

INVARIANTS GENERATION FOR METHOD
OVERRIDING USING ABSTRACT

INTERPRETATION

SITI HAFIZAH AB. HAMID

THESIS SUBMITTED IN FULFILMENT
OF THE REQUIREMENTS

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

FACULTY OF COMPUTER SCIENCE &
INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA
KUALA LUMPUR

2013

iii

Abstract

Software verification is an important element of software reliability. The significance

and importance of verification have been recognized by Bill Gates in his speech in

WinHEC 2002. The software verification allows program’s specification to be formally

proved to ensure the specification verified the program before its execution time using

static analysis. However, in the context of object-oriented program, studies show there is a

need to have formal specifications for method overriding because the overriding feature

plays important role in allowing program reusability. This thesis develops an abstract

formal framework for invariant generation of static analysis for method overriding in

object-oriented program using inheritance. It focuses on late bound method in the class

invariants generation. There are two main problems arise during the process of generating

class invariant which are reverification of class invariant and over-approximation of late

binding call. In the context of method overriding, the problem of late binding call happens

when the abstract semantic function uses behavioral subtyping that is restricted to the rule

of contravariance and covariance. The abstract formal framework using abstract

interpretation theory is proposed to overcome the problem above. The framework exploits

the capability of abstract interpretation method in making program analysis automated. It

also overcomes the problem of generating the invariants for late binding call of method

overriding with less restrictions rules of lazy behavioral subtyping method. The use of lazy

behavioral subtyping results to the overridden method semantics has a not over

approximated invariant. The framework produces two equations for two invariants, which

are modular invariants for inheritance and invariants for method overriding. A scenario

based evaluation is conducted to validate the invariants and to compare the proposed

iv

framework using lazy behavioral subtyping with the framework using behavioral

subtyping.

v

Abstrak

Pentahkikan perisian adalah satu elemen penting dalam kebergantungan perisian.

Signifikan dan kepentingan pentahkikan telah diiktiraf oleh Bill Gates dalam ucapannya di

WinHEC 2002. Pentahkikan perisian membenarkan spesifikasi program diformalkan secara

pembuktian untuk memastikan spesifikasi terebut mentahkik program sebelum masa

laksananya menggunakan analisa statik. Akan tetapi, di dalam konteks program

berorientasikan objek, kajian menunjukkan bahawa terdapat keperluan untuk mempunyai

spesifikasi formal bagi method overriding kerana ciri overriding memain peranan penting

dalam membenarkan keboleh-gunaan semula program. Tesis ini membina rangka kerja

formal yang abstrak untuk menghasilkan invariant bagi analisa statik untuk method

overriding dalam program berorientasikan-objek menggunakan pewarisan. Ia memfokus

kepada kemodularan dan fungsi ikatan lewat dalam menghasilkan class invariants.

Terdapat dua masalah utama yang berbangkit semasa proses menghasilkan class invariants

iaitu pentahkikan ulangan class invariants dan anggaran melampau bagi panggilan ikatan

lewat. Dalam konteks method overriding, masalah panggilan ikatan lewat berlaku ketika

fungsi semantic abstrak menggunakan behavioral subtyping yang mengikut peraturan

contravariance dan covariance. Satu rangka kerja formal yang abstrak dicadangkan untuk

mengatasi masalah tersebut. Rangka kerja itu mengambil peluang keupayaan abstract

interpretation dalam menjadikan analisa program automasi. Ia juga menyelesaikan masalah

menghasilkan invariants untuk panggilan ikatan lewat bagi method overriding dengan

kurang ketegasan peraturan oleh kaedah lazy behavioral subtyping. Penggunaan lazy

behavioral subtyping memberi keputusan kepada semantik overridden method mempunyai

anggaran invariant yang tidak melampau. Rangka kerja tersebut menghasilkan dua

persamaan untuk dua invariants, iaitu invariant bermodular bagi pewarisan dan invariant

vi

untuk method overriding. Satu penilaian berasaskan senario dijalankan untuk mengesahkan

invariants dan untuk membandingkan rangka kerja menggunakan lazy behavioral

subtyping yang dicadangkan dengan rangka kerja menggunakan behavioral subtyping.

vii

Acknowledgment

Alhamdulillah.

I would never have been able to finish my thesis without the guidance of my supervisor,
help from friends, and the support from my family.

I would like to show my gratitude to my supervisor, Prof Dr Mohd Sapiyan Baba for his
excellent guidance, advice, and patience throughout my time as his student. I would like to
thank Associate Prof Dr Abdullah Gani who motivated me unconditionally and responded
to my questions and queries so promptly. Special thanks to Prof Dr Wan Ahmad Tajuddin
Wan Abdullah who gave me the best suggestion on references on subtyping. I would also
like to thank Dr Anthony J.H. Simons who promptly answered my questions on behavioral
subtyping and Associate Prof Chin Wei Ngan who gave me a great idea on static analysis
of object-oriented languages.

Finally yet importantly, I would like to say a big thank you to my husband and kids who
always believe in me.

viii

Table of Contents

Abstract ………………………………………………………………………...……..iii

Chapter 1 Introduction .. 1

1.1 Motivation ... 3
1.2 Statements of Problems ... 3
1.3 Research Objectives .. 4
1.4 Research Methodology .. 5
1.5 Thesis Outline ... 6

Chapter 2 Automated Software Verification for Method Overriding 8

2.1 Object-Oriented Programming Language (OOPL) ... 8

2.2 Inheritance ... 9
2.3 Method Overriding .. 12

2.3.1 Use of Method Overriding ... 13

2.4 Software Verification .. 17
2.5 Static Analysis ... 18

2.5.1 Assertion .. 19
2.5.2 Model checking .. 21
2.5.3 Abstract interpretation ... 24

2.6 Analysis on the static analysis methods .. 26

2.6.1 Features of Static Analysis Methods .. 26

2.6.2 Comparison of static analysis methods .. 27

2.7 Verification for Method Overriding .. 29

2.7.1 Invariant ... 30
2.7.2 Subtyping ... 31

2.8 Features of Automated Verification on Method Overriding 33

2.8.1 Non-reverification .. 33
2.8.2 Modularity .. 34

2.9 Related Works ... 36
2.9.1 Analysis of Related Works Techniques on Non-Reverification 36

2.9.2 Analysis of Evaluated Related Works ... 39

2.10 Conclusion ... 43

Chapter 3 Automated Linear Invariant Generation .. 44

3.1 Automated Software Verification ... 44

3.2 Linear Invariants Generation ... 45
3.3 Methods for Problem Analysis .. 46
3.4 Problem 1: Class Invariant .. 48

3.4.1 Specification Subsumption and Extended Abstract Predicate Family 51

3.4.2 Observable Behavior .. 52
3.4.3 Cleanroom Software Engineering .. 53

3.4.4 Modular Specification .. 53
3.5 Problem 2: Late Binding Call .. 54

3.5.1 Behavioral Subtyping ... 55

ix

3.5.2 Lazy Behavioral Subtyping .. 59

3.6 Proposed Abstract Formal Framework ... 61

3.7 Conclusion ... 63

Chapter 4 Formalization of Invariants in Method Overriding .. 65

4.1 Preliminary Notation ... 65
4.1.1 Sets ... 65
4.1.2 Partially Ordered Sets .. 66
4.1.3 Functions .. 67
4.1.4 Fixed points .. 67
4.1.5 Traces ... 68
4.1.6 Abstract Interpretation ... 69

4.2 Syntax .. 71
4.3 Semantic Domains ... 72
4.4 Concrete Semantics ... 73
4.5 Abstract Semantics .. 77
4.6 Class Invariants ... 81
4.7 Invariants in Inheritance .. 85
4.8 Invariants in Method Overriding ... 90
4.9 Conclusion ... 93

Chapter 5 Result and Discussion .. 94

5.1 Case Study 1: Salary System ... 94
5.1.1 Invariants Generation Using Behavioral Subtyping 96

5.1.2 Invariants Generation Using Lazy Behavioral Subtyping 97

5.2 Case Study 2: Quadrilaterals System .. 100

5.2.1 Invariants Generation Using Behavioral Subtyping 101

5.2.2 Invariants Generation Using Lazy Behavioral Subtyping 103

5.3 Analysis of the Case Studies ... 104
5.4 Conclusion ... 108

Chapter 6 Conclusion ... 109

6.1 Summary of the Study ... 109
6.2 Contributions to Body of Knowledge ... 111

6.2.1 Strengths .. 112
6.2.2 Limitations ... 113

6.3 Future Works ... 113

x

List of Figures

Figure 2.1: Inheritance Relationship .. 10
Figure 2.2: imprint() methods .. 12

Figure 2.3: class Staff ... 13
Figure 2.4: Shape class and Square class ... 15

Figure 2.5: Class Shape and subclass Rectangle.. 16
Figure 2.6: Sample Program .. 19
Figure 2.7: Sample Code with Assertions .. 20
Figure 2.8 : Fragment of the Annotated Control Flow Graph (CFG) 22

Figure 2.9: NuSMV code ... 23
Figure 2.10: UML diagram of class Person, Worker, and Manager 30

Figure 2.11: S is subtype of T .. 31
Figure 2.12: Super .. 32

Figure 2.13: self reference ... 33
Figure 3.1: Example of inheritance with overridden method calc() 48

Figure 3.2: Salary System .. 50
Figure 3.3: Inference Rules .. 58
Figure 3.4: Proposed Abstract Formal Framework .. 63
Figure 4.1: Class Worker ... 75
Figure 5.1: Salary System Revisited .. 95
Figure 5.2: Quadrilaterals System .. 101

List of Tables

Table 1.1: Executed code with values and results ... 2
Table 2.1: Comparison of the static analysis methods ... 27
Table 2.2: Comparison of Related Works and Criteria Related to Non-Reverification 38

Table 2.3: Comparison of Evaluated Related Works ... 42
Table 5.1: Analysis on Case Studies .. 107

1

In the name of God,
who is Most Gracious and Most Merciful

Reliability is an important aspect of software. Softwares, when used, are usually

assumed to be reliable. However, there is no guarantee that a software will function as

intended or will not break. That is why most softwares come with disclaimers but not

guarantees. Therefore, if a software damages consumer’s data, there is no compensation to

be made. To ensure reliability, softwares are checked for correctness before being

deployed. This is done using software testing.

 Software testing is a process designed to ensure that a program code does what it is

meant to do (Myers, 2008). Consider the following simple example:

while (number<=3) {
if (number<=3) then
 number = number + 1; }
System.out.print(number);

The if statement adds 1 to number until it exceeds 3, then the program displays its value. A

simple unit testing is done, for example, by initializing number to 0. Table 1.1 below shows

the executed code for different values and their results:

Chapter 1

Introduction

2

Table 1.1: Executed code with values and results

Value for number Executed code Result
0 number = number + 1 number = 1
1 number = number + 1 number = 2
2 number = number + 1 number = 3
3 number = number + 1 number = 4
4 cout<<number Printing value of number which is 4

The result shows that the program works successfully. However, if number is not initialized

at the beginning of the code, the program will take a number from the heap memory for

example -234987 to execute the code. The code will then display a similar output, but with

longer execution time. Hence, software verification is used to check the program’s

correctness.

 Software verification is a process of checking program correctness based on software

specification of the software. The significance and importance of verification have been

recognized by Bill Gates in his speech in WinHEC 2002:

Things like even software verification has been the Holy Grail of computer

science for many decades, but now in some key areas, for example, driver

verification, Microsoft is building tools that can do actual proof about the

software and how it works, in order to guarantee reliability .(Gates, 2002) .

The software verification allows program’s specification to be formally proved, for all

possible runs that is held during program execution (Parkinson, 2005). The checking

process is based on set theory logic and abstract algebra. It is applied to various types of

programming languages including object-oriented programming language.

3

1.1 Motivation

Software reliability in any software development is crucial to ensure that a software

does without fail. Software systems continue to grow in size and complexity, as can be seen

in retailing, manufacturing, telecommunication, and transportation that utilize aviation

system, real-time system, concurrent system, hybrid system, reactive system, and web-

based system. Sometimes, a program stops after running for certain duration. This is seen

on flight billboard monitor at the airport, announcement or advertisement billboard, or

shopping mall map system. However, this situation is unacceptable to any reactive system

that needs to run continuously without stopping. It is crucial for the reactive system of

medical hardware because a failure can be fatal. For example, the failures by Ariane 5 in

1996 to detect the coordinate of its location, results in more than USD370 million loss even

though there is no human in the flight during the crash (Dowson, 1997). Such software

failure happened again in 2004, when Mars Rover Spirit failed to send data to earth due to

lack of flash memory capacity (Reeves, 2004). Both are prominent examples of software

failure due to lack of software reliability and not because of hardware failure. In the current

object-orientation software development, software is structured and developed in

components. However, break downs still persist due to its complexity.

1.2 Statements of Problems

Due to the weakness of human being, errors are missed during the verification process.

Thus, automated process is required to overcome the problem. It is done by having

automated specification production where invariants generation can facilitate in producing

accurate result for the verification process. However, for the invariants in object-oriented

4

program, specifically in the context of method overriding, automation is achieved by

considering one main issue; late bound method calls (or late binding call). There are two

problems in developing the invariants for late binding call.

1. Restriction rule on the notion of behavioral subtyping – For the program method, the

rule follows the notion of contravariant and covariant, which enforces properties of a

method redefined in a subclass must satisfy all superclass properties.

2. Class invariant keeps on changing every time new sub class is added into the structure

of inheritance (reverification of old classes) – when the inheritance hierarchy is

extended with new subclass, the whole structure is verified again including the

superclass and subclass that have been verified previously.

1.3 Research Objectives

This thesis aims to develop an abstract formal framework for static analysis of

verification on method overriding. Based on the aim, the thesis objectives are as follows:

1. To analyze current frameworks on generating invariants in object-oriented

programming language for static analysis focusing on programs with method

overriding.

2. To design an abstract formal framework for verification on method overriding

focusing on invariants generation using abstract interpretation and lazy behavioral

subtyping.

3. To validate the formalization of the abstract formal framework using case studies.

5

1.4 Research Methodology

This research consists of four main tasks; 1) analysis of related works, 2) development

of abstract formal framework, 3) proof of concept of the abstract formal framework, and 4)

validation of the abstract formal framework. All of the tasks are based on the three

objectives stated in §1.3. The methods used achieve each objective is summarized in Table

1.2 below. All objectives are achieved by contribution lists in the table.

Table 1.2: Research Methods

Objectives Methods
Chapter/

Section
Contribution

1. To analyze
current
frameworks
on generating
invariants in
object-
oriented
programming
language for
static
analysis
focusing on
programs
with method
overriding.

− Review articles on program
analysis, formal verification,
and verification on object-
oriented programs.

− Summarize the importance of
method overriding.

− Summarize the concept of
program static analysis.

− Analyze methods of static
analysis
• Compare the methods of

static analysis based on
lines of code, human
intervention, and concrete
or abstract characteristics.

− Conduct an analysis on
related works of verification
object-oriented programs
with subtyping.
• Compare the related

works with criteria related
to non-reverification
feature of method
overriding verification.

• Compare the related

works with techniques

§2.1-

§2.4

§2.3

§2.4-

§2.5

§2.6

§2.9

1. Analysis of works
on verification
program using
static analysis

2. Analysis of static
analysis methods

6

used to verify method
overriding.

2. To design an
abstract
formal
framework
for
verification
on method
overriding
focusing on
invariants
generation
using abstract
interpretation
and lazy
behavioral
subtyping.

− Define concrete semantics of
object-oriented programming
language (OOPL).

− Define abstract domains
− Define abstract semantics
− Prove the abstract semantics
− Develop equations on

invariants generation for
class, inheritance, and method
overriding.

Chapter
4

Equations for:
1. invariant in

inheritance
2. invariant in method

overriding

3. To validate
the
formalization
of the
abstract
formal
framework
using case
studies.

− Validate the equations using
two case studies.

− Evaluate the result of
invariants from the equation
used lazy behavioral
subtyping and behavioral
subtyping using the case
studies.

Chapter
5

1. Result analysis of
case studies using
invariant generation
by behavioral
subtyping and lazy
behavioral
subtyping.

1.5 Thesis Outline

This introduction chapter is followed by a literature review on automated software

verification for method overriding in Chapter 2. The importance of method overriding is

discussed. This includes the usage of method overriding as reusability and specialization in

programming. Then, static analysis methods and related works are analyzed to identify

improvements needed for better methods for verification and to understand problems

involved during verification. In Chapter 3, problems on automated linear invariants

7

generation are discussed using a language called methL. Based on the problems identified,

list of potential solutions are studied. Therefore, a solution is proposed that shows methods

and features to solve each problem. In Chapter 4, the formalization of abstract formal

framework of invariants generation for method overriding is presented. The framework

consists of an introductory example, concrete syntax domains, concrete semantic domains,

abstract semantics, and abstract domains of object-oriented programming languages.

Chapter 5 discusses the results of the generated invariants using two case studies. Both

case studies generate invariants using behavioral subtyping and lazy behavioral subtyping.

Lastly, in Chapter 6, the thesis ends with an explanation on the overall work and future

works that can be done. It also concludes its contribution to the body of knowledge in term

of its strengths and limitations.

8

History does not repeat itself, it does rhyme
-Mark Twain

This chapter provides the background information on automated software verification

for method overriding and related works. Its aim is to show findings from reviews of

literatures on suitable method for conducting static analysis. It discusses the important

features and problems on automated method overriding verification and its importance

towards software development. It also analyses methods and related works by comparing

them using features and variables of static analysis. The analysis determines the methods

and techniques in producing invariants.

2.1 Object-Oriented Programming Language (OOPL)

A programming language is a language to program a system or software executed by a

computer or a machine-readable device. Simula is the first programming language that

models objects of a simulation as program objects. Later, Stroustrup (1987) came out with

the idea of managing programs based on class and object; which is adopted from Simula. A

class is a description of a set of objects that share the same attributes, operations, methods,

relationships, and semantics (OMG, 2001). An object is an instance that originates from a

class. It is structured and behaves according to its class (OMG, 2001). Therefore,

Chapter 2

Automated Software Verification for

Method Overriding

9

Stroustrup (1987, p.70) defined “object-oriented programming as a programming using

inheritance”. Then, in 1997, an object-oriented design is defined as the construction of

software systems as structured collections of abstract data type implementations (Meyer,

1997, p.59). By considering all definitions above, there are three characteristics of OOPL;

abstraction, inheritance, and polymorphism. The thesis focuses on inheritance.

2.2 Inheritance

 Programmers use object-oriented technique in their design and program due to its

program reusability for software maintenance (Engels and Groenewegen, 2000). The main

characteristic that supports program reusability is inheritance. Inheritance in a program

means the program must consists at least two classes which are superclass and subclass

(Dahl et al., 1966). Superclass acts like a parent class where it has data and methods that

are inherited by the subclass that acts like a child class. Figure 2.1 illustrates the inheritance

relationship. The Figure 2.1 shows there are two classes called as GeometricFigure and

Rectangle. The GeometricFigure has one data named side that is type of integer and one

method named calcArea() that return an integer value. The Rectangle has one data named

area that is of type integer. It also has one method named calcArea() that returns an integer

value. The arrow shows a direction from Rectangle to GeometricFigure, which means

Rectangle is subclass to GeometricFigure.

10

Figure 2.1: Inheritance Relationship

 Taivalsaari (1996) defined the basic idea of inheritance as the fact that new object

definitions can be based on existing ones; when a new object class is defined, only those

properties that differ from the properties of the specified existing classes need to be

declared explicitly, while the other properties are automatically extracted from the existing

classes and included in the new class. Using the incremental modification mechanism

proposed by Wegner et al. (1988) and Taivalsaari (1996), inheritance is presented using a

maxim

 � = � ⊕△ �

where R is newly defined object or class,

 P is properties inherited from existing object or class,

 △ � is incrementally added new properties that differentiate R from P,

 ⊕ is an operation to combine △ � with the properties of P.

Therefore, the operation ⊕ makes R contains the properties of P and its own properties.

However, the incremental modification of △ � may introduce properties that override those

of P so as to redefine or cancel certain properties of P.

 Meyer (1997) defined inheritance using two different views: module view and type

view.

(1) A module consists of a set of program services to be used by the end users. With

inheritance, every new service is provided without defining all the services that have

GeometricFigure

side: int

calcArea() : int

Rectangle

area: int

calcArea() : int

11

been developed using the module. It is done by simply adding new services to the

existing modules. Inheritance, as in the module view, is meant for reusability purpose

where the inheritance is used to start from the designing phase of software

development.

(2) A type consists of a set of objects with operations. Using the type view, inheritance is

meant for reusability and extendibility represented the is-a relation using dynamic

binding. Dynamic binding or dynamic dispatch is a process when a method of an object

is generated or called not at compile time but at run time. The object uses inheritance

hierarchy to decide what method to apply to itself. Since the process of binding object

and method occurs later during run time, the process is also called as late binding call.

Inheritance allows programmers to modify their code incrementally. For example, by

referring to Figure 2.1, the programmers code a system by having a superclass named

GeometricFigure and a subclass named Rectangle. The system can calculate area of other

geometric figures by adding new subclasses, e.g., Circle and Triangle. Therefore, the

system is a complete system where it can calculate area of any geometric figures. The easy

modification process is important to fulfill the program’s later requirement. It is not only

classes that are added to the system but the modification can also be applied to the class

methods. Methods that have the same purpose with the same name can generate different

outputs based on their definitions. For example, method calcArea() exists in both class

GeometricFigure and Rectangle where both of them has one purpose which is to calculate

area of a figure. However, both methods give different outputs. This is called method

overriding.

12

2.3 Method Overriding

Objects use methods in a class to perform operations. According to Martin and Odell

(1998), a method is a processing specification for an operation. It determines the behavior

of the object. There are two type of method in OOPL, which are method overloading and

method overriding.

Method overloading is when two or more methods have the same name but different

argument or parameter. It is used when the methods have the different requirement

represents same conceptual operation using same method name (Gil and Lenz, 2012). For

example, in Figure 2.2, there are two imprint() methods. The first one has one argument

named radius and the second one has two arguments named x and y. Even though they use

the same method name, each method can be called at different time based on their

arguments.

Figure 2.2: imprint() methods

 On the other hand, method overriding is when methods with the same name,

arguments or parameters, and return types but different operation in both superclass and

subclass. It is one of the essences of inheritance that allows methods in subclass to override

the implementation of already defined superclass (Wegner et al., 1988). This allows the

implementation to be specialized and still reusable. For example, in Figure 2.3 for the class

void imprint (int radius) {
 System.out.print(“draw a circle”);}

void imprint (int x, int y) {
 System.out.print(“draw a rectangle”) ;}

13

Staff, we define salary for all staff by adding the basic salary with 10% or 5% of the profit.

However, class SalesPerson has extra salary with extra commission.

public class Staff {

 private int basicSalary;
 public Staff() { }
 public void giveComission(int profit) {
 basicSalary = basicSalary + 0.1 * profit; }
};

public class SalesPerson extends Staff {
 private int salary;
 public SalesPerson () { }
 public void giveComission(int profit) {
 salary = basicSalary + 0.05 * profit; }
};

Figure 2.3: class Staff

 The implementation of method overriding realizes the is-a relationship of inheritance.

The relationship describes an object as a special type of another superclass. Not only can

the subclass methods share properties from its superclass method, they can also redefine the

superclass method’s operation in the subclass method. The capability of sharing the

properties is called subclassing, whereas the capability of redefining is called subtyping.

Formally, “subclassing is an implementation mechanism for sharing code and

representation” (Taivalsaari, 1996, p.446). Subtyping acts as a type signature that exists in

inheritance with substitutability principle.

2.3.1 Use of Method Overriding

Method overriding is applicable for the purpose of reusability and specialization.

Reusability is the capacity for something to be used more than once. In object-oriented

programming, the programmers can use created object many times for different scenarios.

14

The object can be a program, component, or interface. Specialization means making

something suitable for a specific aim. In object-oriented programming, a specialized object

is instantiated using specific data and methods based on its requirement. It is more specific

compared to the object it is generated from.

2.3.1.1 Method Overriding for Reusability

Reusability is a key element of object-oriented. In inheritance, the reusability feature is

implemented by creating a subclass that uses data or method of superclass. Reuse concept

is most beneficial in object-oriented because it saves a lot of time and energy in coding and

understanding code. A programmer can reuse the existing code by modifying the code to

suit new applications. In fact, there are many objects that is easily called up and combined

together to produce applications. The ability to reuse code relies on the ability of the

programmer to develop a big application from existing smaller components. Therefore, the

programmer has to know how to install, manage or package the components. With method

overriding, the programmer can use the same name of the existing method in the superclass

to appear again in subclass. However, the method has different definition based on its

requirement. The overridden method can call the method in the superclass as part of its

definition. Therefore, the programmer does not have to think of other names for the

method if the action is more or less the same. For the method draw() in Figure 2.4 below, it

can draw different shape depending on the definition.

15

public class Shape {
 private int side1;
 public Shape() { }
 public int getData() {
 return side1; }
 public void setData(int x) {
 this.side1=x; } };

public class Square extends Shape {
 private int side2;
 public Square() { }
 public int getData() {
 return side2; }
 public void setData(int a) {
 this.Shape::setData(a);
 this.side2 = a; }
 public void draw() {
 for(int i=1; i<=this.Shape::getData(); i++) {
 for(inti=1; i<=this.getData();i++)
 System.out.print(“*”);
 System.out.println(“\n”); } }

Figure 2.4: Shape class and Square class

Shape class is a superclass of Square class where the code segment is to draw a square

shape by using asterisk ‘*’ as shown in Figure 2.4. The Shape class has one data as side1

and three methods: constructor, get value of side1 (getData()) that gives a value to side1

(setData(int x)). Square class has one data which is side2 and four methods which are

constructor, get value of side2 as defined in getData(), set same value for both side1 and

side2 as defined in setData(int a), and draw a square as defined in draw(). Overridden

method from subclass Square which is setData() reuses code from method setData() of

super class by calling this.Shape::setData(a). The purpose is to give the same value for

both sides.

16

2.3.1.2 Method Overriding for Specialization

Specialization is implemented in subclass in order to make the subclass’s behavior

more specific. It gives a privilege to superclass to define a method as general as it can be.

The overridden method in the subclass has a full definition of what action the method

exactly has to do. Shape class literally is understood as any shape. It can be circle,

rectangle or triangle. It cannot draw any shape until it is fully defined by its subclass.

Figure 2.5 shows class Rectangle that has been defined so that it can draw a rectangle.

public class Shape {
 private int side1;
 public Shape() { }
 public int getData() {
 return side1; }
 public void setData(int x) {
 this.side1=x; } };

public class Rectangle extends Shape{
 private int side2;
 public Rectangle() { }
 public int getData() {
 return side2; }
 public void setData(int a) {
 this.Shape::setData(a*5);
 this.side2 = a; }
 public void draw() {
 for(int i=1; i<=this.Shape::getData();i++) {
 for(inti=1; i<=this.getData();i++)
 System.out.print(“*”);
 System.out.println(“\n”); } }

Figure 2.5: Class Shape and subclass Rectangle

The subclass Rectangle is implemented to specialize the behavior of class Shape which

is to draw a rectangle. It has one data, which is side2, and four methods, which are method

constructor, method to get value of side2, method to give new value to side1 of super class

by multiplying five with the value, and method to draw a rectangle. Overridden method of

17

setData() changes the original operation of super class from setting an integer number to

side1 to five times the value of side1.

With the explanation in §2.3, we cannot deny the importance of method overriding in

software development. Thus, there is a need to ensure the code is well-written and correct

to avoid unexpected termination or behavior from the program. To achieve the above, a

programmer has to check the program’s correctness using software verification.

2.4 Software Verification

Software verification is a formal process to check specification of a program. The idea

of software verification is in response to the question: “are we building the program

right?”. In contrast, software validation is in response to the question; “are we building the

right program?” (Baresi et al., 2006). The process of verification is to detect programming

errors or to prove the absence of errors. It applies formal method to formalize the program

in term of its grammatical well-formedness of the syntax, interpreting the semantics of

coded statements in a meaningful and precise way, and inferring information from the

formal specification (Lamsweerde, 2000). Hence, it is called formal software verification.

Formal specification used for software verification is an expression of mathematical

description of software. At the abstraction level, it is a collection of properties a system

should satisfy. It proves the program’s correctness by checking the consistency between

programs and the expected properties (Lamsweerde, 2000). In 1960s, the specification is

done by annotating the code with the states based properties at specific points in the

18

program (Floyd, 1967). These properties are customized with special techniques to cater

different kinds of program, e.g., data structured program, concurrent program, and object-

oriented program.

In order to conduct software verification, there are two types of program analysis that

can be done: static analysis and dynamic analysis. Static analysis uses proven formal

specification for correctness purpose. Therefore, a programmer has a chance to correct the

program before failure happens. Dynamic analysis, also known as software testing, is used

to check program behaviors at actual execution time. The analysis is on the exact code of

the program. The programmer does not need to approximate or abstract the behavior of the

program. However, the analysis results cannot be generalized for future executions.

Therefore, there is no guarantee that the test covers all possible program executions (Ernst,

2003).

2.5 Static Analysis

Jackson et al. (2000) defined static analysis as “the process of examining program code

without executing the program in order to obtain information that is valid for all possible

executions” (p.133). It offers “ static compile-time techniques for predicting safe and

computable approximations to the set of values or behaviors arising dynamically at run-

time when executing a program on a computer” as explained by Nielson, et al. (2005, p.1).

It is used for program optimization and program correctness to ensure software reliability.

It enables the checking of the behaviors of the program for all input vectors (D'Silva et al.,

2008). The potential errors cannot be found during testing process, but it may appear after

19

the program has been executed for a certain period. The typical examples are null pointer,

array bound, division by zero, and buffer overflow.

Three main techniques are used in conducting static analysis. They are assertions,

model checking, and abstract interpretation. To illustrate each technique consider the

simple code using method overriding in Java in Figure 2.6.

1 public class Shape {
2 private int side1 = 3;
3 public Shape(){}
4 public int getData() {
5 return side1;}
6 public void setData(int x){
7 this.side1 = x;}};

8 public class Square extends Shape{
9 private int side2=3;
10 public Square() {}
11 public int getData(){
12 return side2;}
13 public void setData(int a){
14 super.setData(a*5);
15 this.side2 = a;}
16 public void draw(int i){
17 int j;
18 for (i=1; i<super.getData();i++){
19 for (j=1; j<this.getData();j++)
20 System. out.print("*");
21 System.out.println("\n");} } }

Figure 2.6: Sample Program

2.5.1 Assertion

Assertion is a predicate statement inserted at specific point of a program (Hoare,1981).

In 1967, Floyd used assertions as foundation to static proof of program correctness. He

specified assertions at the point of the program code to ensure its correctness. Using this

idea, Hoare (1969) came out with a set of axioms and rules of inference to proof the

20

assertions or properties of the program using axiomatic semantics, later known as Hoare

Logic. The idea is that each program statement must have a precondition and a

postcondition using predicate logic expression as {P} S {Q}; where P is a precondition, Q

is a postcondition, and S is a statement. The expression is interpreted as “if the assertion P

is true before the initiation of a program S, then the assertion Q will be true on its

completion” (Hoare, 1969, p.577).

 The illustration of assertion is seen as in comment (/* */) in Figure 2.7. The assertion

is written using Java Modeling Language (JML). JML is used to check the correctness of

Java program. To represent precondition and postcondition, JML uses a keyword named

requires for precondition and ensures for postcondition. The codes of method draw() are

statements that are checked by requires and ensures. The statement requires i>=1 &&

j>=1 means the method draw() is only executed if i and j are greater or equal to 1. The

statement ensures i<MAX_LENGTH && j<MAX_LENGTH means the method produces an

output where the value of i and j are not greater than maximum length of the program’s

memory.

/*@ requires i>=1 && j>=1
 ensures i<MAX_LENGTH && j<MAX_LENGTH
@*/
public void draw(int i){
 int j;
 for (i=1; i<super.getData();i++){
 for (j=1; j<this.getData();j++)
 System.out.print("*");
 System.out.println("\n");} } }

Figure 2.7: Sample Code with Assertions

 Tools such as Daikon, LOOP, Julia, Boogie, and ESC/java use Hoare logic for

different types of programming languages to check program correctness. For C language,

21

Ernst’s group in MIT has developed a tool named Daikon to discover invariant in C

program (Ernst et al., 2007). The tool infers invariants from a program automatically. It

captures all inputs in a program and traces all relevant variables with values. Therefore, a

programmer does not have to specify the program in order to verify it. For Java language, a

tool named LOOP reasons sequential Java codes (Van Den Berg et al., 2001). It is strongly

typed and is applied to JavaCard API. However, it does not verify Java bytecode. Java

bytecode verification is handled by a tool called Julia (Spoto, 2010). There are many tools

to develop programs using C#.Net language (Softworks, 2012). However, there is only one

tool that supports verification on C#.Net, which is Boogie (Barnett et al., 2006). It is

originally an automatic program verifier for Spec# programs. Spec# programming language

is a superset of C# language. It has specification features which named as pre-, post- and

object invariant.

2.5.2 Model checking

Model checking is a technique for verifying correctness of a computer program based

on a model of states of computation, where it tests automatically whether the model meets

the specification of the computer program or otherwise. It is an automatic technique for

verifying finite-state reactive systems (Clarke, 1997). The specification is written in

temporal logic formula. Temporal logic handles propositions whose truth value evolves

over time (Monin, 2003). The reactive system is modeled as a state transition graph. In

order to determine whether the state transition graph is satisfied or otherwise, an efficient

search procedure is used.

22

Figure 2.8 : Fragment of the Annotated Control Flow Graph (CFG)

 Figure 2.8 illustrates a fragment of the annotated control flow graph (CFG) based on

method draw() from Figure 2.6. The annotated CFG becomes the foundation of the

program analysis using model checking. Based on the CFG, variable j is detected. The

purpose of this model checking is to detect uninitialized variable in the program. There are

three variables which are decl_j, assign_j, and used_j. All three are annotated using CFG.

By using NuSMV (Fehnker et al., 2007), a fragment of code is produced as in Figure 2.9.

Every model checking code starts with a main module, followed by variables and the

flow of the program’s graph. The code specifies the program by temporal logic formulas

SPEC AG decl_j => (A ~used_j W assign_j), where AG is an acronym for always generally.

The decl_j is not to be used until it has a value assigned; otherwise it is not used at all.

Therefore, based on the temporal logic formula, the method draw() does not produce any

warning when the method fulfills the specification. Programmers have to learn how

NuSMV works and the syntax for the module main. When the programmers write a code

used_j

17:Decl

18:Expr

18:Cond

19: Exp

19:Cond 20: Exp 19: Exp

21: Exp
18: Exp

21: return

decl_j

assign_j

23

inside the module main on the specification, the specification determines the error it

checks. There are more than 13 lines of code (the case part is not complete) to specify and

check the method draw().

MODULE main

VAR location : {loc17, loc18, .., loc21}

next (location) :=

 case

 location = loc17 : {loc18};

 location = loc18 : {loc18};

 location = loc18 : {loc19,loc21};

 ….

 esac

DEFINE

 decl_j := location in {loc17};

 used_j := location in {loc19};

 assign_j := location in {loc19};

SPEC AG decl_j => (A ~used_j W assign_j)

Figure 2.9: NuSMV code

 There are tools for model checking. One of them is called Blast. It is a verification

tool to check the safety of C programs (Henzinger et al., 2005). It receives inputs in a

specification language, with C like syntax and produces outputs that indicate whether the

program satisfies the safety property or otherwise. It implements a lazy abstraction

algorithm, which integrates automatic abstraction refinement and model checking. For Java

language programs, a tool called Java Pathfinder uses model checking to verify the Java

programs safety (Havelund et al., 2000). It translates Java to Promela, which is the

modeling language of SPIN model checker. After the program is translated into Promela,

Java Pathfinder model checks the program using SPIN. Java Pathfinder has been used in

NASA in the research area of space, aviation, and robotics (NASA, 2012).

24

2.5.3 Abstract interpretation

Cousot (2007) defined abstract interpretation as “a theory of approximation of

mathematical structures, in particular those involved in the semantic models of computer

systems”. “The specification of an analyzer is an approximation of a semantics, where

concrete or exact properties are replaced by abstract or approximate properties” (Cousot,

1996, p.73). For example, the semantics S of a programming language L associates a

semantic value in the semantic domain D to each program P in L written as ���� ∈

(Cousot, 1996). Many analyses are formalized by abstract interpretation. However, among

those associated with semantics are static analysis, data flow analysis, control flow

analysis, types, predicate abstraction, and class analysis.

 Abstract interpretation uses fixed point of Tarski’s theorem to model all possible

behaviors of the program (Cousot, 1996). The program is formalized as graphs or transition

systems and the behaviors are represented as a set of states, Σ. The states that represent the

transition systems use partial trace semantics to execute trace of states;

�
, ��, ��, . . , ��;	{�� ∈ Σ	|	� ∈ ℤ}, �
 is an initial state, and ℤ is the set of integers. The

intermediate states (��, ��, . . ����) is a transition move from one state �� to the next ����,

such that 〈��, ����〉 ∈ , where t is a transition relation between one state to its successor

state. Then, the partial trace semantics (concrete semantics) is replaced by the reflexive

transitive closure (abstract semantics) using Galois connection. Since this abstraction is

undecidable (non-computable), a widening or narrowing is used to approximate the

semantic abstraction (Cousot, 1977). The process of abstraction is generated by a library

for the program. For the method draw() taken from Figure 2.6, the invariant that the

abstract interpretation produces is

25

//invariant i>=1 && i<MAX_LENGTH , j>=1 && j<MAX_LENGTH

Therefore, there is no warning produced on method draw() because the i and j have

been assigned to 1 and both conditions do not exceed maximum length of program’s

memory. Programmers do not need to type the specification statement. The program

analyzer produces the invariant statement. Based on the method draw(), there is only one

specification statement in the form of invariant produced. It is a statement of specifying the

minimum and maximum value of i and j.

 The abstract interpretation has been applied to many languages, e.g., Prolog (Mellish,

1986; Bourdoncle, 1993; Marriott et al., 1994; Charlier et al., 2002; Barbuti et al., 2003)

and C (Ball et al., 2001; Loding et al., 2008; Michiel et al., 2008). However, for Java, the

verification process is made by using its small scale language, e.g. Featherweight Java

(Igarashi et al., 2001). Every single small language is made to verify specific property of

Java, e.g., class invariant and generalization structure of inheritance as proposed by

Logozzo (2007) and a flexible type and effect inference of Java as proposed by Skalka et

al. (2005). Bernardeschi et al. (2002), Avvenuti et al. (2003), and Barbuti et al. (2010)

verified Java bytecode in term of its security, information flow, and space efficiency. In

addition, Pollet et al. (2005) and Distefano et al. (2008) verified automatically to complete

Java scale without Java concurrency. For concurrent programming, Codognet et al. (1995)

has proposed a verification framework using abstract interpretation and constraint system.

However, other researchers have proposed a verification technique to problems related to

concurrent programming such as trace semantic (Barbuti et al., 1999), information flow

(Bernardeschi et al., 2003), and race condition (Barbuti et al., 2003). Abstract interpretation

has also been used to verify applications such as timed concurrent system (Falaschi et al.,

26

2009), mobile communication (Feret, 2001; Nielson et al., 2003; Albert et al., 2005; Barthe

et al., 2008), and database system (Toman, 1997; Bailey and Poulovassilis, 1999; Halder et

al., 2010; Halder et al., 2011).

2.6 Analysis on the static analysis methods

As explain in previous sub-sections, there are three methods on static analysis which

are assertion, model checking, and abstract interpretation. In order to analyze the methods,

three features that are important to achieve the thesis’s objectives are explained briefly. All

three features are applied to the method draw() of the code program in Figure 2.6 to

compare the capability of each method. Later, comparison of the three static analysis

methods given in Table 2.1 provides the justification for the chosen method in verifying

method overriding in this thesis.

2.6.1 Features of Static Analysis Methods

All of the static analysis methods are compared based on lines of code, human

intervention, and characteristics of concrete and abstract semantics. The three features

above are considered because they are generic, performance effective and less error prone.

• Lines of code

Lines of code are an important element in determining performance of a program. In

software verification, it refers to the number of lines need to be verified from the

program code. The more lines used, the more time required for the verification (Fenton

and Pfleeger, 1998).

27

• Human intervention

It refers to the need of programmer’s annotation to verify the program code. If the

method needs human intervention, it means the method is manual. However, if the

method can verify the program code by itself, it means the method is automatic. This

feature is important because it avoids human errors during annotation process.

• Characteristics

There are two types of characteristics that are used to interpret the semantics of the

program code; concrete and abstract. For a concrete method, all lines of code or all

states of code behavior have to be verified explicitly. However, the abstract method

summarizes the code or the states of code behavior; making it simpler.

Table 2.1: Comparison of the static analysis methods

Method name Lines of code Human intervention Characteristics

Assertion 2 Yes Concrete

Model checking > 13 No Concrete

Abstract interpretation 1 No Abstract

2.6.2 Comparison of static analysis methods

By referring to Table 2.1, model checking asserts more than 13 lines of NuSMV code

to verify the method draw(). Assertion uses two lines of JML code and abstract

interpretation uses only one line of code. Model checking needs more lines of code because

after translating the program code into states, it verifies every flow of the code which uses

all lines. Abstract interpretation interprets the program code in an abstract way using

theorems. No matter which types of semantics the methods use, all three methods produce

28

the same result over the draw() method, i.e. i and j are more or equal to 1 and not more than

the maximum length of heap memory capacity.

Only assertion method needs human annotation during the verification process.

Therefore, the programmer must know how the syntax of the assertion works. In addition,

the programmer has to know which part of the program needs to be annotated. Any missing

assertion leads to a less precise result on the verification. Model checking and abstract

interpretation are done automatically. Abstract interpretation method is more complicated

(heavyweight form of static analysis) compared to model checking because it uses

mathematical statements of abstract algebra which is hard to learn (Hall, 1990; Siu, 2001).

Model checking method is easy to understand and use, as it uses temporal logic for finite

state machine of a program (Schnoebelen, 2002). However, model checking is unable to

summarize or simplify the verified state. The programmer has to know every single state

that he wants to verify. However, abstract interpretation is able to simplify the verified state

by abstracting the verification state. Therefore, the verification process covers all possible

states from the codes of the program.

Only abstract interpretation uses the abstract method. Both assertion and model

checking method use concrete method. Using a concrete method, the programmers know

which code or code behavior is verified. Therefore, the results from both methods are

always precise. However, since assertion asserts many lines and model checking checks the

code by using many temporal logics, the verification process is slower than abstract

interpretation. Also, an abstract interpretation process is faster than both methods because

its mathematical logic only covers the substance behavior of the program. However, its

29

speed is at the expense of the accuracy because it tends to miss important codes in the

program.

Assertion and abstract interpretation use one to two lines of code to verify the program.

This is minimal compare to model checking where it needs more than 13 lines of code.

Even though they are minimal, they use different technique to conduct verification;

assertion uses concrete technique, which verifies every line of code. Abstract interpretation

uses abstract technique, which verifies targeted line of code only. Therefore, the number of

lines of code does not reflect the choice of the characteristics and human intervention

during verification. However, abstract interpretation offers automation same as model

checking, which can avoid human errors.

Abstract interpretation has all features needed to conduct static analysis in automated

way. It can verify the program code without programmers’ annotation and uses abstract

method with formal mathematical logic. The abstract method makes the representation of

the program’s behavior generic, which can cover a variety of possible behaviors. Since it

uses one line of code, the verification is fast.

2.7 Verification for Method Overriding

The process of verification on method overriding involves two main concepts. They are

invariant and subtyping. Both use Unified Modeling Language (UML) for explanation. In

Figure 2.10, a class Person has a data member declared as name. It has a subclass Worker

that has a data member declared as tSalary; the total salary a worker earns. The subclass

30

Worker has subclass Manager where it has a data member manages. The superclass Person

has a method writeName(), the class Worker has a method writeSalary() and the class

Manager has a method writeManager(), where all of the methods display their data member

accordingly.

Figure 2.10: UML diagram of class Person, Worker, and Manager

2.7.1 Invariant

Invariant is a concept taken from Mathematics. It is described as the value of

expression that does not change during program execution. In OOPL, there are four types

of invariants, which called as class invariant, object invariant, type invariant, and loop

invariant (Parkinson, 2007). No matter where the invariant is in the program, the purpose is

only one; to become a property that is true for all expressions of a given code at all time.

Therefore, for object-oriented programming, “class invariant is a property that is true for all

objects of a given class at all times” (Webber, 2001, p.87) . The problem with class

invariant related to reverification of existing classes is explained in detail in §3.3. An

Person

name String

void writeName(Person p)

Worker

tSalary double

void writeSalary(Worker w)

Manager

manages Worker

void writeManager(Manager m)

31

example of class invariant is typed in bold below, which means data name cannot be null

value:

public class Person {

 private char* name; //invariant name != null;

 public Person() {

 name = new char (“Aliyah”); }

 public void writeName(Person* p) {

 cout<< p->name; } }

2.7.2 Subtyping

Basic subtyping principle is substitutability, a situation when a datatype can be

substituted by another datatype (that is supertype). Liskov et al. (1994) explained subtyping

also known as Liskov Substitutability Principle, which is used to reason program’s

semantics as:

What is wanted here is something like the following substitution property: If for

each object o1 of type S there is an object o2 of type T such that for all programs

P defined in terms of T, the behavior of P is unchanged when o1 is substituted

for o2 then S is a subtype of T. (p.23)

Then, Liskov et al. (2001) formalized her statement using invariants and constraints by the

statement:

Subtype requirement: Let φ(x) be a property provable about objects x of type T,

then φ(y) should be true for objects y of type S where S is a subtype of T.

(p.1812)

 or

symbolized as � <: #, which means S is subtype of T. (p.1823 & 1827)

 or

visualized as

Figure 2.11: S is subtype of T

S T

32

For example, when type integer is a subtype of type double; i.e. integer<:double, then

number, say 10 that is declared as integer is received as double as well, just as in Java

language. By considering contravariance and covariance, substitutability has better notion

under behavioral subtyping (Castagna, 1995; Liskov and Wing, 2001). Liskov and Wing

(2001) stated that methods must be contravariant and covariant because the methods

determine how different types of data work or function. However, it becomes a problem

during verification process which will be explained in §3.4.

Another example of subtype in inheritance program is the use of a pseudovariable;

named super. When a method sends a message using a super method, the process starts

from the immediate superclass possessing that method. However, if the method exists in

the superclass itself, self-reference technique occurs. Self is another pseudovariable that

realizes self reference in subtype of inheritance. It is defined in term of itself. It is used in

recursive function, procedure, method or datatype. Figure 2.12 and Figure 2.13 illustrate

the differences between super and self reference. It changes and modifies the state and

behavior of the object at the later stage of execution. This is called late binding. Late

binding allows the properties of objects to be reused and redefined without any textual

copying or editing. It minimizes the process of code duplication (Cook, 1989).

Figure 2.12: Super

Parent P Child C input

super

33

Figure 2.13: self reference

2.8 Features of Automated Verification on Method Overriding

Based on the analysis of static analysis methods (in Table 2.1) and concepts on

verification in method overriding (in §2.7), the main component of verification is

automation invariant generation. The production of the automated process equations must

consider: (1) non-reverification of old classes and (2) modularity of invariant statements.

The automated process means the process of verification needs neither programmer

intervention nor annotation of specification. This is important to deal with human error

during the process. However, the process is not easy because it always leads to over

approximation of the invariant statements, which is explained in detail in the next chapter.

2.8.1 Non-reverification

Reverification happens when the verification process executes more than once on the

same code. For example, in the beginning, a program has one class. The verification

verifies the class to check its correctness. Then, a programmer modifies the program by

extending the class with another new class. The new class and the old class have a

relationship called inheritance. Therefore, the old class becomes a superclass and the new

class becomes a subclass. When the programmer verifies the program, the verification

process will verify the old and new classes. Thus, the old class has been verified twice. If,

Parent P input self

34

in the future, the programmer adds a new class to the subclass, then, during the verification,

the old class has to be verified again. As the extension of the program becomes larger, the

verification also takes a longer time. The non-reverification means only new subclass is

verified after program extension. Therefore, verification process will be faster.

2.8.2 Modularity

A program analysis is considered modular when the analysis is decomposed into

segments to be analyzed according to requirements. Modularity in analysis means the

analysis is on program fragments or modules which contain only related variables

(Banerjee, 1997). Modularity is also related to relationship between segments. There are

segments that cannot be executed separately (dependency). In object-oriented program

analysis, the program specification is decomposed into classes, methods, objects,

components, or loops. This technique helps to understand and give better performance to

the program analysis. It can also manage generalization structure of classes and avoid

reverification because the verified class with invariant will not be verified again when new

class is added. According to Meyer (1997), there are five criteria of modularity which are:

1. Decomposability

A software construction method satisfied modular decomposability if it helps in the task

of decomposing a software problem into a small number of less complex subproblems,

connected by a simple structure, and independent enough to allow further work proceed

separately on each of them.

35

2. Composability

A method satisfies modular composability if it favors the production of software

elements which may then be freely combined with each other to produce new systems,

possibly in an environment quite different from the one in which they were initially

developed.

3. Understandability

A method favors modular understandability if it helps produce software in which a

human reader can understand each module without having to know the others, or at

worst, by having to examine only a few of the others.

4. Continuity

A method satisfies modular continuity if, a small change in a problem specification will

trigger a change in just one module, or a small number of modules.

5. Protection

A method satisfies modular protection if it yields architectures in which the effect of an

abnormal condition occurring at run time in a module will remain confined to that

module, or at worst will only propagate to a few neighboring modules.

From the five criteria above, we only use three: decomposability, composability, and

understandability. The reason is even though the invariants for a whole program, the

invariants are generated according to class and method. The invariants are decomposed in

such a way that the generated invariants are easier to manage and manipulate. In addition,

the decomposability method avoids complexity during the verification process when

36

generalization structure in inheritance involved. The process of decomposed and composed

invariants helps the programmer to understand the program analysis because the analysis is

small to trace and read. The program analysis does not consider continuity and protection

because every generated invariant is independent. Therefore, any changes to the invariant

will not affect other invariant even though they are in the same generalization structure.

2.9 Related Works

There are different methods and techniques applied and manipulated by other research

works to generate invariants for programs with method overriding. They are used for

verifying semantics of object-oriented programs using subtyping. Table 2.2 is the result of

comparison between related works and techniques they used to ensure invariants are not

reverified. Table 2.3 is a summary on related works and their techniques in verifying

method overriding focusing on subtyping and generating invariants. All works concentrated

on object-oriented programming languages, which have inheritance and dynamic binding.

In order to find a good solution in verifying method overriding, all works are compared

using five criteria; subtyping, invariant, non-reverification, modularity, and automated.

Techniques for subtyping and invariant are analyzed to find each work’s strengths and

weaknesses.

2.9.1 Analysis of Related Works Techniques on Non-Reverification

The performance of verification process on object-oriented programs depends on non-

reverification feature in the equation of program analysis. If the verification process allows

37

reverification of previous invariants, then more time is needed to conduct the process. The

result shows that there are 50% of the chosen related works (from Table 2.3) apply non-

reverification feature as shown in Table 2.2. The other 50% that does not have non-

reverification feature because their works concentrated on specific element in OOPL, e.g.,

ownership, hybrid types, proof environment, memory location frames, and model fields. It

means the non-reverification feature is not one of their main concerns.

All five of the non-reverification related works used behavioral subtyping to reason the

semantics of method overriding. This can be done because behavioral subtyping makes

sure preconditions of methods are weak and postconditions are strong. It is conducted by

making sure superclasses that have verified will not reverified. If the verified superclasses

are reverified, there is a possibility methods have strong preconditions due to the changes

of the superclasses. Therefore, each technique used assumptions and enforcement to have

non-reverification feature. Observable, specification inheritance, and modular technique

enforce specifications are only analyzed on superclasses. That is the reason the

specification superclass must be valid for specification subclass. Even though the

techniques used same method, their names are different because observable implemented

using abstract interpretation, specification inheritance using assertion, and modular using

less mathematical equation approach.

Invariants produced by specification subsumption and extended abstract predicate

family have same techniques on achieving non-reverification. The reason is both used same

logic, which is separation logic. The static specification is only on superclass, which means

the specification superclass is not allowed to be changed. However, Chin (2008) has

different technique on generating invariants because he enabled to solve the problem of

38

producing format to capture objects of classes without losing their information. Therefore,

all techniques do not allow specification superclass be modified in order to conduct static

checking. In addition, subclasses have to preserve specification superclass and only new

methods are verified. So that, every time new subclass or method is added into a program,

only the new one is verified.

Table 2.2: Comparison of Related Works and Criteria Related to Non-Reverification

Related Works

S
ub

ty
pi

ng

In
va

ria
nt

Non-Reverification

T
ec

hn
iq

ue

S
up

er
cl

as
s

S
ub

cl
as

s

Logozzo
(Logozzo, 2004)

Behavioral
subtyping

Observable
behavior Observable

Analyze on
superclass

only

Preserve
superclass
properties

Leavens
(Leavens, 2006)

Behavioral
subtyping

Modular
specification

Specification
inheritance

Specification
for fields

must valid
for subclass

Extended
Specification

definition

Chin
(Chin et al., 2008)

Behavioral
subtyping

Specification
subsumption

Checking inherited
static specification

Static
specification

Check
method

specification
with new

static
specification
for subclass

Parkinson
(Parkinson et al.,

2008)

Behavioral
subtyping

Extended
Abstract

Predicate
Family

Static and
dynamic

specification

Static
specification

Check
method

specification
with new

static
specification
for subclass

Cheon
(Cheon et al.,

2012)

Behavioral
subtyping

Cleanroom
Software

Engineering
Modular

Overridden
method must
behave like
overriding
method

Verify only
new code

39

2.9.2 Analysis of Evaluated Related Works

Table 2.3 shows the result of features used by related works towards verification

process on method overriding. All related works in the used the notion of behavioral

subtyping except Dovland’s (2008) to support modularity in the presence of subclassing

and late binding. This is because it is the only way to reason semantic operation in

inheritance. The rule of contravariance and covariance restricts the capability of the

program to be reused (will explain in §3.4). Therefore, Dovland et al. (2008) proposed lazy

behavioral subtyping that does not follow the behavioral subtyping. This affects the

verification process which the reasoning semantics can easily verify polymorphism of

OOPL. It involves inheritance, method overriding, and late binding call. His notion has

been applied to multiple inheritance successfully. However, the verification process needs a

programmer to annotate and it is not modular.

All authors used variety of ways to generate or annotate invariants onto object-oriented

program. For example, Müller (2002), Leavens (2006), and Dovland et al. (2009) used

Hoare logic. Even though they used the same logic, they approached the problem in the

verification process differently. Muller (2002) used object ownership, Leavens (2006) used

modular specification, and Dovland et al. (2009) used proof environment accordingly.

Parkinson and Bierman (2008) extended the capability of Hoare logic by considering

pointer during invariant generation which is called separation logic. By using separation

logic, they formulated reasoning for inheritance and method overriding which they named

abstract predicate family. Chin et al. (2008) applied the separation logic on inheritance and

subtyping which he called specification subsumption. The specification subsumption

focuses on distinction and relation between specifications to support behavioral subtyping

40

in class invariant. Both superclass and subclass are not verified at the same time. Cheon et

al. (2012) argued that Hoare logic reasons program as backward from postcondition to

precondition which hard to learn and apply. Therefore, he adapted Cleanroom software

engineering method to support forward reasoning in order to verify object-oriented

program. All research works used Hoare logic as their technique of verification whether the

logic is straightforward used or extended version. However, only Logozzo (2004) used

abstract interpretation to conduct verification. This is done to automate the process of

generating invariants which hard to achieve using Hoare logic. He implemented observable

behavior technique using abstract interpretation for subtyping.

Based on non-reverification component, there are five works do not reverify old

verified classes. Even though, they use behavioral subtyping of Liskov and Wing (1994) to

solve problem of subtyping, they change the specification definition to suit with the

problem they solve. Chin et al. (2008) specification subsumption has two conditions of

contravariance and covariance that check same subclass where they are included in the

behavioral subtyping. This method avoids re-verification of existing class by directly

inserting the previous generated invariant into the new invariant of the new subclass.

Leavens (2006) focused on methods that are similar by having definition on pre-behavioral

subtyping, strong and weak behavioral subtyping. The weak behavioral subtyping

definition allowed the less restrict constraints rule the methods, which allows object to be

aliased and mutated due to method definition. However, unexpected behavior can happen

due to less control of the methods. Parkinson et al. (2008) used separation logic to avoid

reverification where it allows derived classes exist without reverifying the base class with

the assumption methods do not modify the variables containing the arguments in the

method body. The rule does not use method body because it works at the specifications

41

level only. Logozzo (2004) used observable behavior which he defined classes that have

relationship as a domain of observables which he refined when new classes added into the

hierarchy.

 Based on modularity component, all works are modular. Since the programming

language is object-oriented that is based on modularity, it is easier to make the invariants

modular as well. This allows behavioral subtyping being applied to reason the program

semantics. Therefore, modularity is a required component in producing invariants for

OOPL because the invariants produced are managed by class or method. In addition,

modularity feature enables the invariants produced for scalable programs.

 Only Logozzo (2004) verified object-oriented program automatically. This is due to

the used of abstract interpretation theory and behavioral subtyping for verifying method

overriding. His technique on method overriding verification is on superclass only because

overridden method that exists in subclass is already in the superclass. He converted

concrete classes and methods into abstract domains, which resulted in over approximation

of the method semantics. Other works practice invariants based on programmer’s

annotation, which is prior to the code. If the programmer does not accidently assert errors,

the result is accurate which close to the program behavior. However, the programmer’s

invariants are not generic and depended on the capability of the programmer’s

interpretation of the program. Even though, the automation process has been done since

2004, other researchers mentioned here did not extend the work because they did not use

abstract interpretation as method of static analysis. In fact, the heavyweight of static

analysis due to the use of abstract algebra by abstract interpretation makes researchers did

not fully implement it but incorporate it with other methods. For example, Boogie tool used

42

both assertion and abstract interpretation to verify object-oriented programs (Barnett et al.,

2006).

Table 2.3: Comparison of Evaluated Related Works

Related Works

Techniques used to Verify Method Overriding

S
ub

ty
pi

ng

In
va

ria
nt

N
on

-
R

ev
er

ifi
ca

tio
n

M
od

ul
ar

ity

A
ut

om
at

ed

Muller
(Müller, 2002)

Behavioral
subtyping Object Ownership x � x

Logozzo
(Logozzo, 2004)

Behavioral
subtyping

Observable
behavior ���� ���� ����

Flanagan
(Flanagan et al., 2006)

Behavioral
Subtyping Hybrid types x � x

Leavens
(Leavens, 2006)

Behavioral
subtyping Modular specification � � x

Chin
(Chin et al., 2008)

Behavioral
subtyping

Specification
subsumption

� � x

Parkinson
(Parkinson et al., 2008)

Behavioral
subtyping

Extended Abstract
Predicate Family

� � x

Dovland
(Dovland et al., 2009)

Lazy behavioral
subtyping Proof Environment x � x

Smans
(Smans et al., 2010)

Behavioral
Subtyping Dynamic frames x � x

Balint
(Balint et al., 2011)

Behavioral
subtyping Model fields x � x

Cheon
(Cheon et al., 2012)

Behavioral
subtyping

Cleanroom Software
Engineering

� � x

Taken as a whole, there is only one work that has all three components: that of

Logozzo’s. Other works such as Leavens’s (2006), Chin’s (2008), Parkinson’s (2008), and

Cheon et al. (2012), have both components of non-reverification and modularity even

though theirs were not automated. This is because they used Hoare style logic instead of

abstract interpretation where the techniques need the programmers to learn the syntax of

specification language in order to annotate the program. However, since the annotation is

on the program behavior, it can ensure the program verification works as it intended to be.

On the other hand, Logozzo’s (2004) equations on method overriding semantics produced

43

over-approximation value because the overridden method’s invocation is hard to trace

before run time. The over-approximation value is a safe value for overriding and

overridden method where the method semantics reasoned by behavioral subtyping. He

argued that the over-approximation allowed the equations to cover all values from datatype

of method parameters and arguments.

2.10 Conclusion

This chapter has provided a brief background information on method overriding at the

beginning and related features to verify method overriding. It overviewed three techniques

of static analysis: assertion, model checking, and abstract interpretation. An analysis on

related works discussed on techniques used, strengths, and weaknesses in producing

invariant generation. The finding shows technique used by Logozzo (2007) called abstract

interpretation using observable behavior fulfilled all requirements needed to verify method

overriding using invariant generation without human intervention. However, the technique

produced problems related to class invariant and late binding call. Therefore, in the

following chapter we will analyze the problems, which regards to automated linear

invariant generation.

44

‘… and, Our Lord do not make us bear a burden
for which we have no strength...’

-Al-Baqarah verse 286

This chapter examines problems of developing invariants generation in both classes and

methods for programs with method overriding. Its aim is to find a method and technique of

solution for the problems. The problems are identified and discussed using program logic.

There are two major components; class invariant and late binding call. The class invariant

has a problem with reverification of verified invariants. The late binding call has a problem

with restriction of semantics reasoning rule. Therefore, possible methods of solution for

each problem is discussed in §3.3 and §3.4.

3.1 Automated Software Verification

Automated software verification becomes a grand challenge after Sir Charles Anthony

Richard Hoare stated the importance of having automated program verifier as the main

objective to achieve reliable softwares and systems (Hoare, 2007). The automated program

verifier enables to ensure the absence of runtime errors, which avoids the unexpected result

by the softwares. In the context of object-oriented program, works have been done to

develop the automated program verifier (D’Silva et. al,2008) as well. For example, Astree

Chapter 3

Automated Linear Invariant

Generation

45

(Cousot, et.al, 2007), jStar (Distefano, 2008), and Polyspace (Little and Moler, 2013).

However, researchers face challenges in generating invariants for dynamic allocated data

structure, shared-variable concurrency, different code environments, and object mutation.

All these problems are due to change of states in term of platform, data, environment and

object. Therefore, until now, there is no such full automated software verification because

of the difficulty to capture states of programs. As static analysis enables to help verification

process to inspect programs during compile time, it is categorized into two methods; 1)

type system and 2) formal verification. Type system requires programmers to annotate the

program code with type information. Formal verification as explained in §2.4 can generate

two types of invariants; 1) polynomial loop invariant and 2) linear invariant. Polynomial

loop invariant is an inductive invariant for initial and consecutive location of the loop

program (Rodriguez-Carbonell, 2007). Linear invariant is the invariant that is always true

at the initial program and throughout the program execution. The current thesis limits to

linear invariant generation.

3.2 Linear Invariants Generation

In order to have automated linear invariant generation, static analyzer must able to

generate correct invariants for the whole code of the program. However, the program

enables to scale using inheritance. Therefore, the invariants scale up as the program

expands. This can affect the performance during static analysis process. Therefore, it is

important to module the program to ease the process. In general, the program modules as

class, method, and program structure. Researchers successfully analyze statically class and

program structure (Logozzo, 2004 and Dovland, 2009). However, researchers face

46

problems in generating linear invariant for method as it can be method overriding. The

overriding method has the privilege to be invoked by any object as long as the object in the

same inheritance hierarchy structure. The invocation allows program to be reused and

changed states according to the program’s requirements. Therefore, it is important to

analyze statically the method overriding to achieve full automated software verification.

3.3 Methods for Problem Analysis

Initially, the problems related to automated invariant generation is represented using a

small language called Method Language (methL) which is based on Featherweight Java

(FJ) (Igarashi et al., 2001). The purpose of using a small language is to understand another

language (Hoare, 1981). The syntax of methL is as below.

 (class definition) 	$ ∶≔ '()��	*	+, +�-�	*	{	./	01}
 (field definition) . ∶≔ 	2	3
 (method definition) 0 ∶≔ 	2	452	3////6 ∶ (7, 8){9/}
 (body statement) 	9 ∶≔ ,	|	�+:	*(+̅)|	+. 3	|	+; +	|+.4(+̅)|	4(+̅)|	* ∷ 4(+̅)
 (return type) 2		 ∶≔ *	|	>?@-	|	@� 	|	9??(
 (+,7A+��@?�)												+ ∶≔ .	|	,	|	�B((

Here, C represents a class name where methL language is a language with inheritance.

Overbar notation denotes there is a list; for example, ./ means a list of data members. A

program consists of a list of class definitions. The definition of inheritance is an extension

from one class to another. We do not consider multiple inheritance in this language. The

body of declaration has data fields or member ./	and methods 01 . Data field is declared

using types 2 and variables 3. Type 2 can be a class, integer, Boolean, or void. Methods in

this language are methods that can change behavior of the class. We omit super method for

47

simplicity. The methods precondition and postcondition are specified as (7, 8). Every

single method consists of

1. a variable ,

2. a new object �+:	*(+̅)
3. a data member call +. 3

4. a sequential composition of expression +; +

5. three types of method calls, which are

a. external method call,	+.4(+̅)
b. internal static call, * ∷ 4(+̅)
c. internal late bound call, 4(+̅)

The external method call happens when an object calls the method as	+.4(+̅). The

internal static call method	* ∷ 4(+̅) happens in class	* where the compiler compiles and

binds the method at compile time. The internal late bound call only happens at run time

when the actual object has been determined.

 A visual representation of inheritance using UML diagram is shown in Figure 3.1

which is taken and extended from Figure 2.10. All classes are extended with additional data

members and methods for explanatory purpose. In this figure, there is a class named Person

that has two data type called name and bSalary as basic salary. It has a subclass named

Worker that has a data type named tSalary. The subclass Worker has a subclass named

Manager where it has a data type named manages. A method called calc() appears three

times in the diagram. All classes; Person, Worker, and Manager have the method calc(),

48

which calc() in class Worker and Manager can override calc() in class Person. There is

another method calc() which is called from inside method salary() in class Person.

Figure 3.1: Example of inheritance with overridden method calc()

3.4 Problem 1: Class Invariant

In OOPL, generating class invariant is a difficult task especially in the presence of

inheritance because class invariants are meant for single objects. However, in inheritance

there is an generalization structure that involves two or more objects. There is one main

problem arise during verification on object-oriented program. It is called reverification. It

affects the performance of the compilation due to the repetitive nature of the verification

process, which is exaggerated when the program scales up.

Person

name char*;

bSalary int;

Person (char*,int) ;

void writeName(Person*) ;

void calc() ;

void salary() {..calc()..};

Worker

tSalary double;

Worker (double);

void writeSalary(Worker*);

void calc() ;

Manager

manages Worker*;

Manager ();

void writeManager(Manager*) ;

void calc() ;

49

For example, let class Person of Figure 3.1 be coded and extended as in Figure 3.2. The

class invariant restricts the data to a certain amount of limit to avoid memory overload

especially for array. It also avoids mathematical operations on data member that has no

value. The class invariant adds another class invariant for class Worker, a subclass to class

Person because inheritance allows subclass to inherit data member from superclass, e.g. sal

in method calc() in class Worker. In this situation, there is no error because the class

invariant in superclass Person has specified subclass Worker. However, problems arise

when class Manager is added later. If the class Manager is to be verified, the verification

process has to start from the beginning. To avoid reverification of class invariant, there are

five techniques, from Table 2.2 that are used in the program verification.

The idea of a class invariant that was first proposed by Hoare (1969) has been extended,

so that the inheritance structure of classes and objects are easily verified. Parkinson et al.

(2007) proposed the use of a more general foundation of verification which is Hoare logic

to specify the properties of generalization structure, after considering the complexity of

peer invariants of Leino and Muller (2004) and history invariants of Leino and Schulte

(2007). Based on existing invariants generation techniques, Xing et al. (2010) present a

technique where invariants are generated at each statement to ensure all properties are safe

and terminated. Banarjee (2009) merges non-computer related technique, which is called

clonal selection theory with a program verification process to predict program invariant

shapes. However, all these techniques limit to programs with no method overriding.

50

public class Person {

public class Person {
 private String name = "Adam";
 private int bSalary = 100;
 public int testSalary = 200;

 public Person(String n, int s){
 name = n;
 bSalary = s;
 }
 public void writeName(Person p){
 System. out.print("The employer name is " + name);
 }
 public void calc(){
 bSalary = 2100;
 System. out.println("Person::calc()");
 }
 public void salary(){
 calc();
 } } //end of class Person

public class Worker extends Person{
 private int testSalary = 300;
 private double tSalary;

 public Worker(String nama, int gaji, double tot){
 super(nama,gaji);
 tSalary = tot;
 }
 public void writeSalary(Worker w){
 System. out.println(w.tSalary);
 }
 public void calc(){
 tSalary += bSalary;
 System. out.println(tSalary);
 } } //end of class Worker

public class Manager extends Worker{
 private String address = "Malaysia";
 Worker manages = new Worker("Aliyah",1000,0);

 public Manager(String nama, int gaji, double tot, String add){
 super(nama,gaji,tot);
 address = add;
 }
 public void writeManager(Manager m){
 System. out.print("\n" + m.name + " has a worker named " +
 manages.name + " whose salary is RM");
 manages.calc();
 }
 public void calc(){
 tSalary = bSalary + 4000;
 System. out.print(name + "'s total salary is RM" + tSalary);
 } } //end of class Manager

Figure 3.2: Salary System

51

3.4.1 Specification Subsumption and Extended Abstract Predicate Family

The emergence of separation logic by Parkinson (2005) and behavioral subtyping by

Liskov and Wing (1994) produces a novel specification subsumption that avoids

reverification during program analysis (Chin et al., 2008). Parkinson (2005) applied his

separation logic to come out with a predicate for inheritance, which is called abstract

predicate family. The specification of subclass comes with its superclass’ specification to

show the relationship between the classes. However, this technique produced reverification

problem. Therefore, Parkinson has extended the abstract predicate family with static and

dynamic specification (Parkinson et al., 2008). Chin et al. (2008) also use the same idea in

verifying inheritance where static specification is used for new inherited methods and

subclasses and dynamic specification is used for overriding method to ensure behavioral

subtyping. They proposed a mechanism called specification subsumption that focuses on

distinction and relation between specifications to support behavioral subtyping in class

invariant. The word subsumption used by Chin et al. (2008), in the context of OOPL means

“the ability to emulate an object by means of another object that has more refined methods”

(Abadi and Cardelli, 1994, p.1). Both superclass and subclass are verified at the same time

by considering their behavioral subtyping and method overriding. After the enhancement,

the specification subsumption mechanism enables to ensure contravariance of precondition

and covariance on postconditions using this inference rule:

7A+C ⊢ 7A+E ∗ ∆									7?� E ∗ ∆	⊢ 7?� C
5(7A+E ∗→ 	7?� E) < :		 (7A+C	 ∗→ 	7?� C)6

The inference rule consists of 	7A+C, 7A+E, 7?� C, 7?� E, and ∆. 7A+C and	7A+E are

precondition of A and B	 respectively. 7?� C and 7?� E are postcondition of A and B	

52

respectively.	 ∆	 is the residual heap from the contravariance check on preconditions. It is

used later for covariance check on postconditions. It is included in the inference rule

because the rule enables to reason semantics of program with pointers. Annotation of

(7A+E ∗→ 	7?� E) is a subtype of (7A+C	 ∗→ 	7?� C) if 1) the annotation’s precondition

has 7A+C that involved 7A+E and	∆, and 2) the annotation’s postcondition has 7?� E ∗ ∆

that involved	7?� C. This means A is always has B and its residual heap because A is a

supertype of B.

3.4.2 Observable Behavior

Observable behavior preserves behavior of objects especially superclass to be used later

when new subclass is added. The observable behavior is a method on how objects react to

messages based on its early specification (America, 1991). Logozzo (2004) used it in his

framework of abstract interpretation to avoid reverification. However, the invariants are

limited to superclasses and not to subclasses when it comes to method overriding. The idea

of this technique is that since the precondition and postcondition of overridden and

overriding methods are the same, the class invariant is generated only on superclass. Later,

the additional invariants are added when new subclasses with new methods are created.

Logozzo treated the technique as a domain that keeps old specification of precondition and

postcondition. He did not manipulate the observable behavior domain to ensure the domain

follows the rule of behavioral subtyping.

53

3.4.3 Cleanroom Software Engineering

The idea of Cleanroom software engineering was first published by Mills et al. (1987).

The main objective of the method is to achieve the high quality in software with statistical

quality control using mathematical verification. By using the concept, Cheon (2010)

minimized the mathematical used during specification by proposing the use of concurrent

assignment notation with intended function. The name of the method is intended function

because the annotation is function-like way, which is similar to the way a function is typed

in a program. He used the notion of behavioral subtyping to reason subtyping. Therefore,

the technique only considered overridden method that existed in subclass every time a

program with new subclass is verified. Therefore, the technique is modular. However, the

annotation code has to be learned by the programmer even though the syntax follows

function like syntax. Due to the syntax, the annotation code is long and there is a need to

process the function mapping which affects the program’s execution time during

compilations. However, the annotation code assists programmers in minimizing of learning

new specification language because the annotation uses Java’s expression syntax.

3.4.4 Modular Specification

Modular specification applied by Leavens (2006) was an extension version of better

JML. He applied behavioral subtyping in reasoning inheritance using the concept of

refinement, which defined the binary relation on method specification. The purpose was to

ensure modularity to avoid reverification. Even though the language of JML is

straightforward, the programmer has to learn on how to apply the language in the situation

of method overriding. Therefore, it opens the verification process to human error.

54

All five techniques for class invariants generation are taken from Table 2.2. They have

one common feature, which avoids reverification. To achieve it, all the techniques must be

in modular. The modularity allows the programmer to manipulate the class invariants;

whether to reverify or not to. Every single technique has its own advantage that merged and

manipulated to produce better verification. For example, modular specification uses a

concept called supertype abstraction, which assumes all objects of subtypes can be treated

uniformly. However, specification subsumption and separation logic reason an object-

oriented program semantics using static and dynamic specification. This avoids loss of

information because extra variables are used to capture important information. Therefore,

every type is treated accordingly. Logozzo (2004) used the same concept, which his

method he called observable.

3.5 Problem 2: Late Binding Call

Method overriding enables the subclass method to change the semantics of its

superclass which affects the behavioral properties of objects. When a method is redefined,

its behavior may change and may contradict its specification. The process of changing the

object’s behavior is only known at runtime. This is called late binding call. The late binding

call happens when a method body is called during execution depending on the callee’s

actual class (Dovland et al., 2008).

For example, by referring to Figure 3.2, if method calc() from class Worker is selected

for execution using an object that is an instance of class Worker, the method calc() from

55

class Worker is executed and not from the class Person. However, if method salary() were

selected by the instance of class Person, the late bound invocation of method calc() would

be bound to the method calc() in class Person. Consider main method below as a demo

method for Figure 3.2:

1 public static void main (String[] args) {
2 Person clerk = new Manager (“Adam”,2000,100,”Shah Alam”);
3 clerk.calc(); //output: 2100.00 - late binding
4 ((Manager)clerk).writeManager ((Manager)clerk);
5 System.out.print(”The test salary is : ”+clerk.tes tSalary);

 //output: 200 - early binding
6 }

The output:

Adam's total salary is RM6200.0
Adam has a worker named Aliyah whose salary is RM10 00.0
The test salary is : 200

From the code above, it shows that the statement in line 3 produces 2100.00 from the

method in class Worker. However, statement 5 produces 200, the value coming from

testSalary of class Person not from class Worker. This is because object clerk belongs to

class Person before runtime. Then, it knows the object clerk also belongs to class Worker

when statement 2 is executed during runtime, which the statement is bound later after

compilation. During the runtime, the method calc() of class Worker substitutes the

definition of method calc() of class Person where the program uses the concept of

subtyping. In order to verify the semantics of method calc() operation (method overriding),

behavioral subtyping of Liskov Substitutability Principle is commonly used.

3.5.1 Behavioral Subtyping

There are three notions of behavioral subtyping: 1) object of subtype must be

substitutable for its supertype, 2) precondition for a supertype entails the precondition for

56

subtype, and 3) postcondition for subtype entails the postcondition for the supertype. For

the purpose of program safety, behavioral subtyping is defined in two ways (Liskov and

Wing, 1994). The first definition treats subtype relations as constraints. The constraints are

annotated by using history rule. The history rule has a property that keeps constraints of

methods, which are method’s pre condition and post condition. The property is called

history property. History properties cannot be changed, as they cannot be deduced. The

deduction enables the programmer to monitor subclasses in invariant.

In the second definition, there is an extension map to define all new methods in the

subtype. The extension map has extension rule that states each method has diamond rule to

follow. The diamond rule is used to relate abstract value to method calling or executing the

program. However, for method overriding where it has late bound method call, behavioral

subtyping is less flexible due to its constraint rules (Mihancea and Marinescu, 2009).

To ensure a method type is specific, the method follows the rule of contravariance and

covariance. The contravariance rule is when the method argument has a more general

(wider) type. The covariance rule is when the method’s return value has a more specific

(narrower) type. The contravariant rule becomes a problem when verifying inheritance

because the general type of method argument becomes very general as the declaration of

the method argument can come from many superclasses.

Referring to Figure 3.2, considers extending the code with a higher-order function

named printing() and a main function. This example uses C++ code instead of Java to show

the example of subtyping using method call. Java does not allow method to be an

argument. The printing() function has two arguments which are method of Worker and

57

instance of type of Worker. The Worker is chosen because the class has a superclass and a

subclass where we can see the access capability to the both classes. In the main function,

there is an instance of Worker called workerOfTheMonth.

1 void printing(void (*action)(Worker*), Worker* wor ker) {
2 (*action)(worker);
3 }
4 void main() {
5 Worker* workerOfTheMonth;
6 printing (writeSalary(), workerOfTheMonth);
7 printing (writeName(), workerOfTheMonth);
8 }

From the code above, both printing() functions in the main function have no compile-

time error because writeSalary() and writeName() are accessed under the declaration of

class Worker. However, even though Manager is a subclass of Worker, printing() function is

unable to call writeManager() because it prevents behavioral subtyping. Therefore, if we

want the printing() function executes writeManager(), the function must be defined on an

instance of Manager.

The late binding call problem can also be explained using reasoning system as the

problem of calling correct methods is related to semantics. Figure 3.3 shows related rules to

syntax methL language introduced in §3.3. For simplicity, the reasoning system tracks data

type using Hoare logic of {7}9{8}, where	7 is precondition and	8 is postcondition to the

statement 9. The internal and the external late binding call use the same reasoning.

Subtyping is represented using ⊆. All of the subclasses denoted as +�: L are bound to each

other in	9@�-(*
MNO, 4), where

*
 , single class

'(�, all superclasses belong to *

4, method

58

Therefore,

9@�-5*
MNO, 46 ≝ @3	4 ∈ 0	 ℎ+�	*
	+(�+	9@�-5*MNO, 46	+�-	

For example, let method calc() be called from method salary() as illustrated in Figure

3.2. (7�, 8�) is specification of superclass Person and (7�, 8�) is specification of subclass

Worker. If method calc() has specification in the form of {A}')('(){�}, then the inference

rules in Figure 3.3 validates the {7� ∧ 7�}	')('(){8� ∨ 8�} expression which is inferred

from the rule of (body) and (lateCall). However, if a new subclass is added to the code, e.g.

class Manager, the previous verification is not valid anymore, because the rule is changed

to {7� ∧ 7� ∧ 7T}	')('(){8� ∨ 8� ∨ 8T} at call site.

(9?-U)	7 ⇒ 7�				{7�}	9	{8�}				8� ⇒ 8	
{7}	9		{8}

(>)A){7},{7}
(�+:){−}�+:	*(+̅){8}

(�+8B+� @)() {7}+{'}			{'}+{8}{7}+; +{8}

(�) @'*)(()
{7}9X(Y̅	∨	Z/)

[��\(]^�O:_,X){8}
{7[,, .]}		* ∷ 4(+̅)		{8b9/, 2c}

(() +*)(()
∀'(� ∈ 	 (⊆�� *)															{7MNO ∧ ': *}		9/	M.X(Y̅	∨	Z/)

	[��\(_efgh,X)		{8MNO}
{∧MNO	 (7MNO	[+̅	/	,̅ 	∨ 	./]) 	∧ 	 +̅}						4(+̅)						{∨MNO 	 (8MNO[+̅, 2])}

(+, +A�)(*)(()
∀'(� ∈ 	 (⊆�� *)															{7MNO ∧ ': *}		9/	M.X(Y̅	∨	Z/)

	[��\(_efgh,X)		{8MNO}
{∧MNO	 (7MNO	[+̅	/	,̅ 	∨ 	./]) 	∧ 	 +̅}						'. 4(+̅)						{∨MNO 	 (8MNO[+̅, 2])}

Figure 3.3: Inference Rules

59

With the restriction of behavioral subtyping, several approaches, e.g. plug-in matching

(America, 1991) and relaxed plug-in (Nunes, 2004), have been used to restrict the new

definition of methods. However, the restriction on how the object behaves beat the purpose

of having object-orientation methodology in software development, which is code-reuse.

Therefore, Dovland (2008) used a lazy method to reason subtyping using open closed

principle of object-oriented design where programs are open to be reused without

programmers do not have to worry the specification that changes due to program

modification. It is called lazy behavioral subtyping.

3.5.2 Lazy Behavioral Subtyping

Dovland et al. (2008) produced a novel lazy behavioral subtyping (LBS) method that

considers superclasses and their subclasses when analyzing methods in object-oriented

programs. LBS uses open world assumption concept, which the classes are extended and

reused over time. The classes are incremental reasoned on the class hierarchies using LBS.

The open world assumption allows the program not only being gradually expanded but also

leads to potential bindings using method overriding. The LBS reasons the program’s

method definition and method call by assigning specifications for the purpose of static

analysis. The specifications (better known as assertion in LBS) are defined for the methods

using an assertion entailment. The method definition’s assertion is represented as p and q

and the method call is represented as r and s. The (p,q) and (r,s) are employed based on

Hoare logic of precondition and postcondition. Entailment for both assertions is defined by

(a formal presentation is in §4.8)

60

1. A method definition assertion entails a method call assertion, (7, 8) → (A, �).
The assertion of method call consists of assertion of method definition and the assertion

themselves.

2. The sets of method definition assertion j (denotes {(7�, 8�)|1 ≤ @ ≤ �}) entail a method

call assertion, j → (A, �).
The assertion of method call consists of the sets of method definition assertion, which the

sets come from more than one method definition of different superclasses.

3. The sets of method definition assertion entail the sets of method call assertion m

(denotes {(A�, ��)|1 ≤ @ ≤ �}), j → m.

The sets of method call assertion consist of the sets of method definition assertion when

there is more than one assertion of method definition for many method call assertion called

from different subclasses.

The definitions above show that LBS focus on the method specification which allows

method overriding be reasoned statically. All method definitions have specification as well

as method calls. The method call that is called within method definition holds specification

from itself and also all specifications for its method definitions. Therefore, whenever the

method is called, the analysis uses all specifications already specified by LBS, which

covers all possibilities statically. In addition, for the method overriding, its method

definition only uses specification that has been defined without considering specification

from its superclass. This rule contradicts from behavioral subtyping that whenever a

method is redefined in subclass, its new method definition must satisfy superclass

61

specifications. As of 2012, there are only Dovland and his collegue’s papers prove the use

of LBS (Dovland et.al, 2010). They have applied the concept for distributed concurrent

objects successfully (Johnsen and Owe, 2007) without formally published the LBS at the

time and multiple inheritance (Dovland et.al, 2009). However, the work limits to manual

specification and Hoare style logic programming. As a consequence, the implementation

needs programmers’ intervention for the verification process. Therefore, with the strength

of LBS over behavioral subtyping, this thesis adopts LBS using abstract interpretation to

design an abstract formal framework to achieve automation program verification focusing

on method overriding.

3.6 Proposed Abstract Formal Framework

Figure 3.4 shows the illustration of proposed abstract formal framework, which the

detail framework is in chapter 4. The framework based on abstract interpretation uses Java

language as a basis for the program syntax. The syntax helps in explaining the program

semantics that focuses on the use of data field in the presence of method overriding.

Therefore, the syntax consists of a class, main class, and library. For the concrete

semantics, the framework bases on object-oriented program semantics, class semantics,

constructor semantics, and method semantics. These concrete semantics have domains to

define each concrete semantics using Fixpoint Tarski’s theorem. The theorem traces the

changes of states for each concrete semantics, so that the traces can be abstracted using

abstract interpretation theory. The domains are input and output values, environment, store

and state.

62

The conversion of the concrete semantics to abstract semantics is by abstract

interpretation. The abstract interpretation uses Galois connection to ensure the abstraction

and concretization of the program semantics in monotonic function. The structure of the

program semantics orders in partial order set, so that the semantics always in lattice form.

The abstract semantics has four domains which are abstract program, abstract constructor,

abstract method, and abstract method call. Abstract constructor and abstract method are

merged using union to produce class invariant. The creation of the class invariant is

adopted from Logozzo (2004). Then, the class invariant is composed in an invariant namely

A to ensure the invariant is not reverified when new subclasses added. The composition of

each invariant produced is kept in modular. Therefore, the technique solved the problem of

reverification by class invariant. Then, the class invariant is used for invariant in

inheritance. The H represents invariant in inheritance. It is a convergence of the A, which is

the old invariant that has been verified and new invariants created for new subclasses.

The abstract method is used to create abstract method call in the presence of method

overriding. The abstract method call generates from abstract method of overriding and

overridden method from superclass and subclass. The abstraction produces invariants from

the overriding and overridden method, which the invariants is used when the method call is

invoked. This technique is adapted from the notion of lazy behavioral subtyping. By using

lazy behavioral subtyping, invariants can be generated for method call compare to

behavioral subtyping that does not analyzed method call. Even though lazy behavioral

subtyping allows analysis on method call, the invariants used specify by the programmer.

Therefore, this framework lets the invariants be generated by abstract interpretation.

63

Figure 3.4: Proposed Abstract Formal Framework

3.7 Conclusion

In this chapter, we have examined problems of automated invariant generation using a

language called methL based on program logic. There are two main problems, which are

reverification of class invariant and over-approximation value of invariants in late binding

method call. There are five solutions for reverification of class invariant problem proposed

Abstract Semantics 〈
1, ⊑1, ⊥1,⊺̅, ⨆1, ⨅1〉		

Abstract Program, ℙ1 Abstract Constructor,

ℂuvwx///////
Abstract Method, y1 Abstract Method

Call, y1 z{||

Invariants
		

Class (Logozzo,2004),

} = 	ℂuvwx///////�'?�� �	⨆1 	∐���� y�4��

Inheritance,

 � = C	⨆////// 	C⨆1 	∐ C@�@=1

Method Overriding,

y1 M�NN�?4� =
y1 �?4O�����		⨅1 		∐ y1 �?4O�[��
����

<
p

ro
d

u
ce

>
 ⨆1

<module as > A ⨆1

Superclas
s

Subclass
⨅1

<
fo

r
>

Lazy Behavioral Subtyping (Dovland,2010)

Concrete Semantics 		
Method Semantics, y

Class Semantics, ℂ

Object-Oriented Program, ℙ

Constructor Semantics, ℂuvwx

Syntax
		

64

by other works, which are specification subsumption, extended abstract family, observable

behavior, cleanroom software engineering, and modular specification. For the problem of

over-approximation value of invariants in late binding method call, there are two solutions,

namely behavioral subtyping and lazy behavioral subtyping. To achieve the objective of

automated invariants generation that is modular and non reverification, abstract

interpretation (taken partly from observable behavior technique), and lazy behavioral

subtyping method are chosen as the solution. With this solution, the development of

abstract formal framework for invariants generation is described in chapter 4 using abstract

interpretation.

65

There is no abstract art.
You must always start with something.

Afterward, you can remove all traces of reality.
-Pablo Picasso

This chapter designs an abstract formal framework for verification on method

overriding. Its aim is to produce proposed equations to produce invariants for inheritance

and method overriding with late binding call. The framework consists of the formalization

of equations for invariants developed using abstract interpretation theory and lazy

behavioral subtyping, which any research has been done before. The framework adopts

class invariant of Logozzo (2004), Fixpoint Tarski’s theorem (1955), Fages lemma (2008),

and Galois connection to develop the framework using abstract interpretation.

4.1 Preliminary Notation

To facilitate our discussion, we introduce mathematical concepts and notations for

lattice theory, fixed point theory, and abstract interpretation theory required for the study.

4.1.1 Sets

We denote sets with capital letters and element of sets with small letter, italic cambria

math font. For example, e is a member of the set E, written as + ∈ L. We use bar to

Chapter 4

Formalization of Invariants in Method

Overriding

66

represent the abstraction of the element or set of element. For example, the abstract domain

D written as
1. We also denote the set of natural numbers as ℕ, the set of integer numbers

as ℤ, the set of Boolean values as �, the set of String value as �, and let [,. . U]	be the set of

{@ ∈ ℤ|	@ ≥ ,	 ∧ @ ≤ U}.

Given two sets A and B, their Cartesian product is denotes by C × E where C × E =
	{(), 9):) ∈ C ∧ 9 ∈ E}. A relation r between A and B is a subset of their Cartesian

product, i.e. A ⊆ C × E, and a relation r on A is A ⊆ C × C.

4.1.2 Partially Ordered Sets

A partial ordering of a set �	is given by a relation ≤ such that it is

1. Reflexive:) ≤) for all) ∈ �

2. Antisymmetric: if) ≤ 9 and 9 ≤),then) = 9

3. Transitive: if) ≤ 9 and 9 ≤ ', then) ≤ '

We denote the partially ordered set (poset) as 〈
,⊑〉 instead of 〈
,≤〉. The top element

of 〈
, ⊑〉 is ⊺ iff ⊺∈
	 ∧ 	∀- ∈
. - ⊑⊺. The bottom element of 〈
,⊑〉 is ⊥ iff ⊥∈
	 ∧
	∀- ∈
	. ⊥⊑ -.

We say that - ∈
 is the least upper bound of C denoted by ⨆C, if ∀-′ ∈
 such that

- ⊑ -′. Symmetrically, we denote the greatest lower bound of A by ⊓ C.

67

A poset 〈
, ⊑〉 is called a lattice if any two elements of
 have both a greatest lower

bound and a least upper bound. For a complete lattice, we write 〈
,⊑, ⊥,⊺,⊓,⊔	〉. The poset

〈
,⊑〉 satisfies the ascending chain condition (ACC), if every ascending chain -� ⊑ -� ⊑	..
of elements in
 is eventually stationary, i.e., ∃@ ∈ ℕ	.		∀4 > �	. 	-X = -�.

4.1.3 Functions

A function is a relation A such that if (), 9) ∈ A and (), 9�) ∈ A, then 9 = 9′. We

specify functions using � notation, e.g. �,. L,7A. It defines a function with an input , and

an output produces by expression, L,7A. Let 3 be a function,) an element in its domain

and 9 an element in its co domain. Therefore, 3[) ↦ 9] is a function that accepts) as input

and returns 9 as output. We denote 3[C ⟶ E] as the domain of the function 3 is included

in C, and its co domain is included in E. Let 3[C ⟶ E] and �[� ⟶ �], then 3 ∘ � ∈

[C ⟶ �], which represents the composition of function 3 and �, i.e., �,. �53(,)6. Let

two posets be 〈C, ⊑�〉 and 〈E, ⊑〉, a function 3[C ⟶ E] is

1. Monotonic: ∀)�,)� ∈ C	.)� ⊑�)� 	⟺ 3()�) ⊑� 3()�)
2. Join-morphism: ∀)�,)� ∈ C	. 3()� 	⨆)�) ⟺ 	3()�) ⊔� 3()�)

4.1.4 Fixed points

Let function 3 be 3 ∈ [
 →
]. A fixpoint of 3 is an element - ∈
 such that 3(-) ∈

-. If we define 3 over partial order set 〈
, ⊑〉, then the element - is the least fixpoint with

- = 3(-) and all next element of -	, -� is ∀-� ∈
	. -� = 3(-�) 	⇒ 		- ⊑ -′.

68

Let 3 be a function defined over partial order set 〈
,⊑〉, an element - ∈
, and the

order ⊑ is larger than -. Least fixpoint of 3, denoted as (37\⊑3. The least and greatest

fixpoints on a monotonic function is guaranteed by the Tarski’s fixpoint theorem.

Theorem 4.1 (Fixpoint Tarski’s Theorem (Tarski, 1955))

Let 〈
, ⊑,⊥,⊺,⊔,⊓〉 be a complete lattice and let 3 ∈ [
 →
] be a monotonic function.

Then, the set of fixpoints is a non empty complete lattice, and:

(37�⊑3 =⊓ {- ∈
|3(-) ⊑ -}
�37�⊑3 =⊔ {- ∈
|3(-) ⊒ -}

4.1.5 Traces

Let Σ be a set of states with an internal state as �, a non state is ∉ 	Σ, and a trace is a

function 2	 ∈ 	 [ℕ → 	Σ ∪ { }] with prefix condition ∀� ∈ ℕ	. 2(�) = 	 ⇒ 	∀@ > �	. 2(@) =
	 . We denote the sets of traces over Σ with £(Σ).

The length of a trace, (+�£ is (+�£ ∈ 	 [£(Σ) → 	ℕ] where (+�£ = 	�2.min	(�) ∈
ℕ	|	2(�) = 	 ⇒ 	∀@ > �	. 2(@) = 	 .

DEFINITION 1(Fixpoint partial traces semantics (Cousot et al., 1979))

Let

Σ be a set of states (σ),

Σ
 ⊆ Σ be a set of initial states,

→¨	⊆ 	Σ × Σ be the transition relation from one state to another state, and

function .	 be

69

 . ∈ b©(Σ) → ©5£(Σ)6 → ©5£(Σ)6c	 (1)	

Consequently, with X is a variable, equation (1) can be defined with fixpoint as :

.(Σ
) = 	λX. Σ
 ∪	{σ
 → ⋯σ­ → σ­��|	σ
 → ⋯σ­ ∈ X	 ∧ 	σ­ →¨ σ­��}
Then the fixpoint partial trace semantics of program � is

£���(Σ
) = (37�⊑(Σ
) = ®.�(Σ
)
�¯°

4.1.6 Abstract Interpretation

Abstract interpretation formalizes the approximation between the program concrete

semantics and abstract semantics. We use the formalization to conduct static analysis for

the purpose of verifying program with method overriding. This theory has been applied not

only to verify a language but also to bytecode (Barbuti et al., 2010), networking (Borghuis

et al., 2000), and code safety (Albert et al., 2005). Here, the concrete semantics is a

concrete semantic domain,
 which is partially ordered set 〈
,⊑〉. The abstract semantic

domain is represented as 〈
1,⊑1〉. The concept of abstract interpretation is to define the

program semantics as the fixed points of a monotonic function.

DEFINITION 2 (Galois Connections) (Jaoua and Elloumi, 2002)

For two partial orders 〈
, ⊑〉 and 〈
1,⊑1〉, the abstraction ± ∈ [
 →
1] and concretization

² ∈ [
1 	→
] be Galois connections iff

 ∀- ∈
	.		∀-̅ ∈
1	.		±(-) ⊑1 -	1 	⟺ 	- ⊑ ²(-̅) (2)

Equation (2) is written as

70

 〈
,⊑〉 ⇄´µ 	 〈
1,⊑1〉 (3)

Equation (3) has the following properties:

1. ± and ² are monotonic functions

2. ±	 ∘ 	² is reductive where	∀-̅ ∈
1. ± ∘ ²5-̅6 ⊑1 -̅

3. ²	 ∘ 	± is extensive where ∀- ∈
. - ⊑ ² ∘ 	±(-)

DEFINITION 3 (Lattice of Abstract Interpretations) (Tarski,1955)

Let

〈
,⊑〉 be a complete lattice,

abstract interpretation of the domain C}(
)	be¸〈
1,⊑1〉	|	∃〈±, ²〉. 〈
,⊑〉 ⇄´µ 	 〈
1,⊑1〉¹,

order ⊑º» on C}(
) be

⊑º»= ¸〈〈
1�, ⊑1�〉, 〈
1�, ⊑1�〉〉	|	∃〈±, ²〉. 〈
1�, ⊑1�〉 ⇄´µ 	 〈
1�, ⊑1�〉¹

Then, 〈C}(
),⊑º»〉 is a complete lattice.

For the powerset of concrete and abstract domain, they are connected using Galois

connection to formalize the abstraction of the domains. This is to ensure two domains are

corresponded to each other:

Lemma 1 (Fages,2008):

Let concrete domain be ' ∈ ℭ, where ℭ is a set of concrete domains, and abstract domain

be) ∈ ½, where ½ is a set of abstract domains, such that ±	 ∈ 	 [©(Σ) →
1] where

±	5©(Σ)6 = 	⋃ γ��5©(Σ)6 and γ(
1) = 	⋃ γ({-}). Then, ©(ℭ) 	 ⇄´µ 	©(½).

Proof:

Let) be) = 	⋃ γ��5©(Σ)6 and '	is	 ⋃ γ({-}). Then,

71

) = 	±	5©(Σ)6 = 	®γ��5©(Σ)6 = 	®γ��({-}) = ® γ��({-})	
\∈Á({\})\∈M

For each -, where - ∈ {
	|	
 = 	©(Σ)	} and ©(Σ) 	⊆
1 such that

±	({-}) 	⊆)	

⟹ 	±	5©(Σ)6 	⊆)

⟹	γ��5©(Σ)6 	⊆)

⟹ γ��({-}) 	⊆)				q. e. d

4.2 Syntax

 Object-oriented program is a program that uses class and object as the paradigm for

program development. A simple implementation has one main class and a library. In Java,

the program consists of a class, a main class and a library. In C++, an object-oriented

program has one class, a main method, and a library as in C#.net. Therefore, for simplicity,

the thesis takes a program as consisting of one main library and one main class. With class

C, an object-oriented program � consists of two elements {*, *X���, $} where * is the

class, *X��� ∈ * is the main class and $	 ⊆ * is the library used in program. However, in

the current thesis *X��� is also C because class for main uses the same syntax as other

classes.

 “A class is a software element describing an abstract data type and its partial or total

implementation” (Meyer, 1997, p.23). By considering both abstract data type and

implementation, the class consists of data members or fields, a constructor, and methods.

72

Destructors are not included because there is a garbage collector that can manage the

unused data. Class C is a tuple 〈3, '?�� ,4〉, where f is field declaration, const is the class

constructor, and m is method. Program P produces states; ∑, which is <E, S>, where E is

environment and S is store. State; ∑ consists of many internal states; σ, that come from

objects in the program (� ∈ ∑). An environment; E, is a map from variables; Var, to

memory addresses; A as L ≝ m)A ↦ C. A store; S, is a map of from addresses; A, to

values; Val as � ≝ C ↦ m)(, where values can be integer, Boolean, and null; m)(=
{@� , 9??(, �B((}.

4.3 Semantic Domains

A semantic domain is a domain used to describe the meaning of the concrete semantics

It describes the semantics of class, constructor, and method. All set of these semantic

domains are represented by the powerset ©(). For example, ©(∑) means all sets of the

set of state, ©(©(�)). These are elements involved in defining semantic domains:

1. Input value,
��; output value, 	
Æ�]

The set of input value,
�� and output value, 	
Æ�] are integer, boolean, or null.

2. Environment, E

A set of environments ©(L) is a map denoted as	[m)A ↦ C]; variable m)A is a string,

m)A ∈ �; and the address, A is a natural number, C ∈ ℕ.

73

3. Store, �

The set of stores ©(�) are a map of [C → m)(], where the value is m)(=
{@� , 9??(, �B((}.

4. State, ∑

The set of states ©(∑) are products of environment and store, L × �.

4.4 Concrete Semantics

The goal of static analysis is to provide an effective computable approximation of the

concrete semantics (Cousot et al., 1977). This is achieved by first defining the properties

involved in the program execution through concrete semantics. Then, the concrete

semantics is converted to abstract domain semantics using lattice theory. Every change of

the semantic domains are traced using semantics traces where the semantics domains are

represented using fixpoint theorem (Tarski, 1955) and the relation between the domains are

represented using Galois connection (Jaoua et al., 2002).

DEFINITION 4 (Object-Oriented Program Semantics, ℙ�−�)

Let

�+A�?� be a class name,

main is the main method in class �+A�?�,

L is the library used in the class,

ÇÇ be 〈�+A�?�X���, $〉, and

⟶	⊆ (∑)	× (∑) be a trace from one state to another state.

The semantics of object-oriented program is

74

 ℙ�ÇÇ� 	∈ 	 [©(∑) ⟶ 	©(£(∑))] (4)

Consequently, equation (4) when defined as fixpoint is,

ℙ�ÇÇ�(����]) = (37��NN⊆ ⋋ �. ����] ∪

																					{�
 → ⋯�­ → �­��|(�
 → ⋯�­ ∈ Y) ∧ 	(�­�� 	 ∈ ∑) ∧ (�­ 	⟶ (∑))}
where, a set of program initial states is ����] ∈ ©(∑), such that all initial method (4) states

in a program with m)(�� be input value is ∀	�
 ∈ 	����]	.		�
('BAA+� 0+ ℎ?-) = 4	 ∧
		�
(m)() = m)(��.

DEFINITION 5(Class Semantics, ℂ�−�)

Let

'?�� A be constructor,

4 be method,

> be value,

� be store,

	£ be the trace of the states,

3 be data field with element 〈
��,
Æ�]〉, and

class Person be �+A�?� =	< 3, '?�� A,4 > .

Therefore, the class semantics for Person is

 ℂ��+A�?�� 	∈ ©5£(Σ)6 (5)

Definition of (5) using fixpoint is

ℂ��+A�?�� = 	 (37��NN⊆ 	�£. �+4)� @'
〈>, �〉 	

∪ 	Ê�

�X,ËÌeÍÎÎÎÎÏ �� → ⋯ �X,ËÌÐÑÒÍÎÎÎÎÎÎÏ �­	| 	Ó�

�X,ËÌeÍÎÎÎÎÏ �� → ⋯ �X,ËÌÐÑÒÍÎÎÎÎÎÎÏ �­ ∈ £ÔÕ

75

To illustrate next definitions, an example of each definition is given using a program

sample as shown in Figure 4.1.

class Worker {
double salary;
Worker (double sal) {
 salary = sal; }
void writeSalary(Worker w) {
 System.out.print(w.salary); }
void calc(double sal) {
 System.out.print(“weekly wage
is:”+salary=sal/4); }

Figure 4.1: Class Worker

DEFINITION 6 (Constructor Semantics, ℂuvwx�−�)

Let

�� ⊆ m)(be a semantic domain for the input values,

+
 ⊆ L be the initial environment,

)��)�-)NM be the memory address for the constructor’s input (in) data fields and the

location (lc),

>)(be the value, and

inputs, 7'MÆ�O] be the constructor’s entry point.

Then the constructor semantics is

ℂuvwx�'?�� � 	∈ 	 [
�� × �	 → 	©(∑)]
with

ℂuvwx�'?�� � =	⋋ (>��, �). (+ 	�

= 〈+
[> ↦)��, (' ↦)	NM], �[)�� ↦ >)(��,)NM ↦ ('MÆ�O]]〉	

Example 4.1 (Constructor Semantics)

76

The class Worker has one data member, which is salary that is the input value for the class.

The constructor receives a value named sal. The semantics of constructor Worker is

ℂuvwx�Ö?A×+A()�

=	⋋ (�)(, �). ¸〈+
b�)()AU ↦)O�N��Ø, (' ↦)NMc, �b)O�N��Ø ↦ �)(,)NM ↦ 4c〉¹

DEFINITION 7 (Method Semantics, y�−� (and Method Call Semantics yM�NN�−�))

Let

��,
Æ�] ⊆ m)(be semantic domains for input and output values,

4 be a method,

)��)�-)�M are the memory address for the constructor’s data fields, and

inputs, ('X be the method’s entry point at a line of code.

Then the semantics of method, 4 is

y�4� 	∈ 	 [(
�� × L	 × �) 	→ 	©(
Æ�] 	× L	 × �)]
with

y�4� =⋋ (>��, +, �). (+ 	�
 = 〈+[> ↦)��, (' ↦)NM], �[)�� ↦ >)(��,)NM ↦ ('X]〉	

Method semantics consists of input value and output value, regardless it is method

definition or method call. The values expresses invariants for the methods. Using lazy

behavioral subtyping, the method definition represents the specification and the method call

represents the requirements. Therefore, there is no different in definition for the method

definition and method call. The only different is the method call is called within a method,

which the call can be instantiated by superclass and subclass.

Example 4.2 (Method Semantics)

77

Method calc(double sal) does receive one variable which is sal. However, the method does

not change any object environment but only prints out the result for the salary.

y�')('� =⋋ (>��, +, �). {�)(, +, �[)NM ↦ 8, +(�)()AU) ↦ >/4]}

4.5 Abstract Semantics

Abstract semantics is a superset of program concrete semantics. The abstract semantics

represents all possible cases of the program execution. Cousot (1996) states the program

concrete semantics is safe whenever the abstract semantics is safe. The safety of the

program is hold by the invariants to ensure there is no unlimited or over-range data.

DEFINITION 8 (Abstract semantics)

Let abstract semantics 〈
1,⊑1, ⊥1,⊺̅, ⨆1, ⨅1〉 be a complete lattice and let concrete domain be

〈©(Σ),⊆, ∅, Σ,∪,∩〉. The abstract and concrete semantics are connected by Galois

Connection as

〈©(Σ),⊆, ∅, Σ,∪,∩〉 ⇄´µ 	 〈
1, ⊑1,⊥1,⊺̅, ⨆1, ⨅1〉		

where the abstract domain
1 is defined as object-oriented program, constructor, method,

and method call.

DEFINITION 9 (Order, ⊑1)

Let � and Τ1 be a trace of states; {∀ � ∈ Τ1|∀@ ∈ {1. . �}. Τ1 = ⋃ �­Þ�� }. The correspondence

points is
1ß 	 ∈ 	©5£(Σ)6 where

∀Τß 	 ∈ 	
1ß	,

 �, � ∈ Τ, and

78

 = ��(4, >)	. Ê4 ∈ 	y, > ∈ m)A. ��
(X,Ë)ÍÎÎÏ	�� =	�� ⊆ ��Õ.

Then, by using �, �, order ⊑1 is

 � ⊑1 �	 =	Ó � =	��
(XÒ,ËÒ)ÍÎÎÎÏ � ∧	 � =	��

(Xà,Ëà)ÍÎÎÎÏ 	∧ 	�� ⊆ ��Ô

DEFINITION 10 Join, ⨆1

The join of two or more points ⨆1� ∈ 	 b
 	×
 	→
c, defined as, for the trace, join means

Τß	⨆1�	Τß = 	£5©(Σ)6	× 	£5©(Σ)6, and for the state, join means �� 	∪ 	�� =	��(4, >) 	∪

	��(4, >).

DEFINITION 11 Top, ⊺̅
The top of semantics points ⊺̅∈
, defined as ⊺̅= 	⋃ tÞÞ∈�..­ , such that ∀ ⊺̅ß∈ Dß	. Τß ⊆	Τ.

DEFINITION 12 Meet, ⨅1

The meet of two or more points ⨅1� ∈ 	 b
 	×
 	→
c, defined as, for the trace, meet means

Τß	⨅1�	Τß = 	£5©(Σ)6	× 	£5©(Σ)6, and for the state, meet means �� 	∩ 	�� =	��(4, >) 	∩

	��(4, >).

DEFINITION 13 (Abstract program, ℙ1)

Let

Σ
 be an initial state, and

ℙ1 be L × � × ©(A) be a domain of abstract program.

Then, an abstraction function of program semantics is

±ℙ	:	ℙ� � → ℙ1

79

where ±ℙ	is the union of all states such that ±ℙ	(Σ
 ∪	Σ­)�∈{�..ℕ}.

Proposition:

Let ²ℙ be ⋃ ±ℙ��
	

�∈ℕ� , then 〈ℙ� �, ⊆, ∅, Σ,∪,∩〉 ⇄´ℙµℙ 	 〈ℙ1,⊑1, ⊥1,⊺̅, ⨆1, ⨅1〉		is a sound

approximation by a Galois connection.

Proof: The proof is shown applying the Definition 4 and Lemma 1.

Let concrete program be ℙ� � ∈ ℭ and abstract program be ℙ1 ∈ ½. Then,

ℙ1 = 	αℙ	(ℙ� �) = ⋃γℙ��(ℙ� �) and

γℙ5ℙ16 =	⋃γℙ({ℙ�?9ä+' − ?A@+� +-	7A?�A)4�}) then

©(ℙ� �) 	 ⇄´ℙµℙ 	©(ℙ1) q.e.d

DEFINITION 14 (Abstract constructor, ℂuvwx///////)

Let

k represents numbers of object in the main method of the program, and

ℂuvwx/////// be ©(L × �) → 	©(L × �) be a domain of abstract constructor.

Then, an abstraction function of constructor semantics is

±ℂuvwx	:	ℂuvwx� � → ℂuvwx///////

where ±ℂuvwx	is the initial states Σ
 for each object exists in the program such that

±ℂuvwx	5Σ
æ6ç∈{�..ℕ}.

Proposition:

Let ²ℂuvwx be ⋃ ±ℂuvwx���∈ℕ� , then 〈ℂuvwx� �, ⊆, ∅, Σ,∪,∩〉 ⇄´ℂuvwxµℂuvwx 	 〈ℂuvwx///////, ⊑1,⊥1,⊺̅, ⨆1, ⨅1〉		is

a sound approximation by a Galois connection.

Proof: The proof is shown applying the Definition 5 and Lemma 1.

80

Let concrete program be ℂuvwx� � ∈ ℭ and abstract program be ℂuvwx/////// ∈ ½. Then,

ℂuvwx/////// = αℂuvwx(ℂuvwx� �) = ⋃²ℂuvwx��(ℂuvwx� �) and

²ℂuvwx(ℂuvwx///////) = 	⋃ ²ℂuvwx({ℂuvwx�'?�� AB' ?A	4+ ℎ?-�}) then

©(ℂuvwx� �) 	 ⇄´ℂuvwxÁℂuvwx 	©(ℂuvwx///////) q.e.d

DEFINITION 15 (Abstract method, y1)
Let domain of abstract method y1 be ©(L × �) → 	©(L × �). Then, an abstraction function

of method semantics be ±y	:	y� � → y1 where ±yis a set of states such that ±y5©(Σ)6.

Proposition:

Let ²y be ⋃ ±y���∈ℕ� , then 〈y� �, ⊆, ∅, Σ,∪,∩〉 ⇄´yµy 	 〈y1 ,⊑1, ⊥1,⊺̅, ⨆1, ⨅1〉		is a sound

approximation by a Galois connection.

Proof: The proof is shown applying the Definition 7 and Lemma 1.

Let concrete program be y� � ∈ ℭ and abstract program be y1 ∈ ½. Then,

y1 =	αy	(y� �) = ⋃γy��(y� �) and

γy5y///6 =	⋃γy5¸y�4+ ℎ?-()�¹6 then

©(y� �) 	 ⇄´yµy 	©(y1) q.e.d

DEFINITION 16 (Abstract method call, y1 z{||)
Let domain of abstract method y1 z{|| be ©(L × �) → 	©(L × �). Then, an abstraction

function of method semantics be ±yèéêê	:	yz{||� � → y1 z{|| where ±yèéêê is for one state Σ

produced by the yz{||� � such that ±yèéêê(Σ).

Proposition:

81

Let ²yèéêê be ⋃ ±yèéêê
���∈ℕ� , then 〈yz{||� �,⊆, ∅, Σ,∪,∩〉 ⇄´yèéêêµyèéêê 	 〈yz{||///////,⊑1, ⊥1,⊺̅, ⨆1, ⨅1〉		

is a sound approximation by a Galois connection.

Proof: The proof is shown applying the Definition 7 and Lemma 1.

Let concrete program be yz{||� � ∈ ℭ and abstract program be yz{||/////// ∈ ½. Then,

yz{||/////// = 	αyèéêê 	(yz{||� �) = ⋃γyèéêê
��(yz{||� �) and

γycall5ycall///////6 =	⋃γycall5¸ycall�4+ ℎ?-()�¹6 then

©(yz{||� �) 	 ⇄´yèéêêµyèéêê 	©(yz{||///////) q.e.d

4.6 Class Invariants

Class invariant gives specifications to class in order to check the class’s correctness that

cannot be checked by the compiler. The specifications use invariants, pre-condition, and

post-condition to verify the behavior of the class. Hoare’s style uses pre-condition and post-

condition methods to check the program before execution time. Webber stated “a class

invariant is a property that is true for all objects of a given class at all times” (Webber,

2001, p.87) . However, it is hard to have properties for objects that hold true value

throughout program execution. The objects need weaker properties that allow to be

temporarily broken in a method when the object has modification. Therefore, we use lazy

behavioral subtyping method to produce properties (or specification) for methods that

modify the objects. For the class invariant, we adopted Logozzo’s work in 2004. This work

is depicted because the proposed class invariant is rigorously proven and easily adapted to

our proposed framework.

82

Theorem 4.2 Class Invariant (Logozzo, 2004)

Let * = 〈'?�� , 3,4〉 be a class with the set of states ©(Σ) and
1 is an abstract domain

such that

〈©(Σ),⊆, ∅, Σ,∪,∩〉 ⇄´µ 	 〈
1,⊑1, ⊥1,⊺̅, ⨆1, ⨅1〉.				

The domain for the abstract constructor is

ℂuvwx///////�'?�� � ∈ [©(L × �) → 	©(L × �)]
and the domain for the abstract method is

îy�4��
�

���
∈ [©(L × �) → 	©(L × �)]

where 4 ∈ 0 such that ℂuvwx///////�'?�� � ⊆ ²(ℂuvwx///////�'?�� �) and y�4�� ⊆ 	²5y�4��6.
Then, the class invariant I is based on the following recursive equation:

} = 	ℂuvwx///////�'?�� �	⨆1 	î
�

���
y�4��																												(6)

such that class semantics for class * is ℂ�*� ⊆ 	²(}). As a tuple, the class invariant I is

〈C, C
, C�, … , C�〉 	 ∈ 	
��� where A is the class invariant, C
 is the constructor semantics,

and C�, … , C� is the method semantics.

Proof: By formal definition of abstract interpretation (Cousot et al., 1977), the tuple of

class invariant I complies with tuple of abstract interpretation where the set of abstract

contexts is a complete lattice with ordering ≤. By fixpoint Tarski’s theorem, both abstract

semantic constructor and method are in the form of monotonic function, 3 ∈ [
 →
]. with

the combination of constructor and method, the function becomes[
��� →
���]. With its

least fixpoint, the equation (6) is a non empty complete lattice, where the least trace is the

infimum, ⊥ (the least value) will be taken from the concrete properties.

83

Example 4.1 : A class invariant for class Person

The class Person is taken from chapter 3, Figure 3.2. The class has two fields which are

name and bSalary where name is for storing name of the person and bSalary is for storing

the amount of salary of the person. The abstract domain for the class Person is based on the

〈� A@��, �@��, �@��, L�'〉. The specification is to ensure the salary value which is hold by

data field bSalary and testSalary are always positive number as salary must always be a

positive value. The String is for the value of name, the sign is for the sign of bSalary and

testSalary and Esc is for capturing the fields that may escape the object scope (return

value). The iterations of the abstract domain is
1ñ with the abstract domain is

1 = � A@��	 × �@��	 × �@�� × 	©({�)4+, 9�)()AU, +� �)()AU	})
The constructor, calc method and salary method are analysed to compute the class

invariant because they modify object state. The method writename is included to show how

the method does not change the state of data fields. Accessor method that starts with get

word is also not included because the method does not modify the fields or data. Therefore,

there is no such method in Figure 3.2. Using (6) as a tuple, the first element set is for class

invariant, second element set is for constructor, and other element sets are for methods. The

sign for bSalary with value 100 and testSalary with value 200 is positive (annotate as p).

The first iteration is the bottom value for all elements.

}
 = 〈〈"Adam", p, p, ∅〉, 〈⊥, ⊥, ⊥, ∅〉, 〈⊥, ⊥, ⊥, ∅〉, 〈⊥, ⊥, ⊥, ∅〉, 〈⊥, ⊥, ⊥, ∅〉〉
The second iteration corresponds to the abstract execution of the class constructor because

the constructor is the first method call when an object is instantiated. It is

ℂuvwx��+A�?�()�(〈"Adam", p, p, ∅〉) = 〈"Adam", p, p, ∅〉 ⊔1 〈⊺,⊺, p, ∅〉
																																																																																											= 	 〈⊺,⊺, p, ∅〉

84

The abstract executions to all methods are

y�:A@ +ô)4+�(〈"Adam", p, p, ∅〉) = 〈"Adam", p, p, ∅〉 ⊔1 〈⊥, ⊥, ⊥, ∅〉
																																																																																						= 	 〈"Adam", p, p, ∅〉

y�')('�(〈"Adam", p, p, ∅〉) = 〈"Adam", p, p, ∅〉 ⊔1 〈⊥, ⊥, ⊥, ∅〉
																																																																															= 	 〈"Adam", p, p, ∅〉

y��)()AU�(〈"Adam", p, p, ∅〉) = 〈"Adam", p, p, ∅〉 ⊔1 〈⊥, ⊥, ⊥, ∅〉
																																																																																	= 	 〈"Adam", p, p, ∅〉
Union both }
 that already has initial value for all data fields with current state of

constructor and methods, the first class invariant’s approximation is

}� =	 〈〈⊺,⊺, p, ∅〉, 〈⊺,⊺, p, ∅〉, 〈"Adam", p, p, ∅〉, 〈"Adam", p, p, ∅〉,
〈"Adam", p, p, ∅〉 〉

The second iteration is the post condition of the all methods with the 〈⊺,⊺, p, ∅〉 taken

from }�. There is no change for method writeName because the method does not change

any state of data field.

y�:A@ +ô)4+�(〈⊺,⊺, p, ∅〉) = 〈⊺,⊺, p, ∅〉
The method calc reset the value of bSalary to 2100 as well as method salary which calls

method calc. Therefore,

y�')('�(〈⊺,⊺, p, ∅〉) = 〈⊺,⊺, p, ∅〉 ⊔ 〈"Adam", p, p, ∅〉
																																																																									= 〈⊺,⊺, p, ∅〉

y��)()AU�(〈⊺,⊺, p, ∅〉) = 〈⊺,⊺, p, ∅〉 ⊔ 〈"Adam", p, p, ∅〉
																																																																												= 〈⊺,⊺, p, ∅〉
Therefore, the second class invariant’s approximation is

}� =	 〈〈⊺,⊺, p, ∅〉, 〈⊺,⊺, p, ∅〉, 〈⊺,⊺, p, ∅〉, 〈⊺,⊺, p, ∅〉,
〈⊺,⊺, p, ∅〉 〉

85

The class invariant’s approximation on the third iteration has same result as previous

iteration. Then, the iteration stops at }�.

In conclusion, from the static analysis of Figure 9.1 code, the class invariant produced

is

//name:String, 9�)()AU ≤ 0	&&	9�)()AU ≥ 0, +� �)()AU > 0

From the class invariant, bSalary data field can be positive or negative that is wrong for the

specification of the salary, which must positive. Therefore, the code needs conditions to

ensure the bSalary is always positive value. For example,

Person(String n, int s){
 name = n;
 if (s>0)
 bSalary = s;
 else
 bSalary = 0;
 }

Figure 4.2: The new code for the constructor of class Person

With the if-else condition, bSalary can accept positive value only, which the class invariant

is //name:String, 9�)()AU ≥ 0, +� �)()AU > 0.

DEFINITION 17 (Method Invariant)

Let
��,
Æ�] ⊆ ¸
1	|	
1 ⊆ 	 5L × � × ©(C)6¹ be the semantic domain for parameter and

return value of method. Then, the method invariant is
�� 	⊔1 	
Æ�] .

4.7 Invariants in Inheritance

Inheritance is the essence of object-oriented programming language. It allows classes to

be reused by making the class properties generalized or specialized. Invariants in the

86

presence of inheritance involve both superclass and subclass. The superclass keeps on

expanding by having new subclasses. Therefore, the invariants are also changing based on

new subclasses. In order to ensure the invariants are easy to monitor, they are generated in

modular form. Modularity technique in generating invariants is a technique that the

invariants are produced based on units, for example, class, method or subclass. The

technique is mainly used in ESC/Modulo 3 and ESC/Java which are tools to find run time

errors at compile time. ESC/Modula 3 is the predecessor of ESC/Java for checking C and

C++ languages. As its name implies, ESC/Java is for Java language (now it has been

extended to ESC/Java2). Being modular is crucial in generating invariants to support large

programming codes.

Example 4.2 : Non-Modular-Based Invariants in Inheritance

Let us say, there are two classes named Rodent and Mouse where Rodent is the base class

of Mouse. The static analysis starts with Rodent class invariant,

� =	ℂuvwx�'?�� ÷�	⨆1 	∐ y�4������ where the class is defined as 〈3, '?�� ,4〉. The

extension class for object-oriented language carries data from its superclass. When it is

instantiated, it automatically calls the constructor and data members of the superclass.

Therefore, it is able to act differently from its superclass but with its superclass feature. For

the extended class, Mouse, the class invariant Y is defined as below if the equation is based

on union operation (�?-+� 	 ∪ 0?B�+):

� = ℂuvwx�'?�� ÷�	⨆1	ℂuvwx�'?�� ø�	⨆1 	îy�4��
�

���
⨆1 	îy�4ù�

ç

ù��
																						(7)

87

 The Rodent class definition is 〈3÷ ∪ 3ø , '?�� ÷ ∪ '?�� ø, 4÷ ∪ 4ø〉. Fields of

3÷ ∪ 3ø are data members that belong to both classes, however, for the constructors and

methods, the data fields are variables that are used to support calculation in the constructor

and methods. However, the equation becomes more complex as more subclasses are added

to the superclass because the superclass is reverified every time a new subclass is added to

its hierarchy. This can lead to low performance during the static analysis of verification as

the code becomes more and more complex. Therefore, the old invariant or previous

invariant of two predicates stores information of invariants that have been verified

previously to be used again for the next process.

DEFINITION 18 (Modular-based Invariants in Inheritance)

In Theorem 4.2, the class invariant is extended as follows:

Let C	 be previous invariant with its initial abstract domains

ℂuvwx�'?��
�			⨆1 		∐ y�4
�����
 	 (8)

Then, the new abstract domains that come from new subclasses are

																					C� = ℂuvwx�'?�� ��			⨆1 		∐ y�4��,���
 @ = {1. . �}	 (9)

Therefore, the invariant for inheritance is

																				� = C	⨆1	ℂuvwx�'?�� ��			⨆1 		∐ y�4�����
 (�)						 (10)

																								= 		C			⨆1 		∐ C����� 																																																									 (11)

such that the new inheritance invariant is ℂ�*� ⊆ 	²(�).

Proof: By comparing both equation of (7) and (11), it is stated that to improve execution

time during static analysis on inheritance, equation (11) is preferable since equation (11)
is not extending every time new subclasses are added as in equation (7).

88

The modular part of the equation is based on the merging of previous or first abstract

constructor and abstract method as one module. From the above definition, the mergence is

represented as C. Every time, new subclasses are added to the program, the C has no need

to be verified. However, the invariant of the new subclasses are merged with the C as an

invariant for inheritance as �. This mergence changes to C, when the program adds another

new subclass, which later the invariant becomes �. This process repeats as new subclasses

are added to the program. As a consequence, if the equation were implemented, logically,

the process of generating new invariant is faster as old invariants are used when program

extension happened.

Example 4.3 : Modular-Based Invariants in Inheritance

Class Person in Figure 3.2 consists of two data members which are name and bSalary (we

omit testSalary, temporarily, for simplicity). It has a constructor and three methods which

are writeName(), calc(), and salary(). For subclass Worker, it has one new data field named

tSalary. The tsalary receives its initial value through constructor variable named tot. Using

the same specification to check the value is a positive number, the abstract domain
1û

chosen is

1 = �@��	 × 	©({9�)()AU, �)()AU	})
We abstract away name and testSalary as they do not change the state of tSalary.

bSalary is included because it is not only can change the state the tSalary but also data field

of superclass Person, which can be accessed by the subclass Worker. The first iteration is

}
 = 〈〈⊥, ∅〉, 〈⊥, ∅〉, 〈⊥, ∅〉, 〈⊥, ∅〉〉

The second iteration corresponds to the abstract execution of the class constructor;

89

}� = 〈〈⊺, ∅〉, 〈⊺, ∅〉, 〈⊥, ∅〉, 〈⊥, ∅〉〉
The third iteration is

}� = 〈〈⊺, ∅〉, 〈⊺, ∅〉, 〈⊥, ∅〉, 〈⊺, ∅〉〉
The method calc has a statement tsalary+=bSalary. However, the union of positive

value of bSalary with the least upperbound value is 〈7?�〉 ⊔ 〈⊺〉 	=	⊺.	The positive value of

bSalary is used as in new code in Figure 4. Therefore, the class invariant produced for

tSalary is

//	 �)()AU ≤ 0	&&	 �)()AU ≥ 0

With the class invariant, tSalary can accept any positive or negative value which does

not correct for a salary number. However, for this example, we proceed as it is. Then, using

(5), the invariant for both superclass and subclass is

�	 = 		C⨆1 	îC�
�

���
																																																

= 	9�)()AU ≥ 0	 ⊔ 	0 ≥ �)()AU ≥ 0

which the invariant is

// bSalary≥ 0, tSalary≥ 0 && tSalary≤ 0

This is the result of the union of superclass invariant and subclass invariant. H is

updated when a new subclass is added. However, there is no need to verify the superclasses

that have been analyzed.

90

4.8 Invariants in Method Overriding

Method overriding exists in inheritance as an important tool to support reusability in

object-orientation. Logozzo (2005) used best case over approximation of the method which

was yM�NN�4�(⊺) because input of 4 was not known and

																																															- ⊑⊺̅	⟹ yM�NN�4�5-6 ⊑ 	yM�NN�4�5⊺6																															(12)

The best case over approximation is always the maximum value of the variable. In order to

avoid the over approximation, Dovland et al. (2008) proposes a method called Lazy

behavioral subtyping which considers all inputs and outputs of methods in method

overriding. Lazy behavioral subtyping is a method to reason about late binding of method

calls. It is developed with less restriction on pre- and post- condition of methods compared

to conventional behavioral subtyping.

DEFINITION 19 (Lazy behavioral subtyping (Dovland et al., 2008))

Let (p, q) and (r, s) be assertion pairs and let U denote the sets {(7�, 8�)|1 ≤ @ ≤ �} and V

denote the sets	{(A�, ��)|1 ≤ @ ≤ 4}. Entailment is defined over assertion pairs and sets of

assertion pairs by

1. (7, 8) → (A, �) ≜ (∀ý�̅. 7 ⟹ 8�) ⇒ (∀ý�̅. A ⟹ ��), where ý�̅ and ý�̅ are the logical

variables in (7, 8) and (A, �), respectively.

2. j → (A, �) ≜ 5⋀ 5∀ý�̅. 7� ⟹ 8�
�6�¯�¯� 6 ⇒ (∀ý̅. A ⟹ ��)

3. j → m ≜ ⋀ j →�¯�¯X (A�, ��)

In the context of class analysis, method definition uses �(*()��,4+ ℎ?-) as a set of

specifications. �(*()��,4+ ℎ?-) is a set of requirements for method call. It is used when

an overridden method is called from another method. In inheritance, function � ↑ defined as

a method f exists in subclass and its immediate superclass. Therefore, the specification

91

generates from the superclass and the subclass, � ↑ (subclass, f) ≝ �(subclass, f) ∪ � ↑
(superclass, f). The function is a recursive function, if the superclass also has another

superclass. The entailment rule extends to below in inheritance program. In general, the

rules show that requirements of method call requires specifications from method definition

of the method’s superclass and subclass. This technique gives all possible invariants that

can be used to analyze the method call.

1. � ↑ (*()��,4+ ℎ?-) 	⇒ � ↑ (*()��,4+ ℎ?-),
2. � ↑ (*()��,4+ ℎ?-) = �(*()���,4+ ℎ?-) 	∪ 	�(*()���, 4+ ℎ?-) ⇒ 	� ↑

(*()��,4+ ℎ?-),
3. (A�, ��) ∈ �(*()��,4+ ℎ?-),
4. j → m ≜ ⋀ j →�¯�¯X (A�, ��),

Figure 4.3: Inheritance relationship with proof outline

Figure 4.3 illustrates a simple version of the class diagram using the same example of

inheritance taken from §3.3 of Figure 3.2. The figure omits all constructors and lines of

code for simplicity. Note that p, q, r, and s specify pre and post condition for the method

and method call. The p and q represent specification for method where p is for pre-

condition and q is for post-condition. The r and s represent pre-condition and post-

Worker

void writeSalary(Worker*) : (_,_) {...}

void calc() : (p2,q2) {...}

Manager

void writeManager(Manager*) : (_,_) {...}

void calc() : (p3,q3) {...}

Person

void writeName(Person*) : (_,_) {...}

void calc() : (p1,q1) {...}

void salary() : (_,_) {... {r1}calc(){s1}...};

92

condition for the method calls. The 8� and �� are for new post-conditions. The post-

conditions consists of old (q and s) and new post-conditions due to changes or new local

variables in pre-conditions. Using abstract interpretation, all of p, q, r, and s are converted

into y�4��. All methods in the classes have method invariant as E = 	
Þ­	⨆1	
��� and
Þ­,

��� 	 ∈ 	 ¸
1	|		
1 	⊆ 	 5E × S × ©(A)6¹. Using Definition 19, equations for invariants in

method overriding is produced in Definition 20.

DEFINITION 20 (Invariants of Method Overriding)

Let methods in the classes be method invariant which is 0 =	
Þ­	⨆1	
��� where
Þ­,

��� 	 ∈ 	 ¸
1	|		
1 	⊆ 	 5E × S × ©(A)6¹. Method semantics is

y1 ∈ [(DÞ­ × E × S) → ©(D��� × E × S)] and all methods in class are represented by

∐ y1 �4������ . Then, the invariants of method overriding is

 y1 M�NN�?4� = y1 �?4O�����		⨅1 		∐ y1 �?4O�[��
���� (13)

such that y1 M�NN�?4� ⊆ ²(y1 �−�), y1�?4O����� ⊆ ²(y1 �−�(�B7+A'()��)), and

y1�?4O�[�� ⊆ ²(y1 �−�(�B9'()��)). The method semantic y1 M�NN�?4� is used for

overridden method (om) call which its definition is determined at run time. For example,

whether the calc() method of Figure 4. is called from object Person or object Worker, the

methods conjunction cover both situations of method calling.

Proof: By using the fixpoint theorem, the least abstract fixpoint by abstract interpretation is

a sound approximation for its concrete fixpoint with Galois connection,

〈©(∑),⊆, null, ∑, ∪,∩〉 〈D1,⊑1, ⊥1,⊺̅,⊔1,⊓1〉

←

�→ . Then, y ⊆ 	²(0). Hence, the function is

93

monotonic. Therefore, for each overridden method, it uses the concrete least fixpoint for its

abstract domains.

4.9 Conclusion

In this chapter, we designed an abstract formal framework of invariants generation for

the purpose of verification on method overriding. The framework developed equations

using abstract interpretation. There are two equations produced and proved, which are

invariants inheritance and method overriding in equation (11) and (13). The equations are

used to generate invariants that able to verify program with inheritance and method

overriding. To validate the equations, an experiment will be conducted to the equations on

case studies.

94

I didn’t fail the test, I just found 100 ways to do it wrong.

-Benjamin Franklin

This chapter presents the evaluation of the proposed equation. It is important to apply

the equation on object-oriented programs to check its reliability and validity. The reliability

is achieved by applying the equation on two case studies, which are Salary System and

Quadrilaterals System to generate invariants. The validity is achieved by discussing the

result of the cases studies with Java Specification Language. Every case study has

invariants that generated using behavioral subtyping and lazy behavioral subtyping method.

Each result of each method is discussed and analyzed to compare the differences.

5.1 Case Study 1: Salary System

Figure 5.1 is a code of Salary System taken from Figure 3.2 with the modification for

constructor of class Person and class Worker. The new code of the program is used to

ensure the specification of salary value is always positive. The program is written in Java

language. The purpose of method overriding in the program is to reuse data of its

superclass. The method calc() that is used to demonstrate the late binding call of method

overriding is method calc(). The method calc() appears on both superclass and subclass

which are called from superclass object and subclass object. Therefore, method calc() in

Chapter 5

Result and Discussion

95

class Worker will override definition of class Person whenever possible. In addition, the

method calc() is also called from a method in superclass named salary().

public class Person {

public class Person {
 private String name = "Adam";
 private int bSalary = 100;
 public int testSalary = 200;

 public Person(String n, int s){
 name = n;
 if (s>0)
 bSalary = s;
 else
 bSalary = 0;
 }
 public void writeName(Person p){
 System. out.print("The employer name is " + name);
 }
 public void calc(){
 bSalary = 2100;
 System. out.println("Person::calc()");
 }
 public void salary(){
 calc();
 } } //end of class Person

public class Worker extends Person{
 public int testSalary = 300;
 private double tSalary;

 public Worker(String nama, int gaji, double tot){
 super(nama,gaji);
 tSalary = tot;
 }
 public void writeSalary(Worker w){
 System. out.println(w.tSalary);
 }
 public void calc(){
 tSalary += bSalary;
 System. out.println(tSalary);
 } } //end of class Worker

Figure 5.1: Salary System Revisited

96

5.1.1 Invariants Generation Using Behavioral Subtyping

Let method invariant be 0 =	
1Þ­	⨆1	
1���, method semantics be y ∈ [(DÞ­ × E × S) →

©(D��� × E × S)], and y ⊆ 	²5y6. Method calc() of class Person has the invariant of

// bSalary≥ 0
where,
1Þ­ is 9�)()AU ≥ 0 and
1��� is 9�)()AU ≥ 0	taken from bSalary=2100 which is a

positive value. Therefore, 0 =	
1Þ­	⨆1	
1���

 																																													= 	9�)()AU ≥ 0	⨆1	9�)()AU ≥ 0

 = 		9�)()AU ≥ 0

The method calc() of class Worker has the invariant of

// bSalary≥ 0, tSalary≥ 0&& tSalary≤ 0

where,
1Þ­ is 9�)()AU ≥ 0	 ⊔ 	 �)()AU ≥ 0	 ⊓ 	 �)()AU ≤ 0 and
1��� is 9�)()AU ≥ 0	 ⊔
 �)()AU ≥ 0 ⊓ 	 �)()AU ≤ 0	taken from tSalary += bSalary. Based on the Worker’s

constructor, there is no limit for tSalary. Therefore, the tSalary has any value of positive

and negative. The result violates the program’s specification, which states the salary must

be positive value. However, as an example, the program proceeds as it is. Then,

By using behavioral subtyping, method invariant for method calc() of class Person is

9�)()AU ≥ 0	 ⊔ 	 �)()AU ≥ 0	 ⊓ 	 �)()AU ≤ 0 where the statement derives from

combination of invariant of calc() of class Person and class Worker; 9�)()AU ≥ 0 ⊔
	(9�)()AU ≥ 0	 ⊔ 	 �)()AU ≥ 0	 ⊓ 	 �)()AU ≤ 0). However, if the code of method calc()

of class Worker changes to tSalary = testSalary + 1000 (from tSalary +=bSalary), the

method invariant becomes 9�)()AU ≥ 0 ⊔ (�)()AU ≥ 0	 ⊓ 	 �)()AU ≤ 0) ⊔
(+� �)()AU ≥ 0	 ⊓ 	 +� �)()AU ≤ 0), which is stated as

// bSalary≥ 0,	tSalary≥ 0 && tSalary≤ 0, testSalary≥ 0 && testSalary≤ 0

97

The addition of bSalary due to the fact that the method calc() is an inherited method from

its superclass, which it must implement all superclass specifications for calc(). When the

code below is executed (using tSalary = testSalary + 1000)

public class Employment {
 public static void main(String[] args) {
 Person objW = new Worker (“Ali”,1800,0);
 objW.salary();
 Person objP = new Person (“Adam”,23000);
 objP.salary();
 }

}

, the

9�)()AU ≥ 0 ⊔ (�)()AU ≥ 0	 ⊓ 	 �)()AU ≤ 0) ⊔ (+� �)()AU ≥ 0	 ⊓ 	 +� �)()AU ≤ 0)
is used. This is a valid statement for any value for both data objects because they use

maximum value of both positive and negative values. For objP, even though, there are only

two data fields used, the checking takes testSalary into consideration, because that is the

rule used in behavioral subtyping. The purpose is to avoid miss analyzed. However, as a

result, over-approximation on method semantics occurs in the method overriding

verification.

5.1.2 Invariants Generation Using Lazy Behavioral Subtyping

For the class analysis using lazy behavioral subtyping, the set of specification of

method calc() in class Person is represented as �(�+A�?�, ')('). Using same class

invariant and method semantics, �(�+A�?�, ')(') is (9�)()AU ≥ 0). The method invariant

for salary() is also (9�)()AU ≥ 0) because there is no
1Þ­	and
1��� for the method.

98

The requirements of calc() called in salary() is represented as �(�+A�?�, ')('). Since

�(�+A�?�, ')(') 	→ 	�(�+A�?�, ')(') as formalize in equation (13), then (9�)()AU ≥
0) ∈ �(�+A�?�, ')('). For the class Worker, the specification for calc() is

(9�)()AU ≥ 0	 ⊔ 	 �)()AU ≥ 0 ⊓ 	 �)()AU ≤ 0) ∈ 	�(Ö?A×+A, ')(').

However, if the code of method calc() of class Worker changes to tSalary = testSalary

+ 1000 (from tSalary +=bSalary), the method invariant becomes (�)()AU ≥ 0	 ⊓
	 �)()AU ≤ 0) ⊔ (+� �)()AU ≥ 0	 ⊓ 	 +� �)()AU ≤ 0), which is stated as

// tSalary≥ 0 && tSalary≤ 0, testSalary≥ 0 && testSalary≤ 0

The statement shows that there is no need to implement invariant of superclass as opposed

to behavioral subtyping. Then, using lazy behavioral subtyping’s entitlement rule of

� ↑ (Ö?A×+A, ')(') → � ↑ (�+A�?�, ')(')
, the requirements for internal call of calc() is

{(9�)()AU ≥ 0), (9�)()AU ≥ 0	 ⊔ 	 �)()AU ≥ 0 ⊓ 	 �)()AU ≤ 0)} ∈ �(�+A�?�, ')(')
If, we use tSalary = testSalary + 1000 statement, the requirements for internal call of calc()

becomes

{(9�)()AU ≥ 0),
(�)()AU ≥ 0	 ⊓ 	 �)()AU ≤ 0) ⊔

(+� �)()AU ≥ 0	 ⊓ 	 +� �)()AU ≤ 0)} 	∈ �(�+A�?�, ')(')

To show the effect of method overriding, let us say in the main method for these

classes, has the following:

public class Employment {
 public static void main(String[] args) {
 Person objW = new Worker (“Aliyah”,1800,0);
 objW.salary();
 }

99

}

The method salary() is called by using an object of Worker, called objW. The

instantiation of objW involves both class Person and Worker as both classes are related as

in inheritance. When the objW is instantiated, both class Person and Worker are activated.

For the method salary(), its method invariant is y1��)()AU�. However, method calc() that

is hidden inside method salary() has both specification from method invariant of method

calc() of class Person and of class Worker, which is

 y1 M�NN�')('� = y1�')('¨��OÆ��	⨅1	y1 �')('
Æ�ç���.
So, it becomes

� ↑ (Ö?A×+A, ')(') → � ↑ (�+A�?�, ')(')
= {(9�)()AU ≥ 0), (9�)()AU ≥ 0	 ⊔ 	 �)()AU ≥ 0 ⊓ 	 �)()AU ≤ 0)}	
Therefore, for objW.salary();,where the objW instantiates by the Worker object, the invariant

invokes

//9�)()AU ≥ 0	, �)()AU ≥ 0	&&	 �)()AU ≤ 0

Let us say in the main method, there are below codes. In this code, an object named

objP instantiates from class Person. Through objP, method salary() is called.

public class Employment {
 public static void main(String[] args) {
 Person objP = new Person (“Ali”,1800);
 objP.salary();
 } }

Therefore, for objW.salary();,where the objW is a Person object, the invariant is

//9�)()AU ≥ 0	

100

From the invariants produced, it shows that invariants used are relaxed to object call only.

The analysis using lazy behavioral subtyping does not implement all invariants of

superclass. Therefore, the approximation value from the invariants limit to data fields used

only.

5.2 Case Study 2: Quadrilaterals System

The Quadrilateral system is a simple program that draws a shape of four sides with 90

degree angle only. The specification is to ensure the sides are in positive value. The

program can draw two basics four-sided shapes, which are square and rectangle. By

referring to Figure 5.2, there are two main classes that have inheritance relationship, which

are Shape class and Rectangle class. Both classes have getData() and setData() method.

Both methods from Rectangle class override methods in Shape class accordingly. The

setData() method of Shape class has new value after overriding by Rectangle class where

the side1 is not a single value but multiply by 5. Therefore, this program will always draw a

rectangle instead of square because the side value is changed in the program.

public class Shape {
 private int side1 = 9;

 public Shape(int s1){
 if (s1>0)side1 = s1;
 else side1 = 0;
 }
 public int getData(){
 return side1;
 }
 public void setData(int x){
 side1 = x;
 }}

public class Rectangle extends Shape{
 private int side2 = 9;

101

 public Rectangle(int s1,int s2){
 super(s1);
 if (s2>0) side2 = s2;
 else side2 = 0;
 }
 public int getData(){
 return side2;
 }

 public void setData(int a){
 super.setData(a*5);
 side2=a;
 }

 public int draw(){
 int total = (2*super.getData()) + (2*this.getData ());
 for (int i=1; i<=super.getData(); i++)
 System. out.print("*");
 for (int j=1; j<=(this.getData()-2); j++){
 System. out.print("\n*");
 for (int i=1; i<=(super.getData()-2); i++)
 System. out.print(" ");
 System. out.print("*");
 }
 System. out.print("\n");
 for (int k=1; k<=super.getData(); k++)
 System. out.print("*");
 return total;
 }}

public class DrawShape {
 public static void main(String[] args) {
 Shape c = new Rectangle(2,2);
 c.setData(6);
 ((Rectangle)c).draw();
 }}

Figure 5.2: Quadrilaterals System

5.2.1 Invariants Generation Using Behavioral Subtyping

There are two overriding methods in the system which are getData() and setData().For

the class Shape, the getData() has no
1Þ­	 but has
1��� from side1. Therefore, the method

invariant taken from the class Shape invariant, which is

//�@-+1 ≥ 0

The setData() contains data field side1 and variable x, so the method invariant is

//(, ≥ 0	&&	, ≤ 0), (�@-+1 ≥ 0)

102

The data field side1 in always positive number as the code has checked the input value

using if-else condition. However, there is no condition to control the value of x.

Nevertheless, the data field is always positive regardless of the x value.

For subclass Rectangle of Shape, using behavioral subtyping, the getData() invariant is

based on data fields from superclass and subclass. Therefore, the getData() in Shape

changes as well as to avoid miss analyzed during verification. Then, the method invariant

for both getData() is

//�@-+1 ≥ 0, �@-+2 ≥ 0

For the setData() of Rectangle, the method invariant is

//() ≥ 0	&&) ≤ 0), (�@-+2 ≥ 0)
The convergence of the method invariant for both superclass and subclass makes setData()

changes to

//(, ≥ 0	&&	, ≤ 0), (�@-+1 ≥ 0), () ≥ 0	&&) ≤ 0), (�@-+2 ≥ 0)
Below is the sample code of an object Shape and Rectangle calls method

setData(int x). For both situations, the same invariant is employed due to behavioral

subtyping is engaged to generate the invariants. Therefore, there is over-approximation

values from invariants existed even though the invariants are not required for the analysis

process.

public class DrawShape {
 public static void main(String[] args) {
 Shape c = new Rectangle(2,2);
 c.setData(6);
 Shape d = new Shape(2);
 d.setData(3);
 }
}

103

5.2.2 Invariants Generation Using Lazy Behavioral Subtyping

Using same technique as explained in §5.1.2, the class Shape’s getData() has no
1Þ­	

but has
1��� from side1. Therefore, the method invariant adopted from the class Shape

invariant is

//�@-+1 ≥ 0

Method invariant for Shape’s setData() is

//(, ≥ 0	 ∧ , ≤ 0), (�@-+1 ≥ 0)
Method invariant for Rectangle’s getData() is

//�@-+2 ≥ 0

Method invariant for Rectangle’s setData() is

//() ≥ 0	 ∧) ≤ 0), (�@-+2 ≥ 0)
Using lazy behavioral subtyping, there is no need to merge invariants as in behavioral

subtyping. Therefore, the invariant used depends on object call. The lazy technique limits

the expansion of the invariant generation as the program can extend by having new

subclasses. Using the same sample code in §5.2.1,

public class DrawShape {
 public static void main(String[] args) {
 Shape c = new Rectangle(2,2);
 c.setData(6);
 Shape d = new Shape(2);
 d.setData(3);
 }
}

, the invariant produced for c.setData(6) is

//() ≥ 0	 ∧) ≤ 0), (�@-+2 ≥ 0)
and the invariant for d.setData(3) is

//(, ≥ 0	 ∧ , ≤ 0), (�@-+1 ≥ 0)

104

The invariants generated show that there are different invariants produced depending on

the data fields involved in the method. In fact, there is no mergence of the invariant from

superclass and subclass for method overriding as in behavioral subtyping. The reason is

lazy behavioral subtyping reduces the invariant that can expand when the inheritance

structure grows.

5.3 Analysis of the Case Studies

By referring to Table 5.1, the data is taken from two previous case studies explained in

previous section; §5.1-§5.2. They are Salary System and Quadrilaterals System. Salary

System is a system that applied method overriding to reuse data from superclass. In

addition, there is a call for overridden method from superclass and subclass within other

method. The call method is only known at runtime using an object. Quadrilateral System is

a system that implemented method overriding for the purpose of specialization. There is an

overriding method of subclass specializes the definition of overridden method of a

superclass. Table 5.1 is divided into invariants produced for two variables where each case

study compares using the method of behavioral subtyping (BS) and lazy behavioral

subtyping (LBS). The methods are used because behavioral subtyping is the current method

researchers mostly used as explained in §2.10 and lazy behavioral subtyping as a solution

method in proposed abstract formal framework. The case studies have been analyzed

statically using invariant for inheritance as in equation (11) (pg.87) and invariant for

method overriding as in equation (13) (pg.92). Three values produced from each case

105

study. It can be zero (0), positive value (+veVal), and negative value (-veVal). The double

dotted (..) represents the range between one value to another value.

The findings of Table 5.1 show that invariants generated for three methods of Salary

System have different value using method BS and LBS. Method calc and salary are

method definition and ..calc.. is a method call. Both salary and ..calc.. method only appears

in superclass. Therefore, boxes in subclass are in grey. For method calc that exists in

superclass and subclass, produces same value for the invariant generated using BS.

However, different result produced using LBS. The superclass consists of value for bSalary

in superclass and has values for bSalary and tSalary in subclass. The value shows that LBS

result relaxes to the data fields used for the method definition in particular class only;

without considering other classes. For the method salary, both methods produce same

result, which is 0 until positive value. For method call ..calc.., there is no invariants

generated using BS because the method limits its rule to method invariant not method call

invariant. The reason is the method can be called by any object, which is hard to predict.

Then, the LBS solves the problem by generating invariant by adopting invariants produced

by the method’s superclass and subclass. Therefore, any object can invoke the method.

For the case study of Quadrilaterals System, there is no different value for the

invariants of method getData and setData using BS and LBS. For the method getData,

using BS, the invariants in superclass are same as in subclass. The same result produced for

method setData. Using LBS, for method getData, there is no invariant for tSalary in

superclass and no invariant for bSalary in subclass. The same result generated for

invariants in method setData as well. The reason is LBS only produced invariant based on

the data fields of the method without considering its immediate superclass’s or subclass’s

106

invariant. This contradicts to BS where the superclass’s invariant changes as subclass

added.

By comparing both case studies, it shows that the generated invariants for method

overriding using behavioral subtyping enable to produce over-approximated value. The

over-approximated value means invariants are generated to the superclass and subclass as

long as there is a new subclass added to the program structure. To ensure any object’s

method definition can be verified, the BS believes it is safe to cover all data fields for the

invariant. However, the over-approximated value from unnecessary invariants can cause

overflow, if the exceeded invariant is increased because of the program scalability. We can

compare the exceeded invariant with exceeded value in integer number as stated in

ISO/IEC 9899:201x and Java Language Specification to see the danger if the program has

exceeded invariant. According to ISO/IEC 9899:201x (Jones, 2009), the value resulting

from an instance of integer overflow in C or C++ programming language needs not be

detected. The undetected mechanism leads to stack overflow problem during program

execution. The same mechanism is used for Java which Joy et al. (2000) state clearly in

Java Language Specification; “the built-in integer operators do not indicate overflow or

underflow in any way” (p.44). This situation does not occur if the invariants are generated

using lazy behavioral subtyping because its rules allow method definition has invariant

based on its data field and not affected by the inheritance hierarchy structure of the

program. In addition, LBS allows method call has invariant that cover both invariants from

superclass and subclass method. Therefore, any object that invokes the method call is

analyzed statically.

107

The findings of the present study are regarded as a solution of previous studies.

Previous research managed to conduct static analysis on late binding call (Privat et al.,

2005) as well as multiple inheritance (Dovland et al., 2009) using Hoare-style logic

programming. Privat (2005) suggested type system analysis to verify object-oriented

languages together with coloring and binary tree dispatching technique for language

compilation. However, Dovland (2009) demonstrated a technique to use lazy behavioral

subtyping onto an inference system to verify multiple inheritance. The study reported here

differs from previous studies in one important aspect: it applied abstract interpretation to

conduct late bound verification. The application of abstract interpretation allows the

technical implementation of the proposed framework can be done in automated manner.

The automation is hard to implement using Hoare-style logic programming as automated

program verifier is still a major problem in software verification (Hoare, 2007). Even

though, the proposed abstract formal framework is a heavyweight framework, the outcome

of having automation verifier is worthwhile in the future.

Table 5.1: Analysis on Case Studies

Case Studies Method BS/
LBS

Methods in Superclass Methods in Subclass

bSalary tSalary bSalary tSalary

Salary
System

calc BS 0..+veVal -veVal..+veVal 0..+veVal -veVal..+veVal

 LBS 0..+veVal - 0..+veVal -veVal..+veVal
salary BS 0..+veVal -
 LBS 0..+veVal -
..calc.. BS - -
 LBS 0..+veVal -veVal..+veVal

 side1 side2 side1 side2

Quadrilaterals
System

getData BS 0..+veVal 0..+veVal 0..+veVal 0..+veVal

 LBS 0..+veVal - - 0..+veVal
setData BS 0..+veVal 0..+veVal 0..+veVal 0..+veVal
 LBS 0..+veVal - - 0..+veVal

BS : Behavioral Subtyping, LBS : Lazy Behavioral Subtyping, +veVal: positive value, -veVal : negative value,
.. : range, Grey box : not applicable

108

5.4 Conclusion

This chapter shows the validation of the invariants generated using proposed equations

using two case studies. The result shows that the chosen method, which is lazy behavioral

subtyping, produced better value compare to behavioral subtyping. The value is in a range

of integer number not a maximum value. The maximum value results stack overflow

problem during program execution as stated by ISO/IEC 9899:201x and Java Specification

Language. Therefore, the study has verified that there is a solution to verify late method

call in object-oriented programs.

109

Praise belongs to God.
-Al- Fatihah verse 1

6.1 Summary of the Study

This thesis investigates invariants generation on a program with method overriding

using abstract interpretation and lazy behavioral subtyping. The thesis has achieved the

objectives to solve two problems of generating invariants in method overriding which are

problems of class invariants and late binding call. The investigation starts with the

definition of static analysis, the purpose of static analysis for program analysis, and

methods available in conducting static analysis. All three methods of static analysis;

namely (1) assertion (2) model checking, and (3) abstract interpretation; are analyzed based

on their capability to generating invariants automatically, lines of code needed, and whether

the methods are concrete or abstract. Abstract interpretation is chosen because the method

fulfills all the requirements needed. To justify the importance of method overriding, a

literature exploration is done on types of method overriding usage in OOPL. Then, the

investigation using a small language that we created called Method Language or methL, is

made to analyse the problems during verification using static analysis on method

overriding. In the context of method overriding where the focus is on subtyping, there are

two main problems that occur during the process of generating class invariants for

inheritance and late binding method calls. They are

Chapter 6

Conclusion

110

(1) reverification when new subclasses are added into the inheritance hierarchy

(2) over approximation on abstract method semantics due to unknown method calls.

Then, behavioral subtyping and lazy behavioral subtyping are analyzed based on their

specification and related works that have applied them. The aim of the analysis is to find

the most suitable method to solve the problem related late binding method calls. Therefore,

lazy behavioral subtyping is chosen due to its specification on method overriding that can

be generated in both overriding and overridden method, and on new subclasses.

Then, a framework using abstract interpretation has been developed by applying lazy

behavioral subtyping method for method overriding. Its application on the model solves

the problem of over approximation value on method calls. To merge both methods;

(1) abstract interpretation and

(2) lazy behavioral subtyping,

the framework of class invariants generation must be modular. Modularity on class

invariants makes the model easily to apply lazy behavioral subtyping for the method calls

because every invariant is stored as a module that is combined and manipulated whenever

any equation is called. The framework has produced three equations to generate invariants

for class, inheritance, and method overriding. The equations have been validated using two

case studies namely Salary System and Quadrilaterals System. Then, the result of each

variable for each case study has been tabulated to compare with the value produced by the

same case studies using invariants generated using behavioral subtyping. The result has

achieved to show the comparison between invariant generation using behavioral subtyping

and lazy behavioral subtyping.

111

6.2 Contributions to Body of Knowledge

The main contribution of this thesis is the proposed equations to generate invariant for a

program with method overriding. The research has shown that the application of lazy

behavioral subtyping using abstract interpretation results to not-overapproximated value for

the invariants. Therefore, the program has overcome the possible an integer overflow

problem using the method. An analysis between behavioral subtyping and lazy behavioral

subtyping has been conducted to find the value produced using these two methods. The

results of this analysis show that there is a possibility for the invariant produced using

invariants generated from behavioral subtyping to have a maximum value. In contrast, the

value produced using invariants generated from lazy behavioral subtyping is a value within

specific range.

The study has shown that there are limitations of techniques used in conducting

program verification by related works, which indicates objective one has been achieved.

The result has been tabulated in Table 2.3. The first major finding showed that Logozzo

(Logozzo, 2004) scores all evaluated criteria with behavioral subtyping and observable

behavior as techniques of verification. Even though Logozzo (2004) scores all evaluated

criteria, behavioral subtyping made over approximated value for class invariant. The

second major finding was that lazy behavioral subtyping proposed by Dovland (2009)

enables to solve the problem faced by Logozzo (2004), despite the technique is non

implemented in non-reverification and automated purposes.

112

The objective two set out to design an abstract formal framework for verification on

method overriding focusing on invariants generation. The most obvious finding to emerge

from this objective is that three equations have been produced from the framework. They

are equations for class invariant, invariant in inheritance, and invariant in method

overriding as in §4.6-4.7. These equations have been validated to check their reliability

using behavioral subtyping and lazy behavioral subtyping on two case studies. The result

analysis in §5.3 has shown that invariants produced by equations using lazy behavioral

subtyping created invariants with value in specific range. The results of this analysis

indicate that objective three has been achieved.

6.2.1 Strengths

Probably the main strength of the thesis is the application of lazy behavioral subtyping

using abstract interpretation theory. The development of the framework based on the theory

for the semantic analysis of programs leads to automatized applications for the program

reliability (Cousot, 1978). There are two strengths of the framework.

1. The application solved the problem of over-approximation invariants produced using

behavioral subtyping. The over-approximated invariants can give overflow problem to

the program which can result to unexpected behavior from the program; e.g. nonstop

execution. There are two equations involved to solve the problem. They are equations

for inheritance and method overriding.

2. All two equations of invariants are in modular to avoid reverification on new

subclasses. The equation is merged from abstract semantics where it comes from

concrete semantics that consist of object-oriented program semantics, class semantics,

constructor semantics, and method semantics.

113

6.2.2 Limitations

Due to time constraint, the equations produced have two limitations.

1. The abstract semantics lacks of states of behaviors of the object. If the abstract

semantics includes the states of behaviors, then the objects are traced even though they

mutate during the execution.

2. A further study on the implementation of the static analysis tool for the equations might

provide practical insights of abstract interpretation with lazy behavioral subtyping

method on object-oriented programs. Its practicality will produce an automatic static

analyzer for program verification, which can be used during software development.

6.3 Future Works

This study focuses only on the abstract formal framework for a program with method

overriding. There are three prominent future works can be done, which related to current

trend of technology.

1. The generated invariants are for parallel computing programs. Parallel computing is one

of the features of cloud computing where computers are executed in parallel to perform

one big task. It would be interesting to discover techniques on how to verify objects

mutation in a parallel program that has race conditions problem.

2. The application of the abstract formal framework implements on other languages, e.g.

scripting programming languages and mobile programming languages. The mobile

programming languages are important recently as consumers towards mobile

114

applications. In addition, programmers use the scripting programming languages used

to conduct unit testing in agile methodology development.

3. A future work on full implementation on an automatic verification tool has to be

worked out. Even though the study focuses only method overriding, there are other

elements that contribute to program with polymorphism; e.g. method overloading,

mutated objects, and single dispatch. Consequently, reliable software can be produced

in the future if the verification tool enables to verify all features of object-orientation;

i.e., encapsulation, inheritance, polymorphism, and abstraction.

115

References

Abadi, M. & Cardelli, L. (1994). A theory of primitive objects. In Sannella, D. (Ed.).
Programming languages and systems—esop'94. Lecture notes in computer science, vol.
788. (pp. 1-25). Springer Verlag.

Albert, E., Puebla, G. & Hermenegildo, M. (2005), An abstract interpretation-based
approach to mobile code safety. Electronic Notes on Theoretical Computer Science, 132(1),
113-129.

America, P. (1991), Designing an object-oriented programming language with behavioural
subtyping. Journal of Foundations of Object-Oriented Languages, 60-90.

Avvenuti, M., Bernardeschi, C. & Francesco, N. D. (2003), Java bytecode verification for
secure information flow. SIGPLAN Notices, 38(12), 20-27.

Bailey, J. & Poulovassilis, A. (1999), Abstract interpretation for termination analysis in
functional active databases. Journal of Intelligence Information System, 12(2-3), 243-273.

Balint, M. & Minea, M. (2011). Automatic inference of model fields and their
representation. Proceedings of the 13th Workshop on Formal Techniques for Java-Like
Programs held on 26 July at the Lancaster, United Kingdom (pp. 1-6). ACM.

Ball, T., Majumdar, R., Millstein, T. & Rajamani, S. (2001), Automatic predicate
abstraction of c programs. ACM SIGPLAN Notices, 38(5), 203-213.

Banerjee, A. (1997), A modular, polyvariant and type-based closure analysis. SIGPLAN
Notices, 32(8), 1-10.

Barbuti, R., Francesco, N. D., Santone, A. & Vaglini, G. (1999), Abstract interpretation of
trace semantics for concurrent calculi. Journal of Information Processing Letters, 70(2),
69-78.

Barbuti, R., Cataudella, S. & Tesei, L. (2003), Abstract interpretation against races. Journal
of Fundamental Information, 60(1-4), 67-79.

Barbuti, R., Francesco, N. D. & Tesei, L. (2010), An abstract interpretation approach for
enhancing the java bytecode verifier. Journal of Computer, 53(6), 679-700.

Baresi, L. & Pezze, M. (2006), An introduction to software testing. Electronic Notes in
Theoretical Computer Science, 148, 89-111.

Barnett, M., Chang, B. Y., DeLine, R., Jacobs, B. & Leino, K. (2006). Boogie: A modular
reusable verifier for object-oriented programs. Proceedings of the Formal Methods for
Components and Objects. (pp. 364-387). Springer.

116

Barthe, G. & Kunz, C. (2008). Certificate translation in abstract interpretation. Proceedings
of the Programming languages and systems (Theory and practice of software) (pp. 368-
382). Budapest, Hungary, Springer-Verlag.

Bernardeschi, C. & Francesco, N. D. (2002). Combining abstract interpretation and model
checking for analysing security properties of java bytecode. In Goos, G. et al (Eds.). Third
international workshop on verification, model checking, and abstract interpretation:
Revised papers/vmcai'02. Lecture notes in computer science, vol. 2294. (pp. 1-15).
Venice, Italy: Springer-Verlag.

Bernardeschi, C., Francesco, N. D. & Lettieri, G. (2003), Concrete and abstract semantics
to check secure information flow in concurrent programs. Fundamental Information, 60(1-
4), 81-98.

Borghuis, T. & Feijs, L. (2000), A constructive logic for services and information flow in
computer networks. The Computer Journal, 43(4), 274-289.

Bourdoncle, F. (1993), Abstract debugging of higher-order imperative languages. ACM
Sigplan Notices, 28(6), 46-55.

Castagna, G. (1995), Covariance and contravariance: Conflict without a cause. ACM
Transactions on Programming Languages and Systems 17(3), 431-447.

Charlier, B. L., Rossi, S. & Hentenryck, P. V. (2002), Sequence-based abstract
interpretation of prolog. Theory Pract. Log. Program., 2(1), 25-84.

Cheon, Y. (2010). Functional specification and verification of object-oriented programs.
Departmental Technical Reports (CS). http://digitalcommons.utep.edu/cs_techrep/23.

Cheon, Y., Yeep, C. & Vela, M. (2012), The cleanjava language for functional program
verification. International Journal of Software Engineering, 5(1), 47-68

Chin, W. N., David, C., Nguyen, H. H. & Qin, S. (2008), Enhancing modular oo
verification with separation logic. ACM SIGPLAN Notices, 43(1), 87-99.

Clarke, E. (1997). Model checking. In Ramesh, S. et al (Eds.). Foundations of software
technology and theoretical computer science. Lecture notes in computer science, vol.
1346. (pp. 54-56). Germany: Springer Berlin / Heidelberg.

Codognet, C. & Codognet, P. (1995). A generalized semantics for concurrent constraint
languages and their abstract interpretation. In Meyer, M. (Ed.). Constraint processing,
selected papers. Lecture notes in computer science, vol. 923. (pp. 39-49). Germany:
Springer-Verlag.

Cook, W. R. (1989). A denotational semantics of inheritance. PhD thesis. Brown
University, Rhode Island, USA.

Cousot, P. & Cousot, R. (1977). Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. Proceedings of the

117

International Conference on the 4th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages (pp. 238-252). New York, ACM Press, New Yor.

Cousot, P. (1978). Méthodes itératives de construction et d'approximation de points fixes
d'opérateurs monotones sur un treillis, analyse sémantique des programmes. PhD thesis.
Université Scientifique et Médicale de Grenoble, France.

Cousot, P. & Cousot, R. (1979). Systematic design of program analysis frameworks.
Proceedings of the 6th ACM SIGACT-SIGPLAN symposium on Principles of programming
languages (pp. 269-282). Los Angeles, USA, ACM Press, New Yor.

Cousot, P. (1996), Abstract interpretation. ACM Computing Surveys (CSUR), 28(2), 324-
328.

Cousot, P. (2007). The verification grand challenge and abstract interpretation. In Meyer,
B. et al (Eds.). Verified software: Theories, tools, experiments. Lecture notes in computer
science, vol. 4171. (pp. 227-240). Germany: Springer Verlag.

Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., & Rival, X.
(2007). Combination of abstractions in the ASTRÉE static analyzer. Advances in Computer
Science-ASIAN 2006. Secure Software and Related Issues, 272-300.

D'Silva, V., Kroening, D. & Weissenbacher, G. (2008), A survey of automated techniques
for formal software verification. Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, 27(7), 1165-1178.

Dahl, O. & Nygaard, K. (1966), Simula, an algol-based simulation language. ACM
Communication, 9, 671-678.

Distefano, D. & J, M. J. P. (2008), Jstar: Towards practical verification for java. SIGPLAN
Not., 43(10), 213-226.

Dovland, J., Johnsen, E. B. & Owe, O. (2005). Verification of concurrent objects with
asynchronous method calls. Proceedings of the IEEE international Conference on
Software, Science, Technology and Engineering. (pp. 141-150). Herzelia, Israel, IEEE.

Dovland, J., Johnsen, E. B., Owe, O. & Steffen, M. (2008), Encapsulating lazy behavioral
subtyping. Journal on Specification Transformation Navigation, 72-88.

Dovland, J., Johnsen, E., Owe, O. & Steffen, M. (2009). Incremental reasoning for multiple
inheritance. In Leuschel, M. et al (Eds.). Integrated formal methods. Lecture notes in
computer science, vol. 5423. (pp. 215-230). Germany: Springer-Verlag.

Dowson, M. (1997), The ariane 5 software failure. SIGSOFT Softw. Eng. Notes, 22(2), 84.

Engels, G. & Groenewegen, L. (2000). Object-oriented modeling: A roadmap. Proceedings
of the Proceedings of the Conference on the Future of Software Engineering. (pp. 103-
116). ACM.

118

Ernst, M. D. (2003). Static and dynamic analysis: Synergy and duality. Proceedings of the
Software Engineering (Workshop on Dynamic Analysis). (pp. 24-27). Citeseer.

Ernst, M. D., Perkins, J. H., Guo, P. J., McCamant, S., Pacheco, C., Tschantz, M. S., et al.
(2007), The daikon system for dynamic detection of likely invariants. Science of Computer
Programming, 69(1-3), 35-45.

Fages, F., & Soliman, S. (2008). Abstract interpretation and types for systems biology.
Theoretical Computer Science, 403(1), 52-70.

Falaschi, M., Olarte, C. & Palamidessi, C. (2009). A framework for abstract interpretation
of timed concurrent constraint programs. Proceedings of the 11th ACM SIGPLAN
conference on Principles and practice of declarative programming held on 7 - 9 September
at the Coimbra, Portugal (pp. 207-218). ACM.

Fehnker, A., Huuck, R., Jayet, P., Lussenburg, M. & Rauch, F. (2007). Model checking
software at compile time. Proceedings of the IEEE/IFIP Symposium on Theoretical
Aspects of Software Engineering. (pp. 45-56). Shanghai, China.

Fenton, N. E. & Pfleeger, S. L. (1998). Software metrics: A rigorous and practical
approach. PWS Publishing Co.

Feret, J. (2001). Abstract interpretation-based static analysis of mobile ambients. In
Cousot, P. (Ed.). The 8th international symposium on static analysis. vol. 2126. (pp. 412-
430). Paris, France: Springer-Verlag.

Ferrara, P. (2006). Jail: Firewall analysis of java card by abstract interpretation.
Proceedings of the. (pp., Citeseer.

Flanagan, C., Freund, S. N. & Tomb, A. (2006). Hybrid types, invariants, and refinements
for imperative objects. Proceedings of the International Workshop on Foundations and
Developments of Object-Oriented Languages held on 11-13 January at the South Carolina,
USA (pp. 1-11). ACM.

Floyd, R. W. (1967), Assigning meanings to programs. Mathematical aspects of computer
science, 19(19-32), 1.

Gates, B. (2002). Keynote address at windows hardware engineering conference (winhec)
2002. http://research.microsoft.com/en-us/projects/slam/.

Gil, J. Y. & Lenz, K. (2012), Keyword- and default- parameters in java. Journal of Object
Technology, 11(1), 1-17.

Halder, R. & Cortesi, A. (2010). Abstract interpretation for sound approximation of
database query languages. Proceedings of the 7th International Conference on Informatics
and Systems (INFOS). (pp. 1-10).

Halder, R. & Cortesi, A. (2011). Cooperative query answering by abstract interpretation.
Proceedings of the Proceedings of the 37th international conference on Current trends in

119

theory and practice of computer science held on 22 - 28 January at the Smokovec, Slovakia
(pp. 284-296). Springer-Verlag.

Hall, A. (1990), Seven myths of formal methods. Software, IEEE, 7(5), 11-19.

Harrold, M. J. (2000). Testing: A roadmap. Proceedings of the Proceedings of the
conference on the future of software engineering. (pp. 61-72). ACM.

Havelund, K. & Pressburger, T. (2000), Model checking java programs using java
pathfinder. International Journal on Software Tools for Technology Transfer (STTT), 2(4),
366-381.

Henzinger, T., Jhala, R. & Majumdar, R. (2005). The blast software verification system. In
Godefroid, P. (Ed.). Model checking software. Lecture notes in computer science, vol.
3639. (pp. 25-26). Germany: Springer Verlag.

Hoare, C. A. R. (1969), An axiomatic basis for computer programming. ACM
Communications 12(10), 576-580.

Hoare, C. A. R. (1981). The 1980 ACM Turing Award Lecture. Journal of
Communications, 24(2), 75-83.

Hoare, T. (2007). The Ideal of Program Correctness: Third Computer Journal Lecture. The
Computer Journal, 50(3), 254-260.

Igarashi, A., Pierce, B. C. & Wadler, P. (2001), Featherweight java: A minimal core
calculus for java and gj. ACM Transactions on Programming Languages and Systems
23(3), 396-450.

Jackson, D. & Rinard, M. (2000). Software analysis: A roadmap. Proceedings of the
Conference on The Future of Software Engineering held on 4 - 11 June at the Limerick,
Ireland (pp. 133-145). ACM.

Jaoua, A. & Elloumi, S. (2002), Galois connection, formal concepts and galois lattice in
real relations: Application in a real classifier. Journal of Systems and Software, 60(2), 149-
163.

Johnsen, E., & Owe, O. (2007). An Asynchronous Communication Model for Distributed
Concurrent Objects. Software & Systems Modeling, 6(1), 39-58.

Jones, L. (2009). WG14 N1401 Committee Draft ISO/IEC 9899: 201x, International
Standards Organization

Joy, B., Steele, G., Gosling, J. & Bracha, G. (2000). The java language specification.
Addison-Wesley.

Lamsweerde, A. v. (2000). Formal specification: A roadmap. Proceedings of the
Proceedings of the Conference on The Future of Software Engineering held on 4 - 11 June
at the Limerick, Ireland (pp. 147-159). ACM.

120

Leavens, G. (2006). Jml’s rich, inherited specifications for behavioral subtypes. In Liu, Z.
et al (Eds.). Formal methods and software engineering: 8th international conference on
formal engineering methods. Lecture notes in computer science, vol. 4260. (pp. 2-34).
Macao, China: Springer Verlag.

Leino, K. R. M. & Müller, P. (2004). Object invariants in dynamic contexts. Ecoop 2004–
object-oriented programming. Lncs, vol. 3086. (pp. 95-108).

Leino, K. R. M. & Müller, P. (2005). Modular verification of static class invariants.
Formal methods. Lecture notes in computer science, vol. 3582. (pp. 26-42). Germany:
Springer Verlag.

Leino, K. R. M., & Schulte, W. (2007). Using history invariants to verify observers. In R.
De Nicola (Ed.). Programming Languages and Systems. Lecture notes in computer science,
vol. 4421. (pp. 80-94). Germany: Springer-Verlag.

Liskov, B. H. & Wing, J. M. (1994), A behavioral notion of subtyping. ACM Transaction
on Programming languages and Systems, 16(6), 1811-1841.

Liskov, B. H. & Wing, J. M. (2001). Behavioural subtyping using invariants and
constraints. In Bowman, H. et al (Eds.). Formal methods for distributed processing: A
survey of object-oriented approaches. (pp. 254-280). UK: Cambridge University Press.

Little, J., & Moler, C. (1994-2013). Static Analysis with Polyspace Product, from
http://www.mathworks.com/products/polyspace/

Loding, H. & Peleska, J. (2008), Symbolic and abstract interpretation for c/c++ programs.
Electron. Notes Theor. Comput. Sci., 217, 113-131.

Logozzo, F. (2004). Modular static analysis of object-oriented languages. PhD thesis. Ecole
Polytecnique, France.

Logozzo, F. & Cortesi, A. (2004). Semantic class hierarchies by abstract interpretation.
Research Report CS-2004-7, Department of Computer Science, University Ca' Foscari of
Venice, Italy. http://www.dsi.unive.it/~cortesi/paperi/CS_2004_7.pdf.

Logozzo, F. (2005), Class invariants as abstract interpretation of trace semantics. computer
languages, systems and structures.

Logozzo, F. (2007). Cibai: An abstract interpretation based static analyser for modular
analysis and verification of java classes. In Cook, B. et al (Eds.). Verification, model
checking and abstract interpretation. Lecture notes in computer science, vol. 4349. (pp.
283-298). Germany: Springer Verlag.

Marriott, K., Søndergaard, H. & Jones, N. D. (1994), Denotational abstract interpretation of
logic programs. ACM Transactions on Programming Languages and Systems (TOPLAS),
16(3), 607-648.

121

Martin, J. & Odell, J. J. (1998). Object-oriented methods: A foundation. vol. 2nd Edition.
USA: Prentice Hall.

Mellish, C. (1986). Abstract interpretation of prolog programs. In Shapiro, E. (Ed.). Third
international conference on logic programming. Lecture notes in computer science, vol.
225. (pp. 463-474). London: Springer Verlag.

Meyer, B. (1997). Object-oriented software construction. New Jersey: Prentice Hall PTR.

Michiel, M. d., Bonenfant, A., Cass, H. & Sainrat, P. (2008). Static loop bound analysis of
c programs based on flow analysis and abstract interpretation. Proceedings of the 14th
IEEE International Conference on Embedded and Real-Time Computing Systems and
Applications held on 25-27 August, 2008 at the Kaohisung, Taiwan (pp. 161-166). IEEE
Computer Society.

Mihancea, P. F. & Marinescu, R. (2009). Discovering comprehension pitfalls in class
hierarchies. Proceedings of the 13th European Conference on Software Maintenance and
Reengineering, CSMR '09 held on 24-27 March 2009 at the Kaiserslautern, Germany (pp.
7-16). IEEE Computer Society.

Mills, H. D., Dyer, M. & Linger, R. C. (1987). Cleanroom software engineering. The
Harlan D.Mills Collection. http://trace.tennessee.edu/utk_harlan/18.

Monin, J.-F. (2003). Understanding formal methods. London: Springer-Verlag.

Müller, P. (2002). Modular specification and verification of object-oriented programs.
Lecture notes in computer science. vol. 2262 Springer-Verlag.

Myers, G. J. (2008). The art of software testing. India: Wiley.

NASA. (2012). "Robust software engineering." 2012, from
http://ti.arc.nasa.gov/tech/rse/vandv/jpf/.

Nielson, F., Hansen, R. R. & Nielson, H. R. (2003), Abstract interpretation of mobile
ambients. Sci. Comput. Program., 47(2-3), 145-175.

Nielson, F., Nielson, H. R. & Hankin, C. (2005). Principles of program analysis. Germany:
Springer-Verlag.

Nunes, I. (2004), Method redefinition--ensuring alternative behaviors. Information
Processing Letters, 92(6), 279-285.

OMG. (2001). Omg unified modelling language specification version 1.4.

Parkinson, M. J. (2005). Local reasoning for java. PhD thesis. University of Cambridge.

Parkinson, M. J. (2007). Class invariants: The end of the road? Proceedings of the
International Workshop on Aliasing, Confinement and Ownership in Object-Oriented
Programming (IWACO). (pp. 9-10). Berlin, Germany, Citeseer.

122

Parkinson, M. J. & Bierman, G. M. (2008), Separation logic, abstraction and inheritance.
ACM SIGPLAN Notices, 43(1), 75-86.

Pollet, I. & Charlier, B. L. (2005), Towards a complete static analyser for java: An abstract
interpretation framework and its implementation. Electron. Notes Theor. Comput. Sci., 131,
85-98.

Privat, J. & Ducournau, R. (2005), Link-time static analysis for efficient separate
compilation of object-oriented languages. SIGSOFT Softw. Eng. Notes, 31(1), 20-27.

Reeves, G. (2004). "The mars rover spirit flash anomaly." from http://trs-
new.jpl.nasa.gov/dspace/bitstream/2014/39361/1/04-3354.pdf

Rodriguez-Carbonell, E., & Kapur, D. (2007). Automatic generation of polynomial
invariants of bounded degree using abstract interpretation. Science of Computer
Programming, 64(1), 54-75.

Schnoebelen, P. (2002). The complexity of temporal logic model checking. In P. Balbiani
et al (Eds.). Advances in modal logic. vol. 4. (pp. 393-436).

Siu, M. K. (2001). Why is it difficult to teach abstract algebra. In Vincent, J. et al (Eds.).
The future of the teaching and learning of algebra. (pp. 541-547). Hong Kong: Hong Kong
University.

Skalka, C., Smith, S. & Horn, D. V. (2005), A type and effect system for flexible abstract
interpretation of java. Electron. Notes Theor. Comput. Sci., 131, 111-124.

Smans, J., Jacobs, B., Piessens, F. & Schulte, W. (2010), Automatic verification of java
programs with dynamic frames. Formal Aspects of Computing, 22(3), 423-457.

Softworks, A. (2012). "C # tools." 2012, from http://www.csharptools.com/.

Spoto, F. (2010). The nullness analyser of julia. In Clarke, E. M. (Ed.). Logic for
programming, artificial intelligence, and reasoning. Lecture notes in computer science,
vol. 6355. (pp. 405-424). Springer Verlag.

Stroustrup, B. (1987). What is object-oriented programming? Proceedings of the
ECOOP'87 European Conference on Object-Oriented Programming. (pp. 51-70). Paris,
Springer Verlag.

Sun, J. & Dong, J. S. (2005). Extracting fsms from object-z specifications with history
invariants. Proceedings of the 10th IEEE International Conference on Engineering of
Complex Computer Systems. (pp. 96-105). IEEE.

Taivalsaari, A. (1996), On the notion of inheritance. ACM Computing Surveys, 28(3), 438-
479.

123

Tarski, A. (1955), A lattice-theoretical fixpoint theorem and its applications. Pacific
journal of Mathematics, 5(2), 285-309.

Toman, D. (1997). Constraint databases and program analysis using abstract interpretation.
Second international workshop on constraint database systems, constraint databases and
their applications. Lecture notes in computer science, vol. 1191. (pp. 246-262). Germany:
Springer-Verlag.

Van Den Berg, J. & Jacobs, B. (2001). The loop compiler for java and jml. Tools and
algorithms for the construction and analysis of systems. Lecture notes in computer science,
vol. 2031. (pp. 299-312). Springer Verlag.

Webber, A. B. (2001). What is a class invariant? Proceedings of the ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis For Software Tools and Engineering. (pp. 86-
89). Utah, USA, ACM.

Wegner, P. & Zdonik, S. B. (1988). Inheritance as an incremental modification mechanism
or what like is and isn't like. Proceedings of the ECOOP'88 European Conference on
Object-Oriented Programming. (pp. 55-77). Oslo, Norway, Springer Verlag.

Xing, J., Li, M. & Li, Z. (2010). Automated program verification using generation of
invariants. Proceedings of the the International Conference on Quality Software. (pp. 300-
305). China, IEEE.

