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ABSTRACT 
 

IMs are an important part of the industry as they provide convenience through their 

simple construction and a minimum maintenance. In addition they are highly rigid and 

reliable. They are mostly used in compressors, fans and pumps, but their usage has 

progressed to a much advanced level such as, aircrafts, space shuttles and military 

applications. These operations are crucial and cannot tolerate compromise in reliability 

and safety. 

This thesis aims at exploring the fault tolerant control of the IMs. This involves sensor 

based closed loop vector control for a healthy IM, Variable frequency with constant 

flux(V/F) closed loop  for both stator open winding and stator short winding  faults , 

V/F open loop to control the drive in case of minimum voltage   fault and using the 

sensorless vector control in case of encoder faults. 

The model that has been suggested for the fault tolerant control has been verified 

through a 0.5 hp IM with the inclusion of condition monitoring and protection against 

the above faults. A platform of more than 13 trips has been included in this work. The 

faults will be classified according to the location, severity and the time. The speed for 

the sensorless vector control and closed loop V/F controllers is evaluated through the 

model reference adaptive control estimator. There are two steps in the fault tolerant 

control process; in the first step the fault is identified with the feature extraction 

module, a fault decision module and a feature cluster module. After that the controller is 

redesigned accordingly. In this work however, the fault protection is an additional 

feature of the control system, where the wavelet based fault tolerant system has been 

tested and simulated using a 1kW IM, which has a short stator winding and sensor 

faults, while the primary faults are open stator winding. The additional fault presented 

to the system is under voltage. 
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The wavelet packed decomposition covers the transient and steady state regions of the 

IM operations with respect to both time and frequency domain. The motor features are 

extracted through the proposed Discrete Wavelet Transform (DWT) based analysis 

method, while the wavelet inlet acts as an expert tool to adapt the right controller in 

accordance with the fault type. The fault detection algorithm identifies the time and 

location of each fault. The optimal levels of decomposition of the stator current error 

signal and mother wavelet function are selected with the help of the maximum entropy 

and description length data. The effect of faults and the effectiveness of the fault 

tolerant algorithm is demonstrated by observing the speed response of the induction 

machine, which is the strategy adopted by the majority of researchers in this area. 

The reliability and the effectiveness of the proposed DWT based fault tolerant controller 

will be confirmed by the simulation and experimental results on the 1kW IM. This will 

further ascertain the effectiveness of the controller for high performance motor drive 

applications in the industry. 
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ABSTRAK 

Motor induksi merupakan sebahagian penting bagi industri ini kerana mereka 

menyediakan kemudahan melalui pembinaan mudah dan penyelenggaraan minimum. 

Di samping itu mereka adalah sangat tegar dan boleh dipercayai. Mereka 

kebanyakannya digunakan dalam pemampat, kipas dan pam, tetapi penggunaan mereka 

telah berkembang kepada tahap yang lebih maju seperti, pesawat, kapal angkasa dan 

aplikasi tentera. Operasi-operasi ini adalah penting dan tidak boleh bertolak ansur 

dengan sifat tolak ansur dalam kebolehpercayaan dan keselamatan. 

Tesis ini bertujuan untuk meneroka kawalan bersalah toleran motor induksi. Ini 

melibatkan langkah-langkah seperti menggunakan sensor kawalan vektor untuk motor 

aruhan yang sihat, motor aruhan berlebihan, V / F gelung tertutup bagi kedua-dua 

penggulungan pemegun terbuka dan kerosakan penggulungan pendek pemegun, V / F 

gelung terbuka untuk mengawal memandu dalam kes daripada kesalahan minimum dan 

menggunakan kawalan vektor sensorless dalam kes kerosakan pengekod. 

Model yang telah dicadangkan untuk mengawal kerosakan yang toleran telah disahkan 

melalui motor 0.5 induksi Hp dengan kemasukan pemantauan keadaan dan 

perlindungan terhadap kerosakan di atas. Sebuah platform lebih daripada 13 perjalanan 

telah dimasukkan ke dalam kerja-kerja ini. Kebatilan akan dikelaskan mengikut 

keterukan lokasi dan masa. Kelajuan kawalan vektor sensorless dan gelung tertutup V / 

F pengawal dinilai melalui penganggar model kawalan rujukan penyesuaian. Terdapat 

dua langkah-langkah dalam proses kawalan toleran bersalah; dalam langkah pertama 

bersalah dikenalpasti dengan modul penyarian sifat, modul bersalah keputusan dan 

modul ciri kelompok. Selepas itu, pengawal direkabentuk semula dengan sewajarnya. 

Dalam kerja-kerja ini bagaimanapun, perlindungan bersalah merupakan ciri tambahan 

sistem kawalan, di mana salah sistem berasaskan wavelet toleran telah diuji dan 
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simulasi menggunakan motor induksi 1Kw, yang mempunyai litar pintas untuk 

penggulungan pemegun dan kerosakan sensor, manakala sekolah rendah kerosakan 

adalah terbuka. Salah tambahan yang dibentangkan kepada sistem voltan yang 

minimum. 

Penguraian wavelet yang dibungkus meliputi kawasan negeri yang fana dan mantap 

operasi motor aruhan berkenaan ke semasa dan domain frekuensi. Ciri-ciri motor 

diekstrak melalui Diskret Api Tanah yang dicadangkan Transform (DWT) kaedah 

analisis berasaskan, manakala masuk wavelet bertindak sebagai alat pakar untuk 

menyesuaikan diri pengawal yang betul mengikut jenis kesalahan. Algoritma 

pengesanan kesilapan mengenal pasti masa dan lokasi setiap daripada kesalahan. Tahap 

optimum penguraian isyarat ralat pemegun semasa dan ibu fungsi wavelet dipilih 

dengan bantuan entropi maksimum dan data panjang description. Kesan kerosakan dan 

keberkesanan algoritma kesalahan toleransi yang ditunjukkan oleh memerhatikan 

sambutan kelajuan mesin aruhan, yang merupakan strategi yang diterima pakai oleh 

majoriti penyelidik dalam bidang ini. 

Kebolehpercayaan dan keberkesanan pengawal salah toleransi yang dicadangkan akan 

disahkan oleh simulasi dan keputusan eksperimen motor aruhan 1Kw. Ini akan terus 

memastikan keberkesanan pengawal dari segi aplikasi berprestasi tinggi dalam sistem 

pemacu motor. 
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In the name of Allah, the Beneficent, the Merciful (1). 

Say: "Verily, my Lord hath guided me to a way that is straight, - a religion of right, - the 

path (trod) by Abraham the true in Faith, and he (certainly) joined not gods with Allah." 

((161)). Say: "Truly, my prayer and my service of sacrifice, my life and my death, are 

(all) for Allah, the Cherisher of the Worlds: ((162)). No partner hath He: this am I 

commanded, and I am the first of those who bow to His will ((163)). Say: "Shall I seek 

for (my) Cherisher other than Allah, when He is the Cherisher of all things (that exist)? 

Every soul draws the meed of its acts on none but itself: no bearer of burdens can bear 

the burden of another. Your goal in the end is towards Allah. He will tell you the truth 

of the things wherein ye disputed." ((164)).  

The Holy Quran, chapter 6, verse 161-164. 
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Chapter 1: Introduction 

1.1 Background  

The literature review has revealed many control techniques for the IM drives. The 

vector control is the most frequently used technique for a high performance IM drive 

system. This is applicable over a wide speed range. The rotor position feedback and the 

motor current feedback have been incorporated in the controllers. The need for position 

feedback is eliminated through the use of sensorless vector control, but its efficiency is 

compromised at low speeds. In case of non maintenance of the rotor flux, the scalar or 

V/F control methods are used. The decoupled torque and flux control are not permitted 

through these methods. 

In the recent times demand for high performance variable speed drive has been 

increasing rapidly. As a result more sophisticated control methods have been designed. 

This thesis has also chosen to focus on the IM due to its benefits in terms of cost, size, 

efficiency and low maintenance. 

The fault is identified under two categories; model based or physical based. The 

mathematical models are effectively used in the model based diagnosis. There are 

various methods applied with respect to the various faults identified. The least used is 

the model based on the time series prediction for the detection of faults in the IMs. 

Sometimes the models are not at all used, but instead the fault is detected through limit 

checking or classification. Majority of the papers may seem to favor the use of a 

physical model as it offers an additional benefit of containing physical variables. But at 

times accuracy is compromised in gaining physical relevance. For instance, inaccurate 

results may be obtained when the converter fed voltages are induced in the physical 

based models. Therefore, the physical based models may not provide accurate results 

when identifying a fault from the stator current and applied to the rotor and stator faults. 
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Another system, known for its sophisticated control functions and high standards of 

system integrity through a unified framework, is the Fault Tolerant Control (FTC). This 

system automatically accommodates the system failure parameters. The fault tolerant 

control is vital to functions such as, power plants, machines, refineries, flight control 

and computer networks (Ahmad Akrad M. H., 2011). Designing a fault sensitive 

controller which is also robust at the same time is the greatest challenge in a fault 

tolerant control system (Zhang Ren, 2011).  

The FTC systems can be of two types; passive or active (Liang Tang, 2008). The active 

type will act in accordance with the fault detected and the isolation unit to perform the 

correct functions. On the other hand, the passive type will function independently, 

irrespective of any fault data and will use the controller’s robustness. 

Although many types of the methods are available to deal with the active FTC such as, 

linearization feedback, control law rescheduling, linear quadrature method, Eigen 

structure assignment method, Pseudo inverse method, neural network, model predictive 

control MPC, norm optimization and four parameter controller, this work will focus on 

the switching between the redundant controllers to achieve the fault tolerant control 

with high efficiency. 

To achieve high performance of the IM drives, the close loop vector control technique is 

used. By controlling the torque and the flux component separately, the torque control of 

the IM is achieved. In the V/F control there is no need of any current or speed 

measurements. Thus, the V/F controlled drives are made more robust by restricting to 

low dynamic performance. 

The wavelet principles are now efficiently utilized in the IM fault diagnosis and 

protection, all owing to the advancements in the signal processing technology. All the 

data is easily extracted in the time and frequency domains, through the wavelet 

technique. In addition, it also provides a more sensitive method of detection as 
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compared to other signal processing methods available such as Fourier Transform. The 

wavelet technique is attracting the scientist’s attention owing to its dynamic property of 

multi resolution analysis and good time localization. Features such as extraction 

module, fault decision module and feature cluster module are present in the wavelet 

based fault diagnosis technique. 

The active fault tolerant control is based on the fault detection and isolation unit as the 

key component. An analyzer of the machine parameters should be part of a good FDI 

unit. Besides the wavelet index, the negative sequence current and impedance are also 

good fault indicators for many methods of the fault diagnosis of induction. 

1.2 Basic Fault Tolerant Terminology 

The following important terms will be used frequently in this thesis: 

Fault: A fault is a deviation of at least one characteristic property or parameter of the 

system from the usual or the standard condition that is not tolerable (Inseok Hwang, 

2010). 

Failure: A failure occurs when a system’s ability to perform a function is compromised 

or interrupted permanently (Isermann, 2011).  

Disturbance: A disturbance is said to occur when the system is subjected to an unknown 

input which causes the system to deviate from the current state. 

Symptom: Symptom is a change in the quantity from the normal behaviour as observed 

that is an effect of a fault that is observable. 

Reliability: Reliability is the ability of a system to function under the stated conditions. 

Availability: The probability of a system to operate efficiently at any time is termed as 

availability. 

Safety: A system is safe when it has the ability to function without causing harm to the 

people or the environment or the equipment. 

Fault identification: To evaluate the fault’s type. 
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Maintainability: A system’s requirement to repair and the ease with which these repairs 

can be made is termed as maintainability. 

Fault detection: To detect a malfunction as soon as possible with surety. 

Fault isolation: In fault isolation, by isolating the system components operating at 

nominal mode the root cause is identified. 

Prognostic: To predict the development of the IM status and the gradual development in 

the motor is known as prognostic. 

Diagnostic: To determine the size, type, location and time of a fault. 

Fault tolerant control: The ability of a system to continue with its normal operations in 

the presence of hardware or a software fault is termed as fault tolerant control. Some 

extent of redundancy is also included in it. 

Monitoring: It is a continuous real time task, which records the data recognizing and 

indicating the anomalies of the behaviour, to determine the conditions of a physical 

system. 

Protection: It is a way to prevent the system from being effected by a potentially 

dangerous behavior of the system. It also prevents the effects of a dangerous behavior. 

1.3 Objectives of the Study 

The objective of this thesis is to design a fault tolerant control with the following 

features:  

1. Reconfigurable fault tolerant controller algorithm based on the discrete wavelet 

transformation, which is efficient 

2. Fault detection and isolation of the IM and sensor faults.   

3.  Switching mechanism to allow smooth transition between the controllers.  

4. To prevent motor damage through a protection circuit. 

The following considerations should be included in the fault tolerant control system, 
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1. To ensure safety, the integrity of the system should be considered. 

2. Performance or the design specifications. 

3. Redundancy, which includes the physical and financial constraints. 

1.4 Contributions 

The following contributions have been made: 

1. Low cost fault tolerant approach that is able to deal with any sort of the IM 

faults. 

2. Closed form of the analytical solution for the voltage to frequency controller has 

been used to improve the speed performance. 

3. Boosted Model Adaptive Reference System (BMARS) has been developed to 

evaluate the motor speed for sensorless vector control and V/F control. 

4. Wavelet based fault prognosis to be early stage of alarm of stator open winding 

and stator short winding faults when its reach 50% and 90% of its intensity. 

5. The smooth transition between the controllers has been achieved by the novel 

switching techniques from sensor vector control to sensorless vector control, 

then to V/F closed loop and open loop V/F and back to the sensor vector control 

at any time with fault free IM and finally to the protection stage. 

6. The exact time to change the controller is determined through the WI. 

7. When the IM performance degradation is at a fast pace, the protection 

mechanism is employed to stop the operations. 

8. A new fault tolerant control algorithm. In this work, a protection circuit is 

incorporated in the design to the previously existent fault diagnostics and 

redesigning. 

9. New mathematical relationship between the wavelet index and the phase 

resistance has been found. These relationships will support the effectiveness of 

this algorithm as well as for further studies in the future. 
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1.5 Thesis Organization 

The thesis is divided into 8 chapters, which are as follows: 

Chapter 1: the study objectives, research background and an overview of the study are 

included in this chapter. 

Chapter 2: the literature review associated with the utilization of wavelet as an expert 

system to determine the exact time for switching the controller, will be discussed in this 

chapter. It will also include, vector control of IM, V/F controllers and the model 

reference adaptive controls used to predict speed. 

Chapter 3: the control techniques of the IM used in this experiment will be discussed. 

An in depth explanation of the vector control and the V/F control techniques will also 

be discussed. 

Chapter 4: the wavelet techniques used in the fault diagnosis and detection will be 

discussed. In this chapter the theory behind the wavelet will be outlined with the other 

relevant data. 

Chapter 5: the fault tolerant control of the IM will be discussed. The types of fault 

tolerant control, with the conditions of each type and the manner of their 

implementation in accordance with the system requirements will be discussed. 

Chapter 6: the conditional monitoring process of the IM, parameters behind it and the 

circuit conditions for the implementation of the protection circuit will be discussed. 

Chapter 7: the experimental setup with the hardware implementation will be discussed. 

In addition, the TMS320F28335 DSP controller circuits and the results will also be 

discussed. 

Chapter 8: the conclusions obtained from the study and the recommendations for future 

work will be presented in this chapter.  
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Chapter 2: Literature review 

2.1 Introduction  

The IM is a much preferred option in the industrial processes as it provides rigidity, is 

strong, needs low cost maintenance, is reliable, relatively simple and is easy to use. But 

still to prevent any damages or losses, it is better to run a fault diagnosis procedure to 

reduce the faults that may occur due to the motor.  

The parts of an IM can be seen in Figure 2.1. 

 

 

Figure 2.1.IM components 

The IM magnetic fields, air gap, bars of the rotor are illustrated in Figure 2.2. 

Magnetic field

Air gap

Rotor

Rotor  bars

stator

conductors

 

Figure 2.2.Cross section IM  

The general fault modes in the system can be interpreted as in Figure 2.3. 
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Figure 2.3.Faults modes in the fault tolerant motor drives (Zhu J. , 2008) 

 In this thesis, the inverter is supposed to be healthy. The faults of IMs can be divided 

into two main parts: electrical faults and mechanical fault as interpreted in Figure 2.4. 

 

Mechanical

faults
Electrical faults

Air gap

eccentricity

Bearing, gearbox,

torque oscillation
Rotor faultsStator faults

Broken bar and

end rings faults

Windings and

external fault

Induction motor faults

 

Figure 2.4.Types of faults in the IMs 

The main methods used in the fault diagnosis are as follows: 

1. Artificial Neural Networks (ANN): These types of fault diagnosis render a stable 

a speedy result enabling the parallel processing. But however these methods 

require a huge amount of data if applied to dynamic processing. Accuracy 

maintained in this system is more as compared to the conventional techniques. 

In addition the solution time required by the calculating machine circuit 

parameters through the neural network model has been reduced to a great extent. 

2. Fast Fourier Transform (FFT): The sum of complex exponentials of varying 

magnitudes, phases and frequencies represent an image in this. It plays a 

significant role in various applications such as; broad range image processing 

like analysis, compressions, restoration and enhancements. 
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3. Time Stepping Coupled Finite Element Sate Space (TSCFE-SS): This is used to 

calculate the sampled data from the time domain waveforms and profiles of the 

input phase and the line currents, torques, voltages and power. 

4. Finite Element Method (FEM): The FEM models are the mathematical 

idealization of the continuous systems, although they have been able to increase 

accuracy and induce better insights into a design. The results formed from the 

FEM are not closed formed solutions but are numerical approximations. 

5. Motor Current Signature Analysis (MCSA): In this method, the signal spectral is 

used to detect the faults according to the position of sidebands frequency 

harmonies. This method has interested many owing to the ease of use and also as 

it does not require access to the IM parameters. But the main issue is that the 

amplitude of the current components is dependent on the loads that are linked to 

the motor which restricts its use to some operations owing to the variable system 

loads. 

6. Wavelet: In this system the data can be split into two stages of low pass filters 

and the high pass filters to obtain all the signal data with respect to both time 

domain and frequency domain. This technique is applicable to any sort of 

signaling such as; engine vibration, human speech, medical images, financial 

data and many other sorts of signals. 

7. Complex Park Vector (CPV): The variables of the three phase machines are 

indicated through the park transformation, through a system of two quadrature 

(Id & Iq) shafts. Table 2.1 lists the properties of this method.  

cbad IIII 6/16/12/3 
       (2.1) 

  cbq III 2/12/1 
        (2.2) 
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8. Axial Flow (AF): an alternating magnetic field with the relevant harmonics is 

included in the axial flow IM. It consists of a stator with a winding around the 

slot and a rotatable supported laminated rotor, which is spaced away from the 

stator by an air gap. A remotely positioned magnetically conductive layer with a 

closely spaced electrical layer is included in the rotor. 

9. Impedances of Inverse Sequence (IIS): two stator currents and voltages are 

required in this method. In addition great precision is required in all the 

measurements. 

There are two types of fault diagnosis which are; cause effect diagnosis and effect cause 

diagnosis. The cause effect diagnosis is also termed as the dictionary based diagnosis as 

it stores all the pre-evaluated failing responses of all the designs in a dictionary. The 

main drawback is that a large amount of memory is required to store the data (Huaxing 

Tang, 2007).  Table 2.1 shows the properties of the fault diagnosis methods of the IM.  

Table 2.1.Fault diagnosis methods properties 

Techniques Measurement 

required 

Applications Advantages Drawbacks 

MCSA One stator 

current 

Broken rotor bar, Stator 

winding turn, Air gap 

eccentricity 

Low cost, Non 

invasive 

Vary in 

Frequency 

Liked to some 

states 

CPV Two stator 

currents 

Broken rotor bar, Stator 

winding turn, Air gap 

eccentricity 

Non invasive 

simple 

Mismatch faults 

AF Axial flux Broken rotor bar, Stator 

winding turn, Air gap 

eccentricity 

Low cost invasive 

THA Two stator 

currents and 

voltages 

Broken rotor bar, Stator 

winding turn, Air gap 

eccentricity 

Non invasive 

Mechanical fault 

detection 

Not effect in 

short circuit 

faults 

IIS Two stator 

currents and 

voltages 

Stator winding turn Non invasive 

Incipient fault 

detection 

Required great 

measurements 

precision 

ANN Two stator 

currents and 

voltages 

Stator winding turn Non invasive 

Incipient fault 

detection, Easy 

to adapt to each 

motor 

Required 

training time, 

Not effected 

with motor 

changes states 
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2.2 IM faults  

The squirrel cage type is used in more than 97% of the IMs (Poyhonen, 2004), while 3% 

of the IMs are wound rotor type. As explained ahead, there are various types of faults 

that may occur during the operation of the IM. In this work, the survey will be divided 

in three sections: 

1 IM faults detection without the wavelet, 

2 IM faults detection with the wavelet and 

3 Fault tolerant control survey. 

Some of the inverter faults are listed after that.  

2.2.1 IM Faults Detection without Wavelet 

In this section most of the IM faults are discussed, such as air gap eccentricity, gear box 

and bearing faults, stator opening or shorting phase winding, shorted rotor field 

winding, broken rotor bar and shaft bent. The methods of faults detection and diagnosis 

will not contain wavelet in this part.  

2.2.1.1 Air Gap Eccentricity 

There are many reasons behind the mechanical faults such as machine manufacturing 

and assembly, unbalanced loads, bent shaft and bearing wear. For unequal air gap 

distance between the rotor and stator, a vibration in the induction machines is 

introduced a frequency of 2*fsupply   (Intesar Ahmed, 2011). There are three classes of air 

gap eccentricity; static, dynamic and mixed. 

The following expression represents the static air gap eccentricity frequency: 

fn
p

s
kQf rc ]

1
[sec 


           (2.3) 

rkQ  is the number of rotor slots 

f  is the supply frequency 
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k =1, 2, 3... 

n=1, 3, 5 order is used for the power supply being fed to the motor.  

The following expression represents the dynamic air gap eccentricity frequency: 

fn
p

s
nkQf drdecc ]

1
)[( 




         (2.4) 

f  is the supply frequency 

K=1, 2, 3... 

nd is the dynamic eccentric order (nd =1, 2, 3,). 

n=1, 2, 3,  

The following expression represents the mixed air gap eccentricity frequency: 

f
p

s
kfmixecc ]

1
1[


           (2.5) 

f  is the supply frequency 

This fault is investigated at various instances, in which the air gap eccentricity is 

identified by the inclined static eccentricity analysis (Li, Wu, & Nandi, 2007). 

At varying rotor positions, the offline monitoring of the variations of the surge 

waveforms was used by (Huang X. H., 2007), to identify the eccentricity occurring 

owing to the axial non uniform air gap. (Sulowicz, 2007) identified the faults of 

eccentricity through the ANFIS technique. A new concept based on the signature 

analysis of the complex apparent power was presented by (Drif M. M., 2008) to identify 

the occurrence of air gap eccentricity in the three phases of an IM. By using the TSFE, 

(Faiz J. E., 2008), studied the mixed eccentricity at the initial period. The voltage was 

applied as an input to the FE calculations. The severity of the static eccentricity was 

studied through the RSH and LSH side bands of both the line currents and the 

vibrations. The motor static eccentricity has been studied on the basis of the evidence 

theory using the BPA for each sensor by observing the magnitudes features (Grieger J. 

S., 2006). The most significant methods applied to the air gap eccentricity were 
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reviewed by (Wolbank, 2007) such as; digital camera or the laser sensors for the 

detection of faults. The instantaneous power was used by (Drif M. M., 2006) to study 

the squirrel cage IM eccentricity mixed faults. By using the neural networks, the drive 

of the IM as a closed loop was studied by (Huang X. H., 2007) to detect the rotor 

eccentricity associated harmonies in the stator voltage and current space vectors. A new 

approach was invented by (Drif M. M., 2008) to detect the air gap eccentricity through 

the usage of instantaneous power signature analysis. The pre-published pulse sequence 

application in the inverter can help in the detection of the air gap eccentricity effect on 

the zero sequence voltage. The diagnostic results obtained through this procedure were 

quite obvious (Bossio, 2006). 

2.2.1.2 Gear Box and Bearing Faults 

These mechanical faults can arise due to many reasons such as improper installation of 

the bearing, inadequate balancing of the loads and improper lubrication. 

The mechanical faults need the following frequencies to be investigated: 

|| ,mrmech mfff            (2.6) 

m=1, 2, 3,. 

The damage frequency in the outer bearing race is:  

)]cos(1[)
2

(0 
PD

BD
f

N
f 

         (2.7) 

The damage frequency in the inner bearing race is: 

)]cos(1[)
2

( 
PD

BD
f

N
f i 

         (2.8) 

The frequency of the damaged ball is:  

})]cos([1{)( 2
PD

BD
f

PD

BD
fb 

        (2.9) 
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 is the load angle based on the ratio of axial to radial load, PD is the bearing pitch 

diameter , N number of bearing balls and BD  is the ball diameter. 

The approximate characteristic race frequencies for most bearings can be found between 

6 to 12 balls. The bearing of the outer race defect of the ball faults was detected by 

using the RBF neural network through the MCSA techniques (Izzet, 2006). The gear 

box faults can be identified for the three shafts and their respective GMFs, through the 

demodulation of the motor current waveform (Mohanty A., 2006). In the process of 

detection of inter turn insulation of main winding and bearing wear of a single phase 

IM, (Makarand S. Ballal, 2007), demonstrated the feasibility of the ANFIS approach. In 

the field of monitoring the IM bearing faults, (Zarei, 2006), studied the Park’s vector by 

observing the thickness of Lissajou’s curves. The incipient faults in the bearing were 

explained by (Zhou, 2009). The noise was cancelled through the stator current as a gear 

fault diagnosis tools. The rolling element of the bearing faults for a 0.75 kW IM was 

detected through the stator current monitoring circuit (Blodt, 2009). This led (Onel, 

2008) to the conclusion that the diagnosis properties of Park transformation were better 

than the Concordia in the diagnosis of the bearing fault.  

2.2.1.3 Stator Opening, Shorting Phase Winding 

The following are the frequencies of the stator faults: 

])
1

([ k
p

s
nff st 




          (2.10) 

f  is the supply frequency 

n = 1, 2, 3… 

k = 1, 3, 5, 7, 

The fault diagnosis of the stator and the alternator inter turn in the electric machines was 

presented by (Leite, 2007). The detection of the stator winding inter-turn shorts was 

presented by (Guan, 2007). A unique diagnostic system was presented by (Abdesselam, 
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2007), which was based on the hidden Markov models to detect the short circuit fault of 

the IM. The fault diagnosis was studied by (El Menzhi, 2007), associated with the 

auxiliary winding using the spectral analysis. The short circuit faults of the IM were 

presented by (Nakamura, 2007), which was based on the hidden Markov model. By 

using the pendulum phenomenon, the inter turn and rotor broken bar faults in the IM 

were detected by (Mirafzal, 2006). A neural network for the detection of online stator 

and rotor resistance in the sensorless vector control was presented by (Karanayil, 2007). 

An analytical study of the negative effects on the stator winding faults was presented by 

(Babaa, 2007).  

To detect the abnormal connection faults in the stator of the IM, the abilities of the 

signature graphical tools were demonstrated by (Youssef, 2007). The vibration faults 

were studied by (Ma, 2007) in the stator winding based EMAM. In addition, a model of 

dual stator winding of induction machines was presented by (Andriamalala, 2006) for 

the stator and rotor faults diagnosis. A diagnosis of the IMs was presented by (Claudio 

Bonivento, 2004) for the mechanical faults in the stator and rotor windings. The online 

stator faults were identified through the B-spline membership of a neuro-fuzzy system 

by (Xu hong, 2007). A method was invented by (Xuhong, 2007), in which the two 

DRNNs were used to detect the fault in the stator winding by evaluating the severity of 

the fault. 

2.2.1.4 Shorted Rotor Winding 

The best modeling techniques for the IM and pumps were presented by (Choi, 2006). 

This technique was used for the identification of shorted rotor winding faults. Various 

faults in the IM were identified by (Silva, 2006) such as shorted rotor winding, machine 

monitoring, etc.  
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2.2.1.5 Broken Rotor Bar and Crack End Ring 

These faults are caused by various factors such as vibrations and electromagnetic 

distortions created by the mechanical or magnetic effects. These may vary from thermal 

effects in some parts to fatigue (Masoud Hajiaghajan, 2004). In the asymmetrical 

condition, the rotor broken bar frequency is as: 

fss
p

k
fbr ])1)([( 

  

 k /p =1, 5, 7, 11, 13,

     

(2.11) 

f  is the supply frequency 

(Eltabach, 2004), conducted a comparative study between the internal diagnosis method 

derived from the analytical studies and the external studies of the IM model such as, 

spectral analysis of stator current with a broken rotor bar fault. The impacts of the inter 

bars current were studied by (Meshgin Kelk, 2004), as it is the contributing factor 

behind the broken rotor bar faults. Various cases of the process monitoring were studied 

by (Yang Q. S., 2004), while a global fault index was used by (Gaetan Didier, 2006) to 

do the fault diagnosis of the broken bars. The inter turn stator faults and the broken bars 

of the poly phase IM, was detected by (Chia Chou, 2007). The broken bar diagnosis was 

presented by (Supangat R. N., 2006) by using the starting current analysis. The voltage 

analysis modulation was used by (Nemec, 2010) to detect the fault in the rotor bar. A 

new approach of using the svm for the broken bar was adopted by (Gordi Armaki, 2010) 

in accordance with the side band frequency and FFT application. While (Ying, 2009), 

used the time stepping with finite element characteristics for the identification of the 

broken rotor bar of 1.1kW squirrel cage IM. Hilbert transform was used by (Ouma 

amar, 2007) for the same. The stator current envelope effect was used by (Da Silva, 

2008) to detect the faults in the broken bar and stator short circuit. A lower sampling 

rate with the DTFT and AR with the motor current signature analysis was used by 
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(Ayhan, 2008) for the same fault. The effects of position and the number of broken bar 

in the stator current spectrum were investigated by (Menacer A. M., 2006). 

2.2.1.6 Shaft Bent 

IM tests for 1.5 kW IM was presented by (Mohamadi, 2008) through the shaft 

misalignment and damage bearing. There were a variety of faults considered by (Jose M 

. Machorro Lopeza, 2009) such as, imbalance, transverse cracks, bent shafts, 

misalignment and combination of these faults. On the other hand, a flexural vibration of 

the induction rotor system with the transverse or slant crack analysis was undertaken by 

(Chua, 2009) under the torsion excitation.  

2.2.2 Wavelet Base Faults Diagnosis  

In this section the methods of faults detection and diagnosis of the IM with wavelet will 

be discussed. The different faults including, air gap eccentricity, gear box and bearing 

faults, stator opening or shorting phase winding, shorted rotor field winding, broken 

rotor bar and shaft bent are considered.  

2.2.2.1 Introduction 

The fault diagnosis using the wavelet technique is relatively new in this field. These 

techniques allow the extraction of data within the time and frequency domain. A review 

of the machine diagnosis with conditions based on the maintenance approach was 

presented by (Andrew K.S. Jardine, 2006). There are two main levels in the fault 

diagnosis: 

1. Traditional control based fault diagnosis.  

2. Knowledge based fault diagnosis.  

Figure2.5 shows the percentages of different faults in an IM such as bearing, stator 

winding, miscellaneous, rotor faults respectively. The wavelet based fault diagnosis 
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consists of; wavelet feature extraction module, fault decision module and feature cluster 

module. Faults are best indicated by a negative sequence current and impedance. The 

stator short circuit faults were detected through the Park’s vector and MCSA. 

The wavelet however, has emerged as an attractive option through its multi resolution 

analysis and good time localization, which is able to counter the drawbacks such as; the 

assumption undertaken that the values of load, motor speed and stator fundamental 

frequency are constant, as done in the FFT technique. 

 

Figure 2.5.IM faults percentages according to IEEE 

Among different wavelet technique, the discrete wavelet transform is a favorable 

option, in which the mother wavelet is scaled to the power of 2 (R. Salehi Arashloo, 

2010).  The resolution issue apparent in this method were attempted to be solved by 

(Lorand SZABO, 2005) through the CWT. 

2.2.2.2 Air gap Eccentricity 

The broken rotor bar and air gap eccentricity faults frequencies were detected through 

the wavelet of current space vector by (Tsoumas, 2005).  
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sf  is the supply frequency 
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)( 21 ksff sbrk           (2.13) 

sf  is the supply frequency 

The MCSA method and wavelet were used by (Cusido J. R., 2007) to detect the air gap 

eccentricity fault as it only requires a single line current. The following classification 

was obtained of the fault frequencies: 

Eccentricity fault frequency is: 
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         (2.14) 

1f  is the supply frequency 

m=1, 2, 3... .is the ordinal number 
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1f  is the supply frequency 

The broken rotor bar fault frequency is: 
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          (2.16) 

The air gap fault frequency is: 
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,1 oiairgap
mfff 

          (2.17) 

1f  is the supply frequency 

The WPD with the modified winding function was used by (Hamidi, 2004) to detect the 

mixed eccentricity fault. The diagnosis of mixed eccentricity and rotor asymmetries was 

demonstrated by (Antonino-Daviu, 2006) using varying sizes and conditions and under 

varying effects of the oscillations due to load torque and voltage. By using the DWT at 

start up current of induction machines in accordance with the stator parallel branches, 

(Antonino, 2005) showed a variety of fault diagnoses such as; inter-turn, mixed 

eccentricity, broken rotor and inter coil stator short circuits. The Hilbert Huang 
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Transform with the DWT was used by (J. Antonino Daviu P. J., 2009) for the detection 

of the mixed eccentricity faults in the IM. The air gap eccentricity and broken rotor bar 

was simultaneously detected through the WPD by (Ye, 2001), after a brief explanation 

of the wavelet and feature extraction. The most significant indexes were reviewed by 

(Jawad Faiz, 2009) in the various types of eccentricities faults of the IM. 

2.2.2.3 Gear Box and Bearing Faults 

The lean model was used by (Yixiang Huang, 2010) to evaluate the machine 

performance by using the DWT for the vibration and bearing IM faults. The broken 

rotor bar, eccentricity and the bearing IM faults were detected through the lean model 

by utilizing the DWT for the vibrations and bearing IM faults. The bearing faults in the 

IM were detected due to current, voltage and instantaneous power through the wavelet 

by (Lu, 2008). The bearing defect was detected through the Meyer wavelet in the WP 

structure using the fault index of SCA and energy comparison (Jafar Zarei, 2007). The 

test results of the fault diagnosis of the rolling bearings conducted by (Qiao Hua, 2007) 

showed that the support vector machines can separate and distinguish between the faults 

according to their intensity and conditions. In addition it provided a better classification 

performance as compared to the single svm. Through the wavelet technique, the bearing 

fault of 5hp IM was demonstrated by (Serhat Seker, 2003).  

Three line to line voltages, two vibration signals, one speed dial, three currents and four 

temperatures were obtained from the wavelet monitoring and were then analyzed and 

treated through the detection of the bearing fault of IM by (G.K. Singh a, 2009).  

To use the MCSA, (Chinmaya Kar, 2006), studied the multistage transmission gearbox 

in the place of conventional vibration monitoring done with DWR and FFT to study the 

sideband frequencies.  

The svm was introduced by (S. Abbasiona, 2007) as a classifier to evaluate the optimum 

wavelet decomposition. This was used in the diagnosis of the rolling element bearing 
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fault in the IMs. A novel technique based on the combination of the wavelet and power 

spectral density techniques was introduced by (Cusido J. J., 2006) for the detection of 

the bearing defect through the PDD as a fault factor. The mechanical equipment fault 

diagnosis based on the vibration signal was done by (Rui Zhou, 2010) through the 

wavelet technique. The algorithms in the WEKA were used to apply the logarithm. The 

WPD was used in the application of the MCSA by (Teotrakool, 2009) for the detection 

of the bearing faults in the adjustable speed drives. The bearing damages were detected 

by (Ayaz, 2006) through six accelerometers to measure the vibration data of 5 kW that 

were placed in various locations around the motor. The bearing fault was detected by 

(Yang D. , 2007) with the intelligent diagnosis techniques using the methods of wave 

transform and SVD. 

2.2.2.4 Stator Open and Short Winding Faults  

The time stepping approach was used by (Mohammed, 2006) to solve the model system 

equation in the FE modeling of the IM internal faults. He solved the equations by time 

stepping approach of the broken bar and stator shorted turns. In this method he used the 

db10 for both the sinusoidal and non-sinusoidal faults. 

(Ponci, 2007) conducted the software diagnosis of the short inter turn and the open 

circuit of the stator winding as a sort of an initial fault. This was specifically used in the 

case of varying stator resistances (Rs = 0.001, 0.1, 0.7, 1, 4, 8) Ω to prevent any 

inconvenience in using the wavelet decomposition or hardware costs. The MCSA was 

used by (Cusido J. R., 2006) in the detection of stator faults with wavelet. The dq 

components were used in this paper for the stator teeth harmonics. The MCSA was used 

by (S. Radhika, 2010) for the fault diagnosis of the IM, where the stator faults were 

classified with WT using the svm. A fault detection in the vector controlled IMs was 

presented by (Chen, 1998), to detect the fault index in the stator windings. 
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2.2.2.5 Shorted Rotor Field Winding 

Two DWTs were used by (Khan M., 2006) for the detection and classification of faults 

in the IM’s rotor. A new technique was presented by (Saleh S. K., 2005), based on the 

WTMRA in the detection and diagnosis of the stator and rotor winding faults of a 

wound rotor IM. 

2.2.2.6 Broken Rotor Bar and Crack Ring 

The EMD, which is based on the nonlinear systems, was used by (Zhang Jian-wen, 

2007) in the detection of the broken rotor bar using the WDT. The multi resolution 

wavelet was used by (Cao Zhitong, 2001) for the detection of the broken rotor bars with 

respect to the stator current analysis. He explained that the signal is entered into the 

wavelet after filtering and then differentiating it (Daubechies with 5 levels). The 

wavelet was used by (Faiz J. E., 2007) for the detection of a broken bar in case of load 

variations in the IM. 

A rotor’s broken bar was detected by (Yang C. C., 2007) using the Ridge wavelet, in 

which the characteristic frequency components of the broken bar were easily extracted 

using only one phase of the stator current. The broken bar in the transient region using 

the TMCSA via frequency B-Splines and wavelet was effectively detected by (Pons-

Llinares, 2009). The WPT decomposition was used by (Eren, 2004) in the detection of 

the bearing fault of the IM. As an indicator of faults, the test of current spectral 

frequency for both the healthy and faulty bearings of a 1hp IM was used. The status of 

the broken bar of the IM using the mean square of discrete wavelet function has been 

measured by (Ordaz Moreno A., 2008). There were many faults detected in the squirrel 

cage IM by (Cabal Yepez, 2009) using the FPGA such as, faulty bearings, imbalance, 

broken bars with the parallel combination of fused FFT and wavelets. Various other 

new techniques were used for the broken bar fault detection by (J.Antonino Daviu, 
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2009). These techniques were based on the high discrete wavelet, db40, which were 

compared with the classical methods like the Fourier transform. 

Many researchers have studied the drawbacks that accompany the FFT when used for 

the detection of the broken rotor bars through the db40 as a mother function. This 

prevented the low overlapping with the adjacent bands. The instantaneous power FFT 

was used as a medium and the wavelets to detect the faults by (Douglas, 2003). The 

fault detection was presented in the transient region for the broken rotor bars. This was 

used to decompose the residual stator current after filtering the noise using the notch 

filter. The broken rotor faults detection was done through the wavelet indicator by 

calculating the absolute values of the summed coefficients in the third pattern (Supangat 

R. E., 2006). This test uses the summation of the wavelet coefficient, the number of 

scales and the number of samples. The detection of the broken rotor bar in the transient 

region was done by (Riera Guasp, 2008), using the DWT with the fault component 

depending on the slip according to the energy ration of the current signal and the 

wavelet signal. 

The optimized DWT and FFT in the steady state function, was used by (J. Antonino 

Daviu M. R., 2006) to detect the broken rotor bar fault. A DWT was also used by (Kia, 

2009) for the broken bar detection. The various broken bar fault severities and load 

levels were attained by the application of the energy tests of bandwidth with time 

domain and analysis to the stator current space vector. The discrete and continuous 

wavelet were used by the (Cusido J. R., 2007) to study the broken bar faults. A new 

method was presented by (Jose A. Antonino Daviu, 2006) for the fault detection in the 

IMs, in which the faults were found by using wavelet transform.  Table 2.2 shows the 

frequency characteristics for a healthy and faulty IM. 
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Table 2.2.IM frequency characteristics formulas 

Air gap eccentricity fault s)/p)-k(1±(1  = secc ff  
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Healthy machine harmonic   spsh fvspkRf  )1(/=  

Inter turns short circuit of stator 

winding 
   sstsst ffff 4s)-(5=&2s)-(3= 21  

Fault frequency component  of  

bearing inner ring 
) )cos(/DD+(1  N/2= cb rbri ff  

 

2.3 Fault Tolerant Control (FTC) Survey  

The FTC systems have been studied by many researchers in the control community. In 

depth studies were done by (Patton, 1997) on the types of the fault tolerant systems, 

areas applied to, the control systems that detect the incipient faults in sensors, the 

architectures, actuators, the adaptation of the control laws in a way that protects and 

preserves the pre-specified performances with respect to production quality and safety. 

Hardware redundancies have inflicted the FTC in most of the real industrial systems. 

The redundant sensors are used in majority of the voting schemes to deal with the 

sensor faults. Since the last two decades, limitations such as hardware redundancies, 

high cost and occupying large spaces, solutions based on analytical redundancies have 

been studied.  

The analytical redundancies are applied through two various approaches: 

1. Passive approaches as a type of classical control 

2. Active approaches as a type of adaptive control 

The passive approach was applied through various design methods such as, linear 

matrix inequality (LMI) method, which was used for the synthesis of a reliable 

controller (J. Chen, 1999). In this paper he considered the uncertainty and robustness of 

the system performances. The main disadvantages of the passive approach are: 
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1. This method is not capable of controlling the nonlinear process, as it is based on 

the accurate linear state space model. The linear processes require accurate 

analytical models that are seldom available. 

2. The amplitudes of the faults that are tolerable are small and cannot fulfill the 

practice requirements as the passive approach considers the fault tolerance in 

only the stage of the controller design and doesn’t take adaptive measures in 

case of a fault. 

The FTC systems only deal with the major faults that therefore do not test the full 

potential of the system and thus its robustness is not challenged. If it were to incorporate 

small faults that are hard to detect, then the case would have been different and the 

system would be put against a realistic challenge. The fault tolerant controls are often 

used with the remote diagnosis. Another FTC classification is as: 

1. There is unlimited computing power in the off board component but it still has 

to deal with the limited and biased measurement data. 

2. Restricted computing power is granted to the on board components, which limits 

the algorithm complexity of the task to be performed. 

A fault tolerant design consisting of two parts was presented by (Mohamed, 2008). The 

system was based on performance controller and fault detection element that provided 

the fault compensating signals to the feedback loop. According to the design 

specifications the nominal controller can be adjusted to any structure. The detection 

element can function in parallel with the system until the point when the fault is 

detected. 

A method was proposed by (Dongmo, 2007) for switching control and the analysis of 

the achievable performance for the motor drives for the maintenance of the system 

operations. (Paoli, 2003), gives the collection of the results associated with the unified 

framework for fault tolerant control in the distributed control system. 
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The issue of loss of one phase in a field oriented controlled three phase IM was solved 

through the fault tolerant strategy proposed by (Saleh A. S., 2007). The solution 

proposed was a control strategy in the single phase mode of the operation of the IM. An 

original strategy was proposed by (El Khil, 2006), associated with the fault tolerant 

operation linked with the DFM. 

The issue of designing the fault tolerant system for the IPM synchronous motor drive 

was considered by (Nademi, 2008), in the case when these are subjected to current 

sensor fault. Two control design strategies were proposed to address this, the first was 

based on the field oriented control and an adaptive back stepping observer used at the 

same time for the fault free case. The second approach was based on the observer for 

the faulty conditions. An online sliding mode control allocation scheme was also 

proposed by (Halim Alwi, 2008) for the fault tolerant control. An intelligent evaluative 

strategy for the nonlinear state was proposed by (Anjali P. Deshpandea, 2009) to 

diagnose the main reasons behind the plant model mismatch. This was done by the 

isolation of the subset of active faults after which the model was corrected automatically 

online with the incorporation of all the isolated faults and failures. A control system 

design was considered by (Matthew O.T. Cole, 2004) for the rotor magnetic bearing 

system that used a number of fault tolerant control methods. A plug in robust 

compensator was presented by (Gan, 2003) to enhance the speed and position control of 

an indirect field oriented control induction machine drive. 

A bibliographical review was presented by (Y. Zhang, 2008) on the reconfigurable 

AFTCS. While the rest of the approaches of fault detection and FTC diagnosis and FDD 

techniques have been classified according to the various criteria in a general framework. 

An adaptive FTC of system based on nonlinear parameters was presented by (Liu, 

2008). This system progressed on the basis of the innovative feedback technique, based 

on the homogenous feedback stabilization, called the addition of the power integrator. It 
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was proposed initially to stabilize the nonlinear systems with uncontrollable 

linearization globally. A multisensory switching was proposed by (Romero, 2010) for 

the fault tolerant controls on the basis of direct torque and flux control of the IM. The 

most dominating methods used in the fault tolerant controls were proposed by (Kanev, 

2004) and (M. Blanke, 2006). (A. S. Ahmed, 2011) introduced the fault tolerant 

technique for both the open loop and vector control motor drive systems. In this method 

a delta connected circuit is used in stator winding. The function of the three phase motor 

still continued in case of a failure in one of its phase and no detection algorithm was 

required. The torque pulsation created by the open delta configuration in the stator 

windings was eliminated by this technique. 

The reliability and the availability characteristic will define a fault tolerance of any 

system. By reliability we refer to the system’s ability to continue its operation under 

damaging conditions. Availability refers to the system’s readiness to attempt a correct 

action. The addition or a spare available in a system to replace the unit that fails to 

perform in a manner that the system is able to continue with its operation in spite of the 

failure, is referred to as the redundancy of a system. An asymmetry is created between 

the three phases due to the faults in the stator winding of an induction machine, which 

results in a negative sequence component in the line currents (Habetler, 2002). A 

combination of various stresses acting on the stator is the reason behind the majority of 

the faults. These stresses can be thermal, mechanical, electrical and environmental 

(Siddique, 2005).  

2.3.1 Stator Winding Fault Tolerant 

The failure of the motor windings is almost 38% of all the motor faults. The stator 

winding faults can be classified as (Lee Y. , 2007). 

1. Open circuit faults 

2. Short between any turns in the winding 
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3. Short circuit between line to ground  

4. Short circuit fault between coil to coil 

5. Short circuit between line to line  

The above mentioned faults are explained in Figure2.6 

Open circuit

Line to line fault

Line to ground

 coil to coil in the

same turn

Turn to turn

 

Figure 2.6.Possible failure modes in delta -connected stator windings 

There are various fault diagnosis methods for the detection of stator winding faults 

mentioned in the literature. Developments are still required in the detection methods of 

delay times between two turn faults and its intensity. Dangerous affects can be 

prevented if the stator winding faults are detected as early as possible and will give 

enough time to plan an action to maintain the required performance. 

During the short turn fault, a large circulating current will be induced which creates 

excessive heat. Majority of the stator winding fault detection methods proposed are 

revolving around the perturbation in the motor parameters through the second order 

harmonic in the air gap torque (Hsu, 1995); zero sequence voltage (M. A. Cash, 1998); 

negative sequence current and impedance (G. B. Kliman, 1996); mismatches in the 

sequence impedance matrix (F. C. Trutt, 2002), the AI techniques, the wavelet, and 

negative sequence approaches (Okuda, 2009). The action of the controller does not 

influence these methods but they need the voltage sensors in the circuit. 
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The system’s smooth operation in the presence of stator winding faults is very important 

for any fault tolerant control system. The critical operations of a system may be 

damaged severely by an unexpected shut down. 

To maintain the operations in the presence of a stator winding fault, the redundancy 

action is one of the solutions considered. The main preference has been given to 

stopping the operations at the initial stage as it is sometimes difficult to maintain 

satisfactory functions in the presence of a fault (P. H. Mellor, 2003). (A. S.Ahmed, 

2011), on the other hand applied the fault tolerant technique with the Δ-connected 

circuits in the stator windings with the faulty stator phase separated by a solid state 

switch.  

The voltage of the faulty area is set at zero or to the minimum quantity to label the 

shorted stator winding. The parallel resistance is assumed to be at the lowest possible 

value and is varied between the original stator winding and the reduced value by ten 

times. This has been demonstrated in Figure 2.7 

 

Figure 2.7.Stator resistance configuration during short winding test 

A resistance of a greater value is introduced in the series with the original stator 

resistance to denote the open stator winding fault. The series resistance is considered to 

be high and variable. It is assumed to range between the original stator winding 
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resistance and up to a ten times increased value (Zanardelli, W.G., 2005). This is 

demonstrated in Figure2.8.  

 

Figure 2.8.Stator resistance configuration during open winding test 

There will be no change in the IM mathematical model, inductance, resistance and the 

corresponding magnetic field equation. Figure2.9 shows the simulation circuit (Barakat, 

2011). 
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Figure 2.9.Generator with fault simulating resistor (R. Rajeswari, 2007) 

According to the equation 2.8, IM equations can also be arranged for both the rotor and 

stator (G. M. Joksimovic, 2000). 
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The supply voltage and the stator windings are symmetrical in the healthy IM, thus no 

change is required in the system parameters. The system parameters should be changed 

to make them applicable and matched with Kirchhoff’s current rule in the case of a 

fault. The above stated equation can be expanded for both the stator short winding and 

stator open winding. The simulation of the stator delta connection can be expressed as a 

voltage drop in parallel for the stator winding, with a specific phase winding. The faulty 

phase is B in Figure 2.10 
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Figure 2.10.Stator winding configuration with an inter-turn short (delta connection) 

The mathematical model of an IM can be represented as, 
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Where Ra, Rb, Rc is self resistance of phase A, B, C stator winding respectively, vd is the 

voltage drop across the added resistance, id is the current flowing through the connected 

faulty connected resistance (Rd), ia,ib,ic are the phase A,B,C stator current. sa , sb , sc d  

are phase A,B,C and the faulty connected branch  fluxes respectively.  

The magnetic field equation can be written in the form of the following matrix for the 

voltages with the stator LL voltages. 
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Where Laa ,Lbb,Lcc is self inductance of phase A,B,C  stator  winding respectively, Lbc, 

Lab, Lac is the mutual inductances between phases of the stator  windings , Ldc, Ldb, Lad is 

the mutual inductances between phases of the stator  windings  and added inductance. 

The above equation is expressed for phase C in order for the current to satisfy the 

Kirchhoff’s current rule: 
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The original stator resistance is connected with the faulty shunt voltage branch:   

)| |( cdshsh RRiv 
         (2.12) 

where vsh,ish are the voltage and current of faulty branch respectively. Taking into 

consideration the magnetic flux, the stator short winding voltage can be described as 

follows (J. A. Farooq, 2008): 

dt

d
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N
v sh
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sh




        (2.13)
 

The extra resistance for the stator open winding equation and the series combination of 

the phase C is described by the following expression:
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Following formulas helps in calculating the value of the inductances of open and short 

stator winding, respectively  (K. Kumar, 2010): 
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Where Rnor stat, Lnor stat ,Rseries,Rsh ,Lseries is the normal value of stator resistance , 

inductance ,series added resistance ,shunt added resistance  and series inductance 

respectively. 

The input to the DWT based fault diagnosis algorithm is the stator current. The open or 

short stator winding is the only thing which can alter the resistance of the any faulty 

branch as mentioned above.  

2.3.2 Speed Sensor Fault Tolerant Operating Strategy 

Two types of measurements are present in the IM such as; electrical and mechanical. 

The electrical is associated with the currents and voltages for the stator or rotor, while 

the mechanical is associated with the rotor position (D.U. Campos Delgado, 2008). The 

speed encoders mounted in the motor shaft are used to measure the angular shaft’s 

position. The possibilities of faults arise from the presence of noise, drift, offset and 

disconnections (Bekheira Tabbache, 2011). The motor’s performance will deteriorate 

due to the failure in the encoder. Therefore, (R.B. Sepe, 2003), introduced a fault 

control system with the controller reconfiguration to adapt the operations in accordance 

with the event of sensor loss or sensor recovery through speed observer. A fault 

detection process and isolation of the mechanical speed sensor in the IM was proposed 

by (Zidani, 2007) according to the fuzzy logic technique. 
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2.3.3 Design Methodologies  

(Y. Zhang, 2008), presented the basic topology of fault tolerant control as shown in 

Figure 2.11. Actuator saturation is serious problem in this method which is needed to 

change the input/output controller parameters and structure of the controller. 
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Figure 2.11.Basic block diagram of the FTC scheme 

 In the case of a nonlinear system being subjected to various faults, (Afef Fekih, 2006) 

introduced a fault tolerant controller. Temperature variations and sensor faults cause 

these faults. The internal and the external factors were dealt with the help of the passive 

FTC and active FTC strategies, as shown in Figure 2.12. The limitation of this 

algorithm is the availability of transient overshot and the time limitation to replace the 

defected device.  
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Figure 2.12.Block Diagram of the proposed FTC (Afef Fekih, 2006) 
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The multi controllers were introduced by (M. El Hachemi Benbouzid, 2007), as shown 

in Figure2.13.  
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Figure 2.13.FTC structure used in (M. Benbouzid, 2007) 

The performance specifications were maintained at the acceptable levels through the 

main IM controllers. As the transition between the controllers was smooth, therefore the 

algorithm was successful. This paper aims at the creation of a logical variable that 

allows the specific controller when (∆θ = 0). Verifying this condition is a difficult 

process. The best time for the replacement of the damage components was determined 

through the fault tolerant IM algorithm of (M. A. Rodriguez, 2008). This dealt with the 

short circuit or the open circuit failure in the power device. The isolation of the 

damaged elements by the blown fuse was the basis of the algorithm, through which the 

damage was replaced at the best suited time. This is shown in Figure 2.14. 
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Figure 2.14.FTC structure used in (M. A. Rodriguez, 2008) 
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The FTC architecture was presented by (A. Arakad, 2011) as the FTC based PMSM 

drive was robust against the mechanical sensor failures shown in figure 2.15. Enhance 

the reliability was the main objective of this paper, as it is the main concern in the 

electric vehicles. Two virtual sensors and a maximum likelihood voting algorithm 

constitute the architecture. The drawback of this algorithm it is cannot handle large 

number of IM faults.  
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Figure 2.15.Structure of the conventional FTC   

In all the above works, they either focus on accommodation of limited faults of IM or 

stop the motor directly to avoid the damage. In this thesis as well as a platform of more 

13 faults are included, there are new circuit added to this algorithm to be as standard for 

fault tolerant control field such as combined both accommodation and protection in this 

work. Another important devolvement in this work, it contains a prognostic unit which 

is not included in any work previously. 

Figure 2.16 shows the new fault tolerant algorithm used in this thesis. 
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Figure 2.16.Block diagram of the proposed FTC algorithm  

The key improvements introduced by this algorithm are: 

1. The DWT input is stator current. 

2. Four algorithms, namely sensor vector control, sensorless vector control, closed 

loop V/F and open loop V/F controls are implemented using Simulink. 

3. The fault detection and diagnosis tracks the location, type and time of faults. 

4. The control strategy is decided according to the wavelet index which is highly 

sensitive to signal changes. 

5. Equations relating the wavelet index (and thus the faults) and the stator 

resistance after it is modified by a fault are found. 

The chapter 5 gives the details of the proposed FTC based IM drive system. 

2.4 Inverter Faults 

As shown in Figure2.17, the three phase inverter consists of three legs with two 

transistors in each leg. IGBT transistors in the normal power level or the GTO thyristors 

types with freewheeling diodes in the high power case have been used (K.Bose, 2006). 

The inverter can provide the three phase voltage supplied to the IM, that is supplied by a 

voltage source comprising of a diode rectifier and a capacitor filter C to serve the dc-
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link (Yeh C. C., 2008). To obtain low impedance for the AC component in the dc-link, 

the C value of 3300 μF is used in this thesis. Figure 2.17 shows the rectifier-inverter 

arrangements to obtain variable voltage and frequency supply. 

AC

Inverterrectifier

c
a

p
a

c
it

o
r

s1

s2

s3

s4s6

s5

Phase C

Phase B
Phase A

 

Figure 2.17.Basic power circuit to obtain 3-phase variable supply 

The voltage source inverter (VSI) can provide high performance (Q.T. An, 2010). The 

inverter diagnostic methods are classified as current based and voltage based methods. 

Faults such as, short circuit in one or more transistor in the same or different leg can 

occur. These faults can be highly damaging specially in the case of the complementary 

IGBT being turned on and an open circuit in one or more leg. In some cases the drive 

may still manage to perform but with low efficiency owing to the pulsation torque and 

the freewheeling diodes. The stability of the system was maintained through the 

evaluation of the stator flux at zero voltage and the frequency at minimum through an 

ANN, by using a simple open loop inverter (PWM_VSI) fed IM (Yusof, 2003). The 

path linking the uncontrolled rectifier of a variable V/F control IM drive was studied by 

(Mahmoud, 2007). (Cui, 2007), detected the faults through the simulation of inverter as 

a switching technique. (Yeh C., 2007), presented the fault tolerant operations of soft 

starters and adjustable speed drives (ASDs) during the power switch open circuit or 

short circuit. 



 

39 

 

 The motor operations are affected by these faults, therefore the fault diagnostic is an 

important step as it will allow early detection and control. This work will however 

assume that the inverter is healthy in all the operations, as we will not discuss the faults 

associated with the inverter. Figure 2.18 shows the percentage of component failures in 

the adjustable speed drives according Pareto chart. The control circuit faults are higher 

than the power electronics and external auxiliaries’ faults.   

 

Figure 2.18.Percentage of component failures in ASD 

Fig2.19 shows the percentage of component failures in the switch power supply. In this 

figure more than 60% of switch mode power supply faults are DC link capacitor, 32% is 

power transistor and 8% is diodes and other faults. 

 

Figure 2.19.Percentage of component failures in switch mode power supply 

(G. Mahmoud, 2007), introduced the VSI open circuit and short circuit faults with V/F 

control strategy. 
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As expressed by (Bech, 2000), the Fourier series of the phase voltage obtained from a 3-

Φ inverter can be written as. 

 
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2
)(    Is the peak value of the nth harmonic,              (2 .27) 

 n = 1+6k, k = 0, ±1, ±2 

The wavelet diagnosis of the inverter fed IM was presented by (Samsi R. R., 2006) 

where a DC voltage of 460V with a voltage source inverter is used to feed the IM. The 

DC voltage contains the ripple components as well as the power delivered to the 

inverter, which affects the inverter negatively. Several sources constitute the DC-link 

voltage pulsation such as, pulsation components in the diode rectifier circuit and 

asymmetrical AC voltage (Cross, 1999). There is an increase in the electric losses. A 

healthy operation of the IM and inverter are indicated by the DC link, as can be seen 

from Figure 2.20 and Figure 2.21 for healthy and faulty inverter respectively. In this 

thesis, the inverter will be considered as healthy and without faults after the replacement 

of the burn G4PH50UD IGBT transistor. 

 

Figure 2.20.Experimental DC level in the healthy inverter  
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Figure 2.21.Experimental DC level in the faulty inverter 

For the healthy inverter case, the DC voltage was 362 V and it reduced until 150V in the 

faulty inverter which is good observation of inverter fault. 

2.5 AC Drive   

AC drives have risen in prominence, not just because motors such as the squirrel cage 

type are exceptionally rugged and reliable, but also because the speed control methods 

with AC motors are direct and efficient.  An AC drive requires power components that 

can provide it the desired voltage and current levels in a suitable form, which includes 

conversion from DC to AC. The drive also needs control components that create 

flexible and adjustable speed settings. 

Figure 2.22 shows the configuration of an AC drive. 

Key advantages of an AC motor drive are as follows: 

●The motor requires very little maintenance. 

●The cost is minimal and efficiency is substantial. 

●Operation with multiple motors is simplified. 

●Since the linear acceleration and deceleration is controlled, the motor starts and stops 

smoothly. Speed transitions are also smoothened. 

●Torque control is rapid and accurate with the current limit 
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Figure 2.22.AC drive  

2.5.1 Space Vector Modulation 

The inverter pulse width modulations are controlled by the SVM, which is an algorithm. 

The AC waveforms are created in it from a DC source, specifically in the variable speed 

system. Performance is enhanced through the SVM as it also gives additional benefits 

such as, reduced switching losses and reduced total harmonic distortions. It can be 

easily applied through the digital processor (Reney, 2011).  

All the stages in a three phase analysis are considered as one set instead of considering 

them as separate stages. The properties of vector rotation can therefore be used. The 

analysis in the DC components can be obtained by withdrawing the rotational effects 

when the rotation with t is used (Neacsu, 2001).  

Various types of the SVM are present such as; basic bus clamping, asymmetrical zero 

changing and clamping (Parekh R. , 2005). A conventional type will be used in this 

work. The voltage across the legs in a common mode three phase bridge inverter is a 

bus direct current voltage Udc which is assumed as a constant value. Therefore, the 

magnitude of the current switched and the switching frequency determine the losses. 

The number of commutations required for each modulation scheme and the current at 

the switching instant determines their evaluation. There are three main modulation 

techniques employed:  high commutation pulse width modulation (PWM), low 

commutation simple six-step modulation and progressive space vector modulation SVM 
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(Egorov, 2011). Figure 2.23 shows the phase A voltage a according to the conventional 

space vector modulation. 

 

Figure 2.23.Phase A voltage  

Figure 2.24 voltage generated in phase B 

 

Figure 2.24. Phase B voltage 

Figure 2.25 shows the voltage generated in phase C. 

 

Figure2.25. phase C voltage 
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The voltage source inverter is said to be primarily based on the pulse width modulation 

and the instantaneous power theory. It is important to consider the vested voltage or the 

current in the PWM techniques. The utilization rate of the DC voltage, obtained after 

the selection of the proper switching mode to decrease the harmonic content, is 78.5% 

which is much less than the 100% of the six step wave. Thus, studies have been focused 

on the improvement of the DC voltage rate (Hengli Quan, 2011). Figure 2.26 shows the 

SVM switch time. 

The SVM switch time (Ta, Tb, and Tc) are shown in Figure 2.26 

 

Figure 2.26.SVM switching times 

Figure 2.27 shows the six sector control strategy of the space vector modulation. 
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Figure 2.27.Six sectors control strategy of SVM 

Therefore, space vector PWM can be implemented by the following steps (Keyhani, 

N/A):  

Step1. Through the following equations the voltage and the angle can be determined: 
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The voltage reference equation is: 

22

qdrefer vvv 
         (2.19) 

The angle can be obtained by the following equation: 
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The phasor diagram is shown in Figure 2.28 
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Figure 2.28.Voltage space vector and its (d, q) components  

Step2.  According to the following equation the time duration can be calculated. 
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(2.25) 

Step3. As shown in Figure2.29, the switching time for all the six sectors can be 

evaluated. 
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Figure 2.29.Space vector PWM switching patterns at each sector 

2.6 Applications 

The fault tolerant system is applicable in many situations such as: 
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1. Petrochemical 

2. Military 

3. Communication 

4. Industrial and manufacturing 

5. Air space shuttles 

6. Air conditioning 

7. Medical 

8. Nuclear power system 

The wide usage of the fault tolerant system shows its growing importance in the 

industrial and the academic communities owing to the enhanced safety and reliability 

demands beyond the extent of the conventional control system. 
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Chapter 3: Control Techniques of IM 

3.1 Introduction 

This chapter will present the details of the performance and application of the four 

control techniques such as, sensorless vector control, sensor vector control, closed loop 

and open loop V/F control schemes.   

3.2 Modeling of IM 

In many fields the rotating electrical machines have played a significant role, 

specifically in the industrial processes. This is owing to their low cost, rigidity, 

reliability, easy maintenance and robustness (Khalaf Salloum Gaeid, 2010). 

Mechanical motions have been produced through various IMs and electrical machines 

are using almost 50% of the total electrical energy produced on the planet earth .thus it 

has led to developments in the control strategy of the IM systems (Kim, 2007). Figure 

3.1 shows the types of electrical motors. 
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Single
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Figure 3.1.Types of electric motors 

(Anjaneyulu, 2007), presented the dq dynamic model of a squirrel cage IM with respect 

to the frame fixed to the stator.  

The system analysis and the system performance in both transient and steady state 

regions need a model for IM to diagnose a fault (Pedra, 2009). There are various IM 



 

49 

 

models such as voltage model, current model and the state space models developed by 

the researchers (Tze Fun Chan, 2011). The following sections will further explain these 

models. 

3.2.1 State Space Modeling of IM 

The electrical part was modeled by the fourth order state, while the mechanical part was 

modeled by the second order (P. C. Krause, 2002). 

Three phase to two phase transformation constitutes the model of the IM, as in the 

equation 3.1: 
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The following expression gives the stator and flux linkage equations, the IM electrical 

model according to the asynchronously rotating d-q coordinates: 

1. Stator voltage in q-axis direction is: 

ds
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qssqs
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d
iRV 




        (3.2) 

Rs  is the stator resistance 

Vqs, iqs  are the q axis stator voltage and current 

ϕqs, ϕds  are the stator q and d axis fluxes 

The modeling of IM in q-axis is shown in Figure 3.2. 
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Figure 3.2.Modeling of IM in q-axis 
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where  

qrmqssqs iLiL '
         (3.3) 

drmdssds iLiL '
         (3.4) 

mlss LLL 
          (3.5) 

Ls, is the total stator inductances 

Lm, is the magnetizing inductance 

Lls, is the stator leakage inductance 

2.  Stator voltage in d-axis direction is: 

qs
ds

dssds
dt

d
iRV 




        (3.6) 

Figure 3.3 shows the modeling of IM in d-axis 
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Figure 3.3.Modeling of IM in d-axis 

3. Rotor voltage in q-axis direction referred to the stator is: 

drr

qr

qrrqr
dt

d
iRV ')(

'
'' 




       (3.7) 

where  

qsmqrrqr iLiL  '''
          (3.8) 

L'r, is the total rotor inductances 
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dsmdrrdr iLiL  '''
          (3.9) 

mlrr LLL  ''
          (3.10) 

L'lr,is the rotor leakage inductance 

4. Rotor voltage in d-axis direction referred to the stator is: 

qrr
dr

drrdr
dt

d
iRV ')(

'
''' 




       (3.11) 

5. The torque equation in stationary reference frame is expressed as: 

)(5.1 dsqsqsdse iipT  
        (3.12) 

3.2.2 T Model of IM 

There many aspects assumed when modeling the IM such as; linear magnetic field, 

uniform air gap, pure sine wave voltage source, perfect shaft alignment. The T modeling 

is used in the stationary reference frames of the vector modulation, after the abc-dq 

transformation and then to a αβ system.  

Figure 3.4 shows the dynamic T-modeling of the IM. 
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Figure 3.4.Approximate equivalent circuit of IM 

The equations 3.14, 3.15 and 3.16 can be used to express the T-modeling of stator, rotor 

and the torque of the IM (Qian Cheng, 2011). 

The following equations will express the stator voltage: 
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dt

d
IRU s

sss




         (3.14) 

And the rotor equation will be expressed as follows: 

rr
r

rrr j
dt

d
IRU 


 0

       (3.15) 

The electromagnetic torque equation is: 

)(5.15.1   ssssssme iipIpIT         (3.16) 

These components are associated with the stationary reference frame. 

This system however can’t work efficiently with systems having variable parameters 

such as mutual inductance and rotor resistance owing to the complicated nonlinear 

behavior.  

3.2.3 Inverse Γ Model of IM  

The T-model is complicated and over-parameterized due to the three inductances used. 

This is not preferable for the dynamic analysis or the vector control design. There are 

two state variables for the IM; ( sir, ) the rotor inductance can be referred to the stator 

side that will negate the over parameterization. Thus the Γ Model parameters obtained 

are as follows (Pietilainen, 2005): 

rrmR RLLR )/( 22          (3.17) 

RR  is the rotor resistance in Γ model 

)/( 2
rmM LLL           (3.18) 

ML  is the mutual inductance in Γ model 

rrmR LL  )/(          (3.19) 

R  is the stator flux in stationary coordinates 

Figure 3.5 shows the dynamic inverse Γ modeling. 



 

53 

 

sR rL

mL

-

+

--

++

sI
rI

mI

sU
rrj 

ssj 
sRr /

Figure 3.5.Dynamic Inverse Γ modeling of IM 

3.3 Control Techniques of IM 

The IMs have found their way through many applications such as robotics, fan, 

electrical vehicles, elevator pumps, ventilation and air conditioning (HVAC), heating 

and wind generation system (Bose, 2002). They are considered as a standard in the 

industry. Since three decades, much preference was given to the DC machines owing to 

their decoupling of the flux and torque. On the contrary they are notorious for their 

drawbacks such as high rotor inertia, difficulty in maintenance, high cost and 

inconvenience in commutations and brushes. 

The AC motors were frequently used after the development of the IGBT and the Digital 

DSP technology. These technologies are able to copy the decoupling effect of the DC 

motor while eliminating the drawbacks that may be found in the DC machines.  

The frequency converters usage characterizes the optimal operations of the IM speed 

control methods. The following components are present in the converters: 

1. Rectifier circuit,  

2. Space Vector Pulse Width Modulated (SVPWM) voltage source inverter  

3. Gate drives for the inverter 

4. DC filter   

The following properties should be present in the inverter fed IM drive (Żelechowski, 

2005): 
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1. Minimum torque and flux ripples.  

2. A constant switching frequency. 

3. A maximum output torque for all periods of operation. 

4. Low parameter variations in aspects like the rotor resistance. 

5. Fast torque and flux responses. 

6. The main objectives of the control strategy should be to gain the best    

possible parameters of drive and simplicity. 

The control methods can be classified in two groups of vector control and scalar control. 

The scalar control, which is the easiest way to apply, is further divided into the stator 

current control and the V/F control. The V/F control methods aim at maintaining a 

constant frequency ratio. It is frequently used in the industries owing to its simplicity 

and satisfactory performance. The scalar control is either open loop V/F or closed loop 

V/F. 

The following are the characteristics of the vector control: 

1. Voltage amplitude control(common with scalar control) 

2. Frequency control(common with scalar control) 

3. Control of both vectors of current and flux. 

The overall performance of the drive improves according to the above specifications. 

Sophisticated methods are required for the nonlinear behavior of the IM and the 

coupling between torque and flux in the functions of the machine. The torque and the 

flux can be decoupled through a variety of methods, which differ in the main concept 

and analytical procedure of the decoupling. 

There are four types of variable frequency control; field oriented control (FOC) which 

can be either direct field oriented control (DFOC) or the indirect field oriented control 

(IFOC). The IM equations are transformed from three phase coordinates (a,b,c) into two 

phase coordinate system due to the vector control (d-q). The flux produced component 
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forms the d-axis and the torque produced component forms the q-axis. There is a 

synchronous rotation of both of them. The vector control successfully decouples the 

flux and the torque. Feedback linearization control (FBLC) is the second method, which 

is a nonlinear control algorithm. The decoupling of the torque and the rotor flux are 

enabled through linearization control technique. Figure 3.6 shows block diagram of 

feedback linearization control (Chandorkar, 2010). 

Controller

Controller

Nonlinear function of

states
Induction motor

Nonlinear function of

states

Current and speed feedback

Speed

torque

Plant I/P

Linear plant

State feedback

 

Figure 3.6.Block diagram of FBLC based IM drive system  

 The Passivity Based Control (PBC) is the third method, which is a controller design 

algorithm that stabilizes the system. It attempts to make the closed loop system passive 

through various methods such as Liapunov function. It also provides the required 

storage function. Figure 3.7 shows the passivity based control (C. BatlleA, 2006): 
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Figure 3.7.Block diagram for the passivity based method (Simaan, 1997) 

The direct torque control (DTC) is the fourth method. The hysteresis controllers are 

used in this method to introduce the on-off functions of the inverter switches. Various 

DTC types are used such as classical DTC or Direct Torque Control space vector 

modulated (DTC-SVM). Figure 3.8 shows the classical direct torque control block 

diagram. 
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Figure 3.8.Block diagram of classical DTC (Yuttana Kumsuwan, 2008) based IM drive  

Four controllers: Sensor based vector control (with encoder), sensorless vector control 

(without encoder), V/F closed loop and open loop controllers, are used for the proposed 
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FTC technique. The performance is maintained through these controllers at a 

satisfactory level during the faults occurrence in the steady and transient areas. 

The algorithm is simulated through the digital motor control (DMC), as it is easy to 

compile via the Simulink/Matlab to C++ or C through F28335 DSP. 

3.3.1 Vector Control with Encoder  

To control the torque and the speed of the IMs, the vector control is the best control 

technique (Jannati, 2010). In the 1970s the vector control was invented that showed that 

the IM could be controlled as a separately excited DC motor. This was a revolutionary 

technique that was based on the orientation of the flux vector along the direct (d) axis: 

0qr
           (3.20) 

antconstdr 
          (3.21) 

The following calculations are carried out in the vector control according to the Park 

transformation: 
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This operation can be illustrated in Figure 3.9 

d

D

Q
q

Iq

Id

IQ

ID
cosId

sinIq







cosIq

sinId

 

Figure 3.9.Park transformation principle 

The dq to abc transformation can be written as, 
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Therefore, the rotor flux and the torque can be independently controlled to obtain a 

linear current/torque relationship through the stator current in the dq-axis.  

An accurate performance can be obtained through accurate evaluation of the position of 

the flux space (Serna, 2006). 

In the case of enhanced performance, industrialists are mainly looking for accuracy, 

speedy recovery, speedy responses and insensitiveness to the variations in the 

parameters (Uddin, 2000). High performance is obtained at variable speeds and 

frequency through the vector control of the squirrel cage IM. This is conducted as 

shown in Figure 3.10. 
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Figure 3.10.Vector control principle 

Figure3.11 shows the block diagram of a conventional vector control scheme. The speed 

control involves a number of loops but still it cannot completely reach the satisfactory 

levels (Kumar, 2007). 
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Figure 3.11.Vector control implementation 

Two constants are used by the vector controlled machines as input references. These 

constants are the torque component aligned with the q-axis coordinate and the flux 

component aligned with the d-axis. The control system handles the instantaneous 

electrical quantities as the control is based on the projections. Accurate controls are 

produced through these behaviors in both steady and transient states, both independent 

of the bandwidth mathematical model of the IM. Figure 3.12 shows this. 

The following ways are written to be explored as control problems, through this 

technique: 

1. Easily accessible stator current and hence torque and flux components can be 

reached easily.  

2. Removal of the difficulties that surface in direct torque control (Instrument, 

1998). 

3. A flux sensor is used to measure the rotor flux vector by positioning it over the 

air gap. It is also measured through the voltage equations with the electrical 

machine parameters. The direct rotor speed can be used to evaluate the rotor flux 

parameter. 
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Figure 3.12.Phase angle relations for different cases components  

To calculate and control the variables, the dynamic model equation is required (Report, 

2006). 

To design and develop a high performance vector control system, accurate and reliable 

parameters are required. There will be a change in the electrical and mechanical 

parameters of the IM owing to the changes in temperature, frequency and magnetic field 

during the functions (Lai, 2010). These problems are however being overcome through 

the developments in the microprocessors and DSP (M. Menaa, 2008). The actual speed 

can only be compared with the reference speed in the presence of shaft encoders (Ghada 

Boukettaya, 2010).  

The Vd and Vq created from the Vabc to generate Vα and Vβ for space vector pulse width 

modulation, are used by the PI controllers which is then reverted back to the Vabc. The 

modulation techniques result in a reduced harmonic generation, switching losses and 

linear modulation range. All these requirements are satisfied by the SVPWM as 

opposed to the classical techniques like the sinusoidal PWM modulation (Ramirez, 

2009). The speed control of vector control has been done through the calculation of both 

angular slip speed and the transformation angle by summation of the rotor position 

angle and slip angle (Emil Levi, 2008). 
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Three PI controllers are used in the vector control. It becomes hard to tune all the 

controllers together. The sampling time required for the inner controller is ten times 

faster than needed for the outer controller. The controller’s efficiency is tuned through 

the Ziegler-Nichols method, through which the Kp and Ki for both Isq and Isd are set 

accurately allowing to reach the constant references. The constants Kp and Ki for both Isq 

and Isd effect the sensibility and the steady state errors respectively. The optimum values 

for Kp and Ki are listed in table 3.1 after tuning. Figure3.13 shows the main block of the 

IM vector control to create the space vector modulation. 

 

Figure 3.13.Vector control SVM generation using DMC blocks 

3.3.2 Vector Control without Encoder 

Recently the IM drives controlled without the speed sensors have been developed, but 

they have not been able to perform efficiently at low speeds. The variable parameters of 

sensitivity of the factors, limited parameter bandwidth and unbalance current sources 

are the reasons behind this low performance (Joachin Holtz, 2000). The Model 

Reference Adaptive System (MRAS) is a popular option for the speed estimation. The 

observer and the extended Kalman filter are also popular options. New MRAS has been 

developed in this thesis, known as the Boosted (BMRAS). This thesis will investigate 

the manner of its operation in case of a fault and how it can be used to evaluate the 

speed as main parameter in the all fault tolerant control works. Figure 3.14 shows the 

Simulink implementation of the sensorless vector control. 
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Figure 3.14.DMC Simulink implementation of sensorless controller 

A reference model, an adaptive model and an adaptation mechanism makes up the 

classical MRAS. Figure 3.15 shows the estimated speed obtained through conventional 

MRAS. Estimated speed through MARS feed the sensorless in Figure 3.14 after 

integrate it.  

 

Figure 3.15.Conventional MRAS used for speed estimation 

The PI controller is eliminated in the construction of the BMRAS, in order to save the 

tuning time. Figure 3.16 shows the block diagram of the BMRAS used in this thesis.    

 

Figure 3.16.Simulink implementation of the proposed BMRAS 
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The following equations give the reference model according to the system shown in 

(Gadoue, 2010): 

))/((/ dtdiLiRvLLp dssdssdsmrdr  
      (3.24) 

))/((/ dtdiLiRvLLp qssqssqsmrqr  
      (3.25) 

The adaptive model can be expressed in the following equations: 

))'')/((/' 0 qrdrrrdsrmrdr LRiLLRp  
     (3.26) 

))'')/((/' 0 drqrrrqsrmrqr LRiLLRp  
     (3.27) 

qrdrdrqr ''            (3.28) 

A simple fixed gain linear PI controller is applied by the MRAS speed observer to 

create the evaluated rotor speed. Inaccurate flux estimations by the integration of the 

rotor voltages are obtained due to the poor performance of the classical MRAS 

especially at the synchronous speeds (Roberto Cardena, 2008). 

The limit rate, zero order hold and initial conditions of the signals can apply the 

BMRAS, which contains the booster as a new part.        

)1()(

)1()( /






itit

iOiI
S

poin
          (3.29) 

The current input and the time are given by: inI  , )(it  

While the previous time and the signal outputs are given by: )1( it , )1(/ iO po . 

There are three conditions in the slope or the limit rate, that is the slew rate parameter    

( )should be more than rising, the rate between the values δ and γ and less than falling 

slew rate parameter ( ) as well as  the initial condition =0. 

The mathematical model of the first case is:  

)1(.)(/  tItiO po            (3.30) 

t , indicates the current sample 
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1t , indicates the past sample 

The mathematical model of the second case is: 

)1(.)(/  tItiO po 
         (3.31) 

The mathematical model of the third case is: 

)()(/ iIiO po 
           (3.32) 

In the 2
nd

 step, the zero order hold (ZOH) has to be defined to construct the booster. The 

zero order hold will generate a continuous time input by holding each sample value as a 

constant over one sample period. The ZOH can be considered as a hypothetical filter to 

obtain a piece wise signal as indicated by the following equation: 
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Time domain impulse response is as follows: 
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      (3.34)     

 The application will determine the usage of the scaling time T, but in the case when the 

scaling time is omitted then the time of the measurement unit will determine the low 

pass filter. The transfer function of the booster block is: 

0.0018641 - z 0.99819 - z^2

z^2 011-1.1659e-
. fT        (3.35) 

Predictable error measurement was used to calculate eq. (3.35). 

Simulink was used to prove the effectiveness of this transfer function when the input is (

 ) and the output is estimated speed as can be seen in Fig. 3.17. The simulation and 

experimental results are for 1kW IM with 2780RPM. 
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Figure 3.17.Booster actual, simulated reference speed with the speed error 

The initial testing of the BMRAS speed estimator was in the simulation with the 

variable reference speed. Figure3.18 and Figure3.19 show the accurate responses of the 

BMRAS system with variable and constant reference speed respectively. 

 

Figure 3.18.Simulated speed response of the proposed BMRAS based IM drive for step 

change in the reference speed 

 

Figure 3.19.Simulated speed response of the proposed BMRAS based IM drive constant 

reference speed 
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Experimental test on the BMRAS was performed, which yielded results showing an 

error between the estimated speed and reference speeds less than 0.0187. Figure 3.20 

and Figure 3.21 shows this. 

 

Figure 3.20.Experimental BMRAS based estimated speed and reference speed 

 

Figure 3.21.Experimental error between the BMRAS based estimated and reference 

speeds 

The applied PI controller structure and parameter tuning will determine the performance 

of the IM control via the indirect vector control method (Matic, 2010). The PI controller 

is primarily used to process the error value as a difference between the reference value 

and the actual value. The error is reduced by adjusting the process control inputs to 

maintain the parameter values at the satisfactory levels. The integral and derivative 

values, denoted by Kp, Ki, Kd gains of the system, are included. The u (t) denotes the 

control input and e(t) denotes the error signal (Banerjee, 2010). 
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The following is the PID equation: 

 
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       (3.36) 

For PI controller, the equation is: 



t

ip dttektektu
0
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        (3.37) 

Figure 3.22 shows the block diagram of PI controller used for sensor and sensorless 

vector controls. 

 

Figure 3.22.PI controllers for Id and Iq with the vector control 

Figure 3.23 shows the PI controller in vector control used as a torque controller.  

 

Figure 3.23.Torque controller in vector control scheme 

3.3.3 Closed loop Voltage / Frequency Control 

The following reasons explain why the V/F control is one of the most popular control 

techniques: 

1. It is a simple algorithm 

2. There is no need of current sensors 

3. There is no requirement of speed measurement 

The following equations can explain the principle of V/F: 



 

68 

 

 ˆˆ jV           (3.38) 

Where  V


 and  ̂  are the phasors of stator voltage and stator flux respectively  

|ˆ||ˆ|  jV           (3.39) 

 fV 2           (3.40) 
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1
          (3.41) 

The stator flux remains constant if the ratio V/F remains constant despite the change in 

the frequency. As evidenced from Figure3.24, the IM torque is not dependent upon the 

supply frequency (Figoli, 1998). 

 Source Rectification Inverter I.M

SVM
Frequency

Voltage

 

Figure 3.24.Voltage /frequency (v/f) control   principle 

For IM control systems, the V/F control algorithm is an independent parameter that can 

be implemented without any problems. Hence, it is employed on a large scale in general 

purpose inverters (Wei Chen, 2009). 

Variable frequency supply can be generated for doing this. The two sinusoidal voltages, 

Vd and V q are each 90 degrees out of phase. Figure3.25 demonstrates the Simulink 

implementation of the V/F controller circuit. 

 

Figure 3.25.Simulink implementation of V/F controller circuit 
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After inverse park transformation and space vector generating units, these voltages are 

used to generate SVM signal. As illustrated in the following equation, the driving 

frequency and slip control the speed of the IM in the V/F control: 

)1(
1

s
p

m 




          (3.42)  

Over here, ω is the driving frequency, p is the number of poles in the motor, ωm is the 

speed of the motor while s is the slip. Due to the simplicity of its architecture, the PI 

controller works well with V/F control (Seydi Vakkas Ustun, 2009). 

The Vabc is converted to Vd and Vq that is controlled by the PI controller. Again, these 

voltages transform two Vα andV β though the inverse park transformation: 
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The inverse Park transformation principle is illustrated by Figure3.26: 
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Figure 3.26.Inverse Park transformation principles 

For applying in the IM phases, this is the voltage space vector. The BMRAS observer 

can be used for obtaining the speed of the V/F control. As the ratio of the output V/F is 

constant, the main magnetic flux of the V/F controller will not be altered with 

frequency. When Eq 3.44 is satisfied, the maximum or the pull out torque can be 

obtained according to the IM equations. 
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The critical slip therefore is: 



1
criticalS           (3.45) 

Generally, the torque is proportional to the speed and the IM operates efficiently below 

this slip for obtaining adequate outcomes. Figure3.27 shows the relationship between 

stator voltage and frequency that is made use of in V/F control (Anderzej M., 2001). 

The following formula is used for controlling the stator voltage in V/F: 
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Figure 3.27.Stator voltage vs. frequency in V/F control 

Due to slip change with the load of motor, it is not possible to obtain an accurate speed 

control in V/F. These drawbacks are avoided here as the V/F is not utilized in the 

beginning of the operation but in the steady state. Furthermore, as the stator or rotor 

winding faults result in alterations of the parameters of motor equivalent circuit, the 

used state variable estimators should be robust to motor parameter uncertainties in 

sensorless drives (Teresa Orlowska Kowalska, 2010). As done in this work, an observer 

can be used for estimating the speed of the IM or a quadrature encoder can be mounted 

to the rotor for a direct connection with the TMS320F28335 DSP for obtaining velocity 
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feedback from the rotor. By comparing the actual (estimated) speed with the reference 

speed, the speed error is calculated by the closed loop control. Figure 3.28 shows the 

Simulink implementation of V/F in detail. 

 

 

Figure 3.28.Simulink implementation of V/F control in details  

A boost model reference adaptive system estimator is utilized for estimating the speed 

and compensating the voltage drop of the stator leakage impedance to realize an 

advanced V/F control. The speed performance is enhanced at the same time as well. 

3.3.4 Open Loop V/ F Control 

When accuracy in speed response is not of a grave concern like in fan or blower 

applications and in HVAC, open loop speed control is then preferred for use. In this 

situation, the desired speed is used for determining the supply frequency together with 

the assumption that the synchronous speed will be adhered to by the motor. It is 

acceptable for an error to occur in speed from the slip of the motor. By regulating the 

slip speed, a closed-loop speed control can be implemented with the constant Volt/Hz 

principle when accuracy in speed response is of significance. In this case, for keeping 

the speed of the motor at its set value, a PI controller is employed for regulating the 

motor’s slip speed. V/F controlled drives are very strong due to the restriction to low 

dynamic performance and the absence of closed loop control (J. Amarnath, 2009). 

Figure3.29 illustrates this 
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Figure 3.29.Open loop V/F voltage generation 

The responsibility for acceleration and deceleration of the speed response can be 

attributed to the ramping generation block shown in Figure3.28. The number of poles 

determines the conversion of the RPM to Hz by the speed to frequency block. The ratio 

is (2*1/120) in this work. 

All the noise is suppressed by the low pass speed filters block. The following presents 

the transfer function of this filter: 

)]10*5*75*2exp(1[

)]10*5*75*2exp(1[
6

6













TF        (3.48) 

Where the sampling time of the filter is denoted by 5e-6 sec and 75 Hz is the cut off 

frequency of the filter. The ratio of volt/frequency stands at 3.9 according to the 

degradation of the output voltage to 195V and the reference flux is 0.62 Wb. 

The transfer function parameters in eq. (3.48) are of 0.5 hp IM. 

When the air gap flux decreases, the voltage drops across the stator leakage impedance, 

resulting in the deterioration of the IM performance at low frequencies (Tsuji, 2008). 

Limited starting torque and low accuracy due to load variation is another problem with 

V/F in variable adjustable speed. 

To keep the speed of the motor at its set value and to regulate its slip speed, a PID 

controller is employed (C.U. Ogbuka, 2009). 

The constant Volt/Hz principle can be used as a basis for implementing both open and 

closed loop control of the speed of an AC. For performing suite speed maintenance, 

closed loop V/F can be utilized more efficiently in contrast to the open loop V/F. Large 
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transient behavior in the motor current and torque characterizes the performance of the 

open loop V/F (Sepe, 2001).  

Figure3.30 illustrates the complete Simulink based block diagram for the FTC based IM 

drive. 

 

Figure 3.30.Simulink implementation of the open and closed loop V/F control 

Table 3.1.PI gains for the different control techniques in simulation and experiment 

 

 

 

 

In table3.1, the kp and Ki values are for 1 kW IM PI controllers in the various control 

techniques. 

This work has expanded on the control techniques implemented in (Zelechowski, 2005) 

with more blocks. Figure 3.31 illustrates expanded control techniques of IM. 

Control technique Simulation Experiment 

kp ki kp ki 

Sensor V.C. 32 1 0.001 0.11 

Sensorless V.C 0.1 0.002 19 2.99 

Closed loop V/F 1 0.0005 1 0.0005 
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Figure 3.31.Types of control techniques for IM 

Figure3.32 shows the complete circuit of all the control techniques employed in this 

thesis 
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Figure 3.32.Simulink based implementation for the proposed FTC based IM drive. 
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Chapter 4: Wavelet Techniques for IM fault Detection 

4.1 Introduction  

Wavelets are mathematical functions that cut up data into different frequency 

components, and then study each component with a resolution matched to its scale. 

This technology was introduced in 1807 and was explored and improved by a number of 

scientists and has fascinated them till today. It attracted scientists from different 

disciplines especially mathematicians were more interested in this technique due to its 

accuracy and practicality. The credit of introducing this technique goes to Joseph 

Fourier (1807) who presented his theories of frequency analysis. The work was further 

investigated in 1930 and the functional energy was obtained from the computation of 

conserve energy, it was carried out on scale varying basis functions. During two 

decades (1960-1980), the work was further accelerated by Guido Weiss and Ronald R. 

Coifman who worked on ‘atom’ and showed remarkable research in the reconstruction 

of functional elements. However, the quantum physics definition of wavelet was given 

by Grossman and Morlet. Within the short time period of five years, in 1985, Stephane 

Mallat, introduced digital signal processing which proved a milestone in the 

development of wavelet. Y. Meyer made a progression in the same direction and 

presented first most significant, continuously differentiable wavelets. Hence, the 

modern day wavelet application owes Ingrid Daubechies’s effort in the field who 

constructed a set of orthogonal basis functions which paved the way to the current 

applications (Nirmesh Yadav, 2007). 

This chapter will discuss advantages/disadvantages of wavelet, construction of the 

wavelet, scaling factor, levels of decomposition, wavelet index in the fault detection, 

Simulink implementation of the wavelet and prognostics using wavelet.  
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4.2 Wavelets Definition 

A wavelet is a wave like oscillation which is purposefully generated to have specific 

properties that make them useful for signal processing. It is a ripple created for a short 

time period. This chapter will discuss in detail how this technique is different and far 

better than other signal processing techniques (Khan A. , 2010). The wavelets are 

categorized into orthogonal and non orthogonal. These are some of the properties of the 

wavelet: 

1. The Fourier transform can go to zero (see the equation 4.1), when provided with 

appropriate admissible condition. 

0|)(|
2
           (4.1)   

2. The following equation will show the admissibility condition: 

 




d

||

|)(|
2

         (4.2) 

3. The concentration and the smoothness of the wavelet function are regularized in 

both time and frequency parameter in order to keep the squared relationship 

between the time bandwidth products of the wavelet transforms and the input 

signal intact. 

4. Finite energy: Finite energy helps to reconstruct a signal without computing all 

values of its decomposition when a wavelet confirms an admissibility condition.  

)2(2)(
2/1

,
ntt

m

nm





       (4.3) 

m  & n   are the wavelet dilation and translation used to transform the original new one 

with smaller scales according to the high frequency components, ψ (t) is a symbol that 

is used to investigate the signals and later on it reconstructs them without losing any 

information.             
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Figure 4.1 shows the tree decomposition of the stator current with 6 levels as a first 

checking of the wavelet index which did not satisfy the desired accuracy level. 

 

Figure 4.1.Tree of wavelet decomposition with 6 levels (63 nodes) 

Figure 4.2 shows the illustration of the energy representation of the signal after 11 

levels of decomposition 

 

Figure 4.2.Percentage of the energy corresponding to the terminal nodes of the tree 

Duplicated information cannot be stored in both frequency and time domains as per the 

definition of finite energy property. Equation 4.4 better expresses the wavelet energy: 

2
( )E t dt





  
         (4.4) 
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The Equation 4.5 expresses the energy of the details of any signal at level j. These are 

called the wavelet coefficients (M. Sabarimalai Manikandan, 2007): 


2

,dE
kjj

                    (4.5) 

where  

dtkttftfd
j

jkjkj
)2()(

2

1
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,,
                     (4.6) 

5.  Decay quickly in time: when the wavelet’s intervals k+1 moment equal to zero 

as in the following Equation: 

 
R

j kjatdtttM ,.....,1,0,0)(

        (4.7) 

The zero wavelet coefficients are obtained through this equation which subsequently 

makes the possibility of getting signals suppression polynomials are k . 

6. The Equation (4.8) (Jian, 2009) indicates that the wavelet is an oscillating and a 

fragile function and its integrals equal to zero: 

 
 0)(

          (4.8) 

The analysis in transient region relies upon this property; similarly it is quite significant 

for non stationary signals. The scaling function and the wavelet function comprise the 

orthogonal wavelet. The scaling function is signified by the symbol )(t , it is basically 

used to produce the basis function when the original signal is being analysed or 

synthesized, and it also describes the LPF for the wavelet transform. Whereas, BPF is 

defined by the wavelet function for the transform. The Equation 4.9 expresses the 

scaling function: 

)2(2)( 2/

, ktt jj

kj   
         (4.9) 

j = resolution levels number, and k = dimension at level j 
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The HPF determines the wavelet function and deals with the details of the wavelet 

decomposition as shown in Figure 4.3, whereas LPF determines the scaling function 

and deals with the approximations of the wavelet decomposition. 

 

Figure 4.3.db10 wavelet decomposing into HP and LPF with transfer modulus 

The following equation shows the discrete wavelet transform 
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      (4.10) 

 )(ng , )(nf  is the mother wavelet and input signal respectively. The scaling and 

translation parameters “ a & b ” are functions of the integer parameter m (M. Sushama, 

2009).  Daubechies wavelet (db10) in this thesis has been used as a base of wavelet 

index construction as well as a unit to analyze the stator current. Figure 4.4 shows its 

function 

 

Figure 4.4.Mother Wavelet function (db10) and scaling factor (red) 



 

81 

 

The Fourier Transform has lost its significance over the years due to its very basic 

drawbacks both in the usage of a single window function for all frequency components 

and the procurement of linear resolution in the whole frequency domain. The wavelet 

technique on the other hand provides a better solution for the above mentioned 

deficiencies. Its performance has been found excellent in diagnosing fault as it can 

extract all the information in both time and frequency domain with equal dexterity. This 

quality has attracted the scientists to use it for fault diagnosis (M. Riera Guaspa, 2009). 

Three modules namely, feature extraction (wavelet), feature cluster and fault decision 

comprises the fault diagnosis technique. 

Some of the other helpful characteristics of wavelets in terms of fault diagnosis include 

multi resolution analysis and good time localization.  

4.3 Structure of the Wavelet 

The structure of a one dimension DWT is based on filter bank for sub band 

decomposition (Longa, 2006) as can be shown in Figure 4.5.  

 

Figure 4.5.Two levels Simulink signal decomposition through sub band filters 

Figure4.5. shows two levels Simulink signal decomposition through sub band filters. 

The construction of both low and high pass filters depends upon the Finite Impulse 

Response (FIR), its transfer functions help to achieve the desired results. Figure 4.6 

shows the complete functioning of the (db10) wavelet asymmetrical (one dimension). 
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Figure 4.6.Complete 1D-DWT Simulink signal decomposition 

The detailed information of the signal is dependent upon the high pass filters while 

approximate information of the signal relies upon the low pass filters. The sampling 

frequency is generated by the fusion of the magnitude and phase response with the 

impulse response at each level of 20 kHz. 

The LPF gathers the approximate information at level 1(a1) through (0-10) kHz FIR. 

Figure 4.7 shows the magnitude and phase response of this filter. 

The FIR is the best option in this construction as its response is easily adjustable to the 

zero in finite time and it is helpful for all high pass filters and low pass filters. 

 
Figure 4.7.Magnitude and phase response of (0-10) kHz low pass filter 

FIR high pass filter with frequency range (10-20) kHz helps to generate the detailed 

information at level 1 (d1). Figure 4.8 shows the magnitude and phase response of this 

filter. 
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Figure 4.8.Magnitude and phase response of (10-20) kHz high pass filter 

(0-5) kHz FIR low pass filter helps to produce the approximated information at level 2 

(a2). Figure 4.9 illustrates the magnitude and phase response of this filter 

 

Figure 4.9.Magnitude and phase response of (0- 5) kHz low pass filter 

(5-10) kHz, FIR high pass filter generates the detailed information at level 2 (d2) .The 

phase response of this filter and the magnitude has been illustrated through Figure 4.10. 

 

Figure 4.10.Magnitude and phase response of (5-10) kHz high pass filter 
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(0-2.5) kHz FIR low pass filter yields the approximated information at level 3 (a3). The 

phase response of this filter and the magnitude has been illustrated in Figure 4.11 

 
Figure4.11. Magnitude and phase response of (0-2.5) kHz low pass filter 

FIR high pass filter with frequency range (2.5-5) kHz generates the detailed information 

at level 3 (d3).The phase response of this filter and the magnitude has been illustrated 

through Figure 4.12 

 

Figure4.12. Magnitude and phase response of (2.5-5) kHz high pass filter 

At level 4 (a4), the approximated information is gathered by FIR finite impulse response 

with frequency range (0-1.250) kHz, low pass filter. The phase response of this filter 

and the magnitude has been illustrated through Figure 4.13. 
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Figure4.13. Magnitude and phase response of (0-1250) Hz low pass filter 

FIR HPF with frequency range (1.25-2.5) kHz generates the detailed information at 

level 4 (d4). The phase response of this filter and the magnitude has been illustrated 

through Figure 4.14. 

 

Figure4.14. Magnitude and phase response of 1.25-2.5 kHz high pass filter 

FIR LPF with frequency range (0-625) kHz produces the approximated information at 

level 5 (a5). The phase response of this filter and the magnitude has been illustrated 

through Figure 4.15. 

 

Figure4.15. Magnitude and phase response of (0-625) Hz low pass filter 
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FIR high pass filter with frequency range (0.625-1.25) kHz yields the detailed 

information at level 5 (d5). The phase response of this filter and the magnitude has been 

illustrated in Figure 4.16. 

 

Figure 4.16.Magnitude and phase response of (625-1250) Hz high pass filter 

FIR (0-312.5) Hz high low pass filter generates the approximated information at level 6 

(a6). The phase response of this filter and the magnitude has been illustrated in Figure 

4.17. 

 

Figure 4.17.Magnitude and phase response of (0-312.5) Hz low pass filter 

(312.5-625) Hz FIR high pass filter produces the detailed information at level 6 (d6). 

The phase response of this filter and the magnitude has been illustrated through Figure 

4.18. 
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Figure 4.18.Magnitude and phase response of (312.5-625) Hz high pass filter 

(0-156.25) Hz FIR low pass filter produces the approximated information at level 7 (a7). 

The phase response of this filter and the magnitude has been shown through Figure 

4.19. 

 

Figure 4.19.Magnitude and phase response of (0-156.25) Hz low pass filter 

(156.25 -312.5) Hz FIR high pass filter produces the detailed information at level 7 (d7). 

The phase response of this filter and the magnitude has been shown through Figure 

4.20. 

 
Figure 4.20.Magnitude and phase response of (156.25 -312.5) Hz high pass filter 
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(0-78.125) Hz FIR low pass filter produces the approximated information at level 8 (a8). 

The phase response of this filter and the magnitude has been shown through Figure 

4.21. 

 

Figure 4.21.Magnitude and phase response of (0-78.125) Hz low pass filter 

(78.125-156.5) Hz FIR high pass filter produces the approximated information at level 8 

(d8). The phase response of this filter and the magnitude has been expressed through 

Figure 4.22. 

Figure 4.22.Magnitude and phase response of (78.125-156.5) Hz high pass filter 

FIR (0-39.0626) Hz low pass filter generates the approximated information at level 9 

(a9). The phase response of this filter and the magnitude has been illustrated in Figure 

4.23. 
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Figure 4.23.Magnitude and phase response of (0-39.0625) Hz low pass filter 

FIR (39.0625 -78.125) Hz high pass filter generates the detailed information at level 9 

(d9). The phase response of this filter and the magnitude has been illustrated in Figure 

4.24. 

 

Figure 4.24.Magnitude and phase response of (39.0625 -78.125) Hz high pass filter 

(0-19.53) Hz FIR low pass filer produces the approximated information at level 10 (a10). 

Figure 4.25 illustrates the phase response of the filter and the magnitude. 

 
Figure4.25. Magnitude and phase response of (0-19.5313) Hz low pass filter 



 

90 

 

The FIR (19.5313 -39.0625) Hz high pass filter produces the detailed information at 

level 10 (d10). Figure 4.26 shows the magnitude and phase response of this filter. 

 

Figure 4.26.Magnitude and phase response of (19.5313 -39.0625) Hz high pass filter 

(0-9.76) Hz FIR low pass filer generates the approximated information at level 11 (a11). 

The phase response of the filter and its magnitude can be understood through 

Figure4.27. 

 

Figure 4.27.Magnitude and phase response of (0-9.76) Hz low pass filter 

The FIR high pass filter (9.76 -19.5313) Hz produces the detailed information at level 

11 (d11). The phase response of the filter and its magnitude are visible in Figure 4.28. 
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Figure 4.28.Magnitude and phase response of (9.76 -19.5313) Hz high pass filter 

4.4 Decomposition Levels of the Wavelet 

Orthogonal wavelet helps to obtain optimal level; it caters to several decompositions 

units. The expansion of a signal is possible to expand in various ways. If signal of 

length L is presented through this equation: N=2L. The length of the signal can vary and 

can reach to the optimum size as it has various ways of expansion. The decomposition 

value can easily be estimated through an efficient algorithm with respect to a convenient 

criterion (Mallat S., 1998). The algorithm that has additive cost behavior is a good 

choice of binary tree structure i.e. 

0)0( E           (4.10) 

In the signal processing field, the term Entropy is not new. Though it is used in some 

other fields as well, its significance in this field is imminent. The above mentioned 

conditions are verified by the Entropy criteria. The relation of Entropy can be expressed 

through the Equation4.11 where S= signal, N= the length of signal and E= Entropy: 
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Figure 4.29.Wavelet tree with 11 levels all node response (2047 nodes) 

Figure4.29 and Figure4.30 expresses the best tree and levels according to Shannon 

entropy at level 11 and 8. 

 

Figure 4.30.Best level wavelet tree with node response (255 nodes) 

The optimal levels of decomposition are gauged through the optimum mother wavelet. 

The Shannon entropy orientates the route in the selection of this optimal level by 

determining the entropy of each original (parent) subspace of the (DWT) and also views 

it in comparison to its new (children) subspace (Khan A. , 2010). 

The following equation explains the decomposition of the signal. It highlights the fact 

that if the entropy at level j-1 is less than that of the next level j, the level j of the DWT 

loses its significance. The condition is determined by the above mentioned criterion: 

1)()(  jj sEsE
         (4.12) 
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The implementation of the decomposition is possible through filtering and down-

sampling. It can even be iterated with successive approximation as in (Turkmenoglu, 

2010). 

The following relationship can help to determine the total decomposition levels (L).  

1
)2log(

)log(


f

fs

L

         (4.13) 

If these bands are changed, they can cause complication in the fault detection especially 

those based on DWT, and create problems in time varying conditions. Thus in order to 

change these bands it is important to acquire a new acquisition with different sampling 

frequency (Yasser Gritli, 2011). 11 levels decomposition takes place when 

Equation4.13 is implemented at a sampling frequency of 20 kHz. The frequency bands 

for each wavelet signal have been shown in Table 4.1. 

Table 4.1.Frequency bands for the levels of wavelet signals 

Approximations 

«aj» 

Frequency bands 

(Hz) 

Details 

«dj» 

Frequency bands 

(Hz) 

a11 [0-9.76] d11 [9.76-19.52] 

a10 [0-19.52] d10 [19.52-39.04] 

a9 [0 - 39.04] d9 [39.04-78.08] 

a8 [0 – 78.08] d8 [78.08-156.16] 

a7 [0- 156.16] d7 [156.16-312.32] 

a6 [0-312.32] d6     [312.32-624.64] 

a5 [0-624.64] d5 [624.64-1.25e3] 

a4 [0-1.25e3] d4   [1.25e3-2.5e3] 

a3 [0-2.5e3] d3 [2.5e3-5e3] 

a2 [0-5e3] d2 [5e3-10e3] 

a1 [0-10e3] d1 [10e3-20e3 ] 

 

4.5 Multiresolution Analysis 

The multi-resolution analysis (MRA) is used to provide better representation of 

orthogonal wavelet. It is an algorithm to produce orthogonal wavelet, it also helps to 
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discrete wavelet transform and filters banks (D.Barnes, 2006). It was introduced by 

(Mallat S. , 2009) and since then it is being used to reduce the unwanted approximation. 

It is playing a pivotal role in transferring one dimensional time domain signal into time 

frequency domains with two dimensions:  




 










joj
kjjkjojo tkdtkctf )()()()()( ,, 

      (4.14) 

First summation gives a coarse approximation of a function f (t) at scale j0 and the 

second one for finer resolution at scale j. 

where 

)()( ,0
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0 ttfc kj
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j 
         (4.15) 

)()( , ttfd kj

j

j 
         (4.16) 

)(,0 tkj  & )(, tkj  are scale function and wavelet conjugates. 

The data required in the analysis depends on the sampling frequency and resolution 

required as in (4.17) 

  RfD
srequired /          (4.17) 

Where  

s
f  , R  are the sampling frequency and resolution respectively. 

Figure 4.31 shows the MRA of the above table: 

d11 d1d2d8d9d10

0   fs/2j+1 fs/2j+1 fs/2j fs/2j fs/2j-1 fs/2j-1 fs/2j-2 fs/2j-2 fs/2j-3 fs/2j-7 fs/2j-8 fs/2j-9 fs/2j-10

a11

 

Figure 4.31.Filtering process performed by the DWT 
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4.6 Wavelet Choosing  

The wavelet technology has been found very effective in the fault detection. The usage 

of this technology helps to prevent machine failures as the fault finding at the early 

stages prevents heavy losses and give more time and opportunity to fix the problems 

before embarking upon the real journey. The localized capability, best de-noising and 

good filtering characteristics are a few features of this technology which helps to detect 

the fault (Jian Yu Zhang, 2007). An efficient wavelet function is required to be selected 

for the fault detection as wavelet technology is still at its early stages (R. Rubini, 2001). 

The following relationship expresses it quite well: 





 dttfC kjkj

*

,, )( 
         (4.18) 
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The wavelet base function ‘a0&b0’ are scalar and shifting factors respectively. 

The function f (t) can be expressed as: 

 








 )()( ,, tCCtf kjkj 
        (4.20) 

The quality of wavelet function depends upon better decomposition and reconstruction 

which eventually saves the loss of energy during the transformation. All these 

characteristics can be seen in an orthogonal wavelet basic function and a sensible choice 

to detect and diagnose fault. Basically, every wavelet base function should be based on 

asymmetry as it helps to minimize the information drift, enhances the filters 

compression ability, regularity, the compactness characteristic for the real time 

implementation and keeps a check on zero vanish moment. In this regard the wavelet 

index is a great help to establish high system reliability and early fault detection. The db 

10 has been found to be the best wavelet base as shown in table 4.2. 
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Table 4.2.The property parameters of wavelet bases (Li Ke, 2007) 

Wavelet bases Regularity Vanishing moment Support width (Ws) 

db1 discontinuous 1 1 

db2 1 2 3 

db3 2.75 3 5 

db4 5.10 4 7 

db5 7.98 5 9 

db6 11.33 6 11 

db7 15.11 7 13 

db8 19.32 8 15 

db9 23.95 9 17 

db10 29.02 10 19 

 

The selection of ‘db 10’ is the most sensible option as it harmonizes the combination of 

dbN and SNR. The compactness is reduced by the increasing of dbN ranking which 

consequently increases SNR and the memory that is required for the high and low pass 

filters implementation. Thus the MRA of the stator current signal of the proposed fault 

tolerant control algorithm is effectuated by the wavelet function ‘db 10’. It is equally 

well suited for both experimental works and the simulation. 

4.7 Wavelet Index Construction 

The criterion of fault detection of IM fault is one of the most important steps in the 

whole process. It is implemented right after the construction of DWT. The criterion is 

directly linked with the relationship between the original stator current (Ia) and 

maximum detail energy (d8).  Figure 4.32 depicts this relationship. 

 

Figure 4.32.Simulink wavelet index (WI) implementation 
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The energy held by a signal is the most effective tool in detecting the fault of IMs. The 

addition of the squared coefficients of the details and final approximation which is 

obtained through wavelet analysis helps to determine the wavelet index for detection of 

the IM faults. The energy of every detail is computed as wavelet analysis helps to 

provide both time and frequency information simultaneously (Biju K, 2010). Similarly, 

this thesis also highlights another important factor, i.e. stator current. It has been used as 

the input to the DWT. The sudden increases, decreases or transients detected in the 

magnitude of the current have been termed as ‘the variation’ in the stator current 

waveform (Mamat Ibrahimm, 2004).  

The detection of the fault through the wavelet index which is undeniably the best 

yardstick to check the fault can be shown in this formula: 

))((/))8(( aindx IenergyaveragedenergyabsW       (4.21) 

The energy of both stator current (Ia) and d8 coefficient can be calculated according to 

eq. (4.5). 

More details about figure4.32 can be seen in Figure 4.33 to take a decision according to 

(4.21). 
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Figure 4.33.Faults detection according to the wavelet index 

Thus, the status of a three phase IM can be exposed via wavelet index by using the 

stator current and the wavelet technology. 
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Chapter 5: Fault Tolerant Control of IM 

5.1 Introduction 

The increasing demand of asynchronous AC drive systems has given rise to the need of 

a reliable and more efficient fault tolerant control system. Thus, fault diagnosis and 

protection is the need of the time and it is vital in the development of IMs maintenance. 

It is effective for both small and medium asynchronous AC drive systems in industrial 

plants (Cristaldi, 2010). 

5.2 Definitions 

During operation, a system is prone to develop some defects. In order to overcome this 

stage in a system, FTC has been introduced which is a branch of control theory and it 

deals with the control of a system.  

Figure 5.1 depicts the components of FTC system. 
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systemController
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Figure 5.1.Main components of fault tolerant control 

The FTC depends upon two methods of analysis: 

1. Model free fault detection and isolation (FDI) that does not require any 

mathematical model of plant dynamics. 

2. Model based FDI that needs the quantitative plant model. 

 

The above mentioned methods are further divided into quantitative and qualitative 

approaches. Figure 5.2 illustrates the fault detection methods .in this thesis, the 
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approach of data based method-qualitative-frequency and time analysis has been 

chosen. 
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Figure 5.2.Methods of fault detection and isolation part of FTCS 

5.3 Features of Fault Tolerant Types 

The main features of the above mentioned two categories will be defined as follows. 

5.3.1 Passive Fault Tolerant Control  

Though passive fault tolerant control is easy to implement, it cannot deal with large 

number of IM faults. It basically handles the initially defined faults which are the part of 

the main set up of a controller design. This property owes it the name ‘passive’ FTC as 

it tackles with some certain kind of faults. Figure 5.3 indicates the passive FTC. 
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Figure 5.3.Passive FTC 

5.3.2 Active Fault Tolerant Control  

Unlike passive FTC, it can deal with a large number of IM faults. The ability to handle 

many unpredictable faults does not prevent it from a major drawback that is it cannot be 

implemented as easily as the passive FTC and has more complications in 

implementation. Figure 5.4 indicates the explicit fault detection/diagnosis schemes: 
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Figure 5.4.Active FTC 

The active fault tolerant methods have been categorized into four sections as per the 

following criteria: 

1. Reconfiguration methods 

2. The design approach methods 

3. The mathematical design tool methods 

4. The system being dealt with methods 
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Figure 5.5 shows the main methods of the active FTC. The reconfiguration method-

switching-multiple model has been chosen. 
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Figure 5.5.Active FTC methods 

There are three basic parts of AFTC configuration 

1. Control law reconfiguration mechanism 

2.  Fault detection and diagnosis (FDD) scheme. 

3. Reconfigurable controller.  

5.3.3 Fault Detection 

The identification of a fault is made possible through filter that is a dynamic system 

specially designed to achieve the target. It notifies the fault detection through signaling. 

The input/output data is processed to detect an incipient fault and later on isolate it 

within exact time and location. 

5.3.4 Fault Isolation 

The fault isolation is a phenomenon which recommends some method to isolate the 

components, device or software module for identifying the fault in their functioning. It 

basically hits the cause of the problem and is also termed as ‘fault diagnosis’. This term 
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may refer to hardware or software but it actually works on the components creating 

error in the system. 

5.3.5 Reconfiguration 

The term reconfiguration signifies the change brought into input/output between the 

controller and plant by changing the structure and parameters of a controller. The 

performance may be at risk during this operation; however, the main target of original 

control is achieved through this process. 

5.3.6 Fault Tolerant Control Systems  

In this thesis, the fault tolerant control system works with some smart strategies by 

making the best use of IM stator resistance, encoder and the minimum output voltage. 

Its main purpose is to provide a system with reconfiguration controller. In normal 

circumstances when no fault has been detected, a sensor vector control is sufficient 

enough to operate the drive, however, the better result is procured through encoder as it 

locates the exact information about the location of the rotor. Any one of the following 

faults can activate closed loop V/F control in the system as will be shown in chapter 6. 

1. Stator open winding (will be considered in the experimental results) 

2. Stator short winding(will be considered in the experimental results) 

3. Max DC voltage  

4. Maximum V1 

5. Maximum V0 /V1 

6. Maximum V2/V1 

7. Maximum line current 

8. Maximum I1 

9. Maximum speed 

The system switching over to the sensor less vector control with detection of speed 

sensor fault has been done by (Diallo, 2004). The BMRAS is used by the sensor less 

vector control to gauge the speed of the motor instead of the encoder. 
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The open loop V/F control is the fourth control strategy which makes the maintenance 

of a minimum level of performance possible when any one the following fault occurs: 

1. Minimum output voltage V1 (will be considered in the experiments) 

2. Minimum speed 

3. Maximum I2/I1 current 

In case of failure of all of the above mentioned control strategies, the protection circuit 

comes into action and stops the motor operation. Chapter six will throw light on its 

mechanism in detail. 

The fault in a system is detected in an operation through a circuit termed as the fault 

detection circuit which produces a binary output. In order to detect different specific 

faults in an operation, three fault detection and isolation circuits are activated. However, 

the decision of finalizing the presence of a fault in the IMs is done by the wavelet index. 

Once the fault is detected, the cause or reason of the fault is investigated through a 

process called isolation. The output of the isolation and the fault detection is as follows: 

1. Trip: it is a binary indication of fault whether it is 0 or 1. 

2. Trip status: it determines the type of fault. 

3. Trip time: it identifies and verifies the time of fault occurrence. 

Figure 5.6 depicts the Simulink implementation of one part of fault detection and 

isolation unit 

 

Figure 5.6.Simulink implementation of fault detection and isolation unit 
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The complete monitoring unit which includes the time, type and the location of the 

more than 13 faults are shown in Figure5.7. In this figure, the faults was separated into 

three different groups according to sensorless vector control, closed loop V/f control 

and open loop V/f control techniques. 

 

Figure 5.7.Simulink implementation of trip data for the different controllers 

5.4 Switching Between the Controllers 

The fault tolerant control is operated through a switching mechanism. In order to reach 

to the target that is finding faults and taking an appropriate action, the switching 

mechanism is embellished with four main control options namely closed loop V/F 

control, open loop V/F control, sensor vector control and sensor less vector control. The 

activation of either of these controls depends upon the level of degradation and the 

nature, type and reason of the fault. These controls are effectuated in binary version to 

control a specific switch. So one control strategy is used at one time moment to 

maintain the pre specified performance. 
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The controller switch over creates synchronization between the production of SVM 

signal and the specific controller that is brought about by wavelet index. Figure5.8. 

indicates the main parameters and the switching circuit. When the wavelet index is 1.4 

which is the threshold of healthy IM, the recognition and action unit make logic 1 and 

send it as a control to activate the SVM signal generation. The SVM signal available at 

any time but it’s not active but in the healthy IM.  
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Figure 5.8.Switching mechanism block diagram 

Figure5.9 shows how the scaling unit bears the generated parameters of the algorithm. 
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Figure 5.9.Simulink implementation of scaling unit 
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In case of occurring of any one of the above mentioned faults (first group) the sensor 

vector control technique switches to sensor less vector control technique. Each ‘switch 

change’ follows a specific path, the sensor vector control signal only pass through the 

first input when the threshold of second input satisfies the first one. In case of any 

variance the sensor less vector will be activated. Figure 5.10 shows this transition 

 

Figure 5.10.Simulink implementation of first block of Figure 5.8 

 The mechanism follows the same path through different transitory stages. Such as the 

transition from sensor less vector control technique to closed loop V/F control will be 

activated when the second group of faults will degrade the system. Similarly, the third 

group of fault will be the reason of next transition that is from closed loop V/F to open 

loop V/F and finally when the degradation in the system will reach to the peak point 

where rest of the above mentioned technique prove ineffective, the protection switching 

will take place.  

Figure5.11 shows the principle of fault tolerant mechanism as used in this work. 
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Figure 5.11.Fault tolerant controller with switching mechanism 
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Table5.1 summarizes the ratings of the proposed fault tolerant control strategy applied 

on 0.370 kW squirrel cage IMs.  

Table 5.1.IM parameters used in the simulation 

Motor spec Unit Value

power kw 0.37

Current ampere 1.7

Voltage (delta) volt 230

Rated speed RPM 2800

No. of pole 2

Moment of inertia Kgm2 1.5e-4

Stator resist. ohm 24.6

Rotor resist. ohm 16.1

Stator induct. henry 40e-3

Rotor induct. henry 40e-3  

Figure 5.12 illustrates the proposed fault tolerant control circuit with the monitoring 

units.  

 

Figure 5.12.Simulink implementation of FTC proposed circuit 
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5.5 Computer Simulation   

The operating features of the proposed scheme are analyzed through computer 

simulation. Matlab/Simulink is used in this process to get the better results. The system 

has a small mechanical time constant so the harmonic existing in the shaft torque does 

help only to some extent. 

The developed torque increases its speed within 0.5 seconds due to slip speed; however, 

its speed starts to diminish when the speed of the motor is intensified.  

For a step up in speed command of 2800 RPM, the motor speed increases very rapidly 

due to the higher value of slip speed at the start.  

This simulation investigates three faults. Two are linked to the IM as electrical faults 

while the third one is related to a sensor fault. 

5.5.1 Speed Sensor Fault 

The speed difference between the reference speed and the actual speed can determine 

the speed sensor fault. Figure5.13 shows it. 

 
Figure 5.13.Simulink implementation of speed sensor checking 

The activation of binary decision 1 depends upon the speed difference, if it is more than 

10% or 280 RPM, the sensorless vector control will become activated otherwise the 

sensor vector control will retain its functioning as per the decision of logic 0. Figure5.14 

shows the process. 



 

111 

 

 
Figure 5.14.Speed error (blue) and error status (red) 

The activation of another controller depends upon the difference in the speed and the 

time duration. If an abrupt fault or sudden change in speed difference has been detected 

and it retains its state even after the interval of 0.2 seconds, the system will consider it 

as a fault and the under the track zone of logic 1 the switch will change to another 

controller to ensure the smooth and uninterrupted performance of the system. This 

system complies with the fault tolerant control principles. 

5.5.2 Stator Shorted Winding 

The efficiency of the fault tolerant algorithm to recover the fault is examined by joining 

it with two control strategies. 

The stator resistance is decreased ten times the original value to check the reliability of 

the fault detecting system. This problem is inserted in the system purposely and retained 

till 2 seconds. The wavelet index is measured by giving stator current Ia the status of 

input.  Figure5.15 indicates this process. 
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 Figure 5.15.Stator current Iabc during the operation 

 Figure5.16 shows the wavelet decomposition of the stator current. It indicates only 10 

levels as the rest of them do not give any significant details about the analyzed signal.  

 
Figure 5.16.Wavelet decomposition for the stator short winding fault case 

The value of the wavelet index of healthy IMs is computed as per Equation 4.21. It 

applies to the 20 kHz sampling frequency. 

The speed is the main parameter to determine the activation of switching mechanism 

from vector control to V/F closed loop control strategy and so on. The transition from 

one controller to another is put into action when the change in speed is detected for a 

certain time period and in order to avoid any stoppage and cessation in the system, the 

wavelet index binary decision becomes activated. Figure5.17 shows the efficiency of 

the system.  
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Figure 5.17.Speed response after applying fault tolerant algorithm 

In figure 5.17, a transition from transient response within first sec has been happened, 

the stator short winding fault was injected as 2 sec. This figure shows that the actual 

speed flows exactly like the reference speed with 2800RPM while the reference speed 

was 2800RPM after applying FTC technique. 

5.5.3 Stator Opened Winding 

To check the working of the system, it is put on trial by inserting a fault by increasing 

the stator resistance which is ten times greater than the original value. This fault is 

introduced after a steady state of six seconds.  Figure.5.18 shows the stator current. 

 
Figure 5.18.Stator currents Iabc during the operation 

The stator current goes into the wavelet decomposition as shown in Figure 5.19. 
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Figure 5.19.Wavelet decomposition for the Ia in the stator open winding fault 

The actual speed of the system stabilizes right after receiving an action from the 

activation of the fault tolerant algorithm; it harmonizes itself with the reference speed to 

get in momentum with the new control strategy. However, this mechanism is not similar 

to the stator shorted in time recovery as it required more time for recovery due to 

uncertainty in the system parameters. Figure 5.20 depicts the speed response during the 

fault. 

 

Figure 5.20.Speed response after applying fault tolerant algorithm 

Two faults namely stator short and open winding are inserted together in the system at  

1.16 sec to examines the flexibility of the fault tolerant control algorithm and its ability 

to return back to the sensor vector control. The operation of the IM will be stopped 

when the fault tolerant algorithm switches on the protection unit. However, the process 

is reversed to its normal state that is the controller transits from control protection to 
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sensor vector control and vice versa when the artificial fault is alleviated within the time 

duration of 1.48 seconds. Figure5.21 illustrates the simulation result. 

The wavelet index decides the transition of one control strategy to the other after 

detecting the fault and activates the corresponding binary decision.  

 

Figure 5.21.Iabc response before and after applying fault tolerant algorithm to test the 

flexibility 

The operation of the IM comes to a halt when the fault is introduced between the time 

duration of 1.16 seconds and 1.48 seconds as the inverter SVM signal with Q13 is 

brought to the value zero. 

 

Figure 5.22.SVM inverter signal of the flexibility algorithm test 

Figure5.23 indicates that stator open winding and stator short winding faults are 

simulated with different times. 
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When the stator short winding fault was inserted at 1.15 sec, the wavelet index right 

after detecting the fault sent the binary decision for the transition of sensor vector 

control to closed loop V/F control technique. 

To test the efficiency of the fault tolerant algorithm and the recovery times of both 

faults, the stator open winding fault was inserted with the time duration of 1.4 sec. 

It has been found that the recovery time of the stator short winding is greater than the 

recovery time of the open stator winding (Figure 5.23). 

 

Figure5.23. Iabc response before and after applying fault tolerant algorithm to test stator 

faults 

Thus, the above mentioned intrusions of the faults prove that the fault tolerant algorithm 

helps to bring the operation back to its former performance.  
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Chapter 6: Condition Monitoring of IM Faults 

6.1 Introduction 

There are certain limitations in every system and in order to prevent it from any failure 

or fault some strategies are devised. Condition monitoring (CM) is one of these 

techniques that help the system to run smoothly and efficiently. It monitors a parameter 

of condition in the IM and makes sure that the system does not get affected due to any 

change in the system performance or any parameters that is considered as a machine 

fault or failure (Mehrjou, 2010). Thus, the irregularities are detected at the earlier stage 

due to this technique. It is no doubt a very important technique to avoid damages, 

unscheduled shutdown and unwanted deficits (Jeevanand S, 2008). 

The harmonics in the IM current makes the process of the fault detection easy and 

reliable (Bodkhe, 2009). It makes the use of broken rotor bars, DC short buses and 

bearing, stator open winding and stator short winding to detect the fault without delay. It 

carries out its function in cognizance with wavelet. 

Different wavelet functions and controllers such as linear discriminated analysis (LDA), 

quadratic discriminated classifier (QDC) and linear discriminated classifier (LDC) have 

been proposed by (Basaran, 2011) for the wavelet condition monitoring of the IM. 

Similarly the condition monitoring in the IM has been introduced by (Georgakopoulos, 

2009) with wavelet against the broken rotor bar and end ring faults. (Zhang, 2011), 

presented a review for medium voltage IM condition monitoring and protection while 

(Zhu K. Y., 2009) presented a review of wavelet usage in the condition monitoring in 

the sensor signals. A significant amount of research has been done in this direction and 

many different techniques for the fault detection have been found which mainly focus 

on the stator fault due to noninvasive properties. 

However, some research and work has been done on the FTT and wavelet by using 

MCSA method to monitor the fault frequencies. This method has been proposed by 
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(Mehala, 2009) and it has been found very effective in terms of reliability and 

noninvasiveness (Thomson, 2001). 

Figure 6.1 shows the condition monitoring of induction machine following the sequence 

Motor faults
Sensor

signal
Signal

processing

Fault

detection

Expert

knowledge

Laboratory testing with known faults and previous field experience

 

Figure 6.1 .Condition monitoring procedure 

6.2 Condition Monitoring  

The efficiency of the system can be enhanced by detecting the cause of the fault and the 

exact fault time occurrences. It not only improves the working of the operation, it also 

increases the longevity of the function and reduces the cost and maintenance expenses. 

Different researchers prefer current, flux, voltage, torque and speed as some of the 

specific signals to examine the faults in the IMs (Erhan Akin, 2011). As the IM is prone 

to a number of faults, this chapter will discuss at length the monitoring of stator current, 

DC voltage, speed monitoring and stator voltage that play a vital role in the 

maintenance of a successful system. 

6.2.1  Stator Current 

Stator current methodology is given preference over other methods because it can 

perform physical measurement and provides indication of the IM state quite well. No 

matter how efficiently the induction machines has been loaded and extracted, a fault can 

affect the spectrum current signal any time (Menacer A. M., 2004). Figure6.2 explains 

the standard measurement that defines the fault thresholds. The current measurement is 

the key note of this circuit which mainly depends upon the negative sequence analysis 

of stator current per phase. 
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According to the following relationships, the construction asymmetry, faults transducer 

gain difference, voltage and load unbalance at the terminals give rise to the generation 

of the negative sequence current in the system (Zafar, 2010). 
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 , is the space vector operator. 

 These faults can be monitored through stator current methodology: (Figure 6.2.) 

1. The instantaneous AC over current fault: When the maximum value of stator 

phase current exceeds 1% of the rated current, this sort of fault is likely to 

happen. This has been shown in the following relation for 0.5Hp: 

01.1*7.1)max( 1 I  

The result of this action is the activation of decoding unit, thus showing the time and the 

fault. 

2. Max allowable AC current : When the magnitude of stator current increases 10% 

greater than rated current, this fault takes place as in the following relationship: 

1.1*7.1)(( 1 Iabs  

 The logic 1 will activate the decoding-encoding circuit to indicate the time and the 

fault. 

3. Max AC current unbalance fault: This fault takes place only when the following 

ratio is satisfied as can be seen in Fig.6.2: 

4.0*7.1/ 12 II  
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The fault and the time are shown with the activation of the decoding circuit and it can 

be observed in the monitoring circuit of the stator current. 

 

Figure 6.2.Motor current monitoring circuit 

6.2.2 Stator Voltage 

The IM state receives some observation from the stator phase voltage monitoring. The 

following measurements are obtained from the monitoring circuit: 
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   , as in (6.4) 

The following faults can be detected by using the above mentioned measurements: 

1. AC under voltage (Min V1): Figure 6.3 shows that this type of fault disturbs the 

system when V1 is less than 90% of the nominal stator voltage 



 

121 

 

 

Figure 6.3.Motor voltage monitoring  

The time and this fault will be detected with the activation of the decoding circuit. 

2. AC over voltage (Max V1): When V1 exceeds the nominal stator voltage by 110 

%; this sort of fault is likely to happen. 

3. Max voltage unbalance or negative sequence (Max (V2/V1): This fault is 

detected by the activation of the decoding circuit, it also shows the time. This 

fault takes place when the ratio of V2/V1 is 10% more than the stator voltage. 

4. Max voltage unbalance (zero sequence): It is the max ratio of the V0 to the V1 

and more likely to happen when this ratio becomes more than 10% of the stator 

voltage.  

The induction machine needs de-rating when the heating losses at the terminal mounted 

manifold. It happens when the voltage at the terminal loses the balance. Thus the 

unbalance is kept under control and the system tries to not exceed it above 5%. Table 

6.1 shows this relationship. 
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Table 6.1.Observation of IM according to IEEE standard 

Faults Limits values Acceptable value

AC over current 2 times rated 1.5 rated

AC current unbalance Up to 45% Up to 40%

Induction motor faults observation

AC under voltage 5-25%PNDA & PNDI 0.25-20%

AC over  voltage ± 10% ± 10%

AC voltage unbalance 1-5% IEEE stand 1-3%

Over speed + 25% +10%

DC over voltage V
DC

V
DC

Under speed -25% -10%

Rotor broken bar 20% less than 2 m.for 2 pole 20% less than 2 m.for 2 pole

Short stator winding 10% less than 2m for 2p 10% less than 2m for 2p

damage Not permitted Not permitted

 

The 1 kW IM also was used to make sure the algorithm is valid for all motor ratings.  

The validity of algorithm for all motor rating is ascertained by using 1 kW IM. It is used 

for simulation and experimentation and has been explained in chapter 7 with all the 

details. Table 6.2 has a list of all the specific parameters  

Table 6.2.IM parameters 

Motor spec Unit Value

power kw 1

Current ampere 2.5

Voltage (delta) volt 400

Rated speed RPM 2780

No. of pole 2

Moment of inertia Kgm2 3.5e-4

Stator resist. ohm 20.9

Rotor resist. ohm 19.5

Stator induct. henry 50e-3

Rotor induct. henry 50e-3  

6.2.3 DC Voltage  

Figure 6.4 indicates that the maximum DC voltage gets stimulated as soon as the VDC 

voltage becomes greater than the 400 V. 

 

Figure 6.4.DC voltage monitoring circuit 
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6.2.4 Speed Monitoring  

The encoder as input is used to monitor the operating speed of the IM. Since the speed 

of an IM is the key part of the operating system, its monitoring also needs close 

observation and careful invigilation (McFate, 2009). The magnetic field around the 

stator is even affected as the impact of the field is slows down by this speed (Figure 

6.5). 

 

Figure 6.5.Speed monitoring 

The limitations of speed are more than 10% of the reference speed of the IM for the 

over speed and are 0.9*2800RPM for the under speed as per the standards shown in 

Table6.1 

The decoder- encoder combination unit monitors and activates any transition in the 

system when a fault in speed along with its time is detected. Such as the decoder will 

remain inactive if the speed is less than 10% of reference speed, however, as soon as the 

speed crosses this limit the binary decision of logic 1 will get activated by the decoder 

unit and the transition will start from one control to another. However, there are some 

limitations in the handling of under and over speed reference*%10 . 

There are certain faults which are a threat to the IM such as machine current signature 

analysis, fast Fourier transform, short time Fourier transform and wavelet transform 

(Mehdi Arehpanahi, 2005), hence a number of diagnosis techniques have been 

introduced over time to tackle these faults. 
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Simulink/ Matlab implementation to highlight and find the faults at its nascent stages 

along with the source of the fault have been described in this chapter. It shows how it 

strengthens the monitoring system. 

6.3 Proposed Methodology  

The main objective of the implication of the technique of fault detection and protection 

and monitoring in IMs is to achieve these targets: The three phase stator current, three 

phase voltage and DC voltage fault monitoring and protection. The practicality of the 

C.M stimulation and this algorithm is ascertained by testing with 0.37 kW for different 

IM ratings.  

The completion of this work has been carried out through the following procedure: 

1. The acquisition of the current, voltage, DC voltage signals 

2. The negative sequence is used to conclude the over, under or unbalance voltage 

and the AC voltage to analyze the stator current and voltage 

3. The under and over speed is checked through the analysis of the IM speed 

4. The trip status and the indication of the fault (0 or 1) is highlighted when output 

of  each stage reaches to the encoding circuit and the OR gate 

5. The time of the trip and the trip are shown by the monitoring unit (The output of 

the OR gate) 

6. The encoding output is used to show the trip status being the part of the 

monitoring unit 

7. Wavelet implementation circuit   

8. The protection unit is the last resort for the system when the fault of IM reaches 

to the maximum point. 

Figure 6.6 illustrates the proposed detection and monitoring circuit. 

 



 

125 

 

 

Iabc,Vabc,V
DC

 and

Freq

Fault

recognition

Wavelet

index

calculation

OR

gate

Encoding

In-out unit

Sequence

analysis

Trip and

trip time

Trip

status

Condition

monitoring

protection

Induction motor

inverter

rectifier

AC  

Figure 6.6.Block diagram of proposed monitoring and protection circuit 

While Figure 6.6 is the block diagram proposed monitoring and protection circuit. 

Figure 6.7 indicates the internal connections of both monitoring IM units and detection. 

In this figure, the faults are divided into three parts as mentioned earlier. Three trip 

times, three tripe status and three locations can be shown according to that.  

 

Figure 6.7.Simulink implementation of internal connections of monitoring unit 

6.4 Protection   

When the fault in IM is extremely grievous another mechanism is brought into action. 

The SVM pulses are settled at zero to stop the function of the faulty IMs. This 
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protection circuit works along with the switching mechanism and provides a safeguard 

to the system. Figure6.8 shows this mechanism. 

 

Figure 6.8.Protection unit mechanism 

The IM is stopped when a serious fault occurs in the system by activating the switching 

mechanism to the SVM which is generated by open loop V/F to zero. In normal 

condition the output of detection unit is logic 0 which turns into 1 as soon as a fault 

occurs in the system. Three case studies have been modeled against multiple faults to 

examine the efficacy of the proposed methodology. 

6.5 Case Studies 

In order to investigate the CM effectiveness to monitor and protect the IM two case 

studies, healthy and faulty, are considered. 

6.5.1Healthy Case 

The monitoring of trip status, SVM, speed and current of the IM are very important. As 

mentioned in the 0.5 Hp specifications, the stator current should be 1.7Amp; trip status 

should be zero with uniform SVM generated, the monitoring unit is responsible to 

record both type of fault with its time as can be seen in the following figures. 

Figure6.9 shows the IM in healthy state that is without any fault and under normal 

operation conditions. The trip status and the space vector values were recorded in this 

state. The status trip at this moment has been found zero which is clearly visible in 

figure6.9 
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Figure 6.9.SVPWM duty cycle with trip in healthy case 

 Figure 6.10 indicates the actual speed overlapping the reference speed,  

 

Figure 6.10.Actual and reference speeds in healthy case 

Figure 6.11 illustrates the stator currents in the healthy case 

 

Figure 6.11.Stator currents Iabc in healthy case 
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Figure6.12 shows the wavelet decompositions of the healthy stator current. The stator 

current (Ia) exhibits a little extended transient region. It is evident in the decomposition 

levels (d3, d4, d5, d6, d7, d8, d9). 

 

Figure 6.12.Wavelet decomposition of stator current Ia in healthy case 

The monitoring circuit shows that there is no fault in the IM as in Figure 6.13. 

  

Figure 6.13.Monitoring outputs for the healthy case 
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6.5.2Faulty Case 

More than 13 trips can be taken as a case study. The following faults and parameters 

monitoring are included. 

6.5.2.1 Voltage and Speed Faults Monitoring   

The first case study deals with a fault in the voltage and speed of the IM, the time and 

the nature of fault is kept under observation during a faulty operation. The time of the 

first fault and the trip had been shown very efficiently in the monitoring unit. Figure 

6.14 depicts the speed response of the proposed FTC based IM drive under fault 

condition. The performance of the monitoring circuit has been tested by creating the 

tolerance between actual and reference up to 5%.  

However when this difference is extended till 20% (of the reference speed 560 RPM), 

the operation should come to a halt with the activation of the protection unit. The IMs 

do not stop completely as the condition in this case is not satisfied. According to the 

Fig.6.14, the extremes of the IM speed degradations were included to test the ability of 

V/f control technique to accommodate this fault. 

 

Figure 6.14.Speed response of actual and reference in under speed case 

The fault will be presented as a binary decision with logic 1 in case of trip status circuit 

activation. The fault within the duration of 2 second delay will not be entertained as a 
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fault and the transition mechanism will not be effectuated in the beginning of operation. 

Figure6.15 indicates this state. 

 

Figure 6.15.Binary decision of fault occurrence 

 Timing is important in this process which is regularly checked to cover all faults 

individually.  

Figure6.16 shows the monitoring of the above mentioned parameters. 

 

Figure 6.16.Monitoring outputs for the first case study 

The validity of the protection circuits is being confirmed by confining it to the main 

expected stator faults namely the stator short winding, stator open winding monitoring 
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due to the significance of the aforementioned faults. As the protection circuit has been 

designed to apply in case of extreme severe condition, the above mentioned faults are 

more likely to happen and can prove unmanageable by the other controllers.  

The fault developed gradually within fraction of seconds as it has been found happening 

at 0.00265 sec (Figure 6.17) as a signal has been inserted in the very beginning of the 

operation. In order to control this situation, the binary decision are made responsible to 

activate the protection circuit that prevents SVM generation (SVM==0) to control the 

inverter and stop the motor. 

The same procedure was repeated by increasing the time interval that is, a fault was 

inserted after a few seconds and the SVM signal was generated right after it. Figure 6.18 

shows that the same methods were re-enacted. 

 

Figure 6.17.Monitoring outputs for three faults case  

In another test, the fault was released after a few seconds and then the SVM signal was 

generated. After that the faults was introduced again as can be shown in Figure 6.18.  
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Figure 6.18.SVM (red) with trip binary decision 

Finally three different faults were simulated, stator open winding, stator short winding 

and when the voltage of the supply is less than 200V as mentioned earlier. At the 

beginning, the IM was healthy, then open and short were introduced in two individual 

cases at 4sec, after that the voltage reduced to below 200V to simulate the third fault at 

5sec, after that both open winding and reduction of volt were introduced together at 7 

sec. The vector control was dominant, then after 4 sec switched to closed loop V/F 

control to compensate the stator open or short winding .This control technique switched 

to open V/F control to compensate the last fault and maintain the operation of the motor 

with some perturbation. Protection stage was activated to stop the operation in the 

compound faults. Figure6.19 shows the smooth transition between the controllers.  

 

Figure 6.19.SVM signal to control the inverter during different control strategies   
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In this work, bases of 13 possible trips have been included to prove the importance of 

this thesis in the field of fault diagnosis. The performance and efficacy of the 

monitoring and protection unit has been tested for the following electrical faults, stator 

faults, minimum voltage fault and speed sensor fault and the units have been found 

quite efficient in dealing with these faults. 

6.6 Summary 

This chapter has covered up the following finding in detail with respective diagrams and 

tables. 

1. The operating features of the proposed scheme have been assessed by using the 

computer simulation with Matlab/Simulink. 

2. The machine faults have been detected quite successfully with the proposed 

methods which have been testified by the simulation results. 

3. The mechanical and the electrical faults can be monitored quite effectively by 

applying the condition monitoring with wavelet transform. 

4. The protection technique has been found very successful in monitoring and 

detecting the change of running conditions. 
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Chapter 7: Experimental Results 

7.1 Introduction  

Industrial processes or safety critical applications may come across unanticipated halts 

which result in substantial costs. As such costs are not acceptable, electric drives have 

been suggested to overcome this problem. In this regard, the availability of information 

from the system determines detection of fault. A db10 wavelet has been used for fault 

detection in this study for analysing stator current. The limits of every fault have been 

checked by using wavelet index. 

In the experimental work, the faults mentioned below will be taken into consideration: 

1. Speed sensor fault 

2. Stator open winding 

3. Stator short winding 

4. Under voltage fault  

All measurements, power electronics, control and motors have been included in the 

experimental setup of the 1kW IM. Based on a Texas Instrument TMS320F28335 is the 

platform of eZdspF28335, which provides some measurements and the control. 

By using the RS232 cable between the PC and TMS320F28335 DSP, recording of the 

outputs   through serial communication interface (SCI) has been done. 

A set-up based on the TMS320F28335 DSP has been utilized for implementing the fault 

tolerant control algorithm. An ADC with a sampling frequency of 20 kHz has been 

employed for obtaining the rotor speed and the stator current. The maximum 3V 

accessibility to the DSP was guaranteed by using the closed loop Hall effect transducer 

(HX50-p/sp2) as a current transducer that was not inductive with 1.45V/A, the resistive 

voltage divider and the voltage transducer (LV25-p). 
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For ensuring the restriction of the encoder signal transmitted to the F28335 DSP to 3V, 

a signal conditioning circuit was used, which was employed for acquiring the encoder 

signal in the first place as can be seen in appendix A. 

7.2 Serial Communication Interface (SCI) 

Two components could be identified with the serial communications interface (SCI): 

1. Target side: through SCI to the host, the specific data from the prime Simulink 

program or the target was delivered by the SCI transmit block, being primarily 

responsible for this activity and forming this side’s main composition. 

2. Host side: the SCI setup and SCI receive were the two main identifiable blocks 

here.  

Figure7.1 shows the serial communication interface linked to the F28335 DSP. The 

scalar or vector data delivered from here was received by the SCI setup and the SCI 

receive. 

 

Figure 7.1.Serial communication Interface to show the experimental output 
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7.3 Experimental Work  

The healthy case and the faulty case were the divisions used for dividing the 

experimental work. The stator’s short winding, minimum voltage, open winding and 

sensor fault were included. 

As is evident from the work procedure demonstrated by Fig 7.2, the implementation and 

the compilation of the fault tolerant control suggested circuit was carried out by the 

Matlab Simulink and F28335 DSP controller respectively 

Simulink

DSP

TMS320F28335

Gate drive

inverter
Induction

motor
AC source Rectifier

encoder

Current

sensors

DC voltage

sensor

 

Figure 7.2.Structure of the proposed work 

7.4 Prognostic Unit  

The analysis method has a crucial part to play in industry, in relation to the investigation 

of the healthy status of an IM. For detecting fault at the initial stage, one of the many 

tools of analysis is prognosis. The stator current’s signature waveform has been studied 

extensively in many of the researches carried out in this area (Wesley G. Zanardelli, 

2005). 

As depicted by Figure7.3, the prognostic has been utilized as an earlier alarm stage in 

this study. 
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Figure 7.3.Simulink representation of prognostic scheme 

After receiving the wavelet index of every case, the unit of fault recognition and action 

has a significant part to play in taking logical action. Logic 0 or logic 1 can basically be 

the fault output. For enabling the dominance of the specific controller in action, this 

logical decision is utilized. Figure7.4 aptly demonstrates the Simulink representation of 

the fault recognition and action unit. 

 

Figure 7.4.Simulink representation of fault recognition and action unit 
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Figure7.5 shows the Simulink implementation of the prognostic blocks responsible for 

receiving the wavelet index.  

 

Figure 7.5.Simulink representation of inside prognostic unit of each fault 

Figure 7.6 illustrates the Simulink implementation of the prognostic unit block. 

 
Figure 7.6.Simulink representation of details of the prognostic unit in healthy case 

For applications of this sort, wavelet ranks as a suitable option. The value of the wavelet 

index determines the prognostic. With regards to the stator open winding and stator 

short winding, the first hint of the variations in parameters is given by a 50% of wavelet 

index. As the IM’s performance would be according to the specifications, this value is 

just a mere indication. As shown by Figure7.7, the stator open winding presents the 

second vital indication, being the 90% of the wavelet index.  
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Figure 7.7.Experimental wavelet index for prognostic in the open stator winding 

GUI7.1 shows the prognostic circuit’s graphical output with 450RPM in the stator open 

winding. The stator open winding fault experiences an increase till 50% of its complete 

value as illustrated by the prognostic unit of this GUI. 

 
GUI 7.1.The stator open winding fault reach 50% of its complete value 

The GUI7.2 shows the prognostic circuit’s graphical output, with 450 RPM in the stator 

open winding. The stator open winding fault experiences an increase till 90% of its 

complete value as shown by the prognostic unit in this GUI. 
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GUI 7.2.The stator open winding fault reach 90% of its complete value 

Figure7.8 shows the extremities of the wavelet indices with 900RPM in the short stator 

winding. 

 

Figure 7.8.Experimental wavelet index for prognostic in the short stator winding 

GUI7.3 shows the prognostic circuit’s graphical output, with 900RPM in the stator short 

winding. The stator short winding fault experiences an increase till 50% of its complete 

value (0.8 Ω) as shown by the prognostic unit in this GUI. 
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GUI 7.3.The stator short winding fault reach 50% of its complete value 

GUI7.4 shows the prognostic circuit’s graphical output with 900RPM in the stator short 

winding. The stator short winding experiences an increase till 90% of its complete value 

as demonstrated by the prognostic unit in this GUI. 

 

GUI 7.4.The stator short winding fault reach 90% of its complete value 

The faults can be divided into the following in accordance with the impact on 

performance of the system: 



 

142 

 

1. Additive faults 

2. Multiplicative faults 

3. Abrupt faults 

4. Incipient faults 

 

The slow variation makes incipient fault more risky (Wenjun Li, 2006). The inability to 

differentiate between this fault and parameters variation is its principal difficulty. 

Simulation was utilized for determining the healthy wavelet index threshold in order to 

overcome such a misunderstanding. Figure7.9 shows 1.4 WI as the practical result, 

employed for the same reason as above as well as the simulation wavelet index in same 

conditions. 

 
Figure 7.9.Experimental and simulation wavelet index in the healthy case 

7.5 Healthy Case  

The wavelet index recorded through SCI Simulink block with RS232 is linked to the PC 

in the healthy IM. The results were nearly matching each other according to the 

calculations done at various speeds (450RPM, 900 RPM and 1600RPM) for the 

experimental wavelet index. 

Figure7.9 shows how the healthy motor wavelet index will be accounted for. 

Figure7.10 shows the ARX modeling of experimental I.M healthy wavelet index 



 

143 

 

 

Figure 7.10.ARX modeling of healthy I.M wavelet index 

A good indication of the frequency and time localization is provided by the domain 

construction and frequency domain of the stator current signal due to the wavelet 

decomposition. Any frequency of the signal experiencing any change or variation was 

detected by this decomposition. 

As shown by Figure7.11, for all levels of decomposition, the stator current sinusoidal 

waveform was not distorted from the main signal in the healthy IM. 

 

Figure 7.11.Stator current wavelet decomposition in healthy motor 

7.6 Faulty Case 

Consideration will be given to the stator short winding fault, stator open winding fault, 

speed sensor fault and the minimum voltage. 
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7.6.1 Shorted Stator Winding 

As demonstrated in Fig 2.7, the stator resistance of the IM is linked to the parallel 

variable resistance for the stator short circuit winding fault. 

The shunt resistance was increased in steps 0.1Ω for the purpose of performing the 

reduction of 20 Ω stator winding resistances. As shown in Eq. 7.1, this was done till the 

total shunts combination became 2 Ω. 

orgsh RR 1.0
              (7.1) 

From lower short circuit current to a higher level, most of the induction winding failures 

gradually proceed, finally breaking in the end (Dimas Anton A, 2010). 

Recording of the wavelet index was done at every step, followed by the plotting of its 

major value. 

Every step witnessed the stator current’s wavelet decomposition. Figure7.12 illustrates 

the final decomposition. 

 

Figure 7.12.Wavelet decomposition of stator current in the short winding fault 

This figure shows the detailed decompositions, the output of the high pass filter 

implemented previously. The stator current wave form is not included as it is nearly the 

same as the wavelet decomposition at d1. The signal will be categorized as a sound 

indication of the original signal in [d2-d6]. For the wavelet index measurements, the first 

stage of extracting information can be [d7-d10]; for calculating the wavelet, d8 is the best 
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level for utilization. The approximation levels were recorded but have no effect in this 

stage so it is not included. 

To assess the IM, the wavelet index has been utilized for various levels of speed. As is 

evident for the following results, comparison with the simulation results has also been 

carried out. 

7.6.1.1 At 450 RPM  

Figure 7.13 shows the experimental test of speed response in the healthy IM. 

 

Figure 7.13.Experimental speed response of the proposed FTC at command speed of 

450RPM  

Figure7.14 shows the mean value of the wavelet index for simulation and experiment 

due to the influence of shunt resistance. The phase resistance at 450RPM was also 

added. 

 

Figure 7.14.Simulation and experimental wavelet index at 450RPM 
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After the addition of the shunt resistance, table7.1 illustrates the value of the stator 

resistance with the wavelet index at 450RPM. 

Table7.1 Wavelet index at 450RPM 

Rsh(Ω) Rs|| Rsh(Ω) Wavelet index 

0.1 0.0995 1.1 

0.2 0.1980 1.4 

0.4 0.3922 1.43 

0.8 0.7692 1.43 

1.6 1.4815 1.5 

1.8 1.6514 1.5 

2 1.8182 1.5 

7.6.1.2 At 900 RPM 

Figure 7.15 shows the speed response in the healthy IM. 

 

Figure 7.15.Experimental speed response of the proposed FTC at command speed of 

900RPM  

Figure7.16 shows the mean value for experimental and simulation results alike due to 

the influence of shunt resistance. Phase resistance at 900 RPM was also added. 
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Figure 7.16.Experimental and simulation wavelet index at 900RPM 

After the addition of the shunt resistance with the wavelet index, table 7.2 illustrates the 

value of the stator resistance. 

Table7.2. Wavelet index due phase resistance and shunt resitance at 900PM  

Rsh(Ω) Rs|| Rsh(Ω) Wavelet index 

0.1 0.0995 1.78 

0.2 0.1980 1.8 

0.4 0.3922 1.8 

0.8 0.7692 1.82 

1.6 1.4815 1.84 

1.8 1.6514 1.84 

2 1.8182 1.84 

7.6.1.3 At 1600 RPM 

With the full addition of the shunt resistance, Figure7.17 shows the speed response in 

the healthy IM. 

 

Figure7.17. Experimental speed response of the proposed FTC at command speed of 

1600RPM 
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Figure7.18 shows the mean value of the wavelet index for simulation and experimental 

work alike due to the impact of shunt resistance. At 1600 RPM, the phase resistance 

was also added. 

 

Figure7.18. Experimental and simulation wavelet index at 1600RPM 

Table7.3 illustrates the value of the stator resistance after the addition of the shunt 

resistance with the wavelet index at 1600 RPM. 

Table 7.3 Wavelet index due phase resistance and shunt resitance at 1600RPM  

Rsh(Ω) Rst|| Rsh(Ω) Wavelet index 

0.1 0.0995 1.8 

0.2 0.1980 1.81 

0.4 0.3922 1.85 

0.8 0.7692 1.9 

1.6 1.4815 1.92 

1.8 1.6514 1.95 

2 1.8182 2 

 

Figure7.19 shows the comparison done between three experimental wavelet index levels 

of all speeds in the stator short winding. 

Controllers have been given important information by this figure i.e. to activate the 

specific controller linked to the faults. The amplitude of the stator current is 

proportional to fault level and induction’s rotation speed.  
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Figure 7.19.Experimental wavelet indices for different speed in stator short winding 

In this figure the wavelet indices as follows: 

0           1.4     healthy IM 

1.4            1.5    stator short winding at 450RPM 

1.5            1.84    stator short winding at 900RPM 

1.84            1.92    stator short winding at 1600RPM 

The following will present the wavelet indices of this figure: 

The suggested criteria for the wavelet index is well representative of the IM condition as 

is evident from the levels of the wavelet indices. For the evolution of controllers, it can 

also be termed as very efficacious. 

Determining the mathematical relation between total impact of the stator resistance and 

the wavelet index is another supporting mechanism for the wavelet index intervals. No 

mismatching of the FTC algorithm with switching mechanism should exist due to any 

situation, and this equation should ensure that. 

The following equations will represent the obtainable stator short winding wavelet 

index: 

Stator short winding wavelet index can be obtained as in the following equations:  

1. The wavelet index equation at 1600 RPM with linear curve fitting is: 

796.1*0217.0  effectshuntind RW        (7.2) 
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And the norm of the residual which is the length of a residual vector expressed as the 

square root of the sum of the square of its components =0.0365. 

2. The 900 RPM wavelet index equation with linear curve fitting is: 

7822.1*0843.0  effectshuntind RW        (7.3) 

And the norm of the residual =0.0456 

3. The 450 RPM wavelet index equation with linear curve fitting is: 

146.1*0986.0  effectshuntind RW        (7.4) 

And the norm of the residual=0.3119 

For progressing to the design stage of formulating mitigating strategies for faults of 

such types, a thorough understanding of the impacts of these faults on the performance 

of machines is mandatory, according to this investigator. A smooth transition existed 

between the observers and the sensor output, with no observable spikes or oscillations 

during the switching modes. 

The FTC algorithm was tested by utilizing one fault from each group of faults described 

earlier on in chapter 5. For the first group, encoder fault was selected as the sample, 

while for the second and the third group, the selection was stator short winding, stator 

open winding and minimum output voltage together with compound fault respectively, 

for ensuring the timely introduction of the protection circuit. 

Introduction of the speed sensor fault was given at the commencement of operation. The 

complimentary controller of the sensor vector control was the sensorless vector control. 

After the 1 sec of operation, stator short winding was introduced. As demonstrated by 

Figure7.20, a short smooth speed transition with a little speed reduction was 

experienced by the suggested switching strategy in reconfiguring the control from 

sensorless vector control to closed loop V/F control. 
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The minimum output voltage fault was introduced at 1.7 seconds. In place of closed 

loop V/F control, the corresponding open loop V/F controller was switched on with a 

short speed transition. 

For testing the protection unit, compound fault from the above two faults was 

introduced. As illustrated by Figure7.20, zero SVM signals were transmitted to the 

inverter for halting the operation of the IM. 

 

Figure7.20. Experimental speed transition for different controllers at 1200RPM 

Figure7.21 shows the experimental setup for measuring the wavelet index in the short 

stator winding. As mentioned previously, a shunt resistance was linked to one of the 

stator phase resistance in this figure.  

 

Figure7.21. Experimental setup to measure the wavelet index in the short stator winding 

fault 
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7.6.2 Stator Opening Winding 

The stator phase resistance of the IM was linked in series with variable resistance for 

the stator open winding fault. 

The series resistance was increased in steps 1Ω for executing the increase of the original 

stator phase winding resistances. This was done till the series combination of the two 

series resistances exceeded by ten times of the original stator resistance (20 Ω). 

orgseries RR 10           (7.5) 

Each step was subjected to the wavelet decomposition of the stator current in the open 

winding. Figure7.22 shows the final decomposition. 

 

Figure7.22. Wavelet decomposition of the stator current in the open winding fault 

For the stator open winding, a procedure similar to the previous one will be performed. 

7.6.2.1 At 450RPM 

Figure7.23 presents the mean value of the wavelet index for experimental and 

simulation work alike, as a result of the efficacious series resistance. At 450 RPM, this 

was added with the phase resistance. 
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Figure7.23. Experimental and simulation Wavelet index at 450RPM 

After the addition of series resistance with the wavelet index, table 7.4 illustrates the 

value of the stator resistance at 450 RPM. 

Table7.4 .Wavelet index due to the combination of the two series resitance at 450RPM  

Rser(Ω) Rst +Rser(Ω) Wavelet index 

1 21 0.95 

20 40 1.21 

40 60 1.38 

60 80 1.4 

100 120 1.42 

160 180 1.6 

200 220 1.75 

7.6.2.2 At 900 RPM  

Figure7.24 shows the value after adding the efficacious series resistance with the phase 

resistance at 900 RPM for the average wavelet index in relation to both experimental 

and simulation work. 
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Figure7.24. Experimental and simulation wavelet index for open winding at 900RPM 

After adding the series resistance to the wavelet index at 900RPM, table 7.5 presents the 

value obtained for the stator resistance. 

Table7.5. Wavelet index and series resitance at 900RPM  

Rser(Ω) Rst +Rser(Ω) Wavelet index 

1 21 0.17 

20 40 0.39 

40 60 0.9 

60 80 1.25 

100 120 1.58 

160 180 1.6 

200 220 1.6 

7.6.2.3 At 1600 RPM 

Figure7.25 shows the value after adding the efficacious series resistance to the phase 

resistance at 1600 RPM for the average wavelet index in relation to both experimental 

and simulation work. 
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Figure7.25. Experimental and simulation wavelet index for open winding at1600RPM 

The value of the stator resistance after adds the series resistance with the wavelet 

index at 1600 RPM can be illustrated as in the table7.6 

Table7.6. Wavelet index and series resitance at 1600 RPM  

Rser(Ω) Rst +Rser(Ω) Wavelet index 

1 21 1.4 

20 40 1.62 

40 60 1.72 

60 80 1.82 

100 120 1.83 

160 180 1.84 

200 220 1.88 

 

Figure7.26 illustrates the experimental wavelet index of all speeds in the open winding 

case. 

 
Figure7.26. Wavelet indices for different speeds in stator open winding 
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The following equations are the ones obtained for every stator open winding wavelet 

index. 

The wavelet index equation at 1600RPM with linear curve fitting in the stator open 

winding is: 

369.1*00919.0  effectseriesind RW        (7.6) 

And the norm of the residual=0.287 

The 900 RPM wavelet index equation with linear curve fitting in the stator open 

winding is: 

257.1*0084.0  effectseriesind RW        (7.7) 

And the norm of the residual =0.932 

The 450 RPM wavelet index equation with linear curve fitting in the stator open 

winding is: 

943.0*0024.0  effectseriesind RW        (7.8) 

And the norm of the residual=0.30084 

In this figure the wavelet indices as follows: 

0          1.4     healthy IM 

1.4           1.55    stator open winding at 450RPM 

1.55           1.75    stator open winding at 900RPM 

1.75           1.83    stator open winding at 1600RPM 

The faults given below are dealt with by the second case study: 

1. Encoder fault 

2. For testing the incorporation of the protection circuit, open stator winding 

together with compound fault. 

Due to operation in healthy case, the IM commenced with sensor vector control. The 

sensorless vector control was the complimentary controller of the sensor. 
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 Vector control as the speed sensor fault was introduced at 0.95 sec. At the 1.7 sec of 

operation, the stator open winding fault was introduced. With a short smooth speed 

transition but little speed reduction, the suggested switching strategy reconfigured the 

control from the sensorless vector control to closed loop V/F. 

For testing the protection unit, compound fault from the two faults mentioned above 

were introduced at 2.5 seconds. As shown by Figure7.27, the zero signals were 

transmitted to the inverter in this scenario and the operation of the IM was halted. 

 

Figure7.27. Experimental speed transition for different controllers with filtering 

The activation of the transition controller in sensorless vector control can be 

illustrated as in Figure7.28. The sensor vector control is available during all transition 

regions but it will be activated in the starting of operation and when there is no fault in 

the IM.  

 

Figure7.28. Experimental logical sensorless and sensor vector control activation  
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Figure 29 shows the effectiveness of sensorless vector control against the speed sensor 

fault and its recovery time. 

 

Figure7.29. Speed sensor fault recovery due to activation of sensorless vector control 

Figure7.30 shows the experimental closed loop V/F activation in the open stator 

winding. As previously mentioned, a series resistance was linked to one of the stator 

phase resistance 

 

Figure7.30. Experimental logical closed loop V/F control activation 

Figure 7.31 shows the effectiveness of closed loop V/F control against the stator open 

winding fault and its recovery time 



 

159 

 

 
Figure7.31. Stator open fault recovery due to activation of closed loop V/F 

Figure7.32 shows the experimental of protection activation stage when the open stator 

winding with the voltage reduction up to (0.9* rated voltage) as previously mentioned. 

 

 
Figure7.32. Experimental logical protection stage activation  

The Experimental setup to measure the wavelet index in the open stator winding can 

be shown in Figure 7.33.In this Figure a series resistance is connected with one of the 

stator phase resistance as mentioned earlier. 
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Figure7.33. Experimental setup for   stator open winding fault WI measurement 

7.6.3 Speed Sensor Fault 

In this study, two kinds of speed sensor (encoder) failure are explained: 

1. Complete speed sensor failure. 

The cables of the encoder channels A, B and index I are disconnected for introducing 

complete speed sensor failure. Figure7.34 shows the estimation of the sensorless rotor 

position and the encoder’s real output. 

As a complimentary to the encoder position measurement, the estimations of the rotor 

angular position through the BMRAS were utilized. The transition from the sensor 

control to the sensorless one was facilitated by the calculated speed difference. 

 

Figure7.34 .Experimental output of BMRAS estimated and encoder failure rotor 

position  

2. Reading speed sensor error in the position. A noise was made in the encoder 



 

161 

 

LED for introducing this fault. 

For a transition from the sensor control to the sensorless one, the measured difference 

between the angles for estimated rotor position through BMRAS technique and rotor 

position measured by encoder is utilized. The difference should ideally be zero or render 

a value close to zero. Figure7.35 demonstrates the BMRAS and the encoder output. 

 

 

Figure7.35. Experimental output of BMRAS estimated and fault of encoder rotor 

position  

In the beginning of the IM’s operation, encoder fault was introduced for testing the 

flexibility of the fault tolerant control algorithm and its capability of returning back to 

the sensor vector control. At the beginning of the operation period, sensorless vector 

control was the complimentary controller. The controller transition from the sensorless 

vector control and back to the sensor vector control is demonstrated by an experimental 

result (Figure7.36). Pulses were missed at the beginning of operation when the encoder 

was disconnected. After 0.6sec, the encoder was connected once again. 

By connecting the parallel variable resistance with full scale, stator short winding fault 

was introduced at 2 seconds. Hence, instead of the sensorless vector control, the fault 

tolerant control algorithm was switched on for reconfiguring the normal operation. Fig 

7.36 shows this. 

Minimum voltage fault was introduced at 3 seconds. This marked the switching ON of 

the last stage of control strategies, for maintaining the accepted operational 
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performance. 

The wavelet index determines all fault detections and consequently the binary 

decisions for switching from one control strategy to the other.  

 

 

Figure7.36. Experimental speed transition for different controller for flexibility test 

Figure7.37 shows the effectiveness of closed loop V/F control against the stator short 

winding fault and its recovery time. 

 
Figure7.37. Stator short fault recovery due to activation of closed loop V/F 

Figure7.38 shows the effectiveness of open loop V/F control against the under voltage 

fault and its recovery time. 
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Figure7.38. Under voltage fault recovery due to activation of open loop V/F 

Figure7.39 shows speed transition between sensor vector control to sensorless vector 

control in the event of speed sensor fault at 3 sec and from sensorless to closed loop V/F 

at 9.3 sec when the stator open winding fault occur. 

 
Figure7.39. Speed transitions at 1450RPM 

 

One of the suggested solutions was the fault tolerant strategy for IM faults based on a 

wavelet topology and control. The main target was to overcome the falling motor 

performance. This was kept in mind while formulating this strategy which consequently 

extended the life of a motor drive system for a span of time prior to the need for 

maintenance. Figure7.40 illustrates the block diagram of multisensory control system. 
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Figure7.40. Block diagram of multisensory control system 

For low speed and high speed motor applications, the above mentioned fault tolerant 

control algorithm stands as an appropriate choice. 

The flow chart of the whole work can be seen in Figure 7.41 
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Figure 7.41.Flow chart of the control algorithm of the proposed FTC based IM drive 

 

In the Fig.7.41 the wavelet indices of prognostic for both stator open winding and stator 

short winding are calculated experimentally. The experimental work was carried out 

with 450RPM, 900 RPM and 1600RPM because one of the most important features of 
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fault tolerant control is dealing with large faults but not need to check full potential of 

the system.  
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Chapter 8: Conclusions and Suggestions for Future Work 

8.1 Introduction  

Contributions of this thesis and accomplishments of this work are discussed in this 

chapter. Recommendations and suggested future works are presented following from 

here. 

 The background of this work has been provide a achievements of this thesis 

described in chapter 1, with particular emphasis placed on the thesis goals, the 

principal contributions, core definitions of the fault diagnosis and fault tolerant 

control and lastly the summary of this work. 

 A literature survey of the principal methods of diagnosing faults, faults in the IM 

without employing the wavelets for fault detection and similar faults with using 

wavelets and inverter faults were covered in chapter 2. Other researchers have 

worked on the principal works and the fault control definition in this survey. 

Multiple controllers with wavelets are an area on which no prior work has been 

carried out. For inserting specific controller and exact time impact, the wavelet 

index operates as a fault indicator. For preventing IM damage by halting the 

operation, fault protection is used which is a part of the fault tolerant algorithm 

based wavelet. 

For developing the wavelet fault tolerant control solutions for sensor and 

sensorless IMs, these new remedial strategies will pave the way for the author to 

carry on research in this area for the future. 

 IMs are presented in chapter 3. Introduction of control strategies, sensor vector 

control, open loop V/F control, closed loop V/F control, sensorless vector 

control together with all Simulink implementation of each controller is also 

given. For evaluating the stability and response of the controllers in relation to 

the strategies mentioned above, implementation of the PI controller performance 
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was also done. Control techniques were classified next. The speed in the speed 

sensor faults was estimated by the new MRAS estimator.  

 Wavelet techniques in the diagnosis of faults were described in chapter 4. 

Normally, fault prognostic with a pre fault warning stage for 50% and 90% of 

faults occur. 

 For performing as a warning indicator, the prognostic unit relies on wavelet 

index. Decomposition is influenced by structure and meanings of the wavelets 

with low and high pass construction for 20 kHz, principal parameters and 

decomposition levels. The major subjects of this chapter are multilevel 

resolution and selecting the criteria for constructing the wavelet and wavelet index.  

 The fault tolerant control was studied in chapter 5. The following were also 

included: introduction of the IM’s fault tolerant control, kinds of fault tolerant 

control like active or passive together with reconfiguration, definitions of the 

most well known words in fault tolerant, switching mechanism between the 

controllers and computer simulation with 0.5 Hp IM for checking the legitimacy 

of the algorithm for maintaining the operation in the presence of faults and 

lastly, fault detection and isolation. 

 For utilization in simulation, the 0.5hp IM parameters were obtained from the 

short circuit test, DC test and locked experimental tests in this chapter. 

Results of the simulation exercise were obtained for the healthy IM. Introduction 

of the investigation pertaining to stator short winding and stator open winding is 

also given, done at different time intervals. In order to maintain operations, the 

algorithm was found to perform soundly under every scenario. Moreover, for 

achieving integrity of every stage of fault tolerant commencing from detection 

till the protection, the protection unit was tested. Verification of the 

authentication of simulation implementation conducted in chapters 3 and 4 
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previously was the prime objective of this chapter. A sound fault tolerant 

algorithm was indicated by the simulation results.  

 Investigation of condition monitoring was focused upon in chapter 6. For the 

continuation of any industrial process, stator voltage, stator current, speed 

monitoring and DC voltage, an important part is played by condition monitoring. 

 Simulink implementation of monitoring more than 13 trips for rendering the 

location and time of fault was introduced in this chapter as well. A 0.5hp IM was 

used for performing the simulation as well as for authenticating this unit. 

Simulation of the AC voltage unbalance with low speed and broken rotor bar 

case studies was also done. For stopping the operation of the motor, this was 

clearly indicative of the fact that testing was carried out for location of both time 

and kinds of faults. Avoidance of any IM damage is highly dependent on this 

unit. 

 Indication of the excess of minimum speed and maximum output from the 

normal was given by experimental test outcomes of the fault tolerant strategy 

under the stator open winding fault, stator short winding fault, reduction of rated 

voltage below 0.9* rated voltage and speed sensor in chapter 7. Both healthy and 

faulty cases are presented in relation to the wavelet decomposition outputs of 

stator current. Recording of the wavelet index for three speeds namely 450RPM, 

900RPM and 1600RPM was also done. The efficaciousness of the algorithm 

was acknowledged by the selected output speed response. In order to ensure 

conformity with speed response, the controller activation at every operational 

stage was also checked. 

For utilization in simulation and comparison with the experimental results, the 

1kW motor parameters were obtained from the DC test, locked experimental 

tests and short circuit test. 
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In order to categorize the fault tolerant operation as a commercial project, 

minimum hardware components are essential. In comparison with the perplexing 

fault tolerant algorithms, this implies a cost reduction. 

The efficaciousness and authenticity of the fault tolerant approach for industry 

employment has been demonstrated by the results of the simulation and 

experimental tests.  

 This algorithm can be applicable to many types of motors such as PMSM motor 

with little bit modification. Normally the IM position can be obtained by 

integration of summing both electrical and mechanical speeds. In PMSM motor 

it just has mechanical speed. 

8.2. Conclusions 

Usefulness in relation to maintaining a minimum level of performance can be identified 

with scalar control of IM drives, despite its drawbacks like difficult operation at every 

point of the speed torque curve, torque ripple, slow response and low performance. 

The above mentioned problems have been known to get resolved by vector control. A 

sound choice for implementing the fault tolerant control can be obtained by combining 

multi controllers. 

For maintaining performance of the system at an acceptable level, FTC in the IM is 

quite vital. The efficaciousness of the algorithm has been acknowledged with its success 

with all faults. 

The following are some of the derived conclusions: 

1. In detecting faults and diagnosing IMs, the wavelet is thought of as a very 

powerful tool. 

2. For detecting the presence of a fault in the system, the expert wavelet index is a 

sound sensing parameter. 
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3. For obtaining high diagnostic and detection efficaciousness, the enhancement of 

fault detection and diagnosis can exploit the properties of the wavelet. 

4. In order to ensure the best selection of mother wavelet, theories of wavelet need 

to be studies more vigorously. 

5. For estimating the speed of the sensorless and V/F in an efficient manner, the 

new model of MRAS observer has been studied. 

6. The switching mechanism was found to switch efficiently between the 

controllers. 

7. An IM was used as the test application for proving the efficaciousness of the 

fault tolerant control approach. 

8. For verifying the algorithm and ensuring its validity for all motors, more than 

one IM is used. 

9. As new fault tolerant control algorithm both prognostic and protection units 

were added to this algorithm to ensure better detection, isolation, reconfiguration 

and protection. 

8.3. Suggestions for future works 

1. Inverter fault diagnosis can be considered in greater depth. 

2. Plug in controllers like direct torque control can be inserted in this scheme 

during the period of transition. 

3. The impact of harmonics can be tested. 

4. In place of switching mechanism, utilization of look up table. 

5. Studying the impact of switching on the inverter’s stability 

6. Completion of the prognostic stage with all faults. 

7. Intelligent control such as fuzzy, neural, genetic or any combination of the can 

be used in the future. 
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8. Implementation of the digital motor control (DMC) blocks according to the 

equations of the vector control and v/f control techniques.       

 

8.4 Publications 

1. Khalaf Salloum Gaeid, Hew Wooi Ping, Haider A.F. Mohamed, (2010). 

Diagnosis and Fault Tolerant Control of the Induction Motors Techniques a 

Review. Australian Journal of Basic and Applied Sciences (ISI), 4(2), pp 227-

246. 

2. Khalaf Salloum Gaeid and Hew Wooi Ping (2010).Induction Motor Fault 

Detection and Isolation through Unknown Input Observer. Scientific Research 

and Essays journal (ISI).5(20):3152-3159. 

3. Khalaf Salloum Gaeid, Hew Wooi Ping (2011). Wavelet Fault Tolerant Control 

Review of Induction Motor. IJPS (ISI) journal, 6(3):358-376. 

4. Khalaf Salloum Gaeid, Hew Wooi Ping (2011). Fault Tolerant vector Control of 

Induction Motor Drive. Modern Applied Science journal (Scopus), Canadian 

Center of Science and Education, 5(4):83-94. 

5. Khalaf Salloum Gaeid, Hew Wooi Ping (2011). Condition Monitoring and 

Protection of Induction Motor using Wavelet Indicator. International journal of 

Electrical Engineering, 4(7):787-806. 

6. Khalaf Salloum Gaeid, Hew Wooi Ping, Mustafa Khalid,Atheer L.Salih(2011). 

Fault Diagnosis of Induction Motor Using MCSA and FFT. Electrical and 

Electronic Engineering journal, 1(2): 85-92. 

7. Khalaf Salloum Gaeid, Hew Wooi Ping (2011).Wavelet Fault Diagnosis of 

Induction Motor. MATLAB for Engineers - Applications in Control, Electrical 

Engineering, IT and Robotics .book chapter, Intech publisher 

8. Khalaf Salloum Gaeid, Hew Wooi Ping, Mustafa Khalid, Saad M.Herdan 

(2012). Fault Tolerant Control of Induction Motor through Observer Techniques 

II. Scientific Research and Essays journal (ISI), 7(6), pp. 679-692 

9. Gaeid,K.S. Hew Wooi Ping; Mohamed, H.A.F(2009). Indirect Vector Control of 

a Variable Frequency Induction Motor Drive (VCIMD), IEEE conference, 

ICICIBME, pp36-40. 

10. Gaeid,K.S. Hew Wooi Ping; Mohamed, H.A.F(2009). Simulink Representation 

of Induction Motor Reference Frames, IEEE conference, TECHPOS, pp1-4 

11. Khalaf Salloum   Gaeid, Haider A.F.Mohamed, Hew Wooi Ping, Lokman H 

Hassan (2009). NNPID Controller for Induction Motors with Faults, 2nd 

International conf. on control, Instrumentation &Mechatronic 

(CIM2009).pp548-552 

12. Khalaf Salloum Gaeid, Hew Wooi Ping,Mustafa Khalid(2011).Induction Motor 

Fault Tolerant Control with Wavelet Indicator. IEEE conference, TMEE2011, 

pp1512-1516. 



 

173 

 

13.  Khalaf Salloum Gaeid, Hew Wooi Ping, Mustafa Khalid (2012). Wavelet 

techniques for Induction Machines with Reconfigurable fault Tolerant 

Controller, International Electrical, Electronic and Control Technology 

conference (MCEECT 2012), UMP, Malaysia, pp1-5. 

14. Khalaf Salloum Gaeid, Hew Wooi Ping, Mustafa Khalid, Ammar Masaoud 

(2012) .Sensor and Sensorless Fault Tolerant Control for Induction Motor using 

Wavelet Index ,Sensors,12(4),pp.4031-4050. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

174 

 

References 

Abdesselam, L.(2007). Diagnosis of induction machine by time frequency 

representation and hidden Markov modelling. IEEE International Symposium on 

Diagnostics for Electric Machines, Power Electronics and Drives, SDEMPED, (pp. 272 - 

276). 

Afef Fekih, F. N. (2006). A Robust Fault Tolerant Control Strategy for a Class of 

Nonlinear Uncertain Systems. Proceedings of American Control Conference, (pp. 5474-

5480). 

Ahmad Akrad, M. H. (2011). Design of a Fault Tolerant Controller Based on Observers 

for a PMSM Drive. IEEE Transactions on Industrial Electronics , 58 (4), 1416-1427. 

Ahmed Sayed Ahmed, B. M. (2011). A fault-tolerant technique for Delta-connected 

vector-control AC motor-drives. Twenty-Sixth Annual IEEE Applied Power Electronics 

Conference and Exposition (APEC), (pp. 1034 - 1041). 

Ahmed Sayed Ahmed, B. M. (2011). Fault-Tolerant Technique for Δ-Connected AC-

Motor Drives. IEEE Transactions on Energy Conversion , 26 (2), 646 - 653 . 

Anderzej M., T. (2001). Control of Induction Motors. Academic Press. 

Andrew K.S. Jardine, D. L. (2006). A review on machinery diagnostics and prognostics 

implementingcondition-based maintenance. Mechanical Systems and Signal Processing 

, 20 (7), 1483–1510. 

Andriamalala, R. R. (2006). A Model of Dual Stator Winding Induction Machine in case 

of Stator and Rotor Faults for Diagnosis Purpose. IEEE Industry Applications 

Conference,41st IAS Annual Meeting, 5, (pp. 2340 - 2345). 

Anjali P. Deshpandea, S. C. (2009). Intelligent state estimation for fault tolerant 

nonlinear predictive control. Journal of Process Control , 19 (2), 187-204. 

Anjaneyulu, N.(2007). Adaptive Vector Control of Induction Motor Drives. International 

Journal of Electrical and Engineering , 1 (2), 239-245. 

Antonino, J. R.F. (2005). Validation of a new method for the diagnosis of rotor 

barfailures via wavelet transformation in industrial inductionmachines. 5th IEEE 

International Symposium on Diagnostics for Electric Machines, Power Electronics and 

Drives,SDEMPED, DEMPED, (pp. 1-6). 

Antonino Daviu, J. R.G. (2006). Validation of a new method for the diagnosis of rotor. 

IEEE Transactions on Industry Applications , 42 (4), 990 –996. 



 

175 

 

Ayaz, E. O. (2006). Continuous Wavelet Transform for Bearing Damage Detection in 

Electric Motors. IEEE Electrotechnical Conference, MELECON. Mediterranean, (pp. 1130 

–1133). 

Ayhan, B. T. (2008). On the Use of a Lower Sampling Rate for Broken Rotor Bar 

Detection With DTFT and AR-Based Spectrum Methods. IEEE Transactions on Industrial 

Electronics , 55 (3), 1421 - 1434. 

Babaa, F. K. (2007). Condition monitoring of stator faults in induction motors: Part I— 

Analytical investigation on the effect of the negative voltage sequence. International 

Aegean Conference on Electrical Machines and Power Electronics,ACEMP, (pp. 205 - 

210). 

Banerjee, T. C. (2010). Off-line optimization of PI and PID controller for a vector 

controlled induction motor drive using PSO. International Conference on Electrical and 

Computer Engineering ,ICECE, (pp. 74 - 77). 

Bangura, J. P. (2003). Diagnostics of Eccentricities and Bar/End-Ring Connector 

Breakages in Poly phase Induction Motors Through a Combination of Time-Series Data 

Mining and Time-Stepping Coupled FE–State-Space Techniques. IEEE Transactions on 

Industry Applications , 39 (4), 1005 - 1013. 

Barakat, Y. A. (2011). Modeling and Diagnostic of Stator Faults in Induction Machines 

Using Permeance Network Method. PIERS Proceedings, Marrakesh, MOROCCO, (pp. 

1550-1559). 

Basaran, D. G. (2011). Condition monitoring of speed controlled induction motors 

using wavelet packets and discriminant analysis. Expert Systems with Applications , 38 

(7), 8079-8086. 

Bech, M. B. (2000). Random modulation techniques with fixed switching frequency for 

three-phase power converters. IEEE Transactions on Power Electronics , 15 (4), 753 - 

761. 

Bekheira Tabbache, M. B.-M. (2011). DSP-Based Sensor Fault-Tolerant Control. IEEE 

International Symposium on Industrial Electronics (ISIE), (pp. 2085 - 2090). 

Biju K, J. G. (2010). Fault Detection of Induction Motor using Energy and Wavelets. 

International Conference on Control, Communication and Power Engineering, (pp. 210-

214). 

Blodt, M. R. (2009). Distinguishing Load Torque Oscillations and Eccentricity Faults in 

Induction Motors Using Stator Current Wigner Distributions. IEEE conference, 41st IAS 

Annual Meeting ,Industry Applications Conference, 2006., (pp. 1549 - 1556 ). 

Bodkhe, S. B. (2009). Speed-sensorless, adjustable-speed induction motor drive based 

on dc link measurement. International Journal of PhysicalSciences , 4 (4), 221–232. 



 

176 

 

Bose, B. K. (2002). Modern Power Electronics and AC drives",. Prentice-Hall. 

Bossio, G. D. (2006). Application of an Additional Excitation in Inverter-Fed Induction 

Motors for Air-Gap Eccentricity Diagnosis. IEEE Transactions on Energy Conversion , 21 

(4), 839 - 847. 

C. BatlleA, D. C. (2006). Simltaneous Interconnection and Damping Assignment T 

Passivity Based Control: Two PracticalL Examples. 3rd IFAC Workshop on Lagrangian 

and Hamiltonian Methods for Nonlinear Control, (pp. 93-98). 

C.U. Ogbuka, a. M. (2009). A Modified Closed Loop V/F Controlled Induction Motor 

Drive. The Pacific Journal of Science and Technology , 10 (1), 52-58. 

Cabal Yepez, E. O.R.T.H.G. (2009). FPGA-Based Online Induction Motor Multiple-Fault 

Detection with Fused FFT andWavelet Analysis. International Conference on 

Reconfigurable Computing and FPGAs, (pp. 101 –106). 

Cao Zhitong, C. H. (2001). Rotor fault diagnosis of induction motor based on wavelet 

reconstruction. Proceedings of the Fifth International Conf. on Electrical Machines and 

Systems, ICEMS, (pp. 374 –377). 

Chandorkar, B. M. (2010). Feedback Linearization  Control of Induction  Machines: 

EFFECT . National Power Electronics Conference, (pp. 1-9). 

Chen, C. M.(1998). Electric fault detection for vector-controlled induction motors using 

the discrete wavelet transform. Proceedings of the American Control Conference, (pp. 

3297 –3301). 

Chetwani, S. H. (2005). Online Condition Monitoring of Induction Motors through 

Signal Processing. Proceedings of the Eighth International Conference on Electrical 

Machines and Systems, ICEMS, (pp. 2175-2179). 

Chia Chou, Y. G. (2007). A Reconfigurable Motor for Experimental Emulation of Stator 

Winding Inter-Turn and Broken Bar Faults in poly phase Induction Machines. IEEE 

Electric Machines & Drives Conference ,IEM DC, (pp. 1413-1419). 

Chinmaya Kar, A. M. (2006). Monitoring gear vibrations through motor current 

signature analysis and wavelet transform. Mechanical Systems and Signal Processing , 

20 (1), 158-187. 

Choi, J. (2006). Model Based Diagnostics of Motor and Pumps. Doctor of Philosophy 

thesis . University of Texas ,Austin. 

Chua, Y. L. (2009). Numerical and Experimental Investigations of Flexural Vibrations of 

a Rotor System with Transverse or Slant Crack. Journal of Sound and Vibration , 324 (1-

2), 107-125. 



 

177 

 

Claudio Bonivento, A. I. (2004). Implicit fault-tolerant control: application to induction 

motors. Automatica , 40 (3), 355-371. 

Cristaldi, L. F. (2010). Rotor fault detection in field oriented controlled induction 

machines. International Symposium on Power Electronics Electrical Drives Automation 

and Motion, SPEEDAM, (pp. 529 - 534). 

Cross, A. (1999). DC link current in PWM inverters with unbalanced and nonlinear 

loads. IEE Proc.Electr.Pow.Appl , 143 (6), 620-626. 

Cui, B. (2007). Simulation of Inverter with Switch Open Faults Based on Switching 

Function. IEEE International Conference on Automation and Logistics, (pp. 2774 - 

2778). 

Cusido, J. J. (2006). Wavelet and PSD as a Fault Detection Techniques. proceessing of 

the IEEE Conf. On Instrumentation and Measurement Technology,IMTC, (pp. 1397-

1400). 

Cusido, J. L. (2008). Fault Detection in Induction Machines Using Power Spectral 

Density in Wavelet Decomposition. IEEE Transactions on Industrial Electronics, 55 (2), 

633-643. 

Cusido, J. R. (2006). Induction Motor Fault Detection by using Wavelet decomposition 

on dq0 components. IEEE International Symposium on Industrial Electronics, (pp. 2406 

-2411). 

Cusido, J. R. (2007). On-Line System for Fault Detection in Induction Machines based 

on Wavelet Convolution. IEEE Conf.On Power Electronics Specialists, PESC, (pp. 927-

932). 

Cusido, J. R. (2007). On-Line System for Fault Detection in Induction Machines Based 

on Wavelet Convolution. IEEE Instrumentation and Measurement Technology 

Conference Proceedings, IMTC, (pp. 1-5). 

D.Barnes, J. (2006). Multiscale Anomaly Detection and Image Registration Algorithms 

for Airborne Landmine Detection . Master Thesis .Electrical Engineering,University of 

Missouri–Rolla. 

D.U. Campos Delgado, D. E. (2008). Fault-tolerant control in variable speed drives:a 

survey. IET Electric Power Applications , 2 (2), 121–134. 

Da Silva, A. P. (2008). Induction Machine Broken Bar and Stator Short-Circuit Fault 

Diagnostics Based on Three-Phase Stator Current Envelopes. IEEE Transactions on 

Industrial Electronics , 55 (3), 1310 - 1318. 



 

178 

 

Diallo, D. B. (2004). A fault-tolerant control architecture for induction motor drives in 

automotive applications. IEEE Transactions on Vehicular Technology , 53 (6), 1847 - 

1855. 

Dimas Anton A, S. D. (2010). Characterization of Temporary Short Circuit in Induction 

Motor Winding using Wavelet Analysis. Proceedings of the International Conference on 

Modelling, Identification and Control, (pp. 477 -482). 

Dongmo, J. K. (2007). Variable Structure Design of a Fault Tolerant Control System for 

Induction Motors. IEEE Electric Ship Technologies Symposium,ESTS, (pp. 531 - 535). 

Douglas, H. P. (2003). Detection of broken rotor bars in induction motors using wavelet 

analysis. International IEEE Conf. On Electric Machines and Drive, IEMDC'03, (pp. 923 –

928). 

Drif, M. C. (2006). Airgap eccentricity fault diagnosis, in three-phase induction motors, 

by the complex apparent power signature analysis. International Symposium on Power 

Electronics, Electrical Drives, Automation and Motion, (pp. 61 - 65). 

Drif, M. M. (2008). Airgap eccentricity fault diagnosis, in three-phase induction motors, 

using the instantaneous power factor signature analysis. 4th IET Conference on Power 

Electronics, Machines and Drives, (pp. 587 - 591). 

Egorov, V. V. (2011). Discontinuous Space Vector Modulation Technique for Motor 

Supply . IEEE International Conference on Computer as a Tool ,EUROCON, (pp. 1-4). 

El Khil, S. S.B.D. (2006). A Fault Tolerant Operating System in a Doubly Fed Induction 

Machine Under Inverter Short-circuit Faults. 32nd Annual IEEE Industrial Electronics, 

IECON, (pp. 1125 - 1130). 

El Menzhi, L.(2007). Induction motor fault diagnosis using voltage spectrum of an 

auxiliary winding. International Conference on Electrical Machines and Systems, ICEMS, 

(pp. 1028 - 1032). 

Eltabach, M. C. (2004). A comparison of external and internal methods of signal 

spectral analysis for broken rotor bars detection in induction motors. IEEE Transactions 

on Industrial Electronics , 51 (1), 107 - 121 . 

Emil Levi(2008). Multiphase Electric Machines for Variable-Speed Applications. IEEE 

Transactions on Industrial Electronics, 55(5),1893-1909. 

Eren, L. D. (2004). Bearing damage detection via wavelet packet. IEEE Transactions on 

Instrumentation and Measurement , 53 (2), 431 - 436. 

Erhan Akin, I. A. (2011). FPGA Based Intelligent Condition Monitoring of Induction 

Motors: Detection, Diagnosis, and Prognosis. IEEE International Conference on 

Industrial Technology (ICIT), (pp. 373 - 378 ). 



 

179 

 

F. C. Trutt, J. S. (2002). Online condition monitoring of induction motors. IEEE Trans. 

Industry Applications , 38 (6), 1627-1632. 

Faiz, J. E. (2007). A criterion function for broken bar fault diagnosis in induction motor 

under load variation using wavelet transform. International Conf. on Electrical 

Machines and Systems, ICEMS, (pp. 1249 –1254). 

Faiz, J. E. (2008). Finite-Element Transient Analysis of Induction Motors under Mixed 

Eccentricity Fault. IEEE Transactions on Magnetics , 44 (1,part 1), 66-74. 

Figoli, Z. Y. (1998). AC Induction Motor Control Using Constant V/Hz Principle and Space 

Vector PWM Technique with TMS320C240. Texas Instruments. 

G. B. Kliman, W. J. (1996). A new approach to on-line turn fault detection in AC motors. 

international Conf. Rec. IEEE IAS, (pp. 687-693). 

G.K. Singh, S. A. (2009). (2009). Isolation and identification of dry bearing faults in 

induction machine using wavelet transform. Tribology International , 42 (6), 849–861. 

Gadoue, S. G. (2010). MRAS Sensorless Vector Control of an Induction Motor Using 

New Sliding-Mode and Fuzzy-Logic Adaptation Mechanisms. IEEE Transactions on 

Energy Conversion , 25 (2), 394 - 402. 

Gaetan Didier, E. T. (2006). Fault Detection of Broken RotorBars in Induction rotor 

Using a Global Fault Index. IEEE transaction on Industry applications , 42 (1), 79-88. 

Gamal Mahmoud, M. M.A. (2007). Inverter Faults In Variable Voltage Variable 

Frequency Induction Motor Drive. Compatibility in Power Electronics, CPE , (pp. 1-6). 

Gan, W.(2003). Design and analysis of a plug-in robust compensator: an application to 

indirect-field-oriented-control induction machine drives. IEEE Transactions on 

Industrial Electronics , 50 (2), 272 - 282. 

Georgakopoulos, I. E. (2009). Condition monitoring of an inverter-driven induction 

motor using Wavelets. 8th International Symposium on Advanced Electromechanical 

Motion Systems & Electric Drives Joint Symposium, ELECTROMOTION, (pp. 1-5). 

Ghada Boukettaya, L. K. (2010). A comparative study of three different sensorless 

vector control strategies for a Flywheel Energy Storage System. Energy , 35 (1), 132-

139. 

Gojko M. Joksimovic, J. P. (2000). The Detection of Inter-Turn Short Circuits in the 

Stator Windings of Operating Motors. IEEE Transactions on Industrial Electronics , 47 

(5), 1078-1085. 

Gordi Armaki, M.(2010). A new approach for fault detection of broken rotor bars in 

induction motor based on support vector machine. 18th Iranian Conference on 

Electrical Engineering (ICEE), (pp. 732 - 738). 



 

180 

 

Grieger, J. S. (2006). Estimation of Static Eccentricity Severity in Induction Motors for 

On-Line Condition Monitoring. IEEE Conference on Industry Applications,2 41st IAS 

Annual Meeting, 5, (pp. 2312 - 2319). 

Grieger, J. S. (2007). Induction Motor Static Eccentricity Severity Estimation Using 

Evidence Theory. IEEE Internationa Electric Machines & Drives Conference,IEMDC , 1, 

(pp. 190 - 195). 

Guan, Y. S. (2007). Mean Current Vector Based Online Real-Time Fault Diagnosis for 

Voltage Source Inverter fed Induction Motor Drives. IEEE, Electric Machines & Drives 

Conference, IEMDC, (pp. 1114-1118). 

Habetler, T. R. (2002). Complete current-based induction motor condition monitoring: 

stator, rotor, bearings, and load. IEEE International Power Electronics 

Congress,Technical Proceedings. CIEP, (pp. 3-8). 

Hakan Calıs, A. C. (2007). Rotor bar fault diagnosis in three phase induction motors by 

monitoring fluctuations of motor current zero crossing instants. Electric Power Systems 

Research , 77 (5-6), 385-392. 

Halim Alwi, C. E. (2008). Fault tolerant control using sliding modes with online control 

allocation. Automatica , 44 (7), 859-1866. 

Hamidi, H. N. (2004). Detection and isolation of mixed eccentricity in three phase 

induction motor via wavelet packet decomposition. 5th Asian Control Conference, 2, 

(pp. 1371 –1376). 

Hengli Quan, Z. G. (2011). study of novel modulation techniques based on Space vector 

PWM. International Conference on Computer Distributed Control and Intelligent 

Environmental Monitoring, (pp. 295-299). 

Hsu, J. S. (1995). Monitoring of defects in induction motors through air gap torque. 

IEEE Trans. Industry Applications , 31 (5), 1061-1021. 

Huang, X. H. (2007). Detection of Rotor Eccentricity Faults in a Closed-Loop Drive-

Connected Induction Motor Using an Artificial Neural Network. IEEE Transactions on 

Power Electronics , 22 (4), 1552-1559. 

Huang, X. H. (2007). Using a Surge Tester to Detect Rotor Eccentricity Faults in 

Induction Motors. IEEE Transactions on Industry Applications , 43 (5), 1183-1190. 

Huang, X., Habetler, T., & Harley, R. (2007). Detection of Rotor Eccentricity Faults in a 

Closed-Loop Drive-Connected Induction Motor Using an Artificial Neural Network. IEEE 

Transactions on Power Electronics , 22 (4), 1552-1559. 



 

181 

 

Huaxing Tang, C. L.T. (2007). Improving Performance of Effect-Cause Diagnosis with 

Minimal Memory Overhead. Proceedings of the 16th Asian Test Symposium ,ATS (pp. 1-

7). IEEE Computer Society. 

Inseok Hwang, S. K. (2010). A Survey of Fault Detection, Isolation, and Reconfiguration 

Methods. IEEE Transactions on Control Systems Technology , 18 (3), 636-653. 

Intesar Ahmed , Manzar Ahmed , Kashif Imran , M. Shuja Khan ,S. Junaid Akhtar(2011). 

Detection of Eccentricity Faults in Machine Using Frequency Spectrum Technique. 

International Journal of Computer and Electrical Engineering,3(1), 1793-8163.  

Instrument, T. (1998). Field Orientated Control of 3-Phase AC-Motors. 

Isermann, R. (2011). Terminology in fault detection and diagnosis. Springer eBook. 

Izzet, Y. N. (2006). Detection of Bearing Defects in Three-PhaseInduction M otors Using 

Park’s Transform and Radial Basis Function Neural Networks. Sadhana , 31 (3), 235-

244. 

J. Amarnath, M. H. (2009). Control induction motor drive without shaft encoder using 

model referencing adaptive system avoid torque jerks in transition at starting. 

International Journal of Applied Engineering Research , 4 (6), 921–929. 

J. Antonino Daviu, M. R. (2006). Application and optimization ofthe discrete wavelet 

transform for the detection of broken rotor bars in induction machines. Applied and 

Computational Harmonic Analysis , 21 (2), 268–279. 

J. Antonino Daviu, P. J. (2009). Transient detection ofeccentricity-related components 

in induction motors through theHilbert–Huang Transform. Energy Conversion and 

Management , 50 (7), 1810–1820. 

J. Chen, R. P. (1999). Active fault tolerant flight control systems design using the linear 

matrix inequality method. Transactions of the Institute of Measurement Control , 21 (2-

3), 77-84. 

J.Antonino Daviu, P. M. (2009). Detection of combined faults in induction machines 

with stator parallel branches through the DWT of the startup current. Mechanical 

Systems and Signal Processing , 23 (7), 2336–2351. 

Jafar Zarei, J. P. (2007). Bearing fault detection using wavelet packet transform of 

induction motor stator current. Tribology International , 40 (5), 763–769. 

Jannati, M.(2010). Modeling and vector control of unbalanced induction motors faulty 

three phase or single phase induction motors. 1st Power Electronic & Drive Systems & 

Technologies Conference ,PEDSTC, (pp. 208 - 211). 

Jawad Ahmed Farooq, T. R. (2008). Modelling and simulation of stator winding inter-

turn faults in permanent magnet synchronous motors. The International Journal for 



 

182 

 

Computation and Mathematics in Electrical and Electronic Engineering , 27 (4), 887-

896. 

Jawad Faiz, M. O. (2009). Different indexes for eccentricity faults diagnosis in three-

phase squirrel-cage induction motors: A review. Mechatronics , 19 (1), 2-13. 

Jeevanand S, A. T. (2008). Condition Monitoring of Induction Motors Using Wavelet 

Based Analysis of Vibration Signals. Second International Conference on Future 

Generation Communication and Networking Symposia, (pp. 75-80). 

Jian Yu Zhang, L. L.X. (2007). Research on the Selection of Wavelet Function for the 

Feature Extraction of Shock Fault in Bearing Diagnosis . International Conference on 

Wavelet Analysis and Pattern Recognition, (pp. 1630-1634). 

Jian, M. (2009). Texture Image Classification Using Visual Perceptual Texture Features 

and Gabor Wavelet Features. Journal of Computers , 4 (8), 763-770. 

Joachin Holtz, J. Q. (2000). Sensorless vector control at very low speed using a 

nonlinear inverter model and parameter identification. IEEE transactions on industry 

applications , 38 (4), 1087-1095. 

Jose A. Antonino Daviu, M. R. (2006). Validation of a New Method for the Diagnosis of 

Rotor Bar Failures via Wavelet Transform in Industrial Induction Machines. IEEE 

transaction on industry application , 42 (4), 990-996. 

Jose M . Machorro Lopeza, D. E. (2009). Identification of Damaged Shafts using Active 

Sensing Simulation and Experimentation. Journal of Sound and Vibration , 327 ( 3-5), 

368-390. 

K.Bose, B. (2006). Power lectronics and motor drives . Accademic press. 

K.Vinoth Kumar, S. S. (2010). Soft Computing Based Fault Diagnosis. Second 

International conference on Computing, Communication and Networking Technologies, 

(pp. 1-7). 

Kanev, S.(2004). Robust Fault-Tolerant Control. Ph.D. Thesis . University of 

Twente,Netherlands. 

Karanayil, B. R. (2007). Online Stator and Rotor Resistance Estimation Scheme Using 

Artificial Neural Networks for Vector Controlled Speed Sensorless Induction Motor 

Drive. IEEE Transactions on Industrial Electronics , 54 (1), 167 - 176. 

Kawady, A. I. (1999). ANN-Based Novel FaultT Detector for Generator Windings 

Protection. IEEE Transactions on Power Delivery , 14 (3), 824-830. 

Keyhani, A. (N/A). Pulse-Width Modulation (PWM) Techniques. The Ohio State 

University: Department of Electrical and Computer Engineering. 



 

183 

 

Khalaf Salloum Gaeid, H. W. (2010). Diagnosis and Fault Tolerant Control of the 

Induction Motors Techniques: A review. Australian Journal of Basic and Applied 

Sciences , 4 (2), 227-246. 

Khan, A. (2010). A Wavelet Based Speed Controller for Interior Permanent Magnet 

Motor Drives. PhD thesis in Electrical Engineering, Memorial University of 

Newfoundland. 

Khan, M.(2006). Discrete Wavelet Transform Based Detection of Disturbances in 

Induction Motors. Electrical and Computer Engineering, ICECE, (pp. 462 –465). 

Kia, S. H. (2009). Diagnosis of Broken-Bar Fault in Induction Machines Using Discrete 

Wavelet Transform without Slip Estimation. EEE Transactions on Industry Applications , 

45 (4), 1395 –1404. 

Kim, D. H. (2007). GA–PSO based vector control of indirect three phase induction 

motor. Applied Soft Computing , 7 (2), 601–61. 

King, G. J. (2010). Induction motor fault detection using the fast orthogonal search 

algorithm. Msc thesis in Electrical Engineering,Royal Military College of Canada. 

Kumar, R. G. (2007). Indirect vector controlled induction motor drive with fuzzy logic 

based intelligent controller. IET-UK International Conference on Information and 

Communication Technology in Electrical Sciences ,CTES , (pp. 368-373). 

Lai, C. P. (2010). Vector control of induction motor based on online identification and 

ant colony optimization. 2nd International Conference on Industrial and Information 

Systems (IIS), 2, (pp. 206 - 209). 

Lee, S. H. (2007). A study on the motor fault diagnosis using a digital protective relay 

system. International Conference onElectrical Machines and Systems,ICEMS, (pp. 1071 

- 1075). 

Lee, Y. (2007). A Stator Turn Fault Detection Method and a Fault Tolerant Operation 

Strategy For Interior PM Synchronous Motor Drives in Safety Critical Application . Ph.d 

thesis ,School of Electrical and Computer Engineering,Georgia Institute of Technology. 

Leite, D. H. (2007). Real-Time Model-Based Fault Detection and Diagnosis for 

Alternators and Induction Motors. IEEE ,Electric Machines & Drives Conference,IEMDC., 

(pp. 202-207). 

Li Ke, Q. D. (2007). The Correlation between the Wavelet Base Properties and Image 

Compression . International Conference on Computational Intelligence and Security 

Workshops, (pp. 429-432). 

Li, X. S. (2000). Real Time Tool Condition Monitoring Using Wavelet. IEEE Ttransactions 

on Systems, Man, and Cybernetics—Part C: Applications and Reviews , 30 (2), 352-357. 



 

184 

 

Li, X., Wu, Q., & Nandi, S. (2007). Performance Analysis of a Three-Phase Induction 

Machine With Inclined Static Eccentricity. IEEE Transactions on Industry Applications , 

43 (2), 531 - 541. 

Liang Tang, G. J. (2008). Prognostics-enhanced Automated ContingencyManagement 

for Advanced Autonomous systems. International Conference on Prognostics and 

Health Management, PHM. , (pp. 1 - 9 ). 

Liu, H. L. (2008). Adaptive fault tolerant control for a class of inherent nonlinear 

systems. Control and Decision Conference,CCDC, (pp. 541 - 545). 

Longa, P. (2006). An Optimized Architecture for 2D Discrete Wavelet Transform on 

FPGAs using Distributed Arithmetic. Faculty of Engineering ,University of Ottawa. 

Lorand SZABO, J. D. (2005). Discrete Wavelet Transform Based Rotor Faults Detection 

Method for Induction Machines. In W. M. Elmenreich, ntelligent Systems at the Service 

of Mankind,vol2 (pp. 63-74). Augsburg (Germany). 

Lu, B.(2008). Induction motor rotor fault diagnosis using wavelet analysis of one-cycle 

average power. Twenty-Third Annual IEEE Applied Power Electronics Conference and 

Exposition,APEC, (pp. 1113 - 1118). 

M. A. Cash, T. G. (1998). Insulation failure prediction in AC machines using line-neutral 

voltages. IEEE Trans. Industry Applications , 34 (6), 1234-1239. 

M. A. Rodriguez, A. C. (2008). A Strategy to Replace the Damaged Element for Fault-

Tolerant Induction Motor Drive. International Conference on Electrical Engineering, 

Computing Science and Automatic Control (CCE), (pp. 51-55). 

M. Menaa, O. T. (2008). Sensorless direct vector control of an induction motor. Control 

Engineering Practice , 16 (1), 67–77. 

M. Riera Guaspa, J. A. (2009). Diagnosis of rotor asymmetries in induction motors 

based on the transient extraction of fault components using filtering techniques. 

Electric Power Systems Research , 79 (8), 1181–1191. 

M. Sabarimalai Manikandan, a. S. (2007). Wavelet energy based diagnostic distortion 

measure for ECG. Biomedical Signal Processing and Control , 2 (2), 80-96. 

M. Sushama, G. T. (2009). Detection OF High-Impedance Faults in Transmission. ARPN 

Journal of Engineering and Applied Sciences , 4 (3), 6-12. 

Ma, H. L. (2007). Vibration research on winding faults of induction motor based on 

experiment modal analysis method. International Power Engineering Conference,IPEC, 

(pp. 366 - 370). 

Mahmoud, G. M.A. (2007). Inverter Faults in Variable Voltage Variable Frequency 

Induction M otor Drive. Compatibility in Power Electronics,CPE, (pp. 1-6). 



 

185 

 

Makarand S. Ballal, Z. J. (2007). Adaptive Neural Fuzzy Inference System for the 

Detection of Inter-Turn Insulation and Bearing Wear Faults in Induction M otor. IEEE 

transaction on industrial electronics , 54 (1), 250-259. 

Mallat, S. (1998). A wavelet tour of signal processing. Academic press. 

Mallat, S. (2009). A Wavelet Tour of Signal processing. San Diego: Academic Press. 

Mamat Ibrahimm, M. M. (2004). Condition monitoring algorithm for induction motor 

drive. IEEE Region 10 Conference, TENCON, (pp. 9- 12). 

Masoud Hajiaghajan, H. A. (2004). Advanced Fault Diagnosis of a DC Motor. IEEE 

Transactions on Energy Conversion , 19 (1), 60-65. 

Matic, D. B. (2010). Minimal configuration PI fuzzy gain scheduling speed controller in 

indirect vector controls scheme. 5th IET International Conference on Power Electronics, 

Machines and Drives ,PEMD, (pp. 1-6). 

Matthew O.T. Cole, P. S. (2004). Towards fault tolerant active control of rotor magnetic 

bearing systems. Control Engineering Practice , 12 (4), 491-501. 

Mc Fate, D. (2009). Induction Motor Testing and Evaluation. (pp. 1-11). Clevelan,Ohaio: 

IOtech. 

Mehala, N. (2009). Rotor Faults Detection in Induction Motor by Wavelet Analysis. 

International Journal of Engineering Science and Technology , 1 (3), 90-99. 

Mehdi Arehpanahi, S. (2005). Broken Rotor Bar Detection in Induction Motor via Stator 

Current Derivative. Proceedings of the Eighth International Conference on Electrical 

Machines and Systems, ICEMS, (pp. 2202-2206). 

Mehrjou, M. R. (2010). Evaluation of Fourier and wavelet analysis for efficient 

recognition of broken rotor bar in squirrel- cage induction machine. IEEE International 

Conference on Power and Energy ,PECon, (pp. 740-743). 

Menacer, A. M. (2006). Effect of the Position and the Number of Broken Bars on 

Asynchronous Motor Stator Current Spectrum. 12th International Power Electronics 

and Motion Control Conference,EPE-PEMC, (pp. 973 - 978). 

Menacer, A. M. (2004). Stator Currrent Analysis of Incipient fault Into Asynchronous 

Motor Bars using Fourier Fast Transform. Journal of Electrical Engineering , 55 (5-6), 

122-130. 

Meshgin Kelk, H. M. (2004). Interbar currents and axial fluxes in healthy and faulty 

induction motors. IEEE Transactions on Industry Applications , 40 (1), 128 - 134. 

Mirafzal, B.(2006). On innovative methods of induction motor interturn and broken-

bar fault diagnostics. IEEE Transactions on Industry Applications , 42 (2), 405 - 414. 



 

186 

 

Mogens Blanke, M. K. (2006). Diagnosis and Fault Tolerant Control. 2nd Edition, Verlag 

Berlin Heidelberg,Springer. 

Mohamadi,H. M. (2008). Vibration Condition MonitoringTechniques for Fault Diagnosis 

of Electromotor with 1.5kw power. Journal of Applied Science , 8 (7), 1268-1273. 

Mohamed El Hachemi Benbouzid, D. D. (2007). Advanced Fault-Tolerant Control of 

Induction-Motor Drives for EV/HEV Traction Applications:From Conventional to 

Modern and Intelligent Control Techniques. IEEE Transactions on Vehicular Technology 

, 56 (2), 519-527. 

Mohamed,H.Y. (2008). Sliding mode sensor fault tolerant control structure for 

induction motor. SICE Annual Conference, (pp. 2630 - 2635). 

Mohammed, O. A. (2006). Modelling and Characterization of Induction Motor Internal 

Faults Using Finite-Element and Discrete Wavelet Transforms. IEEE Transactions on 

Magnetics , 42 (10), 3434 –3436. 

Mohanty, A.(2006). Multiresolution Fourier transform of ripple voltage and current 

signals for fault detection in a gearbox. IEEE International Conference on Industrial 

Technology, ICIT , (pp. 1367 - 1373). 

Mohanty, A.(2006). Fault Detection in a Multistage Gearbox by Demodulation of Motor 

Current Waveform. IEEE Transactions on Industrial Electronics , 53 (4), 1285 - 1297. 

Nademi, H. T. (2008). Fault tolerant IPMS motor drive based on adaptive backstepping 

observer with unknown stator resistance. 3rd IEEE Conference on Industrial Electronics 

and Applications, ICIEA, (pp. 1785 - 1790). 

Nakamura, H. Y. (2007). Diagnosis of short circuit fault of induction motor based on 

hidden markov model. Conference on Electrical Insulation and Dielectric Phenomena, 

(pp. 61 - 64). 

Neacsu, D. O. (2001). Space Vector Modulation –An Introduction. The 27th Annual 

Conference of the IEEE Industrial Electronics Society, (pp. 1583-1592). 

Nemec, M. D. (2010). Detection of Broken Bars in Induction Motor Through the 

Analysis of Supply Voltage Modulation. IEEE Transactions on Industrial Electronics , 57 

(8), 2879 - 2888 . 

Nikranjbar, A. M. (2009). Model-Based Fault Diagnosis of Induction Motor Eccentricity 

using Particle Swarm Optimization. Proceedings of the Institution of Mechanical 

Engineers, PartC: Journal of Mechanical Engineering Science , 223 (3), 607-615. 

Nirmesh Yadav, S. S. (2007). From wavelets to filter banks. In P. Roberts, Wavelet 

analysis and applications (pp. 97-117). 



 

187 

 

Okuda, T. K. (2009). Diagnosis of Multi-Phase Turn Faults of Induction Motor Stator 

Windings. International Conference on Power Electronics and Drive Systems, PEDS , (pp. 

144 - 149 ). 

Onel, I. (2008). Induction Motor Bearing Failure Detection and Diagnosis: Park and 

Concordia Transform Approaches Comparative Study. IEEE/ASME Transactions on 

Mechatronics , 13 (2), 257 - 262 . 

Ordaz Moreno, A.(2008). Automatic Online Diagnosis Algorithm for Broken-Bar 

Detection on Induction Motors Based on Discrete WaveletTransform for FPGA 

Implementation. IEEE Transactions on Industrial Electronics , 55 (5), 2193 –2202. 

Ouma amar, M. K. (2007). Neutral Voltage Analysis for Broken Rotor Bars Detection in 

Induction Motors Using Hilbert Transform Phase. IEEE Industry Applications 

Conference, 42nd IAS Annual Meeting, (pp. 1940 - 1947). 

P. C. Krause, O. W. (2002). Analysis of Electric Machinery and Drive Systems. 2nd ed., 

New York,Wiley. 

P. H. Mellor, T. J. (2003). Faulted behavior of permanent magnet electric vehicle 

traction drives. international Conf. Rec. of IEEE, IEMDC, (pp. 554-558). 

Paoli, A. (2003). Fault Detection and Fault Tolerant Control for Distributed Systems. A 

General Framework. Ph.D thesis . University of Bologna. 

Parekh, R. (2005). V/F Control of 3-Phase Induction Motor Using Space Vector 

Modulation. Microchip,AN955. 

Parekh, R. (2003). VF Control of 3-Phase Induction Motors Using PIC16F7X7 

Microcontrollers. Microchip. 

Patton, R. J. (1997). Fault -Tolerant Control Systems: The 1997 Situation. University of 

Hull, School of Engineering, Hull HU6 7RX, UK. 

Pedra, J. C. (2009). Modelling of squirrel-cage induction motors for electromagnetic 

transient programs. IET Electric Power Applications , 3 (2), 111 - 122. 

Pedrayes,F.R.(2007). Application of a Dynamic Model based on a Network of 

Magnetically Coupled Reluctances to Rotor Fault Diagnosis in Induction Motors. IEEE 

International Symposium on Diagnostics for Electric Machines, Power Electronics and 

Drive, (pp. 241-246). 

Pietilainen, K. (2005). Voltage Sag Ride-Through of AC Drives:Control and Analysis. Ph.d 

thesis, department ofeElectrical systems,Royal Institute of Technology. 

Ponci, F. C. (2007). Innovative Approach To Early Fault Detection For Induction Motors. 

IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics 

and Drives,SDEMPED, (pp. 283 - 288). 



 

188 

 

Pons Linares, J. A.D.G.S.A. (2009). Induction motor fault diagnosis based on analytic 

wavelet transform via Frequency B-Splines. IEEE International Symposium on 

Diagnostics for Electric Machines, Power Electronics and Drives, SDEMPED, (pp. 1-7). 

Poyhonen,S.(2004). Support Vector MachineE Based Classification in Condition 

Monitoring of Induction Motors . Ph.d thesis in Technology ,Helsinki University of 

Technology. 

Q.T. An, L. S. (2010). Low-cost diagnostic method for open-switch faults in inverters. 

Electronics Letters , 46 (14), 1-2. 

Qian Cheng, L. Y. (2011). Vector Control of an Induction Motor based on a DSP. thesis 

project ,Department of Energy and Environment,Charmers University ofF Technology. 

Qiao Hua, Z. H. (2007). Fault diagnosis of rotating machinery based on improved 

waveletpackage transform and SVMs ensemble. Mechanical Systems and Signal 

Processing , 21 (2), 688–705. 

R. Rajeswari, N. K. (2007). Diagnosis of Inter Turn Fault in the Stator of Synchronous 

Generator Using Wavelet Based ANFIS. World Academy of Science, Engineering and 

Technology , 36, 203-209. 

R. Rubini, U. M. (2001). Application of the envelope and wavelet transform analysis for 

the diagnosis of incipient faults in ball bearings. Mechanical systems and signal 

processing , 15 (2), 287-302. 

R. Salehi Arashloo, A. J. (2010). Design, Implementation and Comparison of Two 

Wavelet Based Methods for the Detectionof Broken Rotor Bars in Three Phase 

Induction Motors. 1st Power Electronic & Drive Systems & Technologies 

Conference,PEDSTC, (pp. 345 –350). 

R.B. Sepe, J. C. (2003). Fault Tolerant Operation of Induction Motor Drives with 

Automatic Controller Reconfiguration. Practical Failure Analysis , 3 (1), 64-70. 

Ramirez, F. A. (2009). A Space-Vector PWM Voltage-Source Inverter for a Three-Phase 

Induction Motor Based on the dsPIC30F3011. Electronics, Robotics and Automotive 

Mechanics Conference, CERMA '09, (pp. 429 - 434). 

Reney, D. (2011). Modeling and Simulation of PWM Inverter. International Conference 

on Devices and Communications (ICDeCom), (pp. 1-4). 

Report, A. A. (2006). Sensor Field Oriented Control (IFOC) of Three-Phase AC Induction 

Motors Using ST10F276. STMicroelectronics. 

Riera Guasp, M. A. (2008). A General Approach for the Transient Detection of Slip-

Dependent Fault Components Based on the Discrete Wavelet Transform. IEEE 

Transactions on Industrial Electronics , 55 (12), 4167 –4180. 



 

189 

 

Roberto Cardena, R. P. (2008). MRAS Observers for Sensorless Control of Doubly-Fed 

Induction Generators. IEEE Transactions on Power Electroncs , 23 (3), 1075-1084. 

Romero, M. S. (2010). Sensor fault-tolerant vector control of induction motors. IET 

Control Theory & Applications , 4 (9), 1707 - 1724. 

Rui Zhou, W. B. (2010). Second generation wavelet packet transformMechanical 

equipment fault diagnosis based on redundant. Digital Signal processing , 20 (1), 276–

288. 

S. Abbasiona, A. R. (2007). Rolling element bearings multi-fault classification based on 

the wavelet de-noising and support vector machine. Mechanical Systems and Signal 

Processing , 21 (7), 2933–2945. 

S. Radhika, G. S. (2010). Precise wavelet for current signature in 3φIM. Expert Systems 

with applications , 37 (1), 450–455. 

Saleh, A. S. (2007). Fault Tolerant Field Oriented Control of Induction Motor for Loss of 

One Inverter Phase with Re-starting Capability. IEEE International Symposium on 

Industrial Electronics, ISIE, (pp. 1340 - 1345). 

Saleh, S. K. (2005). Application of a wavelet-based MRA for diagnosing disturbances in 

a three phase induction motor. 5th IEEE Conf. on Diagnostics for Electric Machines, 

Power Electronics and Drives, SDEMPED, (pp. 1-6). 

Samsi, R. R. (2006). Wavelet-based symbolic analysis for detection of broken rotor bars 

in inverter-fed induction motors. IEEE Conf .on Control, ThB07.3, (pp. 3032-3037). 

Sepe, R. J. (2001). Fault tolerant operation of induction motor drives with automatic 

controller reconfiguration. IEEE International ,Electric Machines and Drives 

Conference,IEMDC, (pp. 156-162). 

Serhat Seker, E. A. (2003). Feature extraction related to bearing damage in electric 

motors by wavelet analysis. Journal of the Franklin Institute , 340 (2), 125–134. 

Serna, E. (2006). Detection of Rotor Faults in Field Oriented Controlled Induction 

Machines. IEEE Industry Applications Conference,41st IAS Annual Meeting, (pp. 2326 - 

2332). 

Seydi Vakkas Ustun, M. D. (2009). Modeling and control of V/F controlled induction 

motorusing genetic-ANFIS algorithm. Energy Conversion and Management , 50 (3), 

786–791. 

Siddique, A. G. (2005). A Review of Stator Fault Monitoring techniques of induction 

motors. IEEE transaction on energy convertion , 20 (1), 106-114. 

Silva, A. M. (2006). Induction Motor Fault Diagnostic and Monitoring Methods. Thesis 

Masterof Electrical and Computer Engineering . Milwaukee, Wisconsin. 



 

190 

 

Simaan, L. U. (1997). A Passivity-Based Method for Induction Motor Control. IEEE 

Transactions on Industrial Electronics , 44 (5), 688-695. 

Sulowicz, M.(2007). Application of Fuzzy Inference System for Cage Induction Motors 

Rotor Eccentricity Diagnostic. IEEE International Symposium on Diagnostics for Electric 

Machines, Power Electronics and Drives, (pp. 101-105). 

Supangat, R. N. (2006). Detection of Broken Rotor Bars in Induction Motor Using 

Starting-Current Analysis and Effects of Loading. IEE Proceedings. The Institution 

ofEngineering and Technology, (pp. 848- 855). 

Teotrakool, K. D. (2009). Adjustable-Speed Drive Bearing-Fault Detection via Wavelet 

Packet Decomposition. IEEE Transactions on Instrumentation andMeasurement , 58 

(8), 2747 –2754. 

Teresa Orlowska Kowalska, M. D. (2010). Rotor Fault Analysis in the Sensorless Field 

Oriented Controlled Induction Motor Drive. AUTOMATIKA , 51 (2), 149-156. 

Thomson, W. (2001). Current signature analysis to detect induction motor faults. IEEE 

Industry Applications Magazine , 7 (2), 26-34. 

Tsoumas, I. M. (2005). Induction motor mixedfault diagnosis based on wavelet analysis 

of the current space vector. Proceedings of the Eighth International Conference on 

Electrical Machines and Systems,ICEMS,3, (pp. 2186 –2191). 

Tsuji, M. C. (2008). A novel V/F control of induction motors for wide and precise speed 

operation. International Symposium on Power Electronics, Electrical Drives, 

Automation and Motion,SPEEDAM, (pp. 1130 - 1135). 

Turkmenoglu, M. A. (2010). Wavelet-based switching faults detection in direct torque 

control induction motor drives. IET Science, Measurement and Technology , 4 (6), 303–

310. 

Tze Fun Chan, K. S. (2011). Applied Intelligent Control of Induction Motor Drives. 1st 

edition, John wiley and sons. 

Uddin, M. N. (2000). Performance of Current Controllers for VSI-Fed IPMSM Drive. IEEE 

Transactions on Industry Applications , 36 (6), 1531-1538. 

Wei Chen, D. X. (2009). A Novel Stator Voltage Oriented V/F Control Method Capable 

of High Output Torque at Low Speed. International Conference on Power Electronics 

and Drive Systems, PEDS, (pp. 228 - 233). 

Wenjun Li, Y. L. (2006). A Method of Abrupt Sensor Fault Diagnosis. IEEE proceedings of 

the Sixth International Conference on Intelligent Systems Design and Applications, (pp. 

856-861). 



 

191 

 

Wesley G. Zanardelli, E. G. (2005). Wavelet-based methods for the prognosis of 

mechanical andelectrical failures in electric motors. Mechanical Systems and Signal 

Processing , 19 (2), 411–426. 

Wolbank,T.(2007). Adjustment, measurement and on-line detection of air gap 

asymmetry in ac machines. European Conference on Power Electronics and 

Applications, (pp. 1-8). 

Xu hong, W. Y.g. (2007). Fuzzy Neural Network based On-line Stator Winding Turn 

Fault Detection for Induction Motors. 2nd IEEE Conference on Industrial Electronics and 

Applications, ICIEA, (pp. 2461 - 2464). 

Xuhong, W. Y. (2007). Diagonal recurrent neural network based on-line stator winding 

turn fault detection for induction motors. Proceedings of the Eighth International 

Conference on Electrical Machines and Systems, ICEMS, (pp. 2266 - 2269). 

Yang, C. C. (2007). Fault Diagnosis for Induction Motors Using the Wavelet Ridge. 

Second International Conf. on Bio-Inspired Computing:Theories and Applications, BIC-

TA, (pp. 231 –235). 

Yang, D. (2007). Induction Motor Bearing Fault Detection with Non-stationary Signal 

Analysis. 4th IEEE International Conference on Mechatronics, ICM2007, (pp. 1-6). 

Yang, Q. S. (2004). Diagnosis Methods with Applications to Process Monitoring. Case W 

estern Reserve University. 

Yasser Gritli, A. S. (2011). Experimental validation of doubly fed induction machine 

electrical faults diagnosis under time-varying conditions. Electric Power Systems 

Research , 81 (3), 751-766. 

Ye, Z. B. (2001). Signature analysis of induction motor mechanical faults by wavelet 

packet decomposition. Sixteenth Annual IEEE Conference on Applied Power Electronics 

and Exposition, APEC, 2, (pp. 1022-1029). 

Yeh, C. (2007). Fault Tolerant Operations in Adjustable-Speed Drives and Soft Starters 

for Induction Motors. IEEE Power Electronics Specialists Conference, PESC, (pp. 1942 - 

1949). 

Yeh, C. C. (2008). "Fault tolerant operations of induction motor-drive systems. PH.D 

Dissertation submitted to the Faculty of theGraduate School, Marquette University. 

Ying, X. (2009). Characteristic Performance Analysis of Squirrel Cage Induction Motor 

With Broken Bars. IEEE Transactions on Magnetics , 45 (2), 759 - 766. 

Yixiang Huang, C. L. (2010). A lean model for performance assessment of machinery 

using second generation wavelet packet transform and Fisher criterion. Expert Systems 

with Applications , 37 (5), 3815-3822. 



 

192 

 

Youmin Zhang, J. J. (2008). Bibliographical review on reconfigurable fault tolerant 

control systems. Annual Reviews in Control , 32 (2), 229-252. 

Youssef, B. (2007). On Line Pararnetric Faults Detection in Induction Motors Based on 

Graphical Signature Tool. The 33rd Annual Conference of the IEEE Industrial Electronics 

Society (IECON), (pp. 138-1143). 

Yusof, Y. (2003). Simulation and modeling of stator flux estimator for induction motor 

using artificial neural network technique. National Power Engineering Conference, 

PECon, (pp. 11-15). 

Yuttana Kumsuwan, S. P. (2008). Modified direct torque control method for induction 

motor drives based on amplitude and angle control of stator flux. Electric Power 

Systems Research , 78 (10), 1712–1718. 

Zafar, J.(2010). CUSUM based Fault Detection of Stator Winding Short Circuits in 

Doubly-Fed Induction Generator based Wind Energy Conversion Systems. International 

Conference on Renewable Energies and Power Quality, (pp. 1-4). 

Zanardelli, W.G.(2005). Failure Prognosis for Permanent Magnet AC Drives Based on 

Wavelet Analysis. IEEE International Conference on Electric Machines and Drives,(pp. 

64- 70). 

Zarei, J. (2006). An Advanced Park's Vectors Approach for Bearing Fault Detection. IEEE 

International Conference on Industrial Technology, ICIT, (pp. 1472 - 1479). 

Zelechowski, M. (2005). Space Vector Modulated – Direct Torque Controlled (DTC – 

SVM) Inverter – Fed Induction Motor Drive. Ph.D. Thesis,Electrical Engineering,Warsaw 

University of Technology. 

Zelechowski, M. (2005). Space Vector Modulated – Direct Torque Controlled (DTC – 

SVM) Inverter – Fed Induction Motor Drive. Ph.D. Thesis,Faculty of Electrical 

Engineering,Institute of Control and Industrial Electronics,Warsaw University of 

Technology,Poland. 

Zhang Jian wen, Z. N.h. (2007). A Fault Diagnosis Approach for Broken Rotor Bars Based 

on EMD and Envelope Analysis. Journal China University Mining &Technololgy , 17 (2), 

205-209. 

Zhang Ren, W. W. (2011). New robust fault tolerant controller for self repairing flight. 

Journal of Systems Engineering and Electronics , 22 (1), 77–82. 

Zhang, P. Y. (2011). A Survey of Condition Monitoring and Protection. IEEE Transaction 

on Industrial application , 47 (1), 34-46. 



 

193 

 

Zhou, W. L. (2009). Incipient Bearing Fault Detection via Motor Stator Current Noise 

Cancellation Using Wiener Filter. IEEE Transactions on Industry Applications , 45 (4), 

1309 - 1317. 

Zhu, J. (2008). Mdeling,Simulation and Implementation of a Fault Tolerant Permenant 

Magnet AC Motor Drive with Redundancy . Ph.d thesis ,School of Elrctrical and 

Electroncs Engineering, University of Adelaede. 

Zhu, K. Y. (2009). Wavelet analysis of sensor signals for tool condition monitoring: A 

review and some new results. International Journal of Machine Tools and Manufacture 

, 48 (7-8), 537-553. 

Zidani, F. D. (2007). Diagnosis of Speed Sensor Failure in Induction Motor Drive. IEEE 

International Electric Machines & Drives Conference, IEMDC, (pp. 1680-1684). 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

194 

 

Appendix A: Specifications and Design of Hardware  

A1. Introduction  

In this appendix, detailed designs and specifications of the hardware of the fault tolerant 

control and power electronics equipments, like the inverter, rectifier and the gate drive. 

Complete listing of the specifications of each of the hardware components used in the 

implementation of the system, as well as the design schematics and circuit wiring 

diagrams of the power topologies and their associated signal conditioning circuits and 

gate drives. 

A2. Descriptions of the system 

A2.1. Digital Photo of the Overall System Topology 

 
Figure A2.1a. Complete setup of the work 

 

 Rotary Encoder E60H20-5000-3-T-24 

 

 

SE2662-5G induction Motor 

 

 

 

SE2663-6E servo Motor 
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Figure A2.1b. Close snap of complete setup of the work 

 

 

Figure A2.1c. Gate drive circuit 

 

Figure A2.1d. A3120 opto-coupler used in the gate drive circuit 

Inverter 

Gate drive 

Current sensor Speed sensor circuit 

DC voltage sensor 

F28335 DSP 

Rectifier circuit 

SN74HC04N hex inverter 

A3120 opto-coupler 
7/27 transformer  

1N60 diode 
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Figure A2.1e. SN74HC04N hex inverter used in the gate drive circuit 

 

Figure A2.1f. Rectifier circuit 

A2.2 DSP Controller Board 

A digital photo of the Texas Instruments (TI) DSP board is shown in Figure A2.2 

 

Figure A2.2. TMS320F28335 DSP  

The TMS320F28335 DSP performance specifications are listed in the table A2.2a. 

 

 

 

 

 

 

 

 

 

SCI cable 

A/D sensors wires Speed sensor wires 

Gate drive pulses 

3300μF capacitor 

10A bridge rectifier 

5w 20kj resistance 
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Table A2.2a TMS320F28335 DSP performance specification 

Generation  TMS320F28335 

CPU C28x, 32-bit, floating-point 

Frequency 150MHz 

PWM 16 channel  

ADC 16 channels at 12-bit each 

ADC Conversion Time 80 ns 

10 Supply / Core Supply 3.3 V / 1.9 V 

Flash 512KB 

Timers 3 of  32-bit General-Purpose Timers 

 

A2.3 Signal Conditioning Circuits  

The conditioning circuits of the Current sensor, DC voltage sensor circuit and Encoder 

conditioning signal circuit are illustrated before. 

 

Figure A2.3a. Current sensor circuit 

 

Figure A2.3b. DC voltage sensor circuit 
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Figure A2.3c. Encoder conditioning signal circuit 


