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ABSTRACT 

 

The increase of multimedia data in medical field has led to the challenging problem of 

developing techniques that can provide efficient and accurate search and navigation 

through the large digital archives. Multi-modality of medical images such as x-ray, CT scan 

and MRI constitutes an important source of anatomical and functional information to 

provide valuable teaching and research, effective training and diagnosis of diseases.  

The approach of conventional text-based queries and exact matching with database is 

becoming obsolete. The mismatch of medical term between user query and document has 

become an issue. This drawback of conventional text-based retrieval motivates researchers 

towards more effective text-based retrieval and visual content-based image retrieval 

(CBIR) in medical field which has been an active research area in computer vision for the 

past few years. However CBIR solely has not yet succeeded in bridging the semantic gap 

between human concepts and low-level visual features. Information fusion support for 

human or automated analysis and processing relies on the hypothesis that the combination 

of multiple information sources allows for better results in information retrieval 

performance. 

This research is focused on information fusion of text and visual content analysis in 

medical information retrieval system. Initially the design, development and evaluation 

process are executed separately for text and content-based features. Medical hierarchical 

conceptual model is applied in both text and content-based frameworks which emphasize 

on modality, anatomy and pathology concepts. Multi-modality Medical Information 

Retrieval System (M3IRS) text-based framework consists of four main components which 
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are document pre-processor, query processor, retrieval process and  ranking strategies. Two 

ranking models are introduced namely Comprehensive and MedHieCon ranking models. 

Multi-modality Medical Image Classification System (M3ICS) is the content-based 

framework which is based on extracting visual features of texture, shape and color in global 

and local descriptors and applying semantic classification using MedHieCon model.  

Supervised learning technique is heavily used in visual classification to evaluate the 

performance of the framework. The final stage is the information fusion with the 

combination of text and content-based information sources. Hierarchical processing in late 

fusion technique is applied where the output from text-based processing will be the input 

for content-based system.  

Dataset from ImageCLEF 2010 medical task is used which includes 77,500 multi-modality 

medical images and documents. The performance of text-based, content-based and 

information fusion of text and content-based processing are evaluated. The effectiveness of 

text-based performance is better than content-based. However content-based approach is 

complement to text-based retrieval in order to increase the relevant documents into higher 

position ranking in medical domain information retrieval. Retrieval based on information 

fusion achieves the best performance by improving the effectiveness of retrieving relevant 

documents in medical domain.  
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ABSTRAK 

 

Peningkatan jumlah data multimedia dalam bidang perubatan telah membawa kepada 

masalah dalam membangunkan teknik dapatan carian yang cekap dan tepat melalui arkib 

digital yang bersaiz besar. Imej perubatan yang dihasilkan oleh mesin imbasan yang 

berbeza memaparkan ciri-ciri yang berbeza. Dengan pelbagai kaedah yang sedia ada dalam 

imej perubatan seperti X-ray, CT dan MRI adalah sukar bagi penyelidik untuk mewujudkan 

sistem dapatan yang cekap dengan hanya menggunakan carian berdasarkan teks yang 

berasaskan manual. Sistem dapatan yang berdasarkan teks sudah tidak boleh digunapakai. 

Ketidakpadanan istilah perubatan antara pertanyaan pengguna dan dokumen telah menjadi 

satu isu. Kelemahan capaian berasaskan teks dalam bidang perubatan ini mendorong 

penyelidik ke arah sistem dapatan semula berasaskan visual, yang juga telah menjadi 

penyelidikan yang aktif dalam bidang komputer untuk beberapa tahun yang lalu. Walau 

bagaimanapun sistem dapatan semula berasaskan visual semata-mata tidak lagi berjaya 

merapatkan jurang semantik antara konsep pandangan manusia dan ciri-ciri visual pada 

imej. Gabungan pelbagai sumber maklumat seperti teks dan visual membolehkan 

keputusan yang lebih baik diperolehi dalam sistem dapatan maklumat. 

Penyelidikan ini tertumpu kepada gabungan maklumat berdasarkan teks dan kandungan 

dalam imej sistem dapatan maklumat perubatan. Pada mulanya reka bentuk, pembangunan 

dan proses penilaian akan dilakukan berasingan untuk teks dan kandungan dalam imej. 

Model Medical Hierarchical Conceptual (MedHieCon) diaplikasikan pada rangka kerja 

teks dan kandungan dalam imej berdasarkan konsep modaliti, anatomi dan patologi. Multi-

modality Medical Information Retrieval System (M3IRS) berdasarkan rangka kerja teks 

berasaskan empat komponen utama iaitu dokumen pra proses, pemproses soalan, strategi 
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dapatan dan strategi pemeringkatan. Dua model kedudukan diperkenalkan iaitu model 

kedudukan Comprehensive and MedHieCon. Multi-modality Medical Image Classification 

System (M3ICS) ialah rangka kerja berdasarkan kandungan dalam imej berdasarkan ciri-

ciri visual tekstur, bentuk dan warna dalam pemerihal global dan tempatan dan 

mengaplikasikan semantik berasaskan pengelasan menggunakan model MedHieCon. 

Teknik pembelajaran terselia digunakan dalam pengelasan visual bagi menilai prestasi 

rangka kerja. Akhirnya adalah gabungan maklumat lain gabungan sumber maklumat teks 

dan kandungan dalam imej. Pemprosesan berhierarki dalam teknik gabungan lewat 

diaplikasikan iaitu output dari berasaskan teks adalah diinput untuk sistem berdasarkan 

kandungan dalam imej.. 

Dataset daripada ImageCLEF 2010 bidang perubatan telah digunakan dan ia merangkumi 

77,500 imej perubatan pelbagai modaliti dan dokumen. Prestasi sistem berasaskan teks, 

visual dan dan gabungan teks dan visual akan dinilai berasingan. Keberkesanan 

prestasi berasaskan teks lebih baik daripada berdasarkan kandungan dalam imej. 

Bagaimanapun pendekatan berdasarkan kandungan dalam imej ialah pelengkap 

untuk dapatan berasaskan teks supaya dapat meningkatkan  posisi dokumen berkaitan di 

tempat yang lebih tinggi. Oleh itu gabungan antara teknik berasaskan teks dan kandungan 

dalam imej dapat meningkatkan keberkesanan di dalam system dapatan maklumat untuk 

domain perubatan.  
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1.0 Introduction 

 

1.1 Research Inspiration 

Medical data are ubiquitous with the increasing amount of medical data captured and 

recorded. The on-going development of medical instrumentation and techniques has 

created an enormous growth in the quantity of data including large amount of medical 

images. In Geneva University Hospital alone the number of images produced by Radiology 

department has increased up to 70,000 images per day in 2007, and over 117,000 images 

per day in 2009, (Brant, 2013; Yu Cao et al., 2011; Müller, 2003). Automated information 

retrieval systems are needed to reduce information overload. 

The technology of medical image production has been rapidly changed over the past few 

years. Medical image was produced from film-based record initially to electronic record 

and current technology is the integration of multimedia resources (Haux, 2006). Modern 

computer technology has created the possibility of producing several new imaging 

modalities that use different radiant energy techniques to elucidate properties of body 

tissues. The ability to extract significant and accurate information from conventional or 

tomography radiographic images such as computed tomography (CT), magnet resonance 

image (MRI), ultrasound (US) and nuclear medicine (NM) image has developed since the 

discovery of x-rays. Various medical imaging techniques are used heavily to provide 

spatially resolved medical information (Huang & Davis, 2011). Multi-modality of medical 

images constitutes an important source of anatomical and functional information which can 

be very useful.   
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Content-Based Image Retrieval (CBIR) is based on computational strategies in searching 

for relevant images using visual content analysis. Activities related to the usage of CBIR in 

medical application include education, research, diagnosis, annotation and classification of 

medical images. However medical information is not only based on medical images. 

Biomedical information can be presented in variety of forms such as text, illustrations and 

images in journal articles, documents and other collections such as patient cases in 

electronic health records (Rahman et al., 2012). When there is some text associated to 

images, the retrieval can be based on multimodal analysis. Having such bulk volume of 

image data with varying image modalities, it is then important to develop a suitable 

medical information retrieval system. The capability of multi-modality medical images can 

be extended to provide valuable teaching and research, effective training and diagnosis of 

diseases and enhanced image interpretation support, by developing techniques supporting 

the automated archiving and the retrieval of images by content. The fundamental problem 

is how to enable or improve the response of medical retrieval systems with multimodal 

information sources of using textual information associated with various modalities of 

medical images and visual features representing the visual content of the images. In line 

with the present era of technology advancement, research on information fusion and 

multimodalities of medical images is sought after to enhance retrieval of medical 

information. 
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1.2 Research Background 

Information retrieval (IR) can be defined as a process of searching, recovering, and 

interpreting information based on question or query given (Baeza-Yates et.al., 1999). Since 

information can be recorded in various forms, such as tables, images, text and video, IR 

systems must be able to retrieve information from varying media representations. 

Multimedia Information Retrieval (MIR) involves extraction of semantic information from 

multimedia data sources which can be either directly perceivable media such as image and 

video or indirectly perceivable sources such as text and biosignal (Kludas et.al, 2008). MIR 

can be defined as the management (storage, retrieval and manipulation) of multiple types of 

media data (Kludas  et.al., 2008). Recently MIR has been used in many particular domains 

such as medical, economic, agriculture, and automotive where generally, the data collection 

in specific domain contains multimedia information (Kalpathy-Cramer et.al, 2010; Ustin 

et.al, 2009). In medical domain, the medical data are inclusive of text (caption, title and 

descriptions) with embedded images (including medical images, illustrations, charts and 

visual material) or video clips with streamed image and audio content (Antani, 2010; Hsu 

et.al, 2009). Different multimedia data have their own different distinctive feature 

representations. The descriptions of these features reveal the summary of media content 

and pattern detection of each media (Petite et al., 2010). For example, texture and shape 

descriptions represent visual domain for content-based retrieval while tokenization and n-

grams method are among the methods applied in text-based retrieval. 
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1.2.1 Multimedia Information Retrieval in Medical Application 

With the availability of various medical imaging techniques such as x-ray, CT, MRI and 

US, the amount of digital data produced in hospitals increases incredibly fast. Therefore, 

the importance of dissemination of medical knowledge in MIR increases and has the 

potential to give considerable impact on the quality of care provided by clinicians and the 

tasks of efficient storing, processing and retrieving medical image data have become 

important research topics. The aspiration of MIR in medical application can be defined as 

delivering the needed information at the right time, the right place to the right persons in 

order to improve the quality and efficiency of care processes (Müller, 2003).  

Conventionally, picture archiving and communication systems (PACS) are used in several 

hospitals. PACS (Berg, 2001; Ghebreab et.al, 2003) are basically computer networks that 

are used for storage, retrieval, and distribution of medical image data. Other MIR systems 

that specialize on medical data are as follows: 

 IRMA (Lehmann et al., 2003)  [a CBIR system for radiologic image archive],  

 Medline (U.S. National Library of Medicine, 1998)  [a biomedical information 

system which includes bibliographic information for articles from  academic 

journals, involving medicine, nursing, pharmacy, dentistry, veterinary medicine, 

and health care]   

 MedSearch (Hliaoutakis et al., 2006) [a system that supports retrieval of 

bibliographic information from Medline].  

These medical retrieval systems involve solely image-based retrieval, text-based retrieval 

or combination of both image and text retrieval to represent medical data. 

http://en.wikipedia.org/wiki/Academic_journal
http://en.wikipedia.org/wiki/Academic_journal
http://en.wikipedia.org/wiki/Medicine
http://en.wikipedia.org/wiki/Nursing
http://en.wikipedia.org/wiki/Pharmacy
http://en.wikipedia.org/wiki/Dentistry
http://en.wikipedia.org/wiki/Veterinary_medicine
http://en.wikipedia.org/wiki/Health_care
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1.2.2 Information Fusion in Medical Retrieval System 

Information fusion is a revision of efficient method to transform information from different 

sources and different points in time into a representation that leads to effective support for 

human or automated decision making (Boström et al., 2007). According to Klein (1993) the 

definition of information fusion is “multilevel, multifaceted process dealing with automatic 

detection, association, correlation, estimation, and combination of information from single 

and multiple sources”. Generally, information fusion in medical domain is mainly 

concentrated on the combination of text and visual retrieval (Depeursinge & Müller, 2010). 

Combination of text and visual information potentially allows a reduction in semantic gap 

for more meaningful search and retrieval, reflecting the modelling representation of human 

observation for a particular image and visual information (Depeursinge et.al, 2010).  This is 

because by using both information sources of text and visual will lead to more semantic 

understanding in the image as well as to improve the effectiveness performance in 

information retrieval system. 

 

Medical data often contain multimodal information sources such as visual information 

(image) as well as text information. Both types of information are important for medical 

retrieval system (Muller et al., 2003). Due to the information limitation at different levels 

of sources, the application of information fusion becomes a real need in medical 

application. 

 

Text retrieval is a type of information retrieval whereby the retrieved information is stored 

primarily in the form of text. Text retrieval system deals with the search of relevant 

documents which describe the information within document or looking for metadata about 

documents in a collection of dataset based on user-provided queries. User queries can be 
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described as a range of multi-sentence of an information to an ad hoc, few words query. 

Generally, the process of text retrieval is to find relevant documents to user queries and 

provide relevant retrieved document based on the evaluation of matching results and sort 

them according to relevance as illustrated in Figure 1.1.  

 

Medical domain is often claimed as one of the principal application domains in CBIR 

research field (Smeulders et al., 2000; Orphanoudakis et al., 1994). Due to the large amount 

of medical images, CBIR in medical application has become an important research topic. 

CBIR system is used to search similar medical images or cases in large medical image 

repositories based on diagnosis or anatomical region and capable to retrieve images with 

different diagnosis but have visually similar cases. Generally most of CBIR systems have a 

very similar architecture involving query image and images in the collection and 

comprising tools for the extraction of visual features, the storage for image features, 

distance measurements or similarity calculation and finally the output of retrieved images 

as depicted in Figure 1.2.  

 

 

Document 

Collection 

Text 

Retrieval 

System 

Relevant 

Retrieved 

Documents 

Query 

Figure 1.1: Process of Text Retrieval System 



7 
 

                                           

 

1.3 Problem Definition  

Thousands of multimedia data in medical field are produced daily which led to the 

challenging problem of developing techniques that can provide efficient and accurate 

search through large digital archives. The simple manual text-based query or request based 

on exact matching with database is becoming obsolete (Mihalcea, 2006). Additionally, in 

biomedical information term mismatch between user query and document has become an 

issue (Dinh & Tamine, 2011). The unstructured text in natural language can cause various 

different interpretations by different people. Text description in medical information is not 

sufficient for depictive subjective perception whereby medical image may contain several 

objects which convey important specific information (Prasad et al., 2009). The content of 

medical image itself may incur difficulties when described in words. Medical images which 

are produced by different scanning machines may display different features. Although with 

the existence of multi-modality medical images such as x-ray, CT and MRI, it is possible 

for researchers to create a retrieval system by using only manual text-based retrieval, it is 

laborious, time-consuming and prone to errors. 

Query 

Image 

Feature 

Extraction 

Query 

Image 

Features 

Image  

Collection 

Image Features 

Database 

Similarity 

Matching 

Retrieved 

Images 

Figure 1.2: Process of CBIR system 
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The drawback of conventional text-based retrieval motivates researchers towards more 

effective text-based retrieval and CBIR in medical field, whereby CBIR has been among 

the most vivid research areas in the field of computer vision recently. A number of CBIR 

systems on medical images have been developed such as IRMA which is an automated 

classification system for radiography medical image (Lehmann et al., 2003); SPIRS which 

is a retrieval system specifically for spine x-ray image (Hsu  et al., 2009); MIMS as a 

medical image management system which concentrates on x-ray images (Chbeir et al., 

2000) and ASSERT which is a content-based retrieval system that is specific on high 

resolution CT images of lung (Shyu et al., 1999). Nonetheless most of existing systems are 

task specific which is limited to a particular modality, organ or diagnostic study. As there 

are various modalities of medical images produced daily in tremendously large quantities 

on different anatomical structures, this issue needs to be dealt with. 

Generally, multi-modality images are used to provide complementary and more 

information about the image obtained from different imaging systems (e.g., CT, MRI, x-

ray) compared to only any single image type (unimodal). As such, there is a significant 

need for multi-modality medical image retrieval concept for flexibility of the system to 

improve the overall performance with more exhaustive information. The characteristics of 

each modality in medical image need to be differentiated. The differentiation of each 

modality can be measured by using quality characteristics such as blur, contrast and noise 

and the visual features of texture, shape and color (Schowengerdt, 2006).  

 Information fusion from heterogeneous sources can lead to better understanding and 

improved accuracy compared to a single source (Hall & Llinas, 1997). Consequently 

combination of text and visual content-based information may improve the performance of 

retrieval systems for multi-modality images since these information sources are able to 
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extract the underlying semantic structure of particular documents (Depeursinge et.al, 2010; 

Saleem et.al, 2012; Zhao et.al, 2002; Zhou et.al, 2010). 

1.3.1 Text Retrieval in Medical Application 

Finding relevant information from large domain-specific text collections is an active 

research in text retrieval field and it is a challenging task to earn high efficiency and 

effectiveness in the performance (Volk et al., 2002). Domain-specific refers to restricted 

domain knowledge such as medical domain where terms are much more important than 

words (Radhouani et al., 2008). A term is defined as an exhaustive list of noun phrases that 

belong to a terminology; which has unique and significant meaning in a given domain 

(Missikoff et.al, 2003).  

Using conventional text retrieval may not be suitable since this approach directly extracts 

words and these meaningless words are used for indexing. Alternatively, indexing using 

term should improve the precision in text retrieval system since the index denotes 

significance in meaning.  

Terms in medical domain are highly synonymous and ambiguous. This leads to the 

motivation of expanding the original query terms using ontology (Bhogal et al., 2007). 

Identifying a suitable query expansion technique is required to improve performance in 

finding relevant documents based on user‟s query. The queries inserted by users may be 

general and ambiguous which can adversely affect efficiency and accuracy. The acronyms 

and abbreviations might be different from the queries and medical data in the collection 

(Stevenson & Guo, 2010). There is also a scenario that the medical terms in the queries do 

not match with those in the collection (Soualmia et.al, 2012). However, there is a 

possibility that the synonyms of the query terms are in the collection (Chen et.al, 2006).  
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Various retrieval models such as Boolean model (Serra, 1980) and statistical models 

(vector space (Lee et.al, 1997) and probabilistic models (Merialdo, 1994)) need to be 

compared in order to identify a suitable retrieval model for this research.  For a medical 

retrieval system, the performance measurement is based on the greater degree of relevant 

documents retrieved from queries. Therefore, it is significant to identify or create new 

ranking model to rank relevant documents according to the nearest degree to query and 

their importance. 

1.3.2 Content-based Image Retrieval in Medical Application 

CBIR or alternatively  known as query by image content or content-based visual 

information retrieval deals with the search by analysing the actual contents of images rather 

than the metadata such as keywords or descriptions associated with the images (Venters 

et.al, 2000). CBIR has significant application in medical field whereby it can be used to 

retrieve the known pathology images that are similar to patients‟ images, thereby assisting 

doctors in diagnosis or clinical activities. 

CBIR is based on automatically extracting features from the image itself. There are various 

forms in extracting visual features such as color, shape, and texture.  Furthermore the 

extraction of features can be in global, local or combination of both descriptors. Therefore 

it is important to identify suitable methods and techniques to extract visual features. 

Unfortunately, in CBIR system the interpretation of low-level features is different from 

high-level human analysis.  

There is the semantic gap of CBIR low-level features extracted by computer system and 

high-level human vision concept (Liu et.al, 2007). As such the information from low-level 

features is not sufficient to capture the semantic content of the image. Bridging the 
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semantic gap between low-level features and high-level semantic concept used by human is 

still a challenging problem (Wang et.al, 2010). A method to bridge the semantic gap is by 

training the medical data using machine learning technique based on supervised 

classification. However for this technique, it is important to identify the suitable classifiers 

for the classification (Zhang et.al, 2012). 

Digital Imaging and Communications in Medicine (DICOM) (Pianykh, 2011)  is a standard 

medical imaging format which includes information of modality, anatomy and pathology in 

the DICOM header. According to Lehmann (2002), 16% error rate has been reported for 

the field “anatomical region” in the DICOM header which contributes to the problem of 

using purely text-based methods in medical domain.  

For MIR in medical application, it is significant to know the semantic meaning of which 

category the image should be classified prior to any processing procedure (Mojsilovic et 

al., 2000). Therefore, the medical semantic conceptualization is essential to support 

effective retrieval system.  

1.3.3 Information Fusion in Medical Application 

Although the purely image-based method may not be able to replace text-based methods, it 

is very useful in complementing text-based method. Fusion of information sources of text 

and visual content may increase the performance of MIR in medical field. However, the 

detail components and processes regarding textual and visual features, their extraction and 

fusion approach need to be identified. Selection of an appropriate MIR model in 

information fusion for multi-modality medical data collection is important in order to 

produce a retrieval system that is capable to retrieve multi-modality medical images. The 

stages involved in the testing process need to be established, taking into account the order 
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and number of stages with either unit level of text and content-based separate execution or 

integration level of both text and visual sources. 

 

1.4 Main Aim and Objectives 

The main aim of this research work is to develop efficient and effective multi-modality 

medical information retrieval systems based on text, visual content and information fusion. 

In order to achieve this main aim, specific objectives are as follows. 

Objective 1: To design text-based framework for multi-modality medical information 

retrieval system. 

Sub-objectives: 

(1a) To manage medical documents in data collection for effective processing in 

assessing relevant documents in the higher position ranking.  

(1b) To manipulate appropriate thesaurus in extracting significant information 

for efficient performance. 

(1c) To formulate query model for medical retrieval system using external 

knowledge thesaurus in order to ease the medical terms extraction in the query. 

(1d) To form the strategies and steps in retrieval and ranking of relevant 

documents for effective performance. 

(1e) To conduct evaluation on effectiveness and efficiency of the framework. 
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Objective 2: To design visual content-based framework for multi-modality medical image 

classification system. 

Sub-objectives: 

(2a)  To implement appropriate indexing algorithm in visual features extraction. 

(2b) To create a platform for semantic description of visual features 

classification. 

(2c) To identify and apply suitable machine learning technique for multi-

modality medical image classification.  

(2d) To conduct a set of evaluations for global and local descriptors with visual 

features. 

Objective 3: To design multi-modality medical information retrieval framework based on 

information fusion of text and visual content. 

Sub-objectives: 

(3a) To form the steps for an integrated framework of text and content-based 

information sources. 

(3b) To conduct experiments based on information fusion of bimodal text and 

visual features. 

(3c) To perform a set of unit and integration evaluations with different features 

(text, visual and information fusion) and parameter settings in signifying the 

strength of our approach. 
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1.5 Research Focus and Scope 

This research is mainly focused on text, content-based and information fusion of multi-

modality medical information retrieval system. The testing and evaluation are based on 

medical data from ImageCLEF 2010 medical task collection. This collection consists of 

multi-modality medical images namely x-ray, ultrasound, MRI, CT-scan, nuclear medicine, 

graphical and optical imaging whereby each image is attached to a manually annotated 

medical text document in  XML format and the average number of words for each 

document is 67 (details in section 4.4). The classification of multi-modality medical image 

involves unbalanced datasets whereby some classes have huge number of samples 

compared to other classes with smaller number of samples. Due to the imbalance among 

the training data, one solution is to define a threshold for each class. Sixteen ad-hoc queries 

have been provided as in Appendix A and relevant judgment list is used for evaluation. The 

evaluation for text-based information retrieval involves precision, recall, mean average 

precision (MAP) and F-measure. These measurements measure the performance of 

retrieval system based on number of relevant documents retrieved. Meanwhile for medical 

image classification, the performance measurement is based on percentage of correctness 

rate in classifying multi-modality medical image. The final results are compared with other 

experimental setup and results generated by other researchers who used the same dataset. 

Initially, the design, development and evaluation process were done separately for text and 

content-based retrieval. The medical thesaurus is used to extract medical terms from the 

data. For content-based process, semantic-based classification is applied. Feature extraction 

of texture, shape and color is based on global and local descriptors and the combination of 

both.  These features were trained with model based on semantic description of medical 

concepts namely modality, anatomy and pathology using supervised machine learning 
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method. In improving the retrieval system for multimedia data, information fusion 

technique is applied. Combination of different information sources such as text and visual 

features may improve the accuracy results in MIR.   

 

1.6 Research Questions 

Several research questions have been posed as the questions become the driving force 

behind this research process and serve as guideline to conduct this research: 

Q1. How to manage huge text documents in a data collection? 

Q2. How to identify medical terms in a query or text document? 

Q3. What is the process involved to extract significant medical terms from medical 

documents? 

Q4. What is the suitable process to rank retrieved relevant documents? 

Q5. What is the process involved to extract visual features in multi-modality 

medical retrieval system? 

Q6. Does application of semantic description affect meaningful retrieval system? 

Q7. Do combining different sources of text and visual content affect performance of 

multi-modality medical information retrieval system? 

 

1.7 Research Methodology and Approach 

The research methodology comprises several principal stages as follows: 

 Literature review: The investigation of literature is divided into three main categories of 

text, content-based and information fusion analysis. The text-based retrieval strategies 
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were studied and compared. Furthermore the query expansion techniques were reviewed 

and the utilization of medical thesaurus is discussed. Other text-based retrieval systems 

that used the same ImageCLEF 2010 dataset were reviewed.  As for content-based 

analysis the approaches to extract visual features and classification based on semantic 

representation were investigated. Multi-modality medical image characteristics are 

discussed. The description of visual features of shape, texture and color were studied. The 

information fusion between different sources of text and content-based is discussed and 

the systems developed by other researchers are outlined. 

 Framework Design and Development: Text and visual content-based frameworks for 

multi-modality medical information are designed separately. The text-based framework 

of the system (text-based M3IRS) concentrates on retrieving the relevant medical 

documents based on text query. For text-based retrieval, there are several processes 

involved which are medical document pre-process, query expansion, retrieval and 

ranking processes as shown in Figure 1.3 (details in chapter 4). The retrieval strategy 

involves Boolean Model (Salton et. al, 1983) and number of term frequency (Salton et. al, 

1975). MedHieCon ranking model is used to rank the results retrieved. Generally the 

query will be processed and medical terms from the query will be extracted. Prior to that, 

medical documents will be pre-processed to remove noise and duplication and store in 

local repository. Later the medical terms from query will be matched with documents in 

local repository and produced relevant documents. These relevant documents will be 

ranked using MedHieCon ranking model associate with total of term frequency.   
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In contrast the visual content-based framework (content-based M3ICS) is based on multi-

modality medical images where the framework is designed to classify the medical images 

based on semantic-based medical concepts classification as shown in Figure 1.4 (details in 

Chapter 5). The feature extraction is based on global and local levels where the global 

features extract the whole image information.  Meanwhile the local level the feature 

extractions are based on 2×2, 4×4, 8×8 patches and also interest blocks of the medical 

image. The train data are classified based on medical concepts using supervised machine 

Figure 1.3: Text-based Framework of M3IRS 
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learning method. The train feature vectors are then stored at the train vector storage Later 

the test data is classified based on comparison function between test data and train data and 

the outcome produced is the medical image annotation. The comparison function is based 

on distance measurement calculation in two classifiers which are k-NN and support vector 

machines (SVM). 

 

 

 

 

 

 

 

 

Both text and content-based frameworks apply the same medical hierarchical conceptual 

(MedHieCon) model which contemplates on the concept entity of modality, anatomy and 

pathology. The third aim of this research is to design information fusion of both textual and 

visual analysis for the multi-modality medical information retrieval framework (IFM3IRS) 

as depicted in Figure 1.5 (details in Chapter 6).  Late fusion technique based on hierarchical 

processing is used in this research. In this framework the text-based retrieval is executed at 

the initial level and the results from text-based retrieval will be the input for the next level 

which is content-based retrieval. The main purpose to extract visual features from the 

Figure 1.4: Content-based Framework of M3ICS 
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images in text-based results is to filter the modality in order to retrieve accurate modality 

that is requested from the query (details in section 6.2). 

 

 

 

 

 

 

 

 

 Experiments: Unit and integration experiments were conducted. The execution of unit 

experiments is to amend and validate the text and content-based frameworks. The 

integration experiments were conducted using medical data from ImageCLEF 2010 

medical task for both text and content-based features. Details on experimental setup are 

described in Chapter 7.  

 Evaluation, Benchmarking and Results Analysis: The evaluation was performed on 

ImageCLEF 2010 medical task dataset. Performance will be measured based on the 

effectiveness of the framework which involved the evaluation of MAP, precision, recall 

and F-measure for M3IRS and IFM3IRS and percentages of correctness rate in medical 

image classification are analysed for M3ICS. There will be standard relevant judgments 

provided by ImageCLEF 2010 dataset as a benchmark to evaluate the frameworks 

Figure 1.5: Information Fusion of Text and Visual Framework (IFM3IRS) 
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performance. Furthermore, there will be a comparison between these frameworks with 

other run systems that used the same dataset.  

 

1.8 Research Achievements   

The following are the main research achievements produced as research output with the 

details described in corresponding chapters: 

 New frameworks of medical information retrieval system are formulated.  

 Local repository of medical documents and MeSH-Indexer are produced after 

document pre-processing and thesaurus organization. 

 Query expansion and enrichment are obtained. 

 A novel MedHieCon ranking model is developed. 

 Multi-modality Medical Information Retrieval System codenamed M3IRS and Multi-

modality Medical Image Classification System codenamed M3ICS are designed and 

developed for both multi-modality medical documents and medical images. 

 IFM3IRS framework based on information fusion is developed. 

 Performance comparisons between different features of textual and visual techniques 

are obtained. 

 Research publications (see Appendix B). 
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1.9 Thesis Outline 

The thesis is organized as follows: 

 Chapter 1 (Introduction) introduces the research which includes the motivation of 

undertaking this research and research background. Underlying problems are 

identified with the main aim and objectives as well as the research focus and 

pertaining research questions. It also gives an overview of the main stages involved 

in the research methodology and approaches as well as the main achievements.  

 Chapter 2 (Multi-modality Medical Images) describes medical image quality 

characteristics namely contrast, blur and noise. This chapter also presents review on 

the eight modalities of medical images used in this research study. 

 Chapter 3 (Review on Text, Content-based and Information Fusion Retrieval in 

Medical Domain Application) describes the state-of-the-art of information retrieval 

in medical domain. It explains the application of text-based retrieval in medical 

domain and medical thesaurus in order to extract significant information in medical 

documents. Retrieval strategy models are compared. It covers query expansion. 

Furthermore this chapter reviews visual features namely texture, shape and color in 

global and local descriptors. Machine learning classifiers of k-NN and support 

vector machine (SVM) are used for performance comparison. 

 Chapter 4 (M3IRS Text-based Framework and Module Descriptions) introduces 

M3IRS text-based framework which consists of four main components, namely 

document pre-processor, query processor, retrieval strategies and ranking strategies. 

Two types of ranking models which are Comprehensive and MedHieCon ranking 

models are introduced. 
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 Chapter 5 (M3ICS Content-based Framework and Module Descriptions) introduces 

M3ICS content-based framework which consists of two main components, namely 

feature extraction phase and classification of conceptual train data. Two types of 

architectures including global and local descriptors are introduced. Furthermore 

medical concepts are introduced in semantic annotation for medical images based 

on modality, sub modality, anatomy and pathology. 

 Chapter 6 (IFM3IRS Information Fusion of Text and Content Retrieval) introduces 

the combination of textual and visual results to increase IFM3IRS performance. 

Sequence processing in late fusion technique is used where the result from textual 

framework is evaluated using visual features in order to get better result. 

 Chapter 7 (Experimental Setups and Framework Evaluation) describes the 

experimental setups executed in this research. This includes five main sections 

namely (i) multi-modality medical image characteristic evaluation, (ii) M3IRS 

textual-based framework, (iii) M3ICS content-based framework, (iv) IFM3IRS 

information fusion framework and (v) performance evaluation criteria.   

 Chapter 8 (Results and Discussion) presents the results based on the experiments 

described in chapter 7.  

 Chapter 9 (Conclusions and Future Research Implication) concludes this research 

with various findings and suggestions for future research direction.  
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2.0 Multi-modality Medical Images 

 

2.1 Introduction 

Modern computer technology has created the possibility for human to diagnose abnormal 

conditions and thus able to guide therapeutic procedures (Yamaguchi et.al, 2013). 

Nevertheless, there is no such medical image that can completely reveal the human 

structure. Sprawls (1995) mentioned that the visibility of body structure and the quality of 

medical image is depend on medical imaging equipment, operator‟s skill, imaging time and 

patient radiation exposure. 

New technologies in medical imaging methods have led to the existence of multi-modality 

medical images such as x-ray, US and CT scan. Quality medical images help doctors in 

good decision making (Covens et.al, 2012).  This chapter presents factors that influence the 

quality of medical images followed by the description of multi-modality medical imaging 

method. 

 

2.2 Medical Image Characteristics 

Different modalities of medical imaging (MRI, CT & etc) generate images either via 

detection of photons or the use of electromagnetic waves (Khandelwal et.al, 2012). These 

different medical imaging methods divulge different characteristics of the human body.  

The quality of these modalities can be measured and compared through contrast, blur, 

noise, artifacts and distortion (Tsai et. al, 2011) as shown in Figure 2.1. The quality 

characteristics of contrast, blur and noise concentrates on the affect of visibility objects in 

imaging methods. Meanwhile artifacts and distortion characteristics do not significantly 
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affect object visibility and interpreted more as an anatomical feature (Iskandrian & Garcia, 

2008). In addition to visual features of shape, texture and color that are used for feature 

extraction; we also emphasize on the measurement of contrast, blur and noise for each 

modality for further analysis to review the significant affect of object visibility in multi-

modality medical images.  

 

 

2.2.1 Contrast 

Contrast is the most fundamental characteristic of an image. Contrast represents visual 

properties determined by the difference in color, intensity and brightness of the image. 

Visibility of anatomy and sign of abnormal conditions in medical images depend on the 

contrast that is present in the image (Saleem et al., 2012).  

In medical image, the contrast sensitivity represents the lowest contrast of the image which 

is able to visualize more detail objects such as soft tissue. Contrast sensitivity is one of the 

significant characteristics in imaging methods since this variable relates to the system‟s 

ability to translate physical object contrast into image contrast. CT image generally has 

Figure 2.1: Components associated with the medical imaging process.  

Adapted from (Kuhn, 1995) 

 

http://en.wikipedia.org/wiki/Color
http://en.wikipedia.org/wiki/Brightness
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higher contrast sensitivity than conventional radiography due to its ability of imaging soft 

tissue objects which are not visible in radiography image (Sprawls, 1995).  

Contrast of an image can be measured by quantifying the intensity contrast between a pixel 

and its neighbours over the whole image (Soille, 2003) which can be mathematically 

represented as 

                                               ∑ |   |                                                                 (2.1) 

where i is the row number; j is the column number in the image and P(i,j) is the normalized 

value in the cell i,j. For example images may have poor contrast due to glare. In image 

processing normalization, also known as contrast stretching is a process which changes the 

range of pixel intensity values. Normalization has the purpose to bring the image into a 

range that is more familiar or normal to the senses to achieve consistency in dynamic range 

for a set of images to avoid mental fatigue (Sivakumar, 2004).  

2.2.2 Blur 

Blurring effect occurs in all imaging processes including medical imaging methods. 

Different modalities have different effect of blur. This characteristic reduces the contrast 

and visibility of small objects (Liang, 2008). Nevertheless there are medical imaging 

methods that produce sharp images.  Blur effect can be measured in units of length. The 

value represents the width of small blurred object in various modalities as depicted in 

Figure 2.2. The figure shows that radiography image has the most blur effect. This explains 

why radiography image has limitation in viewing the visibility of small objects and 

structures.  

 

http://en.wikipedia.org/wiki/Pixel
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Blur effect can be presented in three descriptions namely blur size, blur shape and blur 

profile. Blur size represents the amount of blurring which is presented as the dimension of 

blurred image of a very small object point (Ramakrishnan, 2010). Different modalities may 

produce different blur shape. For example x-ray images produce round blur patterns. In 

contrast, CT and MRI images produce square or 3D blur patterns. Finally, the blur profile 

specifies the manner in which the point image is spread or distributed within the blur area 

(Susil & Taylor, 2007). 

Medical images are complex and different modalities of medical image have different 

levels of blur. No-reference blur estimation method can be used to measure blur in the 

image. This method is used to measure the blur in an image by blurring it and comparing 

the variations between neighbouring pixels before and after applying low-pass filters (Crete 

et al., 2007) as illustrated in Figure 2.3. 

 

 

Figure 2.2: Range of blur values in multi-modality of medical image.  

Adapted from (Kuhn, 1995) 
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2.2.3 Noise 

Image noise is a common problem in all imaging processes. The existence of noise leads to 

mottled, smeared, grainy textures or snowy appearance in images. Sometimes noise is used 

to cover and reduce the visibility of certain features within the images. This function is 

significant to use if we need to reduce the visibility of low-contrast objects (Adams Jr, 

2010).  NM medical imaging has the most noise effect followed by MRI, CT and US. In 

contrast, modality of x-ray constructs less noise since x-ray has the highest value of blur. 

The noise in the images can be reduced by blurring the images. This is because blurring 

technique can reduce the visibility of image details (Wang et.al, 2004). Noise in an image 

can be measured using spatial frequency distortion weighting (Miyahara, 1998).  

Signal-to-noise ratio (SNR) is used in science and engineering field as the measurement to 

compare the level of a desired signal to the level of background noise (De Boer et al., 

2003). It implies the ratio measurement of useful information (signal) to false or irrelevant 

data (noise) as shown in equation (2.2). 

                                                        
       

      
                                                            (2.2) 

Figure 2.3: Simplified flow-chart of the blur estimation principle  

Adapted from (Crete et al., 2007) 
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 where P is average power. Nevertheless signal has a very wide dynamic range. To reduce 

this wide range, logarithmic function is used to obtain normal scale of values. For instance 

SNR is described using logarithmic decibel scale in amplitude ratio as follows 

                                                
       

      
                                                          (2.3) 

Measuring SNR in images requires vision contrast sensitivity function which can be 

presented in spatial frequency (Miyahara, 1998). Spatial frequency can be approximately 

modeled as  

                                                          
                                                  (2.4) 

where    ,   
   

  
  ,   √       and u and v are the horizontal and vertical spatial 

frequencies in cycles per degree. 

2.2.4 Artifacts 

The characteristics of contrast sensitivity, blur, and noise in imaging method have caused 

the visibility of certain body objects.  Nevertheless image artifacts create image features 

that do not represent a body structure or object and can obscure a part of an image or may 

be interpreted as an anatomical feature. A variety of factors associated with each imaging 

method can cause image artifacts such as the changes of main magnetic field around certain 

objects or tissues due to the difference properties of magnetic susceptibility (Toennies, 

2012). 
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2.2.5 Distortion 

A medical image should not only make internal body objects visible, but should give an 

accurate impression of image representation. Image distortion involves imaging procedure 

that provides size, shape, and relative positions of the image (Maintz & Viergever, 1996). 

Since in many situations, artifact and distortion characteristics do not significantly affect 

object visibility and diagnostic accuracy, we will not use these characteristics as quality 

characteristics measurement. 

 

2.3 Multi-modality Medical Imaging Method 

In this research we concentrate on eight different modalities of medical images namely x-

ray, computed tomography (CT), ultrasound (US), nuclear medicine (NM), positron 

emission tomography (PET), magnetic resonance imaging (MRI), optical imaging (PX) and 

graphic imaging (GX) from ImageClef 2010 medical data collection are used  (Müller H., 

2010). 

2.3.1 X-ray  

X-ray imaging is a transmission-based technique and a form of electromagnetic radiation. 

Different tissues have different value of contrast because of different attenuation of x-ray. 

Image produced in x-ray radiography is a two-dimensional projection of the tissue lying 

between x-ray source and the film. There are several different imaging techniques that 

apply x-ray namely angiography, fluoroscopy and mammography (Ammari, 2008) as 

depicted in Figure 2.4. Angiography is used on visualizing the inside of blood vessels and 
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organs of the body, such as the arteries, veins and the heart chambers. Fluoroscopy 

concentrates more on genitourinary and gastrointestinal. Fluoroscopy transmits a 

continuous x-ray image on a monitor, like an x-ray movie for diagnosis by displaying the 

movement of a structural body part or of an instrument or dye as contrast agent through the 

body. Mammography focuses on detecting small lesion in breast (Shambaugh et al., 1995).  

 

 

 

 

 

The quality characteristic of x-ray imaging can be measured from SNR, non-uniform 

distribution of signal intensities, spatial resolution and contrast-to-noise ratio (CNR) which 

is the contrast of image that relates to the difference on intensity between body regions. The 

effect from SNR and spatial resolution also affect the CNR value. Therefore the ability of a 

physician to interpret an x-ray image depends on CNR value (Kalender, 2001). 

2.3.2 Computed Tomography (CT)  

Computed tomography is a medical imaging method that produces three-dimensional 

radiography image of a body structure that is constructed by a computer from a series of 

plane cross-sectional images made along an axis (Ammari, 2008). An example is illustrated 

in Figure 2.5. CT is used for various clinical purposes such as cerebral scans, pulmonary 

disease detection and abdominal imaging (Kalender, 2001).  CT image is the first medical 

Figure 2.4: X-ray images of (a) chest x-ray radiography, (b) blood vessel angiography  

(c) breast mammography and (d) colon fluoroscopy. Adapted from (Müller et al., 2010; MedPix, 2009). 

    

               (a)                  (b)        (c)   (d) 

http://en.wikipedia.org/wiki/Medical_imaging
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application that utilizes x-rays for forming images of tissues based on their x-ray 

attenuation coefficient. CT images have a high spatial resolution value and provide 

reasonable contrast between soft tissues. 

 

 

 

 

 

 

 

 

 

Fundamentally, tomography imaging deals with reconstructing of a series of one-

dimensional projections to obtain image integral in the direction specified by different 

angles, as illustrated in Figure 2.6.  

 

 

 

 

 

 

 

 

    

Figure 2.5: CT images of abdomen. Adapted from (MedPix, 2009; Müller et al., 2010) 

Figure 2.6: A patient receiving a CT scan for disease scanning  

Adapted from (Macmillan Cancer Support, 2010) 
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2.3.3 Ultrasound (US) 

Ultrasound is a frequency-based, relatively simple, portable and relatively inexpensive 

diagnostic imaging method (Cosgrove, 2011).  Ultrasound image is produced via 

backscattering of mechanical energy from boundaries between tissues and from small 

structures within tissue. Different values of frequency are used to view different objects. 

For example low frequencies of 1-3 MHz are used to view deep-lying structures such as 

liver and higher frequencies of 5-10MHz are used for objects closer to body surface such as 

baby fetus (Wieszczycka & Scharf, 2001). Figure 2.7 illustrates an US. The US image 

characteristics such as contrast, signal intensity and noise are determined by the 

propagation properties of ultrasound via tissue and the interactions that give rise to 

backscattered signals.  

 

 

 

 

 

 

 

This imaging method is mostly used in obstetrics and gynaecology involving the 

assessment of fetal health and detection of compromised blood flow in veins and arteries. 

However, the disadvantage of ultrasound is that is has relatively poor soft-tissue contrast 

and not all body organs can easily be imaged. Nevertheless US is a fast imaging technique 

 

Figure 2.7: Ultrasound image of fetus. Adapted from (Müller et al., 2010) 
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since it can be performed a full image from one single transmit whatever the size 

simultaneously without the time delay and has high spatial resolution (Kulandavelu et al., 

2006). 

2.3.4 Nuclear Medicine (NM)  

A unique capability of nuclear medicine is the use of specific radiotracers known as 

radiopharmaceuticals for imaging organ function and disease condition (Moriguchi et.al, 

2013). Nuclear medicine procedures have the ability of mapping physiological function and 

metabolic activity which contribute to provide more specific information about the organ 

function and dysfunction (Signore et al., 2010). In contrast with other modalities of medical 

imaging, NM technique images the spatial distribution of radiopharmaceutical introduced 

into the body. The role of NM image is as an indicator to monitor the development of 

patient‟s disease by imaging the pathological conditions via inhalation into the lungs, direct 

injection into the bloodstream and oral administration (Cherry, 2003). The chemical 

structures of particular radiopharmaceuticals reveal the biodistribution in the body and act 

as strong indicator of disease.  Figure 2.8 shows an example of nuclear medicine image. It 

is significant to have imaging technique that is sensitive to these early biochemical changes 

for clinical diagnosis (Stoker, 2009). The mapping of the radiopharmaceutical distribution 

produces images of functional morphology of organs in a non-invasive manner. It is useful 

for diagnosis of many common diseases associated with organ malfunctioning and in 

detection of certain type of cancers (Theis & Meyer-Bäse, 2009). The characteristics of 

NM image are low SNR and poor spatial resolution. However, this imaging method has 

very high CNR value compared to other modalities. Due to the availability of a vast range 

of specific radiopharmaceuticals there are widespread usage and growing demands for such 

techniques (Malvi, 2012). 
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2.3.5 Positron Emission Tomography (PET) 

Positron emission tomography is a nuclear imaging technique that is used to map the 

biodistribution of positron-emitting radiopharmaceutical within a body as illustrated in 

Figure 2.10.   

 

 

 

 

 

 

 

 

     

 

 

Figure 2.9: Example of nuclear medicine images of pediatric pulmonary and 

cardiovascular complications. Adapted from (Müller et al., 2010; Kendall, 2010). 

Figure 2.10: PET method for predicting ischemic stroke in patients with symptomatic 

carotid arterial occlusion. Adapted from (Müller et al., 2010) 
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Positron-emitting tomography is a tracer system that detects pairs of gamma rays emitted 

indirectly and thereby produces a three-dimensional image or picture of functional 

processes in the body (Valk et al., 2006). PET concentrates on measuring the physiology 

and function rather that imaging the structure of the anatomy. PET is clinically mainly used 

in oncology, cardiology and neurology for tumors in breast, lung, head and neck. This 

imaging method can distinguish diseased from healthy tissue (Kitson et al., 2009). 

However PET is an expensive medical imaging method which typically costs USD 1.5 to 

7.5 million for a system. 

 

2.3.6 Magnetic Resonance Imaging (MRI) 

Magnetic resonance imaging is a three-dimensional imaging method and it‟s excellent in 

soft-tissue contrast and high spatial resolution. The drawbacks of MRI are that (i) this 

technique is slower than US or CT scan, vulnerable to patient motion and (ii) the cost of 

MRI imaging method is relatively high. In MRI imaging technique, the patient is placed 

inside a scanner with a very strong magnet (Fass, 2008). Then spatial information is 

encoded into the image using magnetic field gradients. An MRI technique is mainly used 

for assessing brain disease, spinal disorder and musculoskeletal damage. In clinical 

diagnosis, MRI technique can provide a series of slices which include well defined 

orientation and thickness via anatomical area of interest (Lee & Carroll, 2010). The choice 

of slice-select direction states the orientation of coronal, axial and sagittal as illustrated in 

Figure 2.11. 

 

 

http://en.wikipedia.org/wiki/Gamma_ray
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2.3.7 Optical Imaging (PX)  

Optical imaging used in this research is categorized into two categories namely microscopy 

image and gross medical image. Microscopy image  as shown in Figure 2.12 involves 

inference from the deflection of light emitted from laser or infrared  source to structure, 

texture, anatomy and chemical properties of material  such as crystal and cell tissue 

(Weissleder & Mahmood, 2001). 

 

 

 

 

 

 

        

                   (a)     (b)    (c) 

 

Figure 2.11: A series of MRI brain images in (a) coronal, (b) axial and (c) sagittal directions 

Adapted from (Müller et al., 2010; Kendall, 2010). 

Figure 2.12:Microscopy image of cell tumor of abdomen Adapted from (Müller et al., 2010). 

http://en.wikipedia.org/wiki/Light
http://en.wikipedia.org/wiki/Structure
http://en.wiktionary.org/wiki/texture
http://en.wikipedia.org/wiki/Anatomy
http://en.wikipedia.org/wiki/Crystal
http://en.wikipedia.org/wiki/Cell_tissue
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A microscopy image process begins with fundamental techniques and intended to produce 

the most accurate information contained in a microscopic sample. The process includes 

adjusting the brightness and contrast of the image, averaging images to reduce image noise 

and correcting for illumination non-uniformities (Russ, 2006). 

Gross medical image is for the study of anatomy at the macroscopic level as depicted in 

Figure 2.13. 

 

 

 

 

 

 

 

Gross medical image represents the anatomy structures that are too small to be seen by eye 

such as internal organs. Endoscopy is used to view internal organs in which a video 

camera-equipped instrument is inserted via a small incision in the subject to explore the 

internal organs and other structures of living animals (Gono et al., 2004). 

 

 

 

Figure 2.13: Gross medical image of a resected gallbladder 

Adapted from (Müller et al., 2010). 

http://en.wikipedia.org/wiki/Anatomy
http://en.wikipedia.org/wiki/Macroscopic
http://en.wikipedia.org/wiki/Video_camera
http://en.wikipedia.org/wiki/Video_camera
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2.3.8 Graphic Imaging (GX) 

Graphic imaging represents graphical medical data such as chart and diagram. For example 

ECG diagram that is used to measure the electrical activity of the heart as shown in Figure 

2.14 

 

 

 

 

 

 

 

2.4 Summary 

Eight different modalities namely x-ray, CT, US, NM, PET, MRI, PX and GX are 

discussed in this chapter which also covers contrast blur and noise characteristics. 

Appendix C shows several multi-modality medical images that will be used in this 

research. Table 2.1 shows the summary of technique used advantage and disadvantage of 

each modality. 

     

Figure 2.14: Diagrams of different pulse sequences for the visualization of 

myocardial infarction. Adapted from (MedPix, 2009; Müller et al., 2010). 
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Modality Imaging Technique Advantage Disadvantage Comments 

x-ray  transmission-based technique 

 electromagnetic radiation 

image 

x-ray constructs less noise limited in viewing the visibility 

of small objects and structures 

several x-ray imaging techniques : 

angiography, fluoroscopy and 

mammography 

CT  three-dimensional 

radiography image of a body 

structure  

 Provide one-dimensional 

projections in different angels 

ability of imaging soft 

tissue objects  

High noise effect Suitable for clinical purposes such as 

cerebral scans, pulmonary disease 

detection and abdominal imaging 

US  frequency-based technique Inexpensive,  fast imaging 

technique and high spatial 

resolution 

poor soft-tissue contrast  Used widely  in obstetrics and 

gynaecology field  

NM  spatial distribution-based  of 

radiopharmaceutical  

Used to monitor the 

development of patient‟s 

disease 

poor spatial resolution NM imaging  act as strong indicator of 

disease  

PET  map the biodistribution of 

positron-emitting 

radiopharmaceutical  in body 

measuring the physiology 

and function within body 

expensive medical imaging 

method 

PET is clinically mainly used in 

oncology, cardiology and neurology 

for tumors in breast, lung, head and 

neck. 

MRI  three-dimensional imaging 

method with  soft-tissue 

contrast and high spatial 

resolution 

provide a series of slices via 

anatomical area of interest 

slower than US or CT scan 

expensive medical imaging 

method 

Mainly used for assessing brain 

disease, spinal disorder and 

musculoskeletal damage 

PX  microscopy image  

 gross medical image.  

High-contrast, high-

resolution images  

Ideal for studying and 

interpreting thin specimens 

Thick specimens can appear 

distorted  

Shade-off and halo effect 

The capacity to observe living cells 

and, as such, the ability to examine 

cells in a natural state 

 

GX  chart, diagram or graph  Non-complex medical data Not represent and part of body 

structure 

Used in medical  reports 

Table 2.1: Summarize of Imaging Technique, Advantages and Disadvantages for Multi-Modality Medical Image 
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3.0 Review on Text, Content-based and Information Fusion Retrieval 

 in Medical Domain Application 

 

3.1 Introduction 

Information retrieval plays a significant role in transmitting knowledge in the forms of both 

text and images. Concerning the tremendous amount of visual information produced due to 

its fast growing technology and medical necessity, it is obvious that the development of 

retrieval systems using traditional text-based is becoming obsolete (Ziegler et. al., 2012). 

The visual information provides significant information in representing medical 

knowledge. With the advancement in digital multimedia technology, medical information 

systems are continuously expanding to combine different types of information sources 

including text, document, image, graphics, video and hypertext. This chapter gives an 

overview of text and content-based retrieval studies in general and specific to medical-

domain and outlines the significance of retrieval based on information fusion of text and 

content-based information sources.  

 

3.2 Text-based Retrieval  

The main idea of IR in text retrieval which involves the process of representation, storage, 

organization, and access to information items (Baeza-Yates & Ribeiro-Neto, 1999) is to 

locate documents that contain terms that users specify in queries. The objective of an IR 

system is to retrieve information which is related to the query and might be useful to the 
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users. User queries can be ad hoc, which are simple and short query or case-based query 

which represents lengthy description of scenario. The query must be extracted into a set of 

keywords which summarize the description of the needed information. However the 

increasing amount of text information in many application domains such as medicine, 

digital libraries and the Web, brings new challenges to information retrieval.  

 

Apparently, conventional information retrieval system which uses direct match word is not 

suitable for specific domain such as medical domain. This is because in conventional IR 

systems process treats specific words of domain as ordinary terms using general statistical 

methods (Salton et. al, 1983). Furthermore this traditional IR system treats the variations of 

specific subjects, synonyms and/or abbreviations as different terms and not related with the 

specific term (Salton et. al, 1984).  Extracting meaningful term from the text by applying 

term-based information retrieval in particular, plays a significant task towards better 

understanding of the contents of document collections and can be used for improving the 

accuracy of processes such as document indexing and retrieval (Drymonas et al., 2010). 

Term can be defined as words or multi-words expression that contrast with general 

language words (Quirk et. al, 2012). For example the word “card” in general language can 

be any card such as poker card, credit card or maybe a birthday card. Nevertheless if “card” 

defined as a term, in a specific knowledge such as computer; the word “card” can be 

understood as memory card. Terms are deliberately created for scientific or technical 

linguistic understanding, specialized concept distinction and classification purposes 

(Hliaoutakis et al., 2006). Terms can also be related to existing knowledge. The notion of 

term similarity also has been considered in different ways such as terms may have 

functional, structural, lexical or other similarities. Using the information access between 
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terms from a corpus is indispensable for improving information extraction, document 

categorization and information retrieval (Meyer & Mackintosh, 1994). 

 

IR system works as an engine to compare the query with documents in the collection and 

returns the documents that suit with user‟s query. Initially, data in document collection is 

indexed prior to any user query. The measurement of similarity between query and the 

indexed document is known as retrieval strategies (Sy et. al, 2012). Retrieval strategy is 

based on the common notion that the more terms are found in both document collection and 

query, it is considered to be more relevant to the query (Jimeno-Yepes et. al, 2010). The 

basic algorithm in retrieval strategy consists of a query, a set of document and the 

measurement of similarity or ranking value also known as retrieval status value (RSV). 

Techniques that exist in retrieval strategies can be of Boolean model or statistical models 

such as vector space (Salton et.al, 1975) and probabilistic (Merialdo,1994). Query 

expansion technique can be used to improve the performance of IR by producing 

significant keywords which lead to the direction of retrieving more relevant data from the 

collection. The next section gives more descriptions of retrieval strategies followed by 

query expansion technique.  

 

3.3 Retrieval Strategies 

Retrieval strategy which is a major process in IR systems works as a similarity 

measurement between a query and document. The retrieval strategies are based on the 

common notion that the higher occurrence of terms found in document and the query, the 

more „relevant‟ the document is deemed to be to the query (Grossman & Frieder, 2004). 
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Generally, a retrieval strategy represents an algorithm which involves a query Q, and a set 

of documents Dx = (d1, d2,…dx) and identifies the similarity S(Q,Dx) for each document di, 

        Conventionally, there are two main models of retrieval strategy methods 

namely Boolean model and statistical model with vector space and probabilistic models in 

the statistical model which are described in the following sections where the variables and 

subscripts are written within context with most of them in standard consistent 

representations.  

3.3.1 Boolean Model 

Boolean approach is a simplified retrieval model based on set theory and Boolean algebra. 

It is based on the following mathematical idea and representation. 

 Document     (          ) represent sets of terms {         }. Queries are Boolean 

expression terms [     ⋀       ⋁     ]    where index terms are AND (⋀), OR ( ), 

and NOT ( ).  

The query is equivalently represented in disjunctive normal form (DNF) as depicted in 

Figure 3.1 where 1 and 0 refer to existence or non-existence of {         } terms 

respectively. The similarity measurement between the document dj and query q can be 

defined as in equation (3.1) where 1 equals to relevant document and 0 is a non-relevant 

document and c represent the term match.  
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Boolean approach offers several advantages in IR.  The algorithm is easy to implement and 

it is computationally efficient (William, 1992). Also it enables users to express structural 

and conceptual constraints to describe important linguistic features (Marcus, 1991). 

Professionals in specific domain such as economic (Alexander, 2003) and biomedical 

(Darabos, 2011) prefer to use Boolean model since the results are precise which means 

document either matches the query or not. This offers users greater control and 

transparency over what is retrieved. Furthermore, the Boolean approach possesses a great 

expressive power in its representation and clarity in interpretation.  

 

However the drawback of this model is that its retrieval strategy is based on a binary 

decision criterion (i.e. a document is predicted to be either relevant or non-relevant) 

without any notion of grading scale. Furthermore, using Boolean model, the result obtained 

 

 

 

(3.1) 

Figure 3. 1: Boolean expression query representation 
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is very rigid and difficult to be ranked according to its relevancy to the query since all 

matched documents logically satisfy the query (Lucarella, 1988) in the sense of its 

algorithm without relevance weightage. 

3.3.2 Vector Space Model (VSM) 

Vector space model (VSM) is an algebraic model for representing text documents (and any 

objects, in general) as vectors of identifiers, such as, index terms (Salton et al., 1975).  

VSM involves vector presentation of document and query; which document in    

 (          ) is conceptually represented by a vector of terms frequencies    

                   where     (       is a non-negative value denoting the single or 

multiple occurrences of i th term (or can also be written as term i) in document  . The 

terms extracted from the document, are associated with weights representing the 

importance of the terms in the document and within the whole document collection. Thus, 

each unique term in the document collection corresponds to a dimension in the space. 

Similarly, a query, Q is modelled as a list of terms frequencies                   where     

          is a non-negative value denoting the number of occurrences of  i th term in 

the query, denoting the weights and reflecting importance of the terms in the query. A 

common approach to represent terms weight for documents is inverse document frequency 

(idf) method.   

 

Precisely, the weight,        of a term i in document j  is depicted as                      

which also equals to                
 

    
     where             is term i occurrences in the 

document j and df i   is number of documents that contain term  i  and N is the number of 

documents in the document collection.  
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Once the term weights are determined, similarity measurement between query and 

document vectors is required to rank the document. Precisely, the similarity between Dj  

and Q is defined as a simple coefficient (SC) represented by the dot product of two vectors 

as in equation (3.2) 

                                    (    )  ∑    
 
                                                             (3.2) 

There are also several other techniques used based on VSM. Among the popular 

approaches for computation of similarity based on the statistical representation of the 

documents  are  (i) cosine similarity that measures the similarity between two vectors by 

measuring the cosine of the angle between them (Tata & Patel, 2007), (ii) Dice coefficient 

which may be defined as twice the shared information (intersection) over the sum of 

cardinalities (Mihalcea et al., 2006), (iii)
        which is used to evaluate how important a 

word is to a document in a collection or corpus based on the number of the word‟s 

occurrence in the documents (Hiemstra, 2000).  

Recently VSM has been used in many medical retrieval models (Alexandros, 2010; Díaz-

Galiano, 2010; Hong Wu, 2010) since it allows easy ranking based on weight given for 

each term in the data. VSM is also a simplified direct mathematical-based approach that 

provides partial matching and efficient for large document collections.  

Nevertheless, there are also several issues related to VSM which include missing semantic 

and syntactic information such as phrase structure and proximity information (Sharef & 

Madzin, 2012). At the matching step the method solely depends on the weight of terms (as 

in its formulation in this model) which does not represent how important that particular 

terms in the document. Moreover a weight is computed for every term in the document 
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with the possibility to have zero-valued components to increase (Grossman & Frieder, 

2004; Göker & Davies, 2009) and this dissipates the available storage space.  

3.3.3 Probabilistic Model 

The probabilistic model computes the SC between Dx and Q as the probability that the 

document will be relevant to the query. The probabilistic model uses formal probability 

theory and statistics to estimate the probability of relevance document. This approach is 

used to improve the drawback of VSM retrieval model that ranks retrieved items by 

similarity measure whose values are not directly interpretable as probability (Robertson & 

Jones, 1976). The probabilistic model is suitable to use when relevant and non-relevant 

data are available (Göker & Davies, 2009). 

Technically, the term‟s weight estimation is based on how often the term appears or does 

not appear in relevant documents and non-relevant documents. Probability Ranking 

Principle (PRP) is used to determine optimal effectiveness which occurs when documents 

are ranked based on an estimate of the probability of their relevance to a query (Robertson, 

1977). The terms in the query are assigned weights which correspond to the probability.  

Consider a document    with list of terms             . Assume that    is the term   that 

results to     being relevant.  Weight value for each      is based on the probability of 

relevance for each      in a document as stated in (3.3).  

                                
    |    

     |       
                                            (3.3) 

where     represents relevant document and        represents non relevant document. 

Then the probability for each term is combined to compute the final probability that a 

document is relevant to the query as expressed in (3.4).  
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                   ∑     
   

    |    

    |       
                                       (3.4) 

Probabilistic model does not require any additional term weighting algorithm to be 

implemented and the ranking algorithms are completely derived from theory. The 

disadvantage of probabilistic model is the difficulties to access the information of relevant 

and non-relevant documents. As such this model is inadequate for web search or typically 

short queries since long sentence queries are needed to distinguish term presence and 

absence in documents (Göker & Davies, 2009) for probability computation.  In this 

situation, probability of relevance estimation is of theoretical interest only. Moreover, 

probabilistic model only defines a partial ranking of the documents and does not allow the 

user to really control the retrieved set of documents (Hiemstra, 2001). 

 

3.3.4 Language Model 

Statistical language models were developed as a general natural language processing tool. 

Language models were first successfully used for automatic speech recognition at the end 

of the 1970‟s. The theory behind the speech recognition models is part of hidden Markov 

model theory. Recently, hidden Markov models are studied as part multivariate 

probabilistic models used in statistics, systems engineering, information theory and pattern 

recognition.  

There are two models in statistical language model which are basic retrieval model and 

statistical translation retrieval model. The basic model defines the system‟s matching 

process. The statistical translation model adds statistical to the basic retrieval model to 

model both the matching process and the query formulation process. Matching is modelled 
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by the generation of a random query from a relevant document and query formulation is 

modelled by translation of the query into the request (Hiemstra and De Jong 1999). 

 

 

 

Figure 3.2 suggests an information theoretic view of the problem (Miller et al, 1999; Berger 

and Lafferty, 1999). Information theory was developed by Shannon (1948) to model the 

problem of decoding a message that is sent over a noisy communication channel. From this 

viewpoint, a relevant document d gets „corrupted‟ into a query       by sending it through 

a noisy channel, and the query gets again corrupted into a request       by sending it 

through a second noisy channel.  A natural language information retrieval system can be 

thought of as a decoding function             that tries to reproduce the message that 

was originally sent, that is, to find the document that is relevant to the request. An optimal 

retrieval system will choose           such in equation 3.5 

                                          =  
      

 
   P(D=d|S1 =s1,· · ·, Sn =sn) 

By Bayes‟ rule and because P(S1 = s1,· · ·, Sn =sn) does not depend on d as in equations 3.6 

and 3.7 

                                     
      

 
  P(S1 = s1,· · ·, Sn =sn   ,D=d)  

         
      

 
  ∑                                                             

 

(3.5) 

(3.6) 

Figure 3. 2: Model of matching and query formulation 

(3.7) 
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Because there are two independent channels as shown in equation 3.8:  

    
      

 
  
∑                       |                                   

                    |           
 

 

       is the prior probability of relevance of the document d, and                   

  |      is the probability of the query given a relevant document. Together        

and and                     |     define the matching model.                    

   |                     is the probability of the natural language request given the 

query, which defines the query formulation  model. A real life retrieval system does not 

know these probabilities, but instead defines them by some simple basic principles. A basic 

principle for the matching model might be that each document has the same probability of 

being relevant, and that within a document each occurrence of a term has the same 

probability of ending up in the query. A basic principle for the query formulation model 

might be that each query term is translated to one and only one word in the request. 

 

3.3.5 Comparison of Retrieval Strategy Models 

Boolean model in IR is easy to implement and well-understood due to its clear 

representation and procedure and since it is exact matching between query and data 

collection (Salton et. al, 1983). Furthermore, this model provides users control and 

transparency on the result retrieved (Langer et. al, 2011). However the main disadvantage 

of Boolean model is that it is too rigid with the result (Das-Gupta, 1988). This leads to 

many non-relevant documents retrieved. Furthermore, it is difficult to rank the result 

(3.8) 
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obtained using Boolean model since it is not numerical weight-based retrieved document 

(Grossman, 2004).  

 

In statistical model, both probability and vector space models are better at this task because 

they rank retrieved documents according to the number of occurrences of semantic 

closeness term to the original query and to the importance of the query terms (Grossman, 

2004).. However, these heavy index-based approaches require large indexing storage, 

demand extra effort and pose sparse data representation (Sharef et. al, 2012). A weight 

computed for a term in a document vector is non-zero only if the term appears in the 

document. This is not suitable for a large document collection where the document vectors 

are likely to contain mostly zeros when there is no term match occurs in the documents 

(Caudill, 2009). This will lead to generate sparse matrix offline which is time consuming 

and not necessarily useful when no query regarding the recorded terms are handled 

(Grossman et. al, 2004). Furthermore, adding a single new document will lead to the 

changes of document frequencies of term occurrences which changes to vector lengths of 

every document and it is required to re-rank the document using the new vector value 

(Göker et. al, 2009).  

In probabilistic model, the terms are assumed independent since handling dependencies 

involves complexities and substantial computation in probability formulation (Heckerman 

et. al, 1990). Therefore, there is an issue in computing the effectiveness of this method 

when dependencies are considered and it is required to know the relevant and non-relevant 

documents of the data collection. Moreover this method is computationally expensive, and 

difficult to obtain sufficient training data for both relevant and non-relevant data (Grossman 

et. al, 2004). 
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3.4 Query Expansion 

There is situation where the query from the user is too general or data collection is too big 

and the user is then faced with information overload (Efron, 2011). In some queries, the 

best words that describe a relevant document set are too general, and impossible to refine. 

This will result in a huge list of documents retrieved and even if the documents are ranked, 

due to practicality, the user will view only the top ranking documents; some relevant results 

will fall off the bottom of the list. Another limitation of conventional IR methods is that the 

words provided by the user are often not the same as the one indexed in the document 

collection. There are still problems with search engines such as word mismatch as the 

majority of information retrieval systems compare query and document terms with respect 

to lexical level rather than semantic level (Hazra et. al, 2009). Short, general queries and 

incompatibility between terms in queries and documents have a great effect on retrieval of 

relevant documents. Query expansion is an alternative method to solve this issue. In this 

method, the query is expanded using terms which have similar meaning or bear some 

relation to those in the query (Goyal et. al, 2012). Applying query expansion approach may 

increase the chances of matching term in relevant documents. With query expansion, 

additional terms or phrases with similar meaning or some other relation to the original 

query are supplemented to improve the retrieval performance.  

Typically users will submit queries consisting of two or three words related to the topic of 

interest (Walker, 2001). However due to huge data collection, it is difficult to find relevant 

documents just by using short query. Therefore, more robust queries to improve the search 

features are required. Short queries are poor for recall and precision. This is because they 

do not consider the variety of terms and tend to be too general to describe a specific topic 

(Abdelali et. al, 2007). Expanding the original query with additional related term in 
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thesaurus will lead to the increment of recall value (Al-Kabi et. al, 2009). A thesaurus is 

any “data structure” that defines “semantic relatedness between words.” (Schutze, 1997). 

There is a significant proof in the literature that reported query expansion as an effective 

technique in the general information retrieval system (Salton, 1997; Mitra et al., 1998).  

 

Thesaurus offers the most systematic method for offering synonyms, homonyms, and other 

term relationships. Models that work towards this direction have introduced semantic 

distance formulas, taxonomy structure information, online thesaurus such as WordNet 

(Voorhees, 1994) and and Longman‟s Subject Codes (Liddy et al., 1993). However, these 

thesauruses are not typically used in text retrieval systems, since the terms in the thesaurus 

are too broad to be useful. Domain specific thesaurus constructed by experts in a particular 

field creates online thesaurus such as Medical Subject Heading (MeSH) and Unified 

Medical Language System (UMLS) which are described in sections 3.5.1 and 3.5.2. Other 

studies that adopted ontology and thesaurus in retrieving relevant documents from large 

volumes of biomedical information are reported (Bodenreider, 2004; Nelson, 2004; 

Aronson, 2001; Myhre, 2006).  

 

3.4.1 Major Classes of Query Expansion 

As query expansion is the process of reformulating the original seed query, the user's input 

needs to be evaluated and technique in expanding the search query is applied in matching 

additional documents. There are various ways to expand the original query which involve 

the type of thesaurus used and the query expansion method. Query expansion either 

requires user‟s involvement or without user‟s intervention as described in the following 

sections. 
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3.4.1.1 Relevance Feedback 

Relevance feedback is the interaction from users to select words or documents that they 

consider to be relevant for query expansion. Technically the user formulates an initial 

query, which will be expanded by the system to come out with primary retrieval set. Then 

the user is required to select from the list which they think relevant to their information 

need. The result is then used by system to re-weight, expand, and/or reformulate a new 

query for searching. (Robertson, 1976; Salton & Buckley, 1997) have shown that this 

approach has significantly improved the retrieval performance in recall and precision. The 

main drawback using this interactive method is the result produced is not accurate if the 

user is not from expert background.  

Relevance feedback approach in query expansion has been used widely. Generally, 

relevance feedback approach by Salton‟s VSM (Salton, 1990) is commonly used although 

work has also been done using probabilistic model (Van Rijsbergen, 1979; Robertson, 

1976) and Boolean system (Salton et al., 1984; Dillon et al., 1983). However, most of these 

works is more on re-weighting the terms in original query than actually expanding the 

query.  There are several works that used relevance feedback approach in various forms 

such as using thesaurus in connection with relevance feedback (Efthimiadis, 2001). 

Although proven to be useful, more research in comparing this method with traditional 

document-based relevance feedback mechanisms is required. There is also automated 

relevance feedback approach which avoids user interaction known as pseudo-relevance 

feedback where the system automatically takes the terms from the primary retrieval list and 

expands the query (Buckley et al., 1994 ; Xu & Croft, 1996). However, this approach can 

lead to reduction of effectiveness if non-relevant terms are automatically added to the list of 

query expansion.  
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3.4.1.2 Automatic Query Expansion 

Automatic query expansion is a fully automated process in query expansion which involves 

computationally derived thesaurus. Words in query can be ambiguous and development of 

automatically derived thesaurus in query expansion techniques can improve the retrieval 

performance.  

 

Semantic relationship approach between words using terms co-occurrence in documents 

has been developed by Crouch (1990;1992) by grouping together significant terms into 

categories also known as term co-occurrence measures or term frequency (tf). However, 

this approach does not consider the synonymous terms which generally do not appear 

within the same document or co-occur between documents. Smeaton (1983) developed an 

approach of similar perspective but he randomly selected the terms rather than grouping 

them together. The approach yielded better results than those drawn from term co-

occurrence statistics. According to Peat & Willett (1991), term co-occurrence is the sole 

measures of similarity where terms that share same frequency are considered to be similar. 

This is true for most co-occurrence analysis formulae, including the cosine and Dice 

coefficients (Walker, 2001). 

 

Since frequency plays such a significant role in determining the relevance between query 

and documents; most systems tend to expand queries with terms that already appear 

frequently in the database. As a result not much improvement has been made in 

distinguishing the relevant and non-relevant documents, since frequently occurring terms 

are poor discriminators (Walker, 2001). The limitation from term co-occurrence measures 

inspired Jing (1994) and Schutze (1997) to consider the proximity of words within a 
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document; which means not simply the frequency of word, but the context in which those 

words appear.  

 

3.5 Medical-domain Thesaurus Utilization 

In recent years, there has been a rapid growth in biomedical literature at a rate up to 7% a 

year (Lu, 2011). The medical digital collections such as PubMed and Medline Plus (Plus, 

2007) provide comprehensive literature and teaching materials for the purpose of functional 

information for education, medical research and diagnosis of disease. However, the 

facilities in accessing specialized medical information may create other problem. With the 

availability of huge medical collection, it is difficult for doctors and other medical 

professionals in identifying relevant information for specific topic (Pestotnik, 2000).  

 

A solution to this problem is to apply standard IR techniques to the medical domain. 

However to find relevant information in a large medical collection, specialized knowledge 

resources from the medical knowledge is required (Zhang et. al, 2002). This clearly seems 

that combining IR techniques with knowledge from the medical domain using medical 

knowledge resources is significant to overcome this problem.  

 

Thesaurus or dictionaries have been widely used in textual-based IR systems (Nédellec et. 

al, 2009). Computational models that work towards this direction have introduced semantic 

distance formulas (Dar et. al, 1996), taxonomy structure information (Fiedler et. al, 1996), 

online dictionary and encyclopaedia such as WordNet (Diaz Galiano, 2009), and word 

sense disambiguation (Stevenson et. al, 2003). The problem with WordNet is that it has a 

broad coverage which leads to inexactness and ambiguity. Therefore, researchers prefer to 
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use specific domain thesaurus such as MeSH and UMLS. These approaches allow the 

computation of similarity between conceptually similar which focus on the meaning of the 

terms but not necessarily lexically similar measurement which concentrates on 

mathematical technique to identify relationships between the terms. 

 

The utilization of such semantic tool can be an aid in returning more relevant documents 

and increase the performance of the IR process. This can help to solve the ambiguity from 

acronym and abbreviation used in the query because sometimes users may use slightly 

different format in the query which may not exist in the document (Stevenson & Guo, 

2010). Acronym and abbreviation may also represent different semantics in different 

domains. 

3.5.1 Medical Subject Heading (MeSH) 

MeSH which was created in 1960 is a semantic medical knowledge resource (thesaurus) 

developed by the National Library of Medicine (NLM) of the United States (Lei Zeng & 

Mai Chan, 2004). It has been exploited by several researchers in order to bridge the gap 

between surface linguistic form and meaning. It consists of 26,142 medical subject heading 

terms naming descriptors in a hierarchical structure that permits searching for various 

related information at various levels of specificity. MeSH represents subject descriptors or 

medical terms that usually appear in several sources like the MEDLINE/PubMed or NLM 

databases.  

MeSH is used for indexing and searching for biomedical and health-related information and 

documents. Each subject descriptor is organized in records. Each record contains 

MeSHRecords:Descriptors, which consists of more than a single concept element. 

„Concept‟ corresponds to a class of terms which are synonymous with each other and 
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„Term‟ is the synonymous medical term in each concept (Beall & Shephard, 1997). Figure 

3.3 shows the MeSH ontology for one subject heading term which starts by 

<DescriptorRecord>. As a general rule in the MeSH Descriptor structure, each child 

element inherits the properties of its parent and higher objects. 

 

 

. 

 

 

 

 

 

 

 

Many researchers have used MeSH ontology in their work such as to extract medical terms 

from biomedical text based on <DescriptorName> (Diaz Galiano, 2009;  Jean-pierre 

Chevallet, 2005; Antani, 2011) and to extract synonymous terms for medical words based 

on <ConceptName> and <TermList>  of each descriptor (Alexandros et al., 2010; Ragia 

Ibrahim, 2010). More detail on MeSH data structure is on Appendix E. 

 

Figure 3.3:  Example of MeSH Ontology 
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3.5.2 Unified Medical Language System (UMLS) 

MeSH ontology is part of UMLS metathesaurus. UMLS is a standard medical knowledge 

source developed by the NLM in 1986 (Bodenreider, 2004). This metathesaurus contains of 

140 multilingual terminology databases as well as tools for accessing, researching and 

integrating of biomedical and health information.  UMLS has been widely used in many 

task of information accessing and indexing especially in biomedical domain. In IR, UMLS 

is used for text-to-concept mapping and indexing, query translation, semantic relations 

exploration and query expansion (Diem et al., 2007). 

UMLS Metathesaurus defines over 800,000 medical terms which contain information 

concerning concept definitions, their hypernym relations and their context in terminology 

resources. Semantic relations between concepts in UMLS Metathesaurus can be applied by 

annotated semantic relation between pairs of concept based on Semantic Network‟s relation 

between semantic types (Volk et. al, 2002). The Semantic Network in UMLS provides the 

essential knowledge structures for deriving classification of concepts into semantic types 

and establishes relations between them (Lei Zeng et al, 2004). Semantic type is a notion 

using for the classification of concepts into more general topic.  The Semantic Network 

represents hundreds of semantic types such as Disease or Syndrome, Body Part, etc. For 

example the semantic types of Disease or Syndrome, there are 44,000 concepts available in 

the UMLS Metathesaurus such as fatty liver, breast cancer, lung cancer, diabetes, etc. 

Figure 3.4 shows the example of semantic type and its relationship with other entity. 

Although UMLS has more biomedical information compared to MeSH and MeSH 

ontology is a part of UMLS metathesaurus, research done by Díaz-Galiano, (2009) has 

proved that MeSH provides better result compared to UMLS in medical information 

retrieval task. Too many information in the UMLS has lead to more general and ambiguous 
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mapping of selecting term in biomedical text. To conclude, it is better to have sufficient 

amount (although lesser but sufficient) but more specific textual information such as MeSH 

thesaurus in query expansion technique; having relatively lesser amount but more related 

and relevant terms.   

 

 

 

 

 

 

 

 

 

 

 

 

 

3.6 Text-based Medical Retrieval in ImageCLEF 2010  

In this research study, medical data collection from ImageCLEF 2010 (Müller et al., 2010) 

is used. ImageCLEF is a series of evaluation campaign with four main tasks, namely 

medical retrieval, photo annotation, robot vision and wikipedia retrieval, involving various 

areas of interest with some common aspects. It provides an evaluation forum for the cross–

language annotation and retrieval of information and images (Clough et. al, 2006). This 

campaign is motivated by the needs of accessing information from multilingual users 

Figure 3.4: Example of Semantic Network in UMLS (Taken from Zhang et al, 2005) 

 

http://www.imageclef.org/2010/medical
http://www.imageclef.org/2010/PhotoAnnotation
http://www.imageclef.org/2010/robot
http://www.imageclef.org/2010/wiki
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(Peters, 2001). The main goal of ImageCLEF is to support the advancement of the fields of 

visual media analysis, indexing, classification, and retrieval. ImageCLEF was a part of the 

Cross Language Evaluation Forum (CLEF) that provides support for the evaluation of (1) 

language-independent methods for the automatic annotation of images with concepts, (2) 

multimodal information retrieval methods based on combination of visual and textual 

features, and (3) multilingual image retrieval methods, so as to compare the effect of 

retrieval of image annotations and query formulations in several languages. In the process 

of undertaking this research ImageCLEF2010 was available to implement the theory in 

various stages and amount. Various research fields such as information retrieval (Baeza-

Yates, 1999), cross–lingual information retrieval (Peters, 2001), computer vision and 

pattern recognition (Zheng et. al, 2007), medical informatics (Pestotnik, 2000), human-

computer interaction (Smith, 1993) are involved in ImageCLEF with the participation from 

both academic and industry research groups worldwide. 

The medical retrieval task of ImageCLEF 2010 contains 77,500 medical documents and 

images where each medical image is associated with short description of the image 

(medical document) in XML format with 67 average lengths of words. The images in the 

ImageCLEF 2010 medical task collection are taken from articles published in the 

important, closely related specific journal, Journal of Radiology and Radiographics 

including the text of the captions and a link to the html of full text articles. It provides 16 

ad-hoc queries with relevance judgment containing relevant documents for each query. 

This set of relevant documents are assumed as the standard in our experiment and referred 

to as the relevant set in the remainder of this thesis.  

 

http://www.clef-campaign.org/
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In user-studies, clinicians have indicated that modality (US, x-ray, CT scan, etc) is an 

important filter that they would like to be able to limit their search by. Therefore it is an 

advantage if the IR system can support multi-modality for the clinician usage. For example 

Many image retrieval websites such as Goldminer (Kahn, 2007) and Yottalook (Woojin 

Kim MD, et al., 2006) allow users to limit the search results to a particular modality. 

However, this modality of the image which is typically extracted from the caption is often 

not correct since the result of modality is depend on the text content. The modality of the 

image can be extracted from the image itself using visual features. Additionally, using 

modality classification, the search results can be improved significantly (Csurka & 

Perronnin, 2011).  

 

Various researches have been focusing on the ImageCLEF 2010 medical task. UESTC (Wu 

et al., 2010) used phrase extraction as indexing term. This is done by extracting the phrases 

and sub phrase using MetaMap (Aronson, 2006) which is a semantic knowledge 

representation that maps biomedical text to UMLS Metathesaurus to discover concept and 

meaning in the query and medical documents. ITI studied by Simpson et al. (2010) also 

used UMLS to identify UMLS concepts and represent the tf.idf feature vector. The SINAI 

project (Díaz-Galiano, 2010) utilized MeSH ontology using machine learning for decision 

making of MeSH term. Ibrahim & Arafa (2010) used sentence selection component to 

select the most relevant sentence in the caption given. This is done by segmenting the 

caption based on natural language processing. 

The IPL group unified the medical documents with same title and caption into one record 

tagged by figure index (Stougiannis et.al., 2010). OHSU used Medline term in PubMed 

website extracted from the PubMed ID in CLEF data and MeSH headings in MetaMap for 
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MeSH term. OHSU has also adopted modality filter which classifies type of medical 

images according to categories such as CT scan, x-ray and US (Bedrick & Kalpathy-

Cramer, 2010). 

The technique developed by ISSR has proved that sentence selection is better than 

paragraph extraction (Ibrahim & Arafa, 2010). It is also found that paragraph extraction 

does not improve the MAP score but increases recall. The Bioigenium
 
approached the IR 

process by translating the query to French using Google Machine Translation System and 

UMLS thesaurus.  However this approach is computational expensive and time consuming 

and can cause low performance. Finally, Hos-Su VS built new dictionary for identifying 

XML medical documents and indexed the vector based on normalization value of term 

frequency (Kalpathy-Cramer & Hersh, 2010). 

The main differences between this research study with the above studies as regards to 

similarity methods with more details stated in subsequent chapters where this research 

work is described and explained are that (i) this research manipulated MeSH architecture to 

speed up retrieval process; (ii) a new ranking model called MedHieCon ranking model is 

developed to associate with Boolean strategy model in overcoming its disadvantage of this 

model. All previously analyzed techniques mentioned above are mostly based on statistical 

model such as VSM (Dinh & Tamine, 2010) or probabilistic model such as the Okapi 

model (Stougiannis et al., 2010) with their model comparisons also covered in earlier 

sections. Table 3.1 shows the list of retrieval strategies between other studies that use 

medical task ImageCLEF 2010 dataset with comments given in the last column for further 

description. 
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3.7 Content-based Image Retrieval  

Generally CBIR is the application of solving problems in searching for digital images in 

large database. The “content-based” means that the retrieval result is based on the content 

information of the image themselves rather depend on human-inputted metadata such as 

captions or keywords. CBIR has been an extremely active research field for the past few 

years (Antani, Long & Thoma, 2002). The availability of large and steadily growing 

amounts of visual and multimedia data underline the need to create access method based on 

image content that offers more than simple text-based query (Müller, 2003). CBIR has been 

applied in various fields such as personal photos, medical imaging, crime prevention, 

geographical information, remote sensing systems, education and training (Platt, 2003; 

Datta et al., 2008; Kekre, 2011; Rahman, 2012). Generally, CBIR is an information 

retrieval system that extracts features from a query image and compares the features with 

the information stored in a database to find similar images. It was proposed that an 

alternative method is invented to overcome the problem of traditional way of text-based 

retrieval (Rui, 1999). CBIR system makes use of lower-level features such as texture, color 

and shape to represent the images.  

 

Among the earliest well-known CBIR systems are IBM QBIC (Flickner et al., 1995) which 

used visual features of color percentages, color layout and texture for image retrieval; 

VisualSEEK (Smith & Chang, 1997) which employed diagramming spatial arrangements 

of color regions to form a query and Virage (Gupta, 1996) which was developed for video 

content based retrieval. In other research, relevance feedback was introduced by Mars 

(Huang et al., 1999) in CBIR application to improve query formulation by changing the 

original query. This is done by creating a retrieval loop where retrieval session is divided 

http://www.wordiq.com/definition/Metadata_%28computing%29
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into few consecutive feedbacks. It was described that the users would give feedback about 

the retrieval results whether the results are relevant or irrelevant with the queries 

(Kowalski, 1997).  
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Approaches Similarity and 

Representation Method 

Other Technique/Component 

Involved 

Comments 

IPL TFIDF 

Okapi BM25 model 

 

MeSH term, Lucene tool  Okapi BM25 in Lucene tool adds new 

parameter ∂=0.5 for non-occurrence term 

which leads to biasedness in result. 

OHSU VSM 

Boolean model 

 

Index term from MEDLINE 

article 
 Combination of VSM with Boolean increases 

the complexity in text indexing with 

inconsistency in weighting. 

 Other technique that used keywords from 

MEDLINE may lead to increment of non-

relevant documents. 

ISSR Cosine similarity 

TFIDF 

Translate English-French using 

Google MT, Reverso Dictionary 

and UMLS thesaurus 

 

 Disadvantage of cosine similarity is biasedness 

to larger dataset (Vinh, 2010). 

 Using Google MT and UMLS thesaurus is 

computational expensive and time consuming 

with large volume of data. 

Bioigenium TFIDF 

Latent semantic index (LSI) 

 

           ─  Sparse vector representation in LSI leads to 

increment of storage space (Kontothatis, 2006) 

UESTC VSM Use phrase and sub-phrase for 

indexing 

 

 Generate sparse matrix and time consuming 

 Using phrase indexing lead to precision drop 

due to irrelevant document retrieved 

ITI     TFIDF UMLS term  Re-index documents in the collection for every 

new data insert. 

 Inefficient and computational expensive. 

Hes-So VS TFIDF Use bag of words  Re-index documents in the collection for every 

new data insert. 

 The actual meaning of words cannot be 

captured by word co-occurrence only and high 

dimensionality of representation space 

(Elberrichi, 2008) 

 

Table 3.1: Comparison of similarity methods by studies using ImageCLEF 2010 data 
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The “semantic gap” between low-level layout and high-level semantic concepts still 

remains as the most challenging issue of CBIR (Hiremath et. al, 2007). Semantic gap is the 

difference between high level language presentation such as natural language and 

computational language presentation (Gabrilovich, 2009). Therefore there is an attempt to 

try to close the gap between these two presentations. As to map the semantic information 

from low-level features for specific domain application is a demanding aspect, therefore, it 

is significant to apply effective method in indexing and classification in CBIR. At the end 

of this chapter the application of CBIR in medical domain is described followed by the 

description of low-level features and classification for multi-modality medical images. 

 

Two main processed involved in the development of CBIR which are feature indexing and 

image retrieval. In feature indexing, initially the images from the database will be extracted 

based on low-level features. Later, these features information will be indexed as m-

dimensional feature vectors in the database. As for image retrieval process, the feature 

vectors in database are compared with query vector based on similarity measurement 

(Rubner et al., 2002).  Similarity measurement computes the distance between these two 

feature spaces. The similarity between two images is defined by the shortest distance of 

feature vector. The results of retrieving relevant images are ranked based on increasing 

value of distance between query and images in database.   

The features of color, texture and shape are used for describing image content.  These 

features can either be at global or local levels. Different combinations have been used for 

different CBIR systems such as local color and texture features (Carson et al., 2002; Chen 

2002; Natsev, 1999; Li, 2000); local properties of texture histograms (Sadineni et al., 
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2012); color, texture and shape features (Hiremath and Jagadeesh Pujari, 2007); global 

color and texture features  (Stricker, 1995).  

 

3.8 CBIR in Medical Application  

Modern computer technology has created the possibility of development of several new 

medical imaging modalities that use different radiant energy technique to elucidate 

properties of body tissues. This technology is able to extract significant and accurate 

information from conventional or tomography radiographic images such as CT, MRI and 

NM.  

The ongoing developments of medical imaging instrumentations and techniques have 

created an enormous growth in the quantity of data produced including large amount of 

medical images. Multi-modality of medical images constitutes an important source of 

medical information such as anatomical and functional information for diagnosis of various 

diseases, medical research and education. The potential of multi-modality imaging in 

providing information can be very useful and significant in biomedical research and clinical 

investigations.  

The capabilities of this application field can be extended to provide valuable teaching, 

training and enhanced image interpretation support by developing techniques supporting 

the automated archiving and the retrieval images by content. Medical CBIR can also be 

beneficial for finding other images of the same modality and the same anatomic region of 

the same disease. There are thousands of multi-modality medical images produced at 

radiology departments daily (Vaccari & Saccavini, 2006). Hence it is important to extract 
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the structure and content of the medical images in order to increase the effectiveness of 

image retrieval system for patient care, education and research (Hsu et al., 2009). 

Therefore, pertaining to a lot of CBIR systems medical image is cited as a principal domain 

for content-based retrieval (Müller et al., 2004). Examples of medical CBIR systems are 

brain MRI retrieval system (Kitson et al., 2009); ASSERT (Shyu et al., 1999) system for 

lung CT image classification, and IRMA (Lehmann et al., 2003) system for the image 

classification according to anatomical area. Clinical benefit of medical CBIR is already 

recognized such as in clinical decision making process (Kulikowski et al., 2002).  

There are also several studies using audio features in medical application such as analyzing 

heart sound using PCG (phonocardiogram) (Khorasani et al., 2011; Babaei & Geranmayeh, 

2009 ) and ECG (electrodiagram) (Vijila et al., 2006; Swarnalatha & Prasad, 2010). 

However sound feature can only be used in specific type of disease such as heart disease 

and lung problem. Furthermore the information from sound feature can only be represented 

in certain modality of medical image such as US. Since this research is focussed on multi-

modality medical images, various anatomy and types of diseases; sound feature is not used 

in feature extraction due to its non-existence or scarcity in medical data compared to image.  

 

3.9 Visual Features 

In CBIR systems color, texture and shape information have been the primitive image 

descriptors with their features used for describing image content. The low-level features are 

derived from properties and patterns of pixels of images. According to Müller (2003), in 

order to bridge up the semantic gap, the CBIR application must be more specialized; 

selection of visual features is very significant to represent images in CBIR index for 
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effective retrieval. Generally, visual features can be extracted in two forms which are 

global and local.  

3.9.1 Global Descriptor  

Global presentation is defined as extracting visual features of an image as a whole (Zhao, 

2002). For example, extracting color feature of the whole image to measure the percentage 

of different colors used in the image. Conventionally, global representation is used to 

extract shape and color features that provide overall information of the particular image but 

not in detail (Lehman et al., 2005). Tristan (2004) explained that the advantage of global 

representation is high speed execution of extraction and matching process which means that 

using global descriptor can improved time performance in IR system. Furthermore it easy 

to matched the image based on the whole image compared to segment or patches images. 

3.9.2 Local Descriptor  

A local feature is an image pattern which has different value or characteristic from its 

instantaneous neighbourhood and associated with a change of image properties (intensity, 

color and texture) simultaneously (Tuytelaars & Mikolajczyk, 2008). The use of local 

features instead of global features allows estimating more complicated transformations 

between images. Invariant feature is a value that remains unchanged when a transformation 

(object‟s position and/or orientation changes) is applied (Madzin, 2009). Therefore, local 

invariant feature is a new image representation that allows describing the objects/parts in 

any different transformation (translation, rotation and scale). The features can be extracted 

from points, edges or small image patches (Tuytelaars & Mikolajczyk, 2008). In local 

invariant features, the term detector refers to a tool that extracts the features from the image 

(Tinne, 2007). The detector can be based on corner, blob or edge detector. 
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The approach of local color and texture features segments the image into regions which are 

close to human perception (Carson et al., 2002; Chen 2002; Natsev, 1999; Li, 2000) and are 

used as the basic building blocks for feature computation and similarity measurement. Such 

systems which are known as region based image retrieval (RBIR) systems have proven to 

be more efficient in retrieval performance. The advantages of local presentation are its 

robustness with respect to noise, variability in object shape and partial occlusions (Setia et 

al., 2008). Therefore, it is suitable for selecting interesting location in the image and to 

speed up analysis since there is no need of segmentation. Furthermore segmentation itself is 

still faced with difficulties of unsolved problem in medical imaging research field. Local 

presentations extract the features in more detail compared to global presentation (Datta et 

al., 2005) and potential to produce a good result in classification (Paredes et al., 2007).  

3.9.3 Texture 

Texture describes repetition of visual patterns over a region in an image and has the 

properties of homogeneity. It contains vital information about the surface structure 

arrangement such as woods, clouds, bricks, fabrics, etc (Acharya & Ray, 2005). Texture 

feature generally captures the information of image characteristic with respect to the 

Figure 3.5: Example of (a) edge, (b) corner and (c) blob. Taken from Mikolajczyk et al (2002) 

 

 

(a) “edge” no 

change along the 

edge direction 

 

 

(b) “corner” 

significant change in 

all directions 

 

 

(c) “blob” independently detect 

corresponding regions in scaled 

versions of the same image 
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changes in certain direction and scale of the images. This information gives benefit for 

regions or images with homogeneous texture. Among popular texture descriptor methods 

that have been used for medical image indexing and retrieval are co-occurrence matrices 

(Kuo et al., 2002), wavelets (Pizurica,  2003; Chen & Tseng, 2007) and Fourier transform 

(Sumanaweera & Liu, 2005). 

3.9.4 Shape 

Shape feature can be described as visual information that is based on two classes: contour 

and region of an image. Contour shape-based technique in global level has been introduced 

(Sumanaweera & Liu, 2005). The application is easy to compute and robust to noise but 

with limited discriminatory power. The study of shape-based spectral descriptor of Fourier 

and wavelet has been performed by Zhang & Lu (2003). Contour shape-based technique 

has advantage of robustness to noise and easy normalization, but not inherently in rotations 

invariance.  In a region-based technique, moment-based shape feature provides a numerical 

shape-preserving representation that is invariant to translation, rotation and scale (Zhu et 

al., 2002). Moment describes the image content with respect to its axes. The purpose of 

extracting visual features is to measure the similarity between two images. However, 

images that depict the same object usually have the same criteria under transformations 

such as translations, rotations and scaling. Moment-based shape features is an alternative 

for characterizing an image with arbitrary accuracy.  

3.9.5 Color 

Color feature can be the most effective feature for systems that employ colored images. 

The color descriptors consist of histogram descriptor, a dominant color descriptor, and a 

color layout descriptor (Manjunath et al., 2001). Color is widely used for characterizing 

image and the color spaces are mostly quantified by using the red, green, blue (RGB) 
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components; the hue, saturation, value (HSV) and the hue, lightness, saturation (HLS). 

HSV and HLS have been found to be more effective in measuring the color similarity 

between two images (Sural et al., 2002). The color indexing was initially demonstrated by 

Swain & Ballard (1991), using color histogram in representing consumer images. This 

method was commonly used in representing color index. Furthermore color can also be 

represented in color coherence vector (Pass et al., 1997) and color correlogram (Huang et 

al., 1999). In medical imaging, involvement of color is very limited since most of medical 

images are in greyscale (Deng, 2009). 

Table 3.2 shows studies of content-based retrieval of medical image application done by 

other researchers. Not all studies used local descriptor in extracting visual features for 

medical images. In addition, majority of the studies concentrated on a particular modality. 

Comments are given in the last column for comparison. 
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Researcher  Descriptor Visual Feature Modality Comments 

 Global Local Color Shape Texture   

Cootes (2001)  

√ 

   

√ 

 MRI (brain)  Concentrated only on one modality and on brain 

 Less detail in extracting features 

 Used only global shape 

Robert (2002)   

√ 

   

√ 

X-ray  Concentrated only on one modality  

 Extraction based only on one feature  (texture) at 

local level 

 Missing overall information 

Aleksandra (2002) √  √  √ Multimodality  Less detail in extracting features 

 Comparatively more variation with 2 features in 

multimodality 

Samee ( 2003)       √      √  X-ray (cervical 

spine) 
 Only one modality  

 Less detail in extracting features 

Lehman (2005) √    √ Multimodality  Less detail in extracting features 

Jing Liu (2006) √ √ √ √  Multimodality  Less detail in extracting features 

 More work involved with 2 features in 

multimodality 

Lokesh (2008)   

√ 

   

√ 

X-ray  Only one modality  

 Only one feature at local level 

Thomas (2008) √ √  √ √ X-ray  Only one modality  

 Complementary information of overall and detail; 

Color is not necessary in X-ray 

Mueen (2008) √ √  √ √ X-ray  Concentrated only on one modality 

 Both information of overall and detail; 

Color is not necessary in X-ray} 

Zheng (2008)  √  √  CT scan 

(Neuroimage) 
 Only one modality  

 Only one feature 

 Less detail in extracting features 

Table 3.2: Visual methods in Medical Application 

 



75 
 

3.10 Image Classification 

There is a semantic gap between high-level and low-level features (described in section 

3.7). In order to minimize this limitation and motivated by the successful use of machine 

learning in IR, classification-based medical image retrieval method can be applied. 

The challenge of image classification is to label an image with appropriate identifiers using 

visual features (Wang, 2009). These identifiers are determined by the area of interest 

(McRoberts, 2002), whether it is general classification for arbitrary pictures (for instance 

from the internet) (Qiu Chen, 1994), or a specific domain (Choi et al, 2009), for instance 

medical x-ray images or geographical images of terrain. Image classification is also an 

active area in the field of machine learning, in which it uses algorithms that set map of 

input (Kumar et. al, 2001); attributes or variables are placed in feature space where x-axis is 

used to set of labeled classes of y-axis (Akbani, 2004). These algorithms are known as 

classifiers (Kumar et. al, 2001). 

There are two approaches in image classification; supervised and unsupervised 

classification. Supervised classification uses training sets of images to create descriptors for 

each class. Each image‟s feature vector inclusive of the information of visual features is 

stored in the database. The training sets are carefully trained to represent a common visual 

feature of that particular class. The classifier method then analyzes the training set, 

generating a descriptor for that particular class based on the common features of the 

training sets. The descriptor is also able to determine class for new unlabeled images based 

on the training set analysis result. Supervised image classification is a subset of supervised 

learning.  
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With the rapid advances of machine intelligence in recent years, sophisticated machine 

learning techniques have been used in classification for CBIR system. Machine learning is 

one of the popular approaches to build multi-class classifiers for CBIR in medical 

application, for example the Naïve Bayes (Soria, 2011), k-NN (Lehmann et al., 2005) 

decision tree (Vlahou, 2003) and SVM (Takeuchi & Collier, 2005).  

 

Naive Bayes is a probabilistic-based classifier which calculates the probability of a image 

belonging to a particular class, P(class|image) = P(class)×P(image|class)/P(image). Naive-

Bayes classifiers are simple, efficient and robust to noise and irrelevant attributes. However 

the disadvantage of this classifier is that it can‟t learn interactions between features and this 

classifier is not suitable for huge size of features and train set (Colas & Brazdil, 2006). 

Therefore Naive Bayes classifier will be not used in this research since it involved 460-

dimensional of feature vectors and 14,537 medical images as train data. 

 

Decision tree is a method to visually and explicitly represent decisions and decision 

making. Two types of algorithm that based on decision tree namely Classification and 

Regression Trees (Loh, 2011) and ID3/C4.5 (Quinlan, 1993). The split at each node is 

based on the feature that gives the maximum information gain. Each leaf node corresponds 

to a class label. A new example is classified by following a path from the root node to a 

leaf node, where at each node a test is performed on some feature of that example. The 

algorithm can naturally handle binary or multiclass classification problems. However, over-

sensitivity to the training set, to irrelevant attributes and to noise (Quinlan, 1993) makes 

decision trees especially unstable. Which means a minor change in one split close to the 

root will change the whole subtree below. Due to small variations in the training set, the 
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algorithm may choose an attribute which is not truly the best one (Vlahou et. al, 2003; 

Rokach et. al, 2008). 

 

k-NN algorithm is considered among the oldest non-parametric classification algorithms 

and quite straightforward where an image is categorized by only looking at the training 

images that are most similar to it by using some distance measurement such as Euclidean 

(Langley et al, 1993). This classifier has been widely used in medical (Korn et. al, 1996), 

agriculture (Bradbury et. al, 2007) and statistical (Salamov et. al, 1995) studies. The k 

smallest distances are identified, and the most represented class in these k classes is 

considered the output class label. The value of k is normally determined using a validation 

set or using cross validation. k-NN classifier is among popular similarity function used in 

image classification which generally used well-known Euclidean distance or cosine 

measurement (Bay, 1998). k-NN classifier is suitable for large training data and its robust 

to noisy in training data although its time consuming (Bhatia, 2010). 

. 

Given two sets of medical images instances belonging to two categories, SVM seeks a 

hyper-plane in the feature space that maximizes the margin between the two sets of 

instances (Cortes, 1995). Support Vector machine are widely explored in the fields of 

machine learning and pattern classification (Burges, 1998). SVM also has been 

demonstrates one of the most promising and successful approaches for medical image 

classification (Mueen et al., 2010). Especially popular in multi-class classification 

problems where very high-dimensional spaces are the norm (Medlock, 2008). Comparing 

classification methods above, we have decided to apply k-NN and SVM classifiers for this 

research study due to the algorithms support multi-class classification and large size of 

train data. 
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Unsupervised image classification used unlabelled data and do not rely on a training set.  

Unsupervised image classification is based on clustering techniques which measure the 

distance between images and group the images with common features in the same class. 

This group can then be labeled with different class-identifiers. Nevertheless, this research 

study deals with supervised classification. As such unsupervised techniques will not be 

further explored. 

 

3.11 Information Fusion in Medical Retrieval System 

The multimodal feature of MIR data creates the importance of information fusion in 

analysis, indexing and retrieval. Information fusion is a revision of efficient method to 

transform information from different sources and different points in time into a 

representation that lead to effective support for human or automated decision making 

(Boström et al., 2007). Nevertheless in medical domain retrieval system, information fusion 

is mainly concentrated on the combination of text and visual retrievals (Zhou et al., 2010). 

Information fusion can be represent as (i) single modality and multiple sensors, (ii) single 

modality and multiple features, (iii) single modalities and multiple classifiers and (iv) multi 

modalities (Kludas et.al, 2008).  As for multi modalities fusion the application can be done 

in parallel or hierarchical processing (Kludas et.al, 2008). Parallel processing is multi 

modalities information sources will be processed simultaneously in multiple parallel system 

and hierarchical (also known as sequential) processing means information source is 

processed first at one level and the output of this level will be processed to another level 

(Sahoo & Choubisa, 2012). 
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There are two approaches of information fusion that has been applied in MIR systems 

which are early fusion and late fusion approaches (Kludas et al., 2008). Early fusion 

approach also known as feature fusion level is conducted as text and visual feature 

attributes concatenate in one vector to generate one unique feature space (Depeursinge et 

al., 2012)  This approach represents true multimedia where one vector inclusive of all 

information sources. Furthermore, early fusion approach is based on weighting scheme 

technique (Müller et al., 2010). However, the major disadvantage is the large dimension of 

vector which contributes to scatter the homogeneous clusters of instances of same concept 

(Kludas et al., 2008). 

Late fusion approach also known as decision fusion level is defined as combination of 

output from different sources of information (Kludas et al., 2008). There are several types 

of late fusion strategies such as reordering and linear combination. Reordering technique is 

based on reordering of documents to gain final ranking list. For example the textually-

retrieved document denotes the final ranking that based on visual score reordering (Yao et 

al., 2010) and visually-retrieved is based on textual scores reordering (Depeursinge & 

Müller, 2010). 

The common technique used in the late fusion approach is linear combination which 

combines text and visual scores in a linear combination to obtain the final score. These 

score are required to normalized and given extra weight on text score since textual retrieval 

performed better than content-based retrieval (Deselaers et al., 2006). Jarvelin (2008) 

defined weight for each modality of medical image based on the corpus of classes and 

Rahman (2012) updated the weight value based on user‟s relevance feedback.  
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However the major drawback of using weighting scheme is the weight value is specific to 

the data they used (Forbes et al, 2005). Different collection may have different value of 

weight. Therefore it is not flexible and difficult to maintain when using different data 

collection. 

 

3.12 Information Fusion Systems using ImageCLEF 2010 Medical Task Collection 

Various researches have been focusing on the ImageCLEF 2010 medical task. ITI studied 

by (Simpson, 2009) used UMLS to identify UMLS concepts and represent the tf.idf feature 

vector for text retrieval and for content-based retrieval; they applied Color Layout 

Descriptor (CLD) and Edge Histogram Descriptor (EHD). The feature vectors from both 

sources are combined and trained using SVM classifier. However this approach is time 

consuming since each feature from text and visual need to be trained by the classifier and 

the large dimension of feature space. The Bioigenium
 
text-based approached the IR process 

by translating the query to French using Google Machine Translation System and UMLS 

thesaurus and used tf.idf weighted scheme as final representation. As for content-based, 

they used Discrete Cosine Transform (DCT) features (Hare, 2008) which produced 2,000 to 

5,000 features. However this approach is computational expensive and time consuming and 

can cause slow performance. The IPL group unifies medical documents with same title and 

caption into one record tagged by figure index which represent using binary histogram that 

consist of 90-dimensional and gray and color intensity histogram are used to index visual 

features. Both text and visual features are concatenated in one vector using Joint Kernel 

Equal Contribution (JKEC) (Han & Chen, 2011). OHSU uses the combination of VSM and 

Boolean retrieval strategies for text-based retrieval and the modality of medical image 

taken from the text-based retrieval output will be filtered based on relevant feedback by the 
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user.  However the drawback of this approach is that not all users‟ decision is purely 

accurate. Finally, MedGIFT used standard setting of Lucene tool for text-based retrieval; 

which is based on VSM strategy and applied color histogram and Gabor filter to extract 

texture information. The results from both sources will be combined and ranked using rank 

fusion technique of combSUM and combMNZ (Zhou et al. 2010).  

Table 3.3 illustrate the summary of text, content-based and information fusion techniques 

that used by the mentioned run systems.  
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Table 3.3: Comparison of techniques for several run systems that used ImageCLEF 2010 medical task collectio

Run System Text-based Technique Content-based Technique Information Fusion 

technique 

 

Comments 

ITI tf.idf weighted scheme 

 

CLD and EHD Early fusion   

 

Produce large vector 

dimension which lead to 

scatter the cluster of same 

concept (Kludas, 2008). 

 

Bioigenium tf.idf weighted scheme 

 

DCT Late fusion using linear 

combination 

Linear combination required 

normalizing and assigning 

weight for text and visual 

parameter which is not 

flexible for different data 

collection (Deselaers, 2006). 

  

IPL Binary histogram Gray and color histogram Early fusion 

 

Produce large vector 

dimension which lead to 

scatter the cluster of same 

concept. 

 

OHSU Combine VSM and 

Boolean strategies 

Relevant feedback  Late fusion based on 

hierarchical processing 

 

Execute retrieval from one 

level to another lead to time 

consuming.  

 

MedGIFT VSM strategy using 

Lucene tool 

Color histogram and Gabor 

filter 

Late fusion using linear 

combination 

 

Linear combination required 

to normalize and assign 

weight for text and visual 

parameter which is not 

flexible for different data 

collection 
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3.13 Summary 

This chapter briefly reviews about information retrieval of text and content-based features 

in general and specific domain of medical. This chapter also discusses about conventional 

text retrieval models such as Boolean and statistical models. Traditional Boolean model 

matches the documents with the query based on exact matching. In contrast VSM and 

probabilistic model are vector-based indexing.  

The advantages and disadvantage of these models are also discussed in this chapter. Since 

this research study focuses on medical specific domain, medical thesaurus is utilized to 

extract medical terms from the query. Therefore more specific, relevant and meaningful 

documents will be retrieved in the system. There are many types of medical thesaurus and 

they have also been discussed in this chapter.  

CBIR is allowable to create an access method based on the image content that offer more 

than simple text-based query. Recently, CBIR has been an active research field especially 

in specific domain such as medical domain.  The availability of large and steadily growing 

amounts of visual and multimedia data underline the requirement to have CBIR system. 

This chapter discuss the application of CBIR in medical domain. The visual features of 

texture, shape and color also been discussed in this chapter. Finally, a brief description of 

image classification and machine learning technique are presented. Lastly the significance 

of information fusion in MIR is discussed and several studies applying information fusion 

technique in ImageCLEF 2010 medical task data are highlight.  
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4.0 M3IRS Text-based Framework and Module Descriptions 

4.1 Introduction 

Application in MIR for specific domain such as medical domain using conventional text 

retrieval model is obsolete (Mueen et. al, 2010). Association between MIR modules with 

other knowledge source is needed to improve the performance of MIR system in specific 

domain. This chapter introduces Multi-modality Medical Information Retrieval System 

(M3IRS) text-based framework for medical MIR. M3IRS text-based framework consists of 

four main components which are: i) document pre-processor, ii) query processor, iii) 

retrieval strategies and iv) ranking strategies as depicted in Figure 1.3. The details of each 

main module are given in the following sections. 

 

4.2 Multi-modality Medical Information Retrieval System (M3IRS) for Text-based 

Retrieval 

Technically, the process starts with medical data collection which is pre-processed before 

indexing into local repository. User‟s query will be processed via query expansion 

technique and will be filtered via Mesh-indexer to produce medical query list as input of 

the system. The retrieval strategies and ranking strategies components are the main engines 

for M3IRS retrieval model whereby medical query list will be compared and matched with 

the indexed data in local repository and produced relevant list based on matching medical 

terms followed by the computation of number of term frequency. Later, the relevant list is 

ranked based on MedHieCon model and total of term frequency. The output from M3IRS 

will be the ranked medical documents with the top list as the most relevant documents to 

the query given.   
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4.3 Document Pre-Processor 

M3IRS framework can be applied in any medical domain data collection. The component 

of document pre-processor is used to construct the document to be more structured and 

standardized. 

In this research ImageClef 2010 medical task data is used.  The collection includes title and 

figure caption from the articles and all images including illustration, graph, chart, figure 

and medical image. Overall there are nearly 77,500 medical documents and images from 

over 5,600 articles with average length of 67 words for each document.  The description of 

each image in the collection is represented in medical document with XML format. The 

tags in medical document are defined using Document Type Definition (DTD) as depicted 

in Figure 4.1. Generally each record of medical document describes the <figureID> which 

represents ID for the medical image, <figureURL> and <articleURL> representing URL 

link from Journal of Continuing Medical Education in Radiology (Jeffrey & Klein, 1981) 

where the <caption> in medical documents and images are taken from that particular 

publication. <pmid> which represents PubMed identifier or PubMed unique identifier, is a 

unique number assigned to each PubMed record. PubMed comprises more than 21 million 

citations for biomedical literature from MEDLINE, life science journals, and online books. 

Since there can be many unnecessary information in the medical document, it is necessary 

to index the annotation files into an easily accessible presentation. More detail on 

ImageCLEF data structure is on Appendix D. 

http://en.wikipedia.org/wiki/Unique_identifier
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The <caption> and <title> in medical document represent the description of the image. 

There are cases that several images are in sequence order taken from the same article. 

Therefore there are several medical documents that contain same <title> and information 

<caption> for different images with different <figureID>.  This duplication has 

contributed to low position of relevant documents since not all documents are relevant. Due 

to that reason, a new approach namely XML Tag-based Extraction (XTE) has been 

developed. XTE technique is used to create a new more organised simplified version of 

medical documents in the collection and to avoid duplication in the dataset. There is no 

need to use other pre-processing technique such as removing stop word and stemming. This 

is because this framework used Boolean matching which only extract medical terms that 

match with the query. Hence these techniques will lead to time consuming. Figure 4.2 

shows the flow of processes involved in XTE technique. 

 

 

 

Figure 4.1: Example of ImageCLEF XML medical document. 
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Below are the explanations for each process in XTE technique:  

i) Document warehousing 

In this process the non-relevant tags such as “&lt” and “B&gt” in the 

<caption> are removed. The text is converted into lower-case. 

ii) Text selection  

The utilization of text selection is to select significant DTD that has 

meaningful text. In this research paper, DTD of <figureID>, <caption> and 

<title> are used and to be taken into account as new representation in our 

new data indexing in local repository. 

 

 

 

Figure 4.2: Process flow chart of XTE technique 

XML Medical 

Documents 

Document 

warehousing 

Text Selection 

Document 

segmentation 

Local Repository of 
Medical Documents 

Document 

production 
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iii) Document segmentation  

Document segmentation process involves filtering sentences in the 

<caption> based on the figure number. For example in Figure 4.1, the 

description in caption “<caption> &lt;B&gt;Figure 2a. &lt;/B&gt; 

&lt;B&gt;&lt;/B&gt; Posteroanterior radiographs in a patient with burns. 

&lt;B&gt;(a) &lt;/B&gt; At the time of admission, the patient was 

dehydrated and the lungs showed oligemia, with fluid out of physiologic 

control (ie, "third spacing"). The azygos vein (arrows) is reduced in size. 

&lt;B&gt;” is dedicated to “Figure 2a”. The (b) description will be 

discarded.   

Therefore, selection is done on (a) description in the caption segment. We 

also restrict for duplication of description in the <caption> for each medical 

document. The new description will be tagged as <modifiedCaption>. 

iv) Document production 

After segmentation, the new XML medical document with DTD of 

<figureID>, <modifiedCaption> and <title> will be stored in local 

repository as depicted in Figure 4.3. These new index medical documents 

are stored in local repository. Storing pre-processed documents using XTE 

method optimizes search time and increases efficiency of the system. 
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4.4 Query Processor 

Reformulating the original queries via query expansion may improve retrieval performance 

by including the terminology that is synonymous. Applying external medical resource 

(thesaurus) may assist researchers in order to bridge the gap between surface linguistic 

form and meaning and finding the medical term and synonyms in the query and medical 

documents. The component of query processor, shown in Figure 1.3 involves text 

processing, query expansion process and production of new medical query list. Figure 4.4 

shows the flow chart for query processor component where the processor involves 

tokenization for text processing, and processes to extract medical and synonymous terms 

from the original query. The output from this flow chart will be the query list of Type 2 and 

Type 3 (details in section 4.4.1). In order to extract medical term from original query, 

medical-context aware query expansion technique is created to expand the original query. 

Further detail of this technique is explained in the next section.  

4.4.1 Medical Context Aware Query Expansion  

We define query expansion as the process of automatically enriching the original query, q0 

submitted by user with medical terms and the synonymous. A set of additional terms 

suitable to q0 will then be generated (also called set of expanded queries in this research). 

Figure 4.3: Example of new XML medical document with new DTD of 

<modifiedCaption> 
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Prior to that, there will be several queries processing such as removing stop words and 

converting the sentences into lower case alphabets.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Flow chart for Query Processor Component 
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The query expansion process can be divided into 3 types: 

 Type 1: Exact match with the original query. 

 Type 2: Expansion of original query. 

 Type 3: Combination of expansion and MeSH-enriched query  

Retrieval using query generated from query Type 1 is based on standard Boolean matching 

by checking the occurrence of q0 in the documents. Typically, it is possible to retrieve 

relevant medical documents by using only q0. However this traditional method was found 

to possess many limitations as it only returns results that contain exact matching.  

Meanwhile, Type 2 process is a process that parse the query into tokens which are 

automatically generated by using n-gram method (Cavnar & Trenkle, 1994) where n=[1, 

length of q0] where length of q0  represents number of words content in q0. For example; 

given q0=“CT images containing fatty liver”, the length of q0 = 5 and the set of n-gram is:  

1-gram: CT, images, containing, fatty, liver 

2-grams: CT images, images containing, containing fatty, fatty liver 

3-grams: CT images containing, images containing fatty, containing fatty liver 

4-grams: CT images containing fatty, images containing fatty liver 

However, not all words produced from n-gram process can be used and have significant 

meaning. For example, the words “images containing” and “containing fatty” in 2-grams 

tokenization are not useful and meaningless. This leads to the issue to identify significant 

terms in the query. Since M3IRS is a medical-domain retrieval system, mapping the words 

into medical terms using external medical resource such as medical thesaurus is required. 

To solve this problem the MeSH-Medical Descriptor (MMD) from Mesh-indexer 
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(explanation in Section 4.4.2) is utilized to filter out words that contain medical terms. In 

previous example of q0, the set of filtered queries are “CT”, “fatty liver” and “liver”.  For 

retrieval process, queries generated using Type 2 query list will be matched based on 

Boolean function (see section 4.5). 

The query expansion in Type 3 performs query enrichment with the synonymous terms 

recorded in the MeSH-Synonym Terms (MST) folder (explanation in Section 4.4.2). Based 

on Type 2 query list, only “liver” and “fatty liver” terms have synonym which are “liver 

steatosis” and “steatohepatitis”. Type 3 query list will be the combination of expansion 

(Type 2 query list) and enrichment of synonymous term. Therefore, the expanded queries 

generated in Type 3 are “ct”, “fatty liver”, “liver”, “liver steatosis” and “steatohepatitis”.  

Figure 4.5 shows the system execution of medical-context aware query expansion 

technique. Based on Mesh-indexer, the system will extract the medical terms. The final step 

in query processor component is to identify the synonymous terms for each medical term 

extracted and the output from this component is the query list of Type 3. The new query list 

will be used as input for M3IRS search engine in searching for relevant documents from 

the local repository. 
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4.4.2 Mesh-Indexer 

MeSH thesaurus is heavily used in the query expansion in identifying medical terms and 

any synonymous terms. Moreover not all information in the MeSH are used for this 

research. Therefore, MeSH-indexer offline has been created to reduce searching time and 

increase the performance in terms of extracting and finding the medical terms in query and 

medical documents. The indexer is created by manipulating and filtering the MeSH 

thesaurus as an effort for more efficient thesaurus reference. The ontology structure of 

MeSH thesaurus is as in Figure 3.2.   

Figure 4.5: Example of running system to execute medical terms expansion and 

synonymous enrichment from original query 
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Mesh-indexer contains three folders: 

i. MeSH-Medical Descriptor (MMD) folder. Each file contains medical 

terms that start with the same alphabet. This medical term is taken from 

<DescriptorName> of each <DescriptorRecord> in MeSH thesaurus. 

ii. MeSH-Synonym Terms (MST) folder. Each file contains a set of data in 

the form of medical descriptor <DescriptorName> and list of concepts 

<ConceptName> and terms <TermList> (synonymous terms) as shown in 

Figure 4.7.  

iii. Medical Conceptual (MC) folder. This folder contains semantic type 

<SemanticType> and conceptual files (details in Table 4.5) for each medical 

descriptor, concepts and terms as shown in Figure 4.8. 

 

These three folders are organized according to alphabetical order as depicted in Figure 4.6. 

Therefore it will speed up the search between data and information in MeSH by only 

looking at the initial letter of the term. 
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               Figure 4.6: MeSH-indexer folders organized in alphabetical order 
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Figure 4.8:  MeSH Medical Conceptual (MC) folder 

Figure 4.7: MeSH Synonym Terms (MST) 
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4.5 Retrieval Strategies 

Figure 4.9 represent the flow chart for retrieval strategy component and Table 4.1 represent 

Execute_Matching() algorithm for pre-process medical documents prior matching between 

query list and medical documents in local repository. Retrieval function is execution of 

finding matches in medical documents (MR) from the expanded query (EQ) in order to 

retrieve relevant medical documents (RMR). EQ list is obtained from the output of query 

processor component and represented as the set of descending-length sorted expanded 

queries, EQ= [eq1, eq2, …, eqj, …, eqm]. The reason to sort these expanded queries are to 

give more priority matching to longer terms. Using the example from previous section (see 

section 4.4.1), the EQ list for original query (q0) of “ct images containing fatty liver” will 

be eq1 = “liver steatosis”, eq2= “fatty liver”, eq3 = “steatohepatitis”, eq4= “liver” and eq5= 

“ct” 

Next, the system will look for matches in each of eqj in every MR in the local repository 

which is represented as mri at index i. Prior to that MR in the local repository are parsed, 

tokenized and normalized by folding upper-case letters to lower-case. 

Every match of expanded queries, eqj in the medical documents, mri is represented as meq 

and the occurrence number of meq is counted and labeled as meq_hit. A set of meq in each 

medical document, mri is labeled as MEQ. The total of meq_hit is represented as MEQHit.  
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The Execute_Matching() function concentrates on the matches of eq in the mri.. In this 

function sentences in mri  need to be parsed and tokenized using n-gram method which is 

represented as MRTokens. Next the matching is done by comparing eqj with the MRTokens 

with minimum length equal to 1 and the maximum value is number of words in the query.  

Figure 4.9: Flow chart for Retrieval Strategy Component  
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The technique of tokenization has been adapted from the fuzzy grammar based text 

fragment extraction method (Sharef, Martin & Shen, 2008). As example, for multiple 

matching where  meq1 = “liver” (bolded font) and meq2 = “fatty liver” (bolded font), the 

system will take the longest contiguous tokenized MRTokens as the best match which is eq2 

as shown in Table 4.2. The output from Execute_Matching() algorithm is the occurrence 

number of meqx in mri and the results are updated to MEQ and MEQHit . 

Table 4.1: Algorithm to match query list with medical documents using Boolean method 

Algorithm 2: Execute_Matching() 

Input: Set of medical documents (mr), expanded query (eq) 

Output: Hit, number of matched eq in mr 

Process: 

1. Set hit=0 

2. Set QL=number of words in eq 

3. Set MRTokens=set of tokenized mr based [1,QL] 

4. FOR each item x, in MRTokens 

a. IF MRTokens[x] == eq THEN hit++ 

b. END IF 

5. END FOR 

 

Table 4.2: Example of best match expanded query based on longest contiguous tokenized 

Expanded Queries (EQ): Fatty Liver, Liver   

Retrieved Medical Documents (RMR): … Focal spared area in the fatty liver along the porta 

hepatis … 

eq1 = “liver”  … Focal spared area in the fatty liver along the porta hepatis … 

eq2 = “fatty liver”  … Focal spared area in the fatty liver along the porta hepatis … 

Best match: … Focal spared area in the fatty liver along the porta hepatis … 
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The flow chart of retrieval strategy component in Figure 4.9 presents the process of 

retrieving the relevant medical documents, RMR that match with expanded queries, EQ in a 

formal way.  The output from retrieval strategies component is a list of <FigureID, MEQ: 

MEQHit> where the output will be printed out in Excel format  inclusive of Figure ID, 

Title, Caption, total number of medical terms that match (MEQHit) and the list of medical 

term (meq) followed by number of occurrence of each medical term (meq_hit) as depicted 

in Figure 4.10.  

 

 

 

 

 

The algorithm utilizes standard Boolean model which based on binary matching and 

associated with MEQHit.  Therefore this retrieval strategy  has the advantage of  Boolean 

model‟s strength while taking care of its weakness overcome by other components and 

stages for system efficiency and effectiveness including data cleansing and re-structuring in 

document pre-processor, medical context aware query expansion and MeSH-indexing. The 

issue is also handled by the ranking strategy described in the next section. 

This justifies why vector space and weighting model is not necessary in this research. 

Specifically, we argue the performance of the methods which usually generate sparse 

matrix offline which is time consuming and not necessarily useful when no query regarding 

the recorded terms are handled. Moreover, these traditional methods have not supported for 

Figure 4.10: Example of output from retrieval strategies 
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semantic understanding of the query.  Nor do they have easy adaptation when new 

document is available in the collection as the term frequency (tf) vector is changing and 

needs to be reconstructed. By using M3IRS text-based framework, MeSH-indexer is used 

in order to supply domain knowledge in the retrieval process to allow semantic 

understanding and it is flexible and accommodating even with many stages of new 

document or thesaurus are fed, Therefore, this framework applies practical simplistic 

process and minimal overhead of the retrieval process is involved.   

 

4.6 Ranking Strategies 

The main disadvantage of using Boolean model is that it does not provide a ranking of 

retrieved documents (Hiemstra, 2009). This requires having a mechanism for determining a 

document score, which encapsulates how good the match of a document is for a query. For 

this research a new ranking method is proposed and is discussed in the next section. 

The ranking strategy component is a continuing process from the retrieval strategy 

component. The RMR output which consists of medical documents that are matched 

between medical query list and documents in the local repository is obtained from retrieval 

strategies component. In order to know which RMR in the list is more relevant to the query, 

ranking mechanism needs to be applied. Therefore, a ranking model is created to rank the 

RMR list in descending order whereby the most relevant document will be on the top of the 

list. This section introduces two ranking models, which are comprehensive ranking model 

and medical hierarchical conceptual (MedHieCon) ranking model. Both models are 

explained in detail in the next section. 
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4.6.1 Comprehensive Ranking Model  

Comprehensive ranking model ranks the documents based on the size of term matched in 

RMR. As previously mentioned, RMR list consists of Figure ID, Title, Caption, MEQHit 

and meq followed by meq_hit. We assume that, the more terms that match between query 

and document, the more relevant the document is deemed to be to the query. Figure 4.11 

shows the flow chart of the comprehensive ranking model.  
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Figure 4.11: Flow chart of Comprehensive Ranking Model 
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The input of this flow chart is retrieved RMR while the output is the result file of ranked 

RMR. Initially the system initializes MEQSize as number of item in MEQ that exist in each 

RMR. Then the next step is to sort RMR based on the largest size of MEQSize. To execute 

RMR ranking process, CurrentRMR is created as a temporary variable to place the current 

RMR. For each RMR, the MEQSize is identified and later nameOfFile is created based on 

MEQSize and RMR is copied by CurrentRMR into nameOfFile folder.  For each folder 

CurrentRMR is sorted based on descending order of MEQHit. Finally, nameOfFile folders 

are combine and sorted in descending order based on MEQSize. 

Figure 4.12, Figure 4.13 and Figure 4.14 show the example for  q0=“CT images containing 

fatty liver” containing three nameOfFile folders namely MatchedSize-1, MatchedSize-2 

and MatchedSize-3. For each nameOfFile folder, CurrentRMR is sorted based on 

descending order of MEQHit.  

 

 

 

 

 

 

 

 

 

Figure 4.12: MatchedSize-1 file 

Figure 4.13: MatchedSize-2 file 

Figure 4.14: MatchedSize-3 file 
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This process continues for every item in RMR to generate the final result of the ranking 

process. The nameOfFile folders will be gathered and ranked and sorted in descending 

order of MEQSize. Finally Figure 4.15 is the example of RMR list output from 

comprehensive ranking model which similar with the output of retrieval strategy 

component but the order is based on MEQSize followed by MEQHit. 

Note that the figures above show only the extraction of the actual result to represent the 

example in this section. The actual value for q0=“CT images containing fatty liver” 

retrieval list is 34,126 documents. 

 

4.6.2 Medical Hierarchical Conceptual Ranking Model (MedHieCon)  

Based on previous section, comprehensive ranking model provides high recall (number of 

relevant documents retrieved as fraction of all relevant documents) but low precision 

(proportion of relevant documents in the set of all documents retrieved) by prioritizing 

MEQSize. Figure ID “28080” as shown in Figure 4.15 is a relevant document (according to 

ImageCLEF relevant judgment data) and supposed to be among those listed at the top in 

RMR. However, due to the MEQSize equal to 1; the document is ranked in low position. 

Figure 4.15: Example output in comprehensive ranking model 
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Low position will lead to low precision value. Therefore, this will affect effectiveness of 

M3IRS text-based framework model. 

To improve the precision we decided to map medical term into more specific meaning 

entity.  From close analysis of semantic medical terms, there is regularity that appears in 

every query which involves modality, anatomy and pathology as we assigned it as 

“concept”. Therefore, MedHieCon ranking model is created to rank RMR based on these 

three medical concepts namely modality, anatomy and pathology as Figure 4.16 shows the 

flow chart of MedHieCon ranking model.  

For example, the query is “CT images containing fatty liver”, where “ct” is modality 

concept, “liver” is the anatomy and “fatty liver” is the pathology. According to Chevallet 

et. al (2005) “Relevant documents must contain the anatomy and the pathology terms of the 

query”. Considering the importance of anatomy and pathology concepts and from 

perspective of medical and clinical interest, pathology is then the most important concept. 

These concepts can be arranged according to hierarchy where top level is modality which 

refers to any type of medical modality (CT, MRI, US, x-ray & etc.), moving down to 

another level explaining the anatomy (body part or organ component) along with the 

bottom level which is pathology description (disease or syndrome). 

 

 

 

 

 



106 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to map the medical concepts with medical terms, we utilize the semantic type 

which is provided in the MeSH-indexer. Therefore, MC folder from MeSH-indexer (see 

section 4.4.2) is used to map each medical term with medical concepts entity. MC folder 

consists of medical term with semantic type and medical concepts as depicted in Figure 4.8. 

Medical concepts entity is assigned based on semantic type which is adapted from UMLS 

Figure 4.16: Flow chart of MedHieCon Ranking Model 
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semantic network. Table 4.3 shows the list of semantic types used in this research that are 

mapped with the medical concepts of “Modality”, “Anatomy” and “Pathology” to provide 

important implication for interpreting the meaning into our MedHieCon ranking model. 

Table 4.3: The mapping of semantic types into concept entities 

Concepts Semantic Types 

Modality “manufactured object”, "diagnostic procedure”, "natural phenomenon or 

process”, "therapeutic or preventive procedure” 

 

Anatomy “cell, "body part, organ, or organ component", "body space or junction", 

"body location or region" 

 

Pathology "acquired abnormality”, ”congenital abnormality", "anatomical 

abnormality", "sign or symptom”, “finding", “pathologic function", "injury 

or poisoning", "disease or syndrome", “neoplastic process", "neoplasms”, 

"bacterium", "body substance" 

 

 

MedHieCon ranking model executes the ranking process by ranking RMR that prioritizes 

medical term which maps into pathology concept; and if there is no pathology concept in 

the query list then the prioritization will be on anatomy concept and so on.  

For each meq in RMR, the system will refer to MC folder to access the semantic type and 

medical concepts of the term. The system also creates new files according to the concept 

entities namely PathologyFile, AnatomyFile and ModalityFile as shown in Figure 4.17. 

Then the RMR will be assigned to one of these folders according to the map between meq 

and medical concepts. As previously mentioned, the priority will be given to “Pathology” 

concept followed by “Anatomy” and “Modality”. For example, if a RMR consists of a list 

of meq that map with these three concepts, therefore the RMR will be assigned into 

PathologyFile and if the RMR consists list of meq with “Anatomy” and “Modality” 
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concepts then the RMR will be assigned into AnatomyFile and if the meq has only 

“Modality” concept than the RMR is assigned to ModalityFile as shown in Figure 4.18, 

Figure 4.19 and Figure 4.20.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.18: PathologyFile with each RMR has meq with “Pathology” concept 

Figure 4.19: AnatomyFile which each RMR has meq with “Anatomy” concept 

Figure 4.20: ModalityFile which each RMR has meq with "Modality" concept 

Figure 4.17: Concept files automatic generated by the system 
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These files will update the figure ID and MEQHit for each new RMR that are added on 

afterwards.  Later new file called RankedFile is created to extract content of PathologyFile 

followed with AnatomyFile and ModalityFile files accordingly and ranked RMR.  

Figure 4.21 shows an example of output result using MedHieCon ranking model. The 

figure shows that Figure ID “28080” has been ranked higher since “fatty liver” is in 

pathology concept although the size of matched term is lesser than the others. This method 

results to high position of potential relevant medical reports which lead to high precision 

value.  

 

 

4.7 Summary 

M3IRS text-based framework introduced in this chapter consists of four main components 

namely document pre-processor, query processor, retrieval strategies and ranking 

strategies. Query processor involves three types of queries which are i) exact match query, 

ii) medical term query expansion and iii) medical and synonymous terms query enrichment. 

Unlike statistical model, this framework uses Boolean model as retrieval strategy since this 

framework emphasizes on efficient process with advantages discussed earlier and which is 

only based on matching between query and documents and no term occurrence indexing 

Figure 4.21: Final result using MedHieCon Ranking Model 
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required on the documents. Therefore new documents can easily be inserted in the data 

collection without having to re-index the length vector of the documents. However these 

new documents are still required to be processed at Document Pre-processor stage before 

can be stored in local repository. Since Boolean model does not provide result in ranking 

manner, ranking strategies component is used to rank the results from retrieval strategies 

component. Two ranking models are introduced as comprehensive and MedHieCon 

ranking model. Query expansion technique is applied on the original query to provide more 

relevant and meaningful results in the rank list. XTE method is used to pre-process the 

medical documents in data collection which are later indexed to local repository. 
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5.0 M3ICS Content-based Framework and Module Descriptions 

5.1 Introduction 

This chapter introduces content-based framework for M3ICS. This framework is based on 

extracting visual features of texture, shape and color in global and local descriptors and 

applied semantic classification-based medical image retrieval framework.  This framework 

uses supervised machine learning technique to utilise guidance (training) with example 

dataset to predict the unknown dataset. MedHieCon model which represent three concepts 

of modality, anatomy and pathology to create models for training data in supervised 

classification. Supervised learning technique is heavily used in visual classification to 

evaluate the performance of the framework. M3ICS content-based framework and its 

breakdown components are diagrammatically presented. 

 

5.2 M3ICS Content-based Retrieval Framework  

The M3ICS content-based framework contains two main components namely feature 

extraction and classification conceptual train data. The feature extraction phase is divided 

into two sub-phases which extract features in (i) global and (ii) local. Both descriptors 

extract visual features of texture, shape and color. In classification, a medical concept 

modelling is created to interpret the semantic of medical image to more specific annotation.  

These concepts are trained in classification conceptual train data phase as a series of 

concepts namely modality, anatomy and pathology and accumulated in feature vector 

storage. The overall organization of M3ICS content-based framework is illustrated in 

Figure 1.4. This figure shows the organization of the processes, dataset and information 
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flow within the framework. Distinguished symbolical notations are used to denote dataset, 

execution processes or systems and document collection.  

 

5.3 Feature Extraction Phase 

The feature extraction phase of the M3ICS framework is used to extract significant 

information. The extraction is based on global, which extract features from the whole 

image and local, which involves a small group of patches. The global feature captures 

overall characteristics of an image while local features show more details. Most content-

based medical image retrieval systems tend to use global image features (Cootes, 2001; 

Aleksandra, 2002; Samee, 2003; Lehman, 2005), which describes an image as a whole or 

provide overall structure of an image. On the other hand, local features are more robust to 

occlusion and clutter. Combination of both global and local features can improve the final 

result. The more the discriminated features, the better the classification result. Visual 

features of texture, shape and color are used to represent each medical image. Normally, 

image recognition rates can be improved by combining different image features such as 

texture, shape and color  (Lehmann et al., 2003).   

5.3.1 Texture 

In this research we analyse texture features based on contrast, correlation, energy and 

homogeneity. These texture measures try to capture the characteristics of the image parts 

with respect to changes in certain directions and the scale of the changes. Gray-level co-

occurrence matrix (GLCM) is a statistical method of examining texture that considers the 

spatial relationship of pixels which also known as the gray-level spatial dependence matrix. 
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GLCM is well-known texture extraction tool originally introduced by Haralick R.M. 

(1973). 

GLCM is a tabulation of how often different combinations of gray levels co-occur in an 

image. Texture feature calculations use the contents of the GLCM to give a measure of 

variations in the image texture at the pixel of interest. There are four co-occurrence 

matrixes (contrast, energy, homogeneity, and entropy) for four different orientations are 

obtained. Therefore vector of texture feature extraction may produce the length of 16-

dimensional. The texture features information is derived from GLCM by using the 

following formula. 

1) Contrast: Measures intensity contrast between a pixel and its neighbour over whole 

image. 

                                                          ∑ |   |             

2) Correlation: Measures the joint probability occurrence of the specified pixel pairs 

                           ∑
      (    ) ⃑     

    
                                     (5.2) 

3) Energy: Provides the sum of squared elements in the GLCM. Also known as 

uniformity or the angular second moment 

∑       

   

 

4) Homogeneity: Measures the closeness of the distribution of elements in the GLCM to 

the GLCM diagonal 

                                                                      ∑
      

  |   |    

where; i is the row number, j is the column number, Pij is the normalized pixel value in the 

cell i,j and N is the number of rows or columns. µi, µj, σi and σi  are the means and standard 

deviations of the marginal distribution with Pij. 

(5.1) 

(5.3) 

(5.4) 
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5.3.2 Shape 

In this research work, we analyse shape feature using Hu moment invariant method. As 

mentioned in section 3.9.4, moment-based shape features provide a numerical shape-

preserving representation that is invariant to translation, rotation and scale. Medical images 

are usually complex to high variability and have subtle differences from each other in the 

context of visual appearance (Madzin et. al, 2011). Therefore, Hu moment invariant 

method is suitable to measure the shape feature for medical images. Hu moment invariant 

method explanation can be access in (Hu, 1962). In particular, Hu described a set of six 

moments which are rotation, scaling, translation invariant and the seventh invariant is skew 

invariant as depicted in (5.10).  

For a 2-D continuous function f(x,y) the     moment of order (p + q) is defined as 

∑ ∑          

      

 

For moment representation of area (for binary images) or the sum of grey level (for 

greytone images) is M00 and the centroid is represent as {x, y } = {M10/M00, M01/M00 }. To 

measure the central in moments of digital image,     is used and it represented as in 

equation (5.6) 

                      ∑   ∑    x )
 

    y )
                                       (5.6) 

where the centroid of image is defined in terms of the first order moments as      
   

   
 

and     
   

   
 . The centroid moments    computed using the centroid of the image f(x,y) 

is equivalent to the    whose center has been shifted to centroid of the image. Therefore, 

(5.5) 

http://en.wikipedia.org/wiki/Moment_(mathematics)
http://en.wikipedia.org/wiki/Centroid
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the central moments are invariant to image translations. Scale invariance can be obtained 

by scaling normalization which defined as in (5.7) 

    
   

    
 

where the normalization factor is  = (p+q+2) /2. The central moments are order up to 3 as 

follows as in (5.8) 

 

 

 

 

 

 

To measure moments ηi j, where i + j ≥ 2 is by dividing the corresponding central moment 

with the properly scaled (00)
th

 moment. The formula constructed can be invariant to both 

translation and changes in scale by following formula: 

 

Basically Hu moment invariant is described as a set of moments that are invariant under 

translation, changes in scale, and also rotation as follows: 

 

      (5.7) 

µ00 = M00, 

µ01 = 0, 

µ10 = 0, 

µ11 = M11 - x′M01 = M11 - y′M10, 

µ20 = M20 - x′M10, 

µ02 = M02 - x′M01, 

µ21 = M21 - 2x′M11 ‾ y′M20 +2x′
2
M01, 

µ12 = M12 - 2y′M11 ‾ x′M02 +2y′
2
M10, 

µ30 = M30 - 3x′M20  + 2x′
2
M10, 

µ03 = M03 - 3y′M02 + 2y′
2
M01 

 

 

 

(5.8) 

               

(5.9) 

http://en.wikipedia.org/wiki/Invariant_(mathematics)
http://en.wikipedia.org/wiki/Translation_(geometry)
http://en.wikipedia.org/wiki/Scale_(ratio)
http://en.wikipedia.org/wiki/Invariant_(mathematics)
http://en.wikipedia.org/wiki/Translation_(geometry)
http://en.wikipedia.org/wiki/Scale_(ratio)
http://en.wikipedia.org/wiki/Rotation
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I1 represents analogous to the moment of inertia around the image's centroid, where the 

pixel‟s intensities are analogous to physical density and I7 is a skew invariant moment 

which enables one to distinguish mirror images of otherwise identical images. Each Ii 

represent the value in shape feature vector with the length of 7-diemnsional. 

 

5.3.3 Color 

The color histogram describes the proportion of pixels of each color in an image with 

simple and computationally effective manner. The color histogram is obtained by 

quantizing image colors into discrete levels and then counting the number of times of each 

discrete color occurs in the image. In this research work, generic color histogram is used 

(Manjunath, et al., 2001). In order to measure color, greyness and brightness, the image 

color needs to be in HSV format.  

 

 

 

(5.10) 

http://en.wikipedia.org/wiki/Moment_of_inertia
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HSV means Hue-Saturation-Value as depicted in Figure 5.1. Hue represents color and it is 

not easy thing to compare as hue is often represented as a circular angle which provides 

value between the ranges of 0.0 to 1.0. Being a circular value means that 1.0 is the same as 

0.0. Saturation is the greyness, where saturation value near 0 means dull or grey looking 

whereas saturation value of 0.8 might mean a very strong color. Value represents the 

brightness of the pixel, so 0.1 is blackish and 0.9 is more to white color. Once the medical 

image is converted to HSV format, HSV histogram is created. Generic color histogram 

descriptor was able to capture the color distribution with reasonable accuracy for image 

search and retrieval applications. Finally normalization of color histogram is executed to 

produce better result.  

 

 

 

(a) (b) 

Figure 5.1:The HSV coordinate system in a hexacone in (a) and (b) a view of the HSV color 

model. (Adapted from Lei et. al, 1999) 
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Color histogram is created based on the joint probabilities mass function of the intensities 

of the three color channels (H,S,V) defined as 

                            

where A , B and C represent the three color channels (H,S,V) and N is the number of pixels 

in the image. Computationally, the color histogram is formed by discretizing the colors 

within an image and counting the number of pixels of each color. 

Euclidean distance is used to measure the difference of two color histograms where h and g 

represents the histograms and can be computed using the equation (5.12)  

 

        ∑ ∑ ∑                         

 

However equation (5.12) represents only comparison between the identical bins in the 

respective histograms. Two different bins may represent perceptually similar colors but are 

not compared obliquely. All bins contribute equally to the distance. Therefore intersection 

of histogram is used (Swain, 1991).  

The histograms h and g are given by: 

                                  
∑ ∑ ∑                        

     | | | | 
 

where |h| and |g| give the magnitude of each histogram, which is equal to the number of 

samples. The sum is normalized by the histogram that has the fewest samples. 

 

(5.11) 

(5.12) 

(5.13) 
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5.4 Global Descriptor Architecture 

Global descriptor represents visual features for entire image which means in this research 

study M3ICS will extract visual features of each medical image in the collection at global 

level as illustrated Figure 5.2. This diagram includes two main processors namely image 

pre-processing and feature extraction. The features will be indexed and stored in a vector 

form in feature vector database. Then, classifier is used to train the vector for classification 

purposed.  

 

                                            Figure 5.2: Architecture of Global descriptor process 

Texture and shape feature extractions require grayscale image. In pre-processing phase, 

original medical image is converted to grayscale image of 256×256 pixels. For texture 

features which apply GLCM, it is important to consider a number of co-occurrence matrix, 

one for each relative location to obtain different texture cues or the same cues at different 

scales. Therefore the greyscale image will be rotated to four directions (0

, 45


, 90


 and 

180

) as depicted in Figure 5.3. 

Classifier 
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As mentioned in section 5.3.3, to extract color feature, the original medical image need to 

be converted to HSV format in order to produce HSV histogram.  

 

Figure 5.3: Example of original medical image and rotation of 0°, 45 °, 90 ° and 180 ° 

medical images 

 

After image pre-processing has been executed, the system will extract texture, shape and 

color features from each medical images. These features will be combined into a single 

feature vector with 75-dimensional as depicted in Table 5.1. The feature vectors are then 

stored to feature vectors database before it‟s been classified. 

 

Table 5.1: Global Visual Features Dimensional 

Features n-dimensional 

Color   4-dimensional 

Moment Shape   7-dimensional 

GLCM Texture (0

, 45


, 90


 and 180


) 64-dimensional 

                                                     Total 75-dimensional 
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5.5 Local Descriptor 

Similar to global descriptor, local descriptor framework consists of two main processors 

namely image pre-processing and feature extraction as illustrated in Figure 5.4. However 

the technique used in local descriptor image pre-processing phase is slightly different from 

that of global descriptor. Initially, the medical image needs to be converted to greyscale for 

texture and shape features and also in HSV format for color feature extractions. As for 

shape feature, no rotation is applied since there will be seven moment formulas will be applied 

to extract shape features. The next procedure in local descriptor is to divide the original 

medical image into patches. In this research work, we patched the original medical image 

into 2×2, 4×4 and 8×8 patches. However to get more detailed information we extract 

interest points from the original medical image. Finally these features will be combined in a 

single feature vector and stored in feature vector database. 

5.5.1 Patches 

In MIARS system developed by Mueen A. (2010), 2×2 patches were used. However there 

is no concrete proof to show that 2×2 patches is suitable in extracting features in local 

descriptor. Therefore in this research, we executed each size of 2×2, 4×4 and 8×8 patches 

in separate individual experiments. The evaluation of various sizes was done to determine 

which size of patches is suitable for extracting visual features in medical image. Figure 5.5 

until 5.8 show the examples of original medical images which has been patched into 

several sizes for modality of x-ray of skull, CT of liver, MRI of heart and microscopy 

image. 
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(a) (b) (c) 

 

(a) (b) (c) 

 

 
  

 

Figure 5.4: Architecture of Local Descriptor Process 

 

Figure 5.5: X-ray of skull patches in (a) 2×2, (b) 4×4 and (c) 8×8 

Figure 5. 6: CT of liver patches in (a) 2×2, (b) 4×4 and (c) 8×8 
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Table 5.2: Local Patches Visual Features with Dimensional Sizes 

Patches Size 2x2 4x4 8x8 

Color   8-dimensional 16-diemsional   32-dimensional 

Moment Shape 14-diemnsional 28-dimensional   56-dimensional 

GLCM Texture (0
) 32-dimensional 64-dimensional 128-dimensional 

                    Total 54-dimensional 108-dimensional 166-dimensional 

 

(a) (b) (c) 

 

   

(a) (b) (c) 

 

   

 

 

Figure 5.7: MR of heart patches in (a) 2×2, (b) 4×4 and (c) 8×8 

Figure 5.8: Microscopy image patches in (a) 2×2, (b) 4×4 and (c) 8×8 
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Each patch will be used to extract texture, shape and color features. Different size of 

patches will produce different dimensional size in feature space as depicted in Table 5.2. 

The table clearly shows that the more patches used the longest length of dimensional stored 

in a feature vector. 

5.5.2 Interest Blocks 

Harris detector is based on second moment matrix, M created by Harris and Stephens 

(1988). The method was developed to cater image regions with texture and isolated feature. 

The matrix calculation describes the gradient distribution in the local neighbourhood of a 

point as shown in equation (5.14).   

                                         ∑      (
              

              
)          

Initially, the first order of local image derivatives, ix and iy is computed.  Then, the product 

of these gradient images is taken. Figure 5.9 shows the initial step of Harris Detector.   

 

 

 

 

 

 

(5.14) 

(a) (b) 
       

 
Figure 5.9: Figure (a) represent the local derivative of medical image in x-direction and 

figure (b) represent the local derivative of medical image in y-direction. 
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The next step is to smooth the image with Gaussian kernels, w(x,y) in different scale values 

(σ) as stated in equation (5.15). The eigenvalues represent the significant signal changes in 

two orthogonal directions in neighbourhood around the point.   

                                                
 

   
 

      

   

Different values in Gaussian Kernel may produce different number of interest points as we 

have experimented in Madzin (2009). Finally, Harris measured the cornerness that is 

defined as positive local extrema in equation (5.16).  

 

 where a constant value of λ is 0.04. 

Once the interest points are generated, a block of 20×20 pixels is generated for each point 

and interest point as the centre point. The size of 20×20 pixels is chose since this size is 

suitable and appropriate to extracts information of texture and shape. In this research, we 

set the maximum number of generated interest points is 20 as depicted in Figure 5.10. This 

is to avoid the increment of dimensional value in feature vector. 

 

 

 

 

 

(5.16) 

(5.15) 

cornerness = det(M) − λ trace(M)                                    
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Figure 5.11 shows the example of interest blocks take from different modality of CT, MR 

and microscopy image. 

Figure 5.11: Figure 5.11: Examples of interest blocks in (a) CT of liver, (b) MR of heart 

and (c) microscopy medical image 

 

   

(a) (b) (c) 

 

 Figure 5.10: Haris interest point feature extraction 
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Therefore there will be 20 blocks in each medical image. Each interest point will be 

extracted with shape and texture features. Color feature will not be used since HSV color 

histogram is not suitable in extracting a small size block (Garcia et. al, 1999). Table 5.3 

shows the size of dimensional of a feature vector for one medical image. 

Table 5.3: Local Interest Points Visual Features Dimensional 

Feature n-dimensional 

Moment Shape 20 X   7-dimensional  = 140-dimensional 

GLCM Texture (0
) 20 X 16-dimensional = 320-dimensional 

Total 460-dimensional 

 

The feature vectors then are stored in excel format and later will be trained based on its 

class. For example in Figure 5.12, the feature vectors of shape feature extraction where first 

column represent image ID (red font), followed by seven values of moments and final 

column is the name of the class (bold font).  

 

 

 

 

 

 

 Figure 5.12: Example of feature vectors stored in excel format 
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5.6 Classification Conceptual Train Data Phase 

Many research have been conducted to improve CBIR in medical application by relying 

solely on low-level features in order to identify visually similar images (El-Naqa et. al, 

2004). It is common to find medical images that appear similar but not related to each other 

(Ibrahim et. al, 2010). Applying low-level features without any semantic interpretation may 

contribute to unsuccessful classification of medical images in different semantic categories 

due to the semantic gap in CBIR (Wang, 2008). This is because each values of feature 

information that extract from feature extraction are meaningless. To minimize limitations 

of low-level features classification-based medical image retrieval method is applied. This 

method is motivated by the successful use of machine learning in IR (Rahman et al., 2012). 

Building a medical concept model for semantic interpretation of the image can bridge up 

the semantic gap between low-level and high-level semantic annotation.  

 

Concept model is used as a knowledge representation to visualize the concepts and 

relationships among the concepts (Christophe, 2010). The purpose of conceptualization in 

medical retrieval system is to classify the medical image into more specific entity or class 

in increasing the performance for ranking purpose, and annotate the images with semantic 

labels in a natural language description of the visual concepts of interests.  Initially, number 

of training images must be assigned in each concept. After the system is trained by using 

visual features as training samples, it is possible to depict the semantic content of each 

query image by identifying its class assignment using a classifier (Kurkure et. al, 2010).  

This methodology allows classification of medical images into semantically meaningful 

annotation using low-level visual features. 
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 A bottom top MedHieCon model is designed in pyramid structure as illustrated in Figure 

5.13 for interpretation of semantic medical concepts in a specific domain of medical 

images. From this figure, the modality, anatomy and pathology concepts are utilized, and 

the descending order of the pyramid gives more specific information. For example the 

medical image of “CT images containing fatty liver”, therefore we trained the image of 

“CT” as modality, “liver” as anatomy and “fatty liver” as pathology. 

 

 

 

 

 

 

 

 

 

 

 

5.6.1 Model Generation 

In this research multi-class classification method is used by combining pairwise 

comparison of binary SVM classifier, known as one-against-one or pairwise coupling 

(Vapnik, 1998). Figures 5.14 to 5.16 show the multi-level learning procedure to generate 

classification functions. There will be three medical concept models namely modality, 

anatomy and pathology. The training image will be trained based on these concepts. 

 

 Figure 5.13: MedHieCon Model 
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5.6.2 Modality Model 

Figure 5.14 shows the first step as the modality concept learning stage to generate the first 

classifier.  

 

The top hierarchy is modality concept which consists of seven modalities namely x-ray, 

PET, PX, US, CT, GX and MR. Therefore, the modality classifier 



3f  obtained by training 

set of seven classes, L1 = {(x1, y1), (x2, y2), ….. (x7, y7)} where each yi is a label of the 

class associated with each xi.  

5.6.3 Anatomy Model 

This step is to generate a classifier according to 10 classes of a human anatomy. Figure 

5.15 show the second-level learning stage to generate the second classifier. 

 

 

Training set of 10 classes: 

 

Function 

2f  
          {         } 

Training set of 7 classes: 

 

Function 

3f  
          {        } 

 

 

Figure 5.14:  Modality model generation 

Figure 5.15: Anatomy model generation 
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The training set of 10 classes, L2 = {(x1, y1), (x2, y2), …, (x10, y10)} where each yi is a 

label of the class associated with each xi, are used to train the level 2 classifier 



2f .  The 

ten classes of anatomy are thoracic aorta, chest, brachial plexus, liver, bone, eye, heart, 

blood vessel, dermatome and coronary arteries.  

5.6.4 Pathology Model 

The final classifier deals with 12 classes. Figure 5.16 shows the pathology concept learning 

stage to generate first-level classifiers. The training set of 12 classes, L3 = {(x1, y1), (x2, 

y2), …, (x12, y12)} where each yi is a label of the class associated with each xi, are used to 

train the level 1 classifier 



1f . 

 

 

 

 

The 12 classes of pathology are thoracic aortic dissection, acute myloid leukemia, heart 

failure, brachial plexus nerve block, fatty liver, greenstick fracture, streptococcus 

pneumoniae, papilledema, pericardial effusion, atherosclerosis, sacral fracture and dermato 

fibroma 

Once the ,



2f  and  classifiers are generated, the training is assign with the semantic 

label based on its class name. When unlabelled image is given, first the visual features of 

texture, shape and color both in global and local descriptors are extracted to form one 



1f


3f

Training set of 12 classes: 

 

Function 

1f  
          {         } 

 
Figure 5.16: Pathology Model Generation 
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vector. Then, , 



2f , and  classifiers are used to predict classes for each concepts. The 

evaluation is based on the correctness rate to classify the unlabeled image in the accurate 

class. 

 

5.7 Classification  

Generally there are two types of classification namely supervised and unsupervised 

classification. In the unsupervised methods, no target labeled is identified in the data and 

data mining algorithm is used to search for patterns and structures among all the variables. 

Unlike unsupervised technique, supervised method represents such particular pre-specified 

target variable and the algorithm is given by many examples where the value of the target 

variable is provided, so that the algorithm may learn which values of the target variable are 

associated with which values of the predictor variables (Johnson, 1998). During the testing 

of a feature in an image, each of the classifier votes for one class and the winning class is 

the one with the largest number of accumulated votes (Rahman et al., 2012). In this 

research, supervised classification method is utilized and two types of classifiers are 

applied namely k-NN and SVM. K-NN and SVM are widely used in medical image 

classification (Lin et al, 2006; Rahman et al, 2008; Zhang et al, 2009). 

 

Figure 5.17 shows the example of modality classification result. The feature vectors from 

the storage (example in Figure 5.12) will be trained and modelled based on medical 

concepts in MedHieCon model. This figure shows seven classes of modality are modelled 

namely PET, XR, PX, US, CT,GX and MR and the evaluation result  is based on TP Rate 

(true positive), FP Rate (false positive), Precision, Recall, F-measure, ROC area and 



1f


3f
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confusion matrix. However in this research, we will concentrate on precision and recall 

values. 

 

 

 

 

 

 

 

 

 

5.7.1 k -Nearest Neighbour (k-NN) 

k-Nearest Neighbour is one of the oldest and simplest supervised method for pattern 

classification (Peterson, 2009). Nevertheless k-NN is among preference classifier used by 

many researchers due to its positive competitive results, and in certain domain it has 

significantly advanced the state-of the-art (Wang, 2006).  k-NN is a distance-based system. 

Initially, the example images will be labeled and trained and the training dataset are stored, 

and new unlabeled data is classified by comparing them with the most similar records in 

the training set (Hinneburg et al., 2000) and k-NN classifier remembers all training data 

and selects most similar vector at the moment it is asked to make a prediction.  

 

 

Figure 5.17: Example of multi-modality image classification result for medical concept of modality 
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k-NN methodology is used to compute the distance between two data‟s (the new unlabeled 

data to be classified and the training dataset). Distance Euclidean measurement technique is 

the most common measurement metric. The measurement distance between two data‟s can 

be defined as  

                                       √∑         
 
                                   (5.17) 

Where             ) and             ) are two points in Euclidean n-space. 

The best choice of k depends upon the data; generally, larger values of k reduce the effect 

of noise (irrelevant feature) on the classification, but make boundaries between classes less 

distinct. For example in Figure 5.18 consider figure (a) where k = 1, the feature vectors of 

query image, point X, belongs to class 3 (green circles). However if k = 5 as in (b) the point 

X best-fit in class 1 (blue circles) according to majority vote of the five nearest points. 

The application of parameter optimization, for example, cross validation can be used to 

increase the performance of k-NN by selecting a suitable value of k (Duch et al., 2008). 

 

 

 

 

 

 

 

 

 

 

 

 Figure 5.18: Example of (a) 1-NN classifier and (b) 5-NN classifier in k-NN classification 
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The difference between k-NN and other classifiers is that in the case of k-NN, training 

points are used during the classification, whereas in other methods, usually the training 

points are needed only during the training.  

 

5.7.2 Support Vector Machine (SVM) 

SVM is a supervised machine learning method in statistical learning theory which is 

performed to predict the output from a given input (Takeuchi, 2005). Generally SVM is a 

trainable machine classifier that gave two-class training set and attempts to specify a 

maximum-margin separating hyperplane between the data points of the two classes. This 

hyperplane is optimal in the sense that it generalizes well to unseen data. In this research 

work, we applied supervised learning method which the process is to find a function that 

suitable to describe the relation between the input data and the output data. For SVM‟s 

binary class case output prediction function can be defined as  

 

                             ∑                
                                    (5.18) 

 

where            support vectors which represent the selected training examples and x 

are the input vector.         is a symmetric positive function which known as kernel,    

the vector label of (1, -1) and    represent as support vector‟s weight determined during the 

training process and b is the bias of the hyperplane. There are several different types of 

kernels namely linear, polynomial and Gaussian and they are shown in Figure 5.19  (Chang 

& Lin, 2011). Polynomial and Gaussian are non linear kernels and suitable for application 

if there is no linear relation between the labels and the input which support the non-linear 

problems.  
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There are several advantages using SVM as classifier which are (i) it is low computational 

cost and better generalization due to only few vectors are selected to become the support 

vectors in the training set during training process and (ii) the solution is not dependent on 

the starting conditions unlike neural networks. A more detailed description of SVMs are 

found in Burges, (1998) and Vapnik, (1998).  To increase the performance of SVM, fast 

iterative algorithm namely Platt‟s sequential minimization algorithm (SMO) is used (Platt, 

1999). 

Many datasets encountered in medical domain and other areas of application are 

unbalanced, for example; one class contains a lot more examples than the other. (Ben, A., 

2010). SVM is chose to solve the problem of imbalanced data because SVM is based on 

strong theoretical foundations (Vapnik, 1995) and it performs well with moderately 

imbalanced data even without any modifications (Akbani, R.,2000). Its unique learning 

mechanism makes it an interesting candidate for dealing with imbalanced datasets, since 

SVM only takes into account those instances that are close to the boundary, i.e. the support 

vectors, for building its model. This means that SVM is unaffected by non-noisy negative 

instances far away from the boundary even if they are huge in number. In this research 

SVM is used to classify multiclass. There are several approaches to adopting SVMs to 

 

 
Figure 5.19: Examples for kernel's classifier representation taken from LibSvm 

(Chang & Lin, 2011) 
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classification problems with multiclass classification which are multiclass ranking, one-

against-all classification and pairwise classification. Multiclass ranking SVMs, in which 

one SVM decision function attempts to classify all classes. One-against-all classification, in 

which there is one binary SVM for each class to separate members of that class from 

members of other classes. Pairwise classification, in which there is one binary SVM for 

each pair of classes to separate members of one class from members of the other. However 

in this research pairwise classification is used since this method produce more accurate 

results on the data set (Abe, S., 2003). 

5.8 Summary 

This chapter explains the application of CBIR in medical domain. M3ICS content-based 

framework is introduced in this chapter which contains feature extraction and training data 

phase. For feature extraction component, global and local descriptors are utilized, global 

level is to extract visual features (texture, shape and color) for the whole medical image. In 

contrast local level is based on patches and interest points of medical images. Various sizes 

of patches are applied in order to evaluate which size is the best to extract medical 

information. Furthermore, 20 interest points are generated to create 20 blocks size 20×20 

pixels of interest region and no image segmentation processed needed. These features will 

be extracted and stored as feature vector. These feature vectors are labelled based on 

MedHieCon model which include modality, anatomy and pathology. Supervised classifiers 

are used to train the labelled data in concept models namely modality, anatomy and 

pathology  and classified the new unlabelled data as test data based on the models. The 

evaluation is based on how accurate the test data are correctly classified. The percentage of 

correctness rate is used to evaluate the performance of our M3ICS content-based 

framework.   
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6.0 IFM3IRS: Information Fusion of Text and Content-based Systems 

 

6.1 Introduction  

M3IRS text and M3ICS content-based frameworks are introduced in chapter 4 and 5. Both 

chapters explain the methodology of extracting features for medical documents and images 

independently. Although text-based retrieval in MIR outperforms content-based 

framework, it is significant to determine the overall performance improvements which 

include both text and content-based (Muller et al., 2010). Moreover, there is disadvantage 

for each of these feature frameworks. As for the text-based framework, it is difficult to 

filter out which images in the relevant documents retrieved which do not represent the right 

modality. For example Figure 6.1 shows the list of images resulted from text-based 

framework with the query of “CT images containing fatty liver”. However, it clearly shows 

that there are several images which are not CT scan images. The list includes PET, 

microscopy, graph and US images as highlight in red circles. As for content-based 

framework, it is difficult to differentiate the images based on specific detail such as 

pathology concept. The results retrieved from content-based framework for the same query 

might be all CT scan images of liver but not all dedicated to fatty liver disease. This chapter 

introduces information fusion framework (IFM3IRS) based on the combination of text and 

content-based information sources. Combination of text and visual information potentially 

allows a reduction of the semantic gap, which is the modelling representation between 

human observation for a particular image and visual information.   
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Figure 6.1: Images from list of RMR for "CT images containing fatty liver" 
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6.2 Information Fusion M3IRS Framework (IFM3IRS) 

IFM3IRS framework concentrates on fusion of the information sources of text and visual 

content using hierarchical processing in late fusion technique. The framework is proposed 

to fuse both text and content-based information sources in order to increase the accuracy in 

medical image retrieval. Information fusion is a revision of efficient method to transform 

information from different sources and different points in time into a representation that 

leads to effective support for decision making. Combination of text and visual information 

allows a reduction in semantic gap for more meaningful search and retrieval and to improve 

the performance effectiveness. Early fusion approach (feature fusion level) is conducted as 

text and visual feature attributes concatenate in one vector to generate one unique feature 

space. The major disadvantage is the large dimension of vector which contributes to scatter 

the homogeneous clusters of instances of same concept. For hierarchical processing in late 

fusion approach information source is processed first at one level and the output of this 

level will be processed to another level that is unit level of text and content-based separate 

execution. As textual retrieval performs better than content-based retrieval, the text-based 

retrieval is executed at the initial level and the results from this will be the input for the 

next level which is content-based retrieval. The purpose to extract visual features from the 

images in text-based results is to filter the modality. Late fusion strategy of reordering 

technique is used to increase effectiveness whereby it is based on reordering of documents 

to gain final ranking list. The textually-retrieved documents produce the final ranking based 

on Medical Hierarchical Conceptual (MedHieCon) Ranking Model for the medical 

semantic effectiveness and visual retrieval is based on textual scores reordering. Figure 1.5 

illustrates the framework which is based on hierarchical processing where the system 
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executes text-based retrieval and the result from the text-based processing will 

automatically be the input for content-based classification. Figure 6.2 represents the flow 

chart of IF3MIRS framework whereby the blue shapes represent text-based retrieval and 

green shapes represent content-based retrieval. Note that the fusion in this research is based 

on two processes executed separately which combine based on FigureID of medical 

document and image. Which means it is hierarchical processing where the M3IRS text-

based is executed first, and then the result from M3IRS is passed to M3ICS based on 

FigureID to import the medical image to the M3ICS process.  

As previously mentioned in chapter 4, the output of M3IRS text-based retrieval system is 

the RMR list which consists of Figure ID, title, caption, score and attribute list of MEQSize 

as shown in Figure 6.3.  From the RMR list, the IFM3IRS system will automatically import 

the medical images from the data collection based on Figure ID as highlighted in red font in 

the figure as input data for M3ICS visual engine.  Note that the figure below shows only 

the extraction of the actual result to represent the example in this section. The actual value 

for “CT images containing fatty liver” retrieval list is 34,126 documents. 
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Figure 6.2: Flow chart of IF3MIRS framework 
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This input acts as a series of unlabeled images that will be the testing data for the content-

based framework. The main purpose to fuse text-based with content-based frameworks is to 

filter the modality of medical images. Therefore, for IF3MIRS framework the system will 

extract the visual features of testing data based on global descriptor which only filters the 

modality concept of the images. Then the testing data will be classified using the classifier 

(detail in section 5.7) and compared with training data in the training data storage.  

In this process the system will only filter the accurate modality and select the testing data 

based on the modality request from the query. Prior to that training data of medical images 

with seven different modalities are trained and modelled and will be stored in training data 

storage as described in section 5.6.1. The test data are classified based on these models. 

Test data that belong to the query class will remain in RMR list while others will be 

discarded.   

Figure 6.4 shows the medical images imported from the Figure ID listed in Figure 6.3 to be 

the test data for content-based framework, and Figure 6.5 illustrates the feature vectors 

extracted from the image. 

 

 

Figure 6.3: RMR list output from M3IRS text-based framework 
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Figure 6.4: RMR list input of images to M3ICS content-based framework 

Figure 6.5: Feature vectors of test data 
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Each feature vector listed in the Figure 6.4 will be classified based on seven classes of 

modality namely x-ray, PET, PX, US, CT, GX and MR. In this example, only feature 

vector that is classified in CT will remain and others will be discarded. Therefore the final 

output of IF3MIRS framework will be RMR final list which inclusive of medical 

information (image and title of image) that have been classified in CT modality as depicted 

in Figure 6.6. It shows that most images retrieved are actually in accurate modality which is 

CT of liver except for image of Figure ID 106311 which is of US modality. In conclusion it 

shows that there is improvement in combining two different sources of text and visual 

content in retrieving multi-modality medical images where for text-based framework the 

system can emphasize more on anatomy and pathology concepts and in addition the 

content-based framework is to filter the modality of medical images. 

 

6.3 Summary 

This chapter introduces IFM3IRS information fusion framework which is based on fusion 

sources of M3IRS text and M3ICS content-based frameworks that are adapted from 

Chapter 4 and Chapter 5. Late fusion technique is used in information fusion methodology 

which is based on hierarchical processing where the output from text-based framework will 

be the input to content-based framework from which the output from this framework is then 

the list of medical images with modality according to query. The final output of IFM3IRS 

is the RMR final list of text and image medical information. 
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Figure 6.6: Final output of medical information retrieved from IF3MIRS framework 
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7.0 Experimental Setups and Framework Evaluation 

7.1 Introduction 

There will be two major experimental setups namely text features experiments and visual 

features experiments. The experiment used ImageCLEF 2010 medical data collection   

(Müller H., 2010) supplied by the Cross Language Evaluation Forum (CLEF) (Peters Ed., 

2000). This data collection consists of 77,500 medical test documents in XML format and 

images in .jpg format. Sixteen ad-hoc queries with relevance judgment data containing 

relevant documents for each query are provided for the evaluation. These sets of relevant 

judgments are assumed as the standard in our experiment and referred to as the relevant set 

in both text and visual experiments. This chapter describes the experimentation setups for 

text and visual features followed by the description of evaluation criteria. 

 

7.2 Experimental Setups 

Several experimental setups were prepared to conduct experiments on both text and 

content-based frameworks. Prior to that multi-modality medical image characteristics are 

evaluated based on contrast, noise and blur. These experimental setups can be divided into 

four groups namely multi-modality evaluation characteristics, text features, visual features 

and information fusion experiments.   

 

7.3 Quality Characteristics in Multi-modality Medical Image Evaluation 

In chapter 2, the description of medical image characteristics is discussed. Generally the 

best image quality is defined based on contrast, blur and noise values. Different modality 

medical image shows different level of quality characteristics. The experiment is to 
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evaluate these characteristics in various modalities of medical images using SVM classifier. 

The next experiment is to extract texture, shape and color features based on local descriptor. The 

methods used to extract features as described in section 5.3.  The performance will be evaluated 

based on the formula correctness rate, which is the percentage of correctly classified image divided 

by total number of images and also the rate of precision and recall of each modality. 

Eight modalities are used in this experiment namely x-ray, CT, US, PET, NM, MRI, PX 

and GX. Medical task of ImageCLEF 2010 dataset is used and 2450 medical images (see 

Table 7.1) will be classified using SVM linear kernel. Pairwise classification technique is 

used to classify multiclass classification. Classifier is built for every pair of classes, using 

only the instances from these two classes. Logistic regression model is applied to produce 

probability estimates from the different classifiers (Perlich et. al, 2003). 

Table 7.1: Image Modalities and number of training images 

Modality No. Of Images 

CT 314 

GX 355 

MRI 299 

PET 285 

PX 330 

US 307 

x-ray 296 

NM 250 

 

7.4 Text Features Experiment 

In chapter 4, we have explained the framework of M3IRS text-based retrieval system which 

includes four main components which are (i) document pre-processor, (ii) query processor, 

(iii) retrieval strategies and (iv) ranking strategies. The experiments for text features in this 

study are based on these components. The setup begins with the experiment on the 

performance of document pre-processor component and end up the experiment with the 
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comparison between M3IRS with other study that used the same data collection. We also 

evaluate the time performance of M3IRS using Mesh-indexer.  

7.4.1 Document Pre-processor Experiment with XTE Method 

As mentioned earlier, the medical documents used in this research are in XML format. 

There are 77,500 medical documents available in ImageClef 2010 medical task collection. 

Some of the documents may have duplication in the caption and title due to the description 

of a series of medical images in the same article. Therefore XTE method is used to simplify 

medical documents to be more structured and standardized with no duplication (see section 

4.4). In preparation of this experimental setup the ImageCLEF medical documents are pre-

process using XTE method. Only several DTD were used in indexing the new medical 

document namely <figureID>, <title> and <modifiedCaption>. ModifiedCaption is a new 

section of caption for medical document which represent sentences for particular figure and 

remove the redundancy from other medical document. All indexed medical documents will 

be stored in new local repository. 

To verify the effectiveness of XTE method, we implement the experiment to evaluate the 

proportion of relevant documents retrieved between the original ImageCLEF medical 

documents and our new indexed medical documents using XTE method.  The evaluation is 

based on MAP value for both data collection. 

7.4.2 Time Performance Experiment with Mesh-indexer 

MeSH-indexer is developed to reduce access time in searching medical terms during query 

expansion process. MeSH-indexer is organized according to alphabetical order. To prove 

the efficiency of M3IRS using MeSH-indexer, an experiment is conducted to compare the 

time performance in accessing medical terms between using the MeSH-indexer and the 
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original MeSH thesaurus. In terms of size, the MeSH thesaurus file is 276MB and for three 

folders in MeSH-indexer (MMD, MST and MC), the total size is 29.2MB.  

The evaluation is based on how fast (in seconds) the system can produce medical query list 

from medical-context aware query expansion technique in M3IRS. 

7.4.3 Query Processor Experiment with Medical Context Aware Query Expansion 

Technique 

The purpose of this experiment is to verify the effectiveness of medical context aware 

query expansion technique. The evaluation is based on MAP result for each type of query. 

This means that if the MAP value is high and approaches to value 1 it shows that this 

method is very effective. This is because MAP value represents the most relevant 

documents ranked in the higher position. There are three types of query expansion 

techniques used in this experiment. The techniques are as follows:  

 

i. Type 1: Direct matching with original query 

Evaluate proportion of relevant documents retrieved using original query.  

ii. Type 2: Expansion 

Evaluate proportion of relevant documents retrieved based on medical terms 

extract from original query. The process of medical term extraction is 

explained detail in Section 4.3.1. 

iii. Type 3: Expansion and Enrich 

Query Type 3 includes of the enrichment of medical term which is the 

synonymous of medical term identified in query Type 2.  Evaluate 

proportion of relevant documents retrieved by combining both terms in 

expansion and enrichment (synonymous term).   
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7.4.4 Ranking Strategies Experiment 

The purposed of ranking strategies experiment is to evaluate the performance between 

comprehensive ranking (see section 4.6.1) and MedHieCon ranking (see section 4.6.2) 

models. Comprehensive ranking method prioritized on the size of term matched between 

medical query and document followed by number of occurrence terms matched in a 

document. The documents are ranked in decrement order.  

 

The MedHieCon ranking model is used to rank the retrieved medical documents based on 

medical concepts entities of pathology, anatomy and modality. The bottom top hierarchy 

has prioritized the concept of pathology followed by anatomy and modality. The medical 

concepts are map to identified medical terms for ranking purposes. Each result in the 

experiments is viewed in order to verify the expected improvement.  The evaluation will be 

based on average precision value of each query and MAP to evaluate overall result for each 

ranking models.   

 

The results will be compared to other research that used the same data collection. The 

evaluation is based on relevance judgment obtained from the ImageCLEF 2010 collection. 

MAP value is used for the comparison since this method is a standardized measurement 

evaluation in most CLEF researches.  Moreover MAP is a more stable measurement 

compared to other measurement such as precision and R-precision since it can assess more 

information (Buckley, 2000).  

 



152 
 

7.5 Visual Features Experimental 

In chapter 5, we have explained the M3ICS content-based framework which involves 

feature extraction in global and local descriptor. Furthermore the data are trained based on 

bottom top MedHieCon model of pathology, anatomy and modality. The data in the 

collection will be trained and modelled based on these medical concepts. k-NN and SVM 

classifiers are used for classification purposed. The experiments for visual features 

involved the performance of each feature of texture, shape and color followed by global 

and local descriptors performance.  

The evaluation of MedHieCon model performance using classifiers of k-NN and SVM are 

performed separately. To evaluate the performance of visual features, MedHieCon model 

and M3ICS content-based framework, we used 14,537 relevant judgement medical images 

provided by ImageCLEF 2010 medical task as test and train data. The data is based on 16 

ad hoc queries (Q-1, Q-2, ...., Q-16) as the queries in Appendix A and example of images 

are listed in Appendix C. Table 7.2 shows the number of train and test data for each query 

used in this experiment with the ratio of 75% of training and 25% of testing data. The ratio 

is chose based on the experiment handled in section 7.5.2. In order to support imbalanced 

data the majority class can be subsampled (as for Weka used filter SpreadSubsample) and 

oversampling is for the minority class, creating synthetic examples (as for Weka used 

SMOTE). Other alternative is to make the classifier cost sensitive (as for Weka used 

metaclassifier CostSensitiveClassifier). However, each of the methods has its own strengths 

and weaknesses and need to be experimented to perform better results (Hall et al, 2009). 
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Table 7.2: List of training and testing data for each query 

Query List Training Set 

(75%) 

Testing Set 

(25%) 

Q-1 644 215 

Q-2 464 155 

Q-3 594 198 

Q-4 735 245 

Q-5 617 206 

Q-6 704 235 

Q-7 785 262 

Q-8 683 228 

Q-9 819 273 

Q-10 644 215 

Q-11 875 292 

Q-12 631 210 

Q-13 657 219 

Q-14 557 186 

Q-15 619 206 

Q-16 873 291 

 

7.5.1 Experiment in Selecting Optimum Value for Training and Testing Data  

Prior to evaluate the performance of visual features, the optimum size of training and 

testing data needs to be determined. In this experiment the optimum percentage of test and 

train data need to be determined. Cross-validation technique (Browne, 2002) is used to 

segment the training and testing data. Each image is extracted by combination features of 

shape, texture and color in one feature vector which consist of 75-dimensional in global 

descriptor. The feature vectors of all data are trained based on 16 classes are which based 

on 16 ad hoc queries as listed in Appendix A. Then the data will be evaluated based on two 

types of classifiers namely k-NN with k=1 and SVM using polykernel. We experimented 

seven different categories of test data and train data percentage as listed in Table 7.3.   



154 
 

 

Category Test data (%) Train data (%) 

1 10 90 

2 20 80 

3 25 75 

4 50 50 

5 75 25 

6 80 20 

7 90 10 

 

7.5.2 Classifiers Experiment with k-NN and SVM 

This experiment is carried out to evaluate the performance of k-NN and SVM classifiers. 

Three experiments are executed in this section. The first experiment is done to determine 

which k value in k-NN method is the best for this research study. The second experiment is 

performed to evaluate which kernel application is suitable in order to obtain better result in 

SVM classifier as we compared kernel of polykernel (Burges, 1998) and RBF (Burges, 

1998). The final experiment is carried out to make comparison between k-NN and SVM 

classifier is performed. The same data and setup is used from previous experiment in 

section 7.5.1. 

7.5.3 Primitive Visual Features Experiments with Texture, Shape and Color Features 

in Global Descriptor 

As mentioned in chapter 5, we extracted texture, shape and color features for global 

descriptor. The combination of these features produced 75-dimensional feature vector for 

each medical image. For texture feature, we used GLCM approach which concentrates on 

contrast, correlation, energy and homogeneity of the image and the extraction is based on 

four directions which are 0

, 45


, 90


 and 180


. As for shape feature, we employed Hu‟s 

Table 7.3: Classifiers Experiment with k-NN and SVM 
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moment invariant method, which invariant to translation, rotation and scale while HSV 

histogram is applied to represent color feature.  These features are extracted for the whole 

image in global descriptor. The evaluation is based on MAP and percentage of correctness 

rate between two classifiers of k-NN with k=3 and SVM using polykernel.  

7.5.4 Local Level Evaluation with 2×2, 4×4 and 8×8 Patches and Interest Blocks 

This section describes local descriptor performance which involves patches and interest 

blocks experimental. In local descriptor feature extraction, no rotation involved. For 

patches experimental work, there are three experiments. Each experiment is done to 

evaluate the performance of divided medical image into 2×2, 4×4 and 8×8 patches. The 

experiments use the combination of texture, shape and color features. The evaluation is 

based on which size of patches performs the best in this experiment.  

The next experiment in local descriptor which is carried to extract visual features based on 

interest blocks. Prior to that, Harris detector (Mikolajczyk et. al, 2002) method is used to 

extract interest points in each medical image. For interest blocks, color feature extraction is 

not applied due to difficulties on converting small patches into HSV format. This is 

because each patch will turn into brown-scale color and produce inaccuracy in the result. 

For each interest point, a square block of size 20×20 pixels is created as interest point to be 

the centre point. Then texture and shape features are extracted in these blocks and then 

combine all features in one feature vector. The maximum of 20 interest points will be 

produced for each medical image. This is done to avoid large dimension of feature vector 

for each medical image.  

Finally the performance of patches, interest blocks and combination of patches and interest 

blocks are compared.  
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7.5.5 Evaluation on the Performance of MedHieCon Model   

In section 5.6, the MedHieCon model for visual features is explained. This model is a 

bottom top diagram which illustrates general information on top of the diagram down 

towards lower level of the pyramid is more specific descriptions. The illustration is 

described as modality on top of diagram, followed by anatomy and the bottom part is 

pathology. Two classifiers are used namely k-NN with k=3 and SVM using polykernel to 

train data into concept classes and test the concept based on classification.  

In this research, the application of MedHieCon model is based on 16 ad hoc queries 

provided by ImageCLEF 2010. Table 7.4 express the list of 16 ad hoc queries and concepts 

assign for each query. For example Q-1 “CT images thoracic aortic dissection”; the 

concepts involve is “CT” for modality, “thoracic aorta” for anatomy and “thoracic aorta 

dissection disease” for pathology. For those queries that  have information of modality and 

pathology medical concepts such as Q-7 “X-ray images of a greenstick fracture” which only 

state “X-ray” for modality and “greenstick fracture” for pathology; we will defined the anatomy 

concept manually which is categorized the anatomy as “bone”. Other queries that we manually 

defined the anatomy concept are Q-4, Q-6, Q-9 and Q-10. 

There will be 14,573 medical images are used for training data and will be modeled for 

three concepts namely modality, anatomy and pathology. These images are taken from the 

relevant judgment data from the ImageCLEF 2010 medical task collection. This is because 

all of these medical images are label images. Therefore for modality concept will have 7 

models, anatomy concept will have 10 models and pathology concept will have 12 models. 

For modality concept, the extraction will be based on global descriptor process (as shown 

in Figure 5.3). Meanwhile, for anatomy concept local descriptor is applied (as shown in 
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Figure 5.5). As for pathology concept, the combination of global and local descriptors will 

be used.  

Table 7.4: List of 16 ad-hoc queries and the medical concepts 

 Query ImageCLEF 2010 Medical Task Modality Anatomy Pathology 

 
Q-1 CT images thoracic aortic dissection CT Thoracic Aorta 

Thoracic Aortic 

Dissection 

 
Q-2 

A microscopic image of Acute Myeloid 

Leukemia 
PX 

Microscopy 
 

Acute Myeloid 

Leukemia 

Q-3 ECG images GX ECG 
 

  

Q-4 X-ray showing congestive heart failure XR Chest Heart Failure 

  Q-5 
CT images for brachial plexus nerve block CT Brachial Plexus 

Brachial Plexur 

Nerve Block 

Q-6 CT images containing fatty liver CT Liver Fatty Liver 

Q-7 
X-ray images of a greenstick fracture XR Bone 

Greenstick 

Fracture 

  Q-8 Microscopic images streptococcus 

pneumonia 
PX 

Microscopy 
 

Streptococcus 

Pneumoniae 
Q-9 MR images papilledema MR Eye Papilledema 

Q-10 
MR images pericardial effusion MR Heart 

Pericardial 

Effusion 

Q-11 All types images with atherosclerosis in 

blood vessels 
 

Blood Vessel Atherosclerosis 

Q-12 Radiation therapy treatment plans 
  

  
Q-13  Images of dermatome  

 
Dermatome   

Q-14 Images showing sacral fracture  
 

Bone Sacral Fracture 

  Q-15 
Images coronary arteries 

 

Coronary 

Arteries   

Q-16 Images dermato fibroma  
 

Dermatome Dermato fibroma 

  

7.5.6 Experiment to compare the performance of M3ICS and MIARS  

The performance with our M3ICS content-based framework with MIARS methodology 

(Mueen, 2010) using ImageCLEF 2010 medical task data collection is compared. MIARS 

methodology involves of converting the medical image to greyscale and extract features in 

global and local level descriptors with pixel intensity information. For local descriptor, 

each medical image is divided into 2×2 patches and extract texture feature using GLCM 

and edge histogram (Park et al., 2000) for shape feature extraction and produced 53-
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dimensional of feature vector for each medical image. The evaluation is based on MAP 

value.  

 

7.6 Information Fusion Experiment 

Hierarchical processing of late fusion technique is applied in this experiment where the 

result from text retrieval will be the input for content-based retrieval. The input data used in 

this experiment are explained in section 6.2 where 16 ad hoc queries are used. Initially, 

results of RMR list from experiment 7.4.4 of each query are taken as input. For each RMR 

list, the system import medical images based on figure ID in the RMR list and stored them 

into another folder. All these images are assigned as the test data on M3ICS content-based 

framework. The evaluation is based on MAP value.  The comparison of text, visual and 

fusion is based on MAP values.  The performance of M3ICS with other run system (as 

shown in table 3.3) is then compared. 

 

7.7 Evaluation Criteria 

There are many evaluation methods proposed in IR system to evaluate the effectiveness of 

query expansion (Hersh, 2003). Precision, recall, and MAP are used as evaluation values. 

The performance was first evaluated by recall (number of relevant documents in the 

collection retrieved by the query) followed by precision (number of relevant documents 

retrieved by the query). Then, MAP value is obtained by taking the mean value of average 

precision from all the queries. Average precision is considering the order of returned 

relevant documents in the ranked sequence. 
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7.7.1 Precision and Recall 

In the field of information retrieval, precision is the fraction of retrieved documents that are 

relevant to the search which takes all retrieved documents into account (Manning et. al, 

2008). Precision is also used with recall, which is the fraction of the documents that are 

relevant to the query that are successfully retrieved. 

Let R be the set of relevant documents that have been establish by ImageCLEF collection 

and RMR denoted as the retrieved documents from M3IRS system. Then the precision and 

the recall of the system are calculated using the following equations: 

               
|     |

|   |
        (7.1) 

                  
|     |

| |
           (7.2) 

It is trivial to achieve recall of 100% by returning all documents in response to any query. 

Therefore, recall alone is not enough and one needs to measure the number of non-relevant 

documents also, for example by computing the precision. 

7.7.2 F-measure 

F-measure is a formula to measure test‟s accuracy. The calculation involves precision p and 

recall r value as depicted in equation (7.1) and (7.2). F-measure score also can be 

represented as weight average for precision and recall where the best score at 1 and worst at 

0.  

                  
     

     
               (7.3) 

This is also known as the F1 measure, because recall and precision are evenly weighted. 

http://en.wikipedia.org/wiki/Information_retrieval
http://en.wikipedia.org/wiki/Relevance_(information_retrieval)
http://en.wikipedia.org/wiki/Recall_(information_retrieval)
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7.7.3 Average Precision 

Since there are several queries involved in this experiment and the R documents for each 

query might not be the same amount; therefore average precision is the precision values at 

the positions of each RMR is retrieved. This is significant in order to ensure that the most 

relevant document will be ranked in higher position (Song et. al, 1999). Precision and recall 

are single-value metrics based on the whole list of documents returned by the system. 

Average precision computing a precision and recall at every position in the ranked 

sequence of documents. The calculation involves the position of RMR (RMRpos) where 

RMR∩R. The average precision calculation is represented by equation (7.4) where r is the 

number of position and rel(r) is an indicator function equals to 1 if the item at position r is 

a relevant document and zero if r is a non-relevant document. Therefore the result is more 

precise where each document is measured based on its position in the list and we will know 

which medical document is the most relevant with the query. In contrast precision value 

only concentrates on the overall performance.  

     ∑
                

 
 
         (7.4) 

Further, equation 7.5 shows the measurement of the MAP for each queries where Q is 

number of queries.  

    
∑        

 
   

 
                      (7.5) 
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7.7.4 Percentage of Correctness Rate 

The correctly and incorrectly classified instances show the percentage of training test 

instances that were correctly classified. The percentage of correctness rate instances is 

often called accuracy or sample accuracy which represents the accuracy of the method used 

in classifying data based on classifier. The calculation can be defined as  

                                
                                              

                   
        

(7.6) 

For example given 100 example data as test data and during classification process only 70 

data is correctly classified, therefore the percentage of correctness rate is 70%. 

 

7.7.5 AUC under ROC 

Due to imbalanced data in several modalities receiver operating characteristics (ROC) 

graph is used for result presentation. ROC is a two-dimensional graph for visualizing, 

organizing and selecting classifiers based on their performance without regard to class 

distribution or error costs (Zweig et. al, 1993).  In signal detection theory, ROC is used to 

characterize the tradeoffs between hit rate and false alarm rate over a noisy channel (Egan, 

1975). Generally in classification there are four outputs in a classifier and an instance. For 

example; if the instance is positive and it is classified as positive, it is counted as a true 

positive; and if it is classified as negative, it is counted as a false negative. As for negative 

instance and it is classified as negative, it is counted as a true negative; if it is classified as 

positive, it is counted as a false positive.  
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ROC graphs involve true positive (tp) rate plotted on the y-axis and false positive (fp) rate 

on the x-axis. True positive (tp) rate can be defined as 

 

                                   
                             

               
                                     (7.7) 

 

and false positive rate of classifier is classified as 

 

                                
                                

               
                                 (7.8) 

 

Simple classification accuracy provide poor metric for measuring performance and 

therefore ROC graphs have been used in machine learning field for performance 

measurement (Provost, 1997). Area under the ROC curve (AUC) is used to represent ROC 

graph in single scalar value (Bradley,A.P., 1997). The calculation is based on the area of 

the unit square whereby the value is between 0 which indicate the worst classification and 

1.0 which indicate the best classification performance. AUC performs very well and is 

often used when a general measure of predictiveness is desired.  

 

7.8 Summary 

This chapter describes experimental setups of M3IRS text, M3ICS content-based and 

information fusion frameworks. The experiment is based on components consist in the 

frameworks. The ImageCLEF 2010 medical task dataset is used and 16 ad hoc queries and 

relevant judgments are included. For M3IRS text-based framework, the experiments start 
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with the evaluation of XTE method in document processor followed by time evaluation of 

the MeSH- indexer in M3IRS. Later, the query processor experiments which include two 

types of queries namely query expansion and query expansion and enrichment are 

performed. The final part for textual experiment is the comparison of ranking method 

between comprehensive and MedHieCon ranking models. 

For content-based experimental work, there are five main experiments starting with the 

experiment to find optimum value of testing and training data. This optimum value is 

significant to determine the percentage of testing and training data and will be used for 

following experiments. Next is the comparison between two classifiers namely k-NN and 

SVM. This experiment is performed to validate which classifier has better performance in 

multi-modality medical image classification. Visual primitive features inclusive texture, 

shape and color will be experimented for both global and local descriptors. As for local 

descriptor the experiments includes the performance evaluation of 2×2, 4×4 and 8×8 

patches and interest blocks. We introduced medical hierarchical concept to annotate the 

training data based on modality, anatomy and pathology. 

Finally will be the IF3MIRS framework experiment. In this experiment setup, the output 

from M3IRS text-based framework will be the input of M3ICS content-based framework. 

The evaluation is based on the comparison and improvement of IF3MIRS with M3IRS text 

and M3ICS content-based framework. Furthermore the result will be compared with other 

researchers that used the same data collection. 
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8.0 Results and Discussion 

 

8.1 Introduction 

This chapter covers the results and discussions based on experimental setup explained in 

chapter 7. The experimental results were organised according to four main categories 

namely experimental for multi-modality medical image characteristic evaluation, text 

features, visual features and information fusion experimental.  Different evaluation criteria 

is used as described in section 7.7. 

 

8.2 Results of Quality Characteristics in Multi-modality Medical Image Evaluation 

In this experiment, we analyzed the image quality characteristics namely contrast, blur and 

noise for eight modalities of medical image which are x-ray, CT, US, NM, PET, MRI, PX 

and GX. The methods used to measure these characteristics have been explained in section 

2.2. The feature extraction is based on global level which the measurement is for the whole 

medical image. SVM classifier was used for classification and SMO (Keerthi et al., 2001) 

is applied for speedy training the instances of a support vector classifier for each modality. 

The output of an unknown test example was based on which class receives the most votes. 

The results shown are the ROC graph for individually contrast, blur and noise 

characteristics for each modality. 
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8.2.1 X-ray 

Figure 8.1 shows the ROC graphs of contrast, blur and noise for x-ray modality. From the 

AUC value of each graph, blur characteristic show better performance in x-ray modality, 

followed by contrast and noise. This result is tally with the fact that x-ray modality indicate 

the highest effect of image blur with low value of noise. As such the visibility of the detail 

is limited (Sprawls, 1995).  

 

 

 

 

 

 

  

8.2.2 CT Scan 

As for CT modality, the AUC value of contrast, blur and noise are about the same as 

depicted in Figure 8.2. High contrast and noise values contribute to the good contrast 

between soft tissue such as kidney, liver and muscle. CT generally has a higher contrast 

value compare to x-ray (Donath et. al, 2010). This reason why CT is able to image soft 

tissue objects that cannot be imaged using x-ray.    
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Figure 8.1: ROC graph for x-ray modality with AUC value (a) 0.7938, (b) 0.8189 and (c) 0.7159 
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8.2.3 US 

ROC graphs presented in Figure 8.3 shows that US has a high value of noise and low value 

of blur and contrast. The high value of noise in US has contributed to well-defined beams 

and focused to explore between human body and tissue structures. Technically US has high 

contrast (Harvey et. al, 2002). However, the ROC graph of shows contrasts characteristic 

result. The visibility of object is based on the operating frequency. This means that at low 

frequency, US is able to capture deep-lying structures and at high frequency it‟s more 

suitable for imaging object close to body surface. Therefore we assumed that the US 

images used in this work were taken at high frequency level which caused low value of 

contrast (Kuhn, 1995).  
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Figure 8.2: ROC graph for CT modality with AUC value (a) 0.7972, (b) 0.7713 and (c) 0.7869 
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8.2.4 NM 

Compared with other modalities, NM images are generally the noisiest image which is 

proven in Figure 8.4 (as US is the second nosiest with value of 0.8908). The noise AUC 

value of NM images is 0.9034. Furthermore NM has the highest value among other 

modalities studied in this research work except GX since graphic image does not represent 

human body image but more in visualizing result of a disease. High value of noise can 

cover and reduce the visibility of certain features within the image (Khandelwal, 2012). 

However, in the case of NM, it only focuses on radiopharmaceuticals objects. 
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Figure 8.3: ROC graph for US modality with AUC value (a) 0.673, (b) 0.7738 and (c) 0.8908 

Figure 8.4: ROC graph for NM modality with AUC value (a) 0.8131, (b) 0.8458 and (c) 0.9034 
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8.2.5 PET 

PET is biodistribution of positron-emitting radiopharmaceutical within the body by using 

nuclear medicine technique. Basically PET images should have high value of noise 

compared to blur characteristic (Worsley et. al, 1996). In contrast, the result shows in 

Figure 8.5 indicates low value of noise and high value of blur. This may be due the reason 

that the method used to measure noise and blur is not suitable for PET images. However, 

the contrast graphs can be accepted. The contrast graph exhibited high AUC value of 

0.8024.  

 

 

 

 

 

 

 

8.2.6 MRI 

ROC graph for MRI modality is shown in Figure 8.6. This observation is consistent with 

the fact in that noise is significant for MRI in order to visualize soft-tissue in human body 

(Sprawls, 1995). In principle, MRI and CT are categorized in the same type of imaging 

technique namely tomographic imaging which produce images of selected planes or slices 

of tissue in the human‟ body. However in this experiment, the values of contrast, blur and 
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Figure 8.5: ROC graph for PET modality with AUC value (a) 0.8024, (b) 0.8553 and (c) 0.6737 
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noise for MRI are lower than those for CT. This is maybe due to misclassification between 

CT and MRI since those images have similar texture and subtle difference from each other. 

 

 

 

 

 

 

 

8.2.7 PX 

PX provided in ImageClef 2010 collection involves microscopy and gross anatomy image. 

Visually these two images have distinct characteristics of texture and shape. These results 

contribute to inconsistent in vectors of training data and the course of low value of contrast, 

blur and noise characteristics as depicted in Figure 8.7.  
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Figure 8.6: ROC graph for MRI modality with AUC value (a) 0.7149, (b) 0.689 and (c) 0.7554 

Figure 8.7: ROC graph for PX modality with AUC value (a) 0.6865, (b) 0.6514 and (c) 0.7407 
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8.2.8 GX 

GX images provided by ImageCLEF 2010 collection are in the form of a chart, diagram or 

graph. Theoretically there are no image characteristics of graphic image in the physical 

principles or theory of medical imaging description. However, graphic image is important 

in analysing and visualizing medical results. From the ROC graphs in Figure 8.8, it is clear 

that graphic image exhibited high value of contrast, blur and noise. This shows that graphic 

image has the best performance in measuring image quality characteristics. The graphic 

image features such as sharp, clear and non-complex image has led to high results of these 

characteristics. 

 

 

 

 

 

 

8.2.9 Visual Features Evaluation in Multi-modality Medical Image 

The experiment is carried out to investigate which visual features those are suitable to use 

in order to extract significant information from multi-modality medical image. Table 8.1 

show the percentage of accuracy classified based on each modality for visual features of 

texture, shape and color. From the table we can explain that GX has the higher value in 

each visual feature. This is because GX only represent chart and graph of medical image 

which it is not a complex image. In contrast XR and MR have low value in all features due 
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Figure 8.8: ROC graph for GX modality with AUC value (a) 0.9365, (b) 0.9526 and (c) 0.9730 
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to the complexity of the image. Nevertheless the difference between the values from each 

modality is subtle.  For NM modality, the color percentage is high due to this modality is a 

color medical image. Therefore it is easy to classify this modality based on color. The 

difference in shape for US modality with other modalities has contributed to the high value 

of correctly classified in shape for US. As for PET it easy to differentiate with other 

modalities using texture feature which result to high correctly classified values.  

Table 8.1: Percentage of Multi-modality Medical Image Correctly Classified 

Modality Texture Shape Color 

CT 56 49 30 

GX 91 89 85 

XR (x-ray) 49 13 29 

MRI 17 25 42 

NM 26 52 69 

US 38 64 41 

PET 54 27 38 

PX 18 46 52 
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Figure 8.9: Precision and recall for texture feature 
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Figure 8.9, Figure 8.10 and Figure 8.11show the accuracy value of precision and recall for, 

shape, texture and color features. It shows that CT, x-ray, and PET are suitable to be classified 

using texture descriptor as depicted in Figure 8.10. As for moment shape descriptor, the result 

almost similar with texture but the value of accuracy is higher compared to texture as shown in 

Figure 8.9. It explains that shape descriptor using local level has better presentation compare to 

texture descriptor in analysing multi-modality medical images. Finally the color descriptor in 

Figure 8.11 shows that GX, PX, NM and PET have higher value. This is due to those modalities 

have used more colors compare to other modalities which concentrate only on grey-scale image.   
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Figure 8.10: Precision and recall for shape feature 

 

Figure 8.11: Precision and recall for color feature 
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8.3 Text Features Results for M3IRS Framework 

Previously in section 7.4 we have elucidated experimental setup for text features. These 

experiments were conducted to evaluate the performance of each component in M3IRS 

text-based framework.  

8.3.1 Results for Document Pre-processor Experiment with XTE Method 

The experiment is carried out to compare the performance of M3IRS using original 

ImageCLEF medical documents and the new indexed and manipulated medical documents 

using XTE method. The performance evaluation is based on average precision of each 

query and MAP for overall performance of the queries. Figure 8.12 shows the average 

precision of each query for both ImageCLEF collection and our new indexed medical 

documents using XTE method for document pre-processor. The figure clearly shows that 

XTE method in indexing medical documents produced higher average precision values 

compared to the original ImageCLEF data collection.  

 

 

Figure 8.12: Comparison of average precision value between original ImageCLEF and new 

index document using XTE method 

 

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16

ImageCLEF 0.25 0 0.29 0.01 0.17 0.29 0 0 0.7 0.63 0.01 0.07 0.14 0.79 0.04 0

XTE-based Index 0.26 0.01 0.29 0.01 0.18 0.29 0 0 0.76 0.64 0.02 0.07 0.2 0.81 0.05 0
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Although there is only a slight increment in the result but it proves that our technique can 

improve the result and performance in IR system. The result also suggests that the 

technique is able to simplify the XML data and remove the redundance of the caption 

thereby promoting the relevant document into higher position leading to slightly higher 

precision. Average precision values for Q7, Q8 and Q16 are equal to zero value because 

there are no such medical terms in the MeSH thesaurus. However, in the research done by 

Wu et al (2010), they changed the original Q16 ad hoc query to “images of dermato 

fibramo” which separates the term dermatofibramo into two words and we followed the 

guideline for the rest of the experiments. This is because these two words of “dermato” and 

“fibramo” represent medical terms that are contained in MeSH thesaurus.. 

Table 8.2: MAP values for original ImagecLEF data and modified data using XTE Method 

ImageCLEF collection XTE-based Index Documents 

0.212 0.223 

 

Table 8.2 presents the MAP value exhibited by M3IRS using the original ImageCLEF data 

and XTE-based index medical documents. The table clearly shows that using our XTE 

method to index new medical documents results is 5% higher on MAP compared to that the 

value obtained when original ImageCLEF data was used. Removing duplication in medical 

documents results to the increment of relevant document in higher position. Remove the 

duplication sentences in each medical document definitely help to increase the position of 

relevant documents. 
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8.3.2 Result for Time Performance Experiment with Mesh-indexer 

As described earlier, MeSH thesaurus is used frequently in retrieval process. We have 

developed a MeSH-indexer to organize the components of this medical thesaurus which is 

focused on giving the MeSH heading, synonym terms and semantic type. An experiment 

was carried out to observe the computational performance between the original MeSH 

version and MeSH-indexer. The execution time is taken starting from the system received a 

query and then process the query expansion technique of Type 2 (see section 4.3.1). 

Table 8.3: Time evaluation between MeSH-indexer and original MeSH thesaurus 

 

Table 8.3 clearly shows that Mesh-indexer takes only 74 milliseconds to execute the task. 

In contrast using MeSH thesaurus, it takes 4896 millisecond. This means that using MeSH-

indexer, the performance is 26 times faster. Therefore using MeSH-indexer for query 

expansion technique can increase the efficiency of M3IRS system. Furthermore the file size 

of MeSH-indexer is only 28.2MB while the file size of the original version is 276MB. 

 

8.3.3 Results for Query Processor Experiment with Medical Context Aware Query 

Expansion Technique 

Mentioned in section 4.3.1, there are three types of queries considered for this research. For 

Type 1 query which is the original query, no result is shown since there is no document 

retrieved based on exact matching of the original query. Therefore only Type 2 and Type 3 

 Expansion 

(milliseconds) 

Expansion and Enrich 

(milliseconds) 

Original MeSH  4896 4896 

MeSH-Indexer 74 101 
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from medical context aware query expansion technique are used in this experiment. Type 2 

used only medical terms identified in the query and Type 3 is the enrichment of Type 2 and 

the synonymous terms.  

The experiment was conducted according to the description in section 7.4.3 and 

comprehensive ranking model is applied (see section 4.6.1).  The purpose of this 

experiment is to evaluate the effectiveness of Type 2 and Type 3. For this purpose, 

therefore average precision value for each query is used to review the results that illustrate 

the position of relevant documents in RMR. The more relevant documents ranked on top of 

the RMR list, the higher average precision values.  

Figure 8.13 shows the average precision values of each query. It clearly shows that there is 

improvement in the precision value when synonymous term as enrichment  are used 

compared to when only applying medical term in the query list in Q1, Q3, Q16. 

Synonymous terms provide more varieties of medical terms to find more possibility 

relevant documents in each query. On the other hand, Q14 and Q15 values increased in 

Type 3 because of the changes of relevant documents position into higher rank which also 

explained the reasons of Q4 and Q9 values are decreased due to the position of relevant 

documents dropped to lower rank position. Note that the Q16 in Type 3 increase to 0.1 due 

to separate the term “dermatofibroma into two words “dermato fibroma” as mentioned in 

section 8.3.1 
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Table 8.4 shows several calculations of statistical measurements in comparing Type 2 and 

Type 3 queries. The calculation involves standard deviation, standard error and the 

probability value with 0.74519. Figure 8.14 represents recall values of each query and it 

shows that only Q1, Q3 and Q16 in Type 3 are higher values than Type 2. It explains that 

synonymous terms obtained from Q1, Q3 and Q16 contribute to the higher values in Type 

3. This means medical documents that contains synonymous terms in Q1, Q3 and Q16 are 

in the list of relevant judgment. Figure 8.15 clearly shows that F-measure values of Q1, Q3, 

Q14, Q15 and Q16 from Type 3 are higher than Type 2. F-measure determine the accuracy 

 

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16

Type 2 0.258 0.005 0.294 0.006 0.176 0.293 0 0 0.76 0.635 0.015 0.071 0.2 0.813 0.046 0

Type 3 0.263 0.005 0.343 0.004 0.176 0.293 0 0 0.715 0.635 0.015 0.071 0.2 0.938 0.082 0.1
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Figure 8.13: Average Precision values of each query for expansion only (Type 2) and expansion and 

enrich (Type 3) data 

Table 8.4: Statistical measurements for Type 2 and type 3 queries 

Type 2 Type 3 

Mean = 0.21838 Mean = 0.25206 

Standard Deviation = 0.26877 Standard Deviation = 0.3106 

Standard Error = 0.06719 Standard Error = 0.07765 

Probability Value: 0.74519 
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of medical context aware expansion technique based on Type 2 and Type 3 results whereby 

the calculation involves average precision and recall values. 

 

 

 

 

 

 

 

 

 

 

From the figure it clearly shows that average values of Q1, Q3, Q14, Q15 and Q16 from  

 

 

 

 

 

 

 

 

 

 

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16

Type 2 0.98 1.00 0.43 0.56 1.00 0.89 0.00 0.00 1.00 1.00 0.39 0.95 0.06 0.25 0.41 0.00

Type 3 1.00 1.00 0.53 0.56 1.00 0.89 0.00 0.00 1.00 1.00 0.39 0.95 0.06 0.25 0.41 0.24
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Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16
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Figure 8.14: Recall value of each query for expansion only (Type 2) and expansion and enrich  

(Type 3) data 

Figure 8.15: F-measure value of each query for expansion only (Type 2) and expansion and 

enrich (Type 3) data 
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Table 8.5: MAP, Recall and F-measure values for Type 2 and Type 3 queries 

Query Type MAP Recall F-measure 

Type 2 0.223 0.559 0.319 

Type 3 0.240 0.582 0.340 

 

Table 8.5 shows the MAP, recall and F-measure for all queries and it clearly shows that 

Type 3 values are slightly higher than Type 2 due to the support of applying synonymous 

terms in query expansion technique. The increment values of MAP, Recall and F-measure 

in Type 3 prove that using synonymous term in query expansion technique has supported 

the performance of getting more relevant documents retrieved.  

8.3.4 Results for Ranking Strategies Experiment 

This experiment was carried out to compare the two types of ranking models used in this 

research as mentioned in section 4.6. Our retrieval model is based on Boolean matching. 

The disadvantage of Boolean model is it does not rank the RMR. As for retrieval system 

ranking the relevant documents is important because it can identify the most relevant 

documents to the query. Therefore ranking model is used in this framework to rank RMR 

list. In this model, the most relevant document is listed on top of the list and vice versa. The 

experimental setup is described in section 7.4.4 and the experiment was done using Type 3 

query expansion technique.  

The evaluation is based on average precision values of each query and MAP for theoverall 

performance in the queries. The recall values for both set of queries in comprehensive and 

MedHieCon ranking models are the same since the data to evaluate MedHieCon ranking 
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model is taken from the experiment‟ result in section 8.3.3 which is Type 3 query 

expansion technique using comprehensive ranking model.  The purpose of this experiment 

is to observe whether using medical concepts of modality, anatomy and pathology can lead 

to improvement in increasing the RMR list into higher position which affects the increment 

of average precision result.  

The average precision values of Q2, Q3, Q4, Q5, Q6, Q11, Q13 and Q16 are shown in 

Figure 8.16 show that MedHieCon ranking model are higher compared to those of the 

reference. Eight out of 16 ad-hoc queries are tremendously enhanced by using MedHieCon 

ranking model. On the other hand, Q1, Q9, Q10, Q12, Q14 and Q15 in MedHieCon model 

show lower values than Comprehensive model. One of the reasons is due to the difficulty to 

conceptualize the query. For example in Q12, there is no specific pathology, anatomy or 

modality to conceptualize medical term in the query which results to the decrement of 

average precision value. 

 

 

 

 

 

 

 

 

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16

MedHieCon 0.0040.0220.4180.0280.4400.343 0 0 0.5330.1180.3160.0181.0000.9090.0640.110

Comprehensive 0.2630.0050.3430.0040.1760.293 0 0 0.7150.6350.0150.0710.2000.9380.0820.100
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Figure 8.16: Comparison of average precision values between MedHieCon and 

comprehensive models 
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The other reason is that most medical terms that appeared in the query list are ambiguous as 

whether the term is a subheading or synonymous term in MeSH thesaurus. For example 

“coronary arteries” is the medical term of Q15 and it is a synonymous term of “coronary 

artery bypass” where by the system can only conceptualize the heading medical term in 

MeSH and not the synonymous term. 

 

 

 

 

 

 

 

The F-measure results for each query which are presented in Figure 8.17 are consistent 

with average precision values in Figure 8.13 where those queries that obtained high values 

of average precision have high values of F-measure. Q2, Q3, Q4, Q5, Q6, Q11, Q13 and 

Q16 from MedHieCon model have higher F-measure values compared to Comprehensive 

model.  Significance measurement of these two ranking model is presented in table 8.6. 

 

 

 

 

 

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16

MedHieCon 0.0080.0420.4680.0530.6110.496 0 0 0.6950.2110.3520.0350.1180.3920.1110.151

Comprehensive 0.416 0.01 0.4170.0080.2990.441 0 0 0.8340.7770.0290.1320.0950.3950.1370.141
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Figure 8.17: Comparison of F-measure values between MedHieCon and comprehensive models 

Table 8.6: comprehensive and MedHieCon ranking model 

Comprehensive MedHieCon  

Mean = 0.25206 Mean = 0.27012 

Standard Deviation = 0.3106 Standard Deviation = 0.32251 

Standard Error = 0.07765 Standard Error = 0.08063 

Probability Value: 0.87294 
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Table 8.7 represents number of documents retrieved and the amount of relevant document 

retrieved for each query. Furthermore the amounts of relevant judgment document are 

listed as well. From these values, the measurement percentage of TP (true positive) and FP 

(false positive) can be calculated. From the table it shows that there are five queries which 

obtained 100% of relevant document retrieved (TP) which are Q1, Q2, Q5, Q9 and Q10. 

However there are still percentages of FP value but the values are lower than the 

percentages of TP for most queries. The results are statistically significant at 95% 

confidence interval with probability p=0.0177. It proves that our M3IRS framework is 

effective although the retrieval strategy involved Boolean model and not the conventional 

statistical model, and mapping the medical term into more meaningful semantic term for 

ranking purposes. 

 

 

 

 

 

 

 

 

 

 

Query Document Retrieved  Relevant Document Relevant Document Retrieved Percentage of TP Percentage of FP 

Q1 32590 108 108 100% 43.309% 

Q2 222 1 1 100% 0.295% 

Q3 80 62 27 44% 0.071% 

Q4 5684 23 13 57% 7.561% 

Q5 31198 32 32 100% 41.555% 

Q6 34126 94 86 91% 45.387% 

Q7 387 4 0 0% 0.516% 

Q8 5851 1 0 0% 7.801% 

Q9 28686 12 12 100% 38.232% 

Q10 28764 21 21 100% 38.324% 

Q11 2912 103 40 39% 3.829% 

Q12 4533 40 38 95% 5.993% 

Q13 6 32 2 6% 0.005% 

Q14 8 28 7 25% 0.001% 

Q15 3346 406 168 41% 4.237% 

Q16 30 29 7 24% 0.0031% 

                                                                         Probability Value: 0.0177 

 

Table 8.7: List of total amount of document retrieved, relevant judgment document 
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Figure 8.18 shows the correlation graph between number of document retrieved and 

relevant judgement document for all 16 ad-hoc queries.  The correlation coefficient value is 

0.308. This value shows that there is positive correlation between number of document 

retrieved from our M3IRS retrieval strategy and the relevant judgement document taken 

from ImageCLEF 2010 medical task collection. However the low value of correlation 

coefficient prove the reason why the overall results of all run systems are low. This is 

because the documents in the collection are very huge which is 75,000 documents but the 

number of relevant documents retrieved are low. 
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Figure 8.18: Correlation between document retrieved and relevant document retrieved for 16 queries. 
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Figure 8.19: Number of documents retrieved based on modality 
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As previously mentioned in section 5.6.1, there are 7 modalities, 10 anatomies and 12 

pathology used in this research based on the 16 ad-hoc queries. Figure 8.19, 8.20 and 8.21 

show the number of documents retrieved based on the particular medical term. For 

modality the document can be retrieved up to 28,000 medical documents out of 75,000 

documents given from ImageCLEF2010 which only reach up to 37% of entire documents. 

As it goes for more specific information to anatomy, the highest documents retrieved is 

bone with 4825 documents which only reach up to 6.4% of entire documents and for 
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Figure 8.20: Number of document retrieved based on anatomy 
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Figure 8.21: Number of document retrieved based on pathology 
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pathology the highest document retrieved is the aortic thoracic dissection which only 

retrieved 105 documents with 0.14% of entire documents. From these figures it shows that 

although there are 75,000 medical documents in the ImageCLEF collection, only small 

percentage of these medical documents are relevant.  

 

 

 

 

Tabulated in Table 8.8 are the MAP and F-measure values for MedHieCon and 

Comprehensive ranking models. Table 8.8 shows that M3IRS framework using 

MedHieCon ranking model improved 11% of MAP and 8% of F-measure values of M3IRS 

performance compared to Comprehensive model. This improvement proves that 

MedHieCon ranking model can be used to support Boolean model in retrieval framework 

to increase the effectiveness of a retrieval system.  

Table 8.9 shows the comparison of MAP and P@10 results obtained from various studies 

that used the same ImageCLEF 2010 medical task data collection including of 16 ad-hoc 

queries and relevant judgments. As discussed in section 2.5, most of the run systems used 

statistical model for retrieval strategy (IPL (Stougiannis et.al., 2010), OHSU (Bedrick & 

Kalpathy-Cramer, 2010), UESTC (Ibrahim & Arafa, 2010)) and used weighting scheme in 

order to index the vector for each medical document.  

In more specific, certain run system such as IPL, used Lucene search engine (Hatcher, 

2004) to automate the text indexing and retrieval process. The default function is Okapi 

Ranking Model MAP F-measure 

Comprehensive 0.240 0.340 

MedHieCon 0.270 0.369 

 

Table 8.8: MAP and F-measure values for overall queries in using 

comprehensive and MedHieCon ranking model 
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BM25 and they modified the similarity function by adding new parameter „∂‟ and set to 

0.5. That is the reason why IPL achieved higher rank since they treat the non-occurrence 

term as it appeared in the text to avoid non-occurrence of a term which can cause 

probability of zero for this term. 

Nevertheless there are also disadvantages such as weighting scheme is somehow biased and 

difficult to use with the other data collection because different dataset has different priority 

which requires re-weighting different parameters based on the prioritization. Furthermore, 

when new data are inserted to the collection, the system needs to re-index the documents 

which involves the whole set of documents in the data collection and this is time 

consuming and increase complexity. 

 

 

 

 

 

 

 

 

 

 

Table 8.9: MAP and P@10 results for various research studies using ImageCLEF 2010 data 

collection 

No Run System MAP 

MAP Absolute 

Difference 

MAP Relative 

Difference p@10  

1 IPL 0.316 - - 0.452 

2 OHSU 0.299 0.017 5% 0.43 

3 UESTC 0.279 0.037 12% 0.313 

4 IPL 0.278 0.038 12% 0.375 

5 UESTC 0.273 0.043 14% 0.344 

6 M3IRS MedHieCon Ranking Model 0.27 0.046 15% 0.354 

7 OHSU 0.261 0.055 17% 0.258 

8 ISSR 0.258 0.058 18% 0.319 

9 HES-SO VS 0.257 0.059 19% 0.35 

10 OHSU 0.256 0.06 19% 0.381 

11 M3IRS Expansion & Enrich 0.24 0.076 24% 0.293 

12 ISSR 0.231 0.085 27% 0.281 

13 M3IRS Expansion Only 0.223 0.093 29% 0.245 

14 ISSR 0.219 0.097 31% 0.325 

15 ITI 0.188 0.128 41% 0.375 

16 ITI 0.158 0.158 50% 0.325 

17 ISSR 0.147 0.169 53% 0.257 

18 HES-SO VS 0.131 0.185 59% 0.181 

19 Bioingenium Research Group 0.101 0.215 68% 0.188 

20 ISSR 0.098 0.218 69% 0.15 

 

mailto:p@10
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In contrast to traditional Boolean model although it is not a favourite retrieval model but 

with the support of our pre-process XTE method for indexing the medical documents and 

MedHieCon ranking model, it can really help the run system to be among the best retrieval 

model. It shows that ranking based on semantic type which gives more meaning to the 

medical terms has contribute to rank the relevant documents in higher position.  Our 

M3IRS text-based framework emphasizes on simplistic process where it is suitable for 

other data collection to use and provides non-complex calculation if there is new data need 

to be add on.   

Table 8.9 clearly shows that our run system outperformed many other systems and is in the 

6
th

 place with MAP value of 0.270 and P@10 of 0.354.  All top 5 lists are run systems that 

used weighting-based for ranking the relevant documents. This competitive result proves 

that by using suitable retrieval and ranking strategies such as M3IRS framework, Boolean 

model has potential to improve the effectiveness of retrieval system to the same level as 

statistical model. There is also calculation on MAP absolute difference (difference between 

the best value, that is IPL MAP and the MAP for other systems) and relative difference 

(MAP absolute difference divided by the IPL MAP). It shows that our M3IRS framework 

using MedHieCon ranking model has only 0.046 of r MAP absolute difference and 15% of 

relative difference. This means that the difference from IPL in measuring effectiveness of 

the performance is low.  OHSU and UESTC show relatively big subsequent jump in the 

difference. The 4
th

, 5
th

 and M3IRS systems show small jump between each other. 
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8.4 Results of Visual Features for M3ICS Framework 

Similar to text-based framework, content-based framework also used ImageCLEF 2010 

medical data inclusive of 16 ad hoc queries. The training images used for visual 

experiments are based on images from relevant judgment list for each 16 ad-hoc queries. 

The main reason images from relevant judgment data is used because these images are 

already classified by expertise that associate with ImageCLEF. Therefore these images are 

accurately labelled and result to accuracy of our result and avoid bias.  

This section the results of low-level features (texture, shape and color) experiments based 

on global and local descriptors are presented. The preliminary experiments involved 

finding optimum value for training and testing data and optimum value for k in k-NN 

classification. This section also reviews the results of semantic mapping using medical 

concepts of modality, anatomy and pathology.  

Two classifiers namely k-NN and SVM are used to train medical data into classes that 

based on 16 ad hoc queries. SVM is widely used for statistical learning and classification. 

Primarily SVM deals with binary classification problem but currently two multiple 

classification approaches, one-against-one, and one-against-all are also used (Akbani et. al, 

2004). One-against-one also known as pairwise classification is chosen for the experiment 

because it is computationally faster. In addition, polykernel is applied where it is chosen 

based on empirical study. The second most widely used classification method k-NN is used 

for further comparison. The comparisons are made based on MAP value and percentage of 

correctness rate. 
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8.4.1 Results for Optimum Value for Training and Testing Data 

In this experiment we applied seven categories of test and train data. For the train data, the 

feature vector of each image including of texture, shape and color features are based on 

global descriptor. These feature vectors are trained into 16 classes using k-NN and SVM 

classifiers and test data will be classified based on these classes. As shown in Table 8.10 

that category 3 which test data is 25% and training data is 75% have the highest MAP value 

for both k-NN and SVM classifiers.  For classifier comparison, it is observed SVM has 

higher value than k-NN classifier.  

Shown in Figure 8.22 are the percentage of correctness rate in different set testing and 

training data. The figure clearly shows that using SVM classifier produces the highest 

percentage of correctness rate in category 3 which is 92.28%. Similar to SVM, k-NN 

classifier obtained highest correctness rate in the same category that is category 3 

(83.58%). However, correctness rate is lower than SVM. Therefore, for further experiments 

category 3 is applied (75% of train data and 25% of test data) as optimum value in 

classification. 

Table 8.10: List of Test and Training Data Percentage and MAP Values for 

Category 

 
Test Data 

(%) 
Train Data 

(%) 

MAP Value 

KNN SVM 

1 10 90 
0.0912 0.1189 

2 20 80 
0.0932 0.1213 

3 25 75 
0.0942 0.1268 

4 50 50 
0.0748 0.1237 

5 75 25 
0.0748 0.0763 

6 80 20 
0.0853 0.0842 

7 90 10 
0.0796 0.0839 
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Figure 8.22: Percentage of correctness rate in different set testing and training data 

8.4.2 Results for Classifiers Experiment with k-NN and SVM 

As mentioned earlier, k-NN and SVM classifiers are used to train data into 16 classes and 

classify test data based on identified classes. Therefore, optimum value k for k-NN and 

suitable kernel for SVM need to be identified. The results of which best k value and 

suitable kernel from this experiment was later used for the following experiments. As 

mentioned in 7.5.2, we conducted the experiment of k-NN classifier for k= {1, 2, 3, 4, 5} 

and for SVM classifier we compared the performance of polykernel and RBF kernel.  

cat-1 cat-2 cat-3 cat-4 cat-5 cat-6 cat-7

SVM 81.66 81.90 92.28 88.46 78.46 78.85 72.51

k-NN 88.53 84.92 83.58 70.93 70.93 75.21 73.38
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Figure 8.23 shows MAP values for visual features in different k values of  k ={1,2,3,4,5}. 

It clearly shows that k-NN classifier highest result when k=3 for all features of texture, 

shape and color. Although there are slightly different from other k values, we determined to 

used k = 3 for the following experiments.   

 

Figure 8.24: MAP value for polykernel and RBF kernel in SVM Classifiers 
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Figure 8.23: MAP values for visual features in different k values of  k ={1,2,3,4,5} 
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As for SVM classifier, it is observed that polykernel has outperformed RBF kernel with 

difference of 80% for texture, 82% for shape and 70% for color as depicted in Figure 8.24. 

Therefore polykernel was used in SVM classifier in following experiments. 

 

8.4.3 Result of Primitive Visual Features Experiments with Texture, Shape and Color 

Features in Global Descriptor 

As previously mentioned in section 5.4, global descriptor means extract visual features 

from the whole medical image. Prior to that, the medical image was resized to 256×256 

pixels and produced 75-dimensional feature vector (4-dimensions for color, 7-dimensions 

for shape and 64-dimensions for texture) for each medical image. From the results 

presented in previous section, we decided to use k =3 for k-NN classifier and also the used 

of polykernel in SVM classifier. In this section, the comparison among features in global 

level was performed. The performance of each features namely texture, shape, color and 

combination of these features are evaluated.  

 

Table 8.11: Comparison of MAP value for texture, shape and color features for 3-NN and 

SVM Polykernel 

 k-NN SVM 

TEXTURE 0.0864 0.084 

SHAPE 0.0935 0.094 

COLOR 0.0028 0.043 

COMBINE 0.0987 0.116 
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Table 8.11 clearly shows that shape feature outperformed texture and color features based 

on global descriptor. This result is consistent with (Newsam et al., 2005) which also used 

GLCM for texture and moment method for shape in the simulation data. However, 

Newsam et al. (2005) used different methodology where the image is represented in 6 tiles 

inclusive dilated, flipped, eroded, rotation of 36°, 90° and 150°.  

Shape feature is significant to represent the whole medical image in order to classify multi-

modality medical images. This explains why MAP value of shape feature for both 3-NN 

and SVM using polykernel classifiers are the highest among the three features. The color 

feature obtains the lowest values. This is because most the medical images are grayscale 

images. Only certain modalities are in color format. Nevertheless the results from 

combination features are 5.2% and 19% better for both k-NN and SVM than independent 

features as depicted in Figure 8.25. Combination features involving extract texture, shape 

and color features in a feature vector.  

Figure 8.25 also shows an impressive increment in the percentage of correctness rate for 

both SVM (91.87%) and k-NN (88.63%) when combining all visual features compared to 

independent features. The percentage of correctness rate of SVM using polykernel is 2.4% 

better than k-NN with k=3 in global descriptor classification.  
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Figure 8.25: Percentage comparison between 1-NN and SVM Polykernel 

 

8.4.4 Results for Local Descriptor Evaluation with 2x2, 4x4 and 8x8 Patches and 

Interest Points 

As mentioned earlier, the purpose experiment described in section 7.5.4 is to evaluate 

which size of patches has the best performance in extracting features in local patches 

descriptor. Patches of different sizes produce different dimension of feature vectors as 

depicted in Table 8.12. The more patches are created the higher the number of dimensions 

produced in feature vector.  

Table 8.12: List of dimensions produced based on patches 

Patches Dimensional 

2x2 54 

4x4 108 

8x8 166 

 

0

20

40

60

80

100

TEXTURE SHAPE COLOR COMBINE

k-NN 78.45 83.58 65.14 89.63

 SVM 85.23 92.28 72.98 91.87

C
o

rr
e

ct
n

e
ss

 R
at

e
 



195 
 

Table 8.13 shows the MAP values produced by each size of patches. It shows that 4×4 

patches has obtained the highest MAP value for both k-NN and SVM classifiers with 

percentage of correctness rate in SVM is approximately 1% higher than k-NN as illustrated 

in Figure 8.26.    

Table 8.13: MAP values for different size of patches for k-NN and SVM 

Size of patches k-NN SVM 

2x2 0.0863 0.0923 

4x4 0.119 0.121 

8x8 0.0963 0.0987 

 

 

Figure 8.26: Correctness rate of various sizes of patch in k-NN and SVM 

 

 

20

40

60

80

100

2X2 Patches 4X4 Patches  8X8 Patches

k-NN 67.43 82.32 80.89

SVM 79.87 83.17 81.05

C
o

rr
e

ct
n

e
ss

 R
at

e
 



196 
 

Based on the result, 4×4 patches is determined to be used for further experiments. Applying 

2×2 patches in medical image is kindly similar extract the whole image (global level) since 

each patch is in large size. In contrast to 8×8, the patches are too small and many of the 

patches contain plain dark pixel surrounding the edges of the medical image.   

The results for interest blocks extraction and combination of patches and interest blocks 

experiments are listed in Table 8.18. The size of interest blocks feature vector of each 

medical image is 460-dimensional (320-dimensional of texture and 140-dimensional of 

shape features).  The result of 95.43% of correctness rate and MAP value of 0.128 are 

obtained from the experiment using SVM classifier. This means that the interest point‟s 

result is 5.5% better than 4×4 patches.  

The final experiment for this section is to combine 4×4 patches and interest blocks which 

produced 568-dimensional (108-dimensional from patches, 460-dimensional from interest 

blocks). As depicted in  

Figure 8.27 the combination result is 3% higher than interest blocks result which is 98.31% 

of correctness rate with MAP value of 0.135 (Table 8.14).  

 

Table 8.14: MAP values for 4X4 patches, interest points and combination of patches and 

interest blocks 

 patches interest blocks combination 

MAP 0.121 0.128 0.135 
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Figure 8.27: Percentage of correctly classified for patches, interest blocks and combination 

 

8.4.5 Results of Performance Evaluation on MedHieCon Model for Visual Features 

In this section, the performance results of MedHieCon model are presented. Nevertheless 

not all queries contain all of these concepts as described in Table 7.5 (section 7.5.5). For 

example only 10 queries (Q-1 to Q-10) contained modality concept and the rest of the 

queries did not emphasize on modality. For modality model, the training data is trained 

based on global descriptor process. As for anatomy model the images were trained using 

local descriptor process and pathology model the combination of global and local 

descriptor processes are used to train the train data. The difference of processing type is 

based on how details the information required to represent the models as mentioned in 

section 5.6.   Overall there are 7 classes for modality, 10 classes for anatomy and 12 classes 

for pathology as illustrate in Table 8.15. 14,573 images were trained and the models of 

modality, anatomy and pathology are build and test the performance of each models using 

classifiers of k-NN with k=3 and SVM using polykernel. The main goal of this experiment 

is to validate how well the M3ICS system classify and annotate medical images based on 

these concepts and classes.   

78 80 82 84 86 88 90

patches

interest points

combination

patches interest points combination

SVM 83.17 85.43 88.31

k-NN 82.32 84.68 87.23
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Table 8.15: List of classes for Modality, Anatomy and Pathology Concepts 

Concept Class 

Modality x-ray, PET, PX,US, CT, GX, MR 

 

Anatomy Thoracic Aorta (A-1), Chest (A-2), Brachial Plexus (A-3), Liver (A-4), 

Bone (A-5), Eye (A-6), Heart (A-7), Blood Vessel (A-8), Dermatome 

(A-9), Coronary Arteries (A-10) 

 

Pathology Thoracic Aortic Dissection (P-1), Acute Myeloid Leukemia (P-2), Heart 

Failure (P-3), Brachial Plexus Nerve Block (P-4), Fatty Liver (P-5), 

Greenstick Fracture (P-6), Streotococcus Pneumoniae (P-7), Papilledema 

(P-8), Pericardial Effusion (P-9), Atherosclerosis (P-10), Sacral Fracture 

(P-11), Dermato Fibroma (P-12) 

 

 

Table 8.16 represents five types of run systems executed in M3ICS. The first run system is 

the feature extraction based on global descriptor while local descriptor of patches, interest 

blocks and combination of patches and interest blocks represent second, third and fourth 

run systems in M3ICS. The final run system is the combination of global and local 

descriptor processes. The evaluation is based on MAP values of different run systems of 

M3ICS in decreasing order of MAP and correctness rate values for k-NN and SVM.  

It can be seen that M3ICS run system of global descriptor (texture, shape and color 

features), local patches (texture, shape and color features), and local interest blocks (texture 

and shape features), SVM outperforms k-NN classifier in both MAP and correctness rate 

values. Nevertheless k-NN classifier also obtained the same order of result as SVM which 

the combination of global and local descriptor processes outperformed other run systems.  

The combination of all features, namely global, local with patches and interest blocks 

values achieved the highest level of correctness rate at 92.05% with SVM and 88.67% with 
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k-NN. Different features of an image reflect different attributes; therefore the combination 

has lead to better results with SVM of approximately 3% better than k-NN classifier. 

Table 8.16: MAP value for M3IRS run systems 

 

M3ICS Run System 

MAP 

k-NN  

k-NN 

Correctness 

Rate 

MAP 

SVM 

SVM 

Correctness 

Rate 

Global +Local (patch) + (interest point)  0.139 88.67 0.142 92.05 

Local (patch) + Local (interest point) 0.131 87.23 0.135 88.31 

Local interest point features  0.125 84.68 0.128 85.43 

Local patch features  0.119 82.32 0.121 83.17 

Global features  0.0987 78.63 0.116 81.87 

 

Figure 8.28 shows the result from modality concept. Based on Table 8.3, GX class 

achieved the highest score of 100% correctness rate in SVM and 93% in k-NN classifier. 

GX which is based on medical graphs and charts can easily be classified compared to other 

modalities since these medical images are not complex. Other medical modalities that 

achieved high correctness rate are PET, x-ray and US. PET modality consists of color 

feature which is easier to be classified while most of other modalities are in grayscale 

format. The texture of US is different from other modalities which contribute to the high 

correctness rate in classification.  However, in Figure 8.28 clearly shows that CT and MR 

obtained low value of correctness rate. This is because these two classes have subtle 

different from each other and difficult to be differentiated.   
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For anatomy concepts, the feature extraction involved local descriptor of patches and 

interest blocks. As can be seen in Figure 8.29, x-ray chest (A-2), x-ray bone (A-5) blood 

vessel (A-8), dermatome (A-9) and coronary arteries (A-10) classes achieved the highest 

percentage of correctness rate in SVM classifier. The results show that any parts of 

anatomy with x-ray modality are easier to be classified. The medical images with no 

specific modalities such as blood vessel and coronary arteries achieved also high value of 

PET XR PX US CT GX MR

k-NN 82% 83% 57% 81% 59% 99% 54%

SVM 90% 87% 61% 83% 61% 100% 59%
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A-1 A-2 A-3 A-4 A-5 A-6 A-7 A-8 A-9 A-10

k-NN 74% 85% 75% 63% 85% 73% 58% 77% 79% 85%

SVM 80% 89% 79% 69% 86% 78% 61% 86% 83% 88%
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Figure 8.29: Classifier Comparison for Anatomy 

Figure 8.28: Classifier Comparison for Modality 
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correctness rate. Compared to images in class of A-1, A-4, A-6 and A-7 which is from CT 

and MR modalities, most of the images are not at the same depth and each image not really 

concentrate on the same angle and directions which contribute to low correctness rate.       

The results of the pathology concept are depicted in Figure 8.30. The feature extraction 

involved the combination for of global and local descriptors which includes patches and 

interest blocks. For this experiment there are 12 classes in pathology and P-2 achieved the 

highest percentage of correctness rate which is 92% in SVM and 89% for k-NN. Followed 

by P-3 and P-7 which obtained 91% and 90% in SVM classifier. The lowest value is P-8. 

This may be due to misclassification between MR heart and CT thoracic aorta classes in 

anatomy concept. 

 

 

P-1 P-2 P-3 P-4 P-5 P-6 P-7 P-8 P-9 P-10 P-11 P-12

k-NN 80% 89% 87% 80% 58% 88% 85% 75% 60% 81% 80% 79%

SVM 83% 92% 91% 83% 71% 89% 90% 83% 65% 89% 83% 85%
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 Figure 8.30: Classifier Comparison for Pathology 
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Q-1, Q-4, Q-5, Q-7 and Q-10 in Figure 8.30 are evaluated since these queries contained all 

medical concepts of modality, anatomy and pathology in the query list. Figure 8.31 shows 

that feature attributes in different descriptor contribute to the increment of correctness rate. 

The queries in the figure represent list of queries that contain modality, anatomy and 

pathology concepts in one query. As previously mentioned that modality concept used 

global descriptor as feature extraction, anatomy concept used local patches and pathology 

used combination of global and local descriptors inclusive of patches and interest blocks. It 

can be concluded that the more features extracted in the image the more detail the 

information obtained. This contributes to higher result of MAP and correctness rate which 

in turn increase the M3ICS performance. 

8.4.6 Results of Experiment to compare the performance of M3ICS and MIARS 

This section compares the results between M3ICS content-based framework and MIARS 

(Mueen, 2010). MIARS make use of low-level features such as gray-level co-occurrence 

matrix (GLCM), texture histogram, and pixel intensity information in both global and local 

Q-1 Q-4 Q-5 Q-6 Q-7 Q-10

Modality 73% 87% 76% 65% 85% 58%

Anatomy 80% 89% 79% 69% 86% 61%

Pathology 83% 91% 83% 71% 89% 65%
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Figure 8.31: Comparison of correctness rate between modality, anatomy and pathology 
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descriptors. However, in local descriptor, MIARS only applied 2×2 patches. MIARS 

methodology is executed using the same ImageCLEF 2010 dataset. The classifiers for 

medical image classification are k-NN with k=3 and SVM using polykernel.   

Table 8.17: Comparison of MAP value between M3ICS and MIARS 

 k-NN SVM 

M3ICS 0.139 0.142 

MIARS 0.136 0.138 

 

The results of this experiment are given in Table 8.17. The table clearly shows that M3ICS 

methodology has achieved higher better result than MIARS for both k-NN and SVM 

classifiers. This shows that combining more features such as interest blocks can improve 

classification result. 

8.5 Result of Comparison Performance between Text, Visual and Fusion Features 

This section reveals the result of the performance of text, visual and information fusion 

features frameworks. The result is based on fusion of text and content-based information 

sources based on hierarchical processing in late fusion technique. The comparison 

evaluation is between information fusion and M3IRS text-based framework. The text-based 

framework was chosen because it has been reported to show better performance than 

visual-based retrieval system (Muller et al., 2010). Combining both text and visual is 

expected to improve the overall performance. 
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Figure 8.32 clearly shows that there are improvements in MAP value for several queries 

Q1, Q3, Q4, Q5, Q6, Q9, Q10 and Q12. However, Q13, Q14 and Q15 show lower MAP 

values. This may be due to the reason that these three queries do not represent any specific 

modality of medical image (refer to Table 7.5) and thus the classification is based on 

majority votes from each class. The images which are not in the majority class were 

discarded. Tabulated in table 8.18 is the statistical significance measurement of M3IRS and 

IFM3IRS with probability value of 0.87699 

 

 

  

 

 

 

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16

Fusion-based 0.57 0 0.63 0.22 0.58 0.5 0 0 0.61 0.19 0.31 0.04 0.8 0 0.04 0.11
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Figure 8.32: Comparison of MAP value between information fusion and text-based features 

M3IRS IFM3IRS 

Mean = 0.27012 Mean = 0.28688 

Standard Deviation = 0.32251 Standard Deviation = 0.28173 

Standard Error = 0.08063 Standard Error = 0.07043 

Probability Value: 0.87669 

 

Table 8.18: Statistical significance measurement of M3IRS and IFM3IRS 
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Table 8.19: MAP value between fusion, text and visual-based 

Fusion Text-based Content-based 

0.287 0.270 0.142 

 

Table 8.19 compares the results between IFM3IRS fusion, M3IRS text and M3ICS content-

based frameworks. It shows that MAP values for fusion of text and content-based has 

increased by 6% improvement compared to text-based solely. It shows that although text-

based is outperformed visual-based in MIR, but visual features can compliment and support 

text-based to improve their performance. 

The performance of other run systems is depicted in Table 8.20. It shows that of IFM3IRS 

information framework is in the 1
st
 place. Although the result from M3IRS text-based 

framework is not on the top of the list but overall performance is better than other run 

system. 

Table 8.20: Comparison of MAP values with other run systems 

Run System MAP 

IFM3IRS 0.287 

IPL 0.279 

OHSU 0.256 

ITI 0.107 

Bioingenium  0.0395 

medGIFT 0.0245 
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8.6 Summary 

This chapter presents the results for experimental setups described in Chapter 7. Different 

modalities provide different image quality characteristics. This can be proven by using 

AUC value in ROC graph. The higher the AUC value the better performance of the 

characteristics. However, certain modalities are not suitable in measuring contrast, blur and 

noise characteristics.  For examples GX (which actually represent diagrams and not part of 

human body) and PX (which represent different type of images; microscopy and gross 

anatomy image) are within the same modality. To conclude SVM is suitable to classify 

different modalities based on image quality characteristics since most of the results are 

consistent with the physical principle of medical imaging (Sprawls, 1995; Webb, 2003).  

The following section describes the M3IRS text-based framework which includes query 

processor, document pre-processor, retrieval and ranking strategies components. Overall, 

our M3IRS run system using the combination of Boolean model and MedHieCon Ranking 

model is in 6
th

 place out of 20 run systems. Although our system is not in top rank but the 

result from this study shows that Boolean model also can be competitive retrieval model 

with the support of MedHieCon ranking model.   Multi-modality Medical Image 

Classification System (M3ICS) is the content-based framework which is based on 

extracting visual features of texture, shape and color in global and local descriptors and 

applying semantic classification using MedHieCon model. Finally are the IFM3IRS 

framework results which contribute to improvement of the MIR system by fusion of the 

information sources of M3IRS text and M3ICS content-based frameworks. 
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9.0 Conclusions and Future Research Implication 

 

9.1 Introduction 

This chapter highlights the summary and conclusive findings for the research work reported 

in this thesis. The first experiment is to evaluate multi-modality medical images in quality 

characteristics (contrast, blur, noise) and visual features (texture, shape and color). Next is 

to evaluate the performance of the MedHieCon model (modality, anatomy and pathology) 

for both text and visual content-based retrieval systems . In addition, the summary of the 

performance based on information fusion of text and visual features is also presented.  

Further research direction and possible enhancements in medical information retrieval are 

given at the end of this chapter. 

The availability of multi sources in medical collection such as medical documents and 

images allows for information fusion in medical-based MIR system. The contribution of 

this research is the framework models which are based on (i) text (M3IRS), (ii) visual 

content (M3ICS) and (iii) information fusion (IFM3IRS) for multi-modality medical 

information retrieval. The effectiveness of text and content-based information fusion for the 

retrieval has shown good results with better performance compared to text or content-based 

systems solely.  
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9.2 Findings in Characteristics of Multi-modality Medical Images 

This research involves multi-modality of medical images namely x-ray, CT scan (CT), 

ultrasound (US), nuclear medicine (NM), positron emission tomography (PET), magnetic 

resonance image (MRI), optical image (PX) and graphical image (GX). Experiments to 

evaluate the characteristics of these modalities were executed. These include the evaluation 

of quality characteristics of contrast, blur and noise for each modality. The results are based 

on AUC in ROC graph which represents the classification performance of each 

characteristic in each modality. It shows that GX images obtain high values of AUC for all 

the three characteristics since graphic image does not represent human body image but it is 

more on illustrating medical reports which is easy to differentiate with other modalities. 

The other modality that obtains high AUC value of classification for quality characteristics 

is NM as NM only focuses on radiopharmaceuticals objects.  

The other experiment is to evaluate multi-modality medical images on visual features of 

texture, shape and color. In this experiment it shows that GX has the higher percentage of 

correct classification in each visual feature. This is because GX represents chart and graph 

of medical image whereby it is not a complex image and easy to be classified. In contrast x-

ray and MRI modality obtain low percentage of correct classification for all features due to 

the complexity of the image. From other aspect of precision and recall value, CT, x-ray, 

US, PET and PX are suitable to be classified using texture descriptor. Nevertheless for 

overall performance in classifying multi-modality medical images using local descriptor, 

shape feature has better presentation compared to texture feature.  Finally for color feature, 

GX, PX, NM and PET have higher precision and recall value due to those modalities using 

colors in the image meanwhile other modalities concentrate only on grey-scale image.   
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9.3 Findings in M3IRS Text-based Framework  

M3IRS text-based framework is introduced to achieve the first objective of this research 

which is to design text-based framework for multi-modality medical information retrieval 

system stated in section 1.4. This framework has been implemented in the text-based 

M3IRS system which consists of four main components namely (i) document pre-

processor, (ii) query processor, (iii) retrieval process and (iv) ranking process developed in 

this research.  

9.3.1 Text Documents Management in ImageCLEF Medical Data Collection 

In this research, 77,500 text documents from ImageCLEF 2010 medical task data collection 

are used. Issue of text duplication in the documents has led to low precision value. To meet 

the first sub-objective (1a pertaining to the first objective) and research question on 

managing medical documents for effective processing, XML Tag-based Extraction (XTE) 

technique is developed to organize and simplify information in medical documents, 

removing the non-related information and indexing new information and hence producing 

the suitable simplified structured version of the original medical documents. The XTE-

based new index documents have achieved 5% improvement in MAP value compared to 

the original ImageCLEF XML documents, resulting in an increase in the effectiveness of 

M3IRS performance and reducing storage size. 

9.3.2 Automatic Identification of Medical Terms in Text Documents 

In this research, MeSH, an external medical thesaurus is used to identify medical terms and 

their synonyms in the query and text documents. In dealing with the second sub-objective 

(1b) and research question on manipulating appropriate thesaurus in extracting significant 

information and identifying medical terms in a query or text document, MeSH-indexer is 

created as a medical knowledge source adaptation from MeSH thesaurus. MeSH-indexer is 
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used in query processor component to extract medical terms and their synonyms that exist 

in the query.  Creating MeSH-indexer is beneficial to M3IRS system since it performs 26 

times faster than the original MeSH thesaurus. The irrelevant information in MeSH 

thesaurus has contributed to slow searching of medical term and the synonyms in query 

expansion technique.  

By using MeSH-indexer, the computational cost and execution time in M3IRS system are 

reduced. The query expansion technique involves converting all letters into lower case and 

performing query tokenization. Medical terms are identified based on tokens generated 

from the query expansion technique by using MeSH-Medical Descriptor (MMD) folder in 

MeSH-indexer where the list of medical terms taken from descriptor in MeSH thesaurus 

are labelled as query expansion Type 2. Later the synonymous of each medical term in 

Type 2 taken from list terms of each descriptor in MeSH thesaurs are identified from 

MeSH-Synonym Terms (MST) folder and the combination of the synonyms and Type 2 are 

labelled as query expansion Type 3. Sub-objective (1c) is met in formulating query model 

using external knowledge thesaurus. 

The query expansion technique described earlier has answered the research question 

number 3; which is related to the process involved in extracting significant medical terms 

from medical documents. The enrichment of synonymous terms, Type 3 in query expansion 

technique has shown 22.3% improvement in MAP value compared to Type 2. This is 

because adding synonymous terms in the query list provides more option and possibility to 

find relevant documents. This is consistent with the recall value of 4% for Type 3 (0.582) 

which is better than that of Type 2 (0.559). Sub-objective (1e) is met in conducting 

evaluation of the framework. 
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9.3.3 Ranking Models for M3IRS Text-based Multi-modality Medical Information 

Retrieval System 

Boolean approach is a retrieval model based on set theory and Boolean algebra. It is 

computationally efficient (William, 1992) and the algorithm is easy to implement. Vector 

space model (VSM) involves vector presentation of document and query, expressing text 

documents as vectors of identifiers. Issues related to VSM include missing semantic and 

syntactic information such as phrase structure and proximity information as reported in our 

publication (Sharef & Madzin, 2012). At the matching step it solely depends on the weights 

of terms which do not represent the importance of the particular terms in the document. As 

a weight is computed for every term in the document with the possibility to have zero-

valued components to increase (Grossman & Frieder, 2004; Göker & Davies, 2009), this 

dissipates the available storage space. As for probabilistic model the term‟s weight 

estimation is based on how often the term appears or does not appear in relevant documents 

and non-relevant documents, its disadvantage is the difficulties to access the information of 

relevant and non-relevant documents (Göker & Davies, 2009).  

 

In statistical model, both probability and VSM rank the retrieved documents. However, 

these heavy index-based approaches require large indexing storage, demand extra effort 

and pose sparse data representation. A weight for a term in a document vector is non-zero 

only if there is term match. This is not suitable for a large document collection where the 

document vectors are likely to contain mostly zeros when there is no term match in the 

documents. This produces sparse matrix offline which is time consuming and not 

necessarily useful when no query regarding the recorded terms are handled (Grossman & 

Frieder, 2004). Adding a new document will also change document frequencies of term 
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occurrences which alter vector lengths of every document and re-ranking is needed using 

the new vector value (Göker & Davies, 2009).  

 

The retrieval in this research involves execution of finding matches between medical 

documents (MR) and the Type 2 or Type 3 expanded query list (EQ) to retrieve relevant 

medical documents (RMR). The result is difficult to be ranked according to its relevancy to 

the query since it is not numerical weight-based retrieved document. Although it can 

provide high recall value, it still remains meaningless if the highly relevant document is in 

the low position which contributes to low precision value.  

 

The drawback of Boolean model which is based on the decision criterion of a document to 

be either relevant or non-relevant without any notion of grading scale is overcome by a 

ranking mechanism which is very important to arrange the retrieved relevant documents in 

order of relevance and demonstrate which relevant document is the best match for the 

particular query. Two ranking models are introduced namely Comprehensive and 

MedHieCon ranking models which only have to operate on the set of relevant retrieved 

medical documents, RMR as output of the earlier retrieval process without being 

intertwined with the retrieval process at the previous stage involving all the documents in 

the collection. Comprehensive ranking model ranks the relevant documents based on the 

size of matched terms between query and documents associated with the total of terms 

occurrences. In contrast, MedHieCon ranking model is based on semantic type of matched 

terms taken from Medical Conceptual (MC) folder in MeSH-indexer. The motivation to 

create MedHieCon ranking model is based on the weakness found during the execution of 

Comprehensive ranking model.  
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The term frequency of appearance in the document is not correlated with the importance 

and the relevance of the document in the ranking position. It is significant to know the 

semantic representation of the matched terms in order to rank the documents based on the 

best relevant documents that match the query. The application of semantic representation of 

modality, anatomy and pathology concepts in MedHieCon ranking model has shown 11% 

improvement in MAP value which is 0.27 compared to Comprehensive model which only 

obtains MAP value of 0.24; which answers the fourth research question on the suitable 

process to rank retrieved relevant documents. We have also achieved the fourth sub-

objective in the first research objective (1d) to form the strategies and steps in retrieval and 

ranking of relevant documents. Again sub-objective (1e) is met in conducting evaluation of 

the framework. 

 

Table 8.9 lists the MAP value of M3IRS text-based framework and other text-based run 

systems that used the same ImageCLEF 2010 data collection. M3IRS is in the 6
th

 top rank 

for MAP value comparison and for p@10 evaluation out of twenty run systems. This 

observation shows that although there is no relevance weightage in Boolean model for 

retrieval strategy compared to VSM but using the right and suitable ranking mechanism 

such as MedHieCon semantic ranking model, it can produce results that are comparable to 

other run systems that apply VSM. Again objective (1e) is met in conducting evaluation of 

the framework. 

9.4 Findings in M3ICS Content-based Framework  

To achieve our second objective, M3ICS content-based framework is developed. M3ICS 

content-based framework highlights the architecture of visual feature extraction 
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methodology which consists of two main components namely feature extraction and 

classification of conceptual train data.   

9.4.1 Visual Features for M3ICS Content-based Framework 

The feature extraction of medical images involve global and local descriptor processes 

while features of texture, shape and color are used as information attributes for multi-

modality medical image for both descriptors. These features are then combined into one 

feature vector. Two classifiers namely k-NN with k=3 and SVM using polykernel are used 

for classification and the division of 75% train data and  25% test data is applied in order to 

achieve our third sub-objective in second research objective (2c) in identifying and 

applying suitable machine learning technique for multi-modality medical image 

classification. 

In global descriptor process, features are extracted for the whole medical image with four 

different directions (0°, 45°, 90° and 180°) used to extract texture feature with total of 75 

dimensions in a feature vector. For local descriptor process, features are extracted based on 

patches and blocks of medical images.  The results of the experiments done in this research 

work show that 4×4 patches (108-dimensional) produce better results than 2×2 and 8×8 

patches with MAP value of 0.121 and 83.17% of correctness rate in SVM. To extract 

features in interest blocks, 20 interest points are generated in each medical image. For each 

interest point, a block of 20×20 pixels is created, and texture and shape features are 

extracted for each block. From the experiment result, it can be seen that interest blocks in 

local descriptor are 5.5% better than patches with MAP value of 0.128, and 85.43% of 

correctness rate. We have achieved our first and fourth sub-objective in second research 

objective (2a and 2d) to form the methodology of indexing in visual features extraction and 
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conduct the experiment in comparison of global and local descriptors. This is also 

discussed below. 

Nevertheless combination of patches and interest blocks in extracted features for local 

descriptor outperform both patches and interest blocks solely with MAP value of 0.135. 

The explanation of extracting features using both processes in global and local descriptors 

has answered the research question number 5 on the process involved to extract visual 

features. 

9.4.2 Semantic Description of Medical Concepts in M3IRS Image Classification 

The second main component of M3IRS content-based framework is conceptual train data. 

To achieve second sub-objective (2b) in our second objective, to create a platform for 

semantic description of visual features classification, MedHieCon model is applied by 

training the medical images into three medical concepts namely modality, anatomy and 

pathology. 14,573 medical images taken from ImageCLEF 2010 relevant images in the 

medical task collection are trained based on these medical concepts. For this research, 

modality contains 7 classes, anatomy contains 10 classes and pathology has 12 classes. 

These classes are labelled based on the concepts contained in the 16 ad hoc queries in 

ImageCLEF 2010 medical task. To train modality concept, global descriptor process is 

used which only involves the extraction of whole image. For anatomy concept, local 

descriptor of patches and interest blocks are used in order to extract detail information in 

the medical images. As for pathology concept, the combination of global and local 

descriptor processes is applied. The result obtained from the experiment shows that 

pathology concept obtains the highest correctness rate in both k-NN and SVM classifiers 

compared to other concepts. This indicates that the more information extracted from the 

image the higher the correctness rate is achieved. This also proves that using semantic 
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description of MedHieCon model in classification of multi-modality medical images 

improves the M3ICS performance by 5% with MAP value of 0.142 in SVM classifier 

compared to combination of global and local descriptors without the model with MAP 

value of 0.135. Hence this answers the research question number 6 on the application of 

semantic description in affecting meaningful retrieval system. MedHieCon model is also 

implemented in text-based M3IRS for its semantic significance. 

 

9.5 Findings in IFM3IRS Information Fusion Framework 

The third objective of this research is to design multi-modality medical information 

retrieval framework based on information fusion of text and visual content. IFM3IRS 

information fusion framework is developed. This framework is a hierarchical processing of 

late fusion technique of text and content-based framework, which means that the result 

from text-based framework process is automatically the input for the content-based 

framework. The drawback of the text-based retrieval is that the result obtained is solely 

based on document information. Therefore, content-based approach can be used to filter the 

result based on the requirement in the query. In this research, content-based framework is 

used to filter the modality requested by the query.  The result shows that the support of 

M3IRS content-based framework has increased the number of relevant data and improved 

the performance of IFM3IRS up to 6% with MAP value of 0.287. IFM3IRS framework has 

achieved 1
st
 place from six run systems that used the same ImageCLEF 2010 medical task 

data as shown in Table 8.19. This result shows that although content-based does not 

perform as well as the text-based, but it can complement and support text-based to improve 

the performance. This answers the research question number 7 in combining different 

sources of text and visual content in affecting performance of multi-modality medical 
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information retrieval system. The descriptions above show that we meet the sub-objectives 

(3a) in forming the steps for an integrated framework of text and content-based information 

sources; (3b) conducting experiments on IFM3IRS; and (3c) performing unit and 

integration evaluations with different features (text, visual and information fusion) and 

parameter setting in signifying the strength of our approach. It involves finding suitable 

ranking model for text-based retrieval and medical concept for modality filtering in 

content-based classification used in IFM3IRS framework. As for IFM3IRS framework, 

MedHieCon ranking model is used in text-based retrieval and only global descriptor of 

visual feature extraction is applied to filter the modality of medical image in content-based 

processing.  Furthermore, the automated input from the text-based to content-based 

framework has made the system easier to use since the user especially a beginner does not 

have to manually process or execute the system between text and content-based processing. 

 

9.6 Overall Conclusion 

Three frameworks have been developed and experiments conducted on text-based M3IRS, 

content-based M3ICS and IFM3IRS. The experiments executed in this research show that 

M3IRS text-based framework outperforms M3ICS content-based framework. 

Representation of medical data in text form is distinguishable and easier with the ability of 

text features to extract the term based on its specific domain. With the help of external 

knowledge source such as thesaurus, the term is more meaningful and significant. 

However, the drawback of text-based features is the difficulty in understanding the content 

of image. The list of retrieved data in the text-based may be corrected but to have an 

accurate result which is really based on query requirement, content-based features are 

required to filter the image based on the request of a particular query. Therefore 
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information fusion of text and visual content is the solution to solve the problem. 

Combination of text and content-based information using hierarchical processing of late 

fusion technique can increase the accuracy of result and the performance in MIR system.  

In this research, IFM3IRS has been developed for specific domain of medical data. This 

framework consists of hierarchical process of text and content-based retrieval system. The 

text-based retrieval is executed first and the result automatically becomes the input for the 

content-based retrieval system. In order to rank the results in order of relevance based on 

the best match of query and data will be on the top of the list, medical concepts are applied 

for both text and content-based retrieval systems. These concepts are modality, anatomy 

and pathology. The hierarchy is such that modality is on top whereby the information is 

more general, followed by anatomy and pathology (the top priority) with the information 

getting more specific towards the bottom of the hierarchy. 

 

9.7 Future Research Direction  

This research has set up a platform to fuse both text and content-based in one automated 

structured process. It also shows that although content-based result is not as good as that of 

text-based, it can be used to support text-based system to increase the performance in 

retrieval system. There are many techniques to view and compare the results between these 

frameworks (M3IRS, M3ICS and IFM3IRS). Therefore for further enhancements of test 

and measurement within these frameworks more statistical significance experiments need 

to be executed. 

In specific domain such as medical domain, it is important to have external knowledge 

source such as thesaurus in order to extract significant features and terms in the text 
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document. Some of the medical terms used in this research are not in the MeSH thesaurus. 

Therefore in future, other thesaurus such as UMLS and GO may be used based on our 

integrated architecture.  

Besides medical domain there are also other specific domains of interest. Other feature 

extraction methods in visual features and classification methods can also be selected in line 

with the data.  

The concepts used in this research are focused on modality, anatomy and pathology. Future 

research can consider other concepts such as the gender of patient, age and treatment in 

order to have solution for case-based query and not just ad hoc query. 
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APPENDIX A: LIST OF 16 AD HOC QUERIES 

 

No Query Query Image 

 

Q-1 

 

CT images thoracic aortic dissection 

 

 

 

Q-2 

 

A microscopic image of Acute 

Myeloid Leukemia 

 

 

 

Q-3 

 

ECG images 

 

 

 

Q-4 

 

X-ray showing congestive heart 

failure 
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Q-5 

 

CT images for brachial plexus nerve 

block 

 

 

 

Q-6 

 

CT images containing fatty liver 

 

 

 

Q-7 

 

x-ray images of a greenstick fracture 

 

 

 

Q-8 

 

Microscopic images streptococcus 

pneumonia 
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Q-9 

 

MR images papilledema 

 

 

 

Q-10 

 

MR images pericardial effusion 

 

 

 

Q-11 

 

All types images with atherosclerosis 

in blood vessels 

 

 

 

Q-12 

 

Radiation therapy treatment plans 
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Q-13 

  

Images of dermatome  

 

 

 

Q-14 

  

Images showing sacral fracture  

 

 

 

Q-15 

 

Images coronary arteries 

 

 

 

Q-16 

 

Images dermatofibroma  
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[1] Hizmawati Madzin, Roziati Zainuddin, Nur Sabirin Mohamed (2012) “Analysis of 

Visual Features in Local Descriptor for Multi-Modality Medical Image 
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2014 (ISI-Cited Publication) 

[2] Nurfadhlina Mohd Sharef, Hizmawati Madzin (2013) “Semantic-based Clinical 

Records Retrieval via Medical-Context Aware Query Expansion and 

Comprehensive Ranking” International Journal of Electronic Healthcare (accepted 

for publication) (Scopus Publication) 

[3] Hizmawati Madzin, Roziati Zainuddin (2013) “IF3MIRS: Information Fusion 

Retrieval System with Knowledge-Assisted Text and Visual Features based on 

Medical Conceptual Model” Multimedia Tools and Applications (accepted for 
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Malaysia. 

 

[5]  Hizmawati Madzin , Roziati Zainuddin (2009) “ Feature Extraction and Image 

Matching of 3D Lung Cancer Cell Image”  2009 International Conference of Soft 

Computing and Pattern Recognition (SoCPAR 2009)  pp. 511-515, 
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APPENDIX C: MULTI-MODALITY MEDICAL IMAGES 

 

This section illustrates multi-modality medical images from ImageCLEF 2010 medical data 

collection. 

C.1 X-ray  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C.1: (a) chest, (b) leg, (c) skull, (d) pelvic, (e) angiography of artery and  

(f) mammogram of breast 

      

 

                    

              (a)                                              (b)                                           (c) 

              (d)                                              (e)                                           (f) 
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C.2 Computed Tomography (CT) 

 

 

 

 

 

C.3 Ultrasound (US) 

 

 

 

 

 

C.4 Nuclear Medicine (NM) 

 

 

 

 

 

Figure C.2: (a) abdomen, (b) brain and (c) pelvis 

Figure C.3: (a) fetus, (b) kidney and (c) breast 

Figure C.4: (a) lung, (b) liver and (c) whole body 

         

              (a)                                              (b)                                           (c) 

       

              (a)                                              (b)                                           (c) 

       

              (a)                                              (b)                                           (c) 
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C.5 Positron Emission Tomography (PET) 

 

 

 

 

 

 

C.6 Magnetic Resonance Imaging (MRI) 

 

 

 

 

 

 

 

 

 

 

Figure C.5: (a) abdomen and (b) whole body 

Figure C. 6: (a) abdomen, (b) trabecular bone, (c) joint bone, (d) brain, (e) breast and (f) lung 

        
              (a)                                              (b)                                          

       

       

              (a)                                              (b)                                           (c) 

              (d)                                              (e)                                           (f) 
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C.7 Optical Imaging (PX) 

 

 

 

 

 

 

C.8 Graphic Imaging (GX) 

 

 

 

 

 

 

 

 

 

 

Figure C.7: Gross images of (a) brain and (b) lung.  Microscopy image of lung cell in (c) 

Figure C.8: Medical graphic data of (a) bar chart, (b) flow diagram and (c) graph 

         

    

 

              (a)                                              (b)                                           (c) 

              (a)                                              (b)                                           (c) 
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APPENDIX D: ImageCLEF 2010 MEDICAL DOCUMENT DATA STRUCTURE 

 

Example from ImageCLEF 2010 medical text documents used in this research as shown in 

Figure D.1. Each record of text document represents a medical image which based on 

<imageLocalName>. The text document is in XML format and used DTD data to represent 

the information. 

 

   

\\\ 

 

 

 

 

 

 

 

 

 

 

 

 Figure D.1: Example of medical documents in ImageCLEF 2010 medical task collection 

imageclef2010.xml 

<xml version="1.0" encoding="UTF-8"?> 

<imageclef> 

 

<record> 

<figureID>27977</figureID>   

<figureURL>http://radiology.rsnajnls.org/cgi/content/full/210/1/28/F1</figureURL> 

<caption> &lt;B&gt;Figure 1. &lt;/B&gt; </caption> 

<title>Seymour H. Levitt, MD--President Radiological Society of North America, 1999</title> 

<pmid>9885582</pmid> 

<articleURL>http://radiology.rsnajnls.org/cgi/content/full/210/1/28</articleURL> 

<imageLocalName>27977.jpg</imageLocalName> 

</record> 

 

<record> 

<figureID>27978</figureID>   

<figureURL>http://radiology.rsnajnls.org/cgi/content/full/210/1/36/F1</figureURL> 

<caption> &lt;B&gt;Figure 1. &lt;/B&gt; </caption> 

<title>William W. Olmsted, MD, New RSNA Education Editor</title> 

<pmid></pmid>  <articleURL>http://radiology.rsnajnls.org/cgi/content/full/210/1/36</articleURL> 

<imageLocalName>27978.jpg</imageLocalName> 

</record> 

 

<record> 

<figureID>27979</figureID> 

<figureURL>http://radiology.rsnajnls.org/cgi/content/full/210/1/11/F1</figureURL> 

<caption> &lt;B&gt;Figure 1. &lt;/B&gt; &lt;B&gt;&lt;/B&gt; Illustration of a neonate at autopsy 

whose demise was attributed to "thymic death." The caption drew attention to the "enormous size of 

the thymus," which is actually normal in appearance. (Reprinted, with permission, from reference 

6.)&lt;P&gt; </caption> 

<title>The right place at the wrong time: historical perspective of the relation of the thymus gland and 

pediatric radiology</title> 

<pmid>9885579</pmid>  

<articleURL>http://radiology.rsnajnls.org/cgi/content/full/210/1/11</articleURL> 

<imageLocalName>27979.jpg</imageLocalName> 

</record> 

</imageclef> 

 



252 
 

APPENDIX E: MeSH THESAURUS DATA STRUCTURE 

 

Figure E.1 shows a complete descriptor record of „Adrenal Cortex Neoplasms‟ in MeSH 

thesaurus. Due to many irrelevant information in this thesaurus, we created MeSH-indexer 

as described in section 4.3.2 for effectiveness in accessing medical terms and efficiency of 

reducing time processing. 

   

<DescriptorRecord DescriptorClass = "1"> 

  <DescriptorUI>D000306</DescriptorUI> 

  <DescriptorName> 

   <String>Adrenal Cortex Neoplasms</String> 

  </DescriptorName> 

  <DateCreated> 

   <Year>1999</Year> 

   <Month>01</Month> 

   <Day>01</Day> 

  </DateCreated> 

  <DateRevised> 

   <Year>2004</Year> 

   <Month>07</Month> 

   <Day>07</Day> 

  </DateRevised> 

  <DateEstablished> 

   <Year>1979</Year> 

   <Month>01</Month> 

   <Day>01</Day> 

  </DateEstablished> 

  <ActiveMeSHYearList> 

   <Year>2005</Year> 

   <Year>2006</Year> 

   <Year>2007</Year> 

   <Year>2008</Year> 

   <Year>2009</Year> 

   <Year>2010</Year> 

  </ActiveMeSHYearList> 

  <AllowableQualifiersList> 

   <AllowableQualifier> 

    <QualifierReferredTo> 

     <QualifierUI>Q000097</QualifierUI> 

      <QualifierName> 

      <String>blood</String> 

      </QualifierName> 

    </QualifierReferredTo> 

    <Abbreviation>BL</Abbreviation> 

   </AllowableQualifier> 

  </AllowableQualifiersList> 

  <Annotation>coord IM with histol type of neopl (IM) 

  </Annotation> 

<HistoryNote>79(75)63-67; was see under ADRENAL GLAND NEOPLASMS 1975-78 

  </HistoryNote> 

  <OnlineNote>search ADRENAL GLAND NEOPLASMS 1966-74 

  </OnlineNote> 

  <PublicMeSHNote>79,63-67; was see under ADRENAL GLAND NEOPLASMS 1975-78 

  </PublicMeSHNote> 
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Figure E.1: An example of descriptor record in MeSH thesaurus 

<PreviousIndexingList> 

   <PreviousIndexing>Adrenal Gland Neoplasms (1966-1974)</PreviousIndexing> 

  </PreviousIndexingList> 

  <TreeNumberList> 

   <TreeNumber>C04.588.322.078.265</TreeNumber> 

   <TreeNumber>C19.053.098.265</TreeNumber> 

   <TreeNumber>C19.053.347.500</TreeNumber> 

   <TreeNumber>C19.344.078.265</TreeNumber> 

  </TreeNumberList> 

  <RecordOriginatorsList> 

   <RecordOriginator>NLM</RecordOriginator> 

   <RecordMaintainer>lkt</RecordMaintainer> 

   <RecordAuthorizer>sjn</RecordAuthorizer> 

  </RecordOriginatorsList> 

  <ConceptList> 

   <Concept PreferredConceptYN="Y"> 

    <ConceptUI>M0000481</ConceptUI> 

    <ConceptName> 

     <String>Adrenal Cortex Neoplasms</String> 

    </ConceptName> 

    <ConceptUMLSUI>C0001618</ConceptUMLSUI> 

    <ScopeNote>Tumors or cancers of the ADRENAL CORTEX. 

    </ScopeNote> 

    <SemanticTypeList> 

     <SemanticType> 

      <SemanticTypeUI>T191</SemanticTypeUI> 

      <SemanticTypeName>Neoplastic Process</SemanticTypeName> 

     </SemanticType> 

    </SemanticTypeList> 

    <ConceptRelationList> 

     <ConceptRelation RelationName="NRW"> 

     <Concept1UI>M0000481</Concept1UI> 

     <Concept2UI>M0331834</Concept2UI> 

     </ConceptRelation> 

    </ConceptRelationList> 

    <TermList> 

     <Term  ConceptPreferredTermYN="Y"  IsPermutedTermYN="N"  LexicalTag="NON"  

PrintFlagYN="Y"  RecordPreferredTermYN="Y"> 

      <TermUI>T001004</TermUI> 

      <String>Adrenal Cortex Neoplasms</String> 

      <DateCreated> 

       <Year>1999</Year> 

       <Month>01</Month> 

       <Day>01</Day> 

      </DateCreated> 

      <EntryVersion>ADRENAL CORTEX NEOPL</EntryVersion> 

      <ThesaurusIDlist> 

       <ThesaurusID>NLM (1975)</ThesaurusID> 

      </ThesaurusIDlist> 

     </Term> 

    </TermList> 

   </Concept></ConceptList> 

</DescriptorRecord> 

 


