Abstract

Dragonflies have been used in an extensive array of studies dealing with the functional morphology, behavior, ecology, and evolution. They have been indicated to be important in functioning as bioindicators. The major aim of this study is to investigate the dragonfly population in the Selangor areas and to conduct the analysis on the molecular systematic and phylogenetics. Field sampling was done in 22 sites for the odonate biodiversity studies and the mitochondrial gene – partial regions of NADH dehydrogenase subunit 1 (ND1) was utilized for the molecular aspects.

The results revealed a total of 1298 individuals belonging to 54 species from 9 families of Odonata which showed a significant preference for tropical lowland rainforest (TLR) in contrast to the open areas (OP). This was supported by the higher indices of richness (R) diversity (H') and evenness (E) for TLR. The phylogenetic trees were constructed from 40 samples using the neighbor joining (NJ) and maximum parsimony (MP) algorithms which were implemented by MEGA 4.0.2. One consistent result across all the analyses was the Suborder Anisoptera as a monopyletic group. Opposite to suborder Zygoptera, they were resolved clustered into 2 clusters, paraphyletic group. The distinct separation between cluster Anisoptera and Zygoptera with confidence level 72% in the NJ analyses while 90% in MP analyses.

It is suggested that ND1 gene sequences can serve as a reference for DNA-based identification purposes, especially when in doubt for the larvae identification. The population aspects provided a baseline information for the future monitoring of Odonata in the Selangor areas related to diversity, abundance, distribution as well as the effects of physical parameter of the study sites.
Abstrak

Pepatung telah digunakan dalam pelbagai kajian yang luas yang berkaitan dengan morfologi, tingkah laku, ekologi dan juga evolusi. Mereka sangat penting dalam berfungsi sebagai bioindikator. Tujuan utama kajian ini adalah untuk mengkaji populasi pepatung di kawasan Selangor dan untuk menjalankan analisis pada sistematis molekul dan juga filogenetik. Persampelan telah dijalankan di 22 lokasi untuk kajian biodiversiti pepatung dan gen mitokondria - kawasan separa NADH dehydrogenase subunit 1 (ND1) telah digunakan untuk aspek-aspek yang berkaitan dengan molekul.

Sebanyak 1298 individu telah berjaya diperolehi yang diwakili oleh 54 spesies daripada 9 keluarga Odonata, yang menunjukkan keutamaan habitat di kawasan tanah rendah hutan hujan tropika (TLR) berbanding dengan kawasan terbuka (OP). Ini disokong oleh indeks yang lebih tinggi di TLR pada nilai kekayaan (R), kepelbagaian (H') dan keserasian, (E). Pokok-pokok filogenetik telah dibina daripada 40 sampel menggunakan algoritma Neighbor-joining (NJ) dan Maximum Parsimony (MP) melalui perisian MEGA 4.0.2. Satu hasil yang konsisten di semua analisis molekular adalah suborder Anisoptera sebagai kumpulan monopyletic iaitu sebagai 1 kumpulan, berbeza dengan suborder Zygoptera yang mempunyai 2 kelompok (paraphyletic). Pemisahan antara kelompok Anisoptera dan Zygoptera adalah pada tahap keyakinan 72% dalam analisis NJ manakala 90% dalam analisis MP.

Dicadangkan urutan gen ND1 boleh dijadikan sebagai rujukan untuk tujuan pengenalan yang berasaskan DNA, terutamanya untuk mengenal pasti pepatung pada peringkat larva. Aspek populasi pepatung juga boleh dijadikan maklumat asas yang berkaitan dengan diversiti, kelimpahan dan taburan, serta kesan parameter fizikal di kawasan kajian.
Acknowledgement

Alhamdulillah. Praise upon the Most Merciful Allah for his willingness, this project has been completed.

First of all I would like to thank my supervisor, Prof. Dr. Norma Yusoff for her invaluable advice, guidance and patience throughout this project especially in the taxonomy of the Odonata. Besides, I want to express my sincere thanks to my co-supervisor, Prof. Dr. Zulqarnain Mohamed for giving me opportunity to work on this project and for the knowledge passed on to me especially on the molecular biology.

My gratitude extends also goes to Genomic Research Group especially Dr. Tan Siew Hwa and Dr. Teh Ser Huy for their assistance during this research.

I am indebted to University of Malaya for their supported by the research grants PS 286/2010A from PPP, and also indebted to National Science Fellowship (NSF) under the Ministry of Science, Technology and Innovation, Malaysia, for the master degree fellowship.

Last but not least, my sincere and heartfelt to my beloved families especially my mom Puan Maimoon bte Hj. Supari. Not to forget to my husband, DSP/KS Mohd Hairolnezam bin Kahmis, my little son, Mohd Haailulsham, and also all my friends for the motivation and support.
Table of Contents

Contents Page

PREFACE

Abstract ... ii

Abstrak ... iii

Acknowledgments ... iv

Table of Contents ... v

List of Figures ... xi

List of Tables ... xiv

List of Abbreviations ... xvi

CHAPTER ONE

1.0 Research Background

1.1 Dragonfly Biology and Taxonomy of Odonata 1

1.1.1 Suborder of Anisoptera 2

1.1.2 Suborder of Zygoptera 4

1.2 Features of Odonata .. 5

1.2.1 Physical Descriptions of Anisoptera 7
1.2.2 Physical Descriptions of Zygoptera 8

1.3 Development & Life Cycle of Odonata

1.3.1 Suborder of Anisoptera 10

1.3.2 Suborder of Zygoptera 12

1.4 The Important of Odonata 14

1.5 Diversity & Distribution of Odonata 16

1.6 Historical of Classification of Odonata 19

1.7 Identification of Odonata 23

1.8 Molecular Systematics

1.8.1 Phylogenetic Species Concept 26

1.8.2 Mitochondrial DNA Genes 28

1.9 Significance of Study/Justification 31

1.9.1 Objectives ... 31

CHAPTER TWO

2.0 Research Methodology

2.1 Sampling Sites .. 32

2.2 Sampling Methods ... 38
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3 Preservation Methods</td>
<td>39</td>
</tr>
<tr>
<td>2.4 Phylogenetic Study</td>
<td></td>
</tr>
<tr>
<td>2.4.1 DNA Extraction and PCR amplification</td>
<td>40</td>
</tr>
<tr>
<td>2.4.2 Purification of PCR Products</td>
<td>45</td>
</tr>
<tr>
<td>2.4.3 Sequencing and Analysing</td>
<td>46</td>
</tr>
<tr>
<td>2.5 Statistical Analysis</td>
<td>47</td>
</tr>
</tbody>
</table>

CHAPTER THREE

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0 Diversity & Sequence Results of Odonata</td>
<td></td>
</tr>
<tr>
<td>3.1 Diversity and Distribution of Odonata in Selangor</td>
<td>49</td>
</tr>
<tr>
<td>3.2 Habitat Distribution of Odonata in Selangor</td>
<td>54</td>
</tr>
<tr>
<td>3.3 Analysis and Characterization the Potential of ND1 Genes</td>
<td></td>
</tr>
<tr>
<td>3.3.1 PCR Amplification</td>
<td>60</td>
</tr>
<tr>
<td>3.3.2 PCR Purification</td>
<td>62</td>
</tr>
<tr>
<td>3.3.3 Sequence Analysis</td>
<td></td>
</tr>
<tr>
<td>3.3.3.1 Sequence Reading</td>
<td>63</td>
</tr>
<tr>
<td>3.3.3.2 Sequence Editing</td>
<td>68</td>
</tr>
<tr>
<td>3.3.3.3 Sequence Alignment</td>
<td>71</td>
</tr>
</tbody>
</table>
3.3.4 Base Nucleotide Composition 72
3.3.5 Nucleotide Substitution 75
3.3.6 Genetic Distance Evaluation 76
3.4 Phylogenetic Relationship Among the Taxa 79

CHAPTER FOUR

4.0 Discussion

4.1 Diversity and Distribution of Odonata in Selangor 83
4.2 Preferred Habitats of Odonata in Selangor Areas 85
4.3 Analysis and Characterization the Potential of ND1 genes

4.3.1 PCR Amplification & PCR Purification 91
4.3.2 Sequence Analysis 93
4.4 Phylogenetic Relationship Among the Taxa 96

CHAPTER FIVE

5.0 Conclusion ... 99

REFERENCES ... 102
APPENDICES

Appendix 1: Odonata genome reported from GenBank using

ND1 region .. 123

Appendix 2: Net used for catch the odonates................................. 127

Appendix 3: Pinning process for preservation purpose 127

Appendix 4: Odonates were pinned in the pinning box 128

Appendix 5: Odonates were deposited to Museum of Zoology,

University of Malaya 128

Appendix 6: Total number of individuals for all species caught within

the family groups and suborder 129

Appendix 7: Composition of odonates sampled for each category of

study sites in Selangor .. 132

Appendix 8: Sequence Fragment Obtained from one of the samples (A10)

Ambiguous region trimmed in sequence analysis. Only

sequence between two arrows were used in the analysis…… 134

Appendix 9: Nucleotide Frequencies for Conserved Sites for all

Samples ... 135
Appendix 10: Nucleotide Frequencies for Variable Sites for all Samples 136

Appendix 11: Nucleotide Frequencies for Parsimony-informative Sites for all Samples 137

Appendix 12: Nucleotide Frequencies for Singleton Sites for all Samples 138

Appendix 13: Transition and Transversion Rate .. 139

Appendix 14: Blast Result for Pantala flavescens .. 140

Appendix 15: Blast Result for Trithemis aurora .. 144

Appendix 16: Blast Result for Trithemis festiva .. 148
List of Figures

<table>
<thead>
<tr>
<th>Figures</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Development of Odonata (Dragonfly & Damselfly)</td>
</tr>
<tr>
<td>Figure 2</td>
<td>The Relationship Proposed by Mackerras (1970)</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>The Relationship Proposed by Hennig (1981) & Kukalova Peck (1991)</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>The Relationship Proposed by Kristensen (1981, 19991), Wheeler (1989) and Bechly (1996)</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Interpretation of Fraser’s Tree</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Trueman’s Tree</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Phylogeny of Odonata according to Rehn (2003)</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Wing Venation of Dragonflies (Anisoptera)</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Wing Venation of Damselflies (Zygoptera)</td>
</tr>
<tr>
<td>Figure 4</td>
<td>The Fragment of \textit{NADH dehydrogenase 1} region, including \textit{Partial of 16S rDNA and tRNA}^{\textit{Leu}} sequence</td>
</tr>
<tr>
<td>Figure 5</td>
<td>Map of Sampling Sites</td>
</tr>
</tbody>
</table>
Figure 6 Percentage Number of Families for All Species Samples …… 49

Figure 6.1 Percentage (%) of Individuals for All Species
 Of Suborder Anisoptera 50

Figure 6.2 Percentage (%) of Individuals for All Species of
 Suborder Zygoptera 52

Figure 7 The Total Number of Species and Individuals Found in Every
 Sampling Locality 55

Figure 8 Total Number of Individuals of odonates in Each Category
 Of Study Sites 56

Figure 9 Species Richness (R), Diversity (H'), and Evenness (E) of
 Odonates Community in Selangor 58

Figure 10 Example of Amplification Products 60

Figure 11 Example of Purified PCR Product 62

Figure 12 Comparison of ND1 Sequences Data of Various
 Species in Odonata 64

Figure 12.1 Comparison of Sequence Obtained (Pantala flavescens)
 With Previously Published Sequences (Accession
 Number: GU 323081) 65
Figure 12.2 Comparison of Sequence Obtained (Trithemis aurora)
With Previously Published Sequences (Accession
Number: GU 323085) 66

Figure 12.3 Comparison of Sequence Obtained (Trithemis festiva)
With Previously Published Sequences (Accession
Number: GU 323099) 67

Figure 13 No. of Trasversional (tv) and Transitional (ti) Substitution
Plotted Against Sequence Divergence (Calculated Using
Maximum Likelihood Distance) for 42 Samples in the
ND1 Region .. 76

Figure 14 Neighbor-joining Phylogram 81

Figure 14.1 Maximum Parsimony Phylogram 82
List of Tables

Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>Difference between the Adult of Anisoptera and Zygoptera</td>
</tr>
<tr>
<td>Table 2</td>
<td>Species Richness and Endemicity of Odonate Families in Peninsular Malaysia and Sabah-Sarawak</td>
</tr>
<tr>
<td>Table 3</td>
<td>Collection Sites of Odonates in Selangor, Malaysia</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>The Descriptions of Each Sampling Site Together With The Hydrochemistry Readings</td>
</tr>
<tr>
<td>Table 4</td>
<td>Composition Proportion of PCR Master Mix</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Temperature Profile for PCR Amplification</td>
</tr>
<tr>
<td>Table 5</td>
<td>Categorisation of Species Status According To The Classification of Very Rare, Rare, Scarce, Common, Abundant & Very Abundant</td>
</tr>
<tr>
<td>Table 6</td>
<td>Environmental factors Measured on Odonata for Each Category of Habitat</td>
</tr>
<tr>
<td>Table 7</td>
<td>DNA Sequences Length Obtained from Different Odonata Species</td>
</tr>
</tbody>
</table>
Table 7.1 \textit{ND1} Gene Alignment Showing Total Alignment

Length Number of Conserver Sites, Variable Sites, Singleton Sites, Parsimony-informative Sites and Average Nucleotide Frequencies 71

Table 8 Nucleotide Composition of Partial 16S rRNA, tRNA\text{Leu}^\text{L}

And \textit{ND1} Region of Sampled ... 72

Table 8.1 Tajima’s Neutrality Test for 42 Sequences 74

Table 9 Maximum Composition Likelihood Estimate of the Pattern of Nucleotide Substitution 75

Table 10 Pairwise Distance between Species 78
List of Abbreviations

- ~ ... Approximately
- °C ... Degree celcius
- -ve Negative
- bp .. Base pairs
- µg .. Microgram
- µl .. Microliter
- µM .. Micromolar
- A ... Adenine
- C ... Cytosine
- COI ... Mitochondrial Cytochrome oxidase 1 gene
- dH2O Desterilized water
- DNA ... Deoxyribonucleic acid
- DNase Deoxyribonuclease
- dNTP .. Deoxyribonucleotide triphosphate
- *et al.* ... Others
- EtBr ... Ethidium bromide
- fw ... Forward
G .. Guanine

g .. Gram

GPS ... Global Positioning System

H' ... Shannon Weiner Index

HCl ... Hydrochloric acid

Leu .. Leusine

M .. Molar

mg ... Miligram

Mg$^{2+}$ Magnesium ions

MgCl$_2$ Magnesium chloride

ml ... Mililiter

mM ... Milimolar

MP ... Maximum Parsimony

mtDNA Mitochondrial Deoxyribonucleic acid

NDI ... NADH dehydrogenase 1

ng ... Nanogram

nm ... Nanometer

PCR .. Polymerase chain reaction

RAPD .. Random Amplification of Polymorphic DNA
rev .. Reverse

rpm .. Rotations per minute

rRNA .. Ribosomal RNA

T .. Thymine

Taq .. Thermus aquaticus

TBE .. Tris – Borate EDTA

T_m ... Melting Temperature

tRNA .. Transfer RNA

UV ... Ultraviolet

V ... Voltage