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ABSTRACT 

Over the last decade, vehicle population has dramatically increased all over the world. 

This large number of vehicles coupled with the limited capacity of the roads and 

highways lead to heavy traffic congestion. Besides, it gives rise to air pollution, driver 

frustration, and costs billions of dollars annually in fuel consumption. Although finding 

a proper solution for vehicle congestion is a necessity, it is still remaining a challenging 

task due to the dynamic and unpredictable nature of vehicular environments. Building 

new high-capacity streets can be a solution but it is very costly, time consuming and in 

most cases, infeasible due to space limitations. However, optimal usage of the existing 

roads and streets capacity can lessen the congestion problem in large cities at a lower 

cost. Intelligent Transportation System (ITS) is a newly emerged system that aims to 

provide innovative services for different modes of transportation and traffic 

management. Vehicle Traffic Routing System (VTRS) is one of the ITS applications 

that can be used for efficient utilization of existing roads’ capacity. Previous researches 

concentrated on using static algorithms to find the shortest path in VTRSs. However, 

providing a shortest path without considering other factors such as congestion, 

accidents, obstacles, travel time and speed is not a proper solution for vehicle traffic 

congestion problem. The efficiency of VTRSs on mitigating the vehicle congestion is 

challenged by the high dynamicity and quick changes of vehicular environments due to 

both predictable (recurring) and unpredictable (non-recurring) events. Most of the 

existing approaches deal with the congestion problem in a reactive manner and recover 

vehicle congestion implicitly, which is not a sufficient solution due to non-recurring 

congestion conditions. Moreover, a same path is suggested to drivers by the existing 

approaches which switches the congestion from one route to another, specifically, in the 

case of having a significant number of drivers utilizing these systems simultaneously. 

This research presents a bio-inspired framework, called “Ant-based Vehicle Congestion 
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Avoidance Framework (AVCAF)”, which is a promising way to alleviate vehicle traffic 

congestion problem while considering the aforementioned drawbacks. AVCAF predicts 

vehicles’ average travel speed and combines it with travel time, density, distance, map 

segmentation and layering to reduce congestion as much as possible by finding the least 

congested shortest paths in order to avoid congestion instead of recovering from it. 

AVCAF uses alternative paths from the early stages of the routing process. AVCAF 

collects real-time traffic data through vehicular networks to consider non-recurring 

congestion conditions in its routing mechanism via ant-based algorithm. The proposed 

framework is evaluated and validated through simulation environment. Experimental 

results conducted on three different scenarios (i.e. various vehicle densities, various 

system usage rates and accident condition) considering average travel time, speed, 

distance, number of re-routings and number of congested roads as evaluation metrics. 

The results show that AVCAF outperforms the existing approaches in terms of average 

travel time, travel speed, number of re-routings and number of congested roads. 
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ABSTRAK 

Lebih sedekad yang lalu, populasi kenderaan telah meningkat secara mendadak di 

seluruh dunia. Penambahan bilangan kenderaan ditambah pula dengan keupayaan yang 

terhad di jalan raya dan lebuh raya menyebabkan kesesakan lalu lintas yang tinggi. 

Selain itu, ia menimbulkan pencemaran udara, kekecewaan pemandu, dan kos yang 

berbilion setiap tahun dalam penggunaan bahan api. Walaupun mencari penyelesaian 

yang sesuai untuk kesesakan kenderaan adalah satu keperluan, ia masih kekal sebagai 

tugas yang mencabar kerana sifat dinamik dan keadaan tidak dapat diramalkan daripada 

persekitaran kenderaan. Membangunkan jalan-jalan berkapasiti tinggi baru, 

penyelesaian ini adalah sangat mahal, memakan masa dan dalam kebanyakan kes, tidak 

dapat dilaksanakan kerana ruang yang terbatas. Sebaliknya, penggunaan optimum jalan 

raya dan jalan-jalan kapasiti yang sedia ada boleh mengurangkan masalah kesesakan di 

bandar-bandar besar pada kos yang lebih rendah. Sistem Pengangkutan Pintar (ITS) 

adalah satu sistem yang baru muncul bertujuan menyediakan perkhidmatan yang 

inovatif yang berkaitan kepada pelbagai jenis pengurusan pengangkutan dan lalu lintas. 

Sistem Routing Lalulintas Kenderaan (VTRS) adalah salah satu aplikasi ITS yang boleh 

digunakan bagi penggunaan kapasiti jalan sedia ada yang lebih efisyen. Kajian lepas 

ditumpukan untuk menggunakan algoritma statik untuk mencari jalan yang paling 

pendek dalam VTRSs. Walau bagaimanapun, menyediakan jalan yang singkat tanpa 

mengambil kira faktor-faktor lain seperti kesesakan, kemalangan, halangan, masa 

perjalanan dan kelajuan adalah bukan penyelesaian bagi kesesakan lalu lintas kenderaan 

yang baik. Keberkesanan VTRSs di dalam mengurangkan kesesakan lalu lintas adalah 

satu cabaran yang melibatkan dinamik yang tinggi dan perubahan persekitaran 

kenderaan disebabkan oleh peristiwa penentuan (berulang) dan tidak penentuan (tidak 

berulang). Kebanyakan pendekatan yang sedia ada menangani masalah kesesakan 

dengan cara yang reaktif dan mendapatkan kesesakan kenderaan tersirat, yang masih 

tidak mencukupi dalam penyelesaian kerana keadaan kesesakan tidak berulang. Selain 
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itu, jalan yang sama dicadangkan kepada pemandu dengan pendekatan yang sedia ada 

dan sama dengan algoritma statik, mereka hanya akan beralih kesesakan laluan dari satu 

kepada yang lain, khususnya, dalam kes yang mempunyai sejumlah besar pemandu 

menggunakan sistem ini pada masa yang sama. Dalam kajian ini, kami membentangkan 

satu rangka kerja bio-inspirasi, dipanggil rangka kerja Kenderaan Kesesakan 

Pengelakan (AVCAF) berasaskan “semut”, yang merupakan cara yang menjanjikan 

untuk menyelesaikan kelemahan yang dinyatakan di atas dan mengurangkan lalu lintas 

kenderaan masalah kesesakan. AVCAF meramalkan kelajuan perjalanan purata 

kenderaan dan menggabungkan ia dengan masa perjalanan, ketumpatan, jarak, peta 

segmentasi dan lapisan untuk mengurangkan kesesakan sebanyak mungkin dengan 

mencari-kurangnya sesak laluan terpendek untuk mengelakkan kesesakan dan bukannya 

pulih daripadanya. AVCAF menggunakan laluan alternatif dari peringkat awal proses 

routing. AVCAF mengumpul data trafik masa nyata melalui rangkaian kenderaan untuk 

mempertimbangkan kesesakan tidak berulang dalam mekanisme penghalaan melalui 

algoritma semut berasaskan. Rangka kerja yang dicadangkan itu dinilai dan disahkan 

melalui simulasi persekitaran. Hasil ujikaji yang dijalankan ke atas tiga senario yang 

berbeza (iaitu ketumpatan berlainan kenderaan, pelbagai kadar penggunaan sistem dan 

keadaan kemalangan) mempertimbangkan masa perjalanan purata, kelajuan, jarak, 

bilangan penghalaan semula dan beberapa kesesakan jalan raya seperti metrik penilaian. 

Keputusan yang diperolehi menunjukkan bahawa AVCAF lebih baik pendekatannya 

dari yang sedia ada dari segi masa perjalanan purata, kelajuan perjalanan, beberapa 

penghalan semula dan beberapa kesesakan jalan raya. 
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CHAPTER 1: INTRODUCTION 

Over the last decade, vehicle population has dramatically increased all over the 

world. This large number of vehicles coupled with the limited capacity of roads and 

highways lead to heavy traffic congestion. Besides, it gives rise to air pollution, driver 

frustration, and costs billions of dollars annually in fuel consumption (Narzt, 

Wilflingseder, Pomberger, Kolb, & Hortner, 2010). In 2010, American people faced a 

lot of difficulties because of vehicle congestion which force their government to spend 

101 billion dollars for purchasing extra fuel (Schrank, Eisele, & Lomax, 2012). Based 

on a report by Texas A&M Transportation Institute (Schrank et al., 2012), it is 

estimated that fuel consumption will rise to 2.5 billion gallons (from 1.9 billion gallons 

in 2010) with cost of 133 billion dollars in 2015. Accordingly, finding effective 

solutions with reasonable cost for congestion mitigation is one of the major concerns of 

researchers and governments in recent years. Building new high capacity roadways, 

expanding public transport systems, using tolled ways and ramp metering have been 

proposed to mitigate aforementioned problems (Putha, Quadrifoglio, & Zechman, 

2012). Nevertheless, these solutions are very costly, time consuming and in most of the 

cases, they are hardly possible because of time and space limitations. On the contrary, 

optimal usage of the existent and alternative roadways capacity can lessen the 

congestion problem in large cities at the lower cost. 

The recent advances in sensing and computing technologies enables pervasive 

enhancement to Intelligent Transportation System (ITS) (Dimitrakopoulos & 

Demestichas, 2010; Liu, Fan, Branch, & Leung, 2014). ITS is a newly emerged system 

that collects real-time data for congestion monitoring and enhancing the drivers comfort 

by using road side units (RSUs) (e.g. video cameras, radio-frequency identification 

(RFID) readers and induction loops) and the vehicles as mobile sensors (i.e. in-vehicle 

technologies or smart phones). Further, vehicle traffic routing system (VTRS) is a 
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subset of ITS that is proposed to route the vehicles and reduce the travelers’ commuting 

time by using the existing roads capacity. Generally, VTRS provides a path between 

two points (i.e. origin and destination) by considering different criteria. Besides, various 

adaptive traffic light systems (Gradinescu, Gorgorin, Diaconescu, Cristea, & Iftode, 

2007; Maslekar, Boussedjra, Mouzna, & Labiod, 2011; Sanketh, Subbarao, & Jolapara, 

2010; Tubaishat, Shang, & Shi, 2007; B. Zhou, Cao, Zeng, & Wu, 2010) operated by 

the aid of wireless communication among fixed RSUs and vehicles have been deployed 

and studied to monitor and manage traffic congestion conditions in the intersections. It 

should be mentioned that these systems are out of scope of this study, since the main 

focus and concern of this thesis is on VTRSs.  

During three last decades, various VTRS technologies have been studied and 

developed around the world via utilizing different schemes. The first generation of 

VTRSs is in-car navigation systems that used only the distance metric without 

considering the traffic conditions in computing the shortest path to a destination. 

However, with advances and deployments of traffic surveillance infrastructure on the 

roads, the researchers have started to design applications that present the current vehicle 

traffic conditions to drivers and let them find better paths towards their destinations.  

However, these systems are not capable of providing accurate traffic information of all 

roads and consequently, cannot avoid congestion due to lack of adequate infrastructure 

for covering all the roads at once. The obtained traffic data along with road maps are 

used by VTRSs such as TomTom and Garmin, to find the shortest path or optimal path 

from source to destination. Unlike a large amount of researchers who focus on using 

static algorithms (e.g. Dijkstra (Dijkstra, 1959) and A* (Hart, Nilsson, and Raphael, 

1968)) for finding shortest path such as Nazari, Meybodi, Salehigh, and Taghipour 

(2008), Noto & Sato (2000), Yue and Shao (2007) in VTRSs. Recently, researchers 

have focused on finding optimal paths by utilizing dynamic and meta-heuristic 
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algorithms while considering various criteria (Boryczka & Bura, 2013). This trend 

happens due to the dynamic nature of vehicular environments which depend on both 

recurring (predictable) and non-recurring (unpredictable) congestion conditions and also 

because of multi-criteria nature of vehicle routing procedure. Recurring congestion 

refers to the regular traffic congestion which occurs due to limited capacity and 

inefficient traffic management. While, non-recurring congestion conditions which are 

irregular events which occur due to unpredictable events such as bad weather, car 

accident or breakdown and road construction. Moreover, multi-criteria shortest path 

problem (Ghoseiri & Nadjari, 2010; Martins, 1984) means that the distance is not the 

only objective of drivers and systems. Besides, congestion condition, number of traffic 

lights, number of roads’ lanes, route safety, travel time and travel speed are some of the 

other objectives. Hansen (1980) proved that multi-criteria shortest path problem is a 

NP-problem. 

These days, Google and Microsoft can predict vehicle congestion of road 

networks and its estimated duration by performing advanced statistical predictive 

analysis of traffic information. This traffic information is provided by some 

infrastructures (e.g. RSUs) to propose a traffic-aware shortest path for users and drivers. 

Therefore, their information is not only based on current traffic information but also on 

some other metrics such as weather and historical traffic information. However, it is 

worth noting that their systems are reactive and do not avoid vehicles congestion. This 

is because a same path is suggested to all of the users by these systems and similar to 

static algorithms, congestion is switched from one route to other one if a significant 

number of drivers utilize these systems. A more serious issue is that these systems do 

not consider non-recurring congestion efficiently in their routing procedure. These types 

of congestion include more than 50% of all vehicle congestion conditions (Coifman & 

Mallika, 2007).  
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Dynamic Traffic Assignment (DTA) can be counted as the second type of 

VTRSs that utilizes mathematical approaches and methods to model vehicle traffic 

dynamics and changes throughout the road networks. The main aim of DTA is to 

compute an optimal path for each driver in a way that none of the drivers can enhance 

his/her travel time by individually selecting an alternative path (Wardrop, 1952). 

Simulation based methods are used by most of the existing DTA tools to model the 

changes and dynamics of the road networks and compute drivers' route assignments 

iteratively. However, computation overhead is the main problem of DTA tools. A lot of 

iterations are required to achieve acceptable accuracy and convergence rate and each 

DTA iteration needs a sophisticated simulation procedure which leads to enormous 

computational overhead. Sensitivity, tractability for large road maps, ability of 

providing real-time routing guidance, convergence, accuracy of traffic changes, 

behavior in congestion condition and robustness to drivers who ignore the guidance are 

some other issues and drawbacks of DTA tools (Chiu et al., 2011). 

In spite of significant advances of in-car navigation systems (e.g., TomTom 

and Garmin), web-based applications and services for route finding (e.g., Microsoft and 

Google Maps), and DTA tools, the traffic congestion problem has not been solved yet 

and its negative effects on drivers and the environment have still remained, especially in 

the bustling metropolises. The new advances in communication technology and vehicle 

industry lead to emersion of a new type of ad hoc networks, namely Vehicular Ad hoc 

Networks (VANETs). Most of the new vehicles are equipped with sensors, Global 

Positioning System (GPS) receivers and On-Board Units (OBUs) which can create 

vehicular networks. VANETs can be used to gather accurate real-time traffic 

information which can be utilized in VTRSs. VANETs is discussed extensively in 

Chapter 2.    
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In addition, swarm intelligence algorithms are newly emerged algorithms 

which simulate the behavior of different animals in the nature such as ants, bees, fishes 

and birds (Ahmed & Glasgow, 2012). These algorithms are able to produce fast, multi-

criteria, low cost and robust solutions for various problems (Blum & Merkle, 2008; 

Panigrahi, Hiot, & Shi, 2010). Among these bio-inspired algorithms, using ant-based 

algorithms are reported as one of the best and promising approaches for vehicle traffic 

congestion control and management in many researches (S. Dhillon & P. Van Mieghem, 

2007; J. Liu, Fang, & Liu, 2007; Bogdan Tatomir & Rothkrantz, 2004). However, the 

negative point of the ant-based algorithm is that it handles non-recurring congestion 

situations with some delay due to the stochastic feature of its searching approach and 

this causes many vehicles to unknowingly join in the congestion before the routing 

tables are updated. Ant-based algorithms are extensively discussed in the next chapter. 

1.1. Statement of Problem 

As mentioned before, vehicle traffic congestion has received a lot of attention 

from academic researchers due to its important effect on people’s daily life. However, it 

is not necessary to say that drivers not only desire the shortest path from source to 

destination but also desire safe journey with less travel time and congestion at the same 

time. It means that drivers want to be guided through the shortest path while considering 

other criteria such as traffic congestion, road width, risk of collision, and the number of 

intersections simultaneously in routing procedure. However, it does not mean that this 

route should be the shortest one, but, it should be optimal or quasi-optimal in terms of 

the mentioned preferences. Attention to this issue has increased during last decade due 

to the high number of vehicles and commutes, and VTRSs have been proposed as a 

solution. Nevertheless, there are still several important issues in this research area that 

have not been completely solved.  
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Initially, VTRSs found single shortest path in the static environments using 

static algorithms. Hence, dynamic and quick changes which are the main characteristics 

of vehicular environments in addition to the vehicle congestion are ignored by them. 

Therefore, static approaches are not suitable for vehicles routing as well as congestion 

avoiding (Wedde et al., 2007). Recently and because of these issues, routing 

mechanisms are modified to address dynamic changes of vehicular environments. In 

order to overcome these changes, new techniques and communication technologies such 

as camera, road wireless sensors and inductive loop detection are utilized to collect and 

monitor real-time traffic information. This information is used by routing mechanisms 

to find the optimal route for various origin and destination (OD) pairs. Figure 1.1 

illustrates the difference between static and dynamic vehicle traffic routing. Distance is 

the only metric which is used for finding the shortest path in the static algorithms, 

while, dynamic algorithms (e.g. evolutionary, bio-inspired and local search algorithms) 

consider various metrics such as congestion, travel speed and travel time in their paths 

selection procedure. 

 

                      (a)                                                                                      (b) 

Figure 1.1: Comparison between proposed paths by (a) static and (b) dynamic algorithms for the 

same OD pair 

Moreover, it is worth noting that half of the vehicle traffic congestion is related 

to non-recurring congestion conditions. However, this type of congestion is not 
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considered in most of the existing VTRSs or its detection takes a long time via the 

existing methods (i.e., by using cameras and image processing methods). Even after 

identifying the street/road, in where the non-recurring congestion condition has 

happened, this road is just omitted (i.e. ignored) from path finding procedure until that 

road is released from non-recurring congestion condition. It should be mentioned that 

non-recurring congestion is not predictable and its detection takes a long time via the 

existing methods. Consequently, more vehicles are involved in the congestion before 

any re-routing occurs. One of the challenges is how to detect and consider the non-

recurring congestion in a high dynamic vehicular environment by the aid of VTRSs. 

Moreover, traffic congestion occurs gradually; while, it takes a long time to recover 

from this condition. As a result, congestion avoidance is a better solution than 

recovering from it. In addition, drivers with the same origin and destination are routed 

through a same path by the existing VTRSs. Consequently, when a significant number 

of drivers utilize these systems (i.e., system usage rate is high), the congestion will be 

transferred from one route to another. Hence, how to make the system scalable to 

potentially high number of simultaneous and on-demand routing requests in terms of 

both computation and communication is another challenge.  

In recent years, VTRSs based on swarm intelligence (SI) (James Kennedy, 

Kennedy, & Eberhart, 2001) algorithms, bio-inspired computation in general (Yang, 

Cui, Xiao, Gandomi, & Karamanoglu, 2013), have been widely used to overcome the 

vehicle traffic congestion problem (Kroon & Rothkrantz, 2003; Suson, 2010; Tonguz, 

2011). SI is an emerging area in the field of optimization and researchers have 

developed various algorithms by modeling the behavior of different swarm of animals 

and insects such as ants, termites, bees, birds, fishes and bats (Yang et al., 2013). 

Among these bio-inspired algorithms, using ant-based algorithms are reported as one of 

the best and promising approaches for vehicle traffic congestion control and 
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management in many researches (Dhillon & Van Mieghem, 2007; Liu et al., 2007; 

Tatomir & Rothkrantz, 2004). Ant-based approaches outperforms the other bio-inspired 

algorithms in both processing time and adaptability which are the most important 

factors in designing vehicle routing and congestion avoidance approaches (Elbeltagi, 

Hegazy, & Grierson, 2005; Wedde & Senge, 2013). However, ant-based algorithms 

suffer from scalability and delay while updating their routing tables in order to consider 

congestion conditions. These drawbacks along with the mentioned shortcomings for the 

existing approaches (i.e. ignoring non-recurring congestion and routing vehicles with 

the same OD pair via single path) are the main concerns of this thesis. This thesis 

addresses the necessity of existence of a proper VTRS which routes the vehicles and 

avoids traffic congestion simultaneously, instead of recovering from congestion after its 

occurrence. It means that the optimal paths which are not necessarily the shortest paths, 

but the fastest paths in time, called least congested shortest paths, are proposed to 

drivers. In order to considering both recurring and non-recurring congestion conditions, 

different metrics such as travel time, speed, distance, density are considered in optimal 

path finding procedure.  

1.2. Research Objectives 

In general terms, the aim of this thesis is providing robust vehicle traffic 

routing framework that will avoid congestion by providing least congested shortest 

paths as alternative routes for drivers by taking advantage of VANET and ant-based 

algorithm. Robustness is related to the adaptability and flexibility of the system against 

various conditions. The objectives which are defined to achieve the main aim are as 

follows: 

 To present a classification for the existing research trends within the area of vehicle 

traffic routing and congestion control, 

 To provide a taxonomy and statistical overview of ant-based approaches, which are 

used in vehicle traffic routing systems, 
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 To design a scalable vehicle traffic congestion avoidance framework using ant-

based algorithm, 

 To develop the proposed framework in simulation environment using network 

simulator, mobility generator and VANET simulator, 

 To evaluate and analyze the proposed framework with different set of scenarios and 

evaluation metrics. 

1.3. Scope of Study 

Designing an efficient VTRS is a multifaceted task as depicted in Figure 1.2. 

This figure represents a comprehensive overview of the VTRS essential prerequisites. 

For instance, VTRS requires a system architecture, path selection and map preparation 

methods. The words written in red color indicate the methods which are used in our 

proposed approach. In other words, they represent the scope of this study. For example, 

although there are various methods for gathering real-time traffic data such as RFID, 

VANET, loop detector and cameras, VANET is used for this purpose in our approach 

and the other methods are out of scope of this study. One of VTRSs main complexities 

is related to the interaction of various criteria such as distance, traffic load, road width, 

risk of collision, number of intersections, weather condition, dynamic changes of 

vehicular environments and special events in path selection procedure. The other point 

that should be mentioned regarding Figure 1.2 is that traffic light optimization, vehicle’s 

type consideration and speed limit dissemination can be considered as an extension of 

VTRS in order to alleviate the traffic congestion problem. These methods are not 

discussed and considered in this study. 
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Figure 1.2. Essential prerequisite for VTRSs 

In addition, some other limitations of the scope of this thesis are as follows: 

 Firstly, motorized vehicles such as cars, vans and trucks are considered in routing 

process. Motorbikes, bicycles and pedestrians are not considered and are beyond 

the scope of this thesis. 

 Although vehicle traffic routing systems include man-machine interactions (i.e., 

user interface of system), this issue is not the concern of this thesis. In other words, 

quality of experience or user experience is out of the scope of this thesis. 

 Moreover, vehicle routing problem (Golden, Raghavan, & Wasil, 2008; Toth & 

Vigo, 2001) is selection of a set of optimal paths for distributing some products 

between desired customers by a fleet of vehicles. This problem is out of scope of 

this thesis and is completely different from vehicle traffic routing and congestion 

problem which is the main focus of this thesis. 

1.4. Motivations and Significance of Study  

Vehicle traffic congestion is a problem which leads to lots of negative side 

effects for people, governments and the environment in different ways. From people’s 

point of view, congestion imposes delays, financial loss, accident and change of travel 

behavior (i.e., they have to depart earlier or choose other types of transportations such 
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as bus or electric railway). Based on investigations, congestion can lead to anger and 

stress responses, and provokes rage of frustrated motorists. It also affects the 

environment by increasing fuel consumption which leads to high level of air pollution 

and CO2 and greenhouse gases emissions. 

On the other hand, congestion has direct effects on governments mainly in 

economic and environmental issues, since they have to expand roadways infrastructures 

by building new highways, installing new traffic lights and traffic monitoring systems. 

In addition, governments need to spend more money for buying or producing extra fuels 

due to high fuel consumption as a consequence of vehicle traffic congestion. Moreover, 

they have to dedicate some budgets for training and advertising the ways of reducing 

congestion. 

From environmental aspects, vehicles are one of the largest sources of air 

pollution in the world. Surprisingly, vehicles emit more pollution when moving at 

slower speed. Therefore, vehicles emit more CO2 and greenhouse gases at traffic jams. 

CO2 contributes to climate change by insulating more heat from the sun. Ozone can 

impair lung function, especially in the elderly, children and adults with asthma, with a 

higher number of sufferers resulting in high-traffic urban areas. Besides, vehicles make 

excessive noise when moving together which leads to noise pollution in big cities. 

Moreover, the environment must be changed in order to expand the roadways 

infrastructures. These changes can lead to destruction of forests and natural habitat 

which are the main sources of oxygen for human beings. 

Considering the enormous costs and harmful effects of vehicle congestion on 

people, governments and the environment, finding effective solutions is necessary. 

Therefore, reducing or avoiding vehicle congestion not only solves one of the main 

transportation concerns but also decreases a lot of its harmful effects on human life. In 

addition, the recent advances in sensing, communication and computing technologies 
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(e.g., VANETs and bio-inspired algorithms) encourage us to involve and utilize them in 

VTRS in order to mitigate the vehicle traffic congestion problem. The work presented in 

this thesis can contribute to the solution of congestion in the following ways: 

 Dynamic re-routing and providing alternative routes based on real-time and 

predicted traffic information can reduce the impact of non-recurring congestion on 

traffic jams. 

 The waste of money and time of travelers will be reduced by providing least 

congested shortest paths which decreases and increases average travel time and 

average travel speed, respectively. 

 Adaptive vehicle traffic routing system, which proposes less congested shortest 

paths for drivers, will reduce fuel consumption, harmful gases (e.g. CO2 and 

greenhouse gases) emission and also the stress and anger level of drivers feeling. 

1.5.  Thesis organization 

 A general overview of the topics discussed in this thesis is presented in this 

section as follows: 

The problem statement, relevant research objectives, scope of the study along with our 

motivations and research significant were represented in introduction section. 

Chapter 2: This chapter provides the required background knowledge for the present 

study. It explains what VANETs are and its related standards, characteristics as well as 

applications. Various communication types that are exist and used in vehicular networks 

are also discussed in this chapter. An overview of bio-inspired algorithms and their 

various types is provided in this chapter. Particularly, ant-based algorithm along with its 

concept, types and applications are represented in Chapter 2, since its concept is the 

cornerstone of our proposed approach. 

Chapter 3: It includes the related work to the thesis topic. In the first part, the most 

important characteristics of VTRSs are discussed in detail. The second part of this 

chapter is concerned with static routing mechanisms that are used in VTRSs. An 
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overview of dynamic routing mechanisms with more focus on bio-inspired algorithms is 

discussed in the third part of Chapter 3. In addition, a critical review on ant-based 

VTRSs along with our proposed taxonomy for these approaches is represented in a 

subsection of this chapter. Our proposed taxonomy includes three main classes, namely, 

Ant Colony Parameters (ACPs), Ant Colony Prediction (ACPre), and Ant Colony 

Segmentation (ACS). Chapter 3 is concluded with a statistical discussion on ant-based 

VTRSs. 

Chapter 4: This chapter provides the detailed aspects of developed framework, called 

Ant-based Vehicle Congestion Avoidance Framework (AVCAF). The general steps of 

our research methodology along with used research method are represented in the first 

section of this chapter. In the second section, the challenges that should be considered 

for designing an ant-based VTRS framework are disused in details. A description of our 

developed AVCAF framework along with its phases, namely initialization, optimal path 

finding and optimal path suggestion are discussed in third part of Chapter 4. 

Chapter 5: This chapter is dedicated to the explanation of the implementation details 

regarding AVCAF framework in simulation environment. After providing a 

comprehensive overview of existing simulation software and tools that are developed 

for VANET based approaches and applications, Network Simulator-2 (NS-2), 

Simulation of Urban MObility (SUMO) and Traffic and Network Simulator (TraNS) are 

selected as network simulator, mobility generator and VANET simulator, respectively, 

to implement AVCAF. The third part of this chapter is devoted to the presentation of the 

implementation procedure and details as well as simulation setups which are used for 

developing our approach (i.e. AVCAF framework) by taking advantage of the 

mentioned simulation software. 

Chapter 6: This chapter goes through explanation of the obtained results from running 

the implementations and their explanations in order to evaluate the effectiveness of our 
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proposed approach. In the first part, finding the proper value for AVCAF parameters via 

examining various values for them through the simulation tool is discussed. In addition, 

some approaches are selected as benchmark system in order to compare with our 

proposed approach. Various scenarios along with different evaluation metrics are 

defined and designed to ensure that our main aim is achieved by the proposed approach. 

The last part of this chapter includes the obtained results and their discussions for 

evaluated approaches considering various designed scenarios and evaluation metrics. 

Chapter 7: This chapter concludes the thesis by providing an overview of the problem 

statement, research purpose, reached goals, objectives and findings. Moreover, all of the 

main points and obtained results are represented. This chapter concludes by discussing 

open issues and challenges in VTRSs and proposing some directions as a future work 

section. 
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CHAPTER 2: BACKGROUND 

The architecture of VTRS can be divided into two categories, namely 

centralized and decentralized (Suson, 2010). In a decentralized architecture the route 

finding and computation take place for each vehicle individually using on board 

processor and storage of that vehicle. It is ideal if vehicles receive traffic information 

through wireless communications (e.g. vehicle-to-vehicle or vehicle-to-infrastructure) 

and include road map and GPS. While, in a centralized architecture the route finding 

and computation takes place by a central server in response to requests from drivers. In 

this architecture, central server has access to historical or real-time traffic information 

database and compute routing algorithm based on this information. Centralized routing 

architecture provides better reliability and visibility for vehicle routing and routing map, 

respectively. Easier results analysis is another advantage of central architecture. While, 

it is vulnerable in case the system’s server breaks down and also suffers from scalability 

issues. Although decentralized approaches do not suffer from these drawbacks and 

reduce data process time and required storage spaces, currently, they cannot be 

implemented due to lack of infrastructures (i.e. all vehicles are not equipped with on-

board units and wireless transceivers) and most of the algorithms should be modified 

and some extra communications are needed in order to use decentralized architectures 

for VTRSs. More information about centralized or decentralized architecture and their 

pros and cons can be obtained in study by Suson (2010). However, distributed 

centralized architecture can solve most of the mentioned drawbacks for these two types 

of architectures. Distributed centralized architecture is discussed in more details in 

Chapter 4. 

It is worth noting that in all VTRS architectures, some data should be gathered 

or provided and an algorithm is used to find the optimal paths for vehicles based on this 

data. The title of this thesis and a brief discussion in introduction section indicate that 
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our proposed AVCAF framework uses VANET and a novel version of Ant Colony 

Optimization (ACO) for gathering real-time traffic data and vehicle routing, 

respectively. Hence, these two subjects are discussed extensively in the following 

sections. 

2.1. Vehicular Ad hoc Networks 

This section discusses about VANET technology which belongs to wireless 

communication networks area. The increasing demand for wireless communication and 

the need for new wireless devices have led to research on self-organizing or self-healing 

networks without the interference of centralized or pre-established 

infrastructure/authority. Any network, in which a centralized or pre-established 

infrastructure is absent, is called an Ad hoc network. There are different classifications 

of wireless ad hoc networks which are based on their application, such as Mobile Ad 

Hoc Networks (MANETs), Wireless Mesh Networks, Wireless Sensor Networks and 

VANETs. VANET is the subclass of MANET, in which vehicles act as nodes (Zhu, 

Niyato, Wang, Hossain, & In Kim, 2011). Unlike MANET, vehicles move on 

predefined roads and have to follow traffic signs and signals (Taleb et al., 2007). 

Differences between VANETs and MANETs are summarized in Table 2.1. 

Table 2.1. MANET vs. VANET 

Parameters MANET VANET 

Cost of production Cheap Expensive 

Change of topology Slow Frequently and very fast 

Mobility Low High 

Node density Sparse Dense and frequently variable 

Bandwidth 100kps 1000kps 

Range Up to 100m Up to 500m 

Node lifetime  Depends on power resource Depends on lifetime of vehicle 

Multi-hop routing Available Weakly available 

Reliability Medium High 

Moving pattern of nodes Random Regular 

Addressing scheme Attribute-based Location-based 

Position acquisition Using ultrasonic Using GPS, RADAR 
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VANET is one of the most influencing areas for the improvement of ITS in order to 

provide safety and non-safety applications for the roads’ users. The frequencies for 

VANET wireless communication were allocated by the Federal Communication 

Commission (FCC). Subsequently, in 2003, FCC established the Dedicated Short Range 

Communications (DSRC) Service, which is a communication service operating in 

public and private safety at a frequency range from 5.850 to 5.925GHz (Jiang & 

Delgrossi, 2008). Due to high vehicular mobility, faster topological changes, 

requirements of high reliability and low latency for safety applications, the original 

802.11 protocol is not suitable and adaptable for VANETs (Darus & Bakar, 2011). 

Wireless Access in Vehicular Environments (WAVE) standard, or IEEE 802.11p, is the 

subject that IEEE worked on, with the purpose of providing DSRC for VANET 

communication. Figure 2.1 displays the multi-channel system created in DSRC.  The 

DSRC spectrum is divided into seven channels by the FCC so that each of them has 10 

MHz bandwidth. Six of them were identified as service channels, and one of them is 

identified as the control channel, as shown in Figure 2.1. The control channel is used for 

safety messages, while service channels are used for non-safety as well as WAVE-mode 

messages or services (Amadeo, Campolo, Molinaro, & Ruggeri, 2009; Mak, 

Laberteaux, Sengupta, & Ergen, 2009). 

 

Figure 2.1. DSRC Channels 

VANET technology creates a mobile network by using moving vehicles as nodes in a 

network. Every node within VANET acts as sender, receiver and network router, as 

each node communicates through other intermediate nodes lying within its own 

transmission range and creates a network with a wide range. Although VANET is a self-

organizing network and it does not rely on any fixed network infrastructure, some fixed 



18 
 

nodes act as RSUs or base stations to facilitate the vehicular networks communications 

and services. The communication equipment (i.e. On-Board Unit (OBU)) used in these 

vehicles and RSUs enable them to send and receive messages between each other via 

Vehicle-to-Vehicle (V2V)/inter-vehicle and inter-roadside communications, and also to 

send and receive messages to/from network infrastructures on roadside via Vehicle-to-

Infrastructure (V2I) or Vehicle-to-Roadside (V2R) communication. Vehicles accurate 

position is required in most of the applications and protocols. Hence, some positioning 

hardware such as GPS and Differential Global Positioning System are also embedded in 

vehicles. The operation of vehicular networks is currently based on the exchange of two 

primary types of messages. On one hand, Cooperative Awareness Messages, also 

known as beacons, are broadcasted periodically by all nodes (vehicles) on the control 

channel, to provide and receive status information about the presence, geographical 

position and movement of neighboring nodes, and service announcements to/from those 

nodes. On the other hand, event-driven emergency messages are transmitted when an 

abnormal or dangerous situation is detected, in order to inform surrounding nodes about 

it. Figure 2.2 shows the overall working structure of VANET. 

 
Figure 2.2. Overall VANET scenario 
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Although the main target of VANET is to increase safety of road users and passengers, 

drivers and passengers comfort, infotainment and entertainment are also provided and 

considered in VANET by researchers. The excitement surrounding vehicular 

networking is not only due to the applications or their potential benefits but also due to 

its unique characteristics, challenges and requirements. Hence, VANET applications 

and requirements and challenges are briefly overviewed in the following sub-sections. 

2.1.1. VANET Applications 

This section discusses main applications of vehicular networks and their examples. 

Although drivers and passengers safety is the main concern of VANET, their comfort 

and entertainment can be also considered and achieved by VANET. Hence, VANET 

applications can be classified into three classes, namely road safety applications, traffic 

and transport efficiency and management applications and entertainment/infotainment 

applications (Hartenstein & Laberteaux, 2008; Karagiannis et al., 2011). Each of these 

classes is discussed in more details as follows: 

1) Road safety applications: The applications are primarily developed to reduce the 

probability of accidents and the loss of life of road users (e.g. drivers and passengers) 

(Sichitiu & Kihl, 2008). A significant percentage of accidents that occur every year 

in all parts of the world are associated with intersection, head, rear-end and lateral 

vehicle collisions. VANET assists vehicle drivers to communicate with each other 

and to provide information such as vehicle position, speed, direction, intersection 

position and vehicle distance from it, in order to avoid any critical situation (e.g. 

accidents or collisions) through V2V and V2I communications. These 

communications and information can be used to locate and to predict hazardous 

locations on the roads. Lane change assistance, intersection collision warning, 

emergency electronic brake lights, collision risk warning and pre-crash 

sensing/warning are some examples of this class of VANET applications. 
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2) Traffic and transport efficiency and management applications: This type of VANET 

applications is developed to enhance the traffic flow, congestion and coordination as 

well as traffic monitoring. These applications provide real-time traffic information 

for drivers and passengers which can be used for road map updating, vehicle routing 

or vehicle traffic congestion problem mitigation. Time and location are two 

important metrics in these applications due to dynamic and quick changes of 

vehicular environments. Speed management and co-operative navigation are two 

well-known groups of this class. In the former case, the application helps drivers to 

regulate and control the vehicle speed to prevent unnecessary stops and to smooth 

driving. Variable speed limit notification and green light optimal speed advisory are 

two examples of first group. In the latter case, the applications are utilized to enhance 

the vehicle traffic efficiency by routing and navigating vehicles via cooperation 

among vehicles and RSUs. Cooperative adaptive cruise control, VTRS and 

platooning are some examples of this group. 

3) Entertainment/Infotainment applications: As the name of these applications indicates, 

they focus on providing entertainment for road users. These applications, similar to 

traffic and transport efficiency and management applications, can be divided into two 

groups, namely cooperative local services and global Internet services. First group’s 

applications concentrate on infotainment that can be achieved locally such as point-

of-interest notification, local e-commerce and media downloading. Service 

announcements, real-time video relay and remote vehicle personalization/diagnostics 

are some examples of the first group’s applications. However, the infotainment data 

that can be achieved from global Internet services are the main concern of second 

group’s applications. Communities services (e.g. insurance and financial services, 

fleet and parking zone management) and ITS station life cycle services (e.g. software 

and data updates) are two well-known examples of second group’s applications. 
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2.1.2. VANET Requirements 

As discussed in previous subsection, VANET provides wide range of applications for 

road users. However, there are many requirements in VANET that are needed to be 

considered in order to provide reliable services and applications. Therefore, this section 

discusses the main requirements of VANET applications. According to a study by 

Karagiannis et al. (2011), these requirements are classified into seven categories as 

follow: 

1) Strategic requirements: These are related to vehicular network penetration threshold 

or deployment level and strategies defined by governments and commissions. 

2) Economical requirements: These are related to financial issues such as required 

devices cost, ongoing cost and time for completing the application and return of the 

invested cost.  

3) System capabilities requirements: Radio communication, network communication, 

vehicle positioning and communication security are the most important system 

capabilities requirements.  

4) System performance requirements: Communication performance (e.g. delay, delivery 

ratio, and throughput), vehicle positioning accuracy, reliability and dependability of 

system (e.g. coverage area, bit error rate) and security operations (authentication, 

authorization and verification) are the most notable system performance 

requirements of VANET applications. 

5) Organizational requirements: These organizational activities related to deployment of 

vehicular networks including consistent naming repository and address directory, 

ensuring the interoperability between different ITSs, considering security 

requirements. 

6) Legal requirements: Supporting road users’ privacy, their liability/responsibility and 

lawful interception are the main legal requirements of VANET applications.  
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7) Standardization and certification requirements: System and ITS station 

standardization, service conformity and system interoperability testing, and system 

risk management should be supported in order to obtain standardization and 

certification requirements. 

2.1.3. VANET Challenges 

Several types of VANET applications and their requirements are discussed in sections 

2.1.1 and 2.1.2, respectively. Wide range of requirements for VANET applications leads 

to a number of research challenges in VANET as follows: 

1) Addressing: Some VANET applications require that the addresses should be linked 

to the physical or geographical position of a vehicle. This addressing issue is 

challenging due to high mobility and quick changes of vehicles. 

2) Risk analysis and management: This challenge is related to identifying and 

controlling the threats and potential attacks in various types of VANET 

communications (i.e. V2X). Although some solutions are proposed for managing 

these attacks, attacker behavior models have not been investigated in details. 

3) Data-centric trust and verification: Data trustiness is more important and useful than 

the sender node trustiness for most of the VANET applications. This challenge is 

related to providing security means for VANET applications to ensure that the 

received information is trustable and its integrity can be verified in order to protect 

the vehicular network from the in-transit traffic tampering and impersonation 

security threats and attacks (Raya, Papadimitratos, & Hubaux, 2006). Although 

public key cryptography can be considered as a solution for this challenge, the 

introduced overhead via this solution is its main drawback (Zhou & Haas, 1999). 

4) Anonymity, privacy and liability: The source, which can be either a vehicle or any 

other network entity, of received information should be trustable in VANET 

application. Simultaneously, drivers’ privacy is a basic right, which is protected by 
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law in most of the countries, and can be obtained via nameless vehicle identities. The 

main challenge is associated with the tradeoff between authentication, privacy and 

liability, when the network has to reveal the sent information and also its source to 

some authorized entities by government. 

5) Secure localization: This is a Denial of Service resilience strategy which protects the 

VANET against attackers that are intentionally willing to find the location and 

position of the vehicles. 

6) Delay constraints: Data packets sent via VANET applications have time and location 

significance. Designing vehicular communication protocols with good delay 

performance is another VANET challenges due to vehicles’ velocity, mobility, 

unreliable connectivity and consequently, quick topological changes. 

7) Prioritization and congestion control: Safety and traffic efficiency messages have 

higher priority and should be delivered faster that other messages. Most of the 

existing researches concentrated on finding a way to provide highest priority for 

safety and emergency messages. However, the channel is congested due to its limit 

bandwidth and also broadcast nature of emergency messages. In-network 

aggregation protocols are proposed for enhancing communication efficiency in 

VANET by combining and aggregating information from multiple sources during 

packet routing procedure. A comprehensive overview of in-network aggregation 

mechanisms for VANET can be found in the study by Dietzel, Petit, Kargl, and 

Scheuermann (2014). 

8) Reliability and cross-layering between transport and networking layers: wireless 

communication, which is very sensitive and unreliable due to frequent 

disconnectivity, is the cornerstone of vehicular networks. Hence, providing reliable 

transport service on top of the unreliable network is one of the major challenges of 
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VANET. Designing cross-layer protocol, which span between transport and routing 

layers, can be a solution for this challenge. 

Comprehensive and detailed discussion on solutions for the mentioned VANET 

challenges can be found in the study by Karagiannis et al. (2011). 

2.2.  Bio-inspired algorithms 

Bio-inspired and SI algorithms have attracted the attention of many researchers and 

scientists for the last two decades. These algorithms are an emerging area in the field of 

optimization and researchers have developed various algorithms by modeling the 

behaviors of different swarm of animals and insects such as ants, bees, birds, firefly, 

Cuckoo and bats (Yang et al., 2013). The two main reasons for these algorithms 

popularity are as follows: 1) these are very flexible and versatile, and 2) These 

algorithms are very efficient in producing fast, multi-criteria, low cost and robust 

solutions for dynamic and nonlinear problems (Blum & Li, 2008; Panigrahi, Shi, & 

Lim, 2011; Yang et al., 2013). Bio-inspired computation has pervaded into almost all 

areas of sciences, engineering, and industries, and it is one of the most active and well-

known research areas due to wide range of its applicability. Wide range of bio-inspired 

algorithms is proposed by researchers in recent decades. An overview of various types 

of bio-inspired algorithms is provided in the following subsection. These algorithms are 

including but not limited to ant, bee, bat, particle swarm optimization (PSO), firefly, 

cuckoo and genetic algorithms. 

2.2.1. Various types of bio-inspired algorithms 

1) Ant algorithm 

Ant-based algorithms mimic the cooperative behavior of real ants in finding food 

resources. By investigating ant behavior, researchers have recognized that each ant 

randomly explores its surrounding area to find food resources. Upon finding food, an 

ant uses a chemical material known as pheromone to inform other ants about the food 
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source. Individual ants can perform tasks independently while collaborating with other 

ants to solve a problem (i.e., finding food sources). Since ant algorithm is the 

cornerstone of our proposed approach, its steps, types and applications are discussed in 

more details in Section 2.2.2. 

2) Bee algorithm 

 Similar to ant algorithm, bee algorithm is inspired from foraging behavior of real 

honeybees in nature. Waggle dance, nectar maximization and polarization are the most 

interesting characteristics of real honeybees which are used to simulate the allocation of 

the forager bees around flower lots and consequently, various search areas in the search 

region. Different types of bee algorithm are proposed by researchers as follows: in most 

of the existing bee algorithms, called honeybee-based algorithms, different forager bees 

are allocated to different nectar resources in order to maximize the obtained nectar 

(Karaboga, 2005; Nakrani & Tovey, 2004; Pham et al., 2006). Yang (2005) proposed 

virtual bee algorithm in which pheromone intensity is directly linked with the objective 

function. Two types of bees are utilized in honeybee-based algorithms, while, artificial 

bee colony algorithm divides bees into three types, namely employers, onlookers and 

scouts. More information about bee algorithms and their applications can be found in 

the study by Yang (2010a) and Parpinelli and Lopes (2011). 

3) Bat algorithm 

Echolocation behavior of micro-bats leads to development of bat algorithm by Yang 

(2010b). Echolocation is a type of sonar which is utilized by micro-bats to find foods, 

avoid obstacles and locate their roosting crevices in the dark. Micro-bats emit loud 

sound pulses and listen to their echoes that return back from the surrounding objects. 

The specifications of these pulses related to bats species and their hunting strategies. Bat 

algorithm is based on three rules: 1) echolocation is used by all bats to sense distance, 

and they can differentiate foods from background barriers. 2) A bat prowl randomly 
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with speed of vi, at location of xi with a fixed frequency range [fmin, fmax]. In addition, 

emission rate, r, and plus loudness, A0, are tuned based on the position of targeted prey. 

3) Although the plus loudness can vary in many ways, it should vary from a large, A0, to 

a minimum constant value, Amin. An extension of bat algorithm, called multi-objective 

bat algorithm is developed by Yang (2011a) and experimental results by Yang and 

Gandomi (2012) represent its efficiency in solving multi-objective problems.  

4) Particle swarm optimization 

Kennedy and Eberhart (1995) proposed PSO based on swarm behavior of bird flocking 

and fish schooling. The space of an objective function is explored by this algorithm 

through adjusting the particles, which are the direction flow of each agent, as like 

piecewise paths represented by location vectors in an approximately random manner. 

The motion of a swarming particle includes two main ingredients, namely stochastic 

and deterministic. It means that every particle has tendency to move toward the existing 

global best and its own best position in its history, while, it wants to move randomly, 

simultaneously. Accelerated PSO is another type of PSO which is developed by Yang, 

Deb, and Fong (2011) in order to overcome business optimization problems. 

5) Firefly algorithm 

Firefly algorithm was proposed by Yang (2009) based on the flashing pattern and real 

fireflies’ behavior. This algorithm follows three of the following rules: 1) Fireflies are 

unisexual and they will be attracted to each other regardless of their sex. 2) 

Attractiveness has a direct relationship with brightness, while, it has inverse relationship 

with distance. For any two flashing fireflies, the less brighter one will move toward the 

more brighter one. They will move randomly, if there is not any brighter firefly in the 

surrounding area. 3) The firefly brightness is related to the landscape of the objective 

function. Although NP-hard scheduling problems can be solved by discrete version of 

firefly algorithm, it can be used for solving wide range of test problems, containing 
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multi-objective load dispatch problems (Apostolopoulos & Vlachos, 2010). A new 

firefly algorithm, called chaos-enhanced firefly algorithm, is proposed by Yang (2011b) 

for automatic parameter setting. 

6) Cuckoo search 

Another bio-inspired algorithm which is developed by Yang and Deb (2009) is named 

cuckoo search. This new algorithm is based on the brood parasitism of some cuckoo 

species. Based on the existing literature and experiments, cuckoo search outperforms 

PSO and GA in solving structural optimization problems (Gandomi, Yang, & Alavi, 

2013). Aggressive reproduction strategy is the most important and notable characteristic 

of cuckoos. This algorithm follows three of the following rules: 1) One egg is laid by 

each cuckoo at a specific time and is located in a randomly chosen nest. 2) The nests 

with high quality eggs are called best nests and will be preserved for the next 

generations. 3) Pre-defined and fixed number of host nests are available, and the 

probability of recognizing an egg which is laid by another cuckoo and is not belong to 

the host nest by host bird is Pa ∈ [0, 1]. If this is the case, the alien egg will be removed 

from the nest by host bird or the host bird leaves the next and creates a new nest. 

Engineering optimization problems can be solved by cuckoo search in an efficient 

manner (Gandomi et al., 2013). 

7) Genetic Algorithm 

Genetic algorithm (GA) (Goldberg, 1989) is adaptive and robust search technique 

inspired by natural selection and genetics in biology. GA is population based algorithm 

that encodes a potential solution in a form of string data structure, namely chromosome. 

Each chromosome (i.e. solution) consists of a set of elements, namely genes, which hold 

a set of values for optimization variables. Fitness or objective function is used to 

determine the suitability of each solution for desired problem. Selection, crossover and 

mutation are three basic used operations of GA. The selection operation chooses non-
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overlapping random sets of two chromosomes from initial population and then selects 

the chromosome with higher fitness value from each set to survive in the next iteration 

(i.e. generation). Crossover operation includes two steps: 1) determining a gene in a 

random way as a crossover point from two parent chromosomes, 2) mutual exchange of 

chromosomes by considering crossover point and generating new off-springs. Crossover 

used to improve the fitness value of solutions. The last but not the least, a series of 

chromosome’s genes is changed after determining mutation point via mutation 

operation in order to increase population diversity and avoid falling into a local optimal 

solution. However, loops and short circuits generated by mutation operation should be 

prevented through a control mechanism (Xu & Ke, 2008). 

It is worth noting that SI algorithms are a major subset of metaheuristic algorithms. 

There are some common challenges and open issues among SI algorithms as follows: 

theoretical convergence speed analysis, proper classification, taxonomy and 

terminology, tuning algorithm-dependent parameters and examining existing algorithms 

for large-scale problems. 

2.2.2. Ant-based algorithm 

How do real ants communicate with each other in finding food sources and accumulate 

food in their nest using the shortest path, considering the fact that they are blind insects? 

This question has attracted the attention of many researchers and scientists for many 

years. The answer is that the ants release a chemical liquid, called pheromone, on their 

traversed paths based on the quality of the found food resource while moving from their 

nest to the food source and vice versa. This pheromone trail helps other ants to find the 

food resources by sniffing the pheromone. The pheromone intensity decreases 

(pheromone evaporation) over time in order to increase the probability of finding new 

paths. This issue that the ants find and use the shortest path between their nest and the 

food source has been proved both mathematically and experimentally by researchers. 
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Mathematical proof is done by Shah, Bhaya, Kothari, and Chandra (2013), while double 

bridge experiment is used for experimental proof. Double bridge experiment is depicted 

in Figure 2.3 in which there are two different bridge (i.e. paths) between source (i.e. 

nest) and destination (i.e. food source).  

 

Figure 2.3. Double bridge experiment (Marco Dorigo & Birattari, 2010) 

Length is the main difference between these two bridges where bridge 1 is shorter than 

bridge 2. Initially, the ants explore the surrounding environment for finding food 

sources by performing a random selection between bridges 1 or 2. However, the ants 

which select bridge 1 arrive faster to the food source and come back to the nest earlier 

that the ants which choose bridge 2 for food exploration. This is because bridge 1 is 

shorter than bridge 2. In this way, more ants will be attracted to bridge 1 due to 

pheromone existence on it. Therefore, the pheromone intensity will be increased on this 

bridge over the time, while, it will be reduced on bridge 2 due to pheromone 

evaporation. As a result, ant-based algorithm is an efficient way to find shortest path 

between two desired points.  

This phenomenon forms the infrastructure of an Ant System (AS) and ACO algorithms 

proposed by Marco Dorigo (1992) and Marco Dorigo, Caro, and Gambardella (1999) to 

simulate real ant behaviors by using artificial ants. 
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Most of the characteristics of real ants are mimicked by artificial ants in order to 

simulate the behavior of an ant colony for the solution of optimization and distributed 

control problems. The most common characteristics of real and artificial ants are 

discussed as follows: 

 Pheromone trail based stigmergy communication: Pheromone trails assistants to find 

the shortest path from nest to food source. Stigmergy communication is a self-

organizing behavior of ants which is required to interact with each ant (Theraulaz & 

Bonabeau, 1999). This communication occurs in an indirect manner which means 

that an ant alters its surrounding environment by laying pheromone on its traversed 

paths and the other ants respond to this modification at a later time (Bonabeau, 

Dorigo, & Theraulaz, 1999). Stigmergy can be transferred to artificial ants by 

assigning numerical information to the problem space variables and by giving local 

access to these variables to the artificial ants (Marco Dorigo et al., 1999). 

 Implicit shortest path finding: An implicit shortest path finding happens by 

reinforcement on the shortest path for both real and artificial ants. More pheromone 

is laid on the shortest paths because they are traversed more faster than longer paths 

(Di Caro, 2004). 

 Concurrent and independent iterations: The artificial individual ant, similar to the 

real one, is able to find a path from nest to food resource, but it is not the only ant 

that does this action. The other ants do the same task concurrently and independently 

in order to converge to the optimal path in a short time (Marco Dorigo & Birattari, 

2010). 

 Discrete world: Artificial ants, unlike real ants, live in a discrete world which means 

that their actions are transitions from one discrete condition to another (Marco 

Dorigo et al., 1999). 
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 Synchronized vs. desynchronized system: Artificial ants move from their nest to the 

food source and vice versa in each iteration. Therefore, they move in a synchronized 

way unlike real ants which move in a desynchronized pattern (Blum, 2005). 

 Memory: The artificial ant utilizes an embedded memory to store the traversed path 

information. It is used for building and evaluating possible solutions, for back 

tracking from the destination to the source and also for updating the pheromone 

value on the found path. In comparison, real ants do not have memory but use their 

sensing capability for this purpose. 

 Pheromone evaporation strategy: Pheromone evaporation happens very slowly in 

nature and its rate is constant (Deneubourg, Aron, Goss, & Pasteels, 1990). This 

mechanism and its evaporation rate vary from one problem to another in the 

simulation environment for artificial ants. 

 Extra capabilities: Artificial ants use extra capabilities to increase the efficiency of 

the whole system that can be augmented with capabilities such as future prediction 

and local optimization, while these capabilities cannot be found in real ants. 

2.2.2.1. Ant Colony Optimization 

ACO (Marco Dorigo et al., 1999; Marco Dorigo & Stützle, 2003) studies artificial 

systems which take inspiration from the real ants behaviors in nature in order to solve 

optimization problems. ACO algorithms follow four main steps as follows: 

1) Problem environment depiction: artificial ants move from one discrete state to 

another. Therefore, they can solve discrete problems (LaValle, 2006) which can be 

depicted as graph with N nodes and L links. 

2) Initialization: in this step, a number of artificial ants (Na) are located on the nodes 

(sources) and a specific value (weight) is assigned to each link of the problem graph.  

The re-generation period of ants (ϒ), which means the time interval between two 

consecutive ant colonies generation is started periodically at a pre-defined time 
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interval for finding new paths. Na and ϒ are obtained using experiments or trial and 

error. Moreover, physical distance, random number, queue length or a number 

obtained by mathematical formula can be used as initial weight of links. The node 

transition rule is defined and used for next node selection. The probability of 

choosing j as a next node from i by ant k is calculated by Equation 2.1.  

(𝜏𝑖𝑗)𝛼(ɲ𝑖𝑗)𝛽

∑ (𝜏𝑖ℎ)𝛼(ɲ𝑖ℎ)𝛽
h ∉ tabuk 

        if j ∉ tabuk, 

     𝑃𝑖𝑗
𝑘  =                                                                                                (2.1) 

                                              0                           otherwise. 

 

Intensities α and β are the relative importance that can be used to stress the 

importance of pheromone intensity τij and ɲij route cost. tabuk is the set of visited 

nodes by ant k. 

3) Pheromone update: ants start to move from source to destination using the node 

transition rule (Equation 2.1) and store visited nodes in their memory. Whenever an 

ant reaches to its destination, it backtracks to its origin/source node using its memory 

and updates the links’ pheromone value on its return path using the pheromone 

update rule. Two concepts are embedded and considered in this rule. On one hand, 

the pheromone value of the links, which are not traversed by the ant, should be 

decreased in order to reduce their selection probability by the other ants. This issue is 

called pheromone evaporation and should be considered in the pheromone update 

rule. On the other hand, the pheromone value of the links, which are traversed by the 

ant, should be increased in order to enhance their selection probability by the other 

ants and is called pheromone reinforcement in ACO algorithm.  

If the pheromone value decreases slowly, ants will be trapped in suboptimal solutions 

in most of the cases. While if it decreases quickly, ants will not take advantage of 

gathered data by the other ants. Therefore, the pheromone evaporation rate has a 

direct impact on exploration and exploitation of paths in ant-based algorithms. 
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Exploration means finding a new path, while, exploitation means improving the 

current found path. Assigning an appropriate pheromone evaporation rate is needed 

to set the proper trade-off between these two factors. More discussion on this issue 

can be found in the study by Claes & Holvoet (2011). The pheromone update rule 

which includes both pheromone evaporation and reinforcement phases is given as 

Equation 2.2. 

𝜏𝑖𝑗
𝑛𝑒𝑤 = (1 − 𝜌)𝜏𝑖𝑗

𝑜𝑙𝑑 +  ∑ 𝛥𝜏𝑖𝑗
𝑘

𝑚

𝑘=1
 ,                               (2.2) 

where ρ ∈ (0, 1] is a constant value, named pheromone evaporation, and m is the 

number of ants. The amount of pheromone laid on link i and j by ant k is calculated 

using Equation 2.3. 

𝛥𝜏𝑖𝑗 = {
𝑄

𝑓𝑘
       if the 𝑘𝑡ℎ ant traversed link (i, j),

0                                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                          (2.3) 

where Q is a constant value and fk is the cost of found route by ant k. 

4) Stopping procedure: The ACO algorithm is completed by reaching a predefined 

number of iterations, and an ant is dropped by arriving at a predefined maximum 

number of hops before reaching its destination. 

2.2.2.2. Types of ACO and its applications 

AS is the first example of ACO algorithms which is proposed by Marco Dorigo, 

Maniezzo, and Colorni (1991) to solve popular travelling salesman problem (Flood, 

1956). Promising results in its initial experiments and also its novelty attracted 

researchers’ attention and a number of AS extensions were introduced in recent years 

that could improve the ASs performance in a significant way. These extensions include 

elitist AS (Marco Dorigo, 1992), rank-based AS (Bullnheimer, Hartl, & Strauss, 1997), 

and MAXMIN AS (Stützle & Hoos, 2000). Although all of these extensions use the 

same pheromone evaporation and solution construction mechanisms as original AS, the 

main differences between the original AS and these extensions are the pheromone 
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updating procedure and some additional details in the pheromone trails management. 

There are some other ACO algorithms that more significantly modify the features of the 

AS in the literature. These algorithms including but not limited to Ant-Q (Gambardella 

& Dorigo, 1995), ant colony system (Marco Dorigo & Gambardella, 1997), ANTS 

(Maniezzo, 1999) and Hyper-cube AS (Blum & Dorigo, 2004). More details about these 

algorithms and their differences can be found in the study by Marco Dorigo and Stützle 

(2010). 

In addition to proposing different extensions of the ACO algorithm, ACO has been 

widely utilized in different research areas and industries in recent years. Computer, 

electronic, civil and mechanical engineering are the most predominant domains that 

receive more benefits from ACO. In most of these areas, ACO has very near 

performance to the best algorithm performance or event has better performance 

compare with the existing best solution. Hence, this section gives a comprehensive 

overview of the most noteworthy applications of ACO. These applications are classified 

into six classes according to the problem types. These six classes are illustrated in 

Figure 2.4 and explained as follows: 
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Figure 2.4. ACO Applications 

1) Routing: Routing is one of the most important problems which is common among 

various domains. ACO uses one or more agents (ants) to explore the problem space, 

which is a graph in most of the cases, in order to find a path, between two points (e.g. 

source and destination) by considering different constraints such as time, distance or 

number of hops. Travelling salesman problem (Flood, 1956), sequential ordering 

(Gambardella & Dorigo, 2000), vehicle routing (Fuellerer, Doerner, Hartl, & Iori, 

2009) and network routing (Di Caro & Dorigo, 2011) are the most notable examples 

for this problem domain. 

2) Assignment: This problem domain is related to assigning members of a set (items) to 

members of another set (resources) considering certain rules and limitations. These 

sets can be objectives, agents, tasks or available resources (e.g. bandwidth, memory). 

ACO solves this problem using two decision stages. At first stage, the order of items 

(first set) is determined, while, resource (second set) assigning to items happens in 

second stage. Quadratic assignment (Stützle & Hoos, 2000), course time table 

(Socha, Sampels, & Manfrin, 2003), frequency assignment (Maniezzo & Carbonaro, 
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2000) and graph colouring (Costa & Hertz, 1997) are four well-known examples of 

this class. 

3) Scheduling: Scheduling is related to allocation of scarce resources to tasks over time 

considering low cost of service providing. Scheduling problems have fundamental 

role in ACO research are and several type of scheduling problems have been solved 

by ACO algorithms such as project scheduling (Merkle, Middendorf, & Schmeck, 

2002), weighted tardiness (Merkle & Middendorf, 2003), open shop, flow shop, job 

shop and group shop scheduling problems (Brucker & Brucker, 2007).  

4) Subset: Solution for these kinds of problems consists a subset of available items by 

considering specific constraints for desired problem. Based on existing literature, 

ACO rarely used to solve subset problem. However, multiple knapsack (Leguizamon 

& Michalewicz, 1999), maximum clique (Solnon & Fenet, 2006), set covering 

(Lessing, Dumitrescu, & Stützle, 2004), L-cardinality trees (Blum & Blesa, 2005) are 

successful instances of ACO application in solving subset problems. 

5) Machine Learning: Most of the existing problems in the machine learning area can 

be counted as optimization problems and both classic and meta-heuristic algorithms 

(i.e. ACO) can be used for solving these problems. Wide ranges of problems are exist 

in this problem domain, but, ACO algorithms have been applied to a few of these 

problems, namely classification rules (Otero, Freitas, & Johnson, 2008), Bayesian 

networks (De Campos, Fernandez-Luna, Gámez, & Puerta, 2002), fuzzy systems 

(Casillas, Cordón, & Herrera, 2000) and neural networks (Socha & Blum, 2007). 

6) Bioinformatics: Similar to the machine learning research field, many problems in the 

bioinformatics field can be considered as optimization problems and solved by ACO 

algorithms. Although ACO rarely utilized for solving bioinformatics problems, 

protein folding (Shmygelska & Hoos, 2005), docking (Korb, Stützle, & Exner, 

2007), DNA sequencing (Blum, Vallès, & Blesa, 2008) and haplotype inference 
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(Benedettini, Roli, & Di Gaspero, 2008) are successful instances of ACO application 

in solving bioinformatics problems. 

2.3. Conclusion 

This chapter discussed two main concepts, namely VANET and ant-based algorithm, 

which are the cornerstone of our proposed approach in this thesis. In addition to the 

concept of VANET, its applications and requirements and challenges are briefly 

reviewed in order to give a general overview to the readers. In order to provide an 

overview of ant-based algorithms, bio-inspired algorithms and their well-known 

examples (e.g. bee, bat and firefly) are briefly explained, since ant-based algorithms are 

a subset of these algorithms. The main steps and procedure of ACO along with various 

types of ant-based algorithms and their applications are summarized to provide 

comprehensive details regarding this type of algorithms. After providing a brief 

overview of VANETs and ant-based algorithms concepts, the existing VTRS are 

overviewed and classified in the next chapter. 
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CHAPTER 3: STATE-OF-THE-ART ON VEHICLE TRAFFIC ROUTING 

SYSTEMS 

The most important distinction of VTRSs is whether the system utilizes a static 

or a dynamic routing algorithm for vehicle routing. Although both algorithms (i.e. static 

and dynamic) are used to route vehicles from their origins to their destinations, static 

algorithms do not consider the real-time traffic information of roads in their routing 

procedure. The algorithms that perform on graphs with fixed and pre-defined edge 

weights are called static routing algorithms, while, edge weights vary based on the real-

time traffic information in dynamic algorithms. Hence, this chapter discusses about 

VTRSs by dividing these system into two classes based on their routing algorithms, 

namely static and dynamic VTRSs. After providing a brief overview of static algorithms 

and VTRSs in section 3.1, dynamic VTRSs are discussed in Section 3.2 with more 

concentration on bio-inspired based approaches in Section 3.2.1. Since ant-based 

algorithm is the cornerstone of our proposed approach, a comprehensive and statistical 

overview of ant-based VTRSs (i.e. a VTRS that uses ant-based algorithm for vehicle 

routing) is represented in Section 3.2.2. In addition, a taxonomy for ant-based VTRSs, 

which includes three main classes, namely, ACPs, ACPre, and ACS, is proposed in this 

section. Besides, statistical overview of studied ant-based VTRSs and major 

characteristics of VTRSs which should be considered in designing VTRSs are discussed 

in this section. Finally, section 3.3 concludes this chapter. 

3.1. Static Routing Algorithm-based VTRSs 

Over the years, several types of static routing algorithms have been proposed 

and used for finding shortest path between two or more points. The imposed 

requirements on the graph, execution time and roads’ priority assignment policy are the 

main differences between various static routing algorithms. Various static routing 

algorithms are evaluated on real road maps by Zhan (1997), and Zhan and Noon (1998) 

in order to investigate their suitability to be used in VTRSs. Most of the existing vehicle 
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routing systems (e.g. TomTom, Garmin and PAPAGO) use static routing algorithms to 

route the vehicles through the shortest distance path (B.-J. Chang, Huang, & Liang, 

2008). Hence, an overview of the most well-known static routing including Bellman-

Ford, A* and Dijkstra algorithms is provided in the following paragraphs. 

Dijkstra algorithm (Dijkstra, 1959) is a popular static routing algorithm which 

is able to find the shortest path from a single-source node to the other nodes in a 

directed graph with non-negative edge weights. This algorithm uses greedy mechanism 

in a way that the local optimum (the edge with the lowest weight) is selected in each 

step until finding the shortest path from the source to destination (i.e. the global 

optimum). In this way, the search method of Dijkstra can be visualized as an expanding 

circle around the origin node that continues expanding in all directions until reaching to 

the destination. The running time of Dijkstra algorithm is O(V
2
) where V is the number 

of nodes in the graph. 

The A* algorithm proposed by Hart, Nilsson, and Raphael (1968) to find the 

shortest path between two desired points in a graph without any negative edge weights. 

Heuristic estimate function is used for shortest path finding via A* algorithm in order to 

concentrate the searching procedure in the direction of the destination node. This 

concentration is performed by adding the heuristic estimate function value for the 

current and destination nodes to the final edge weigh via following function: F[v] = 

h[v] + d[v] in which d[v] and h[v] indicate the current node’s weight and heuristic 

estimation, respectively. F[v] indicates the estimate of the best path via node v. The 

running time of A* algorithm is associated to the heuristic estimate function. 

The Bellman-Ford algorithm is proposed by Ford and Fulkerson (1962) in 

order to find the shortest path between two points (i.e. source and destination) of a 

graph. One of the main features of this algorithm is that, unlike Dijkstra and A* 

algorithms, it can find the shortest path in a graph which has some edges with negative 
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weight. The shortest path finding mechanism of this algorithm is similar to Dijkstra 

algorithm but operates an additional step to ensure that no negative path cycles are 

formed that prevent proper path finding. The running time of this algorithm is O(V.E) 

where V and E indicate the number of nodes and edges, respectively, in the graph.  

Although static routing algorithms are used in most of the existing VTRSs to 

propose the shortest paths to the drivers, these algorithms cannot provide an optimal 

routes for drivers due to lack of considering real-time traffic information. Dynamic 

VTRSs that uses real-time traffic information in their routing algorithm are proposed to 

overcome static VTRSs’ problems. Hence, an overview of dynamic routing algorithm-

based VTRSs is provided in the following section. 

3.2. Dynamic Routing Algorithm-based VTRSs 

It is worth noting that most of the recent approaches and solutions in vehicle 

traffic domain utilize the collected real-time traffic data via GPS, Geographical 

Information Systems, V2V and V2I communications to predict the future traffic 

topology and information on the roads (Gong, Li, & Peng, 2008). Predicted data can be 

used for appropriate vehicle routing and congestion avoidance. For instance, in the 

study by (Fu, 2001), the travel time of each road is modeled as a random variable and its 

realization can be predicted before the vehicle enter the road. An approximate 

probabilistic treatment is applied to the recurrent relations and a labeling mechanism is 

developed for solving the recurrent equations. A simple traffic flow model is developed 

and compared based on three different route choices, namely shortest distance, shortest 

time and shortest time with route information sharing by Yamashita, Izumi, and 

Kurumatani (2004). In the route information sharing system, each vehicle transmits 

route information (current position, destination, and route to the destination) to a route 

information server, which estimates future traffic congestion using this information and 

feeds its estimate back to each vehicle. Each vehicle uses the estimation to re-plan their 

route. Based on their experimental results, the average travel time of drivers using the 
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route information sharing system is shorter than the time of drivers who chose shortest 

distance or simple shortest time estimates. Current navigation systems/applications that 

use dynamic algorithms for path finding (e.g. WAZE and INRIX) route the drivers 

based on minimizing each individual drivers' travel time without considering the impact 

of that routing on the travel time of other drivers. Although WAZE (WAZE, 2015) is a 

prominent social navigation application used by Malaysian in recent year, user 

preferences are neglected in the path selection procedure of this applications (Sha, 

Kwak, Nath, & Iftode, 2013). 

A dynamic routing algorithm is presented by Yang et al. (2006) for enhancing 

the speed of calculating the optimum path. This algorithm is a kind of driver 

characteristic-based optimal path algorithm which is double hierarchical. An integrated 

model for managing dynamic route guidance and ramp metering via model predictive 

control is proposed by Karimi, Hegyi, De Schutter, Hellendoorn, and Middelham 

(2004). Dynamic route guidance and ramp metering are used as information provider 

and control tool, respectively. Drivers are able to choose alternative routes based on the 

provided information and delay is distributed over the highways via ramp metering 

control. Although the obtained results show that vehicles travel time is reduced by using 

this integrated model, the controller variables’ optimal value and also comparing with 

other existing approaches are not considered and discussed. Neural networks are also 

utilized by some researchers (Dia, 2001; Hodge, Krishnan, Jackson, Austin, & Polak, 

2011; Park et al., 2011; Shen, 2008; Van Lint, Hoogendoorn, & van Zuylen, 2005; W. 

Zhang, Zhang, & Xu, 2006) for vehicle travel time and speed prediction due to their 

learning capabilities. In these approaches, proposed algorithms trained with historical 

traffic data and used real-time traffic data for vehicle travel time and speed prediction. 

Vehicle travel time prediction is used in most of the existing approaches.  
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Traffic congestion recognition and avoidance approach by using vehicular 

networks is proposed by Wedel, Schunemann, and Radusch (2009). Average travel 

speed of vehicles is used for congested road detection and congestion avoidance. Three 

re-routing strategies, namely multi-path load balancing consider future vehicle 

positions, random multi-path load balancing, and dynamic shortest path, are presented 

by Pan, Khan, Sandu Popa, Zeitouni, and Borcea (2012), for vehicle congestion 

avoidance that use V2I communications for real-time data collection. Another travel 

time and traffic congestion prediction method using ad hoc networks is represented by 

Batool and Khan (2005). They developed a multilayer feed forward neural network 

combined with a back-propagation algorithm (Rumelhart, Hinton, & Williams, 1988) 

for traffic congestion prediction. 

Congestion avoidance and route allocation using virtual agent negotiation 

(CARAVAN) (Desai, Loke, Desai, & Singh, 2013) is a multi-agent system that is 

developed for finding optimal paths within a short time and with low communication 

overheads. Vehicles exchange preference information and use virtual negotiation for 

collaborative route allocation through inter-vehicular communications in CARAVAN. 

Another multi-agent system is proposed by Chen, Yang, and Wang (2006) in order to 

enhance urban traffic control system. For this aim, an agent-based distributed hierarchy 

traffic control system is proposed and integrated with VTRS by the authors. A multi-

agent based VTRS architecture is developed by Shi, Xu, Xu, and Song (2005) in which 

sensor networks are used for collecting real-time traffic information. In addition, 

integration of radio frequency technology and optical fiber network is proposed in order 

to mitigate the sensor networks’ communication drawbacks. 

Another point that should be mentioned is that dynamic routing algorithms can 

be divided into two classes, namely infrastructure-based and infrastructure-free. In the 

former case, a number of cameras, loop detectors, sensors and communication devices 
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should be accommodated throughout the roads for monitoring and real-time data 

collection purposes by taking advantage of V2I and V2R communications. The gathered 

data is transferred to a traffic information center for further processing. An on-demand 

request can be sent by each vehicle to traffic information center for achieving desired 

information. The proposed approaches by Shi et al. (2005), Yamashita et al. (2004) and 

Xuedan Zhang et al. (2007), can be considered as examples of infrastructure-based 

dynamic routing algorithms. Another infrastructure-based traffic information system, 

called PeerTIS, developed by Rybicki, Scheuermann, Koegel, and Mauve (2009) in 

which IP-based communication channel is used by vehicles to establish a peer-to-peer 

overlay over the Internet. Existing cellular Internet access is the cornerstone of PeerTIS. 

This system is enhanced in another study by Rybicki, Pesch, Mauve, and Scheuermann 

(2011) in which graph is used for road map representation and this graph is divided into 

sub-graphs when a new vehicle enters the system. In addition, publish/subscribe 

mechanism (Eugster, Felber, Guerraoui, & Kermarrec, 2003) is used to handle the 

updated information efficiently. The mentioned infrastructures and equipment for 

infrastructure-based dynamic routing algorithms are not required in infrastructure-free 

dynamic routing algorithms. These approaches take advantage of V2V communications 

and multi-hop relay networks for real-time data gathering. Some examples of this 

approach are as follows: Self-Organizing Traffic Information System is developed by 

Wischoff, Ebner, Rohling, Lott, and Halfmann (2003) in which every vehicle monitors 

its surrounding area to gather local traffic information, and also receives data packets 

including detailed information from neighboring vehicles. In this way, each vehicle 

processes its obtained data in order to find its desired path and also broadcast the result 

to all neighboring vehicles. Another V2V-based traveler information system along with 

a location-based broadcasting protocol are designed by Zhang, Ziliaskopoulos, Wen, 

and Berry (2005). In addition, another infrastructure-free approach is proposed by Jerbi, 
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Senouci, Rasheed, and Ghamri-Doudane (2007) for road density prediction. In this 

approach, every road is divided into a number of segments and segment density data 

packet used for gathering vehicle density on each road. This information can be used by 

vehicles in order to avoid congested roads in their path selection procedure. Vehicle-to-

Vehicle Real-time Routing (Ding, Wang, Meng, & Wu, 2010) is another example of 

second class. It includes two algorithms: 1) guidance algorithm which discovers all 

existing path between source and destination by utilizing an intelligent and limited-

scope flooding mechanism. 2) detour algorithm which utilizes RDP and LDP routing to 

lay away the areas comprising empty roads. Another infrastructure-free VTRS is 

developed by He, Cao, and Li (2012) in which density-speed flow model is used for 

traffic situation prediction. This approach uses a dynamic candidate path selection 

mechanism in order to decrease the redundant data gathering overhead. Besides, an 

adaptive vehicle routing system based on wireless sensor networks is developed by 

Chang et al. (2008). This approach takes advantage of WiMAX multi-hop relay 

networks to enhance the reliability and efficiency of V2V communications. Similar to 

all infrastructure-free approaches, vehicles themselves are used for data gathering. 

Vehicle density, road class and distance can be obtained via gathered data and be used 

in path finding procedure. Although prediction of traffic information such as vehicle 

density, travel speed and time are important factors for vehicle traffic routing, it is a 

difficult process due to various unpredictable events and dynamic nature of vehicular 

environments. More information regarding VTRSs and their classifications can be 

obtained in the study by Khanjary and Hashemi (2012). 

Although most of the mentioned approaches obtained promising results for 

reducing travel time, improving traffic flow and efficient vehicle routing, various 

criteria such as distance, traffic load, road width, risk of collision, number of 

intersections, weather condition, dynamic changes of vehicular environments and 
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special events in path selection procedure are not considered simultaneously in their 

routing procedure. As mentioned in Chapter 1, this problem is known as multi-criteria 

shortest path problem and bio-inspired-based VTRSs have been widely used to 

overcome this problem and the obtained results are promising (Teodorović, 2008; 

Tonguz, 2011). Hence, an overview of bio-inspired-based VTRSs is provided in the 

following section. 

3.2.1. Bio-inspired-based VTRSs 

Although most of the existing bio-inspired algorithms are used to solve vehicle 

traffic routing and congestion problems, ant, bee, genetic and PSO are most commonly 

used algorithms among researchers over the years. Hence, this section gives an 

overview of these four algorithms. However, since the ant-based algorithm is the 

cornerstone of our proposed framework, ant-based VTRSs are discussed in more details 

in Section 3.2.2. 

a) Bee-based VTRSs: Several bee-based algorithms, such as virtual bee (Yang, 2005), 

BeeAdHoc (Wedde & Farooq, 2005), marriage in honeybees (Abbass, 2001), 

BeeHive (Wedde, Farooq, & Zhang, 2004), bee colony optimization (Teodorović & 

Dell’Orco, 2005) and artificial bee colony (Karaboga, 2005), have been developed 

by researchers during the last decade. Originally, bee algorithm was proposed for 

solving numerical problems. Thus, the first studies by Karaboga and Akay (2009), 

Karaboga and Basturk (2007, 2008), and Krishnanand, Nayak, Panigrahi, and Rout 

(2009) aimed to evaluate its performance on numerical benchmark functions and to 

compare it with other well-known bio-inspired algorithms such as ant, genetic and 

PSO. Bee-based algorithms are widely utilized in various areas of research in the 

recent years. Not only Bee-based algorithm could be used in theoretical aspect but 

also its role in real world problems and industry is undeniable. Mechanical, 

electrical, civil and software engineering are some research areas that take 
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advantages from bee-based algorithms. A comprehensive study of bee-based 

algorithms and their applications can be found in the study by Karaboga, Gorkemli, 

Ozturk, and Karaboga (2014). In the case of bee-based algorithms application in 

VTRSs, a bee-based methodology is developed by Teodorović and Dell’Orco (2008) 

to solve the ride-matching problem and consequently vehicle traffic congestion 

problem. Ride-matching is one of the most popular examples of travel demand 

management (Teodorovic, Edara, & Via, 2005) strategies. It helps two or more 

commuters to share a vehicle while traveling from their origins to destinations in 

order to reduce the number of vehicles with only one passenger and also to mitigate 

vehicle congestion. Saving money, reducing stress and travel time are some other 

advantages of this approach. Wedde and his colleagues started to work on a new 

decentralized and self-organized bee-based VTRS over the years. They have 

published a series of conference and journal papers about their system. The initial 

idea is represented by Wedde et al. (2007) and called Bee-inspired Jam Avoidance 

(BeeJamA) system. The cornerstone of BeeJamA is BeeHive routing algorithm 

which was proposed for large computer networks by Wedde et al. (2004). BeeJamA 

is a multi-agent VTRS that is proposed to minimize vehicles' travel time by 

preventing traffic jam conditions. BeeJamA gets up-to-date and instant traffic 

information using V2I communications like floating car data (Pfoser, 2008). The 

cornerstone of these communications is a decentralized network, namely navigators. 

Navigators are responsible for a specific area which is called navigation area, where 

it communicates with its own area’s vehicles and sends routing instructions to them. 

A hop by hop routing takes place for each vehicle via received guidance data for next 

intersection before reaching current intersection. This procedure is explained in more 

details in the study by Senge and Wedde (2010), and Wedde and Senge (2013). To 

achieve real-time hop by hop vehicle routing guidance for large-scale vehicle traffic 
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scenarios, a 5-layered bottom-up model is proposed by Wedde and Senge (2013). 

Physical, routing, area, net and communication are these five layers. BeeJamA’s 

performance is compared against A*-based algorithms relaying on global 

information systems (e.g. Dynamic Shortest Path) by Senge and Wedde (2012a). The 

obtained results show that it outperforms all A* algorithms under all degrees of 

penetration rates as well as considering reactive flexibility and easy scalability. In 

addition, BeeJamA decreased average traveling time of vehicles and also there is 

inverse relationship between the accounted vehicles’ traveling times and BeeJamA 

penetration rate. BeeJamA is introduced as an example of Cyber-Physical System by 

Senge and Wedde (2012b). Cyber-Physical System is defined as: “it is requested that 

the structures and relationships of the software and physical/real world layers be as 

similar as possible, ideally even isomorphic or congruent” (C. H. Liu et al., 2014; 

Senge & Wedde, 2012c). Concurrency, real-time capability, decentralized control, 

self-adaptation, self-organization, reliability and fault tolerance are the most common 

requirements and ends of Cyber-Physical Systems (Senge & Wedde, 2012b). 

Although BeeJamA could mitigate the recurring congestion considerably, non-

recurring congestion conditions cannot be handled in a significant way. Another bee-

based vehicle traffic optimization and management approach is proposed by Ghosal, 

Chakraborty, and Banerjee (2013). Maximum speed utilization of vehicles, planning 

lanes for unplanned traffic, each lane’s speed and their differences are considered in 

this bee-based algorithm in order to mitigate vehicle traffic congestion and also 

handling vehicle routing. From another point of view, the way that this system is 

utilized can be a potential drawback of this system. This is because it increases the 

number of lane transitions to reach the optimum high speed which itself can lead to 

traffic congestion. Recently, a bee-based zonal VTRS is developed by L. Wu, Yang, 

Liu, and Zhang (2014) in which the road map is divided into various zones based on 
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Shapley value game (Narayanam & Narahari, 2010). Then, V2V and V2I 

communications are used for real-time traffic data gathering in each zone. Finally, 

bee-based algorithm is utilized to route the vehicles through the optimal path from 

origin to destination inside each zone. The main drawback of this approach is that it 

needs to adjust several parameters such as Euclidean distance, minimum similarity 

and road section number thresholds. 

b) PSO-based VTRSs: PSO is another bio-inspired algorithm which is used for both 

traffic flow prediction and vehicle routing. PSO algorithm is utilized by Mohemmed, 

Sahoo, and Geok (2008) to solve shortest path problem. A priority-based indirect 

path encoding strategy and a heuristic operator are used for widening the search area 

and preventing loop creation in path finding procedure, respectively. After that, a 

PSO-based VTRS is proposed by Qun (2009). In addition to analyze the 

characteristics of both VTRSs and PSO algorithm, PSO application in path finding is 

explained and examined for the first time. PSO efficiency and performance in path 

finding and searching is evaluated through a simulation example. However, PSO can 

easily get into local optimum which is not considered in the mentioned approach. 

Hence, Deng, Tong, and Zhang (2010) proposed a hybrid approach (i.e. combination 

of PSO and fluid neural network) in order to overcome the PSO drawback of falling 

into local optimum while finding shortest path in vehicular environments. In 

addition, the weight coefficient symmetry restrictions of the traditional fluid neural 

network is solved by this hybrid PSO-based VTRS. Examining the proposed 

approach in a small road network (i.e. 20 nodes) is its main drawback (Kammoun, 

Kallel, Casillas, Abraham, & Alimi, 2014). Regarding traffic flow prediction, 

analysis of common traffic flow predictive model is used by Peng (2011) to propose 

a PSO-based  combined traffic flow prediction. In order to overcome the impractical 

time-invariant assumptions which are the cornerstone of the most existing traffic 
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flow predictors, an intelligent PSO is developed by Chan, Dillon, and Chang (2013). 

The proposed intelligent PSO is a hybrid approach in which PSO, neural network 

and fuzzy system are integrated in order to adapt the time-variant characteristics of 

traffic flow and also configurations of on-road sensors systems. The effectiveness of 

this approach is examined and proved by comparing its predicted traffic flow with 

real traffic flow obtained by the on-road sensor system. Recently, another hybrid 

traffic flow prediction approach is introduced by Hu, Gao, Yao, and Xie (2014) in 

which PSO and support vector regression are integrated. Prediction model is 

established via support vector regression and the model’s parameters are optimized 

by utilizing PSO algorithm. The obtained results show that this PSO-based approach 

outperforms multiple linear regression and Back-Propagation neural network (Ng, 

Cheung, Leung, & Luk, 2003) in term of traffic flow prediction. It is worth noting 

that a comprehensive survey on PSO and its applications can be found in the study 

by Lalwani, Singhal, Kumar, and Gupta, (2013). 

c) Genetic-based VTRSs: Using genetic-based VTRSs for solving route planning have 

been reported over the years (Yu & Lu, 2012). GA is used for the first time by Gen, 

Cheng, and Wang (1997) to solve the shortest path problem. They proposed a 

priority-based encoding strategy for finding all possible paths in a graph. Although 

the same chromosome length is selected and the encoding process is so complicated 

in this approach, it was a good starting point. Afterwards, some researchers (Jun 

Inagaki, Miki Haseyama, & Hideo Kitajima, 1999; Kanoh & Nakamura, 2000; 

Leung, Li, & Xu, 1998) used GA to find multiple routes in VTRSs. However, they 

did not pay attention to paths overlap in multiple path finding. Although Inagaki, 

Haseyama, and Kitajima (1999) designed a genetic-based algorithm to minimize the 

number of overlapped paths in multiple path finding mechanisms, large solution area 

is needed for obtaining high quality solution because of inconsistent crossover 
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strategy utilization.  One of the well-known genetic-based algorithms for solving 

shortest path problem is proposed by Ahn and Ramakrishna (2002). Variable-length 

chromosome and a repair strategy are used for path representation and preventing 

loop creation in path finding procedure, respectively. Based on the simulation results, 

their proposed approach outperforms the other genetic-based approaches in terms of 

route failure ratio and convergence rate for small and moderate size networks. A 

genetic-based algorithm with a part of an arterial road regarded as a virus is proposed 

by Delavar, Samadzadegan, and Pahlavani (2004) to find an optimal path between 

origin and destination under static environment. Although search rate is enhanced via 

crossover and virus evolution theory, mutation was not utilize in this approach. 

Another genetic-based VTRS for static environments is represented by Alhalabi, Al-

Qatawneh, and Samawi (2008). They proposed a novel selection method based on 

choosing the best next neighbor node and compared it with tournament selection 

method. The effects of various mutation points and number of crossover points on 

VTRSs are also examined in this study. Since, the vehicular environments are highly 

dynamic, Davies and Lingras (2003) proposed a genetic-based algorithm for dynamic 

environments. They changed the shortest path problem into the shortest walk 

problem. Crossover is used when the walking condition shifted to bad (i.e. walk 

toward the previously seen node). All the discussed approaches concentrate on single 

objective problems and evaluated only with small size networks. It is worth noting 

that Nanayakkara et al. (2007) developed a genetic-based route planning algorithm 

which can handle the routing procedure on large scale networks (i.e. maps with 

thousands of nodes).  

In the case of multi-objective shortest path problem, a new fitness function for 

finding multi-objective optimal paths with minimum overlap for VTRSs is proposed 

by Chakraborty and his colleagues (Chakraborty, 2004, 2005; Chakraborty, Maeda, 
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& Chakraborty, 2005). Some criteria such as distance, number of turns, passing 

through the mountain are used for alternative path selection and also penalty for 

fitness. Some other multi-objective shortest path approaches based on GA presented 

by Kanoh (2007), Kanoh and Hara (2008) in which various objectives (e.g. distance, 

travel time and number of traffic light) are considered in path finding procedure and 

the initial population is obtained via Dijkstra algorithm. A multilayer hierarchy 

network strategy (Wen & Gen, 2008) is developed to significantly decrease the 

required computation time for path finding in large road maps. A genetic-based 

cluster method is embedded in this strategy to mitigate the size limitations with high 

accuracy rate. A hybrid multi-objective VTRS which uses GA and λ–interchange 

local search method combination and evolved from improved A* algorithm is 

proposed by Hu, Gu, Huang, Yang, and Song (2008). Another hybrid approach is 

designed by Chakraborty and Chen (2009) in which GA and fuzzy system are 

integrated to find optimal alternative paths based on drivers’ requirements. In this 

approach, the found paths are modified via feedback mechanism. A multi-objective 

mathematical formulation for vehicle routing along with four main objectives (i.e. 

distance, safety, total time and cost) is discussed in the study by Kim, Jo, Kim, and 

Gen (2009). In this genetic-based approach, hash, adaptive-weight and priority-based 

encoding methods are utilized for selection method, finding solution sets and 

representing chromosome, respectively. 

Another genetic-based multi-objective VTRS which uses driving distance, time and 

cost as objectives in route finding procedure is developed by Wen, Gen, and Yu 

(2011), and Wen and Lin (2010) and called distance Pareto GA. Two-level road map 

hierarchy is used in order to decease the computational time. A new fitness function 

based on two types of distance values, namely Pareto distance and crowding 

distance, is introduced and used in this approach. DGA (Lee & Yang, 2012) is a 
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hybrid re-routing algorithm which, similar to the approach proposed by Kanoh and 

Hara (2008), integrates Dijkstra and GA. The main difference between these two 

approaches is the usage of GA in these approaches. In the former, GA is used for 

considering various criteria in route finding process, while, DGA algorithm utilizes 

GA for re-routing purposes. Yu and Lu (2012) proposed one of the most notable 

genetic-based VTRSs in which crossover and mutation operators are redefined in 

single mode and two novel operators, namely hyper-crossover and hyper-mutation, 

are designed as inter-mode operation. A new fitness function based on p-dimensional 

vector (i.e. for considering multiple objectives) is used for optimal path finding. 

Similar to other genetic-based approaches, routes are represented by variable length 

chromosomes, while, sub-chromosomes are used to define various types of 

transportation modes.  

An improved version of GA is proposed and used for finding optimal path by En et 

al. (2012). The population set is optimized by omitting the unnecessary nodes and 

paths before algorithm initialization. In each generation, the population’s best 

individual is protected via integration of roulette and elite protecting methods. This 

approach outperforms the others in terms of convergence rate and solution quality. A 

novel genetic-based VTRS which uses Petri net analysis as fitness function is 

developed by Dezani et al. (2014). Petri net analysis enables the system to control the 

whole road network in a real time. VANET infrastructures are used for gathering 

real-time traffic data in this approach. Most recently, a genetic-based methodology is 

proposed by Cagara, Bazzan, and Scheuermann (2014) to enhance the optimal usage 

of existing roads by distributing vehicles through alternative paths. Although this 

methodology is evaluated in terms of network performance and convergence speed, 

it is not compared with other existing approaches. A comprehensive and statistical 

overview of ant-based VTRSs is represented in the following section. 
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3.2.2. Ant-based VTRSs 

A comparative study and taxonomy of ant-based VTRSs are provided in this section. In 

our proposed taxonomy, ant-based VTRSs are classified into three main classes based 

on the method or strategy that is used in these approaches to overcome vehicle routing 

and congestion problems. ACPs, ACPre, and ACS are these three classes. Many 

parameters in ant-based approaches depend on problem characteristics and searching 

strategies to find the problem space. Therefore, most studies are conducted in ACP to 

achieve the best value set for ant-based VTRSs. Considering the dynamicity of topology 

and traffic in vehicular networks, the prediction of upcoming network conditions is a 

necessary task. Thus, researchers have also focused on ACPre. In addition, some 

researchers proposed map segmentation to reduce the computation time of the 

algorithm, which are discussed in ACS class of our proposed taxonomy. Each of these 

classes along with their relevant approaches is discussed in the following subsections. 

3.2.2.1. Ant Colony Parameters (ACP) 

This section discusses ant-based VTRSs that exploit the basic concept of ant colony 

algorithms. Researchers have changed the pre-existing variables and steps of the 

original ant algorithm (Marco Dorigo, Maniezzo, & Colorni, 1996) without adding any 

new concepts. The two types of ACP (i.e., variables and steps) are discussed as follows. 

a) Variable-based ACP: Several key variables such as number of ants (n), pheromone 

power (α), heuristic power (β), pheromone evaporation (ρ), and ant speed (v) affect 

the ant-based approaches. If these variables are not properly assigned, the ants will 

follow a previously found path that is not necessarily optimal because of the dynamic 

topology of vehicular networks. The assignment of appropriate values to these 

variables allows ants to search the route map to find the optimal path quickly and 

accurately. Liu et al. (J. Liu et al., 2007) proposed a variable-based algorithm that 

uses the JIN method (Jin, Hong, & Gao, 2002) on ant-based algorithms for path 



54 
 

routing optimization. Based on their findings, the convergent speed of search 

procedures is directly related to the above mentioned variables and the probability of 

choosing a non-optimal path is equal to the convergence rate. Ok, Seo, Ahn, Kang, 

and Moon (2011) proposed another variable-based short path-selection algorithm 

based on map link properties. Their findings show that increasing the number of ants 

reduces the probability of discovering non-preferred paths. Thus, the overall path 

length will be increased and the algorithm will converge toward the same path. 

However, a small number of ants cannot cause the above mentioned convergence 

rate. A traffic congestion control method based on different preferences is developed 

by Nahar and Hashim (2011). These preferences allow the algorithm to reduce 

average travelling time by adjusting ant colony variables. Their results show that the 

number of ants is directly correlated with the algorithm performance. The number of 

ant agents should not be less than the threshold defined in the algorithm (Nahar & 

Hashim, 2011). 

b) Step-based ACP: Unlike the variable-based ACP, wherein the main concern is the 

assigning of the best values to the variables, the step-based ACP concentrates on 

enhancing the steps of ant-based approaches including the following steps: ant 

distribution initialization, ant probability function, pheromone updating, and the 

stopping phase. These steps aim to enhance the algorithm performance. Most studies 

focused on the first two steps of ant-based algorithms because they have the most 

impact on these approaches as follows: 

1) Initialization step: Multi agent system (MAS) has been reported as a promising 

approach for dynamic problems (wherein involved parameters are not constant and 

can be change dynamically) because MAS contains common features between the 

swarm behavior of agents (e.g., ants, bees, bat, birds, or fish) and vehicular ad hoc 

networks (García-Gonzalo & Fernández-Martínez, 2012; Kponyo, Kuang, & Li, 
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2012). MAS is composed of a number of independent agents that are located in the 

problem space in a decentralized manner to solve dynamic problems. Ant agents 

have proven to be superior to the other agents in many studies such as (Bonabeau et 

al., 1999; S. S. Dhillon & P. Van Mieghem, 2007; Di Caro & Dorigo, 2011; 

Schoonderwoerd, Holland, Bruten, & Rothkrantz, 1997). (Weyns, Holvoet, and 

Helleboogh (2007) proposed different types of cooperative ant agents, such as 

intention and exploration agents. They used a divide and conquer route map to 

reduce traffic congestion. Exploration agents investigate the environment, whereas 

intention agents are used to allocate road segments to different vehicles. Foroughi, 

Montazer, and Sabzevari (2008) proposed a modified ant-based algorithm that 

minimizes congestion time. They also used a path with minimum traffic and length 

to optimize travel time, fuel consumption, and air pollution. Kammoun, Kallel, 

Alimi, and Casillas (2010) proposed an adaptive vehicle guidance system that 

intelligently finds the best route by using real-time changes in the network. To 

achieve dynamic traffic control and improve driver request management, this method 

used three types of agents, namely, city agent, road supervisor agent and intelligent 

vehicle-ant agent. A multi-agent evacuation model was introduced by Zong, Xiong, 

Fang, and Li (2010) to minimise the total evacuation time for vehicles and balance 

traffic load. Experiments have shown that MAS is more effective than a single agent 

system. Cong, De Schutter, and Babuska (2011) developed a model to optimize 

dynamic traffic routing by using a two-step approach: network pruning and network 

flow optimization. In the network-pruning phase, ant pheromone is removed after the 

best route is found by the agents to increase exploration rate. In the flow optimisation 

phase, which is based on ant-based algorithm with the stench pheromone and 

collared pheromone, the agents correspond to the links selected in the network-

pruning phase only. Moreover, this two-step approach reduces the computational 
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burden by addressing complex, dynamic traffic control problems. Król and Mrożek 

(2011) proposed a tool to investigate the existing traffic flow of a specific city (i.e., 

Wroclaw) to optimize the vehicle congestion problem. An ant-based algorithm is 

used to simulate vehicle conditions in the route network. Sur, Sharma, and Shukla 

(2012) proposed a multi-breeded ant-based VTRS that defines different ant agent 

groups instead of on agent group. In this system, each ant agent only follows agents 

of the same type (breed). This type of classification has a significant contribution to 

the distribution of vehicles. A multi-breeded ant-based VTRS allows the pheromone 

update to be independent of time and incorporates several dependent factors in the 

update. Ghazy, EL-Licy, and Hefny (2012) proposed a new threshold-based ACO by 

using roads’ good travel times as threshold values to decrease the computation time. 

They introduced a new ant, called check ant, which is used to preserve the best path 

and discard the degraded routes. Bura and Boryczka (Boryczka & Bura, 2013; Bura 

& Boryczka, 2010, 2012) proposed a parallel version of dynamic fuzzy logic-ant 

colony system-based route selection system (Salehinejad & Talebi, 2010) by using a 

new type of pheromone update that occurs locally and globally. This method also 

returns blocked ants to the source instead of eliminating them at the destination. 

2) Probability function: Ants select the next hop in the problem graph (e.g. road 

map) by using the probability function. This function can be categorized into two 

classes, namely, probabilistic and heuristic models (Kammoun et al., 2010). Hallam, 

Hartley, Blanchfield, and Kendall (2004) introduced ant behavior-based search 

agents called soft cars and used these agents to implement and test the model on a 

road network. The soft cars choose paths with less loads, shorter distances, and more 

lanes, as well as paths that are frequently visited by soft cars. The dynamic system 

for avoiding traffic jams (Bedi, Mediratta, Dhand, Sharma, & Singhal, 2007) was 

designed by adopting an alternative path for each selected solution (route). This 
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alternative path is used whenever the selected route is congested. The probability 

function of an ant algorithm is extended by using random function. Ge, Wang, Wang, 

and Jiang (2011) developed a crossing traffic rule-based VTRS by combining traffic 

rules with the probability function. This method considers the restriction and delay of 

direction, satisfies the requirements of actual traffic environment, and enhances the 

validity of vehicle paths. The distributed intelligent traffic system Kponyo et al. 

(2012) uses vehicle average speed as a parameter to determine the traffic condition. 

This system guides cars to paths with low traffic; thus, this system selects the best 

path more efficiently in compare with scenario where the ants select their path 

randomly. Table 3.1 summarizes aforementioned ACP approaches along with their 

objectives. 

Table 3.1. Ant-based VTRSs considering ACP 

Ant-based 

VTRS category 

Title of Paper (Ref.) Objectives 

Variable-based 

 Ant Colony System Algorithm for Path 

Routing of Urban Traffic Vehicles (Liu et 

al., 2007) 

An Ant Colony Optimization Approach for 

the Preference-Based Shortest Path Search 

(Ok et al., 2011) 

Modeling and Analysis of an Efficient 

Traffic Network Using Ant Colony 

Optimization Algorithm (Nahar & Hashim, 

2011) 

To find an optimal path considering 

time and distance. 

 

To propose a preference-based 

shortest path. 

 

To create an optimum traffic system 

and a platform for vehicle congestion 

control. 

Step-based   

Initialization Anticipatory Vehicle Routing using 

Delegate Multi-Agent Systems (Weyns et 

al., 2007) 

Designing of a new urban traffic control 

system using modified ant colony 

optimization approach (Foroughi et al., 

2008) 

An Adaptive Vehicle Guidance System 

instigated from Ant Colony Behavior 

(Kammoun et al., 2010) 

Multi-ant Colony System for Evacuation 

Routing Problem with Mixed Traffic Flow 

(Zong et al., 2010) 

A New Ant Colony Routing Approach with 

a Trade-off Between System and User 

Optimum (Cong et al., 2011) 

To propose a multi-agent systems, for 

anticipatory vehicle routing to avoid 

traffic congestion. 

To minimize the congestion time by 

global management over most trips 

done in the under control area. 

 

To utilize real-time traffic information 

to increase the global velocity on the 

road network. 

To tackle evacuation routing problem 

with mixed traffic flow. 

 

To find the optimal distribution of 

traffic flows in the road network. 
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Table 3.1. Ant-based VTRSs considering ACP (continued) 

Ant-based 

VTRS category 

Title of Paper (Ref.) Objectives 

Step-based   

Initialization Swarm-based Multi-agent simulation: A 

case study of urban traffic flow in the city 

of Wroclaw (Krol & Mrozek, 2011) 

Analysis & Modelling Multi-Breeded 

Mean-Minded Ant Colony Optimization of 

Agent Based Road Vehicle Routing 

Management (Sur et al., 2012) 

Threshold based AntNet algorithm for 

dynamic traffic routing of road networks 

(Ghazy et al., 2012) 

Ant Colony Optimization for Multi-criteria 

vehicle navigation problem (Boryczka & 

Bura, 2013) 

To develop a model of road traffic 

environment which can be used to 

optimize traffic flow. 

To find the optimal distribution of 

traffic flows in the road network. 

 

 

To propose threshold based AntNet 

algorithm for vehicle congestion 

problem. 

To propose user-preference vehicle 

navigation system utilizing multi-

agent ant-based algorithm. 

Probability 

Function 

Optimization In a Road Traffic System 

Using Collaborative Search (Hallam et al., 

2004) 

Avoiding traffic jam using Ant Colony 

Optimization A novel approach (Bedi et al., 

2007) 

 

Urban Vehicle Routing Research Based on 

Ant Colony Algorithm and Traffic Rule 

Restriction (Ge et al., 2011) 

 

Real Time Status Collection and Dynamic 

Vehicular Traffic Control Using Ant 

Colony Optimization (Kponyo et al., 2012) 

To find the best path in a crowded 

city. 

 

To choose an alternative optimum 

path to avoid traffic jam and then 

resume that same path again when the 

traffic is regulated. 

To develop a vehicle path planning 

based on ant colony algorithm by 

considering crossing traffic rule 

restriction. 

To find an alternative optimum path to 

avoid traffic jam using average speed 

of vehicles at different roads. 

 

3.2.2.2. Ant Colony Segmentation (ACS) 

A problem space is divided into several less complex problems. The main idea of ACO 

segmentation is derived from divide and conquers approaches. Tatomir, Kroon, and 

Rothkrantz (2004), Tatomir and Rothkrantz (2004, 2006) proposed a Hierarchical 

Routing System (HRS) based on the ant algorithm. The hierarchical ant-based control 

algorithm (Tatomir & Rothkrantz, 2005) is combined with a HRS to increase scalability. 

Narzt et al. (2010) introduced another technique that uses segmentation as a principle to 

overcome traffic control problems. In this approach, a novel pheromone update with a 

user-preference assignment system is adopted to divide the environment into different 

clusters. The segmentation procedure is conducted by using a pheromone engine, and a 
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unique identifier is assigned to each car. Claes and Holvoet (2012) introduced a 

cooperative ant-based algorithm that results in less iteration. The essential concept for 

cooperation in this approach is the concept of the region. According to this concept, ants 

are interested in paths that lead to locations near their destination. To achieve a suitable 

form of segmentation, segments near each other are grouped together to form a region. 

Thereafter, routing is performed according to regions instead of segments. Claes and 

Holvoet evaluated cooperative and non-cooperative approaches and concluded that 

cooperative methods outperform non-cooperative methods in different aspects. For 

instance, the number of ants required in cooperative methods is less than the number of 

ants in non-cooperative methods. Table 3.2 summarizes aforementioned ACS 

approaches along with their objectives. 

Table 3.2. Ant-based VTRSs considering ACS 

Ant-based 

VTRS category 

Title of Paper (Ref.) Objectives 

Segmentation Hierarchical routing in traffic using 

swarm-intelligence (Tatomir & 

Rothkrantz, 2006)  

Self-organizing congestion evasion 

strategies using ant-based pheromones 

(Narzt et al., 2010)  

 

Cooperative Ant Colony Optimization 

in Traffic Route Calculations (Claes & 

Holvoet, 2012) 

To develop a prototype of HRS by splitting 

traffic networks into several smaller and less 

complex networks. 

To investigate a technical implementation of 

swarm intelligence applied to the traffic 

system and evaluates different evasion 

strategies for vehicles.  

To propose a cooperative ACO for vehicle 

traffic route calculation. 

 

3.2.2.3. Ant Colony Prediction (ACPre) 

The two kinds of prediction methods are long-term prediction and the short-term 

prediction. Given that the control parameters of traffic congestion change briskly and 

that vehicles are highly dynamic, long-term prediction is imprecise for traffic problems. 

Therefore, most techniques in this area use short-term predictions. Ando et al. (Ando, 

Fukazawa, Masutani, Iwasaki, & Honiden, 2006; Ando, Masutani, et al., 2006) 

proposed a basic model for predicting traffic congestion by using the probe car system. 

The probe car system is a data collection method that uses vehicular ad hoc networks to 
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collect real-time traffic information. Based on their investigation, the distance-based 

pheromone update mechanism outperforms other types of update mechanisms, such as 

braking and basic traffic pheromones. Tatomir, Rothkrantz, and Suson (2009) proposed 

ant-based VTRS that applies the ant algorithm to find the fastest path by using past, 

present, and future traffic information (i.e., travel-time prediction). To obtain accurate 

data in this routing system, the number of ant agents should be more than the number of 

cars. Claes and Holvoet (2011) also used link travel-time prediction to find paths with 

the shortest travel times. Kurihara (2013) and Kurihara et al. (2009) proposed a novel 

congestion-forecasting algorithm that is composed of major phases. First, the flow of 

traffic density is formulated by using a traffic density pheromone. Thereafter, based on 

the congestion-diffusion concept, the growth of the path queues is calculated, thus 

enabling the congestion forecasting of pheromones by monitoring the evaporation rate. 

Ant colony routing (Cong, De Schutter, & Babuška, 2013) is another prediction based 

VTRS which uses stench pheromone and color ants for vehicle routing and congestion 

mitigation. The stench pheromone is utilized for distributing vehicles through the road 

maps; meanwhile, multiple origins and destinations can be represented by different 

colors and color ants are only sensitive to their own color. Moreover, network pruning 

method is used to omit the unnecessary links and nodes in order to decrease the road 

network complexity as well as computation time of the algorithm.  

a) Hybrid techniques: Some studies have combined ant algorithm with techniques such 

as fuzzy logic, neuro-network, and machine learning to create hybrid techniques. The 

most applied techniques are as follows: Fuzzy logic can be embedded to form a 

multi-preference routing system and can be applied to pheromone update procedures 

to detect the optimum multi-objective direction (e.g., number of traffic lights, lane 

width, and accident risk) between sources and destinations. Neural networks are used 

to predict the future time by using real-time traffic information. The main advantage 
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of using machine learning in ant-based algorithm is the ability of using passive 

information as learning input to optimize or predict future traffic conditions more 

effectively. Salehi-nezhad and Farrahi-Moghaddam (2007) and Salehinejad and 

Talebi (2008, 2010) combined fuzzy logic, neural network and ant-based algorithm 

to introduce a user-preference VTRS. In these methods, the traffic control center and 

artificial neural network obtain current and future traffic data, respectively. In 

addition, fuzzy logic is used for local pheromone updating. Abbas, Khan, Ahmed, 

Abdullah, and Farooq (2011) proposed another neuro-fuzzy and ant algorithm 

amalgamation to find the most encouraging route based on driver preference. Similar 

to the previous methods, artificial neural network is supplied to predict time. This 

system is able to prevent recurring congestion conditions and generate a priority-

based path list for drivers. An adaptive VTRS that integrates ant algorithm with 

hierarchical fuzzy model is proposed by Kammoun, Kallel, Alimi, and Casillas 

(2011) and Kammoun et al. (2014). Their proposed approach includes two steps: 1) 

ant algorithm is used to find the best path taking into account both traffic quality and 

itinerary length, 2) hierarchical fuzzy model is used for enhancing the path selection 

considering a set of the most important factors regarding the driver, the environment 

and the path. Jiang, Wang, and Zhao (2007) proposed an ant-based VTRS that 

determines an optimal path (called the ‘closest path’ in the Dijkstra algorithm) by 

modifying pheromone updates and learning strategies. Yousefi and Zamani (2013) 

developed a learning-based VTRS based on ant algorithm concept. They considered 

that a network graph was composed of several sub-graphs. Learning the overall 

condition of the graph is possible by conducting several searches over each sub-

graph. This procedure helps discover the shortest path and avoid choosing paths 

randomly. Time-ANTS (Doolan & Muntean, 2014) is another prediction-based 

VTRSs that uses machine learning to identify and avoid bottlenecks. Time-ANTS 
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architecture includes four components, namely vehicle models, road models, a time-

dependent traffic model (i.e. historical traffic data) and a current traffic model (i.e. 

real-time traffic data), for optimal path finding. Similar to most of the existing 

approaches, ignoring non-recurring congestion conditions and testing the algorithm 

in an unreal and small size road map network are the most notable drawbacks of this 

approach. Table 3.3 summarizes aforementioned ACPre approaches along with their 

objectives. 

Table 3.3. Ant-based VTRSs considering ACPre 

Ant-based VTRS 

category 

Title of Paper (Ref.) Objectives 

Prediction 

 Pheromone Model Application to 

Traffic Congestion Prediction (Ando, 

Masutani, et al., 2006) 

 

Travel time prediction for dynamic 

routing using ant-based control 

(Bogdan Tatomir et al., 2009) 

 

Ant Colony Optimization applied to 

Route Planning using Link Travel 

Time predictions (Claes & Holvoet, 

2011)  

 

Traffic-Congestion Forecasting 

Algorithm Based on Pheromone 

Communication Model (Kurihara, 

2013) 

To propose a short-term prediction 

model for vehicle congestion control.  

 

 

To propose a dynamic routing system 

based on Ant-Based Control using travel 

time prediction.  

 

To find routes that reduce vehicles travel 

time using link (road) travel time 

predictions. 

  

To propose a method of congestion 

forecasting based on multi-agent 

coordination mechanism.  

 

 Ant Colony Routing algorithm for 

freeway networks (Cong et al., 2013) 

To decrease the travel costs (e.g. time, 

tolling, fuel consumption, emission) by 

finding an optimal paths for vehicle 

routing, and to enhance safety and 

decrease noise and pollution by 

distributing the vehicle through the road 

map. 

Hybrid Techniques 

Machine Learning Solving the Shortest Path Problem in 

Vehicle Navigation System by Ant 

Colony Algorithm (Jiang et al., 2007)  

 

The Optimal Routing of Cars in the 

Car Navigation System by Taking the 

Combination of Divide and Conquer 

Method and Ant Colony Algorithm 

into Consideration (Youse & Zamani, 

2013)  

 

TIME-ANTS: An Innovative 

Temporal and Spatial Ant-based 

Vehicular Routing Mechanism 

(Doolan & Muntean, 2014) 

 

To propose a shortest path search 

method by modifying pheromone update 

rule and adding learning strategy into 

ACO.  

 

To propose an optimal routing method 

to reduce vehicles travel time by 

combining Divide and Conquer, ACO 

and Learning approaches. 

 

 

To determine optimal paths for vehicles 

in both space and time dimensions.  



63 
 

Table 3.3. Ant-based VTRSs considering ACPre (continued) 

Ant-based VTRS 

category 

Title of Paper (Ref.) Objectives 

Hybrid Techniques   

Neuro/Fuzzy Dynamic Fuzzy Logic-Ant Colony 

System-Based Route Selection System 

(Salehinejad & Talebi, 2010) 

 

 

 

Bio-inspired Neuro-Fuzzy Based 

Dynamic Route Selection to Avoid 

Traffic Congestion (Abbass et al., 

2011) 

 

Adapt-Traf: An adaptive multi-agent 

road traffic management system based 

on hybrid ant-hierarchical fuzzy model 

(Kammoun et al., 2014) 

To introduce multi parameter rout 

selection system utilizing fuzzy logic 

and neural network for pheromone 

update and future prediction, 

respectively. 

 

To propose a bio-inspired neuro-fuzzy 

based route selection system to avoid 

vehicle traffic congestion. 

 

 

To increase the quality of whole road 

network, especially in the case of traffic 

congestion conditions, considering real-

time traffic data and drivers’ travel time. 

 

Figure 3.1 provides a different overview of ant-based VTRS categories and illustrates 

the relationship of some algorithms with other categories and user preference. For 

example, approaches proposed by Claes and Holvoet (2011) and Jiang et al. (2007) are 

in the prediction category because of using link travel time as prediction method. At the 

same time they investigate ant parameters in their proposed algorithms, hence these 

approaches can be considered in parameter category as well. The approaches proposed 

by Salehinejad and Talebi (2010) and Abbass et al. (2011) are also found in the same 

category and are connected to the user preference, thus indicating that user preference is 

considered in these algorithms. 
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Figure 3.1. Tabular taxonomy of studied algorithms 

3.2.2.4. Statistical overview of ant-based VTRS 

The reviewed literature has shown that a significant amount of work has been conducted 

to use ant colonies for designing effective traffic congestion control methods. The 

statistics, evaluation metrics, and differences of the studied papers are discussed in this 

section. The results obtained from our statistical investigation are presented in Table 3.4 

and Figure 3.2. In Table 3.4 various statistics regarding algorithms evaluation and 

involved parameters such as size of playground, nodes, links and length are represented. 

Moreover, statistical information of some of functional parameters such as traffic 

evaluation and system accuracy are provided. Our investigations show five 

shortcomings in the studied papers: 1) System overhead and resource management are 

not considered, 2) Simulation procedures are not properly explained in most cases, 3) 

Algorithms are not evaluated sufficiently with other functional methods, 4) A suitable 

approach which considers the non-recurring congestion conditions in its routing 

procedure has not been proposed yet, and 5) A functional framework for VTRS has not 
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been developed in any of the studies. Therefore, even though the reported protocols 

have appealing properties and good performance, their actual presentation and 

evaluation lack true scientific soundness. 

Table 3.4. Statistics on methodological approach in the studied papers 

Description Percentage of the papers   
Perform empirical evaluation of algorithms 100 

Report the number of nodes and links in simulation area 70 

Report the size of simulation area 55 

Utilize travel time as evaluation metric 55 

Report the number of nodes in the network 51 

Do not specify simulator name or use a self-made one 48 

Compare to other algorithms 44 

Report simulation length 33 

Report number of iterations 29 

Utilize path cost or length as evaluation metric 29 

Report the number of vehicles in the simulation 26 

Report the relationship between ant parameters and system accuracy 22 

Utilize traffic distribution as evaluation metric 22 

Report system overhead 7 

Utilize velocity of vehicles as evaluation metric 7 

Provide a suitable solution for non-recurring congestion conditions 0 

Provide a functional and comprehensive framework for VTRS 0 
  

a) Simulation tools for Ant-based VTRS: All of the studied approaches have been 

assessed by using simulation tools. Choosing a realistic simulation is important for 

validating the proposed protocol or methodology. In Figure 3.2, we present a chart 

that illustrates the distribution of various simulation environments used in the studied 

papers. The investigation results indicate that more than half of the researchers (52%) 

used development environment applications such as MATLAB and Netlogo 

(Wilensky, 1999) to simulate the algorithms. Furthermore, 48% of the studied papers 

used either unknown simulation tools (33%) or self-made simulators (15%). 

Although traffic simulators (e.g., Sumo) have advanced in recent years, VTRSs still 

lack specialized simulation tools. The use of self-made simulation tools is infeasible 

because the production of an accurate and robust simulation environment in 

computer science requires a considerable amount of effort and long-term 
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collaboration between experts. Almost all of these collaborations lead to well-known 

simulation tools such as NS2 (Fall & Varadhan, 2014), OPNET (X. Chang, 1999) 

and OMNET++ (Varga, 2010). Therefore, a self-made simulation environment is 

unrealistic and is unreliable for evaluating algorithms or methodologies.  

 
Figure 3.2. Percentage of used simulators for the evaluation of studied algorithms 

Tables 3.5 and 3.6 represent evaluation metrics of different algorithms which uses the 

same IDE as examples. Algorithms which use MATLAB are represented in Table 3.5, 

while Table 3.6 includes the algorithms which utilize Visual C++ as implementation 

tool. Moreover, the result of modifying the mentioned parameters in these algorithms is 

presented in the impact section of each table. 

Table 3.5. Comparison of algorithms proposed by Salehinejad and Talebi (2010), and Abbass et 

al. (2011) using MATLAB 

Reference Parameters Impact on 

ρ Q α Pheromone level 

(Salehinejad & Talebi, 2010) 0.9 0.9 2 Very weak-very strong Congestion-distance cost 

(Abbass et al., 2011) 0.9 -- 0.5 0-5 Route ranking-user preference 

Table 3.6. Comparison of algorithms proposed by Liu et al. (2007) and Ge et al. (2011) using 

Visual C++ 

Reference Parameters Impact on 

ρ Q α Number of ants 

(Liu et al., 2007) 0.5 0.5 0.5 20 Convergence speed 

(Ge et al., 2011) 0.7 2 04 50 Route cost 

 

In Tables 3.5 and 3.6, α and β are coefficient of pheromone trail and route cost 

[Equation (2.1)], ρ is pheromone evaporation [Equation (2.2)] and Q is constant value 

[Equation (2.3)]. 
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b) Evaluation observation: Although the evaluation and assessment of proposed 

algorithms are two of the most important and critical parts of research, most studied 

papers contain the following problems: 1) Insufficient information on the simulation 

tools and set-up processes, 2) Insufficient statistical information on evaluation 

metrics (e.g., average travel speed is an important evaluation metric for VTRS; 

however, only 7% of papers addressed this metric), 3) The obtained results are not 

discussed or justified in most cases, 4) Only 44% of the papers have compared their 

results with state-of-the-art algorithms, 5) Only a few datasets and small-scale 

scenarios are used to evaluate the algorithms. 

For most studies, a single metric is used for evaluation or no evaluation metric is 

defined at all. Therefore, in the following section, some critical and essential factors 

that should be considered in future works are discussed. Tables 3.7 and 3.8 indicate 

the various evaluation metrics used in the studied ant-based VTRS in chronological 

order. These tables elaborate the impact of desired algorithm on given evaluation 

metrics. The most used and important evaluation metrics in VTRS are presented in 

these tables. To mitigate the five mentioned shortcomings in ant-based VTRSs, the 

following suggestions can be considered. 

1) A proper simulator should be developed to ensure that evaluations are accurate 

and reliable. Simulation metrics such as the number of ants, simulation duration, 

size of simulation area, and number of iterations should be defined clearly. 

2) Evaluation metrics should be defined and considered. Some essential evaluation 

metrics such as travel time, speed, and path length should be evaluated in all 

algorithms. 

3) Current methodologies should be compared, and authors should publish their 

simulation codes for accurate comparisons. 
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4) Algorithms should be defined clearly by using pseudo-codes and should be 

evaluated based on robustness, scalability, and overhead. 

Table 3.7. Comparisons of evaluation metrics between ant-based VTRSs (recent four years) 

References Evaluation metrics Discussion 

(Kammoun 

et al., 2014) 

Travel time, 

travel speed, 

path length 

This hybrid probabilistic approach is evaluated by comparing 

its results with static VTRS (Dijkstra), and dynamic VTRS 

(predicted travel time) (Xiaoyan Zhang & Rice, 2003). In 

addition, the influence of the hierarchical fuzzy system on 

VTRS is examined by evaluating their system with and 

without it. 

(Doolan & 

Muntean, 

2014) 

Percentage of vehicles 

that reached destination 

Various approaches (i.e. Dijkstra, mechanism with no 

rerouting, four types of dynamic rerouting algorithm (Y.-J. 

Wu & Sung, 2010) and an algorithm from (Sommer, Krul, 

German, & Dressler, 2010)) are used for performance 

evaluation. This approach outperforms the others by up to 

19% in terms of the mentioned evaluation metric. 

(Cong et al., 

2013) 

Convergent speed, 

traffic distribution, 

travel speed, 

travel time, 

computation time 

Vehicles are routed with and without this approach in order 

to examine it effect on traffic congestion mitigation. 

Moreover, this approach is compared with two other 

dynamic routing approaches (i.e. non-linear optimal control 

(Kotsialos, Papageorgiou, Mangeas, & Haj-Salem, 2002) and 

the time-dependent shortest routes method (Tong & Wong, 

2000) in order to analyze its performance in terms of various 

mentioned evaluation metrics.   

(Boryczka & 

Bura, 2013) 

Travel time, 

path length, 

number of ants 

This approach compensates for the inability of dynamic 

fuzzy logic system (Salehinejad & Talebi, 2010) to support 

large datasets. This approach also outperforms the ant 

algorithm and dynamic fuzzy logic system in terms of 

running time. 

(Kurihara, 

2013) 

Prediction accuracy This congestion-forecasting algorithm eliminates the need for 

probe cars and central management servers. This algorithm 

mainly focuses on predicting changes in traffic density and 

sudden accidents. However, the need to install several kinds 

of hardware in various network locations makes the 

implementation of this method expensive. 

(Yousefi & 

Zamani, 

2013) 

Travel time, 

number of ants, 

path length 

The proposed method finds paths by combining the divide 

and conquers method and ant colony algorithms. This 

algorithm compared with the Dijkstra and ant colony 

algorithms in terms of travel time. It exhibits better results 

than other methods in this comparison. 

(Sur et al., 

2012) 

Number of vehicles,  

traffic distribution 

Various types of vehicles are introduced in this approach to 

distribute traffic. This method provides better results in 

avoiding the stagnation of searching criteria compared with 

traditional ant algorithm. 

(Ghazy et 

al., 2012) 

Travel time, 

number of ants 

Based on theoretical investigations, the performance of this 

algorithm is O(n
2
) for road networks with n nodes. The 

number of ants and travel time are improved by 

approximately 12% and 3.13%, respectively. 

(Kponyo et 

al., 2012) 

Travel speed, 

waiting time, 

number of stopped 

vehicles 

In this approach, vehicles' travel speed, waiting time and the 

number of stopped vehicles are improved compared with the 

random next-node selection approach. 

(Claes & 

Holvoet, 

2012) 

Travel time, 

number of iteration 

In this region-based algorithm, every ant agent has to carry 

(save) additional information to find their target region 

faster. Hence, although the solution is found quickly, the 

system uses more resources. 
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Table 3.7. Comparisons of evaluation metrics between ant-based VTRSs (recent four years) 

(continued) 

References Evaluation metrics Discussion 

(Ok et al., 

2011) 

Path length, 

number of links 

Although the best values for a set of parameters (e.g., 

number of ants and iteration) are introduced to improve ant 

algorithm’s performance, the algorithm is unsuitable for 

finding the shortest path based on preference. 

(Nahar & 

Hashim, 

2011) 

Traffic distribution, 

travel time 

This approach is analogous to proposed algorithm by Ok et 

al. (2011). However this technique does not perform well 

when the number of agent in the network is less than 100 

agents, which leads to high overhead. Travel time can be 

reduced ranging from 21% to 39% by using this approach. 

(Cong et al., 

2011) 

Traffic distribution, 

number of ants 

This pruning-optimization approach mitigates the dynamic 

traffic routing problem but does not consider user preference 

and only optimizes traffic according to the system-optimum 

concept. 

(Krol & 

Mrozek, 

2011) 

Travel time, 

number of stopped 

vehicles 

This method enables the distribution of traffic across 

multiple servers. Thus, this method can be used to manage 

traffic flow across very complex road networks with high 

traffic volume. 

(Ge et al., 

2011) 

Path length, 

travel time 

This Pareto-type method uses a novel network storage 

structure to make the path-planning algorithm functional. 

This phase is important for generating the adjacent matrix of 

the network. 

(Abbass et 

al., 2011) 

Prediction accuracy, 

traffic flow 

Route ranking that is based on user preference is provided, 

and prediction is used to improve the decision-making 

system. On the basis of the resulting priority-based list, the 

lowest cost path is selected. 

(Claes & 

Holvoet, 

2011) 

Travel time, 

traffic distribution, 

parameters’ relationship, 

prediction accuracy 

A set of ACO parameters that provides a suitable trade-off 

between exploration and exploitation is found and discussed. 

Moreover, this algorithm outperforms the A* algorithm in 

terms of average travel time. 

 

Table 3.8. Comparisons of evaluation metrics between ant-based VTRSs (2010 and below) 

References Evaluation metrics Discussion 

(Narzt et al., 

2010) 

Travel time, 

number of stopped 

vehicles 

The pheromone engine designed in this paper is efficient for 

analyzing traffic information. However, the pheromone trail 

is not actively monitored because of the cluster-based 

platform. 

(Kammoun 

et al., 2010) 

Travel speed, 

number of stopped 

vehicles, 

travel time 

The next node is selected based on two methods: heuristic 

and probabilistic. The probabilistic method outperforms the 

heuristic method. Travel speed is increased by an average of 

15% compared to static algorithms (e.g., Dijkstra). 

(Salehinejad 

& Talebi, 

2010) 

Travel time, 

number of ants, 

path length, 

convergent speed 

This algorithm is executed locally for each vehicle. 

Moreover, it outperforms the ant colony system and A* 

algorithms in terms of convergent speed and average cost. 

(Zong et al., 

2010) 

Number of vehicles A multi-agent approach that solves the evacuation problem 

by using vehicle congestion load balancing. This approach 

outperforms ant colony system in term of evacuation time. 

(Tatomir et 

al., 2009) 

Travel time Four different types of vehicle navigation systems are used to 

evaluate this algorithm: 1) use of ant-based control 

algorithms; 2) sending traffic information every 30 min; 3) 

sending traffic information every 10 min; and 4) using the 

Dijkstra algorithm. The algorithm that uses ant-based control 

algorithm has better travel time. 

(Foroughi et 

al., 2008) 

Path length, 

path traffic 

Along with path length, path traffic is added to the traffic 

control system as an optimization metric. 
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Table 3.8. Comparisons of evaluation metrics between ant-based VTRSs (2010 and below) 

(continued) 

References Evaluation metrics Discussion 

(Liu et al., 

2007) 

Convergent speed A set of parameters are introduced to maintain the operation 

of the ACO algorithm in a steady state with high convergent 

speed. The parameter set is related to specific problem space 

and may not work for other algorithms such as proposed 

algorithm by Ok et al. (2011) and Nahar and Hashim (2011). 

(Weyns et 

al., 2007) 

Traffic distribution The use of a multi-agent mechanism provides this system 

with more flexibility for dynamic conditions. However this 

algorithm does not investigates scalability issues. 

(Bedi et al., 

2007) 

Path length, 

number of ants 

The random function is added to the probability function to 

increase the exploration rate of agents in the problem space. 

(Jiang et al., 

2007) 

Path length, 

number of ants, 

convergent speed, 

number of iteration 

Three different transition rules based on density, distance, 

and angle between two paths are used in this algorithm. The 

angle-based transition rule outperforms the other two rules in 

terms of path length. An agent is called a ‘dead ant’ if it 

cannot find a feasible path from source to destination. 

(Tatomir & 

Rothkrantz, 

2006) 

Travel time This approach uses hierarchical ant-based control algorithm 

to provide scalability for its routing system. Travel time is 

reduced by quickly reacting to new changes. 

(Ando, 

Masutani, et 

al., 2006) 

Travel time, 

prediction accuracy, 

parameters’ relationship 

Two types of vehicles are used in this approach: general and 

commercial (e.g., buses or taxis). Thus, different pheromone 

types are assigned to different vehicle types. High prediction 

accuracy is obtained by using pheromone prediction method. 

(Hallam et 

al., 2004) 

Path length, 

number of ants 

Path length This parameter-based method investigates the 

best available values to be set for ant algorithm. However, 

this method cannot support fairness. 

 

c) Comparison of studied approaches: The similarities and differences between various 

studied ant-based VTRSs along with their probability functions are discussed. This 

information can provide insights on the studies conducted regarding ant-based VTRS 

for designing and forming future frameworks. Some shortcomings, such as the lack 

of novel and effective probability functions, can be recognized through the following 

discussions. 

Features such as data gathering, ant agent, new pheromone, and new ant type should 

also be considered in ant-based VTRSs. Table 3.9 discusses these features in detail. 

Data gathering is an important phase that uses either historical information, real-time 

information, or both. Moreover, ant agents involved in VTRSs can be virtual or real 

(vehicle). To enhance the performance of the ant-based algorithm, in some studies, 

the basic pheromone type is modified and a new type of pheromone is proposed, 

such as stench and colored pheromones. New ant types, such as check and colored 

ants, are also proposed and used in path finding process. 
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Table 3.9. Features and specifications of various ant-based VTRSs 

Ant-based VTRSs Reference Data 

gathering 

Ant 

agent 

New 

pheromone 

New 

ant 

Ant Colony Parameters 

        Variable-based (Nahar & Hashim, 2011) Historical Real No No 

 (Ok et al., 2011) Historical Virtual No No 

(Liu et al., 2007) Historical Virtual No No 

         Step-based  

                     Initialization (Boryczka & Bura, 2013) Real-time Virtual Yes No 

(Ghazy et al., 2012) Historical Virtual No Yes 

(Sur et al., 2012) Historical Virtual Yes Yes 

 

 

 

 

 

 

(Cong et al., 2011) Real-time Real Yes Yes 

(Krol & Mrozek, 2011) Historical Real No No 

(Zong et al., 2010) Real-time Real Yes Yes 

(Kammoun et al., 2010) Real-time Real No Yes 

(Foroughi et al., 2008) Real-time Virtual No No 

(Weyns et al., 2007) Real-time Virtual No Yes 

                     Probability Function (Kponyo et al., 2012) Real-time Real No No 

 (Ge et al., 2011) Historical Virtual No No 

(Bedi et al., 2007) Real-time Virtual No No 

(Hallam et al., 2004) Hybrid Virtual Yes Yes 

Ant Colony Segmentation 

 (Claes & Holvoet, 2012) Hybrid Real Yes No 

(Narzt et al., 2010) Real-time Real Yes No 

(Bogdan Tatomir & 

Rothkrantz, 2006) 

Real-time Virtual No No 

Ant Colony Prediction 

 

 

 

 

(Cong et al., 2013) Real-time Virtual Yes Yes 

(Kurihara, 2013) Real-time Real Yes No 

(Claes & Holvoet, 2011) Historical Virtual No No 

(Bogdan Tatomir et al., 

2009) 

Hybrid Virtual Yes Yes 

(Ando, Masutani, et al., 

2006) 

Real-time Real Yes No 

             Hybrid technique (Kammoun et al., 2014) Real-time Virtual No No 

(Doolan & Muntean, 

2014) 

Hybrid Virtual No No 

(Yousefi & Zamani, 

2013) 

Historical Virtual Yes No 

(Abbass et al., 2011) Hybrid Virtual Yes No 

(Salehinejad & Talebi, 

2010) 

Hybrid Virtual Yes No 

(Jiang et al., 2007) Hybrid Virtual Yes Yes 

Ants select the next hop to reach their destinations by using the probability function. 

Various probability functions in studied methodologies and their parameter descriptions 

are presented in Table 3.10. Most probability functions are similar to the basic 

probability function (represented in the first row of the Table 3.10); the only difference 
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is minor modifications such as the addition or omission of parameters from the basic 

probability function. 

Table 3.10. Different probability functions used in ant-based VTRSs 

Reference Probability function Description 

(Marco 

Dorigo, 1992) 𝑃𝑖𝑗
𝑘  (𝑡)= 

[𝜏𝑖𝑗(𝑡)]𝛼 [ɲ𝑖𝑗(𝑡)]𝛽

∑ [𝜏𝑖ℎ(𝑡)]𝛼 [ɲ𝑖ℎ(𝑡)]𝛽
h∈tabuk 

 

(basic probability function) 

Intensities α and β are used to stress the 

importance of trail 𝜏𝑖𝑗(𝑡) and route cost 

ɲ
𝑖𝑗

(𝑡). tabuk is the set of visited nodes for 

ant k. 

(Hallam et 

al., 2004) 
𝑃𝑖𝑗

𝑘  (𝑡)= 

[𝜏𝑖𝑗]𝛼 [ɲ𝑖𝑗]𝛽 [𝑛𝑜𝑙𝑖𝑗]𝜆 [1/𝑛𝑜𝑐𝑖𝑗]𝛿

∑ [𝜏𝑖𝑗]𝛼 [ɲ𝑖𝑗]𝛽 [𝑛𝑜𝑙𝑖𝑗]𝜆 [1/𝑛𝑜𝑐𝑖𝑗]𝛿
l∈Allowedk 

 

 

Intensities α, β, λ and δ are the relative 

importance that can be used stress on the 

importance of the trail [𝜏𝑖𝑗], visibility 

[ɲ𝑖𝑗], number of lanes [𝑛𝑜𝑙𝑖𝑗], and number 

of cars [𝑛𝑜𝑐𝑖𝑗], respectively. 

(Bedi et al., 

2007) 𝑃𝑖𝑗
𝑘  (𝑡)= 

(𝜏𝑖𝑗(𝑡))𝛼 ɲ𝑖𝑗
𝛽

∑ (𝜏𝑖𝑗(𝑡))𝛼 ɲ𝑖𝑗
𝛽

l∈Allowedk 

  

+ Random function  

𝜏𝑖𝑗(𝑡) is the intensity of pheromone trail 

on edge (i, j) at time t, ɲ𝑖𝑗  (visibility 

factor) = 1/dij (dij is the distance between 

nodes i and j). α and β are the parameters 

that control the relative importance of the 

pheromone trail vs. visibility. 

(Kammoun et 

al., 2010) 𝑃𝑖𝑡𝑖𝑛𝑒𝑟𝑎𝑟𝑦
𝑖 = 

(𝑄𝑖𝑡𝑖𝑛𝑒𝑟𝑎𝑟𝑦
𝑖 )

𝛼
(

𝑊𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡−𝑖𝑡𝑖𝑛𝑒𝑟𝑎𝑟𝑦

𝑊𝑖𝑡𝑖𝑛𝑒𝑟𝑎𝑟𝑦
𝑖 )𝛽

∑ (𝑄
𝑖𝑡𝑖𝑛𝑒𝑟𝑎𝑟𝑦
𝑗

)
𝛼

(
𝑊𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡−𝑖𝑡𝑖𝑛𝑒𝑟𝑎𝑟𝑦

𝑊
𝑖𝑡𝑖𝑛𝑒𝑟𝑎𝑟𝑦
𝑗 )𝛽

𝑗=1 

 

𝑄𝑖𝑡𝑖𝑛𝑒𝑟𝑎𝑟𝑦
𝑖  is the quality of itinerary i. 

𝑊𝑖𝑡𝑖𝑛𝑒𝑟𝑎𝑟𝑦
𝑖  is the itinerary weight 

representing the itinerary length, and 

𝑊𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡−𝑖𝑡𝑖𝑛𝑒𝑟𝑎𝑟𝑦
𝑖  is the length of the 

shortest possible itinerary. α and β 

represent the itinerary intensities. 

(Salehinejad 

& Talebi, 

2010) 
𝑃𝑖𝑗

𝑘 =  
𝜏𝑖𝑗

𝛼 ∏ 𝜉𝑖𝑗𝑙
−𝛼𝑙

𝑙∈𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠

∑ 𝜏𝑖ℎ
𝛼 ∏ 𝜉𝑖ℎ𝑙

−𝛼𝑙
𝑙∈𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠ℎ∉𝑡𝑎𝑏𝑢𝑘

 

𝜏𝑖𝑗 is the direct route pheromone intensity 

from junction i to j. Parameter α the 

importance of 𝜏𝑖𝑗. The tabuk is the set of 

visited nodes. The cost function of each 

parameter l is 𝜉𝑖𝑗𝑙
−𝛼𝑙, where 1≤ 𝜉𝑖𝑗𝑙 ≤ 10 

and the significance of each l is adjustable 

using αl for all parameters 

(Claes & 

Holvoet, 

2011) 
𝑃𝑖𝑗 =  

(1 − ϒ)𝜏𝑖𝑗
𝛼 . ϒɲ𝑖𝑗

𝛽

∑ (1 − ϒ)𝜏𝑖𝑛
𝛼 . ϒɲ𝑖𝑛

𝛽
(𝑖,𝑛)∈𝑆

 

Intensities α, β and ϒ are the relative 

importance that can be used to stress the 

importance of the trail 𝜏𝑖𝑗  and visibility 

ɲ𝑖𝑗 . 

(Ok et al., 

2011) 𝑃𝑖𝑗
𝑘  (𝑡) =  

1/([𝜏𝑖𝑗(𝑡)][ɲ𝑖𝑗(𝑡)]𝛽)

∑ 1/([𝜏𝑖𝑢(𝑡)][ɲ𝑖𝑢(𝑡)]𝛽)𝑢∈𝑁𝑖
𝑘(𝑡)

 

𝑁𝑖
𝑘(𝑡) is the set of candidate nodes 

connected to node i. 𝜏𝑖𝑗(𝑡) and ɲ𝑖𝑗(𝑡) 

represent the pheromone trail and a 

heuristic function that is defined as the 

inverse of the distance between node i and 

j, respectively. Parameter β is a positive 

constant and is used to amplify the 

influence of the heuristic function. 

(Cong et al., 

2011) 𝑃𝑐{𝑗|𝑖} =
(max {𝜏𝑚𝑖𝑛 . 𝜏𝑖𝑗})𝛼

∑ (max {𝜏𝑚𝑖𝑛 . 𝜏𝑖𝑙})𝛼
𝑙∈𝑁𝑖,𝑐

 

∀ 𝑗 ∈  𝑁𝑖,𝑐 

𝜏𝑖𝑗 is the pheromone level previously 

deposited by the ants on link (i, j). 

Parameter α determines the relative 

importance of 𝜏𝑖𝑗. The feasible 

neighborhood Ni,c of ant c at node i is the 

set of nodes that are connected to i and the 

unvisited nodes of ant c in the current 

iteration. 𝜏𝑚𝑖𝑛 is the minimum pheromone 

level on each link, and guarantees the low 

pheromone level, and thus preventing the 

denominator of the formula from 

becoming zero. 
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Table 3.10. Different probability functions used in ant-based VTRSs (continued) 

Reference Reference Reference 

(Claes & 

Holvoet, 

2012) 

𝑃𝑖𝑗
𝑐 = (1 − 𝜆)𝑃𝑖𝑗 + 𝜆𝜎𝑖𝑗(𝑟) 

r is the region the ant is attempting to 

reach, Pij is the probability of choosing 

edge (i, j) from (20), and λ is a weighing 

factor between the vehicle specific and 

region-specific information. 𝜎𝑖𝑗(𝑟) is the 

region-specific pheromones for every 

region r reachable through that edge. 

 
 

 

3.2.2.5. Characteristics of ant-based VTRS 

On the basis of the aforementioned discussions, the characteristics of ant-based VTRSs 

are discussed in this section. Related literature has classified these characteristics in 

different ways. However, the deterministic/stochastic (as technique), reactive/predictive 

(as strategy), flat/hierarchical (as topology), centralized/decentralized (as architecture), 

and loop free/load balancing characteristics of ant-based VTRSs are considered and 

discussed in this subsection. These characteristics are summarized in Table 3.11. 

According to Table 3.11, most of the VTRSs use predictive and flat mechanisms. In 

addition to these characteristics, dynamicity and optimality should always be considered 

in VTRS. Considering the nature of these systems, all algorithms and techniques 

introduced in this area should always be dynamic and optimal. 

1) Technique: The first characteristic of ant-based VTRSs is related to the treatment of 

travel cost. This value can be computed in a deterministic or stochastic manner 

(Schmitt & Jula, 2006). Deterministic systems assign pre-defined and deterministic 

vales for links (roads) and disregard the dynamic and random nature of vehicle 

congestion. By contrast, stochastic systems consider the traffic condition of roads 

(links) and assign different values to links according to historical or/and real-time 

traffic information. Although stochastic systems require high computational capacity 

to process large amounts of vehicle traffic data, stochastic systems are not vulnerable 

to the random nature of vehicle congestion. Stochastic approaches outperform 

deterministic approaches in solving dynamic problems. 
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Table 3.11. Characteristics of studied ant-based VTRSs 

References 

   Characteristics    

Technique Strategy Topology Architecture Loop free 

Traffic load 

balancing 

 

  

(Kammoun et al., 2014) Stochastic Predictive Hierarchical Decentralized Yes Yes  

(Doolan & Muntean, 2014) Stochastic Predictive Flat Centralized No Yes  

(Cong et al., 2013) Stochastic Predictive Flat Centralized Yes Yes  

(Kurihara, 2013) Stochastic Predictive Hierarchical Decentralized No No  

(Yousefi & Zamani, 2013) Deterministic Predictive Hierarchical Decentralized No Yes  

(Boryczka & Bura, 2013) Stochastic Predictive Flat Decentralized Yes No  

(Claes & Holvoet, 2012) Stochastic Predictive Hierarchical Centralized No No  

(Sur et al., 2012) Stochastic Predictive Flat Decentralized Yes Yes  

(Ghazy et al., 2012) Stochastic Predictive Flat Decentralized Yes No  

(Kponyo et al., 2012) Stochastic Predictive Flat Decentralized No Yes  

(Ge et al., 2011) Deterministic Predictive Flat Decentralized Yes No  

(Ok et al., 2011) Deterministic Predictive Flat Decentralized Yes No  

(Nahar & Hashim, 2011) Deterministic Predictive Flat Decentralized Yes Yes  

(Cong et al., 2011) Stochastic Reactive Hierarchical Decentralized No Yes  

(Krol & Mrozek, 2011) Stochastic Predictive Flat Decentralized Yes Yes  

(Abbass et al., 2011) Stochastic Predictive Flat Decentralized Yes No  

(Claes & Holvoet, 2011) Stochastic Predictive Flat Centralized Yes Yes  

(Kammoun et al., 2010) Stochastic Predictive Flat Decentralized Yes Yes  

(Zong et al., 2010) Stochastic Reactive Flat Decentralized No Yes  

(Salehinejad & Talebi, 2010) Stochastic Predictive Flat Hybrid Yes No  

(Narzt et al., 2010) Stochastic Predictive Hierarchical Decentralized Yes No  

(Tatomir et al., 2009) Deterministic Predictive Hierarchical Decentralized Yes No  

(Foroughi et al., 2008) Stochastic Predictive Flat Decentralized Yes No  

(Jiang et al., 2007) Stochastic Predictive Flat Decentralized Yes No  

(Liu et al., 2007) Deterministic Predictive Flat Decentralized Yes No  

(Weyns et al., 2007) Stochastic Predictive Flat Hybrid No Yes  

(Bedi et al., 2007) Stochastic Predictive Flat Decentralized Yes Yes  

(Tatomir & Rothkrantz, 2006) Stochastic Predictive Hierarchical Centralized Yes No  

(Ando et al., 2006) Stochastic Reactive Flat Hybrid No Yes  

(Hallam et al., 2004) Stochastic Predictive Flat Decentralized Yes No  

 

2) Strategy: Reactive ant-based VTRSs use current traffic information and disregard the 

future conditions of vehicle congestion, whereas predictive ant-based VTRSs use 

prediction models and historical information to estimate future congestion 

conditions. Low complexity and robustness are the main advantages of reactive and 

Predictive ant-based VTRSs, respectively. Thus, one of these characteristics can be 

selected based on the goal of the system (i.e., low complexity or robustness). 

3) Topology: The entire routing map is considered one level in flat ant-based VTRSs, 

and routing may occur between two arbitrary nodes as the source and destination. 

However, in hierarchical ant-based VTRSs, the routing map includes either different 

levels or different regions (cluster or zone) for route decisions. Each level or region 
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has one or more special nodes (i.e., cluster head and border node). Hierarchical ant-

based VTRSs use these nodes to route vehicles between different regions, and 

vehicles use these nodes to enter new regions. Although both of these systems can be 

useful for vehicle routing, hierarchical ant-based VTRSs manage dynamic changes 

better than flat VTRSs. Thus, hierarchical ant-based VTRSs outperform flat systems 

in terms of vehicle congestion control. 

4) Architecture: Centralized ant-based VTRSs use one node as a server/base station for 

discovering and maintaining routes; this node broadcasts routing information among 

vehicles. Thus, this node sustains system operations and its failure leads to the failure 

of the whole system. By contrast, in decentralized ant-based VTRSs, each node 

gathers and builds routing table for its own use (Di Caro & Dorigo, 2011; Schmitt & 

Jula, 2006). Although these systems are adaptable to the dynamic nature of vehicular 

networks, vehicles (nodes) require powerful processing units to execute tasks. 

Reliability and a superior vision of the routing process are the main advantages of 

centralized ant-based VTRSs (Schmitt & Jula, 2006). However, the drawbacks of 

centralized ant-based VTRSs are delay and scalability, which can be solved by 

decentralized ant-based VTRSs. In order to take advantages of both centralized and 

decentralized architectures, distributed centralized architecture is introduced by using 

map segmentation and layering model. To find the best path for each area of the map 

a management server is assigned to each segment and border nodes are responsible to 

perform the routing among the segments. More information about map segmentation 

and layering model and distributed centralized architecture can be found in Section 

4.3.1.1. 

5) Loop free: Data packets are used as ant agents to find the optimal paths. If packets 

use a path that has no cycles to traverse the path between the source and destination, 

the ant-based VTRS is called ‘loop free’. To add this feature to a system, a 
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monitoring mechanism should be built to avoid any possible loop or cycle. Getting 

into loops has several negative network effects, such as throughput degradation and 

increased delays. Looping also wastes bandwidth and energy resources. 

6) Traffic load balancing: Ants select paths at each intermediate node according to the 

distribution of deposited pheromones at each node. If a developed ant-based VTRS 

uses a pattern that efficiently splits traffic between different paths from the source to 

the destination, such an approach method can be claimed to apply load balancing 

successfully. 

3.3. Conclusion 

This chapter discussed the existing studies related to vehicle traffic routing and 

congestion mitigation systems and approaches. Accordingly, static algorithms are used 

in initial systems in order to find the shortest paths which is not a proper solution. Over 

the years, dynamic routing algorithms are proposed to overcome the main drawback of 

static routing algorithms which is lack of considering real-time traffic information in 

their routing mechanism. Among dynamic VTRSs, bio-inspired-based VTRSs, 

especially those are based on ant, bee, genetic and PSO algorithm are reported as 

promising approaches for solving multi-criteria shortest path problem. It is worth noting 

that ant-based VTRSs are reported as the most suitable approach for solving vehicle 

traffic routing and congestion issues through the literature due to its better adaptability 

as well as lower processing time. In order to get more details about these approaches, a 

novel taxonomy which divides ant-based VTRSs into three main classes, namely ACPs, 

ACS and ACPre, is proposed and discussed in this chapter. Moreover, based on 

statistical overview of ant-based VTRSs, there are several shortcomings in these 

systems including specialized simulation tools, novel and effective probability function, 

considering non-recurring congestion conditions in vehicle routing procedure and a 

generic framework. The last two shortcomings are the concerns of this thesis and are 

discussed in Chapter 4. Hence, the major characteristics of VTRSs which should be 
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considered in designing vehicle traffic routing and congestion mitigation framework are 

discussed in Chapter 3. 
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CHAPTER 4: DEVELOPED FRAMEWORK DESIGN 

In this chapter we detail the design aspects of developed framework to achieve 

our main goal which is designing an ant-based framework for avoiding vehicle traffic 

congestion by using VANETs. In other words, vehicles are routed from their origins to 

destinations in a way to avoid congestion occurrence instead of recovering from it. Later 

we will evaluate and validate this framework through the simulation environment. This 

chapter consists of three main topics, namely methodology, design challenges of ant-

based VTRS framework and developed ant-based VTRS framework. In Section 4.1, the 

general steps of our research methodology and utilized research method are outlined. 

Section 4.2 discusses the challenges that should be considered for designing an ant-

based VTRS framework. A description of our developed framework, called AVCAF, is 

given in Section 4.3. Section 4.4 gives an overview of AVCAF implementation in real 

world. Finally, Section 4.5 concludes this chapter. 

4.1. Methodology 

Our methodology in this thesis includes four main steps as follows: 

a) Literature review: In this step, a comprehensive and critical overview and analysis of 

recent developments and researches related to vehicle traffic congestion problem, 

especially those concentrating on ant-based algorithms for solving this problem, are 

carried out. VTRSs that utilize ant-based algorithms are classified into three classes 

based on our proposed taxonomy, namely ACPs, ACPre and ACS. In addition, pros 

and cons of these approaches are specified in order to find the existing gaps in 

VTRSs, especially in vehicle traffic congestion field.  

b) Modeling: After investigating the existing related works and literature and 

considering their analyzed results, the required characteristics and design challenges 

of ant-based VTRSs are obtained and categorized in Section 3.2.2.5 and Section 4.2, 

respectively. The newly developed ant-based framework (i.e. AVCAF), which is the 

first framework in this research area, is proposed taking into account the major 
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drawbacks of the existing approaches such as scalability, single path suggestion, non-

recurring congestion consideration, congestion avoidance instead of recovering from 

it and high usage rate. In this step, all the details of the new framework are discussed, 

including the assumption, architectural perspective, its various modules and phases. 

c) Developing: Our proposed framework utilizes vehicular networks for real-time data 

gathering and also for distributing route guidance information among vehicles. Due 

to the unique characteristics of these networks such as lack of central coordination, 

dynamic topology, error prone shared radio channel, limited resource availability, 

hidden terminal problem and insecure medium, experimentation and performance 

evaluation of our developed framework can be achieved via simulation tools. Real 

test-beds construction for any vehicular networks’ scenario is an expensive or in 

some cases impossible task if metrics such as testing area, mobility and number of 

vehicles are taken into account. Besides, most experiments are not repeatable and 

require high cost and efforts. Simulation tools can be used to overcome these 

problems (Martinez, Toh, Cano, Calafate, & Manzoni, 2011b and Schilling, 2005). 

As a result, after designing and modeling the new framework and it details, the NS-2 

(McCanne, Floyd, Fall, & Varadhan, 1997) is utilized for developing our framework. 

Besides, SUMO (Krajzewicz, Erdmann, Behrisch, & Bieker, 2012) is the most 

widely used open-source and time discrete microscopic road traffic simulation 

package available. It is used to generate the vehicle traffic and movement patterns in 

this thesis. Moreover, TraNSLite, which is a Graphical User Interface (GUI) tool for 

generating realistic mobility traces for simulating vehicular networks in NS-2, is 

used to convert the generated traffic scenario into a usable format for NS-2.33. The 

output of TraNSLite is a TCL file which is used as the traffic pattern for NS-2. These 

simulation tools are discussed in more details in section 5.1. 
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d) Testing and evaluation: In this step, extensive and various simulation runs and tests 

are carried out to evaluate and validate the performance of our approach compared 

with other existing ant-based and other bio-inspired approaches. In addition, best 

values for newly developed ant-based framework variables are determined through 

the simulation runs. 

Different simulation scenarios with various vehicle densities, velocities, city maps 

with different sizes, and weather and accident conditions are considered in order to 

have comprehensive comparison between our approach and existing solutions. 

Average travel time, distance and speed, system usage rate, process time and 

convergence speed are used as comparison and performance evaluation metrics. 

In addition, Research methods are classified based on different considerations, namely: 

the research purpose (basic or applied), the nature of the principal data (quantitative or 

qualitative), or the kind analysis conducted (analytical or descriptive). Quantitative and 

qualitative methods are the most common research methods in computer science field. 

Hence, their definition and characteristics are discussed in the following section. 

4.1.1. Quantitative vs. Qualitative 

The method of research which is known as quantitative, gather the numerical data. The 

analysis of such data will lead to find results which are comparable with the results of 

other studies on the same topic. For the analysis of data in quantitative research, 

numerous analytical tools are employed such as statistical methods. On the other hand, 

the data compiled in the qualitative method is in form of objects, words or pictures. 

Qualitative research is mainly appropriate for searching on the topics that the 

information available is scarce and the design should be explorative. A research 

methodology example for qualitative research is an ornithologist observing the 

behaviors of a newly identified species of birds. For the earlier stages of the research, 

qualitative method is ideal while the quantitative method is highly recommended for the 
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latter part of the research project. It is believed that the picture provided in the 

quantitative method is clearer for the researcher compared to the qualitative method.  

In qualitative research, the researcher acts as the primary data gathering tool where he 

employs different strategies regarding data gathering such as structured interviews, non-

structured interviews, documentary analysis, narratives, observation and so on. In the 

quantitative research, however, employs instruments such as surveys, questionnaires, 

tests, and other tools to gather measurable and numerical data. The presentation of data 

in a qualitative research can be in the form of words, which are collected from 

interviews. It can also be in the form of images from videos and also other objects such 

as artifacts. Figures or graphs and statistics data in a table form can be regarded as the 

examples of quantitative research data presentation. Therefore, the research method 

which has been employed in this thesis can be considered as the quantitative method 

due to the following reasons: 

1. Because it has been planned to implement and evaluate the developed framework in 

NS-2 which will be discussed later and it produces data in the form of numbers 

which can be analyze using statistical software. 

2. Representation of analyzed data will appear in the form of tables and figures. 

3. Analyzed data from the new mechanism will be compared with the previous 

mechanisms. 

After discussing about our methodology, design challenges for Ant-based VTRSs are 

explained in the following section. 

4.2. Design challenges of Ant-based Vehicle Traffic Routing Systems 

In addition to characteristics of VTRS which are discussed in Section 3.2.2.5, 

there are some other features that distinguish the ant-based VTRS from traditional 

vehicle guidance systems. These features are initialization, pheromone deposition, 

multi-agent system, pareto archive and prediction. These features are the main ACO 
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attributes that affect VTRSs directly in the data gathering, path finding and path 

suggestion procedures. Proper values should be assigned to these attributes’ variables in 

order to achieve optimal solutions. VTRSs use real time or historical information to find 

the preferred path to a particular destination. VTRSs can be implemented by using 

different factors that are important for the user, such as toll-free path, accident-free path, 

and shortest path. VTRS has to prepare the required information in order to propose 

optimal and proper paths for drivers. The majority of VTRSs require the deployment of 

sensor-equipped vehicles. Hence, the scalability of the VTRS is also a major concern. 

VTRSs also require self-organization and route optimization mechanisms to guide 

vehicles. 

a) Initialization: The process of constructing solutions for traffic control in an ACO 

system can be considered a graph construction wherein each edge of the graph 

represents the possible path of an ant. The first and initial challenge in designing 

traffic control algorithms is the initialization of default information such as edge 

weight and value. Ant movements are guided by 

1) Heuristic information (η) that represents prior data on the problem and, 

2) Pheromone trails (τ) that encodes information on the ant colony search process, 

which is continuously updated.  

These values are used by ants in conducting probabilistic decisions for the next visited 

nodes. 

b) Pheromone deposition/update: Ants conduct pheromone deposition and update 

procedures to update the pheromone metric. This procedure can be applied when 

multiple matrices are used. For this case, one can select a set of best solutions (i.e., 

shortest path) to update the pheromone metric. Another method to update the 

pheromone metrics is to gather and store non-dominated solutions in an auxiliary 

function (Ahangarikiasari, Saraji, & Torabi, 2013). On one hand, individuals can 
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update a specific pheromone matrix or some pheromone matrices. On the other hand, 

all ants are allowed to update the pheromone. The implementation and optimization 

of a solution is an important attribute in designing ACO algorithms. 

c) Multi-agent system: The multi-agent colony approach requires a number of ants to 

construct a colony. Agents individually construct solutions by using their own 

pheromone and heuristic information and conduct search procedures on particular 

areas of the problem graph. The agents are able to collaborate with   each other by 

exchanging information, sharing solutions, and updating pheromone values. 

Therefore, the solutions generated by certain agents affect the pheromone 

information of other agents. In other words, although each ant agent explores the 

problem graph and constructs a solution individually, its found solution will be 

affected by other ants and also will affect the found solution by the other ants. 

d) Pareto archive (Solution Set): One of the problems which is usually faced when 

dealing with VTRSs is finding the optimal route between two selected points on the 

given map, taking into consideration different objectives such as distance, traffic 

load, road width, risk of collision, quality and number of intersections. It does not 

mean that this route should be the shortest one. It should be optimal in term of user 

preferences or objectives. The problem is known from the literature as multi-

objective shortest path problem (Horoba, 2010; Ulungu & Teghem, 1991), and it is 

proven to be NP-complete (Hansen, 1980). For multi-objective combinatorial 

problems a single solution is very rarely be able to minimize (or maximize) all 

objectives, but rather there will be a set of compromise solutions. These solutions are 

called efficient non-dominated ones and are also referred to as Pareto optimal set. 

The solution in the Pareto set is used by multi-objective ACO algorithms to update 

the pheromone information (García-Martínez, Cordón, & Herrera, 2007). The 

algorithm indicates how the Pareto set is stored and used during implementation. A 
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Pareto archive can be established in Pareto-based algorithms by using two 

approaches, namely, offline and online storage. These techniques allow the 

pheromone matrix or matrices to affect the state of the non-dominated set at any 

time. 

e) Prediction and detection: Traffic congestion occurs when the number of vehicles 

exceeds the capacity of the road. As a result, in half of the cases, traffic condition 

estimation from historical data is accurate enough for vehicle routing due to 

repeatable nature of traffic condition which is called recurring (i.e. normal or 

expected) traffic congestion. But, recurring congestion only includes 50% of 

congestion conditions on the road and the other 50% is related to non-recurring (i.e. 

non-routine or unexpected) events such as accidents, vehicle breakdowns and 

weather conditions (Coifman & Mallika, 2007). Current traffic data can be used for 

considering these events in vehicle congestion problem. The way of utilizing 

gathered data to predict and detect the future events on the roads and the topology of 

vehicles is a critical issue and should be considered in the design of VTRSs. 

f) Scalability: Scalability is defined as the ability of dealing with the addition of nodes 

or vehicles without suffering a noticeable loss in performance or increase in 

administrative complexity (Neuman, 1994). VTRSs are expected to remain 

operational for an infinite period in a wide geographical area. New vehicles may 

enter and leave the communication range of current vehicles. Thus, the number of 

vehicles in communication ranges changes continuously and often becomes 

unpredictable. An effective vehicle traffic control system should be able to cope with 

the changes and challenges that originate from vehicular and wireless 

communication networks. 

g) Self-organization and route optimization: Vehicle drivers are the main users of 

traffic control systems and need to form an ad-hoc network to send and receive real-
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time traffic information. Self-organization should always be considered in the design 

of VTRSs. Centralized control is not suitable for vehicular networks because of the 

high-speed changes in topology (Sjöberg Bilstrup, 2009). To be effective, a VTRS 

must be resilient to dynamic and unpredictable variations. Therefore, VTRSs should 

find the shortest path and optimize such a path continuously to overcome path 

changes and consider various objectives. Thus, link weights should be changed by 

using real-time information to find the optimal route. Essential services should also 

be available for the long-term use of a decentralized system. 

4.3. Ant-based Vehicle Congestion Avoidance Framework (AVCAF) 

This section discusses about our proposed and developed framework (i.e. AVCAF). 

AVCAF is depicted in Figure 4.1 and aims to reduce vehicle traffic congestion problem 

by using its various phases. 1) Initialization, 2) Optimal path finding, and 3) Optimal 

path suggestion are the three phases involved in AVCAF. To the best of our knowledge, 

this framework is the first framework that is related to ant-based vehicle traffic routing 

systems. The initialization phase consists of data gathering and map preparation. In the 

data gathering phase several tools such as camera, wireless sensors and inductive loop 

detection are utilized in order to collect required information for the initial step of 

AVCAF. Each of these three tools operates as follows: By using video feeds from the 

cameras, the built-in software harvests information from that video, then gathered 

information such as vehicle volume and average velocity are fed into the fuzzy system. 

Moreover, wireless sensors are deployed by the road intersection to detect vehicles. 

These sensors send the collected data to the intersection control agent. Then it processes 

the data and dynamically controls the vehicle traffic. Additionally, inductive loop 

detection can be placed in a roadbed to detect vehicles by measuring the vehicle’s 

magnetic field. The output of the gathered data rather than the gathering process is 

important in ant-based VTRS. The main functionality of ant algorithm in AVCAF exists 

in Phases 2 and 3, where an optimal path should be selected and suggested based on 
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gathered data. In Phase 2, values or weights are assigned to the roads on the map 

according to the output data of Phase 1. In addition to link value assignment, these 

gathered data, especially vehicles speed, density and travel time, are used for non-

recurring congestion detection. Based on our investigation, these three attributes are 

affected via non-recurring or unpredictable events such as accident, working zones, 

weather conditions. As a result, these attributes should be considered in any vehicle 

congestion avoidance mechanism. Policies are assigned to AVCAF based on the 

environmental variables. For instance, different policies can be used for different times 

in a day (i.e. the vehicle traffic congestion condition is different during the daytime 

versus in the night-time). In Phase 3, the optimal path is suggested by using the obtained 

information from previous phase and used pheromone update rule. AVCAF is discussed 

in detail in the subsequent sections of this thesis. 

 

Figure 4.1. Schematic view of AVCAF 

All of the discussed characteristics of VTRSs in section 3.2.2.5 and design challenges of 

ant-based VTRSs in section 4.2 are considered in AVCAF by usage of ant-based 
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algorithm. Table 4.1 gives an overview about characteristics and design challenges of 

VTRSs and the way of considering them in AVCAF.  

Table 4.1. The way of considering various characteristics and design challenges of VTRSs in 

AVCAF 
 

Characteristic The way of consideration in AVCAF 
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Initialization It includes map preparation and data gathering which are considered in the 

first phase of AVCAF. 

Pheromone update It is used for next node (e.g. junction or intersection) selection and is 

considered in one of the steps of ant-based algorithm in AVCAF (section 

4.3.3.1). 

Multi-agent system Ant algorithm is a multi-agent system in its nature. As a result this design 

challenge is considered in AVCAF since it used ant-based algorithm. 

Pareto archive 

(Solution set) 

Each individual ant explores the problem graph, finds and stores an optimal 

solution in its memory. These optimal solutions form Pareto archive and is 

used by AVCAF to update the links’ pheromone intensity. 

Prediction and  

Detection 

It includes vehicles speed, density and travel time, and is used for both 

recurring and non-recurring congestion detection. This issue is considered 

in the second phase of AVCAF for link value assignment (section 4.3.2.1). 

Scalability As the number of nodes on the map increases, the number of ant agents 

also increases, which means that ant-based algorithms suffer from poor 

scalability (Z. Xu, Hou, & Sun, 2003). This drawback is considered in the 

first phase of AVCAF, especially in map preparation. It can be solved via 

segmentation technique (section 4.3.1.1). 

Self-organization 

and 

Route optimization 

Vehicular ad hoc networks and distributed centralized servers are utilized 

in AVCAF in order to consider self-organization characteristic. In the case 

of route optimization, ant agents are used to find the optimal paths and 

optimize found paths considering various future and upcoming conditions 

on the roads. 
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Deterministic/ 

Stochastic 

Both of these characteristics are considered in the first phase of AVCAF, 

especially in data gathering phase which takes place via VANET (section 

4.3.2.1). 

Reactive/ 

Predictive 

Predictive characteristic is chosen for our developed frameworks due to 

dynamic nature of vehicular traffic and networks. Upcoming topology and 

events should be predicted and considered in vehicle routing procedure in 

order to achieve our main goal (i.e. vehicle congestion avoidance). 

Predicted travel speed of vehicles is used in AVCAF for this purpose. 

Flat/ 

Hierarchical 

Hierarchical characteristic is selected in the map preparation phase of 

AVCAF in order to reduce the system complexity and overcome to 

dynamic nature of vehicular environments (section 4.3.1.1). 

Centralized/ 

Decentralized 

One of the main requirements of VTRSs, using decentralized processing 

system, is achievable through the segmentation sub-module of map 

preparation in AVCAF. It means that several centralized servers 

(navigators) are distributed throughout the segmented road map (i.e. one 

server for each segment), namely distributed centralized servers, to guide 

the vehicles to their destinations (section 4.3.1.1). 

Loop free Stopping procedure is defined in the third phase of AVCAF in order to 

consider this characteristic in our developed framework (section 4.3.3.2). 

Traffic load 

Balancing 

This characteristic is the main goal of current thesis and AVCAF is 

developed and designed in a way to achieve this goal. The obtained results 

prove our claim. 
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Before explaining the various phases of AVCAF in more details, we discuss the 

technical architecture that AVCAF uses and whether it is centralized or decentralized. 

In a decentralized architecture, route finding and computation takes place for each 

vehicle individually using the on board processor and memory of that vehicle. It is ideal 

if vehicles receive traffic information through wireless communication (e.g. V2V or 

V2I) and include road maps and GPS. In a centralized architecture, route finding and 

computation takes place through a central server in response to requests from drivers. In 

this architecture, the central server has access to the historical or real-time traffic 

information database and computes routing algorithms based on this information. More 

information about centralized or decentralized architectures and their pros and cons can 

be found in the study by Suson (2010).  

AVCAF is designed for decentralized architecture; however the architecture is not yet 

available to be used, since all vehicles are not equipped with on-board units and 

wireless transceivers. AVCAF can be configured to be distributed over several on-board 

vehicle navigation systems, but at this moment, it can only be executed in a centralized 

manner. Therefore, AVCAF is part of a group of distributed centralized servers (section 

4.4.1 for more details) which provides route advice to the drivers who are equipped with 

transceiver devices (e.g. mobile phones, PDAs, Tablets). Our model also assumes that 

the system can detect the position of the vehicles via GPS. AVCAF is expected to guide 

vehicles through the least congested shortest paths to their destinations. As was 

discussed previously, initialization, optimal path finding and optimal path suggestion 

are the main phases of AVCAF (section 4.3). Each of these phases is discussed in the 

following subsections. 

4.3.1. Initialization 

The initialization phase consists of two modules, namely data gathering and map 

preparation. It includes the initial steps of our AVCAF framework where the required 
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real-time traffic data for vehicles routing are gathered and the road map is prepared and 

simplified in order to reduce the system complexity, and storage and process 

requirements. It is worth noting that road map preparation module consists of two sub-

modules, namely segmentation and layering. Aforementioned modules are explained in 

the following subsections. 

4.3.1.1.  Map Preparation Module 

In order to find border nodes and overall overview of road map, and also to reduce 

system overhead and complexity, map preparation modules includes two sub-modules, 

namely segmentation and layering, which are explained in the following. Using a 

distributed centralized management system (instead of one centralized system) is 

another advantage of these sub-modules. Our proposed layered and segmented model 

which consists of the following four different bottom-up layers is illustrated in Figure 

4.2 and explained as follows: 

1. Physical layer: This layer shows the real road map and nodes corresponding to 

intersections and junctions with links corresponding to streets and highways. This 

map can be exported from map databases such as Topologically Integrated 

Geographic Encoding and Referencing system (TIGER) and OpenStreetMap (OSM). 

In this layer, the road map is converted to a graph and this graph is given by Gp = 

(Np, Lp), where Np and Lp are the set of nodes and links, respectively. 

The segmentation sub-module happens in this layer and divides road map into number 

of segments with different sizes. Specifying the segments size is based on the number of 

nodes (i.e. junctions, intersections) in each segment. 
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Figure 4.2. Proposed layered and segmented model for AVCAF 

In other words, their sizes are assigned in such a way that there is approximately 

identical number of nodes in each segment. Different sizes of segments are considered 

in order to maximize the use of resources such as processors and storage devices, and 

also to balance and reduce the routing overhead in different segments. Moreover, 

dynamic and quick changes of vehicular environments can be managed using map 

segmentation and routing is accomplished for each segment individually instead of the 

whole map. This segmentation is applied in physical layer and each segment is managed 

by one navigator. Navigators are responsible for creating and updating the routing table 

for their own segment, which is called the Intra Segment Table (Intra_ST(i)), using an 

assigned weight to each link in the graph based on the pheromone update rule (Equation 

4.8), where i is the segment number (or identifier). Intra_ST(i) includes m smaller tables 

where m is the number of nodes in segment i. Each of these smaller tables consists of at 

least m rows and at most m*n rows as a possible destination, since AVCAF computes 

up to n alternative paths (i.e. at least one path and at most n paths) between various OD 
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pairs of its own segment and 3 columns that include destination node, next node and 

route cost.  Intra_ST(i) and its smaller tables are depicted in Figure 4.3.  

 
        Figure 4.3. An example of Intra_ST(i) 

It is worth noting that smaller tables’ index indicate source node (i.e. Table 1 in Figure 

4.3 is routing table for node number 1 in segment i). Moreover, various values can be 

considered as route cost such as link length, vehicle traffic condition and selection 

probability. Intra_ST(i) is updated by using our proposed ant-based algorithm in 

AVCAF which is discussed in the following subsections. Besides, Table of Segment 

(ToS) is created in segmentation sub-module which includes the nodes’ name, ID and 

their segment in order to give a complete road map view to all navigator servers. This 
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table is distributed among all servers and helps them to detect the destination nodes’ 

segments in routing procedure. An example of ToS is depicted in Figure 4.4. 

Node 

Name 

Node 

ID 

Segment 

ID 

KLCC 1 1 

Imbi 2 1 
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Bukit 

Bintang 

35 5 

Wisma 

R&D 

36 6 

. 
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. 
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. 
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. 

Raja 

Chulan 

107 7 

Figure 4.4. An example of ToS 

One of the main requirements of VTRSs, using decentralized processing system, is 

achievable through the segmentation sub-module. It means that several centralized 

servers (navigators) are distributed throughout the segmented road map (i.e. one server 

for each segment), namely distributed centralized servers, to guide the vehicles to their 

destinations. In this way, road map searching time and the size of routing tables are 

reduced significantly. This is because each navigator is released from maintaining the 

whole map information and maintains only small routing tables with local information. 

Using different strategies (i.e. different types of ants, pheromone update rules, 

pheromone trail laying rules and probability functions) for different segments is another 

advantage of road map segmentation in AVCAF. 

2. Junction layer: Ineffective nodes which do not correspond to a junction or connect 

two different segments, and their related link(s) are eliminated on the junction layer 

due to identification of an impossible turning. Junctions are the most critical points in 

the vehicle routing process since they are the points from which the drivers can be 

rerouted to a new path. 
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3. Border nodes layer: The nodes on junction layer and their links which connect two 

different segments in junction layer are retained, otherwise, they are pruned. The 

remaining nodes (junctions) are called border nodes. The Border Nodes Table 

(BNT(i)), which stores border nodes information, is created for each segment and used 

for routing to surrounding segments. The BNT of each segment is disseminated 

among all junctions of same segment. Thus, this layers information can be used 

whenever the source and destination of a vehicle are not in the same segment, but 

there is a direct link between them. An example of BNT(i) is illustrated in Figure 4.5. 

BNT(i) has m which is the number of border nodes for segment i rows and 3 columns 

that include border nodes’ indexes, neighboring segment and route cost. For instance, 

depicted table in Figure 4.5 indicates that segment i has a direct link (road) to 

segment j through its border node with index 20 and with the cost of 0.5. 

Segment i 

border 

nodes 

indexes 

Neighbouring 

segment 

Route 

Cost 

20 Segment j 0.5 

37 Segment d 0.9 

. 

. 

. 

. 

. 

. 

. 

. 

. 

M Segment n 0.35 

 Figure 4.5. An example of BNT(i) 

4. Routing Layer: The information in this layer is used whenever a vehicle travels over 

long distances and thus traverses more than one segment to reach its destination. To 

achieve this goal, a node is assigned to each segment and a link is added between two 

nodes if there is a link between these two segments’ border nodes. An Inter Segment 

Table (Inter-ST) is created based on this new graph (GR) and is used for distant 

destination routing (e.g. between segments). GR = (NR, LR), where NR is the set of 

nodes assigned to each segment, therefore their numbers are equal to the number of 

segments, and LR is the set of links between NR. The Inter-ST is adjacency matrix of 
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GR and disseminated among all segments navigators to give an overall view of the 

map to the distributed navigators. Given GR with vertices {v1, v2, . . . , vn}, we 

define its adjacency matrix as follows: 

Inter-ST = {
a(i)(i) = 0,

a(i)(j) =  ∞, if there is no link between i and j,

a(i)(j) = 1, if there is link between i and j.

 

 An example of Inter-ST is illustrated in Figure 4.6. 
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1 2 . . . N 
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N ∞ 1 . . . 0 

Figure 4.6. An example of Inter-ST 

Three different cases may occur in the routing process of a vehicle from a node i 

(source) in X segment to node Y (destination) in Z segment: 

1. The source and destination nodes are in the same segment; 

2. The destination node is within one of the source nodes surrounding areas; 

3. Other (Neither case 1 nor 2). 

It is worth noting that servers detect the segments of sources and destination nodes 

through ToS. Therefore, in case 1, the Intra_ST(x) is used by the navigator for each 

routing decision. In case 2, the Intra_ST(x) is used to guide the source node to a border 

node of the same area. Then the BNT(x) is used to guide the source node to a border node 

of the destination segment. After that, the Intra_ST(z) is used to guide the source node to 

a destination node within the destination area. In case 3, a similar strategy as in case 2 is 

used, however the Inter-ST is used to guide the source node from the previously 

selected border node to the proper border node of the next segment until it reaches its 

destination segment. All of these routing tables (i.e. Intra_ST(i), BNT(i) and Inter-ST) are 

updated using the ant-based algorithm which is discussed in following section. 
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4.3.1.2. Data Gathering Module 

Date gathering module is the second module of initialization phase AVCAF framework. 

It is one of the main parts of our developed framework since real-time data are collected 

via this module and having accurate real-time data is a necessity for having a successful 

and robust VTRS. Ants are the cornerstone of AVCAF framework, especially in data 

gathering module. We discuss the various types of ant agents used in AVCAF in the 

following subsections. Vehicle as ANT (VANT) and Packet as ANT (PANT) are the 

two main types of ant agents which are modeled and used in AVCAF. VANTs are 

utilized in data gathering module, while, PANTs are further divided into two types, 

namely Forward ANT (FANT) and Backward ANT (BANT) and used in the second 

phase of AVCAF (i.e. Optimal path finding phase (section 4.3.2)). Hence, in this 

subsection, VANTs are discussed in more details.  

a) Vehicle as ANT (VANT) 

Vehicles are used as real ants in our framework in order to collect accurate real-time 

information using VANET infrastructures (i.e. V2I communications). Vehicles send 

basic data such as ID, time and direction as a beacon message to RSUs, which are 

located at junctions. Using these data, the navigation servers, which are assigned to 

various segments of road maps in map preparation module, predict the travel speed of 

each link (PTSij) in its segment based on historical (deterministic) and real-time 

(stochastic) speed information. Based on the studies by Chien and Kuchipudi (2003), 

Kwon and Petty (2005) Nanthawichit, Nakatsuji, and Suzuki (2003), both current traffic 

conditions and historical data are required for accurate short-term prediction of the time 

it takes for a driver from an origin to arrive at a destination. In addition, because 

vehicles' travelling time, speed and density or in other words the cost or probability of 

each road/street on the road map are not constant over time, for this prediction, we add a 

vertical time axis and break the time into discrete intervals (I0, I1, …, In) (i.e. 10s), where 
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Ik = [startk, endk] (i.e. discrete time interval (TI) beginning at time instant startk and 

ending at time instant endk) in order to consider the dynamic aspect of these data. As a 

result, our proposed links probability function (Equation 4.4) for FANTs in the next 

section is a discrete and time-dependent function and a set of time-dependent cost or 

probability is assigned to edges (roads). A discrete time dynamic network can be 

represented as a static network using a time-expanded network model (Köhler, 

Langkau, & Skutella, 2002), which is a useful implicit tool for visualizing, formulating 

and solving discrete time dynamic shortest path problems. By adopting this model, 

probability or cast can be satisfactory approximated for each interval.  

Historical Travel Speed (HTS) and Current Travel Speed (CTS) are calculated and 

assigned to each link (i, j) for each TI. If we assume t = n is the current time, CTS and 

HTS for link (i, j) at time n is calculated using Equations 4.1 and 4.2, respectively, as 

follows: 

𝐶𝑇𝑆𝑖𝑗
𝑛  = 

𝐿𝐿𝑖𝑗×𝑁𝑉𝑖𝑗

∑ 𝛥𝑡𝐼𝐷
 ,                                                   (4.1) 

𝐻𝑇𝑆𝑖𝑗
𝑛= 

∑ 𝐶𝑇𝑆𝑖𝑗
𝑡𝑡=𝑛−1

𝑡=1

𝑛−1
 ,                                                (4.2) 

where 𝑁𝑉𝑖𝑗 is the number of vehicles on link (i, j), and 𝐿𝐿𝑖𝑗 is the length of link (i, j)and 

has a constant value. ΔtID is the time duration used by specific vehicle (ID) to traverse a 

road between two consecutive junctions. The navigation server of each segment is able 

to calculate ΔtID and 𝑁𝑉𝑖𝑗 for its segment’s links (roads or streets) as illustrated in 

Figure 4.7. 

 

Figure 4.7. Procedure for current average travel speed calculation in AVCAF 
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𝑁𝑉𝑖𝑗 is obtained from the number of vehicle IDs in the table of junction i (𝑁𝑉𝑖𝑗 is 3 in 

our depicted example). Vehicles’ information is omitted from the junction table upon 

reaching new a junction and is used by the navigation server to calculate ΔtID. In the 

example in Figure 4.6, the information of the vehicle whose ID of 12 was omitted from 

junction 1’s table and Δt12 is calculated as 1:14 – 1:11 min = 3 minutes. The short-term 

Predicted Travel Speed (PTS) of link (i, j) at time t= n+1 is computed as follows using 

Equations 4.3: 

𝑃𝑇𝑆𝑖𝑗
𝑛+1 = ξ (𝐻𝑇𝑆𝑖𝑗

𝑛) + λ (𝐶𝑇𝑆𝑖𝑗
𝑛),                                       (4.3) 

where ξ and λ weight the effect of historical and current travel speed on the predicted 

travel speed of roads, and are assigned to 0.4 and 0.6 in this thesis, respectively. It is 

worth noting that both HTS and CTS are used for PTS calculation in order to consider 

both recurring and non-recurring congestion, respectively. Delay on a road can be 

caused by incidents for example by accidents (non-recurring congestion or delay). But 

there are also regular delays in the rush hours. Regular (recurring) delays exist in 

historical data. It is important that our framework be sensitive to both of these delays 

and adapts immediately. That is why Equation 4.3 includes both current and historical 

speed data. In the non-recurring delay cases that the delays differ completely from the 

historical data, the adaptation is suboptimal by taking care of historical data. But in most 

cases the delay will be similar to the historical data so it is good that our framework 

anticipates the regular delays from historical data even if the current speed does not 

show any delay. Taking care of only current speed reduces the adaptability of 

framework. For example, if one driver drives slower than the normal speed it will affect 

the other vehicles speed as well since its rear vehicles try to change their lane and this 

lane changing will also affect the vehicles speed on the other lanes. However, since this 

speed reduction is instant and temporary, its impact on the routing mechanism should be 
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reduced. This can be obtained by considering historical data because real-time data on 

its own is not adequate for mitigating this issue. 

Weighted mean or weighted average concept (Terr, 2004) is utilized in Equation 4.3. 

Weighted mean is a mean where some values contribute more than others (Finch, 2009). 

However, the total of the weights is still 1 (i.e. ξ + λ = 1). Obtained information (i.e. 

PTSij) form this module is used by PANTs in Optimal path finding phase in order to 

find optimal paths between various OD pairs. Optimal path finding phase and its 

relevant modules are explained in the following section. 

4.3.2. Optimal Path Finding 

This phase includes two modules, namely map exploration and path selection. After the 

gathering of real-time information by VANTs in the first phase, PANTs are used to 

explore and select the shortest least congested paths between source and destination. As 

mentioned, PANTs are further divided into two types, namely FANT and BANT. 

FANTs are used in map exploration module, while, BANTs are utilized in path 

selection module. In addition, we have improved the ant packet header which was 

proposed in AntNET (M Dorigo & Stützle, 2004) due to the changes in map preparation 

module (i.e. segmentation and layering). Two new fields are added to represent the 

source and destinations segments. The new header is used by PANTs during road map 

exploration and path selection modules. This packet header is illustrated in Figure 4.8. 
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Figure 4.8. Improved ant packet header 

Map exploration and path selection modules are explained in more details in following 

subsections. 
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4.3.2.1. Map Exploration 

In this module, FANTs explore the road map and construct routes between two specific 

points (OD pairs). FANTs build a solution by choosing probabilistically the next node 

to move forward. Different policies can be applied for different segments by using 

different probability functions considering various user preferences. In this thesis, we 

proposed a new probability function taking into account vehicles velocity, density, 

travel time and road length (distance) as user preferences. These metrics are considered 

in our developed probability function since they have direct effect on vehicle congestion 

which is our main concern. This probability function (i.e. route cost in Intra_ST(i) and 

BNT(i)) represented by Equation 4.4 which is used by FANTs for map exploration. 

𝑃𝑖𝑗 =
𝛼(𝜏𝑖𝑗)+ 𝛽(𝜂𝑖𝑗)

∑ (𝛼(𝜏𝑖𝑙)+ 𝛽(𝜂𝑖𝑙))h ∈ tabuk 

 × (
1

1 + 
1

𝑁𝑗

),                            (4.4) 

where τij (pheromone value) is the learned desirability for an ant in node i to move to 

node j (next hop) and is computed by BANTs using Equation 4.8. ηij reflects the 

instantaneous state of the vehicle density and velocity on the link from i to j and 

computed by VANTs. α and β weight the importance of τij and ηij, and are called 

pheromone power and real-time information power in this paper, respectively. In other 

words, the impact of gathered data by PANTs and VANTs are tuned by α and β. tabk is 

the set of candidate nodes connected to node i that an ant has not visited yet. Finally, Nj 

represents the number of neighbors for node j. The number of neighbors of next hop, Nj, 

is considered in Equation 4.4 in order to give higher priority to a node with more 

neighbors. In this way, the probability of finding new paths increased. FANTs do not 

deposit any pheromone while moving and do not go to other segments. This allows the 

use of different types of ants for different segments. The calculation method of τij and ηij 

are explained in the following paragraphs. 
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ηij is computed using Equation 4.5 by considering vehicle density (Dij) and their average 

PTS on link (i, j). These two factors are chosen due to their predominant role in vehicle 

traffic navigation. 

ηij = (1 – Dij) + 
𝑃𝑇𝑆𝑖𝑗

𝜑
 ,                                               (4.5) 

where φ is assigned 80 km/h (≅ 22 m/s) which is maximum speed limit for urban and 

town area in Malaysia (Ong, Mahlia, & Masjuki, 2011). PTSij is divided by φ to avoid 

obtaining large values for Equation 4.5. In addition, Dij is calculated using Equation 4.6 

as follows: 

 Dij = 
𝑁𝑉𝑖𝑗

𝑀𝑎𝑥_ 𝑁𝑉𝑖𝑗
  ,                                                      (4.6) 

where 𝑁𝑉𝑖𝑗 is the number of vehicles on link (i, j), and 𝑀𝑎𝑥_𝑁𝑉𝑖𝑗 is the maximum 

capacity of the link (i.e. maximum number of vehicles which can be on the road 

simultaneously in congested condition) and computed using Equation 4.7. 

𝑀𝑎𝑥_𝑁𝑉𝑖𝑗 = 
𝐿𝐿𝑖𝑗

𝐿𝑉 + 𝛥𝐿
 × 𝑁𝐿𝑖𝑗 ,                                     (4.7) 

where 𝐿𝐿𝑖𝑗 and 𝑁𝐿𝑖𝑗 are the length and number of lanes of link (i, j), respectively. 𝛥𝐿 is 

the average space between two consecutive vehicles. Finally, 𝐿𝑉 is the average length of 

vehicles. 𝛥𝐿 and 𝐿𝑉  are considered as 2 m and 5 m in this thesis, respectively (Cheung 

et al., 2005). 

When a FANT reaches its destination, it changes its role and becomes a BANT, instead 

of dying and copying its memory to BANT (i.e. which happen in most of ant-based 

algorithms). In this way, the time complexity of the overall system is reduced. The 

BANT returns the same path as the one traversed by FANT by using its memory but in 

the reverse direction. The BANT updates the links' pheromone intensity using the 

pheromone update rule, which is discussed in more detail in path selection module. 
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4.3.2.2. Path Selection 

When all the FANTs have reached their destinations, the pheromone level of each link 

is updated. This update can either increase or decrease the pheromone trial values. 

These two phases are called pheromone reinforcement and evaporation in ant-based 

algorithms, respectively. BANTs use the FANTs memory to return from the destination 

to the source node. Therefore, they can evaluate the cost of the solutions that they 

generate and use this evaluation to modulate the amount of pheromone they deposit on 

the links in return mode. Making pheromone update a function of the generated solution 

quality can help in directing future ants more strongly toward better solutions. In fact, 

by letting ants deposit a higher amount of pheromone on the optimal paths, the ants path 

searching is more quickly biased towards the best solutions. The intensity of pheromone 

is increased or decreased by using Equation 4.8, which is called the pheromone update 

rule in our framework. 

𝜏𝑖𝑗𝑑
𝑛𝑒𝑤 = (1 − 𝜌)𝜏𝑖𝑗𝑑

𝑜𝑙𝑑 +  ∑ 𝛥𝜏𝑖𝑗
𝑘

𝑛

𝑘=1
                                   (4.8) 

where ρ ∈ (0, 1] is a constant value, named pheromone evaporation, and n is the number 

of nodes in the desired segment. The amount of pheromone laid on link i and j by ant k 

is calculated using Equation 4.9. 

∆𝜏𝑖𝑗
𝑘 = {

1

𝑇𝑇𝑖𝑗
𝑘 +  

1

𝐷𝑖𝑗
𝑘 +

1

𝐿𝐿𝑖𝑗
𝑘                     𝑖𝑓 𝑡ℎ𝑒 𝑘𝑡ℎ 𝑎𝑛𝑡 𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑒𝑑 𝑙𝑖𝑛𝑘 (𝑖, 𝑗),

     0                                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.                          
        (4.9)                   

where 𝑇𝑇𝑖𝑗
𝑘,𝐷𝑖𝑗

𝑘  and 𝐿𝐿𝑖𝑗
𝑘  are the travel time, vehicle density and length of each link of 

the found route by ant k. As a result, if a link belongs to a found route by an ant, its 

pheromone value is increased (reinforcement) considering its travel time, vehicle 

density and length. If it does not belong to a found route, its pheromone value is 

decreased (evaporates). It means that Equation 4.8 first decreases the pheromone value 

of all links and then increases it for the links belonging to the found route. Pheromone 
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evaporation improves the exploration factor of the search and encourages the ants to 

find new routes instead of insisting on the first found route. 

Most of the current approaches do not consider accidents in their system due to the 

complexity of these unpredictable events. In order to consider accidents, we have to 

deal with two main points: First, the accident: its accurate position, time and status (i.e. 

how serious it is) should be detected based on collected data via sensors and video 

cameras or received through reports from other drivers via their smart phones or 

devices. Second, finding a way to update the routing tables in the shortest time possible 

with the least delay on the accident condition is a necessity. It is worth noting that some 

of the current approaches such as the HRS (Tatomir & Rothkrantz, 2006), disable (i.e. 

ignore) the road where an accident has happened for a while and let the system perform 

without considering that road in the routing process. The point with the ant-based 

algorithm is that it handles this situation with some delay due to the stochastic feature of 

the searching approach and this causes many vehicles to unknowingly join in the 

congestion before the routing tables are updated. To solve this drawback and to consider 

accidents implicitly without any concern of the two aforementioned points, 𝑇𝑇𝑖𝑗
𝑘, 𝐿𝐿𝑖𝑗

𝑘  

and 𝐷𝑖𝑗
𝑘  are used simultaneously at Equation 4.9 in AVCAF. By using this new 

approach, the ants get an additional penalty if they choose the congested roads or the 

roads with longer travel time which may happen in an accident situation. In this way, 

roads with less traffic density and travel time are favored even if those roads are 

somewhat longer. 

Another important issue which should be considered in vehicle traffic routing is that, 

most of the time; all roads are occupied during rush hours making rerouting impossible. 

Vehicle traffic routing is effective and applicable as long as the full capacity of the 

roads is not occupied or congested. This issue is considered in AVCAF by finding and 

utilizing n alternative paths between various OD pairs simultaneously from the early 
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stage of the routing procedure. AVCAF periodically, called re-generation period, ϒ, 

generates pre-defined number of FANTs, Na, in order to compute and use alternative 

paths in its routing procedure. FANTs are located on each node of segments as origin 

points. Then, they start to explore road map using Equation 4.4 and considering the 

other nodes of their segment as destination points. They find up to n alternative paths 

(i.e. at least one path and at most n paths) to the other nodes of their segment. After that, 

BANTs return to origin points from destination points and update the visited links’ 

pheromone value by using Equation 4.8. Intra-ST(i) is created and updated by using this 

information and procedure. It means that different paths with various criteria (e.g. 

distance, capacity, density, travel time and speed) are used for routing vehicles with the 

same OD pairs. In this way, road capacities are utilized more efficiently. It is worth 

noting that these n alternative paths are ordered, and got priority based on the 

probability value calculated by Equation 4.4 which encompasses all the mentioned 

criteria for each same OD pair. It means that the path with highest probability value gets 

the highest priority (n), while the path with lowest probability value gets the lowest 

priority (1). Vehicles are routed through these alternative paths in such a way that more 

number of vehicles is routed to the path with the highest probability value and the fewer 

number of them are routed to the path with the lowest probability value. Cross-

multiplication rule is used in Equations 4.10 and 4.11 in order to identify the portion of 

routing requests that should be routed through each of the n found alternative paths as 

follows: 

𝑍 =  
100

𝑛+(𝑛−1)+⋯+1
  ,                                              (4.10) 

Pn = n × Z ,                                                   (4.11) 

where Pn indicates the portion or percentage of the vehicles that should be guided 

through the path with the priority n. Besides, n, n-1, …, 1 are the mentioned priorities 

assigned to the n alternative paths.  
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This may appear to cause delays for some vehicles because they are routed through 

longer routes but in fact, it leads to a shorter average travel time for the whole cohort 

because the congestion is spread to n paths instead of only one path. The optimal 

number of alternative paths (n), pre-defined number of FANTs (Na) and re-generation 

period (ϒ) are obtained through the simulation results. 

Ant-based algorithms should be stopped or completed when a predefined condition(s) is 

reached. A predefined number of iterations, execution time or maximum visited nodes 

by ants and the pheromone value remaining unchanged for a number of consecutive 

iterations are some examples of the stopping criteria. However, AVCAF executes for an 

infinite number of cycles. A cycle completed by reaching a predefined number of 

iterations where as an ant is dropped by arriving at a predefined maximum number of 

hops before reaching its destination and is set to n+1, where n is the number of nodes in 

a specific segment. It can also be used as an algorithm loop prevention criteria. As a 

result, besides map exploration and path selection modules, we defined a sub-module, 

namely stopping procedure in order to consider this issue in AVCAF. 

4.3.3. Optimal Path Suggestion 

Once the Intra_ST(i), ToS, BNT(i) and Inter-ST are created, it is time to route the vehicles 

based on their destination and obtained information. The abilities of VANET have made 

it a suitable network for disseminating vehicle routing guidance messages among 

vehicles. As mentioned in first phase of AVCAF, especially in data gathering module, 

vehicle-to-infrastructure communications are used for obtaining real-time traffic data 

from the roads. However, in the third phase, infrastructure-to-vehicle communications 

are utilized in order to deliver the routing information to vehicles. The procedure of 

information dissemination for routing services has predominantly been involved with 

usage of broadcasting (Sun et al., 2000). The reason for choosing this model of 

propagation is the public interested essence of this information. Hence there have been 
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varieties of approaches proposed with the aim of increasing the performance of 

information broadcasting from infrastructure (e.g. RSU) to vehicles for specific region 

of interest. These approaches regardless of their dissemination procedure, have 

concentrated on increase of transmission rate and coverage area by either usage of 

multi-hop broadcasting (Busanelli, Ferrari, & Giorgio, 2011; Busanelli, Ferrari, & 

Panichpapiboon, 2009) or usage of single-hop broadcasting (Sikdar, 2012; L. Yang, 

Guo, & Wu, 2008). The characteristics of AVCAF as a framework with capability of 

guiding each vehicle to its destination based on dynamic changes of vehicular 

environments lead us to modify the procedure of routing information dissemination to 

single-hop unicast propagation of messages for each vehicle individually. The 

procedure of optimal path suggestion in AVCAF is as follows: 

As mentioned in data gathering module, vehicles periodically send beacon messages to 

RSUs located on junctions. These messages include the vehicles destination in addition 

to vehicles’ ID and direction. In this way, the closest RSU can both gather the required 

data and become aware of the vehicles destinations. The structure of vehicles beacon 

message is illustrated in Figure 4.9. 

Vehicle ID Message Type Direction Destination 

Figure 4.9. Vehicle's beacon message structure 

In this structure, the “vehicle ID” specifies the ID of vehicle for further communications 

with RSU, since each vehicle receives routing guidance information individually. 

“Message Type” specifies the type of message for differentiating the vehicle beacon 

message using for routing guidance request with other type of beacons that RSU may 

receive. “Direction” and “Destination” fields specify vehicle’s direction and destination 

which are important for future vehicles topology estimation and vehicle routing. Upon 

receiving a beacon message, RSU checks the Message Type field. If it is routing 

guidance request message, RSU adds a row to its database with following information: 
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vehicle’s ID, direction, message received time, destination. Then, it checks vehicle’s 

destination and compares it with ToS in order to find the destination node’s segment. 

Based on obtained information, RSU utilizes updated Intra_ST(i) (i.e. if the vehicle’s 

current segment and destination segment are same), BNT(i) (i.e. if there is a direct link 

(i.e. road, street) between the vehicle’s current segment and destination segment) and 

Inter-ST (if none of the above conditions occurs) to find the proper next junction and its 

link. Then, it sends this information to vehicle as a message which is depicted in Figure 

4.10. 

RSU ID Vehicle ID Message Type Next Junction 

Figure 4.10. Route guidance message structure 

“RSU ID” and “Vehicle ID” indicate the ID of RSU and vehicle, and used for unicast 

propagation of route guidance message. “Message Type” specifies the type of message 

for differentiating the routing guidance message from other type of messages that 

vehicle may receive. “Next Junction” represents the next junction as intermediate or last 

node that vehicle should pass it in order to reach its destination. 

It means that every vehicle receives next junction information before reaching to its 

current junction via infrastructure-to-vehicle communication (i.e. RSUs located on 

junctions will send this information). The RSU sends the routing guidance message 

periodically (using fixed generation rate, 5 message per seconds) up to the time it 

receives acknowledgement message from the vehicle as a confirmation of receiving the 

routing guidance message. The reason of using single-hop unicast propagation of 

messages in AVCAF is that these messages are usable for specific vehicle, since 

vehicles receive routing information individually. Moreover, it should be delivered to 

that specific vehicle when it is in close vicinity of a junction and crosses it to another 

junction. In the following subsection, we give an overview of AVCAF implementation 

in real world. 
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4.4. AVCAF in the Real World 

To implement AVCAF in the real world, the road map is split into different segments 

using segmentation sub-module and one server is assigned to each segment. Each 

navigation server is responsible for a spatially limited area, where it handles routing 

requests from vehicles within its segment. Vehicle-to-infrastructure communication is a 

necessity for collecting real-time traffic information. Every crossing vehicle sends some 

information such as ID, direction and destination to the located RSUs at the junctions. 

This information is then transferred to the navigation servers which are the cornerstone 

of AVCAF. Vehicle position is transmitted by GPS-enabled devices (e.g. personal 

navigation assistant or smart phone) to its nearby RSU. Navigation servers use this 

information to compute HTS, CTS and PTS for each road within their own segment by 

using Equations 4.1, 4.2 and 4.3, as explained in Figure 4.7. 

Navigation servers regenerate a number of FANTs (Na) at predefined time intervals, 

namely re-generation period (ϒ) and use them to compute up to n alternative paths (i.e. 

at least one path and at most n paths) between various OD pairs of its own segment by 

applying AVCAF. BANTs return to origin points from destination points and update the 

visited links’ pheromone value by using Equations 4.8 and 4.9. Intra-ST(i) is created and 

updated by using this information and procedure. ToS is used for finding origin and 

destination nodes’ segment. Intra-ST(i) is used to guide vehicles to their destination if 

they are within their destination segment, otherwise they are routed to the proper border 

nodes. Vehicles with a same origin and destination are routed through n calculated 

alternative paths instead of one path. 

The navigation servers communicate via wired networks due to high security and their 

resistance against interference. They utilize the border nodes and routing layers’ (third 

and fourth layers of our layering model) information to create and update BNT and 

Inter-ST in order to find proper border nodes to route the vehicles between two different 
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segments. Using all these data, an OD routing is performed, where each vehicle receives 

an individual routing guidance based on its current position and destination before each 

junction in due time by using infrastructure-to-vehicle communication. There is a 

serious real-time challenge to be solved since each vehicle has its own deadline to 

receive the routing information based on its speed. AVCAF efficiency is evaluated 

through simulation in the next sections. 

4.5. Conclusion 

In this chapter, after reminding the main goal of this thesis, the methodology for solving 

the problems and achieving the objectives were explained. Quantitative and qualitative 

methods, which are the most common research methods in computer science field, as 

well as their characteristics were discussed. By comparing the proposed methodology 

with these research methodologies, it is concluded that the quantitative method is 

suitable for our proposed methodology. Moreover, ant-based VTRSs’ design challenges 

are identified and explained in detail, because the main goal of this thesis is designing 

an ant-based VTRS framework for avoiding vehicle traffic congestion by using 

VANETs. Based on these challenges and VTRSs’ characteristics, we developed a 

framework, called AVCAF, which includes three phases: 1) Initialization, 2) Optimal 

path finding, and 3) Optimal path suggestion. In addition, figures and tables are depicted 

in order to clarify ACVAF procedure and its phases. Every proposed approach should 

be implemented and then evaluated in order to examine its performance. In the next 

section, implementation of the proposed framework (i.e. AVCAF) is discussed in detail, 

whereas its evaluation is discussed in Chapter 6. 
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CHAPTER 5: IMPLEMENTATION 

This chapter is dedicated to the explanation of the implementation details 

regarding AVCAF framework. Since AVCAF includes VANETs for both real-time data 

gathering and routing guidance messages dissemination, its implementation, evaluation 

and testing in real world involve high cost and in most of the cases impossible task if 

metrics such as testing area, mobility and number of vehicles are taken into account. 

Besides, most experiments are not repeatable and require high cost and efforts. 

Therefore, simulation tools and environments are commonly used to evaluate and verify 

the performance of vehicular networks and VANET based approaches (Mu’azu, Lawal, 

Haruna, & Rabiu, 2013). Simulation of VANET is totally different form MANETs’ 

simulation due to its unique characteristics and requirements such as dynamic topology, 

drivers’ behavior, multi-path fading, etc. (section 2.1.1). Researchers and developers 

have built several simulation tools and software for VANETs’ evaluation and 

assessment. It is extremely difficult to choose the proper simulation tool(s) for 

performance testing without comprehensive and complete analysis of existing tools. 

Therefore, we give a comprehensive overview of open source simulation tools that 

allow free access to their source code and explain our selection strategy for simulation 

tools in section 5.1. After that, we discuss selected tools for AVCAF simulation and 

evaluation in section 5.2 and its subsections. Section 5.3 discusses about simulation 

setup including the simulation framework, implementation of AVCAF in NS-2, design 

of road map, vehicles movements and simulation scenarios in SUMO as well as 

configuration parameters. Finally the discussion is concluded and sum-up in Section 

5.4. 

5.1. Introductory to Simulation Tools for VANETs 

Existing simulation tools and software for VANETs are discussed in this 

section due to their importance in implementation and evaluation part of AVCAF. 

Currently, VANET simulation software can be divided into three categories, namely 
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vehicular mobility generators, network and VANET simulators (Martinez et al., 2011b). 

Figure 5.1 depicts the taxonomy of VANET simulation software considering the three 

mentioned categories. 

 

Figure 5.1. Taxonomy of VANET Simulation Software 

 Vehicular mobility generators are utilized to enhance the level of reality in vehicular 

networks simulations. Their generated vehicular mobility traces are used as an input 

for second category which is network simulator. These inputs consist of road map 

and scenario parameters (e.g. minimum and maximum speed of vehicles, 

acceleration and deceleration rates, minimum gap between vehicles, vehicle arrivals 

and departures rates, and number of road lanes). The output of the trace details the 

vehicles’ positions at every time instant for the whole simulation time and their 

mobility profiles. The most common examples of vehicular mobility generators are 

as follows: 

1) SUMO (Krajzewicz et al., 2012) is the most widely used open-source, highly 

portable and time discrete microscopic road traffic simulation package developed 

for simulating large road maps. SUMO has many features that make it distinguished 
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form other open-source vehicular mobility generators. Collision-free environment, 

routing each vehicle individually, different vehicle types, multi-lane streets, right-

hand rule routing on junctions and hierarchy of junction types are some of these 

features. Although many network formats can be imported into SUMO, its 

generated trace files cannot be directly used by most of the existing network 

simulators. 

2) MOVE (MObility model generator for VEhicular networks) (Karnadi, Mo, & Lan, 

2007) is one of the fastest realistic vehicular mobility generators due to its friendly 

GUI that allows user to create vehicular mobility scenario without writing any script 

and learning about its internal details. Unlike SUMO, MOVE’s generated trace files 

can be directly used by existing network simulators such as NS-2 and GloMoSim. 

3) CityMob (Martinez, Cano, Calafate, & Manzoni, 2008) allows users to create 

different mobility models such as simple, Manhattan and downtown model for 

evaluating purposes. Ability of adding vehicle density similar to real town and 

inability of importing and utilizing real road maps are the main advantage and 

disadvantage of CityMob, respectively.  Having more than one downtown, multiple 

lanes for both directions of streets or highways, vehicle queues due to traffic jams 

are some other features of CityMob vehicular mobility generator. 

4) STRAW (STreet RAndom Waypoint) (Choffnes & Bustamante, 2005) is a part of 

Car-to-Car Cooperation (C3) project (AquaLab, 2002) and creates proper vehicle 

mobility on US cities maps. Its output trace files are prepared to be used only by 

JiST/SWANS simulator, which is a serious shortcoming. 

5) FreeSim (Miller & Horowitz, 2007) is a fully customizable macroscopic and 

microscopic free-flow traffic simulator. It allows for multiple freeway systems to be 

easily represented and loaded into the simulator as a graph data structure with edge 

weights determined by the current speeds. Designed and developed traffic or graph 
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algorithms can be performed on all vehicles or for individual vehicle on the road 

map. Moreover, both user generated data or converted data from real-time traffic 

data can be used as traffic data in vehicle mobility scenarios. 

6) VanetMobSim (Härri, Filali, Bonnet, & Fiore, 2006) is macroscopic and 

microscopic traffic simulator. At macroscopic level, it can import and use TIGER 

database or Voronoi tessellation graph as a road map. At microscopic level, it 

supports mobility models such as Intelligent Driving Model with Intersection 

Management, Intelligent Driving Model with Lane Changing and an overtaking 

model, which interacts with Intelligent Driving Model with Intersection 

Management to manage lane changes and vehicle accelerations and decelerations, 

providing realistic car-to-car and car-to-infrastructure interactions. Generating 

output trace files in different formats is one of the main advantages of 

VanetMobSim. These formats are suitable for most of the existing network 

simulators such as NS-2, GloMoSim and GTNetS (Georgia Tech Network 

Simulator). 

 Network simulators enable developers and researchers to investigate the networks’ 

behavior under various circumstances. Detailed packet-level simulations of source, 

destination, reception, route, link, channel and data transmission are accomplished 

via network simulators. It is worth noting that most of the existing network 

simulators are developed for MANET simulations. Hence, some modifications and 

extensions such as vehicular traffic flow model, obstacles and 802.11p standard are 

needed in order to use these network simulators for VANET simulations. The most 

used network simulators for VANET simulations via researchers are as follows 

(Martinez et al., 2011b):  

1) NS-2 (McCanne et al., 1997) is a discrete event simulator that includes following 

features: mobility of node, realistic physical layer along with a radio propagation 
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model (e.g. free-space, two-ray ground reflection and shadowing model), radio 

network interfaces and IEEE 802.11 Media Access Control (MAC) protocol via the 

Distributed Coordination Function. Although the initial versions of NS-2 had some 

drawbacks in terms of modeling and architecture design of the IEEE 802.11 MAC 

and PHY modules, Chen et al. (2007) solved these drawbacks by adding some new 

features to revised architecture of these modules. These features consist of signal to 

interference plus noise ratio computation, and preamble and physical layer 

convergence procedure header processing for PHY module, and include IEEE 802.11 

carrier sense multiple access with collision avoidance (CSMA/CA) mechanism for 

MAC module. 

2) GloMoSim (Martin, 2001) is developed for simulating both wired and wireless 

networks. It is scalable, discrete event and layered simulation. Its layers’ design is 

similar to Open Systems Interconnection (OSI) model and standard Application 

Program Interfaces (API) are utilized between its layers that allow rapid integration 

of models developed by different developers at different layers. QualNet (Qualnet, 

2011) simulator is a trading style of GloMoSim. 

3) SNS (Staged Network Simulator) (Walsh & Sirer, 2003) is proposed due to the 

existing simulators’ shortcoming in terms of speed and scalability. The main reason 

of these drawbacks is that current simulators perform several redundant computations 

while they can cache the result of expensive computational operations and reuse 

them as needed. SNS is the staged version of NS-2 and it is 50 times faster than NS-2 

when the desired network scenario includes 1500 nodes. This rapid performance 

allows SNS to simulate large network scenarios. It is worth noting that the existing 

developed version of SNS is based on NS-2 version 2.1b9a which is not suitable for 

simulating VANET scenarios. 
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4) JiST/SWANS (Barr, Haas, & Renesse, 2005) is composed of two modules as its 

name shows. The first module is JiST which is discrete event and high performance 

simulation engine. JiST runs on standard Java virtual machine and outperforms 

existing simulation engines in terms of required time and space for simulating a 

scenario. It uses virtual machine as a simulation platform via embedding simulation 

time semantics at the byte code level. As a result, it utilizes Java as its simulations 

programming language that can be compiled on any virtual machine consist of Java 

compiler.  

The second module, SWANS, is a scalable wireless networks simulator built on top 

of the JiST platform. Although SWANS has capabilities similar to GloMoSim and 

NS-2, it can simulate scenarios that are one or two times larger than what is possible 

with GloMoSim and NS-2, respectively, using the same amount of consumed time 

and space for simulation (Rimon Barr, 2004). 

5) GTNetS (Riley, 2003) is scalable simulator that is developed for simulating both 

wired and wireless networks. Like JiST/SWANS, GTNetS is designed to simulate 

large networks. It is implemented via C++ programming language that allows 

developers and researchers to extend, develop or examine existing or new protocols 

through it. It is worth noting that GTNetS consumes lower memory than NS-2. 

Gathering statistics regarding its own performance and drawing histograms for data 

sets are the other advantages of GTNetS. 

 VANET simulators provide both traffic flow and network simulation. One of the 

important issues in vehicular networks is the drivers’ behavior and response to the 

VANET applications or messages which can affect the throughput of applications 

(Sichitiu & Kihl, 2008). VANET simulator allows researchers or developers to 

change the vehicles’ behavior (or drivers’ behavior) based on a desired VANET 
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application or message. The most common examples of VANET simulators are as 

follows:  

1) TraNS (Piorkowski et al., 2008) is a VANET simulator that integrates SUMO and 

NS-2 as a mobility generator and network simulator, respectively, to create realistic 

VANET simulation scenarios. TraNS is written in C++ and Java, and provides and 

application centric evaluation framework for VANET. Its latest version, TraNS v1.2, 

includes new features such as support 802.11p standard, import road maps from 

TIGER and Shapefile maps, random vehicle routes generation, generate mobility 

trace file for NS-2, and simulate road events, e.g. accidents. Moreover, it can 

simulate large networks up to 3000 vehicles and allows for Google Earth 

visualization of simulation. 

2) NCTUns (National Chio Tung University network simulator) (Wang et al., 2003) is 

an extensible VANET simulator developed for simulating various protocols and 

algorithms in both wired and wireless networks. A novel kernel re-entering 

mechanism is used as its main technology. NCTUns can be used as emulator since it 

supports seamless integration of emulation and simulation. In addition, parallel 

simulation is achievable via NCTUns on multi core platforms. Its highly integrated 

and friendly graphical user interface gives many advantages to users and developers 

such as fast and quick network topology design, variables and modules configuration, 

nodes movements’ specifications and network performance plots. Fedora 9 Linux 

distribution should be installed on the machines in order to run NCTUns on them 

which poses a big problem for most of VANET researchers and limits its usage 

(Martinez et al., 2011b). 

3) GrooveNet (Mangharam, Weller, Rajkumar, Mudalige, & Bai, 2006) enables 

communication between real vehicles and simulated ones by its modular architecture. 

GrooveNet provides large networks’ (i.e. more than 1000 vehicles) simulation along 
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with new protocols and models evaluation. Three different types of node can be 

simulated via this VANET simulator: 1) vehicles with multi-hopping data capability 

over DSRC channels, 2) fixed infrastructure nodes, e.g. RSUs, 3) mobile gateways 

with V2V and V2I capabilities. Road map scenarios in GrooveNet can be imported 

from TIGER database, which includes only US maps. This issue is the main 

disadvantage of GrooveNet and limits its usage by developers and researchers. 

4) MobiREAL (Konishi et al., 2005) is developed to simulate realistic nodes’ mobility 

and evaluate MANET applications. It uses C++ programming language and 

probabilistic rule-based model to create nodes’ mobility. This model enables 

developers to define the relationship between mobile nodes’ destination, speed, route 

and direction, and their position, surrounding area and obtained information from 

applications. Nodes’ movement, their connectivity and packet transmission are 

visible through MobiREAL Animator that increases the understanding of simulated 

scenario and obtained results, and makes troubleshooting easier. Collision avoidance 

among pedestrians and vehicle traffic congestion are considered and implemented in 

MobiREAL. GTNetS and NETSTREAM (Mori, Kitaoka, & Teramoto, 2006) are 

used as network simulator and vehicular mobility generator via MobiREAL to 

simulate VANET scenarios. NETSTREAM is designed and developed by TOYOTA 

and is a proprietary software. As a result, most of the researchers cannot access and 

manipulate mobility generator of MobiREAL which limits its wide usage as a 

VANET simulator. 

As it can be seen, several simulation tools and mobility generators are developed for 

vehicular networks’ simulation and evaluation due to their popularity among researcher 

in recent years. These tools are different in various aspects such as their simulation 

capabilities, environments, input variables, output trace file formats, available and 

implemented examples and set of parameters to play with as well as scalability. More 
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information and comparative study of open source simulators for VANETS can be 

found in the study by Martinez et al. (2011b). In the following section, we explain our 

strategy for selecting proper simulation tools for AVCAF simulation and evaluation. 

When choosing a simulation tools, several questions and aspects should be considered. 

Installation and learning procedures, input and output variables, ease of usage, available 

protocols and algorithms, extensibility, size of targeted scenario are some of these 

questions and aspects for choosing suitable simulation tools. Based on the 

characteristics of discussed VANET simulators (i.e. TraNS, GrooveNet, NCTUns and 

MobiREAL) in previous section, GrooveNet, NCTUns and MobiREAL are not suitable 

for AVCAF development due to the following reasons: 1) Road map scenarios in 

GrooveNet can be imported from TIGER database, which includes only US maps. 2) 

Fedora 9 Linux distribution should be installed on the machines in order to run NCTUns 

on them which poses a big problem for most of VANET researchers and limits its 

usage. 3) NETSTREAN is used as mobility generator in MobiREAL which is 

proprietary software and is expensive. As a result, TraNS is selected as VANET 

simulator for AVCAF development due to following reasons: 

 Most of the existing simulator software concern about performance evaluation of 

packets routing and dissemination protocols, forwarding and MAC protocols related 

to VANET under realistic but predefined and un-modifiable mobility scenarios. 

TraNS found a solution for this drawback by proposing Traffic Control Interface 

(TraCI). 

 TraNS uses TraCI (Wegener et al., 2008) to interlink mobility generator and network 

simulator that enables researchers to control the simulated vehicles behavior during 

simulation run-time in a real-time manner. As a result, VANET applications can be 

evaluated in realistic scenarios. 
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 In addition, NS-2.33 simulator includes a module for testing ant-based approaches 

(Lima, 2009).  

 Last but not least, IEEE 802.11p communication standard (Jiang & Delgrossi, 2008) 

which is proposed and used for inter-vehicle communication is only implemented in 

NS-2.33 simulator.  

Therefore, it is decided, based on the available unique features, strong focus on 

vehicular networks, scalability, application-centric mode and having a module to test 

ant-based algorithm (i.e. AntNet), to use TraNS as VANET simulator in AVCAF 

implementation and evaluation. 

5.2. Simulation Tools for AVCAF Implementation 

As mentioned earlier, TraNS integrates SUMO and NS-2 as a mobility generator and 

network simulator, respectively, to create realistic VANET simulation scenarios. In 

summary, TraNS, SUMO and NS-2 are selected as VANET simulator, mobility 

generator and network simulator in order to AVCAF development and evaluation. 

These three simulation software along with their features and characteristics are 

discussed in the following subsections. 

5.2.1. Network Simulator 2 (NS-2) 

NS-2 is developed at the Information Science Institute and is sponsored by the Defense 

Advanced Research Projects Agency and National Science Foundation. NS-2 is a 

discrete event network simulator organized according to the OSI model (Wetteroth, 

2001) and was initially intended to simulate wired networks (Hogie, Bouvry, & 

Guinand, 2006). Afterwards, the 802.11 MAC layer and important wireless routing 

protocols needed in wireless networks are implemented and added to NS-2 (Schilling, 

2005). In general, NS-2 provides a way for users to specify networks protocols and 

simulating and evaluating their related behaviors. 

NS-2 consists of two programming languages, namely C++ and Object Tool command 

language (OTcl). A huge piece of code and classes written in C++ language composes 
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the core of NS-2. C++ is used for internal mechanism of NS-2 (i.e. backend) due to its 

quickness and object-oriented specifications. For simulation setup of NS-2 (i.e. 

frontend) (e.g. objects’ configuration and events scheduling) a script language called 

OTcl is used via NS-2 to make its usage easier. TclCL (Tcl with classes) is used to 

interlink the C++ and OTcl. A network simulation requires an OTcl script for network 

configuration, a mobility pattern describing node movement, a traffic pattern describing 

data traffic, and files describing coordinates for obstacles and pathways. Simulation 

results which are saved as trace files can be loaded for analyzing by an external 

application based on the user’s preference for each OTcl simulation script: 1) A NAM 

(Network AniMator) trace file (file.nam) for use with any NS-2 compliant animator 

tool. 2) A Trace file (file.tr) which has to be parsed to extract helpful information.  This 

procedure is depicted in Figure 5.2. 

 

Figure 5.2. Basic Architecture of NS-2 

Obtained trace files through the simulation can be processed by user scripts such as 

Alfred Aho, Peter Weinberger and Brian Kernighan (AWK) programming language or 

can be shown and interpreted in the form of graph and figures via different tools such as 

NAM (Estrin et al., 2000) and Xgraph (Harrison, 1989). Up to now, NS-2 is most 
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popular network simulator amongst research communities for simulating and evaluating 

proposed protocols and algorithms in the area of networking. 

As mentioned earlier, NS-2 simulator is a free tool and can be downloaded from The 

Network Simulator Wiki (2014). Another advantage of NS-2 is that it can be installed 

on various platforms such as Linux, Windows and Mac systems (Issariyakul & Hossain, 

2011). NS-2 can be downloaded and installed in two formats: 1) all-in-one suite and 2) 

component-wise. In former, all required components along with optional components 

are embedded in the installation package, while, in the component-wise package, 

components can be selected and installed by users based on their requirements. The 

second installation format reduces downloading time and required space for installation. 

Required and optional components of latest all-in-one installation package are depicted 

in Figure 5.3. 

 

Figure 5.3. Components of the latest version of all-in-one installation package of NS-2 

It worth noting that Tcl/Tk is combination of Tcl and graphical user interface Toolkit 

(Tk). Tk is superior to current methods in developing desktop applications. In addition, 

Zlib is required library for NAM component. 

5.2.1.1. Simulation Steps of NS-2 

In order to simulate any protocol or algorithm in NS-2, we need to have an overall view 

from simulation steps of NS-2. There are three main simulation steps in NS-2, namely 
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simulation design, configuring and running simulation and post simulation processing. 

These steps are illustrated in Figure 5.4 and discussed in the following paragraphs. 

 

Figure 5.4. Main simulation steps in NS-2 

1) Simulation design: This is the first step in a network simulation. The simulation users 

should define the following metrics: the simulation purpose, network configuration, 

assumptions, the performance measures, and the type of expected results. 

2) Configuring and running simulation: The above simulation design is implemented in 

this step. This step is further divided into two phases, namely network configuration 

and simulation.  

a. Network configuration phase: network components such as node, Transmission 

Control Protocol (TCP) and User Datagram Protocol (UDP), and initial events’ 

chain are defined and configured based on designed simulation in the first phase. 

All the events such as File Transfer Protocol are scheduled to start at predefined 

times. This phase corresponds to every line in a Tcl simulation script before 

running the Simulator object. 

b. Simulation phase: This phase starts the simulation which was configured in the 

previous phase. This phase corresponds to a single line in a Tcl simulation script. 

This line invokes the run class of simulator. In other words, simulation phase 
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maintains the simulation clock, and dispatches and executes all the pre-defined 

events in chronological order until the last event.  

3) Post simulation processing: This step includes two tasks, namely debugging and 

compiling the obtained results via the simulation phase. The first task means the 

program integrity verification, while, the second one means simulated network 

performance evaluation. More information about NS-2 simulator and its steps and 

concepts can be found in the book written by Issariyakul  and Hossain (2011). 

After successful installation of NS-2.33 and in order to become familiar with ant-based 

algorithms’ simulation and implementation in NS-2, we have implemented AntNet 

algorithm on NS-2 using manual documentation prepared by Lima (2009). After 

successful installation and running the AntNet algorithm on NS-2, various setups and 

modifications have been applied in order to implement and simulate AVCAF in 

simulator environment. These setups and modifications are discussed in Section 5.3. 

5.2.2. Simulation of Urban MObility (SUMO) 

SUMO is a fast and time discrete vehicle traffic generator with microscopic features. 

The major part of development of this software is undertaken by the Institute of 

Transportation System at the German Aerospace Center. However, every developer or 

user can contribute in SUMO development because it is open source software and is 

licensed under GPL. SUMO can be used along with network simulators such as NS-2 or 

OMNET++ to create realistic simulation of VANET scenarios. SUMO is able to 

provide a large mobility networks with various features including the simulation of 

different vehicles, importing the real world maps, providing various traffic 

characteristics, speed limits, traffic lights, variety of junction layouts and etc.  

The microscopic feature of this simulator allows to model variety of vehicles types with 

different accelerations/decelerations, lengths and maximum speeds. Collision free 

movements for vehicles, friendly graphical user interface, time discrete vehicle 
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movement and various right of way rules at intersections are the other prominent 

features of this vehicle mobility generator. 

Roads, streets and highways connect to each other to create and form a road map. In 

other words, we have to create streets and roads as the smallest part of a road map and 

connect them to each other in for implementing any traffic mobility scenario. In SUMO 

street consists of two nodes (junctions) and one edge as a street between these two 

nodes. Moreover, each street or road may have its own properties and rules. Therefore, 

there are four different file types, namely node, link, link property and lane 

connection/traffic movement files for designing and implementing any road map in 

SUMO. The two first files include the information about the junctions (nodes) and the 

streets (links) between them. Node and link files are saved and named with extensions 

.nod.xml and .edg.xml, respectively. Besides, the two other files with 

extensions .con.xml and .typ.xml are required in order to specify allowed traffic 

movements, lane connections at intersections and link types.  

First of all, we have to determine the required number of nodes and the links between 

them. It means that road map should be converted into a graph with nodes and edges 

and then following files should be created. 

 Node file: Nodes correspond to junctions on the road map with specific and pre-

defined id and coordination. These coordinates are specified by two-dimensional 

numeric values for positioning in the desired points as the nodes’ latitude. 

 Link file: The creation of each edge (as a road segment for connecting the junctions) 

requires election of two junctions which are defined in Node file. Link file includes 

edges’ information such as id, type, direction, start and end nodes (junctions).  

 Link property file: Additional information regarding each edge or link such as lanes 

priority based on traffic regulations, number of lanes, and speed limit of lanes can be 

defined in additional file named Link property file. 
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 Traffic movement file: In order to change the default settings of SUMO such as 

allowed U-turn or connection between the rightmost lane of each link as well as to 

specify traffic movements and lane connections an additional file named traffic 

movement file is required in SUMO. 

After preparing four aforementioned files according to traffic scenario and road map, it 

is required to generate the Network file from them to make the conformity of configured 

files with SUMO traffic generator format. NETCONVERT command line is used for 

achieving this objective. Figure 5.5 illustrates the sample of using NETCONVERT 

command for generating the SUMO network file entitled “XXX.net.xml”. As it can be 

seen .net.xml extension is used for Network files in SUMO. 

 

Figure 5.5. An Example of Netconvert Command Line 

It is worth noting that SUMO can generate road networks and maps either by using an 

application called “netgenerate” or importing a digital road map via “netconvert” as 

follows: 

 Netgenerate: This application is a tool for generating different types of maps. The 

NETGENERATE eliminates the requirement of configuring the Node and assist in 

constructing the three kinds of abstract networks including the manhattans-alike 

“grid network”, circular “spider network” and “random network”. Figure 5.6 

illustrates these types of networks. 

 

Figure 5.6. The outline of Grid, Spider and Random Networks from Left to Right 
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 Netconvert: As mentioned before, Netconvert is a command line application that 

enables the users and developers to build various road network topologies. It can be 

used for generating simple road maps by using node and link files or for generating 

complex and real road maps by importing them from other traffic simulators such as 

VISUM (PTV, 2006) and MATSim (Multi-Agent Transport Simulation (MATSim) 

hompage, 2008) or from open source digital maps such as shapefiles (Stabler, 2006) 

and OSM (Bennett, 2010). The OSM project as the most cited and used digital maps 

source using by NETCONVERT.  

After creating Network file (i.e. XXX.net.xml), Traffic demand file is another required 

file in order to generate the traffic simulation scenario in SUMO. Traffic demand file 

includes any information regarding the movement of vehicles beside their types, their 

quantity, their features and the routes that are required to utilize in the provided network 

file. Traffic demand file should be stored by rou.xml extension. 

After obtaining the Network file and defining the Traffic demand file, we need to glue 

all the prepared files together into a file, called configuration file, which includes both 

rou.xml and .net.xml. files as well as simulation duration. Configuration file should be 

stored by sumo.cfg extension. 

Traffic simulation execution can be achieved by calling the configuration file in two 

ways, namely SUMO and GUISIM (SUMO-GUI). SUMO application is a pure 

command line application for efficient batch simulation, while, GUISIM (SUMO-GUI) 

is the extended application for SUMO which provides the graphical user interface for 

the simulation. The SUMO-GUI assists the user to observe and monitor the simulation 

in action. This visual application can be customized in order to show the vehicles speed 

and waiting time or to follow the traffic behavior of specific vehicle. Polygons, Point Of 

Interest and image decals are some other graphical features that are exist in GUISIM 

(SUMO-GUI) to enhance scenarios’ visual appearance. It also brings the possibility of 
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interaction with scenarios by changing the prepared traffic signal programs or rerouting 

the scenarios.  

Several output files can be obtained for each simulation run via SUMO. For all vehicles, 

there is a written range from simulated inductive loops to single vehicle positions in 

each step as well as other complicated values such as each vehicle’s trip information or 

aggregated measures for all streets or lanes. In addition, noise or pollution emission as 

well as fuel consumption can be modeled in SUMO which enables users to evaluate the 

ecological effects of their proposed protocols or applications for vehicular networks. It 

is worth noting that all output files generated by SUMO are in XML format. 

Figure 5.7 represents an overview of simple traffic scenario implementation in SUMO 

considering the required files. More information about the SUMO mobility generator 

can be found in the study by Krajzewicz et al. (2012). 

 

Figure 5.7. General Steps of Traffic Simulation Implementation in SUMO 
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5.2.3. Traffic and Network Simulation (TraNS) environment 

TraNS is a VANET simulator that links SUMO and NS-2 as a mobility generator and 

network simulator, respectively, to create realistic VANET simulation scenarios. In this 

way, 1) realistic mobility models can be utilized by NS-2 (i.e. network simulator) and 2) 

the behavior of vehicles in SUMO (i.e. mobility generator) can be affected and 

manipulated by NS-2 considering the communication between vehicles. Most of the 

existing VANET simulators cannot provide the second feature, while the first feature 

can be obtained by all VANET simulators (Piorkowski et al., 2008). TraNS has two 

different operation modes, namely network-centric and application-centric. The 

explanation of each of these modes is as follows: 

a) Network-centric: Mobility trace files are created and stored on a storage device prior 

to the network simulator. As a result, this mode can be used for evaluating the 

protocols that do not effect on vehicles mobility during simulation runtime. User 

content (e.g. music, file or travel information) exchange or distribution protocol is a 

suitable example that can be evaluated in this mode. 

b) Application-centric: This mode enables network simulators to modify the vehicles 

mobility based on simulated scenario during simulation runtime. Unlike network-

centric, the mobility trace files are not created and stored on a storage device prior to 

the network simulator. This characteristic enables users to create large scale and 

long-term simulation scenarios without concerning about limited space of storage 

devices. TraCI is used to interlink mobility generator and network simulator. In other 

words, both mobility generator and network simulator operate simultaneously and 

TraCI resides between them and controls their communication. Safety and traffic 

efficiency applications (e.g. collision avoidance or SmartPark (Piorkowski, 

Grossglauser, & Papaioannou, 2006)) are proper examples that can be evaluated in 

this mode. In the following subsection we discuss TraCI in more details since it is 

one of the main parts of our experimental simulation. 
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5.2.3.1. Traffic Control Interface (TraCI) 

As mentioned earlier, TraCI is an interface to interlink vehicle mobility generator and 

network simulator in order to control the vehicles mobility and behavior during the 

simulation runtime. Thus, it enables us to investigate the influence of VANETs 

applications on vehicular networks. It is worth noting that TraCI is one of the features of 

latest version of TraNS (TraNS v1.2). TraCI developers believe that any complex 

mobility pattern, which is a result of an action or a decision taken by a driver, can be 

fragmented into a sequence of mobility primitives such as ‘change lane’, ‘change 

speed’, ‘stop’, etc. These mobility primitives can be used to identify the set of atomic 

mobility commands that used by network simulator to modify and control vehicles 

mobility pattern. 

TraCI is used for creating the bidirectional communication of the SUMO mobility 

generator and NS-2 network simulator in our simulation experiments. The TraCI 

provides this interaction over a TCP connection. The TraCI utilizes a client/server based 

architecture. In which the SUMO and NS-2 software play the role of TraCI-server and 

TraCI-client, respectively. After establishing a TCP connection, TraCI-client (NS-2) 

uses data exchange protocol (i.e. commands and responses) to control the simulated 

vehicles’ movements in TraCI-server (SUMO) based on the designed VANET 

application. Once a request received, the server (TraCI manager module of SUMO) 

performs the requested command and sends one or more responses to the client (TraCI 

manager module of NS-2). Accordingly in each time step the network simulator will 

influence the traffic simulator and vice versa. During the connection the client 

periodically sends its simulation time plus one simulation step as a command to the 

server in order to time synchronization with the server and controls the simulation steps. 

During the TraCI operation, only the client has the authority to terminate the TCP 
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connection and the server is not eligible for this action. Figure 5.8 illustrates the 

overview of system architecture interoperation procedure of TraCI. 

 

Figure 5.8. Overview of System Architecture Interoperation Procedure of TraCI 

The control commands which transfer between the server and client through the TraCI 

interface can be classified in to three functional types. The first type commands (e.g. 

simulation setup, status and move node) control the simulation run and are used for 

permitting the server to execute the simulation up to the next time stamp commands. 

The second type of commands (e.g. stop node, set maximum speed and change lane) is 

used for specifying primal atomic mobility behaviours that must apply on the specific 

vehicle. Finally the third type includes the environmental commands (e.g. scenario, 

position conversion and driving distance) regarding the road maps, traffic lights, 

building foot prints, and etc. that are required to provide for the network simulator, 

considering the context that network simulation has focused. These commands may be 

the requests for environmental details or instruction for effecting specific vehicle’s 

behavior. More information about the TraCI interface can be found in the next section 

and the study by Wegener et al. (2008). 
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5.3. Simulation Setup 

This section is devoted to the presentation of the implementation details and simulation 

setups which are used for developing our approach (i.e. AVCAF framework) by taking 

advantage of various simulation software including NS-2, SUMO and TraNS as 

network simulator, mobility generator and VANET simulator, respectively. All of these 

software were discussed in previous sections. More details about simulation setup, 

parameters and pseudo-code of the main parts of our approach and simulation procedure 

that is used for developing the AVCAF are discussed in the following paragraphs. This 

procedure is depicted in Figure 5.9 to simplify its explanation. AVCAF implementation 

is explained according to its three main phases, namely initialization, optimal path 

finding and optimal path suggestion, which were discussed in Section 4.3. 

 

Figure 5.9. Proposed Framework for AVCAF Simulation 

5.3.1. Implementation of Initialization Phase 

According to AVCAF framework, the initialization phase consists of data gathering and 

map preparation modules as depicted in Figure 5.10. 
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Figure 5.10. Initialization Phase of AVCAF Framework 

Regarding map preparation module and providing a suitable and realistic traffic 

mobility simulation which enables rational evaluation of proposed approach, it is 

required to design and use a real road map in a manner that possess the prominent 

feature of urban areas especially the central areas, e.g. downtown. These areas generally 

comprise orthogonal outline of several adjacent intersections to connect road segments 

together and are the most common areas that suffer from vehicle congestion problem. 

For this aim, OSM application is used to export the main structures of real road map in 

this thesis. OSM is the online editable source of the world map that includes most of 

road attributes comprise of speed limits, traffic lights, turn restrictions, road types, and 

etc. OSM provides manual selection of the desired area by using the available option for 

exporting it as the .osm files. A part of the city of Kuala Lumpur, Malaysia map is 
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extracted from OSM in the form of XML formatted .osm file, namely map.osm, and used 

as the physical road map layer in our simulation which is illustrated in Figure 5.11. 

Table 5.1 represents the different statistic specifications for this road map. 

 

Figure 5.11. The Exported Road Map from OSM Application 

 

Table 5.1. Statistic specifications of road map 

Specification Value 

Dimension 5 km * 4 km 

Map area 20 km
2
 

Streets/km
2
 160.25 

Junctions/ km
2
 93.3 

Avg. street length 225.5 m 

Avg. lanes/street 1.9 

 

After obtaining the map.osm file, it should be converted into a graph which is suitable 

format for SUMO. The NETCONVERT tool in SUMO is used to convert the map into a 

SUMO suitable format (i.e. from .osm to net.xml file). The NETCONVERT command 

line that used for converting map.osm file into the map.net.xml file is illustrated in 

Figure 5.12. 

 

Figure 5.12. NETCONVERT Command Line for Obtaining Network File from OSM File 
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The obtained map.net.xml file is imported into SUMO and the result is illustrated in 

Figure 5.13. 

 

Figure 5.13. The Extracted Road Map in SUMO 

In addition to net file, node, edge and connection files are also needed in order to 

implement the layering and segmentation sub-modules of map preparation. These files 

are also required for vehicle movement simulation due to following reason. In SUMO, 

type of each simulated vehicle and its traversed route from origin to destination should 

be assigned by user. As a result, vehicles movement simulation is very difficult, time 

consuming and error prone task as the number of vehicles, size and complexity of road 

map, and variety of designed simulation scenarios such as accident, traffic flow, activity 

based traffic and weather condition that should be simulated grow. In order to solve this 

problem, TrafficModeler (Papaleondiou & Dikaiakos, 2009), an open source tool with 

easy-to-use graphical user interface, is used for quick and high level modeling and 

generation of vehicles movements in this thesis. Vehicle types, traffic flow elements, 

emergency conditions are some of the implemented traffic models in TrafficModeler. 

TrafficModeler uses layering concept for modeling vehicle movements on the road map. 

Traffic layering concept brings many advantages for us as a user or developer such as 
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simplifying movement model deign, defining various mobility models and assign them 

to different layers, investigating the impact of various mobility models by enabling or 

disabling traffic layers, and combining various traffic models designed by different 

developers. Traffic definition elements are used for defining traffic inside each layer. 

Each element includes a traffic generation algorithm and a set of attributes that define 

the way of traffic generation for the desired element based on its attributes such as 

vehicles’ location, departure and arrival time. The current version of TrafficModeler 

includes three types of traffic layers as follows: 1. User defined traffic: users or 

developers can use this layer to generate and define their desired traffic model directly 

via following traffic definition elements: street-to-street, area flow, hotspot and 

accident. 2. Activity based traffic: users or developers can use this layer to generate and 

define their desired traffic model indirectly by creating virtual population based on 

demographical data (Birkin, Turner, & Wu, 2006). Everyday activities of a population 

and its resulting traffic can be modeled by using this traffic layer via its traffic definition 

elements, namely traffic area and school. 3. Random generated traffic: users or 

developers can use this layer to generate and define their desired traffic model indirectly 

by using some random distribution. 

The depicted Netconvert command line in Figure 5.12 is used to obtain Map.net.xml. 

Meanwhile, Netconvert command with –plain-output option is used to obtain the other 

required files (i.e. map.nod.xml, map.edg.xml and map.con.xml). This command line and 

a part of these obtained files are illustrated in Figure 5.14 and Appendix A, B, C, 

respectively. 

 

Figure 5.14. NETCONVERT Command Line for Obtaining TrafficModeler Required Files from 

OSM File 
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After importing the road map into TrafficModeler, we generate various vehicle traffic 

models by using traffic layers, traffic generation algorithms and graphical user interface 

according to our simulation scenarios (Chapter 6). This step is illustrated in Figure 5.15.  

 

Figure 5.15. Vehicle Movements in TrafficModeler 

Generated vehicle traffic patterns are exported and saved in the compatible format with 

SUMO. In other words, TrafficModeler’s output (i.e. sim.sumo.cfg and its related files 

such as sim.nod.xml, sim.edg.xml, sim.rou.xml, sim.net.xml and sim.accidents.xml) is the 

input of SUMO.   

According to the obtained files (i.e. map.nod.xml, map.edg.xml and map.con.xml), our 

exported physical road map in Figure 5.11 includes almost 1000 nodes. Hence, it is 

divided into 20 segments with 50 nodes in each segment based on the segmentation sub-

module concept which is discussed in subsection 4.3.1.1. In addition, ToS, BNT(i) and 

Inter_ST tables are created based on their described concept in subsection 4.3.1.1 and 

will be used in last phase of AVCAF framework (i.e. optimal path suggestion phase). 

Some other traffic parameters and attributes that are not tunable via TrafficModeler are 

set and considered manually in vehicle traffic mobility files. These parameters and their 

assigned value are as follows: speedFactor and speedDev attributes are vehicles 
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expected multiplicator for lane speed limits and deviation of the speedFactor, 

respectively. 1 and 0.1 are assigned for these attributes, respectively, to result in 

distribution of chosen ‘maximum speed’ among drivers between 80% and 110% of 

speed limit. The drivers’ impatient value of 0.7 is considered which cause the partial 

willingness of drivers to cut into traffic and using gaps in lanes which may not be their 

right of ways. The driver imperfection (sigma) is set to 0.5 and refers to the inability of 

a driver to maintain a constant velocity, causing fluctuations in speed that affect the 

vehicles behind. minGap is the minimum space between two subsequent vehicles and is 

set to 2 meters. Finally, LaneChangeModel is set to ‘DK2008’ in order to allow vehicles 

to change their lanes if necessary. These attributes are considered to achieve more 

realistic traffic behavior. 

Regarding data gathering module, the prepared sim.sumo.cfg simulation file is imported 

into SUMO. After running the simulator and assuming the vehicles as ants (VANTs), 

the stochastic and deterministic data can be obtained via discussed equations 4.1 and 

4.2, respectively, in subsection 4.3.1.2.1 and also TraCI commands including 

EdgeTravelTime and EdgeDensity in subsection 5.3.3. In other words, current density 

of edge (number of vehicles on specific link) and average travel time of edge will be 

sent periodically to NS-2 from SUMO via mentioned TraCI commends in order to 

compute the CTS and HTS by using equations 4.1 and 4.2, respectively, in subsection 

4.3.1.2. Afterwards, PTS is calculated by using equation 4.3 and is used for updating 

routing tables. SUMO provides extensive output options such as travel time, density, 

mean speed for a given travel time. 

5.3.2. Implementation of Optimal Path Finding Phase 

The main part of AVCAF framework is implemented in NS-2 simulator. As a result 

some new files and functions are created in order to obtain this issue. Defining and 

developing an ant packet, ant agent, routing table and global variables and methods are 
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the most important tasks that are needed for AVCAF implementation. A new ant packet 

is developed in order to consider segmentation sub-module in addition to source and 

destination nodes addresses. New ant packet for AVCAF framework is defined in 

ant_pkt.h file which is represented in Appendix D. Map exploration and path selection 

are two main modules of optimal path finding phase of AVCAF framework as 

illustrated in Figure 5.16. 

 

Figure 5.16. Optimal Path Finding Phase of AVCAF Framework 

In order to implement map exploration, FANTs are defined in ant_pkt.h file. 

AVCAF_Intra_ST.h and AVCAF_Intra_ST.cc are definition and implementation files for 

routing table in AVCAF. Adding an entry in routing table, finding next hop, printing 

and updating routing table are the most important methods that are developed and 

embedded in AVCAF_Intra_ST.cc. Equations 4.4-4.7 are embedded in finding next hop 

method of AVCAF_Intra_ST.cc file in order to find the next hop address and its 

probability value taking into account vehicles velocity, density, travel time and road 

length (distance), number of neighboring nodes as user preferences. Different policies 

can be applied for different segments by using different probability functions 

considering various preferences or conditions. For instance, different probability 

functions can be used for different times of the day because traffic conditions at night-
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time differ from traffic conditions during the daytime. Hence, higher priority can be 

assigned to real-time data at night-time comparing its priority at daytime, vice versa; the 

probability of historical data can be increased during the daytime to increase the 

gathered data accuracy and efficiency. Although a single probability function (Equation 

4.4) is considered in our implementation, two or more probability functions can be 

utilized in the proposed AVCAF framework based on various conditions. 

AVCAF_Intra_ST.h file is represented in Appendix E. All of these methods take 

advantage of optimal path finding procedure which its pseudo code is as follows: 

     Procedure OptimalPathsFinding () 

{    𝑖 - current node, 𝑑 - destination node, 𝑠 - source node, Na - number of ants, γ - re-generation period of ants} 

     {next_hop - successor node of 𝑖, pre_hop - predecessor node of 𝑖, Pij – probability of link (i, j)} 

     for each node ∈ 𝑉 do    % V is the set of nodes in the desired segment 

         in_parallel    % concurrent activity on each node 

              i =s, {nodes – i} = d; 

             for each node s do                

                 if time to generate ant agents at node s then 

                     for all now and next γ time intervals do 

                            Create Na  FANT𝑠𝑑 (startγ) 

                     end for 

                 end if 

              end for 

              for all FANTsd (Psi) received at node 𝑖 do 

                   if 𝑖 = 𝑑 {destination reached} then 

                        Create BANTds (Psd) 

                        pre_hop ← 𝐺𝑒𝑡𝑃𝑟𝑒𝑣 (FANTsd (Psd))   % select previous node in the stack  

                        Move BANTds (Psd) to pre_hop 

                        Remove FANT𝑠𝑑 (P𝑠𝑑) 

                    else 

                        next_hop ← 𝐺𝑒𝑡𝑁𝑒𝑥𝑡 (FANTsd (Psi)) 

                        P𝑠𝑛 ← P𝑠𝑖 + GetLinkProbability (𝑖, 𝑛, P𝑠𝑖) % compute the link probability using probability   

function (Equation 4.4) 

                        FANT𝑠𝑑 ← Memorize (next_hop, P𝑠𝑛) % add the new information on the ant’s memory 

                        Move FANT𝑠𝑑 (P𝑠𝑛) to next_hop 

                    end if 

              end for 

              for all BANT𝑑𝑠 received at node 𝑖 do 

                    τdi ← 𝑈𝑝𝑑𝑎𝑡𝑒𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 (𝑖, 𝑖 ← 𝑑) % update the pheromone value using pheromone update rule 

(Equation 4.8) 

                  UpdateInterSegmentTable (i, d, τdi) 

                  if 𝑠 ≠ 𝑖 {source not reached} then 

                          next_hop ← 𝐺𝑒𝑡𝑁𝑒𝑥𝑡 (BANT𝑑𝑠 (P𝑠𝑖)) % select next hop to go to 

                       Move BANT𝑑𝑠 (P𝑠𝑛) to next_hop 

                  else 

                       Remove BANT𝑑𝑠 (P𝑠𝑖) 
                  end if 

              end for 

          end in_parallel     

     end for each 

end procedure 
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In addition, ant agent are defined and implemented in AVCAF_ANT.h and 

AVCAF_ANT.cc files, respectively. These agents are created and attached to each node 

of road map in order to handle the ant packets and AVCAF implementation. 

AVCAF_ANT.cc contains methods to send, receive and process FANTs and BANTs 

based on obtained information from AVCAF, to build memory of FANTs, to add 

neighbor nodes, to print neighbors of a node and to update the traffic model. 

AVCAF_ANT.h file is represented in Appendix F for more clarity.  

Regarding implementation of path selection module of optimal path finding phase, 

BANTs are created and forwarded to the next hop based on the FANTs’ memory. These 

two methods (i.e. creating BANT packet and Forwarding BANT to next hop) are 

embedded in AVCAF_ANT.cc file. BANTs use the FANTs memory to return from the 

destination to the source node. Therefore, they can evaluate the cost of the solutions that 

they generate and use this evaluation to modulate the amount of pheromone they deposit 

on the links in return mode. Pheromone update rule (Equation 4.8) is utilized for this 

purpose. Link’s pheromone value is updated considering its length, vehicles’ density 

and vehicles’ travel time via Equation 4.9.   

Global parameters such as α, β, ρ, λ and ϒ, and methods such as finding number of 

neighbors of a node as well as number of vehicles on a road between two nodes are 

defined and implemented in AVCAF_common.h and AVCAF_common.cc files. These 

files are represented in Appendix G and H, respectively. It is worth noting that in order 

to find the best value for the various parameters of AVCAF, their impact on AVCAF 

were examined individually through simulation and the obtained results are explained in 

Chapter 6.  

After creating and implementing required files and methods of AVCAF for NS-2, we 

modified NS-2 and installed our codes to simulate and evaluate AVCAF. Some of these 

modifications are as follows: adding ant packet type and name to constructor of class 
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p_info() in packet.h file, adding new function for trace format of AVCAF in cmu-

trace.h file, including ant packet header file, defining trace format of AVCAF and 

adding case for ant packet to CMUT::format() function in cmu-trace.cc file, adding ant 

packet reception ability by editing PriQueue::recv() function in priqueue.cc file, editing 

ns-packet.tcl file to add AVCAF in it, adding some default values such as number of 

nodes, simulation duration, pheromone evaporation rate (ρ) and regeneration period of 

ants (ϒ) in ns-default.tcl file, Editing create-wireless-node method and adding create-

AVCAF-agent method in file ns-lib.tcl in order to create an instance of AVCAF agent 

for a node and editing Makefile to add object files to OBJ_CC variable. After doing 

these steps, the AVCAF ant packets and agent can be used to run AVCAF framework 

and obtain Intra_ST(i) tables via tcl script for vehicles routing. An example of Intra_ST(i) 

table is illustrated in Figure 5.17. As it can be seen, Intra_ST table is related to segment 

1 and it includes a routing table for each node of its segment. For instance, in Figure 

5.17, routing table for node 7 is illustrated considering destination and next hop nodes 

as well as their related probability values (i.e. pvalue). 

 

Figure 5.17. An example of Intra_ST table 
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It is worth noting that in urban scenarios, and at the frequency of 5.9 GHz (i.e. the 

frequency band adopted by the 802.11p standard), radio signals are highly directional 

and will experience a very low depth of penetration (Bohm, Lidstrom, Jonsson, & 

Larsson, 2010; Sommer, Eckhoff, German, & Dressler, 2011). Hence, in most cases, 

buildings will absorb radio waves at this frequency, making most communications only 

possible when vehicles and RSUs are in line-of-sight. In order to accurately simulate 

how radio signals propagate in urban scenarios, we must consider the effect of signal 

attenuation due to distance, along with the effect of obstacles blocking signal 

propagation. Therefore, to better simulate wireless signal propagation, both attenuation 

and visibility schemes should be taken into account (Martinez et al., 2013). The ns-2 

simulator, in version 2.33, offers some schemes to account for wireless signal 

attenuation, but in the case of visibility, none of them support obstacle modeling within 

the network. Therefore, simulating AVCAF in current visibility scheme of ns-2 

simulator leads to an obstacle-free environment simulation which is far from a real 

environment. We considered the visibility model along with the attenuation model (e.g. 

Rayleigh, Two-ray Ground and Nakagami model) for simulating obstacles in our 

simulation environment. For this purpose, we utilized Topology-based Visibility model 

proposed by Martinez et al. (2013). This model considers road dimension and geometry 

in addition to line-of-sight in its modeling procedure. In the case of the attenuation 

model, a probability density function was used to determine the probability of a packet 

being successfully received at any given distance. With regard to the visibility model, 

more complex and realistic street layouts such as roundabouts, angled roads, and 

merged-and-split roads were considered in the Topology-based Visibility model. Each 

street contour can either be simulated as an empty area or a building wall using this 

model. At the MAC and physical layers, the IEEE802.11p standard was used for the 

wireless configuration. We utilized the street broadcast reduction scheme (Martinez, 
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Toh, Cano, Calafate, & Manzoni, 2011a) to alleviate the broadcast storm problem in our 

simulations. All results represent an average of over 5 executions with different 

scenarios (maximum error rate of 10% with a degree of confidence of 90%) and the 

maximum transmission range is set to 400m. 

According to the aforementioned discussion regarding setting up and configuring the 

SUMO and NS-2 simulation tools, the Table 5.2 presents brief description about 

important parameters values used in both simulators. 

Table 5.2. Configuration parameters of SUMO and NS-2 

Parameter Value Parameter Value 

Road map dimension 4 km × 3 km Simulation time 450 seconds 

Road map area 12 km
2
 Size of packets 500 bytes 

Streets/ km
2
 240.25 Vehicle speed 0 – 30 m/s 

Junctions/ km
2
 150.3 Vehicle density 100 to 1000 

Avg. street length 205.5 m MAC/PHY IEEE 802.11p 

Avg. lanes/street 1.9 Max. transmission range 400 m 

Portion of vehicles for 

each type 

15% freight vehicle Speed distribution speedFactor  1 

85% passenger vehicle speedDev   0.1 

Vehicle lengths 5m, 10m minGap 2m 

Driver impatient value 0.7 Gradient 0 

Intersection traffic rule Permissive right turn Transmission power 13 dBm 

Channel bandwidth 10 MHz Channel frequency 5.9 GHz 

Sigma (driver 

imperfection) 

0.5 LaneChangeModel DK2008 

 

5.3.3. Implementation of Optimal Path Suggestion Phase 

Since the main objective of AVCAF is routing the vehicles through the least congested 

shortest paths, vehicles receive rerouting information during their travel from origin to 

destination. As a result, it is needed to modify the vehicles movements according to the 

updated Intra_ST(i), Inter_ST, BNT(i) and ToS routing tables in the application part 

which is embedded in NS-2. It means that our developed approach, AVCAF, in NS-2 

may decide to reroute some vehicles due to considering recurring or non-recurring 

congestion on a specific road based on updated routing tables. Therefore, the optimal 

path should be sent and suggested to the driver on desired road. Optimal path suggestion 

phase of AVCAF framework is depicted in Figure 5.18.  
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Figure 5.18. Optimal Path Suggestion Phase of AVCAF Framework 

In real environment V2I communication can be used for this purpose. However, in 

simulation environment, the network simulator (i.e. NS-2) instructs the vehicle mobility 

generator (i.e. SUMO) to change the mobility attributes of some specific vehicles, while 

the other vehicles attributes remain unchanged and are controlled by vehicle mobility 

generator only. As mentioned before, we interlink the vehicle mobility generator and the 

network simulator via TraCI which is a part of application centric mode of TraNS 

(section 5.2.3).  As depicted in Figure 5.9 and discussed in section 5.2.3.1, TraCI 

provides an active feedback loop over a TCP connection between two simulators (i.e. 

SUMO and NS-2) that allows modifying the mobility attributes of a specific vehicle or a 

group of vehicles by exchanging a set of commands or responses according to the 

updated information from VANET application or algorithm (i.e. ant-based algorithm in 

optimal paths finding phase of AVCAF). TraCI messages are used to exchange these 

commands and responses between SUMO and NS-2. TraCI message format is 

illustrated in Figure 5.19. It composed of a small header which contains overall message 

length and a variable number of commands that each of them contains commands 

length, identifier and content. 
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Figure 5.19. TraCI Message Format 

TraCI commands that are designed and used in current study for syncing the SUMO and 

NS-2 are as follows: 

 SimulationStep: It is called periodically by NS-2 to retrieve node (vehicle) positions 

and to make sure the simulation times between NS-2 and SUMO are synchronized. 

SimulationStep command includes 2 fields, namely TargetTime and PositionType. 

The first field is used to allow SUMO to perform the simulation until the next time 

period. It means that TargetTime is set to current time of NS-2 plus one simulation 

step. The latter field indicates the requested type for node position that can be either 

3D or road map position. Status and MoveVehicle are sent by SUMO as a response 

to SimulationStep command. 

 Status: It is sent as a response or acknowledgement to every request command and 

contains result flag and description fields. The result flag indicates the success or 

failure of the requested command and its explanation is embedded in the description 

field.  

 MoveVehicle: It contains movement information including vehicle ID, position and 

TargetTime for one vehicle and is used to transfer the vehicles mobility into NS-2. 

This information is converted into linear movements by NS-2 in order to make sure 

that each specific vehicle reaches its desired position at TargetTime. 

 EdgeTravelTime: Current travel time of edges (links) will be sent periodically to NS-

2 via SUMO in order to compute the Predicted Travel Speed (PTS).  
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 EdgeDensity: Current density of edges (number of vehicles on specific link) will be 

sent periodically to NS-2 via SUMO in order to compute the Predicted Travel Speed 

(PTS). SUMO provides extensive output options such as travel time, density, mean 

speed for a given travel time. 

 SetMaximumSpeed: It has 2 fields, namely vehicle ID and MaxSpeed and limits 

vehicle’s speed or removes such a limit. SUMO is responsible to control the 

vehicle’s speed limits based on its mobility model. 

 SetMinimumSpeed: This command is similar to the previous command (i.e. 

SetMaximumSpeed). However, it is used for assigning minimum speed to vehicles 

instead of maximum speed. 

 StopVehicle: It is used to stop a vehicle at a certain position for a specific time 

period. SUMO is responsible for following its mobility models and stops the vehicle 

at the desired position. StopVehicle command has 3 fields, namely Vehicle ID, 

StopPositionArea and WaitTime. Since most simulators are time discrete, it is not 

feasible to stop the vehicle on an exact position. As a result, stoppage area is defined 

by StopPositionArea around the stop position. The vehicle waits for a period of time 

(WaitTime) by setting its maximum speed to zero. 

 ChangeRoute: This command allows a vehicle identified by Vehicle ID to react to 

certain traffic conditions by adapting its route. Therefore, when a probability of a 

road identified by Road ID is changed based on the traffic condition, NS-2 notifies 

SUMO using this command and a new route is calculated before the simulation 

continues. 

 ChangeTarget: It can be used to change the destination of a specific vehicle (Vehicle 

ID). The new destination can be a junction, intersection or road. New route to the 

new destination is calculated before the simulation continues. 
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 Scenario: This command is used for getting scenario parameters such as map size, 

and number of nodes, especially at the beginning of the simulation. 

 DrivingDistance: This command calculates the traversed distance by an identified 

vehicle from its origin to destination. 

 DrivingTime: This command computes the elapsed time for a vehicle to reach its 

destination from its origin. 

By using these TraCI commands the optimal paths are suggested to drivers based on 

their destinations and vehicles’ movements are modified and changed are changed in 

SUMO in order to implement this phase. 

5.4. Conclusion 

This chapter discussed about simulation procedure and implementation of proposed 

approach, AVCAF, in simulation environment. In order to select appropriate simulation 

tools for implementation of our approach, a comprehensive overview of open source 

simulation tools was conducted in this chapter. Based on this information and discussed 

reasons, SUMO and NS-2 are selected as a mobility generator and network simulator, 

respectively, to implement our proposed approach and create realistic VANET 

simulation scenarios. In addition, TraCI is used to interlink SUMO and NS-2 in order to 

control the vehicles mobility and behavior during the simulation runtime. Accordingly 

the important modules, components and parameters which are required in designing 

AVCAF framework were created in NS-2. Afterwards, the implementation and 

configuration of various parts of SUMO simulator, including the design of real road 

map by using the OSM and NETCONVERT application, generation of vehicle 

movements and simulation scenarios by using TrafficModeler software were elaborated. 

Then important configurations of environmental characteristics, connection manager, 

MAC and physical layers were discussed. Finally, the overview of all discussed 

configuration parameters’ values for both mobility generator and network simulator 

were summarized in a table for simplicity. 
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CHAPTER 6: RESULTS AND DISCUSSION 

This chapter goes through explanation of the obtained results from running of 

implemented simulation scenarios in order to evaluate the effectiveness of our proposed 

approach. As it was mentioned previously the main aim of this study is to propose an 

effective framework to avoid vehicle traffic congestion by considering both recurring 

and non-recurring congestion conditions. Accordingly various scenarios along with 

different evaluation metrics are defined and designed to ensure that our main aim is 

achieved by the proposed approach. Moreover, some benchmark approaches are 

selected to be compared with our proposed approach. As mention in chapter 4, AVCAF 

includes various parameters such as α, β, ζ, λ and ρ in its routing procedure and its 

performance is highly dependent to the value of these parameters. Hence, at first step, 

the proper value for these parameters is found by examining various values for them 

through the simulation which is discussed in Section 6.1. Benchmark algorithms and 

approaches that are used for performance evaluation purpose along with their selection 

reason are discussed in Section 6.2. Simulation scenarios and evaluation metrics are 

represented in Section 6.3. Section 6.4 includes the obtained results and their 

discussions for evaluated approaches considering various designed scenarios and 

evaluation metrics. Finally, Section 6.5 concludes the section by summarizing the main 

points and findings. 

6.1. Simulation results for AVCAF parameters' value 

To find the best value for the various parameters of AVCAF, their impact on this 

framework were examined individually through simulation and explained as follows. 

All of the results represent an average of over 5 executions with different scenarios 

(maximum error rate of 10% with a degree of confidence of 90%). Due to the high 

number of AVCAF parameters and consequently high number of iterations, a simple 

road map is used in this section. The designed road map is illustrated in Figure 6.1 

which includes 12 nodes (junctions) including 2 border nodes, 15 links (roads), and 2 
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segments. It is worth noting that the length of each link is assigned to 500 m and 3 

vehicles are located at each point with random destinations (i.e. number of vehicles = 12 

× 3 = 36). The average travel time is utilized as a measurement criterion in this section. 

 

Figure 6.1. Map used for finding AVCAF parameters' values 

1) HTS information power (ξ): This parameter specifies the effect of HTS information 

on the short-term prediction travel speed of roads (Equation 4.3 in chapter 4). The 

historical data influence has increased by raising the value of ξ, while, decreasing the 

value of ξ will reduce the effect of historical data on the path selection procedure.  

2) CTS information power (λ): the function of this parameter is very similar to ξ but the 

difference is that it controls the CTS information impact on the path selection 

procedure (Equation 4.3 in chapter 4). It is worth noting that this information is 

gathered by VANTs. 

There should be a proper trade-off between ξ and λ (i.e., ξ + λ = 1, called weighted 

mean (Terr, 2004)). In our simulation environment, the best condition occurs when ξ = 
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0.4 and λ = 0.6 for AVCAF evaluation. Figure 6.2 illustrates the average travel time of 

the found paths by AVCAF as a function of the HTS and the CTS information power, 

while considering other parameters as follows: α = 0.5, β = 0.5, ρ = 0.5, Na = 15, n = 3, γ 

= 5 TIs (50s). 

 

Figure 6.2. Average travel time for AVCAF as a function of CTS information power (α = 0.5, β 

= 0.5, ρ = 0.5, Na = 15, n = 3, γ = 5 TIs (50s)) 

The average travel time converges towards two different values at the beginning (λ from 

0 to 0.2) and at the end (λ from 0.8 to 1) of this diagram. This is because at the 

beginning, path finding is more based on HTS information (0.8 ≤ ξ ≤ 1) whereas at the 

end; it is more based on CTS information (0.8 ≤ λ ≤ 1). Our obtained results, assigning 

higher value to λ compared to ξ (i.e., λ = 0.6, ξ = 0.4), can be supported by the following 

reasons: 1) considering non- recurring congestion condition (i.e. accident, working 

zones, and weather conditions) in vehicle routing is one of our main concerns. Based on 

the results obtained by Rakha and Van Aerde (1995), the traffic conditions vary 

considerably from one day to the next day due to non-recurring congestion conditions. 

Consequently, the historical data (i.e., HTS) will be insufficient for commuters to find 

the optimum routes through the network, and the provision of current traffic information 
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could provide major benefits, and 2) theoretically and based on the obtained results by 

Karbassi and Barth (2003), the prediction gets more and more closer to the true value 

with increasing the number of real-time observations. 

3) Pheromone power (α): This parameter specifies the probability of a link to being 

selected based on its pheromone value and also the impact of the gathered data by 

PANTs. The data influence and the exploitative nature of PANTs have increased by 

increasing the value of α. Decreasing the value of α will increase the PANTs' 

exploration and decrease the effect of pheromone value on the path selection 

procedure.  

4) Real-time information power (β): The function of this parameter is very similar to α 

but the difference is that it controls the real-time information impact on the path 

selection procedure. This information is also gathered by VANTs. 

Similar to ξ and λ, there should be a proper trade-off between α and β (i.e., α + β = 1). 

The best condition occurs when α = 0.4 and β = 0.6 in our simulation environment for 

AVCAF evaluation. Figure 6.3 illustrates the average travel time of the found paths by 

AVCAF as a function of the pheromone and real-time information. The average travel 

time converges towards two different values: 160s and 185s at the beginning (α from 0 

to 0.2) and at the end (α from 0.8 to 1) of this diagram, respectively. This is because at 

the beginning, path finding is based more on vehicles real-time information (0.8 ≤ β ≤ 

1) whereas at the end, it is based more on pheromone trial information (0.8 ≤ α ≤ 1). 
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Figure 6.3. Average travel time for AVCAF as a function of pheromone power (λ = 0.6, ξ = 0.4, 

ρ = 0.5, Na = 15, n = 3, γ = 5 TIs (50s)) 

5) Pheromone evaporation rate (ρ): Based on Di Caro (2004), this parameter plays an 

important role when there are multiple paths for selection and the characteristics of 

the environment change rapidly and dynamically. The described status is very similar 

to the vehicular environment which is the main focus of this thesis. Since ρ has a 

direct effect on having the proper trade-off between exploration and exploitation as 

well as the convergence speed of the algorithm, different values are examined for 

finding the best value of this parameter through the simulation and its result is 

demonstrated in Figure 6.4. At low values of ρ, the convergence speed is high 

because of the slow changes in the pheromone value of the links, while the algorithm 

does not converge at higher values of ρ because of the quick changes of pheromone 

trails on the links. The lowest average travel time happened when ρ = 0.3. 
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Figure 6.4. Average travel time for AVCAF as a function of pheromone evaporation rate (λ = 

0.6, ξ = 0.4, α = 0.5, β = 0.5, Na = 15, n = 3, γ = 5 TIs (50s)) 

6) Number of alternative paths (n): It is worth noting that although offering a large 

number of alternative paths for each OD pair allow better vehicle congestion 

avoidance and balancing, this leads to higher computational complexity. Moreover, 

since distance is one of the main metrics in AVCAF, large number of alternative 

paths which lead to computational overhead and long paths are not necessary. 

Selecting the proper value for this parameter can lead to decreasing both the average 

travel time and the computational cost. Since system response time is very critical 

criteria in a vehicular environments because of rapid changes, n = 3 was selected for 

AVCAF based on the results in Figure 6.5. 

It means that AVCAF finds up to 3 alternative paths for each OD pairs in each segment. 

These three alternative paths are ordered based on the obtained probability value by 

Equation 4.4 (section 4.3.2.1) which encompasses various criteria (e.g. distance, 

capacity, density, travel time and speed) for each same OD pair. Consequently, the path 

with highest probability value has higher priority and a chance of being suggested to 

vehicles. For each OD pair, a First Come First Serve strategy is used in order to route 

the vehicles through these three alternative paths. The first 50% of routing requests are 

routed via the first path, i.e. the least congested shortest path. The next 33.4% of routing 
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requests are routed through the second path which has lower priority than the first path 

but is still less congested compared with the other paths. The last 16.6% of routing 

requests are routed via the last path (3
rd

 path). This routing cycle is continued for the 

coming routing requests. If AVCAF finds at most 2 alternative paths between specific 

OD pair, it routes 66.6% of vehicles through the first path and the other 33.4% is routed 

via the second path. However, all the vehicles are routed via the same path if there is 

only one path between specific OD pair. This last case is usually occurred when the 

vehicles are close to their destination. All of the above-mentioned percentages are 

obtained via Equations 4.10 and 4.11. 

 

Figure 6.5. Average travel time for AVCAF as a function of number of alternative paths (λ = 

0.6, ξ = 0.4, α = 0.5, β = 0.5, ρ = 0.5, Na = 15, γ = 5 TIs (50s)) 

7) Number of ants (Na) and re-generation period (γ): In AVCAF, the new path finding 

process is started periodically by regenerating a predefined number of new FANTs at 

predefined TIs. In general, a lower value for γ and a higher value for Na lead to better 

average travel time and algorithm convergence speed, respectively. As a result, the 

computational cost and communication overhead of the system have increased. 

Figure 6.6 illustrates the average travel time for different values of γ. 



154 
 

 

Figure 6.6. Average travel time for AVCAF as a function of the regeneration period of ants (λ = 

0.6, ξ = 0.4, α = 0.4, β = 0.6, ρ = 0.3, n = 3) 

Considering the trade-off between the average travel time on one side and the 

communication overhead and computational cost on the other side, 30 s or 3 TIs is 

selected as the regeneration period of FANTs in AVCAF. Moreover, the number of ants 

is chosen as a function of the number of destination nodes (n-1) in the segment and 

alternative paths (the number of nodes (source) in the segment × alternative paths). In 

our scenario, 15 ants (i.e. 3 (alternative paths) × 5 (destination nodes in the segment)) 

are put at each of the start point (source).The configuration parameters of AVCAF in 

NS-2 are summarized in Table 6.1. 

Table 6.1. AVCAF configuration parameters and their values in NS-2 

Parameter Examined range Value 

ζ 0 - 1 (step: 0.1) 0.4 

λ 0 - 1 (step: 0.1) 0.6 

α 0 - 1 (step: 0.1) 0.4 

β 0 - 1 (step: 0.1) 0.6 

ρ 0 - 1 (step: 0.1) 0.3 

ϒ 1 TI – 6 TIs (step: 1 TI) 3 TIs or 30 s 

N 1 - 5 (step: 1) 3 paths 

   

6.2.  Benchmark routing approaches 

In this section an overview of the benchmark routing approaches for evaluating the 

performance of AVCAF along with the underlying reasons of their selection are 

represented. Dijkstra (Dijkstra, 1959), pure ant colony optimization (PACO) (Fan, Hua, 
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Li, & Yuan, 2004) and HRS (Bogdan Tatomir & Rothkrantz, 2006) approaches are 

chosen for AVCAF performance evaluation. Each of these approaches is discussed in 

the following subsections. 

6.2.1. Benchmark routing approaches 

1) Dijkstra: This method is a greedy approach to solve the single source shortest 

problem. A greedy algorithm chooses the best local optimal choice at each stage with 

the hope of finding a global optimum solution. It repeatedly selects from the 

unselected vertices, vertex v nearest to source s and declares the distance to be the 

actual shortest distance from s to v. The edges of v are then checked to see if their 

destination can be reached by v followed by the relevant outgoing edges. 

Road map must be converted to a directed-weighted graph and the edges should be 

non-negative. If the edges are negative then the actual shortest path cannot be 

obtained. Dijkstra finds the distances from a given vertex s in the weighted digraph D 

= [V, E] to the rest of the vertices, where V and E are the set of vertices and edges, 

respectively. 

In the execution of Dijkstra algorithm, the vertex set of D, V, is partitioned into two 

sets, visited vertices, P, and unvisited vertices, Q. Moreover, a parameter 𝛿𝑣 is 

assigned to every vertex v ∈ V and indicates the distance between s and v. Initially 

all vertices are in Q. In the process of the algorithm, the vertices reachable from s 

move from Q to P. While a vertex v is in Q, the corresponding distance parameter, 

𝛿𝑣, is equal to infinity (∞). Once v moves to P, we have 𝛿𝑣 = dist(s, v). A formal 

description of Dijkstra algorithm is as follows: 

Dijkstra algorithm 

The parameter 𝛿𝑣 for every v ∈ V such that 𝛿𝑣 = dist(s, v). 

1. Set P := ∅;; Q := V , 𝛿𝑠:= 0 and 𝛿𝑣:= ∞ for every v ∈ V - s: 

2. While Q is not empty do the following. 

Find a vertex v ∈ Q such that 𝛿𝑣 = min {𝛿𝑢 : u ∈ Q} 

Set Q:= Q - v, P := P ∪ v. 

  𝛿𝑢:= min{𝛿𝑢; 𝛿𝑣 + c(v, u)} for every u ∈ Q ∩ 𝑁+(v). 
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The Dijkstra algorithm was selected as a benchmark algorithm, because it is a very 

popular algorithm and is used in most of the existing VTRSs for guiding the vehicles 

through the shortest paths. 

2) PACO: In this approach, the proposed ACO algorithm by Dorigo (1992) which is 

discussed in Section 2 without any significant modification was used for the first 

time to find the shortest path between various OD pairs and this is why we call it 

pure ACO (PACO). Similar to the other ant-based approaches, PACO has 4 main 

steps, namely problem graph depiction, initialization, pheromone update and 

stopping procedure. Since ant-based algorithm is cornerstone of PACO approach and 

its concept is utilized in the AVCAF framework for path finding, PACO was chosen 

to verify and validate our proposed changes and enhancements. The comparison 

between PACO and AVCAF steps is summarized in Table 6.2 in order to clarify the 

differences between these two approaches. 

3) HRS: This approach is an ant-based VTRS which splits road map into several 

smaller and less complex networks, named sector, by considering a hierarchy 

between the roads. HRS maintains a routing table for each intersection to route the 

vehicles. However, unlike AVCAF, this approach neglects the junctions in its routing 

mechanism which are one of the main points for mitigating the traffic congestion as 

well as vehicles re-routing. It is worth noting that HRS, similar to AVCAF, gathers 

the real-time traffic data from the traffic through the vehicles themselves. HRS 

includes two components, namely timetable updating system and route finding 

system. Timetable updating system computes the average travel time of each link on 

the road map through the gathered data by vehicles and sends this information to 

route finding system. This information will be used as input for an ant-based 

algorithm, called H-ABC (Tatomir & Rothkrantz, 2005), and embedded in route 

finding system. H-ABC utilizes ant-based algorithm to find the fastest way between 
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nodes of the road map considering streets/roads travel time. The HRS approach is 

compared with AVCAF because of their similarities in the use of segmentation and 

an ant-based algorithm for path finding and vehicle congestion reduction. The 

comparison between HRS and AVCAF steps is summarized in Table 6.2 in order to 

clarify the differences between these two approaches. 
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Table 6.2. Comparison among PACO, HRS and AVCAF considering their steps 
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6.3.  Performance evaluation 

Three different scenarios, namely various vehicle densities, various system usage rates 

and accident condition, are implemented to evaluate AVCAF performance in reducing 

the vehicle traffic congestion. These scenarios are designed in order to evaluate AVCAF 

performance in both recurring and non-recurring congestion conditions. Besides, five 

different metrics, namely vehicles’ average travel time, speed, distance, number of re-

routings and number of congested roads, are defined as evaluation metrics. These five 

metrics are chosen due to their predominant role in both VTRSs and ant-based 

approaches. Each of these scenarios and evaluation metrics is discussed in the following 

subsections. 

6.3.1. Simulation scenarios 

Three different scenarios are implemented to evaluate AVCAF performance in reducing 

the vehicle traffic congestion in urban environments as follows: 

1) Scenario with different vehicle densities: Both road map topology and vehicle 

density are key points in the simulation environments and they highly affect the 

accuracy of the obtained results. With regard to the road map topology, we used a 

complex real road map of Kuala Lumpur city (Figure 5.11) in our simulation to 

obtain closer results to real urban environments. In consideration of vehicle density, 

the performances of AVCAF, Dijkstra, PACO and HRS approaches were analyzed at 

different vehicle densities ranging from 100 to 1000 vehicles. As discussed in 

chapter 5, we have utilized TrafficModeler to generate vehicular traffic and 

movements. Various numbers of vehicles are generated and located on each of the 

desired origin points which are illustrated in Figure 6.7. The number of vehicles in 

each origin point varies from 25 to 250. In Figure 6.7, the circles on the left side of 

map represent these origins and the circle on the right side of the map is the vehicle's 

destination. 
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Figure 6.7. Scenario with various vehicle densities in TrafficModeler 

2) Scenario with different driver usage rate: It cannot be assumed that in real world 

scenarios, every driver will follow the routing systems guidance. Therefore, in 

addition to vehicle densities, the usage rate (i.e. the proportion of drivers who use a 

specific guidance system and accept its guidance) and its impact on vehicle traffic 

congestion is also investigated in this thesis considering high traffic density (i.e. 

number of vehicles = 1000). In other words, 250 vehicles are located in each 

depicted origin point in Figure 6.7 and guided to destination point taking into 

account various system usage rates ranging from 10 to 100 percent. High traffic 

density is selected since vehicle traffic congestion is the main concern of this thesis. 

Moreover, in the most of existing VTRSs the same path is suggested to the drivers 

with same origin and destination, and consequently congestion will be switched from 

one route to another if a significant number of drivers utilize these system. Hence, 

AVCAF, Dijkstra, PACO and HRS approaches are compared with each other by 

considering different usage rates. 

3) Scenario with accident condition: This scenario was simulated to evaluate the 

behavior of AVCAF when an accident takes place compared with the other four 

systems. This scenario is selected in order to evaluate the performance of AVCAF in 
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non-recurring congestion conditions. We split the vehicles in to four categories based 

on their chosen routing system, i.e. Dijkstra, PACO, HRS and AVCAF. We 

generated 100 vehicles for each category and dedicated 25 vehicles of each category 

to four starting points (i.e. circles in Figure 6.7) of our real road map. In other words, 

400 vehicles, 100 vehicles for each category, are located at staring point of road map 

in our simulation environment. The total simulation period was 1000 seconds. An 

accident was generated at one of the main roads, which is depicted via azure across 

sign in Figure 6.8, after 300 seconds. This accident was omitted from the road at the 

700
th

 second of simulation. Vehicles may be forced to stop or halt on the lane for a 

defined time span by using the stop element in SUMO and this works similar to real 

accidents on the roads (Hrizi & Filali, 2010). However, we used accident feature of 

TrafficModeler to create an accident on the desired road. 

 

Figure 6.8. Accident scenario in TrafficModeler 

6.3.2. Evaluation metrics 

Five various evaluation metrics are defined and considered to evaluate AVCAF 

performance in reducing the vehicle traffic congestion in urban environments as 

follows: 
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1) Average travel time: it is a period of time spent by an individual vehicle or a group of 

vehicles to reach their destinations from their origins. The metric value is obtained 

from the sum of each individual vehicle spent travel time divided by the number of 

vehicles.  

2) Average travel speed: it indicates an average speed of an individual vehicle or a 

group of vehicles during travel from origin to destinations. The metric value is 

obtained from the sum of each individual vehicle traveled speed divided by the 

number of vehicles. 

3) Average travel distance: it indicates the mean distance passed by an individual 

vehicle or a group of vehicles to reach their destinations from their origins. The 

metric value is obtained from the sum of each individual vehicle traveled distance 

divided by the number of vehicles. This metric is used by most of the existing 

VTRSs to route the vehicles to their destinations. 

4) Number of re-routings (Routing stability): The stability of ant-based approaches is 

related to their pheromone value stability. The degree to which the system remains in 

the same state can be examined by this metric. Pheromone value has direct impact on 

probability tables that constitute the basis for path finding procedure. At every node 

(e.g. intersection or junction), the node(s) with the highest (or higher) probability is 

selected as a next hop from the set of neighbors of the node. It is worth noting that a 

VTRS is stable as long as the highest probabilities and consequently pheromone 

values remain at the highest level for the entire time of simulation (Kroon, 2002). 

The system’s stability can be measured by computing the number of re-routings. 

Number of re-routings counts the number of times that the highest probability 

switches to an alternative node. It is important that the re-routings frequency for a 

given vehicle during a trip stay low. From the driver point of view, changing the path 

to the destination too often can be distracting and annoying. From the system point of 



163 
 

view, having a low number of re-routings means decreasing the computational 

burden because the re-routing process is time consuming. 

5) Number of congested roads: This metric indicates the number of congested roads 

(i.e. the road is assumed congested when average speed of the vehicles on that road is 

lower than 8.5 m/s) during the routing procedure. This metric is considered and 

evaluated since the vehicle traffic congestion reduction is the main concern of this 

thesis. Number of congested roads indicates whether a given system is able to 

mitigate the traffic congestion problem when there are both recurring and non-

recurring congestion conditions. Since ant-based algorithms use stochastic search 

mechanism, pheromone update may deter ant-based approaches from finding an 

optimal solution. It is noteworthy to mention that the fine balance between 

exploration and exploitation is very important to the overall efficiency of ant-based 

approaches. 

6.4.  Simulation results for AVCAF evaluation 

After investigating the effects of different parameters’ values on the AVCAF and 

finding their proper values, the efficiency of AVCAF is evaluated in this section, by 

comparing with the discussed benchmark routing approaches considering the mentioned 

scenarios and evaluation metrics explained in Section 6.3. The obtained results are 

classified based on evaluation metrics and discussed in the following subsections. 

6.4.1. Average travel time 

This metric is calculated for each of the mentioned mechanisms (i.e. Dijkstra, PACO, 

HRS and AVCAF) and the results are illustrated in Figures 6.9, 6.10 and 6.11 for the 

three mentioned scenarios (i.e. various vehicle densities, system usage rate and accident 

condition), respectively. The obtained results for the first scenario (i.e. various vehicle 

densities), which are confirmed by Daganzo (1994), show that a vehicle's average travel 

time has a direct relationship with vehicle density: as the number of vehicles increases, 

the average travel time increases. However, this increment is too sharp in the Dijkstra 
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and PACO systems versus other systems. This is because by using these two systems all 

of the vehicles with a same OD are guided through a same path (i.e. shortest path) 

without paying attention to other factors such as vehicle congestion, speed, density and 

accidents. In comparison, HRS and AVCAF improved the average travel time 

significantly. The average travel time at low vehicle densities (from 100 to 300) is 

almost the same for all systems, while this metric’s value varied between each system at 

higher densities (from 400 to 1000). AVCAF has the best results in different vehicle 

densities and it decreased travel time up to 19%, 19% and 7% compared with Dijkstra, 

PACO and HRS, respectively. AVCAF improves the average travel time since it avoids 

congestion instead of recovering from it, which is not considered in other approaches. 

Moreover, in PACO and HRS, if many vehicles have the same OD pair at the same 

time, congestion can be transferred from one road to another. This problem is solved in 

AVCAF since it balances the traffic flow by using up to three alternative paths (n) at a 

same time. 

 

Figure 6.9. Average travel time for Dijkstra, PACO, HRS and AVCAF as a function of vehicle 

density 

With regard to the drivers usage rate, average travel time of the vehicles that use 

Dijkstra and PACO systems has ascending trend for all usage rates based on the 
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obtained results in Figure 6.10. However, in the case of HRS and AVCAF, this metric 

has descending trend at low usage rates whereas it has ascending trend at high usage 

rates. This is because HRS and AVCAF route the vehicle through the fastest path in 

time and less congested shortest paths, respectively. As a result, when the number of 

vehicles increases, more vehicles are routed via these paths and consequently the 

average travel time has increased. However, this increment for HRS is higher than 

AVCAF due to using only one path between various OD pairs.  

 

Figure 6.10. Average travel time for Dijkstra, PACO, HRS and AVCAF as a function of their 

usage rate 

The necessary travel time for vehicles to reach their destination as a function of 

simulation step (i.e. simulation time) is counted for each system to measure their 

performance in facing non-recurring congestion conditions (e.g. accident) and is 

illustrated in Figure 6.11. As it can be seen, before the accident happens at the 300
th

 

second, all of the vehicles are guided through the shortest path via Dijkstra and PACO, 

fastest path in time via HRS, and up to three alternative least congested shortest paths 

via AVCAF and consequently the average travel time remained unchanged for these 

systems. However, after the accident and because of the occurred congestion on the link 

by the accident, HRS disabled (i.e. ignored) this road and started to reroute the vehicles 
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through another alternative path without considering accidents severity, condition and 

duration. To solve this drawback and to consider accidents implicitly, AVCAF 

continued vehicles routing through the n alternative least congested shortest paths by 

considering road length, density, travel time and speed. This did not happen in Dijkstra 

and PACO due to the lack of attention to the dynamic changes of the vehicular 

environments. As a result, travel time started to increase sharply for the vehicles routed 

via the Dijkstra and PACO systems. In addition, travel time started to increase earlier 

for vehicles routed via HRS and AVCAF due to the use of prediction in these two 

systems. This increment for HRS is greater than AVCAF since HRS blocks the link 

with the accident, which is one of the main roads between OD pairs, while AVCAF 

reduces its chosen probability. From 400 to 700s of simulation, unlike Dijkstra and 

PACO, HRS and AVCAF rerouted the vehicles through the alternative paths and 

reduced the travel time value. At the 700
th

 second when the accident is cleared from the 

road, the average travel time decreased rapidly for all of the systems and all the graphs 

smooth out to reach their initial values. AVCAF has the best reaction for non-recurring 

congestion since it uses travel time and vehicle density and travel speed prediction for 

vehicle routing and uses alternative paths from the beginning before congestion 

happens. 
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Figure 6.11. Average travel time for Dijkstra, PACO, HRS and AVCAF as a function of 

simulation step in accident condition 

All in one, considering all scenarios, AVCAF outperforms the other approaches in terms 

of vehicles’ average travel time at both recurring and non-recurring congestion 

conditions due to considering various metrics such as road length, density, travel time, 

speed in its routing mechanism and also routing vehicles via more than one alternative 

path (i.e. up to 3 paths). 

6.4.2. Average travel speed 

The relationship between the average travel speed and CO2 emissions (and therefore, 

fuel consumption) is investigated by André and Hammarström (2000), and Barth and 

Boriboonsomsin (2009) and they discovered that there is a U-shape relationship 

between these metrics. This means that at a very low average travel speed, which 

normally occurs during vehicle congestion, and with a high number of stop-and-go 

driving events and extended engine idling on the road, the fuel consumption as well as 

CO2 emissions increased by an average of 30% (Barth & Boriboonsomsin, 2008, 2009). 

Similarly, at very high speeds, the vehicles engine requires more power which leads to 

higher fuel consumption and more CO2 emissions. Moderate average travel speeds 

ranging from 60 to 85 km/h (≈ 16.66 to 23.61 m/s) leads to the lowest fuel consumption 
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and CO2 emissions. The average travel speed of Dijkstra, PACO, HRS and AVCAF at 

various vehicle densities is illustrated in Figure 6.12. AVCAF obtained the best average 

speed rate at all vehicle densities by avoiding congestion and providing alternative paths 

before congestion occurred. By increasing the vehicle density, the average speed 

decreased smoothly from 24 to 16.7 m/s in AVCAF and as mentioned before, this speed 

range is the reported range for low fuel consumption and CO2 emissions in the 

literature. The worst average travel speed and average travel time was generated by the 

Dijkstra algorithm and ranged from 25 to 10.5 m/s. The results for low vehicle densities 

(e.g. 100, 200 vehicles) were the same for all systems since the congestion level is low 

and all systems route the vehicles via a same path which is the shortest path. 

 

Figure 6.12. Average travel speed for Dijkstra, PACO, HRS and AVCAF as a function of 

vehicle density 

Figure 6.13 presents the evaluation of average travel speed in all approaches under 

gradual increase of system usage rate. Based on the obtained results, AVCAF 

outperforms the other approaches at all usage rates due to distributing the vehicle traffic 

load through the n alternative paths. AVCAF and HRS has ascending trend at low usage 

rates since lower number of vehicles are routed through the alternative paths and the 
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traffic load is distributed. However, at higher usage rates, higher number of vehicles is 

routed via alternative paths which lead to higher traffic load on these paths and 

consequently average travel speed is reduced. It is worth noting that this reduction is 

more significant in HRS due to routing the vehicles with same OD via the same path. 

Considering various usage rates, AVCAF preserves the average speed higher than 16.66 

m/s which helps to reduce fuel consumption and CO2 emission. Average travel speed of 

vehicles that use Dijkstra and PACO systems has an inverse relationship with usage 

rate: as the usage rate increases, the average travel time decreases due to sending all 

vehicles through the shortest path. 

 

Figure 6.13. Average travel speed for Dijkstra, PACO, HRS and AVCAF as a function of their 

usage rate 

With regard to the accident scenario, Dijkstra and PACO have the worst performance 

since they did not re-route the vehicles and routed them via the shortest path which is 

congested because of accident during the simulation time. After the accident take place 

at 300
th

 second of simulation, the average travel speed is reduced for all approaches. 

However, this decrement is too sharp in the Dijkstra and PACO systems versus other 

systems due to the mentioned reason. HRS and AVCAF could alleviate this reduction 

by routing the vehicles through alternative path(s). AVCAF has the best performance 



170 
 

due to considering various metrics such as road length, density, travel time, speed and 

also routing vehicles via more than one alternative path (i.e. up to 3 paths). By using 

AVCAF, vehicles’ average travel speed is remained almost identical before and after 

accident which is one of its main advantages. It is worth noting that, similar to average 

travel time, AVCAF has the best performance in terms of average travel speed at all 

pre-defined scenarios. 

 

Figure 6.14. Average travel speed for Dijkstra, PACO, HRS and AVCAF as a function of 

simulation step in accident condition 

6.4.3. Average travel distance 

Figure 6.15 represents the average travel distance of vehicles that used Dijkstra, PACO, 

HRS and AVCAF systems for path finding under gradual rise of vehicle density. The 

worst average travel distance is associated with AVCAF and this is related to having a 

better average travel speed and time compared with the other systems. AVCAF 

mitigates vehicle traffic congestion problem by proposing slightly longer paths with less 

congestion instead of the shortest paths with congestion. This leads to an increase in the 

travel distance but a decrease in the travel time and increase in travel speed. It is worth 

noting that the average travel distance had increased at most 15% compared to the 

shortest path which was proposed by Dijkstra and PACO under the highest vehicle 
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density (i.e., 1000 vehicles). Since AVCAF utilizes up to three alternative paths for 

avoiding and reducing vehicle congestion, its average travel distance is higher than 

Dijkstra, PACO and HRS which propose one alternative path and may transfer the 

congestion from one point to another point. Moreover, the average travel distance is 

constant and noted pendent on vehicle density, congestion or accidents and therefore is 

less suitable for vehicle congestion and avoidance systems. Moreover, the average 

travel distance of vehicles that use Dijkstra and PACO approaches is constant and is not 

dependent on vehicle density, congestion or accidents and therefore Dijkstra and PACO 

approaches are not suitable for vehicle congestion and avoidance systems. 

 

Figure 6.15. Average travel distance for Dijkstra, PACO, HRS and AVCAF as a function of 

vehicle density 

Figure 6.16 depicts the average travel distance of vehicles in various usage rates of 

studied approaches. Unlike the average travel speed, AVCAF and Dijkstra had the worst 

and best performance for this evaluation metric under gradual increase of system usage 

rate. By using Dijkstra and PACO systems, average travel distance is reduced and 

converged to the shortest path as the usage rate increased. However, this metric 

increases for HRS and AVCAF as the usage rate increases. Higher average travel 
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distance of AVCAF approach is related to its routing mechanism which route the 

vehicles through the paths with lower traffic and higher travel speed to reduce the 

vehicle traffic congestion problem. In most of the cases, these paths are longer than 

congested paths with shorter distances. In other words, although AVCAF increases the 

average travel distance, it reduces travel time by increasing travel speed which 

implicitly leads to lower fuel consumption and CO2 emissions. As mentioned, since 

AVCAF utilize up to three alternative paths for avoiding and reducing vehicle 

congestion, their average travel distance is higher than Dijkstra, PACO and HRS which 

propose one alternative path and may transfer the congestion from one point to another 

point. 

 

Figure 6.16. Average travel distance for Dijkstra, PACO, HRS and AVCAF as a function of 

their usage rate 

With regard to the accident scenario, the lowest average travel distance is related to 

Dijkstra and PACO systems due to routing the vehicles through the shortest path 

without considering congestion conditions, especially non-recurring congestion (i.e., 

accidents) in this scenario. In the case of HRS and AVCAF, the average travel distance 

has increased dramatically after the accident take place at 300
th

 second of simulation. 

However, this increase is more noticeable in the HRS system versus AVCAF due to its 
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routing mechanism. That is to ignore the road with accident from routing procedure and 

to block it until the accident is removed. HRS and AVCAF could alleviate this 

increment by routing the vehicles through alternative path(s). AVCAF has better 

performance due to considering various metrics such as road length, density, travel 

time, speed and also routing vehicles via more than one alternative path (i.e. up to 3 

paths). Although AVCAF increased the vehicles’ average travel distance, it enhanced 

their average travel time and speed at both recurring and non-recurring congestion 

conditions. 

 

Figure 6.17. Average travel distance for Dijkstra, PACO, HRS and AVCAF as a function of 

simulation step in accident condition 

6.4.4. Number of re-routings 

Average number of re-routings is considered as routing stability of studied systems in 

this thesis. Figure 6.18 presents the comparison results of Dijkstra, PACO, HRS and 

AVCAF for average number of re-routings considering various vehicle densities. Since 

Dijkstra and PACO utilize only the distance parameter in their routing mechanism and 

this parameter has constant value, they route the vehicles through the shortest path and 

the number of re-routings is equal to zero. On the other hand, HRS and AVCAF re-

route the vehicles during their travel from origin to destination based on the dynamic 
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changes of vehicles traffic. However, AVCAF outperforms the HRS in terms of average 

number of re-routings due to considering various metrics such as road length, density, 

travel time, speed and also routing vehicles via more than one alternative path (i.e. up to 

3 paths). In addition, the obtained results show that, similar to vehicle's average travel 

time, average number of re-routings has a direct relationship with vehicle density in the 

case of HRS and AVCAF approaches. In other words, as the number of vehicles 

increases, the average number or re-routings increases. 

 

Figure 6.18. Average number of re-routings for Dijkstra, PACO, HRS and AVCAF as a 

function of vehicle density 

Average number of re-routings for the studied approaches under the gradual increase of 

usage rate is depicted in Figure 6.19. The average number of re-routings is equal to zero 

in the case of both Dijkstra and PACO systems due to the fore mentioned reason. 

However, the average number or re-routings increases, as the usage rate increase for 

both HRS and AVCAF approaches. This is because as the usage rate increase, the 

number of vehicles that use these systems and routed through the same paths increases 

and consequently the number of re-routings has increased to mitigate the vehicle traffic 

congestion problem. It is worth noting that this increase is not noticeable in AVCAF 
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approach due to routing the vehicles’ with the same OD pair via up to three alternative 

paths from the early stages of routing procedure. This occurs such that the number of re-

routing in AVCAF has decreased by 50% in comparison to HRS, in the highest usage 

rate condition. 

 

Figure 6.19. Average number of re-routings for Dijkstra, PACO, HRS and AVCAF as a 

function of their usage rate 

Figure 6.20 represents the average number of re-routings for the vehicles that used 

Dijkstra, PACO, HRS and AVCAF systems for path finding under accident condition. 

Similar to the first and second scenarios (i.e. various vehicle densities and usage rates), 

the average number of re-routings for Dijkstra and PACO is zero due to considering the 

distance as the only and main parameter in their routing mechanism. Before accident, 

the average number of re-routings is constant for both AVCAF and HRS systems. 

Although this metric has increased for both of these systems after the accident take 

place at 300
th

 second of simulation, it has constant and ascending trend for AVCAF and 

HRS systems, respectively, during the accident condition. This is because of three 

following reasons: 1) AVCAF uses various metrics such as road length, density, travel 

time, speed in its path finding procedure, while, HRS uses only road travel time, 2) 

AVCAF routes the vehicles with the same OD pair via more than one alternative path 
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(i.e. up to 3 paths), while, HRS uses only one path, and 3) HRS disables (i.e. ignores) 

the road where an accident has happened during the accident, while, AVCAF decreases 

that roads probability value based on the accident severity (i.e. this is considered by 

using various metrics such as road’s number of lanes, density, travel time and speed).  

Considering all of the scenarios, Dijkstra and PACO ignore both recurring and non-

recurring congestion conditions in their routing procedure and their average number of 

re-routings is zero, while, AVCAF considers both of these conditions in its routing and 

routes the vehicles through the less congested shortest paths along with the lowest 

number of re-routings. 

 

Figure 6.20. Average number of re-routings for Dijkstra, PACO, HRS and AVCAF as a 

function of simulation step in accident condition 

6.4.5. Number of congested roads 

Another parameter which is prominently important for performance evaluation of any 

VTRS is the number of congested roads. The optimal usage of the existing roads and 

streets capacity, which is the main reason of VTRSs emersion, can be examined via this 

parameter. Accordingly, the performance of Dijkstra, PACO, HRS and AVCAF in 

terms of number of congested roads under gradual rise of vehicle density is evaluated 

and the obtained results are depicted in Figure 6.21. As the number of vehicles 
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increases, the number of congested roads increases for all approaches. In this evaluation 

the AVCAF outperforms the other approaches and routes the vehicles in a way that the 

lowest number of congested roads is created in various vehicle densities. Using up to 

three alternative paths for guiding the vehicles with the same OD pair is the main reason 

of this phenomenon. Routing the vehicles through the shortest path without considering 

traffic conditions is the main reason of worst performance of Dijkstra and PACO 

systems. 

 

Figure 6.21. Average number of congested roads for Dijkstra, PACO, HRS and AVCAF as a 

function of vehicle density 

Figure 6.22 represents the evaluation comparison of the number of congested roads in 

all approaches by applying various system usage rates. Dijkstra and PACO have 

ascending trend for all usage rates. However, in the case of HRS, this metric has 

descending trend at low usage rates whereas it has ascending trend at high usage rates. 

This is because HRS routes the vehicles with the same OD pair through only one path. 

As a result, when the number of vehicles increases, more vehicles are routed via these 

paths and consequently the congestion is transferred from one point to another point and 

the number of congested routes has increased. In the case of AVCAF, number of 
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congested roads has inverse relationship with system usage rate. This is due to 

following reason: as the number of vehicles that use AVCAF for path finding increases, 

the traffic congestion is handled in a better way and distributed throughout the existing 

paths due to using up to three alternative paths in its routing procedure. 

 

Figure 6.22. Average number of congested roads for Dijkstra, PACO, HRS and AVCAF as a 

function of their usage rate 

The number of congested roads for the benchmark routing systems and AVCAF in 

accident condition is represented in Figure 6.23. As it can be seen, the number of 

congested roads is constant for all approaches. However, there is ascending trend for all 

approaches after the accident take place at 300
th

 second of simulation. However, this 

increase is not significant in the case of AVCAF due to its unique routing mechanism 

that uses up to three alternative paths from the early stages of the routing procedure. 

Considering the other approaches, HRS outperforms the Dijkstra and PACO due to its 

re-routing mechanism. As expected, Dijkstra and PACO have the worst performance 

during the accident condition because of insisting on sending the vehicles through the 

shortest path without considering recurring and non-recurring congestion conditions. 

When the accident is removed from the street, HRS and AVCAF reduce the number of 

congested roads faster than Dijkstra and PACO approaches. 
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Similar to the average number of re-routings, AVCAF outperforms the other approaches 

in terms of number of congested roads considering both recurring and non-recurring 

congestion conditions. As a result, the optimal usage of existing roads and streets 

capacity is obtained via AVCAF framework. 

 

Figure 6.23. Average number of congested roads for Dijkstra, PACO, HRS and AVCAF as a 

function of simulation step in accident condition 

6.5. Conclusion 

This chapter has presented the evaluation results retrieved from running of implemented 

simulation by taking advantage of the line charts and bar chart, in order to facilitate the 

performance comparisons. Since the performance of ant-based approaches is highly 

dependent to the value of their various parameters, the proper value for various AVCAF 

parameters is found by examining different values for them through the simulation. The 

performance evaluation in this study is performed in comparison with the Dijkstra, 

PACO and HRS approaches. The selection reason(s) of each of these benchmark 

routing systems are also discussed in this chapter. The consideration of evaluation 

metrics and scenarios for comparison and assessment of our approach is performed in 

accordance with objectives of the study. Three different scenarios were defined in order 

to evaluate the performance of our approach in both recurring and non-recurring 
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congestion conditions. The obtained results show that AVCAF outperforms the other 

approaches in terms of average travel time, speed, number of re-routings and number of 

congested roads in both recurring and non-recurring congestion conditions. This is due 

to considering various metrics such as road length, density, travel time, speed in its path 

finding procedure and also routing vehicles via more than one alternative path (i.e. up to 

3 paths). Lower average travel time and higher average travel speed prove that AVCAF 

routes the vehicles through the less congested shortest paths, meanwhile, lower number 

of re-routings and congested roads prove that AVCAF distributes the vehicle traffic in 

order to achieve vehicle traffic congestion mitigation and optimal usage of the existing 

roads and streets capacity. However, AVCAF had higher average travel distance 

compared with others, especially in recurring congestion conditions (i.e. various vehicle 

densities and system usage rates), which can be ignorable due to its better average travel 

time and travel speed. The results also proved that ant-based algorithm (i.e. PACO) can 

find the shortest path by considering distance as its main metric which is proved 

mathematically by Shah et al. (2013). The major conclusions are drawn in next chapter.  
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CHAPTER 7: CONCLUSION AND FUTURE WORK 

This chapter concludes this thesis. It includes an overview of the problem statement, 

research purpose, reached goals and findings. Moreover, all of the main points and 

obtained results are represented. Finally, this chapter concludes by discussing open 

issues in ant-based VTRSs and proposing some directions as a future work section. 

7.1. Overview 

Over the last decade, vehicle population has dramatically increased all over the world. 

This large number of vehicles coupled with the limited capacity of roads and highways 

lead to heavy traffic congestion. Besides, it gives rise to air pollution, driver frustration, 

and costs billions of dollars annually in fuel consumption. VTRSs are reported as an 

effective solution with reasonable cost for congestion mitigation in recent years. Based 

on our discussion of the existing approaches and related literature that have been 

proposed by other researcher, bio-inspired-based VTRSs, especially ant-based VTRSs, 

have been reported as promising solution for vehicle traffic routing and congestion 

problems. Although several ant-based VTRSs are developed over the years, there is not 

any framework for applying ant-based algorithms to VTRSs. In addition, non-recurring 

congestion conditions are not considered in most of the existing approaches due to the 

complexity of these unpredictable events. Moreover, drivers with the same origin and 

destination are routed through a same path by existing VTRSs. As a result, when a 

significant number of drivers utilize these systems (i.e., system usage rate is high), the 

congestion will be transferred from one route to another. Therefore, the main goal of 

this thesis was designing a vehicle traffic routing framework that avoids and mitigates 

both recurring and non-recurring congestion conditions by providing least congested 

shortest paths as alternative routes for drivers by taking advantage of VANET and bio-

inspired approaches (e.g. ant-based algorithm). Five objectives are defined to achieve 

the main goal of this thesis. These objectives and the way of fulfilling them are 

discussed in the following section. 
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7.2. Reached Objectives 

Five objectives are defined in Chapter 1 in order to achieve the mentioned main goal of 

this thesis as follows: 1) To present a classification for the existing research trends 

within the area of vehicle traffic routing and congestion control, 2) To provide a 

taxonomy and statistical overview of ant-based approaches, which are used in vehicle 

traffic routing systems, 3) To design a scalable vehicle traffic congestion avoidance 

framework using ant-based algorithm, 4) To develop the proposed framework in 

simulation environment using network simulator, mobility generator and VANET 

simulator, 5) To evaluate and analyze the proposed framework with different set of 

scenarios and evaluation metrics. In the following paragraphs, the reached objectives of 

this thesis are briefly discussed on an objective by objective basis. 

 Presenting a classification for the existing research trends within the area of 

research 

Indeed reviewing the existing research trend within the area of vehicle traffic routing 

and congestion mitigation, which was conducted in the first part of Chapter 3, helped us 

to achieve adequate theoretical knowledge to finalize the objectives of our thesis. By 

reviewing the existing approaches, we found that the most important distinction among 

VTRSs is whether the system utilizes a static or a dynamic routing algorithm for vehicle 

routing. This finding leads to a classification of VTRSs, namely static and dynamic 

VTRSs. However, static approaches are not suitable for vehicle congestion mitigation 

due to lack of considering real-time traffic information. Dynamic VTRSs that uses real-

time traffic information in their routing algorithm are proposed to overcome static 

VTRSs’ problems. After extensive overview of dynamic VTRSs, we found ant-based 

algorithms are promising solutions for vehicle routing and congestion avoidance. 

Hence, the second objective is defined to provide a taxonomy and statistical overview of 

ant-based approaches in the field of our research. 
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 Providing a taxonomy and statistical overview of ant-based approaches within 

the area of research 

The second objective was reached in the second part of Chapter 3. The literature in the 

area of bio-inspired-based VTRSs is extensive. However, based on our investigation, 

ant, bee, genetic and PSO are most commonly used bio-inspired algorithms among 

researchers over the years in the field of VTRSs. Among these bio-inspired algorithms, 

the use of ant-based algorithms has been reported as promising and one of the best 

approaches for congestion control and traffic management in many research studies due 

to their better adaptability and processing time. After providing an overview of bio-

inspired-based (i.e. bee, genetic and PSO) VTRSs in Section 3.2.1, a novel taxonomy 

and statistical overview of ant-based VTRSs is provided in Sections 3.2.2 and 3.2.2.4, 

respectively (i.e. which was our second objective). The major characteristics of ant-

based VTRSs are also discussed in this chapter. Based on our discussion of the existing 

approaches and related literature that have been proposed by other researcher, we found 

that there is not any framework for applying ant-based algorithms to VTRSs. Moreover, 

non-recurring congestion conditions are not considered in most of the existing 

approaches due to the complexity of these unpredictable events. Hence, we have 

decided to propose a framework to cover these gaps. 

 Designing a scalable Ant-based Vehicle Congestion Avoidance Framework 

(AVCAF) 

The third objective, namely designing a scalable framework that uses ant-based routing 

algorithm in order to route the vehicles in a way that avoids the congestion by 

considering both recurring and non-recurring congestion conditions in its routing 

mechanism was reached in Chapter 4. Ant-based algorithm proactively reroute the 

vehicles when there are signs of congestion and in this way avoids the congestion 

occurrence instead of recovering from it. Initialization, optimal path finding, and 
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optimal path suggestion are the three phases involved in AVCAF. Layered and 

segmented model was introduced and used in initialization phase in order to solve the 

scalability problem in ant-based algorithms, decrease the computation time of the 

routing algorithm and mitigate the drawbacks of centralized architectures via a 

distributed centralized architecture. Combination of historical and real-time traffic data, 

obtained via VANET infrastructure, was used to predict the travel speed of each road. 

Ant-like agents were designed to find the least congested shortest paths as alternative 

routes to the drivers by considering various metrics (i.e. vehicles’ travel speed, travel 

time, density, road length and width). The optimal paths are suggested to drivers via 

VANET infrastructure on a junction to junction basis. 

 Developing the proposed framework via simulation tools 

Since AVCAF includes VANETs for both real-time data gathering and optimal paths 

suggestion, its implementation, evaluation and testing in real world involve high cost 

and in most of the cases impossible task if metrics such as testing area, mobility and 

number of vehicles are taken into account. Besides, most experiments are not repeatable 

and require high cost and efforts. Therefore, simulation tools and environments were 

selected and used to AVCAF development and implementation. After extensive 

investigation on simulation tools, TraNS, SUMO and NS-2 are selected as VANET 

simulator, mobility generator and network simulator for this purpose. The 

implementation details of AVCAF were covered in Chapter 5 on a phase to phase basis. 

Schematic simulation framework, snapshots from simulation tools and pseudo code 

based description were used to provide more details about the AVCAF implementation. 

 AVCAF evaluation and analyze 

Our last objective was achieved in Chapter 6 by comparing its performance with three 

other approaches, namely Dijkstra, PACO, HRS. One of the main concerns of 

evaluation, which was to perform the evaluation under realistic scenarios, was mitigated 
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by choosing a real road map in Chapter 5 for evaluation purpose. AVCAF includes 

various parameters such as α, β, ζ, λ and ρ in its routing procedure and its performance 

is highly dependent to the value of these parameters. Hence, at the first part of Chapter 

6, the proper value for these parameters was found by examining various values for 

them through the simulation. In order to evaluate AVCAF performance in both 

recurring and non-recurring congestion conditions, three different scenarios, namely 

various vehicle densities, various system usage rates and accident condition, were 

designed. Besides, five different metrics, namely vehicles’ average travel time, speed, 

distance, number of re-routings and number of congested roads, are defined as 

evaluation metrics. The obtained results proved that AVCAF outperforms the other 

approaches in terms of average travel time, average travel speed, number of re-routings 

and number of congested roads in both recurring and non-recurring congestion 

conditions. The main findings and contributions of this thesis are discussed in the 

following section. 

7.3. Findings and Contributions 

Generally, providing an overall view of road map network along with existing traffic 

condition can be useful for travelers who want to travel through the optimal paths. 

However, the way of using and managing these data to find an optimal path is more 

important. Extensive simulation-based experiments were conducted in this thesis for 

AVCAF performance evaluation. 

The experimental results proved that the proposed framework (i.e. AVCAF) along with 

its ant-based routing algorithm is very effective in avoiding and mitigating congestion 

and has high adaptability with dynamic and quick changes of vehicular traffic and 

environments. Based on the obtained results, AVCAF outperforms the other approaches 

in terms of vehicles’ average travel time and speed at both recurring and non-recurring 

congestion conditions (see Sections 6.4.1 and 6.4.2) due to considering various metrics 

such as roads’ length and width, vehicles density, travel time and speed in its routing 
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mechanism and also routing vehicles via more than one alternative path (i.e. up to 3 

paths). Although AVCAF routes the vehicles via slightly longer paths compared with 

other approaches in both various vehicle densities and system usage rates scenarios (see 

Figures 6.15 and 5.16), it can be condoned due to its better travel time and speed. It is 

worth noting that AVCAF outperforms the HRS approach in term of average travel 

distance in the accident scenario (see Figure 6.17). 

In another experiment, average number of re-routings or routing stability was analyzed. 

This also showed that AVCAF, considering all scenarios, has better routing stability due 

to routing vehicles via alternative paths by considering various metrics from the early 

stages of routing procedure (see Section 6.4.4). In addition, the optimal usage of the 

existing roads and streets capacity, which is the main reason of VTRSs emersion, was 

examined via another parameter, called number of congested roads. In this evaluation, 

the AVCAF outperforms the other approaches by rerouting the vehicles when 

congestion is sensed by designed ant agents. As a result, the vehicles are routed in a way 

that the lowest number of congested roads is created in various vehicle densities (see 

Section 6.4.5). It is worth noting that the results further showed that the ant algorithm 

(i.e. PACO) can find the shortest path by considering distance as its main metric which 

was also proved mathematically. 

As a conclusion, scalability which is one of the main problems of ant-based approaches 

was solved by proposing layered and segmented model. In addition, the results of 

accident scenario proved that the non-recurring congestion conditions were handled 

efficiently along with the recurring congestion conditions by AVCAF. Moreover, 

AVCAF remains effective and efficient even with high number of simultaneous users 

(i.e. high system usage rates). 

The main findings and contributions of this thesis are published in conferences and 

journals and also a copyright as follows: 
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 Mohammad Reza Jabbarpour, Hossein Malakooti, Ali Jalooli and Rafidah Md Noor, 

"A Dynamic Vehicular Traffic Control Using Ant Colony and Traffic Light 

Optimization", International Conference on Systems Science (ICSS 2013), September 

10-12, 2013, Wroclaw, Poland. 

 Mohammad Reza Jabbarpour, Hossein Malakooti, Rafidah Md Noor, Nor Badrul 

Anuar and Norazlina Khamis, "Ant Colony Optimisation for Vehicle Traffic 

Systems: Applications and Challenges", International Journal of Bio-Inspired 

Computation (IF = 1.682, Q1), 2014, Vol. 6, No. 1, pp. 32-56. 

 Mohammad Reza Jabbarpour, Ali Jalooli, Erfan Shaghaghi, Rafidah Md Noor, Leon 

Rothkrantz, Rashid Hafeez Khokhar and Nor Badrul Anuar, "Ant-based Vehicle 

Congestion Avoidance System using Vehicular Networks", Engineering Applications 

of Artificial Intelligence (IF = 1.962, Q1), 2014, Vol. 36, pp. 303-319. 

 Mohammad Reza Jabbarpour and Rafidah Md Noor, "A Novel Green Car Navigation 

System for Vehicle Congestion Avoidance using Ant-based Algorithm", Copyright, 

2014, No: LY2014001218. 

 Mohammad Reza Jabbarpour, Rafidah Md Noor and Rashid Hafeez Khokhar, 

"Green Vehicle Traffic Routing System using Ant Colonial-based Algorithm", 

Journal of Network and Computer Applications (IF = 1.772, Q1), 2014, (Under 

review, Submitted Nov. 2014) 

Some other achievements accomplished during doing my PhD including patent, journal 

and conference papers are listed as follows: 

Patent: 

 Mohammad Reza Jabbarpour and Rafidah Md Noor, "System and Method For 

Relieving Traffic Congestion", Patent, 2014, No: PI 2014703373. 

Journal Papers: 
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 Mohammad Reza Jabbarpour, Rafidah Md Noor, Rashid Hafeez Khokhar and Chih-

Heng Ke, "Cross-layer Congestion Control Model for Urban Vehicular 

Environments", Journal of Network and Computer Applications (IF = 1.772, Q1), 

2014, Vol. 44, pp. 1-16. 

 Hossein Malakooti, Ali Jalooli, Mohammad Reza Jabbarpour, Ali Reza Marefat and 

Rafidah Md Noor, "Opportunistic XOR-Coding Content Propagation in VANET", 

International Journal of Computer & Electrical Engineering, 2014, Vol. 6. 

 Ali Jalooli, Erfan Shaghaghi, Mohammad Reza Jabbarpour, Rafidah Md Noor, 

Hwasoo Yeo, and Jason J. Jung, "Intelligent Advisory Speed Limit Dedication in 

highway using VANET",  Scientific World Journal (IF = 1.7, Q1), 2014, Vol. 2014. 

 Mohammad Reza Jabbarpour, Alireza Marefat, Ali Jalooli, Rafidah Md Noor, Rashid 

Hafeez Khokhar and Jaime Lloret, "Performance Analysis of V2V Dynamic Anchor 

Position-based Routing Protocols", Wireless Networks Journal (IF= 1.055, Q3), 

2014, DOI: 10.1007/s11276-014-0825-8. 

 Mohammad Reza Jabbarpour, Ali Jalooli, Erfan Shaghaghi, Alireza Marefat, Rafidah 

Md Noor and Jason J. Jung, "Analyzing the Impacts of Velocity and Density on 

Intelligent Position-based Routing Protocols", Journal of Computational Science 

(IF=1.567, Q2), 2014, DOI: 10.1016/j.jocs.2014.11.003 

 Mohammad Reza Jabbarpour, Rafidah Md Noor and Saied Ghahremani, "Dynamic 

Congestion Control Algorithm for Vehicular Ad-hoc Networks", International 

Journal of Software Engineering and Its Applications (IJSEIA), 2013, Vol. 7, No. 3. 

 Erfan Shaghaghi, Mohammad Reza Jabbarpour, Rafidah  Md Noor and Hwasoo Yeo, 

"Adaptive Green Traffic Signal Controlling using Vehicular Communication", 

Journal of Network and Computer Applications (IF=1.772, Q1), 2015. (Under 

review) 

Conference Papers: 
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 Rafidah Md Noor, Rashid H. Khokhar, Mohammad Reza Jabbarpour, Sajad 

Khorsandroo, Norazlina Khamis and Oche Michael, "Using VANET to Support 

Green Vehicle Communications for Urban Operation Rescue", 12th International 

Conference on ITS Telecommunications, November 5-8, 2012, Taipei, Taiwan. 

 Saeid Ghahremani, Mohammad Reza Jabbarpour, Sajad Khorsandroo, Mohamed 

Ahmed and Rafidah Md Noor, "A Traffic Control Model on VANET Environment 

for Minimum Road Risk in a Shortest Way", The International Conference on Green 

High Performance Computing (ICGHPC’13), March 14-15, 2013, St.Xavier's 

Catholic College of Engineering, India. 

 Mohamed Ahmed, Mohammad Reza Jabbarpour, Mostofa Kamal Nasir,Saeid 

Ghahremani, Sajad Khorsandroo, Syed Adeel Shah Ali, and Rafidah Md Noor, 

"Vehicle Adhoc Sensor Network Framework to Provide Green Communication for 

Urban Operation Rescue", 3rd International Conference on Information and Network 

Technology (ICINT 2013), April 1-2, 2013, Singapore. 

 Mohammad Reza Jabbarpour, Hossein Malakooti, Masumeh Taheri and Rafidah Md 

Noor, "The Comparative Analysis of Velocity and Density in VANET Using 

Prediction-Based Intelligent Routing Algorithms", The 2nd International Conference 

on Future Generation Communication Technologies (FGCT 2013), December 12-14, 

2013, London, UK. 

 Ali Jalooli, Mohammad Reza Jabbarpour, Hossein Malakooti, Erfan Shaghaghi, 

Alireza Marefat, and Rafidah Md Noor, "Adaptive advisory speed limit 

dissemination using vehicular communication", Asia Pacific Conference on Wireless 

and Mobile 2014 (APWiMob 2014), 28-30 August, 2014, Bali, INDONESIA. 

 Alireza Marefat, Rozita Aboki, Ali Jalooli, Erfan Shaghaghi, Mohammad Reza 

Jabbarpour and Rafidah Md Noor, "An adaptive overtaking maneuver assistant 
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system using VANET", Asia Pacific Conference on Wireless and Mobile 2014 

(APWiMob 2014), 28-30 August, 2014, Bali, INDONESIA. 

 Mohammad Reza Jabbarpour, Ali Jalooli, Alireza Marefat and Rafidah Md Noor, "A 

Taxonomy-based Comparison of Vehicle Cloud Architectures", The 3rd 

International Conference on Information and Computer Networks (ICICN 2015), 19-

20 March 2015, Florence, Italy. 

 Alireza Marefat, Mohammad Reza Jabbarpour and Rafidah Md Noor, "A Novel 

Comprehensive VANET-based Congestion Pricing Zone Management System", The 

14th International Conference on Traffic and Transportation Engineering (ICTTE 

2015), February 24-25, 2015, Tehran, Iran. (Under review) 

7.4. Future Work and New Directions 

There is still a lot to do in the area of vehicle routing and traffic congestion mitigation. 

Further studies might focus on designing a smarter routing algorithm which considers 

different types of priorities for different types of vehicles such as taxi, bus, ambulances, 

police cars and fire trucks in its guidance procedure. Value of time (VOT) represents 

how much money the traveler is willing to pay to find and use optimal paths for time 

saving. By considering this preference as an input variable for AVCAF, we can 

contribute to the improvement of framework in our future work. 

It would also be useful to develop a green extension of our proposed framework by 

considering an emission model in its routing mechanism. Hence, both vehicles’ travel 

time and air pollutions can be reduced simultaneously. Also, AVCAF can be extended 

to perform in an unexplored environment (i.e. road map network) where the ant agents 

do not have an overall view from the search space. In this case, reinforcement learning 

algorithms or Markov decision processes can be used for optimal paths finding. Another 

interesting subject that should be studied is the investigation of self-adaptive parameter 

tunings. In this case, the stagnation measures can be useful to set algorithm’s parameters 

such as α, β and ρ, autonomously. 
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On the theoretical side, other features of computing intelligence such as adaptation, 

flexibility and learning will be considered as an extension of AVCAF. Besides, we will 

analyze the convergence properties of our proposed approach. Convergence means 

whether a given algorithm is able to find an optimal solution when there are sufficient 

resources. 
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Appendixes 

 

Appendix A. A part of map.nod.xml file 

 
<?xml version="1.0" encoding="UTF-8" ?>  

- <!--  

 generated on 07/16/14 22:49:12 by SUMO netconvert Version 0.21.0 

<?xml version="1.0" encoding="UTF-8"?> 

 

<configuration xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

xsi:noNamespaceSchemaLocation="http://sumo-sim.org/xsd/netconvertConfiguration.xsd"> 

 

    <input> 

        <osm-files value="map.osm"/> 

    </input> 

 

    <output> 

        <plain-output-prefix value="map"/> 

    </output> 

 

    <projection> 

        <proj.utm value="true"/> 

    </projection> 

 

</configuration> 

  -->  

- <nodes version="0.13" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

xsi:noNamespaceSchemaLocation="http://sumo-sim.org/xsd/nodes_file.xsd"> 

  <location netOffset="-799395.39,-344143.98" convBoundary="0.00,0.00,4676.13,5795.46" 

origBoundary="101.693647,3.110066,101.735708,3.174000" projParameter="+proj=utm +zone=47 

+ellps=WGS84 +datum=WGS84 +units=m +no_defs" />  

  <node id="1154363098" x="758.85" y="3362.63" type="priority" />  

  <node id="1198097101" x="1875.59" y="5385.81" type="unregulated" />  

  <node id="1198097121" x="1226.63" y="5151.44" type="priority" />  

  <node id="1198097187" x="874.22" y="4991.82" type="priority" />  

  <node id="1198097212" x="884.51" y="5008.55" type="priority" />  

  <node id="1198097217" x="876.10" y="4959.04" type="priority" />  

  <node id="1198097243" x="1209.71" y="5150.53" type="priority" />  

  <node id="1198097245" x="1018.37" y="5218.74" type="priority" />  

  <node id="1198097281" x="565.85" y="4668.94" type="unregulated" />  

  <node id="1198097317" x="1275.06" y="5164.82" type="priority" />  

. 

. 

. 

  <node id="92282714" x="2072.53" y="4500.06" type="priority" />  

  <node id="92291222" x="2113.75" y="4973.59" type="priority" />  

  <node id="92291233" x="2597.38" y="5011.00" type="priority" />  

  <node id="92291234" x="2573.10" y="5053.57" type="priority" />  

  <node id="92291239" x="2586.48" y="5164.59" type="right_before_left" />  

  <node id="92291247" x="2309.61" y="5163.87" type="priority" />  

  <node id="92291250" x="2219.57" y="5089.57" type="priority" />  

  <node id="92291251" x="2193.37" y="5071.58" type="priority" />  

  <node id="92291253" x="2128.50" y="5053.39" type="right_before_left" />  

</nodes> 
 

 

 

 

 

file:///C:/Users/reza/Desktop/new/map.nod.xml
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Appendix B. A part of map.edg.xml file 

 
<?xml version="1.0" encoding="UTF-8" ?>  

- <!--  

 generated on 07/16/14 22:49:12 by SUMO netconvert Version 0.21.0 

<?xml version="1.0" encoding="UTF-8"?> 

 

<configuration xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

xsi:noNamespaceSchemaLocation="http://sumo-sim.org/xsd/netconvertConfiguration.xsd"> 

 

    <input> 

        <osm-files value="map.osm"/> 

    </input> 

 

    <output> 

        <plain-output-prefix value="map"/> 

    </output> 

 

    <projection> 

        <proj.utm value="true"/> 

    </projection> 

 

</configuration> 

  -->  

-<edges version="0.13" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

xsi:noNamespaceSchemaLocation="http://sumo-sim.org/xsd/edges_file.xsd"> 

<edge id="-103774410" from="1198097245" to="1198097334" priority="4" 

type="highway.residential" numLanes="1" speed="13.89" shape="1018.37,5218.74 1041.28,5163.44 

1043.14,5131.66" />  

<edge id="-103777529" from="1756919004" to="1198144249" priority="4" 

type="highway.residential" numLanes="1" speed="13.89" />  

<edge id="-10589714#0" from="1814470613" to="34419737" priority="6" type="highway.tertiary" 

numLanes="1" speed="22.22" shape="2153.65,4606.48 2185.74,4675.14 2203.21,4707.81 

2217.73,4731.27" />  

<edge id="-10589714#1" from="1814470575" to="1814470613" priority="6" 

type="highway.tertiary" numLanes="1" speed="22.22" />  

<edge id="-10589714#2" from="92278903" to="1814470575" priority="6" type="highway.tertiary" 

numLanes="1" speed="22.22" />  

<edge id="-10589714#3" from="28918012" to="92278903" priority="6" type="highway.tertiary" 

numLanes="1" speed="22.22" shape="2101.18,4455.66 2102.56,4485.01 2105.04,4500.82" />  

. 

. 

. 

<edge id="53154470" from="672688243" to="1722609833" priority="6" 

type="highway.secondary_link" numLanes="1" speed="22.22" shape="2279.62,3487.33 

2302.68,3475.23 2321.75,3468.95 2349.94,3470.57 2374.56,3480.58" spreadType="center" />  

<edge id="99873605" from="478424497" to="478501482" priority="4" type="highway.residential" 

numLanes="1" speed="13.89" spreadType="center" />  

<edge id="99873607#0" from="478549108" to="1821025834" priority="4" 

type="highway.residential" numLanes="1" speed="13.89" shape="780.17,3808.90 791.05,3745.70 

794.93,3674.75" />  

<edge id="99873607#1" from="1821025834" to="475482687" priority="4" 

type="highway.residential" numLanes="1" speed="13.89" />  

<edge id="99873611#0" from="478450158" to="478911699" priority="4" 

type="highway.residential" numLanes="1" speed="13.89" shape="1705.53,3029.63 1683.35,3055.18 

1585.32,3129.21 1491.54,3202.05" />  

<edge id="99873611#1" from="478911699" to="478424497" priority="4" 

type="highway.residential" numLanes="1" speed="13.89" />  

</edges> 
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Appendix C. A part of map.con.xml file 

 
<?xml version="1.0" encoding="UTF-8" ?>  

- <!--  

 generated on 07/16/14 22:49:12 by SUMO netconvert Version 0.21.0 

<?xml version="1.0" encoding="UTF-8"?> 

 

<configuration xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

xsi:noNamespaceSchemaLocation="http://sumo-sim.org/xsd/netconvertConfiguration.xsd"> 

 

    <input> 

        <osm-files value="map.osm"/> 

    </input> 

 

    <output> 

        <plain-output-prefix value="map"/> 

    </output> 

 

    <projection> 

        <proj.utm value="true"/> 

    </projection> 

 

</configuration> 

  -->  

<connections version="0.13" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

xsi:noNamespaceSchemaLocation="http://sumo-sim.org/xsd/connections_file.xsd"> 

  <connection from="-103774410" to="39901847#4" fromLane="0" toLane="1" />  

  <connection from="-103774410" to="103774410" fromLane="0" toLane="0" />  

  <connection from="-103777529" to="-23766090#1" fromLane="0" toLane="0" />  

  <connection from="-103777529" to="23766090#2" fromLane="0" toLane="0" />  

  <connection from="-103777529" to="103777529" fromLane="0" toLane="0" />  

  <connection from="-10589714#0" to="5116003#0" fromLane="0" toLane="0" />  

  <connection from="-10589714#0" to="10589714#0" fromLane="0" toLane="0" />  

  <connection from="-10589714#1" to="-170293888" fromLane="0" toLane="0" />  

  <connection from="-10589714#1" to="-10589714#0" fromLane="0" toLane="0" />  

  <connection from="-10589714#1" to="10589714#1" fromLane="0" toLane="0" />  

  <connection from="-10589714#2" to="-170293889" fromLane="0" toLane="0" />  

  <connection from="-10589714#2" to="-10589714#1" fromLane="0" toLane="0" />  

  <connection from="-10589714#2" to="10589714#2" fromLane="0" toLane="0" />  

  <connection from="-10589714#3" to="-10589714#2" fromLane="0" toLane="0" />  

  <connection from="-10589714#3" to="198263663" fromLane="0" toLane="0" />  

. 

. 

. 

  <connection from="99873607#0" to="99873607#1" fromLane="0" toLane="0" />  

  <connection from="99873607#0" to="-170998159" fromLane="0" toLane="0" />  

  <connection from="99873607#0" to="-99873607#0" fromLane="0" toLane="0" />  

  <connection from="99873607#1" to="258714765#1" fromLane="0" toLane="0" />  

  <connection from="99873607#1" to="-99873607#1" fromLane="0" toLane="0" />  

  <connection from="99873611#0" to="99873611#1" fromLane="0" toLane="0" />  

  <connection from="99873611#0" to="39922262#0" fromLane="0" toLane="0" />  

  <connection from="99873611#0" to="-99873611#0" fromLane="0" toLane="0" />  

  <connection from="99873611#1" to="99873605" fromLane="0" toLane="0" />  

  <connection from="99873611#1" to="-99873611#1" fromLane="0" toLane="0" />  

  </connections> 
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Appendix D. ant_pkt.h file 
 

#ifndef __ant_pkt_h__ 

#define __ant_pkt_h__ 

 

#include <packet.h> 

#include <list> 

#include "AVCAF_common.h" 

 

#define FANT 0x01 

#define BANT 0x02 

#define ANT_SIZE 9 

#define HDR_ANT_PKT(p) hdr_ant_pkt::access(p) 

 

struct memory{ 

 nsaddr_t node_addr;  

 double trip_time;  

}; 

 

struct hdr_ant_pkt { 

        u_int8_t pkt_type_;  

 nsaddr_t pkt_src_;  

 nsaddr_t pkt_src_seg_; 

 nsaddr_t pkt_dst_;  

 nsaddr_t pkt_dst_seg_;  

 u_int16_t pkt_len_;  

 u_int8_t pkt_seq_num_;  

 double pkt_start_time_;  

 struct memory pkt_memory_[MAX_NUM_NODES];  

 int pkt_mem_size_; 

  

 inline nsaddr_t& pkt_src() {return pkt_src_;} 

 inline nsaddr_t& pkt_src_seg() {return pkt_dst_seg_;} 

 inline nsaddr_t& pkt_dst() {return pkt_src_;} 

 inline nsaddr_t& pkt_dst_seg() {return pkt_dst_seg_;} 

 inline u_int16_t& pkt_len() {return pkt_len_;} 

 inline u_int8_t& pkt_seq_num() {return pkt_seq_num_;} 

 inline double& pkt_start_time() {return pkt_start_time_;} 

 inline int& pkt_mem_size() {return pkt_mem_size_;} 

 inline u_int8_t& pkt_type() {return pkt_type_;} 

   

 static int offset_; 

 inline static int& offset() {return offset_;} 

  

 inline static hdr_ant_pkt* access(const Packet *p) { 

  return (hdr_ant_pkt*)p->access(offset_); 

 } 

}; 

 

#endif 
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Appendix E. AVCAF_Intra_ST.h file 
 

#ifndef __AVCAF_Intra_ST_h__ 

#define __AVCAF_Intra_ST_h__ 

 

#include <trace.h> 

#include <map> 

#include <string> 

#include <vector> 

#include <classifier-port.h> 

#include <random.h> 

 

#include "ant_pkt.h" 

#include "AVCAF_common.h" 

 

struct pheromone { 

 nsaddr_t neighbor;  

 double phvalue;   

}; 

 

typedef std::vector<struct pheromone> pheromone_matrix; 

typedef std::map<nsaddr_t, pheromone_matrix> Intra_ST; 

typedef std::vector<nsaddr_t> sameph_t; 

 

class AVCAF_Intra_ST { 

 Intra_ST rt_;  

  

 public: 

 

  AVCAF_Intra_ST() { 

     

  void add_entry(nsaddr_t destination, nsaddr_t neighbor, double phvalue); 

  void print(); 

  nsaddr_t calc_destination(nsaddr_t source, int source_seg); 

  nsaddr_t calc_next(nsaddr_t source, nsaddr_t destination, nsaddr_t parent, int 

source_seg, int destination_seg); 

  void update(nsaddr_t destination, nsaddr_t neighbor, int source_seg, int 

destination_seg); 

}; 

 

#endif 

 

Appendix F. AVCAF_ant.h file 
 

#ifndef __ AVCAF_ant _h__ 

#define __ AVCAF_ant _h__ 

 

#include <agent.h> 

#include <node.h> 

#include <packet.h> 

#include <ip.h> 

#include <trace.h> 

#include <timer-handler.h> 

#include <random.h> 

#include <classifier-port.h> 

#include <tools/rng.h> 

 

#include "trace/cmu-trace.h" 

#include "tools/queue-monitor.h" 

#include "queue/drop-tail.h" 

 

#include "ant_pkt.h" 



223 
 

#include "AVCAF_common.h" 

#include " AVCAF_Intra_ST.h" 

 

#include <map> 

#include <vector> 

#include <list> 

 

class AVCAF_ant;  

 

class Ant_timer: public TimerHandler { 

 public: 

  Ant_timer(AVCAF_ant* agent) : TimerHandler() { 

   agent_ = agent; 

  } 

 protected: 

  AVCAF_ant * agent_; 

  virtual void expire(Event* e); 

}; 

 

class AVCAF_ant: public Agent { 

  

 friend class Ant_timer; 

  

 nsaddr_t  ra_addr_;  

 AVCAF_Intra_ST  Intra_ST_; 

 u_int8_t ant_seq_num_;  

  

 double xi_;  

 double lambda_;  

 double alpha_;  

 double beta_;  

 double rho_;  

 double gamma_;   

 int num_paths_;   

  

 protected: 

  PortClassifier* dmux_;  

  Trace* logtarget_;  

  Ant_timer ant_timer_;  

   

  void reset_ant_timer();   

  void send_ant_pkt();   

  void recv_ant_pkt(Packet*);  

  void create_backward_ant_pkt(Packet*);  

  void forward_ant_pkt(Packet*);   

  void backward_ant_pkt(Packet*);  

  void memorize(Packet*);   

  void update_Intra_ST(Packet*);   

  void print_neighbors(); 

  void add_Neighbor(Node* node1, Node* node2); 

   

  void initialize_Intra_ST();  

   

 public: 

  ANCAS_ant(nsaddr_t); 

  int command(int , const char*const*);  

  void recv(Packet*, Handler*);   

}; 

 

#endif 
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Appendix G. AVCAF_common.h file 
 

#ifndef __ AVCAF_common_h__ 

#define __ AVCAF_common_h__ 

 

#include <agent.h> 

#include <node.h> 

#include <packet.h> 

#include <ip.h> 

#include <trace.h> 

#include <timer-handler.h> 

#include <random.h> 

#include <classifier-port.h> 

#include <tools/rng.h> 

 

#include "trace/cmu-trace.h" 

#include "tools/queue-monitor.h" 

#include "queue/drop-tail.h" 

 

#define CURRENT_TIME Scheduler::instance().clock() 

 

#define file_rtable "Intra_ST.txt" 

 

#define DEBUG 0 

 

#define WIN_LEN 300 

 

int get_num_neighbors(nsaddr_t node_addr); 

 

#endif 

 

Appendix H. AVCAF_common.cc file 
 

#include "AVCAF_common.h" 

 

Int get_num_neighbors(nsaddr_t node_addr) { 

 int count = 0; 

 Node *nd = nd->get_node_by_address(node_addr); 

 neighbor_list_node* nb = nd->neighbor_list_; 

 while(nb != NULL) { 

  count ++; 

  nb = nb->next; 

 }  

 return count; 

} 

 


