Chapter 3: Methodology

3.1. Data and Definition of Variables

Oil prices are measured using the Producer Price Index for fuels, for the
Malaysian domestic economy. Economic activity, in other words, industrial
output is measured using the proxy, Index for Industrial Production. Both
figures are published by the Department of Statistics. Interest rates are
measured using the 3-month Bank Negara Treasury Bill. Stock market activity
is represented by the general stock market index, the Kuala Lumpur
Composite Index (KLCI). Real stock return is denoted by rsr, which is
calculated by taking the difference between continuously compounded return
on the KLCI and the domestic inflation rate, computed based on the
Consumer Price Index (CPI). All financial data are obtained from

publications by the Central Bank, Bank Negara Malaysia.

Data are logarithmically transformed and the variables of concern are:

Inppi = natural log of Producer Price Index

Inipi = natural log of Industrial Production Index
Inthill = natural log of the 3-month Treasury Bill
rsr = real stock return

Monthly data are obtained for the period 1990:1 — 2000:12.
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3.2. Test of Unit Root, Order of Integration and Cointegration

Before any regression can be performed on a time series, it is necessary to
identify the order of integration of each variable because if the time series are
processes containing unit roots, the application of standard classical regression

approach may yield spurious results.

A time series process is called stationary if the mean and the variance are
constant over time and the covariance between the values of the process
between two points, say ¢ and s, depends only on the distance between these
two points and not on the time period itself. Unit root test was first introduced
in the studies of Fuller (1976) and Dickey and Fuller (1979) but it does not
take into account the possibility of autocorrelation in the error term, &,
However, the modified Augmented Dickey-Fuller (ADF) test, which involves
running a higher order autoregressive regression, would take this into account.
It can also be used together with a time trend component to allow for
deterministic trend, The ADF test regression used in this study takes the

form of®

m

Ax,=p+ﬂt(time)+8x...+Z§iAx..i+e. (3.1)
|-

where A is the first difference operator and & is a stationary random error. tis
the trend term and m is the number of lags of AX, included, which is iid(O,cz).

The objective is to test if 3 is not statistically different from zero. The lags of
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AX, are included to account for high-order serial correlation in the series as
this makes a parametric correction by assuming that the X, series follows an

autoregressive process. The Dickey-Fuller t, statistics is:

ta = g / s.e.(é\) (3.2)
The distribution of t, under the Hy does not follow a t-distribution but the
empirical distribution tabulated by MacKinnon (1991). The hypothesis tested
is:

Hy: 6=0 against

H;: 8 <0
If § = 0, the time series X is stationary, or integrated of order zero I(0). If the
null hypothesis cannot be rejected, in the level form, we try again by running
the equation for the next higher-order of differencing for presence of unit root
in the first differences of the variables. To reject the null hypothesis, the
coefficient & must be statistically significant and larger in absolute terms than
the critical values proposed by Mackinnon (1991). Rejection of the null
hypothesis in the case of testing for unit roots in the first difference implies

that the series X, is integrated of order one I(1).
Oil price, industrial production, interest rates and stock market (Inppi, Inipi,
Intbill, rsr) are subjected to ADF test at levels and then, at first differences

(Alnppi, Alnipi, Alntbill , Arsr) for lags, m =0, 1, 3, 6, and 12.
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If the variables of interest themselves are not stationary, it is then important to
examine if any linear combination of the variables is stationary. To do this,
the test of cointegration is used. Cointegration is a technique used to avoid
spurious regression and the same time being able to identify long-run
relations. Cointegration can be defined as: “cointegration exists between two
or more time series if one or more linear combinations of different

nonstationary time series produce stationary time series.” Norgaard et. al.

(1999).

In this paper, cointegration test is conducted on the variables to check for
long-term relationship between the variables of the same order of integration.
The cointegration test follows the “Johansen’s maximum likelihood
procedure” (Johansen and Juselius, 1990; Johansen 1995) which allows
estimation of multiple cointegrating vectors in a multivariate framework. Let
Y = Y Yo, covenen , Ym). Say, each of the component variable is I(1).

Therefore, a VAR(p) ( vector autoregression of order p) model for Y. is:

Yi=A1 Y t A Yt + Ath.p (3.3)
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The VAR in (3.3) can also be written as;

p-1
AY, =TI Y. + & [ AY + & (3.4)

i=1

The cointegration test is premised on finding the existence of long-run
relationships, and how many if exist. Let r be the number of long-run
cointegrating relationships. The Johansen’s maximum likelihood procedure

involves the following hypothesis:

Hy: r= 0 ( i.e. for no cointegrating relationship) against
H,: r> 0 (i.e. at least one cointegrating relationship)

If Hqcannot be rejected, i.e r = 0, we can conclude that the model is;
p-1

AY, =TI Y, + 2 T{AYi +& 3.5)

i=1

That is, it is the VAR model and no cointegration is found among the
elements of Y, If we reject the null hypothesis of r = 0, the test is continued

by testing for more than one cointegrating relationship as follows:

Ho: r=1 (i.e. at least 1 cointegrating relationship) against

H;: r> 1 (i.e. more than 1 cointegrating relationship)
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The Johansen procedure requires that the process be repeated until a non-
rejection is obtained. The statistic used for the cointegrating test is the

likelihood ratio trace test, whereby the test statistic is given by:

m

Q- =-N X [log(1-A)] (3.6)

i=r+1

where r is the hypothesized number of cointegrating vector under Hy and A; is
the i-th largest eigenvalue. The critical values for the trace test is given by

Osterwald-Lenum (1992). If Q; is greater than the critical value, then the null

hypothesis is rejected.

For any value of 0 < r <m, at least one cointegrating relationship exists, the
model that is used should incorporate this long-run relationship. Such models
is known as the Error Correction Model (ECM). For this study, Y\’ = [Inppi,

Inipi, Intbill].

3.3. Vector Autoregression (VAR)

If no cointegrating relationships are found in section 3.2., a VAR model may
be recommended. Traditionally, regression analysis defines one dependent
(endogenous) variable and several other independent (exogenous) variables.
However, in the real world, the variables are quite often dependent on each
other thus, they are, in fact, endogenous. This is an important implication for

the statistical treatment of the time series. It requires estimation of a system
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of equations or otherwise, we risk loosing information, encountering
biasedness, obtaining inefficient estimates and incurring invalid inferences.
Hence, a dynamic statistical model such as VAR(p) is used. Let Y, = [Yyy,

) O TR » Ym], where all the component variables are I(0). Define the

VAR(p) to be:

Y( = A() + AlYl-l + AzY(.z g T, + Ang.p + €y (3.7)
Agis amx 1 vector of constants and A; is a m x m matrix of parameters, j = 1,

2,3, , p- The model can be written as;

p P
Yi=ap +Zal11,j Vit * Z?lmd Ymej +Eu
J- J-

p P
Ya=ay + Zi}zu b T L Je— + Zt}sz Ymej t+ea
j= j=

.

p P
Ymt=8mo + Zalml,j Yl.t-j T pamena + Z_a;nm.j Ym,t-j + Emt
J= j=
The VAR(p) is in its unrestricted form, treating all variables as endogenous

and imposing no constraints based on supposed a priori knowledge. In the

case of this study, Y\’ = [4lnppi, Alnipi, Alntbill, rsr].

To determine the optimal lag length, six versions are estimated where, m = 1,

2, 3, 4, 5, and 6-lag versions, Then, the optimal lag length is given by the
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model with the minimum value of the Akaike Information Critierion (AIC) or,

Bayesian Schwarz Criterion (BIC) defined as;

A
AIC=In |2 | +2kn (3.8)

A
BIC= In |2 | + k[(Inn)/n] (3.9)

where k is the total number of parameters (including the constant) in the
A
system and X is the variance-covariance matrix of the system residuals.

3.3.1 Impulse Response Function( IRF)

The impulse response function (IRF) traces the path that a variable, in a VAR
system, follows if it is kicked by a single unit of shock, €. That is, €& = 0, 5=
1, & = 0 for j # 0. So, the impulse response function for say, a VAR(1)
system:

Y= AY,., + Cg, (3.10)
Then, the response function would be:

C, AT, AXC ureers KCiuicins (3.11)
for0, 1,2, ...... period ahead after the shock has taken place. A and C are
matrices so the above formula can capture the complicated dynamics of any
infinite order of VAR. One would expect the impulse response to decay in

sine waves after the initial shock. The purpose of this investigation is to find
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out how much each of the variables namely, /nipi, Intbill and rsr respond to

shocks in oil price changes, Alnppi.

3.3.2. Variance Decomposition(VDC)

The forecast-error of the variance decomposition (VDC) analysis reveals
information about the proportion of the movements of a variable in sequence
of time due to its ‘own’ shocks (say, €amppir) and due to shocks of other
variables ( €.8., €xmipi, ) included in the model. If the shocks of other variables
do not explain the forecast error variance of one of the variables say, Y, then,
Y\, is an exogenous variable. On the other hand, if the shocks can explain in
all the forecast error variance of Y, at all forecast periods, then Y}, is an

entirely endogenous variable. Let the VAR be:

Y, =Ag + AQ)Y + & (3.12)
where, g ~ (0, ). Stationarity ensures that the equation (3.12) is invertible so
that we can compute the moving-average representation:

Y= (1-(AQ)) Ao+ (1- AQW) e, (3.13)
Since the covariance matrix T of the VAR disturbances, €, is non-diagonal, it

is impossible to decompose movements in the component of Y, into

innovations. However, this can be rectified as for any positive semi-definite
nonsingular T there always exist a decomposition Z = VV’, where V is the
lower triangular orthogonal matrix, so that the equation (3.13) can be

transformed to:
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Y= (I-(AW) Ao+ (I1-AQ) ' Vi

o

= po+ 2 Cybles (3.14)

s=0

where i ~ (0,I). In equation (3.14), p's are contemporaneously uncorrelated
and it becomes possible then to examine the responses to innovation in each

variable in the system.

In summary, the VDC will list the proportion of the s-steps ahead forecast

error of Y, explained by (gi, gn) for different values of s. If the VDC

..........

shows a variable due to shocks in other variables is large, it means that the

shocks are an important determinant of this variable.

3.3.3 Variance-Covariance and Correlation Matrices of Residuals

The ordering of the variables in the analysis of IRF and VDC does alter the
results for both the IRF and VDC, but the choice of ordering is usually made
theoretically.  Sadorsky (1999) says that although the effect of ordering is
statistically insignificant in his case, he recommends the order of: interest rate,
oil price (or, the oil price volatility), industrial output and stock returns. This
ordering assumes that the monetary policy shocks are independent of

contemporaneous disturbances due to other variables.
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In this study, the variance-covariance and correlation matrices of the residuals
are computed to examine if the relationships between different series are

significant, If the results show no or, weak relationship among the residuals,

then the ordering does not matter.
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3.4. Oil Price Volatility

In the preceding discussions, the VAR for oil price changes does not isolate
the volatility of oil price shocks from the model. It may, therefore, be
worthwhile to extend the study by using a low-order Generalised Conditional
Heteroskdastic (GARCH) model to examine the growth rate of oil prices, as
suggested by Sadorsky (1999). Thus, a GARCH model is used to construct
the conditional variation in oil prices, which in turn is used to compute

normalized unexpected movements in oil prices.

3.4.1. GARCH models

In this study, a low order GARCH (1,1) for oil prices is fitted. The model is:
Alnppiy = p + LBiAlnppiy; + & (3.15)

where;
g, follows that the distribution of N(0, hy),
hy = ag + 0ig%1 + ohey,
L., is the information set available at time t-1.

A A

The residuals of the random variable is denoted by & ( & = Alnppi; — E

(Alnppi, |I(.1) where E is the expectation operator. This way, we can isolate
the unexpected oil price shock or, volatility. Both the magnitude and the

volatility is reflected in the forecast error, €:

ve=g/h'? (3.16)
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The GARCH equation (3.15) is fitted for different lags, m =1, 2, 3, 4, 5, and
6. The coefficients that are significant are selected. The selected model is
then tested to ensure that it is sufficient to capture the Autoregressive

Conditional Heteroskedasticity(ARCH) effect.

3.4.2. Testing for ARCH Effects
Like most economic time series, oil prices tend to be volatile. We have to
ensure that the volatility variable, v, has been satisfactorily isolated in the

GARCH model and that when the VAR model is estimated it is not plagued

with heteroskedasticity.

This is done by using what is known as the Lagrange Multiplier
Autoregressive Conditional on Heteroskedasticity test or, simply LM ARCH

test. This test is discussed for a general regression model:

Yi=B+BaXat . + BrXie iy (3.17)

The ARCH model proposed by Engle (1982) makes the assumption that
conditional on the information available at time t-1, the disturbance term is

distributed as:

me~N [0, (oo +ouplir)] (3.18)
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Normality of distribution remains but now, the variance p; is dependent on the
squared disturbance of time period t —1, thus giving the appearance of serial

correlation. In general, the ARCH (p) process is written as;

var( ) = 02, =0 + 0L ;,th-l + azu2(.2 o + apuzt-p (3.19)
If there is no autocorrelation in the error variance then, the hypothesis of Hp :
o =0 =03 = .ouaee = ap = 0 holds true. Acceptance of the null hypothesis
suggests that var(,) = op, which is a constant. The error variance is then,
homoskedastic. The preceding null hypothesis can easily be tested by running
the following regression:

=0+ oy p.zt-l + a2p2(.2 e T TETTPRp + app.zt.p (3.20)
where 1, denote the residuals estimated from the original regression model.
The test statistic is given by nR? where R? is the coefficient of determination

for equation (3.20), and it is distributed by y2 under Ho.

In this study, the equation (3.20) is fitted forp =1, 2, ...... , 6 to check for

presence of ARCH.
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3.4.3. Responses to Qil Price Volatility

This research paper also examines the responses of industrial output, interest
rates and real stock returns to oil price volatility. Once the price volatility has
been isolated in Section 3.4.1., the same methodology for responses of these
variables to oil price changes is applied. For this purpose, the VAR model of

(3.7) is now run on Y, = [v, Alnipi, Alntbill, rsr].
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