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Abstract

Software verification is an important element oftware reliability. The significance
and importance of verification have been recognibgdBill Gates in his speech in
WInHEC 2002. The software verification allows pragr's specification to be formally
proved to ensure the specification verified thegpam before its execution time using
static analysis. However, in the context of obdented program, studies show there is a
need to have formal specifications for method agerg because the overriding feature
plays important role in allowing program reusapiliiThis thesis develops an abstract
formal framework for invariant generation of statoalysis for method overriding in
object-oriented program using inheritance. It &e&s10on late bound method in the class
invariants generation. There are two main problanse during the process of generating
class invariant which are reverification of clagsariant and over-approximation of late
binding call. In the context of method overridirtige problem of late binding call happens
when the abstract semantic function uses behawsolatlyping that is restricted to the rule
of contravariance and covariance. The abstract dbrfinamework using abstract
interpretation theory is proposed to overcome ttublem above. The framework exploits
the capability of abstract interpretation methodriaking program analysis automated. It
also overcomes the problem of generating the iamgsifor late binding call of method
overriding with less restrictions rules of lazy betoral subtyping method. The use of lazy
behavioral subtyping results to the overridden methsemantics has a not over
approximated invariant. The framework produces égaations for two invariants, which
are modular invariants for inheritance and invadgafor method overriding. A scenario

based evaluation is conducted to validate the iamts and to compare the proposed



framework using lazy behavioral subtyping with tlfiemework using behavioral

subtyping.



Abstrak

Pentahkikan perisian adalah satu elemen pentingnddebergantungan perisian.
Signifikan dan kepentingan pentahkikan telah d@étoleh Bill Gates dalam ucapannya di
WInHEC 2002. Pentahkikan perisian membenarkan fkesi program diformalkan secara
pembuktian untuk memastikan spesifikasi terebut taldik program sebelum masa
laksananya menggunakan analisa statik. Akan tetdpi,dalam konteks program
berorientasikan objek, kajian menunjukkan bahawdagat keperluan untuk mempunyai
spesifikasi formal bagnethod overridingkerana cirioverriding memain peranan penting
dalam membenarkan keboleh-gunaan semula prograsis ir@ membina rangka kerja
formal yang abstrak untuk menghasilkarvariant bagi analisa statik untuknethod
overriding dalam program berorientasikan-objek menggunakavapgan. la memfokus
kepada kemodularan dan fungsi ikatan lewat dalanmghessilkan class invariants
Terdapat dua masalah utama yang berbangkit semasespmenghasilkariass invariants
iaitu pentahkikan ulangaclass invariantsdan anggaran melampau bagi panggilan ikatan
lewat. Dalam konteksnethod overridingmasalah panggilan ikatan lewat berlaku ketika
fungsi semantic abstrak menggunalaehavioral subtypingyang mengikut peraturan
contravariancedancovariance Satu rangka kerja formal yang abstrak dicadangkdok
mengatasi masalah tersebut. Rangka kerja itu mdmnfameluang keupayaaabstract
interpretationdalam menjadikan analisa program automasi. la jugayelesaikan masalah
menghasilkaninvariants untuk panggilan ikatan lewat bagiethod overridingdengan
kurang ketegasan peraturan oleh kaetity behavioral subtypingPenggunaariazy
behavioral subtypingnemberi keputusan kepada semantikrridden methodnempunyai
anggaraninvariant yang tidak melampau. Rangka kerja tersebut merighasdua

persamaan untuk duavariants iaitu invariant bermodular bagi pewarisan darvariant



untukmethod overridingSatu penilaian berasaskan senario dijalankarkunangesahkan
invariants dan untuk membandingkan rangka kerja menggundkay behavioral

subtypingyang dicadangkan dengan rangka kerja mengguriaaavioral subtyping.

Vi
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Chapter 1
Introduction

In the name of God,

who is Most Gracious and Most Merciful

Reliability is an important aspect of software. t&@fres, when used, are usually
assumed to be reliable. However, there is no gteeathat a software will function as
intended or will not break. That is why most softas come with disclaimers but not
guarantees. Therefore, if a software damages car&ighata, there is no compensation to
be made. To ensure reliability, softwares are cbeckor correctness before being

deployed. This is done using software testing.

Software testing is a process designed to enbateat program code does what it is
meant to ddMyers, 2008). Consider the following simple exaepl
while (number<=3) {
if (number<=3) then
number = number + 1; }
System.out.print(number);
Theif statement adds 1 tmumberuntil it exceeds 3, then the program displaywvatsie. A

simple unit testing is done, for example, by iritimg numberto 0. Table 1.1 below shows

the executed code for different values and theaiults:



Table 1.1: Executed code with values and results

Value for number Executed code Result
0 number = number + 1 number =1
1 number = number + 1 number = 2
2 number = number + 1 number = 3
3 number = number + 1 number =4
4 cout<<number Printing value of number which is 4

The result shows that the program works succegstdtbwever, ifnumberis not initialized

at the beginning of the code, the program will takeumber from the heap memory for
example -234987 to execute the code. The codeaheil display a similar output, but with
longer execution time. Hence, software verificatisn used to check the program’s

correctness.

Software verification is a process of checkinggoaomn correctness based on software
specification of the software. The significance amgbortance of verification have been
recognized by Bill Gates in his speech in WinHE©Q20

Things like even software verification has been Hay Grail of computer
science for many decades, but now in some key afeasxample, driver
verification, Microsoft is building tools that cato actual proof about the
software and how it works, in order to guarantdiabdity .(Gates, 2002) .
The software verification allows program’s spedfion to be formally proved, for all
possible runs that is held during program executiBarkinson, 2005). The checking

process is based on set theory logic and abstigebra. It is applied to various types of

programming languages including object-orientedypmming language.



1.1 Motivation

Software reliability in any software developmentcisicial to ensure that a software
does without fail. Software systems continue toargio size and complexity, as can be seen
in retailing, manufacturing, telecommunication, ammdnsportation that utilize aviation
system, real-time system, concurrent system, hybystem, reactive system, and web-
based system. Sometimes, a program stops aftemgufor certain duration. This is seen
on flight billboard monitor at the airport, annoeneent or advertisement billboard, or
shopping mall map system. However, this situat®anacceptable to any reactive system
that needs to run continuously without stoppingislcrucial for the reactive system of
medical hardware because a failure can be fatalekample, the failures by Ariane 5 in
1996 to detect the coordinate of its location, itesn more than USD370 million loss even
though there is no human in the flight during tlmasb (Dowson, 1997). Such software
failure happened again in 2004, when Mars RoveritSpiled to send data to earth due to
lack of flash memory capacity (Reeves, 2004). Bath prominent examples of software
failure due to lack of software reliability and ricause of hardware failure. In the current
object-orientation software development, softwase structured and developed in

components. However, break downs still persisttdues complexity.

1.2 Statementsof Problems

Due to the weakness of human being, errors areethidsring the verification process.
Thus, automated process is required to overcomeptbblem. It is done by having
automated specification production where invaria@seration can facilitate in producing

accurate result for the verification process. Hosvevor the invariants in object-oriented
3



program, specifically in the context of method eibBng, automation is achieved by
considering one main issue; late bound method ¢atl$ate binding call). There are two

problems in developing the invariants for late longdcall.

1. Restriction rule on the notion of behavioral sulrtgp— For the program method, the
rule follows the notion of contravariant and cowati which enforces properties of a
method redefined in a subclass must satisfy akksiligss properties.

2. Class invariant keeps on changing every time ndwctass is added into the structure
of inheritance (reverification of old classes) —emhthe inheritance hierarchy is
extended with new subclass, the whole structureveisfied again including the

superclass and subclass that have been verifietbpsty.

1.3 Research Objectives

This thesis aims to develop an abstract formal éwork for static analysis of
verification on method overriding. Based on the ,aime thesis objectives are as follows:

1. To analyze current frameworks on generating invasiain object-oriented
programming language for static analysis focusimg ppograms with method
overriding.

2. To design an abstract formal framework for vertima on method overriding
focusing on invariants generation using abstraterpmetation and lazy behavioral
subtyping.

3. To validate the formalization of the abstract forfnamework using case studies.



1.4 Research Methodology

This research consists of four main tasks; 1) amalyf related works, 2) development
of abstract formal framework, 3) proof of concepthe abstract formal framework, and 4)
validation of the abstract formal framework. All tthe tasks are based on the three
objectives stated i§1.3. The methods used achieve each objective isnsuized in Table

1.2 below. All objectives are achieved by contribatists in the table.

Table 1.2: Research Methods

Chapter/
Objectives Methods Contribution
Section
1. To analyze - Review articles on program | §2.1- 1. Analysis of works
current analysis, formal verification, | §2.4 on verification
frameworks and verification on object- program using
on generating oriented programs. static analysis
invariants in | - Summarize the importance of §2.3 2. Analysis of static
object- method overriding. analysis methods
oriented | - Summarize the concept of | §2.4-
programming program static analysis. §2.5
language for | — Apalyze methods of static | §2.6
static analysis
analysis « Compare the methods of
focusing on static analysis based on
programs lines of code, human
with method intervention, and concretg
overriding. or abstract characteristics.
— Conduct an analysis on §2.9
related works of verification
object-oriented programs
with subtyping.
* Compare the related
works with criteria related
to non-reverification
feature of method
overriding verification.
» Compare the related
works with techniques




used to verify method
overriding.

. To design an

Define concrete semantics @

f Chapter

Equations for:

formalization
of the

Evaluate the result of
invariants from the equation

abstract object-oriented programming 4 1. invariant in
formal language (OOPL). inheritance
framework — Define abstract domains 2. invariant in method
for - Define abstract semantics overriding
verification | — prove the abstract semantics
onmethod | _ pevelop equations on
overriding invariants generation for
focusing on class, inheritance, and methpd
Invariants overriding.
generation
using abstrac
interpretation
and lazy
behavioral
subtyping.
. Tovalidate |- Validate the equations using| Chapter | 1. Result analysis of
the two case studies. 5 case studies using

invariant generation
by behavioral

abstract used lazy behavioral subtyping and lazy
formal subtyping and behavioral behavioral
framework subtyping using the case subtyping.

using case studies.

studies.

1.5 ThesisOutline

This introduction chapter is followed by a litenstureview on automated software
verification for method overriding i€hapter 2. The importance of method overriding is
discussed. This includes the usage of method oWegrias reusability and specialization in
programming. Then, static analysis methods ande@lavorks are analyzed to identify
improvements needed for better methods for vetibcaand to understand problems

involved during verification. InChapter 3, problems on automated linear invariants



generation are discussed using a language cakebdlL. Based on the problems identified,
list of potential solutions are studied. Theref@esolution is proposed that shows methods
and features to solve each problem.Ghapter 4, the formalization of abstract formal
framework of invariants generation for method omng is presented. The framework
consists of an introductory example, concrete sydtamains, concrete semantic domains,
abstract semantics, and abstract domains of objemtted programming languages.
Chapter 5 discusses the results of the generated invarisitgy two case studies. Both
case studies generate invariants using behaviobd&yging and lazy behavioral subtyping.
Lastly, in Chapter 6, the thesis ends with an explanation on the overaitk and future
works that can be done. It also concludes its dmrtion to the body of knowledge in term

of its strengths and limitations.



Chapter 2
Automated Software Verification for
Method Overriding

History does not repeat itself, it does rhyme
-Mark Twain

This chapter provides the background informationaatomated software verification

for method overriding and related works. Its aimtasshow findings from reviews of
literatures on suitable method for conducting stanalysis. It discusses the important

features and problems on automated method ovegriderification and its importance
towards software development. It also analysedoust and related works by comparing
them using features and variables of static amalydie analysis determines the methods

and techniques in producing invariants.

2.1 Object-Oriented Programming Language (OOPL)

A programming language is a language to prograpstes or software executed by a
computer or a machine-readable device. Simula asfitist programming language that
models objects of a simulation as program objdgiter, Stroustrup (1987) came out with
the idea of managing programs based on class gadtplhich is adopted from Simula. A
class is a description of a set of objects thatesttee same attributes, operations, methods,
relationships, and semantics (OMG, 2001). An obigen instance that originates from a

class. It is structured and behaves according goclass (OMG, 2001). Therefore,



Stroustrup (1987, p.70) defined “object-orientedgpamming as a programming using
inheritance”. Then, in 1997, an object-orientedigiess defined as the construction of
software systems as structured collections of abisttata type implementations (Meyer,
1997, p.59). By considering all definitions abotlegre are three characteristics of OOPL,;

abstraction, inheritance, and polymorphism. Theithiascuses on inheritance.

2.2 Inheritance

Programmers use object-oriented technique in tthesign and program due to its
program reusability for software maintenance (Esgeld Groenewegen, 2000). The main
characteristic that supports program reusabilitynigeritance. Inheritance in a program
means the program must consists at least two clagk&h are superclass and subclass
(Dahl et al., 1966). Superclass acts like a pactass where it has data and methods that
are inherited by the subclass that acts like aldiéss. Figure 2.1 illustrates the inheritance
relationship. The Figure 2.1 shows there are tvassds called aSeometricFigureand
Rectangle The GeometricFigurehas one data nameaitle that is type of integer and one
method namedalcArea()that return an integer value. TRectanglehas one data named
areathat is of type integer. It also has one methadetcalcArea()that returns an integer
value. The arrow shows a direction frdRectangleto GeometricFigure which means

Rectanglds subclass tGeometricFigure



GeometricFigure Rectangle

side: int <} area: int

calcArea() : int calcArea() : int

Figure 2.1: Inheritance Relationship

Taivalsaari (1996) defined the basic idea of iithece as the fact that new object
definitions can be based on existing ones; wheeva abject class is defined, only those
properties that differ from the properties of theedfied existing classes need to be
declared explicitly, while the other properties atgomatically extracted from the existing
classes and included in the new class. Using theemmental modification mechanism

proposed by Wegner et al. (1988) and Taivalsd®94), inheritance is presented using a

maxim
R=P®AR
where Ris newly defined object or class,
P is properties inherited from existing object asd,
A R is incrementally added new properties that difiéisgeR from P,
@ is an operation to combineR with the properties of P.
Therefore, the operatio® makes R contains the properties of P and its onepepties.
However, the incremental modification &fR may introduce properties that override those

of P so as to redefine or cancel certain propedtié¢s

Meyer (1997) defined inheritance using two différgiews: module view and type

view.
(1) A module consists of a set of program services doubed by the end users. With

inheritance, every new service is provided withdetining all the services that have

10



been developed using the module. It is done by lgiradding new services to the
existing modules. Inheritance, as in the moduéwyiis meant for reusability purpose
where the inheritance is used to start from theigdesy phase of software
development.

(2) A type consists of a set of objects with operatiddsing the type view, inheritance is
meant for reusability and extendibility representbd is-a relation using dynamic
binding. Dynamic binding or dynamic dispatch isragess when a method of an object
is generated or called not at compile time butuattrme. The object uses inheritance
hierarchy to decide what method to apply to its8lfice the process of binding object

and method occurs later during run time, the pmcealso called as late binding call.

Inheritance allows programmers to modify their cagerementally. For example, by
referring to Figure 2.1, the programmers code desysby having a superclass named
GeometricFigureand a subclass name&ectangle The system can calculate area of other
geometric figures by adding new subclasses, €ggle and Triangle Therefore, the
system is a complete system where it can calcal&® of any geometric figures. The easy
modification process is important to fulfill theggram’s later requirement. It is not only
classes that are added to the system but the matitiin can also be applied to the class
methods. Methods that have the same purpose watlsalme name can generate different
outputs based on their definitions. For examplethoucalcArea() exists in both class
GeometricFigureandRectanglewvhere both of them has one purpose which is toutate
area of a figure. However, both methods give dféroutputs. This is called method

overriding.

11



2.3 Method Overriding

Objects use methods in a class to perform opematidocording to Martin and Odell
(1998), a method is a processing specificatiorafooperation. It determines the behavior
of the object. There are two type of method in OOWhich are method overloading and

method overriding.

Method overloading is when two or more methods hlxeesame name but different
argument or parameter. It is used when the methml® the different requirement
represents same conceptual operation using santedneame (Gil and Lenz, 2012). For
example, in Figure 2.2, there are twaprint() methods. The first one has one argument
namedradius and the second one has two arguments nanaedly. Even though they use
the same method name, each method can be calleifferent time based on their

arguments.

void imprint (int radius) {
System.out.print(*draw a circle”);}

void imprint (int X, int y) {
System.out.print(“draw a rectangle”) ;}

Figure 2.2imprint() methods

On the other hand, method overriding is when naghwith the same name,
arguments or parameters, and return types butreliffeoperation in both superclass and
subclass. It is one of the essences of inherittrateallows methods in subclass to override
the implementation of already defined superclasedi¥ér et al., 1988). This allows the

implementation to be specialized and still reusabte example, in Figure 2.3 for the class
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Staff, we define salary for all staff by adding the lbasalary with 10% or 5% of the profit.

However, clasSalesPerson has extra salary with extra commission.

public class Staff {

private int basicSalary;
public Staff() { }
public void giveCom ssion(int profit) {
basi cSal ary = basicSalary + 0.1 * profit; }
%

public class SalesPerson extends Staff {
private int salary;
public SalesPerson () { }
public void giveCom ssion(int profit) {
salary = basicSalary + 0.05 * profit; }

Figure 2.3: clasStaff

The implementation of method overriding realizes is-a relationship of inheritance.
The relationship describes an object as a spegal of another superclass. Not only can
the subclass methods share properties from itscdagse method, they can also redefine the
superclass method’'s operation in the subclass metfibe capability of sharing the
properties is called subclassing, whereas the déagatf redefining is called subtyping.
Formally, “subclassingis an implementation mechanism for sharing code and
representation{Taivalsaari, 1996, p.446). Subtyping acts as @& signature that exists in

inheritance with substitutability principle.

231 Useof Method Overriding

Method overriding is applicable for the purpose retisability and specialization.
Reusability is the capacity for something to bedus®re than once. In object-oriented

programming, the programmers can use created ofmjaoy times for different scenarios.
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The object can be a program, component, or interf&pecialization means making
something suitable for a specific aiin.object-oriented programming, a specialized abjec
is instantiated using specific data and methodedas its requirement. It is more specific

compared to the object it is generated from.

23.1.1 Method Overriding for Reusability

Reusability is a key element of object-orientedinimeritance, the reusability feature is
implemented by creating a subclass that uses datethod of superclass. Reuse concept
is most beneficial in object-oriented becausevesaa lot of time and energy in coding and
understanding code. A programmer can reuse théirexisode by modifying the code to
suit new applications. In fact, there are many ctisj¢hat is easily called up and combined
together to produce applications. The ability tosee code relies on the ability of the
programmer to develop a big application from ergtmaller components. Therefore, the
programmer has to know how to install, manage ck@ge the components. With method
overriding, the programmer can use the same narnfeaxisting method in the superclass
to appear again in subclass. However, the methaddiféerent definition based on its
requirement. The overridden method can call thehotkin the superclass as part of its
definition. Therefore, the programmer does noteh&v think of other names for the
method if the action is more or less the sametii®methodiraw() in Figure 2.4 below, it

can draw different shape depending on the defmitio
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public class Shape {
private int sidel;
public Shape() {}
public int getData() {
return sidel; }
public void setData(int x) {
this.sidel=x; } }

public class Square extends Shape {
private int side2;
public Square() { }
public int getData() {
return side2; }
public void setData(int a) {
t hi s. Shape: : set Data(a) ;
this.side2 = a; }
public void draw() {
for(int i=1; i<=this.Shape::getData(); i++) {
for(inti=1; i<=this.getData();i++)
System.out.print(“*");
System.out.printin(\n"); } }

Figure 2.4:Shapeclass andquareclass

Shape class is a superclass $fuare class where the code segment is to draw a square

shape by using asterisk ** as shown in Figure ZHe Shape class has one data sigez

and three methods: constructor, get valusiddz (getData()) that gives a value teidez
(setData(int x)). Square class has one data whichsigle2 and four methods which are
constructor, get value afde2 as defined irgetData(), set same value for botiidez and
side2 asdefined insetData(int a), and draw a square as defineddmaw(). Overridden
method from subclasSquare which is setData() reuses code from methadtData() of
super class by callinghis.Shape::setData(a). The purpose is to give the same value for

both sides.
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2.3.1.2 Method Overriding for Specialization

Specialization is implemented in subclass in ordemake the subclass’s behavior
more specific. It gives a privilege to superclassi¢fine a method as general as it can be.
The overridden method in the subclass has a fdlhilen of what action the method
exactly has to doShape class literally is understood as any shape. It bancircle,
rectangle or triangle. It cannot draw any shapal uints fully defined by its subclass.

Figure 2.5 shows clag®ctangle that has been defined so that it can draw a rgletan

public class Shape {

private int sidel;

public Shape() {}

public int getData() {
return sidel; }

public void setData(int x) {
this.sidel=x; } };

public class Rectangle extends Shape{

private int side2;

public Rectangle() { }

public int getData() {
return side2; }

public void setData(int a) {
this.Shape::setData(a*5);
this.side2 = a; }

public void draw() {
for(int i=1; i<=this.Shape::getData();i++) {
for(inti=1; i<=this.getData();i++)
System.out.print(“*");
System.out.printin(\n"); } }

Figure 2.5: ClasShapeand subclasRectangle

The subclas®ectangle is implemented to specialize the behavior of cfgme which
is to draw a rectangle. It has one data, whidlidis2, and four methods, which are method
constructor, method to get valuesiade2, method to give new value tadez of super class

by multiplying five with the value, and method tcad/ a rectangle. Overridden method of
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setData() changes the original operation of super clasmfsetting an integer number to

side1 to five times the value afdex.

With the explanation i1§2.3, we cannot deny the importance of method overriding
software development. Thus, there is a need torertke code is well-written and correct
to avoid unexpected termination or behavior frora gnogram. To achieve the above, a

programmer has to check the program’s correctngsg goftware verification.

2.4 Software Verification

Software verification is a formal process to chepkcification of a program. The idea
of software verification is in response to the dwes “are we building the program
right?”. In contrast, software validation is in pesise to the question; “are we building the
right program?” (Baresi et al., 2006). The proaafsgerification is to detect programming
errors or to prove the absence of errors. It apgbemal method to formalize the program
in term of its grammatical well-formedness of thatax, interpreting the semantics of
coded statements in a meaningful and precise way,iaferring information from the

formal specification (Lamsweerde, 2000). Hences dalled formal software verification.

Formal specification used for software verificatisnan expression of mathematical
description of software. At the abstraction levtlis a collection of properties a system
should satisfy. It proves the program’s correctnggshecking the consistency between
programs and the expected properties (Lamsweefiff))2In 1960s, the specification is

done by annotating the code with the states basepepies at specific points in the
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program (Floyd, 1967). These properties are cugtethivith special techniques to cater
different kinds of program, e.g., data structureggpam, concurrent program, and object-

oriented program.

In order to conduct software verification, there &wo types of program analysis that
can be done: static analysis and dynamic anal@itic analysis uses proven formal
specification for correctness purpose. Therefongsogrammer has a chance to correct the
program before failure happens. Dynamic analy$ss, known as software testing, is used
to check program behaviors at actual execution.tifine analysis is on the exact code of
the program. The programmer does not need to appabe or abstract the behavior of the
program. However, the analysis results cannot beergéized for future executions.
Therefore, there is no guarantee that the testrs@lkpossible program executiofianst,

2003).

25 Static Analysis

Jackson et al. (2000) defined static analgsisthe process of examining program code
without executing the program in order to obtaifoimation that is valid for all possible
executions” (p.133). It offers static compile-time techniques for predicting saied
computable approximations to the set of valuesadrakiors arising dynamically at run-
time when executing a program on a computer” asaegd by Nielson, et al. (2005, p.1).

It is used for program optimization and programreciness to ensure software reliability.
It enables the checking of the behaviors of theym for all input vectors (D'Silva et al.,

2008). The potential errors cannot be found dutésging process, but it may appear after
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the program has been executed for a certain pefioel typical examples are null pointer,

array bound, division by zero, and buffer overflow.

Three main techniques are used in conducting statalysis. They are assertions,
model checking, and abstract interpretation. Tasilate each technique consider the

simple code using method overriding in Java in Fegu6.

public class Shape {

private int sidel = 3;

public Shape(){}

public int getData() {
return sidel;}

public void setData(int x){
this.sidel = x;}};

~NOoO O~ WNBE

8 public class Square extends Shape{
9 private int side2=3;

10 public Square() {}

11 public int getData()}{

12 return side2;}

13 public void setData(int a){

14 super.setData(a*5);

15 this.side2 = a;}

16 public void draw(int i){

17 int j;

18 for (i=1; i<super.getData();i++){
19 for (j=1; j<this.getData();j++)
20 System. out .print("*");

21 System.out.printin("\n");} } }

Figure 2.6: Sample Program

251 Assertion

Assertion is a predicate statement inserted atifsppoint of a program (Hoare,1981).
In 1967, Floyd used assertions as foundation tocspaoof of program correctness. He
specified assertions at the point of the progradled® ensure its correctness. Using this

idea, Hoare (1969) came out with a set of axiomd anhes of inference to proof the
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assertions or properties of the program using aatansemantics, later known as Hoare
Logic. The idea is that each program statementtnmase a precondition and a
postcondition using predicate logic expressionRsS§ {Q}; where P is a precondition, Q
is a postcondition, and S is a statement. The egfme is interpreted as “if the assertion P
is true before the initiation of a program S, thie assertion Q will be true on its

completion” (Hoare, 1969, p.577).

The illustration of assertion is seen as in conni&rt/) in Figure 2.7. The assertion
is written using Java Modeling Language (JML). JMLlused to check the correctness of
Java program. To represent precondition and pogitton, JML uses a keyword named
requiresfor precondition aneénsuresfor postcondition. The codes of methdw() are
statements that are checked reguires and ensures The statementequires i>=1 &&
j>=1 means the methodraw() is only executed if andj are greater or equal to 1. The
statemenensures i<KMAX_LENGTH && j<MAX_LENGTheans the method produces an
output where the value éfand; are not greater than maximum length of the proggam

memory.

@ requires i>=1 && j>=1
ensures i <MAX_LENGTH && j <MAX_ LENGTH

@*/
public void draw(int i){

int j;

for (i=1; i<super.getData();i++){

for (j=1, j<this.getData();j++)

System.out.print("*");

System.out.printin("\n");} } }

Figure 2.7: Sample Code with Assertions
Tools such as Daikon, LOOP, Julia, Boogie, and &5@ use Hoare logic for

different types of programming languages to chedgmm correctness. For C language,
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Ernst’'s group in MIT has developed a tool namedkbaito discover invariant in C
program (Ernst et al., 2007). The tool infers imaats from a program automatically. It
captures all inputs in a program and traces adivaeit variables with values. Therefore, a
programmer does not have to specify the prograander to verify it. For Java language, a
tool named LOOP reasons sequential Java codesi¢arBerg et al., 2001). It is strongly
typed and is applied to JavaCard APIl. However,oesinot verify Java bytecode. Java
bytecode verification is handled by a tool calledlal(Spoto, 2010). There are many tools
to develop programs using C#.Net language (Softeyd2R12). However, there is only one
tool that supports verification on C#.Net, whichBsogie (Barnett et al., 2006). It is
originally an automatic program verifier for Speagrams. Spec# programming language
is a superset of C# language. It has specificdBatures which named as pre-, post- and

object invariant.

25.2 Mode checking

Model checking is a technique for verifying correxts of a computer program based
on a model of states of computation, where it tagtematically whether the model meets
the specification of the computer program or otheewlt is an automatic technique for
verifying finite-state reactive systems (Clarke,97p The specification is written in
temporal logic formula. Temporal logic handles msiions whose truth value evolves
over time (Monin, 2003). The reactive system is gled as a state transition graph. In
order to determine whether the state transitioplgiia satisfied or otherwise, an efficient

search procedure is used.
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used_j

Figure 2.8 : Fragment of the Annotated Control Fleraph (CFG)

Figure 2.8 illustrates a fragment of the annotaiautrol flow graph (CFG) based on
method draw() from Figure 2.6. The annotated CFG becomes thendation of the
program analysis using model checking. Based onCR&, variablej is detected. The
purpose of this model checking is to detect urah#ed variable in the program. There are
three variables which awecl_j, assign_j, andused_j. All three are annotated using CFG.

By using NuSMV (Fehnker et al., 2007), a fragmdntanle is produced as in Figure 2.9.

Every model checking code starts withmain module, followed by variables and the
flow of the program’s graph. The code specifies phegram by temporal logic formulas
SPEC AG decl_j => (A ~used_j W assign_j), whereAG is an acronym foalways generally.
The decl_j is not to be used until it has a value assignélgerwise it is not used at all.
Therefore, based on the temporal logic formula,ntiehoddraw() does not produce any
warning when the method fulfills the specificatioArogrammers have to learn how

NuSMV works and the syntax for the modut@in When the programmers write a code
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inside the modulemain on the specification, the specification determinies error it
checks. There are more than 13 lines of codec@bee part is not complete) to specify and

check the methodraw().

MODULE main

VAR location : {locay, loc1s, .., loc21}

next (location) :=
case
location = loc17 : floca8};
location = loc18 : {loca8};
location = loc18: {loc1ig,loc21};
esac

DEFINE
decl_j := location in {loci7};
used_j := location in {locag};
assign_j := location in {loc1g};

SPEC AG decl_j => (A ~used_j W assign_j)

Figure 2.9: NuSMV code

There are tools for model checking. One of theroaited Blast. It is a verification
tool to check the safety of C programs (Henzingeale 2005). It receives inputs in a
specification language, with C like syntax and piceb outputs that indicate whether the
program satisfies the safety property or otherwiseimplements a lazy abstraction
algorithm, which integrates automatic abstractisimement and model checking. For Java
language programs, a tool called Java Pathfindes usodel checking to verify the Java
programs safety (Havelund et al., 2000). It traeslaJava to Promela, which is the
modeling language of SPIN model checker. After ghegram is translated into Promela,
Java Pathfinder model checks the program using SRida Pathfinder has been used in

NASA in the research area of space, aviation, abdtics (NASA, 2012).
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25.3 Abstract interpretation

Cousot (2007) defined abstract interpretation“astheory of approximation of
mathematical structures, in particular those ingdlin the semantic models of computer
systems”. “The specification of an analyzer is apraximation of a semantics, where
concrete or exact properties are replaced by atstraapproximate properties” (Cousot,
1996, p.73). For example, the semant®®f a programming language associates a
semantic value in the semantic dom&into each progran® in L written asS[P] € D
(Cousot, 1996). Many analyses are formalized byrattsinterpretation. However, among
those associated with semantics are static analgsita flow analysis, control flow

analysis, types, predicate abstraction, and claalysis.

Abstract interpretation uses fixed point of Taiskheorem to model all possible
behaviors of the program (Cousot, 1996). The progsaformalized as graphs or transition
systems and the behaviors are represented aohsatesy. The states that represent the
transition systems wuse partial trace semantics teecwde trace of states;
S0,S1,S2,--,Sn; {sp, EX | n € Z}, sy IS an initial state, and. is the set of integers. The
intermediate state§sy,s,,..Ss,_1) IS a transition move from one stateto the nexts;, ,,
such thai(s;, s;+1) € t, wheret is a transition relation between one state to utscessor
state. Then, the partial trace semantics (con@eteantics) is replaced by the reflexive
transitive closure (abstract semantics) using Gatminnection. Since this abstraction is
undecidable (non-computable), a widening or namgwis used to approximate the
semantic abstraction (Cousot, 1977). The processbstraction is generated by a library
for the program. For the methattaw() taken from Figure 2.6, the invariant that the

abstract interpretation produces is
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[linvariant i>=1 && i<MAX_LENGTH , j>=1 && j<MAX_LENGTH

Therefore, there is no warning produced on metthady() because thé andj have
been assigned to 1 and both conditions do not exocemximum length of program’s
memory. Programmers do not need to type the spatidnh statement. The program
analyzer produces the invariant statement. Basetth@methodiraw(), there is only one
specification statement in the form of invarianbguced. It is a statement of specifying the

minimum and maximum value o&ndj.

The abstract interpretation has been applied toyrtemguages, e.g., Prolog (Mellish,
1986; Bourdoncle, 1993; Marriott et al., 1994; Ciearet al., 2002; Barbuti et al., 2003)
and C (Ball et al., 2001; Loding et al., 2008; Matret al., 2008). However, for Java, the
verification process is made by using its smalllestéanguage, e.g. Featherweight Java
(Igarashi et al., 2001). Every single small languagymade to verify specific property of
Java, e.g., class invariant and generalizationcttre of inheritance as proposed by
Logozzo (2007) and a flexible type and effect iafere of Java as proposed by Skalka et
al. (2005). Bernardeschi et al. (2002), Avvenutak (2003), and Barbuti et al. (2010)
verified Java bytecode in term of its security,ommfiation flow, and space efficiency. In
addition, Pollet et al. (2005) and Distefano et(2008) verified automatically to complete
Java scale without Java concurrency. For concupegramming, Codognet et al. (1995)
has proposed a verification framework using absirderpretation and constraint system.
However, other researchers have proposed a veigictechnique to problems related to
concurrent programming such as trace semantic (Baeb al., 1999), information flow
(Bernardeschi et al., 2003), and race conditiorl{B@ et al., 2003). Abstract interpretation

has also been used to verify applications suclneedtconcurrent system (Falaschi et al.,
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2009), mobile communication (Feret, 2001; Nielsbalg 2003; Albert et al., 2005; Barthe
et al., 2008), and database system (Toman, 199I&yBand Poulovassilis, 1999; Halder et

al., 2010; Halder et al., 2011).

2.6 Analysison the static analysis methods

As explain in previous sub-sections, there areetimethods on static analysis which
are assertion, model checking, and abstract irg&fion. In order to analyze the methods,
three features that are important to achieve tasists objectives are explained briefly. All
three features are applied to the methivdw() of the code program in Figure 2.6 to
compare the capability of each method. Later, corspa of the three static analysis
methods given in Table 2.1 provides the justifmatfor the chosen method in verifying

method overriding in this thesis.

2.6.1 Featuresof Static Analysis Methods

All of the static analysis methods are comparedetbasn lines of code, human
intervention, and characteristics of concrete @siract semantics. The three features
above are considered because they are generiormparice effective and less error prone.

* Lines of code

Lines of code are an important element in detemmgirperformance of a program. In

software verification, it refers to the number ofes need to be verified from the

program code. The more lines used, the more timeined for the verification (Fenton

and Pfleeger, 1998).
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* Human intervention
It refers to the need of programmer’s annotatiorveafy the program code. If the
method needs human intervention, it means the rdeihaonanual. However, if the
method can verify the program code by itself, itam® the method is automatic. This
feature is important because it avoids human edworsig annotation process.

» Characteristics
There are two types of characteristics that arel useinterpret the semantics of the
program code; concrete and abstract. For a conanetbod, all lines of code or all
states of code behavior have to be verified explicHowever, the abstract method

summarizes the code or the states of code behawaking it simpler.

Table 2.1: Comparison of the static analysis method

Method name Lines of code Human intervention Characteristics
Assertion 2 Yes Concrete
Model checking >13 No Concrete
Abstract interpretation 1 No Abstract

2.6.2 Comparison of static analysis methods

By referring to Table 2.1, model checking assertsarthan 13 lines of NuSMV code
to verify the methoddraw(). Assertion uses two lines of JML code and alostra
interpretation uses only one line of code. Moda&akiing needs more lines of code because
after translating the program code into stategetifies every flow of the code which uses
all lines. Abstract interpretation interprets theogram code in an abstract way using

theorems. No matter which types of semantics tathaas use, all three methods produce

27



the same result over thieaw() method, i.ei andj are more or equal to 1 and not more than

the maximum length of heap memory capacity.

Only assertion method needs human annotation dutieg verification process.
Therefore, the programmer must know how the syofake assertion works. In addition,
the programmer has to know which part of the pnogngeds to be annotated. Any missing
assertion leads to a less precise result on théce¢ion. Model checking and abstract
interpretation are done automatically. Abstracerptetation method is more complicated
(heavyweight form of static analysis) compared todei checking because it uses
mathematical statements of abstract algebra wkid¢taid to learn (Hall, 1990; Siu, 2001).
Model checking method is easy to understand andassé uses temporal logic for finite
state machine of a program (Schnoebelen, 2002).eMery model checking is unable to
summarize or simplify the verified state. The psgmer has to know every single state
that he wants to verify. However, abstract inteigtien is able to simplify the verified state
by abstracting the verification state. Therefohe, verification process covers all possible

states from the codes of the program.

Only abstract interpretation uses the abstract ogetiBoth assertion and model
checking method use concrete method. Using a ctananethod, the programmers know
which code or code behavior is verified. Therefdhee results from both methods are
always precise. However, since assertion asseny times and model checking checks the
code by using many temporal logics, the verifigatiprocess is slower than abstract
interpretation. Also, an abstract interpretationgesss is faster than both methods because

its mathematical logic only covers the substandeater of the program. However, its
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speed is at the expense of the accuracy becausedd to miss important codes in the

program.

Assertion and abstract interpretation use one tlitves of code to verify the program.
This is minimal compare to model checking wheradeds more than 13 lines of code.
Even though they are minimal, they use differerthtéque to conduct verification;
assertion uses concrete technique, which verifresydine of code. Abstract interpretation
uses abstract technique, which verifies targetezl dif code only. Therefore, the number of
lines of code does not reflect the choice of tharatteristics and human intervention
during verification. However, abstract interpretatioffers automation same as model

checking, which can avoid human errors.

Abstract interpretation has all features neededotaduct static analysis in automated
way. It can verify the program code without prognaens’ annotation and uses abstract
method with formal mathematical logic. The abstmaethod makes the representation of
the program’s behavior generic, which can coverniety of possible behaviors. Since it

uses one line of code, the verification is fast.

2.7 Verification for Method Overriding

The process of verification on method overridingolves two main concepts. They are
invariant and subtyping. Both use Unified Modelirghguage (UML) for explanation. In
Figure 2.10, a clasBerson has a data member declarechase. It has a subclas#/orker

that has a data member declaredSa#ary; the total salary a worker earns. The subclass
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Worker has subclas®lanager where it has a data membeanages. The superclasBerson
has a methodvriteName(), the classWorker has a methodvriteSalary() and the class

Manager has a methodriteManager(), where all of the methods display their data fhem

accordingly.
Person Worker
name String :] tSalary double
void writeName(Person p) void writeSalary(Worker w)

T

manages Worker

Manager

void writeManager(Manager m)

Figure 2.10: UML diagram of clag®rson, Worker, andManager

271 Invariant

Invariant is a concept taken from Mathematics. st described as the value of
expression that does not change during programuérec In OOPL, there are four types
of invariants, which called as class invariant,egbjinvariant, type invariant, and loop
invariant (Parkinson, 2007). No matter where thairant is in the program, the purpose is
only one; to become a property that is true forealpressions of a given code at all time.
Therefore, for object-oriented programming, “classriant is a property that is true for all
objects of a given class at all times” (Webber, 200.87) . The problem with class

invariant related to reverification of existing s&@s is explained in detail §8.3. An
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example of class invariant is typed in bold belovi)jch means dataame cannot be null

value:
public class Person {
private char* name; //invariant name != null;
public Person() {
name = new char (“Aliyah”); }

public void writeName(Person* p) {
cout<< p->name;} }

2.7.2 Subtyping

Basic subtyping principle is substitutability, atusition when a datatype can be
substituted by another datatype (that is supertypshov et al. (1994) explained subtyping
also known as Liskov Substitutability Principle, ialn is used to reason program’s
semantics as:

What is wanted here is something like the followsudpstitution property: If for
each object o1 of type S there is an object o%u# T such that for all programs
P defined in terms of T, the behavior of P is umgeal when o1l is substituted
for 02 then S is a subtype of T. (p.23)

Then, Liskov et al. (2001) formalized her statemesinhg invariants and constraints by the
statement:

Subtype requirement: Lg(x) be a property provable about objects x of type
then ¢(y) should be true for objects y of type S wherésS subtype of T.
(p.1812)

or
symbolized a$ <: T, which means S is subtype of T. (p.1823 & 1827)

or

s ——DiT

visualized as

Figure 2.11: S is subtype of T
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For example, when typ@teger is a subtype of typdouble; i.e. integer<:double, then
number, say 10 that is declaredieger is received aslouble as well, just as in Java
language. By considering contravariance and cowvegiasubstitutability has better notion
under behavioral subtyping (Castagna, 1995; Liskiod Wing, 2001). Liskov and Wing
(2001) stated that methods must be contravariadt Govariant because the methods
determine how different types of data work or fumet However, it becomes a problem

during verification process which will be explained3.4.

Another example of subtype in inheritance progranthie use of a pseudovariable;
namedsuper. When a method sends a message usisgpe method, the process starts
from the immediate superclass possessing that mhethowever, if the method exists in
the superclass itself, self-reference techniquairscéelf is another pseudovariable that
realizes self reference in subtype of inheritarices defined in term of itself. It is used in
recursive function, procedure, method or datatypgure 2.12 and Figure 2.13 illustrate
the differences betweesuper andself reference. It changes and modifies the state and
behavior of the object at the later stage of exenutThis is called late binding. Late
binding allows the properties of objects to be esuand redefined without any textual

copying or editing. It minimizes the process of ealliplication (Cook, 1989).

super
input — ChildC —{y ParentP

Figure 2.12: Super
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input—| Parent P self

Figure 2.13: self reference

2.8 Featuresof Automated Verification on Method Overriding

Based on the analysis of static analysis methodsTéble 2.1) and concepts on
verification in method overriding (irf§2.7), the main component of verification is
automation invariant generation. The productiorihef automated process equations must
consider: (1) non-reverification of old classes &2 modularity of invariant statements.
The automated process means the process of vadficaeeds neither programmer
intervention nor annotation of specification. Tiesimportant to deal with human error
during the process. However, the process is nog basause it always leads to over

approximation of the invariant statements, whicaxplained in detail in the next chapter.

2.8.1 Non-reverification

Reverification happens when the verification precesecutes more than once on the
same code. For example, in the beginning, a prognasone class. The verification
verifies the class to check its correctness. Tlaeprogrammer modifies the program by
extending the class with another new class. The oess and the old class have a
relationship called inheritance. Therefore, the dliks becomes a superclass and the new
class becomes a subclass. When the programmeresetife program, the verification

process will verify the old and new classes. Thig,old class has been verified twice. If,
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in the future, the programmer adds a new classgstibclass, then, during the verification,
the old class has to be verified again. As therestom of the program becomes larger, the
verification also takes a longer time. The non-réaation means only new subclass is

verified after program extension. Therefore, vedtfion process will be faster.

2.8.2 Modularity

A program analysis is considered modular when thalyais is decomposed into
segments to be analyzed according to requiremémtslularity in analysis means the
analysis is on program fragments or modules whiohtain only related variables
(Banerjee, 1997). Modularity is also related tatiehship between segments. There are
segments that cannot be executed separately (dap&nd In object-oriented program
analysis, the program specification is decomposewb iclasses, methods, objects,
components, or loops. This technique helps to wtaled and give better performance to
the program analysis. It can also manage genetializatructure of classes and avoid
reverification because the verified class with meat will not be verified again when new

class is added. According to Meyer (1997), theecfige criteria of modularity which are:

1. Decomposability
A software construction method satisfied modularoseposability if it helps in the task
of decomposing a software problem into a small remadb less complex subproblems,
connected by a simple structure, and independentgimto allow further work proceed

separately on each of them.
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2. Composability
A method satisfies modular composability if it fasothe production of software
elements which may then be freely combined wittheatber to produce new systems,
possibly in an environment quite different from thiee in which they were initially

developed.

3. Understandability
A method favors modular understandability if it peelproduce software in which a
human reader can understand each module withouhdhée know the others, or at

worst, by having to examine only a few of the osher

4. Continuity
A method satisfies modular continuity if, a smdlboge in a problem specification will

trigger a change in just one module, or a smalllmemof modules.

5. Protection
A method satisfies modular protection if it yielsishitectures in which the effect of an
abnormal condition occurring at run time in a medwill remain confined to that

module, or at worst will only propagate to a fevighdoring modules.

From the five criteria above, we only use threecomeposability, composability, and
understandability. The reason is even though tivariants for a whole program, the
invariants are generated according to class antladefhe invariants are decomposed in
such a way that the generated invariants are easieanage and manipulate. In addition,

the decomposability method avoids complexity durthg verification process when
35



generalization structure in inheritance involvetleprocess of decomposed and composed
invariants helps the programmer to understand tbgram analysis because the analysis is
small to trace and read. The program analysis doesonsider continuity and protection
because every generated invariant is independéetelore, any changes to the invariant

will not affect other invariant even though theg & the same generalization structure.

29 Redated Works

There are different methods and techniques appiredmanipulated by other research
works to generate invariants for programs with rodtloverriding. They are used for
verifying semantics of object-oriented programsigssubtyping. Table 2.2 is the result of
comparison between related works and techniques ubked to ensure invariants are not
reverified. Table 2.3 is a summary on related waaksl their techniques in verifying
method overriding focusing on subtyping and gemsgatvariants. All works concentrated
on object-oriented programming languages, whichehateritance and dynamic binding.
In order to find a good solution in verifying methoverriding, all works are compared
using five criteria; subtyping, invariant, non-refieation, modularity, and automated.
Techniques for subtyping and invariant are analywedind each work’s strengths and

weaknesses.

29.1 Analysisof Related Works Techniques on Non-Reverification

The performance of verification process on obje@trded programs depends on non-

reverification feature in the equation of progranalgsis. If the verification process allows
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reverification of previous invariants, then monaeiis needed to conduct the process. The
result shows that there are 50% of the chosenecklabrks (from Table 2.3) apply non-
reverification feature as shown in Table 2.2. Thieo 50% that does not have non-
reverification feature because their works con@att on specific element in OOPL, e.g.,
ownership, hybrid types, proof environment, memoation frames, and model fields. It

means the non-reverification feature is not ontheir main concerns.

All five of the non-reverification related workseag behavioral subtyping to reason the
semantics of method overriding. This can be dorsalee behavioral subtyping makes
sure preconditions of methods are weak and posiitomsl are strong. It is conducted by
making sure superclasses that have verified willragerified. If the verified superclasses
are reverified, there is a possibility methods hstreng preconditions due to the changes
of the superclasses. Therefore, each technique assanptions and enforcement to have
non-reverification feature. Observable, specifmatinheritance, and modular technique
enforce specifications are only analyzed on supssels. That is the reason the
specification superclass must be valid for speaifomn subclass. Even though the
techniques used same method, their names areetiffeecause observable implemented
using abstract interpretation, specification intagrte using assertion, and modular using

less mathematical equation approach.

Invariants produced by specification subsumptionl @xtended abstract predicate
family have same techniques on achieving non-réeation. The reason is both used same
logic, which is separation logic. The static speaifion is only on superclass, which means
the specification superclass is not allowed to bhanged. However, Chin (2008) has

different technique on generating invariants beedus enabled to solve the problem of
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producing format to capture objects of classesauthosing their information. Therefore,

all techniques do not allow specification superslae modified in order to conduct static

checking. In addition, subclasses have to presspeeification superclass and only new

methods are verified. So that, every time new sagscbr method is added into a program,

only the new one is verified.

Table 2.2: Comparison of Related Works and CritRetated to Non-Reverification

Non-Reverification

(@] —
£ =
ES 5 3 a @
o > o — o
= c = 3] Q
[9)] - o ] _8
G s 3
Related Works Pt a n
Logozzo Behavioral  Observable Analyze on Preserve
; . Observable superclass superclass
(Logozzo, 2004) subtyping behavior :
only properties
Specification
Leavens Behavioral Modular Specification for fields Extgndeq
; e ” . . Specification
(Leavens, 2006) subtyping  specification inheritance must valid definition
for subclass
Check
method
Chin Behavioral Specification = Checking inherited Static Spﬁﬁg'ﬁaewn
(Chinetal., 2008) subtyping subsumption static specification specification static
specification
for subclass
Check
method
Parkinson . Extended Static and . specification
. Behavioral Abstract - Static .
(Parkinson et al., ; - dynamic e with new
subtyping Predicate e specification .
2008) Famil specification static
y specification
for subclass
Overridden
Cheon Behavioral Cleanroom method must Verify onl
(Cheon et al., subtvpin Software Modular behave like new codey
2012) yping Engineering overriding
method
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2.9.2 Analysisof Evaluated Related Works

Table 2.3 shows the result of features used bytedlavorks towards verification
process on method overriding. All related workstie used the notion of behavioral
subtyping except Dovland’s (2008) to support modiylan the presence of subclassing
and late binding. This is because it is the onlyywa reason semantic operation in
inheritance. The rule of contravariance and cowaearestricts the capability of the
program to be reused (will explain§3.4). Therefore, Dovland et al. (2008) proposegd laz
behavioral subtyping that does not follow the beébtva@l subtyping. This affects the
verification process which the reasoning semant&s easily verify polymorphism of
OOPL. It involves inheritance, method overridingddate binding call. His notion has
been applied to multiple inheritance successfidigwever, the verification process needs a

programmer to annotate and it is not modular.

All authors used variety of ways to generate orogawe invariants onto object-oriented
program. For example, Miller (2002), Leavens (20@®d Dovland et al. (2009) used
Hoare logic. Even though they used the same ldg&y approached the problem in the
verification process differently. Muller (2002) wasebject ownership, Leavens (2006) used
modular specification, and Dovland et al. (2009¢dugproof environment accordingly.
Parkinson and Bierman (2008) extended the capatwlitHoare logic by considering
pointer during invariant generation which is calegparation logic. By using separation
logic, they formulated reasoning for inheritancel amethod overriding which they named
abstract predicate family. Chin et al. (2008) agxblihe separation logic on inheritance and
subtyping which he called specification subsumptiofthe specification subsumption

focuses on distinction and relation between speatibins to support behavioral subtyping

39



in class invariant. Both superclass and subclassai verified at the same time. Cheon et
al. (2012) argued that Hoare logic reasons progasnbackward from postcondition to
precondition which hard to learn and apply. Thamfdie adapted Cleanroom software
engineering method to support forward reasoningoider to verify object-oriented
program. All research works used Hoare logic as teehnique of verification whether the
logic is straightforward used or extended versidowever, only Logozzo (2004) used
abstract interpretation to conduct verification.isTis done to automate the process of
generating invariants which hard to achieve usiogrnd logic. He implemented observable

behavior technique using abstract interpretatiorsédotyping.

Based on non-reverification component, there ave fivorks do not reverify old
verified classes. Even though, they use behavsutalyping of Liskov and Wing (1994) to
solve problem of subtyping, they change the spmdibhn definition to suit with the
problem they solve. Chin et al. (2008) specificatsubsumption has two conditions of
contravariance and covariance that check same assbelhere they are included in the
behavioral subtyping. This method avoids re-veaifizn of existing class by directly
inserting the previous generated invariant into tieev invariant of the new subclass.
Leavens (2006) focused on methods that are sitmldraving definition on pre-behavioral
subtyping, strong and weak behavioral subtypinge Theak behavioral subtyping
definition allowed the less restrict constraintierthe methods, which allows object to be
aliased and mutated due to method definition. Haneunexpected behavior can happen
due to less control of the methods. Parkinson.ef28l08) used separation logic to avoid
reverification where it allows derived classes ewghout reverifying the base class with
the assumption methods do not modify the varialci@staining the arguments in the

method body. The rule does not use method bodyuseci works at the specifications
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level only. Logozzo (2004) used observable behawioich he defined classes that have
relationship as a domain of observables which hire@ when new classes added into the

hierarchy.

Based on modularity component, all works are madubince the programming
language is object-oriented that is based on matlylé is easier to make the invariants
modular as well. This allows behavioral subtypirgnly applied to reason the program
semantics. Therefore, modularity is a required comept in producing invariants for
OOPL because the invariants produced are managedalsg or method. In addition,

modularity feature enables the invariants proddoedcalable programs.

Only Logozzo (2004) verified object-oriented praxgr automatically. This is due to
the used of abstract interpretation theory and \aehal subtyping for verifying method
overriding. His technique on method overriding freation is on superclass only because
overridden method that exists in subclass is ajreadthe superclass. He converted
concrete classes and methods into abstract donvelmsh resulted in over approximation
of the method semantics. Other works practice iamés based on programmer’s
annotation, which is prior to the code. If the pagmer does not accidently assert errors,
the result is accurate which close to the prograakior. However, the programmer’s
invariants are not generic and depended on the bdapaof the programmer’s
interpretation of the program. Even though, theomation process has been done since
2004, other researchers mentioned here did noheéxtee work because they did not use
abstract interpretation as method of static analyBi fact, the heavyweight of static
analysis due to the use of abstract algebra byabshterpretation makes researchers did

not fully implement it but incorporate it with othmethods. For example, Boogie tool used
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both assertion and abstract interpretation to yefject-oriented programs (Barnett et al.,

2006).
Table 2.3: Comparison of Evaluated Related Works
Techniques used to Verify Method Overriding
5
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Related Works 2] = & = <
Muller Behavioral . .
v
(Mdller, 2002) subtyping Object Ownership X X
Logozzo Behavioral Observable v v v
(Logozzo, 2004) subtyping behavior
Flanagan Behavioral .
v
(Flanagan et al., 2006) Subtyping Hybrid types X X
Leavens Behavioral e
v v
(Leavens, 2006) subtyping Modular specification X
Chin Behavioral Specification v v X
(Chin et al., 2008) subtyping subsumption
Parkinson Behavioral Extended Abstract v v X
(Parkinson et al., 2008) subtyping Predicate Family
Dovland Lazy behavioral Proof Environment X v X
(Dovland et al., 2009) subtyping
Smans Behavioral Dvnamic frames X v X
(Smans et al., 2010) Subtyping y
Balint Behavioral .
v
(Balint et al., 2011) subtyping Model fields X X
Cheon Behavioral Cleanroom Software v v X
(Cheon et al., 2012) subtyping Engineering

Taken as a whole, there is only one work that Hhgsheee components: that of
Logozzo’s. Other works such as Leavens’s (2006)n'€12008), Parkinson’s (2008), and
Cheon et al. (2012), have both components of neerifecation and modularity even
though theirs were not automated. This is becdusg wsed Hoare style logic instead of
abstract interpretation where the techniques nkedotogrammers to learn the syntax of
specification language in order to annotate theq@m. However, since the annotation is
on the program behavior, it can ensure the progranmfication works as it intended to be.

On the other hand, Logozzo’s (2004) equations othaakoverriding semantics produced
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over-approximation value because the overridderhoaks$ invocation is hard to trace
before run time. The over-approximation value issate value for overriding and
overridden method where the method semantics redsbg behavioral subtyping. He

argued that the over-approximation allowed the #qus to cover all values from datatype

of method parameters and arguments.

2.10 Conclusion

This chapter has provided a brief background indrom on method overriding at the
beginning and related features to verify methododiag. It overviewed three techniques
of static analysis: assertion, model checking, abstract interpretation. An analysis on
related works discussed on techniques used, shrengind weaknesses in producing
invariant generation. The finding shows technigaeduby Logozzo (2007) called abstract
interpretation using observable behavior fulfili@tirequirements needed to verify method
overriding using invariant generation without humatervention. However, the technique
produced problems related to class invariant ane kanding call. Therefore, in the

following chapter we will analyze the problems, whiregards to automated linear

invariant generation.
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Chapter 3
Automated Linear Invariant
Generation

‘... and, Our Lord do not make us bear a burden

for which we have no strength...’

-Al-Bagarah verse 286

This chapter examines problems of developing iawdsi generation in both classes and
methods for programs with method overriding. It® & to find a method and technique of
solution for the problems. The problems are ideedtiand discussed using program logic.
There are two major components; class invariantlaredbinding call. The class invariant
has a problem with reverification of verified iniarts. The late binding call has a problem

with restriction of semantics reasoning rule. Thanes possible methods of solution for

each problem is discussed§.3 and§3.4.

3.1 Automated Software Verification

Automated software verification becomes a grandl@hge after Sir Charles Anthony
Richard Hoare stated the importance of having aatedhprogram verifier as the main
objective to achieve reliable softwares and systétiasre, 2007). The automated program
verifier enables to ensure the absence of runtimegse which avoids the unexpected result
by the softwares. In the context of object-orienpgdgram, works have been done to

develop the automated program verifier (D’'Silvaa{2008) as well. For example, Astree
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(Cousot, et.al, 2007), jStar (Distefano, 2008), &ulyspace (Little and Moler, 2013).
However, researchers face challenges in generatuagiants for dynamic allocated data
structure, shared-variable concurrency, differedecenvironments, and object mutation.
All these problems are due to change of statesrim bf platform, data, environment and
object. Therefore, until now, there is no such &utomated software verification because
of the difficulty to capture states of programs.sAatic analysis enables to help verification
process to inspect programs during compile timés itategorized into two methods; 1)
type system and 2) formal verification. Type syst@quires programmers to annotate the
program code with type information. Formal verifioa as explained i§2.4 can generate
two types of invariants; 1) polynomial loop invariaand 2) linear invariant. Polynomial
loop invariant is an inductive invariant for initiand consecutive location of the loop
program (Rodriguez-Carbonell, 2007). Linear invatriss the invariant that is always true
at the initial program and throughout the progratacetion. The current thesis limits to

linear invariant generation.

3.2 Linear Invariants Generation

In order to have automated linear invariant gemanatstatic analyzer must able to
generate correct invariants for the whole codehef program. However, the program
enables to scale using inheritance. Therefore,inkiariants scale up as the program
expands. This can affect the performance durinticséanalysis process. Therefore, it is
important to module the program to ease the prodesgeneral, the program modules as
class, method, and program structure. Researchecessfully analyze statically class and

program structure (Logozzo, 2004 and Dovland, 200%wever, researchers face
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problems in generating linear invariant for methaxlit can be method overriding. The
overriding method has the privilege to be invokgdhy object as long as the object in the
same inheritance hierarchy structure. The invonaatlows program to be reused and
changed states according to the program’s requimsnd herefore, it is important to

analyze statically the method overriding to achideautomated software verification.

3.3 Methodsfor Problem Analysis

Initially, the problems related to automated inaatigeneration is represented using a
small language called Method LanguageethL) which is based on Featherweight Java
(FJ) (Igarashi et al., 2001). The purpose of usirggnall language is to understand another
language (Hoare, 1981). The syntaxrafthL is as below.

(class definitioh L ::= class C extends C { F M}

(field definition  F ==t f

(method definitionM == tm(7 f) : (p, q){b}

(body statemeit b ::=x | new C(e)|e.f | e;ele.m(e)| m(e)| C :: m(e)
(return type T == C | void | int | bool

(expression) eu=F|x|null

Here,C represents a class nhame whexethL language is a language with inheritance.
Overbar notation denotes there is a list; for examp means a list of data members. A
program consists of a list of class definitionseTdefinition of inheritance is an extension
from one class to another. We do not consider pialinheritance in this language. The
body of declaration has data fields or memBand methodsV. Data field is declared

using typeg and variableg. Typet can be a class, integer, Boolean, or void. Methiods

this language are methods that can change behaivilbe class. We omit super method for
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simplicity. The methods precondition and postcdoditare specified a$p,q). Every
single method consists of
1. avariablex
2. anew objechew C(e)
3. adata member call f
4. a sequential composition of expresseu
5. three types of method calls, which are
a. external method calg. m(e)
b. internal static call :: m(e)

c. internal late bound calin(é)

The external method call happens when an objets ta method as m(e). The
internal static call metho@ :: m(é) happens in clags where the compiler compiles and
binds the method at compile time. The internal laend call only happens at run time

when the actual object has been determined.

A visual representation of inheritance using UMhagitam is shown in Figure 3.1
which is taken and extended from Figure 2.10. Rdkses are extended with additional data
members and methods for explanatory purpose. $fithire, there is a class namegtson
that has two data type calledme and bSalary as basic salary. It has a subclass named
Worker that has a data type namt®hlary. The subclas$Vorker has a subclass named
Manager where it has a data type namednages. A method callectalc() appears three

times in the diagram. All classeBerson, Worker, and Manager have the methodalc(),
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which calc() in classWorker and Manager can overridecalc() in classPerson. There is

another methodalc() which is called from inside methad!/ary() in classPerson.

Person

name char¥;
bSalary int;

Person (char*,int) ;

void writeName(Person* ) ;
void calc() ;

void salary() {..calc()..};

A

Worker Manager

tSalary double; manages Worker*;

A

Worker (double); Manager ();
void writeSalary(Worker*); void writeManager(Manager*) ;
void calc() ; void calc() ;

Figure 3.1: Example of inheritance with overridaeathodcalc()

3.4 Problem 1: Class | nvariant

In OOPL, generating class invariant is a diffictdsk especially in the presence of
inheritance because class invariants are meartirigte objects. However, in inheritance
there is an generalization structure that involwes or more objects. There is one main
problem arise during verification on object-oriehfgrogram. It is called reverification. It
affects the performance of the compilation duehi riepetitive nature of the verification

process, which is exaggerated when the prograresaal.
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For example, let clag®erson of Figure 3.1 be coded and extended as in FigixeTde
class invariant restricts the data to a certain larof limit to avoid memory overload
especially for array. It also avoids mathematigaérations on data member that has no
value. The class invariant adds another class ieaviafor classWorker, a subclass to class
Person because inheritance allows subclass to inherdt aember from superclass, eg.
in methodcalc() in classWorker. In this situation, there is no error because c¢laess
invariant in superclas®erson has specified subclas&orker. However, problems arise
when classVlanager is added later. If the clagdanager is to be verified, the verification

process has to start from the beginning. To aveverification of class invariant, there are

five techniques, from Table 2.2 that are used énpitogram verification.

The idea of a class invariant that was first preplosy Hoare (1969) has been extended,
so that the inheritance structure of classes afettsbare easily verified. Parkinson et al.
(2007) proposed the use of a more general foundafiwverification which is Hoare logic
to specify the properties of generalization stristafter considering the complexity of
peer invariants of Leino and Muller (2004) and drigtinvariants of Leino and Schulte
(2007). Based on existing invariants generatiofmriggies, Xing et al. (2010) present a
technique where invariants are generated at eaténsent to ensure all properties are safe
and terminated. Banarjee (2009) merges non-compelated technique, which is called
clonal selection theory with a program verificatiprocess to predict program invariant

shapes. However, all these techniques limit to raimg with no method overriding.
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public class Person {

public class Person {
private String name = "Adam";
private int bSalary = 100;
public int testSalary = 200;

public Person(String n, int s){
name = n;
bSalary = s;

public void writeName(Person p){
System. out .print("The employer name is " + name);

}
public void calc(){
bSalary = 2100;
System. out .printin("Person::calc()");

}

public void salary(){
calc();

}} /lend of class Person

public class Worker extends Person{
private int testSalary = 300;
private double tSalary;

public Worker(String nama, int gaji, double tot){
super(nama,gaji);
tSalary = tot;

public void writeSalary(Worker w){
System. out .printin(w.tSalary);

}
public void calc(){

tSalary += bSalary;

System. out .printin( tSalary);
} } /lend of class Worker

public class Manager extends Worker{
private String address = "Malaysia";
Worker manages = new Worker("Aliyah",1000,0);

public Manager(String nama, int gaji, double tot, String add){
super(nama,gaji,tot);
address = add;

public void writeManager(Manager m){
System. out .print("\n" + m.name + " has a worker named " +
manages.name + " whose salary is RM");
manages.calc();

}
public void calc(){
tSalary = bSalary + 4000;
System. out .print(name +
} }/lend of class Manager

s total salary is RM" + tSalary);

Figure 3.2: Salary System
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3.4.1 Specification Subsumption and Extended Abstract Predicate Family

The emergence of separation logic by Parkinson5§p@0d behavioral subtyping by
Liskov and Wing (1994) produces a novspecification subsumptiorthat avoids
reverification during program analysis (Chin et &008). Parkinson (2005) applied his
separation logic to come out with a predicate faneritance, which is called abstract
predicate family. The specification of subclass esmwith its superclass’ specification to
show the relationship between the classes. How#visriechnique produced reverification
problem. Therefore, Parkinson has extended theambgiredicate family with static and
dynamic specification (Parkinson et al., 2008).inG#t al. (2008) also use the same idea in
verifying inheritance where static specificationused for new inherited methods and
subclasses and dynamic specification is used ferrming method to ensure behavioral
subtyping. They proposed a mechanism called spatidn subsumption that focuses on
distinction and relation between specificationsstgport behavioral subtyping in class
invariant. The word subsumption used by Chin ef24108), in the context of OOPL means
“the ability to emulate an object by means of arothbject that has more refined methods”
(Abadi and Cardelli, 1994, p.1). Both superclass subclass are verified at the same time
by considering their behavioral subtyping and meétbwoerriding. After the enhancement,
the specification subsumption mechanism enablesnsore contravariance of precondition
and covariance on postconditions using this infezanle:

preA + preB x A postB * A - postA
((preB *— postB) <: (preA *— postA))

The inference rule consists @feA, preB, postA, postB, andA. preA andpreB are

precondition of4 and B respectively.postA and postB are postcondition o and B
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respectively A is the residual heap from the contravariance cloeclkreconditions. It is
used later for covariance check on postconditidnss included in the inference rule
because the rule enables to reason semantics gfapmowith pointers. Annotation of
(preB *— postB) is a subtype ofpreA *— postA) if 1) the annotation’s precondition
haspreA that involvedpreB andA, and 2) the annotation’s postcondition pastB * A
that involvedpostA. This means is always has B and its residual heap becaused& is

supertype of B.

3.4.2 Observable Behavior

Observable behavior preserves behavior of objesgisaally superclass to be used later
when new subclass is added. The observable behavwomethod on how objects react to
messages based on its early specification (Ametigal). Logozzo (2004) used it in his
framework of abstract interpretation to avoid réi@tion. However, the invariants are
limited to superclasses and not to subclasses wiwemes to method overriding. The idea
of this technique is that since the preconditiod gostcondition of overridden and
overriding methods are the same, the class invaigagenerated only on superclass. Later,
the additional invariants are added when new ssbelwith new methods are created.
Logozzo treated the technique as a domain thatskelejpspecification of precondition and
postcondition. He did not manipulate the observaleleavior domain to ensure the domain

follows the rule of behavioral subtyping.
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3.4.3 Cleanroom Software Engineering

The idea of Cleanroom software engineering was piublished by Mills et al. (1987).
The main objective of the method is to achievehigl quality in software with statistical
quality control using mathematical verification. Bising the concept, Cheon (2010)
minimized the mathematical used during specificathy proposing the use of concurrent
assignment notation with intended function. The @aahthe method isitended function
because the annotation is function-like way, whechimilar to the way a function is typed
in a program. He used the notion of behavioral by to reason subtyping. Therefore,
the technique only considered overridden method éxéted in subclass every time a
program with new subclass is verified. Therefohe, technique is modular. However, the
annotation code has to be learned by the progranawen though the syntax follows
function like syntax. Due to the syntax, the antiotacode is long and there is a need to
process the function mapping which affects the s execution time during
compilations. However, the annotation code aspistgrammers in minimizing of learning

new specification language because the annotasies dava’s expression syntax.

3.4.4 Modular Specification

Modular specification applied by Leavens (2006) waasextension version of better
JML. He applied behavioral subtyping in reasonimyeritance using the concept of
refinement, which defined the binary relation ontlme specification. The purpose was to
ensure modularity to avoid reverification. Even ugb the language of JML is
straightforward, the programmer has to learn on kapply the language in the situation

of method overriding. Therefore, it opens the veation process to human error.
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All five techniques for class invariants generataye taken from Table 2.2. They have
one common feature, which avoids reverification.atbieve it, all the techniques must be
in modular. The modularity allows the programmerntanipulate the class invariants;
whether to reverify or not to. Every single techugdhas its own advantage that merged and
manipulated to produce better verification. For megke, modular specification uses a
concept called supertype abstraction, which asswathebjects of subtypes can be treated
uniformly. However, specification subsumption aregparation logic reason an object-
oriented program semantics using static and dynapécification. This avoids loss of
information because extra variables are used ttumapmportant information. Therefore,
every type is treated accordingly. Logozzo (2004&dithe same concept, which his

method he called observable.

3.5 Problem 2: Late Binding Call

Method overriding enables the subclass method tangd the semantics of its
superclass which affects the behavioral propediesbjects. When a method is redefined,
its behavior may change and may contradict itsiBpaton. The process of changing the
object’s behavior is only known at runtime. Thicadled late binding call. The late binding
call happens when a method body is called durirecetion depending on the callee’s

actual class (Dovland et al., 2008).

For example, by referring to Figure 3.2, if methwadt() from classWorker is selected

for execution using an object that is an instanicelass Worker, the methodtalc() from

54



classWorker is executed and not from the cl@sson. However, if methodalary() were
selected by the instance of cla&sson, the late bound invocation of methoalc() would
be bound to the methadtlc() in classPerson. Consider main method below as a demo

method for Figure 3.2:

public static void main (String[] args) {
Person clerk = new Manager (“Adam”,2000,100,”Shah Alam”);
clerk.calc(); /loutput: 2100.00 - late binding
((Manager)clerk).writeManager ((Manager)clerk);
System.out.print("The test salary is : "+clerk.tes tSalary);
/loutput: 200 - early binding

}

abhwiNE

(o2}

The output:

Adam'’s total salary is RM6200.0
Adam has a worker named Aliyah whose salary is RM10 00.0
The test salary is : 200

From the code above, it shows that the statemetinén3 produces 2100.00 from the
method in classWorker. However, statement 5 produces 200, the value ragprifriom
testSalary of classPerson not from classWorker. This is because objecterk belongs to
classPerson before runtime. Then, it knows the objetdrk also belongs to clas&orker
when statement 2 is executed during runtime, wiineh statement is bound later after
compilation. During the runtime, the methad/c() of class Worker substitutes the
definition of methodcalc() of class Person where the program uses the concept of
subtyping. In order to verify the semantics of noethalc() operation (method overriding),

behavioral subtyping of Liskov Substitutability Reiple is commonly used.

3.5.1 Behavioral Subtyping

There are three notions of behavioral subtyping:ob)ect of subtype must be

substitutable for its supertype, 2) precondition dosupertype entails the precondition for
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subtype, and 3) postcondition for subtype entdués gostcondition for the supertype. For
the purpose of program safety, behavioral subtysndefined in two ways (Liskov and
Wing, 1994). The first definition treats subtypéat®mns as constraints. The constraints are
annotated by using history rule. The history rudes la property that keeps constraints of
methods, which are method’s pre condition and mosidition. The property is called
history property. History properties cannot be geth as they cannot be deduced. The

deduction enables the programmer to monitor subetam invariant.

In the second definition, there is an extension nwapefine all new methods in the
subtype. The extension map has extension rulesthtds each method has diamond rule to
follow. The diamond rule is used to relate abstvattie to method calling or executing the
program. However, for method overriding where i$ lhgte bound method call, behavioral

subtyping is less flexible due to its constrainesuMihancea and Marinescu, 2009).

To ensure a method type is specific, the methddval the rule of contravariance and
covariance. The contravariance rule is when thehatetargument has a more general
(wider) type. The covariance rule is when the métheoeturn value has a more specific
(narrower) type. The contravariant rule becomesablpm when verifying inheritance
because the general type of method argument beceengggeneral as the declaration of

the method argument can come from many superclasses

Referring to Figure 3.2, considers extending thdecwith a higher-order function
namedprinting() and a main function. This example uses C++ dosliead of Java to show
the example of subtyping using method call. Javasdoot allow method to be an
argument. Theprinting() function has two arguments which are methodMaiker and
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instance of type oWorker. The Worker is chosen because the class has a superclass and a
subclass where we can see the access capabitity tooth classes. In the main function,

there is an instance @forker calledworkerOfTheMonth.

void printing( void (*action)(Worker*), Worker* wor ker) {
(*action)(worker);

void main() {
Worker* workerOfTheMonth;
printing (writeSalary(), workerOfTheMonth);
printing (writeName(), workerOfTheMonth);

O~NO U WN B

From the code above, bophinting() functions in the main function have no compile-
time error becauseriteSalary() and writeName() are accessed under the declaration of
classWorker. However, even thougManager is a subclass dWorker, printing() function is
unable to calwriteManager() because it prevents behavioral subtyping. Tloeeefif we
want theprinting() function executesvriteManager(), the function must be defined on an

instance oManager.

The late binding call problem can also be explainsthg reasoning system as the
problem of calling correct methods is related tmastics. Figure 3.3 shows related rules to
syntaxmethL language introduced in 83.3. For simplicity, tkasoning system tracks data
type using Hoare logic dofp}b{q}, wherep is precondition ang is postcondition to the
statementb. The internal and the external late binding calk uthe same reasoning.
Subtyping is represented usiag All of the subclasses denotedesE are bound to each
other inbind (C§, m), where

C, , single class

cls, all superclasses belongdg

m, method
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Therefore,

bind(Cds, m) ' if m € M then C, else bind(CClS,m) end

For example, let methochlc() be called from methoshlary() as illustrated in Figure
3.2. (p1,q1) Is specification of superclass Person &épg g,) is specification of subclass
Worker. If methodcalc() has specification in the form §f}calc( ){s}, then the inference
rules in Figure 3.3 validates the; A p,} calc( ){q, V q2} expression which is inferred
from the rule of lfody) and (ateCall). However, if a new subclass is added to the cedg,

classManager, the previous verification is not valid anymorechuse the rule is changed

to {p1 Ap, Aps}calcO{q, V q; V q3} at call site.

>p {ptblg) a1>¢

p
(body) @b @

(var){p}x{p}
(new){—}new C(&){q}

{pte{c} {cle{q}
{r}e; e{q}

bind(this:C,m)
Wpgvr 43

{p[x,F1} C ::m(e) {q|b,7]}

(sequential)

(staticCall)

— bind(CEY,
Vcls € (g? C) {pcls Ac: C} bclﬁ(,g( Voﬁ)m) {QCls}

{/\cls (pcls [e_/JZ v F]) A e_} m(e_) {Vcls (quS[e_’T])}

(lateCall)

= bind(C§",
Vcls € (€7 C) {pas AN c: C} bc.lrz(évoﬁ)m) {qcis}

{Acis Pasle/x v F]) Aner cm(e) {Vas (qusle, ]}

(externalCall)

Figure 3.3: Inference Rules
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With the restriction of behavioral subtyping, salapproaches, e.g. plug-in matching
(America, 1991) and relaxed plug-in (Nunes, 200wve been used to restrict the new
definition of methods. However, the restrictiontwow the object behaves beat the purpose
of having object-orientation methodology in softevatevelopment, which is code-reuse.
Therefore, Dovland (2008) used a lazy method teaeasubtyping using open closed
principle of object-oriented design where prograare open to be reused without
programmers do not have to worry the specificattbat changes due to program

modification. It is called lazy behavioral subtygi

3.5.2 Lazy Behavioral Subtyping

Dovland et al. (2008) produced a novel lazy behavieubtyping (LBS) method that
considers superclasses and their subclasses wladyriag methods in object-oriented
programs. LBS uses open world assumption concdpthwhe classes are extended and
reused over time. The classes are incrementalmedsan the class hierarchies using LBS.
The open world assumption allows the program not being gradually expanded but also
leads to potential bindings using method overridiigpe LBS reasons the program’s
method definition and method call by assigning gmations for the purpose of static
analysis. The specifications (better known as #ssein LBS) are defined for the methods
using an assertion entailment. The method defimi assertion is representedpaandq
and the method call is representedr ands. The 0,9 and (,s) are employed based on
Hoare logic of precondition and postcondition. EHniant for both assertions is defined by

(a formal presentation is §4.8)
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1. A method definition assertion entails a method aslertion(p, q) — (r,s).
The assertion of method call consists of assexifornethod definition and the assertion

themselves.

2. The sets of method definition assertidrifdenoteq(p;, ¢;)|1 < i < n}) entail a method
call assertionl — (r,s).
The assertion of method call consists of the setaathod definition assertion, which the

sets come from more than one method definitionféérént superclasses.

3. The sets of method definition assertion entail se¢s of method call assertidh
(denote{(r;, s)|1 <i<n}),U-V.

The sets of method call assertion consist of the semethod definition assertion when

there is more than one assertion of method dedmiior many method call assertion called

from different subclasses.

The definitions above show that LBS focus on thého@ specification which allows
method overriding be reasoned statically. All metlefinitions have specification as well
as method calls. The method call that is callethiwimethod definition holds specification
from itself and also all specifications for its med definitions. Therefore, whenever the
method is called, the analysis uses all speciboatialready specified by LBS, which
covers all possibilities statically. In additiongrfthe method overriding, its method
definition only uses specification that has beefindd without considering specification
from its superclass. This rule contradicts from awedral subtyping that whenever a

method is redefined in subclass, its new methodnitieh must satisfy superclass
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specifications. As of 2012, there are only Dovlamdl his collegue’s papers prove the use
of LBS (Dovland et.al, 2010). They have applied domcept for distributed concurrent
objects successfully (Johnsen and Owe, 2007) witfmwmally published the LBS at the
time and multiple inheritance (Dovland et.al, 2009pwever, the work limits to manual
specification and Hoare style logic programming. éAsonsequence, the implementation
needs programmers’ intervention for the verificatprocess. Therefore, with the strength
of LBS over behavioral subtyping, this thesis addpBS using abstract interpretation to
design an abstract formal framework to achieveraatmn program verification focusing

on method overriding.

3.6 Proposed Abstract Formal Framework

Figure 3.4 shows the illustration of proposed a&us$tformal framework, which the
detail framework is in chapter 4. The frameworkdzhen abstract interpretation uses Java
language as a basis for the program syntax. Thevsyrelps in explaining the program
semantics that focuses on the use of data fielthénpresence of method overriding.
Therefore, the syntax consists of a class, maisscland library. For the concrete
semantics, the framework bases on object-orientedrgm semantics, class semantics,
constructor semantics, and method semantics. Téwmserete semantics have domains to
define each concrete semantics using Fixpoint Targkeorem. The theorem traces the
changes of states for each concrete semantichiasdhe traces can be abstracted using
abstract interpretation theory. The domains aretiand output values, environment, store

and state.
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The conversion of the concrete semantics to alistsamantics is by abstract
interpretation. The abstract interpretation use®iS&onnection to ensure the abstraction
and concretization of the program semantics in rtamo function. The structure of the
program semantics orders in partial order sethabthe semantics always in lattice form.
The abstract semantics has four domains which lzsaat program, abstract constructor,
abstract method, and abstract method call. Abstrawstructor and abstract method are
merged using union to produce class invariant. €reation of the class invariant is
adopted from Logozzo (2004). Then, the class iavdrs composed in an invariant namely
A to ensure the invariant is not reverified when rsvclasses added. The composition of
each invariant produced is kept in modular. Theeefthe technique solved the problem of
reverification by class invariant. Then, the classariant is used for invariant in
inheritance. Thél represents invariant in inheritance. It is a cogeace of the\, whichis

the old invariant that has been verified and newaiiants created for new subclasses.

The abstract method is used to create abstractoshetdll in the presence of method
overriding. The abstract method call generates fedstract method of overriding and
overridden method from superclass and subclassalbsieaction produces invariants from
the overriding and overridden method, which theamants is used when the method call is
invoked. This technique is adapted from the notbrazy behavioral subtyping. By using
lazy behavioral subtyping, invariants can be gdedrafor method call compare to
behavioral subtyping that does not analyzed mettald Even though lazy behavioral
subtyping allows analysis on method call, the irargts used specify by the programmer.

Therefore, this framework lets the invariants beeggyated by abstract interpretation.
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Figure 3.4: Proposed Abstract Formal Framework

3.7 Conclusion

In this chapter, we have examined problems of aatedhinvariant generation using a
language callednethL based on program logic. There are two main prohlevhséch are
reverification of class invariant and over-approairan value of invariants in late binding

method call. There are five solutions for revedfion of class invariant problem proposed
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by other works, which are specification subsumptextended abstract family, observable
behavior, cleanroom software engineering, and navdgpecification. For the problem of
over-approximation value of invariants in late bnmgimethod call, there are two solutions,
namely behavioral subtyping and lazy behavioraltygibg. To achieve the objective of
automated invariants generation that is modular ammh reverification, abstract
interpretation (taken partly from observable bebeauechnique), and lazy behavioral
subtyping method are chosen as the solution. Witk $olution, the development of
abstract formal framework for invariants generai®described in chapter 4 using abstract

interpretation.
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Chapter 4
Formalization of Invariants in Method
Overriding

There is no abstract art.
You must always start with something.
Afterward, you can remove all traces of reality.

-Pablo Picasso

This chapter designs an abstract formal framewark \ferification on method
overriding. Its aim is to produce proposed equatitmproduce invariants for inheritance
and method overriding with late binding call. Tmarmhework consists of the formalization
of equations for invariants developed using abstiaterpretation theory and lazy
behavioral subtyping, which any research has besre defore. The framework adopts

class invariant of Logozzo (2004), Fixpoint Tarskiheorem (1955), Fages lemma (2008),

and Galois connection to develop the frameworkgiaipstract interpretation.

4.1 Preliminary Notation

To facilitate our discussion, we introduce matheocaatconcepts and notations for

lattice theory, fixed point theory, and abstra¢érpretation theory required for the study.

411 Sets

We denote sets with capital letters and elemesets with small letter, italic cambria
math font. For examplez is a member of the sd, written ase € E. We use bar to
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represent the abstraction of the element or seleofient. For example, the abstract domain
D written asD. We also denote the set of natural numbem,abe set of integer numbers
asZ, the set of Boolean values Bsthe set of String value & and let[x.. y] be the set of

{ieZli=zx Ni<y}.

Given two setsA andB, their Cartesian product is denotes Ay B whereA X B =
{(a,b):a € AND € B}. A relation r betweend and B is a subset of their Cartesian

product, i.er € A X B, and a relatiomonA isr € A X A.

4.1.2 Partially Ordered Sets

A partial ordering of a seitis given by a relatios< such that it is
1. Reflexive:a <aforalla€es
2. Antisymmetric: ifa < b andb < a,thena = b

3. Transitive: ifa < b andb < c, thena < ¢
We denote the partially ordered set (posef)la&) instead ofD, <). The top element
of (D,E) isTiff Te D A Vd € D.d ET. The bottom element dD,E) is L iff LED A

vdeD.lEd.

We say thatl € D is the least upper bound afdenoted byt 1A, if vd' € D such that

d C d'. Symmetrically, we denote the greatest lower boafrilby N A.
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A poset(D,E) is called a lattice if any two elements @fhave both a greatest lower
bound and a least upper bound. For a completedattie write{D, E, 1,T,M,U ). The poset
(D, C) satisfies the ascending chain condition (ACCgviéry ascending chaily C d, C ..

of elements irD is eventually stationary, i.edj e N. vm >n. d,, = d,.

4.1.3 Functions

A function is a relationr such that if(a,b) € r and (a,b") € r, thenb = b'. We
specify functions using notation, e.gdx. Expr. It defines a function with an inputand
an output produces by expressiénpr. Let f be a functiona an element in its domain
andb an element in its co domain. Therefofgg — b] is a function that acceptsas input
and returns as output. We denotA — B] as the domain of the functighis included
in A, and its co domain is included B Let f[A — B] andg[X — Y], thenfog €
[A — Y], which represents the composition of functiprand g, i.e., Ax. g(f(x)). Let
two posets bé4,=,) and(B,C), a functionf[A — B] is

1. Monotonic:Va,,a, € A.a; E, a, © f(a,) E, f(ay)

2. Join-morphism¥ay,a, € A.f(a; Ua,) & f(ay) U, f(ayz)

4.1.4 Fixed points

Let functionf be f € [D — D]. A fixpoint of f is an element € D such thaif(d) €
d. If we definef over partial order s€D, C), then the elemernt is the least fixpoint with

d = f(d) and all next element af, d' isvd’' € D.d' = f(d') > dEd'.
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Let f be a function defined over partial order §é@fC), an elementl € D, and the
order C is larger thand. Least fixpoint off, denoted asfpzf. The least and greatest

fixpoints on a monotonic function is guaranteedhsy Tarski’s fixpoint theorem.

Theorem 4.1 (Fixpoint Tarski’'s Theorem (Tarski, 1955))
Let (D,C, 1,1,u,n) be a complete lattice and I§te [D — D] be a monotonic function.
Then, the set of fixpoints is a non empty complatece, and:

Ifprf =n{d € D|f(d) E d}

9fpif =u{d € D|f(d) 2 d}
415 Traces

Let X be a set of states with an internal state,a non state is € X, and a trace is a
functiont € [N - X U {e}] with prefix conditionvn e N.7(n) = ¢ = Vi>n.t(i) =

€. We denote the sets of traces avevith 7' (Z).

The length of a tracelenT is lenT € [T(Z) —» N] where lenT = At.min (n) €

N|jt(n) = e= Vi>n.t(i) = e.

DEFINITION 1(Fixpoint partial traces semantics (Cousot et al., 1979))

Let
¥ be a set of states)
¥, € X be a set of initial states,
—-p € X X X be the transition relation from one state to aeoftate, and

functionF be

68



FeE[PE)-»P(T®)->P(T®)] 1)
Consequently, witlX is a variable, equation (1) can be defined witpbdint as :
F(ZO) = AX.Ep U {00 —= 20y = Opy1| Og =2 r0n EX A 0 =p 0n+1}

Then the fixpoint partial trace semantics of prograis

TIPYE) = IfpEE) = | JFi@o)

isw

4.1.6 Abstract Interpretation

Abstract interpretation formalizes the approximatioetween the program concrete
semantics and abstract semantics. We use the faatiah to conduct static analysis for
the purpose of verifying program with method owding. This theory has been applied not
only to verify a language but also to bytecode tBé#ret al., 2010), networking (Borghuis
et al.,, 2000), and code safety (Albert et al., 300%ere, the concrete semantics is a
concrete semantic domaif, which is partially ordered s€D,C=). The abstract semantic
domain is represented 4B,E). The concept of abstract interpretation is tarsethe

program semantics as the fixed points of a monotfumction.

DEFINITION 2 (Galois Connections) (Jaoua and Elloumi, 2002)

For two partial order¢D, =) and(D, C), the abstractiom € [D — D] and concretization
v € [D - D] be Galois connections iff
vieD.VdeD.a(d)Ed o dEy(d) 2)

Equation (2) is written as
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(D,E) y2* (D,E) 3)
Equation (3) has the following properties:
1. a andy are monotonic functions
2. a o yisreductive whered € D.a o y(d) Ed

3. y o ais extensive wheréd € D.d E y o a(d)

DEFINITION 3 (Lattice of Abstract Interpretations) (Tarski,1955)

Let
(D,E) be a complete lattice,
abstract interpretation of the domaif(D) be{(D,E) | 3(a,¥).(D,E) ,2% (D,E)},
order=y4; onAI(D) be
C= {((Dy,E1),(D1, E2)) | e, ¥).(D1, E1) 2% (Dy, E,))}

Then,(AI(D),E,;) is a complete lattice.

For the powerset of concrete and abstract dombey &re connected using Galois
connection to formalize the abstraction of the dommaThis is to ensure two domains are

corresponded to each other:

Lemma 1 (Fages,2008):

Let concrete domain bee €, whereC€ is a set of concrete domains, and abstract domain
be a € A, where VA is a set of abstract domains, such thae [P(Z) —» D] where
a(P(E)= Uy Y(PE)andy(D) = Uy({d}). ThenP(€) ,=2* P().

Proof:

Leta bea = Uy 1(P(2)) andcis Uy({d}). Then,
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a=a(r®)= | Jriee) = Jraw= | vaw

dec dey({ah)

For eachd, whered € {D | D = P(Z) } andP () < D such that
a({d}) Sa

= a(P(X)) Ca

= yYPE) ca

=y 1({d}) Sa q.ed

4.2 Syntax

Object-oriented program is a program that usesscéand object as the paradigm for
program development. A simple implementation has main class and a library. In Java,
the program consists of a class, a main class alilotaay. In C++, an object-oriented
program has one class, a main method, and a liliainy C#.net. Therefore, for simplicity,
the thesis takes a program as consisting of ona lisary and one main class. With class
C, an object-oriented program® consists of two element’, C,,4in, L} WhereC is the
class,C,,4in € C is the main class and < C is the library used in program. However, in
the current thesi§,,,;, IS alsoC because class for main uses the same syntax as oth

classes.

“A class is a software element describing an abstitata type and its partial or total
implementation” (Meyer, 1997, p.23). By considerifipth abstract data type and

implementation, the class consists of data memdefelds, a constructor, and methods.
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Destructors are not included because there is lbagarcollector that can manage the
unused data. Class C is a tufffeconst, m), wheref is field declarationgonstis the class
constructor, andn is method. Progra®® produces state§;, which is €, S>, whereE is
environment ands is store. State} consists of many internal states; o, that come from
objects in the program € € Y. ). An environmentE, is a map from variabled/ar, to
memory addresse#y asE & Var —» A. A store;S is a map of from addresses; to
values;Val as S & A » Val, where values can be integer, Boolean, and il =

{int, bool, null}.

4.3 Semantic Domains

A semantic domain is a domain used to describentb@ning of the concrete semantics
It describes the semantics of class, constructod, raethod. All set of these semantic
domains are represented by the powePset ). For exampleP(3)) means all sets of the
set of stateP(P(0)). These are elements involved in defining sematdinains:

1. Input value D;,; output value D,

The set of input valud);,, and output valueD,,,; are integer, boolean, or null.

2. EnvironmentE

A set of environment® (E) is a map denoted figar — A]; variableVar is a string,

Var € §; and the address, is a natural numberd € N.
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3. Store S

The set of storesP(S) are a map offA - Val], where the value iYal =
{int, bool, null}.

4. State)’

The set of stateB(})) are products of environment and stdfex S.

4.4 Concrete Semantics

The goal of static analysis is to provide an effectomputable approximation of the
concrete semantics (Cousot et al., 1977). Thiglseaed by first defining the properties
involved in the program execution through concregmantics. Then, the concrete
semantics is converted to abstract domain semamsicg lattice theory. Every change of
the semantic domains are traced using semanticsstrahere the semantics domains are
represented using fixpoint theorem (Tarski, 195%) thhe relation between the domains are

represented using Galois connection (Jaoua €iCd2).

DEFINITION 4 (Object-Oriented Program Semantics, P[—] )

Let
Person be a class name,
mainis the main method in clagerson,
L is the library used in the class,
00 be(Person,,4in, L), and
— c () x () be atrace from one state to another state.

The semantics of object-oriented program is
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Plo0] € [P(X) — PTEN]

Consequently, equation (4) when defined as fixpigint

PIOO1(Oinir) = U Pty X Y- Oinie U

(4)

{UO = **0p ™ Un+1|(00 — 0y € Y) A (0n+1 € Z) A (an - (Z))}

where, a set of program initial statewis;; € P(3)), such that all initial methodn) states

in a program withVal;, be input value isv o, € 0,,i; . gp(currentMethod) = m A

oo(Val) =Val,.

DEFINITION 5(Class Semantics, C[—])

Let

constr be constructor,

m be method,

v be value,

s be store,

T be the trace of the states,

f be data field with elemekD,,,, D), and

classPersonbe Person = < f,constr,m > .
Therefore, the class semantics Rarsonis

C[Person] € ?(T(Z))

Definition of (5) using fixpoint is

C[Person] = lfpy,; AT.Semanticy(v, s)

<m,v>n_1 <m,'|7>0

<m,17>0
U {00—’01—’"'—>Un| (00—’01—’

<m,'|7>n_1
W G ET

(5)
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To illustrate next definitions, an example of eadfinition is given using a program
sample as shown in Figure 4.1.

class Worker {

double salary;

Worker (double sal) {
salary = sal; }

void writeSalary(Worker w) {
System.out.print(w.salary); }

void calc(double sal) {
System.out.print(“weekly wage

is:"+salary=sal/4); }

Figure 4.1: Class Worker

DEFINITION 6 (Constructor Semantics, Const[—])

Let
D;, € Val be a semantic domain for the input values,
eo € E be the initial environment,
a;, and a;. be the memory address for the constructor’s irfjpytdata fields and the
location (c),
val be the value, and
inputs,pc.onse D€ the constructor’s entry point.
Then the constructor semantics is
Const[const] € [Dj, XS = P(})]
with
Const[const] = » (v;,, s). let gy

= (eo [17 = Ain, lc - alc]ls[ain = valin: apc = lCconst])

Example 4.1 (Constructor Semantics)

75



The clas3Vorkerhas one data member, which is salary that isribetivalue for the class.
The constructor receives a value narsald The semantics of constructdforkeris

Const[Worker()]

= % (sal,s).{(eo[salary Asqiary, l€ = alc],s[asalary - sal, a;. - 4])}

DEFINITION 7 (Method Semantics, M[—] (and Method Call Semantics Mq;; [—1))

Let
Din, Doyt € Val be semantic domains for input and output values,
m be a method,
a;, and a,. are the memory address for the constructor’s fiieltis, and
inputs, Ilc,, be the method’s entry point at a line of code.
Then the semantics of method,is
M[m] € [(Dj XE X8) > P(Dyyr XE X5)]
with

M[m] =X (v;, e, 8).let oy = {e[v » a;,, lc » a;.], s[a;, = valy,, a;. & lcg,])

Method semantics consists of input value and ouyalile, regardless it is method
definition or method call. The values expressesiiants for the methods. Using lazy
behavioral subtyping, the method definition repnésé¢he specification and the method call
represents the requirements. Therefore, there idifferent in definition for the method
definition and method call. The only different iletmethod call is called within a method,

which the call can be instantiated by superclagssabclass.

Example 4.2 (Method Semantics)
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Methodcalc(double saldoes receive one variable whichs@. However, the method does
not change any object environment but only prinfistbe result for thealary.

M[calc] =x (vin, e,5).{sal, e, s[ a;. » 8,e(salary) » v/4]}

45 Abstract Semantics

Abstract semantics is a superset of program comsehantics. The abstract semantics
represents all possible cases of the program erecufousot (1996) states the program
concrete semantics is safe whenever the abstratandies is safe. The safety of the

program is hold by the invariants to ensure themoi unlimited or over-range data.

DEFINITION 8 (Abstract semantics)

Let abstract semantid®, E, LT, L, M) be a complete lattice and let concrete domain be
(P(X),5,0,Z,uNn). The abstract and concrete semantics are conndryedsalois
Connection as

(P(®),<,8,5u,n) 2% (D,E LT LM
where the abstract domaih is defined as object-oriented program, constrycteethod,

and method call.

DEFINITION 9 (Order, E)

Let t; andT be a trace of state$yt; € T|Vi € {1..n}.T = UL, t;}. The correspondence
points isD, € P(T (X)) where

vT, € D,,
t;,t, €T, and
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(my
t =Aoc(m,v) .{m € M,veVar.c,— o0, = 0, S 02}.

Then, by using,, t,, orderc is

— (mq,v1) (ma,v2) —
tl Etz = (tl = 0-1—)t1/\ tz = 0-2—)t A 0-1 QO‘Z)

DEFINITION 10 Join, L

The join of two or more pointl, € [D x D — D], defined as, for the trace, join means

=3l

o U, T, = T(P(E) x T(P(2)), and for the state, join means U o, = 0y (m,v) U

o,(m,v).

DEFINITION 11 Top, T

The top of semantics points D, defined asT= Uj¢; ,t;, such thav T,e D,.T, S T.

DEFINITION 12 Meet, [1

The meet of two or more poins, € [D x D - D], defined as, for the trace, meet means

=31

M, Ty = T(P(X)) x T(P(2)), and for the state, meet meansn o, = o;(m,v) N

o,(m, v).

DEFINITION 13 (Abstract program, P)

Let

¥, be an initial state, and

P beE x S x P(A) be a domain of abstract program.
Then, an abstraction function of program semaigics

a[p):]P)[[ ]]—)]F
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whereap is the union of all states such thgt(Zo U X,),e01.n-

Proposition:

Let yp be UiNap', then (P[ 1,5,0,%u,n),,2% (P,E LT 0L,M)is a sound
approximation by a Galois connection.

Proof. The proof is shown applying the Definition 4 dremma 1.

Let concrete program ] ] € € and abstract program e 2. Then,

P=op(P[ D=Uyp *(P[ 1) and

yP(I?’) = Uyp({Plobject — oriented program]}) then

PPL D y,2% P(P)g.ed

DEFINITION 14 (Abstract constructor, Const)

Let
k represents numbers of object in the main methddeoprogram, and
Const beP(E x S) » P(E x S) be a domain of abstract constructor.
Then, an abstraction function of constructor seroams
Aconst : Const[ ] — Const

where ac,nt IS the initial statess, for each object exists in the program such that

X Const (Zg)ke{l..N}'

Proposition:
Let Yeonst D UTEN agomet, then(Const[ [, <,0,%,U,0) 2% (Const, E, LT, 1, 1) is
a sound approximation by a Galois connection.

Proof. The proof is shown applying the Definition 5 dremma 1.
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Let concrete program Weonst[ ] € € and abstract program l@enst € 2. Then,
Const = Agonet (Const[ 1) = U yeonst -(Const[ 1) and
Yeonst (Const) = U Yeonst ({Constconstructor method]}) then

P(Const[ ) ., 2%t P(Const) g.e.d

DEFINITION 15 (Abstract method, M)

Let domain of abstract meth® beP(E x S) - P(E x S). Then, an abstraction function

of method semantics g, : M[ ] — M whereayis a set of states such thm(?(z)).

Proposition:

Let yy be UPNay', then (M[ 1,<,0,%u,n) 2% (M,E LT L) is a sound
approximation by a Galois connection.

Proof. The proof is shown applying the Definition 7 dremma 1.

Let concrete program [ ] € € and abstract program B& € . Then,

M= ayM[ D=Uyn"(M[ I)and

Yu(M) = Uy ({M[method()]}) then

PM[ 1) 2™ P(M) g.ed

DEFINITION 16 (Abstract method call, M)

Let domain of abstract methoM ,; be P(E xS) » P(E x S). Then, an abstraction
function of method semantics logy;__ : Mcaul [ - M.y whereay_, is for one stat&

produced by thél.,;[ ] such thaty_ (2).

Proposition:
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Let ,VM be U‘rllEN al;ﬂiall’ then(Mcall[[ ]], g, @, Z;U,n) ymcall(:)aMCall (Mcalll Z, I,T, D, ﬁ)

call
is a sound approximation by a Galois connection.
Proof. The proof is shown applying the Definition 7 dremma 1.

Let concrete program M ,;[ ] € € and abstract program B&.,;; € 2. Then,
IMlcall = UMy, (Mcall[[ ]]) = UYMcaH_l(Mcall[[ ]]) and

Yu, (Mean) = UYy_ ((Mcan[methodQ]}) then

:P(Mcall[[ ]]) YMCE‘H(:)(XMCaH ?(Mcall) qed

46 ClasslInvariants

Class invariant gives specifications to class oheoito check the class’s correctness that
cannot be checked by the compiler. The specifinatiose invariants, pre-condition, and
post-condition to verify the behavior of the cladsare’s style uses pre-condition and post-
condition methods to check the program before ei@tuime. Webber stated “a class
invariant is a property that is true for all obgdf a given class at all times” (Webber,
2001, p.87). However, it is hard to have properties for objetttat hold true value
throughout program execution. The objects need wregkoperties that allow to be
temporarily broken in a method when the object iaslification. Therefore, we use lazy
behavioral subtyping method to produce propert@s specification) for methods that
modify the objects. For the class invariant, wedd Logozzo’s work in 2004. This work
is depicted because the proposed class invariaigasously proven and easily adapted to

our proposed framework.
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Theorem 4.2 Class Invariant (Logozzo, 2004)
Let C = (const, f,m) be a class with the set of sta®&) andD is an abstract domain
such that
<“P(Z)l g’ ¢’ 2’U1n> y(:)(x <5’ E’ I’-l_-l Dl ﬁ)-
The domain for the abstract constructor is
Const[const] € [P(E xXS) - P(E x5)]

and the domain for the abstract method is

n
UM[{mi]] € [P(ExS) > P(E XS]

i=1
wherem € M such thatConst[const] € y(Const[const]) andM[m;] S y(M[[mi]]).
Then, the class invariahis based on the following recursive equation:

I = Const[const] U U M[m;] (6)

i=1
such that class semantics for cldsss C[C] € y(I). As a tuple, the class invariahis
(A,4y,44, ..., A,)) € D"2 whereA is the class invariany, is the constructor semantics,

andA4,, ..., 4, is the method semantics.

Proof. By formal definition of abstract interpretatio@dusot et al., 1977), the tuple of
class invariani complies with tuple of abstract interpretation whéhe set of abstract
contexts is a complete lattice with orderidg By fixpoint Tarski’'s theorem, both abstract
semantic constructor and method are in the formafotonic functionf € [D — D]. with
the combination of constructor and method, the tiondbecome™*? — D™*2]. With its
least fixpoint, the equatiof6) is a non empty complete lattice, where the leasktis the

infimum, L (the least value) will be taken from the concrai@perties.
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Example4.1: A classinvariant for class Person

The classPersonis taken from chapter 3, Figure 3.2. The classthasfields which are
nameandbSalarywherenameis for storing name of the person dvfslalaryis for storing
the amount of salary of the person. The abstratiagio for the clas®ersonis based on the
(String, sign, sign, Esc). The specification is to ensure the salary validckvis hold by
data fieldbSalaryandtestSalaryare always positive number as salary must alwaysa b
positive value. Thé&tringis for the value ohame thesignis for the sign obSalaryand
testSalaryand Esc is for capturing the fields that may escape thgeabscope (return
value). The iterations of the abstract domaibfiswith the abstract domain is
D = String X sign X sign X P({name, bSalary, testSalary })

The constructorcalc method andsalary method are analysed to compute the class
invariant because they modify object state. Thehowbivritenamels included to show how
the method does not change the state of data fidltsessor method that starts wight
word is also not included because the method doesadify the fields or data. Therefore,
there is no such method in Figure 3.2. Using (63 agple, the first element set is for class
invariant, second element set is for constructaod, @her element sets are for methods. The
sign forbSalarywith value 100 antestSalarywith value 200 is positive (annotate as p).
The first iteration is the bottom value for all mlents.

I° = {(("Adam", p,p, @), (L, L, L,0),(L, L, 1,@),(L, 1, 1,8),(L, 1, 1,0))
The second iteration corresponds to the abstrastution of the class constructor because
the constructor is the first method call when ajecdtis instantiated. It is

Const[Person( )]({"Adam",p,p,?)) = ("Adam", p, p, @) L (T,T, p, D)

= (1,T,p, 0)
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The abstract executions to all methods are
M[writeName] (("Adam", p, p, @)) = ("Adam",p,p, @) U (L, L, L, D)
= ("Adam",p, p, @)
M{[calc]({"Adam", p,p, ®)) = ("Adam",p,p, @) U (L, L, 1, @)
= ("Adam", p, p, @)
M[salary]({"Adam", p,p, @)) = ("Adam", p,p, @) U (L, 1, 1, @)
= ("Adam",p, p, @)

Union both I° that already has initial value for all data fieldsth current state of
constructor and methods, the first class invarsaapproximation is

(T,1,p,0),(T.T,p, ®),{"Adam", p, p, ), ("Adam", p, p, @),

1_
"= ("Adam", p, p, @)

)

The second iteration is the post condition of thenethods with thgT,T, p, @) taken
from I1. There is no change for methediteNamebecause the method does not change
any state of data field.

MwriteName]((1,T,p, ) = (T,T,p, D)
The methodcalc reset the value dfSalaryto 2100 as well as methaalary which calls
methodcalc. Therefore,
M{[calc](T,T,p, @) = (T,1,p, @) U ("Adam", p, p, @)
= (1,7, p, D)
M([salary]((T,T,p,®)) = (1,1, p, ®) U ("Adam", p, p, )
=(T,T,p, D)
Therefore, the second class invariant’s approxionas

(LT, p,8),(LT, p, ), (LT, p, D), (1.7, p, ),

2
"= (1,1,p, D)

)
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The class invariant’'s approximation on the thirdration has same result as previous

iteration. Then, the iteration stops Et

In conclusion, from the static analysis of Figur& 8ode, the class invariant produced

/Iname:StringbSalary < 0 && bSalary > 0, testSalary > 0
From the class invarianbSalarydata field can be positive or negative that isngréor the
specification of the salary, which must positivénefefore, the code needs conditions to
ensure thédSalaryis always positive value. For example,

Person(String n, int s){
name = n;
if (s>0)
bSalary =s;

else

bSalary = 0;

}
Figure 4.2: The new code for the constructor aéslRerson
With the if-else conditiorhSalarycan accept positive value only, which the clasaiiant

is //[name:StringbhSalary = 0, testSalary > 0.

DEFINITION 17 (Method Invariant)

Let Dip, Doue S {D|D < (E X SXxP(A))} be the semantic domain for parameter and

return value of method. Then, the method invarigi,, U D,y -

4.7 Invariantsin Inheritance

Inheritance is the essence of object-oriented arogring language. It allows classes to

be reused by making the class properties genedalizespecialized. Invariants in the
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presence of inheritance involve both superclass sanatlass. The superclass keeps on
expanding by having new subclasses. Thereforeintregiants are also changing based on
new subclasses. In order to ensure the invariaeteasy to monitor, they are generated in
modular form. Modularity technique in generatingzanants is a technique that the

invariants are produced based on units, for examgbess, method or subclass. The
technique is mainly used in ESC/Modulo 3 and ES@/Jehich are tools to find run time

errors at compile time. ESC/Modula 3 is the predsgceof ESC/Java for checking C and
C++ languages. As its name implies, ESC/Java isJ&wa language (now it has been
extended to ESC/Java2). Being modular is crucigenerating invariants to support large

programming codes.

Example 4.2 : Non-Modular-Based Invariantsin Inheritance
Let us say, there are two classes naRedentandMousewhereRodentis the base class

of Mouse The static analysis starts with Rodent class invariant,

X = Const[constg] LI [, M[m;] where the class is defined &g,const,m). The
extension class for object-oriented language cam@a from its superclass. When it is
instantiated, it automatically calls the construcémd data members of the superclass.
Therefore, it is able to act differently from itgperclass but with its superclass feature. For
the extended claskjouse the class invariant Y is defined as below if #ggiation is based

on union operatiolRodent U Mouse):

n k
Y = Const[constg] Ll Const[const,,] U UM[[mi]] U UM[[mj]] (7)

i=1 j=1
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The Rodent class definition is{fz U fy, constg U const,, mg U my,). Fields of

fr U fyy are data members that belong to both classes,vieowr the constructors and
methods, the data fields are variables that are tessupport calculation in the constructor
and methods. However, the equation becomes morplergras more subclasses are added
to the superclass because the superclass is redegifery time a new subclass is added to
its hierarchy. This can lead to low performancermtuthe static analysis of verification as
the code becomes more and more complex. Theretbeeold invariant or previous
invariant of two predicates stores information ofdriants that have been verified

previously to be used again for the next process.

DEFINITION 18 (Modular-based Invariants in Inheritance)

In Theorem 4.2, the class invariant is extendeilésys:
Let A be previous invariant with its initial abstractndains
Fnst[[consto]] U [, M[[moi]] (8)

Then, the new abstract domains that come from nbelasses are

A; = Const[const;] O [1~,M[m;],i = {1..n} (9)
Therefore, the invariant for inheritance is

H = AU Const[const;] U 1%, M[m;] (H) (10)

= A0 %4 (11)

such that the new inheritance invarian€i€] < y(H).

Proof. By comparing both equation ¢¥) and(11), it is stated that to improve execution
time during static analysis on inheritance, equefibl) is preferable since equatigh1)

is not extending every time new subclasses aredsalslen equation7).
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The modular part of the equation is based on thegimg of previous or first abstract
constructor and abstract method as one module. Brerabove definition, the mergence is
represented ad. Every time, new subclasses are added to the gamggheA has no need
to be verified. However, the invariant of the nembdasses are merged with theas an
invariant for inheritance ad. This mergence changes4Apwhen the program adds another
new subclass, which later the invariant becofie$his process repeats as new subclasses
are added to the program. As a consequence, gdbation were implemented, logically,
the process of generating new invariant is fasteold invariants are used when program

extension happened.

Example 4.3 : Modular-Based Invariantsin Inheritance

ClassPersonin Figure 3.2 consists of two data members whie@nameandbSalary (we
omit testSalary temporarily, for simplicity). It has a constructand three methods which
arewriteNam€), calc(), andsalary(). For subclassVorker, it has one new data field named
tSalary. Thetsalaryreceives its initial value through constructoriaale namedot. Using
the same specification to check the value is atigesnumber, the abstract domairf
chosen is
D = sign x P({bSalary,tSalary})

We abstract away name amektSalaryas they do not change the statet®élary.
bSalaryis included because it is not only can changesthte théSalarybut also data field
of superclas®erson which can be accessed by the subdldesker. The first iteration is

I° = ({1, 0),(L,0),(L,8),(L, )

The second iteration corresponds to the abstraxiution of the class constructor;
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I' = (1,8),(1,8), (L, ®),{L, ®))

The third iteration is

I? = ((1,8),(T,8),(L, 8),(T, 0))
The methodcalc has a statemensalary+=bSalary However, the union of positive
value ofbSalarywith the least upperbound value(ims) U (T) = T. The positive value of

bSalaryis used as in new code in Figure 4. Therefore,cthss invariant produced for

tSalaryis
Il tSalary < 0 && tSalary = 0

With the class invariantSalary can accept any positive or negative value whiabsdo

not correct for a salary number. However, for gtiample, we proceed as it is. Then, using

(5), the invariant for both superclass and subdkass

n
H = Al UA_"
i=1

= bSalary >0 U 0 = tSalary =0

which the invariant is

/l bSalarg> 0, tSalary> 0 && tSalary< 0

This is the result of the union of superclass irardrand subclass invariantH is

updated when a new subclass is added. Howevee, ithap need to verify the superclasses

that have been analyzed.
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4.8 Invariantsin Method Overriding

Method overriding exists in inheritance as an ingatr tool to support reusability in

object-orientation. Logozzo (2005) used best case approximation of the method which

wasM,; [m](T) because input of was not known and

dCET= Mcau [m] (E) [= Mcau [m] (T) (12)
The best case over approximation is always the maxi value of the variable. In order to
avoid the over approximation, Dovland et al. (20@8pposes a method called Lazy
behavioral subtyping which considers all inputs amatputs of methods in method
overriding. Lazy behavioral subtyping is a methhodeason about late binding of method
calls. It is developed with less restriction on-paad post- condition of methods compared

to conventional behavioral subtyping.

DEFINITION 19 (Lazy behavioral subtyping (Dovland et al., 2008))

Let (p, g) and (r, s) be assertion pairs andUletenote the setdp;,q;)|1 < i < n} andV
denote the sefdr;,s;)|1 < i < m}. Entailment is defined over assertion pairs arid &

assertion pairs by

1. (pq) = (r,s) 2 (Vz.p = q') = (Vz,.r = s'), wherez; andz, are the logical
variables in(p, q) and(r, s), respectively.

2. U-(1,9) 2 (Maisn(VZipi = q')) = (Vr = 5)

3. U-V 2 AcicnU - (1, 57)

In the context of class analysis, method definitisesS(Class, method) as a set of
specificationsR (Class, method) is a set of requirements for method call. It isdugvhen
an overridden method is called from another methodhheritance, functiof T defined as

a methodf exists in subclass and its immediate superclaksrefore, the specification
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generates from the superclass and the subcdfabgsubclass, f) & S(subclass,f) US T
(superclass, f). The function is a recursive function, if the sigess also has another
superclass. The entailment rule extends to belomheritance program. In general, the
rules show that requirements of method call regusgeecifications from method definition
of the method’s superclass and subclass. This igedrgives all possible invariants that
can be used to analyze the method call.

1. ST (Class,method) = R T (Class, method),

2. § 1 (Class,method) = S(Class,, method) U S(Class,,method) = R 1

(Class, method),
3. (r;,s;) € R(Class, method),

4, U->V 2 Nciem U = (13, 8)),

Person

void writeName(Person* ) : (_, ) {...}
void calc() : (p1,91) {-..}
void salary() : (_,_) {... {ro}calc(){s1}...};

A

Worker Manager
void writeSalary(Worker*) : (_,_) {...} < void writeManager(Manager*) : (_,_) {...}
void calc() : (p2,q2) {...} void cale() : (ps,q3) {...}

Figure 4.3: Inheritance relationship with prooflog

Figure 4.3 illustrates a simple version of the €ldmgram using the same example of
inheritance taken fron§3.3 of Figure 3.2. The figure omits all constructorsldimes of
code for simplicity. Note that, g, r,ands specify pre and post condition for the method
and method call. The and g represent specification for method wherds for pre-

condition andq is for post-condition. The and s represent pre-condition and post-
91



condition for the method calls. Th¢ and s’ are for new post-conditions. The post-
conditions consists of oldj(ands) and new post-conditions due to changes or neal loc

variables in pre-conditions. Using abstract intetation, all ofp, g, r,ands are converted
into M[m;]. All methods in the classes have method inva@a® = D;, [ D,y andD;,,
Dout € {D| D € (ExSxP(A))}. Using Definition 19, equations for invariants in

method overriding is produced in Definition 20.

DEFINITION 20 (Invariants of Method Overriding)

Let methods in the classes be method invariant wiscM = D, U D, Where Dy,
Dout € {D| D < (ExSxP(A))}. Method semantics is
M € [(Dj, X EXS) » P(Doyt X Ex S)] and all methods in class are represented by

™ M[m;]. Then, the invariants of method overriding is

Mcall [om] = Mﬂomsuper]] M H0<i<nM[[0msubi]] (13)

such that M.ylom] € y(M[-1), M[omgper] € y(MI-](superclass)), and
M[omgyp, ]| € y(M[—I(subclass)). The method semantidM,;[om] is used for

overridden methodofn) call which its definition is determined at rumg. For example,
whether thecalc() method of Figure 4. is called from objédrsonor objectWorker, the

methods conjunction cover both situations of mettating.

Proof: By using the fixpoint theorem, the least abstfixgtoint by abstract interpretation is

a sound approximation for its concrete fixpoint twitGalois connection,

(P(),S,null, Y, uN)2(D,E,L,T,0,/). Then, M € y(M). Hence, the function is
Y
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monotonic. Therefore, for each overridden methbdses the concrete least fixpoint for its

abstract domains.

49 Conclusion

In this chapter, we designed an abstract formahéwsork of invariants generation for
the purpose of verification on method overridindneTframework developed equations
using abstract interpretation. There are two equatiproduced and proved, which are
invariants inheritance and method overriding inaoun (11) and (13). The equations are
used to generate invariants that able to verifyg@mm with inheritance and method
overriding. To validate the equations, an experinval be conducted to the equations on

case studies.
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Chapter 5
Result and Discussion

| didn’t fail the test, | just found 100 ways to il@vrong.
-Benjamin Franklin
This chapter presents the evaluation of the prapesgation. It is important to apply
the equation on object-oriented programs to chiscteliability and validity. The reliability
is achieved by applying the equation on two casdiss, which are Salary System and
Quadrilaterals System to generate invariants. Tdlality is achieved by discussing the
result of the cases studies with Java Specificatianguage. Every case study has
invariants that generated using behavioral subtypimd lazy behavioral subtyping method.

Each result of each method is discussed and amhtgzsompare the differences.

5.1 Case Study 1: Salary System

Figure 5.1 is a code of Salary System taken frogufé 3.2 with the modification for
constructor of class Person and class Worker. Eve code of the program is used to
ensure the specification of salary value is alwagsitive. The program is written in Java
language. The purpose of method overriding in thegq@am is to reuse data of its
superclass. The methadlc() that is used to demonstrate the late binding afathethod
overriding is methoctalc(). The methodcalc() appears on both superclass and subclass

which are called from superclass object and subabdgect. Therefore, methazhlc() in
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classWorker will override definition of clas$ersonwhenever possible. In addition, the

methodcalc() is also called from a method in superclass nasaéaty().

public class Person {

public class Person {
private String name = "Adam";
private int bSalary = 100;
public int testSalary = 200;

public Person(String n, int s){
name = n;
if (s>0)
bSalary = s;
else
bSalary = 0;

public void writeName(Person p){
System. out .print("The employer name is " + name);

}
public void calc(){
bSalary = 2100;
System. out .printin("Person::calc()");

public void salary(){
calc();
}} /lend of class Person

public class Worker extends Person{
public int testSalary = 300;
private double tSalary;

public Worker(String nama, int gaji, double tot){
super(nama,gaji);
tSalary = tot;

public void writeSalary(Worker w){
System. out .printin(w.tSalary);

}
public void calc(){

tSalary += bSalary;

System. out .printin( tSalary);
} } /lend of class Worker

Figure 5.1: Salary System Revisited
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5.1.1 Invariants Generation Using Behavioral Subtyping

Let method invariant b&f = D;, L Dy, method semantics M € [(D;, X E X S) —
P(Dyye X E X S)], andM < y(M). Methodcalc() of classPersonhas the invariant of

// bSalaryg> 0
where,D;,, is bSalary = 0 andD,,, is bSalary > 0 taken frombSalary=2100which is a

positive value. Therefordf = D, LI Doy
= bSalary = 0 Ll bSalary > 0
= bSalary =0

The methodalc() of class Worker has the invariant of

// bSalary> 0, tSalary> 0&& tSalary< 0

where,D;,, is bSalary > 0 U tSalary =0 N tSalary < 0 andD,,, is bSalary >0 U
tSalary = 0 N tSalary < 0taken fromtSalary += bSalary. Based on theWNorker's
constructor, there is no limit faSalary. Therefore, theéSalary has any value of positive
and negative. The result violates the program’sifipation, which states the salary must

be positive value. However, as an example, therprogroceeds as itis. Then,

By using behavioral subtyping, method invariant fieethodcalc() of classPersonis
bSalary = 0 U tSalary =0 N tSalary <0 where the statement derives from
combination of invariant otalc() of classPersonand classWorker, bSalary > 0 U
(bSalary = 0 U tSalary = 0 N tSalary < 0). However, if the code of methawhlc()
of classWorker changes tdSalary = testSalary + 100@from tSalary +=bSalary, the
method invariant becomes bSalary = 0U (tSalary =0 N tSalary < 0) U
(testSalary = 0 N testSalary < 0), which is stated as

/l bSalary> 0, tSalary> 0 && tSalary< 0, testSalary 0 && testSalary< 0
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The addition obSalarydue to the fact that the methodlc() is an inherited method from
its superclass, which it must implement all sugesglspecifications fazalc(). When the

code below is executed (usiti§alary = testSalary + 1000)

public class Employment {
public static void main(String[] args) {
Person objw = new Worker (“Ali”,1800,0);
objW.salary();
Person objP = new Person (“Adam”,23000);
objP.salary();

}

, the

bSalary = 0 U (tSalary = 0 1 tSalary < 0) U (testSalary = 0 N testSalary < 0)

is used. This is a valid statement for any valuebioth data objects because they use
maximum value of both positive and negative valk@sobjP, even though, there are only
two data fields used, the checking takestSalaryinto consideration, because that is the
rule used in behavioral subtyping. The purposeiavoid miss analyzed. However, as a
result, over-approximation on method semantics ccm the method overriding

verification.

5.1.2 Invariants Generation Using L azy Behavioral Subtyping

For the class analysis using lazy behavioral subtypthe set of specification of
method calc() in classPersonis represented aS(Person,calc). Using same class
invariant and method semantic$(Person, calc) is (bSalary = 0). The method invariant

for salary()is also(bSalary > 0) because there is iy, andD,, for the method.
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The requirements afalc() called insalary() is represented a&(Person, calc). Since
S(Person,calc) —» R(Person,calc) as formalize in equation (13), thgbSalary >
0) € R(Person, calc). For the clas®Vorker, the specification focalc() is

(bSalary = 0 U tSalary =01 tSalary < 0) € S(Worker, calc).

However, if the code of metharilc() of classWorkerchanges teSalary = testSalary
+ 1000 (from tSalary +=bSalary, the method invariant becomd$Salary =0 N
tSalary < 0) U (testSalary = 0 N testSalary < 0), which is stated as
/[ tSalary> 0 && tSalary< 0, testSalaryg 0 && testSalary< 0
The statement shows that there is no need to ingsiemvariant of superclass as opposed
to behavioral subtyping. Then, using lazy behavisuatyping’s entitlement rule of
S T (Worker,calc) » R T (Person, calc)

, the requirements for internal callcdlc() is

{(bSalary = 0), (bSalary = 0 U tSalary = 0n tSalary < 0)} € R(Person, calc)
If, we usetSalary = testSalary + 1006tatement, the requirements for internal cattalt()
becomes

{(bSalary = 0),

(tSalary = 0 n tSalary < 0) U

(testSalary = 0 N testSalary < 0)} € R(Person,calc)

To show the effect of method overriding, let us sayhe main method for these

classes, has the following:

public class Employment {

public static void main(String[] args) {
Person objW = new Worker (“Aliyah”,1800,0);
objW.salary();
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The methodsalary() is called by using an object diVorker, called objW. The
instantiation ofobjW involves both clasPersonandWorkeras both classes are related as
in inheritance. When thebjW s instantiated, both clag®rsonandWorkerare activated.
For the methodsalary(), its method invariant id[salary]. However, methodalc() that
is hidden inside methoslalary() has both specification from method invariant ofttmoe
calc() of classPersonand of clas§Vorker, which is

M cqulcale] = Mlcalcpersonl T Mcaleyorker]-
So, it becomes

ST (Worker,calc) - R T (Person, calc)
= {(bSalary = 0), (bSalary = 0 U tSalary = 0n tSalary < 0)}

Therefore, foobjw.salary();where theobjW instantiates by th@/orkerobject,the invariant

invokes

//bSalary = 0 ,tSalary = 0 && tSalary < 0

Let us say in the main method, there are below solfethis code, an object named

objP instantiates from clag®erson ThroughobjP, methodsalary()is called.
public class Employment {
public static void main(String[] args) {

Person objP = new Person (“Ali”,1800);
objP.salary();

}}

Therefore, foobjw.salary();where theobjWis aPersonobject,the invariant is

//bSalary = 0
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From the invariants produced, it shows that invasaised are relaxed to object call only.
The analysis using lazy behavioral subtyping does implement all invariants of
superclass. Therefore, the approximation value filmeninvariants limit to data fields used

only.

5.2 Case Study 2: Quadrilaterals System

The Quadrilateral system is a simple program thaivd a shape of four sides with 90
degree angle only. The specification is to enshee dides are in positive value. The
program can draw two basics four-sided shapes, whie square and rectangle. By
referring to Figure 5.2, there are two main clagkas have inheritance relationship, which
are Shapeclass andRectangleclass. Both classes hagetData() and setData()method.
Both methods fromRectangleclass override methods iBhapeclass accordingly. The
setData()method ofShapeclass has new value after overriding Rgctangleclass where
thesidelis not a single value but multiply by 5. Therefdtes program will always draw a

rectangle instead of square because the side isatiranged in the program.

public class Shape {
private int sidel = 9;

public Shape(int s1){
if (s1>0)sidel = s1;
else sidel = 0;

}

public int getData(){
return sidel,;

public void setData(int x){
sidel = x;

B

public class Rectangle extends Shape{
private int side2 = 9;
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public Rectangle(int s1,int s2){
super(sl);
if (s2>0) side2 = s2;
else side2 = 0;
}
public int getData(){
return side2;

}

public void setData(int a){
super.setData(a*5);
side2=a;

}

public int draw(){

int total = (2*super.getData()) + (2*this.getData 0);

for (int i=1; i<=super.getData(); i++)
System.  out .print("*");

for (int j=1; j<=(this.getData()-2); j++){
System.  out .print("\n*");

for (int i=1; i<=(super.getData()-2); i++)
System.  out .print(" ");

System. out .print("*");

}

System. out .print("\n");

for (int k=1; k<=super.getData(); k++)
System.  out .print("*");

return total,

B

public class DrawShape {
public static void main(String[] args) {
Shape ¢ = new Rectangle(2,2);
c.setData(6);
((Rectangle)c).draw();

B

Figure 5.2: Quadrilaterals System

5.2.1 Invariants Generation Using Behavioral Subtyping

There are two overriding methods in the system whiegetData()andsetDataj.For
the classShape thegetData()has noD;, but hasD,,. from sidel Therefore, the method
invariant taken from the claghapenvariant, which is

//sidel =0
ThesetData()contains data fieldideland variable, so the method invariant is
//(x = 0&&x <0),(sidel = 0)
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The data fieldsidelin always positive number as the code has chettkednput value
using if-else condition. However, there is no cdndi to control the value ok.

Nevertheless, the data field is always positivardigss of the value.

For subclas®ectangleof Shape using behavioral subtyping, tigetData()invariant is
based on data fields from superclass and subcls=efore, thegetData() in Shape
changes as well as to avoid miss analyzed durin§oaion. Then, the method invariant
for bothgetData()is

//sidel = 0,side2 > 0
For thesetData()of Rectanglethe method invariant is
//(a=08&&a < 0),(side2 = 0)
The convergence of the method invariant for botpestiass and subclass makesData()
changes to
//(x=0&&x <0),(sidel 20),(a>0&&a <0),(side2 =>0)
Below is the sample code of an obje&hape and Rectangle calls method
setData(int x).For both situations, the same invariant is emplogele to behavioral
subtyping is engaged to generate the invarianterefbre, there is over-approximation
values from invariants existed even though therianés are not required for the analysis
process.
public class DrawShape {
public static void main(String[] args) {
Shape ¢ = new Rectangle(2,2);
c.setData(6);
Shape d = new Shape(2);

d.setData(3);

}
}
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5.2.2 Invariants Generation Using Lazy Behavioral Subtyping

Using same technique as explained in §5.1.2, thes&hapés getData()has noD;,
but hasD,,; from sidel Therefore, the method invariant adopted from ¢lass Shape
invariant is

//sidel =0

Method invariant foShapés setData()is
//(x =0 Ax <0),(sidel = 0)
Method invariant foRectanglés getData()is
//side2 =0
Method invariant foRectanglés setData()is
//(@=0 Aa <0),(side2 = 0)
Using lazy behavioral subtyping, there is no nesdnerge invariants as in behavioral
subtyping. Therefore, the invariant used dependsigect call. The lazy technique limits
the expansion of the invariant generation as thmgnam can extend by having new
subclasses. Using the same sample code in §85.2.1,
public class DrawShape {
public static void main(String[] args) {
Shape ¢ = new Rectangle(2,2);
c.setData(6);
Shape d = new Shape(2);

d.setData(3);

}
}

, the invariant produced farsetData(6)s

//(@=0 Aa<0),(side2 = 0)
and the invariant fod.setData(3)s

//(x=0 Ax <0),(sidel = 0)

103



The invariants generated show that there are diftanvariants produced depending on
the data fields involved in the method. In facgrthis no mergence of the invariant from
superclass and subclass for method overriding dlvavioral subtyping. The reason is
lazy behavioral subtyping reduces the invariant #ten expand when the inheritance

structure grows.

5.3 Analysisof the Case Studies

By referring to Table 5.1, the data is taken fravo previous case studies explained in
previous section§5.1§5.2. They are Salary System and QuadrilateralseBysGalary
System is a system that applied method overridmgeuse data from superclass. In
addition, there is a call for overridden methodnfreuperclass and subclass within other
method. The call method is only known at runtimmgsn object. Quadrilateral System is
a system that implemented method overriding forpilngose of specialization. There is an
overriding method of subclass specializes the d&fin of overridden method of a
superclass. Table 5.1 is divided into invariantsdpced for two variables where each case
study compares using the method of behavioral gutdy (BS) and lazy behavioral
subtyping (LBS). The methods are used because lmehbsubtyping is the current method
researchers mostly used as explaine§2iri0 and lazy behavioral subtyping as a solution
method in proposed abstract formal framework. Theecstudies have been analyzed
statically using invariant for inheritance as inuation (11) (pg.87) and invariant for

method overriding as in equation (13) (pg.92). €hmalues produced from each case
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study. It can be zero (0), positive value (+veVahd negative value (-veVal). The double

dotted (..) represents the range between one t@alaeother value.

The findings of Table 5.1 show that invariants gatexrl for three methods of Salary
System have different value using method BS and.L®8thod calc and salary are
method definition andcalc..is a method call. Botkalaryand..calc..method only appears
in superclass. Therefore, boxes in subclass amgrag. For methoctalc that exists in
superclass and subclass, produces same value dointfariant generated using BS.
However, different result produced using LBS. Thpesclass consists of value toBalary
in superclass and has valuesti@alaryandtSalaryin subclass. The value shows that LBS
result relaxes to the data fields used for the oekttiefinition in particular class only;
without considering other classes. For the metbaldry, both methods produce same
result, which is 0 until positive value. For methodll ..calc.., there is no invariants
generated using BS because the method limits lgstoumethod invariant not method call
invariant. The reason is the method can be caledny object, which is hard to predict.
Then, the LBS solves the problem by generatingriamé by adopting invariants produced

by the method’s superclass and subclass. Therefoyspbject can invoke the method.

For the case study of Quadrilaterals System, thereo different value for the
invariants of methodyetData and setDatausing BS and LBS. For the methgdtData
using BS, the invariants in superclass are sante fioclass. The same result produced for
method setData Using LBS, for methodyetDatg there is no invariant for tSalary in
superclass and no invariant f®Salary in subclass. The same result generated for
invariants in methodetDataas well. The reason is LBS only produced invarkzaged on

the data fields of the method without consideritsgitnmediate superclass’s or subclass’s
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invariant. This contradicts to BS where the sups€k invariant changes as subclass

added.

By comparing both case studies, it shows that teerated invariants for method
overriding using behavioral subtyping enable todpie®e over-approximated value. The
over-approximated value means invariants are gereeta the superclass and subclass as
long as there is a new subclass added to the prnogtaucture. To ensure any object’s
method definition can be verified, the BS belieitas safe to cover all data fields for the
invariant. However, the over-approximated valuarfrannecessary invariants can cause
overflow, if the exceeded invariant is increasedaose of the program scalability. We can
compare the exceeded invariant with exceeded vadumteger number as stated in
ISO/IEC 9899:201x and Java Language Specificaboset the danger if the program has
exceeded invariant. According to ISO/IEC 9899:2@danes, 2009), the value resulting
from an instance of integer overflow in C or C+iogmamming language needs not be
detected. The undetected mechanism leads to stam#flaav problem during program
execution. The same mechanism is used for Javahwlug et al. (2000) state clearly in
Java Language Specification; “the built-in integ@erators do not indicate overflow or
underflow in any way” (p.44). This situation does occur if the invariants are generated
using lazy behavioral subtyping because its rulesvamethod definition has invariant
based on its data field and not affected by theenitdnce hierarchy structure of the
program. In addition, LBS allows method call hagaimant that cover both invariants from
superclass and subclass method. Therefore, anygtaihjat invokes the method call is

analyzed statically.
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The findings of the present study are regarded a®lation of previous studies.
Previous research managed to conduct static asabysilate binding call (Privat et al.,
2005) as well as multiple inheritance (Dovland &t 2009) using Hoare-style logic
programming. Privat (2005) suggested type systemlysis to verify object-oriented
languages together with coloring and binary trespaliching technique for language
compilation. However, Dovland (2009) demonstrateté@nique to use lazy behavioral
subtyping onto an inference system to verify migtipheritance. The study reported here
differs from previous studies in one important @&spe applied abstract interpretation to
conduct late bound verification. The application affstract interpretation allows the
technical implementation of the proposed framewcak be done in automated manner.
The automation is hard to implement using Hoar&edtygic programming as automated
program verifier is still a major problem in softeaverification (Hoare, 2007). Even
though, the proposed abstract formal frameworkheayweight framework, the outcome

of having automation verifier is worthwhile in theure.

Table 5.1: Analysis on Case Studies

Methods in Superclass Methods in Subclass
. BS/
Case Studies Method LBS
bSalary tSalary bSalary tSalary
calc BS 0..+veVal -veVal..+veVal 0..+veVal -veVal..+veVal
LBS 0..+veVal - 0..+veVal -veVal..+veVal
Salary salary BS 0..+veVal -
System LBS 0..+veVal -
..calc.. BS - -
LBS 0..+veVal -veVal..+veVal
sidel side2 sidel side2
getbata | BS 0..+veVal 0..+veVal 0..+veVal 0..+veVal
Quadrilaterals LBS 0..+veVal - - 0..+veVal
System setData | BS 0..+veVal 0..+veVal 0..+veVal 0..+veVal
LBS 0..+veVval - - 0..+veVval

BS : Behavioral Subtyping, LBS : Lazy Behavioral Subtyping, +veVal: positive value, -veVal : negative value,
.. . range, Grey box : not applicable
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5.4 Conclusion

This chapter shows the validation of the invariaggaerated using proposed equations
using two case studies. The result shows thatlthseen method, which is lazy behavioral
subtyping, produced better value compare to behavsubtyping. The value is in a range
of integer number not a maximum value. The maximuatue results stack overflow
problem during program execution as stated by ISO®899:201x and Java Specification
Language. Therefore, the study has verified thateths a solution to verify late method

call in object-oriented programs.
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Chapter 6
Conclusion

Praise belongs to God.
-Al- Fatihah verse 1

6.1 Summary of the Study

This thesis investigates invariants generation goragram with method overriding
using abstract interpretation and lazy behaviowtyping. The thesis has achieved the
objectives to solve two problems of generating rrardgs in method overriding which are
problems of class invariants and late binding c@lhe investigation starts with the
definition of static analysis, the purpose of staéinalysis for program analysis, and
methods available in conducting static analysid. tAtee methods of static analysis;
namely (1) assertion (2) model checking, and (3}rat interpretation; are analyzed based
on their capability to generating invariants auttoadly, lines of code needed, and whether
the methods are concrete or abstract. Abstraatpir@ition is chosen because the method
fulfills all the requirements needed. To justifyetimportance of method overriding, a
literature exploration is done on types of methe@roding usage in OOPL. Then, the
investigation using a small language that we creatdled Method Language orethlL, is
made to analyse the problems during verificatiomngusstatic analysis on method
overriding. In the context of method overriding wiéhe focus is on subtyping, there are
two main problems that occur during the processgenherating class invariants for

inheritance and late binding method calls. They are
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(1) reverification when new subclasses are addedtne inheritance hierarchy

(2) over approximation on abstract method semamnties to unknown method calls.
Then, behavioral subtyping and lazy behavioral Wby are analyzed based on their
specification and related works that have applieht The aim of the analysis is to find
the most suitable method to solve the problemedl&ite binding method calls. Therefore,
lazy behavioral subtyping is chosen due to its ijgation on method overriding that can

be generated in both overriding and overridden owthnd on new subclasses.

Then, a framework using abstract interpretation been developed by applying lazy
behavioral subtyping method for method overridings application on the model solves
the problem of over approximation value on methaitscTo merge both methods;

(1) abstract interpretation and

(2) lazy behavioral subtyping,
the framework of class invariants generation mustnbodular. Modularity on class
invariants makes the model easily to apply lazyabedral subtyping for the method calls
because every invariant is stored as a moduleigl@mbined and manipulated whenever
any equation is called. The framework has produbesk equations to generate invariants
for class, inheritance, and method overriding. €geations have been validated using two
case studies namely Salary System and Quadrilst&ydtem. Then, the result of each
variable for each case study has been tabulatednipare with the value produced by the
same case studies using invariants generated bsingvioral subtyping. The result has
achieved to show the comparison between invarianéigation using behavioral subtyping

and lazy behavioral subtyping.
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6.2 Contributionsto Body of Knowledge

The main contribution of this thesis is the progbequations to generate invariant for a
program with method overriding. The research hamwshthat the application of lazy
behavioral subtyping using abstract interpretatesults to not-overapproximated value for
the invariants. Therefore, the program has overcdimee possible an integer overflow
problem using the method. An analysis between heta\subtyping and lazy behavioral
subtyping has been conducted to find the value ymed using these two methods. The
results of this analysis show that there is a jbdggi for the invariant produced using
invariants generated from behavioral subtypingdeeha maximum value. In contrast, the
value produced using invariants generated from keehavioral subtyping is a value within

specific range.

The study has shown that there are limitations emhmiques used in conducting
program verification by related works, which ind&s objective one has been achieved.
The result has been tabulated in Table 2.3. T firajor finding showed that Logozzo
(Logozzo, 2004) scores all evaluated criteria wtthavioral subtyping and observable
behavior as techniques of verification. Even tholglyozzo (2004) scores all evaluated
criteria, behavioral subtyping made over approxedavalue for class invariant. The
second major finding was that lazy behavioral spioty proposed by Dovland (2009)
enables to solve the problem faced by Logozzo (R0O6dspite the technique is non

implemented in non-reverification and automatedgpsges.
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The objective two set out to design an abstragh&rframework for verification on
method overriding focusing on invariants generatibime most obvious finding to emerge
from this objective is that three equations havenberoduced from the framework. They
are equations for class invariant, invariant inemfance, and invariant in method
overriding as in§4.6-4.7. These equations have been validated tokctieir reliability
using behavioral subtyping and lazy behavioral yibgy on two case studies. The result
analysis in§5.3 has shown that invariants produced by equatisnsg lazy behavioral
subtyping created invariants with value in speciamge. The results of this analysis

indicate that objective three has been achieved.

6.2.1 Strengths

Probably the main strength of the thesis is thdiegpon of lazy behavioral subtyping
using abstract interpretation theory. The develatméthe framework based on the theory
for the semantic analysis of programs leads toraatized applications for the program
reliability (Cousot, 1978). There are two strengththe framework.

1. The application solved the problem of over-appration invariants produced using
behavioral subtyping. The over-approximated invasacan give overflow problem to
the program which can result to unexpected behdwwon the program; e.g. nonstop
execution. There are two equations involved toesahe problem. They are equations
for inheritance and method overriding.

2. All two equations of invariants are in modular toom reverification on new
subclasses. The equation is merged from abstractrdees where it comes from
concrete semantics that consist of object-orieptegram semantics, class semantics,

constructor semantics, and method semantics.
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6.2.2 Limitations

Due to time constraint, the equations produced hagdimitations.

1. The abstract semantics lacks of states of behawbrthe object. If the abstract
semantics includes the states of behaviors, thewolfects are traced even though they
mutate during the execution.

2. A further study on the implementation of the statmalysis tool for the equations might
provide practical insights of abstract interprematiwith lazy behavioral subtyping
method on object-oriented programs. Its practigahitll produce an automatic static

analyzer for program verification, which can bedidaring software development.

6.3 FutureWorks

This study focuses only on the abstract formal &ark for a program with method
overriding. There are three prominent future wacka be done, which related to current
trend of technology.

1. The generated invariants are for parallel compuypirmgrams. Parallel computing is one
of the features of cloud computing where computeesexecuted in parallel to perform
one big task. It would be interesting to discoverhniques on how to verify objects

mutation in a parallel program that has race camstproblem.

2. The application of the abstract formal frameworlpiements on other languages, e.g.
scripting programming languages and mobile programgntanguages. The mobile

programming languages are important recently asswuoers towards mobile
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applications. In addition, programmers use thepsiag programming languages used

to conduct unit testing in agile methodology depetent.

. A future work on full implementation on an autoncatierification tool has to be
worked out. Even though the study focuses only otktbverriding, there are other
elements that contribute to program with polymosphi e.g. method overloading,
mutated objects, and single dispatch. Consequemdigble software can be produced
in the future if the verification tool enables terify all features of object-orientation;

i.e., encapsulation, inheritance, polymorphism, aipstraction.

114



References

Abadi, M. & Cardelli, L. (1994). A theory of prinite objects. In Sannella, D. (Ed.).
Programming languages and systems—esopf@4ture notes in computer scienceol.
788. (pp.1-25). Springer Verlag.

Albert, E., Puebla, G. & Hermenegildo, M. (2005)n Aabstract interpretation-based
approach to mobile code safeBlectronic Notes on Theoretical Computer Scied&2(1)
113-129.

America, P. (1991), Designing an object-orienteggpamming language with behavioural
subtyping.Journal of Foundations of Object-Oriented Languags90.

Avvenuti, M., Bernardeschi, C. & Francesco, N. B0@3), Java bytecode verification for
secure information flonSIGPLAN Notices38(12) 20-27.

Bailey, J. & Poulovassilis, A. (1999), Abstractarretation for termination analysis in
functional active databasekurnal of Intelligence Information Systeh2(2-3) 243-273.

Balint, M. & Minea, M. (2011). Automatic inferencef model fields and their
representation.Proceedings of th&@3th Workshop on Formal Techniques for Java-Like
Programsheld on 26 July at thieancaster, United Kingdorfpp. 1-6). ACM.

Ball, T., Majumdar, R., Millstein, T. & Rajamani,. §2001), Automatic predicate
abstraction of ¢ program8CM SIGPLAN Notice88(5), 203-213.

Banerjee, A. (1997), A modular, polyvariant andetyased closure analysiSIGPLAN
Notices 32(8), 1-10.

Barbuti, R., Francesco, N. D., Santone, A. & Vagla. (1999), Abstract interpretation of
trace semantics for concurrent calcdiburnal of Information Processing Letterd0(2),
69-78.

Barbuti, R., Cataudella, S. & Teseli, L. (2003), &kéest interpretation against racdsurnal
of Fundamental Informatiqr60(1-4) 67-79.

Barbuti, R., Francesco, N. D. & Tesei, L. (2010) Abstract interpretation approach for
enhancing the java bytecode verifidournal of Computes3(6), 679-700.

Baresi, L. & Pezze, M. (2006), An introduction toftevare testingElectronic Notes in
Theoretical Computer Science48 89-111.

Barnett, M., Chang, B. Y., DeLine, R., Jacobs, BL&no, K. (2006). Boogie: A modular

reusable verifier for object-oriented prograr®soceedings of theFormal Methods for
Components and Objecigp.364-387). Springer.

115



Barthe, G. & Kunz, C. (2008). Certificate transdatin abstract interpretatioRroceedings
of the Programming languages and systems (Theory and ipeaof software)pp. 368-
382). Budapest, Hungary, Springer-Verlag.

Bernardeschi, C. & Francesco, N. D. (2002). Conmgrabstract interpretation and model
checking for analysing security properties of jayéecode.In Goos, G. et al (Eds.)Third
international workshop on verification, model chiegk and abstract interpretation:
Revised papers/vmcai'02.ecture notes in computer sciencejol. 2294. (pp.1-15).
Venice, Italy: Springer-Verlag.

Bernardeschi, C., Francesco, N. D. & Lettieri, @(3), Concrete and abstract semantics
to check secure information flow in concurrent pergs.Fundamental Informatigr60(1-
4), 81-98.

Borghuis, T. & Feijs, L. (2000), A constructive logor services and information flow in
computer networksChe Computer Journagd3(4), 274-289.

Bourdoncle, F. (1993), Abstract debugging of higbeter imperative languageACM
Sigplan Notices28(6), 46-55.

Castagna, G. (1995), Covariance and contravaria@Goerflict without a causeACM
Transactions on Programming Languages and Syst&(®3, #31-447.

Charlier, B. L., Rossi, S. & Hentenryck, P. V. (200 Sequence-based abstract
interpretation of prologTheory Pract. Log. Progran2(1), 25-84.

Cheon, Y. (2010). Functional specification and fieation of object-oriented programs.
Departmental Technical Reports (CBitp://digitalcommons.utep.edu/cs_techrep/23

Cheon, Y., Yeep, C. & Vela, M. (2012), The cleamjdanguage for functional program
verification.International Journal of Software Engineeririg1), 47-68

Chin, W. N., David, C., Nguyen, H. H. & Qin, S. (), Enhancing modular oo
verification with separation logidCM SIGPLAN Noticegt3(1), 87-99.

Clarke, E. (1997). Model checkingn Ramesh, S. et al (Eds.J-oundations of software
technology and theoretical computer scientecture notes in computer sciencepl.
1346. (pp54-56). Germany: Springer Berlin / Heidelberg.

Codognet, C. & Codognet, P. (1995). A generalizeashantics for concurrent constraint
languages and their abstract interpretation.Meyer, M. (Ed.). Constraint processing,
selected papersLecture notes in computer sciencepl. 923. (pp.39-49). Germany:
Springer-Verlag.

Cook, W. R. (1989). A denotational semantics ofenlance PhD thesis. Brown
University, Rhode Island, USA.

Cousot, P. & Cousot, R. (1977). Abstract intergreta A unified lattice model for static
analysis of programs by construction or approxioratof fixpoints. Proceedings of the

116



International Conference on the 4th ACM SIGACT-SI&R symposium on Principles of
programming language@®p. 238-252). New York, ACM Press, New Yor.

Cousot, P. (1978). Méthodes itératives de construat d'approximation de points fixes
d'opérateurs monotones sur un treillis, analyseaséque des programmeBhD thesis.
Université Scientifique et Médicale de Grenoblariee.

Cousot, P. & Cousot, R. (1979). Systematic desifrprogram analysis frameworks.
Proceedings of th&sth ACM SIGACT-SIGPLAN symposium on Principlesof@amming
languagegpp. 269-282). Los Angeles, USA, ACM Press, New Yor.

Cousot, P. (1996), Abstract interpretati®dCM Computing Surveys (CSURB(2) 324-
328.

Cousot, P. (2007). The verification grand challeagd abstract interpretatiorin Meyer,
B. et al (Eds.).Verified software: Theories, tools, experimeriscture notes in computer
science,vol. 4171. (pp227-240). Germany: Springer Verlag.

Cousot, P., Cousot, R., Feret, J., Mauborgne, L}néMA., Monniaux, D., & Rival, X.
(2007). Combination of abstractions in the ASTREHis analyzer. Advances in Computer
Science-ASIAN 2006. Secure Software and Relatageis272-300.

D'Silva, V., Kroening, D. & Weissenbacher, G. (208 survey of automated techniques
for formal software verification.Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions, @7(7), 1165-1178.

Dahl, O. & Nygaard, K. (1966), Simula, an algol-e@ssimulation languageACM
Communication9, 671-678.

Distefano, D. & J, M. J. P. (2008), Jstar: Towapdsctical verification for javaSIGPLAN
Not. 43(10) 213-226.

Dovland, J., Johnsen, E. B. & Owe, O. (2005). \fesiion of concurrent objects with
asynchronous method call®roceedings of the IEEE international Conference on
Software, Science, Technology and Engineeliog. 141-150). Herzelia, Israel, IEEE.

Dovland, J., Johnsen, E. B., Owe, O. & Steffen,(R008), Encapsulating lazy behavioral
subtyping.Journal on Specification Transformation Navigati@2-88.

Dovland, J., Johnsen, E., Owe, O. & Steffen, MO@0 Incremental reasoning for multiple
inheritance. In Leuschel, M. et al (Eds.)Integrated formal methodd.ecture notes in
computer scienceyol. 5423. (pp215-230). Germany: Springer-Verlag.

Dowson, M. (1997), The ariane 5 software fail88&SOFT Softw. Eng. Not&2(2), 84.
Engels, G. & Groenewegen, L. (2000). Object-oridmtedeling: A roadmagroceedings

of the Proceedings of the Conference on the Future owaoft Engineering (pp. 103-
116). ACM.

117



Ernst, M. D. (2003). Static and dynamic analysime3gy and dualityProceedings of the
Software Engineering (Workshop on Dynamic Analy§ig).24-27). Citeseer.

Ernst, M. D., Perkins, J. H., Guo, P. J., McCam&ntPacheco, C., Tschantz, M. S., et al.
(2007), The daikon system for dynamic detectiofikally invariants.Science of Computer
Programming 69(1-3) 35-45.

Fages, F., & Soliman, S. (2008). Abstract inteqtieh and types for systems biology.
Theoretical Computer Science, 403(1), 52-70.

Falaschi, M., Olarte, C. & Palamidessi, C. (2009framework for abstract interpretation
of timed concurrent constraint programsProceedings of thellth ACM SIGPLAN
conference on Principles and practice of declamjwvogrammindield on 7 - 9 September
at theCoimbra, Portugalpp.207-218). ACM.

Fehnker, A., Huuck, R., Jayet, P., Lussenburg, MR&uch, F. (2007). Model checking
software at compile timeProceedings of the IEEE/IFIP Symposium on Theoretical
Aspects of Software Engineerif{gp.45-56). Shanghai, China.

Fenton, N. E. & Pfleeger, S. L. (1998%oftware metrics: A rigorous and practical
approach PWS Publishing Co.

Feret, J. (2001). Abstract interpretation-basedicstanalysis of mobile ambients.In
Cousot, P. (Ed.).The 8th international symposium on static analysisl. 2126. (pp412-
430). Paris, France: Springer-Verlag.

Ferrara, P. (2006). Jail: Firewall analysis of jagard by abstract interpretation.
Proceedings of th€pp., Citeseer.

Flanagan, C., Freund, S. N. & Tomb, A. (2006). Hyltypes, invariants, and refinements
for imperative objects.Proceedings of thénternational Workshop on Foundations and
Developments of Object-Oriented Langualgelsl on 11-13 January at ttf@outh Carolina,
USA(pp.1-11). ACM.

Floyd, R. W. (1967), Assigning meanings to prograiWtathematical aspects of computer
sciencel19(19-32) 1.

Gates, B. (2002). Keynote address at windows haewagineering conference (winhec)
2002.http://research.microsoft.com/en-us/projects/slam/

Gil, J. Y. & Lenz, K. (2012), Keyword- and defauftarameters in javalournal of Object
Technologyl11(1) 1-17.

Halder, R. & Cortesi, A. (2010). Abstract inter@bdn for sound approximation of
database query languag@soceedings of the 7th International Conferencdrdormatics
and Systems (INFOSpp.1-10).

Halder, R. & Cortesi, A. (2011). Cooperative quanswering by abstract interpretation.
Proceedings of th€roceedings of the 37th international conferenceCamrent trends in

118



theory and practice of computer scieredd on 22 - 28 January at tl8mokovec, Slovakia
(pp.284-296). Springer-Verlag.

Hall, A. (1990), Seven myths of formal metho8sftware, IEEE7(5), 11-19.

Harrold, M. J. (2000). Testing: A roadmaproceedings of the Proceedings of the
conference on the future of software engineerfjpg.61-72). ACM.

Havelund, K. & Pressburger, T. (2000), Model chegkijava programs using java
pathfinder.International Journal on Software Tools for Tectogy Transfer (STTTR(4),
366-381.

Henzinger, T., Jhala, R. & Majumdar, R. (2005). Dhest software verification systenn
Godefroid, P. (Ed.).Model checking softward_ecture notes in computer scienceol.
3639. (pp25-26). Germany: Springer Verlag.

Hoare, C. A. R. (1969), An axiomatic basis for cot@p programming.ACM
Communications 12(10%76-580.

Hoare, C. A. R. (1981). The 1980 ACM Turing Awardecture. Journal of
Communications24(2), 75-83.

Hoare, T. (2007). The Ideal of Program Correctn&ébgid Computer Journal Lecture. The
Computer Journal, 50(3), 254-260.

Ilgarashi, A., Pierce, B. C. & Wadler, P. (2001)atfrerweight java: A minimal core
calculus for java and gjACM Transactions on Programming Languages and Byste
23(3), 396-450.

Jackson, D. & Rinard, M. (2000). Software analy#isroadmap. Proceedings of the
Conference on The Future of Software Engineehalgl on 4 - 11 June at tHamerick,
Ireland (pp.133-145). ACM.

Jaoua, A. & Elloumi, S. (2002), Galois connectitormal concepts and galois lattice in
real relations: Application in a real classifi@ournal of Systems and Softwa66(2), 149-
163.

Johnsen, E., & Owe, O. (2007). An Asynchronous Comcation Model for Distributed
Concurrent Objects. Software & Systems Modeling),689-58.

Jones, L. (2009)WG14 N1401 Committee Draft ISO/IEC 9899: 20International
Standards Organization

Joy, B., Steele, G., Gosling, J. & Bracha, G. (300e java language specification
Addison-Wesley.

Lamsweerde, A. v. (2000). Formal specification: #admap. Proceedings of the
Proceedings of the Conference on The Future ofvaodt Engineerindneld on 4 - 11 June
at theLimerick, Ireland(pp.147-159). ACM.

119



Leavens, G. (2006). Jml’s rich, inherited spectfmas for behavioral subtypesn Liu, Z.
et al (Eds.). Formal methods and software engineering: 8th indional conference on
formal engineering method&ecture notes in computer scienceol. 4260. (pp.2-34).
Macao, China: Springer Verlag.

Leino, K. R. M. & Miiller, P. (2004). Object invants in dynamic contextsEcoop 2004—
object-oriented programmind.ncs, vol. 3086. (pp95-108).

Leino, K. R. M. & Midller, P. (2005). Modular verifation of static class invariants.
Formal methodsLecture notes in computer scienceol. 3582. (pp.26-42). Germany:
Springer Verlag.

Leino, K. R. M., & Schulte, W. (2007). Using hisganvariants to verify observers. In R.
De Nicola (Ed.)Programming Languages and Systebesture notes in computer science,
vol. 4421. (pp. 80-94). Germany: Springer-Verlag.

Liskov, B. H. & Wing, J. M. (1994), A behavioral tian of subtyping ACM Transaction
on Programming languages and Systehég6), 1811-1841.

Liskov, B. H. & Wing, J. M. (2001). Behavioural dyping using invariants and
constraints. In Bowman, H. et al (Eds.)Formal methods for distributed processing: A
survey of object-oriented approachésp.254-280). UK: Cambridge University Press.

Little, J., & Moler, C. (1994-2013). Static Analgsiwith Polyspace Product, from
http://www.mathworks.com/products/polyspace/

Loding, H. & Peleska, J. (2008), Symbolic and adxgttinterpretation for c/c++ programs.
Electron. Notes Theor. Comput. $S2i17, 113-131.

Logozzo, F. (2004). Modular static analysis of objaeriented languagePhD thesis. Ecole
Polytecnique, France.

Logozzo, F. & Cortesi, A. (2004). Semantic classrdiichies by abstract interpretation.
Research Report CS-2004-Department of Computer Science, University Cacho of
Venice, Italy.http://www.dsi.unive.it/~cortesi/paperi/CS_2004_7.pd

Logozzo, F. (2005), Class invariants as abstrdetpnetation of trace semantic@mputer
languages, systems and structures

Logozzo, F. (2007). Cibai: An abstract interpretatibased static analyser for modular
analysis and verification of java classel Cook, B. et al (Eds.).Verification, model
checking and abstract interpretatiohecture notes in computer sciencegl. 4349. (pp.
283-298). Germany: Springer Verlag.

Marriott, K., Sgndergaard, H. & Jones, N. D. (19®@notational abstract interpretation of

logic programsACM Transactions on Programming Languages and 8\st@ OPLAS)
16(3), 607-648.

120



Martin, J. & Odell, J. J. (1998Dbject-oriented methods: A foundatiowol. 2nd Edition.
USA: Prentice Hall.

Mellish, C. (1986). Abstract interpretation of prglprograms.In Shapiro, E. (Ed.).Third
international conference on logic programmirigecture notes in computer scienceol.
225. (ppA463-474). London: Springer Verlag.

Meyer, B. (1997)Object-oriented software constructiodew Jersey: Prentice Hall PTR.

Michiel, M. d., Bonenfant, A., Cass, H. & Sainrgt, (2008). Static loop bound analysis of
c programs based on flow analysis and abstractpirgtion. Proceedings of thé&4th
IEEE International Conference on Embedded and RH@ak Computing Systems and
Applicationsheld on 25-27 August, 2008 at tHKaohisung, Taiwar{pp. 161-166). IEEE
Computer Society.

Mihancea, P. F. & Marinescu, R. (2009). Discovercmmprehension pitfalls in class
hierarchies. Proceedings of th&3th European Conference on Software Maintenance an
Reengineering, CSMR '09 held on 24-27 March 2008 eakaiserslautern, Germanfpp.
7-16). IEEE Computer Society.

Mills, H. D., Dyer, M. & Linger, R. C. (1987). Clasoom software engineering.he
Harlan D.Mills Collection http://trace.tennessee.edu/utk harlan/18

Monin, J.-F. (2003)Understanding formal methodsondon: Springer-Verlag.

Muller, P. (2002).Modular specification and verification of objectiented programs
Lecture notes in computer sciencal. 2262 Springer-Verlag.

Myers, G. J. (2008)I'he art of software testingndia: Wiley.

NASA. (2012). "Robust software engineering." 2012, from
http://ti.arc.nasa.gov/tech/rse/vandv/jpf/

Nielson, F., Hansen, R. R. & Nielson, H. R. (2008Rpstract interpretation of mobile
ambientsSci. Comput. Prograné47(2-3) 145-175.

Nielson, F., Nielson, H. R. & Hankin, C. (200P¥inciples of program analysi&sermany:
Springer-Verlag.

Nunes, 1. (2004), Method redefinition--ensuring eatiative behaviors.Information
Processing Letter92(6), 279-285.

OMG. (2001). Omg unified modelling language speaitfion version 1.4.
Parkinson, M. J. (2005). Local reasoning for jad®iaD thesis. University of Cambridge.
Parkinson, M. J. (2007). Class invariants: The efdhe road?Proceedings of the

International Workshop on Aliasing, Confinement a@avnership in Object-Oriented
Programming (IWACQ)(pp.9-10). Berlin, Germany, Citeseer.

121



Parkinson, M. J. & Bierman, G. M. (2008), Separatiogic, abstraction and inheritance.
ACM SIGPLAN Noticeg3(1), 75-86.

Pollet, I. & Charlier, B. L. (2005), Towards a colee static analyser for java: An abstract
interpretation framework and its implementati&tectron. Notes Theor. Comput. S&i31,
85-98.

Privat, J. & Ducournau, R. (2005), Link-time statamalysis for efficient separate
compilation of object-oriented languag8&GSOFT Softw. Eng. Not&d (1), 20-27.

Reeves, G. (2004). "The mars rover spirit flash naalyg.” from http:/trs-
new.jpl.nasa.gov/dspace/bitstream/2014/39361/18B4%4pdf

Rodriguez-Carbonell, E., & Kapur, D. (2007). Autdmageneration of polynomial
invariants of bounded degree using abstract inégmpon. Science of Computer
Programming 64(1), 54-75.

Schnoebelen, P. (2002). The complexity of templagic model checking.In P. Balbiani
et al (Eds.).Advances in modal logicvol. 4. (pp.393-436).

Siu, M. K. (2001). Why is it difficult to teach apact algebra.In Vincent, J. et al (Eds.).
The future of the teaching and learning of algel§pp.541-547). Hong Kong: Hong Kong
University.

Skalka, C., Smith, S. & Horn, D. V. (2005), A typad effect system for flexible abstract
interpretation of javeElectron. Notes Theor. Comput. $&B31, 111-124.

Smans, J., Jacobs, B., Piessens, F. & Schulte 200§, Automatic verification of java
programs with dynamic frameSormal Aspects of Computing2(3), 423-457.

Softworks, A. (2012). "C # tools." 2012, framitp://www.csharptools.com/

Spoto, F. (2010). The nullness analyser of julim Clarke, E. M. (Ed.). Logic for
programming, artificial intelligence, and reasoninecture notes in computer science,
vol. 6355. (pp405-424). Springer Verlag.

Stroustrup, B. (1987). What is object-oriented paobgming? Proceedings of the
ECOOP'87 European Conference on Object-OrientedgRomming (pp. 51-70). Paris,
Springer Verlag.

Sun, J. & Dong, J. S. (2005). Extracting fsms frolject-z specifications with history
invariants. Proceedings of thelOth IEEE International Conference on Engineering o
Complex Computer Systenfgp.96-105). IEEE.

Taivalsaari, A. (1996), On the notion of inheritan&CM Computing Survey28(3), 438-
479.

122



Tarski, A. (1955), A lattice-theoretical fixpoinhgorem and its application®acific
journal of Mathematicss(2), 285-309.

Toman, D. (1997). Constraint databases and progratysis using abstract interpretation.
Second international workshop on constraint dat@bagstems, constraint databases and
their applications Lecture notes in computer sciena@l. 1191. (pp246-262). Germany:
Springer-Verlag.

Van Den Berg, J. & Jacobs, B. (2001). The loop dengor java and jml. Tools and
algorithms for the construction and analysis oftegss Lecture notes in computer science,
vol. 2031. (pp299-312). Springer Verlag.

Webber, A. B. (2001). What is a class invariaRrdceedings of theACM SIGPLAN-
SIGSOFT Workshop on Program Analysis For SoftwarelsTand Engineering(pp. 86-
89). Utah, USA, ACM.

Wegner, P. & Zdonik, S. B. (1988). Inheritance asrecremental modification mechanism
or what like is and isn't likeProceedings of theECOOP'88 European Conference on
Object-Oriented Programmingpp.55-77). Oslo, Norway, Springer Verlag.

Xing, J., Li, M. & Li, Z. (2010). Automated programwerification using generation of

invariants.Proceedings of theéhe International Conference on Quality Softwggp.300-
305). China, IEEE.

123



