkaloid 142 

Empirical formula C21H28N2O2 

Molecular formula C21H28N2O2 

Molecular weight, Mr 340.45 

Melting point 150152 
o
C 

Temperature during diffraction experiment, T 100 K 

X-ray source Mo K 

Crystal system Orthorhombic  

Space group P212121  

a 8.4666(3) Å  

b 12.1895(4) Å  

c 16.9938(6) Å  

 90.00°  

 90.00°  

 90.00°  

Volume, V 1753.82(10) Å
3
  

No. of molecule per unit cell, Z 4  

Density (calcd) 1.289 mg/mm
3
 

F(000) 736.0  

Crystal size 0.41 × 0.09 × 0.06 mm 

2range for data collection 4.12 to 52.72°  

Index ranges 10 ≤ h ≤ 10, 15 ≤ k ≤ 15, 21 ≤ l ≤ 21  

Reflections collected 15258  

Independent reflections 2060[Rint = 0.1237]  

Data/restraints/parameters 2060/0/229  

Goodness-of-fit on F
2
 1.038  

Final R indexes [I ≥ 2σ (I)] R1 = 0.0516, wR2 = 0.0938  

Final R indexes [all data] R1 = 0.0846, wR2 = 0.1050  

Largest diff. peak/hole / e Å
3

 0.20/0.25  
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9.2.3  Alkaloids from Alstonia angustifolia 

 

9.2.3.1  (7S)-N(1)-Demethylalstonoxine B (143) 

 

 

(7S)-N(1)-Demethylalstonoxine B (143) is a new ring-opened macroline 

oxindole alkaloid isolated from the leaf extract of Alstonia angustifolia. The structure 

and relative configuration were established by 2D NMR techniques. The NMR data 

however, were insufficient to establish the stereochemistry of C-19 and for this purpose, 

an X-ray diffraction analysis was carried out. Suitable crystals of 143 were obtained 

from the slow evaporation of 143 in CH2Cl2/hexanes solution.  From the crystal 

structure, it can be seen that alkaloid 143 co-crystallized with the solvent (CHCl3). It 

can also be seen that an intramolecular hydrogen bond was formed between C-17OH 

and N-4 lone pair (Figure 9.19). The crystal data and structure refinement parameters 

are summarized in Table 9.19. 

 

                                                             

                                                            Figure 9.19. X-ray crystal structure of 143. 

                                                             [Flack parameter:
63

 x = 0.07(0.08);  

                                                               Hooft parameter:
64

 y = 0.06(0.06)]. 
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Table 9.19. Crystal data and structure refinement parameters of (7S)-N(1)- 

demethylalstonoxine B (143) 

Empirical formula C19H25N2O3Cl3 

Molecular formula C18H24N2O3.CHCl3 

Molecular weight, Mr 340.45 

Melting point 110112 
o
C 

Temperature during diffraction experiment, T 100 K 

X-ray source Mo K 

Crystal system Orthorhombic  

Space group P212121  

a 9.7811(7) Å 

b 12.2584(8) Å  

c 17.0772(13) Å 

 90.00°  

 90.00°  

 90.00°  

Volume, V 2047.6(3) Å
3
  

No. of molecule per unit cell, Z 4  

Density (calcd) 1.414 mg/mm
3
 

F(000) 912.0  

Crystal size 0.36 × 0.26 × 0.16 mm 

2range for data collection 4.1 to 52.88°  

Index ranges 12 ≤ h ≤ 12, 15 ≤ k ≤ 15, 21 ≤ l ≤ 21  

Reflections collected 17212  

Independent reflections 4207[Rint = 0.0998]  

Data/restraints/parameters 4207/0/251  

Goodness-of-fit on F
2
 1.038  

Final R indexes [I ≥ 2σ (I)] R1 = 0.0487, wR2 = 0.1142  

Final R indexes [all data] R1 = 0.0672, wR2 = 0.1253  

Largest diff. peak/hole / e Å
3

 0.32/0.40  

Flack parameter, x 0.07(0.08) 

Hooft parameter, y 0.06(0.06) 
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9.2.3.2  (7S)-Alstoumerine oxindole 

 

(7S)-Alstoumerine oxindole (144) is a new oxindole of the sarpagine type 

alkaloid isolated from stem-bark extract of Alstonia angustifolia. As with alkaloid 143, 

the NMR experimental results were insufficient to establish the relative stereochemistry 

of C-19. Since alkaloid 144 readily crystallized from CH2Cl2/hexanes solution, an X-ray 

diffraction analysis was carried out which reveals the structure and relative 

configuration of alkaloid 144. From the crystal structure, it can be seen that a water 

molecule had been incorporated into the crystal lattice, and the water molecule formed 

hydrogen bond with the N-4 lone pair. The structure of 144 is shown in Figure 9.20, 

while the crystal data and structure refinement parameters are summarized in Table 

9.20. 

                                                                       

 

          Figure 9.20. X-ray crystal structure of 144. 
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Table 9.20. Crystal data and structure refinement parameters of (7S)-alstoumerine 

oxindole (144) 

Empirical formula C20H26N2O4 

Molecular formula C20H24N2O3.H2O 

Molecular weight, Mr 358.43 

Melting point > 160 °C dec 

Temperature during diffraction experiment, T 100 K 

X-ray source Mo K 

Crystal system Orthorhombic  

Space group P21212 

a 11.5360(2) Å 

b 19.2745(3) Å 

c 8.11190(10) Å 

 90.00
o
  

 90.00
o
 

 90.00
o
 

Volume, V 1803.69(5) Å
3 

No. of molecule per unit cell, Z 4  

Density (calcd) 1.320 mg/mm
3
 

F(000) 768.0  

Crystal size 0.22 × 0.16 × 0.05 mm 

2range for data collection 4.12 to 52.78°  

Index ranges 14 ≤ h ≤ 14, 23 ≤ k ≤ 24, 10 ≤ l ≤ 10  

Reflections collected 13706  

Independent reflections 3699[Rint = 0.0618]  

Data/restraints/parameters 3699/0/247  

Goodness-of-fit on F
2
 0.993  

Final R indexes [I ≥ 2σ (I)] R1 = 0.0444, wR2 = 0.0815  

Final R indexes [all data] R1 = 0.0670, wR2 = 0.0912  

Largest diff. peak/hole / e Å
3

 0.19/0.19 
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9.2.4  Alkaloids from Leuconotis griffithii 

 

9.2.4.1 Leuconodines B and E 

 

 

The alkaloids leuconodines B (68) and E (71) are new leuconoxine-type 

alkaloids isolated from the stem-bark extract of L.griffithii.  

 

 

 

Crystals of 68 were obtained from the slow evaporation of 68 in CH2Cl2/MeOH 

solution. From the crystal structure, it can be seen that a MeOH molecule has been 

incorporated into the crystal lattice. The structure of 68 is shown in Figure 9.21, while 

the crystal data and structure refinement parameters are summarized in Table 9.21. 

 

 

Figure 9.21. X-ray crystal structure of 68. 
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Table 9.21. Crystal data and structure refinement parameters of leuconodine B (68) 

Empirical formula C20H26N2O4   

Molecular formula C19H22N2O3.CH3OH 

Molecular weight, Mr 358.43 

Melting point 198200 °C 

Temperature during diffraction experiment, T 100 K 

X-ray source Mo K 

Crystal system Orthorhombic  

Space group P212121  

a 8.0382(5) Å 

b 14.5281(9) Å 

c 15.2187(8) Å 

 90.00°  

 90.00°  

 90.00°  

Volume, V 1777.24(18) Å
3
 

No. of molecule per unit cell, Z 4  

Density (calcd) 1.340 mg/mm
3
 

F(000) 768.0  

Crystal size 0.17 × 0.15 × 0.04 mm 

2range for data collection 3.88 to 52.88°  

Index ranges 10 ≤ h ≤ 10, 18 ≤ k ≤ 18, 18 ≤ l ≤ 18  

Reflections collected 12249  

Independent reflections 2090[Rint = 0.1043]  

Data/restraints/parameters 2090/0/240  

Goodness-of-fit on F
2
 1.008  

Final R indexes [I ≥ 2σ (I)] R1 = 0.0491, wR2 = 0.0988  

Final R indexes [all data] R1 = 0.0801, wR2 = 0.1091  

Largest diff. peak/hole / e Å
3

 0.290.23  
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Crystals of 71 were obtained from the slow evaporation of 71 in CH2Cl2/MeOH 

solution. The structure of 71 is shown in Figure 9.22, while the crystal data and 

structure refinement parameters are summarized in Table 9.22. 

 

 

 

 

Figure 9.22. X-ray crystal structure of 71. 
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Table 9.22. Crystal data and and structure refinement parameters of leuconodine E (71) 

Empirical formula C19H24N2O2  

Molecular formula C19H24N2O2  

Molecular weight, Mr 312.40  

Melting point > 230 °C dec 

Temperature during diffraction experiment, T 100 K 

X-ray source Mo K 

Crystal system Orthorhombic  

Space group P212121  

a 8.1326(7) Å  

b 10.6116(9) Å  

c 18.2366(17) Å  

α 90.00

  

β 90.00

  

γ 90.00

  

Volume, V 1573.8(2) Å
3 

No. of molecule per unit cell, Z 4  

Density (calcd) 1.318 mg/mm
3
 

F(000) 672.0  

Crystal size 0.801 × 0.169 × 0.03  

2range for data collection 4.44 to 46.72°  

Index ranges 9 ≤ h ≤ 8, 11 ≤ k ≤ 11,20 ≤ l ≤ 20  

Reflections collected 9956  

Independent reflections 1332[Rint = 0.0872]  

Data/restraints/parameters 1332/0/210  

Goodness-of-fit on F
2
 1.082  

Final R indexes [I ≥ 2σ (I)] R1 = 0.0403, wR2 = 0.0858  

Final R indexes [all data] R1 = 0.0654, wR2 = 0.0966  

Largest diff. peak/hole / e Å
3

 0.17/0.25  
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9.2.4.2 nor-Rhazinicine 

 

 

nor-Rhazinicine (73) is a new alkaloid isolated from the stem-bark extract of 

Leuconotis griffithii. Suitable crystals of 73 were obtained from the slow evaporation of 

73 in CH2Cl2/MeOH solution. The structure of 73 is shown in Figure 9.23, while the 

crystal data and structure refinement parameters are summarized in Table 9.23. 

 

 
 

 

 
 

 

Figure 9.23. X-ray crystal structure of 73. 
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Table 9.23. Crystal data and structure refinement parameters of nor-rhazinicine (73) 

Empirical formula C18H18N2O2  

Molecular formula C18H18N2O2 

Molecular weight, Mr 294.34 

Melting point 190192 °C 

Temperature during diffraction experiment, T 100 K 

X-ray source Mo K 

Crystal system Monoclinic  

Space group P21  

a 13.646(3) Å 

b 8.3619(17) Å 

c 14.658(3) Å 

 90.00°  

 115.775(11)°  

 90.00°  

Volume, V 1506.2(5) Å
3
 

No. of molecule per unit cell, Z 4  

Density (calcd) 1.298 mg/mm
3
 

F(000) 624.0  

Crystal size 0.52 × 0.32 × 0.05  

2range for data collection 3.08 to 60.26°  

Index ranges 18 ≤ h ≤ 18, 11 ≤ k ≤ 7, 20 ≤ l ≤ 20  

Reflections collected 7175  

Independent reflections 4095[Rint = 0.1347]  

Data/restraints/parameters 4095/1/399  

Goodness-of-fit on F
2
 1.107  

Final R indexes [I ≥ 2σ (I)] R1 = 0.1262, wR2 = 0.3258  

Final R indexes [all data] R1 = 0.1574, wR2 = 0.3522  

Largest diff. peak/hole / e Å
3

 0.84/0.74  
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CHAPTER TEN 

Experimental 

 

10.1 General 

 

Melting points were determined on a Mel-Temp melting point apparatus and 

were uncorrected. Optical rotations were determined on a JASCO P-1020 digital 

polarimeter. IR spectra were recorded on a Perkin-Elmer Spectrum 400 

spectrophotometer or on a Perkin-Elmer 1600 Series FT-IR spectrophotometer. UV 

spectra were obtained on a Shimadzu UV-3101PC. ESIMS and HRESIMS were 

obtained on an Agilent 6530 Q-TOF mass spectrometer. EIMS and HRLSIMS were 

obtained at Organic Mass Spectrometry, Central Science Laboratory, University of 

Tasmania, Tasmania, Australia. GC-EIMS was obtained on a Shimadzu GCMS-

QP2010 Plus mass spectrometer. All air/moisture-sensitive reactions were carried out 

under N2 in oven-dried glassware. THF was freshly distilled from Na/benzophenone 

under nitrogen while, CH2Cl2 and pyridine were distilled from CaH2 under nitrogen. All 

other reagents were used without further purification. 

 

10.2 NMR Spectroscopy 

 

1
H, 

13
C, and 2D NMR spectra were recorded at 

1
H resonance frequency of either 

400 MHz (JEOL JNM-LA 400, JNM-ECA 400, or Bruker Avance III 400 

spectrometers) or 600 MHz (Bruker Avance III 600 spectrometer). The deuterium 

signals from CDCl3, CD2Cl2, or THF-d8 were used for the field frequency lock. All 

experiments were performed at room temperature (ca. 22 
o
C) unless otherwise stated. 

The chemical shifts were expressed in (ppm) downfield from TMS and all J values 
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were given in Hz. The multiplicity of each signal was denoted as follows: s - singlet, d - 

doublet, t - triplet, q - quartet, m - multiplet, br - broad. 

 

10.3 Single Crystal X-ray Diffraction 

 

X-ray diffraction analyses were carried out on a Bruker SMART APEX II CCD 

area detector system equipped with a graphite monochromator and a Mo K fine-focus 

sealed tube (= 0.71073 Å), or on an Agilent Technologies SuperNova Dual CCD area 

detector system equipped with mirror monochromator and a SuperNova (Cu K) X-ray 

source (= 1.50352 Å).  

Suitable crystals were obtained mainly from slow evaporation in various solvent 

systems. The crystals were observed under a microscope with a polarizer attached. A 

single crystal was chosen based on the shape (does not contain deformity), size (more 

than 0.1 x 0.1 x 0.1 mm in dimension), and the ability to transmit and extinguish 

polarized light completely. The crystal was then fixed with an adhesive 

(perfluoropolyether oil) onto a glass fibre that is in turn glued into a ‘copper pip’ that 

fits into the well at the top of the goniometer head.  

The goniometer head was then attached to the  circle of the diffractometer. The 

crystal was optically adjusted so that its center does not move when it was rotated. A 

stream of N2 gas cooled to  was used for low temperature diffraction experiments. 

The diffraction experiment was carried out with full-sphere data collection ( scan).  

The structures were solved by direct methods (SHELXS-97) and refined with 

full-matrix least-squares on F
2
 (SHELXL-97). All non-hydrogen atoms were refined 

anisotropically and all hydrogen atoms were placed in idealized positions and refined as 

riding atoms with the relative isotropic parameters. The absolute structures were 
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determined by refinement of the Flack parameter
63

 and computation of the Hooft 

parameter.
64

 

 

10.4 Chromatographic Methods 

 

10.4.1 Normal phase chromatography 

 

 Thin layer chromatography was carried out using precoated 5 x 10 cm aluminium 

plates, 0.25 mm thickness, silica gel 60 F254 (Merck 5554). Column chromatography 

was performed using silica gel (Merck 9385, 230-400 Mesh ASTM). The ratio of silica 

gel to sample was approximately 30:1 for crude samples, and 100:1 for semi-pure 

fractions. The gel was made into a slurry with chloroform before it was packed onto a 

column and allowed to equilibrate for at least an hour before use. Centrifugal 

preparative TLC was carried out using a chromatotron (Harrison Research) with 1 mm 

thick plates 24 cm diameter of silica gel PF 254 (Merck 7749). The plate was prepared 

as follows. A long piece of cellophane tape was secured around the edge of the plate to 

form a mould. Silica gel (50 g) was added to about 100 ml of cold water and the slurry 

formed was poured onto the circular glass plate. The circular glass plate was rotated 

while the gel was being poured to obtain an even setting. The plate was then left to air 

dry for about an hour before being dried in an oven at 80 
o
C for about 12 hours. The 

sample was dissolved in a minimum volume of suitable solvent and loaded at the center 

of the plate while the plate was rotating to form a thin band. Elution was then carried out 

with the appropriate solvent system.  

Some of the solvent systems used were Et2O, Et2O:hexanes, Et2O:MeOH, 

CH2Cl2, CH2Cl2:MeOH, CH2Cl2:hexanes, CH2Cl2:MeOH, CHCl3, CHCl3:hexanes, 
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CHCl3:MeOH, EtOAc:hexanes. In many instances, the solvents were saturated with 

NH3 prior to use.  

 

10.4.2 Gel permeation chromatography 

 

Gel permeation chromatography was carried out using Sephadex G-75 (Aldrich). 

The gel was equilibrated (swelled) in excess MeOH at rt for 3 hours. It was then made 

into a slurry via stirring, poured into a column (100 x 3 cm), and allowed to equilibrate 

for at least a day. Samples were dissolved in a minimum amount of MeOH, filtered with 

nylon membrane (0.42 m) prior to loading into the column. After the chromatography 

the column was regenerated by eluting with MeOH (three times the column volume).  

 

10.4.3 Chiral phase high performance liquid chromatography 

 

Chiral phase HPLC analysis and separation were performed using a system 

comprising a Waters 600 controller, a Waters 600 pump, and a Waters 2489 variable-

wavelength absorbance detector. The column used was a Chiralpak AD-H (4.6 x 150 

mm), Daicel, Japan, packed with amylose tris (3,5-dimethylphenylcarbamate) coated on 

5 μm silica gel. The mobile phase used for the analysis and separation, was n-

hexane/EtOH/diethylamine (DEA, 85:15:0.2), with a flow rate of 0.8 ml/min. 
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10.5  Dragendorff’s Reagent 

 

 Solution A: 0.85 g of bismuth nitrate was dissolved in a mixture of 10 ml glacial 

acetic acid and 40 ml of distilled water. 

 

Solution B: 8 g of potassium iodide was dissolved into 20 ml of distilled water.  

 

 A stock solution was prepared by mixing equal volumes of solutions A and B. 

Dragendorff’s reagent was prepared by mixing 1 ml of stock solution with 2 ml of 

glacial acetic acid and 10 ml of distilled water. Orange spots on the developed TLC 

plates indicated the presence of alkaloids.  
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10.6 Chapter 2 

 

10.6.1 Isolation and compound data of mersiphyllines A (37) and B (38) 

 

The fractions containing alkaloids 37 and 38 obtained from the initial normal phase 

chromatography of the basic fraction from the leaf extract of K. singapurensis
 
were 

pooled.
28

 This pooled fraction was then further purified by repeated gel permeation 

chromatography (Sephadex G-75, MeOH as mobile phase), to give mersiphylline A (37) 

and mersiphylline B (38). 

 

Mersiphylline A (37): colorless oil and subsequently as colorless block crystals from 

EtOH; mp 184186 

C; []

25
D 59 (c 0.43, CHCl3); UV (EtOH) max (log ) 219 (4.21), 

245 (3.79), and 287 (3.16) nm; IR (dry film) max 3463, 1746, and 1717 cm
1

; For 
1
H 

and 
13

C NMR data, see Table 2.1; EIMS m/z (rel. int.) 486 [M]

 (43), 442 (100), 441 

(88), 427 (37), 409 (29), 381 (48), 355 (22), 327 (20), 295 (15), 260 (10), 204 (26), and 

158 (42); HREIMS m/z [M]
 

486.1629 (calcd for C24H26N2O9, 486.1638). 

 

Crystallographic data of mersiphylline A (37): crystal data and structure refinement 

parameters of 37 are summarized in Table 10.1. 
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Table 10.1. Crystal data and structure refinement parameters of mersiphylline A (37) 

Empirical formula C26H32N2O10 

Molecular formula C24H26N2O9.C2H5OH 

Molecular weight, Mr 532.54 

Melting point 184186 
o
C 

Temperature during diffraction experiment, T 100 K 

X-ray source Mo K 

Crystal system Orthorhombic 

Space group P212121 

a 10.8951(5) Å 

b 14.6956(7) Å 

c 15.0936(7) Å 

α 90.00° 

β 90.00° 

γ 90.00° 

Volume, V 2416.6(2) Å
3
 

No. of molecule per unit cell, Z 4 

Density (calcd) 1.464 mg/mm
3
 

F(000) 1128 

Crystal size 0.30 × 0.15 × 0.10 mm 

2range for data collection 3.86 to 61° 

Index ranges 15 ≤ h ≤ 5, 20 ≤ k ≤ 19, 20 ≤ l ≤ 19 

Reflections collected 13836 

Independent reflections 3969[Rint = 0.0446] 

Data/restraints/parameters 3969/0/348 

Goodness-of-fit on F
2
 1.026 

Final R indexes [I ≥ 2σ (I)] R1 = 0.0426, wR2 = 0.0931 

Final R indexes [all data] R1 = 0.0556, wR2 = 0.0988 

Largest diff. peak/hole / e Å
3

 0.347/0.262 
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Mersiphylline B (38): colorless oil; []
25

D –58 (c 0.04, CHCl3); UV (EtOH) max (log 

) 212 (3.84), 245 (3.22), and 287 (2.90) nm; IR (dry film) max 3427, 1744, and 1711 

cm
–1

; For 
1
H and 

13
C NMR data, see Table 2.1; EIMS m/z (rel. int.) 472 [M]

+
 (73), 441 

(18), 428 [M – CO2]

 (100), 427 [M – CO2H]

+
 (91), 413 (98), 395 (18), 381 (59), 367 

(55), 351 (13), 335 (23), and 299 (21); HREIMS m/z 472.1836 [M]
 

(calcd for 

C24H28N2O8, 472.1846). 

 

10.6.2 Esterification of mersiphylline A (38) 

 

To a solution of 38 (11 mg, 0.023 mmol) in anhydrous benzene (4 ml) was added 113 l 

of TMS-diazomethane (0.22 mmol, 2 M in hexanes). The solution was stirred at rt for 

12 h and concentrated in vacuo. The crude mixture was purified via passage through a 

short pad of silica gel. The 
1
H NMR spectrum of the crude product showed the absence 

of the characteristic deshielded COOH peak at ca. H 16 ppm, indicating that the 

esterification reaction was complete.  

 

10.6.3 Formation of the alkaloid-borane complex 40 

 

BH3-THF (28 l, 1 M in THF) was added to 40 (7 mg, 0.0014 mmol) in THF at 0 

C 

and the mixture was stirred for 5 h, after which a further 28 l (1 M in THF) BH3.THF 

solution was added, and the mixture stirred for another 1 h at 0 

C. Removal of the 

solvent in vacuo, followed by centrifugal preparative TLC (SiO2, 5% MeOH:Et2O) gave 

40 (6 mg, 84%; direct workup without H2O or MeOH quenching gave the best yield of 

40) as a colorless oil: []
25

D –58 (c 0.04, CHCl3); UV (EtOH) max (log ) 219 (4.78), 

243 (4.24), and 289 (3.67) nm; IR (dry film) max 3480 (OH), 2432, 2376, and 2285 

(BH2), 1748 (C=O,  ester), 1704 (C=O, carbamate), and 1694 (C=O, borane ester) cm
–1

; 
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For 
1
H and 

13
C NMR data, see Table 2.1; EIMS m/z (rel. int.) 498 [M]

+
 (35), 496 (16), 

441 (100), 409 (33), 381 (49), 323 (25), 204 (18), 158 (26), and 44 (63); HREIMS m/z 

498.1780 [M]
+
 (calcd for C24H27N2O9

11
B, 498.1804), m/z 496.1754 [M  H]


 (calcd for 

C24H26N2O9
10

B, 496.1762). 
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10.7 Chapter 3 

 

10.7.1 Compound data of lirofolines A (44) and B (45) 

 

Lirofoline A (44): colorless oil; []
25

D 41 (c 1.36, CHCl3); UV (EtOH) max (log ) 

216 (4.29), 258 (4.08), 280 (3.94), and 309 (3.96) nm; IR (dry film) max 1651 (C=O) 

cm
1

; For 
1
H and 

13
C NMR data, see Table 3.1; EIMS m/z (rel int) 324 [M]


 (100), 295 

[M CHO or M  CH2CH3]

 (20), 280 (56), 267 (10), 253 (20), 248 (19), 224 (9), 135 

(37), and 122 (13); HREIMS found m/z 324.1837 [M]

 (calcd for C20H24N2O2, 

324.1838). 

 

Lirofoline B (45): colorless oil; []
25

D 17 (c 0.08, CHCl3); UV (EtOH) max (log ) 

218 (4.31), 256 (4.09), 278 (3.92), and 308 (3.95) nm; IR (dry film) max 3407 (OH) and 

1651 (C=O) cm
1

; For
 1

H and 
13

C NMR data, see Table 3.1; FABMS m/z 355 [M  H]

; 

HRFABMS found m/z 355.2018 [M  H]
 

(calcd for C21H26N2O3  H, 355.2022). 

 

10.7.2 Compound data of ibogaine (46) 

  

The starting material for the transformation, ibogaine (46) was obtained from T. 

corymbosa and T. divaricata from previous alkaloid studies.
39,42 

 

Ibogaine (46): light yellowish oil; []
25

D 53 (c 0.10, CHCl3); UV (EtOH) max (log ) 

229 (4.48), 287 (4.24), and 296 (4.26) nm; IR (dry film) max 3402 cm
1

; For 
1
H NMR 

and 
13

C NMR data, see Table 3.2; ESIMS m/z 311 [M H]

 (C20H26N2O  H). 
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10.7.3 Oxidation of ibogaine (46) to ibogaine N-oxide (50) 

 

To a solution of 46 (50 mg, 0.18 mmol) in CH2Cl2 (10 ml) was added m-CPBA (37 mg, 

0.22 mmol), and the mixture was stirred for 30 min at 0 
o
C. The mixture was quenched 

with 1 M Na2CO3 (10 ml), extracted with CH2Cl2 (3 x 20 ml), and the combined CH2Cl2 

extracts were then washed with water, dried (Na2SO4), the solvent evaporated, and the 

residue purified by centrifugal preparative TLC (SiO2, 25% MeOH:CHCl3, NH3-

saturated) to give ibogaine N-oxide (50) (44 mg, 83%) as light yellowish oil; []
25

D  

(c 0.16, CHCl3); UV (EtOH) max (log ) 210 (4.00), 224 (3.98), 280 (3.58),  297 (3.50), 

and 307 (3.32) nm; IR (dry film) max 3149 cm
1

, For 
1
H and 

13
C NMR data, see Table 

3.2; ESIMS m/z 327 [M  H]

; HRESIMS m/z 327.2080 [M  H]


 (calcd for 

C20H26N2O2  H, 327.2073). 

 

10.7.4 Formation of alcohol 51 via Polonovski transformation 

 

To a stirred solution of 50 (12 mg, 0.037 mmol) in 50 ml of CH2Cl2, was added acetic 

anhydride at 10
 o

C. After stirring for 15 min, the mixture was quenched with 10% 

NaOH (15 ml) and extracted with CH2Cl2 (3 x 20 ml). The combined organic phase was 

dried (Na2SO4), the solvent evaporated, and the residue was purified with a short pad of 

silica gel, eluting with CH2Cl2 to give alcohol 51 (8.2 mg, 70%). Only 
1
H NMR and 

ESIMS were carried out on the alcohol, due to instability of 51. Alcohol 51: light 

yellowish oil; 
1
H NMR (400 MHz, CDCl3) 7.10 (1H, d, J = 8.9 Hz), 7.09 (1H, d, J = 

2.3 Hz), 6.80 (1H, dd, J = 8.9, 2.3 Hz), 4.88 (1H, d, J = 11.4), 4.78 (1H, d, J = 11.4 Hz), 

3.86 (3H, s), 3.94 (2H, s), 3.19 (1H, dt, J = 10, 3 Hz), 3.15 (1H, br dt, J = 12, 2.2 Hz), 

2.79 (1H, dt, J = 10, 2 Hz), 2.74 (1H, br s), 2.07 (1H, br t, J = 12 Hz), 1.86 (1H, m), 

1.76 (1H, m), 1.69 (1H, m), 1.58 (2H, m), 1.56 (1H, m), 1.52 (1H, m), 0.94 (3H, t, J = 
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7.3 Hz). ESIMS m/z 327 [M  H]

; HRESIMS m/z [M  H]


 327.2077 (calcd for 

C20H26N2O2  H, 327.2067). 

 

10.7.5 Attempted oxidation of alcohol 51 to lirofoline A (44) via Dess-Martin 

periodinane (DMP) oxidation 

 

A solution of the alcohol 51 (5 mg, 0.015 mmol) in CH2Cl2 (4 ml) was treated with 

DMP reagent (50 l, 0.3 M in CH2Cl2) at rt. TLC of the reaction mixture showed no 

definitive products, although the starting material had been consumed.  

 

10.7.6 Oxidation of alcohol 51 to lirofoline A via Ley oxidation 

 

To a stirred suspension of the alcohol 51 (7 mg, 2.65 mmol), 4-methylmorpholine-N-

oxide (542 mg, 46.3 mmol), and 4 Å molecular sieves (1.54 g, 500 mg/mmol) in 

CH2Cl2:MeCN 1:1 (5 ml) was added tetrapropylammonium perruthenate (TPAP, 54 

mg, 0.154 mmol). The mixture was stirred for 20 h at rt, filtered through a pad of Celite, 

the solvent removed in vacuo, and the residue was purified by centrifugal preparative 

TLC (SiO2, Et2O, NH3-saturated) to give lirofoline A (44) (2.1 mg, 30% yield). The 

spectroscopic (
1
H and 

13
C NMR, IR, UV) and other data ([D and Rf of TLC in 

different solvent systems) of semisynthetic lirofoline A (44) were indistinguishable 

from those of the natural lirofoline A (44).
39 
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10.8 Chapter 4 

 

10.8.1 Isolation and compound data of leuconolam (54) 

 

The fractions containing leuconolam (54), obtained from initial normal phase 

chromatography of the basic fraction from the stem-bark extract of L. griffithii, were 

pooled. This pooled fraction was then further purified by repeated normal phase 

chromatography, to give leuconolam (54). 

 

Leuconolam (54): colorless block crystals from MeOH; mp 178180 
o
C [lit

49
 263264 

o
C]; []

25
D 303 (c 0.75, CHCl3) [lit

49
 []D  28.3 (c 0.7 CHCl3)]; UV (EtOH) max (log 

) 205 (4.00), 220 (3.22), and 292 (3.96) nm; IR (dry film) max 3263, 1683, and 1650 

cm
1

; For 
1
H and 

13
C NMR data, see Tables 4.4 and 4.5, respectively; ESIMS m/z 327 

[M  H]

 (C19H22N2O3  H). 

 

Crystallographic data of alkaloid 54: crystal data and structure refinement parameters of 

54 are summarized in Table 10.2. 
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Table 10.2. Crystal data and structure refinement parameters of leuconolam (54) 

Empirical formula C20H26N2O4  

Molecular formula C19H22N2O3.CH3OH 

Molecular weight, Mr 358.43 

Melting point 178180 
o
C 

Temperature during diffraction experiment, T 100 K 

X-ray source Mo K 

Crystal system Orthorhombic 

Space group P212121 

a 8.1821(6) Å 

b 10.9066(8) Å 

c 19.9093(15) Å 

α 90.00°  

β 90.00°  

γ 90.00° 

Volume, V 1776.7(2) Å
3
 

No. of molecule per unit cell, Z 4  

Density (calcd) 1.340 mg/mm
3
 

Crystal size 0.43 × 0.32 × 0.25 mm 

2range for data collection 4.1 to 61.78°  

Index ranges 7 ≤ h ≤ 11, 11 ≤ k ≤ 12, 27 ≤ l ≤ 27  

Reflections collected 4213  

Independent reflections 2363[Rint = 0.0529]  

Data/restraints/parameters 2363/0/243  

Goodness-of-fit on F
2
 1.001  

Final R indexes [I ≥ 2σ (I)] R1 = 0.0389, wR2 = 0.0961  

Final R indexes [all data] R1 = 0.0433, wR2 = 0.0991  

Largest diff. peak/hole / e Å
3

 0.29/0.24  
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10.8.2 Reaction of leuconolam (54) with NaHMDS 

 

 

To a stirred solution of 54 (11.1 mg, 0.034 mmol) in THF (5 ml) was added dropwise 

NaHMDS (34 l, 1 M) and the mixture was stirred at 0 
o
C. TLC analysis of the mixture 

over a period of 15 h showed only the presence of starting material. 

 

10.8.3 Reaction of leuconolam (54) with NaOMe 

 

To a solution of 54 (18 mg, 0.055 mmol) in MeOH (3 ml) was added a freshly prepared 

solution of Na (2.8 mg, 0.121 mmol) in 1 ml MeOH at 0 

C. TLC of the reaction 

mixture (in a period of 16 h) showed only the presence of 54. 

 

10.8.4 Reaction of leuconolam (54) with KOH/MeOH/EtOH 

 

 

Leuconolam (54) (50 mg, 0.15 mmol) was dissolved in methanolic ethanol (9:1, 50 ml). 

Two pellets of KOH were then added and the solution was stirred at rt for 6 h, quenched 

with 5% HCl (20 ml), and basified with 10% NaHCO3 (30 ml). The mixture was then 

extracted with CH2Cl2 (4 x 100 ml), washed with water, dried (Na2SO4), concentrated in 

vacuo, and the residue purified by centrifugal preparative TLC (SiO2, 10% MeOHEt2O, 

NH3-saturated) to give 74 (6 mg, 12%) and 76 (1.5 mg, 3%) and recovered 54 (10 mg, 

20%).  

 

Compound 74: colorless oil and subsequently as colorless block crystals from 

CCl4/MeOH; mp 266268 
o
C [lit

49
 175177 

o
C]; []

25
D 198 (c 0.06, CHCl3) [lit

49
 []D 

14.3 (c 0.35, CHCl3)]; UV (EtOH) max (log ) 210  (4.50), 253 (4.01), and 287 (3.38) 

nm; IR (dry film) max 3226 and 1667 cm
1

; For 
1
H and 

13
C NMR data, see Table  4.1; 



287 

 

ESIMS m/z 327 [M  H]

; HRESIMS m/z 327.1712 [M  H]


 (calcd for C19H22N2O3  

H, 327.1703). 

 

Crystallographic data of compound 74: crystal data and structure refinement parameters 

of 74 are summarized in Table 10.3.  

 

Table 10.3. Crystal data and structure refinement parameters of compound 74 

Empirical formula C19H22N2O3 

Molecular formula C19H22N2O3 

Molecular weight, Mr 326.39 

Melting point 266 
o
C 

Temperature during diffraction experiment, T 100 K 

X-ray source Mo K 

Crystal system Triclinic  

Space group P1  

a 10.1848(2) Å  

b 10.3617(2) Å  

c 10.3845(2) Å  

α 71.7420(10)°  

β 67.3790(10)°  

γ 60.6480(10)°  

Volume, V 871.06(3) Å
3 

No. of molecule per unit cell, Z 2  

Density (calcd) 1.244 mg/mm
3
 

F(000) 348.0  

Crystal size 0.62 × 0.21 × 0.10 mm 

2range for data collection 4.3 to 55°  

Index ranges 13 ≤ h ≤ 13, 13 ≤ k ≤ 13, 13 ≤ l ≤ 13  

Reflections collected 8035  

Independent reflections 3993[Rint = 0.0509]  

Data/restraints/parameters 3993/3/488  

Goodness-of-fit on F
2
 1.020  

Final R indexes [I ≥ 2σ (I)] R1 = 0.0486, wR2 = 0.1257  

Final R indexes [all data] R1 = 0.0531, wR2 = 0.1287  

Largest diff. peak/hole / e Å
3

 1.27/0.27  



288 

 

Compound 76: colorless oil and subsequently as colorless block crystals from MeOH: 

mp 250252 
o
C; []

25
D = 150 (c 0.01, CHCl3); UV (EtOH) max (log ) 210  (4.46), 

251 (4.22), and 306 (3.00) nm; IR (dry film) max 3322, 1712, and 1681 cm
1

; For 
1
H 

and 
13

C NMR data, see Table 4.1; ESIMS m/z 327 [M  H]

; HRESIMS m/z 327.1710 

[M  H]

 (calcd for C19H22N2O3

 
 H, 327.1703). 

 

Crystallographic data of 76: crystal data and structure refinement parameters of 76 are 

summarized in Table 10.4. 

 

Table 10.4. Crystal data and structure refinement parameters of compound 76 

Empirical formula C19H22N2O3 

Molecular formula C19H22N2O3 

Molecular weight, Mr 326.39 

Melting point 250 
o
C 

Temperature during diffraction experiment, T 100 K 

X-ray source Mo K 

Crystal system Orthorhombic  

Space group P212121  

a 9.6652(5) Å 

b 16.1799(9) Å  

c 21.1959(11) Å  

 90.00°  

 90.00°  

 90.00°  

Volume, V 3314.7(3) Å
3 

No. of molecule per unit cell, Z 8  

Density (calcd) 1.308 mg/mm
3
 

F(000) 1392.0  

Crystal size 0.31 × 0.27 × 0.15 mm 

2range for data collection 3.16 to 61.26°  

Index ranges 13 ≤ h ≤ 13, 23 ≤ k ≤ 22, 29 ≤ l ≤ 30  

Reflections collected 36904  

Independent reflections 5465[Rint = 0.0352]  

Data/restraints/parameters 5465/0/445  

Goodness-of-fit on F
2
 1.013  

Final R indexes [I ≥ 2σ (I)] R1 = 0.0356, wR2 = 0.0877  

Final R indexes [all data] R1 = 0.0409, wR2 = 0.0905  

Largest diff. peak/hole / e Å
3

 0.33/0.20  
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10.8.5 Reaction of leuconolam (54) with 5% HCl  

  

To a stirred solution of 5% HCl (5 ml) was added 54 (11 mg, 0.034 mmol). The mixture 

was stirred for 12 h at rt. The mixture was quenched with 10% Na2CO3 (10 ml), 

extracted with CH2Cl2 (3 x 10 ml), washed with water (3 x 20 ml), dried (Na2SO4), and 

concentrated in vacuo. TLC of the residue showed only the presence of 54 (8.9 mg, 81% 

recovery).    

 

10.8.6 Reaction of leuconolam (54) with 5% HCl/CH2Cl2 in the presence of 

tetraethylammonium chloride (TEACl) 

 

Leuconolam (54) (14.5 mg, 0.044 mmol) was added into a two-phase system 

comprising 5% HCl (5 ml), CH2Cl2 (5 ml), and TEACl (7 mg, 0.044 mmol). The 

mixture was stirred for 12 h at rt, quenched with 10% Na2CO3 (10 ml), and extracted 

with CH2Cl2 (3 x 5 ml). The combined organic extract was then washed with water (3 x 

20 ml), dried (Na2SO4), concentrated in vacuo, and the residue purified by centrifugal 

preparative TLC (SiO2, 5% MeOHEt2O, NH3-saturated) to give 6,7-

dehydroleuconoxine (63) (6.5 mg, 47%), amino lactam-lactone 78 (0.2 mg, 1.4%) and 

recovered 54 (5.1 mg, 35%). 

 

6,7-Dehydroleuconoxine (63): colorless block crystals from CH2Cl2/hexanes; mp 

164168 
o
C; []

25
D  271 (c 0.11, CHCl3); UV (EtOH) max (log ) 203 (4.32), 252 

(4.33), and 350 (3.70) nm; IR (dry film) max 1691, 1649, and 1595 cm
1

; For 
1
H and 

13
C NMR data, see Tables 4.4 and 4.5, respectively; ESIMS m/z 309 [M  H]


; 

HRESIMS m/z 309.1590 [M  H]

 (calcd for C19H20N2O2  H, 309.1598); GC-EIMS 
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m/z (rel int) 308 [M]

 (74), 279 [M  CH2CH3]


 (100), 251 (58), 237 (20), 223 (28), 209 

(15), 184 (10), 171 (18), 156 (32), 142 (8), and 129 (18). 

 

Crystallographic data of 63: crystal data and structure refinement parameters of 63 are 

summarized in Table 10.5. 

 

Table 10.5. Crystal data and structure refinement parameters of 6,7-

dehydroleuconoxine (63) 

Empirical formula C19H20N2O2 

Molecular formula C19H20N2O2 

Molecular weight, Mr 308.38 

Melting point 164168 
o
C 

Temperature during diffraction experiment, T 100 K 

X-ray source Mo K 

Crystal system Orthorhombic  

Space group P212121  

a 8.8855(4) Å 

b 11.3940(5) Å 

c 14.8635(7) Å 

 90°  

 90°  

 90° 

Volume, V 1504.80(12) Å
3
  

No. of molecule per unit cell, Z 4  

Density (calcd) 1.3611 mg/mm
3
 

F(000) 656.3  

Crystal size 0.48 × 0.34 × 0.26 mm 

2range for data collection 4.5 to 61.2°  

Index ranges 0 ≤ h ≤ 12, 0 ≤ k ≤ 15, 0 ≤ l ≤ 21  

Reflections collected 2554  

Independent reflections 2554[Rint = 0.0000]  

Data/restraints/parameters 2554/0/208  

Goodness-of-fit on F
2
 1.042  

Final R indexes [I ≥ 2σ (I)] R1 = 0.0374, wR2 = 0.0929  

Final R indexes [all data] R1 = 0.0433, wR2 = 0.0968  

Largest diff. peak/hole / e Å
3

 0.29/0.26  
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Amino lactam-lactone 78: yellowish oil and subsequently as yellowish block crystals 

from CH2Cl2/hexanes; mp 179182 
o
C; []

25
D 116 (c 0.52, CHCl3); UV (EtOH) max 

(log ) 212 (4.87), 240 (4.83), and 342 (4.01) nm; IR (dry film) max 3483, 3397, 1743, 

and 1709 cm
1

; For 
1
H and 

13
C NMR data, see Table 4.6; EIMS m/z (rel. int.) 326 [M]


 

(100), 299 (5), 280 (10), 267 (12), 239 (20), 225 (5), 209 (7), and 185 (8); HREIMS m/z 

[M]
 

 326.1629 (calcd for C19H22N2O3, 326.1630). 

 

Crystallographic data of 78: crystal data and structure refinement parameters of 78 are 

summarized in Table 10.6. 

 

Table 10.6. Crystal data and structure refinement parameters of compound 78 

Empirical formula C39H46N4O6Cl2 

Molecular formula 2C19H22N2O3.CH2Cl2 

Molecular weight, Mr 737.70 

Melting point 179182  
o
C 

Temperature during diffraction experiment, T 100 K 

X-ray source Mo K 

Crystal system Monoclinic  

Space group P21  

a 8.00860(10) Å 

b 14.9302(3) Å 

c 15.3044(3) Å 

α 90.00°  

β 94.6480(10)°  

γ 90.00°  

Volume, V 1823.93(6) Å
3
 

No. of molecule per unit cell, Z 2  

Density (calcd) 1.447 mg/mm
3
 

Crystal size 0.63 × 0.17 × 0.04 mm  

2range for data collection 3.64 to 61.02°  

Index ranges 11 ≤ h ≤ 10, 20 ≤ k ≤ 21, 21 ≤ l ≤ 22  

Reflections collected 19605 

Independent reflections 10151[Rint = 0.0318]  

Data/restraints/parameters 10151/0/462 

Goodness-of-fit on F
2
 0.958  

Final R indexes [I ≥ 2σ (I)] R1 = 0.0460, wR2 = 0.0998 

Final R indexes [all data] R1 = 0.0724, wR2 = 0.1134 

Largest diff. peak/hole / e Å
3

 0.37/0.41  

Flack parameter, x 0.06(0.06) 

Hooft parameter, y 0.02(0.03) 
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10.8.7 Reaction of leuconolam (54) with concentrated HCl in MeOH 

 

Leuconolam (54) (12.9 mg, 0.040 mmol) was dissolved in a minimal amount of MeOH 

(ca. 0.1 ml). Concentrated HCl was then added dropwise (2 drops). The mixture was 

stirred for 16 h at rt, quenched with 10% Na2CO3 (10 ml), and extracted with CH2Cl2 (3 

x 5 ml). The combined organic extract was then washed with water (3 x 20 ml), dried 

(Na2SO4), concentrated in vacuo, and the residue purified by centrifugal preparative 

TLC (SiO2, 5% MeOHEt2O, NH3-saturated) to give O-methylleuconolam (77) (8.6 mg, 

63%) and recovered 73 (0.5 mg, 4%).   

 

O-Methylleuconolam (77): colorless oil and subsequently as colorless block crystals 

from MeOH; mp 214218 
o
C [lit

49
 155156 

o
C]; []

25
D 240 (c 0.6, CHCl3); UV 

(EtOH) max (log ) 238 (3.99) and 348 (3.03) nm; IR (dry film) max 3477 and 1693 

cm
1

; For 
1
H and 

13
C NMR data, see Table 4.3; ESIMS m/z 341 [M  H]

 
(C20H24N2O3 

 H). 

 

10.8.8 Reaction of leuconolam (54) with 10-camphorsulfonic acid (CSA) in 

anhydrous CH2Cl2 

 

To a stirred solution of CSA (15 mg, 0.066 mmol) and CH2Cl2 (5 ml) was added 

leuconolam (54) (14.3 mg, 0.044 mmol). The mixture was stirred for 12 h at rt, 

quenched with 10% K2CO3 (10 ml), and extracted with CH2Cl2 (3 x 5 ml). The 

combined organic extract was then washed with water (3 x 10 ml), dried (Na2SO4), 

concentrated in vacuo, and the residue purified by centrifugal preparative TLC (SiO2, 

5% MeOHEt2O, NH3-saturated) to give 6,7-dehydroleuconoxine (63) (8.2 mg, 62%), 

amino lactam-lactone 78 (0.1 mg, 2%) and recovered 54 (1.4 mg, 10%). 
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10.8.9 Reaction of leuconolam (54) with CSA in anhydrous CH2Cl2/MeOH 

 

To a stirred solution of CSA (13.2 mg, 0.057 mmol) and CH2Cl2 (5 ml) was added 

leuconolam (54) (11.8 mg, 0.038 mmol). The mixture was stirred for 30 min and MeOH 

(6 l, 0.152 mmol) then was added. The mixture was stirred for another 11 h at rt, 

quenched with 10% K2CO3 (10 ml), and extracted with CH2Cl2 (5 x 10 ml). The 

combined organic extract was then washed with water (3 x 10 ml), dried (Na2SO4), 

concentrated in vacuo, and the residue purified by centrifugal preparative TLC (SiO2, 

5% MeOHEt2O, NH3-saturated) to give O-methylleuconolam (77) (6.6 mg, 54%) and 

6,7-dehydroleuconoxine (63) (2.2 mg, 19%). 

 

10.8.10 Reaction of leuconolam (54) with CSA in anhydrous MeOH 

 

To a stirred solution of CSA (11.8 mg, 0.051 mmol) and MeOH (5 ml) was added 

leuconolam (54) (11 mg, 0.034 mmol). The mixture was stirred for 12 h at rt, quenched 

with 10% K2CO3 (10 ml), and extracted with CH2Cl2 (5 x 10 ml). The combined 

organic extract was then washed with water (3 x 10 ml), dried (Na2SO4), concentrated in 

vacuo, and the residue purified by centrifugal preparative TLC (SiO2, 5% MeOHEt2O, 

NH3-saturated) to give O-methylleuconolam (77) (10.9 mg, 94%), amino lactam-lactone 

78 (0.1 mg, 2%) and recovered 54 (0.4 mg, 4%). 

 

10.8.11 Reaction of leuconolam (54) with p-toluenesulfonic acid (PTSA) in 

anhydrous MeOH 

 

To a stirred solultion of PTSA (9.5 mg, 0.056 mmol) and MeOH (5 ml) was added 

leuconolam (54) (12 mg, 0.037 mmol). The mixture was stirred for 12 h at rt, quenched 
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with 10% K2CO3 (10 ml) and extracted with CH2Cl2 (5 x 10 ml). The combined organic 

extract was then washed with water (3 x 10 ml), dried (Na2SO4), concentrated in vacuo, 

and the residue purified by centrifugal preparative TLC (SiO2, 5% MeOHEt2O, NH3-

saturated) to give O-methylleuconolam (77) (11.8 mg, 94%), amino lactam-lactone 78 

(0.1 mg, 0.8%), and recovered 54 (0.4 mg, 4%). 

 

10.8.12 Reaction of leuconolam (54) with PTSA in anhydrous CH2Cl2 

 

To a stirred solution of PTSA (8.6 mg, 0.05 mmol) and CH2Cl2 (5 ml) was added 

leuconolam (54) (11.7 mg, 0.036 mmol). The mixture was stirred for 15 h at rt, 

quenched with 10% Na2CO3 (10 ml), and extracted with CH2Cl2 (3 x 5 ml). The 

combined organic extract was then washed with water (3 x 10 ml), dried (Na2SO4), 

concentrated in vacuo, and the residue purified by centrifugal preparative TLC (SiO2, 

Et2O, NH3-saturated) to give 6,7-dehydroleuconoxine (63) (0.6 mg, 5%), amino lactam-

lactone 78 (5 mg, 42%) and recovered 54 (0.4 mg, 3%). 

 

10.8.13 Reaction of 6,7-dehydroleuconoxine (63) with 5% HCl/CH2Cl2 in the 

presence of TEACl 

 

6,7-Dehydroleuconoxine (63) (19.5 mg, 0.063 mmol) was added into a two-phase 

system comprising 5% HCl (5 ml), CH2Cl2 (5 ml), and TEACl (10 mg, 0.063 mmol). 

The mixture was stirred for 12 h at rt, quenched with 10% Na2CO3 (10 ml), and 

extracted with CH2Cl2 (3 x 5 ml). The combined organic extract was then washed with 

water (3 x 20 ml), dried (Na2SO4), concentrated in vacuo, and the residue purified by 

centrifugal preparative TLC (SiO2, 5% MeOHEt2O, NH3-saturated) to give leuconolam 

(54) (2.9 mg, 15%) and recovered 6,7-dehydroleuconoxine (63) (16.3 mg, 84%). 
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10.8.14 Reaction of 6,7-dehydroleuconoxine (63) with CSA in anhydrous CH2Cl2 

 

To a stirred solution of CSA (11.8 mg, 0.051 mmol) and CH2Cl2 (5 ml) was added 6,7-

dehydroleuconoxine (63) (11 mg, 0.034 mmol). TLC of the reaction mixture after 15 h 

showed traces of leuconolam (54) and amino lactam-lactone 78, in addition to the 

starting material 63. 

 

10.8.15 Reaction of 6,7-dehydroleuconoxine (63) with PTSA in anhydrous CH2Cl2 

 

To a stirred solution of PTSA (9.2 mg, 0.054 mmol) and CH2Cl2 (5 ml) was added 6,7-

dehydroleuconoxine (63) (10.3 mg, 0.036 mmol). The mixture was stirred for 10 h at rt, 

quenched with 10% Na2CO3 (10 ml), and extracted with CH2Cl2 (3 x 5 ml). The 

combined organic extract was then washed with water (3 x 10 ml), dried (Na2SO4), 

concentrated in vacuo, and the residue purified by centrifugal preparative TLC (SiO2, 

Et2O, NH3-saturated) to give amino lactam-lactone 78 (7.1 mg, 70%) and recovered 63 

(0.3 mg, 1%). 

 

10.8.16 Reaction of O-methylleuconolam (77) with PTSA in anhydrous CH2Cl2 

 

To a stirred solution of PTSA (8 mg, 0.044 mmol) and CH2Cl2 (5 ml) was added O-

methylleuconolam (77) (10 mg, 0.029 mmol). TLC of the mixture after 10 h showed 

traces of leuconolam (54) and amino lactam-lactone (78), in addition to the starting 

material 77. 
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10.8.17 Hydrogenation of 6,7-dehydroleuconoxine (63) 

 

6,7-Dehydroleuconoxine (63) (20 mg, 0.061 mmol) was dissolved in CH2Cl2 (5 ml) and 

then stirred over 10% Pd/C (12.4 mg) under a hydrogen atmosphere (hydrogen balloon) 

at rt for 1 h. The catalyst was removed by filtration over Celite. Evaporation of the 

solvent in vacuo, followed by chromatography of the resulting residue (SiO2, 5% 

MeOHEt2O, NH3-saturated) gave leuconoxine (56) (18.1 mg, 90%) as a colorless oil 

and subsequently as colorless block crystals from MeOH; mp 210215 
o
C (lit

50
 238242 

o
C); []

25
D 86 (c 0.68, CHCl3) [lit

50
 []

25
D 88 (c 1.2, MeOH)]; UV (EtOH) max (log 

) 202 (4.42), 240 (3.82), and 270 (3.16) nm; IR (dry film) max 1743 and 1709 cm
1

; 

For 
1
H and 

13
C NMR data, see Table 4.8; ESIMS m/z 311 [M  H]


(C19H22N2O2  H). 

 

10.8.18 Bromination of leuconolam (54) 

 

Leuconolam (54) (11 mg, 0.034 mmol) was dissolved in CHCl3 (4 ml), and Br2 (2.6 l, 

0.051 mmol) was added dropwise at rt. After being stirred for 14 h, the mixture was 

quenched with 10% Na2CO3 (10 ml), extracted with CHCl3 (3 x 5 ml), washed with 

water, dried (Na2SO4), the solvent removed in vacuo, and the residue purified by 

centrifugal preparative TLC (SiO2, 5% MeOH:CHCl3, NH3-saturated) to give 6,7-

dibromoleuconoxine (82) (13.7 mg, 86%) as white amorphous; mp 98102 
o
C (lit

49
 mp 

109110 
o
C); []

25
D 38 (c 0.62, CHCl3) [lit

49
 []

25
D 32 (c 0.5, CHCl3)]; UV (EtOH) 

max (log ) 208 (4.32), 227 (4.22), and 292 (3.35) nm; IR (dry film) max 1709 and 1691 

cm
1

; For 
1
H and 

13
C NMR data, see Table 4.9; ESIMS m/z 467 [M  H]


; HRESIMS 

m/z 466.9965 [M  H]

 (calcd for C19H20N2O2

79
Br2  H, 466.9964). 
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10.8.19 Bromination of 6,7-dehydroleuconoxine (63) 

 

6,7-Dehydroleuconoxine (63)  (7 mg, 0.021 mmol) was dissolved in CHCl3 (4 ml), and 

Br2 (1.2 l, 0.032 mmol) was added dropwise at rt, and the mixture stirred for 13 h. The 

mixture was quenched with 10% Na2CO3 (10 ml), extracted with CHCl3 (3 x 5 ml), 

washed with water, dried (Na2SO4), the solvent removed in vacuo, and the residue 

purified by centrifugal preparative TLC (SiO2, 5% MeOH:CHCl3, NH3-saturated) to 

give 6,7-dibromoleuconoxine (82) (9.6 mg, 96%). 

 

10.8.20 Debromination of 6,7-dibromoleuconoxine (82) 

 

To a solution of 6,7-dibromoleuconoxine (82) (13 mg, 0.028 mmol) in AcOH (5 ml) 

was added freshly activated zinc (91 mg, 0.139 mmol). The mixture was stirred for 2 h, 

after which the mixture was poured into saturated Na2CO3 (30 ml), extracted with 

CH2Cl2 (3 x 20 ml), washed with water (3 x 20 ml), dried (Na2SO4), the solvent 

removed in vacuo, and the residue purified by centrifugal preparative TLC (SiO2, 5% 

MeOH:CHCl3, NH3-saturated) to give 6,7-dehydroleuconoxine (63) (3.7 mg, 41%). 

 

 

10.8.21 Reaction of 6,7-dehydroleuconoxine (63) with BH3.SMe2 

 

BH3.SMe2 (75 l, 1 M in THF) was added to 6,7-dehydroleuconoxine (63)  (16 mg, 

0.051 mmol) in THF (5 ml) and the mixture was stirred for 24 h at rt. The progress of 

the reaction was monitored by TLC and the reaction was quenched with NH4Cl solution 

when >95% of the starting material had been consumed. The mixture was extracted 

with CH2Cl2 (3 x 10 ml), washed with water (3 x 20 ml), dried over Na2SO4, filtered, 

the solvent removed in vacuo, and the residue purified by centrifugal preparative TLC 
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(SiO2, 5% MeOH:CHCl3, NH3-saturated) to give compounds 86 (5.6 mg, 37%) and 87 

(1 mg, 6%). 

 

Compound 86: yellowish oil and subsequently as yellowish needles from MeOH; mp 

128132 
o
C; []

25
D = +584 (c 0.35, CHCl3); UV (EtOH) max (log ) 209 (3.65), 246 

(3.86), and 388 (3.02) nm; IR (dry film) max 1682 and 1641 cm
1

; For 
1
H and 

13
C NMR 

data, see Table 4.10; ESIMS m/z 295 [M  H]

; HRESIMS m/z [M  H]

 
295.1792 

(calcd for C19H22N2O  H, 295.1805). 

 

Crystallographic data of compound 86: crystal data and structure refinement parameters 

of 86 are summarized in Table 10.7. 
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Table 10.7. Crystal data and structure refinement parameters of compound 86 

Empirical formula C19H22N2O 

Molecular formula C19H22N2O 

Molecular weight, Mr 294.39 

Melting point 128132 
o
C 

Temperature during diffraction experiment, T 100 K 

X-ray source Mo K 

Crystal system Orthorhombic 

Space group P212121 

a 11.2107(6) Å 

b 11.5443(6) Å  

c 12.1199(7) Å 

α 90.00°  

β 90.00°  

γ 90.00°  

Volume, V 1568.55(15) Å
3
  

No. of molecule per unit cell, Z 4  

Density (calcd) 1.247 mg/mm
3
 

F(000) 632.0  

Crystal size 0.90 × 0.60 × 0.02 mm 

2range for data collection 4.88 to 55°  

Index ranges 14 ≤ h ≤ 14, 15 ≤ k ≤ 15, 15 ≤ l ≤ 14  

Reflections collected 14949  

Independent reflections 2057[Rint = 0.0271]  

Data/restraints/parameters 2057/0/200  

Goodness-of-fit on F
2
 1.029  

Final R indexes [I ≥ 2σ (I)] R1 = 0.0379, wR2 = 0.0921  

Final R indexes [all data] R1 = 0.0478, wR2 = 0.0985  

Largest diff. peak/hole / e Å
3

 0.14/0.11  
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Compound 87: fluorescent yellowish oil and subsequently as fluorescent yellowish 

rods from CH2Cl2/hexanes; mp 198200 
o
C; []

25
D = 667 (c  0.33, CHCl3); UV 

(EtOH) max (log ) 209 (4.14), 245 (4.42), and 394 (3.64) nm; IR (dry film) max 3343, 

1666, and 1644 cm
1

; For 
1
H and 

13
C NMR data, see Table 4.10; ESIMS m/z 311 [M 

H]

; HRESIMS m/z [M H]

 
311.1750 (calcd for C19H22N2O2  H, 311.1754). 

 

Crystallographic data of compound 87: crystal data and structure refinement parameters 

of compound 87 are summarized in Table 10.8. 

 

Table 10.8. Crystal data and structure refinement parameters of compound 87 

Empirical formula C19H24N2O2 

Molecular formula C19H24N2O2 

Molecular weight, Mr 312.40 

Melting point 128132 
o
C 

Temperature during diffraction experiment, T 100 K 

X-ray source Mo K 

Crystal system Trigonal  

Space group P31  

a 11.4602(2) Å 

b 11.4602(2) Å 

c 10.0616(2) Å 

α 90.00°  

β 90.00°  

γ 120.00°  

Volume, V 1144.41(4) Å
3
 

No. of molecule per unit cell, Z 3  

Density (calcd) 1.360 mg/mm
3
 

F(000) 504.0  

Crystal size 0.7 × 0.2 × 0.2 mm 

2range for data collection 4.1 to 54.9°  

Index ranges 14 ≤ h ≤ 14, 14 ≤ k ≤ 14, 13 ≤ l ≤ 13  

Reflections collected 8827  

Independent reflections 3344[Rint = 0.0480]  

Data/restraints/parameters 3344/1/210  

Goodness-of-fit on F
2
 1.211  

Final R indexes [I ≥ 2σ (I)] R1 = 0.1315, wR2 = 0.3662  

Final R indexes [all data] R1 = 0.1326, wR2 = 0.3669  

Largest diff. peak/hole / e Å
3

 0.72/0.72  
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10.8.22 Attempted enolate-mediated C-6 oxidation of leuconoxine (56) 

 

A solution of 56 (11 mg, 0.035 mmol) in THF (5 ml) was added to a solution of lithium 

diisopropylamide (LDA, 27 l, 2 M in THF) in THF (10 ml) at 0 

C and the resulting 

mixture was stirred for 30 min. Dry O2 was then bubbled into the solution for 10 min. 

Na2SO3 solution (1 M, 2 ml) was added and the mixture extracted with CH2Cl2 (3 x 10 

ml), dried (Na2SO4), and then concentrated in vacuo. The resulting residue was purified 

by centrifugal preparative TLC (SiO2, 5% MeOHEt2O, NH3-saturated) to afford 

compound 90 (2.4 mg, 21%) and recovered 56 (7.6 mg, 69%).   

 

Compound 90: colorless oil, and subsequently as colorless needles from 

CH2Cl2/hexanes; mp 184186 
o
C; []

25
D = 29 (c 0.16, CHCl3); UV (EtOH) max (log 

) 210  (4.10), 241 (3.88), and 274 (3.23) nm; IR (dry film) max 3417 and 1675 cm
1

; 

For 
1
H and 

13
C NMR data, see Table 4.11; ESIMS m/z 327 [M  H]


; HRESIMS m/z 

[M  H]


 327.1710 (calcd for C19H22N2O3  H, 327.1703). 

 

Crystallographic data of compound 90: crystal data and structure refinement parameters 

of compound 90 are summarized in Table 10.9. 
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Table 10.9. Crystal data and structure refinement parameters of compound 90 

Empirical formula C19H22N2O3 

Molecular formula C19H22N2O3 

Molecular weight, Mr 326.39 

Melting point 184186 
o
C 

Temperature during diffraction experiment, T 298 K 

X-ray source Mo K 

Crystal system Orthorhombic  

Space group P212121  

a 7.1721(4) Å 

b 26.1619(13) Å  

c 27.9882(15) Å 

α 90.00°  

β 90.00°  

γ 90.00°  

Volume, V 5251.6(5) Å
3
 

No. of molecule per unit cell, Z 12  

Density (calcd) 1.238 mg/mm
3
 

F(000) 2088.0  

Crystal size 0.68 × 0.08 × 0.02 mm 

2range for data collection 4.26 to 41.8°  

Index ranges 0 ≤ h ≤ 7, 0 ≤ k ≤ 26, 0 ≤ l ≤ 28  

Reflections collected 3171  

Independent reflections 3171[Rint = 0.0000]  

Data/restraints/parameters 3171/0/656  

Goodness-of-fit on F
2
 0.920  

Final R indexes [I ≥ 2σ (I)] R1 = 0.0508, wR2 = 0.1153  

Final R indexes [all data] R1 = 0.0769, wR2 = 0.1242  

Largest diff. peak/hole / e Å
3

 0.38/0.21  
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10.8.23 Reaction of leuconolam (54) with trifluoroacetic acid 

 

To a stirred solution of 54 (11 mg, 0.034 mmol) and CH2Cl2 (5 ml) was added TFA (9.5 

l, 0.068 mmol). The mixture was stirred for 13 h at rt, quenched with 10% Na2CO3 (10 

ml), and extracted with CH2Cl2 (3 x 5 ml). The combined organic extract was then 

washed with water (3 x 10 ml), dried (Na2SO4), concentrated in vacuo, and the residue 

purified by centrifugal preparative TLC (SiO2, 5% MeOHEt2O, NH3-saturated) to give 

6,7-dehydroleuconoxine (63) (4.1 mg, 37%) and recovered leuconolam (54) (5.8 mg, 

53%).  

 

10.8.24 Reaction of leuconolam (54) with excess trifluoroacetic acid 

 

To a stirred solution of 54 (13 mg, 0.04 mmol) and CH2Cl2 (5 ml) was added TFA (60 

l, 0.8 mmol). The mixture was stirred for 12 h at rt, quenched with 10% Na2CO3 (10 

ml), and extracted with CH2Cl2 (3 x 5 ml). The combined organic extract was then 

washed with water (3 x 10 ml), dried (Na2SO4), concentrated in vacuo, and the residue 

purified by centrifugal preparative TLC (SiO2, 5% MeOHEt2O, NH3-saturated) to 6,7-

dehydroleuconoxine (63) (3.9 mg, 30%), leuconodine A (67) (3.3 mg, 25%) and 

recovered 54 (1.2 mg, 9%).  

 

Leuconodine A (67): colorless oil and subsequently as colorless block crystals from 

EtOH; mp 13436 
o
C; []

25
D = 19 (c 0.03, CHCl3); UV (EtOH) max (log ) 209 

(4.16), 241 (3.89), and 277 (3.29) nm; IR (dry film) max 3357 and 1676 cm
1

; For 
1
H 

and 
13

C NMR data, see Table 4.12; EIMS m/z (rel. int.) 326 [M]

 (100), 309 (8), 298 

(48), 283 (35), 252 (18), 237 (8), and 212 (17); HREIMS m/z 326.1633  [M]

 (calcd for 

C19H22N2O3, 326.1630).  
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Crystallographic data of alkaloid 67: crystal data and structure refinement parameters of 

alkaloid 67 are summarized in Table 10.10. 

 

Table 10.10. Crystal data and structure refinement parameters of leuconodine A (67) 

Empirical formula C21H28N2O4 

Molecular formula C19H22N2O3.C2H5OH 

Molecular weight, Mr 372.45 

Melting point 134137 
o
C 

Temperature during diffraction experiment, T 100 K 

X-ray source Mo K 

Crystal system Orthorhombic 

Space group P212121 

a 7.3486(4) Å 

b 15.0738(7) Å 

c 16.6740(8) Å 

α 90.00°  

β 90.00°  

γ 90.00°  

Volume, V 1847.00(16) Å
3
  

No. of molecule per unit cell, Z 4  

Density (calcd) 1.339 mg/mm
3
 

F(000) 1128 

Crystal size 0.63 × 0.17 × 0.04 mm  

2range for data collection 3.64 to 61.02°  

Index ranges 10 ≤ h ≤ 10, 21 ≤ k ≤ 21, 22 ≤ l ≤ 22  

Reflections collected 19671  

Independent reflections 3065[Rint = 0.1165]  

Data/restraints/parameters 3065/0/248  

Goodness-of-fit on F
2
 1.066  

Final R indexes [I ≥ 2σ (I)] R1 = 0.0512, wR2 = 0.1044  

Final R indexes [all data] R1 = 0.1133, wR2 = 0.1263  

Largest diff. peak/hole / e Å
3

 0.26/0.28  
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10.8.25 Oxidation of leuconodine A (67) 

 

A solution of 67 (7 mg, 0.021 mmol) in CH2Cl2 (5 ml) was treated with the Dess-Martin 

periodinane reagent (82 l, 0.3 M in CH2Cl2) and the mixture was stirred at rt for 30 

min. Et2O (25 ml) and NaOH (10 ml, 1.3 M) were then added and the mixture was 

stirred for another 15 minutes. The aqueous layer was removed and the organic layer 

was washed with 1.3 M NaOH (2 x 10 ml), dried with Na2SO4, the solvent removed in 

vacuo, and the residue purified by centrifugal preparative TLC (SiO2, 5% MeOH:Et2O, 

NH3-saturated) to give leuconodine F (72) (5.3 mg, 76%) as colorless oil, and 

subsequently as colorless block crystals from MeOH: mp 246250 
o
C; []

25
D = 94 (c 

0.05, CHCl3); UV (EtOH) max (log ) 202 (4.42), 234 (4.12), 251 (4.02) and 349 (3.10) 

nm; IR (dry film) max 1715 and 1689 cm
1

; For 
1
H and 

13
C NMR data, see Table 4.12; 

ESIMS m/z [M  H]
+
 325; HRESIMS m/z 325.1453 [M  H]

+
 (calcd for C19H20N2O3, 

325.1547).  

 

Crystallographic data of alkaloid 72: crystal data and structure refinement parameters of 

alkaloid 72 are summarized in Table 10.11. 
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Table 10.11. Crystal data and structure refinement parameters of leuconodine F (72) 

Empirical formula C19H20N2O3  

Molecular formula C19H20N2O3  

Molecular weight, Mr 324.37 

Melting point 246250 
o
C 

Temperature during diffraction experiment, T 100 K 

X-ray source Mo K 

Crystal system Monoclinic  

Space group P21  

a 9.7373(4) Å  

b 7.3976(3) Å  

c 11.4361(5) Å  

α 90.00°  

β 107.522(2)°  

γ 90.00°  

Volume, V 785.55(6) Å
3 

No. of molecule per unit cell, Z 2  

Density (calcd) 1.371 mg/mm
3
 

F(000) 344.0  

Crystal size 0.64 × 0.09 × 0.03  

2range for data collection 3.74 to 52.82°  

Index ranges 12 ≤ h ≤ 12, 9 ≤ k ≤ 9, 14 ≤ l ≤ 14  

Reflections collected 5507  

Independent reflections 1735[Rint = 0.0332]  

Data/restraints/parameters 1735/1/218  

Goodness-of-fit on F
2
 1.048  

Final R indexes [I ≥ 2σ (I)] R1 = 0.0333, wR2 = 0.0718  

Final R indexes [all data] R1 = 0.0461, wR2 = 0.0761  

Largest diff. peak/hole / e Å
3

 0.20/0.17  
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10.9      Chapter 5 

 

10.9.1     Partial synthesis of alstolucine A (91) 

 

10.9.1.1 Compound data of alstolucines A (91) and B (94) 

 

Alstolucines A (91) and B (94) were isolated from the leaf extract of Alstonia 

spatulata.
74

 

 

Alstolucine A (91): light yellowish oil; []
25

D 438 (c 0.12, CHCl3); UV (EtOH) max 

(log ) 230 (3.32), 298 (3.26), and 328 (3.46) nm; IR (dry film) max 3378, 1742, and 

1683 cm
1

; For 
1
H and 

13
C NMR data, see Table 5.1; ESIMS m/z 413 [M  H]


; 

HRESIMS m/z 413.2074 [M  H]

 (calcd for C23H28N2O5  H, 413.2071). 

 

Alstolucine B (94): colorless block crystals from CHCl3; mp >160 

C dec; []

25
D 515 

(c 1.28, CHCl3); UV (EtOH) max (log ) 232 (3.85), 295 (3.75), and 326 (3.91) nm; IR 

(dry film) max 3361, 1704, and 1678 cm
1

; For 
1
H and 

13
C NMR data, see Table 5.1; 

ESIMS m/z 339 [M  H]

; HRESIMS m/z 339.1714 [M  H]


 (calcd for C20H22N2O3  

H, 339.1703).  

 

Crystallographic data of alkaloid 94: crystal data and structure refinement parameters of 

alkaloid 94 are summarized in Table 10.12. 
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Table 10.12. Crystal data and structure refinement parameters of alstolucine B (94) 

Empirical formula  C20H22N2O3  

Molecular formula C20H22N2O3 

Molecular weight, Mr  338.40  

Melting point  >160 
o
C dec 

Temperature during diffraction experiment, T 100 K 

X-ray source Mo K 

Crystal system  Orthorhombic  

Space group  P212121  

a 7.80370(10) Å 

b 11.7086(2) Å 

c 18.3534(3) Å  

α 90.00°  

β 90.00° 

γ 90.00° 

Volume, V 1676.96(5) Å
3
 

No. of molecule per unit cell, Z  4  

Density (calcd) 1.340 mg/mm
3
  

F(000)  720.0  

Crystal size 0.55 × 0.26 × 0.14 mm 

2  range for data collection  4.12 to 54.98°  

Index ranges 10 ≤ h ≤ 10, 15 ≤ k ≤ 15, 23 ≤ l ≤ 23  

Reflections collected 15918  

Independent reflections 2204 [Rint = 0.0365]  

Data/restraints/parameters  2204/0/228  

Goodness-of-fit on F
2
  1.073  

Final R indexes [I ≥ 2σ (I)]  R1 = 0.0350, wR2 = 0.0917  

Final R indexes [all data]  R1 = 0.0384, wR2 = 0.0941  

Largest diff. peak/hole / e Å
3

  0.30/0.34  
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10.9.1.2 Epimerization of ()-alstolucine B (94) to compound 95  

 

To a solution of the ketone 94 (12 mg, 0.035 mmol) in 1 ml of MeOH was added a 

freshly prepared solution of Na (1.2 mg, 0.053 mmol) in 1 ml MeOH at 0 

C. The 

mixture was allowed to stir at rt for 3 h. The solvent was evaporated in vacuo, and water 

(5 ml) was added. The product was extracted with CH2Cl2 (3 x 10 ml). The combined 

organic extract was dried (Na2SO4), filtered, and concentrated in vacuo, and the residue 

was purified by centrifugal preparative TLC (SiO2, 5% MeOHCHCl3, NH3-saturated) 

to afford the isomerized ketone 95 (4.2 mg, 35%), and recovered 94 (7.6 mg, 63%).  

 

Compound 95: light yellowish oil; []
25

D 371 (c 0.35, CHCl3); UV (EtOH) max (log 

) 229 (3.32), 297 (3.21), and 328 (3.38) nm; IR (dry film) max 3364, 1704, and 1678 

cm
1

; For 
1
H and 

13
C NMR data, see Table 5.2; ESIMS m/z 339 [M  H]


;  HRESIMS 

m/z 339.1710 [M  H]

 (calcd for C20H22N2O3  H, 339.1703).  

 

10.9.1.3 NaBH4 reduction of compound 95 

 

To a mixture of compound 95 (8 mg, 0.024 mmol) in 2 ml of MeOH at 0 
o
C was added 

NaBH4 (1.6 mg, 0.041 mmol). The solution was stirred at rt for 1 h. Saturated NaHCO3 

(5 ml) solution was added, and the product was extracted with CH2Cl2 (3 x 10 ml). The 

combined organic extract was dried (Na2SO4), filtered, and concentrated in vacuo, and 

the residue was purified by centrifugal preparative TLC (SiO2, 10% MeOHEt2O, NH3-

saturated) to afford N(4)-demethylalstogustine (92, 6.8 mg, 85%) and compound 93 (0.8 

mg, 10%).  
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N(4)-Demethylalstogustine (92): light yellowish oil; []
25

D 399 (c 0.33, CHCl3) [lit
76 

[]D 442 (c 0.55, EtOH)]; UV (EtOH) max (log ) 228 (3.88), 298 (3.82), and 329 

(3.98) nm; IR (dry film) max 3373 and 1670 cm
1

; For 
1
H and 

13
C NMR data, see Table 

5.2; ESIMS m/z 341 [M  H]

; HRESIMS m/z 341.1866 [M  H]


 (calcd for 

C20H24N2O3  H, 341.1860).  

 

Compound 93: light yellowish oil; []
25

D 361 (c 0.18, CHCl3); UV (EtOH) max (log 

) 226 (3.82), 298 (3.77), and 329 (3.94) nm; IR (dry film) max 3370 and 1672 cm
1

; 

For 
1
H and 

13
C NMR data, see Table 5.2; ESIMS m/z 341 [M  H]


; HRESIMS m/z 

341.1867 [M  H]

 (calcd for C20H24N2O3  H, 341.1860). 

 

10.9.1.4 O-Acylation of N(4)-demethylalstogustine (92) 

 

To a stirred solution of 92 (6.5 mg, 0.019 mmol), CH2Cl2 (5 ml), and triethylamine (13 

l, 0.095 mmol), was added dropwise ethyl chloroformate (9 l, 0.095 mmol), and the 

mixture was stirred for 30 min at rt. The mixture was quenched with saturated NH4Cl 

(10 ml) and extracted with CH2Cl2 (3 x 10 ml). The combined organic extract was dried 

(Na2SO4), the solvent evaporated in vacuo, and the residue purified by centrifugal 

preparative TLC (SiO2, 2% MeOHCHCl3, NH3-saturated) to give the O-carboethoxy 

derivative, alstolucine A (91) (5.4 mg, 69%) as a light yellowish oil. The spectroscopic 

(
1
H and 

13
C NMR, IR, and UV) and other data ([D and Rf of TLC in different solvent 

systems) of semisynthetic alstolucine A (91) were indistinguishable from those of the 

natural alstolucine A (91).
74 
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10.9.2    Partial synthesis of ()-eburnamaline (96) 

 

10.9.2.1 Compound data of ()-eburnamaline (96) and ()-eburnamonine (98) 

 

The alkaloid ()-eburnamaline (96) was obtained the stem-bark extract of from L. 

griffithii.
81 

 

()-Eburnamaline (96): light yellowish oil; []
25

D  (c 0.21, CHCl3); UV (EtOH) 

max (log ) 230 (3.76) and 280 (3.16) nm; IR (dry film) max 3370 cm
1

; For 
1
H and 

13
C 

NMR data, see Table 5.3; EIMS m/z (rel. int.) m/z 312 [M]

 (100), 294 (23), 283 (20), 

265 (76), 242 (26), 224 (38), 208 (18), 196 (12), 180 (8), and 144 (5); HREIMS m/z 

312.1827 (calcd for C19H24N2O2, 312.1838); ESIMS m/z 313 [M H]

; HRESIMS m/z 

313.1926 [M H]

 (calcd for C19H24N2O2  H, 313.1911). 

 

The starting material for the partial synthesis of ()-eburnamaline (96), (+)-

eburnamonine (98) was obtained from the stem extract of Kopsia larutensis.
87

  

 

()-Eburnamonine (98): colorless block crystals; mp 175177 
o
C; []

25
D 108 (c 0.24, 

CHCl3); UV (EtOH) λmax  (log ) 207 (4.40), 246 (4.46), 270 (4.18), and 302 (3.91) nm; 

IR (dry film) max 1716 (C=O, lactam) cm
1

; For 
1
H and 

13
C NMR data, see Table 5.3; 

ESIMS m/z  [M H]

 295 (C19H22N2O  H). 
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10.9.2.2 Oxidation of ()-eburnamonine (98) 

 

Method A. A solution of ()-eburnamonine (98) (100 mg, 0.34 mmol) in THF (5 ml) 

was added to a solution of lithium diisopropylamide (LDA, 0.42 ml, 2 M in THF) in 

THF (10 mL) at 0 

C and the resulting mixture was stirred for 30 min. Dry O2 was then 

bubbled into the solution for 10 min. Na2SO3 solution (1 M, 5 ml) was added and the 

mixture extracted with EtOAc (3 x 15 ml), dried (Na2SO4), and then concentrated in 

vacuo. The resulting residue was purified by centrifugal preparative TLC (SiO2, 2% 

MeOHCHCl3, NH3-saturated) to afford ()-17-hydroxyeburnamonine (99) (27.5 mg, 

26%). 

 

Method B. A solution of ()-eburnamonine (98) (46 mg, 0.16 mmol) in THF (2 ml) was 

added to a solution of lithium diisopropylamide (LDA, 0.2 ml, 2 M in THF) in THF (2 

ml) at 0 

C and the resulting mixture stirred for 30 min. A solution of (1S)-()-(10-

camphorsulfonyl)oxaziridine (90 mg, 0.4 mmol) in THF (1 ml) was then added, and the 

mixture stirred for another 20 min. The reaction was quenched by addition of a saturated 

solution of NH4Cl (2 ml), and the mixture poured into brine (10 ml) and extracted with 

CH2Cl2 (3 x 10 ml). The combined organic extracts were dried (Na2SO4), filtered, 

concentrated in vacuo, and the resulting residue was then purified by centrifugal 

preparative TLC (SiO2, 2% MeOHCHCl3, NH3-saturated) to afford ()-17-

hydroxyeburnamonine (99) (40 mg, 83%).  

 

()-17-Hydroxyeburnamonine (99): light yellowish oil; []
25

D 126 (c 0.62, CHCl3); 

UV (EtOH) max (log ) 229 (4.15) and 282 (3.56) nm; IR (dry film) max 3382 and 1703 

cm
1

; For 
1
H and 

13
C NMR data, see Table 5.4; ESIMS m/z 311 [M  H]


; HRESIMS 

m/z [M  H]


311.1760 (calcd for C19H23N2O2, 311.1760). 
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10.9.2.3 Reduction of ()-17-hydroxyeburnamonine (99) 

 

To a solution of 99 (72 mg, 0.23 mmol) in THF (10 ml) at 0 

C was added LiAlH4 (23 

mg, 0.6 mmol) and the mixture was refluxed for 2 h. The mixture was cooled to 0 

C, 

following which, water (0.1 ml), then NaOH (3 M, 0.1 ml), and finally water (0.3 ml) 

was added. The mixture was stirred for 3 h at rt and then filtered through a pad of 

Celite. The filtrate was concentrated in vacuo and the resulting residue was purified by 

centrifugal preparative TLC (SiO2, 5% MeOHCH2Cl2, NH3-saturated) to afford 

compounds 96 (39 mg, 54%) and 100 (28 mg, 39%). The spectroscopic (
1
H and 

13
C 

NMR, IR, and UV) and other data ([D and Rf of TLC in different solvent systems) of 

semisynthetic ()-eburnamaline (96) were indistinguishable from those of the natural 

()-eburnamaline (96).
80

  

 

Compound 100: white amorphous solid and subsequently as colorless crystals from 

CH2Cl2; mp 190193 

C; []

25
D 44 (c 0.62, MeOH); UV (EtOH) max (log ) 229 

(4.41) and 281 (3.82) nm; IR (dry film) max 3448 cm
1

; For 
1
H and 

13
C NMR data, see 

Table 5.4; ESIMS m/z 313 [M  H]

; HRESIMS m/z 313.1915 [M  H]


(calcd for 

C19H24N2O2  H, 313.1916).  

 

Crystallographic data of compound 100: crystal data and structure refinement 

parameters of compound 100 are summarized in Table 10.13. 
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Table 10.13. Crystal data and structure refinement parameters of compound 100 

Empirical formula  C41H54Cl6N4O4  

Molecular formula 2C19H24N2O2 .3CH2Cl2 

Molecular weight , Mr 879.58  

Melting point 190193 

C 

Temperature during diffraction experiment, T   100 K  

X-ray source Mo K 

Crystal system  Hexagonal  

Space group  P65  

a 20.6890(4) Å 

b 20.6890(4) Å 

c 17.1028(3) Å 

α 90.00° 

β 90.00° 

γ 120.00°   

Volume, V 6339.8(2) Å
3
 

No of molecule per unit cell, Z  15  

Density (calcd) 2.051 mg/mm
3
 

F(000)  6930.0  

Crystal size  0.38 × 0.08 × 0.07 mm  

2 range for data collection  2.28 to 52.78°  

Index ranges  25 ≤ h ≤ 25, 24 ≤ k ≤ 25, 21 ≤ l ≤ 21  

Reflections collected  55539  

Independent reflections  8656[Rint = 0.0947]  

Data/restraints/parameters  8656/1/502  

Goodness-of-fit on F
2
  1.083  

Final R indexes [I ≥ 2σ (I)]  R1 = 0.0526, wR2 = 0.1224 

Final R indexes [all data]  R1 = 0.0735, wR2 = 0.1369 

Largest diff. peak/hole / e Å
3

  0.71/0.34  

Flack parameter, x 0.07(0.06) 
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10.10   Chapter 6 

 

10.10.1 Compound data of perhentidines AC (101103), perhentinine (104), and 

macralstonine (105) 

 

The alkaloids perhentidines AC (101103), perhentinine (104) and macralstonine 

(105) were isolated from the stem-bark extracts of Alstonia macrophylla and Alstonia 

angustifoia.
89 

 

Perhentidine A (101): light yellowish oil; []
25

D 77 (c 0.40, CHCl3); UV (EtOH) max 

(log ) 231 (4.69) and 286 (3.69) nm; IR (dry film) max 3400, 1702, 1648, and 1617 

cm
1

; For 
1
H and 

13
C NMR data, see Tables 6.1 and 6.2, respectively; ESIMS m/z 705 

[M ]

; HRESIMS m/z 705.4010 [M  H]

 
(calcd for C43H52N4O5  H, 705.4013). 

 

Perhentidine B (102):  light yellowish oil; []
25

D –38 (c 0.52, CHCl3); UV (EtOH) λmax 

(log ) 234 (4.49) and 286 (3.81) nm; IR (dry film) max 3392, 1707, 1653, and 1618 

cm
−1

; For 
1
H and 

13
C NMR data, see Tables 6.1 and 6.2, respectively; ESIMS m/z 705 

[M H]

;  HRLSIMS m/z 705.3993 [M  H]


 (calcd for C43H52N4O5  H, 705.4013). 

 

Perhentidine C (103): light yellowish oil; []
25

D 73 (c 0.50, CHCl3); UV (EtOH) max 

(log ) 230 (4.53) and 285 (3.93) nm; IR (dry film) max 3387, 1703, 1651, and 1615 

cm
1

; For 
1
H and 

13
C NMR data, see Tables 6.1 and 6.2, respectively; EIMS m/z (rel. 

int.) 686 [M H2O]

 (100), 616 (6), 547 (5), 486 (42), 379 (27), 343 (12), 307 (15), 277 

(5), 251 (19), 197 (99), 170 (21), and 70 (8); HRLSIMS m/z 705.4029 [M H]
 

(calcd 

for C43H52N4O5  H, 705.4013). 
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Perhentinine (104): light yellowish oil; []
25

D 61 (c 0.12, CHCl3); UV (EtOH) max 

(log ) 231 (4.25) and 298 (3.45) nm; IR (dry film) max 3400, 1701, 1651, and 1616 

cm
1

; For
 1

H and 
13

C NMR data, see Tables 6.3 and 6.4, respectively; ESIMS m/z 705 

[M H]

; HRESIMS m/z 705.4019 [M H]

 
(calcd for C43H52N4O5  H, 705.4013). 

 

Macralstonine (105): colorless rectangular rod crystals from CH2Cl2/MeOH; mp 

260263
 o

C [lit
92 

279280 
o
C]; []

25
D 23 (c 0.5, CHCl3) [lit

92
 22 (c 2.0, CHCl3)]; UV 

(EtOH) max (log ) 229 (4.47), 259 (2.94) and 294 (2.85) nm; IR (dry film) max 3402, 

1701, 1651, and 1616 cm
1

; (nujol) 3393, 1643, and 1619 cm
1

; (CHCl3) max 3683, 

1706, 1649, and 1618 cm
1

; For 
1
H and 

13
C NMR data, see Tables 6.5 and 6.6, 

respectively; ESIMS m/z 705 [M  H]

. 

 

Crystallographic data of alkaloid 105: crystal data and structure refinement parameters 

of alkaloid 105 are summarized in Table 10.14. 
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Table 10.14. Crystal data and structure refinement parameters of mactalstonine (105) 

Empirical formula C43H52N4O5  

Molecular formula C43H52N4O5  

Molecular weight, Mr 704.89  

Melting point 260263
 o
C 

Temperature during diffraction experiment, T 100 K 

X-ray source Cu K 

Crystal system Monoclinic  

Space group C2  

a 30.173(4) Å 

b 6.7184(6) Å 

c 18.895(2) Å 

α 90.00°  

β 108.475(14)°  

γ 90.00° 

Volume, V 3632.9(7) Å
3
 

No. of molecule per unit cell, Z 4  

Density (calcd) 1.289 mg/mm
3
 

F(000) 1512.0  

Crystal size 0.20 x 0.10 x 0.02 mm 

2range for data collection 6.18 to 134.94°  

Index ranges 36 ≤ h ≤ 34, 8 ≤ k ≤ 7, 22 ≤ l ≤ 22  

Reflections collected 16346  

Independent reflections 6280[Rint = 0.0528]  

Data/restraints/parameters 6280/1/477  

Goodness-of-fit on F
2
 1.051  

Final R indexes [I ≥ 2σ (I)] R1 = 0.0720, wR2 = 0.1869  

Final R indexes [all data] R1 = 0.0947, wR2 = 0.2054  

Largest diff. peak/hole / e Å
3

 0.26/0.27  

Flack parameter 0.1(0.4) 

Hooft parameter 0.30(0.14) 

 



318 

 

10.10.2 General procedure for the acetylation of alkaloids 101106 

 

To a solution of the appropriate alkaloid (1.0 mmol), pyridine (3 equiv), and CH2Cl2, 

was added acetic anhydride (1.5 equiv), and the mixture was stirred at rt. The progress 

of the reaction was monitored by TLC. When the TLC showed ca. 95% completion, the 

reaction was quenched with 5% Na2CO3. The organic layer was washed with water, 

dried with Na2SO4, concentrated in vacuo, and the residue was purified by centrifugal 

preparative TLC (SiO2, 25% MeOH:CHCl3, NH3-saturated) to give the corresponding 

O-acetyl derivatives.  

 

O-Acetylperhentidine A (101a). Reaction of 101 (18.3 mg, 0.026 mmol) with acetic 

anhydride (3.7 l, 0.039 mmol) in pyridine (6.3 l, 0.079 mmol) and CH2Cl2 (2 ml) 

gave 101a (9.1 mg, 47%): light yellowish oil; []
25

D 111 (c 0.45, CHCl3,); UV (EtOH) 

max (log ) 210 (4.73), 230 (4.99), and 285 (4.30) nm; IR (neat) max 1732, 1703, 1652, 

and 1620 cm
1

; For
 1

H and 
13

C NMR data, see Tables 6.7 and 6.8, respectively; ESIMS 

m/z 747 [M  H]

; HRESIMS m/z 747.4122 [M  H]


 (calcd for C45H54N4O6  H, 

747.4116). 

 

O-Acetylperhentidine B (102a). Reaction of 102 (18.8 mg, 0.027 mmol) with acetic 

anhydride (3.9 l, 0.04 mmol) in pyridine (6.4 l, 0.081) and CH2Cl2 (2 ml) gave 102a 

(8.5 mg, 43%): light yellowish oil; []
25

D 42.3 (c 0.43, CHCl3,); UV (EtOH) max (log 

) 210 (4.76), 230 (5.01), and 288 (4.32) nm; IR (neat) max 1734, 1709, 1654, and 1619 

cm
1

;
 
For

 1
H and 

13
C NMR data, see Tables 6.7 and 6.8, respectively; ESIMS m/z 747 

[M H]

; HRESIMS m/z 747.4109 [M H]


 (calcd for C45H54N4O6  H, 747.4116). 
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O-Acetylperhentidine C (103a). Reaction of 103 (2.8 mg, 0.004 mmol) with acetic 

anhydride (0.6 l, 0.006 mmol) in pyridine (1 l, 0.012) and CH2Cl2 (1 ml) gave 103a 

(2.2 mg, 74%): colorless oil; []D 105 (c 0.11, CHCl3); UV (EtOH) max (log ) 230 

(4.70) and 285 (4.07) nm; IR (dry film) max 1737, 1706, 1650, and 1618 cm
1

; For 
1
H 

and 
13

C NMR data, see Tables 6.7 and 6.8, respectively; ESIMS m/z 747 [M  H]

; 

HRESIMS m/z 747.4118 [ ]

 (calcd for C45H54N4O6  H, 747.4116). 

 

O-Acetylperhentinine acetate (104a). Reaction of 104 (15.1 mg, 0.021 mmol) with 

acetic anhydride (3 l, 0.032 mmol) in pyridine (5 l, 0.063 mmol) and CH2Cl2 (2 ml) 

gave 104a (8.2 mg, 52%): light yellowish oil; []
25

D 103 (c 0.35, CHCl3,); UV (EtOH) 

max (log ) 210 (4.90), 230 (5.15), and 295 (4.41) nm; IR (neat) max 1736, 1706, 1651, 

and 1618 cm
1

; For
 1

H and 
13

C NMR data, see Tables 6.3 and 6.4, respectively; ESIMS 

m/z 747 [M  H]

; HRESIMS m/z 747.4123 [M  H]


 (calcd for C45H54N4O6  H, 

747.4116). 

 

O-Acetyl-E-secomacralstonine (106a). Reaction of 106 (16.8 mg, 0.024 mmol) with 

acetic anhydride (3.4 l, 0.036 mmol) in pyridine (5.8 l, 0.071 mmol) and CH2Cl2 (2 

ml) gave 106a (11 mg, 62%): light yellowish oil; []
25

D 34 (c 1.1, CHCl3,); UV 

(EtOH) max (log ) 211 (4.72), 230 (5.00), and 297 (4.21) nm; IR (neat) max 1732, 

1715, 1651, and 1614  cm
1

; For
 1

H and 
13

C NMR data, see Tables 6.5 and 6.6, 

respectively; ESIMS m/z 747 [M  H]

; HRESIMS m/z 747.4119 [M  H]


 (calcd for 

C45H54N4O6 H, 747.4116). 
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10.10.3 Conversion of perhentinine (104) to its dimethyl diiodide salt 104b  

 

Iodomethane (0.5 ml, 8 mmol) was added to perhentinine (104) (16 mg, 0.02 mmol) and 

allowed to stand for 24 h at rt. Excess iodomethane was then removed under reduced 

pressure to furnish a yellowish residue which on recrystallization from hot MeOH, gave 

the corresponding dimethyl diiodide salt 104b (14 mg, 62%): light yellowish block 

crystals; mp 228230
 o

C; []
25

D 55 (c 0.05, MeOH); UV (EtOH) max (log ) 221 

(5.83) and 295 (4.97) nm; ESIMS m/z 367 [M]
2

; HRESIMS m/z 367.2207 [M]
2

 (calcd 

for C45H58N4O5, 734.4396). 

 

Crystallographic data of compound 104b: crystal data and structure refinement 

parameters of compound 104b are summarized in Table 10.15. 
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Table 10.14. Crystal data and structure refinement parameters of compound 104b 

Empirical formula C42H54N4O5I2  

Molecular formula C42H54N4O5 
2

I2
2
 

Molecular weight, Mr 948.69  

Melting point 228230
 o
C 

Temperature during diffraction experiment, T 100 K  

X-ray source Mo K 

Crystal system Orthorhombic  

Space group P212121  

a 14.5059(2) Å 

b 14.8002(2) Å 

c 22.4594(3) Å 

α 90.00°  

β 90.00°  

γ 90.00°  

Volume, V 4821.81(11) Å
3
 

No. of molecule per unit cell, Z 4  

Density (calcd) 1.307 mg/mm
3
 

F(000) 1920.0  

Crystal size 0.21 x 0.19 x 0.16 mm 

2range for data collection 3.3 to 50°  

Index ranges 17 ≤ h ≤ 17, 17 ≤ k ≤ 17, 26 ≤ l ≤ 26  

Reflections collected 37534  

Independent reflections 8480[Rint = 0.0340]  

Data/restraints/parameters 8480/0/585  

Goodness-of-fit on F
2
 1.590  

Final R indexes [I ≥ 2σ (I)] R1 = 0.0634, wR2 = 0.1922  

Final R indexes [all data] R1 = 0.0695, wR2 = 0.1988  

Largest diff. peak/hole / e Å
3

 3.10/0.90  

Flack parameter 0.04(0.03) 

Hooft parameter 0.022(0.07) 
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10.11 Chapter 7 

 

10.11.1  Compound data of scolaricine (114), lumutinine C (116), and alstoumerine 

(118) 

 

The alkaloid scholaricine (114) was obtained from the leaf extract of Alstonia 

angustiloba.
104

 Lumutinine C (116) was obtained from the bark extract of Alstonia 

macrophylla,
105

 while alstoumerine (118) was obtained from the stem-bark extract of 

Alstonia angustifolia.
74 

 

Scholaricine (114): light yellowish oil and subsequently as colorless needles from 

CHCl3; mp 176180 
o
C [lit

102
 >180 

o
C dec]; []

25
D 577 (c 0.56, CHCl3) [lit

102 
200 

(CHCl3)]; UV (EtOH) max (log ) 213 (4.19), 237 (3.97), 286 (3.60), and 341 (3.94) 

nm; For 
1
H and 

13
C NMR data, see Table 7.2; ESIMS m/z 357 [M  H]


. 

 

Crystallographic data of alkaloid 114: crystal data and structure refinement parameters 

of alkaloid 114 are summarized in Table 10.16. 
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Table 10.16. Crystal data and structure refinement parameters of scholaricine (114)  

Empirical formula  C44H58N4O11  

Molecular formula 2C20H24N2O4.C4H8O2.H2O 

Molecular weight, Mr 818.94  

Melting point 176180 
o
C 

Temperature during diffraction experiment, T 100 K  

X-ray source Mo K 

Crystal system  Orthorhombic  

Space group  P212121  

a 10.4901(3) Å 

b 18.5736(5) Å 

c 21.1075(5) Å 

α 90.00°  

β 90.00°  

γ 90.00°  

Volume, V 4112.56(19) Å
3
 

No. of molecule per unit cell, Z 4  

Density (calcd)  1.326 mg/mm
3
 

F(000)  1760  

Crystal size/mm
3
  0.301 × 0.282 × 0.096  

2 range for data collection  2.92 to 50°  

Index ranges  12 ≤ h ≤ 12, 22 ≤ k ≤ 22, 25 ≤ l ≤ 25  

Reflections collected  31934  

Independent reflections  4055[Rint = 0.1005]  

Data/restraints/parameters  4055/3/545  

Goodness-of-fit on F
2
  1.071  

Final R indexes [I ≥ 2σ (I)]  R1 = 0.0592, wR2 = 0.1509  

Final R indexes [all data]  R1 = 0.0839, wR2 = 0.1641  

Largest diff. peak/hole / e Å
3

  0.296/0.634  
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Lumutinine C (116): light yellowish oil; []
25

D +84 (c 0.3, CHCl3); UV (EtOH) max 

(log ε) 208 (5.31), 228 (5.33), and 284 (4.78) nm; IR(dry film) νmax 3360 cm
−1

; For 
1
H 

and 
13

C NMR data, see Table 7.3; ESIMS m/z 661 [M + H]
+
; HRESIMS m/z 661.3749 

[M  H]

 (calcd for C41H48N4O4+ H, 661.3748). 

 

Alstoumerine (118): colorless block crystals from CHCl3; mp 174176 

C [lit

106
 170 

o
C]; []

25
D 30 (c 0.09, CHCl3) [lit

106
 5.5 (c 2.0, CHCl3)]; UV (EtOH) max (log ) 219 

(3.89), 234 (3.93), 274 (3.73), 284 (3.77), and 293 (3.71) nm; For 
1
H NMR and 

13
C 

NMR data, see Table 7.4; ESIMS m/z 325 [M H]

.  

 

Crystallographic data of alkaloid 118: crystal data and structure refinement parameters 

of alkaloid 118 are summarized in Table 10.17.  
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Table 10.17. Crystal data and structure refinement parameters of alstoumerine (118) 

Empirical formula C22H26Cl6N2O2  

Molecular formula C20H24N2O2.2CHCl3 

Molecular weight, Mr 563.15  

Melting point 174–176 ˚C 

Temperature during diffraction experiment, T 100(2)  

X-ray source Mo K 

Crystal system Orthorhombic  

Space group P212121  

a 10.3890(2) Å 

b 10.4473(2) Å 

c 23.0709(4) Å 

α 90.00°  

β 90.00°  

γ 90.00°  

Volume, V 2504.05(8) Å
3
 

No. of molecule per unit cell, Z 4  

Density (calcd) 1.494 mg/mm
3
 

F(000) 1160  

Crystal size 0.69 × 0.18 × 0.16  

2range for data collection 4.28 to 60.96°  

Index ranges 14 ≤ h ≤ 14, 14 ≤ k ≤ 14, 32 ≤ l ≤ 31  

Reflections collected 27532  

Independent reflections 7322[Rint = 0.0389]  

Data/restraints/parameters 7322/22/321  

Goodness-of-fit on F
2
 1.024  

Final R indexes [I ≥ 2σ (I)] R1 = 0.0397, wR2 = 0.0827  

Final R indexes [all data] R1 = 0.0493, wR2 = 0.0867  

Largest diff. peak/hole / e Å
3

 0.436/0.326  

Flack Parameter  0.01(0.04)  

Hooft Parameter  0.01(0.04)  
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10.11.2 Determination of the C-19 configuration of alstoumerine (118) by Horeau’s 

method 

 

Alstoumerine (118) (45 mg, 0.145 mmol) was added to a solution of racemic 2-

phenylbutyric anhydride (168 l, 0.145 mmol) in anhydrous pyridine (1 ml). The 

resulting mixture was stirred for 20 h at rt. Water (3 ml) was then added and the mixture 

was allowed to stand for 30 min. The pH of the solution was adjusted to pH 9 by drop-

wise addition of NaOH (0.1 M), after which the solution was extracted with CH2Cl2 (3 x 

20 ml). The aqueous layer was acidified to pH 3 using 1.0 M HCl and extracted with 

CH2Cl2 (3 x 10 ml). Evaporation of the solvent from the organic phase gave the 

unreacted 2-phenylbutyric acid: []
25

D 3.1 (c 1.66, C6H6); []
25

D 3 (c 1.66, CHCl3). 

The optical rotation of the unreacted 2-phenylbutyric acid was found to be negative (R), 

indicating the S configuration at C-19 in alstoumerine (118b). The determination was 

repeated several times to confirm that the correct result was obtained 
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10.12 Chapter 8 

 

10.12.1  Compound data of andransinine (119) 

 

(±)-Andransinine (119) was isolated first isolated from the leaf extract of Alstonia 

angustiloba,
123

 and subsequently from the leaf extract of Kopsia pauciflora.
58 

 

(±)-Andransinine (119) from A. angustiloba: light orange block crystals from EtOAc, 

mp 212214 °C; colorless needles from CH2Cl2/hexanes, mp 186190 
o
C; colorless lath 

crystals from MeOH, mp 204206 
o
C; []

25
D 8 (c 0.13, CHCl3); UV (EtOH) max (log 

) 223 (3.70) and 284 (3.08) nm; IR (dry film) max 3378, 2885, 2840, and 1732 cm
1

; 

For 
1
H and 

13
C NMR data, see Table 8.3; ESIMS m/z 381 [M + H]


; HRESIMS m/z 

381.2178 [M + H]

 (calcd for C23H28N2O3  H, 381.2173). 

 

(±)-Andransinine (119) from K. pauciflora: []
25

D 0 (c 0.18, CHCl3); The melting 

points of crystals obtained from various solvent systems, UV, IR, 
1
H and 

13
C NMR, and 

HRESIMS data were similar to those of (±)-andransinine (119) obtained from A. 

angustiloba. 

 

10.12.2 X-ray crystallographic analysis of (±)-andransinine (119) 

 

Racemic conglomerate crystals of (±)-andransinine (119) were obtained from EtOAc 

solution. The crystal data and structure refinement parameters of 119 are shown in 

Table 8.4.  
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Racemic compound crystals of (±)-andransinine (119) were obtained from 

CH2Cl2/hexanes solution. The crystal data and structure refinement parameters are 

summarized in Table 10.18.  

 

Table 10.18. Crystal data and structure refinement parameters of alkaloid 119 obtained 

from CH2Cl2/hexanes solution 

Empirical formula C23H28N2O3 

Molecular formula C23H28N2O3 

Molecular weight, Mr 380.47 

Melting point 186190 
o
C 

Temperature during diffraction experiment, T 100 K 

X-ray source Mo K 

Crystal system Monoclinic  

Space group C2/c  

a 39.082(4) Å 

b 8.5880(11) Å  

c 24.128(3) Å  

α 90.00°  

β 105.802(7)°  

γ 90.00° 

Volume, V 7792.2(16) Å
3
 

No. of molecule per unit cell, Z 16  

Density (calcd) 1.297 mg/mm
3
 

F(000) 3264.0  

Crystal size 0.54 × 0.25 × 0.03 mm  

2range for data collection 3.5 to 50°  

Index ranges 46 ≤ h ≤ 46, 10 ≤ k ≤ 10, 27 ≤ l ≤ 28  

Reflections collected 29475  

Independent reflections 6868[Rint = 0.2374]  

Data/restraints/parameters 6868/0/509  

Goodness-of-fit on F
2
 0.766  

Final R indexes [I ≥ 2σ (I)] R1 = 0.0573, wR2 = 0.0949  

Final R indexes [all data] R1 = 0.1933, wR2 = 0.1292  

Largest diff. peak/hole / e Å
3

 0.24/0.25  
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Racemic compound crystals of (±)-andransinine (119) were obtained from MeOH 

solution. The crystal data and structure refinement parameters are summarized in Table 

10.19.  

 

Table 10.19. Crystal data and structure refinement parameters of alkaloid 119 obtained 

from MeOH solution. 

Empirical formula C24H32N2O4 

Molecular formula C23H28N2O3.CH3OH 

Molecular weight, Mr 412.52 

Melting point 204206 
o
C 

Temperature during diffraction experiment, T 100 K 

X-ray source Mo K 

Crystal system Orthorhombic  

Space group Pna21  

a 8.6828(2) Å 

b 21.4082(4) Å 

c 11.2277(2) Å 

α 90.00°  

β 90.00°  

γ 90.00°  

Volume, V 2087.04(7) Å
3
 

No. of molecule per unit cell, Z 4  

Density (calcd) 1.313 mg/mm
3
 

F(000) 888.0  

Crystal size 0.84 × 0.36 × 0.24 mm 

2range for data collection 3.8 to 55°  

Index ranges 11 ≤ h ≤ 11, 27 ≤ k ≤ 27, 14 ≤ l ≤ 14  

Reflections collected 18902  

Independent reflections 4796[Rint = 0.0263]  

Data/restraints/parameters 4796/1/275  

Goodness-of-fit on F
2
 1.028  

Final R indexes [I ≥ 2σ (I)] R1 = 0.0352, wR2 = 0.0908  

Final R indexes [all data] R1 = 0.0372, wR2 = 0.0923  

Largest diff. peak/hole / e Å
3

 0.49/0.34  
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10.12.3 X-ray diffraction and chiral phase HPLC analyses of a single crystal of 

andransinine (119) selected from the racemic conglomerate 

 

 

Racemic conglomerate crystals of (±)-andransinine (119) were obtained from EtOAc 

solution. A crystal with substantial size (ca. 0.43 x 0.35 x 0.28 mm) was selected from 

the conglomerate. It was then cut into half (ca. 0.20 x 0.35 x 0.28 mm). This half crystal 

was subjected to an X-ray diffraction analysis, using Cu K radiation. The crystal data 

and structure refinement parameters are summarized in Table 10.20. 

 

The remaining half of the andransinine (119) crystal (ca. 0.23 x 0.35 x 0.28 mm) was 

dissolved in a minimum amount of EtOH and subjected to chiral phase HPLC analysis, 

using a chiral column (Chiralpak AD-H, 4.6 mm x 150 mm, Daicel, Japan) with n-

hexane/EtOH/DEA (85:15:0.2, flow rate 0.8 ml/min) as eluting solvent. A single peak 

was observed, corresponding to a retention time of 3 min 47 sec. 
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Table 10.20. Crystal data and structure refinement parameters of alkaloid 119 (half 

crystal) 

Empirical formula C23H28N2O3 

Molecular formula C23H28N2O3 

Molecular weight, Mr 380.47 

Melting point 212214 °C 

Temperature during diffraction experiment, T 100 K 

X-ray source Cu K 

Crystal system Monoclinic 

Space group P21  

a 8.50960(10) Å  

b 9.15380(10) Å 

c 12.53330(10) Å 

α 90.00°  

β 96.0300(10)°  

γ 90.00°  

Volume, V 970.882(17) Å
3
 

No. of molecule per unit cell, Z 2  

Density (calcd) 1.301 mg/mm
3
 

F(000) 408.0  

Crystal size 0.20 × 0.15 × 0.10  

2range for data collection 7.1 to 148.34°  

Index ranges 10 ≤ h ≤ 10, 11 ≤ k ≤ 10, 15 ≤ l ≤ 15  

Reflections collected 7322  

Independent reflections 3769[Rint = 0.0191]  

Data/restraints/parameters 3769/1/255  

Goodness-of-fit on F
2
 1.047  

Final R indexes [I ≥ 2σ (I)] R1 = 0.0347, wR2 = 0.0904  

Final R indexes [all data] R1 = 0.0349, wR2 = 0.0907  

Largest diff. peak/hole / e Å
3

 0.21/0.19  

Flack parameter, x 0.06(0.15) 

Hooft parameter, y 0.03(0.04) 
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10.12.4  Resolution of (±)-andransinine (119) by chiral phase HPLC followed by X-

ray diffraction analyses of the resolved enantiomers  

 

(±)-Andransinine (119) (9.1 mg) was dissolved in EtOH (1 ml) and resolved by means 

of chiral phase HPLC (100 injections, 10 l each) using a chiral column (Chiralpak AD-

H, 4.6 mm x 150 mm, Daicel, Japan) and eluting with n-hexane/EtOH/DEA (85:15:0.2, 

flow rate 0.8 ml/min) to yield two fractions: Fraction 1 (retention time 3 min 51 sec, 2.2 

mg) and Fraction 2 (retention time 7 min 52 sec, 1.3 mg). 

 

()-Andransinine (119a) from Fraction 1, colorless block crystal from EtOAc (ee > 

99%); mp 212214 °C; []
25

D  (c 0.10, CHCl3); The UV, IR, 
1
H and 

13
C NMR data 

were identical to racemic 119. The crystal data and structure refinement parameters, 

bond lengths, and bond angles are summarized in Table 10.21.  
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Table 10.21. Crystal data and structure refinement parameters of ()-andransinine 

(119a) 

Empirical formula C23H28N2O3 

Molecular formula C23H28N2O3 

Molecular weight, Mr 380.47 

Melting point 212214 °C 

Temperature during diffraction experiment, T 100 K 

X-ray source Cu K 

Crystal system Monoclinic 

Space group P21  

a 8.5069(2) Å  

b 9.1472(2) Å 

c 12.5299(3) Å 

α 90.00°  

β 96.035(2)°  

γ 90.00°  

Volume, V 969.60(4) Å
3
 

No. of molecule per unit cell, Z 2  

Density (calcd) 1.3032 mg/mm
3
 

F(000) 409.3  

Crystal size 0.20 × 0.15 × 0.10  

2range for data collection 7.1 to 150.58°  

Index ranges 9 ≤ h ≤ 10, 11 ≤ k ≤ 10, 15 ≤ l ≤ 10  

Reflections collected 9097  

Independent reflections 3624[Rint = 0.0222]  

Data/restraints/parameters 3624/0/254  

Goodness-of-fit on F
2
 1.023  

Final R indexes [I ≥ 2σ (I)] R1 = 0.0297, wR2 = 0.0783 

Final R indexes [all data] R1 = 0.0309, wR2 = 0.0784 

Largest diff. peak/hole / e Å
3

 0.17/0.16  

Flack parameter, x 0.10(0.12) 

Hooft parameter, y 0.07(0.08) 
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()-Andransinine (119b) from Fraction 2, colorless block crystals from EtOAc (ee > 

99%); mp 212214 °C []
25

D  (c 0.07, CHCl3); The UV, IR, 
1
H and 

13
C NMR data 

were identical to racemic 119. The crystal data and structure refinement parameters are 

summarized in Table 10.22.  

 

Table 10.22. Crystal data and structure refinement parameters of ()-andransinine 

(119b) 

Empirical formula C23H28N2O3 

Molecular formula C23H28N2O3 

Molecular weight, Mr 380.47 

Melting point 212214 °C 

Temperature during diffraction experiment, T 100 K 

X-ray source Cu K 

Crystal system Monoclinic 

Space group P21  

a 8.5089(2) Å  

b 9.1505(2) Å 

c 12.5241(2) Å 

α 90.00°  

β 96.049(2)°  

γ 90.00°  

Volume, V 969.71(4) Å
3
 

No. of molecule per unit cell, Z 2  

Density (calcd) 1.3030 mg/mm
3
 

F(000) 409.3  

Crystal size 0.20 × 0.15 × 0.10  

2range for data collection 7.1 to 153.14°  

Index ranges 10 ≤ h ≤ 10, 11 ≤ k ≤ 11, 15 ≤ l ≤ 15  

Reflections collected 9877 

Independent reflections 3991[Rint = 0.0198]  

Data/restraints/parameters 3624/0/254  

Goodness-of-fit on F
2
 1.023  

Final R indexes [I ≥ 2σ (I)] R1 = 0.0301, wR2 = 0.0803 

Final R indexes [all data] R1 = 0.0310, wR2 = 0.0803 

Largest diff. peak/hole / e Å
3

 0.21/0.17  

Flack parameter, x 0.08(0.12) 

Hooft parameter, y 0.04(0.06) 
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10.13  Chapter 9 

 

10.13.1 Conversion of lumusidine A (125) to its dimethyl diiodide salt 125a 

 

Iodomethane (0.5 ml) was added to lumusidine A (125) (4.2 mg, 0.006 mmol) and 

allowed to stand for 24 h at rt. Excess iodomethane was then removed under reduced 

pressure to furnish a yellowish residue that, on recrystallization from hot MeOH, gave 

the corresponding dimethyl diiodide salt 125a (2.8 mg, 48%): light yellowish block 

crystals; mp >198
 o

C dec; ESIMS m/z 358 [M]
2

; HRESIMS m/z 358.2157 [M]
2

 (calcd 

for C45H56N4O4, 716.4302). 

 

10.13.2 Conversion of lumusidine B (126) to its dimethyl diiodide salt 126a 

 

Iodomethane (0.5 ml) was added to lumusidine A (126) (5.4 mg, 0.008 mmol) and 

allowed to stand for 24 h at rt. Excess iodomethane was then removed under reduced 

pressure to furnish a yellowish residue that, on recrystallization from MeOH, gave the 

corresponding dimethyl diiodide salt 126a (3.2 mg, 40%): light yellowish block 

crystals; mp 230−234 °C; ESIMS m/z 367 [M]
2+

; HRESIMS m/z 367.2207 [M]
2+

 (calcd 

for C45H58N4O5, 734.4407). 

 

10.13.3 Conversion of alkaloid 130 to its methyl iodide salt 130a 

 

Iodomethane (0.5 ml) was added to alkaloid 130 (0.3 mg, 0.001 mmol) and allowed to 

stand for 24 h at rt. Excess iodomethane was then removed under reduced pressure to 

furnish a yellowish residue that, on recrystallization from MeOH, gave the 

corresponding dimethyl diiodide salt 130a (0.1 mg, 23%): light yellowish block 
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crystals; mp 214218 °C; ESIMS m/z 323 [M]
+
; HRESIMS m/z 323.1758 [M]

+
 (calcd 

for C19H20N2O2, 323.1760). 
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