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ABSTRACT 

Recently, most researchers have employed behaviour based detection systems to 

classify Portable Executable (PE) malwares. They usually tried to identify malicious 

Application Programming Interface (API) calls among the sequence of calls that made 

by a suspected application. They depended mostly on measuring the similarity or the 

distance between the suspected API calls with a set of predefined calls that collected 

from normal and malware applications. However, malwares always tried to keep their 

normality through hiding their malicious activities.  Within such behaviours, calls that 

made by PE malwares become more similar to normal, which in turn, challenging most 

distinguishing models. Even such similarity puts the accuracy of most classifier models 

in a very critical situation as many misclassified and doubtful results will be recorded. 

Therefore, this work has addressed the accuracy problem of the API call behaviour 

classifier models. To achieve that, the work has proposed a biological model that 

defined as Artificial Costimulation Classifier (ACC). The model can mimic the 

Costimulation phenomenon that occurred inside the Human Immune Systems (HIS) to 

control errors and to avoid self-cell attacking. Moreover, Costimulation can work as 

safety and balance processes inside the Artificial Immune System (AIS).  

To build the ACC model, this work has employed the Feed forward Back-Propagation 

Neural Network (FFBP-NN) with Euclidean Distance.  The work also used the K-fold 

cross validation method to validate the dataset. The results of our work showed the 

ability of the ACC model to improve the accuracy of malicious API call classification 

up to 90.23%. The results of the ACC model have been compared with four types of 

classifier models and it shows its outperformance. 
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ABSTRAK 

Pada masa ini, kebanyakan penyelidik telah menggunakan sistem pengesan perilaku 

untuk mengklasifikasikan Portable Executable (PE) malware. Mereka kebiasaanya 

mencuba untuk mengenalpasti panggilan API kod hasad sebagai jujukan panggilan yang 

dibuat oleh aplikasi yang mencurigakan. Mereka amat bergantung kepada pengukuran 

persamaan atau jarak antara panggilan API yang dicurigai dengan set panggilan 

pratakrif yang dikumpukan dari aplikasi normal dan hasad. Namun, perision hasad 

kebiasaanya berusaha untuk menjaga normality dengan menyembunyikan aktiviti 

subversif mereka. Dalam perilaku seperti ini, panggilan yang dibuat malware PE hasad 

menjadi lebih mirip dengan panggilan normal yang mengelirukan model pengkelasan. 

Bahkan, persamaan ini meletakkan ketepatan kebanyakan model pengkelasan dalam 

situasi yang kritikal kerana banyak kesilapan dalam pengkelasan dan hasil yang diragui 

direkodkan.  Oleh yang demikian, penulisan ini mensasarkan ketepatan masalah dalam 

perilaku panggilan API model pengkelasan. Untuk mencapai matlamat ini, kajian ini 

mencadangkan model biologi yang didefinasikan sebagai Artificial Costimulation 

Classifier (ACC). Model ini dapat meniru  fenomena Costimulation di dalam Sistem 

Imun Manusia (HIS) bagi mengawal kesilapan dan mengelakkan serangan sesama sel.  

Costimulation boleh berfungsi sebagai proses keselamatan dan pengimbangan di dalam 

Imun Sistem Buatan (AIS). Untuk membina model ACC, kajian ini telah menggunakan 

Feedforward Back-Propagation Neural Network (FFBP-NN) dengan Euclidean 

Distance. Kajian ini juga turut menggunakan pendekatan K-fold cross validation untuk 

menguji set data. Hasil penemuan daripada kajian ini menunjukkan kemampuan model 

ACC untuk memperbaiki ketepatan pengkelasan panggilan API kod hasad sehingga 

90%. Hasil daripada model ACC ini telah dibandingkan dengan empat model 

pengkelasan dan menunjukkan hasil yang memberangsangkan. 
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Chapter One 

 

1. Research Orientation 

 

1.1 Introduction and Background 

 

Recently, most malware classifier researchers have depended on tracing the behaviours 

of malwares rather than looking for knowing signatures (M Alazab, Venkataraman, & 

Watters, 2010; Peng, 2011; Wagener, State, & Dulaunoy, 2008). The reasons behind 

this trend are going back to the number of malwares that crossed (80) millions 

(Spafford, 1990), and the defeat techniques (Polymorphic and Metamorphic) that used 

by malwares to change old malwares’ signature to new ones. Although these two 

reasons have challenged signature based classifier models, they have encouraged 

malware classifier researchers to employ the behaviour based classifier models rather 

than other types of malware classifier model (Y. Hu, Chen, Xu, Zheng, & Guo, 2008; 

Lanzi, Sharif, & Lee, 2009; Park & Reeves, 2011; Tian, Islam, Batten, & Versteeg, 

2010; Trinius, Willems, Holz, & Rieck, 2011; Zolkipli & Jantan, 2011). 

The fundamental work of any type of behaviour-based classification system depends on 

learning the behaviours of known malwares and subsequently scanning other 

applications to detect similar behaviours (Cohen, 1987). Along this direction, 

researchers have studied the behaviours of numerous malwares to build different kinds 

of behaviour-based classifier systems. The memory access behaviour, the codes that are 

more frequently used by malwares, and the system files that register record-

modification activities are among the behaviours that frequently studied by researchers 

to build different kinds of behaviour-based detection systems (Ding, Jin, Bouvry, Hu, & 

Guan, 2009; H. J. Li, Tien, Lin, Lee, & Jeng, 2011; Rieck, Holz, Willems, Düssel, & 
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Laskov, 2008; Rozinov, 2005; Wang, Pang, Zhao, & Liu, 2009; Yoshiro Fukushima, 

Akigiro Sakai, Yoshiaki Hori, & Sakurai, 2010; C. W. J. P. R. Zhao & Liu, 2009). 

One of the most important behaviour that researchers have focused more is monitoring 

and tracing the behaviours of application programming interface (API) calling. This 

behaviour is utilized to build API call behaviour-based detection systems. This 

monitoring system is employed more frequently because malwares, as normal 

applications, should call API functions during implementation. Based on different ways 

of calling, API call behaviour-based classifier systems, ideally, can identify malicious 

calls among normal calls. As a result, the classifier system can reveal the behaviour of 

malwares in applications (M. Alazab, Layton, Venkataraman, & Watters, 2010; M 

Alazab et al., 2010; Bai, Pang, Zhang, Fu, & Zhu, 2009; Cheng Wang, 2009; S. Choi, 

Park, Lim, & Han, 2007; Dabek, Zhao, Druschel, Kubiatowicz, & Stoica, 2003; 

Dunham, 2011; Focardi, Luccio, & Steel, 2011; K.-S. Han, Kim, & Im, 2011; J-Y. Xu, 

2004; Kwon, Bae, Cho, & Moon, 2009; Miao, Wang, Cao, Zhang, & Liu, 2010; Nakada 

et al., 2002). 

The calling behaviours that classified by an API calls classifier model can be extracted 

from some specific fields inside Portable Executable (PE) file format(Microsoft, 2008). 

PE is a type of the file format that followed by a wide range of applications, especially, 

the ones that can be executed under Windows Operating System (OS) (Y. Huang, 

2003). This application’s format has some fields where the name and the address of the 

required API functions that called by an application during its execution can be found 

(APIMonitoring.Com, 2010). Malwares as normal applications can keep the addresses 

of the required API functions in these fields and can use these addresses to find any API 

function that necessary during their execution. 
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Malwares that can infect any PE applications are known as PE malwares, which also 

known as Win32 malwares (Bradfield, 2010). PE malwares can call API functions as 

normal PE applications do, and Windows OS responds to PE malwares’ calls as its 

respond to normal PE applications. Windows OS cannot make any differentiate between 

the calls that made by PE malwares and PE normal applications (Szor, 2000). This 

situation encouraged PE malwares to misuse or abuse these API functions, and to hide 

their malicious activities from behaviour classifier models.  For instance, the API 

function RegQueryValuExA ( ) that called during installation of new PE applications, 

probably can be called by PE Trojan horse malwares to conduct communication with 

their resources so that they can get new updates. Therefore, a classifier model cannot 

easily decide either calling such functions is for malicious purposes or it is normal. 

Accordingly, cases like this call are either misclassified or correctly classified but with a 

low certainty degree (doubtfully classified) (K. S. Han, Kim, & Im, 2012b). This 

situation affects negatively on the accuracy degree of any classifier models.  

The accuracy of classifier models is directly affected by errors that may occur during 

the process of classifying objects. Errors, which mean misclassifying objects or objects 

that doubtfully classified, can be measured by computing parameters in two directions. 

In the first direction, the two types of False Alarms (FA), False Positive (FP) and False 

Negative (FN), should be obtained. This direction determines the number of objects that 

are incorrectly classified. The second direction defines the level of certainty with 

respect to the correct classification of objects. To obtain a high degree of certainty, 

classifier models usually depend on computing of the Root Mean Square Error (RMSE) 

(Yoshiro Fukushima et al., 2010). With respect to both directions, API call classifier 

models have low accuracy because they have a high FA rate, which indicates 

misclassification, and have high RMSE rate, which means objects have been classified 

doubtfully.  
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Researchers, in the past years, employed many tools and techniques to build API calling 

behaviour classifier models, although they have high FA and RMSE rates’ problem (M. 

Alazab, Venkatraman, & Watters, 2011; Fei Chen, 2009; Marhusin, Larkin, Lokan, & 

Cornforth, 2008; Miao Wang, 2009; Sami, Yadegari, Peiravian, Hashemi, & Hamze, 

2010). In each work, researchers have looked for different solutions to overcome the 

accuracy problems. Moreover, researchers studied different parts of API behaviour-

based detection systems to obtain features that more relevant to the accuracy problem 

(Father, 2004; Kwon et al., 2009). Accordingly, researchers proposed different API 

calling behaviour classifier models (K. S. Han, Kim, & Im, 2012a; Islam, Islam, & 

Chowdhury, 2012). Researches, even, tried to find some bio-oriented solutions from the 

Immune System (IS) algorithms to improve the accuracy of API calls classifier models 

(Khaled, Ab d ul-Kader, & Ismail, 2010). Bio-oriented models, sometimes referred as 

biological models, are inspired by several phenomena and algorithms that occur inside 

the Human Immune System (HIS) (Abdulalla, Kiah, & Zakaria, 2010; Zakaria, 2009). 

Since 1994, when the idea of the biological model was coined, different IS algorithms, 

such as Negative Selection, Clonal Selection, and Danger Method, have been widely 

used in different works and fields, particularly in malware detection models(Jieqiong 

Zheng 2010). Most IS algorithms depend on pattern-recognition and shape-matching 

processes. Many researchers found that biological models suffer from a high rate of FA 

(Xiao & Stibor, 2011). The most recent algorithm, Dendretic Cell Algorithm, which is 

considered as a second-generation algorithm for Artificial Immune System (AIS), has a 

problem in setting an appropriate threshold value for classifier models (Xiao & Stibor, 

2011). Hence, all AIS algorithms based models that used to classify malicious API calls 

need accuracy improvement as well.  

To provide this improvement, the current work intends to find a method that can control 

errors. The present work has found that a biological phenomenon, which is called co-
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stimulation and occurs inside IS, has been utilized as an error controller. The IS uses 

this biological error controller to eliminate errors occurred when a self-cell is classified 

as non-self-cell. This process means minimizing FA rates inside IS. Further, the 

phenomenon does not occur independently; it always comes in parallel with other IS 

activities to improve the detector’s ability (D Dasgupta, 2007). For this reason, this 

phenomenon is defined as a safety and balancing procedure within the work of AIS 

(Jieqiong Zheng 2010). Therefore, this present research proposes employing the 

functionalities of this phenomenon to overcome the exist drawbacks in the malicious 

API call classifiers.  

The aim of utilizing the concept of this phenomenon in malicious API call classification 

is to control the errors first, and subsequently start implementing improvements. The 

improvements that the current work intends to apply include increasing the certainty of 

objects that are doubtfully classified, which subsequently means improvement of the 

RMSE. The improvements also included minimizing the misclassification rate, and 

consequently, means decreasing the FA rate. As a result the accuracy can be improved. 

 

1.2 The Motivation of the Research 

 

Many recent studies have traced and analysed API calls that were made by suspected 

applications to detect and identify the PE malwares inside computer systems (M. Alazab 

et al., 2010; M Alazab et al., 2010; Miao et al., 2010; Sami et al., 2010). These were 

performed because malwares can bypass the valid AV software and can challenge them 

by using different signature-defeating techniques (M. Alazab et al., 2011). Secondly, 

with defeating techniques, such as encryption and polymorphic techniques, malwares 

can make changes on malware signatures but cannot make any changes on the type and 

the sequence of API calls (J-Y. Xu, 2004). In addition, any cancellation, deletion, or 
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modification of an API function during a PE execution would generate an end error 

message (Father, 2004). Therefore, the type and the way that API functions, as called by 

any PE malware, will not be changed even if the signature or the structure of codes has 

been modified. Furthermore, malwares should call the required API functions in order 

to be executed smoothly and correctly (Zhu & Liu, 2011; Zolkipli & Jantan, 2011). All 

above confirmed that for each malware a sequence of API functions is existed, and this 

sequence cannot be encrypted or changed for a specific malware unless the behaviour 

and the codes of the malware is changed totally (Szor, 2006).   

API behaviour-based detection systems have effective features and characteristics for 

classifying malicious API calls. The systems can nullify the effect of many defeating 

techniques and can provide indication on existing malicious API calls. More 

justifications have been structured and organized to explain the trends in using API call 

monitoring (Bayer, Habibi, Balzarotti, Kirda, & Kruegel, 2009; Peng, 2011; Tabish, 

Shafiq, & Farooq, 2009; H. Zhao, Zheng, Li, Yao, & Hou, 2009; Zhu & Liu, 2011). 

However, malwares usually challenge these trends by making their behaviour of calling 

API functions appear as normal. Malwares use the same procedures and ways to call 

API functions to hide their malicious and non-privileged behaviours from detection 

systems and the users’ eyes. Malwares try to display themselves as normal as possible 

by following the call sequences of some normal APIs (F. Y. Zhang, Qi, & Hu, 2011a).  

These malware behaviours negatively affect most malicious API call classifiers, and 

lead to misclassify cases as well as doubtfully classify objects, which in turn, puts the 

accuracy at a weak level. The existing similarity of API call sequences between normal 

and malware applications affects the accuracy of most malicious API call classifiers. 

By solving the similarity problem and improving the accuracy, API behaviour classifier 

models can attain relevant features and characteristics. Therefore, the current work 
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offers a bio-oriented solution that can improve the discrimination between two different 

cases that have similarity in behaviours. The present work can insert a part that is 

missed in most malicious API call classifiers, and can bring about improvement in 

accuracy. Furthermore, classifier techniques that are applied to sensitive cases or have 

numerous doubtful points can depend on the proposed model to achieve accurate 

results. By evaluating malwares, this work offers a new definition that explains 

malwares more at the detection stage. The proposed new version of malware definition 

can help malware analysts, and can explain malwares from the viewpoint of detection 

systems. 

 

1.3 The Problem Statements 

 

This research work targets to address the accuracy problem of the classifier models that 

distinguish malicious API calling behaviours. The work evaluates different types of 

malicious API calling classifier models with respect to the three types of features that 

are relevant to the accuracy problem. The features are False Positive (FP), False 

Negative (FN) and Root mean Square Error (RMSE). 

The accuracy of any malicious API classifier models will be affected negatively when 

they classify a malicious API sequence that has some similar characteristics with 

normal API sequences. Moreover, when a classifier model depends on some statistical 

measures, such as probability or frequency, their accuracy will be also affected 

negatively when the probability or frequency measure of a malicious API call came 

within the same range that a normal API call has. These problems are clearly illustrated 

in Figure 1-1 and Figure 1-2. 
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Figure 1-1 Comparison between normal and malware applications in a number of 

calls conducted for only six types of API functions 

 

To clarify the accuracy problem that related to Figure 1-1, we need to explain the 

concept of statistical based malicious API call classifier models. The concept of the 

classifier models that depend on statistical aspects states that if an API function called 

very frequently by malwares and very rarely by normal applications, such API call 

could be considered as distinguisher (Merkel, Hoppe, Kraetzer, & Dittmann, 2010). 

Figure 1-1 shows the result of a test that performed by this work on the most popular 

API functions that called by (400) malware and normal applications (More details of 

these tests are presented in later chapters). The work focused on six API functions and 

four types of PE applications (normal, virus, Trojan horse, and worm), as shown in 

Figure 1-1. The figure shows the percentage of calling an API by each types of PE 

application. From the figure, if we want to define a range for an API function with 

regard to each type of PE application we can see many crossing areas between them, 

where an API call will be either misclassified or doubtfully classified.  
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Figure 1-2 shows the result of a clustering technique that more frequently used by 

researchers to distinguish malicious API calls (Bayer, Comparetti, Hlauschek, Kruegel, 

& Kirda, 2009; Kinable & Kostakis, 2010; P. Li, Liu, Gao, & Reiter, 2011). Examples 

for classifying or clustering methods are Support Vector Machine (SVM) and Self-

organizing Maps (SOM) (Ando, Takahashi, & Suzaki, 2009). These type of classifier 

models depend on measuring the distance between the classes’ centre and the point that 

needs to be classified (B. Zhang, Yin, & Hao, 2006; Zou, Han, Liu, & Liu, 2009). The 

current work has employed the SOM method to cluster 24,526 vectors that represent 

normal and malicious API calls only, the details of which are presented in a latter 

chapter. The results shown in Figure1-2 illustrate that not all similar objects have the 

closer distances to a specific centre. With this situation many misclassified results as 

well as doubtful classified objects are expected.  

 

Figure 1-2 SOM classification and FA generation 

 

The two tests that mentioned before and some other tests that are explained in later 

(chapter 5), show the weak capability of many classifier models to distinguish malicious 

API calls. Results from these tests showed how the similarity between malicious API 
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calls and normal API calls negatively affect the accuracy of classifier models. The low 

accuracy is caused by the continuous inclusion of misclassified and doubtful points by 

the output from classifying malicious API calls with normal API calls.  

The main improvement that this work aims to achieve is to minimize the FP, FN and 

RMSE rates. As these three features have inverse relation with accuracy, minimizing the 

rates of these features means improving the accuracy. Moreover, to improve the rate of 

these features another problem should be solved, which is the instability of the threshold 

value that used as a distinguisher in malicious API calling classifier models. The 

outcomes of the clustering and classification based models are generally compared with 

a threshold value to distinguish and discriminate cases. Researchers have defined a 

value between 0.5 and 0.65 to formulate the threshold value (K. S. Han et al., 2012b; 

Zolkipli & Jantan, 2011). Even within this range, however, tests and evaluations 

showed that results are not clear with regard to misclassification points. Researchers 

usually change this value to minimize the FA rate and to improve the accuracy (Bayer, 

Comparetti, et al., 2009; Kinable & Kostakis, 2010; P. Li et al., 2011). Therefore, the 

aim of this work is also to present a new formula that enables a threshold value to work 

as an error controller beside case distinguisher.  
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1.4 The Research Questions 

 

This research intends to improve the accuracy of malicious API call-classifier models 

through using a bio-oriented solution. Therefore, the main question that this work wants 

to answer is how to devise an artificial classifier model which exactly can imitate an 

accurate biological classifier phenomenon. Other questions that this work wants to 

address in regard to this are: 

 

1. What are the problems in the malicious API calls classifier models that led to 

misclassify objects or doubtfully classifying objects? 

2. Which biological phenomenon is used by human Immune System (IS) as a 

classification error controller? 

3. What is the suitable tool or technique that can function as an artificial error 

controller?  

4. How the artificial error controller can function within an artificial classifier 

models? 

5. How is the effectiveness of the proposed ACC classifier model? 
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1.5 The Objectives of Research 

 

The main objective of this work is to develop a bio-oriented model that can minimize 

the FP, FN and RMSE rates in malicious API calls classifier models. In order to achieve 

the main objective, this work focuses on the following sub-objectives: 

1. To study the relevant literatures on the API behaviour classifier models with 

respect to their accuracy; 

2. To determine a biological phenomenon that can avoid errors during classifying 

biological objects or cells; 

3. To propose an appropriate artificial error controller; 

4. To develop an Artificial Co-stimulation Classifier (ACC) model; and 

5. To test and evaluate the developed ACC model. 
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1.6 The Significant of the Study 

 

The study of classifying PE malwares with normal applications took another direction 

during the past years. Instead of investigating the detection of unseen signatures, 

researchers proposed different studies to reveal unseen PE malwares through classifying 

their API calling behaviours(Fu, Pang, Zhao, Zhang, & Wei, 2008; K. S. Han et al., 

2012a; Kwon et al., 2009; Sami et al., 2010; M. K. Shankarapani, Ramamoorthy, 

Movva, & Mukkamala, 2011). Through their studies, researchers have proposed 

different classifier models, and they employed different methods to distinguish 

malicious API calls. However, the behaviours’ similarity between normal and malware 

applications in calling API functions and system’s responding always challenges this 

direction of researching as an open source problem. This is because the existing 

behaviour’s similarities puts many API calling cases in a doubtful area or misclassified 

them. As a result, it impacts negatively on the accuracy of the classifier models.  

The project’s goal that designed by this work is for improving the accuracy of the 

malicious API calling classifier models. Through achieving this goal, the new direction 

of malware classification studies could be taken to better level of accuracy. Moreover, 

projects that need to classify different objects that have similar characteristics can get 

benefit from the proposed design.  

The goal that proposed by this work can be achieved through implementing a new bio-

oriented model. The proposed model, ACC, extracted from the functionality of a 

biological phenomenon that called co-stimulation. The phenomenon is occurred inside 

Human Immune System (HIS). Therefore, this work introduces a new functionality in 

the field of artificial immune system that supports, in general, pattern recognition 

projects, especially, the biological based projects.  
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1.7 The Scope of the Research 

 

In general, Figure 1-3 explains the scope that this research has considered. The scope 

covers two parts, namely, platform or OS and the applications. Details on the work 

scope are mentioned below: 

1. For OS, this work has covered only Windows OS. (details in sections 2.6,2.6.1, 

2.6.2, 3.3.1) 

2. This work has focused more on the PE structured type of application. 

3. PE malware is the only type that has been analysed in this work. However, only 

three families of the PE malware are considered, namely, viruses, Trojan horses, 

and worms, beside applications as normal PE. 

4. With regard to detection system, this work has focused only on the behaviour-

based detection system, in which the API calls in each application have been 

monitored. 

5. Only four major behaviours of PE applications have been monitored in this 

research, which are Application, Access, Register, and I/O with System Files.  

 

Figure1-3 The Underlined Scopes in this research 
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1.8 Organization of this study 

 

The flow between each chapter and inside each chapter is summarized as below: 

1.  In general, there are four sections in chapter 2: 

a. A section is related more on the current behaviour based and API 

calls monitoring models that used to detect malicious API and PE 

malwares. 

b. Another section illustrates the current biological algorithms and 

artificial immune system works that proposed as malware detection 

systems.  

c. A section illustrates the biological functionalities and activities of 

HIS. 

d. Last section shows the details of the theories and methods that used 

by this work to build and simulate the ACC model. 

2. Chapter 3 is more related to the methodology of this work. It explains the main 

framework of the ACC model. The chapter gives more details about each part of 

the ACC model. The functionality of each part and the theory that used to 

achieve each part are also explained. 

3. Chapter 4 illustrated the execution parameters and characteristics of each part in 

the ACC mode. It includes the results that obtained through model execution. 

4. Chapter 5 shows testing some major classifier models. Through this chapter, this 

work has evaluated results that have been obtained for testing these models. A 

compression between the tested classifier models and ACC modes has been 

illustrated in this chapter.  

5. Chapter 6 explains the conclusion and contributions of this research. The chapter 

also explains the achievements of the current research.  
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Chapter 2 

 

2. Classification of malicious API calls in PE malwares: Literature 

Review 

 

2.1 Introduction and Background 

 

Malwares are increasingly infecting more PE applications. As these applications 

supported by all versions of the Windows platform (Symantec, 2010), and malware 

authors easily find new vulnerabilities in such file structures. The PE structure has many 

fertile fields that malwares can use for hiding codes and data (Hamlen, Mohan, & 

Wartell, 2010). Moreover, Windows dynamically loads and maps all applications to the 

main memory. This platform also provides all required dynamic link library (DLL) 

functions to any application during execution. Such facilities smoothly and correctly 

execute any application, even malwares (Dabak, Phadke, & Borate, 1999; Schreiber, 

2001). Moreover, the facility allows PE malwares to become parts of the system. Thus, 

the integrated malwares can abuse system resources to propagate. Malwares can then 

easily exploit OS vulnerabilities through executor infection. 

Valid detection systems that reveal malwares face many challenges. First, unknown PE 

malwares can easily defeat signature-based detection systems (S. Yu, Zhou, Liu, Yang, 

& Luo, 2011). Therefore, behaviour-based detection systems can offer a ray of hope for 

the detection of unseen malwares. However, the accuracy of behaviour-based detection 

systems needs to be improved because these systems depend on discriminating normal 

behaviours from abnormal ones. In most cases, many overlapping areas exist. Such 

similarities in behaviour result in weak classification and detection.  
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This chapter covers subjects relevant to the main targets of our work. These subjects are 

divided into two classes related to a specific field. The first field is computer security; 

more precisely, computer malware and detection systems. This part concerns PE 

malware with behaviour-based detection systems that trace and monitor API calls. The 

second field is the biological field, which concerns the HIS phenomenon. This review 

intends to support the search for a bio-oriented approach that would improve the 

accuracy of classifying malicious API calls in PE applications.   

 

 

 

Figure2-1 The flow of literature review 

. 

Figure 2-1 illustrates the steps for the literature review in both fields. It also shows and 

explains the kind of relationships expected between each equivalent part in both fields. 

It explains the concept and the reason for a bio-oriented inspiration in a detection 

system.  
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2.2 Computer Security 

 

Computer security is a branch of computer systems known as information security. 

Although it is difficult to describe and specify a definition for computer security, in the 

context of computer science, it is almost meaning protecting and preventing accessing 

and altering information by unauthorised users (Salomon, 2010). Based on the areas 

associated with, computer security covered three main topics: 

1- Confidentiality; which means accessing information only by authorised person.  

2- Integrity; information should not be altered by unauthorised person in such a 

way that authorised users cannot detect it. 

3- Authentication; means users are the authorised persons. 

This work more concerned to keep integrity in computer security systems as malwares, 

which are unwanted or unauthorised softwares, can access and alter information inside 

the system in undetectable ways (Szor, 2006).  

Computer security has some functions such as detection, prevention, and recovery that 

usually used to analyse what the security system can do (Solomon, 1993). However, in 

this work the detection function is more concerned as the work deals with infected PE 

applications.  

Finally, computer security systems have some domains that define the level they can 

work there. Each domain mutually depends on one or some other domains. For instant, 

this work is more concerned with system security and network security domains 

because they related more with unwanted softwares that use networks to change system 

files and integrity.  

http://en.wikipedia.org/wiki/Information_security
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Next section gives more details about those unwanted softwares which known as 

computer malwares, which they have ability to breach system security and alter system 

integrity.  

2.3 Computer Malwares 

 

The term “malware” covers all malicious types of software that are used for unwanted 

applications (Idika & Mathur, 2007). Although the term malware, which is shortened 

from malicious software, was coined to cover all types of unwanted applications, most 

computer end-users continue to use the term computer virus, instead of malwares, for 

unwanted software, such as Trojan horses and worms. The reason for such a mistake is 

related to the similar targets of these types of software attack in a computer. The term of 

malware is also used for those kinds of software or applications that interrupt and deny 

computer system operations. Malwares include applications that gather information and 

lead to loss of privacy or exploitation. Applications that gain unauthorized accesses to 

computer system resources can also be considered as malwares (Bradfield, 2010). 

The unwanted activities that used by malwares are to control execution flows of the 

infected applications and to achieve their payloads. Malwares also used the same 

unwanted actives to propagate inside the same victim host or infect more networks. 

Malwares usually try to propagate and infect successfully through defeat techniques or 

by checking for the system’s vulnerabilities (Szor, 2000). Through these techniques, 

malwares can overcome and bypass detection and prevision systems. Different 

malwares use different defeat techniques to hide themselves inside computer systems as 

well as conceal the system resources they abuse. At the same time, they use different 

vulnerabilities to penetrate computer systems (Bradfield, 2010). 

The variety of activities that malwares perform affects their definition and classification. 

As a definition, malwares are recently described as software designed to realize 



 

21 

 

malicious and shady goals on attacked computers or networks. Malwares are often 

described through some malicious activities (S. Yu et al., 2011). For instance, a new 

definition proposed recently (Vinod, Laxmi, & Gaur, 2011) is that malwares are 

exploiters of Internet vulnerabilities, network ports, OS resources, and peripheral 

devices. 

Malwares are defined through possible abusive activities performed during and after the 

infection cycle. The definition is a result of tracing the malware through behaviour 

monitoring. In both definitions, only the functionalities and misuse activities of 

malwares are explained. The definitions reflect the features and parameters used in the 

models to reveal the malwares. 

On the other aside, categorizing malwares mostly depends on the type and strategy 

performed by these applications for infecting and propagating (Bradfield, 2010). 

Accordingly, malwares fall under different families and classes, such as viruses, Trojan 

horses, and worms. In addition, the verity of platforms, programs, and hardware in 

computer systems display malwares in different structures and codes, using different 

programming languages. With such dependencies, malwares can only infect a special 

type of application.  

Although there are several classes of malwares and many activities performed by them, 

next section of this work gives more details about the main three types of malware and 

their behaviours inside the infected system. 
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2.4 Classes and Behaviours of Malwares 

 

Malwares infect and propagate in different ways. Classes of malware are properly 

identified by the way they are introduced into the target system and the policy these 

intend to breach (Szor, 2006). The three common types of malware are viruses, worms, 

and Trojan horses. Classes of malwares include spyware, bots, and backdoors. 

However, most of these are considered subclasses of the three main classes. To cover 

most of the activities that are considered to classify malware, researchers need to 

monitor the following behaviours (Ahmadi, Sami, Rahimi, & Yadegari, 2011; M. 

Shankarapani, Kancherla, Ramammoorthy, Movva, & Mukkamala, 2010) 

 

1- Some classes of malware need a user interface to start execution. Thus, they 

depend on execution, such as viruses and Trojan horses. Other types that can self-

execute, such as worms, do not need a second part (Lee, Im, & Jeong, 2011). 

2- After a malware is executed, either dependently or independently, it can replicate 

itself. Such a malware can insert a copy of itself inside new files or applications. 

Worms and viruses can perform such activation; however, Trojan horses cannot 

perform this replication (Rieck et al., 2008).  

3- Malwares can be either host-based or network-based. After replicating, a malware 

is going to find a new victim. If the malware can send a copy of itself over a 

network and the Internet, it is considered a network-based malware (worm). 

However, a malware that is limited by its search engine within the same victim 

computer is classified as a host-based malware (virus) (Fosnock, 2005; 

Technology, 2010).  
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Although malwares classified based on the above mentioned three main behaviours, 

another characteristic is also important to define classes for malwares, which is platform 

dependant. As mentioned in (Szor, 2006), it is difficult for malwares to be a multi-

platform infectors. Therefore, malwares are classified also based on the platform that 

they can penetrate. For example, PE malwares can only infect applications that follow 

the PE structure, and then they can penetrate platforms that support this structure. For 

instance, Windows-based applications support the PE structure. Therefore, malwares in 

such a structure can be considered platform-dependent. PE malwares are also called 

Win32 malwares (X. Hu, 2011). 

Next section gives more details about PE malwares and some of their behaviours. 

 

2.5 PE Malwares 

 

Based on the platform-dependant classification, PE malwares or Win32 malwares are a 

special class of malwares. They are called such because of the type of applications they 

infect. PE malwares only infect applications and files that follow the format of the PE 

structure (Merkel et al., 2010). As they infect only Windows-based applications, they 

are also defined as Win32 malwares. A sub-classification of PE malwares are included 

the main three classes of malware that mentioned in section 2.5. Accordingly, the name 

of these three groups of malware becomes PE virus, PE Trojan horse, and PE Worms.  

PE malwares take advantage of the vulnerabilities they find in the structure of PE 

applications. They find areas to hide their codes and payloads. Many malware authors 

prefer to infect PE applications because they knew  that malwares can survive over 

different versions of Windows OS (Szor, 2000). Analysts consider them the most 

frequently unwanted software, and AV vendors place them on top of the list of newly 

detected malwares.  
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Many AV vendors and malware analysts reported that new variants of known PE 

malwares could be generated more efficiently than other types of malware. Moreover, a 

very wide range of normal applications follows the PE format. Thus, malware authors 

find the second point as a reason to focus more on PE infectors than the other types 

because unseen malwares can be generated easily, and may infect a wide range of 

uninfected applications. 

Subsequent section explains the most important fields and sections located inside PE 

format and has strong relation with vulnerabilities that considered by PE malwares.  

2.5.1 PE Format 

 

The PE format is the executable file structure developed within the Windows NT 

version 3.1 OS. The format draws primarily from the Common Object File Format 

(COFF) specification common to UNIX OS (Microsoft, 2008). The format significantly 

changes the development environment and applications. One of the most important 

changes is the compatibility between the previous versions and all descendant versions 

of Windows. A PE file is organized as a linear stream of data. It is the native Win32 file 

format used by all Win32 executable formats. It contains many fields and sections, in 

addition to the data and codes for the application itself. The fields and sections are 

structured properly and are used to store data. Some of these data are used to address 

locations needed when a PE file is mapped on the main memory. Other data are used to 

find the addresses of these functions and the sub-routines required during the execution 

of a PE application. Therefore, sections either belong to the data or to the codes 

(Chappell, 2006; Pietrek, 1994).  

The structure of any PE file, as shown in Figure 2-2, starts with two fields with MS-

DOS compatibility. These two parts inform computer users that PE applications cannot 



 

25 

 

be executed outside MS-DOS. The subsequent parts, which are PE Header, PE 

Optional Header, Section Header, and Sections, are associated with PE execution.  

The PE Header contains information about the physical layout and properties of the 

file, whereas the PE Optional Header contains information about the logical layout of 

the PE file. The PE header tells the system how much memory is needed to set aside for 

mapping the executable format into the memory. 

 

Figure 2-2Format of PE applications (HZV, 2010) 

 

The PE Header file has 20 bytes and seven members. However, malware analysts are 

more frequently concerned with only two of the members (Microsoft, 2008, 2011) . 

1- NumberOfSection. It gives the number of sections a PE file has. Typically, the 

number is nine. However, applications may need more or less sections; thus, the 

number changes from one application to another. A malware can then insert a new 

section into the victim file and modify the content of this field.  



 

26 

 

2- Characteristics. It contains many flags that point to a specific situation. For 

example, a flag is used to identify whether a PE file is executable or is considered 

as a DLL. 

We move on to the next part, the PE Optional Header. This section comprises 224 

bytes. The last 128 bytes contain the DataDirectory. However, the first 96 bytes contain 

30 members. Members of the optional header that are closely related to malware 

activities are listed below (Y. Choi, Kim, Oh, & Ryou, 2009; Jajodia, 2009). 

1- AddressOfEntryPoint. It contains the relative virtual address (RVA) of the first 

instruction that is executed when the PE loader is ready to run the PE file. 

Malwares usually change this RVA to ensure execution of their codes within the 

PE instructions. 

2- SectionAlignment. The value in this field adjusts the sections of the PE in the main 

memory. It usually creates unused spaces between section offsets. 

3- FileAlignment. The value in this field adjusts the PE sections in the file. It also 

creates unused spaces between section offsets inside PE files. Malware can use 

these slack areas for inserting codes. 

4- SizeOfImage. With reference to the SectionAlignment, the value of this field 

displays the size of all headers and sections of a PE file inside the main memory. 

If a malware needs to increase or decrease the number of sections, the value inside 

this field would be modified. 

5- SizeOfHeaders. It is the size of all headers in a PE file, such as the DOS header, 

PE header, and section table’s header. Malwares need to modify the contents of 

these fields to make changes inside any section.  
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6- DataDirectory. It is an array of 16 structures. Each structure is related to an 

important data structure in the PE file, such as the import address table that is 

responsible for allocating the address of required API functions. Our work focuses 

only on two data directories: export and import data directories. These two data 

structures are better related to the addresses of API functions that may respond 

by/to the subroutines of the PE file during execution. 

 

The following section is on the section header, which is sometimes called the section 

table. It contains a number of structures in an array form. The number of structures 

should be equal to the number of sections in the section table. Each structure has 12 

members. However, only two members are more closely related to malware 

behaviours (Basics, 2010).  

 

1- VirtualSize. This field gives the exact size of each section’s data in bytes. 

Malwares modify the information in this field to correspond with the 

modifications they make.  

2- Characteristics. This field explains the status of each section in terms of the ability 

to read or write inside the section. It also explains whether the data are initialized 

or uninitialized. An important behaviour of malwares is inserting initialized data. 

Therefore, monitoring this field indicates monitoring an important behaviour of 

malwares. 
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The last part is specified for sections’ contain. Here, the sections contain the main 

content of the file, including codes, data, resources, and other executable information. 

Each section has a header and a body. The header is stored in the Section Header. The 

body, which is the section itself, is not properly structured. However, a linker can still 

organise them because the header contains enough information to decipher the content 

data (Hamlen et al., 2010; Y. Zhang, Li, Sun, & Qin, 2008). 

Typically, an application for Windows NT has nine predefined sections, namely, .text, 

.bbs, .rdata, .data, .rsrc, .edata, .idata, .pdata, and .debug. Each section is specific for a 

particular function mentioned below (Y. Choi et al., 2009; Hamlen et al., 2010; Jajodia, 

2009).  

1- .text section. Windows NT keeps all segments of executable codes inside this 

section. It is also contains the entry point codes of PE applications. In addition, it 

contains the jump thunk table that points to the import address table (IAT), which 

facilitates the search for the API functions called by a subroutine.  

2- .bss section. Any PE application has uninitialized data, including variables that are 

declared as static within a function or source model. This section is used to 

represent such data. 

3- .rdata section. This area is used to keep recent read-only data. 

4- .data section. This section keeps initialized variables and variables used globally 

in applications and modules. 

5- .rsrc section. This section keeps resource information for a module or application. 

6- .edata section. It keeps the Export Directory for an application or DLL. When 

present, this section contains information on the names and addresses of exported 

functions. 
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7- .idata section. This section contains different information about imported 

functions, including the Import Directory and IAT. 

8- .debug section. This section contains different information about imported 

functions, including the Import Directory and IAT. 

 

Above sections and fields are mostly targeted by PE malwares as vulnerabilities. Next 

section gives some explanations on these vulnerabilities.   

2.5.2 The Vulnerabilities in PE Format 

 

Permitting malware authors to insert new or modify existing codes and data inside 

sections and fields of PE files considered as the simplest vulnerability. A PE is 

organized into a linear stream of data. It contains many fields and sections, aside from 

the data and codes for the application itself (Szor, 2000). Any PE Explorer software can 

exploit the structure of PE applications and then reveal information and data inside each 

section and field (Bayer, Kruegel, & Kirda, 2006). Moreover, tools such as text/HEX 

editor or WinHex can manually edit the contents of each section and field in a PE 

application (Technology, 2010). Therefore, malware authors can easily open and view 

the format of any PE application to look for vulnerabilities (Basics, 2010).  

The second vulnerability is going back the structure of the PE format itself. It helps a 

malware move through the old to the latest versions of the Windows OS because the PE 

file format has not changed since its development in Windows NT 3.1. Therefore, 

escaping between versions is not difficult for malwares because the above-mentioned 

vulnerabilities still remain (Szor, 1998).  

Another important vulnerability is the slack and free area that exists in all PE files, 

which is attributed to the memory alignment procedure. All PE files use information in 
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the FileAlignment and SectionAlignment fields for blocking the codes and data sections 

accordingly. The size specified by the FileAlignment identifies the memory alignment 

on the disk drive, whereas SectionAlignment identifies the mapping process on the main 

memory. However, the entire space of a block may not be filled with codes and data (M. 

Alazab et al., 2010). Thus, free spaces are left in some sections.  

Malware authors use information in six fields to find spaces and slack areas that are left 

by mapping data and codes into sections: VirtualSize, VirtualAddress, 

PointerToRawData, SizeOfRawData, FileAlignment,and SectionAlignment (Dunham, 

2011). Malwares misuse these free areas to inject codes and instructions for their 

payload. Figure 2-3 shows the status of a slack area that could be found in any section 

and block in a PE format. 

 

 

Figure2-3Memory block with filled and free space area 

 

Another vulnerability of a PE format is the possibility of editing the contents of the 

fields (Milenkovi , Milenkovi , & Jovanov, 2005). Malware authors can find the RVA 

of the original entry point (OEP), where the first code of a PE format is executed, using 

any PE viewer. After injecting its codes and instructions, a malware needs to execute 

them to achieve payloads and propagations. A malware can control the path of 

execution by modifying the address in the OEP. It changes the exiting OEP into a new 

Free area 

Filled-up area 

VirtualSize 

SizeOfRawData 
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OEP that references the start point of the malware’s codes. Afterward, it can use the 

FreeLibrary function to start executing malware codes and then return the control back 

to the normal codes of the infected PE. Through this process, a malware can execute its 

codes and propagate to infect other files. However, the process requires some API 

functions that could be achieved dynamically through the PE format (Focardi et al., 

2011).  

Finding the name and the address of any API function can be achieved smoothly and 

correctly through the PE format. The process merely needs two API functions to find 

the name and address of other API functions. Applications normally use the 

LoadLibraryA function to link with a DDL file and then use the GetProcAddress to find 

the address of the API function that is expected in the loaded DDL file. The export table 

and import table of the API function responds to both the LoadLibraryA and 

GetProcAddress functions (Microsoft, 2008). A malware misuses this vulnerability as 

well (Sami et al., 2010). It uses this dynamic process of the PE format to find the name 

and the address of any API function it needs during execution (Cheng Wang, 2009). 

Malwares, maliciously, can call API functions by knowing their addresses or the 

addresses of their addresses, as shown in Figure 2-4. With one of the codes below, 

Windows provides the API function requested by a program (M. K. Shankarapani et al., 

2011; Szor, 2002).  

 

Call EBX   ; EBX = pointer to function address 

   ; of GetProcAddress or LoadLibraryA 

 

Call [EBX]  ; EBX = address holding function 

   ; address of GetProcAddress or 

   ; LoadLibraryA 

 

Figure2-4Using both types of calls to find addresses of an API function 
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New malicious API calls by malwares always used whenever malware authors discover 

new vulnerability / ies inside the structure of the PE. On the other side, malware 

detection researchers also perform studies on such formats to trace the fingerprints of 

malicious API calls of new PE malware (Szor, 2006).The next section shows the 

purposes that a PE malware makes malicious API calls for.  

2.6 Abusing API Function Behaviours of PE Malwares 

 

As mentioned in section 2.3, PE malwares can affect OS integrity. They gain this 

capability after successfully infecting executable files (Solomon, 1993). Through PE 

format infection, a PE malware can exploit OS vulnerabilities and then insert codes into 

some parts of the OS. Then, they can abuse system resources to infect more files (Essam 

Al Daoud, 2008). 

The infection of executable formats allows PE malwares to take over OS resources 

easily and then use these resources as normal applications (Bo-yun Zhang, 2006). One 

of the most important resources a PE malware uses is the API function. A PE malware 

needs to call such system functions to execute its functionalities smoothly and normally 

inside the Windows OS (S. Choi et al., 2007). As illustrated in Figure 2-4, a malware 

can easily find the address of a system call that needs through execution (M. Alazab et 

al., 2010).  

A malware can call an API function in the same way that a normal application does. 

However, it has a different purpose for such a call. A malware differs from a normal 

application in calling an API function in that the malware abuses these functions to 

perform payloads and to propagate (Bai et al., 2009). Therefore, during malware system 

calling, malware analysts see some behaviours that are not frequently seen during the 

system calls of normal applications (M Alazab et al., 2010). .  
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Table  2-1 gives some examples of API functions that malwares and normal applications 

often call. The table explains how the purpose of calling an API function differs 

between a malware and a normal application. Through this table, we show a few 

examples of API functions that are abused by many malwares (Microsoft, 2011).  

 

Table 2-1Abusing behaviours of API functions by Malware 

# 
Name of API 

Function 
Normal Applications 

Malwares 

1.  LoadLibirary  ( ) To point the required 

.dll file  

Used as pointer to find more 

.dll files 

2.  GetProcAddress ( )  To find an API function 

address in a specific .dll 

To find an API function 

address in .dll file that 

malware need it. 

3.  InternetOpen ( ) 

InternetOpenURL ( ) 

InternetReadFile ( ) 

They used for Internet 

connections and 

download files. 

Used to download and install 

payload to victim PC 

4.  Group of Reg ( ) They used to predefine 

which program is 

necessary to execute 

when Windows started-

up. 

Abused by malwares to 

execute their codes each time 

Windows run or a program 

run to ensure the propagation 

5.  CopyFile ( ) It uses to copy the 

existing file into a new 

file. 

Abuses by malware during 

changing the attributes of an 

existing file to copy it 

somewhere in memory.  

 

The trend of abusing of such API functions by PE malwares is an implicit activity 

because of the similarities of the purposes of API calling for different applications. 

Through the next section, this work explains how similar behaviours of malicious API 

calls are classified, and how penetrating normal behaviour by malicious API calls are 

misclassified.  
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2.7 Classification of API calls Behaviours 

 

In API behaviour classification, finding calls with similar behaviour is always the main 

target of some predefined malwares. Behaviours of a malware always could be 

identified through tracing the API calling sequence. This is because; tracing and 

analysing the API calls of an application explains how it executes and interacts with 

computer systems, and how it tries to call the services and functions of that system 

during execution (Symantec, 2010).  

API-behaviour-based classifier models depend on the degree of similarity between the 

predefined and unseen sequence of API calls. Figure 2-5 shows the sequence of calling 

API functions by two malware (M1 and M2). The figure shows the similarity between 

the sequences of function calling. The only difference is in the fifth step, which is 

related to the type of activities that both malwares need to achieve; where M1 performs 

network misuse and M2 manipulates the registry contents. API behaviour classifier 

models considered such two sequences as similar and classify both in malware class. 

 

 

Figure 2-5 Similarity between API calls in two malwares 
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Like the API functions of Figure 2-5, malwares can misuse many other API functions. 

For instant, the API function CreateWindowExA misused by malwares to build a 

message and present it to user ones it has executed (Dunham, 2011). Other functions 

misused for other activities. For example, below functions may use by malwares to 

control HTTP communication: “HttpSendRequestExA, HttpQueryInfoA , 

HttpSendRequestExW , InternetQueryDataAvailable , InternetReadFileExA , 

HttpSendRequestW, GetUrlCachEntryInfoW”(Szor, 2000). Such calls supposedly show 

abnormalities as malwares misuse them for different malicious behaviours. However, 

some parts of this sequence remain similar to normal behaviours.  

As shown in Figure 2-5, the first four calls that are used by both malwares are often 

found in the API sequence of normal applications. Malwares and normal applications 

often use these four API functions to acquire information about functions that form the 

OS. As a second example, a system call sequence can have the following form: 

“OpenRegistry, ManipulateRegistry, OpenSocket, WriteSocket, ...”; this form can 

characterize malicious calls that manipulate the Windows registry database and then 

transmit information through network socket operations (Xiao & Stibor, 2011). Some 

other malwares misuse API function by inserting their malicious calls in the path of 

normal calls. For instant, if the GetDate function is in the sub-sequence of the 

CreateFile, then the name of the file depends on the data and varies from data set to 

another (Bayer, Comparetti, et al., 2009). Although, malware analysts consider such 

behaviour as a malicious call because normal applications do not need to do these 

procedures, malicious classifier models cannot distinguish them accurately. 
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There are many calls that made by malwares; however, a normal program may do the 

same calling sequences too. Many functions are used properly by a normal application 

for a privileged activity while they misused by a malware for non-privileged issues 

(Table 2-1). Furthermore, the way that both types of application call systems and the 

ways the system responds bring both normal and malware system-calling behaviours 

close to each other. 

This level of similarity makes distinguishing the normal calls from the malicious calls 

difficult for classifier models. Therefore, many classifier models either misclassify 

unseen calls or doubtfully classify them into a class. Both situations negatively affect 

the accuracy of the classifier model. 

Next section presents many methods that proposed by researchers as malicious API call 

classifier models to distinguish malicious calls in PE malwares. 

 

2.8 Review on Malicious API calls Classifier Models 

 

Although the concept of API tracing goes back to 1996, researchers proposed active 

efforts on this topic only after 2005 (Omer, 2009). Moreover, the idea of infecting 

executable files goes back to December 1986. At the time, Ralf Burger, who is the 

creator of the Virdem,  presented a model of programs that could replicate themselves 

by adding their codes to executable DOS files in .COM format (Solomon, 1993). The 

codes that presented by Burger were considered the first MS-DOS executable infectors. 

However, the first Win32 (Windows 95 and Windows NT) infector goes back to 1996, 

when a few viruses penetrated Windows 95 through the PE format. For instance, a 

Win32 virus called “Win95.Punch” that could infect the .EXE format and stay in the 

memory as a VxD driver was discovered. Similarly, the virus BOZA, created by some 
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Australian Virus Laboratory and Distribution (VLAD) group, appeared the same year 

Windows 95 was introduced (Fu et al., 2008; Szor, 1998). 

After that, the PE infectors or Win32 viruses developed gradually. However, until 2000, 

the field of PE or Win32 viruses was still in its early stage, as mentioned in (Szor, 

1998). The most important problem found at that time was the compatibility of 

Windows 95 that kept most DOS-based viruses compatible with the new Widows 95, 

such as the Yankee-Doodle (Szor, 2000). Based on our best knowledge the first article 

that covers PE infectors, the techniques used to penetrate Windows OS and some 

detection strategies were conducted in 1998 (Szor, 1998). The author published a new 

version of his article in (Szor, 2000). The author succeeded to describe the format of the 

PE files and the locations that the viruses most possibly changed or modified. 

Moreover, he explained how computer viruses abused the Win32 API in Windows 95. 

He mentioned the necessity of working with some behaviour-based techniques to detect 

PE infectors.  

At present, different detection models depend on disparate methods and techniques to 

detect PE malwares (Xiang, Hao, Zhang, & Liu, 2008). However, detection models 

operate as knowledge-based, statistical-based, or machine-learning-based systems (Szor, 

2006). The independent parameters of any detection models are changed, depending on 

their types. For instance, the knowledge-based detection system, also known as the 

signature-based detection system, depends on some predefined strings inside a 

suspected file. Meanwhile, statistical- and machine-learning-based systems frequently 

use other parameters, such as API call tracing or instructions and redundant code 

monitoring (Essam Al Daoud, 2008). Moreover, all detection models are either static-

based or dynamic-based systems. Static detection models check suspected files and 

applications without executing them. However, dynamic execution models scan the 
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execution behaviours of a suspected application (Bergeron et al., 2001).  To reveal the 

malicious API, models use statistical or machine learning systems.  

Another type of classifier models have been proposed based on some bio-oriented 

solutions (Fuyong & Deyu, 2011). Their conceptual originated on the functionalities 

that occur inside HIS. In this topic, many algorithms proposed to mimic the activities of 

cells and detectors inside HIS. Always, the ability of HIS on adapting to classify harm 

non-self-cells with self-cells was the main objective for bio-oriented studies. Their 

objectives were to find more accurate classifier models that can distinguish the 

behaviours of malicious API calls. Many behaviour-based techniques and methods  that 

depend on biological or non-biological concepts are explained in the survey papers of 

(Idika & Mathur, 2007; Jacob, Debar, & Filiol, 2008; Vinod, Jaipur, Laxmi, & Gaur, 

2009). However, for both cases, many researchers depend on Equation 2-1 to compute 

the accuracy of their classifier and detection models (Yoshiro Fukushima et al., 2010). 

 

Equation  2-1 

         
     

           
 

where TP is the true positive, TN is the true negative, FP is false positive, and FN

 is false negative. 

Next two sections show the review on both types of malicious API calls classifier 

models that used to distinguish malicious calls in PE malwares.   
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2.8.1 Non-Biological API Detection Models 

 

Detection systems that depend on statistical and machine learning algorithms or 

methods may be considered as non-biological models. They use techniques, such as 

data mining, conditional probability, the Naive Bayes theory, neural network, fuzzy 

logic, and other machine learning techniques. Researchers use disparate non-biological 

models in recent years to propose detection systems. In 2001, a non-biological model 

was proposed in (Schultz, Eskin, Zadok, & Stolfo, 2001) to reveal malicious executable 

files. These models depend on the frequency calculation of API functions that are called 

by benign and malware applications. They use the frequency figures to find features for 

their mining systems. They train their system on the known features of malware. Data 

mining techniques are used to detect unseen malwares, whereas the Naive Bayes 

method is used to classify the suspected executable file.  

Another non-biological model, the heuristic technique, was used by (Szor, 2002) by 

executing a suspected application in a virtual machine. To develop this heuristic model, 

the author referred to his article (Szor, 2000), explaining most sections and fields in a 

PE file whose contents the malware might modify. The study monitored the API calls 

used by normal applications or abused by three types of malware during memory 

access. The author evaluated the monitored API to reveal malicious executable.  

A static model was proposed by (Bergeron et al., 2001) to reveal executable codes. 

Authors in this work represent an API call or a block of API calls as an intermediate 

form. The authors showed the direction of the flow between these intermediate blocks. 

Finally, the work extracted a control flow compared with many security policies to 

reveal malicious executable codes.  
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When malwares penetrate systems, they inject malicious codes, dynamically generate 

malicious codes, or perform obfuscated malicious codes (Xiang et al., 2008). These 

behaviours could be revealed by tracing and monitoring the API calls of a suspected PE 

file, as was conducted in a study proposed by (Rabek, Khazan, Lewandowski, & 

Cunningham, 2003). Another powerful method used by different malwares is the 

polymorphic technique. This technique gives malware the ability to change signatures 

and to rearrange codes (Szor, 2006). Therefore, signature-based detection systems 

cannot overcome such malwares. More time and effort are required to analyse 

polymorphic malwares as they become more complex. By controlling API functions 

and system calls, such techniques could be revealed, as proposed by (J-Y. Xu, 2004). In 

the aforementioned work, the similarity was measured between the original virus and 

the variants that were generated through polymorphic techniques. A threshold value was 

defined to evaluate the degree of similarity between two API call sequences. Thus, the 

degree of similarity between two API sequences could be obtained, and accordingly, the 

two most similar sequences could be identified. 

Different behaviours of malware, including mass mailing and registry overwriting, were 

used by (Mori, 2004) to define malicious codes. They defined these behaviours on the 

level of Win32 API calls. Static code analysis and dynamic code simulation were 

combined to identify these behaviours. The authors argued that different types of mail 

malware could be detected by tracing Win32 API calls through their respective 

proposed approach.  

To analyse malware behaviours, malware analysts rely on manual steps. An approach 

was proposed by (Bayer et al., 2006) to analyse malware dynamically by increasing the 

number of malwares. Their proposed work found similar dynamic behaviours for 

malware based on certain predefined policies. During their implementation, they 

depended on tracing the Win32 API calls, as in the previous studies. 
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One of the most important behaviours of malware is propagation among files within the 

same host or propagation over networks (C. W. J. P. R. Zhao & Liu, 2009). A model 

was proposed by (Y. Ye, Wang, Li, & Ye, 2007) to implement malware detection based 

on propagation behaviour. In this work, the authors relied on data mining to develop a 

model by using an objective-oriented association mining-based classification. Through 

this approach, vectors of Win32 API calls could be monitored to detect malwares.  

Malwares can locate each address of required API functions via different means. For 

instance, the Boza virus uses hard-coded addresses, whereas Win32.Bozano uses 

homonymy functions. However, most malwares, such as Win32.Aztec, use a string 

array to store the name and address of API calls. Consequently, researchers (Fu et al., 

2008) proposed an approach for extracting API calls in suspected files. Some indirect 

API calls made by many malwares could not be revealed easily. This issue was solved 

by comparing the original API call sequences and the indirect API call policies used by 

the malwares.   

Considering that the number of malicious codes approximately equals the number of 

normal codes (Shabtai, Moskovitch, Elovici, & Glezer, 2009), additional studies were 

conducted from 2008 through 2012 to detect malicious API calls. Table 2-2 mentions 

most of these studies.  
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Table 2-2 Summary of Related Works for Non-Biological Malware Detection Models 

# Title Methods Contribution Note 

1.  Data mining methods for detection of new malicious 

executable 

Data mining , Naive Bayes The author used DM method to predict unseen malwares (Schultz 

et al., 

2001) 

2.  Heuristic detection of malicious computer code by page 

tracking 

Emulating and Virtual machine  Tracing memory accessing behaviour (Szor, 

2002) 

3.  Static detection of malicious code in executable 

programs 

Evolutionary methods.  Behaviour of API calls could be used to reveal malwares (Bergeron 

et al., 

2001) 

4.  Detection of injected, dynamically generated, and 

obfuscated malicious code 

Evolutionary method. API calls could be used to reveal three different behaviours; 

Inject MC, Dynamically generated MC, and Obfuscated MC 

(Rabek et 

al., 2003) 

5.  Polymorphic Malicious Executable Scanner by API 

Sequence Analysis 

Cosine Similarity method. 

Extended Jaccard measure. 

Pearson’s correlation measure 

They can find similarity between original viruses and 

variants generated by polymorphic technique.  

(J-Y. Xu, 

2004) 

6.  Behavior-based malicious executable detection by multi-

class SVM 

Support Vector Machine Using SVM to find out more than one classes of malwares (Zou et 

al., 2009) 

7.  Detecting Unknown Computer Viruses – A New 

Approach 

Evaluation Similarity Defined policies that can detect malwares’ behaviours at 

Win32 API calls level. 

(Mori, 

2004) 

8.  TTAnalyze: A tool for analyzing malware Evaluation Similarity Extract malware behaviour at Win32 API call level.  (Bayer et 

al., 2006) 

9.  Static Detection of API-calling Behavior from Malicious 

Binary Executable 

Evaluation Similarity Defined API call policies by malwares (Fu et al., 

2008) 

10.  Learning and classification of malware behavior 

 

Classification using Support Vector 

Machine 

New form of malware policies defined. (Rieck et 

al., 2008) 

11.  A SOM based malware visualization system using 

resource access filter of virtual machine 

Self-Organizing Map 

Unsupervised NN 

Visualizing malware activates and behaviours (Ando et 

al., 2009) 

12.  Detecting Malicious Behaviour Using Critical API-

Calling Graph Matching 

Matching on Critical API calls that 

doing Transfer and Jumping 

Defining Critical API calls policies. (Bai et 

al., 2009) 

https://www.auto.tuwien.ac.at/~chris/research/doc/eicar06_ttanalyze.pdf
http://www.springerlink.com/index/Q87P5407J3201267.pdf
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functionality 

13.  Scalable, behavior-based malware clustering Locality Sensitive Hashing. It is a 

probabilistic  algorithm.   

Reducing dimensionality to put similar pattern in the same 

bucket (container).  

(Bayer, 

Comparet

ti, et al., 

2009) 

14.  A view on current malware behaviors Used an analysis tool to study the 

behaviours of one million malwares 

Obtained the most activities of malware, through observing 

one million malwares 

(Bayer, 

Habibi, et 

al., 2009) 

15.  Using API Sequence and Byase Algorithm to Detect 

Suspicious Behavior 

Bayes Algorithm. Extract features 

(behaviours) based on frequency 

calculation. 

Shows API functions that used to achieve each behaviours 

of malwares 

(Wang et 

al., 2009) 

16.  Malware Detection Based on Structural and Behavioural 

Features of API Calls 

1- n-gram to find executable 

distribution. 

2- Extract behaviour features 

of API. 

3- SVM for training and 

classification. 

Checking malwares in three stages: 

1- API hooking. 

2- File modification. 

3- DLL modification tracing. 

(M. 

Alazab et 

al., 2010) 

17.  Towards Understanding Malware Behaviour by the 

Extraction of API Calls 

Evaluation  similarity Categorized malware behaviours by referencing the API 

calls for each behaviour 

(M 

Alazab et 

al., 2010) 

18.  Reining In Windows API Abuses with In-lined 

Reference Monitors 

Evaluation similarity  File base classification to detect malwares (Hamlen 

et al., 

2010) 

19.  Malware detection using statistical analysis of byte-level 

file content 

Statistical evaluation File base classification to detect malwares (Tabish et 

al., 2009) 

20.  Using Aggregation Technology to Improve System Call 

Based Malware Behavior Detection 

Statistical Evaluation Collecting behaviours of processes and their relation to 

system calls 

(Peng, 

2011) 

21.  APICapture-A tool for monitoring the behavior of 

malware 

Monitoring events Monitoring API calls in three level: User, Kernel, and Call-

back functions.  

(Miao et 

al., 2010) 

22.  Malware detection based on mining API calls Data mining Monitoring API calls and mining them to reveal malicious 

API 

(Sami et 

al., 2010) 

23.  Differentiating malware from cleanware using 

behavioural analysis 

Classification with k-fold process. New features for malware have been defined (Tian et 

al., 2010) 
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24.  Fuzzy Neural Network for Malware Detect Fuzzy and Neural Network Using new method to detect malwares (Y. 

Zhang, 

Pang, 

Yue, & 

Cui, 

2010) 

25.  Malicious Executable Classification Based on 

Behavioral Factor Analysis 

SVM Extracting malware behaviour report and consider them as a 

features. 

(H. Zhao, 

Xu, 

Zheng, 

Yao, & 

Ho, 2010) 

26.  Malware Family Classification Method using API 

Sequential Characteristic 

Similarity measurement Extracting malware behaviour report and consider them as a 

features. 

(K.-S. 

Han et al., 

2011) 

27.  A study of malware detection and classification by 

comparing extracted strings 

Strings similarity Comparing strings similarity between two files (Lee et 

al., 2011) 

28.  Malware detection using assembly and API call 

sequences 

Similarity analysis based on some 

quantitative measures 

They propose two malware detection approach: analyser and 

dissembler 

(M. K. 

Shankara

pani et 

al., 2011) 

29.  Scattered Feature Space for Malware Analysis Classifying malwares Analyse the content of PE header and body. (Vinod et 

al., 2011) 

30.  Detecting Malware Variants by Byte Frequency Distance and similarity measures. Frequency of byte calculation to detect malware.  (S. Yu et 

al., 2011) 

31.  Malware detection using pattern classification Pattern match algorithm, 

Statistically 

Uses four types of futures, beside the DLL functions, to 

revel malwares 

(Wan, 

2012) 

32.  Computational Intelligent Techniques and Similarity 

Measures for Malware Classification 

SVM with measuring the similarity 

of API call sequences 

Combined SVM and Similarity measures  

Achieved (85%) of accuracy from similarity. 

(Shankarp

ani, 

Kancherla

, Movva, 

& 

Mukkama

la, 2012) 
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33.  Malware Detection using Windows API Sequence and 

Machine Learning 

Used Abscission Mining 

Classification  

Compute an accuracy better than SVM, Naïve Bayes, and 

Decision Tree techniques 

(Ravi & 

Manohara

n, 2012) 

34.  Malware detection based on evolving clustering method 

for classification 

Rule based clustering The work defined some rules for each family of malwares (Ramadas

s, 2012) 

35.  Detecting unknown anomalous program behavior using 

API system calls 

Frequency – time based API calls 

classifier 

The accuracy of this model crossed (88%) (Islam et 

al., 2012) 

36.  Malware Classification Methods Using API Sequence 

Characteristics 

API call sequence Analysis  The work can measure the damages in infection rate. (K. S. 

Han et al., 

2012b) 

37.  Detection Methods for Malware Variant Using API Call 

Related Graphs 

Analyse API call sequence Detecting malware variances  (K. S. 

Han et al., 

2012a) 

38.  Euclidean distance based method for unclassifiable 

region of support vector machine 

SVM and Euclidean Method To solve unclassified cases in unclassified region for multi-

classes classifier models. 

(R. B. Li, 

Li, Cai, 

Li, & 

Wang, 

2010) 

39.  Intelligent file scoring system for malware detection 

from the gray list 

SVM and associative classifier Used SVM to define good boundary, and associative 

classifier to define relation between input and outputs 

(Y. Ye, 

Li, Jiang, 

Han, & 

Wan, 

2009) 

40.  PE-Miner: Mining Structural Information to Detect 

Malicious Executables in Realtime 

SVM and Decision try classifier Used Decision try to extract features and SVM to classify 

them 

(Shafiq

, Tabish, 

Mirza, & 

Farooq, 

2009) 

41.  An intelligent PE-malware detection system based on 

association mining 

Used Objective-Oriented 

Association data mining 

Depended on mining the sequence of API calls (Y Ye, 

Wang, Li, 

Ye, & 

Jiang, 

2008) 
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The summary of this review includes non-biological detection system models that 

depend on API call behaviours: 

1- API call behaviour-based detection systems are reliable and efficient. 

2- These behaviour based detection systems could be achieved statically or 

dynamically, or via a combination of both. 

3- Behaviours, such as code injection, dynamical code generation, and code 

obfuscation, could be revealed by tracing and monitoring API calls. 

4- Techniques and tools that are used to generate variants from one malware could be 

overcome. 

5- Behaviours such as mass mail and file registry modification with other behaviours 

could be controlled and monitored by tracing API calls. 

6- Propagation behaviours that are somehow implemented without the user’s 

knowledge could be displayed through API call evaluation. 

7- Most studies depend on measuring the similarity between known and unknown 

API call vectors. 

8- The trend of most AV research is toward revealing malware behaviours 

dynamically.  

9- The major algorithms used to classify API call vectors include 

a. Supervised neural network, 

b.  Self-organizing map (unsupervised neural network), 

c.  Support vector machine, 

d.  Statistical methods. 

10- API call monitoring and tracing could also be used by malware analysts to 

dynamically trace and check new malware. 

11- API call analysis is also used in many fields and for different purposes such as the 

preservation of copyright and birthmark of programs. (S. Choi et al., 2007) 
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12- Recent studies [35-40]  provided the following information: 

a. The behaviour of API call sequences are used actively by researchers. 

b. The approach that combines statistical tools or intelligent techniques 

with similarity measures has been presented. 

c. Many studies have proposed to compare and check the accuracy of 

different malicious API call classifier models. 

2.8.2 Biological API detection systems 

 

Biological models show the marked similarity between the behaviours of biological 

viruses and computer malware (Boase & Wellman, 2001). Moreover, the huge demand 

for a security defence system that can work as efficiently and accurately as the HIS is 

one of the objectives behind all these biological models (Elgert, 2009; Julie Greensmith, 

2010; Paul K. Harmer, 2002). The second objective involves the investigation on the 

ability of the HIS to detect unseen foreign bodies (Elgert, 2009). The reason is that 

detecting unseen malware is one of the serious problems that challenge valid malware 

detection models as they scan zero-day malwares (M. Alazab et al., 2011; AV-

Comparative, 2010).  

The principles and fundamentals of HIS were discussed for the first time by (Forrest, 

Perelson, Allen, & Cherukuri, 2002), who proposed the bio-oriented model, “Self and 

non-self-discrimination in a computer.” Conducted since 1994, the self and non-self-

discrimination approach remained one of the foundations of every biological detection 

model. The drawbacks that emerged later motivated researchers to implement 

improvements.  

The algorithm for the self and non-self-discrimination approach is called the negative 

selection algorithm (NSA) (Kim & Bentley, 2001). It classifies detectors into two 

classes: self-class, which represents normal application behaviours or strings, and non-
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self, which represents malware behaviours. The implementation of the NSA algorithm 

proceeds as follows: an unknown string or behaviour that does not match any detector 

inside the self-class could be considered as a detector inside the non-self-class (Kim & 

Bentley, 2001).  

A number of researchers (Fuyong & Deyu, 2011; Ji & Dasgupta, 2009; Shen, Wen-Jian, 

& Xu-Fa, 2007; Tao, Shiguang, & Dejiao, 2010; Yang, Deng, Chen, & Wang, 2011) 

proved that not every unknown string or behaviour could be considered as non-self. 

This issue was noted as a main drawback for the NSA; it encouraged researchers to 

work on this aspect to improve the algorithm (Fuyong & Deyu, 2011; Kim & Bentley, 

2001; P. T. Zhang, Wang, & Tan, 2010). 

The clonal selection algorithm (CSA) was one of the alternative algorithms to NSA that 

was proposed to build detection or classification models (Khaled et al., 2010; 

Xiangrong Zhang 2004; Y. Yu & Hou, 2004; Zuben, 2001). In using the CSA, classes 

are divided into two main classes: self-detectors and non-self-detectors. Unlike the case 

in NSA, maturation in CSA is performed among non-self-detectors to generate unseen 

non-self-detectors. The new non-self-detectors are then compared with the known self-

detectors. If a match is found during the comparison, the newly generated non-self-

detector is cancelled. Otherwise, the non-self-detector is considered a member of the 

non-self-detector class (Zuben, 2001). The CSA can effectively detect variants of old 

viruses and malwares because the CSA process generates new variants of detectors from 

old detectors. One of the drawbacks of the CSA is its weak diversity that is due to the 

maturation inside the same domain of non-self-detectors, which also causes global 

optimization problems (Yidan Luo & Jiang, 2008).  

Another alternative to NSA is the danger theory (U Aickelin & Cayzer, 2002). Similar 

to the self and non-self-approaches, the danger theory supports the classification 

process. In this theory, the HIS responds only to danger cases among numerous foreign 
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cases found. A non-self-behaviour does not have to be classified as malware. Detection 

models should be able to distinguish between a dangerous, hostile, or unfriendly non-

self-behaviour(U. Aickelin, Bentley, Cayzer, Kim, & McLeod, 2003; Kim, Greensmith, 

Twycross, & Aickelin, 2005). The danger theory increases the efficiency of detection 

models because it minimizes the dimensions of the domain. However, measuring the 

degree of danger for any non-self-application is not easy.  

The identification of a threshold to discriminate between dangerous and friendly non-

self-cases is difficult. In such a situation, classification models put many cases in a 

doubtful position (Manzoor, Shafiq, Tabish, & Farooq, 2009).  

To identify more alternatives to NSA and CSA, researchers investigated the 

functionalities of all parts of HIS and then examined the phenomenon that occurs within 

HIS. As a result, an AIS algorithm was proposed (D Dasgupta, 2007; D. Dasgupta, Yu, 

& Nino, 2010; De Castro & Timmis, 2002; He, Yiwen, Tao, & Ting, 2010; S. Hofmeyr 

& Forrest, 1999; Khaled et al., 2010; Paul K. Harmer, 2002)]. HIS contains different 

activities and functionalities. Parts of HIS may achieve one or more functions as the 

entire system defends the human body. Some functionalities may be implemented as a 

form of a distributed system, whereas others are achieved in the form of a centralized 

system (D Dasgupta, 2007; Jieqiong Zheng 2010; Paul K. Harmer, 2002). The ability to 

adapt the valid detectors to match unseen harmful foreign bodies without any false 

alarm is the key to the success of HIS (Health, 2003) and is the goal of most biological 

models.  

Several functionalities of HIS mentioned in (Paul K. Harmer, 2002) could be proposed 

for computer security applications. Table 2-3 summarizes the functionalities and 

activities proposed in various detection models:  
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Table 2-3 List of Biological Models that Inspired HIS Algorithms and Models 

 

# Title AIS methods Contribution Reff. 

1.  A model of collaborative artificial immune system Collaborative AIM Solved the sociability and Collaborative problems (He et al., 

2010) 

2.  A Sense of `Danger' for Windows Processes Dendritic Cell Algorithms Evolutionary explanation of Danger method.  (Manzoor 

et al., 

2009) 

3.  Danger theory: The link between AIS and IDS Danger Theory Evaluating the concept of AIS to build 3 generation IDS (U. 

Aickelin 

et al., 

2003) 

4.  Malicious code execution detection and response 

immune system inspired by the danger theory 

Dendritic Cell Algorithms Drawing a similarity between API calls and cells that used by 

AIM 

(Kim et 

al., 2005) 

5.  The danger theory and its application to artificial 

immune systems 

Danger Theory It identifies which data should AIS models represent (U 

Aickelin 

& Cayzer, 

2002) 

6.  An Improved Clonal Selection Algorithm and its 

Application in Function Optimization Problems 

Clonal Selection Combined clonal algorithm with an evaluation algorithm to 

solve global search ability and provide a diversity of the 

population.,   

(Yidan 

Luo & 

Jiang, 

2008) 

7.  A clonal selection algorithm by using learning operator Clonal Selection The work has built an AIS to build a virus computer immune 

system. 

(Y. Yu & 

Hou, 

2004) 

8.  A negative selection algorithm with the variable length 

detector 

Negative Selection  Propose to test normal detectors besides the negative testing. (Shen et 

al., 2007) 

9.  An evaluation of negative selection in an artificial 

immune system for network intrusion detection 

Negative Selection Shows that NSA could be used just as a filter in IDS, not to 

generate new detectors. 

(Kim & 

Bentley, 

2001) 
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10.  An Artificial Immune System Architecture for 

Computer Security Applications 

HIS System Depended on layer defences as the layers in HIS to prevent 

intruders. 

(Paul K. 

Harmer, 

2002) 

11.  Run-time malware detection based on positive 

selection 

Positive Selection It depends on PSA, which recognizes normal cells, to detect 

normal network packets. 

(Fuyong 

& Deyu, 

2011) 

12.  A Novel Immune Based Approach for Detection of 

Windows PE Virus 

HIS’s adaption strategies to detect 

virus changes  

The work Checks the difference between the relocation of PE 

virus and normal application. 

(Y. Zhang 

et al., 

2008) 

13.  Artificial Immune Clonal Selection Classification 

Algorithms for Classifying Malware and Benign 

Processes Using API Call Sequences 

Clonal Selection Algorithm This works proposed all status that found inside HIS for CSA, 

to represent detectors for malicious API call. 

(Khaled et 

al., 2010) 

14.  A malware detection model based on a negative 

selection algorithm with penalty factor 

Negative Selection Algorithm Used NSA with providing a factor to converge more to detect 

harmful cases and diverge to and harmless cases. 

(P. T. 

Zhang et 

al., 2010) 

15.  Tunable Immune Detectors for Behaviour-Based 

Network Intrusion Detection 

Negative Selection Algorithm Tunable Activation Threshold theory.  (Antunes 

& 

Correia, 

2011) 

16.  Malicious Codes Detection Inspired by MHC. features of MHC (Major 

Histocompatibility Complex) 

Unknown malware detection  (Y. 

Zhang, 

Song, & 

Yang, 

2011) 

17.  Using IRP for Malware Detection Combination of Negative and 

Positive Selection 

n-gram block of API that represent I/O Request Packet (F. Y. 

Zhang, 

Qi, & Hu, 

2011b) 

18.  Run-time malware detection based on IRP Negative selection.  

Positive selection. 

API calls the responsible I/O Request Packet monitoring (F. Y. 

Zhang et 

al., 

2011a) 
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19.  Immunity-Based Model for Malicious Code Detection CSA and process of gene 

maturation. 

Tracing the I/O packet requests from Kernel.  (Y Zhang, 

Wu, Xia, 

& Liu, 

2010) 

20.  A self-adaptive negative selection algorithm used for 

anomaly detection. 

Negative Selection Proposed to include non-self detectors in the population. (Zeng et 

al., 2009) 

21.  Intelligent agent based artificial immune system for 

computer security—a review 

Distributed characteristics of HIS Try to make distributed agents systems to work as the 

distributed cells in HIS perform 

(Srinivasa

n, 2009) 

22.  An Immune System Algorithm Based on Variable 

Detection Radius of the Negative Selection 

Mechanism 

Negative Selection and affinity Changing the radius of the detectors will works as affinity 

tolerance 

(Jiang, 

Mo, & 

Qin, 

2009) 

23.  The Feature Detection Rule and its Application within 

the Negative Selection Algorithm 

Negative Selection Suggested a new system of affinity threshold. (Poggiolin

i, 2008) 

24.  Malicious Code Detection Architecture Inspired by 

Human Immune System 

HIS principle for detection, in 

general, considered. 

To types of detectors used for identifying malwares (Marhusin

, 

Cornforth, 

& Larkin, 

2008) 

25.  Is negative selection appropriate for anomaly detection Negative Selection Suggested negative and positive samples for detectors. (Stibor, 

Mohr, 

Timmis, 

& Eckert, 

2005) 

26.  An immunological approach to change detection: 

Theoretical results 

Negative Selection Algorithm Explains the fault that caused in NSA due to the shape 

matching. 

(D'haesele

er, 2002) 

27.  Architecture for an artificial immune system Principles and fundamentals of 

HIS 

The work built an AIS to model an IDS. (S. A. 

Hofmeyr 

& Forrest, 

2000) 

28.  Using the danger model of immune systems for 

distributed defense in modern data networks 

Danger Method Building behaviour based Intrusion Prevision System. (Swimmer

, 2007) 
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29.  A Survey of artificial immune applications Review many applications for 

AIS 

Suggest some comments to make AIS more applicable to real 

problems. 

(Jieqiong 

Zheng 

2010) 

30.  Immunity by design: An artificial immune system It used the Distributed, robust, 

dynamic, adaptive characteristics. 

The work inspired these characteristics to build new IDS model (S. 

Hofmeyr 

& Forrest, 

1999) 

31.  Artificial immune systems: a novel approach to pattern 

recognition 

Used the concept of HIS pattern 

recognition. 

The work used a mathematical representation to build AIS 

concepts for pattern recognition.  

(De 

Castro & 

Timmis, 

2002) 

32.  Advances in artificial immune systems The concept of HIS inspiration as 

computational models. 

Gives suggestion and guides about building AIS in different 

fields.  

(D 

Dasgupta, 

2007) 

33.  Recent Advances in Artificial Immune Systems: 

Models and Applications 

It done a survey on HIS’s 

methods that inspired to build 

models in different fields, 

It mentioned that the start of art of AIS until October 30, 2010, 

is only involved four methods: Negative Selection Algorithm, 

Artificial Immune Network, Clonal Selection Algorithm, and 

Danger theory or dendritic cell Algorithm. 

(D. 

Dasgupta 

et al., 

2010) 

34.  Malware Detection Techniques Using Artificial 

Immune System 

Activities of HIS are followed to 

classify malwares 

Two features are extracted and analysed; system calls and 

network activities. 

(Ali & 

Maarof, 

2012) 

35.  A Malware Detection System Inspired on the Human 

Immune System 

self–non-self-theory, danger 

theory 

They explained only some malware’s policies in the view point 

of two AIS algorithms 

(de 

Oliveira, 

Grégio, & 

Cansian, 

2012) 

36.  Using Two Levels dangar model of the Immune 

System for Malware Detection 

They apply two level 

classification  

More improvement showed by their works. (Alanezi 

& 

Aldabagh, 

2012) 

37.  Immunity-Based Model for Malicious Code Detection Clonal Selection Algorithm Studied the sequence of packet behaviours to define normal and 

malicious application 

(Y Zhang 

et al., 

2010) 
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The summary of Table 2-3 could be as follows: 

1- The AIS algorithm is used to build many applications in different fields. 

2- Many proposed studies in the computer security field employed the AIS. Most 

algorithms involved in AIS improve the ability and accuracy of security in 

computer systems. The same scenario of HIS has been proposed to integrate 

computer immunology or to define defence systems for computers. 

3- Regarding malware detection models and approaches, the major AIS 

algorithms that are frequently employed include (D. Dasgupta et al., 2010) 

a. NSA, 

b. AIS network,  

c. CSA; and 

d. The danger theory and dendritic cell algorithm. 

4- Numerous functionalities and phenomena that occur inside HIS are not 

included in building malware detection models, including the co-stimulation 

phenomenon. 

5- The parameters and features that are considered in building bio-oriented 

malware detection models differ from case to case. 

6- To our knowledge, few studies have employed API calls as features and 

parameters to proposed biological detection models.  

Biological studies that attempt to classify API call vectors into self- and non-self-groups 

have inspired most AIS algorithms, but none of these have involved the co-stimulation 

phenomenon to perform such classification despite its importance as a HIS 

discrimination method. Response strategies against foreign bodies are adopted based on 

the classification achieved by co-stimulation. 
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2.8.3 Why Biological Models?  

 

The main target of any classification model is distinguishing unseen objects to their 

correct classes with a high degree of certainty. This target has a direct relation with the 

accuracy degree of classifier models. Therefore, the accuracy is the main concern in 

classifier models. There are two main features usually related to measure the accuracy 

of classifier models, which are FP and FN rates. These two features give indications 

about objects that misclassified. Accuracy, as mentioned in Equation 2-1, increases if 

FP and FN parameters decrease, and vice versa.  

This work focused more on biological models because such models depend on some 

processes and strategies of HIS that used to defend body against foreign cells. 

Biologically, the strategy that achieved by HIS has no self-cell attacking which means 

no FP. Moreover, cases like passing non-self-cell as self-cell, which means FN, is very 

rare. Therefore, the accuracy of HIS in classifying self and non-self cells is very high.  

The role of having a high accuracy in HIS when classifying foreign cases is going back 

to different parts. However for controlling errors, HIS has a phenomenon which 

responsible to eliminate errors, and can keep the HIS’s safety with reference to mistakes 

made when attacking a self-cell. Although some cells have foreign genes, HIS will not 

attack them as non-self-cell as far as they are not harmful cells. It means cells are not 

listed as self-cell however have characteristics of self-cells. Distinguishing such 

different cells that have similar characteristics by HIS brings attention to this work. 

Such type of distinguishing process is very necessary in classify many malicious API 

calls that penetrating normal behaviours. 

To know more about biological processes inside HIS, and how HIS can keep the 

accuracy, latter sections explains the work strategy of HIS and identifies how this 

strategy is carried out by HIS.  
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2.9 Work Strategy of HIS: 

 

HIS consists of a network of cells, tissues, and organs that work together to defend the 

body against attacks by “foreign” invaders. It is a complex system that can recognize 

and remember millions of different anomies. The HIS can produce secretions and cells 

to match up with and wipe out each one of them. The key to a healthy immune system is 

the remarkable ability to distinguish between the body’s own cell (self) and foreign cells 

(non-self) (Michael A. Horan, 1997).  

In general, the architecture of the HIS consists of two main parts: the innate immune 

system and the adaptive immune system. The innate immune system has a fixed 

response to pathogens and is not entitled to learning. It exists in the human body from 

birth through death. The adaptive immune system conveys changes in the pathogens and 

has the ability to memorize these changes(Spafford, 1990). The entire immune system 

has four layers of defence, as illustrated in Figure 2-6. Each layer depends on the special 

techniques and strategies of defence. The layers are distributed to different locations 

inside the body. Chemical interactions occur between the layers to perform their 

functions. They are distributed but some of their own centralized rules and regulations 

remain to distinguish between the self and the non-self as well as to confirm these 

distinctions (Michael A. Horan, 1997; Yegnanarayana1, 1994)   . 
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Figure 2-6  Layers of the immune system (Michael A. Horan, 1997) 

Each layer of the immune system has several functional components known as cells. A 

network of interacting cells and molecules, which recognizes foreign substances 

(antigens), constitutes the immune system (Michael A. Horan, 1997). The molecules of 

the immune system that recognize antigens are called antibodies. An antibody does not 

recognize an antigen as an entire object; instead, an antibody recognizes small regions 

called epitopes. An antibody recognizes an antigen when it binds to one of its epitopes. 

The binding region of an antibody is called the paratope. The strength and specificity of 

the interaction between the antibody and the antigen are measured as the affinity of 

interaction. The strength of affinity depends on the degree of complementarity in shape 

between the interacting regions of the antibody and the antigen. A given antibody can 

typically recognize a range of different epitopes, whereas a given epitope can be 

recognized by different types of antibodies. An antibody will not only recognize a 

specific antigen, but will also recognize other antigens that have the correct epitope. An 

epitope characteristic for a given antibody type is called an idiotope (Elgert, 2009).  
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Antibodies produced by cells are called B-lymphocytes. B-lymphocytes differ in terms 

of the antibodies they produce. Each type of antibody is produced by a corresponding 

lymphocyte, which produces only one type of antibody. When an antibody on the 

surface of a lymphocyte binds with another molecule (antigen or other antibody), the 

lymphocyte is stimulated to clone and then to secrete free antibodies. In contrast, 

lymphocytes that are not stimulated die in a matter of days. Thus, a selection process 

occurs whereby antibodies stimulated by antigens increase the antibodies, whereas the 

non-stimulated antibodies die (Michael A. Horan, 1997; Spafford, 1990). 

Until this stage, the antibodies of the B-cells in the immune system identify non-self-

bodies. However, co-stimulation in the system will confirm whether the decision made 

by the B-cell is correct. A positive confirmation will activate B-cells to generate more 

of such antibodies and to memorize them; otherwise, a the B-cell decision will be 

cancelled and such types of B-cell antibodies will be killed(Yegnanarayana1, 1994). 

Such process ensures that no self-cells will be attacked by the immune system, which 

results in an autoimmune disease (Michael A. Horan, 1997). To explain more activities 

of HIS, next section focused on important functions that occur inside HIS and the task 

of each function.  
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2.9.1 Important Activities of HIS 

 

Below are the important activities achieved by the immune cells as well as properties of 

the HIS (U Aickelin, Greensmith, & Twycross, 2004): 

1- Parallel and Distributed: The structure of the immune system is totally 

distributed and has a verity of components.  Those components that distributed 

throughout the body can communicated through the chemical signals. 

2- Multi-layered: No part of the immune system can provide defence 

individually. The parts operated independently, yet as a package, to provide 

defence to the body. 

3- Autonomous: There are many entities at each layer or parts of the immune 

system. Each entity has operated independently. This keeps the system 

reliability. 

4- Imperfect Detection: For detection purposes, not necessary the matching be 

exactly, it required exceeding an affinity threshold. It builds detectors so that 

they can detect a large subset of non-self-space. 

5- Safety: for minimizing the detection errors, there are many checking processes 

in the system, such as Co-stimulation (sometimes called second confirmation 

signals) and activation thresholds.  

6- Diversity: A single pathogen cannot succumb the immune system of entire 

population. In addition, a large population of cells with a diverse set of 

receptors types enables the body to cover a large portion of the non-self-space. 
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7- Search Space optimizing: The maintenance of the receptors to cover a large 

space and changes of search over the time is not an easy job, even though as a 

combinatorial. However, the immune system has a great program, through 

death and cell division, to maintain a random sampling of the search space. 

Therefore, through this program, the immune system always can optimize its 

arsenal of receptors.  

8- Self / Non-self-Detection: The non-self-receptors death and generation gave the 

immune system an ability to detect and respond to pathogens, even those that 

have not been countered before. 

9- Selective Response: After detection, chemical signals and identification 

method effectively classify the antigen. This will determine the exact response 

to an infection. 

10- Memory: Memory B cells enable the immune system to “remember” past 

infections and prime the system for an improve response upon later infection 

by the same or similar antigen.  

11- Adaptive: The system evolves through clonal selection and hyper-mutation to 

improve the antigen recognition capabilities and therefore improve the overall 

system performance.  

All above functions can be found implicitly in the Figure 2-7 that also shows the 

distributed and parallel actions that achieved upon detecting a pathogen (Kim & 

Bentley, 2001).  

For this work, the safety function that achieved by HIS is more concerned as it controls 

FP and FN errors. As mentioned in point number (5), the function that used by HIS to 

provide safety and control errors is called co-stimulation. Therefore, the next section 

explains in detail how co-stimulation is occurred, biologically, inside HIS. 
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Figure2-7Parallel actions, signal communications, feedbacks, and confirmation 

processes 

2.9.2 Co-stimulation Function in HIS 

 

For HIS, Co-stimulation is a general requirement for antigen-dependent activation of 

IS’s detectors. In HIS, stimulation through the antigen receptor, or ‘signal 1’, is usually 

insufficient for full activation, and additional co-stimulatory signals, or ‘signal 2’, 

through a separate receptor must be received (Iwasaki & Medzhitov, 2010).  

Any IS’s cell activation, or sometimes called stimulation, through antigen receptor in 

the absence of Co-stimulation , usually leads to the cell becoming unresponsive to 

subsequent exposure to antigen (Elgert, 2009). Such states inside IS called anergy, and 

an anergical detector is unable to proliferate, and some circumstances may undergo cell 

death by apoptosis (Davies, 1997).  Such extra level of stringency for IS’s detectors 

activation may have evolved as a way of controlling the detectors that recognize self-
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cells antigens, which means causing autoimmune diseases (or false alarm in computer 

security viewpoint) (D Dasgupta, 2007). The phenomenon, can also considered as a 

distinguishing process that achieved to disparate self-cells with non-self-cells (S. A. 

Hofmeyr & Forrest, 2000). Through Co-stimulation, IS controls the activities of the 

immune’s detectors and receptors. The phenomenon directs the defence process 

correctly and, in perfect situations, they instruct the immune cells in performing their 

functions, when a specific antibody has generated and memorized for an antigen (Naik, 

2003).  

The phenomenon starts with B-cells, when they engulf a suspected body and analyse it. 

Pieces of engulfed body arose as activate Major Histocompatibility Complex (MHC) in 

peptides on the surface of B-cell. The MHC rising in the B-cell signals to two types of 

T-helper cells (that is, Th- CD+4 and Th-CD+8) to be stimulated the MHC (Michael A. 

Horan, 1997; Naik, 2003). 

When receptors of Th- CD+4 are activated with MHC, the first signal (Signal 1) 

detecting an abnormal case is satisfied. The degree of activation differs as not all 

receptors have the same shape as MHC. The degree of such activation represents the 

affinity. The Th-cell will bind with the MHC protein in another form using (CD+8) to 

confirm (Signal 1). The incorrect activation of (CD+8) Th-cell will not generate the 

confirmation signal (Signal 2). This means that Signal 1 is generated incorrectly and the 

engulfed B-cell will be marked as anergic cells (Health, 2003). However, correct 

activation will result in the co-stimulation signal. In this situation, the immune system 

will decide to build an arsenal of a certain type of antibody and killer cell through the 

proliferation of B and T cell to kill the antigens, thereby cleaning the body, and to 

memorize the built antibodies (Michael A. Horan, 1997). Figure 2-8 illustrates the co-

stimulation and its effects (Zakaria, 2009). Co-stimulation signals, sometimes called 

two-signal messages, come from simultaneous activation of two different Th- cell types 
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with an antigen (Naik, 2003). This is a basic and essential condition for considering an 

antigen as a non-self cell. Without this message, the popular stage, which is the 

proliferation of antibodies, will not be activated. Even if activated, theoretically, this 

will generate improper antibodies that may possibly attack self-cells. The process of 

self-attack means activating a self-cell as an antigen (Julie Greensmith, 2010). Such a 

case is similar to the process of generating a false alarm when a normal file is identified 

as a malware by a computer classifier system (Nachenberg, 2001). 

To inspire the functionalities of Co-stimulation in API calls classifier models, next 

section explains the parts that needed to build an Artificial Co-stimulation Classifier. 

 

Figure 2-8 HIS co-stimulation Process (Rang, Dale, Ritter, & Moore, 2003) 
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2.10 Artificial Co-stimulation Classifier (ACC): 

 

The ACC is a system that depends on the concept of the HIS co-stimulation, structure 

and functionalities, to classify malicious API calls in PE malwares. The ACC model 

mimics the  co-stimulation phenomenon; HIS strongly relies on co-stimulation to 

classify self and non-self-cells and to avoid any self-attack (Elgert, 2009). This work 

proposes an ACC model to improve the classification of cases that have a strong 

similarity index among them, such as the classification of malicious API calls with 

normal API calls.  Figure 2-9 illustrates the framework of the ACC model that can 

distinguish between malicious and normal API calls.  

 

 

 

Figure 2-9 ACC model to classify malicious API calls 
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As illustrated in Figure 2-9, the ACC model forwards any input case to two different 

paths. Through the first path, the model checks the execution sequence of a case, 

whereas the second path scans the case to check the availability of four major abnormal 

activities done by most malwares. For the first path, the ACC model involves all API 

functions that traced and monitored. In the second path, the model narrows down the 

monitoring process that divided it into four iterations. For each round, the model checks 

the availability of one abnormality behaviour (section 1.7), and it only involves the API 

functions mostly used by malwares to achieve an abnormal activity. As explained 

below, important issues include the need for both paths and why one path is inadequate 

for detecting malicious API calls. 

1- First, this work needs narrowing because tracing and monitoring the original 

sequences of API calls usually lead to uncertain and misclassified results. In 

later chapters, more details on this question are provided.  

2- Second, this work needs to keep the results of the first path to identify the certain 

and uncertain areas.  

3- This work needs narrowing because the API sequence that is applied to the first 

path represents the original execution sequence for the suspected application. 

The sequence contains a wide range of mixed behaviours, such as junk code 

insertion, that usually use jumping among codes. These junk code leads to hide 

most malicious behaviours.  

4- Narrowing practically means decreasing the number of API functions involved 

in an API call monitoring procedure. Most vendors of API call monitoring 

software recommend narrowing to obtain results that are more precise. The 

reason is that such software might display different results of the sequence of the 

API functions called by a suspected application when the number of API 

functions involved in monitoring increases or decreases. This problem has been 
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clearly written in the manual of both software used in (APIMonitoring.Com, 

2010; HeavenTools, 2010). This present work explains this problem 

experimentally in later chapters. 

 

This work depends on artificial neural network (ANN) to construct both checking 

blocks (general and narrowing), as illustrated in Figure 2-9. ANN in this work depends 

on feed-forward back propagation algorithm during the learning process. The co-

stimulation block uses the Euclidean theory to measure the similarity and the distance 

between vectors. 

Next two sections explain the theory of tools, ANN and Euclidean methods, that 

involved in the process of building the ACC classifier model.    



 

67 
 

2.10.1 ANN Classifier Technique: 

 

ANN is a mathematical or computational model that is inspired by biological neural 

networks. This network consists of many interconnected neurons that can process and 

compute information through the connectionist approach. Neurons in an ANN are 

distributed on three types of layers:  input layer, hidden layer/s, and output layer. Each 

neuron receives a vector of scalars () that are multiplied by a vector of weights (). 

The result of adding a bias value b to the product of vectors () will be applied to 

activate the function f, which is called the transfer function. Figure 2-10 represents a 

typical diagram of a neuron (Sivanandam, 2006).  

 

 

Figure2-10 Input and output of an ANN neuron 
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As shown in Figure 2-11, many shapes for the transfer function in an ANN can be 

employed (Sivanandam, 2006). Each function may fit a specific application. The current 

work uses the logsig() function in the neurons of all layers. This function is selected 

because it is a robust differentiable function over an infinite range. Moreover, the output 

of this function is between zero and one, which fits the result expected by ACC 

classifier models. 

 

 

Figure2-11 Three main types of transfer function in ANN  

 

Connecting neurons inside a layer and between layers can be performed in various 

ways. The simplest way is to connect neurons from the layer directly above a current 

layer to those in the layer below, as in the case of Feed forward Back propagation 

Neural Network (FFBP-NN). However, a neuron can receive its input from the neurons 

below and can send its output to neurons above in a strictly forward manner.  

The structure is called feed forward because no backward connections exist between 

neurons from different layers. Figure 2-12 illustrates a typical structure of an FFBP-NN. 

Equation 2-2  shows the expression of the output of any units in such type of ANN 

(Ivancevic, 2010) 
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Figure2-12 Typical structure of FFBP-NN with n hidden layer and i nodes at 

output layer 

 

Equation  2-2 

  (   )    (  ( ))    (∑    ( )  

 

 

( )    ( )) 

 

yk(t+1) is the output of k
th 

unit, yj(t) is the output of the j
th

 unit forwarded to the k
th

 

neuron, b(t) is the bias value for the j
th

 node, and      is the weight value that 

determines the effect unit j on unit k. Each node receives an input for the neighbouring 

neurons or external resources. Then, it computes the output by using the activation 

function, and finally, it forwards the result to the next neighbouring nodes. The 

activities of ANN neurons include training on processing an input set and obtaining 

the desired output. Therefore, the term “back propagation” describes the way that an 

ANN acquires training. The training process adjusts the weights of any ANN so that it 

can perform a specific application (Heaton, 2008).  
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Various methods are used to achieve ANN weight configuration. One way is to set 

and initialize the weight value depending on prior knowledge. Another way is to train 

the ANN by feeding it teaching patterns and forcing it to change its weights according 

to the learned rules. The methods for training and learning can be classified into two 

distinct categories: supervised and unsupervised learning.  Both learning paradigms 

result in the adjustment of weight values between units (Ivancevic, 2010; J. J. Zhang, 

2005).    

One of the most important learning methods is back propagation, which depends 

mostly on the trianlm function (Sivanandam, 2006). Back propagation involves 

supervised learning, and it depends on the delta rule to adjust the weight value 

between two units. Through the delta rule, the adjustment of a weight can be defined 

by computing the difference between the actual    and the desired    output, as 

shown in Equation 2-3. The delta rule can determine the error between the actual and 

the desired output at each node.  Moreover, error adjustments for the units of the 

hidden layer are determined by back propagating the errors of the output layer units. 

 

Equation  2-3 

 

         (     )  

 

Therefore, the back propagation algorithm has two phases. In the first phase, the input 

data are clamped to the ANN, propagate toward the output, and then generate an error 

signal between the desired and the actual outputs. The second phase involves a 

backward pass through the network during which the error signal passes to each unit in 

the network and then appropriate weight changes are calculated (Yegnanarayana1, 

1994). 
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The rate of error between the actual and the desired outputs will be minimized by 

adjusting the value of the neuron’s weight. The overall error that occurred due to 

differences between actual and desired for an ANN classifier model is computed 

according to the Equation 2-4 (Heaton, 2008). 

.  

Equation  2-4 

 

      √
 

 
∑(      ) 
 

   

 

 

Where: 

ti is the desired output and yi is the actual output. 
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2.10.2 The Similarity Measuring Technique: 

 

To detect malware or variants of old malware, most researchers have depended on 

measuring the similarity between predefined function calls (Pf) and suspected functions 

calls (Sf), where both Pf and Sf are vectors (Apel, Bockermann, & Meier, 2009; 

Johanyák & Kovács, 2005; M. Shankarapani et al., 2010). Many theories and 

algorithms, such as the Euclidean distance, Hamming distance, and Jaccard index 

methods, have been used. The Hamming distance and the Jaccard index are used to 

recognize malware patterns and to classify and cluster the malware’s family. These are 

also used by researchers to compute for the similarity of behaviours. Considerable effort 

is done to determine the method that is more suitable to their methodology as well as 

the method that yields a higher accuracy rate than others. This step is considered by 

researchers to be of fundamental importance to problems in malware classification, 

clustering, and detection (Cha, 2007). 

The theories that are more often used for measuring and computing for the similarity 

between two vectors are the Euclidean method, which is used to compute for the 

distance (D) between the two vectors, and the cosine method, which is used to compute 

for the similarity (S) between both vectors. Equation 2-5 and  2-6 explain how the D and 

S for the vectors Pf and Sf can be obtained (Cha, 2007): 

Equation  2-5 

 (     )  √∑ (   
 
       

)       

Equation  2-6 
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Where n is the number of elements in both vectors, and  i is the i
th 

element within 

each vector.  

To decide on a similarity status between any two vectors or to obtain the degree of 

similarity between them, most studies have considered both values of D and S (Tabish 

et al., 2009; S. Yu et al., 2011). However, some studies are satisfied only with one 

method to check the affinity status between two compared vectors (Apel et al., 2009; M. 

Shankarapani et al., 2010). Although the Euclidean distance method is strongly 

recommended by many researchers, the present work states some flaws of this method 

(Rozinov, 2005): 

 

1. The Euclidean method depends on the size of the two compared vectors, where 

both vectors may be identical, but missing a small part, thereby generating a 

high difference in the similarity index. 

2. The improper alignment of the two vectors being compared will result in low 

Euclidean distance measurement.  

 

However, in our work, the Euclidean method is still applicable given that the size of the 

vectors will remain the same. The alignment of vectors is necessary for sequences of 

API calls to influence the work. 
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2.11 Chapter Summary 

 

Chapter two could be summarised as below; 

 

1- PE malwares affect the integrity of Windows OS through misusing resources, 

such as API call functions. 

2- Malware authors can easily find much vulnerability inside PE structure, such as 

unused fields and areas that misused by malwares to insert malicious codes. 

3- PE malwares can penetrate normal behaviour to avoid classifying their 

malicious API call behaviour. 

4- Researchers are either depended on biological or non-biological concepts to 

devise their malicious API calls classifier models. 

5- Penetrating normal calling behaviours by PE malwares brings down the 

accuracy of malicious API call classifier models.  

6- This work preferred biological concepts of co-stimulation as it can provide 

solutions for minimising FP and FN. 

7- This work proposed ACC model for classifying malicious API calls in PE 

malwares. 

8- ACC combines two methods to achieve the concept of co-stimulation; ANN 

classifier and Euclidean Similarity theory.  
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Chapter 3 
 

3. Research Methodology 

 

3.1 Introduction 

 

As mentioned in section (2.11), this work proposes ACC model for improving the 

accuracy of distinguishing malicious API calls in PE applications. The current chapter 

explains the methodology of the ACC model. Throughout this chapter, the main three 

parts of the ACC model are explained.  

Each parts of the ACC model contains many activities. Although these activities 

executed individually and having different aims, they achieved within each part 

sequentially. The output of each sub-part is received as an input by subsequent subpart. 

Even this sequentially approach is followed between the main parts.  

Finally, the input of ACC model is a suspected PE application and the out is its API 

calls that classified either normally or maliciously. 

Next section starts to explain the works that occurred inside the first part of the ACC 

model. 
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3.2 Methodology Flow 

 

As mentioned in section (3.1), the ACC model consists of three main parts. Each part of 

the ACC model, as illustrated in Figure 3-1, has different but sequential steps.  

 

 

Figure3-1 The main parts of the ACC model 

 

In the first part, the required samples of normal and malware PE applications are 

collected, verified, and executed. At this stage, the sequence of the API functions that 

required by each sample is extracted. Two different patterns from the extracted API 

calls are prepared in the form of vectors. Finally, these vectors are passed to the part two 

of the ACC model. 

In part two, the two different patterns that prepared in part one from the same PE 

application are clamped to an ANN classifier technique. The purpose of this part is to 

generate Signal-1 and Signal-2. Each signal contains the classification results based on 

their certainty degree.  

· The malware samples will be collected and analysed. 

· The API calls for each malware will be extracted and 

indexed.

· Vectors for API calls will be prepared.

· Clamping prepared API vectors to ANN.

· Collecting results.

· Generating Signal-1 and Signal-2.

· Measuring the similarity index between vectors that 

obtained through Signal-1 and Signal-2 generation.

Part One

Part Two

Part Three
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Finally, the last part of the ACC model calculates the similarity that may found among 

the results that computed in the form of Signal-1 and Signal-2. The purpose of this step 

in ACC model is to obtain a new degree of certainty for each misclassified and doubtful 

results. 

 

3.3 Part ONE: PE Samples and API Call Vectors 

 

The first part of ACC model, as shown in Figure 3-2, pertains to PE sample collection 

and API vectors preparation. This part contains the following steps and activities: 

1- For the PE sample collection and preparation, this work achieves that following 

steps:   

a. Identifying the properties and characteristics of the PE samples that 

should be collected as well as the sources where probably could be 

found. 

b. Verifying all collected PE samples in order to confirm each collected 

sample is either malware or normal. 

 

2- For API call vectors preparation, this work achieves the following steps: 

a. Extracting the general execution pattern for API calls from the PE 

samples that confirmed in the step 1.b. 

b. Extracting another four different patterns of API calls from the PE 

samples that confirmed in the step 1.b  

c.  Indexing all API calls that extracted through steps 2.a and 2.b. 

d. Preparing API call vectors. 
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Figure 3-2The activities and steps of part one of the ACC model 

 

 

After achieving all these processes and activities in part one, the expected output vectors 

(X1 and X2) as illustrated in Figure 3-2, are passed to the subsequent part. Next section 

starts more explanation about data preparation step of part one, and more specifically, 

the characteristics of PE samples that should be collected.   
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3.3.1 The Properties of PE Malware Samples 

 

This section will focus on three areas as mentioned previously (section 1.7). We have 

considered the more frequently infected structure of applications as well as the more 

easily penetrated operating systems. Among different types of malware family, this 

work covers three families. Therefore, all our samples should share these three 

characteristics, as explained and justified below. 

1. Regarding the structure and the format of the infected files and application, all 

our samples should follow the PE structure because of the following reasons: 

a. Many AV vendors reported that 70% to 80% of total malwares are PE 

infectors (Ahmadi et al., 2011; Symantec, 2010). Moreover, the 

behaviours of one million malwares have been monitored and collected 

randomly from networks and the Internet. Research shows that around 

80% of malwares have PE infector behaviour (Bayer, Habibi, et al., 

2009).  

b. The PE format represents the biggest fraction of today’s malicious 

codes. Moreover, a sufficient number of non-malicious samples also 

use this format. Therefore, the acquisition of appropriate training and 

testing sets is realistic (Merkel et al., 2010). 

c. The number of PE infectors throughout past years has been increasing 

because the slack and free areas inside these file formats are widely 

available, and malware authors can easily misuse them (Essam Al 

Daoud, 2008; Schreiber, 2001). 

d. It is the valid format that supported by all Windows OS versions 

(Microsoft, 2008, 2011). 
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2. All our PE samples are either normal or malware. If the samples are malware, 

they should be classified under one of the malware families mentioned in 

section 1.7, which includes PE virus, PE Trojan horse, and PE worm. Our 

samples have narrowed down the families for the following reasons: 

a. These three families are considered as the major types of PE malwares 

(AV-Comparative, 2010; McAfee, 2010; McGraw & Morrisett, 2002; 

Symantec, 2010; Xu, Sung, Mukkamala, & Liu, 2007). 

b. AV vendors have reported that these three groups represent 75% to 

85% of the entire population of PE malwares (AV-Comparative, 2010; 

Coorp, 2008; McAfee, 2010; Symantec, 2010).  

c. Another reason for selecting these categories of malware is because of 

the behaviours and activities that could be found in these three types. 

Most researchers believe that by evaluating the three behaviours, such 

as self or non-self-propagation, dependent or independent execution, 

and host or network propagation, the models can reveal most malwares 

(K.-S. Han et al., 2011; Niemela & Palomaki, 2011; Trinius et al., 

2011).   

d. These three families are the mean families of malwares, and the other 

families of malwares could be considered as their sub-families 

(Wagener et al., 2008). 

3. Our work focuses on Windows OS. Therefore, all our samples should be 

Windows-based applications. The reasons for choosing this platform are 

explained below:  

a. Since the development of the Windows NT version, the PE structure 

has become a standardized format for all later versions (Dabak et al., 

1999; Oney, 2002; Schreiber, 2001). Therefore, PE malwares can 



 

81 
 

easily transition into new versions of the OS and survive (Essam Al 

Daoud, 2008; Szor, 2000).  

b. Windows OS allows other parties to insert new DLL files to valid  sets  

(Dabak et al., 1999; Father, 2004). This feature allows PE malwares to 

build a suitable environment for them to thrive inside Windows-based 

systems. 

c. Although UNIX supports a similar format of PE, our work is more 

focused on Windows OS because it is more vulnerable than UNIX 

(Szor, 2000). For example, an open port in Windows OS can be easily 

penetrated by malwares compared with other platform systems. 

Moreover, UNIX is safer; it prevents a program from accessing 

memory or storage spaces that are allocated for other applications 

(Salomon, 2010). Figure 3-3 explains the scope of our work more 

clearly. 

 

Portable Executable Applications 

Under Windows OS

Normal 

samples

Malware samples

Viruses

Trojan 

Horses
Worms

 

Figure 3-3 Theapplications’categoriesthefocusedbythisworkassamples  
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3.3.2 The Sources of PE Samples 

 

In any study, searching for the samples is an important step. However, the type of the 

sources where samples could be collected is more important. Researchers have used 

different methods to collect normal and malware applications. However, for both types 

of application, verification is also an important process. 

In collecting PE malwares, one of the resources most researchers use is downloading 

the samples from websites. Many online resources provide a substantial number of 

normal and malware PE application samples (OffensiveComputing, 2010; VirusSign, 

2010; VXHeavens, 2010). However, such samples should be verified. Verification may 

be performed by scanning the samples through valid AV software (K.-S. Han et al., 

2011). 

This work collected 10,000 samples of PE malware applications from the following 

online sources after consulting with the University of Malaya Information Technology 

Centre (UMITC).  

1- http://vx.netlux.org/vl.php.  

2- http://www.offensivecomputing.net/ 

3- http://www.virussign.com/?gclid=CPv2__m5la0CFUoa6wodWxU0mg 

We also collected 2,000 normal PE samples from fresh Windows 7 operating systems. 

All samples, comprising normal and malware applications, were collected between May 

2010 and September 2010. 

Next step of this work shows how and why the collected samples are verified.  

http://vx.netlux.org/vl.php
http://www.offensivecomputing.net/
http://www.virussign.com/?gclid=CPv2__m5la0CFUoa6wodWxU0mg
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3.3.3 PE Samples Verification Process 

 

Most researchers need to verify their malware samples, especially if the malwares were 

collected from websites. The research needs verification to determine if the samples are 

malwares or not (Szor, 2006). Researchers usually depend on valid AV software to 

check the normality or abnormality of suspected samples. To obtain accurate 

verification, researchers depend on decisions made by a collection of AV software (H. 

Zhao et al., 2010).  

To verify our samples, we used five AV software applications, namely, Norton, 

KasperSky, McAfee, Avira, and PC-Cillen Internet Security. The first verification 

process was implemented using the 2010 version of all AV software. A year later, the 

same samples were verified again using the 2011 version of all AV software.  The 

process of verifying the collected PE samples are clearly illustrated in the Figure3-4. 

Table 3-1 provides more details about the number of samples that underwent the 

verification process, and the number of malwares that were verified using the five kinds 

of AV software. Based on the information listed in the table, some malwares could not 

be marked positively by all AV software. The undetected samples are either not 

malware or unknown malwares. Therefore, this work only considered those samples 

that have been verified as malware by all five AV software to avoid doubts and 

uncertainties about the samples.  

Hereafter, only 2,000 PE samples; 1,500 PE malwares and 500 normal applications 

were considered for further works in this study. Verified samples of PE malwares are 

divided into 500 PE viruses, 500 PE Trojan horses, and 500 PE worms. The numbers of 

collected samples, which are 2,000, are confirmed by(Parmjit Singh, Chan Yuen Fook, 

& Sidhu, 2009)as a sufficient number for building ACC model. Only samples that 
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passed verification process are executed by monitoring software to extract their API 

calls, as explained in later section.  

 

 

Figure 3-4 PE samples verification process 
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Table  3-1; Number of Malwares Samples that Analysed and Verified 

 

Types of Samples Number of 

Samples 

Norton AV KasperSky AV McAfee AV Avira AV PC-Celling Internet Security 

PE Virus 3500 3284 3198 3143 3176 3103 

PE Trojan Horse 3500 3298 3312 3274 3245 3281 

PE Worm 3000 3198 3231 3226 3271 3265 

PE Normal 2000 0 0 0 0 0 
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3.3.4 Extracting API Functions (Execution of PE Samples) 

 

A kind of monitoring software is required to extract the API functions of a suspected 

application. The suspected application should be executed and monitored using this 

software. Through this monitoring software, many API calling behaviours for the 

suspected application could be observed. This work collects API behaviours for the 

suspected application in the two phases below: 

1- For each PE samples (within the 2000 samples that verified in step 3.3.3) a 

general execution sequence of API calls are extracted. This sequence includes all 

available API functions. 

2- At this phase, each PE sample executed four rounds within the monitoring 

software. At each round, a sequence of API calls are extracted. Each extracted 

sequence related to one of the malware behaviours that mentioned in section 1.7. 

Figure 3-5 illustrates the phases of PE sample execution and API calls extracting.  

The behaviours that referenced in point (2) are focused more by this work because 

malwares could be revealed efficiently through tracing these behaviours. This fact 

evidenced by (Bayer, Habibi, et al., 2009) when they traced the behaviour of one 

million malwares. They found these activities at the top of all malware’s behaviours. 
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Figure 3-5 Phases and rounds of PE sample Execution and API calls extraction 

 

This work used two types of observation software to extract API functions, namely, PE-

Explorer and APIMonitoring(APIMonitoring.Com, 2010; HeavenTools, 2010).  As 

shown in Figure 3-6, APIMonitoring software is used to execute a suspected PE 

application and to report the name of all API functions that are called by the monitoring 

application. The scanned application in the figure is “Notepad.” The APIMonitoring 

software has an ability to export all calling behaviour collected information to an Excel 

sheet format. Figure 3-6 is also illustrated the list of API functions that obtained from a 

Notepad application in the form of an Excel sheet.  

Although information has been exported to the Excel sheet, this work only considered 

the name of the API functions as well as their behaviour groups (details in section 

3.3.6). The sequence of API calling is also concerned by this work. This work considers 

each row in the Excel sheet as a single activity or a single behaviour for the scanned 
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application. Until the execution is completed, an application may call many API 

functions, thereby performing much behaviour. 

 

 

 

 

Figure 3-6Collecting API functions that are called by a PE application using 

APIMonitoring Software 

 

 

For clarification, this work assumes that M is a suspected application executed under the 

observation of APIMonitoring software. Furthermore, we assume that A is a set of all 

behaviours or activities that an application, like M, may achieve during its execution. 

Therefore, we can obtain the vector A for any M when executed under our monitoring 

software (Ando et al., 2009; Willems, Holz, & Freiling, 2007). A vector A for any M 

has n number of elements, where each element represents an activity or behaviour of the 

M during the execution: 
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Equation  3-1  

A = (a1, a2, ....... an),   ˅  a ϵ A 

  

Equation 3-1 denotes each behaviour as a, and A represents a vector that contains all 

behaviours for an application M. The size of A for each M is (1 x n).  

For each PE sample, five patterns of API call sequence are expected at output stage of 

this section. Patterns here are represented by the name of the API function. Next section 

explains how each name of API function indexed by a real number. 

 

3.3.5 API Function Referencing File 

 

As shown in the section 3.3.4, the name of API functions has been extracted only from 

the verified PE samples. However, these names should be indexed with a real number 

(section 3.3.6 explains the process as well as the reasons about indexing). To achieve 

this indexing, a pre-processing step is required to build a referencing list that contains 

each API function name and its equivalent real index. This work stores the name-index 

list for all called API functions in a file named as ReferenceOfFunctions (this file used 

in the Matlab code Appendix-2 Code1 which achieve API function converting 

process).Figure 3-7 shows a part for ReferenceOfFunctionfile. Each time code-1 in 

appendix-2 is used to convert an API name to real index; this referencing file is 

involved to provide the correct index for an API function. 
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.  

Figure 3-7 The API function reference file 

 

As shown in the Figure 3-7, there is a real number index for each API function. Each 

real index represents two facts. For instance, AllocateAndInitializeSid is an API function 

that is stored in the C:\WINDOWS\system32\ADVAPI32.dll model, represented with a 

positive real number, 1.006. The integer part, first fact, explains that this API function 

belongs to access behaviour activity, whereas the second fact is 006 that comes after the 

dot represents the function itself.   

Until this stage, only an index for each API function is assigned. The sequence of API 

functions that extracted from each verified PE sample still not converted. In the next 

section, this work explains how a long sequence of API names is indexed, and what 

reasons are behind the API indexing. 
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3.3.6 Indexing the observed API Functions 

As mentioned in section 3.3.5, this work needs to convert each element in A (section 

3.3.4) that represents the name of an API function to a real number index. The reason 

that behind indexing the name of API function calls is because dealing with a real 

number is easier than dealing with strings, especially, if such information clamps any 

artificial intelligent (AI) technique. Most researchers that employed an AI technique as 

a classifier model have converted the name of all API functions from strings to integers 

or any real number (Zolkipli & Jantan, 2011). 

When a Matlab code, such as mentioned in Appendix-2 / code1, is used to convert the 

name of an API function, it reads first the name of the API function that needs to be 

converted. Then, the code makes a search inside the ReferenceOfFunction to find out its 

equivalent index value. Finally, the code sends out the correct index.  

To explain indexing API functions mathematically, suppose I(x) denotes the indexing 

function that converts strings (API function) to their equivalent indices, which are real 

numbers, then, 

 

Equation  3-2 

I (A) = ( I(a1), I(a2)…I(an) )    

and each string a is converted to r real number, 

I(ai)  ri  ˅  r ϵ R    Or     I(A)  ̅ 

where ri is the equivalent index of the ai API function and it is the i
th

 element in the  ̅ 

vector. The output of the indexing process is a vector that has the same (1 x n) 

dimensions. This result indicates that vectors A and  ̅ have the same dimensions. 

However, for each pattern that obtained in section 3.3.4, the value of n is difference. 
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Next stage shows converting the long sequence of API indexes to matrixes through 

scanning-sliding process.  

 

3.3.7 Scanning –Sliding the Indexing API calls 

 

At this stage, we need to convert the vector  ̅, which has (1x n) dimension to a matrix 

with dimension of (m x 6) because we need to build two data sets in the form of 

matrices, X1, to generate Signal-1, and X2, to generate Signal-2 (Figure 3-2). Both input 

sets are derived from vector  ̅. 

The size of vectors in the new matrix should be established to convert a long sequence 

of indexed API functions into a matrix. The size of the vector denotes the number of 

elements inside each vector. The number of elements inside each vector identifies the 

adequate number of indexed API calls to reveal malware behaviour. Most researchers 

set this number to six elements (Alanezi & Aldabagh, 2012). Six elements from the long 

sequence of an indexed API calls vector are scanned each time. After scanning, the 

scanning window slides by one unit. This process will continue until scanning of the last 

six elements of a long indexed API call is completed. 

The scanning–sliding process described above is followed to form both X1 and X2 

datasets, however, with a little difference. In forming X1, Figure3-8 illustrates the 

process of scanning–sliding on the indexed API calls of an application. The scanning 

window is shown at three positions. At each position, the process scans only six indexed 

API calls. Then, the process copies the content of this window to make a new vector in 

input set X1.  
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Vector  ̅ has a (1xn) dimension, and the results for the indexing function are as follows: 

Equation  3-3 

 ̅ = (r1, r2, …. rn)    

 

Figure 3-8 Scanning process and Window Sliding to Build Input Vector 

 

We assume that S is the function of the scanning and sliding process. The function S can 

read six elements from any long sequence of indexed API calls ( ̅), such shown in 

equation 3-3, and can then save them inside the matrix X1 as a new row. 

Equation  3-4 

S( ̅)  Xn-5 6 (xij) ˅  xij = ri+j-1  

The Matlab code mentioned in Appendix-2 / Code2 is used to achieve the S function. 

The code can read the real number elements of any vector  ̅, which has (1xn) 

dimension. Then, the code can convert all elements of vector   ̅to construct the matrix X 

as explained in Equation 3-4. The X matrix is used to generate Signal-1,denoted as (X1). 

In constructing the matrix X2 to generate Signal-2, the API functions need to be 

classified into four main groups, where each group is related to a behaviour mostly 
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completed by malwares. A sample of this API grouping based of malware behaviour is 

explained clearly in figure 3-9. 

 

 

Figure 3-9 Grouping API calls based on Behaviours or Activities of Malwares 

 

We assume that the function g(x) represents the element’s grouping process that the 

function receives each time an element is inside the indexed vector of  ̅. Then, the 

function places this element in one of the following four groups, with consideration for 

their sequences:   

 

· gP represents the API functions that related to Application execution 

activities; 

· gA represents the API functions that related to Accessing activities; 

· gR represents the API functions that related to Registry file activities; and 

· gFS represents the API functions that related to I/O and system file activities. 
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The element’s properties and the structure of vectors inside each of the group are the 

same as those of the elements found inside the indexed vector of  ̅. However, they have 

different sequences. Therefore, the scanning–sliding process is applied to the vector 

inside each group. The final output of this process is shown in Figure 3-9. The figure 

shows that all four groups have been obtained. Finally, the input matrix X2could be 

constructed as a union of all mentioned groups, as shown in Equation  3-5.  

Equation  3-5 

X2 = ( gPU gAU gRU gFS )   

Figure 3-10 illustrates in details how the work of converting X to the input dataset X2 is 

achieved, and the Matlab code that illustrated in the Appendix-2/Code-3 is used to read 

all elements inside an indexed vector of    ̅̅ ̅ and then converts them to X2 input dataset.  
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Figure 3-10 Attaching indexing and scanning-sliding steps to extracting API calling step 
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The output of this part is generating both X1 and X2 data sets. Next section is about the 

methodology of the part two that used both prepared data sets to generate Signal-1 and 

Signal-2. 

 

3.3.8 Labelling vectors in X1 and X2: 

 

Each vector in X1 and X2 represented the behaviour of the six calls made by a PE 

application. Therefore, the class to which a vector belonged, namely, normal or 

malware, must be identified. Each vector needed to be labelled by identifying their 

classes. Each vector class is labelled either as (0) or as (1). The label (0) is considered 

for normal calls, whereas label (1) is considered for malicious calls.  

Different levels of binary for labelling were used to identify the family of each malware 

vector. However, the family identification of malware applications was beyond the 

scope of this research. This labelling process helped our model during the training and 

testing phases. The model used these labelling processes as a target for each vector, 

which is usually what a supervised ANN needs during implementation (Sivanandam, 

2006).  

The implementation of Part One of the ACC model is thus completed. Prepared 

matrixes of X1 and X2 will be forwarded to the next part. At later parts, the list of below 

will be expected: 

 

1- The ACC model uses both datasets in the processes of training or test-setting 

phases; 

2- A part of a prepared dataset will be used to test the accuracy and error problems 

of some classifier models;  
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3.4 Part Two: Signal-1 and Signal-2 generation 

 

Both datasets of X1 and X2, prepared throughout the part one of ACC model, are 

presented in this section. The vectors in X1 are used to generate Signal-1, however X2 

vectors are used to generate Signal-2. The process of interpreting vectors to signals has 

been achieved using supervised ANN (Figure 3-11). ANN is preferred for this work 

because it is a strong predictor and classifier model. Although ANN has two types of 

learning, supervised and unsupervised, this work employed supervised learning. For 

classifying applications, supervised ANN has stronger ability than unsupervised (Guerra 

et al., 2011). (Evidenced in chapter 5) 

 

 

Figure 3-11 Aactivities and sub-blocks of part two of ACC model 
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3.4.1 Signal-1 generation 

 

Each vector inside X1 should be classified either as normal or as malware. At this step, 

the signal also identifies the degree of membership of a vector in X1 to its class. The 

single line threshold value system is incorporated with the Signal-1 classifier as a 

distinguishing process. Based on the current threshold value system, results of classifier 

models are classified rather normally or maliciously. This work presents a new 

threshold value equation that can support the classifier models to identify errors better 

than the single line (results shown in Table 4-5). Figure 3-12 shows the steps of  

Signal-1 classifier.  

 

 

Figure 3-12 Process of generating Signal-1 
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If fs1 is the function that maps each vector in X1 to a certain value at that output stage, 

then the value of each mapping is located between zero and one. If y is the value of 

Single-1 at the output stage for each vector, then the value of y could be expressed as 

Equation 3-6. 

 

Equation 3-6 

   (   (   )) 

 

If C can perform the function of the single line threshold value system, then C can 

distinguish each vector in X1 either as normal or as malware based on its corresponding 

y value at the output stage. The comparison of y value with the threshold value can be 

done based on Equation 3-7. The variable a in the equation has a value from 0.5 to 0.6, 

and the value varies from one research to another. 

 

Equation 3-7 

 

 ( )  {
                      
                    

 

 

However, in a later chapter, this work shows that such distinguishing system cannot 

support classifier models to minimize errors. Therefore, this work proposes a new 

threshold value distinguisher.  
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Based on the new threshold system that shown in Equation 3-8, outputs of Signal-1 can 

be divided into three area, namely, d11, d12, and d13: 

Equation  3-8 

 ( )  {

                              
                              
                      

 

Signal-1 carries three different classes (d11, d12, and d13) as outputs. This work focuses 

more on the elements that lay in d13 area because all elements of this group are 

considered either as doubtful or as misclassified objects.  

Finally, the input vectors of X1 are classified into three groups of (G1), namely, normal 

vectors (G1n), malware vectors (G1m), and suspected vectors (G1s). The work groups of 

each input vector based on their corresponding output  ( ). 

 If G is the function of the groups in the input vectors, as in equation 3-9, then the final 

stage Signal-1 maintains for any vector in X1 includes the input vector itself X1i, the 

actual output y1i, and the group of the input vector G1i, Equation 3-10. 

 

Equation 3-9 

 (  )  {

                              
                              
                       

 

 

Equation  3-10 

        (   )  (
   
   
   

) 

More details on the execution of Signal-1 will be discussed in chapter four. Next section 

explains the process of preparing Signla-2 results.   
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3.4.2 Signal-2 generation 

 

The same ANN used to generate Signal-1 is also employed to generate Signal-2 because 

the structure of the input dataset X2 is exactly similar to that of X1. Each vector in X2 has 

six real value elements, as in X1. The process of training and testing the ANN is also the 

same. However, each vector in X2 represents a different aspect from the vectors of X1. 

Although the meaning of vectors is not the same, the target of each vector in X2 is 

represented by 0 or 1, implying the same range of output. Therefore, the activation 

function used by each node for training X1 has not changed during the training of X2. 

Due to the difference in the meaning of vectors in both datasets, the output of the ANN 

gives different explanation. The execution of the ANN with X2 determines the degree of 

relationship between each vector with certain malware behaviours. However, the 

execution of the same ANN with X1, can only show the degree of normality of a general 

execution vector. More importantly, ANN with X2 can classify malwares, implicitly, 

based on the four major behaviours of malwares. However, this goal is beyond of our 

work. ANN with X2 checks vectors for a specific behaviour; hence, precise results could 

be obtained. 

The results of Signal-2 are distinguished also based on Equation 3-8. Moreover, 

Equation 3-9 is used for grouping the vectors of X2 into three groups in (G2), such as 

normal vectors (G2n), malware vectors (G2m), and suspected vectors (G2s).  

Equation 3-10 is used to generating Signal-2 for each vector in X2. The format of 

Signal-2 can be shown as (X2i, Y2i, G2i). However, sub-classification exists inside each 

group. Vectors in each group will belong to one of monitored behaviours of the 

malware. Based on the monitored behaviour of an application, we can determine if the 

application is a malware or not.  

Next section explains how results of Signal-1 and Signal-2 proceeds by the part three of 

ACC model. 
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3.5 Part Three: Co-stimulation 

 

In this part, ACC model performs a comparison process between elements of Signal-1 

and Signal-2. For Signal-1, only cases in d13 are considered. However, for Signal-2, 

cases in both d21 and d22 are considered. The model takes each case in d13 (suppose Ci), 

and achieves the following procedures: 

1- Compute the similarity index between Ci and each case in d21. Then; 

a. Considerer only vectors that their similarity indexes are greater than 0.7. 

b. Compute the total number of vectors that obtained in 1.a. 

c. Compare the number that obtained in 1.b with the factor K (value of K 

explained later page 178, 3). 

2- Compute the similarity index between Ci and each element in d22, and then 

repeat all steps of 1.a, 1.b, and1.c to obtain 2.a, 2.b, and 2.c. 

3- ACC makes decision based on the following rules: 

 

Table 3-2 Rules that considered during signals confirmation. 

 

 

Status of  Ci Rules 

Ci is Normal 

If the value that obtained in 1.b >K (Signal-1 confirmation) and 

value that obtained in 2.b <K (Signal-2 confirmation).  

Ci is Malware 

If the value that obtained in 1.b <K (Signal-1 confirmation) and 

value that obtained in 2.b >K (Signal-2 confirmation). 
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The first rule of confirmation checked the distance and similarity among doubtful cases 

and behaviour of malwares (dist1). Values were obtained using Equation 2-5 and 

Equation 2-6.  

If any case confirmed both indicators, then the work would proceed to the second step, 

which involved measuring the distance and similarities among vectors and classes with 

equivalent normal behaviour (dist2). Increasing the certainty for any case would be 

confirmed if and only if Equation 3-11 is satisfied.  

Equation 3-11 

                              

 

The new certainty value for the doubtful cases that passed confirmation processes must 

be computed. If Ci is the classification value for the doubtful case i, the new value for Ci 

should be computed based on Equation 3-12.  

Equation 3-6 

       (            ) 

 

Accordingly, the new value of Ci will increase the certainty of case i either to the normal 

direction or to the malware direction. In both cases, the new value of Ci improves the 

value of RMSE, which in turn indicates improvement of accuracy.  
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3.6 ModelandProblem’sValidation 

 

 

A part of the present methodology is to validate ACC model against the important 

theories and techniques that frequently employed as malicious API call classifier 

models. This validation process that depends on some tests should confirm to facts: 

 

1- Errors exist in the current classifier models due to characteristics similarity 

of vectors that belongs to different classes. 

2- Result of ACC model should show better accuracy results than other models. 

 

In general, most studies depended on three types of techniques to achieve API call 

classification. These techniques were either supervised or unsupervised AI algorithms, 

or they followed some statistical theories. Therefore, this work tests the collected API 

calls using the following AI techniques and statistical theories.  

 

1- Supervised learning algorithm 

a. Neural Network 

b. Support Vector Machine 

2- Unsupervised learning algorithm 

a. SOM 

b. K-mean clustering 

3- Statistical theories: These theories depend mostly on computing the frequency or 

probability of suspected API functions that mostly called by normal and rarely 

called by malware application. 

Results of these tests are shown in Table 5-4 
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3.7 Chapter Summary 

 

This chapter explains the methodology steps of the ACC model as below: 

 

1- ACC model is proposed by this work as a malicious API calls classifier models. 

2- ACC model has three main parts. Each part has different sub-parts or steps. 

3- Parts of the ACC model, mainly, related to: 

a. Sample collection and API call vectors preparation. This part started by 

collecting PE samples from different sources and ended by generating 

two different patterns of API call vectors.  

b. Designing an ANN as a classifier model, and using the two different data 

sets of (1.a) as inputs for training and testing the ANN classifier model. 

This part also results Signal-1 and Signal-2 at output.  

c. Making a compression between results in Signal-1 and Signal-2. 

Through this step, ACC model should be able to increase the certainty of 

doubtful and misclassified results. 

4- Clamping the same input data set (1.a) to some important classifier models, and 

compare their results with the results that obtained by ACC model. 

5- Some new ideas presented though this chapter, such as proposing new function 

as a threshold value system. The new threshold value should support classifier 

models better than the valid one.  
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Chapter 4 

 

4- ACC Implementation 

 

4.1 Introduction: 

 

This chapter explains the implementation part of the ACC model. Through this chapter, 

the three main parts of ACC model are executed individually. Moreover, details about 

steps inside each main part are also explained. The first section of this chapter describes 

the type and the version of softwares that employed by this work as well as the details 

about OS environment where implementations are taken place. 

As there are many techniques and theories involved in ACC model, this chapter also 

covered information about parameters and features of the involved theories with regard 

to the API call classifier models. More figures and tables are presented in this chapter to 

explain the implementation process or to support the ACC methodology.  
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4.2 System environment and Employed Software 

 

This work has executed all codes and PE samples using the Windows 7 OS. An HP 

desktop computer with the following details was used: 

· Model: HP Compaq dc7900 Convertible Minitower. 

· Processor: Intel(R) Core(TM)2 Duo CPU E8400 @3.00GHz 3.00 GHz 

· Memory (RAM): 4.00 GB 

· System Type: Windows 7, 32 bit Operating System. 

 

 

Three types of softwares are used in this work for coding and evaluation as follows: 

· Matlab 2010b. Matlab software version 2010b was used throughout the work, 

from coding most parts of the ACC model to code and test most classifier 

models. To present and display the results, our work mostly depended on the 

graphical tools of Matlab.  

· SPSS Version 18. SPSS Version 18, statistical software that can perform most 

statistical theories, was used in obtaining the frequency and probability of each 

API function that might be called by any PE sample. The software even used 

during model’s evaluation. 

· The monitoring softwares have been used for extracting API functions that 

called by PE samples. Two types of these softwares are employed. The first 

software is called APIMonitoring (Version 2007) and the second is PE-Explorer 

that is usable for Windows 7 (2008). Both softwares work only with Win 32-bit 

PE files. 
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4.3 ACC Implementation: Part One 

 

The following steps are needed to be achieved throughout the implementation of part 

one of the ACC model. This part was introduced in chapter (3) as a sample collection 

and API call vectors preparation. This part is started by specifying the characteristics of 

PE samples that focused by this work and ended with generating to different patterns of 

input dataset. Implementation details of each step in this part are explained in later 

sections, wherever is necessary. 

4.3.1 Properties of PE Samples 

 

The wok introduced the properties of the required samples in section 3.3.1. The section 

has focused only on the characteristics and properties of the malware and normal 

applications that should be collected. The section also identified the type of malware 

and normal applications that should be focused by this work. Furthermore, the section 

also presented the justifications about each focused property.  

The only aim of this section was to know the type of malwares and normal samples that 

should be collected. Through sections 1.7, 2.6, and 3.3.1 all information regarding 

samples and other relevant issues has been clearly identified. It has been decided 

through these sections that the type of application which should be focused by this work 

is PE structures.  

As the aim for the section 3.3.1 was only to explain the properties of samples, therefore, 

there is no coding works for this section. The only step that could be done here is to 

move to the next section to find out the process that used by this work to identify 

sources where samples could be found. 

.  
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4.3.2 The sources of PE Samples 

 

All sample properties that identified through section 3.3.1 have been passed to section 

3.3.2 to guide the research how to find the required samples. Therefore, the aim of 

section 3.3.2 was to find out where these samples could be obtained.  

Through reviewing many researches, the work has found the possible ways that could 

be followed to get malware and normal samples. Regarding normal samples, it was not 

difficult to find them as most researches depended on applications from a fresh installed 

Windows (H. D. Huang, Lee, Kao, Tsai, & Chang, 2011). However, obtained malware 

samples were difficult. The ways that used by most researches are either downloading 

them from online sources or capturing them through using Honeypot systems. Getting 

malwares from other researchers was more difficult. 

Here, this work wants to refer the Appendix-1 that contains valuable suggestions and 

recommendations from a great malware analyst and a security architect from Symantec 

Security Response, Mr. Peter Szor, regarding collecting malware samples. This work 

decided to download PE malware samples from three different websites that mentioned 

in section 3.3.1, based on these suggestions.  

To decide how many samples are adequate for this research, the work has found in 

(Parmjit Singh et al., 2009) that 500 samples are efficient for each type of applications 

included in this work. As the work focused on four types of application (section 1.7), 

therefore 2,000 samples are sufficient. However, because the section after 3.3.2 has 

used to verify malware and normal samples, and there is a possibility that some samples 

will not pass this verification process, therefore, this work decided to collect 10,000 

malwares. As indicated in table 3-1, this work collected 3,500 PE Viruses, 3,500 PE 

Trojan horses, and 3,000 PE Worms. 
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Henceforward, the term “PE samples” related to these 2,000 PE samples that passed the 

verification process and considered in this work for further processes.   

4.3.3 PE Samples verification process 

 

The process of samples’ verification has clearly indicated in section 3.3.3. In that 

section, Figure 3-4 explained how the process of verification has handled, and Table4-1 

displayed the results of that process. The section also mentioned the name of the five 

brands of AV softwares that used in the process of verification.  

The employed AV softwares have been installed individually on a Windows7 OS. Each 

time an AV installed, available samples have been scanned by the AV and only the 

detected samples are considered for the subsequent scanning. Although, no AV can 

detect all available samples, AVs could detect adequate number for this research.  

Table 4-1 shows the number of samples / type application that passed the verification 

process. The table also illustrates that the passed number is more than the required for 

this research. This work randomly selected 500 samples for each verified PE 

applications type. 

Table 4-1 Number of PE that passed verification 

 

Type of PE application Total number of samples 

passed verification 

Number of samples the 

selected randomly 

Virus 2,689 500 

Trojan Horse 2,864 500 

Worms 2,783 500 

Normal 500 500 
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4.3.4 Extracting API Functions (Execution of PE samples): 

 

PE samples under monitoring systems must be executed to extract the needed 

information. Samples that passed verification processes in sections 3.3.3 and 4.3.3 were 

executed under the APIMonitoring software. From this execution, the monitored 

software can observe much information, including the name of each API function called 

by the executed sample and the name of the DLL related to each API function.  

The monitoring software reports the name of the API functions in the form of a name 

sequence. The first name represents the first function called by the executed sample, 

whereas the last name is the last necessary API function needed by the sample. The 

monitoring software can track the system calling for any executed application. Each call 

is represented as execution behaviour for the monitored sample. Therefore, this work 

monitored the sequence of the execution behaviour by monitoring the execution of 

samples using the APIMonitoring software.  

In addition to obtaining the sequence of API functions’ name or the names of the 

execution behaviour, this work obtained more information from monitoring the 

execution process, as summarised below:  

 

1- The DLL files that most frequently called by the executed sample. This work has 

found that most DLL files used by PE samples during calling of API functions 

are: 

a. Kernel.dll; 820 API functions were monitored; 

b. User32.dll; 621 API functions were monitored; and 

c. Advapi32.dll; 430 API functions were monitored. 

2- The total number of calls made by all PE samples was 326,942. In this 

monitoring scenario 1,871 API functions are monitored, however, only 342 

functions were called by PE samples. 
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3- Another grouping for the monitored API functions could be arranged. Functions 

may be classified based on the four behaviours of malwares (section 1.7). Table 

4-2 shows more details on the summary of the result of this arrangement. 

 

Table 4-2A compression result between the number of monitored API functions 

and actually called API function 

 

 The four malware behaviours 

that focused by this research 

(section 1.7) 
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654 117 206 611 283 1,871 

Called 

API 

Function 
127 23 48 107 37 342 

 

It is clear from the result which shown in Table 4-2 that not all monitored API 

function which tracked by APIMonitoring software are called by PE samples. 

Therefore, narrowing down the number of monitoring API functions in the 

monitoring process preserves the consumption of time and memory requirements.  

As clarified in section 3.3.4, the output at this stage is a sequence of API name that 

called by a PE sample. Next section explains the implementation of converting the 

sequence of API names to a sequence of API indexes to prepare dataset X that 

mentioned in section 3.3.6 
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4.3.5 Preparing dataset X: 

 

The sequence of functions obtained through the monitoring software (sections 3.3.4 and 

4.3.4) is form of a list of names. As the names of API functions in the obtained list are 

in a string or character format that is difficult for any AI technique to deal with directly, 

therefore, they must be changed to another forms of representation, such as real 

numbers or digital numbers, which may be accomplished by building a reference file 

(mentioned in section 3.3.5) whereby an API function is referenced or indexed by a 

number. Any list of functions would be transferred to their equivalent indexes by 

referencing this indexing file.  

The process of building the reference file is summarised below: 

 

1- Collect all API functions’ name that called by PE samples. 

2- Group the collected API functions in (1) based on the four malware behaviours 

that mentioned in section 1.7. 

3- Inside each group, remove duplicated names. 

4- Use real number format to index each API function as below: 

a. Use the integer part of the real number to represent the group that 

mentioned in (2). 

b. Use the decimal part, which comes after the dot, to represent the index of 

each function that obtained in (3). 

 

The output of this process generates a list, if stored in an excel sheet, could be seen as 

shown in the Figure 3-7. This list is used in the process of converting a sequence of API 

names to equivalent sequence of API indexes. The code that can perform this 

conversion is written in the Appendix-2 Code-1. Figure 4-1 is considered as an example 

of this conversion. 



 

114 

 

 

Figure 4-1 List of API names converted to equivalent API indexes 

 

The output of indexing process, as shown in the Figure 4-1, is considered as an X 

dataset. Each PE sample had an X dataset, which contained a long sequence of API 

function indices. The dimensions of the X vector  is (1 × n), which indicated that during 

the execution of any individual PE sample, an n number of the API function is expected 

to be called. Next section should convert this X dataset to X1 dataset. 

 

4.3.6 Preparing the Matrix X1: 

 

The X vector that prepared in Section 4.3.5 represents the sequence of calling procedure 

for any PE application. The (    ) API calling vector must be converted into a matrix 

with an (    ) dimension. The concept of this conversion is explained in section 

3.3.7. The Matlab code that receives the vector X and converts it into X1 is shown  

in Appendix-2 code 2. Figure 4-2 shows a sample of this conversion. 
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Figure 4-2 Sample of X to X1 conversion 

 

After converting the sequence of each application that comes within the PE samples, 

this work puts X1 vectors for all application in one set together. Assembling all X1 

vectors in one set created a big X1 matrix with (25,319) vectors. However, (793) 

duplicated vectors have been recorded, which means (793) duplicated behaviours in the 

matrix. 

In later section, this work uses X1 to train an ANN classifier model to distinguish 

normal with malicious vectors. Existing duplicated vectors inside the training dataset 

harms the training process of the ANN classifier model. Therefore, this work should 

remove duplicated vectors in X1 dataset. After cleaning the X1 dataset from duplication, 

only (24,526) unique vectors have been remained and considered for further process in 

later sections.  

In the next section, this work explains how the vector X is used to prepare the matrix X2. 
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4.3.7 Preparing the Matrix X2: 

 

There are two possible ways to build X2. The first way is through executing each 

application in PE samples under the monitoring softwares individually for four rounds, 

as mentioned is Figure3-5. The second way is by deriving X2 from X using scanning-

sliding process that mentioned in section 3.3.7. In both ways, vectors inside X2 are 

almost the same. However, this work uses the second approach as it needs less time than 

executing each application in PE samples for four rounds. Therefore as in the process of 

preparing X1, this work also depends on the matrix X to generate X2 matrix.  

The difference between X1 and X2 matrixes is that X2 grouped the API functions based 

on the four behaviours that mentioned in section 1.7, and then performed scanning and 

windowing. However, X1 generation had no grouping. Code-3 in Appendix-2 shows the 

Matlab code that can achieve this conversion, whereas Figure 4-3 shows an example of 

the X to the X2 conversion process.  

 

 

Figure 4-3 Example of (X) to (X2) conversion 

 

As in section 4.3.6, vectors of all application in PE samples are put together to create a 

big set of X2. Counting duplicated vectors, the size of vectors inside X2 matrix are 
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(6,074). However, this number has reduced to (5,451) vectors after removing duplicated 

vectors.  Finally and before passing X1 and X2 to the part two of ACC model, vectors 

inside these two dataset should be labelled as normal or malwares. The process of 

labelling is clearly explained in section 3.3.8 

4.4 Part TWO of ACC Model: 

 

The main target of this part of the ACC model is to classify vectors that have a 

dimension of (1 x 6) elements. This part receives such vectors from both X1 and X2 

matrixes that prepared in sections 4.3.6 and 4.3.7.  

As mentioned in sections 3.4.1 and 3.4.2, this part employed an ANN to classify each 

clamped vectors to either normal or malware. In section 2.11.1, this work mentioned 

that ANN classifier model has depended on Feed-forward Back Propagation as a 

training algorithm.  

Both X1 and X2 data set has been assigned to train and test the ANN classifier models in 

two different phases. ANN with X1 has learned to distinguish a sequence of API indexes 

that behaved normally with the one that behaved maliciously. However, X2 can train 

ANN to distinguish four major behaviours (section 1.7) of PE malwares. ANN can learn 

differently from X1 and X2, as the patterns of API calling sequences in these two dataset 

are different. API sequences that kept inside X1 represent the general execution of a 

suspected application, while sequences in X2 represent four major behaviours that 

malwares more frequently follow (Section 3.3.1). 

In this part, a new idea presents by this work to control misclassified and low certainty 

classified cases. The new approach proposes a threshold value system that can map 

results of ANN classifier models in to three areas; normal, malware, and doubtful areas.  

Next section shows the process of training and testing the ANN classifier model using 

X1 dataset.  
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4.4.1 Training and Testing ANN (FFBP-NN): Dataset X1 

 

The X1 dataset was the general execution sequence for PE samples. The X1 matrix had 

24,526 vectors, distributed between normal and malicious classes (section 4.3.6). This 

work clamped the X1 dataset to a feed-forward back propagation neural network (FFBP-

NN) (supervised classifier model), as illustrated in Figure 4-4. The figure also shows the 

number of nodes at each layer (input, hidden, and output). 

Figure 4-5 shows other details about this classifier model, such as the transfer function 

used inside each node and the number of nodes at input, hidden, and output layers. The 

transfer function used inside each node of both hidden layers was termed as “logsig.” 

Six nodes were involved as input because each clamped vector had six elements. 

However, the output layer only had one node that could map the status of a vector either 

to (0) or to (1). Moreover, the number of nodes of both hidden layers one and two was 

five and three nodes, respectively. More details about the physical structure of layers are 

also illustrated in Figure 4-5. 

 

 

 

Figure 4-4 The structure of the ANN used as tested classifier model 
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Figure 4-5 Details about the structure of the ANN used as tested classifier model 

 

Vectors in X1 were divided into two groups. The first group contained 10,000 normal 

vectors, whereas the second group had 14,526 malicious vectors. Moreover, vectors 

were sub-divided into the group of vectors used for the training phase and the group of 

vectors used for the testing phase. For the training phase, the work clamped 7,000 

normal and 11,526 malware vectors. However, the work used the remaining 6,000 

vectors (X1test) during the testing phase, where 3,000 are normal vectors and 3,000 were 

malware vectors. The parameters of the training phase for the above FFBP-NN are 

shown in Figure 4-6. 

The code mentioned in the Appendix-2 Code4 was used in the training and testing 

phases. Figure 4-7 illustrates the status of training, testing and validation of the ANN at 

each epoch. Figure 4-8 illustrates the result of the test on 6,000 non-seen vectors.  

Figure 4-8 also shows the distribution of testing results along the range of 0 to 1 and 

shows that results have been mixed over a range between 0.3 and 0.7. Such results 

would cause ambiguity and affect the accuracy of any classifier model.  
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Figure4-6Training parameters for the FFBP-NN using dataset X1 

 

Such result that illustrated in Figure 4-8 has many doubtful cases (cases that correctly 

classified but have low certainty degrees). Although objects have been labelled for two 

different classes, they have the approximate distances to both classes’ centres. There is 

no doubt that such results will increase the probability of occurring errors, especially if 

a classifier model will depend on a single cut-off (threshold) value. The threshold value 

that used in the mentioned figure has been set on (0.5), and the accuracy obtained was 

(82.9%) (Figure 5-1). 

Another important type of errors that notably found in Figure 4-8 is misclassified errors. 

It is clear in the figure that most misclassified vectors are located in area surrounded 

both sides of the threshold line. Moreover, it is also clear that the valid threshold value 

cannot support classifier model to identify an area that more properly doubtful and 

misclassified results could be found there. Therefore, this work should find out an active 

threshold value that at least can identify clean areas and isolate the doubtful area. 
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Section 4.4.3 explains how this work can identify the clean and doubtful areas, and how 

the work sets the values for new proposed threshold lines system. 

 

Figure  4-7; Training, testing, and validation status for X1 dataset 

 

 

 

 

Figure 4-8The result of predicting (6000) non-seen vectors after training FFBP-NN 

with dataset X1tests 
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The coming section explains the process of training and testing ANN with X2 dataset as 

well as its physical and logical information. The action also indicated more 

characteristics about X2. 

4.4.2 Training and Testing ANN (FFBP-NN): Dataset X2 

 

To train and test our ANN classifier model with second dataset X2, this work uses the 

same physical structure that shown in Figure 4-4 and Figure 4-5. This is because, 

vectors in X2 has the same structure as vectors in X1. However, the number of vectors in 

X2 has been reduced to (5,451) vector (section 4.3.7). The work grouped the dataset into 

(2,000) normal cases with (3,451) malwares. For training our FFBP-NN, the work has 

clamped (3,451) vectors; (1,500) normal and (1,951) malware vectors. Remain (2000) 

vectors, which represented as (X2test), has used for testing.  

Although the physical information and training parameters for the FFBP-NN to train 

and test the second dataset is like the one that used for first dataset, there are some 

differences in training process between them. Figure 4-9 shows the training and 

validation information for FFBP-NN when its input receives the X2 dataset.  The Matlab 

code in Appendix 2 Code4 has used by this work to achieve the training and testing 

phases for this dataset too. 

Figure 4-10 shows how the results for testing the (X2test) dataset have been distributed 

over the range of 0-1. Moreover, Figure 4-11 shows the confusion matrix for the same 

testing results, where, FP and FN rates are shown. Based on the Equation 2-1, the 

confusion matrix can obtains the accuracy of this model, which is 77.1% as mentioned 

in the figure. 

As illustrated in the Figure 4-8 and Figure 4-10, misclassified results with low certainty 

results are located surrounding the single threshold line. Such results reducing the 
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accuracy of ANN based classifier models. The effect on accuracy is can be obtained 

clearly from the figure 4-11, which is known as Confusion Matrix.  The figure 

illustrated the rate of true positive and negative with false positive and negative. These 

rates are enough for using Equation 2-1 to obtain the rate of accuracy. As a result, the 

obtained accuracy has been found on 77.1%, as shown in the figure. The function 

“plotconfusion()” can easily generate Confusion Matrix figure.  

 

 

 

Figure4-9 Training, testing, and validation status for X2 dataset 

 

Therefore, this work proposed a new function (Equation 4-1) for setting the threshold 

value, as explained in the next section, to control errors, first, and then to improve the 

accuracy. 



 

124 

 

 

Figure4-10 The result of predicting (2,000) non-seen vectors after training FFBP-

NN with dataset X2tests 

 

 

 

Figure4-11 Confusion matrix for FFBP-NN training and testing with X2tests  
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4.4.3 Active Threshold boundaries: 

 

Figure 4-8 and Figure 4-10 show the inability of a single threshold value to control 

errors. A single threshold value served as a logic gate and could not support more 

functionality to classifier models. The classifier models still depended on cut-off values 

in discriminating objects. In contrast to the previous studies, the present research 

assigned a new functionality for the threshold value, such as an error controller, which 

is one of the important duties of co-stimulation inside HIS. The new boundaries of the 

new threshold value are described as in the Equation 4-1. In later parts of this section 

more details about obtaining the values of these boundaries are given. 

 

Equation  4-1 

      {
                                              
                                                
                                              

 

 

According to Equation 4-1, the model of this proposed work could map the results of 

classification into three predefined areas: 

 

1- Pure normal; means all vectors in this area classified as normal with high 

certainty degree, 

2- Pure malware; means all vectors in this area classified as malicious with high 

certainty degree, and 

3- Doubtful areas; vectors either classified correctly but with low certainty degree 

or misclassified. 
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Therefore, boundaries of the new threshold value for each area needed to be identified, 

which was accomplished by using the results found by the ANN classifier, as discussed 

in the previous section. Figure 4-8 shows that the traditional threshold value uses a 

single line to discriminate objects into two classes: malware and normal. However, 

many misclassified points and doubtful records were found at both sides of the 

threshold line. The RMSE for the model was 0.465, with the RMSE for the normal side 

(threshold range from 0 to 0.5) at (0.3451) and that for the malware side (threshold 

range from 0.51 to 1) at 0.3121.   

According to Equation 4-1, this work needs to define three areas instead of two (as it is 

the status in using the single line threshold). This work created these three areas using 

two lines threshold value (upper-line and lower-line). Based on the boundaries that 

define for each line in Equation 4-1, results of classifier models can be mapped into 

three areas instead of two (single line). 

The values of these two lines are obtained by this work based on the coming process. At 

the beginning, both lines were fixed on the position of 0.5. Then, the upper-lines are 

shifted by 0.05 units toward the right side, whereas the lower-line is fixed. For the 

second move, the lower-line shifted toward the left side by 0.05 units, whereas the 

upper-line was fixed. Figure 4-12 illustrates the shifting process of the upper and lower 

line of the threshold value. 
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Figure 4-12 Shifting the threshold line process, and the THREE areas of results. 

 

Within each shift, the work computes the RMSE for each defined area. The aim of these 

tests is to find out the value of both threshold lines on which RMSE for each pure 

normal and malware areas sets on a smallest value. Table 4-3 and Figure 4-13 show the 

results that have been obtained during each shift. It is clear that value of RMSE in both 

pure normal and pure malware areas are decreased within each shifting of threshold 

value lines, while this value for the doubtful area is notably increased. With this 

process, the work can create two cleaner areas and control the existing errors inside the 

third one. The process of shifting lines will be continue until the value of RMSE in both 

clean areas will not be decreasing notably. According to the Table 4-3 and Figure 4-13, 

the work found that at test number nine and forward (where the value of upper line = 

0.7 and the lower line = 0.3), the value of the RMSE, in all three areas, somehow 

become fixed and the process of shifting lines no more affected them. 
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Table 4-3 The effect of upper and lower line shifting on the RMSE measure in the defined three area 

Tests Threshold line Number of vectors in  RMSE 

Upper Lower Normal area Malware area Doubtful area Pure-Normal Pure-Malware Doubtful area 

1 0.5 0.5 2650 3350 0 0.3451 0.3121 0 

2 0.45 0.5 2094 3350 556 0.2982 0.3121 0.0469 

3 0.45 0.55 2094 2652 1254 0.2982 0.2631 0.0959 

4 0.4 0.55 1987 2652 1361 0.248 0.2631 0.1461 

5 0.4 0.6 1987 2033 1980 0.248 0.2011 0.2081 

6 0.35 0.6 1740 2033 2227 0.225 0.2011 0.2311 

7 0.35 0.65 1740 1457 2803 0.225 0.1724 0.2598 

8 0.3 0.65 1340 1457 3203 0.1909 0.1724 0.2939 

9 0.3 0.7 1340 1103 3557 0.1909 0.1661 0.3002 

10 0.25 0.7 982 1103 3915 0.1903 0.1661 0.3008 

11 0.25 0.75 982 835 4183 0.1903 0.1656 0.3013 

12 0.2 0.75 512 835 4653 0.1898 0.1656 0.3018 

13 0.2 0.8 512 389 5099 0.1898 0.1652 0.3020 

 



 

129 

 

 

Figure4-13 The impact of Shifting threshold lines on the RMSE measure of each 

defined area 

 

Before making a final decision on the obtaining boundaries, this work has to do another 

test as a confirmation. Our work uses the same ANN and same testing vector numbers 

(6000). The work assumes that the obtained boundaries for the new threshold system 

are true. The work checks the impact of increasing the number of the input vectors on 

the RMSE of each area as shown in the Table 4-4 and in the Figure 4-14.The figure and 

the table illustrate that the value of RMSE in the doubtful area increases with (80%), 

while this amount in two other areas is less by more than half. This means, by setting an 

area like doubtful area errors could be controlled and minimised by (40% – 80%).  
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Table 4-4 Impact of increasing the input number on RMSE 

# Number of 

input 

Vectors 

Number of 

Confused  

vectors 

RMSE for the area 

Normal Malware Doubtful 

1 500 213 0.0812 0.06234 0.0924 

2 1000 539 0.0884 0.06715 0.1234 

3 1500 784 0.0911 0.07233 0.1256 

4 2000 1023 0.0979 0.07719 0.1841 

5 2500 1358 0.0967 0.07937 0.2204 

6 3000 1803 0.1023 0.08154 0.2467 

7 3500 2203 0.1247 0.1025 0.2566 

8 4000 2557 0.1305 0.1472 0.2738 

9 4500 2915 0.1643 0.1662 0.2841 

10 5000 3183 0.1783 0.16893 0.2917 

11 5550 3314 0.186 0.16946 0.2982 

12 6000 3557 0.1909 0.1661 0.3002 

 

 

 

 

Figure 4-14 RMSE for doubtful area increased more than other areas 
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All above tests show that most results located in above 0.3 and lower than 0.7 brought 

uncertainties to the classifier model. Therefore, the only part that needed more work for 

increasing certainty is the doubtful area.  

All the tests above were achieved through a Matlab code shown in Appendix-2 Code5. 

The next section shows how results that obtained from ANN classifier model (sections 

4.4.1 and 4.4.2) can be mapped to three areas that proposed by this section. 

 

4.4.4 Grouping the Results: 

 

Before activating the new threshold value, the FFBP-NN classifier model classified the 

input API call vectors into two classes: normal and malware. These results, as illustrated 

in Appendix-2 Code4, were kept in the matrix Doutn and Doutm. The code used Doutn 

to keep the normal results and Doutm to keep the malware results.  

However, the results needed to be grouped into three areas based on the threshold 

values defined in Equation 4-1. Accordingly, each element kept in the matrix Doutn and 

Doutm was classified into one of these three groups: Pure normal, Pure malware, or 

doubtful classes.   

Each element kept in the matrix Doutn and Doutm had an equivalent vector either in the 

X1tests or in X2testsdataset. However, this grouping process reclassified those vectors into 

one of the three predefined classes. The process identified a class for each vector in 

X1tests or in X2tests based on the equivalent grouping result. Accordingly, the process of 

grouping the results and vectors generated six subsets as shown below: 

 

1- d11, is a subset of vectors that derived from the X1test and classified as normal. 

2- d12, is the subset of vectors that derived from X1test and classified as malwares. 
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3- d13, is a subset of vectors that derived from X1test and classified as doubtful 

vectors. 

4- d21, is a subset of vectors that derived from the X2test and classified as normal. 

5- d22, is the subset of vectors that derived from X2test and classified as malwares. 

6- d23, is a subset of vectors that derived from X2test and classified as doubtful 

vectors. 

Table 4-5 shows the situation of the errors and the RMSE rate for both normal and 

malware areas with single threshold line and double threshold lines.  The table show the 

results of testing two different datasets. For instance, the FP rate (5.2%) and FN rate 

(11.1%) that found in normal and malware areas with single threshold line became 

(0.85%) for the same two areas with double threshold line. Even, the RMSE rate for 

normal area (0.3451) and malware area (0.3121) has been reduced to (0.1909) and 

(0.1724) respectively. Moreover, the number of vectors that brings problem to accuracy 

in normal and malware areas have been shifted to doubtful area, and only vectors that 

classified at high level of certainty are remained.  

 

Table 4-5 FP and FN isolating and minimizing RMSE 

Number  

of clamped 

vectors 

Single line threshold Defined threshold in 

Equation 4-1 

The areas Vector 

No. 

FP & 

FN % 

RMSE Vector 

No. 

FP & 

FN% 

RMSE 

6000 

Normal 2650 5.2% 0.3451 1340 0.85% 0.1909 

Malware 3350 11.1% 0.3121 1457 0.85% 0.1724 

Confused  NA NA NA 3203 14.6% 0.2939 

 

2000 

Normal 1062 10.4% 0.2094 496 0.91% 0.0979 

Malware 938 7.2% 0.1498 481 0.83% 0.0772 

Confused  NA NA NA 1023 15.8% 0.1841 
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Through this process, the work groups the doubtful and misclassified results into d13 

and d23 groups. It means errors in both normal and malware classes can be isolated. This 

work focused on the area that needed more improvement in the entire classification 

accuracy.  Therefore, in the next section this work uses a functionality of co-stimulation 

to improve the accuracy of ANN classifier model by increase the certainty of low 

certainty cases and reclassify the misclassified results.  

 

4.5 Part THREE of ACC Model: Co-stimulation 

 

The main target of this part is to increase the certainty degree of doubtfully classified 

cases and reclassifies the misclassified cases. This improvement can be achieved 

through a process named co-stimulation.  

The process considered vectors inside d13 that contains high misclassified and 

doubtfully classified vectors. The process also involved vectors in d21 and d22 that 

contain high classified vectors with a few misclassified cases.  

The process of co-stimulation can measure some similarity figures between a low 

certainty vector in d13 with vectors in both d21 and d22together. Later, the process 

considers the degree of similarity with the old certainty degree of the vector to compute 

new and better certainty degree for the doubtful vector. Latter sections give more details 

about co-stimulation process. However, the next section starts to find out indicators that 

accordingly two vectors are considered as similar or non-similar through co-stimulation 

process.   
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4.5.1 Calculating the Similarity Measurement 

 

To define two vectors similar or non-similar, co-stimulation process needs define two 

measures to evaluate the similarity degree between both vectors or between a vector and 

a class. Both measures were extracted from the vectors classified as high certainty 

vectors, that is, vectors kept in matrixes d11with d12fornormaland d21with d22formalware. 

The work evaluated those vectors to determine two important indicators, which would 

function as threshold values. The first indicator used to decide the similarity between 

two vectors, whereas the second indicator can check the distance between vectors and 

classes. Below steps show calculating process for the value of both indicators:  

A- Identifying the value of the first indicator (When two vectors are similar): 

1- Within a certain behaviour class, the similarity degree between each vector and 

the remaining vectors would be computed. Afterward, the vector’s average 

similarity (VAS) was obtained for each vector. If class A has n vectors, each 

vector in class A has (n) similarity, and each vector should have one VAS. 

However, class A should have (n) VAS.   

2- For each class, the overall average similarity (OAS) would be computed 

depending on the VAS of each vector (class A has only one OAS). The value of 

OAS represents the value of the indicator used for evaluating the similarity 

among vectors within a certain class. 

3- Each behaviour class has different vectors and different number of vectors. 

Hence, behaviour classes would have different values for their similarity 

indicator.  

4- Vectors are considered to be similar to any vector inside a certain behaviour 

class if and only if their Cosine Similarity is equal to or greater than the OAS 

value of that class.  
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B- Identifying the value of the second indicator (vector to class similarity): 

1- Within a certain behaviour class and for each vector, the VAS of each vector 

would be compared with the OAS values of that class. The number of vectors 

(assume  ̅) that has a VAS equal to or greater than the OAS of the class is 

identified.  

2- This work considered the value of  ̅ as the second indicator value. 

 

Accordingly, closer behaviour classes for doubtful vectors were identified if and only if 

their VAS values were equal to or greater than the OAS value for a number of vectors 

that can pass the  ̅ number (test one or T1 or Signal-1). If a doubtful vector from a 

malware behaviour class is identified, another confirmation test must be conducted, 

namely, test two or T2 or Signal-2. The Signal-2 would test the same doubtful vector 

with the normal behaviour class equivalent to the malware behaviour class, which was 

identified through Signal-1. The conditions that should be satisfied through Signal-2 

would be an inverse of the conditions applied through Signal-1. 

Table 4-5 presents the figures used to compute both values of the indicators. The total 

number of vectors in all matrixes normal and malwares was 3, 774 vectors: 1, 836 and 

1, 938 normal and malware vectors, respectively. However, the 977 vectors that 

belonged to the X2test dataset were sub classified based on four malware behaviours. 

Figure 4-15 shows the numbers of high-certainty vectors in the main and sub classes of 

the malware and normal datasets.  

The code mentioned in the Appendix 2 – Code6 was used in archiving, collecting 

information, and identifying both values of the indicators. Table 4-6 and Table 4-7 

illustrate the obtained values for OAS and  ̅ for all normal and malware behavior 

classes.  
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Figure 4-15 Number of high certainty vectors in classes and sub classes 

 

 

 

Table 4-6 The OAS values for each behaviour class 

Application 

classes 

General 

Execution 

Behaviour 

Application 

Behaviour 

Access 

Behaviour 

Registry 

Modification 

Behaviour 

I/O and 

System File 

Behaviour 

Normal 0.761% 0.812% 0.835% 0.817% 0.827% 

Malware 0.863% 0.893% 0.914% 0.876% 0.883% 
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Table 4-7 Value of  ̅and its percentage for each behaviour class. 
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Next section shows how these two indicators can be used in the process of co-

stimulation. 

 

4.5.2 Costimulation process: 

 

At this point, the situation of our classifications still contained doubtful and 

misclassified cases. Therefore, the two indicators that found in section 4.5.1 are 

involved in co-stimulation process to increase the certainty of suspicious cases. In each 

step of the two-step confirmation process (Equation 3-9), both values of indicators 

obtained in the previous sections were used. The first step of confirmation checked the 

distance and similarity among doubtful cases and behaviour of malwares (dist1). Values 

were obtained using Equations 2-5 and 2-6. If any case confirmed both indicators, then 

the work proceeds to the second step, which involved measuring the distance and 

similarities among vectors and classes with equivalent normal behaviour (dist2). 

Increasing the certainty for any case can be confirmed if and only if Equation 4-2 is 

satisfied.  
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Equation 4-2 

                              

 

The new certainty value for the doubtful cases that passed confirmation processes must 

be computed. If Ci is the classification value for the doubtful case i, the new value for Ci 

should be computed based on Equation 4-3. Accordingly, the new value of Ci will 

increase the certainty of case i either to the normal direction or to the malware direction. 

In both cases, the new value of Ci improves the value of RMSE, which in turn indicates 

improvement in accuracy.  

Equation 4-3 

       (            ) 

Table 4-8 illustrates the number of doubtful vectors that have been improved after 

applying the co-stimulation process. The table also shows the RMSE rate for the ANN 

classifier model before and after applying the Costimulation process. 

 

Table 4-8 Number of doubtful vectors with RMSE rate improvements after 

applying co-stimulation process 
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The number of doubtful vectors relocated from doubtful areas to a more certain area 

after applying the co-stimulation process are shown in Table 4-9. The table shows the 

status of the three areas, namely, normal, malware, and doubtful, before and after 

applying co-stimulation. The table shows that (51.8%) of low certainty classified 

vectors are relocated to higher certainty areas. 

 

Table 4-9 Number of vectors in the three predefined areas before and after 

applying co-stimulation 
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Another result that needs illustration is the rate of FP and FN. The improvement made 

by this work also covered errors that occurred due to misclassified objects.  

The implementation of this part was achieved using Matlab code. Instructions of this 

code are shown in Appendinx-2 code7. This work executed the same code (10) rounds. 

At each round the input set, which is 6000 has been chosen randomly. 

The ACC model showed its ability to change the classes of many misclassified objects. 

In next chapter, a compression between ACC and some classifier models are illustrated 

and improvement of FP and FN that made by ACC could be notably found.  
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4.6 Chapter Summary 

 

The implementation processes that described throughout the chapter four is summarized 

as below: 

1- This work has utilized the process of malware samples verification to avoid 

possibility of finding any noises in malware’s samples.  

2- It is not necessary for a PE application to call all API functions available inside 

computer system. PE applications only need to call the API functions that 

necessary for their execution. 

3- The long sequence of API functions that called by an application could be 

broken down to smaller parts of sequences, which each of them represent a 

behaviour of the application during its execution. 

4- For each type of application’s execution behaviour there is a concerned group of 

API function. To monitor a specific behaviour of an application, tracing the 

behaviour’s concerned group of API function is enough.  

5- ANN is a good classifier model. However, it has many misclassified or doubtful 

classified cases. Current threshold value that used with all classified models has 

no ability to identify which area causes more errors that affect the accuracy. 

6- The result of any classifier model could be divided into three areas; normal, 

malware, and doubtful area. 

7- This work needs to depend on some indicators in order to decide whether two 

vectors are similar or not. 

8- Process of co-stimulation is a confirmation of a case in two directions. 
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Chapter 5 
 

5. Evaluating ACC with other Classifier models 

 

5.1 Introduction 

 

Although the tools and the techniques that employed by researchers for devising 

classifier models were different, the concept and the algorithms that activated by them 

were followed either supervised or unsupervised methods (Ando et al., 2009; Merkel et 

al., 2010; Miao Wang, 2009; B. Zhang et al., 2006; Y. Zhang et al., 2010; H. Zhao et 

al., 2009; Zou et al., 2009). Moreover, Statistical theories was another concept that 

intended by researchers to build classifier models. Different statistical methods used by 

researchers to measure the membership probability degree for an unknown case inside a 

class.  Measuring the frequency for a malware’s behaviour was another statistical 

method (Cha, 2007).  

Regarding the input dataset, researchers were clamped only one dataset as an input to 

their systems. Therefore, this work tests some supervised and unsupervised detection 

models depending only on the X1 dataset, which has (24,526) vectors. The work also 

tested two concepts of statistical theories. Below are more details of the tested models: 

1- Supervised learning methods. 

a. Neural Network; Feed forward Back-Propagation algorithm 

b. Support Vector Machine. 

2- Unsupervised learning methods;  

a. Neural Network: Self-Organizing Map. 

b. K-means algorithm 

3- Statistical Theory (Obtaining the frequently of function calling). 
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5.2 Supervised Learning Classifier Models 

5.2.1 Feed-Forward Back Propagation Neural Network (FFBP-NN): 

 

In the section 4.4.1 of the previous chapter, a (FFBP-NN) has been trained and tested as 

a supervised classifier model. The training and testing process has been repeated for 

(10) rounds. At each round, the rates of FP and FN have been obtained. Details of each 

rounding test are mentioned in the Appendix A1.  

This process came as a part in the ACC model implementation. However, the results of 

FFBB-NN classifier model could be summarized in the confusion matrix below;  

Figure 5-1. Based on the FP and FN median rates that mentioned in the figure, the 

accuracy of this model equals to (82.9%). However, the median of accuracy for all (10) 

rounds set on (84.23%) 

 

 

Figure 5-1 Confusion matrix for FFBP-NN training and testing with X1tests  
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5.2.2 Support Vector Machine (SVM): 

 

Support Vector Machine (SVM) is another supervised classifier model that could be 

used when a classifier needs distinguishing objects only into two classes.  This work 

clamps (18,526) vectors to train SVM classifier model. The testing phase has checked 

(6,000) cases that divided into (3,000) normal and (3,000) malwares.  

The Matlab code that can perform the SVM training process has illustrated in the 

Appendix-2 Code8. 

 

 

 

Figure 5-2 The Confusion matrix output for SVM classifier model 

 

The FP and FN rate that mentioned in Figure 5-2 set the accuracy for a round of testing 

SVM on (83.8 %). However, the median for all ten rounds is (83.74%), as shown in the 

Appendix-3.  
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5.3 Unsupervised classifier model 

 

5.3.1 Self-Organizing Map (SOM): 

 

To test an unsupervised classifier model, this work employs Self Organizing Map 

(SOM) neural network.  For this test, the work used (24,526) vectors; normal vectors 

are (10,000) and malicious vectors are (14,526). This work tested the SOM neural 

network in two directions. The first direction was for using SOM to group the input 

vectors. The second direction was to use SOM to cluster input set and then to compute 

the FP and FN rates.  

To achieve the first part, all (24, 526) vectors has been clamped as input to SOM neural 

network. Originally, our dataset consists from two groups. The aim of this part of test is 

to find out either SOM can initiate input vectors to their original class or not. The 

structure of SOM that used by this work is shown in the Figure 5-3. The output 

dimension of SOM has been set on (1 x 2) as the input dataset originally consists from 

two classes. As each input vectors has six elements, therefore, the number of nodes at 

input layer has been set on six.  

 

 

Figure5-3The physical structure for SOM NN at part one test 
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SOM mapping result for vectors into each cluster has been shown in the Figure 5-4. It is 

clear from the figure that there are errors in the clustering process as input vectors have 

not been clusters like their original group; (10000 in cluster one and 14526 in cluster 

two).   

 

 

Figure 5-4 Number of vectors inside each cluster (SOM part one test) 

 

SOM forms a semantic map where similar samples are mapped close together and 

dissimilar apart. Based on that and comparing the results, it is clear that some vectors 

that originally belonged to a cluster, however, SOM have clustered them to another 

class that they have similarity more. It means there are many API calls that originally 

made by malwares; however, they are similar to normal behaviour calls.  

The code that illustrates in Appendix 2 code can achieve the first part of SOM classifier 

model testing. 
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The second part of the test is to compute the rate of FP and FN to find out the accuracy 

rate. The physical structure of the SOM NN for the second part is same as shown in the 

Figure 5-3. However, the dataset has been changed.  

The work has divided dataset into two parts; (18,526) vectors used for training and 

(6,000) vectors for testing. The testing vectors included (3,000) normal vectors and 

(3,000) malicious vectors. 

However, Figure 5-5 gives more details about the accuracy of SOM, as FP and FN rates 

have been found. The accuracy rate that could be obtained from the information given 

by the mentioned figure is (78.6%). However, the median accuracy of SOM during the 

(10) rounds of testing was (78.83%). 

 

 

Figure 5-5  The Confusion matrix for SOM classifier model 
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5.3.2 (K-means): 

 

K-means clustering is an unsupervised method tools that tests by this work as a 

classifier model.  Our clustering model classifies (24,526) API call vectors into normal 

and malware classes. The method that use by k-means is distance measure. The method 

measures the distance between the centres of each class with each vector. A vector will 

set in a class if the distance between this vector and the centre of that class is less than 

distances with other classes’ centres. 

 

 

Figure 5-6 Clustering 2000 vectors with K-means algorithm 

 

 

Figure 5-6 shows the result of k-means algorithm clustering. The figure illustrates the 

distribution of API call vectors around the centre of normal and malware classes. The 

figure shows an important situation very clearly, which is the occurrence of some 

misclassified cases.  
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There are many points that belonged to the normal centre but located close to the 

malware class centre. The areas that highlighted in figure show some points, which are 

representing normal and malware API calls, have mixed in an area located between the 

centres of both classes.  

The Appendix-2 Code10 shows the instruction that can achieve k-means algorithm 

implementation. The output of this code classifies the input vectors into two classes; 

class number one and class number two. The work can obtain two more results. The 

first result is the number of the class that computed for each input vector. The code 

keeps the class’s number of each vector in matrix called idx. The second important 

result is shows the distance between each input vector with the centres of both classes. 

The distance results have been kept by the code in the matrix sumd. Inside this matrix, 

there are (24526) vectors, each have two elements. 

This work used the actual class number and k mean output class number for all vectors 

to obtain the confusion matrix that shown in the Figure 5-7. This method is called 

External Evaluation for clustering methods. The accuracy that shown in the figure 

obtained based on the median FP and FN rate. Accordingly, the accuracy for this 

classifier model will be (80.1%).   However, the median of the accuracy for ten rounds 

of testing equals to (77.69%). 

The second type of result shows the distance of each vector within a cluster and 

between other clusters.  Ideally, good clustering method should score for each vector a 

high similarity degree within a cluster and low similarity degree between clusters. To 

measure this evaluation, this work has depended on the (24526 X 2) vectors that 

obtained and kept in the sumd matrix in the Appendix-2 Code7. The vectors show the 

distance between each vector and both centres classes. To achieve that, this work first 

shows the variances of distances for each vector through the Figure 5-8. 
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Figure 5-7 Confusion Matrix for K-mean classifier model 

 

 

Figure 5-8 the variance of distances between vectors and centres 

 



 

150 

 

For both classes, it is clear that distances have been separated between 2 and 12, and the 

mean of the distance for both classes is around 6. Now going back to distances that have 

been kept in sumd, this work can obtain some measures as illustrated in Table5-1. 

 

Table 5-1  Number of vectors inside and outside the mean distance for each class 

Class’s Number Number of Distances > 6 Number of Distance < 6 Total number of vectors 

Class 1 10,668 13,858 24,526 

Class 2 9,216 15,310 24,526 

 

 

It is clear from the table that many vectors are located outside the mean distance for 

each class. The clustering certainty of such vectors is very low, which increases the rate 

of RMSE. 
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5.4 Statistical classifier models 

 

To distinguish malicious API calls, many researchers have depended on obtaining 

statistical figures of such callings. Thoroughly, they compute the frequency of each API 

function that probably called by malware or normal applications. Then, they identified 

the API functions that more frequently called by malwares, and rarely called by normal 

applications. Based on that, researchers have marked the API functions that mostly 

called by malware and rarely called by normal as suspicious API calls.  

Researchers used the frequency number of API calls in different directions to classify 

normal with malware applications. A group of researchers used these frequency figures 

to build vectors for each application. Each vector indicates the API functions that have 

the highest frequency calls and the ones that have the lowest frequency. As a result, 

researchers can get many normal and malicious vectors. The second group used the API 

calls frequency to compute the probability of a function inside normal and malware 

applications.  Functions that have high probability call’s rate by malware applications 

are considered as suspicious functions over this rate. 

However, in both cases researchers depended on one type of computation to decide 

either a call that made by an application is malicious of not. They measured the distance 

between the computed vector or probability for a suspected application with some 

predefined malicious vectors and probability figures. If the distance passed a predefined 

threshold value, the call considered as malicious, otherwise it considered as normal call.  

To test the concept of statistical classifier models, this work has started to collect the 

frequency of each API functions that called by (2,000) samples of PE application. 

Samples have been grouped into (500) normal and (1,500) malware applications. This 

work has employed the SPSS program version - 18 to find out the API calls’ frequency. 

Figure 5-9 shows a sample of SPSS report about the API function frequency collecting. 
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Then the work has to interpret these frequency figures either to vectors or probability 

measurements.  

 

Figure 5-9 A sample of the SPSS program report about API call frequencies 

collection 

 

The work has imported the collected API call frequencies to an excel sheet. There, a 

vector for each application has been built. Each vector contains 12 elements; the first six 

elements represent the API functions that have the highest frequencies, while the last six 

represent the functions with lowest frequency calling. Figure 5-10 is a sample of an 

excel sheet that shows some applications and their frequency ranking of API calls. The 

highlighted application is a normal application called “accwiz” with its API calls 

ranking. The highlighted API calls represents only the Access behaviour for that 

application. 
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Figure 5-10 Samples of vectors that shown the frequency rate of API calls 

 

Another sheet has been prepared by this work included the probability of calling of each 

API function by malware applications. To achieve that the work follows below steps: 

1- Computing the probability of each function inside each PE malware samples. (fp) 

2- Computing the average probability of each function among all samples. (Afp) 

3- For each malware sample, compute how many API functions their malicious 

probability passed the average indicator (Afp).  It means computing (k).  

4- Then find the average of (k) among 1500 malware samples. (Ak) 

Through these steps, this work has obtained for each API function the average 

malicious calling that made by 1500 malware applications. Furthermore, the work has 

obtained the value of indicator Ak, which is equal (3). Calls inside a suspected 

application could be considered as malicious if their probability passed their Afp values.  
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And, if the number of malicious calls inside the suspected PE application passed the 

indicator Ak, the application will be considered as malware.  Figure 5-11 shows a part of 

API functions with their average malicious probabilities.  

 

Figure 5-11 Obtaining the average probability measure for API functions 

 

The work has tested both statistical concepts individually. To test the highest and lowest 

frequency similarity, this wok has tested (200) vectors that selected randomly from the 

(2000) vectors; (100) vectors are normal and the rest are malware. The work has 

checked the similarity rate between each vector in the (200) group with remain (1800) 

vectors in the population. The work considered two vectors as similar if their cosine 

similarity is above of (0.7). This factor has been computed in section 4.5.1 (Table 4-6). 

A tested vector will be considered as malicious vector if the number of similar vector 

inside malware group is more than the similar vector that found in normal. 
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This test has been repeated (10) times, and at each time the work selected new (200) 

vectors randomly. Table 5-2 shows median of the FP and FN rates of the statistical 

classifier model that depend on highest and lowest rate of frequency calling. 

The Appendix-2 Code11shows the Matlab instructions that can achieve this statistical 

similarity process. The code execution can give (1,800) similarity indexes for each 

vector. Accordingly, the code can obtain the number of similarity of a vector with 

vectors in the normal and malware groups. The code, then, can classify the results into 

normal or malware.  

 

Table 5-2 FP and FN rates for Statistical Classifier models  

(Highest and Lowest call rate similarity) 

 

  Target 

   Malware Normal 

O
u
tp

u
t Malware 73 27 

Normal 23 77 

 

 

The second phase of testing is related to measuring the probability indicator for each 

API function calling by a suspected sample. The code that can achieve that is mentioned 

in the Appeindx-2 code12.  

 

  



 

156 

 

First, the probability degree for each API functions that called by a suspected 

application should be computed. The code reads the probability of each API function 

that called by the suspected application. Then, the code compares each probability with 

the indicators that mentioned in Figure 5-11. The code considered calls that their 

probabilities passed their equivalent indicator of Afp as malicious call. If number of 

malicious calls inside the suspected application passed three, the application will be 

considered as malware. This test has been repeated (10) rounds. At each time (200) 

samples of PE applications are considered randomly; (100) normal and (100) malwares. 

Table 5-3 illustrates the median of the FP and FN rates of the malicious probability rate 

based classifier models. 

 

Table 5-3 FP and FN rates for Statistical Classifier models  

(Probability of malicious calling rate similarity) 

 

  Target 

   Malware Normal 

O
u
tp

u
t Malware 77 23 

Normal 23 77 
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5.5 Accuracy Evaluation for classifier models 

 

Most researchers measured the accuracy of the classifier models based on computing 

the FP and FN rates. They used the Equation 2-2 to find out the accuracy degree of their 

models. This work has employed the same equation to compute the accuracy. More 

details about accuracy of each model have been shown in Appendix A-1. 

Table 5-4 and Figure 5-12 illustrate the comparison between accuracy and FP with FN 

for the models that have been tested throughout this work, including the ACC classifier 

model. The value that shown in each cell of Table 5-4 represents the median value for 

TP, TN, FP, FN, and the accuracy for each tested models.  

 

Table 5-4 The median accuracy comparison between ACC and some classifier 

models 

 

Classifier Models TP TN FP FN Accuracy 

Supervised: NN- FFBP 2488 2486 513 514 84.23% 

Supervise: SVM 2502 2527 499 474 83.74% 

Unsupervised: SOM 2301 2415 700 586 78.73% 

Unsupervised: K-mean 11971 7678 2555 2322 77.69% 

Statistical: Frequency 74 78 27 23 75.50% 

Statistical: Probability 78 78 23 23 77.50% 

ACC  2724 2656 277 345 90.23% 
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Figure 5-12 Median accuracy comparison between the tested classifier models 

 

To show the significant of the ACC model among the other classifier models, this work 

uses another way of testing which called One-Way ANOVA test. This time, the test 

compares the mean of accuracy for two models each time. Figure 5-13 shows how the 

accuracy of the ACC classifier models outperformed the rest of tested models. 
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Figure 5-13 The mean accuracy of models that computed using ANOVA testing 

method 

 

 

The main aim of the results that are shown in table 5-5 is to check either the 

outperformance of the ACC model is significant or not. As mentioned before, this work 

has used the ANOVA test to evaluate the results that obtained from all classifier models 

including the ACC model. Table 5-5 evidenced the significant of the accuracy results 

that have been obtained by ACC compared with other classifier models. The notes that 

have been written under the table give some keys about how to compare the values 

inside the table. 
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Table 5-5 Comparison between the mean of tested and ACC classifier models 

 ANN SVM SOM K-mean Statistical: Frequency Statistical: Probability ACC 

ANN --- 0.368 4.618** 5.053** 7.442** 5.743** -14.414** 

SVM --- --- 4.250** 4.685** 7.074** 5.375** -14.032** 

SOM --- --- --- 0.435 2.824* 1.125 -19.032** 

K-mean --- --- --- --- 2.389 0.690 -19.467** 

Statistical: Frequency --- --- --- --- --- 1.699 -21.856** 

Statistical: Probability --- --- --- --- --- --- -20.157** 

ACC --- --- --- --- --- --- --- 

 

Notes:  

1) Numbers without * means that the two models are not significant. 

2) Numbers with * means that the two models are significant, but less than 2.00 

3) Numbers with ** means that the two models are strongly significant. 
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5.6 Chapter Summary   

 

The accuracy of the ACC has been verified with some conversional classifier models. 

Through chapter five, this work had shown the process of models verification. Below are 

the summery of chapter five:  

1- Classifier models could be devised based on different techniques and tools. 

2- To test the majority of classifier models with reference to accuracy, this work has 

tested the classifier models that more frequently employed by researchers during 

the past decade.  

3- All used classified models have high rates of False Alarm and Root Mean Square 

Errors. 

4- The ANOVA test that has been done by this work evidenced that ACC model has 

significant outperformance accuracy. 
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Chapter 6 
 

6. Conclusion and Contributions 

 

6.1 Introduction 

 

This chapter is organized in the following manner. The first part presents the conclusions 

of the work, with emphasis on the importance of improving the accuracy of classifying 

malicious API calls. In addition, this section explains how the direction set by this current 

work can support behaviour-based API call detection systems to reveal PE malwares. 

The second part of this chapter presents the objectives, all of which were defined and 

validated by the work, and describes how each objective was carried out and achieved. 

Later, the chapter emphasis the most important contributions of the current work and how 

each contribution can positively affect the accuracy of API calling behaviour classifier 

systems. The chapter ends by underlining some suggestions for future works. 

6.2 Conclusion 

 

Throughout the review stage of this work, we found that most researchers attempted to 

classify PE malwares by monitoring the API calls behaviour of malwares. However, 

malwares always try to call API functions as normal applications. This behaviour affected 

the accuracy of malicious API classifier models, which is problematic. Therefore, this 

work addressed the gap of malicious API calls classifier models.  

First, the work conducted tests and measured the gaps in the behaviour-based API calls 

classifier models. Hence, the work found that the accuracy of API call classifier models 

can be improved by controlling errors and by conducting further analysis. The work 

searched to find some error controller and confirmation mechanisms. This work found that 
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the functions of a biological phenomenon, called co-stimulation, can be used as a bio-

oriented solution to the problem of gaps in API call classifier models.  

Co-stimulation always directs the human immune system to avoid errors. Another function 

of co-stimulation is in improving the ability of detectors to use safe and balanced processes 

(sections 2.10.1 and 2.10.2). Based on these two processes, this work concluded that 

simulating the functionality of co-stimulation as a bio-oriented solution the accuracy of 

API calling behaviour classifier models can be improved. 

This work has found that the concept of co-stimulation can be attached to most API call 

classifier models to increase the certainty of doubtful cases and to improve the 

misclassified cases by performing two steps. In the first step, the classifier model can 

define the boundaries of these cases that are located in doubtful areas. Second, the model 

can clamp them for further investigations and analyses. Through these two steps, the 

classifier models, such as ANN, can minimize the FP and FN with RMSE rates  

(Table 4-5). 

Another interesting discovery is the viewpoint considered by previous researchers in 

defining malwares. We found that most researchers defined malwares from the viewpoint 

of computer systems or computer users. However, we noted that the viewpoint of detection 

and classification systems in defining malwares has not been considered yet. Therefore, 

this work concluded a new paradigm for defining malwares based on their behaviours 

(6.3.4).  

6.3 Achievement of Research Objectives 

 

The objectives are mentioned in Section 1.5. Each objective in this current work is focused 

on the process of improving the accuracy of the API call classifier models. Below is the 

explanation of each objective in relation to their effect on minimizing errors while 

classifying malicious API calls. 



 

164 
 

· Studying different works on malicious API call classifier models 

 

Different perspective and proposals have been made by previous works on malicious 

API calling classifier models. Those works had analysed API calling behaviours to 

reveal PE malwares through classifying malicious API calls. Reviewing those 

projects was the first objective that conducted by this work to collect much 

information about this area. 

The work initiated this objective to find out the type of models that proposed by 

researchers and the tools with methods that utilised by them. The aim of this 

objective was also to identify the relation between the behaviours of malwares and 

proposed classifier models as well as with the functionalities of the biological viruses 

and biological defence systems. 

Through achieving this objective the following points become clear: 

 

1- Most works have depended on measuring the similarity between calling 

behaviours of unseen malwares with some predefined calling behaviours (Table 

2-2 and Table 2-3). 

2- Penetrating a normal behaviour for calling API functions by malwares has an 

important effect on the accuracy of classifier models as it leads to increase 

errors.  

3- There is a strong matching between HIS and malware classifier models. This 

work obtained through this objective that biological error controller can be 

employed to control errors in malicious API classifier models, and then to 

improve the accuracy rate. 

4- Through this objective, it became clear for this work which type of malwares 

should be focused in this research.  
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· For Investigating the functionality and the ability of a biological phenomenon 

that can minimize or avoid errors 

 

This work initiated this objective to understand how immune system can control 

error when it classify huge amount of biological viruses. Through section (2.10) the 

overall work strategy of human immune system has been explained. The section 

showed how immune system works and which part of this system can control errors. 

The sub-section 2.10.1 has explained the biological error controller that used by the 

immune system in more details. Moreover, in sub-section 2.10.2 the concept of 

biological error controller, which called co-stimulation, inside the artificial immune 

system has been clarified.  

In the methodology chapter, especially section 3.5, the designing steps of building a 

classifier model including the co-stimulation error controller is clearly explained. 

The implementation of the concept of artificial co-stimulation is showed in chapter 

four.  

Through chapter five and six, the accuracy of Artificial Co-stimulation classifier 

model has been discussed and compared with other classifier models (Table 5-4 and 

Table 5-6 with Figure 5-12 and Figure 5-13). 

 

 

· Identifying features that have efficient impact on accuracy of the malicious API 

call-classifier models 

 

To validate the accuracy, most classifier models depended on many features. The 

most important were the FA and RMSE rates. The FA comes in the four forms, 

which are FP, FN, TP, and TN. The value of these four features were substituted in 

Equation 2-1 and its result used by most researchers to find the accuracy of their 

classifier models. Another form used by researchers to gage the accuracy of classifier 
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models is RMSE, which mentioned in Equation 2-4. Moreover, researchers have 

identified different values for the threshold distinguisher that attached to all classifier 

models. The main target of this objective was studying the characteristics of these 

features.  

Targeting this objective helped this work in two ways: 

 

1- As most researches used the FA and RMSE rates for validate the accuracy of 

their works with other works, this work should use the same concept to validate 

the proposed model, which is ACC, against most important classifier models 

that conducted by researchers in Table 2-2 and Table 2-3. Table 5-4 was 

resulting from the concept of this objective. 

2- Through this objective, the weaknesses of the current threshold value systems 

have been revealed. The objective helped this work to find out solutions that 

makes threshold value to do other functionalities, such as error controller 

(section 4.3.3).  

 

· Building an accurate discrimination model (ACC) and performing validation 

 

Under this section, both objectives that concerned the design and implementation 

with validating the ACC model are targeted. The objective has achieved with regard 

to FP and FN with RMSE features. The main target of this objective was to design an 

accurate malicious API call classifier models, such as ACC, then, to implement and 

validate it. These three steps are achieved as indicated below: 

 

1- The parts that mentioned in chapter 3 indicated how to build an accurate model 

like ACC. 

2- Chapter 4 related to the implementation of ACC. 
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3- Chapter 5 tested the more frequently used classifier model. The result of these 

tests was used to validate the ACC accuracy. 

6.4 Contribution 

 

The main contribution of our work can be summarised in the following points: 

 

1- Defining a new concept to categorize classifier models. 

2- Devising a new bio-oriented malicious API calls classifier model. 

3- Identifying new functionality for threshold line distinguisher that attached to 

classifier models. 

4- New paradigm to define malwares. 

 

Latter parts of this section explain the above-mentioned contributions in detail.  

 

· A new concept to categorise malicious API call-classifier models  

 

Throughout the process of literature review, this current work has found malicious API 

classifier models could be categorised into two types of model; biological models and 

non-biological models (section 2.9). Although the aim of both types of classier models is 

same, their concept and implementation are different. 

The concept of biological models depends on some algorithms that occurred inside HIS, 

while their implementation depends on a code program that can compute the matching 

degree between the shape of detectors and the shape of unknown objects.  

On the other side, non-biological models depend on some mathematical and statistical 

computation of malwares’ behaviours, where some statistical methods, such as 

measuring probability and frequency of API calls, are employed.  
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Categorising classifier models into biological and non-biological may bring attention of 

many researchers to do some comparison works between them to propose many types of 

accuracy improvement. For instant, researchers can propose some works that can identify 

weak points for each type of these models or suggesting ideas of building a hybrid 

system between them for better accuracy. 

 

· A new bio-oriented solution for minimizing FP and FN with RMSE errors in 

malicious API call-classifier models. 

 

The AIS includes many techniques and algorithms that are employed in different fields 

of study. However, most of them are utilized for detection and classification purposes 

only (Jieqiong Zheng 2010). Although biologically, the immune system has amazing 

interconnected and interrelated procedures and phenomena, only a few bio-oriented 

algorithms have been coined independently and employed artificially in AIS (Elgert, 

2009; Naik, 2003; Smith, 2006). More research and complementary studies should be 

done to improve the ability of these AIS algorithms (U Aickelin et al., 2004; Julie 

Greensmith, 2010; Marhusin, Cornforth, et al., 2008; P. T. Zhang et al., 2010; Y Zhang et 

al., 2010).  

In the field of malware classification, most studies depend on the fundamental algorithm 

that was proposed by Forrest et al. (1994; 1997). Based on this algorithm, if a case is not 

normal, it can be considered as a malware (Forrest et al., 2002). However, such concept 

leads to an increase in the rate of errors, such as false alarms, as every unknown normal 

is not always a malware (P. T. Zhang et al., 2010). To avoid such errors, this work found 

that IS includes the co-stimulation phenomenon, which undertakes double confirmation 

in distinguishing or identifying an unknown cell (Elgert, 2009; Health, 2003). Therefore, 

classifier models and detection systems that depend on the algorithm of AIS should also 

include this phenomenon in their processes to minimize errors. However, to the best of 
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our knowledge and according to the latest survey on AIS applications (Jieqiong Zheng 

2010), the concept of confirmation performed by co-stimulation has not been included in 

any research on classification and detection models of malwares . 

 

· New functionalities for the threshold value: 

 

Most of the classifier models and detection systems that proposed previously have 

threshold values through which objects can be distinguished. The function (   ) can 

represent most, if not all, threshold lines. This function means that all the threshold 

values are in a single line, and the only change that occurs from one model to another is 

the value of (a).  

Models with a single-line threshold value can separate objects into only two classes. 

Models that use such discriminator function can position objects in one of its two sides. 

On each side of the threshold line, researchers can find a mixture of classified objects 

that are high-certainty objects, misclassified objects, and doubtful or low-certainty 

objects.  

To make the threshold value systems more active in detecting and classifying models, 

this study provides a new function for threshold value so that the system can perform 

more roles. The new roles that our new threshold value can provide include bonding 

most cases that are doubtfully classified and sub-classifying objects into three areas, 

namely, pure class one, pure class two, and a class of low-certainty objects. Through 

these new functions, the threshold value can support classifier models to identify those 

objects that negatively affect the rate of RMSE. This new threshold value can also 

identify objects that need more analyses and work to increase their degree of certainty. 

Such increase in degree of certainty can reposition some misclassified cases, which in 

turn can decrease the FP and FN rates.  
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The support vector machine theory is the only theory that performs its threshold value in 

a similar manner to our proposed function. It can collect objects in two classes and then 

create a gap between them. However, it cannot activate and utilize this gap to support 

more classification models.  

 

· A new paradigm of malwares’definition: 

 

Throughout the history of computer viruses and malwares, many definitions of malwares 

have been formulated and coined (Bradfield, 2010; Idika & Mathur, 2007). Most of these 

definitions describe the activities or the behaviour that malwares perform inside any 

infected system. The behaviour described in earlier definitions is analysed and explained 

through the lenses of computer systems or computer users. From those definitions, 

researchers show ways by which malwares interact with computer systems and reveal the 

risks that malwares may bring to users (Szor, 2006).  

Some researchers attempted to use another style of defining malwares. They extracted 

information from the methodologies of their work and then they used them to define 

malwares (M. Alazab et al., 2010; Bayer, Habibi, et al., 2009; Trinius et al., 2011; S. Yu 

et al., 2011). However, most of their definitions were still coined within the boundaries 

of computer systems and the concepts of computer users.  

Our current work initiates a new version of malware definition. We extracted information 

from the methodology of the work, but we considered the detection viewpoint of 

malwares and classification models. The new version of malware definition states the 

following: “Malwares are blocks of codes that are mixed up with normal codes to 

perform their payloads smoothly and to defeat detection systems smartly"  

The first part of our definition explains the way that malwares can be used to predict 

normal applications. This success accurately satisfies the objectives and the methodology 
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of our work. Other definitions always start by describing malwares as unwanted 

applications or unprivileged codes that they want to detect. 

The second part of our definition shows the behaviour that malwares may perform. The 

definition concentrates on two activities: payload execution and defeating techniques. 

Although the work payload covers many of the activities of malwares, these are not often 

used by researchers to define malwares. However, to date, the concept of the defeating 

behaviour of malwares has never been used in any process of defining malwares.    

 

· Supporting other biological models. 

 

Initially, AIS was grounded on simple models of the human immune system. As noted by 

Stibor (Xiao & Stibor, 2011), the “first-generation algorithms,” including NSA and CSA, 

do not produce the same high quality performance as the human immune system. In 

particular, algorithms that conduct negative selections are prone to scaling problems and 

generating excessive FA when used to solve problems, such as malware detection 

systems. The second-generation algorithm, called Dendretic Cell Algorithm (DCA), was 

developed to overcome the problems seen in the NSA. When appropriate threshold 

values are used, DCA can generate robust and accurate results in classifying models 

(Xiao & Stibor, 2011; Yidan Luo & Jiang, 2008).  

Through the proposed model, solutions to the problem of the rate of FA that accompany 

NSA and CSA, as well as the problem of identifying an appropriate threshold value 

necessary for DCA, are already provided.  
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6.5 Suggested future works 

 

For future works, this work suggests some directions that may make the classification of 

malicious API calls more efficient. To achieve that, this work recommended some more 

expansion in the parts of the ACC model.  Parts that need expansion summarized below: 

 

· Identifying optimum threshold value 

 

Identifying doubtful area for any classifier model may change based on the methods that 

used and the dataset that clamped. Through the section 4.4.3, this work could define the 

perfect boundaries of active threshold value. It takes many tests to find out these active 

values. To make it more efficient, this work suggested an automated step that can give 

optimum boundaries for any dataset that may clamped to any classifier model.  By this 

step, less time required for defining an active threshold value.  

This step can support classifier models in another direction. When the boundaries of the 

threshold value have been defined, it means defining objects that lie within these 

boundaries and need more investigations. Accordingly, the definition of active threshold 

can highlight the area where objects doubtfully classified or misclassified.  

 

· More malware policies and behaviours 

 

Since they coded for the first time, malwares have got many modifications and they 

behaved differently and more difficultly. They changed from their simplest to more 

complicated form. Every span of time, malware analysts recorded new behaviours and 
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activities of malwares. Therefore, to detect malwares based on their behaviours systems 

should be up-to-date.  

Classifier models usually depend on some training dataset to find out any new cases. 

These training sets should cover the valid malware activities and behaviours. Therefore, 

this work recommended a process that can identify optimum behaviours from a 

malware’s population. Through this identification, classifier models can narrow down to 

the necessary behaviours that should be monitored. By this step also, malicious API calls 

classifier models can highlight the number and the type of the API functions that should 

be covered during training step, and they remained up-to-date with respect to the recent 

available malware samples.  
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6.6 Chapter Summary 

 

Contribution and conclusion of this work have been described through the chapter six, and 

below are the chapter summary: 

1- As far as PE malwares can abuse the API calling behaviour of normal applications, 

PE malwares can challenge the malicious API calling classifier models. 

2- From the objectives of the researchers; 

a. Classifier models are divided into two groups, biological and non-biological 

classifier models. 

b. Biological co-stimulation is used by human immune system to support 

minimizing errors in biological viruses’ classification. 

3- It is not necessary for a PE application to call all API functions available inside 

computer system. PE applications only need to call the API functions that 

necessary for their execution. 

4- The long sequence of API functions that called by an application could be broken 

down to smaller parts of sequences, which each of them represent a behaviour of 

the application during its execution. 
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Appendix-1 
 

The letter from Peter Szor 

 

Virus Analysis 2 messages  

From:  WHA080028 student <saman1969@siswa.um.edu.my> 

<saman1969@perdana.um.edu.my> Fri, Mar 19, 2010 at 4:42 PM  

To:  pszor@acm.org 

 

Dear Sir   

 

I am a PhD student in Network Department - Faculty of Computer Science -University of Malaya. My Name 

is “Saman Mirza Abdulla” from Iraq. My research is somehow related to develop a biological model to detect 

computer malwares, and now I am in my third semester.  

My model has scoped to windows PE file and the function calls that malwares used them during infection 

and after.  The model currently needed to be analysed with some real malwares to know if the analysed 

malwares somehow following the print-foot that drawn by our model or not. For that, we need to trace some 

malwares to know how they insert their code inside the PE file and where.  

Otherwise, I should trace those malwares, which in that case, needs to download them.  

Please, can you advise me how I can get real malware codes or articles that specified virus analysis? In fact, I 

found one article in your token about virus analysis in (VB) magazine. In addition to that, your book "Virus 

Research and Defence" and some articles published by Symantec became my research backbone.  

Your cooperation is highly appreciated.  

Thanks in advance for any comments and guides.  

 

Thanks.  

 

Saman Mirza Abdulla --------------------------------------------------------------------------------------------  

UNIVERSITY OF MALAYA  -  " The Leader in Research & Innovation "  

 

 

 

 

 

 

mailto:pszor@acm.org
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Peter Szor peter.szor@gmail.com 

To: saman1969@perdana.um.edu.my  Fri, Mar 19, 2010 at 10:56 PM  

 

Hi Saman,  

Thanks for your question. You see, malware samples are never shared outside of the relatively small security 

circles, which is really hard to get into. Often, I see this problem at universities, that they would need real 

malware. The problem is that by not knowing you, nobody would risk to give samples to you, due to the 

impossible justification of its use, and safe handling, without risking the general public. This is true for 

trojan, malware, as well as virus samples. In the adware space, there are even more problems, since there is a 

lot of copyrighted material in there, and nobody wants to exchange those.   

What I would recommend is to either get in touch with another university, or try to find a few sample cases in 

virus collections and magazines on the internet. This is not difficult to find.  

 For your test, if you work with viruses, I would recommend to use something like Funlove to start with. This 

small virus is also a network share infector, and it was everywhere at one point of time. This is a simple virus 

to profile, based on behaviors.  

 Then, there are the more difficult types, such as Zmist, which integrates themselves into the executable. 

They might not always get call from the file, and they are not at an obvious location either.  

 Viruses right now are not the greatest issue. Yet, there are cases like polymorphic viruses on the Wildlist. 

Reading Virus Bulletin, you can see the names of these threats. The real issue today is malware profiling. 

There were over 3 million threats released last year, and most of them are not self replicating threats. They 

install themselves often, like real applications, and do their tricks that way.  

 Depending on which types of threats you need for your test (there are many types in genres) you would need 

a honeypot project to capture samples, or have connections to honeypot circles. Real time capturing of 

malware, such as worms, bots, trojans is done with virtual machines, or real machines using vulnerable 

services connected to the internet. The captures are made on these boxes. This model helps you to get a lot of 

malware in a very short time, and allows you to do further research on the classes of interest. This would be 

my main recommendation.  

 There are free honeypot/honeynet projects which you can deploy easily on boxes and collect samples with 

them. I wish you good luck collecting the samples, and I apologies, and need your understanding that I 

cannot give you live samples of malware code, even for phd research. But having at least 6 million variants 

of malware out there, with about 200-300.000 a month, this should not be a problem for you. If nothing, you 

could follow the logs of AV at your university to see what comes in, and try to ask your department to save 

these samples.  

This is how I started.  

 

Best, Peter  

  

mailto:peter.szor@gmail.com
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Appendix-2 
 

Codes used throughout building ACC model 

 

Code-1; Indexing API functions with positive real number 

% This Code can read a list of API Functions that extracted for a PE 
% application (Suspected) and can convert it to its equivalent index 

 
clear all; 
clc; 

 
%Reading the reference file of API functions and their Indexes 

 
[num1,txt1,raw1] = xlsread('ReferenceOfFunctions.xlsx'); 
m=size(txt1,1); 
 

%Reading the sequnce of API function for the suspected file 

 
[num2,txt2,raw2] = xlsread('ExtractedFunction.xlsx'); 
%================================================================= 

 
%Creating the vector X 

 
n = size (txt2,1); 
X=zeros (n,1); 

 
% Searching for indexing 

 
for i=1:n 
for j = 1:m 
if isequal (txt2(i,1),txt1(j,1)) 
            X(i)= num1(j); 

 
end 
end 
end 

 

============================================ 
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Code-2; converting vector X to matrix X1 

clc; 
clear all; 

 
data = xlsread ('1xl APIVector.xlsx')'; 

 
v= zeros (1,6); 
x = size(data,2); 

 
for i = 1:x-5 
    v(i,1:6) = data(1,i:i+5); 
end 

 
xlswrite('nxm APIMAtrix-1.xlsx',v); 

 

========================================== 

 

Code-3; converting vector X to matrix X2 

clc; 
clear all; 

 
data = xlsread ('1xl APIVector.xlsx')'; 

 
 x= size (data,1); 

 
g1 = zeros (1); t1=1; 
g2 = zeros (1); t2=1; 
g3 = zeros (1); t3=1; 
g4 = zeros (1); t4=1; 

 
for i = 1:x 
for j = 1:6 

 
if v(i,j)>1 && v(i,j)<2 
            g1(t1)=v(i,j);t1=t1+1; 

 
elseif v(i,j)>2 && v(i,j)<3 
            g2(t2)=v(i,j);t2=t2+1; 

 
elseif v(i,j)>3 && v(i,j)<4 
            g3(t3)=v(i,j);t3=t3+1; 

 
elseif v(i,j)>4 && v(i,j)<5 
            g4(t4)=v(i,j);t4=t4+1; 
end 
end 
end 

 
X2 = [g1;g2;g3;g4]; 
xlswrite('nxm APIMAtrix-2.xlsx',X2); 

 

========================================== 
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Code-4; Training and testing the ANN classifier 

clc; 
clear all; 

 
%%Training phase input data: 
indata = xlsread ('Indata.xlsx','indata'); 
Din= indata(1:18526,1:6); 
Dtr=indata(1:18526,7:7); 

 
%%Vector Normalization of the input data: 
DinN = normc(Din); 
DinN=DinN'; 
Dtr=Dtr'; 

 
%% Building the ANN (FeedForward Back-Probagation): 
net = newff(DinN,Dtr,[20 10]); 

 
%% Training ANN: 
net = train(net,DinN,Dtr); 

 
%% Finding error during training (As a cross-validation)for the first  
%  half part of the dataset 
Dout = net(DinN); 
errors = Dout - Dtr; 
perf = perform(net,Dout,Dtr)  

 
%% To test the ANN with second part of data: 

Indata2 = xlsread ('Indata.xlsx','Testing'); 
Dn2= indata2(1:3000,1:6); 

Dn2t= indata2(1:3000,7:7); 

 
Dm2=indata2(3001:6000,1:6); 

Dm2t= indata2(3001:6000,7:7); 

 

 
%%Vector Normalization of the input data: 
DnN = normc(Dn2); 

DmN = normc(Dm2); 

Dn=DnN'; 
Dm=DmN'; 

 
%% Testing the ANN classifier with the second half of the dataset 
Doutn = net(Dn); 
Doutm = net(Dm); 

Plot (Dn2t, Doutn,’o’, Dm2t, Doutm,’x’); 

 
%% Obtaining RMSE: 

 

RMSEdoutn = mse(doutn); 

RMSEdoutm = mse(doutm) 

Doutall= mse ([doutn;doutm]); 

RMSEn = sqrt (RMSEdoutn); 

RMSEm = sqrt (RMSEdoutm); 

RMSEall = sqrt (Doutall); 

 

========================================= 
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Code-5; Threshold boundaries identification 

 

clc; 
clear all; 

 
 %% Identifying the upper and the lower boundaries for the  
%  the proposed areas. 

 
U1 = input('What is the first upper limit of threshold value '); 
U2 = input('What is the second upper limit of threshold value '); 
L1 = input('What is the first lower limit of threshold value '); 
L2 = input('What is the secondlower limit of threshold value '); 

 
%% Reading the results that obtained in the ANN 

 
indata = xlsread ('ANNRMSEResults.xlsx','1'); 
out= indata(1:6000,1:1); 
MA=zeros(1);M=1; 
NA=zeros(1);N=1; 
DA=zeros(1);D=1; 

 
%% Based on the input boundaries values, RMSE for each area calculated. 

 
for i = 1:6000 
if out(i)>=L1 && out(i)<=L2 
         NA(N)=out(i);N=N+1; 
         area1=sqrt(mse(NA)); 
else 
if out(i)>=U1 && out(i)<=U2 
            MA(M)=out(i);M=M+1; 
            area2=sqrt(mse(MA));  
else 
             DA(D)=out(i);D=D+1; 
             area3=sqrt(mse(DA)); 
end 
end 
end 

 

 

 

========================================= 
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Code-6; Measuring the similarity indicator 

clc; 

close all; 

clear all; 

 
data = xlsread ('allsimilar.xlsx'); 

in=data (1:50,1:6); 

 

 

s1=zeros(1,1); 

s2=zeros(1,1); 

s3=zeros(1,1); 

 

n=1; 

 

for i = 1:size(in,1); 

 

for k = 1:size(in,1) 

 

for j = 1:size (in,2); 

 

        s1(n,j) = in(i,j) * in(k,j); 

        s2(n,j) = in(i,j) * in(i,j); 

        s3(n,j) = in(k,j) * in(k,j); 

 

 

end 

 

     n=n+1;  

 

end 

 

end 

 

a = sum(s1')'; 

b = sqrt(sum(s2'))'; 

c = sqrt(sum(s3'))'; 

 

for i = 1:(size(in,1)*(size(in,1))) 

    sim(i)  = (a(i) /(b(i) * c(i)));         

 

end 

 sim = sim';        

AverageSimilarity= sum(sim)/size(sim,1); 

MaximumSimilarity = max(sim); 

MinimamSimilarity = min(sim); 

Cs1=zeros(1); 

Cs2=zeros(1); 

n=1; 

m=1; 

for i = 1:size(sim,1) 

 

if sim(i)>AverageSimilarity 

        Cs1(n)=sim(i); n=n+1; 

else 

        Cs2(m)=sim(i);m=m+1; 

end 

end 

 

==============================================================  
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Code-7; Confirmation (Costimulation) Achievement  

clc; 

clear all; 

close all; 

% ======= 

% Doubtful, g1, and g11 groups vector similarity measuring process 

 

ndata = xlsread ('123.xlsx','df'); % Doubtful vectors 

df = ndata(:,1:6); 

% %  

g1 = xlsread ('123.xlsx','g1'); % malware vectors of application 

behaviour. 

g11= xlsread ('123.xlsx','g11'); % Normal vectors of Application 

Behaviour. 

 

%=========== 

% Finding distance between each vector in df with all vectors in g1; 

 

z1=zeros(0); % to collect the distance measures 

k1=0; %  

sum1=zeros(0); % to collect sum of similarity for each vector in df 

M=0;  

ave1=zeros(0); % collect [average of distances] 

t1=zeros(0); % collect [df g1 distances] 

f1=1; 

mtrx1=zeros(0); % to collect [df ave1] 

n=0; % Number of vectors that have greater similarity than average 

n1=zeros(0); 

 

for i = 1:size(df,1) 

 

for j = 1:size(g1,1) 

 

        z1(i,j) = dist(df(i),g1(j)'); 

        t1(f1,1:13)=[df(i,1:6) g1(j,1:6) z1(i,j)];f1=f1+1; 

end 

 end 

 

%Finding the sum of all distance similarities for each vector in df with 

g1; 

for i = 1: size(df,1) 

 

for j = 1+M:size(g1,1)+M 

 

    k1=k1+t1(j,13); 

if t1(j,13)>= 0.893 

        n=n+1; 

else 

        n=n; 

end 

end 

    sum1(i) = k1; k1=0; M=M+size(g1,1); 

    n1(i) = n; n=0; 

end 

 

 

 

 

 

 

 

%Finding the Average of all distance similarities for each vector in df 

with g1; 
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for i = 1: size(df,1) 

 

    ave1(i) = sum1(i)/size(df,1); 

    mtrx1(i,1:9)=[df(i,1:6) ndata(i,7) ave1(i) n1(i)]; 

end 

 

%====================================== 

 

% Finding distance between each vector in df with all vectors in g11; 

 

z11=zeros(0); % to collect the distance measures 

k11=0; %  

sum11=zeros(0); % to collect sum of similarity for each vector in df 

M=0;  

ave11=zeros(0); % collect [average of distances] 

t11=zeros(0); % collect [df g1 distances] 

f11=1; 

mtrx11=zeros(0); % to collect [df ave1] 

n=0; % Number of vectors that have greater similarity than average 

n11=zeros(0); 

 

for i = 1:size(df,1) 

 

for j = 1:size(g11,1) 

 

        z11(i,j) = dist(df(i),g11(j)'); 

        t11(f11,1:13)=[df(i,1:6) g11(j,1:6) z11(i,j)];f11=f11+1; 

end 

end 

 

%Finding the sum of all distance similarities for each vector in df with 

g11; 

 

for i = 1: size(df,1) 

 

for j = 1+M:size(g11,1)+M 

 

    k11=k11+t1(j,13); 

if t11(j,13)>= 0.812 

        n=n+1; 

else 

        n=n; 

end 

end 

    sum11(i) = k11; k11=0; M=M+size(g11,1); 

    n11(i) = n; n=0; 

end 

 

 

%Finding the Average of all distance similarities for each vector in df 

with g11; 

 

for i = 1: size(df,1) 

 

    ave11(i) = sum11(i)/size(df,1); 

    mtrx11(i,1:9)=[df(i,1:6) ndata(i,7) ave11(i) n11(i)]; 

end 

 

 

 

% Comparison between df and g1 with g11 

% ============================ 
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for i = 1:size(df,1) 

 

if (mtrx1(i,8)>=0.893) && (mtrx11(i,8)=<0.812) && (mtrx1(i,9)>=73)... 

&& (mtrx11(i,9)=<81) 

        mtrx1(i,7)=mtrx1(i,7)+mtrx1(i,8)-mtrx11(i,8); 

elseif (mtrx11(i,8)>=0.812) && (mtrx1(i,8)=<0.893) && 

(mtrx11(i,9)>=81)... 

&& (mtrx1(i,9)=<73) 

        mtrx1(i,7)=mtrx1(i,7)+mtrx11(i,8)-mtrx1(i,8); 

else 

        mtrx1 (i,7)=mtrx1(i,7); 

end 

end 

 

%==================Group g2 and g22 =========================== 

 % Finding distance between each vector in df with all vectors in g2; 

 

z2=zeros(0); % to collect the distance measures 

k2=0; %  

sum2=zeros(0); % to collect sum of similarity for each vector in df 

M=0;  

ave2=zeros(0); % collect [average of distances] 

t2=zeros(0); % collect [df g1 distances] 

f2=1; 

mtrx2=zeros(0); % to collect [df ave1] 

n=0; % Number of vectors that have greater similarity than average 

n2=zeros(0); 

 

for i = 1:size(df,1) 

 

for j = 1:size(g2,1) 

 

        z2(i,j) = dist(df(i),g2(j)'); 

        t2(f2,1:13)=[df(i,1:6) g2(j,1:6) z2(i,j)];f2=f2+1; 

end 

 end 

 

%Finding the sum of all distance similarities for each vector in df with 

g2; 

 

for i = 1: size(df,1) 

 

for j = 1+M:size(g2,1)+M 

 

    k2=k2+t2(j,13); 

if t2(j,13)>= 0.0.914 

        n=n+1; 

else 

        n=n; 

end 

end 

    sum2(i) = k2; k2=0; M=M+size(g2,1); 

    n2(i) = n; n=0; 

end 

 

 

 

 

%Finding the Average of all distance similarities for each vector in df 

with g2; 

 

for i = 1: size(df,1) 

 

    ave2(i) = sum2(i)/size(df,1); 
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    mtrx2(i,1:9)=[df(i,1:6) ndata(i,7) ave2(i) n2(i)]; 

end 

 

%====================================== 

 

% Finding distance between each vector in df with all vectors in g22; 

 

z22=zeros(0); % to collect the distance measures 

k22=0; %  

sum22=zeros(0); % to collect sum of similarity for each vector in df 

M=0;  

ave22=zeros(0); % collect [average of distances] 

t22=zeros(0); % collect [df g1 distances] 

f22=1; 

mtrx22=zeros(0); % to collect [df ave1] 

n=0; % Number of vectors that have greater similarity than average 

n22=zeros(0); 

 

for i = 1:size(df,1) 

for j = 1:size(g22,1) 

 

        z22(i,j) = dist(df(i),g22(j)'); 

        t22(f22,1:13)=[df(i,1:6) g22(j,1:6) z22(i,j)];f22=f22+1; 

end 

end 

 

%Finding the sum of all distance similarities for each vector in df with 

g22; 

 

for i = 1: size(df,1) 

for j = 1+M:size(g22,1)+M 

 

    k22=k22+t1(j,13); 

if t22(j,13)>= 0.835 

        n=n+1; 

else 

        n=n; 

end 

end 

    sum22(i) = k22; k22=0; M=M+size(g22,1); 

    n22(i) = n; n=0; 

end 

 

 

%Finding the Average of all distance similarities for each vector in df 

with g22; 

 

for i = 1: size(df,1) 

    ave22(i) = sum22(i)/size(df,1); 

    mtrx22(i,1:9)=[df(i,1:6) ndata(i,7) ave22(i) n22(i)]; 

end 

 

 

 

 

 

 

%Comparison between df and g2 with g22 

% ============================ 

for i = 1:size(df,1) 

 

if (mtrx2(i,8)>=0.914) && (mtrx22(i,8)=<0.835) && (mtrx2(i,9)>=73)... 

&& (mtrx22(i,9)=<81) 

        mtrx2(i,7)=mtrx2(i,7)+mtrx2(i,8)-mtrx22(i,8); 
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elseif (mtrx22(i,8)>=0.835) && (mtrx2(i,8)=<0.914) && 

(mtrx22(i,9)>=81)... 

&& (mtrx2(i,9)=<73) 

        mtrx2(i,7)=mtrx2(i,7)+mtrx22(i,8)-mtrx2(i,8); 

else 

        mtrx2(i,7)=mtrx2(i,7); 

end 

end 

 

%===================== group g3 and g33  ======================= 

% Finding distance between each vector in df with all vectors in g3; 

 

z3=zeros(0); % to collect the distance measures 

k3=0; %  

sum3=zeros(0); % to collect sum of similarity for each vector in df 

M=0;  

ave3=zeros(0); % collect [average of distances] 

t3=zeros(0); % collect [df g1 distances] 

f3=1; 

mtrx3=zeros(0); % to collect [df ave1] 

n=0; % Number of vectors that have greater similarity than average 

n3=zeros(0); 

 

for i = 1:size(df,1) 

 

for j = 1:size(g3,1) 

 

        z3(i,j) = dist(df(i),g3(j)'); 

        t3(f3,1:13)=[df(i,1:6) g3(j,1:6) z3(i,j)];f3=f3+1; 

end 

end 

 

%Finding the sum of all distance similarities for each vector in df with 

g3; 

for i = 1: size(df,1) 

 

for j = 1+M:size(g3,1)+M 

 

    k3=k3+t3(j,13); 

if t3(j,13)>= 0.876 

        n=n+1; 

else 

        n=n; 

end 

end 

    sum3(i) = k3; k3=0; M=M+size(g3,1); 

    n3(i) = n; n=0; 

end 

 

 

 

 

 

 

%Finding the Average of all distance similarities for each vector in df 

with g3; 

 

for i = 1: size(df,1) 

 

    ave3(i) = sum3(i)/size(df,1); 

    mtrx3(i,1:9)=[df(i,1:6) ndata(i,7) ave3(i) n3(i)]; 

end 

 

%====================================== 
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% Finding distance between each vector in df with all vectors in g33; 

z33=zeros(0); % to collect the distance measures 

k33=0; %  

sum33=zeros(0); % to collect sum of similarity for each vector in df 

M=0;  

ave33=zeros(0); % collect [average of distances] 

t33=zeros(0); % collect [df g1 distances] 

f33=1; 

mtrx33=zeros(0); % to collect [df ave1] 

n=0; % Number of vectors that have greater similarity than average 

n33=zeros(0); 

 

for i = 1:size(df,1) 

 

for j = 1:size(g22,1) 

 

        z33(i,j) = dist(df(i),g33(j)'); 

        t33(f33,1:13)=[df(i,1:6) g33(j,1:6) z33(i,j)];f33=f33+1; 

end 

end 

 

%Finding the sum of all distance similarities for each vector in df with 

g33; 

 

for i = 1: size(df,1) 

 

for j = 1+M:size(g33,1)+M 

 

    k33=k33+t1(j,13); 

if t33(j,13)>= 0.817 

        n=n+1; 

else 

        n=n; 

end 

end 

    sum33(i) = k33; k33=0; M=M+size(g33,1); 

    n33(i) = n; n=0; 

end 

 

%Finding the Average of all distance similarities for each vector in df 

with g33; 

 

for i = 1: size(df,1) 

 

    ave33(i) = sum33(i)/size(df,1); 

    mtrx33(i,1:9)=[df(i,1:6) ndata(i,7) ave33(i) n33(i)]; 

end 

 

 

 

 

 

%Comparison between df and g3 with g33 

% =========================== 

for i = 1:size(df,1) 

 

if (mtrx3(i,8)>=0.876) && (mtrx33(i,8)=<0.817) && (mtrx3(i,9)>=64)... 

&& (mtrx33(i,9)=<59) 

        mtrx3(i,7)=mtrx3(i,7)+mtrx3(i,8)-mtrx33(i,8); 

elseif (mtrx33(i,8)>=0.817) && (mtrx3(i,8)=<0.876) && 

(mtrx33(i,9)>=59)... 

&& (mtrx3(i,9)=<64) 

        mtrx3(i,7)=mtrx3(i,7)+mtrx33(i,8)-mtrx3(i,8); 
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else 

        mtrx3(i,7)=mtrx3(i,7); 

end 

end 

 

%===================== group g4 and g44  ======================= 

 % Finding distance between each vector in df with all vectors in g4; 

 

z4=zeros(0); % to collect the distance measures 

k4=0; %  

sum4=zeros(0); % to collect sum of similarity for each vector in df 

M=0;  

ave4=zeros(0); % collect [average of distances] 

t4=zeros(0); % collect [df g1 distances] 

f4=1; 

mtrx4=zeros(0); % to collect [df ave1] 

n=0; % Number of vectors that have greater similarity than average 

n4=zeros(0); 

 

for i = 1:size(df,1) 

 

for j = 1:size(g4,1) 

 

        z4(i,j) = dist(df(i),g4(j)'); 

        t4(f4,1:13)=[df(i,1:6) g4(j,1:6) z4(i,j)];f4=f4+1; 

end 

end 

 

%Finding the sum of all distance similarities for each vector in df with 

g4; 

 

for i = 1: size(df,1) 

 

for j = 1+M:size(g4,1)+M 

 

    k4=k4+t4(j,13); 

if t4(j,13)>= 0.883 

        n=n+1; 

else 

        n=n; 

end 

end 

    sum4(i) = k4; k4=0; M=M+size(g4,1); 

    n4(i) = n; n=0; 

end 

 

 

 

 

 

%Finding the Average of all distance similarities for each vector in df 

with g4; 

 

for i = 1: size(df,1) 

 

    ave4(i) = sum4(i)/size(df,1); 

    mtrx4(i,1:9)=[df(i,1:6) ndata(i,7) ave4(i) n4(i)]; 

end 

 

%====================================== 

 

% Finding distance between each vector in df with all vectors in g44;  

z44=zeros(0); % to collect the distance measures 

k44=0; %  
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sum44=zeros(0); % to collect sum of similarity for each vector in df 

M=0;  

ave44=zeros(0); % collect [average of distances] 

t44=zeros(0); % collect [df g1 distances] 

f44=1; 

mtrx44=zeros(0); % to collect [df ave1] 

n=0; % Number of vectors that have greater similarity than average 

n44=zeros(0); 

 

for i = 1:size(df,1) 

 

for j = 1:size(g44,1) 

 

        z44(i,j) = dist(df(i),g44(j)'); 

        t44(f44,1:13)=[df(i,1:6) g44(j,1:6) z44(i,j)];f44=f44+1; 

end 

end 

 

%Finding the sum of all distance similarities for each vector in df with 

g44; 

 

for i = 1: size(df,1) 

 

for j = 1+M:size(g44,1)+M 

 

    k44=k44+t1(j,13); 

if t44(j,13)>= 0.827 

        n=n+1; 

else 

        n=n; 

end 

end 

    sum44(i) = k44; k44=0; M=M+size(g44,1); 

    n44(i) = n; n=0; 

end 

 

 

%Finding the Average of all distance similarities for each vector in df 

with g44; 

 

for i = 1: size(df,1) 

 

    ave44(i) = sum44(i)/size(df,1); 

    mtrx44(i,1:9)=[df(i,1:6) ndata(i,7) ave44(i) n44(i)]; 

end 

 

 

 

%Comparison between df and g4 with g44 

% ============================ 

for i = 1:size(df,1) 

 

if (mtrx4(i,8)>=0.883) && (mtrx44(i,8)=<0.827) && (mtrx4(i,9)>=69)... 

&& (mtrx44(i,9)=<76) 

        mtrx4(i,7)=mtrx4(i,7)+mtrx4(i,8)-mtrx44(i,8); 

elseif (mtrx44(i,8)>=0.827) && (mtrx4(i,8)=<0.883) && 

(mtrx44(i,9)>=76)... 

&& (mtrx4(i,9)=<69) 

        mtrx4(i,7)=mtrx4(i,7)+mtrx44(i,8)-mtrx4(i,8); 

else 

        mtrx4(i,7)=mtrx4(i,7); 

end 

end 

%======================================================= 
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Code-8; Training SVM classifier model to detect malicious API calls 

 

clc; 

clear all; 

close all; 

 

 

indata= xlsread ('Indata.xlsx','Normaliz(indata)'); 

 

in=indata(1:18526,1:6); 

tr=indata(1:18526,7:7); 

testin=indata(18527:24526,1:6); 

testout=indata(18527:24526,7:7); 

 

 

 

svmStruct = svmtrain(in, tr); 

 

 

classes = svmclassify(svmStruct,testin); 

 

 

 

 

========================================== 
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Code-9; SOM Classifier model 

 

clc; 
clear all; 
Close all; 

 

 
% Solve a Clustering Problem with a Self-Organizing Map 
% Script generated by NCTOOL 
% 
% This script assumes these variables are defined: 
% 
%   simpleclusterInputs - input data. 

 
num = xlsread ('nxm APIMAtrix-1.xlsx'); 
num = num (:, 1:6)'; 

 
% Create a Self-Organizing Map 
dimension1 = 2; 
dimension2 = 2; 
net = selforgmap([dimension1 dimension2]); 

 
% Train the Network 
[net,tr] = train(net,num); 

 
% Test the Network 
d = net(num)'; 

 
xlswrite('A.xlsx', d, 1, 'A1'); 

 
figure (1),plotsomhits(net,num) 

 

=========================================== 
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Code-10; Measuring the accuracy of k-means algorithm to classify API 

calls  

 

clc; 

clear all; 

close all; 

 

indata= xlsread ('k-meandata.xlsx','4'); 

X=indata(1:2000,1:6); 

 

opts = statset('Display','final'); 

 

[idx,ctrs] = kmeans(X,2,... 

'Distance','city',... 

'Replicates',5,... 

'Options',opts); 

 

 

plot(X(idx==1,1),X(idx==1,2),'b.','MarkerSize',12) 

hold on 

plot(X(idx==2,1),X(idx==2,2),'r.','MarkerSize',12) 

plot(ctrs(:,1),ctrs(:,2),'kx',... 

'MarkerSize',12,'LineWidth',2) 

plot(ctrs(:,1),ctrs(:,2),'ko',... 

'MarkerSize',12,'LineWidth',2) 

legend('Normal','Malware','Centroids',... 

'Location','NO') 
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Code-11; Similarity measure in statistical based (Frequently) Classifier 

model 

 

clc; 
clear all; 
close all; 

 
indata = xlsread ('StatVectors.xlsx','StatVector'); 
m=indata(1:1500,1:12); 
n=indata(1501:2000,1:12)'; 
z=zeros(1500,1);x=1; 

 
for i = 1:1500 
for j =1501:1550 
        z(x) = dist(m(i),n(j));x=x+1; 
end 
end 

 
g=zeros(1,1500); 
a=1;b=1500;k=1; 
c=z(1:750000,1:1); 

 
for j = 1:500 

 
for i = a:b 

 
g(j,k)= z(i,1);k=k+1; 

 
end 
    a=a+1500;b=b+1500;k=1; 
end 

 
ma=zeros(1);x=1; 
na=zeros(1);y=1; 
va=zeros(1);v=1; 
g2=zeros(1,3); 

 
for  i = 401:500 
for j = 1:1500 
if g(i,j)>=0.7 
           ma(x)=g(i,j);x=x+1; 
else 
if g(i,j)<=0.3 
           na(y)=g(i,j);y=y+1; 
else 
               va(v)=g(i,j); 
end 
end 
end 

 
    g2(i,1:3)=[size(ma,2),size(na,2),size(va,2)]; 

 
end 

 

 

 



 

205 
 

Code-12; Similarity measure in statistical based (Probability) Classifier 

model 

======================================== 

% This Code can read a list of API Functions that extracted for a PE 
% with their probability measure. The Code can compare the probability of  
% these function with the known malicious probability rate of them 
%   ================================================================ 
clear all; 
clc; 
%% 
% Reading the reference file of Malicious rate Probability 
[num1,txt1,raw1] = xlsread('MProbabilityOfFunctions.xlsx'); 
m=size(txt1,1); 
%% 
% Reading the probability rate of each API function that might be called  
% by the suspected file 
[num2,txt2,raw2] = xlsread('ProbaOfExtractedFunction.xlsx'); 
%================================================================= 

 
% Creating the vector X 
n = size (txt2,1); 
m = size (txt1,1); 
X= {n,m}; 
M=0;  

 
% Searching for indexing 

 
for i=1:n 
for j = 1:m 
if isequal (txt2(i,1),txt1(j,1)) && num1(i,1) >=num2(i,1) 
          X{i,1}= (txt2(i,1));X{i,2}=(num2(i,1));M=M+1; 

 
end 
end 
end 
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Appendix-3: True and False rates in tested models included ACC 
 

Models Tests TP TN FP FN Accuracy 

ANN K1 2561 2489 439 511 84.17% 

  K2 2443 2362 557 638 80.08% 

  K3 2431 2469 569 531 81.67% 

  K4 2511 2615 489 385 85.43% 

  K5 2574 2483 426 517 84.28% 

  K6 2570 2646 430 354 86.93% 

  K7 2378 2477 622 523 80.92% 

  K8 2342 2448 658 552 79.83% 

  K9 2525 2548 475 452 84.55% 

  K10 2464 2665 536 335 85.48% 

Median   2488 2486 513 514 84.23% 

SVM K1 2509 2625 491 375 85.57% 

  K2 2525 2574 475 426 84.98% 

  K3 2372 2426 628 574 79.97% 

  K4 2494 2542 506 458 83.93% 

  K5 2362 2449 638 551 80.18% 

  K6 2594 2419 406 581 83.55% 

  K7 2579 2469 421 531 84.13% 

  K8 2533 2581 467 419 85.23% 

  K9 2371 2511 629 489 81.37% 

  K10 2354 2607 646 393 82.68% 

Median   2502 2527 499 474 83.74% 

SOM K1 2379 2476 621 524 80.92% 

  K2 2296 2315 704 685 76.85% 

  K3 2281 2176 719 824 74.28% 

  K4 2398 2509 602 491 81.78% 

  K5 2344 2442 656 558 79.77% 

  K6 2153 2356 847 644 75.15% 

  K7 2305 2541 695 459 80.77% 

  K8 2269 2387 731 613 77.60% 

  K9 2249 2506 751 494 79.25% 

  K10 2491 2201 509 799 78.20% 

Median   2301 2415 700 586 78.73% 

 



 

207 
 

Models Tests TP TN FP FN Accuracy 

K-mean K1 2399 2464 601 536 81.05% 

  K2 2218 2397 782 603 76.92% 

  K3 2267 2336 733 664 76.72% 

  K4 2275 2384 725 616 77.65% 

  K5 2409 2597 591 403 83.43% 

  K6 2276 2360 724 640 77.27% 

  K7 2322 2558 678 442 81.33% 

  K8 2304 2359 696 641 77.72% 

  K9 2273 2526 727 474 79.98% 

  K10 2399 2240 601 760 77.32% 

Median   2290 2391 710 610 77.69% 

Statistical: 

Frequency 
K1 73 78 27 22 75.50% 

  K2 79 77 21 23 78.00% 

  K3 67 74 33 26 70.50% 

  K4 73 76 27 24 74.50% 

  K5 78 79 22 21 78.50% 

  K6 73 78 27 22 75.50% 

  K7 76 78 24 22 77.00% 

  K8 76 79 24 21 77.50% 

  K9 72 69 28 31 70.50% 

  K10 74 71 26 29 72.50% 

Median   74 78 27 23 75.50% 

Statistical: 

Probability 
K1 81 78 19 22 79.50% 

  K2 75 80 25 20 77.50% 

  K3 79 72 21 28 75.50% 

  K4 77 82 23 18 79.50% 

  K5 79 77 21 23 78.00% 

  K6 75 81 25 19 78.00% 

  K7 76 79 24 21 77.50% 

  K8 81 72 19 28 76.50% 

  K9 76 75 24 25 75.50% 

  K10 78 77 22 23 77.50% 

Median   78 78 23 23 77.50% 
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Models Tests TP TN FP FN Accuracy 

ACC K1 2749 2659 251 341 90.13% 

  K2 2517 2576 483 424 84.88% 

  K3 2727 2641 273 359 89.47% 

  K4 2691 2801 309 199 91.53% 

  K5 2781 2638 219 362 90.32% 

  K6 2782 2801 218 199 93.05% 

  K7 2552 2652 448 348 86.73% 

  K8 2463 2485 537 515 82.47% 

  K9 2749 2720 251 280 91.15% 

  K10 2720 2802 280 198 92.03% 

Median   2724 2656 277 345 90.23% 

 

 

 


