TABLE OF CONTENTS

TITLE PAGE	Page
ORIGINAL LITERARY WORK DECLARATION	i
ABSTRACT	iii
ABSTRAK	v
ACKNOWLEDGEMENTS	vii
TABLE OF CONTENTS	viii
LIST OF FIGURES	XV
LIST OF TABLES	xviii
ABBREVIATIONS	xviiii
CHAPTER ONE: INTRODUCTION AND LITERATURE REVIEW	
1.1 Introduction	1
1.1.1 Objectives of the study	5
1.2 Literature Review	6
1.2.1 Papillomavirus research, a history	6
1.2.2 Human papillomavirus (HPV)	7
1.2.3 HPV and cervical cancer	12
1.2.4 HPV classification and genome organization	13

1.2.5 HPV life cycle	15
1.2.6 Function of the viral proteins	17
1.2.6.1 The early proteins	17
1.2.6.2 The late proteins, L1 and L2	19
1.2.7 HPV oncoproteins, E6 and E7	19
1.2.7.1 HPV E6	19
1.2.7.2 HPV E7	21
1.2.7.3 E6 and E7 play a key role in cellular transformation	24
1.2.7.4 Control of cell cycle and its disruption by high risk HPV E7	25
1.2.8 The tumour suppressor protein 'Retinoblastoma protein'	28
1.2.8.1 The tumour suppressor protein pRB and cancer	28
1.2.8.2 pRB degradation	29
1.2.8.3 pRB belongs to the pocket protein family and exerts different function	30
1.2.9 Pocket proteins	32
1.2.9.1 Pocket proteins and cell cycle regulation	34
1.2.10 dREAM and DRM complex	37
1.2.10.1 The discovery of a novel <i>Drosophila</i> RBF/MIP130 repressor and	37
C. elegans DRM complexes	

1.2.10.3 The DREAM/LINC complex			42
CHAPTER 7	TWO: MATERIALS AN	D METHODS	
2.1 Solutions	and media		46
2.1.1	General solutions		46
2.1.2	Agarose gel solutions		
2.1.3	SDS-PAGE and western	blotting solutions	48
2.1.4	Transfection solutions		49
2.1.5	Immunoprecipitation so	lutions	50
2.1.6	GST binding assay solut	ions	50
2.2 Molecular	biology		51
2.2.1	Synthetic oligonucleotic	les	51
2.2.2	Total RNA extraction		52
2.2.3	2.3 Quantitation of RNA		52
2.2.4	2.2.4 Generation of cDNA for real-time PCR		53
2.2.5	Real-time PCR		53
2.2.6	Cloning of short hairpin	RNA (shRNA)	55
2.2.	6.1 Materials		55
	2.2.6.1.1 Media	for bacterial cell growth	55
	2.2.6.1.2 Bacte	rial strains and plasmids	56
	2.2.6.1.3 Antib	iotic solution for bacterial culture	56

1.2.10.2 The function of novel human Lin9/pocket protein complexes

39

	2	2.2.6.2	Designing	shRNA oligos for pLKO.1 vector	59
		2.2.6.2.1		Determining the optimal 21-mer targets in selected	59
				genes	
		2.2.6	.2.2	Ordering oligos compatible with pLKO.1 vector	59
	,	2.2.6.3	Restrictio	n digests	60
	,	2.2.6.4	Agarose g	gel electrophoresis	61
		2.2.6.5	DNA pui	rification from agarose gels	61
		2.2.6.6	DNA liga	ations	61
		2.2.6.7	Production	on of chemically competent bacterial cells	61
		2.2.6.8	Transform	mation of chemically competent bacterial cells	62
		2.2.6.9	Screening	g of colonies	62
		2.2.6.10	Small sca	ale purifications of plasmid DNA (miniprep)	63
		2.2.6.11	Preparati	on of glycerol stock	64
		2.2.6.12	Large sca	ale purification plasmid DNA (maxiprep)	64
		2.2.6.13	Sequenci	ng	64
	2.2.7	Produc	ing lentivii	ral particles	64
	2.2.8	Mutage	enesis		66
2.3	Cell cu	ılture			68
	2.3.1	Types o	f cell lines		68
	2.3.2	Mainte	nance and	subculturing of cell lines	70
	2.3.3	Preserv	ation, stor	age and revival of cells	70
	2.3.4	Cell co	unting and	seeding	71

2.4 In viv	o protein expre	essions and analysis	73
2.4.1	2.4.1 Transfection analysis		73
	2.4.1.1	Transient transfection protocol 'FuGENE 6'	73
2.4.1.2		Transient transfection by calcium phosphate co-precipitation	73
	2.4.1.3	Stable transduction by lentiviral system	74
2.4.2	2 Nuclear	extraction	76
2.4.3	Protein 6	estimation using Bradford assay	76
2.4.4 Proteins		co-immunoprecipitation (co-IP)	77
2.4.5	5 Antiboo	lies	77
2.4.6	Sodium	a dodecyl sulphate polyacrylamide gel electrophoresis (SDS-	79
	PAGE),	immunoblotting and enhanced chemiluminescent (ECL)	
	detectio	n of proteins	
2.5 In v	vitro GST-E7 bi	inding assay	81
2.6 Flov	w cytometry and	alysis	82
2.6.	1 Cell cy	cle analysis	82
2.6.	2 Bromo	deoxyuridine (BrDU) staining	82
2.6.	3 Mitotic	index	83
2. 7. St	atistical test		83
2.7.1	Student	s' t-test	83

CHAPTER THREE: RESULTS

3.1 DREAM complexes	84
3.1.1 Analysis of DREAM complexes in T98G,C33A, SiHa and CaSki cell lines	87
3.2 Interference of 16E7 RNA in HPV-transformed cell lines	90
3.2.1 Effects of 16E7 depletion on pocket protein/DREAM complexes in	90
CaSki and SiHa cells	
3.3 Disruption of pocket protein/DREAM complexes by different HPV E7 types	100
3.4 Human papillomaviruses disrupt p130/DREAM complexes through different	107
mechanisms	
3.4.1 Identification of DREAM complex in CaSki expressing various types p130	107
mutants	
3.4.2 HPV 16E7 targets p130 predominatsly through direct interactions via the	117
LXCXE motif	
3.4.3 HPV 48E7 disrupts p130/DREAM via CDK2 phosphorylation	123
3.5 Function of the R-myb/DRFAM complex in CaSki cells	129

CHAPTER FOUR: DISCUSSION

4.1 Investigation of the DREAM complexes in cervical cancer cells	137
4.2 HPV16 E7 disrupts p130/DREAM complex	139
4.3 Depletion of HPV E7 results in cell cycle arrest and reformation of the p130/DREAM complex	141
4.4 Re-expression of p53tumour suppressor protein in E7-depleted CaSki cells	143
4.5 G1 arrest is dependent on DREAM complex reformation	144
4.6 All HPV types are capable to degrade the p130/DREAM complex	145
4.7 HPV disrupts p130/DREAM complexes through different mechanisms	147
4.7.1 Defective in the B pocket of p130 abrogate the HPV-transformed cells proliferation	151
4.7.2 HPV48 E7 disrupts p130/DREAM via CDK2 phosphorylation	152
4.8 B-myb/DREAM as an activating complex in cell cycle progression	153
4.8.1 B-myb/DREAM complex is not critical in CaSki to regulate the	156
G2/M genes	
4.9 p130 localization	157
4.10 Disruption of pRB/Lin9 interaction by the E7 proteins	158

CHAPTER FIVE: CONCLUSIONS

5.1 Conclusion	161
CHAPTER SIX: RUTURE WORK	
6.1 Future work	
REFERENCES	164
APPENDIX	196