PRODUCTION OF MULTIWALL CARBON NANOTUBE
FOR ALCOHOL SENSOR APPLICATION

EBTEHAL SALEH ALSHAQAQ

DISSertation SUBMITTED IN FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF TECHNOLOGY (MATERIAL SCIENCE)

FACULTY OF SCIENCE
UNIVERSITY OF MALAYA
KUALA LUMPUR

2010
DECLARATION

I hereby declare that the work reported in this thesis is my own unless specified and duly acknowledged by quotation

May 2010

....................................

Ebtelah Saleh Alshaqaq
ABSTRACT

Multiwall carbon nanotube/polyethylene oxide (PEO), multiwall carbon nanotube/polyvinyl alcohol (PVA) and multiwall carbon nanotube/ polyvinyl alcohol (PVA)/zinc oxide (ZnO) have been tested as chemical sensors and detailed study on the effect of different gas concentration and material properties on gas sensitivity is presented. Initial composites were prepared by a simple solution casting and characterized by x-ray diffraction for ZnO, Fourier transform infra-red spectroscopy (FTIR) and scanning electron microscopy (SEM) to demonstrate crystallite size of ZnO, the morphology and surface area respectively. On the other hand, MWCNT/PEO, MWCNT/PVA, MWCNT/PVA/ZnO were prepared with different loading MWCNT and ZnO. The chemical sensing properties of the composites were investigated by exposure to methanol vapor with different concentration (1.7, 3.3, 5.8, 16.7 vol% in water). The sensing experiment proved that the sensitivity of the composites increase due to amount of CNT and the highest value to the sensitivity was at composites with ZnO. It was discovered that for all composite systems, the highest sensitivity was recorded at moderate methanol concentrations in water of about 5%. For MWCNT/PVA composite, sensitivity increased with MWCNT loading as expected. The highest recorded was about 250% for 5% MWCNT loading detecting 5% methanol in water. Similar result was obtained with MWCNT/PVA/ZnO composites with 1% MWCNT and 3% ZnO, indicating the significant role of ZnO in methanol detection.
ABSTRAK

Tiubnano Karbon Polietilena Oksida (Multiwall Carbon Nanotube Plyethelene Oxide) Berbilang Dinding, Tiubnano Karbon Alkohol Polivinil (Multiwall Carbon Nanotube Polyvinyl Alcohol) Berbilang Dinding dan Tiubnano Karbon Alkohol Polivinil (Multiwall Carbon Nanotube Polyvinyl Alcohol)/Zink Oksida (ZnO) Berbilang Dinding telah diuji sebagai pengesan-pengesan kimia dan kajian terperinci tentang kepekaan gas menggunakan kepekatan gas berbeza dan ciri-ciri bahan yang berbeza telah dibentangkan. Komposit awal telah yang disediakan dengan menggunakan larutan mudah yang kemudiannya dikaji menggunakan Belauan Sinar-X, (XRD), Spektroskopi Inframerah Jelmaan Fourier (FTIR) dan Mikroskop Imbasan Elektron (SEM) yang mana bertujuan untuk menunjukkan saiz kristalit, morfologi dan luas permukaan ZnO. Pada masa yang sama, MWCNT / PEO, MWCNT / PVA dan MWCNT / PVA / ZnO telah disediakan dengan muatan MWCNT dan ZnO yang berbeza. Ciri-ciri penderiaan sesuatu komposit kimia telah disiasat dengan melakukan pendedahan kepada wap metanol dengan kepekatan methanol yang berbeza (1.7, 3.3, 5, 8.3 dan 16.7vol% di dalam air). Eksperimen penderiaan membuktikan bahawa kepekaan sesuatu komposit kimia bertambah dengan pertambahan jumlah CNT dan nilai tertinggi bagi kepekaan berada di dalam komposit yang mengandungi ZnO. Penemuan membuktikan bahawa untuk semua sistem komposit tersebut, kepekaan paling tinggi telah dicatatkan pada kepekatan metanol yang sederhana iaitu pada lebih kurang 5% methanol di dalam air. Untuk komposit MWCNT / PVA, kepekaan bertambah dengan peningkatan muatan MWCNT seperti yang telah dijangkakan. Rekod kepekaan yang tertinggi ialah kira-kira 250% untuk 5% muatan MWCNT yang mana ia mengeser 5% metanol di dalam air. Kajian serupa telah diperolehi pada komposit MWCNT / PVA / ZnO dengan kandungan 1% MWCNT dan 3% ZnO, menunjukkan peranan penting ZnO dalam pengesanan metanol.
TABLE OF CONTENTS

Chapter 1 Introduction

1.1 Introduction 1
1.2 Research Objectives 5
1.3 Thesis Outline 5
1.4 References 7

Chapter 2 Literature Review

2.1 Introduction 8
2.2 Introduction Carbon Nanotubes (CNTs) 8
2.2.1 Synthesis of Carbon Nanotubes 10
2.2.1(i) Carbon Arc-Discharge Technique 10
2.2.1(ii) Laser-Ablation Technique 12
2.2.1(iii) Chemical Vapor Deposition (CVD) Technique 13
2.3 Properties of Carbon Nanotubes 17
2.4 Alcohol Sensor 20
2.5 Carbon Nanotube Based Sensors 22
2.6 Carbon Nanotube as Alcohol Sensor 26
2.7 Instruments for the Characterization of carbon nanotube Composites 30
2.7.1 Fourier Transform Infra-red Spectrometry (FTIR) 30
2.7.2 Fundamental Principle of X-ray Diffraction (XRD) 35
2.8 References 41

Chapter 3 Experimental setup and MWCNT/PEO, MWCNT/PVA and MWCNT/PVA/ZnO Composites Fabrication Techniques

3.1 Introduction 46
3.2 Fabrication of Composites 47
3.2.1 MWCNT/PEO 50
3.2.2 MWCNT/PVA 54
3.2.3 MWCNT/PVA/ZnO Solution Preparation 55
3.3 Preparation of Nano-Sized ZnO by Ball Milling 55
3.4 Characterization 60
3.5 Experiment Setup Application as gas Sensor 60
3.6 Resistance Measurement 62
3.7 References 63
Chapter 4 Results and Discussions

4.1 Introduction 64
4.2 Characterization by Fourier Transform Infra-red (FTIR) 64
4.3 Scanning Electron Microscope (SEM) 67
4.4 Application of Nanocomposites as Methanol Sensor 71
4.4.1 MWCNT/PEO Composite 71
4.4.2 MWCNT/PVA Composite 74
4.4.3 MWCNT/PVA and ZnO Composite 84
4.5 References 98

Chapter 5 Conclusion

5.1 Conclusion 99
5.2 Suggestion for Future Work 100
List of Figures

Figure 1.1	Crystal structures of ZnO	3
Figure 2.1	Structure of SWNTs as shown in (a) and structure of MWCNTs as shown in (b).	9
Figure 2.2	Basic hexagonal bonding structures for one graphite layer (the ‘graphene sheet’). Carbon nuclei shown as filled circle, out-of-plane π-bonds, and σ-bonds connect the C nuclei in-plane.	18
Figure 2.3	The honeycomb lattice of graphene. The hexagonal unit cell contains two carbon atoms (A and B). The chiral vector determining the structure of a carbon nanotube is given by \(L \), and its length gives the circumference. The chiral angle is denoted by \(\eta \), with \(\eta = 0 \) corresponding to zigzag nanotubes and \(\eta = \pi/6 \) to armchair nanotubes.	18
Figure 2.4	Cross sectional structure of the FET-based sensor and the experimental geometry	26
Figure 2.5	The drain current measurements as a function of time with a source drain bias of 100 mV and a gate bias of 10 V	27
Figure 2.6	(a) Schematic diagram of experimental setup. (b) Gases used in the experiment	28
Figure 2.7	Change in sensor current upon exposure to different gases	29
Figure 2.8	The basic components of FTIR system	31
Figure 2.9	Major vibration modes for a nonlinear group	33
Figure 2.10	FTIR spectra of functionalized carbon nanotubes	34
Figure 2.11	X-ray Diffraction analysis	35
Figure 2.12	Diagram of X-ray diffractometer	37
Figure 2.13	XRD patterns of (a) \(\gamma \)-Fe\(_2\)O\(_3\) and (b) \(\gamma \)-Fe\(_2\)O\(_3\) –TiO\(_2\) after heat treatment at a temperature of 400°C for 1 hour, (M – maghemite, H – hematite, A – anatase)	40
Figure 3.1	Schematic diagram for the preparation of two groups of composites	51
Figure 3.2	The photograph of (a) filter paper, (b) filter paper deposited with MWCNT/PEO composite.	53
Figure 3.3	MWCNT/PVA colloidal solutions at different loadings	55
Figure 3.4	XRD patterns of ZnO ball milled for (a) 10 hours (b) 20 hours (c) 30 hours	57
Figure 3.5	Peaks of XRD for ZnO at different time and show full width at half its maximum intensity.	59
Figure 3.6	Crystallite dimensions of ZnO sample with milling time	59
Figure 3.7	EDX spectrum of as-synthesized ZnO nanostructures	60
Figure 3.8	Experimental setup of the measuring system	61
Figure 3.9	Resistance change measured at 16.7 vol.% for various times	62
Figure 4.1	FTIR spectrum for MWCNT/PVA at different loading	65
Figure 4.2	FTIR spectrum for MWCNT/PVA and a) 1%, b)2%, c)3%, d)4% and e) 5% of ZnO.	66
Figure 4.3 SEM images for 5wt% of MWCNT/PVA at different magnifications (a) 20x, (b) 200x and (c) 500x.

Figure 4.4 SEM images for 4wt% of MWCNT/PVA at magnification of (a) 2000x (b) 5000x.

Figure 4.5 SEM image for 2wt% MWCNT/PVA.

Figure 4.6 SEM images for 1wt% MWCNT/PVA at (a) 2000x and (b) 5000x.

Figure 4.7 Shows SEM images for MWCNT/PVA/5%ZnO at (a) 20x, (b) 500x and (c) 1800x.

Figure 4.8 The response resistance of 9 wt% MWCNT/PEO at different methanol concentration of (a) 16.67, (b) 8.3, (c) 5, (d) 3.3 and (e) 1.7 vol%.

Figure 4.9 The response sensitivity of MWCNT/PEO at different methanol concentrations.

Figure 4.10 The resistance response of 1wt% MWCNT/PVA at various methanol concentrations (a) 16.7, (b) 8.3, (c) 5 (d) 3.3 and (e) 1.7 vol%.

Figure 4.11 The sensitivity of 1% MWCNT/PVA at different methanol concentrations.

Figure 4.12 The resistance response of 2% MWCNT/PVA at various methanol concentrations: (a) 16.7, (b) 8.3, (c) 5, (d) 3.3 and (e) 1.7 vol %.

Figure 4.13 The sensitivity response of 2wt% MWCNT at different methanol concentrations.

Figure 4.14 The response resistance of different methanol concentrations at: 3%wt MWCNT/PVA (a) 16.7, (b) 8.3, (c) 5 (d) 3.3 and (c) 1.7.

Figure 4.15 The response sensitivity 3%wt of MWCNT/PVA at different methanol concentrations.

Figure 4.16 The response resistance of 4wt% MWCNT/PVA at different methanol concentrations: (a) 16.7, (b) 8.3, (c) 5%, (d) 3.3 and (e) 1.7 vol%.

Figure 4.17 The response sensitivity of 4wt% MWCNT at different methanol concentrations.

Figure 4.18 The response resistance of 5wt% MWCNT/PVA at different methanol concentrations: (a) 5, (b) 16.7, (c) 8.3, (d) 3.3 and (e) 1.7 vol%.

Figure 4.19 The response sensitivity of 5wt% MWCNT/PVA at different methanol concentrations.

Figure 4.20 The response resistance of MWCNT/PVA/1%ZnO at different methanol concentrations: (a) 3.3, (b) 5, (c) 8.3, (d) 16.7 and (c) 1.7vol.%.

Figure 4.21 The sensitivity response of MWCNT/PVA/1%ZnO at different methanol concentrations.
Figure 4.22 The response resistance of MWCNT/PVA/2%ZnO at various methanol compositions: (a) 1.7, (b) 3.3, (c) 5, (d) 8.3, and (e) 16.7vol%.

Figure 4.23 The response sensitivity of MWCNT/PVA/2% ZnO at different methanol concentrations.

Figure 4.24 The resistance response of MWCNT/PVA/3%ZnO at different methanol composition: (a) 5, (b) 16.7, (c) 8.3, (d) 3.3 and (e) 1.7 vol.%.

Figure 4.25 The recorded sensitivity of MWCNT/PVA/3% ZnO at different methanol concentrations.

Figure 4.26 The resistance response of MWCNT/PVA/4%ZnO at different methanol composition: (a) 3.3, (b) 16.7, (c) 8.3, and (d) 1.7vol%.

Figure 4.27 The sensitivity of MWCNT/PVA/2% ZnO at different methanol concentrations.

Figure 4.28 The resistance response of MWCNT/PVA/5%ZnO at different methanol composition: (a) 3.3, (b) 8.3, (c) 5, (d) 16.7 and (e) 1.7vol%.

Figure 4.29 The sensitivity of MWCNT/PVA/5% ZnO at different methanol concentrations.
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>Phase composition, lattice constants (a, b, c), average size of the crystalline blocks (D) and micro-strains of heat treated γ-Fe₂O₃ and γ-Fe₂O₃ − TiO₂ samples at 400°C</td>
<td>39</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Properties of triton</td>
<td>49</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Properties of zinc oxide</td>
<td>49</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>Properties of absolute Methanol</td>
<td>50</td>
</tr>
<tr>
<td>Table 3.4</td>
<td>Facilities and materials for the experimental setup</td>
<td>52</td>
</tr>
</tbody>
</table>