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ABSTRACT 

Various data mining approaches are currently being used to analyse data within 

different domains. Among all these approaches, clustering is one of the most-used 

approaches, which is typically adopted in order to group data based on their similarities. 

The data in various systems such as finance, healthcare, and business, are stored as 

time-series. Clustering such complex data can discover patterns which have valuable 

information. Time-series clustering is not only useful as an exploratory technique but 

also as a subroutine in more complex data mining algorithms. As a result, time-series 

clustering (as a part of temporal data mining research) has attracted increasing interest 

for use in various areas such as medicine, biology, finance, economics, and in the Web. 

Several studies which focus on time-series clustering have been conducted in said areas. 

Many of these studies focus on the time complexity of time-series clustering in large 

datasets and utilize dimensionality reduction approaches and conventional clustering 

algorithms to address the problem. However, as is the case in many systems, 

conventional clustering approaches are not practical for time-series data because they 

are essentially designed for static data and not for time-series data, which leads to poor 

clustering accuracy. Adequate clustering approaches for time-series are therefore 

lacking. 

In this thesis, the problem of the low quality in existing works is taken into account, and 

a new multi-step clustering model is proposed. This model facilitates the accurate 

clustering of time-series datasets and is designed specifically for very large time-series 

datasets. It overcomes the limitations of conventional clustering algorithms in dealing 

with time-series data.  

In the first step of the model, data is pre-processed, represented by symbolic aggregate 

approximation, and grouped approximately by a novel approach. Then, the groups are 
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refined in the second step by using an accurate clustering method, and a representative 

is defined for each cluster. Finally, the representatives are merged to construct the 

ultimate clusters. The model is then extended as an interactive model where the results 

garnered by the user increase in accuracy over time. In this work, the accurate clustering 

based on shape similarity is performed. It is shown that clustering of time-series does 

not need to calculate the exact distances/similarity between all time-series in a dataset; 

instead, by using prototypes of similar time-series, accurate clusters can be obtained.  

To evaluate its accuracy, the proposed model is tested extensively by using published 

time-series datasets from diverse domains. This model is more accurate than any 

existing work and is also scalable (on large datasets) due to the use of multi-resolution 

of time-series in different levels of clustering. Moreover, it provides a clear 

understanding of the domains by its ability to generate hierarchical and arbitrary shape 

clusters of time-series data. 
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1.0 INTRODUCTION 

1.1 Background: Time-series Clustering  

Data mining is the analysis step of knowledge discovery in database process used to 

discover new patterns from large datasets (Fayyad, Piatetsky-Shapiro, & Smyth, 1996), 

and has had a profound impact on our society by solving real-life problems (Chakrabarti 

et al., 2006). Data mining aims to extract useful knowledge and to summarize it to make 

it understandable so it can be utilized for further human use (Hand, Mannila, & Smyth, 

2001). 

Data mining involves different techniques. Clustering is a data mining technique where 

similar data are placed into related groups (ideally) without advanced knowledge of the 

groups’ definitions. According to Mirkin (2005), clustering is defined as “a discipline 

devoted to finding and describing cohesive or homogeneous chunks in data, the 

clusters.” Clusters are formed by grouping objects that have maximum similarity with 

other objects within the group, and minimum similarity with objects in other groups. It 

is a useful approach for exploratory data analysis as it identifies structure(s) in an 

unlabelled dataset by objectively organizing data into similar groups. Moreover, 

clustering is used for exploratory data analysis, for summary generation, and as a pre-

processing step for either other data mining tasks or as part of a complex system. 

A sequence composed of a series of nominal symbols from a particular alphabet is 

usually called a temporal sequence, and a sequence of continuous, real-valued elements, 

is known as a time-series (Antunes & Oliveira, 2001). A time-series is essentially 

classified as dynamic data because its feature values change as a function of time. That 

is, the value(s) of each point of a time-series is/are one or more observations made 

chronologically. Informally, time-series data is a type of temporal data which is 

naturally high dimensional and large in data size (Keogh & Kasetty, 2003; J. Lin, 
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Vlachos, Keogh, & Gunopulos, 2004; Rani & Sikka, 2012). The time-series is defined 

formally as: 

Definition 1.1:  Time-series, a time-series    {              } is an ordered set of flow 

vectors which indicate the spatiotemporal characteristics of moving objects at any time t 

of the total track life T (Morris & Trivedi, 2009). A flow vector or feature vector 

   [       ] generally represents location or dynamics in a domain. However, just a 

spatial location    [ ] is taken into account in this work because the majority of time 

series clustering applications are univariate time series (Warrenliao, 2005). It is 

assumed that   {              } is a collection of time-series in a domain, where    

represents i-th time-series (i = 1,..,n) in the domain. 

Time-series data are of interest due to their ubiquity in various areas ranging from 

science, engineering, business, finance, economics, healthcare, to government 

(Warrenliao, 2005). Usually, the stored data in these systems are time-series data such 

as patients’ heartbeat electrocardiogram (ECG), daily temperatures, human DNA 

sequences, weekly sales totals, prices of mutual funds and stocks, moving objects’ 

trajectories, and Web usage sequences (refer to Section  2.2 for references). In addition, 

considering some data, such as images, text, handwriting, and video, as time-series data 

may be beneficial (Ratanamahatana & Keogh, 2004a; Ratanamahatana & Niennattrakul, 

2006; Ratanamahatana, 2005). Each time-series, while consisting of a large number of 

data points, can also be seen as a single object (R. Kumar & Nagabhushan, 2006). 

Clustering such complex objects (time-series data) is particularly advantageous because 

it leads to the discovery of interesting patterns in the time-series datasets. These patterns 

can be either frequent or rare patterns. Accordingly, several research challenges have 

arisen, such as developing methods to recognize dynamic changes in time-series, 

anomaly and intrusion detection, process control, and character recognition (Chiş, 

Banerjee, & Hassanien, 2009; Faloutsos, Ranganathan, & Manolopoulos, 1994; X. 
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Wang, Smith, & Hyndman, 2006). More applications of time-series data are discussed 

in Section  2.2.1. 

With questions such as “Why is clustering of time-series data important?” and “Why 

would one need to cluster a time-series dataset?”, potentially overlapping objectives for 

clustering of time-series data are given as follows: 

1. Time-series databases contain valuable information which can be obtained 

through pattern discovery. Clustering is a common solution performed to 

uncover these patterns on time-series datasets. 

2. Time-series databases are very large and cannot be handled well by human 

inspectors. Hence, many users prefer to deal with structured datasets rather than 

very large datasets. As a result, time-series data are represented as a set of 

groups of similar time-series by aggregation of data in non-overlapping clusters 

or by a taxonomy as a hierarchy of abstract concepts. 

3. Time-series clustering is the most-used approach as an exploratory technique, 

and also as a subroutine in more complex data mining algorithms, such as rule 

discovery, indexing, classification, and anomaly detection (Chiş et al., 2009).  

4. Representing time-series cluster structures as visual images (visualization of 

time-series data) can help users quickly understand the structure of data, 

clusters, anomalies, and other regularities in datasets. 

The problem of clustering of time-series data is formally defined as follows: 

Definition 1.2: Time-series clustering, given a dataset of n time-series data   

{           }  the process of unsupervised partitioning of D into   {           }, in 

such a way that homogenous time-series are grouped together based on a certain 

similarity measure, is called time-series clustering. Then,    is called a cluster, where 

  ⋃   
 
    and         for    . 
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1.2 Motivation 

Data are stored on disks as raw data. Therefore, time-series databases are often very 

large databases. For example, 1 hour of ECG (electrocardiogram) data needs 1 gigabyte; 

a typical weblog requires 5 gigabytes per week; the space shuttle database has 200 

gigabytes and updating it requires 2 gigabytes per day (Keogh, 2006). This leads to an 

exponential decrease in the clustering process speed. Additionally, time-series data are 

often high dimensional (Keogh, Chakrabarti, Pazzani, & Mehrotra, 2001a; J. Lin, 

Keogh, & Truppel, 2003) which makes handling these data difficult for many clustering 

algorithms (X. Wang, Smith, Hyndman, & Alahakoon, 2004). It also slows the process 

of clustering (H. Zhang, Ho, Zhang, & Lin, 2006). 

Moreover, to make the clusters, similar time-series should be found. It needs time-series 

similarity matching (similarity measure), that is, the process of calculating the similarity 

among the whole time-series. This process is also known as “whole sequence matching” 

where whole lengths of time-series are considered during distance calculation. 

However, the process is not simple, because first, time-series data are naturally noisy 

and include outliers and shifts (J. Lin, Vlachos, et al., 2004); second, the length of time-

series varies and the distance among them needs to be calculated. These common issues 

have made the similarity measure a major challenge for data miners.  

Considering all these difficulties in the clustering of time-series, dimensionality 

reduction is the common solution to increase the performance and speed of the mining 

process. Dimensionality reduction is a pre-processing action considered to be a 

fundamental and important process in time-series data mining. It represents the raw 

time-series in another space by transforming time-series to a lower dimensional space or 

by feature extraction. But why is dimensionality reduction very important in the 

clustering of time-series? First, this action is necessary because it reduces memory 

requirements as all raw time-series cannot fit in the main memory (Keogh & Pazzani, 
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2000; J. Lin, Keogh, Lonardi, & Chiu, 2003). Second, distance calculation among raw 

data is computationally expensive, and dimensionality reduction significantly speeds up 

clustering (Keogh & Pazzani, 2000; J. Lin, Keogh, Lonardi, et al., 2003). Finally, when 

measuring the distance between two raw time-series, highly unintuitive results may be 

garnered because some distance measures are very sensitive to some “distortions” in the 

data (Ratanamahatana, Keogh, Bagnall, & Lonardi, 2005; Ratanamahatana, 2005). That 

is, by using raw time-series, one may find the clusters of time-series which are similar 

in noise instead of clusters which are similar in shape. The potential to obtain a different 

type of cluster is the reason why choosing the appropriate approach for dimension 

reduction (feature extraction) and its ratio is a challenging task (H. Zhang et al., 2006). 

In fact, it is a trade-off between speed and quality. All efforts must be made to consider 

the quality and execution time in the clustering of time-series. Resolving these problems 

has prompted the researcher to carry out this study to improve time-series clustering. 

1.3 Problem Statement 

Researchers have shown that generally, clustering by using well-known conventional 

algorithms such as k-Means, SOM (Self Organization Map), FCM (Fuzzy C-Means), 

and hierarchy, generate clusters with acceptable structural quality and consistency, and 

are partially efficient in terms of execution time and accuracy for static data (Jain, 

Murty, & Flynn, 1999). However, classic machine learning and data mining algorithms 

do not work well for time-series due to their unique structure (J. Lin, Vlachos, et al., 

2004). The high dimensionality, very high feature correlation, and the (typically) large 

amount of noise that characterize time-series data present a difficult challenge for 

clustering (Keogh & Kasetty, 2003; J. Lin, Vlachos, et al., 2004). Accordingly, massive 

research efforts have been made to present methods for time-series clustering. However, 

focusing on the efficiency and scalability of these algorithms to deal with time-series 

data has come at the expense of losing the usability and effectiveness of clustering 
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(Ratanamahatana, 2005). Considering this problem, new approaches for time-series 

clustering have been proposed to improve not only its efficiency but also the clustering 

accuracy of time-series data (Bagnall & Janacek, 2005; X. Wang et al., 2006). For 

example, Ratanamahatana & Niennattrakul (2006) and Niennattrakul & 

Ratanamahatana (2007a) considered the accuracy problem in the partitioning clustering 

of multimedia time-series. As another evidence, Gullo, Ponti, Tagarelli, Tradigo, and 

Veltri (2011) remarked that special characteristics of time-series data, have posed 

challenges to the effective identification of clusters. Hence, the problem of this study is 

stated briefly as: 

“Applying conventional clustering algorithms to accurately and meaningfully identify 

clusters of time-series data is difficult because time-series data are naturally large, 

high dimensional, and consist of noise and outliers.” 

To address this problem, the reasons for the low accuracy in time-series clustering were 

investigated. Generally speaking, time-series clustering accuracy suffers from 

overlooking of data, inaccurate distance measure and inappropriate clustering 

algorithms. To support the problem statement, some scenarios are explained in the 

following according to the mentioned reasons: 

1.3.1 Overlooking of Data 

First, time-series datasets are very large. Hence, the dimension of time-series data 

should be reduced due to limited space and memory. As a result, data are overlooked, 

that is, the important points of the series which appear in data over time are lost. 

Therefore, some significant parts of time-series may not play their role in the final 

clusters which reflect the system (such as peaks in stock price). For example, the daily 

blood pressure of a patient is a time-series, the time points of which are the average of 

(or a sample of) the patient’s blood pressure for each day for a specific period. Samples 
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of blood pressures are usually taken two to three times a day, but time-series is 

represented on a daily basis because of a reduction in its dimensions. The daily time-

series of two patients can be very similar, which puts them in the same group (Lai, 

Chung, & Tseng, 2010). However, an in-depth look into the time-series of blood 

pressures may reveal that the blood pressure of a patient may vary and is more frequent 

than that of another patient. For example, one may lose some dangerous points of low 

blood pressure for a patient, as illustrated in Figure  1.1. This clearly shows why 

accurate clustering of time-series is important. 

 
Figure 1.1: The time-series of blood pressure of two patients in two different granularities. Adopted 

from Lai et al. (2010) 

As a result, given a time-series dataset, a clustering algorithm may generate different 

results when different time granularities are considered (see Appendix A for more 

examples). However, many sensitive systems (e.g., financial or healthcare systems) find 

that generating such unstable and inaccurate results is unacceptable for various 

representations of time-series related to a unique problem (see Section  5.3.1.1.1). 

1.3.2 Inaccurate Similarity Measure 

Similarity/dissimilarity measure is a core task of data mining. Similarity/dissimilarity 

measurement between time-series is not as simple as that for static objects because the 

order of points in the time-series should be taken into account. Various distance 

measures are given in the literature (see Section  2.5). However, unique superior 

measure exists because it is highly dependent on type, the characteristics of time-series, 
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and the representation method used. For example, a financial time-series (stock data) 

has its own characteristics where salient points are important but in another time-series, 

the trend or frequency may be more significant in similarity measurement (Lkhagva, 

Suzuki, & Kawagoe, 2006). Moreover, similarity/dissimilarity measure among time-

series is highly dependent on the representation method used for dimensionality 

reduction (due to compatibility purposes). Finally, similarity measure suffers from 

shifting, noise and outliers of time-series in a high-dimensional space (see Section  2.5). 

For example, using Euclidean distance on time-series may generate wrong clusters 

(Keogh & Ratanamahatana, 2004) because it disregards the shifts, while another 

accurate distance measure such as Dynamic Time Warping (DTW) may solve the 

problem by handling the shifts, as depicted in Figure  1.2. However, DTW and most 

state-of-the-art similarity matching methods are quadratic in time and do not work in 

reality, especially on large datasets (Salvador & Chan, 2007). Moreover, DTW may not 

generally work on all datasets, as explained in Section  6.2.3. As a result, providing an 

accurate and fast distance measure is not a trivial task, and using imprecise measures 

may result in incorrect clusters. This issue is a major drawback in many sensitive 

systems. 
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Figure 1.2: Clustering examples of CBF dataset using DTW and ED 

1.3.3 Inappropriate Algorithms 

Static data is derived from an object with values that do not change or change 

insignificantly over time. Most, if not all, developed clustering algorithms are 

compatible with static data. On the other hand, unlike static data, time-series data 

change dynamically. Previous studies (as discussed in Sections  2.4 and  2.5) imply that 

most systems make use of conventional algorithms (originally designed for static data) 

for time-series clustering. However, because time-series are high dimensional and 

clustering them is computationally expensive, a representation method or an adaptive 

distance measure is utilized to customize the conventional algorithms (Warrenliao, 

2005). This leads to inaccuracy of final results due to overlooking of data (by 

representation) or incorrect similarity matching (by inaccurate distance calculation).  

To sum up, in many systems, using conventional clustering algorithms is not practical 

for time-series data and thus, the absence of an adequate clustering model for time-
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series is apparent. Although a trade-off exists between the accuracy and speed of 

clustering of time-series (which corresponds to representation method and distance 

measure), researchers argue that an appropriate model can resolve this issue. In this 

thesis, a novel model for clustering of large time-series datasets is presented to remedy 

the inaccuracy of results. In relation to large datasets, the first things that come to mind 

are speed and time execution but the problem here is NOT to perform clustering fast but 

rather to do so in an accurate and meaningful way for sensitive systems. 

1.4 Research Questions 

The research questions which are answered through this study are as follows: 

Q1. Is there any alternative approach for increasing the accuracy of clustering of 

symbolised time-series? 

Q2. Which clustering algorithm is more suitable for dimensionality reduced time-series? 

Q3. How can constructed clusters be revised as post-clustering action to achieve better 

results? 

Q4. Is there any alternative approach to run the proposed model as an interactive 

clustering approach? 

Q5. How much does the proposed model improve the accuracy on different datasets? 
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1.5 Research Objectives 

The main goal in this research is to improve the accuracy of time-series clustering, to 

produce more intuitive and meaningful clusters. The main objectives are threefold:  

1. To propose and develop a new clustering model that accepts large raw time-

series data as input, and generates accurate clusters without violating the time 

execution (answering to the first three research questions).  

2. To extend the proposed model, enabling it to run interactively. 

3. To evaluate the capability of the proposed methods in improving the accuracy. 

1.6 Scope of Research 

To ensure that this research can achieve its set of objectives within the stipulated 

timeframe, the following scope of the research needs to be defined: 

1. The clustering of a set of individual and discrete time-series is performed as 

“whole time-series clustering” (see Section  2.2.2). The focus of this study is to 

find the clusters of time-series which are similar in shape (see Section  2.5). 

2. The focus will be whole time-series clustering with a short or modest length, not 

on long time-series because comparing time-series that are too long is usually 

not very significant (J. Lin, Etter, & DeBarr, 2008). For long time-series 

clustering, some global measures (e.g., seasonality, periodicity, skewness, 

chaos) which are obtained by statistic operations, are more important (X. Wang 

et al., 2006). 

3. The focus is on the accuracy and meaningfulness of clusters, not its speed. 

Meaningful clusters indicate that the clusters should capture the natural structure 

of data (Tan, Steinbach, & Kumar, 2006).  
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1.7 Chapter Organization 

This thesis consists of seven chapters. Chapter 1 presents a brief background of time-

series clustering and its challenges. The aim, objectives, and scope of the research are 

also defined. Moreover, this chapter presents the main causes of inaccuracy in time-

series clustering, and highlights them by providing some example problems. 

Chapter 2 reviews existing studies on time-series clustering. It covers the definition of 

time-series data, clustering of time-series, cluster prototypes, different distance 

measures, and time-series representation methods. Then, existing time-series clustering 

approaches are discussed, and the strengths and weaknesses of existing works are 

elaborated. This chapter provides a common platform from which to launch further 

discussions in the next chapters. 

Chapter 3 describes the research methodology utilized to achieve the research 

objectives. It includes a brief overview of Multi-step Time-series Clustering (MTC) and 

Interactive Multi-step Time-series Clustering (IMTC) model as well as its main tasks 

and motivation for applying different methods. Moreover, the evaluation plan is 

explained in this chapter. 

Chapter 4 explains the main part of the thesis, which is the presentation and design of 

the MTC and IMTC model. It focuses on the main subject of this study: accurate 

clustering of large time-series data. The methods which are adopted or designed to 

develop the models are discussed in this chapter. 

Chapter 5 describes the experimental data used in this thesis. Then, the MTC is applied 

on existing datasets. Many aspects of this thesis are discussed in this chapter, including 

the methods designed to achieve the study’s objectives. The process of pre-clustering, 

refining the clusters, and defining the representatives of each cluster are analysed here. 
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Most of the research questions are answered in this chapter. Finally, the parameter 

settings are discussed, and the final results are reported. 

Chapter 6 evaluates and discusses the proposed models from different aspects. At first, 

the accuracy of MTC in different datasets is evaluated. Then, experimental evaluation of 

the MTC is shown in comparison with rival models. The performance of IMTC is 

experimentally determined. At last, the scalability and sensitivity of the proposed model 

are discussed. 

Chapter 7 concludes the research and discusses how the research objectives were met. 

The contribution of the research outcome is then discussed, followed by suggestions on 

aspects of time-series clustering that may be examined for further research.  
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2.0 BACKGROUND AND LITERATURE REVIEW 

2.1 Introduction 

Clustering is a technique used to put similar data elements into homogeneous groups 

without advance knowledge of the group definitions (Rai & Singh, 2010). It is a useful 

approach to identify structure in an unlabelled dataset. Clusters are formed in the way 

that objects have maximum similarity with other objects within the group, and 

minimum similarity with objects in other groups. A special type of clustering is time-

series clustering. Time-series are dynamic objects where their feature values change 

over time. The data in various systems - like finances, healthcare, and business – is 

stored as time-series. As a result, the interest of time-series clustering has increased in 

various areas such as medicine, biology, finance, economics, the web, etc. It is obvious 

that in order to cluster time-series data, it is necessary to select a suitable representation, 

distance measure and clustering algorithm for the data at hand. In this chapter an 

overview of existing time-series clustering approaches and their strengths and 

weaknesses are discussed. In Section  2.2, the basics of time-series clustering are 

presented including the applications of time-series clustering and its taxonomy. Then 

whole time-series clustering is emphasized in Section  2.3 which is the scope of this 

study. In this section, the published articles related to whole time-series clustering are 

introduced. The major methods of each component of time-series clustering are 

explained including: time-series representation in Section  2.4, data 

similarity/dissimilarity measurement in Section  2.5, and defining prototypes in Section 

 2.6. Performance evaluation of time-series clustering is performed using different 

criterion which are explained in Section  2.7. Finally, in Section  2.8, existing whole 

time-series clustering algorithms are explained based on different categories of 

clustering approaches including hierarchical-based, partitioning-based, model-based, 

density-based, and grid-based. Moreover, focusing on accuracy problem, the recent 
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approaches which are very similar to this study are discussed in this section under the 

multi-step approaches. Subsequently, the common problems in existing works are 

concluded in Section  2.9.  

2.2 Time-series Clustering 

With increasing power of data storages and processing, real-world applications have 

found this chance to store and keep data for a long time. As a result, data in many 

applications is being stored in the form of time-series data, for example sales data, stock 

prices (e.g., value of Google stock), exchange rates in finance, weather data (e.g., 

annual rainfall), biomedical measurements(e.g., blood pressure and electrocardiogram 

measurements), biometrics data (image data for facial recognition), particle tracking in 

physics, and etc. Accordingly, different works are found in variety of domains such as 

geology (Harms & Goddard, 2001), bioinformatics (Gusfield, 1997), biology (Bar-

Joseph, Gerber, Gifford, Jaakkola, & Simon, 2002), genetics (Das, Lin, Mannila, 

Renganathan, & Smyth, 1998), human motion analysis (Uehara & Shimada, 2002), 

space exploration (Honda, Wang, Kikuchi, & Konishi, 2002; Keogh, 1997a; Oates, 

1999), handwriting recognition (Vuori & Laaksonen, 2002), multimedia (Niennattrakul 

& Ratanamahatana, 2007a; Ratanamahatana & Niennattrakul, 2006; Ratanamahatana, 

2005), telecommunications (Das, Gunopulos, & Mannila, 1997) and finance (Gavrilov, 

Anguelov, Indyk, & Motwani, 2000; Ge & Smyth, 2000; R. Lin & Shim, 1995).  

This amount of time-series data has provided the opportunity of analysing time-series 

for many researchers in data mining communities in the last decade. As a result, many 

researches and projects relevant to analysing time-series have been performed in various 

areas for different purposes: subsequence matching, anomaly detection, motif discovery 

(J. Lin, Keogh, Lonardi, Lankford, & Nystrom, 2004), indexing, clustering, 

classification (Keogh & Kasetty, 2003), visualization (Haigh, Foslien, & Guralnik, 

2004), segmentation (Keogh, Chu, & Hart, 2004), identifying patterns, trend analysis, 
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summarization (J. Lin, Keogh, Lonardi, et al., 2003), and forecasting. Moreover, there 

are many on-going research projects aimed to improve the existing techniques 

(Rakthanmanon, Campana, Batista, Zakaria, & Keogh, 2012; Zakaria, Rotschafer, 

Mueen, Razak, & Keogh, 2012). There are many reviews and survey on time-series 

analysis and its applications (H. Ding, Trajcevski, Scheuermann, Wang, & Keogh, 

2008; Fu, 2010; Hirano & Tsumoto, 2005). 

Among all the techniques which have been applied to analyse time-series data, 

clustering is one of the most frequently used techniques, due to its exploratory nature, 

and its application as a pre-processing step in more complex data mining algorithms (C. 

Ding, He, Zha, & Simon, 2002; Fayyad, Reina, & Bradley, 1998; Kalpakis, Gada, & 

Puttagunta, 2001). There are some comprehensive surveys and reviews that focus on 

comparative aspects of time-series clustering experiments (Antunes & Oliveira, 2001; 

Kavitha & Punithavalli, 2010; Keogh & Kasetty, 2003; Laxman & Sastry, 2006; Rani & 

Sikka, 2012; Warrenliao, 2005) which shows a trend of increased activity.  

2.2.1 Applications of Time-series Clustering 

Clustering of time-series data is mostly utilized for discovery of interesting patterns in 

time-series datasets (Das et al., 1998; H. Wang, Wang, Yang, & Yu, 2002). This task 

itself, fall into two categories: The first group is the one which is used to find patterns 

that frequently appears in the dataset (Chiu, Keogh, & Lonardi, 2003; Fu, Chung, Ng, & 

Luk, 2001). The second group are methods to discover patterns which happened in 

datasets surprisingly (P. K. Chan & Mahoney, 2005; Keogh, Lonardi, & Chiu, 2002; 

Leng, Lai, Tan, & Xu, 2009; Wei, Kumar, Lolla, & Keogh, 2005). Briefly, finding the 

clusters of time-series can be advantageous in different domains to answer real world 

problems as follows: 
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1- Anomaly (novelty or discord) detection: Anomaly detection are methods to 

discover unusual and unexpected patterns which happen in datasets surprisingly 

(P. K. Chan & Mahoney, 2005; Keogh et al., 2002; Leng et al., 2009; Wei et al., 

2005). For example, in sensor databases, clustering of time-series which are 

produced by sensor readings of a mobile robot in order to discover the events 

(Polz, Hortnagl, & Prem, 2003). 

2- Recognizing dynamic changes in time-series: detection of correlation between 

time-series (He et al., 2011). For example, in financial databases, it can be used 

to find the companies with similar stock price move. 

3- Prediction and recommendation using clustering: a hybrid technique combining 

clustering and function approximation per cluster can help user to predict and 

recommend (Graves D, 2010; Ito, Hiroyasu, Miki, & Yokouchi, 2009; Pavlidis, 

Plagianakos, Tasoulis, & Vrahatis, 2006; Sfetsos & Siriopoulos, 2004). For 

example, in scientific databases, it can address problems such as finding the 

patterns of solar magnetic wind to predict daily pattern. 

4- Pattern discovery: to discover the interesting patterns in databases. For example, 

in marketing database, different daily patterns of sales of a specific product in a 

store can be discovered. 

Table  2.1depicts some applications of time-series data in different domains are stated. 
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Table 2.1: Samples of objectives of time-series clustering in different domains 

Reference Dataset Objective 

Košmelj & 

Batagelj, (1990) 

Country’s energy 

consumption 

Energy Consumption pattern of 23 

European Countries (commercial 

consumption) 

Van Wijk & Van 

Selow (1999) 

Daily power 

consumption 

Discovering consumer power consumption 

patterns 

Ramoni, 

Sebastiani, & 

Cohen (2000) 

Robot sensor data To form prototypical representations of the 

robot’s experiences 

Fu et al. (2001) Stock market data Discovery patterns from stock time-series 

Golay et al., 

(1998); Wismüller 

et al., (2002) 

Functional 

MRI (fMRI)  

To detect brain activity 

Tran & Wagner 

(2002) 

Speech time-series Speaker verification 

M. Kumar & 

Patel (2002) 

Sales data from 

several departments 

of a major retail 

chain 

To find seasonality patterns (Retail pattern) 

Steinbach, Tan, 

Kumar, Klooster, 

& Potter, (2003) 

Climate time-series Discovery of climate indices 

Möller-Levet, 

Klawonn, Cho, & 

Wolkenhauer, 

(2003) 

Gene expression Identification of functionally related genes 

Bagnall, Janacek, 

De la Iglesia, & 

Zhang, (2003) 

Time-series 

representing the per 

capita personal 

income 

Personal income pattern 

Shumway,(2003) Earthquake Analysing potential violations of a 

Comprehensive Test Ban Treaty (CTBT)  

Guan & Jiang, 

(2007) 

Financial data To create efficient portfolio ( a group of 

stocks owned by a particular person or 

company) 

(C. Guo, Jia, & 

Zhang, 2008) 

Stock exchange data Discovery patterns from stock time-series 

Rebbapragada, 

Protopapas, 

Brodley, & 

Alcock, (2009)  

Astronomical data 

(star light curves) 

Pre-processing for outlier detection 

Gullo et al., 

(2011) 

Mass spectra data Exploring, identifying, and discriminating 

pathological cases from MS clinical 

samples 

Kurbalija et al., 

(2012) 

Human behaviour 

data  

Analysis of human behaviour in 

psychological domain 
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2.2.2 Taxonomy of Time-series Clustering 

In reviewing the literature, one can conclude that most works related to clustering time-

series are classified into three categories: “whole time-series clustering”, “subsequence 

clustering” and “time point clustering” as depicted in Figure  2.1. The first two 

categories are mentioned in (2005). “Whole time-series clustering” is considered as 

clustering of a set of individual time-series with respect to their similarity. Here, 

clustering means applying conventional (usually) clustering on discrete objects, where 

objects are time-series. “Subsequence clustering” means clustering on a set of 

subsequences of a time-series that are extracted via a sliding window, that is, clustering 

of segments from a single long time-series. Additionally, there is another category of 

clustering which is “Time point clustering” seen in some papers (Gionis & Mannila, 

2003; Morchen, Ultsch, Mörchen, & Hoos, 2005; Ultsch & Mörchen, 2005). It is 

clustering of time points based on a combination of their temporal proximity of time 

points and the similarity of the corresponding values. This approach is similar to time-

series segmentation. However, it is different from segmentation from this sense that all 

points do not need to be assigned to clusters, i.e., some of them are considered as noise. 

 

Figure 2.1: Time-series clustering taxonomy 

Essentially sub-sequence clustering is performed on a single time-series, and is shown 

that is meaningless (Keogh & Lin, 2005). Time-point clustering also is applied on a 

single time-series, and is similar to time-series segmentation. That is, the objective of 

time-point clustering is finding the clusters of time-point instead of clusters of time-

time-series 
clustering 

Whole time-
series clustering 

Subsequence 
time-series 
clustering 

Time point 
clustering 
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series data. Hence, in this thesis the emphasis is on the whole time-series clustering. In 

the next section, whole time-series clustering and its challenges are explained. 

2.3 Whole Time-series Clustering 

A complete review on whole time-series clustering is performed and shown in Table 

 2.4. In reviewing the literature, various techniques have been recommended for the 

clustering of whole time-series data. However, most of them take one of the following 

approaches to cluster time-series data:  

1) Customizing the existing conventional clustering algorithms (which work with static 

data) such that they become compatible with the nature of time-series data. In this 

approach, usually their distance measure (in conventional algorithms) is modified to be 

compatible with the raw time-series data (T. W. Liao & Warrenliao, 2005).  

2) Converting time-series data into simple objects (static data) as input of conventional 

clustering algorithms (T. W. Liao & Warrenliao, 2005).  

3) Using multi resolutions of time-series as input of a multi-step approaches. This 

approach is discussed further in Section  2.8.6. 

Beside this common characteristic, there are generally three different ways to cluster 

time-series, namely shape-based, feature-based and model-based. Figure  2.2 shows a 

brief of these approaches. In the shape-based approach, the shapes of two time-series 

are matched as well as possible, by a non-linear stretching and contracting of the time 

axes. This approach has also been labelled as a raw-data-based approach because it 

typically works directly with the raw time-series data. Shape-based algorithms usually 

employ conventional clustering methods which are compatible with static data while 

their distance/similarity measure has been modified with an appropriate one for time-

series. In the feature-based approach, the raw time-series are converted into a feature 

vector of lower dimension. Later, a conventional clustering algorithm is applied to the 
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extracted feature vectors. Usually in this approach, an equal length feature vector is 

calculated from each time-series followed by the Euclidean distance measurement 

(Hautamaki, Nykanen, & Franti, 2008). In model-based methods, a raw time-series is 

transformed into model parameters (a parametric model for each time-series,) and then a 

suitable model distance and a clustering algorithm (usually conventional clustering 

algorithms) is chosen and applied to the extracted model parameters (Warrenliao, 2005). 

However, it is shown that usually model-based approaches has scalability problems 

(Vlachos, Gunopulos, & Das, 2004), and its performance reduces when the clusters are 

close to each other (Mitsa, 2009). 

 

Figure 2.2: The time-series clustering approaches 

As explained in Section  1.3, “whole time-series clustering” approaches are suffering 

from overlooking data (by feature-based approach) and high complexity of distance 

measures (by shape-based approaches). The approach proposed in this thesis is using a 

multi-step approach with composition of shape-based and feature-based techniques to 
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use their strengths and overcome their drawbacks. That is, the proposed model in this 

research uses time-series data in low-resolution which reduce the complexity of 

clustering. Moreover, data are used in high-resolution mode to generate the prototypes 

and to avoid overlooking of data. In the proposed model, the transferred time-series is 

used for pre-clustering and high-dimensional time-series for revising the results. The 

motivation for using a multi-step approach is discussed further in Section  3.2.4. 

Reviewing existing works in the literature, it is implied that essentially time-series 

clustering has five components: dimensionality reduction (representation) method, 

distance measurement, clustering algorithm, prototype definition, and evaluation. Figure 

 2.3 shows an overview of these components. 

 

Figure 2.3: An overview of five components of whole time-series clustering 

The general process in the time-series clustering uses some/all of these components 

depending on the problem. Usually, data is approximated (using a representation 

method) in such a way that can fit in memory. Then, a clustering algorithm is applied on 
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data using a distance measure. In the clustering process, usually a prototype is required 

for summarization of the time-series. At last, the clusters are evaluated using criteria. 

In the following sub-sections, each component is discussed, and several related works 

and methods are reviewed.  

2.4 Time-series Representation 

The first component of time-series clustering explained here is dimension reduction. 

Applying a dimension reduction is a common solution for most whole time-series 

clustering approaches proposed in the literature (G. Duan, Suzuki, & Kawagoe, 2006; 

Ghysels, Santa-Clara, & Valkanov, 2006; Keogh, 2005; J. Lin, Keogh, Lonardi, et al., 

2003). This section looks at methods of time-series representation (data reduction). 

Definition 2.1: Time-series representation, given a time-series data    

{              }, representation is transforming the time-series to another dimensionality 

reduced vector   
  {  

 
      

 
} where x<T and if two series are similar in the 

original space, then their representations also should be similar in the transformation 

space. 

Based on Ratanamahatana et al., (2005) ,“the key to the efficiency and accuracy of the 

solution is to choose an appropriate data representation method”. High dimensionality 

and noise are characteristics of most time-series data (Keogh & Kasetty, 2003). 

Dimensionality reduction methods are usually used in whole time-series clustering in 

order to address these issues and promote the performance. For example, Figure  2.4 

shows a time-series related to balance of transactions of a bank customer, its 

reconstructed coefficients and approximation coefficients as an example of time-series 

representation in different levels.  
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Figure 2.4: A sample of dimensionality reduction of time-series. Left: Coefficients of a time-series 

constructedfrom‘Haar’waveletdecompositionstructure.Right:theapproximationcoefficientsof

the time-series. 

Time-series reduction techniques have progressed a long way and are widely used with 

large scale time-series dataset, each with their own features and drawbacks. 

Accordingly, many researches had been carried out focusing on representation and 

dimensionality reduction (K. Chan & Fu, 1999; Keogh, Chakrabarti, Pazzani, & 

Mehrotra, 2001b; Keogh & Pazzani, 1998; J. Lin, Keogh, Wei, & Lonardi, 2007; 

Popivanov & Miller, 2002; Y. L. Wu, Agrawal, & El Abbadi, 2000; Yi & Faloutsos, 

2000). It is worth here to mention about the one of the last comparisons on 

representation methods. H. Ding et al. (2008) have performed a comprehensive 

comparison of 8 representation methods on 38 datasets. Although, they had investigated 

the indexing effectiveness of representation methods, the results are advantageous for 

clustering purpose as well. They use tightness of lower bounds to compare 
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representation methods. They show that there is very little difference between recent 

representation methods.  

In taxonomy of representations, there are generally four representation types (Bagnall, 

Ratanamahatana, Keogh, Lonardi, & Janacek, 2006; J. Lin, Keogh, Lonardi, et al., 

2003; Ratanamahatana et al., 2005; Shieh & Keogh, 2009): data adaptive, non-data 

adaptive, model-based and data dictated representation approaches as depicted in Figure 

 2.5. 

 

Figure 2.5: Hierarchy of different time-series representation approaches 

Data adaptive representation methods are performed on all time-series in datasets and 

try to minimize the global reconstruction error (Xiaoyue Wang et al., 2012) using 

arbitrary length (non-equal) segments. This technique has been applied in different 

approaches such as Piecewise Polynomials Interpolation (PPI) (Morinaka, Yoshikawa, 

Amagasa, & Uemura, 2001), Piecewise Polynomials Regression (PPR) (Shatkay & 

Zdonik, 1996), Piecewise Linear Approximation (PLA), Piecewise Constant 

Approximation (PCA), Adaptive Piecewise Constant Approximation (APCA) (Keogh et 

al., 2001b), Singular Value Decomposition (SVD) (Faloutsos et al., 1994; Korn, 

Jagadish, & Faloutsos, 1997) , Natural Language, Symbolic Natural Language (NLG) 

(Portet et al., 2009), Symbolic Aggregate ApproXimation (SAX) and iSAX (J. Lin et 

al., 2007). Data adaptive representations can better approximate each series, but the 

comparison of several time-series is more difficult. Non-data adaptive approaches are 

representations which are suitable for time-series with fix size (equal-length) 
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method 

Data adaptive 
Non-data 
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segmentation, and the comparison of representations of several time-series is 

straightforward. The methods in this group are Wavelets (K. Chan & Fu, 1999): HAAR, 

DAUBECHIES, Coeiflets, Symlets, Discrete Wavelet Transform(DWT), spectral 

Chebyshev Polynomials (Cai & Ng, 2004), spectral DFT (Faloutsos et al., 1994), 

Random Mappings (Bingham, 2001), Piecewise Aggregate Approximation (PAA) 

(Keogh et al., 2001a) and Indexable Piecewise Linear Approximation (IPLA) (Q. Chen, 

Chen, Lian, & Liu, 2007). Model based approaches represent a time-series in a 

stochastic way such as Markov Models and Hidden Markov Model (HMM) (Minnen, 

Isbell, Essa, & Starner, 2007; Minnen, Starner, Essa, & Isbell, 2006; Panuccio, Bicego, 

& Murino, 2002), Statistical Models, Time-series Bitmaps (N. Kumar, Lolla, Keogh, & 

Lonardi, 2005), and Auto-Regressive Moving Average(ARMA) (Corduas & Piccolo, 

2008; Kalpakis et al., 2001). In the data adaptive, non-data adaptive, and model based 

approaches user can define the compression-ratio based on the application in hand. In 

contrast, in data dictated approaches, the compression-ratio is defined automatically 

based on raw time-series such as Clipped (Bagnall et al., 2006; Ratanamahatana et al., 

2005).  

In the following table (Table  2.2) the most famous representation methods in the 

literature are shown. 
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Table 2.2: Representation methods for time-series data 

Representation 

method 

Introduced by Used by Complex

ity 

Arbitrary 

lengths 

Weighted 

distance 

Elastic 

distance 

Standard 

distance 

lower 

bounding 

Type Usage Pros Cons 

Chebyshev 

Polynomials 
(CHEB) 

(Cai & Ng, 

2004) 

- - - - Not 

support 

Support Support Non data 

adaptive, 
Wavelet, 

Orthonormal 

- - - 

Indexable 
Piecewise Linear 

Approximation 

(IPLA) 

 Q. Chen et al., 
(2007) 

- - - - Not 
support 

Support - Non data 
adaptive 

- - - 

Discrete Fourier 

Transform (DFT) 

 

 Agrawal, 

Faloutsos, & 

Swami, (1993) 

and  Faloutsos 
et al., (1994)  

 Owsley, 

Atlas, & 

Bernard, 

(1997) 
 

O(n(log(

n)) 

Not 

support 

Not 

support 

Not 

support 

Support Support Non data 

adaptive, 

Spectral 

 

Natural 

Signals 

No false 

dismissals.  

 

Not support 

time warped 

queries 

Discrete Wavelet 

Transform 
(DWT) 

K. Chan & Fu, 

(1999), 
Kawagoe & 

Ueda, (2002) 

and Agrawal et 
al., (1993)  

Vlachos, Lin, 

& Keogh, 
(2003) ; 

Shahabi, 

Tian, & Zhao, 
(2002) and H. 

Guo, Liu, 

Liang, & 
Gao, (2008) 

O(n) Not 

support 

Not 

Support 

Support Support Support Non data 

adaptive, 
Wavelet 

stationary 

signals 

Better results 

than DFT 

Not stable 

results, Signals 
must have a 

length n = 

2some_integer 

Discrete Cosine 

Transformation 
(DCT) 

Korn et al., 

(1997) 

- - - - Not 

support 

 Support Non data 

adaptive, 
Spectral 

- - - 

Singular Value 

Decomposition 

(SVD) 

Faloutsos et al., 

(1994) and Korn 

et al., (1997) 

- very 

expensiv

e O(Mn2) 

Not 

support 

Not 

support 

Not 

support 

Not 

support 

Support Data 

adaptive 

text 

processing 

community 

underlying 

structure of 

the data 

- 

Piecewise Linear 

Approximation 

(PLA) 

Keogh & 

Pazzani, (1998) 

- O(nlogn) 

complexi

ty for 
“bottom 

up” 

algorithm 

 Not 

support 

Support Not 

support 

Support Data 

adaptive 

natural 

signals, 

biomedical 

- Not (currently) 

indexable, very 

expensive 
O(n2N) 

Piecewise 
Aggregate 

Approximation 

(PAA) 

Yi & Faloutsos, 
(2000) and 

Keogh et al., 

(2001a) 

Ge & Smyth, 
(2000); 

Perng, Wang, 

Zhang, & 
Parker, 

(2000) 

Extremel
y Fast 

 O(n) 

Support Support Support Support Support Non data 
adaptive 

- - - 

Adaptive 
Piecewise 

Constant 

Approximation 
(APCA) 

Keogh et al., 
(2001b) 

- O(n) Support Support Support Support Support Data 
adaptive 

- Very 
efficient 

complex 
implementation 

Clipped Data Ratanamahatana Bagnall & - Support - Not Support Support Data dictated hardware - Ultra compact 
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 et al., (2005)  Janacek, 
(2005) and 

Bagnall et al., 

(2006) 

support representation 

Symbolic 

Approximation 

(SAX) 

Keogh, Lonardi, 

& 

Ratanamahatana
(2004) 

J. Lin et al., 

(2007) 

 

O(n) Support Support Support Support Support Data 

adaptive 

string 

processing 

and 
bioinformati

cs 

Allows 

Lower 

bounding and 
Numerosity 

Reduction 

 

Discretize and 

alphabet size 

perceptually 
important point 

(PIP)  

Chung, Fu, & 
Luk (2001) 

Fink & Pratt, 
(2003); T. C. 

Fu, Chung, 

Luk, & Ng, 

(2010); T. C. 

Fu et al., 

(2001); Pratt 
& Fink, 

(2002) 

- Support Support N/A Not 
support 

Not 
support 

Non data 
adaptive 

Finance - - 
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2.4.1 Other representation methods 

Different approaches for representation of time-series data are proposed in articles. 

Although most of them focus on mitigation of the executing time of process (mostly 

focusing on indexing process), some of them consider the quality of representation. 

From these group of works, in Ratanamahatana et al. (2005), the authors focus on the 

accuracy of representation method and suggest a bit level approximation of time-series. 

Each time-series is represented by a bit string, and each bit value specifies whether the 

data point’s value is above the mean value of the time-series. This representation can be 

used to compute an approximate clustering of the time-series. This kind of 

representation (clipped representation) has capability of being compared with raw time-

series, but in the other representations, all time-series in dataset must be transformed 

into the same representation in terms of dimensionality reduction. However, clipped 

series are theoretically and experimentally sufficient for clustering based on similarity 

in change (model based dissimilarity measurement) not clustering based on shape. 

In Lkhagva et al. (2006), the authors consider the importance of accuracy in financial 

systems and propose the Extended Symbolic Aggregate ApproXimation (ESAX) which 

is a symbolic representation customized for financial time-series. Later, in another 

work, Liu & Shao (2009) present a similarity measure based on SAX for financial time-

series. They focus on the shortage of SAX representation in lacking considering 

dynamic information of trends. They propose a similarity measure function, Composite-

Distance-Function which joins point distance advantages and trend-distance advantages 

together. 

The Perceptually Important Points (PIPs) posed by Chung et al. (2001) is one of the first 

motivations for a group of works on improving the accuracy of representation methods, 

especially in finance systems. Later, T. C. Fu, Chung, Luk, & Ng (2007) used the 

concept of PIP to propose a new representation where the important points of time-
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series are collected by measuring the distance between the time-series points and their 

trend. In this representation, the point that has the largest distance is chosen. Then, Bao 

(2007), suggests a generalized model in financial time-series using turning points in 

financial data. Turning points are the important points which is presented by Fu et al. 

(2007). Then, in another study (Phetking, Sap, & Selamat, 2008), the authors focus on 

the problem of overlooking important points in financial time-series after 

transformation into another representation. Consequently, they propose a 

multiresolution important point retrieval method for financial time-series representation. 

They use the most Important points (MIPs) which comprises of the most peak (MP) 

points and the most dip (MD) points in time-series. Ultimately, Fu et al. (2010) poses 

accuracy problem related to indexing financial time-series and present an indexing 

approach based on clustering. They propose a time-series indexing framework based on 

data point importance for dimensional reduction. Then, they use important points to 

increase the quality of representation.  

2.4.2 Discussion 

There are many works related to representation of time-series which were categorized 

and discussed in details in Section  2.4. However, it is undeniable that as more 

dimensionally reduction occurs, more data is lost and becomes inaccurate, and 

consequently less time execution. Finding a trade-off between the accuracy and speed is 

a controversial and non-trivial task in representation methods. That is, a threshold of 

dimensionality reduction should be found which is a subjective issue and is highly 

dependent on application in hand, and the type of time-series in dataset. However, 

among all these representation methods which have their strong points and weaknesses, 

in this thesis, the focus is on Symbolic Aggregate ApproXimation (SAX) representation 

because of its strength in representation as described in Section  2.4.4. However, at first 
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a review is performed about Piecewise Aggregate Approximation (PAA) representation 

which is the base of SAX representation. 

2.4.3 Brief Review of PAA 

Two different studies (Keogh et al., 2001a; Yi & Faloutsos, 2000), separately 

approximated the time-series using segmentation approach. They use mean value of the 

equal-length segmentations of time-series as approximate value of that part (dotted 

lines). This technique is called Piecewise Aggregate Approximation (PAA), and is quite 

fast (Keogh et al., 2001b), can be used for arbitrary length queries, and able to handle 

different distances measures (Ge & Smyth, 2000; Perng et al., 2000). Figure  2.6 shows a 

time-series with 32 data points which is represented by a 8-dimensional time-series 

using PAA. If    {              } is considered as a time-series, then, PAA discretized 

time-series to  ̅ where  ̅    ̅        ̅. Each segment of  ̅ , i.e.,   ̅, is a real value which 

is the mean of all data points in the i
th

 segment of F In the following figure,   ̅       . 

 

Figure 2.6: Representation of time-series by PAA 
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PAA is competitive with Fourier transform, Wavelet and many more sophisticated 

approaches in terms of quality and speed (K. Chan & Fu, 1999; Keogh et al., 2001a; Yi 

& Faloutsos, 2000). However, PAA has a bad quality in representing various movement 

shapes of time-series in lower dimension space, because of its smoothing process by 

averaging (Park & Lee, 2010) .  

2.4.4 Brief Review of SAX 

In this thesis, Symbolic Aggregate ApproXimation (SAX) transformation is adopted in 

order to reduce the dimension of time-series data. SAX is a symbolic representation of 

time-series developed by Keogh et al. in 2003 and has been used by more than 50 

groups in different data mining researches (J. Lin et al., 2007). This method is a two-

step process which transfers a time-series into the Piecewise Aggregate Approximation 

(PAA) representation as explained in Section  2.4.3 and then it maps the coefficients to 

symbols.  

Let consider  ̅    ̅        ̅ as discretized time-series by PAA transformation. Then,  ̂ 

where  ̂   ̂        ̂  is defined by mapping the PAA coefficients to ‘a’ SAX symbols. 

‘a’ is the alphabet size (e.g., for the alphabet= {a, b, c, d, e, f}, ‘a’ = 6), and the 

alphabets in SAX, are defined by “breakpoints”. Based on Keogh definition, a list of 

numbers            is defined as “Breakpoints” to determine the area of each 

symbol in SAX transformation. These sorted numbers, produce equal size areas under 

Gausian curve as illustrated in Figure  2.7. It is based on the fact that normalized time-

series have highly Gaussian distribution (J. Lin et al., 2007). 
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Figure 2.7: Symbolic representation of time-series by SAX based on PAA 

In Figure  2.8, the raw time-series and symbolic representation of time-series are 

depicted. They are obtained by PAA representation of raw time-series of the behaviour 

of a bank’s customer credit card bills over the time span of one year.  

 

Figure 2.8: Symbolic representation of a sample raw time-series by SAX 

Now the question is “Why symbolization?” Basically, a discretization technique that 

will produce symbols with equiprobability is desirable (Apostolico, Bock, & Lonardi, 

2003; Lonardi, 2001; Mörchen & Ultsch, 2005). When time-series is transferred as a 



34 

symbolic representation, e.g., using SAX, it needs less memory which is very essential 

in applications which deal with long or huge amount of time-series data (J. Lin et al., 

2007). In this kind of applications, fetching time-series data from disk to memory is a 

big challenge, and appropriate compressing of data is highly important. Considering 

clustering algorithms which typically require the recalculation of models directly on 

main memory for each iteration, symbolic representation of data will speed up the time 

execution of clustering algorithm. As one evidence, considering this principle, Bagnall 

and Janacek (2005), use clipped series (as a special case of SAX) to provide time 

improvement for clustering algorithms. Moreover, they mention that using symbolic 

representation instead of raw time-series, improves the accuracy of clustering in the 

presence of outliers. To sum up, SAX is as good as other well-known and often-used 

representation methods, such as Discrete Wavelet Transform (DWT) and Discrete 

Fourier Transform (DFT), while it requires less storage space (J. Lin et al., 2007). 

2.5 Similarity/Dissimilarity Measure 

This section looks at methods of distance measurement to choose the best similarity 

measure among time-series being compared. The theoretical issue of time-series 

similarity/dissimilarity search is proposed by Agrawal et al. (1993) and subsequently it 

became a basic theoretical issue in data mining community. 

Time-series clustering relies on distance measure to a high extent. There are different 

measures which can be applied to measure the distance among time-series. Some of 

similarity measures are proposed based on a specific time-series representations, for 

example, MINDIST which is compatible with SAX (J. Lin et al., 2007), and some of 

them work regardless of representation methods, or are compatible with raw time-series. 

In traditional clustering, distance between static objects is exact match based but in 

time-series clustering, distance is calculated approximately. In particular, in order to 

compare time-series with irregular sampling intervals and length, it is of great 
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significance to adequately determine the similarity of time-series. There is different 

distance measures designed for specifying similarity between time-series. The 

Hausdorff distance and modified Hausdorff (MODH), HMM-based distance, Dynamic 

Time Warping (DTW), Euclidean distance, Euclidean distance in a PCA subspace, and 

Longest Common Sub-Sequence (LCSS) are the most popular distance measurement 

methods used for time-series data. References on distance measurement methods are 

given in Table  2.3. 

One of the simplest ways for calculating distance between two time-series is 

considering time-series as univariate time-series, and then calculating the distance 

measurement across all time points. 

Definition 2.2: Univariate time-series, a univariate time-series is the simplest form of 

temporal data and is a sequence of real numbers collected regularly in time, where each 

number represents a value (X. Wang et al., 2004). 

Definition 2.3: Time-series distance, let    {                 } be a time-series of length 

T. If the distance between two time-series is defined across all time points, then 

            is the sum of the distance between individual points  

             ∑              
 

   
  2.1 

In shape-based distance measuring of time-series, researches done on this domain 

usually have to challenge with some problems. These include noise, amplitude scaling, 

offset translation, longitudinal scaling, linear drift, discontinuities and temporal drift 

which are the common properties of time-series data. These properties are broadly 

investigated in the literature (Keogh & Pazzani, 1998). 
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The choice of a proper distance approach depends on the characteristic of time-series, 

its length of time-series, representation method, and of course on the objective of 

clustering time-series to a high extent. This is depicted in Figure  2.9.  

 

Figure 2.9: Distance measure approaches in the literature 

Typically, there are three objectives which respectively require different approaches 

(Bagnall & Janacek, 2005): 

1) Finding similar time-series in time: because this similarity is on each time step, 

correlation based distances or Euclidean distance measure are proper for this 

objective. However, because this kind of distance measuring is costly on raw 

time-series, the calculation is performed on transformed time-series, such as 

fourier transforms, wavelets or Piecewise Aggregate Approximation (PAA). 

Keogh and Kasetty (2003),  have done an comprehensive review on this matter. 

Clustering of time-series that are correlated, (e.g., to cluster time-series of share 

price related to many companies to find which shares change together and how 

they are correlated) is categorized as clustering based on similarity in time 

(Bagnall & Janacek, 2005; Ratanamahatana et al., 2005). 

2) Finding similar time-series in shape: the time of occurrence of patterns is not 

important to find similar time-series in shape. As a result, elastic methods 
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(Agrawal et al., 1993; Aref, Elfeky, & Elmagarmid, 2004) such as Dynamic time 

Warping (DTW) (Chu, Keogh, Hart, Pazzani, & others, 2002) is used for 

dissimilarity calculation. Using this definition, clusters of time-series with 

similar patterns of change are constructed regardless of time points, for example, 

to cluster share price related to different companies which have a common 

pattern in their stock independent on its occurrence in time-series (Bagnall & 

Janacek, 2005). Similarity in time is a special case of similarity in shape. A 

research has revealed that similarity in shape is superior to metrics based on 

similarity in time (Ratanamahatana & Keogh, 2005). 

3) Finding similar time-series in change (structural similarity): In this approach, 

usually modeling methods such as Hidden Markov Models (HMM) (Smyth, 

1997) or an ARMA process (Kalpakis et al., 2001; Xiong & Yeung, 2002) are 

utilized, and then similarity is measured on the parameters of fitted model to 

time-series. That is, clustering time-series with similar autocorrelation structure, 

e.g., clustering of shares which have a tendency to increase after a fall in share 

price in the next day (Bagnall & Janacek, 2005). This approach is proper for 

long time-series, not for modest or short time-series (X. Wang et al., 2006). 

Clustering approaches could be classified into two categories based on the length of 

time-series: “shape level” and “structure level”. The “shape level” is usually utilized to 

measure similarity in short-length time-series clustering such as expression profiles or 

individual heartbeats by comparing their local patterns, whereas “structure level” 

measures similarity which is based on global and high level structure, and it is used for 

long-length time-series data such as an hour’s worth of ECGs or yearly meteorological 

data (X. Wang et al., 2006). Focusing on shape-based clustering of short length time-

series, in this study, shape level similarity is used. Depend on the objective and length 

of time-series, the proper type of distance measures is determined. Essentially, there are 
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four types of distance measure in the literature. Please refer to Table  2.3 for references 

on the types of distance measure. Shape-based similarity measure is to find the similar 

time-series in time and shape, such as Euclidean, DTW (Sakoe & Chiba, 1971, 1978), 

LCSS (Banerjee & Ghosh, 2001; Vlachos, Kollios, & Gunopulos, 2002), MVM 

(Latecki et al., 2005). It is a group of methods which are proper for short time-series. 

Compression based similarity is suitable for short and long time-series, such as CDM 

(Keogh et al., 2007), Autocorrelation, Short time-series distance (Möller-Levet et al., 

2003), Pearson’s correlation coefficient and related distances (Rodgers & Nicewander, 

1988), Cepstrum (Kalpakis et al., 2001), Piecewise normalization (Indyk & Koudas, 

2000) and Cosine wavelets (Huhtala & Karkkainen, 1999). Feature based similarity 

measure are proper for long time-series, such as Statistics, Coefficients, Model based 

similarity is proper for long time-series, such as HMM (Smyth, 1997) and ARMA 

(Kalpakis et al., 2001; Xiong & Yeung, 2002). 

A survey on various methods for efficient retrieval of similar time-series were given by 

Last and Kandel (2004). Furthermore, in (Warrenliao, 2005), authors have presented the 

formulas of various measures. Then, Zhang et al. (2006) have performed a complete 

survey on the aforementioned distance measurements and compared them in different 

applications. In Table  2.3, different measures are compared in terms of complexity and 

their characteristics. 
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Table 2.3: Similarity measure approaches in the literature 

Distance 

measure 

Defined by Used in Complexity Length 

support 

Method Similarity 

type 

Noise 

robustness 

Characteristics 

Euclidean 

distance (ED) 

Faloutsos et 

al.(1994) 

(Golay et al., 

1998; Keogh & 

Kasetty, 2003; 

Keogh, Wei, Xi, 

Lee, & Vlachos, 

2006) 

O(n) short 

time-

series 

Shape-based similarity in 

time 

No Lock-step Measure (one-to-one) 

using in indexing, clustering and 

classification, 

Sensitive to scaling. 

Dynamic 

Time Warping 

(DTW) 

Sakoe & 

Chiba (1971, 

1978) 

(Berndt & 

Clifford, 1994; 

Chu et al., 2002; 

Hu, Ray, & Han, 

2006; Keogh & 

Kasetty, 2003; 

Keogh & 

Ratanamahatana, 

2004; Sankoff & 

Kruskal, 1983; 

Yu, Dong, Chen, 

Jiang, & Zeng, 

2007) 

O(n
2
) , 

O(δn) by 

restricting 

the warping 

path 

short 

time-

series 

 

Shape-based similarity in 

shape 

No Elastic Measure (one-to-many/one-

to-none) 

Very well in deal with temporal 

drift. 

Better accuracy than Euclidean 

distance (Aach & Church, 2001) , 

(Chu et al., 2002) ,(Vlachos et al., 

2002) , (Yi & Faloutsos, 2000) .  

Lowe efficiency than Euclidean 

distance and triangle similarity. 

Longest 

Common Sub-

Sequence 

(LCSS) 

Banerjee & 

Ghosh, 

(2001); 

Vlachos et 

al., (2002) 

(Aghabozorgi, 

Saybani, & Wah, 

2012) 

O(n*δ) short 

time-

series 

Shape-based similarity in 

shape 

Yes Noise robustness 

 

Minimal 

Variance 

Matching 

(MVM) 

Latecki et 

al., (2005) 

 O (mn
2
) short 

time-

series 

Shape-based  N/A - Automatically skips outliers 

Short time-

series distance 

(STS) 

 Möller-

Levet, 

Klawonn, 

Cho, & 

Wolkenhauer 

(2003) 

 - short 

and long 

time-

series 

Feature-based N/A - Sensitive to scaling. 

can capture temporal information, 

regardless of the absolute values 
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probability-

based distance 

Kumar & 

Patel (2002) 

 - long 

time-

series 

Compression 

based 

dissimilarity 

N/A - Able to cluster seasonality patterns 

KL distance Dahlhaus 

(1996) 

 - long 

time-

series 

Compression 

based 

dissimilarity 

N/A - - 

J divergence Shumway 

(2003) 

(Shumway, 2003) - short 

time-

series 

 

Shape-based similarity in 

time 

- - 

Triangle 

similarity 

measure 

Zhang, Wu, 

Yang, Ou, & 

Lv (2009) 

(X. Zhang, Liu, 

Du, & Lv, 2011) 

- short 

time-

series 

 

Shape-based similarity in 

time 

- can deal with noise, amplitude 

scaling very well and deal with 

offset translation, linear drift well in 

some situations (X. Zhang et al., 

2009). 

cross-

correlation 

based distances 

Golay et 

al.(1998) 

(Goutte et al., 

1999) 

- short 

time-

series 

Shape-based similarity in 

shape 

- noise reduction, able to summarize 

the temporal structure 

Edit Distance 

with Real 

Penalty (ERP) 

L. Chen & 

Ng (2004) 

 - short 

time-

series 

Shape-based similarity in 

shape 

- Robust to noise, shifts and scaling of 

data, a constant reference point is 

used 

Edit Distance 

on Real 

sequence 

(EDR)  

L. Chen, 

Özsu, & Oria 

(2005) 

 - short 

time-

series 

Shape-based similarity in 

shape 

- Elastic measure (one-to-many/one-

to-none), uses a threshold pattern 

 

DISSIM Frentzos, 

Gratsias, & 

Theodoridis 

(2007) 

 - short 

time-

series 

Shape-based similarity in 

shape 

- Proper for different sampling rates 

Sequence 

Weighted 

Alignment 

model (Swale) 

Morse & 

Patel (2007) 

 - short 

time-

series 

Shape-based similarity in 

shape 

- Similarity score based on both 

match rewards and mismatch 

penalties. 

Spatial 

Assembling 

Distance 

(SpADe)  

Y. Chen, 

Nascimento, 

Ooi, & Tung 

(2007) 

 - long 

time-

series 

Model based similarity in 

change 

- Pattern-based Measure 

Threshold 

Queries 

(TQuEST)  

Aßfalg et 

al.(2006) 

(Aßfalg et al., 

2008) 

- long 

time-

series 

Model based similarity in 

shape 

- Threshold-based Measure, considers 

intervals, during which the time-

series exceeds a certain threshold for 

comparing time-series rather than 



41 

using the exact time-series values. 

histogram-

based 

 L. Chen & 

Özsu (2005) 

(J. Lin & Li, 

2009) 

- short 

time-

series 

Shape-based similarity in 

shape 

- Using multi-scale time-series 

histograms 

dictionary-

based 

compression 

  Lang, 

Morse, & 

Patel (2010) 

- - long 

time-

series 

Compression 

based 

dissimilarity 

N/A - Lang et al. (Lang et al., 2010) 

develop a dictionary compression 

score for similarity measure. A 

dictionary-based compression 

technique is suggested to compute 

long time-series similarity. 

 

Compression-

based 

dissimilarity 

measure(CDM) 

Keogh et 

al.(2007) 

- - short 

and long 

time-

series 

Compression 

based 

dissimilarity 

N/A - in (Keogh et al., 2007) Keogh et al. 

a parameter-light distance measure 

method based on Kolmogorov 

complexity theory is suggested. 

Compression-based dissimilarity 

measure (CDM) is adopted in this 

paper. 

 

Autocorrelation C. Wang & 

Sean Wang 

(2000) 

(X. Wang et al., 

2004) (Keogh & 

Kasetty, 2003) 

- short 

and long 

time-

series 

Compression 

based 

dissimilarity 

N/A - - 

Pearson’s 

correlation 

coefficient and 

related 

distances 

Rodgers & 

Nicewander 

(1988) 

(Tseng & Kao, 

2007) (Harrison, 

2005; Möller-

Levet et al., 2003) 

- short 

and long 

time-

series 

Compression 

based 

dissimilarity 

N/A - invariant to scale and location of the 

data points 

Cepstrum 

 

 Kalpakis, 

Gada, & 

Puttagunta 

(2001) 

(Keogh & 

Kasetty, 2003) 

- short 

and long 

time-

series 

Compression 

based 

dissimilarity 

N/A - A spectral measure which is the 

inverse Fourier transform of the 

short-time logarithmic amplitude 

spectrum 

Piecewise 

normalization 

 

Indyk & 

Koudas 

(2000) 

- - short 

and long 

time-

series 

Compression 

based 

dissimilarity 

N/A - It involves time intervals, or 

“windows,” of varying size. But it is 

not clear how to determine these 

“windows.” 

Cosine wavelets 

 

 Huhtala & 

Karkkainen 

(1999) 

- - short 

and long 

time-

series 

Compression 

based 

dissimilarity 

N/A - - 

Piecewise  Keogh (Keogh & - short Compression N/A - - 
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probabilistic 

 

(1997) Kasetty, 2003) and long 

time-

series 

based 

dissimilarity 

Hidden Markov 

models (HMM)  

 Smyth 

(1997) 

(J. Duan, Wang, 

Liu, & Xue, 2005; 

Horenko, 2010; 

Yin & Yang, 

2005) 

- long 

time-

series 

Model based similarity in 

change 

- able to capture not only the 

dependencies between variables, but 

also the serial correlation in the 

measurements 

ARMA 

 

Kalpakis et 

al., (2001); 

Xiong & 

Yeung, 

(2002) 

(Kalpakis et al., 

2001; Xiong & 

Yeung, 2004) 

- long 

time-

series 

Model based similarity in 

change 

- - 
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2.5.1 Discussion 

Choosing distance measure so that it is adequately accurate, is controversial in time-

series clustering domain. There are many distance measure proposed by researchers 

which were compared and discussed in Section  2.5. However, the following conclusion 

can be drawn from literature.  

1)  Investigating the mentioned approaches as similarity/dissimilarity measure, it is 

implied that the most effective and accurate approaches are the ones which are 

based on dynamic programming (DP) which are very expensive in time 

execution (the cost of comparing two time-series is quadratic in the length of the 

time-series) (Salvador & Chan, 2007). Although, usually some constraints are 

taken for these distance/similarity measurements to mitigate the complexity 

(Itakura, 1975; Sakoe & Chiba, 1978), it needs careful tuning of parameters to 

be efficient and effective. As a result, again, a trade-off between speed and 

accuracy should be found in usage of this metrics. In another view, it is 

worthwhile to understand the extent that distance measure is effective in large 

scale datasets of time-series. This matter is not obtained from literature because 

most of the considered works are based on rather small datasets.  

2) In the similarity measure researches, varieties of challenges are considered 

pertaining to distance measurement. A big challenge is the issue of 

incompatibility of distance metric with the representation method. For example, 

one of the common approaches that is applied to time-series analysis is based 

upon frequency-domain (K. Chan & Fu, 1999; Kawagoe & Ueda, 2002), while 

using this space, it is difficult to find the similarity among sequences and 

produce value-based differences to be used in clustering. 

3) Euclidean distance and DTW are the most common methods for similarity 

measure in time-series clustering. A research has shown that, in terms of time-
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series classification accuracy, the Euclidean distance is surprisingly competitive 

(Lkhagva et al., 2006), however, DTW also has its strength in similarity 

measurements which cannot be declined. Here, the focus in this thesis is on both 

superior approaches namely Euclidean distance and Dynamic Time Warping. 

The motivation for choosing these approaches, more details about these 

measures, and their strength and weakness are explained in Section  2.5.2 and 

 2.5.3. 

2.5.2 Euclidian Distance (ED) 

Euclidian distance is a one-to-one matching measurement which is used in most of 

works (about 80%) in the literature (F. K. P. Chan, Fu, & Yu, 2003; Faloutsos et al., 

1994; Keogh et al., 2001a, 2001b; Keogh & Kasetty, 2003; Keogh, 1997b; Reinert, 

Schbath, & Waterman, 2000).  

Let    and    be two time-series of length n. The Euclidian distance between    and     

is defined mathematically as: 

      (     )  √∑        
 

 

   
  2.2 

where, the square root step can be removed because the square root function is 

monotonic and returns the same rankings in clustering, and classifications (Keogh & 

Kasetty, 2003). 

Euclidian distance is simple, fast and used as benchmark in many works, because it is 

parameter free. However, Euclidean distance is not always the best choice as distance 

function. It is extremely dependent on the domain of problem in hand and 

characteristics of its time-series as explained in Section  5.3.3.1. Generally, there are 

some disadvantages in using Euclidian distance as: 
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1. It requires that the time-series being compared are of exactly the same 

dimensionality (length). 

2. This measure is very weak and sensitive to small shifts across the time axis (Keogh 

& Ratanamahatana, 2004; Ratanamahatana & Keogh, 2005). For example it is not 

accurate enough for calculation similarity of sequences such as : <abaa>,<aaba> 

2.5.3 Dynamic Time Warping (DTW) 

In contrast to Euclidean distance which proposes a one-to-one matching, Dynamic Time 

Warping (DTW) is suggested as a one-to-many metric. DTW is a generalization of 

Euclidian distance and solves the local shift problem (out of phase points in the time 

axis) in the time-series to be compared. Local shift problem is a time scale issue which 

is a characteristic of most time-series and one-to-one matching algorithms (e.g., 

Euclidean distance) are not capable to handle (Berndt & Clifford, 1994; Keogh & 

Ratanamahatana, 2004; Ratanamahatana & Keogh, 2005; Xi, Keogh, Shelton, Wei, & 

Ratanamahatana, 2006). DTW is an effective approach which uses “warping” the time 

axis in order to achieve the best alignment between the data points within the series. In 

DTW each point of the sequence is matched to each element of the target time-series. 

That is, no elements may be skipped in a sequence.  

 

Figure 2.10: The difference between Euclidian and DTW distance (Keogh, 2006). Left: Distance 

calculation by ED, Right: distance calculation by DTW 

Given two time-series,    {          } ,    {          }, a i*j matrix is defined 

where the (s, k) element of the matrix is the Euclidean distance dis(  ,   ) between two 

time points    and   . The warping path    from as set of warping paths  
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{          } , that has the minimum distance between the two series of    and    is 

of interest.  

       (     )       ∑     
 

   
   2.3 

Generally, dynamic programming is used in order to find the path effectively. In brief it 

can be concluded that DTW has some advantages and disadvantages as follows: 

Advantages: 

1. Capability of handling local shifts (temporal drift): It allows similar shapes to be 

matched even if they are out of phase in the time axis. It makes DTW superior to 

Euclidean distance (Aach & Church, 2001; Chu et al., 2002; Vlachos et al., 

2002; Yi & Faloutsos, 2000). 

2. DTW can assist with clustering of different-length time-series if there is no 

missing data. However, same-length time-series can be generated by 

normalization of different-length time-series without impact on accuracy 

(Ratanamahatana & Keogh, 2005). 

3. Error rate of Euclidean distance is an order of magnitude higher than DTW 

(Keogh & Ratanamahatana, 2004). Moreover, a recent research (H. Ding et al., 

2008), shows that DWT is more accurate than Euclidean distance. 

4. The DTW is generally shown to be more robust than ED (L. Chen et al., 2005; 

Keogh & Ratanamahatana, 2004; Vlachos et al., 2002) and works better than 

edit-based measures such as LCSS, EDR, and ERP (Mitsa, 2009). 

 

Disadvantages:  

1. Sensitivity: DTW is sensitive to outliers and it can distort distance (because all 

points have to be matched). 
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2. Scalability: Speed problem, is a big challenge for DTW because it requires 

quadratic computation (Salvador & Chan, 2007). As a result, many researchers, 

(H. Ding et al., 2008; Keogh & Ratanamahatana, 2004; Kim, Park, & Chu, 

2001; Xiaoyue Wang et al., 2012; Yi, Jagadish, & Faloutsos, 1998), try to speed 

it up usually by proposing an efficient lower bound approximations of the DTW 

distance to reduce its complexity. Their claim is based on this fact that DTW can 

be calculated very fast even for large datasets but it should be noticed that it is 

true under the classification problem (the search area are pruned using a lower 

bound distance of DTW) not under clustering problem where the distance 

between all objects should be calculated. However, with all progresses in 

speeding up the DTW (Salvador & Chan, 2007), it is still expensive (Berndt & 

Clifford, 1994; Xi et al., 2006) and hard to find better solution (H. Ding et al., 

2008; Xi et al., 2006) specially for clustering purpose.  

In this study, Euclidean distance is used for finding the similar time-series in time, and 

DTW for finding similar time-series in shape. In the following section, the prototyping 

of clusters is explained.  

2.6 Cluster Prototypes 

Finding the cluster prototype (representative) is an essential subroutine in time-series 

clustering approaches (Bagnall & Janacek, 2005; Chu et al., 2002; Corradini, 2001; 

Keogh & Pazzani, 1998; Rabiner & Levinson, 1979; Ratanamahatana, 2005). One of 

the approaches to address the low quality problem in time-series clustering is remedying 

the issue of inaccurate prototypes of clusters, especially in partitioning clustering 

algorithms such as k-Means, k-Medoids, Fuzzy C-Means (FCM), or even Ascendant 

Hierarchical Clustering which requires a prototype. In these algorithms, the quality of 

clusters is highly dependent on quality of prototypes. Given time-series in a cluster, it is 

clear that the cluster’s prototype    minimizes the distance between all time-series in 
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the cluster and its prototype. Time-series    that minimizes  (     ) is called a Steiner 

sequence (Gusfield, 1997). 

  (     )  
 

 
∑            
 
     ,      {           }  2.4 

There are a few methods for calculating prototypes published in the literature of time-

series, however most of these publications have not proved the correctness of their 

methods (Niennattrakul & Ratanamahatana, 2007b). But, in general, three approaches 

can be seen for defining the prototypes:  

1. The medoid sequence of the set 

2. The average sequence of the set 

3. The local search prototype 

2.6.1 Using Medoid as Prototype  

In time-series clustering, most common way to approach optimal Steiner sequence is to 

use cluster medoid as the prototype (Kaufman, Rousseeuw, & Corporation, 1990). In 

this approach, the centre of a cluster is defined as a sequence which minimizes the sum 

of squared distances to other objects within the cluster. Given time-series in a cluster, 

the distance of all time-series pairs within the cluster is calculated using a distance 

measure such as Euclidean or DTW. Then, one of the time-series in the cluster, which 

has lower sum of square error is defined as medoid of the cluster (Vuori & Laaksonen, 

2002). Moreover, if the distance is a non-elastic approach such as Euclidean, or if the 

centroid of the cluster can be calculated, it can be said that medoid is the nearest time-

series to centroid.  

Cluster medoid is very common among works related to time-series clustering and has 

been used in many papers such as (Hautamaki et al., 2008; Kaufman et al., 1990; Liao 

& Ting, 2006; Liao et al., 2002). 
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2.6.2 Using Averaging Prototype 

If the time-series are in equal length, and distance metric is a none-elastic distance 

metric (e.g., Euclidean distance) in clustering process. Then, the averaging method is a 

simple averaging technique which is equal to mean of the time-series at each point. 

However, in the case that there are time-series with different length (Niennattrakul & 

Ratanamahatana, 2007b) or in the case which the similarity between time-series is based 

on “similarity in shape”, its one-to-one mapping nature, makes it unable to capture the 

actual average shape. For example, in the cases that Dynamic Time Warping (DTW) or 

Longest Common Sub-Sequence (LCSS) are very appropriate (Gupta, Molfese, 

Tammana, & Simos, 1996), averaging prototype is evaded because it is not a trivial 

task. For more evidence, one can see many works in the literature (Bagnall & Janacek, 

2005; Caiani et al., 1998; Chu et al., 2002; Corradini, 2001; Keogh & Pazzani, 1998; 

Oates, Firoiu, & Cohen, 2001), which avoid using elastic approaches (e.g., DTW and 

LCSS) where there is a need to use a prototype without providing adequate reasons 

(whether the clustering is based on similarity in time or shape). In the follows, two 

averaging methods (using DTW and LCSS) are briefly explained. 

Shape averaging using Dynamic Time Warping (DTW): In this approach, one 

method to define the prototype of a cluster is by combination of pairs of time-series 

hierarchically or sequentially, for example, shape averaging using Dynamic Time 

Warping, until only one time-series is left (Gupta et al., 1996). The drawback about this 

method is its dependency on the ordering of choosing pairs which results in different 

final prototypes (Niennattrakul & Ratanamahatana, 2007a). Another method is the 

approach mentioned by Abdulla and Chow (2003), where authors proposed a cross-

words reference template (CWRT), where at first, the medoid is find as the initial guess, 

then all sequences are aligned by DTW to the medoid, and then the average time-series 

is computed. The resulting time-series has the same length as the medoid, but the 
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method is invariant to the order of processing sequences (Hautamaki et al., 2008). In 

another study, the authors present a global averaging method for defining the prototypes 

(Petitjean, Ketterlin, & Gançarski, 2011). They use an averaging approach where the 

distance method for clustering or classification is DTW. However, its accuracy is 

dependent on the length of the initial average sequence and value of its coordinates. 

Shape averaging using Longest Common Sub-Sequence(LCSS): The longest 

common subsequence (Bergroth & Hakonen, 2000) generally permits to make a 

summary of a set of sequences. This approach supports the elastic distances and unequal 

size time-series. Aghabozorgi et al. (2011) and Aghabozorgi, Wah, Amini, and Saybani 

(2012) propose a fuzzy clustering approach for time-series clustering, and utilize the 

averaging method by LCSS as prototype.  

2.6.3 Using Local Search Prototype 

In this approach, at first the medoid of cluster is computed. Then, using averaging 

method (Section  2.6.2), averaged prototype is calculated based on warping paths. Next, 

new warping paths are calculated to the averaged prototype. Hautamaki et al. (2008) 

propose a prototype obtained by local search, instead of medoid to overcome the poor 

quality in time-series clustering in Euclidean space. They apply medoid, average and 

local search on k-Medoids, Random Swap (RS) and Agglomerative Hierarchical 

clustering (where k-means is used to fine-tune the output) to evaluate their work. They 

figure out that local search provides the best clustering accuracy and also more 

improvement to k-Medoids. However, it is not clear how much improvement it has in 

comparison with other works such as medoid averaging methods which are another 

frequently used prototype. 
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2.6.4 Discussion 

One of the problems which lead to low accuracy of clusters is poor definition or 

updating method of prototypes in time-series clustering process, especially in 

partitioning approaches. Many clustering algorithms suffer from low accuracy of 

representation methods (Hautamaki et al., 2008; Niennattrakul & Ratanamahatana, 

2007b). Moreover, the inaccurate prototype can affect convergence of clustering 

algorithms which results in low quality of obtained clusters (Niennattrakul & 

Ratanamahatana, 2007b). Different approaches of defining prototypes were discussed in 

Section  2.6. In this study, the averaging approach is used in order to find the prototypes 

of the sub-clusters (see Section  4.4.3) because the used distance metric is a none-elastic 

distance metric (ED). For the merging purpose, however, an arbitrary method can be 

used if it is compatible with elastic methods such as (Petitjean et al., 2011) for different 

schemes (see Section  4.5.2), however the simple “medoid” is used as prototype to be 

compatible with the elasticity of distance metric DTW, with k-Medoids algorithm, and 

also to provide fair condition for evaluation of the propose model with existing 

approaches. 

2.7 Evaluation Measure 

As regards the time-series clustering algorithms, the evaluation measures employed in 

the different approaches are discussed in this section. Visualization and scalar 

measurements are the major technique for evaluation of clustering quality which also is 

known as clustering validity in some articles (Hathaway & Bezdek, 2003). The 

techniques used to evaluate the proposed model in this study are explained in the 

following sections as depicted in Figure  2.11.  
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Figure 2.11: Evaluation measure hierarchy used in the literature 

In scalar accuracy measurements, a single real number is generated to represent the 

accuracy of different clustering methods. Numerical measures that are applied to judge 

various aspects of cluster validity are classified into the following two types. 

External Index: This index is used to measure the similarity of formed clusters to the 

externally supplied class labels or ground truth, and is the most popular clustering 

evaluation method (Halkidi, Batistakis, & Vazirgiannis, 2001). In the literature, this 

index is known also as external criterion, external validation, extrinsic methods, and 

supervised methods because the ground truth is available.  

Internal Index: This index is used to measure the goodness of a clustering structure 

without respect to external information. In the literature, this index is known also as 

internal criterion, internal validation, intrinsic and unsupervised methods. 
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2.7.1 External Index 

External validity indices are the measures of the agreement between two partitions, one 

of which is usually a known/golden partition (ground truth), e.g., true class labels, and 

another is from the clustering procedure. Ground truth is the ideal clustering that is 

often built using human experts. In this type of evaluation, ground truth is available, and 

the index evaluates how well the clustering matches the ground truth (Manning, 

Raghavan, & Schutze, 2008). Complete reviews and comparisons of some popular 

techniques exist in the literature (Amigó, Gonzalo, Artiles, & Verdejo, 2009; Gan & 

Ma, 2007; Meila, 2003; Rosenberg & Hirschberg, 2007). However, there is not a 

compromise and universally accepted technique to evaluate clustering approaches, 

though there are many candidates which can be discounted for a variety of reasons. 

For external indices, usually match corresponding clusters and information theoretic are 

used as approach. Based on these approaches, many indices are presented in different 

articles (Amigó et al., 2009; Kremer et al., 2011); however, for readability and space 

reasons, the indices which have been used for evaluation of time-series clustering in the 

literature. Rand index, Adjusted Rand index, Purity, Jaccard index, Fowlkes-Mallows 

(FM), F-measure, Entropy, Normalized Mutual Information, and Cluster Similarity 

Measure are used in the experiments in this study (see Chapter  6.0). 

Cluster purity: One of the ways of measuring the quality of a clustering solution is 

cluster purity (Zhao & Karypis, 2004). Purity is a simple and transparent evaluation 

measure. Considering   {          } as ground truth clusters, and   

{          } as the clusters made by a clustering algorithm under evaluations, in 

order to compute the purity of cluster C with respect to G, each cluster is assigned to the 

class which is most frequent in the cluster, and then the accuracy of this assignment is 

measured by counting the number of correctly assigned objects and dividing by number 

of objects in the cluster. Let there be k clusters (e.g., the k in k-Means) in the dataset D 



54 

and size of cluster    is shown by     . Let               denote number of items of 

class    assigned to cluster   . Purity of the cluster    is given by: 

            
 

    
               2.5 

 

Then, the overall purity of a clustering solution could be expressed as a weighted sum 

of individual cluster purities: 

             ∑
    

   

 

   

            2.6 

Bad clusterings have purity values close to 0, and a perfect clustering has a purity of 1. 

However, high purity is easy to achieve when the number of clusters is large, in 

particular, purity is 1 if each objects gets its own cluster. Thus, one cannot only rely on 

purity as the quality measure. Purity was used for evaluation of time-series clustering in 

different studies (Ratanamahatana & Niennattrakul, 2006; X. Wang et al., 2006). 

Cluster Similarity Measure (CSM): CSM (Warrenliao, 2005) is a simple metric used 

for validity of clusters in time-series domain (Kalpakis et al., 2001; J. Lin, Vlachos, et 

al., 2004; Xiong & Yeung, 2004; H. Zhang et al., 2006). Cluster similarity measure of a 

cluster    is given by: 

          
 

 
∑                   

 

   

  2.7 

where 

            
        

         
  2.8 

Folkes and Mallow index (FM): To calculate the FM, at first, the following quantities 

are considered as true clustering (ground truth) and errors in clustering process:  
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Let |TP| (True Positive) be the number of pairs, each belongs to one class in G (ground 

truth) and are clustered together in C. The |TN| (True Negative) is the number of pairs, 

each neither belongs to the same class in G, nor clustered together in C. Then, the error 

clusterings are the |FN| (False Negative) which is the number of pairs that are belong to 

one class in G, but are not clustered together in C, and |FP| (False Positive) which is the 

number of pairs that are not belong to one class in G (dissimilar objects), but are 

clustered together in C. Then the FM measure (Fowlkes & Mallows, 1983) is defined 

as: 

         √
    

         
 

    

         
  2.9 

This metric is the index for computing the accuracy of time-series clustering in 

multimedia domain (Ratanamahatana et al., 2005; H. Zhang et al., 2006). 

Jaccard Score: Jaccard (Fowlkes & Mallows, 1983) is one of the metrics that has been 

used in various studies as external index (Chiş et al., 2009; Ratanamahatana et al., 2005; 

H. Zhang et al., 2006). Considering the parameters defined for FM index, the jaccard 

index is defined as: 

              √
    

              
  2.10 

Rand index (RI): A popular quality measure (Chiş et al., 2009; Ratanamahatana et al., 

2005; H. Zhang et al., 2006) for evaluation of time-series clusters is the Rand index 

(Rand, 1971; J. Wu, Xiong, & Chen, 2009), which measures the agreement between two 

partitions, that is, how the clustering results are close to the ground truth. The agreement 

between C and G can be estimated using: 

         √
         

                   
  2.11 
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Adjusted Rand Index (ARI): RI does not take a constant value (such as zero) two 

random clustering. Hence, in (Hubert & Arabie, 1985), authors suggest a corrected-for-

chance version of the RI which works better than RI and many other indices (G. W. 

Milligan & Cooper, 1986; Steinley, 2004). This approach was used in gene expression 

domain successfully (Yeung, Fraley, Murua, Raftery, & Ruzzo, 2001; Yeung, Haynor, 

& Ruzzo, 2001). In this approach the expected RI of random labelling, i.e. [  ], is 

discounted as: 

          
    [  ]

         [  ]
  2.12 

F-measure: F-measure (Van Rijsbergen, 1979) is a well-established measure for 

assessing the quality of any given clustering solution with respect to ground truth. F-

measure (F ∈ [0, 1]) is defined based on precision and recall: 

The precision of an object indicates how many items in the same cluster belong to the 

same class (ground truth) (Van Rijsbergen, 1979) which is estimated as: 

               √
    

         
  2.13 

The recall of an object reflects how many objects of the same class (in ground truth) are 

assigned to the same cluster (Van Rijsbergen, 1979): 

             √
    

         
  2.14 

Then, F-measure is calculated as the harmonic mean between precision (P) and recall 

(R): 

                √
                           

                         
  2.15 



57 

F-measure compares how closely each cluster matches a set of categories of ground 

truth. F-measure has been used in clustering of time-series data (Chiş et al., 2009; Gullo 

et al., 2011; Kameda & Yamamura, 2006; Van Rijsbergen, 1986) and in natural 

language processing for evaluating clustering (Larsen & Aone, 1999). 

Normalized Mutual Information (NMI): As mentioned, high purity in the large 

number of clusters is a drawback of purity measure. In order to make trade-off between 

the quality of the clustering against the number of clusters, NMI (Studholme, Hill, & 

Hawkes, 1999) is utilized as quality measure. Next, it has been utilized in various 

studies (Fern & Brodley, 2004; Strehl & Ghosh, 2003; H. Zhang et al., 2006). 

Moreover, NMI can be used to compare clusterings with different numbers of clusters, 

because this measure is normalized (Manning et al., 2008). 
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Entropy: Entropy (S. Lin, Song, & Zhang, 2008; Rohlf, 1974) of a cluster shows how 

dispersed classes are with a cluster (this should be low). Entropy is a function of the 

distribution of classes in the resulting clusters. In the case of entropy, for each cluster 

  , the class distribution of data is computed as the probability Pr(  |  ) that an instance 

in    belongs to class   . Using this class distribution, the normalized entropy of    is 

computed as: 

        (  )   
 

    
∑                      
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where Pr(  |  ) = |  ∩  |/|  |. The overall entropy (E ∈ [0, 1]) is defined as the sum of 

the individual cluster entropies weighted by the size of each cluster: 



58 

              
 

   
∑                

 

   

  2.18 

Based on the above measures, a good clustering solution is expected to have both high 

F-measure and low entropy. This metric was used for evaluation of clustering time-

series in the literature (Gullo et al., 2011; Van Rijsbergen, 1986). 

In short, one of the most popular approaches for quality evaluation of clusters is 

external indices to find how good the finding cluster results are (Halkidi et al., 2001) 

which also is used for evaluation of the proposed models in this study. However, it is 

not directly applicable in real-life unsupervised tasks, because the ground truth is not 

available for all datasets. Therefore, in the case that ground truth is not available, 

internal index is used (see Section  6.2.7 where internal index is used for evaluation). 

2.7.2 Internal Index 

Typical objective functions in clustering, formalize the goal of attaining high intra-

cluster similarity (objects within a cluster are similar) and low inter-cluster similarity 

(objects from different clusters are dissimilar). Internal validation compares solutions 

based on the goodness of fit between each clustering and the data. Internal validity 

indices evaluate clustering results by using only features and information inherent in a 

dataset. They are usually used in the case that true solutions (ground truth) are 

unknown. However, this index can only make comparisons between different 

clusterings generated using the same model/metric. Otherwise, it makes assumptions 

about cluster structure. 

There are many internal indices such as Sum of Squared Error, Silhouette index, 

Davies-Bouldin, Calinski-Harabasz, Dunn index, R-squared index, Hubert-Levin (C-

index), Krzanowski-Lai index, Hartigan index, Root-Mean-Square Standard Deviation 
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(RMSSTD) index, Semi-Partial R-squared (SPR) index, Distance between two clusters 

(CD) index, Weighted inter-intra index, Homogeneity index, and Separation index. 

Sum of Squared Error (SSE): SSE is an objective function that describes the 

coherence of a given cluster, “better” clusters are expected to give lower SSE values 

(Han & Kamber, 2011). For evaluation of clusters in terms of accuracy, the Sum of 

Squared Error (SSE) can be used as the most common measure in different works (J. 

Lin, Vlachos, et al., 2004; Vlachos et al., 2003). For each time-series, the error is the 

distance to the nearest cluster. To get SSE, the following formula is used: 

     ∑ ∑     (     ) 
 

  ∈  
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where,    is a data point in cluster    , and    is the representative (prototype) for cluster 

  . 

2.8 Related works: Time-series Clustering Algorithms 

There are many articles related to different approaches of clustering in the literature 

(Berkhin, 2006; Jain et al., 1999; Rauber, Pampalk, & Paralič, 2000; Xu & Wunsch, 

2005). However, the number of the researches about the time-series clustering is quite 

scarce compared with those works which have focused on static data, though, literature 

trend shows a trend of increased activity.  

In this section, the existing works related to clustering of time-series data are 

concentrated and discussed. Some of them are using raw time-series and some try to use 

reduction methods before clustering of time-series data. In general, clustering in its 

conventional form can be broadly classified into five groups (Han & Kamber, 2011): 

Partitioning, Hierarchical, Grid-based, Model-based and Density-based clustering 

algorithms. In the following, the application of each group in time-series clustering is 

discussed in detail. 
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2.8.1 Hierarchical Clustering of Time-series 

Hierarchal clustering (Kaufman et al., 1990) is an approach of cluster analysis which 

makes a hierarchy of clusters using agglomerative or divisive algorithms. 

Agglomerative algorithm considers each item as a cluster, and then gradually merges 

the clusters (bottom-up). In contrast, divisive algorithm starts with all objects as a single 

cluster and then splits the cluster to reach the clusters with one object (top-down). In 

general, hierarchical algorithms are weak in terms of quality because they cannot adjust 

the clusters after splitting a cluster in divisive method, or after merging in 

agglomerative method. As a result, usually hierarchical clustering algorithms are 

combined with another algorithm as a hybrid clustering approach to remedy this issue. 

Moreover, some extended works are done to perform the performance of hierarchical 

clustering such as Chameleon (Karypis, Han, & Kumar, 1999), CURE (Guha, Rastogi, 

& Shim, 1998) and BIRCH (T. Zhang, Ramakrishnan, & Livny, 1996) where the merge 

approach is enhanced or constructed clusters are refined. 

In hierarchical clustering of time-series also, nested hierarchy of similar groups is 

generated based on a pair-wise distance matrix of time-series (Vlachos et al., 2003). 

Hierarchical clustering has a great visualization power in time-series clustering (Keogh 

& Pazzani, 1998; Van Wijk & Van Selow, 1999). This characteristic of hierarchical 

clustering leads to be used for time-series clustering to a great extent. For example, 

Oates, Schmill, and Cohen (2000) use agglomerative clustering to produce the clusters 

of the experiences of an autonomous agent. They use Dynamic Time Warping (DTW) 

as a dissimilarity measure with a dataset containing 150 trials of real Pioneer data in a 

variety of experiences. In another study by Hirano and Tsumoto (2005), the authors use 

average linkage agglomerative clustering which is a type of hierarchical approach for 

time-series clustering. Moreover, in many researches, hierarchical is used to evaluate 

dimensionality reduction or distance metric due to its power in visualization. For 
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example, in a study (J. Lin, Keogh, Lonardi, et al., 2003), the authors present Symbolic 

Aggregate Approximation (SAX) representation and use hierarchical clustering to 

evaluate their work. They show that using SAX, hierarchical clustering has a result 

similar with Euclidean distance. 

Additionally, in contrast to most algorithms, hierarchy clustering does not require the 

number of clusters as an initial parameter which is a well-known and outstanding 

feature of this algorithm. It is also a strength point in time-series clustering, because 

usually it is hard to define the number of clusters in real world problems. 

Moreover, despite many algorithms, hierarchical clustering has the ability to cluster 

time-series with unequal length. It is possible to cluster unequal time-series using this 

algorithm if an appropriate elastic distance measure such as Dynamic Time Warping 

(DTW) (Sakoe & Chiba, 1971, 1978) or Longest Common Subsequence (LCSS) 

(Banerjee & Ghosh, 2001; Vlachos et al., 2002) is used to compute the 

dissimilarity/similarity of time-series. In fact, lack of necessity for prototypes in its 

process, has made this algorithm capable to accept unequal time-series. 

However, hierarchical clustering is essentially not capable to deal effectively with large 

time-series (X. Wang et al., 2006) due to its quadratic computational complexity. 

Accordingly, it leads to be restricted to small datasets because of its poor scalability. 

2.8.2 Partitioning Clustering 

A partitioning clustering method, makes k groups from n unlabelled objects such that 

each group contains at least one object. One of the most used algorithms of partitioning 

clustering is k-Means (MacQueen, 1967) where each cluster has a prototype which is 

the mean value of its objects. The main idea behind k-Means clustering is the 

minimization of the total distance (typically Euclidian distance) between all objects in a 

cluster from their cluster center (prototype). Prototype in k-Means process is defined as 
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mean vector of objects in a cluster. However, when it comes to time-series clustering, it 

is a challenging issue and is not trivial (Niennattrakul & Ratanamahatana, 2007b). 

Another member of partitioning family is k-Medoids (PAM) algorithm (Kaufman et 

al., 1990), where the prototype of each cluster is one of the nearest objects to the centre 

of the cluster. Moreover, CLARA and CLARANS (Ng & Han, 1994) are improved 

version of k-Medoid algorithm for mining in spatial databases. In both k-Means and k-

Medoids clustering algorithms, number of clusters, k, has to be pre-assigned, which is 

not available or feasible to determine for many applications, so it is impractical in 

obtaining natural clustering results and is known as one of their drawbacks in static 

objects (X. Wang et al., 2006) and also time-series data (Antunes & Oliveira, 2001). It 

is more crucial in time-series because the datasets are very large and diagnostic checks 

for determining the number of clusters is not easy. Accordingly, authors in (Fayyad et 

al., 1998) investigate the role of choosing correct initial clusters in quality and time-

execution of k-Means in time-series clustering. 

However, k-Means and k-Medoids are very fast compared to hierarchical clustering 

(Bradley, Fayyad, & Reina, 1998; MacQueen, 1967) and it has made them very suitable 

for time-series clustering and has been used in many works (Bagnall & Janacek, 2005; 

Beringer & Hullermeier, 2006; C. Guo et al., 2008; Hautamaki et al., 2008; J. Lin, 

Vlachos, et al., 2004). As a specific case, authors in (Ratanamahatana & Niennattrakul, 

2006), use the robustness of k-Medoids to noise and outliers, in order to cluster time-

series of multimedia data. 

k-Means and k-Medoids algorithms make clusters which are constructed in ‘hard’ or 

“crispy” manner, that is, an object either is or is not a member of a cluster. On the other 

hand, FCM (Fuzzy c-Means) algorithm (Bezdek, 1981; Dunn, 1973) and Fuzzy c-

Medoids algorithm (Krishnapuram, Joshi, Nasraoui, & Yi, 2001) build ‘soft’ clusters. In 

fuzzy clustering, an object has a degree of membership in each cluster (Dembélé & 
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Kastner, 2003). Fuzzy partitioning algorithms have been used for time-series clustering 

in some areas. For example, in (Tran & Wagner, 2002), authors use FCM (Fuzzy c-

Means) to cluster time-series for speaker verification. In another work (Alon & Sclaroff, 

2003), the authors use fuzzy variant to cluster similar object motions that were observed 

in a video collection. They adopt an EM-based algorithm and a mixture of HMMs to 

cluster time-series data. Then, each time-series is assigned to each cluster to a certain 

degree. Moreover, using FCM, authors in (Golay et al., 1998) cluster MRI time-series 

of brain activities. They use raw univariate time-series of equal length. As distance 

metric, they use Euclidian distance and cross-correlation. They evaluate their work with 

different numbers of clusters (k) and recommend using a large number of clusters as 

initial clusters. However, it is not defined how they achieve the optimal number of 

clusters in this work. 

Generally, partitioning approaches, whether crispy or hard, need defining prototypes 

and their accuracy are directly depends on the definition of prototypes and updating 

method. Hence, they are more compatible with finding clusters of similar time-series in 

time (preferably equal length time-series) because defining the prototype for elastic 

distance measures (which handle the similarity in shape) is not very straight forward, as 

was discussed in Section  2.6.  

2.8.3 Model-based Clustering 

Model-based clustering tries to recover the original model from a set of data. This 

approach assumes a model for each cluster, and finds the best fit of data to that model. 

In detail, it presumes that there are some centroids chosen at random, and then some 

noise is added to them with a normal distribution. The model that is recovered from the 

generated data defines clusters (Shavlik & Dietterich, 1990). Typically, model-based 

methods use either statistical approaches, e.g., COBWEB (Fisher, 1987), or Neural 
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Network approaches, e.g., ART (Carpenter & Grossberg, 1987) or Self-Organization 

Map (Kohonen, 1990). 

In some of works in time-series clustering area, authors use Self-Organizing Maps 

(SOM) for clustering of time-series data. As mentioned, SOM is a model-based 

clustering based on neural networks, which look likes processing that happens in the 

brain. For example, in (X. Wang et al., 2004), authors use SOM to cluster time-series 

features. However, because SOM needs to define the dimension of weight vector, it 

cannot work well with time-series of unequal length (Warrenliao, 2005).  

Additionally, there are a few articles which use model based clustering of time-series 

data which are composed of polynomial models (Bagnall & Janacek, 2005), Gaussian 

mixed models (Biernacki, Celeux, & Govaert, 2000), ARIMA (Corduas & Piccolo, 

2008) , Markov chain (Ramoni et al., 2000) and Hidden Markov models (Bicego, 

Murino, & Figueiredo, 2003; Hu et al., 2006). In general, model based clustering has 

two drawbacks: first, it needs to set parameters and it is based on user assumptions 

which may be false and result in inaccurate clusters. Second, it has a slow processing 

time (especially neural networks) on large datasets (Andreopoulos, An, & Wang, 2009). 

2.8.4 Density-based Clustering 

In density based clustering, clusters are subspaces of dense objects which are separated 

by subspaces in which objects have low density. One of the famous algorithms which 

works by density-based concept is DBSCAN (Ester, Kriegel, & Sander, 1996) where a 

cluster is expanded if its neighbors are dense. OPTICS (Ankerst, Breunig, & Kriegel, 

1999) is another density-based algorithm which addresses the issue of detecting 

meaningful clusters in data of varying density. The model proposed by Chandrakala and 

Chandra (2008) is one of the rare cases, where the authors propose a density based 

clustering method in kernel feature space for clustering multivariate time-series data of 
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varying length. Additionally they present a heuristic method of finding the initial values 

of the parameters used in their proposed algorithm. However, density-based clustering 

has not been used broadly for time-series data clustering (in the literature), because of 

its rather high complexity. 

2.8.5 Grid-based Clustering 

The grid-based methods quantize the space into a finite number of the cells that form a 

grid, and then perform clustering on the grid’s cells. STING (W. Wang, Yang, & 

Muntz, 1997) and Wave Cluster (Sheikholeslami, Chatterjee, & Zhang, 1998) are two 

typical examples of clustering algorithms which are based on grid-based concept. To the 

best of our knowledge, there is no work in the literature applying grid-based approaches 

for clustering of time-series. 

In Table  2.4 a summary of related works are mentioned based on the adopted 

representation method, distance measure, clustering algorithm and definition of 

prototype (if it is applicable).  
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Table 2.4: Whole time-series clustering algorithms 

Article Representation 

method 

Distance 

measurement 

Prototype Clustering 

algorithm 

TS Size Noise 

robustness 

Unequal 

time-

series 

Comments 

(P:Positive, 

N:Negative) 

Application 

Hautamaki et al.(2008) Raw time-series DTW New 
prototype 

K-mean, 
Hierarchical, RS 

- - Yes P: Only was 
compared with 

medoid  

- 

Gullo, Ponti, Tagarelli, 
Tradigo, & Veltri (2011) 

DSA DTW A 
summarization 

approach in 

(Gullo, Ponti, 
Tagarelli, & 

Greco, 2009) 

K-Means - - NO - Mass spectrometry clustering 

Möller-Levet, Klawonn, 

Cho, & Wolkenhauer 
(2003) 

piecewise linear 

function 

STS Yes Modified FCM Short  - NO - Biology, DNA microarray 

(X. Zhang et al., 2011) Raw time-series triangle distance N/A Hierarchical - - NO   

Bao (2007) Bao & Yang 

(2008) 

a critical point model 

(CPM) 

- N/A turning points - - NO P: Using important 

points 

Financial 

Fu, Chung, Luk, & Ng 

(2010) 

PIP (perceptually 

important points) 

Vertical distance estimated 

means 

k-Means - No Yes P: incremental 

N: Only indexing 

Financial, time-series query 

Lin, Vlachos, Keogh, & 

Gunopulos (2004) 

Wavelets. Euclidean 

Distance 

Averaging partitioning 

clustering, k-
Means and EM 

- No No P: Incremental - 

Vlachos, Lin, & Keogh 

(2003) 

DWT (Discrete 

Wavelet Transform) 

Haar wavelet  

Euclidean Not clear k-means,  - No No P: Incremental 

 

- 

X. Wang, Smith, & 

Hyndman (2005) 

global characteristics  Euclidean - SOM Long No NO N: Only focus on 

dimensionality 
reduction method 

- 

Ratanamahatana, Keogh, 

Bagnall, & Lonardi 

(2005) 

BLA (clipped time-

series representation) 

LB_clipped Not clear k-means Long No No - - 

Focardi & others (2005) Raw time-series 3 types of 

distances 

- - - No NO N: Using Raw time-

series 

- 

Lin, Keogh, Wei, & 

Lonardi (2007) 

ESAX Min-Distance Not clear Partitioning 

Hierarchal 

- No No N: Only focus on 

distance 
measurement 

- 

Abonyi, Feil, Nemeth, & 

Arva (2005) 

PCA SpCA Factor N/A Hierarchical - No No P: Anomaly 

detection 

Multivariate data 

Z. J. Wang & Willett 
(2004) 

Raw time-series GLR 
(generalized 

likelihood ratio) 

N/A  two stages 
approach  

- No NO N: Subsequence 
Segmentation 

- 

Qian, Dolled-Filhart, Lin, 
Yu, & Gerstein (2001) 

Raw time-series Ad hoc distance N/A Single-linkage - No No N: using raw time-
series 

Gene expression 

Tseng & Kao (2005) gene expression Euclidean 

distance, 

Pearson’s 
correlation 

N/A Modified CAST - No No P: Focus on 

clustering 

- 
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Golay et al.(1998) Raw time-series Euclidean & two 
cross correlation-

based 

N/A FCM - Yes NO - brain activity 

Bagnall & Janacek 
(2005) 

Clipped Euclidean Medoid k-Means, k-
Medoids 

Short, 
long 

N/A No - - 

Kakizawa, Shumway, & 

Taniguchi (1998) 

Raw time-series J divergence N/A Agglomerative 

hierarchical 

-  No P: Multiple variable 

support 

Earthquake 

Košmelj & Batagelj 
(1990) 

Raw time-series Euclidean N/A Modified 
relocation 

clustering 

- - No P: Multiple variable 
support 

Commercial energy 
consumption 

Kumar & Patel (2002) Raw time-series Gaussian models 

of data errors 

N/A Agglomerative 

hierarchical 

- - No - Seasonality pattern in retails 

Liao (2005) SAX Euclidean and 

symmetric 

version of 
Kullback–

Liebler  

N/A k-Means and 

fuzzy c-Means 

- - Yes P: Multiple variable 

support 

Battle simulations 

Liao et al.(2002) Raw time-series DTW and 

Kullback–
Liebler distance 

N/A k-Medoids-based 

genetic 
clustering 

- No Yes N: Single variable 

support 

Battle simulations 

Policker & Geva (2000) Raw time-series Euclidean N/A Fuzzy clustering  

 

- - No N: Single, using 

raw time-series 

Sleep EEG signals 

Shumway (2003) Raw time-series Kullback–
Leibler 

discrimination 

information 
Measures 

N/A Agglomerative 
hierarchical 

- - No P: Multiple variable 
support 

Earthquakes and mining 
explosions 

Van Wijk & Van Selow 

(1999) 

Raw time-series Root mean 

square 

N/A Agglomerative 

hierarchical 

- - No N: Single variable, 

using raw time-
series 

Daily power consumption 

Wismüller et al.(2002) Raw time-series N/A N/A Neural network 

clustering 

- - No N: Single variable 

support, using raw 
time-series 

Functional MRI brain 

activity 
mapping 

Liu & Shao (2009) SAX trend statistics 

distance 

N/A Hierarchical - - NO P: Using 

symbolized TS 

New similarity distance 

Guo, Jia, & Zhang (2008) feature-based using 
ICA 

- Not clear modified  
k-means  

- No NO - stock time-series  

Lai, Chung, & Tseng 

(2010) 

SAX, Raw time-

series  

Min-Dist,  

Eucleadian 

distance  

- two-level 

clustering: 

CAST,CAST 

- No (DWT) Yes N: Based on 

subsequence ,CAST 

is poor in front of 
huge data 

Gene expression 

Ratanamahatana & 

Niennattrakul (2006) 

Raw time-series Dynamic Time 

Warping  

Medoid k-Means, k-

Medoids  
 

- Yes No N: using raw time-

series 

Multimedia time-series  

(Keogh, Lonardi, et al., 

2004) 

SAX compression-

based distance  

- Hierarchy - No No - - 
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Considering many works, it was understood that in most of models, theauthors use time-

series data as raw data or dimensionality reduced data, with standard traditional 

clustering algorithms. It is obvious that this type of analyzing time-series which use a 

brute-force approach without any optimization is a proper solution for scientific 

theories, but not for real world problems, because they are naturally very slow or 

inaccurate in large data bases. As a result, in many studies the attention of the 

researchers has drawn to using more customized algorithms for time-series data 

clustering as the ultimate solution. 

 In the following section, focusing on the algorithm, specific approaches are discussed 

where the emphasize is on the solutions which address the low quality of time-series 

clustering problem due to mentioned issues in process of clustering. This section can be 

considered crucial to this thesis. 

2.8.6 Multi-step Clustering 

Although there are many studies to improve the quality of representation approaches, 

distance measurement, and prototypes, a few articles emphasis on enhancing algorithms 

and present a new model (usually as a hybrid method) for clustering of time-series data. 

In the following the most related works are presented and discussed: 

Lai et al. (2010) describe the problem of overlooking of information using dimension 

reduction. They claim that overlooked information could provide different meaning in 

time-series clustering results. To solve this issue, they adopt a two-level clustering 

method, where both the whole time-series and the subsequence of time-series are taken 

into account in the first and second level respectively. They used SAX transformation as 

dimension reduction method and CAST as clustering algorithm in the first level in order 

to group first-level data. In the second level, to measure distances between time-series, 

Dynamic Time Warping (DTW) has been used for varying length data, and Euclidean 
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distance for equal length data. Finally, second-level data, of all the time-series, are then 

grouped by a clustering algorithm.  

Discussion: 

1) The distance measure method used in order to find the first level result, is not 

clear while it is of great importance, because, for example, if the length of time-

series are different (which is a possible case), it will effect on choosing 

dimension reduction and distance measurement methods.  

2) The authors have used CAST algorithm in their proposed approach for two 

times, once for making initial clusters, then for splitting each cluster into sub-

clusters (although they used it 3 times in pseudo code). However, using CAST 

algorithm needs determining the threshold of affiliation which is a very sensitive 

parameter in this algorithm (Bellaachia, Portnoy, Chen, & Elkahloun, 2002).  

3) In this work, more granulated time-series are clustered which is actually based 

on the sub-sequence clustering. However, the work done by Keogh and Lin 

(2005) indicates that subsequence clustering is meaningless. The authors in that 

work define “meaningless” as when the clustering output is independent of the 

input.  

4) Their experimental result is not based on the published datasets in the literature. 

Therefore, there is not a way to compare their method with existing approaches 

for time-series clustering. 

The authors in (X. Zhang et al., 2011) also propose a new multi-level approach for 

shape based time-series clustering. In the first step, some candidate time-series are 

chosen from a made one-nearest neighbour network. In order to make the network of 

time-series, authors propose triangle distance for calculating similarity between time-

series data. Then, hierarchical clustering is performed on chosen candidate time-series. 

To handle the shifts in time-series, Dynamic Time Warping (DTW) is utilized in the 
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second step of clustering. Using this approach the size of data is reduced by 

approximately ten per cent.  

Discussion: 

1) This algorithm needs a nearest-neighbor network in the first level while 

complexity of making the nearest-neighbor network is O(  ) which is very high. 

As a result, they try to reduce the search area by pre-clustering of data (using k-

Means) and limit the search only in each cluster to reduce the cost of creation 

network. However, because raw time-series is used in the process of pre-

clustering to reduce the size of data, making the network itself is still very 

costly. As a result, the complexity of whole clustering is high which is not 

applicable on large datasets. 

2) Pre-clusters developed in this model may not be accurate because the pre-

clusters are constructed by a non-elastic distance measure on raw time-series and 

it may be affected by outliers. Additionally, it is not clear how they solve the 

challenge of making the prototypes in k-Means while triangle is used as distance 

measure.  

3) The experimental results are based on two syntactic datasets, however, the 

results should be tested on more datasets (Keogh & Kasetty, 2003) because 

characteristics of time-series varies in different data-sets from different domains. 

4) The error rate of choosing the candidates is computed but the quality of the final 

clusters has not measured using any standard and common metrics to be 

comparable with other methods. 

In a group of works, an incremental clustering approach is adopted which exploit the 

multi-resolution characteristic of time-series data to cluster them in multi-step. Vlachos 

et al. (2003) developed a method based on standard k-Means and Discrete Wavelet 

Transform (DWT) decomposition to cluster time-series data. They extended the k-
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Means algorithm to perform clustering of time-series incrementally at different 

resolutions of DWT decomposition. At first, they use Haar wavelet transformations to 

decompose all the time-series. After that, they apply the k-Means clustering on various 

regulations from a chaos to a finer level. At the end of each level, the extracted centers 

are reused as the initial centers for the next level of resolution. They doubled the center 

coordinates of each level because the length of a time-series is doubled in next level. In 

this algorithm, more and more detail are used during the clustering process. In order to 

compute the clustering error, they computed clustering error at the end of each level by 

summing up the number of objects clustered incorrectly divided by the cardinality of the 

dataset. In another similar work, Lin et al. (2004) generalized this work and presented 

an anytime version of the partitioned clustering algorithm (k-mean and EM) for time-

series. In this method also, authors use the multi-resolution property of wavelets in their 

algorithm. Following these works, Lin et al. in (J. Lin et al., 2005) present a multi-

resolution clustering approach based on multi-resolution PAA (MPAA) for the 

incremental clustering algorithm of time-series.  

Discussion: 

1) In terms of speed of clustering these approaches are quite good, however, in all 

these models, it is not clear that to what level it should be continued (the 

termination point).  

2) Additionally, in each iteration, all the time-series (which are in the same 

resolution) are re-clustered again. Therefore, the noise in some of them can 

affect the whole process.  

3) Moreover, this model is applicable only for partitioning clustering, which 

implies that it is not working for other types of algorithms such as arbitrary 

shape algorithms or hierarchical algorithms in the case where user needs the 

structure of data (the hierarchy of clusters).  
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4) Another problem which these models should resolve is working with distance 

measures such as DTW which at first, are very costly and cannot be applied on 

whole dataset, and secondly, defining the prototypes using them is not a trivial 

task.  

2.9 Chapter Summary 

Although different researches have been carried on time-series clustering, the unique 

characteristics of time-series lead to most conventional clustering algorithms to not 

work well for time-series. In particular, the high dimensionality, very high feature 

correlation, and the (typically) large amount of noise that characterize time-series data 

have been viewed as an interesting research challenge in time-series clustering. 

Accordingly, most of the studies in the literature have concentrated on two subroutines 

of clustering:  

1) A vast number of researches have focused on high dimensional characteristic of time-

series data and tried to present a way of representing time-series in a lower dimension 

compatible with conventional clustering algorithms.  

2) Different efforts have been taken on presenting a distance measurement based on raw 

time-series or the represented data.  

The common characteristic in both above approaches is clustering of the transferred, 

extracted or raw time-series using conventional clustering algorithms such as k-Means, 

k-Medoid or hierarchical clustering (as it was discussed in  2.3). However, most of them 

suffer from overlooking of data (caused by dimensionality reduction), inaccurate 

similarity calculation (due to high complexity of accurate measures), and lack of quality 

in clustering algorithms (because of their nature which is suitable for static data). 

Actually, considering literatures, it can be concluded that most of the studies are 

focusing on improving representation methods and distance measurement methods, and 
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the portion of enhancing clustering approaches is very small (Table  2.2, Table  2.3 and 

Table  2.4, ). 

Among a few approaches and algorithms which have been proposed for time-series 

clustering, there are some studies who have taken explicit or implicit strategies for 

increasing the quality (considering the scalability) in time-series clustering. However, 

one still can see the problem of low quality or lack of meaningfulness in the clusters. 

That is, clusterings are either accurate which are constructed expensively, or inaccurate 

but made inexpensively. Our intention in this study is to develop a flexible and accurate 

clustering model dedicated for clustering of large time-series datasets. In the following 

chapter, the methodology of this study to develop such an effective clustering model is 

explained.  



74 

3.0 RESEARCH METHODOLOGY 

3.1 Introduction 

This chapter explains the research methodology used in the study. The sub-topics in this 

chapter include an overview of the proposed models, the motivation for designing a 

multi-step clustering approach, and description of the methods used in this study to 

achieve the research objectives, mentioned in Chapter 1. Additionally, the approach 

used for evaluation of the model and methods are presented. The last section concludes 

this chapter with a chapter summary. 

3.2 Approaches to Research 

The research methodology framework of this thesis is shown in Figure  3.1. Each stage 

of the methodology for this research is explained in the following sub-sections. 

3.2.1 Reviewing Related Works 

Based on reviewing the literature, the characteristics and features of various time-series 

clustering approaches were analysed. The analysis of existing approaches gives a wider 

perspective of the problems in time-series clustering. It had been stated that essentially 

four elements are essential in the clustering of time-series, i.e., distance measure, 

representation method, prototype definition, and clustering algorithm.  

3.2.2 Problem Formulation 

The literature review had clearly examined the issues in the clustering approaches. It has 

been found that in spite of the advances in representation methods and distance 

measures, the quality of clustering approaches is not high. Hence, the reasons of low 

quality in different approaches are investigated.  
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Figure 3.1: Research methodology framework 

3.2.3 Definition of Research Objectives 

Formulation of problem provides direction for this research to come up with the 

following objectives: 

1. To propose and develop a clustering model to cluster large raw time-series data 

accurately. This objective, needs the following methods: 

a. To develop a distance measure for similarity calculation  



76 

b. To develop a clustering approach for approximate clustering of the time-

series data transformed to symbolic representation. 

c. To develop a method to dynamically split the pre-cluster to purer clusters 

2. To extend the proposed model, enabling to run interactively  

3. To evaluate the capability of the proposed models in improving the accuracy of 

clustering 

To achieve these objectives two models are proposed and evaluated extensively in this 

study. The following section explains briefly about the proposed models. 

3.2.4 Proposed Models 

To achieve the first objective, a multi-step approach namely MTC, is proposed. The 

motivation for using a multi-step approach is addressing the issues in the existing 

approaches. Then the model is extended (IMTC) to achieve the second objective. 

3.2.4.1 MTC 

MTC includes three steps: pre-clustering, purifying and merging. Figure  3.2 shows the 

overall view of the process in MTC briefly. 
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Figure 3.2: Proposed model for clustering of time-series data (MTC)  

1. Pre-clustering step: At first, z-normalization is used to normalize all time-series data. 

Then, time-series data is used in low-resolution mode. That is, the SAX is adopted in 

order to reduce the dimension of raw time-series before clustering. Then, a proper 

similarity measure, approximated distance (APXDIST), and an extended k-Modes 

algorithm (Ek-Modes) are designed to provide approximate clusters. This step (pre-

clustering step), reduces the input size for the next step, and can be performed 

incrementally (see Section  4.3 for more details). 

2. Purification and summarization: In this step, time-series data are used in high-

resolution mode (or higher resolution mode). In order to purify the pre-clusters, an 

affinity search technique (PCS) is designed for splitting of time-series data, which 
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creates sub-clusters. Then, the prototypes are generated for time-series which exist in 

the prepared sub-clusters (more details will be provided in Section  4.4). 

3. Merging: In the third step, the algorithm goes bottom-up. Prototypes prepared in 

high-level step are utilized for merging. That is, a clustering algorithm is used to merge 

the prototypes which are much smaller than the original dataset. It leads to decrease in 

the number of iterations in this step, very fast convergence, thus low cost execution. 

Moreover, the final clusters can be sent into the second step (as pre-clusters) for 

increasing the quality incrementally. In this case, MTC performs as an interactive 

clustering approach (it is explained further in Section  4.7).  

In the following, the motivation for the design of a multi-step approach is presented: 

1. Motivation for step1 (pre-clustering step): 

 Data mining is constrained by disk I/O especially in large datasets because 

typically don’t fit in main memory, and disk I/O tends to be the bottleneck for 

any data mining task (Faloutsos et al., 1994). Assume that you have one 

Gigabyte of main memory and want to do k-Means clustering. Then, clustering 

of 1 Gigabyte data may take a few minutes but clustering of 1.1 gigabytes of 

data, takes 20 hours (Keogh, 2007). The generic solution for this problem is to 

create an approximation of the data (Keogh & Pazzani, 2000; J. Lin, Keogh, 

Lonardi, et al., 2003), which will fit in main memory, yet retains the essential 

features of interest (discussed vastly in  2.4). As a result, the whole data can be 

loaded in main memory and the problem at hand is solved approximately 

(Bradley et al., 1998; Keogh, 2007).  

 Since time-series data are normally embedded by noise, dimensionality 

reduction results in noise shrinkage, which can improve the mining quality (H. 

Zhang et al., 2006). Accordingly, initializing the clusters on a low dimension 
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approximation of the data can improve the quality preventing the local minimum 

problem (C. Ding et al., 2002). It is the satisfactory motivation for using 

dimensionality reduced data as initial cluster in pre-clustering step (see Section 

 4.3.2).  

 Partitioning clustering of objects is an appropriate choice when clusters are 

compact, rather equal size and well separated (Guha et al., 1998). Using a multi-

step approach, the advantageous of partitioning clustering in splitting clusters is 

used in the pre-clustering (it is discussed further in  4.5).  

2. Motivation for step 2 (purifying step): 

 Because of overlooking of data in the dimensionality reduction process, one 

cannot rely on the clustering results provided by dimension reduction 

approaches (especially in sensitive datasets). As a result, regardless of adopted 

techniques, the clustering should be applied on high-resolution data. 

 The number of time-series in the dataset (cardinality of dataset) is as important 

as length of time-series. An algorithm which can deal with a dataset with a 

large number of time-series is desirable. Therefore, reduction of data by 

defining representative (s) for a group of very similar time-series reduces the 

complexity of clustering algorithm. 

3. Motivation for step 3 (merging step): 

 Similarity in shape is desirable in the clustering of time-series, however, the 

state-of-the-art methods for similarity evaluation of time-series are mostly 

quadratic because these methods use the Dynamic Programming method 

(Salvador & Chan, 2007). The cost of comparing two time-series using this 

technique is quadratic in the length of the time-series. This makes the 

measuring of similarity between two time-series very expensive. Although, 

many pruning techniques have been devised so that time-series similarity 
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queries do not need to compute the similarity measures between the query and 

every time-series in the database (Bozkaya, Yazdani, & Özsoyoğlu, 1997; 

Keogh & Ratanamahatana, 2004; Kim et al., 2001; Sakurai, Yoshikawa, & 

Faloutsos, 2005; Yi et al., 1998; Y. Zhu & Shasha, 2003), they are not suitable 

for clustering purpose because dissimilarity matrix must be fully calculated in 

clustering. For example, in clustering algorithms such as the well-known 

Unweighted Pair-Group Method with Arithmetic Mean (UPGMA) (Sneath & 

Sokal, 1973), all distances must be calculated and no pruning can be done. In 

such cases, clustering process would benefit from a fast and accurate similarity 

measure (Gronau & Moran, 2007). As a result, the quadratic nature of existing 

methods would make this computation extremely lengthy for time-series. Using 

prototypes in the third step of MTC for finding similar time-series in shape 

which are small in size, addresses the issue. It is the motivation for using 

prototypes in the MTC (see Section  4.4 4.5.1). Moreover, finding clusters of 

time-series which are similar in shape are very close to ground truth and more 

meaningful (see Section  5.3.3.1). 

 Arbitrary shape of clusters can be achieved by a sophisticated merging 

approach. An algorithm which can make a hierarchy at the last step is very 

important and intuitive. As a result, arbitrary clustering is supported in the last 

step in this methodology to provide arbitrary shape clusters as well. 

3.2.4.2 IMTC 

To address the second objective of this study, the proposed model (MTC) is extended as 

an interactive clustering method (IMTC). It is very useful to design a clustering model 

which provides the results interactively (Seo & Shneiderman, 2002). That is, a need for 

an interactive clustering (Grass, 1996; Zilberstein & Russell, 1995) is demanded. 

Interactive clustering is a clustering approach which carried out in some repetitively 
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steps and tries to improve the results in each iteration. Meanwhile, a user can interrupt 

the process of clustering, and get the generated results (best results) so far. If the results 

are still not satisfactory for him, then he let clustering process continues (more details in 

Section  4.7). 

3.2.5 System Design 

According to the proposed models, the representation methods, the distance measure 

method and algorithms are depicted in Figure  3.3. 

 

Figure 3.3: Steps of proposed model for clustering of time-series data 

In addition to proposing the MTC model, the following methods are developed in each 

step, which are considered also as contributions of this study (highlighted by stars in 

Figure  3.3): 

1. To develop an accurate method for calculating distance measure between time-

series represented by symbolic representation (APXDIST) (see Section  4.3.3) 
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2. To develop an algorithm for approximate clustering of dimensionality reduced 

data (Ek-Mode) (see Section  4.3.4) 

3. To develop a method for purifying the pre-clusters (PCS) (see Section  4.4.2) 

As mentioned, MTC model is extended to be performed interactively by repeating the 

second and third step. Figure  3.4 shows the process of the model. Design of these two 

models (MTC and IMTC) is explained in the next chapter (see Chapter  4.0). 

 

Figure 3.4: Proposed IMTC model for interactive clustering of time-series 

3.2.6 Analysis of Methods 

After designing the proposed methods in the MTC and IMTC models, all the steps are 

implemented using the MATLB software. Then, the proposed methods in each step of 

MTC are applied on a variety of datasets to adjust how each method improves the 

accuracy of the model in each step. The designed methods in each step (i.e., APXSAX, 

E-kModes, and PCS) are evaluated separately, compared with competitive methods and 

analysed. The details of experiments and results are discussed in Chapter  5.0.  

3.2.7 Evaluation Method 

To address the third objective of this study, the models are evaluated experimentally. 

Keogh & Kasetty (2003) have made an interesting research on different articles in time-

series mining and conclude that the evaluation of time-series mining should follow 

some disciplines which are recommended as: 
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 The validation of algorithms should be performed on various ranges of 

datasets (unless the algorithm is created only for a specific set). The used 

dataset should be published and freely available 

 Implementation bias must be avoided by careful design of the experiments 

 If possible, data and algorithms should be freely provided 

 New methods of similarity measures should be compared with simple and 

stable metrics such as Euclidean distance. 

This study attempts to follow most of these suggestions in order to perform an extensive 

evaluation. Firstly, around 20 different datasets from different domains are utilized 

which are used in different articles for evaluation. These include real world datasets and 

syntactic datasets. Secondly, standard algorithms for clustering are used to avoid 

implementation bias. Moreover, the pseudocode for all the methods are provided 

separately. Finally, for proposed methods, the results are compared with standard and 

simple approaches. However, in general, evaluating of extracted clusters (patterns) is 

not easy in the absence of data labels (H. Zhang et al., 2006) and it is still an open 

problem. The definition of clusters depends on the user, the domain, and it is subjective. 

For example, the number of clusters, the size of clusters, definition for outliers, and 

definition of the similarity among the time-series in a problem are all the concepts 

which depend on the task at hand and should be declared subjectively. These have made 

the time-series clustering a big challenge in the data mining domain. However, owing to 

the classified data labelled by human judge or by their generator (in synthetic datasets), 

the result can be evaluated by using some measures. The label of human judge is not 

perfect in terms of clustering raw data, but in practice it captures the strengths and 

shortcomings of the algorithms as ground truth (see Appendix B). To evaluate MTC, the 

datasets are used from different domains which their labels are known. Figure  3.5 shows 

the process for evaluation MTC. 
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Figure 3.5: Experimental evaluation of MTC 

The choice of measures in this research is based on the most common-used measures in 

time-series clustering in the literature review (see Section  2.7). The internal measure is 

based on a study of thirty measures (G. Milligan, 1981); the external measures resulted 

as best choices in some recent studies (Amigó et al., 2009; Brun, Sima, Hua, & Lowey, 

2007; S. Lin et al., 2008; J. Wu et al., 2009).  

Rand Index, Adjusted Rand Index, Entropy, Purity, Jacard, F-measure, FM, CSM, and 

MNI are used for the evaluation of MTC. All of these clustering evaluation criteria have 

values ranging from 0 to 1, where 1 corresponds to the case when ground truth and 

finding clusters are identical (except Entropy which is conversed and called cEntropy). 

Thus, here, bigger criteria values are preferred. Each of the mentioned evaluation 

criterion has its own benefit and there is no consensus of which criterion is better than 

other criteria in the data mining community. To avoid biased evaluation, the average of 

all measures is computed in this thesis and the conclusions are drawn based on the 

average value. Moreover, to report the results, the average quality of 100 runs is 

calculated to prevent the bias of random initialization (De Gregorio & Maria Iacus, 

2010; Hirano & Tsumoto, 2007; J. Lin, Vlachos, et al., 2004; Petitjean et al., 2011; 

Ratanamahatana et al., 2005; Vlachos et al., 2003). For different parameter 

combinations, the average quality is reported as accuracy of clustering in all 
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experiments in this thesis. Although the focus of this study is on improving accuracy, 

scalability and sensitivity of the proposed model are calculated to prove its feasibility 

theoretically.  

3.3 Chapter Summary 

The methodology adopted for this research was discussed in this chapter. According to 

research objectives, a research methodology framework was proposed. As explained, 

two models are proposed and developed in this study (MTC and IMTC). These models 

work as multi-step clustering approach. The motivation for using the multi-step 

approach was discussed based on each step. The details of the proposed model and the 

techniques which are used in each step were explained according to the following 

sequence: pre-clustering, purifying and merging. Additionally, it was explained that for 

each step, new methods should be designed, so called APXDIST, Ek-Modes and PCS. 

The developed methods to achieve the objectives were mentioned here. However, the 

details of each step of the model are explained in the next chapter. Then, the evaluation 

plan for the proposed model was explained in the last step of the research methodology 

framework. As explained different datasets from various domains are used to evaluate 

the accuracy of the proposed model.  
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4.0 SYSTEM DESIGN 

4.1 Introduction 

In this chapter, the proposed model used for accurate clustering of time-series data, i.e., 

Multi-step Time-series Clustering (MTC), is explained and designed in detail. In 

Section  4.2, a general view of the model is explained which is based on a multi-step 

clustering. Each step is explained in the subsequent sections. At first, clusters are made 

in a high-level mode, considered as pre-clustering step which is explained in Section 

 4.3. Then, the purifying of clusters is carried out in Section  4.4 which generates sub-

clusters represented by prototypes. In the third step, sub-clusters (prototypes) are 

merged to form final clusters in Section  4.5. Additionally, Section  4.7 explains how the 

whole process can be performed as an interactive algorithm (IMTC).  

4.2 Overview of Proposed Model (MTC) 

Time-series datasets have different characteristics, e.g., short or long, multivariate or 

univariate, same or various length time-series. Additionally, it may vary in different 

domains, for example, time-series may have big changes in the start time points and 

small changes after a while. Alternatively, it may vary in different datasets, for example, 

a dataset may include some time-series which have high frequency, whereas another 

may have less frequency but high noise or outliers. In order to cluster time-series data, 

an appropriate clustering algorithm should be adopted. Type of proper clustering 

algorithm for time-series data depends on the size and shape of clusters, the type of 

time-series, the importance of different points of time-series and some other 

characteristics of datasets such as size, noisiness and its number of outliers. As a result, 

considering all these varieties, proposing a general solution may be less effective than 

more specific approaches. However, all these characteristics are related to some 

components of time-series clustering (such as representation method, distance measure 
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or prototype construction) and can be solved by adopting a proper approach for that 

specific component (considering the domain and characteristics of its time-series), but 

still there need an exhaustive solution as clustering model to overcome the problem 

discussed in  1.3. 

In this study Multi-step Time-series Clustering (MTC) is presented as a clustering 

model specifically for large time-series datasets in the domains which need accurate 

clusters (e.g., finance, healthcare). It overcomes the limitations of traditional clustering 

algorithms discussed in chapter  2.0.  

In this approach, at first, clusters are made in a high-level mode (pre-clustering), then 

the accurate sub-clusters is generated (purifying and summarization), and finally, in the 

third step, sub-clusters are merged to form final clusters (merging).  

Figure  4.1 provides an overview of the overall approach used by MTC to find the 

clusters in a dataset.  
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Figure 4.1: The overall view of steps of MTC 

Each step of this methodology includes some activities which are mentioned in Figure 

 4.2. 

Steps Activities Methods 

Step 1: Pre-clustering Activity 1.1: Pre-processing Z-Normalization 

Activity 1.2: Reducing the dimension of time-series  SAX 

Activity 1.3: Calculating distance APXDIST 

Activity 1.4: Perform the pre-clustering to group data  Ek-Mode 

Step 2 :Purifying Activity 2.1: Distance calculation on high resolution 

time-series 

ED  

Activity 2.2: Purifying of pre-clusters (generate sub-

clusters) 

PCS 

Activity 2.3: Prototyping (Summarization) Multi prototypes 

Single prototype 

Step 3: Merging Activity 3.1: Distance calculation DTW 

Activity 3.2: Merging Hierarchical, 

Partitioning, etc. 

Activity 3.3: Mapping sub-cluster objects to new 

clusters 

- 

Figure 4.2: Activities of each step of MTC 

According to the above steps, activities of the MTC are explained in the following 

sections: 
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4.3 Step 1: Pre-clustering (Approximate Clustering) 

In order to cluster large time-series datasets, an efficient mechanism to reduce the size 

of data is required. Reduction of data size can be applied to data from two aspects: 

reduction in number of input objects (cardinality reduction), and reducing the dimension 

of objects (low-resolution time-series). Reduction in input size of objects can be 

performed by random sampling, where, clustering is performed on a random sampling 

data drawn from original dataset. This approach is effective in some large datasets, and 

has been used in some works such as (Guha et al., 1998; Karypis et al., 1999), however 

sampling itself is not very straightforward (Vitter, 1985). The second approach is 

reduction of dimension which is also used in MTC. In the first step of the proposed 

algorithm (second activity), MTC focuses on reducing the dimension of time-series 

data. The key idea of pre-clustering is to apply clustering to the low-resolution time-

series which can fit in memory rather than original (raw) time-series dataset. The 

obvious advantage of pre-clustering is that the whole execution time is reduced because 

it is run on very lower dimension of data instead of high dimensional data. Moreover, 

the probable noises existing in time-series are handled using time-series reduction (C. 

Ding et al., 2002). 

The objective of this step is developing a simple partitioning scheme for speeding up 

the clustering. As a result, a pre-clustering is required to find approximate clusters as 

fast as possible with the moderate quality. However, it should be taken into account that 

some clusters may be missed out through clustering process on low-resolution objects 

which are addressed in the second step. Even though this step (pre-clustering) is a trade-

off between accuracy and speed, as it is shown in the experimental result (see Section 

 5.3.1), considering a moderate resolution, it has tried to construct approximately good 

clusters.  
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Note that the size of dataset can be very large such that even with dimensionality 

reduction, it cannot fit in the memory. One solution for this case is utilizing incremental 

clustering. In an incremental clustering approach, clusters are updated (or expanded) 

incrementally. In a study (Aghabozorgi et al., 2012), the authors developed an 

incremental approach for clustering of time-series in large datasets which is also 

applicable in this step. Interested reader are referred to that work (Aghabozorgi et al., 

2012). 

Workflow of pre-clustering step is shown in Figure  4.3. 

 

Figure 4.3: The workflow of the first step of MTC where transformed time-series are clustered. 

The time execution of algorithm in the pre-clustering is directly depended on three 

factors: the resolution of time-series, distance calculation complexity and clustering 

algorithm complexity. In Section  6.3.2, these factors are discussed further. In the 

following sections, pre-processing, dimensionality reduction method, distance measure 

and pre-clustering algorithm used for pre-clustering step are explained in detail. 
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4.3.1 Activity1: Pre-processing 

Pre-processing is necessary before attempting to match two time-series under Euclidean 

distance, Dynamic Time Warping or any other distance measure. It is well understood 

that it is meaningless to compare time-series with different offsets and amplitudes 

(Keogh & Kasetty, 2003). As a result, the time-series are standardized using z-score (z-

Normalization) (Han & Kamber, 2011) which make time-series invariant to scale and 

offset. That is, each time-series is normalized in this activity to have a mean of zero and 

a standard deviation of one before discretizing it in next activity. It transfers time-series 

from absolute values to another space which is suitable for comparison. Moreover, it 

will decrease the sensitivity of distance measures in front of scaling. 

Suppose the    {              } is a time-series with T data points. Z-normalization is 

defined as: 

                          
     

  
  4.1 

where 

    
∑   
 
   

 
  4.2 

and 

    √
∑        

  
   

 
  4.3 

where    is an arithmetic mean of the data points    through   , and sd is the standard 

deviation of all data points in that time-series. All time-series of each dataset are 

normalized in this activity. Figure  4.4 and Figure  4.5 show three raw and normalized 

time-series in a cluster. 
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Figure 4.4: Raw time-series before 

normalization 

 
Figure 4.5: Normalized time-series 

 

4.3.2 Activity2: Dimensionality Reduction 

One can start with this question: Why dimensionality reduction should be applied on 

data in the first step? As it were discussed in Section  3.2.4.1 as part of the motivation 

for designing the multi-step approach, dimensionality reduction is important because 

raw time-series are high dimensional data, and distance calculation between the raw 

time-series is not very fast. That is, most of accurate distance measures are quadratic in 

the length of the time-series and it is a big challenge for raw time-series. Moreover, 

dimension reduction can solve the problems like noise in time-series to a high extend. It 

was discussed widely in the literature review (see Section  2.4). 

There are many dimensionality reduction methods suggested in the literature (Section 

 2.4) which provide a lower-resolution data (compatible with domain). In this thesis, 

SAX is adopted as representation method, because of its low complexity and relatively 

good quality. The superiority of SAX was discussed in Section  2.4.4 in detail. However, 

the question is to how much reduction should be applied to dataset considering the 

probability of missing clusters? How much dependent is the final cluster result to the 

pre-clusters’ quality? How much effect does missing clusters have on the final result? 

These questions are answered widely by experiment in Section  5.3.1.1. 

To represent time-series by SAX representation, for each time-series, a reduced time-

series is initialized as follows: 
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One can consider    as a time-series, where    {              }. Then, time-series is 

discretized by Piecewise Aggregate Approximation as  ̅    ̅        ̅. In this process, w 

is the number of PAA segments representing time-series F. Each segment of  ̅ , i.e.,   ̅, 

is a real value which is the mean of all data points in the i
th

 segment of F, and defined 

as:  

   ̅               ∈ [
 

 
        

 

 
 ]  4.4 

Then all time-series data are transformed to  ̂ (by mapping the PAA coefficients to ‘a’ 

SAX symbols) where  ̂   ̂        ̂ . In this process, w is the number of PAA segments 

representing time-series   , and ‘a’ is alphabet size or the number of symbols (e.g., for 

the alphabet= {a, b, c}, a = 3). To define the alphabets in SAX, the “breakpoints” are 

used that will produce the equal-sized areas under Gaussian curve. 

Definition 4.1: Breakpoints, “breakpoints are a sorted list of numbers   

          such that the area under a N(0,1) Gaussian curve from    to          (   

and    are defined as -∞ and ∞, respectively).” (J. Lin, Keogh, Lonardi, et al., 2003). 

Symbols in SAX are defined based on location of the PAA values, i.e.,   ̅        ̅ in 

each region which are defined by break points. That is, using the values of PAA and 

their location in the intervals made by breakpoints, each segment of   ̅ is coded as a 

symbol of  ̂  using the following equation: 

  ̂  

{
 
 

 
         ̅    
        ̅    
        ̅      
          ̅    

  4.5 

where,    is the x-th character of alphabet set. For example, Figure  4.6 shows a time-

series converted to SAX. In this example, for alphabet size a=6, there are 5 break points 

B={0.97,0.43,0,-0.43,-0.97} which divide the area under Gausian curve to 6 
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equiprobable regions In the example, with n = 32, w = 4 and a = 6, the time-series is 

mapped to the word ‘efcacfreb’. 

 

Figure 4.6: A sample of a time-series represented by SAX  

Then,  ̂, the dimensionality reduced time-series, is used instead of raw time-series F. 

Undeniably, the dimensionality reduction has some disadvantages which should be 

considered in the clustering process. For example, because low-resolution time-series 

are used, it can lead to construction of incorrect clusters, empty clusters or missing out 

some certain clusters. However, the results in the experiment indicate that, first, with 

considering a moderate compression for SAX, generally acceptable results are obtained 

in the first step of MTC; second, with increasing of resolution of time-series, the 

accuracy of conventional clustering is not improved necessarily (see 5.1.1.3.1). 

4.3.3 Activity3: Distance Calculation (APXDIST) 

In order to make the pre-clusters, an appropriate distance measure compatible with SAX 

is desirable. In this Section a new method for distance measurement between time-series 

(APXDIST) is introduced. It is the answer to the first question of this study, i.e., “is 

there any alternative approach for increasing the accuracy of clustering of symbolised 

time-series?” 
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For dimensionality reduced time-series (using SAX), the Euclidean(Lai et al., 2010) or 

MINDIST (J. Lin et al., 2007) measure are used in order to calculate the similarity 

between two time-series. In this activity, a new distance method (APXDIST) is 

designed based on SAX representation which is also one of the contributions of this 

thesis as well. This method is explained with posing these questions: “What is the 

motivation for using APXDIST?” 

Using SAX representation, the distance metric compatible with SAX is desirable. J. Lin 

et al (2007) introduced MINDIST as a compatible distance metric for SAX. The 

distance between two symbolized time-series is calculated by: 

             ̅   ̅𝑦  √
 

 
√∑       ̂   ̂   

 
 

   
  4.6 

where dis() function is defined as the minimum distance between symbols of 

represented time-series, e.g., dis(a,a) = 0, dis(a,b) = 1, dis(a,c) = 2, and etc. The dist() 

function is implemented using a table lookup and does not need to be calculated for 

each symbols, which is considered also as its outstanding feature. The dis() function is 

calculated by: 

 
     ̂   ̂   {

         
             

             
 

 

 4.7 

However, this distance (       ) has been introduced to address the indexing 

problem in time-series domain and is not enough accurate for calculation of distance 

among time-series in the clustering problem, as a result, in this thesis a new approach, 

APXDIST is defined and depicted in Figure  4.6.  

SAX is defined based on PAA (Keogh et al., 2001a; Yi & Faloutsos, 2000) and assumes 

normality of the resulting aggregated values (see Section  2.4.4 and  4.3.2 for more 
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details and definitions). Essentially, normalized subsequence have highly Gaussian 

distribution according to an empirical test done by (J. Lin, Keogh, Lonardi, et al., 2003). 

Given that the normalized time-series have highly Gaussian distribution; a distance 

between the symbols is introduced based on Gaussian characteristic, so called 

APXDIST.  

In MINDIST approach, the distance between two SAX representations of a time-series 

requires looking up the distances between each pair of symbols. As mentioned, symbols 

in SAX are defined based on location of PAA coefficients in some regions or buckets. 

The distance between the symbols is calculated in relation to the distance between these 

buckets made by break points. That is, the height between the regions as illustrated in 

Figure  4.7. Actually, for calculating the distance between two symbols in different 

regions, the distance between regions should be calculated. For example, for alphabet 

size a=6, there are 5 break points   ={0.97,0.43,0,-0.43,-0.97} which divide the area 

under Gaussian curve to 6 equiprobable regions as illustrated in Figure  4.6. 

Equiprobable means that the probability of a segment falling into any of the regions is 

approximately the same. 
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Figure 4.7: MINDIST measure for calculating similarity between the symbolized time-series using 

SAX 

As mentioned, MINDIST is proper for indexing purpose (because of its upper bounding 

feature), but not accurate for clustering, because based on its definition, it considered 

the distance of neighbour symbols as zero, and ignores the maxima and minima points 

of time-series. As a result, a more precise distance measure is defined, to address the 

shortage of MINDIST. The key idea behind the APXDIST is that a more precise 

distance measure can be defined to calculate the distance between the regions than their 

minimum height, i.e., the distance between regions can be calculated as distance 

between indicators of the regions. It is to reduce the probability to miss some important 

points in time-series in upper or lower regions (e.g., the maximal and minimal points 

indicated by symbols ‘f’ or ‘a’ in Figure  4.7), and dissimilar adjacent symbols which are 

considered as similar symbols (e.g., the dis(a,b)=0 in MINDIST, see Appendix C). For 

each region, an indicator is defined in such a way that the closeness of PAA coefficients 

(in the region) to the indicator is the highest in that region. For defining the indicator, 

the distribution of PAA coefficients in each area is considered. For example, 

distribution of a sample area for a symbol (e.g., ‘e’) is considered as depicted in Figure 

 4.8.  
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Figure 4.8: distribution of a sample area for a symbol (e.g., ‘e’) 

Then, arithmetic mean of each area (minimum and maximum) is defined as indicator of 

the area as the best estimator of the regions as: 

      
       

 
  4.8 

where    is global minimum and    is global maximum. For example, six indicators are 

defined for a=6, i.e., Ind={(Max+0.97)/2, 0.70, 0.21, -0.21, -070, (Min+0.97)/2}. Here, 

Max (and Min) indicated the global maximal (and minimal) of time-series in a dataset. 

Indicators are used in APXDIST to calculate the distance between to symbols in two 

different regions associated with the alphabetic symbols. For example, mean line on the 

area between cut lines of 0.97 and 0.43, which indicated the alphabet ‘e’, is 0.70. Figure 

 4.9 illustrates a visual intuition of the measure. The black line shows the MINDIST 

between two symbols, while green line indicates the APXDIST distance between the 

same symbols. Accordingly, the indicator of region related to ‘a’, that is the region 

below the cut-line -0.97, is the mean line (Min-0.97)/2, where Min means the minimum 

value of PAA coefficients for a dataset. As a result, the distance between the symbols 

‘e’ and ‘a’ is calculated as distance of two mean lines, that is 0.70-(Min-0.97)/2.  
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. 

 

Figure 4.9: For calculation of distance between the time-series in Figure 4.6 and another time-

series, for each area an indicator is defined. 

This approach for calculation distance between the regions (symbols) results in a tighter 

distance measure. Accordingly, the distance between two SAX representations of two 

time-series requires looking up the distances between each pair of symbols. In 

APXDIST the distance between two pair is approximate distance between two 

indicators, which are also indicated by a lookup table which make the calculation very 

fast because it is pre-calculated. Then, same as the MINDIST procedure, squaring them, 

summing them, taking the square root and finally multiplying by the square root of the 

compression rate (
 

 
 .  Based on this definition, the APXDIST between each pairs of 

symbolized time-series is defined as following:  

             ̅   ̅𝑦  √
 

 
√∑                 
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where      is the indicator of     region and the dis() function is calculated by  

                {

      

 
                

 
      

  4.10 
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and    (         ) is computed by a lookup table. For example, for alphabet of 

cardinality of 6, i.e., a=6, the lookup table is illustrated in Table  4.1. In this table, the 

distance between two symbols can be read off by examining the corresponding row and 

column.  

Table 4.1: A lookup table used by the APXDIST function. This table is a sample for an alphabet 

size of 6 with the min=-1.2 and max=1.2. 

APXDIST         𝑏    𝑐    𝑑    𝑒    𝑓 

     0 0.38 0.87 1.08 1.78 2.16 

   𝑏 0.38 0 0.49 0.91 1.40 1.78 

   𝑐 0.87 0.49 0 0.42 0.91 1.08 

   𝑑 1.08 0.91 0.42 0 0.49 0.87 

   𝑒 1.78 1.40 0.91 0.49 0 0.38 

   𝑓 2.16 1.78 1.08 0.87 0.38 0 

 

4.3.4 Activity4: Pre-clustering (Ek-Modes) 

In order to make the pre-clusters, a clustering method compatible with SAX is desirable. 

Here, a new clustering algorithm (Ek-Modes) is developed for pre-clustering of 

dimensionality reduced time-series which is explained in the follows. 

For the approximate clustering of time-series in MTC, any partitioning approaches such 

as k-Means or k-Medoids, or even hierarchical approaches (if dataset is not that large) 

such as agglomerative or divisive approaches can be used. However, partitioning 

clustering is preferred for MTC. “Why partitioning clustering is better choice for 

clustering of dimensionality reduced data?” Motivation for using partitioning clustering 

is its simplicity, high speed (especially in large datasets) (Huang, 1998) and its rather 

good quality (it is shown in Section  5.3.1.3). Moreover, a study (C. Ding et al., 2002) 

shows that choosing the centroids on a low dimension approximation of data increases 

the quality in the partitioning clustering. Hence, performing partitioning clustering on 

approximated data leads to better quality while has its ability in fast clustering. 

Furthermore, using a comparison, the partitioning clustering algorithm using SAX 
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produces better results than using raw data (C. Ding et al., 2002). Now the question is: 

“Which partitioning clustering algorithm is better?” 

The Mode, Mean, Median and Medoid are different popular methods of determining 

representative for clusters in partitioning clustering. With respect to these prototypes, k-

Means, k-Median and k-Medoids are introduced in the literature. In many works, k-

Medoids is used (instead of k-Means) due to its robustness to outliers (Andreopoulos et 

al., 2009) which are unavoidable in time-series dataset. In k-Medoids, the representative 

(prototype) of a cluster is one of the time-series within the cluster which has the 

maximum similarity to others. However, in this activity of MTC, for the first time, an 

extended k-Modes (Ek-Modes) is introduced and used in order to divide N time-series 

into k partitions which construct higher quality of clusters. The following are the 

reasons why k-Modes is a better choice in set of partitioning algorithms:  

1) Because the SAX data is categorical data in each segment, and k-Modes work 

finely with categorical data (Huang, 1997, 1998). 

2) Efficiency of k-Modes is high, especially for categorical data (Huang, 1998) and 

meet the time-series in the first step which are represented as symbolized data. 

3) Because the centroid of clusters is made based on the modes (not the mean), it is 

robust in front of outlier time-series.  

It is the first time that k-Modes are used as a solution for symbolized time-series 

clustering (to the best of author knowledge). k-Modes algorithm (Huang, 1997, 1998) is 

based on k-Means family algorithm, and is used for clustering categorical data in 

different works (Andreopoulos, An, & Wang, 2005; Manganaro, Paratore, Alessi, 

Coffa, & Cavallaro, 2005).  

In Ek-Modes, at first, k cluster centers   
  of same dimensionality as the time-series 

represented by SAX are chosen. They are initialized either randomly, or in such a 
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manner that they are not outlier time-series. Iterative starts with the set of initial centers, 

then, the distance between rest of symbolized time-series and the chosen centers   
  are 

calculated. However, the distance measure is different here from conventional k-Modes. 

That is, instead of total mismatched of corresponding attributes of two objects, here, a 

distance based on categorical data, APXDIST (see Section  4.3.3) is used to create 

dissimilarity matrix. Let the inverse of             ̂   ̂   indicates the similarity 

between two time-series. Then, the objective is to find k partitions of approximated 

time-series as compact (in terms of the similar time-series in the clusters) and separated 

(in terms of the distance between the clusters) as possible (i.e., minimize the square 

error). Accordingly, the lowest variation of within-cluster is found as cost function 

which is calculated by: 

     ∑ ∑             ̂     

�̂�𝑖∈ �̂�𝑖

 

   
  4.11 

Where  ̂  is an approximated time-series of pre-cluster  ̂  and    is the prototype 

(representative) of the ith cluster.  

Subsequently, the prototype of each cluster is calculated (updated). Here, a prototype is 

the mode of each cluster and is considered as the cluster center, representing all 

dimensionality reduced time-series within that cluster, that is: 

   
   =Mode(     4.12 

Assume  ̂  { ̂        ̂ } is a set of time-series data of length n within a cluster where 

 ̂  { ̂        ̂ }. Let the domain of  ̂  be the alphabet   defined in SAX by a 

categorical attributes            . Then the prototype of the cluster is the mode of  ̂ , 

and is defined as a vector  ̂  { ̂      ̂      ̂ }, where  ̂  is the most frequently 

occurring value in  :  
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  ̂    |  ̂         |  |  |                    ∈     ̂ ∈  ̂   4.13 

For example, considering three time-series represented by SAX in the cluster  ̂ ,  ̂ : 

abbcc,  ̂ : acccd,  ̂3:bbbcc , the “mode” of cluster is defined as:  ̂ =abbcc 

Using this technique, the prototype of a cluster time-series data is constructed. Then, 

iterations are continued, until convergence, i.e., until all cluster centers get stable. In 

general, after each iteration, the quality of the clusters and the modes themselves will 

essentially be improved. 

Using the modes, a cluster with strong intra-similarity is obtained when the objects are 

categorical. It results in an efficient clustering of large categorical datasets. The 

efficiency of Ek-Modes (as an special case of k-Modes) is same as k-Means due to use 

of similar process in k-Means and k-Modes (Huang, 1998). Moreover, calculating the 

mode, leads to robustness of the proposed approach to outliers, since the mean point can 

get easily influenced by outliers (Andreopoulos et al., 2009).  

The pseudo code for pre-clustering is given in Figure  4.10. Two input parameters are 

taken in this algorithm. The k is the first parameter which determines the final number 

of clusters desired, so called, the natural clusters in the dataset. It is assume that the user 

has a good guess for k, like most other methods. The second parameter is the dataset 

which is dimensionality reduced data. 
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Input: K= number of clusters 

  ̂: A time-series dataset represented by SAX 

Output: C: Approximated clusters 

Method: Ek-Modes (K,  ̂) 

1. If k =0, decide on a value for K. 

2. Initialize K cluster centers   
  of same dimensionality as symbolized time-series by 

randomizing data objects 

3. iteration i=0 

4.Dis=calculate distance (using APXDIST) between each particular symbolized  ̂  and the 

centers   
  

5. Assign each  ̂  to the cluster with the nearest center   
 . 

6. Set new cluster centers   
    to the center of each cluster: 

    
   =Mode(    

7. If none of the N objects changes membership, the clustering is complete. Otherwise, repeat 

steps 4 to 7. 

8.return C 

Figure 4.10: Pseudo code for pre-clustering by Ek-Modes  

The superiority of using Ek-Modes to other partitioning algorithms is shown 

experimentally in Section  5.3.1.3. 

4.4 Step 2: Purifying and Summarization 

The main objectives of this step of MTC are refining of formed clusters and 

summarization. The first target is to refine (purify) pre-clusters, and improve their 

quality. The second part is to provide some prototypes in order to reduce the complexity 

of algorithm. Figure  4.11 shows the activities of this step. 
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Figure 4.11: Activities of second step of MTC 

Purifying: In the first activity, it attempts to increase the quality of each formed cluster 

(entered from the first step or the third step) by replacing its low resolution time-series 

with higher resolution time-series and then, by splitting the clusters. Concept of Cluster 

Affinity Search Technique (CAST) (Ben-Dor, Shamir, & Yakhini, 1999) is used and 

extended in this thesis to refine formed clusters. In this activity, a pre-cluster 

(approximated cluster) entered from previous step (or from third step in IMTC model), 

is broken down into sub-clusters based on similarity in time. Euclidean distance is used 

in the second step, considering that Euclidean distance is not able to reveal dissimilar 

time-series in shape (e.g., those which have shift) in a cluster, but at least it separates 

them as a new cluster if they are very far from others (mis-clustering in the pre-

clustering). These separated clusters will be handled in the third step by employing an 

elastic distance method and merging which fall time-series into their correct clusters. 

The key point of third step is capability of utilizing DTW distance (to find similar time-

series in shape). DTW can find the clusters based on similarity in shape, and its elastic 
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feature helps it to overcome the shortages of one-to-one matching and lack of shift 

support in approaches such as of Euclidean distance (see Section  2.5.3). 

Summarization: The second activity is defining representatives for sub-clusters based 

on the context of utility of clusters. The motivation for defining representative is 

reduction of complexity in the third step. Many clustering algorithms, such as 

Hierarchical have a complexity of higher than O(    which their utilization on large 

datasets is not practical. This problem is more crucial in time-series datasets because 

they are essentially high-dimensional, and thus, is more challenging. In the proposed 

model (MTC) also there is the same issue where it is merging well separated clusters (in 

the third step), because they consist high resolution time-series (can be raw time-series), 

and consequently results in high complexity in computation. To address this issue, 

considering that clusters formed in this step, have a high similarity in time; instead of 

using all time-series located in sub-clusters, their prototypes are used. By finding and 

storing the representative/representatives for each sub-cluster in the second step, the 

input size of data is reduced without approximately missing the quality, and with a 

guarantee that it fits in the main-memory. In the following sub-sections main activities 

and used methods of this step are described in detail: 

4.4.1 Activity1: Calculate Similarity 

This activity is very simple and straight forward. Considering each pre-cluster, its 

members (which are time-series represented by SAX) are replaced with the 

corresponding time-series, but with higher resolution. It is clear that higher resolutions 

will result in higher quality in the final results. However, the raw time-series may not be 

a good choice as highest resolution for datasets which are very noisy because it affects 

quality of purifying of the pre-clusters. As a result, in noisy datasets, it is probable to 

use a lower compression in compare to first step.  
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In the first step, only the approximate similarity in time was calculated for each pair. 

Here, a more accurate similarity measure on higher resolution of time-series is 

calculated. For this step, Euclidean distance is used as similarity measure to calculate 

the distance between time-series data in each pre-cluster. The distance measure 

calculated by Euclidean distance is more accurate than APXDIST, because its 

calculation is based on higher resolution of data. Moreover, ED takes all data points of 

time-series into account, and compares each pair of data points in time, that is, 

similarity-in-time of time-series is computed. Figure  4.12 depicts the intuition behind 

using ED in the second step.  

 

Figure 4.12: Similarity calculation in different steps of MTC 

4.4.2 Activity2: Purifying of Clusters (PCS) 

The pre-clusters constructed in the first step are refined here. The dilemma is: given a 

cluster, it should be decomposed into separated sub-clusters as pure as possible.  
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Definition 4.2: Sub-cluster, a sub-cluster      is a set of individual time-series that are 

close to each other (similar in time), created by splitting of pre-clusters    , and will be 

represented as a single prototype (or more than a prototype). 

Here, the purity of a cluster (or a pure cluster) is defined as follows: 

Definition 4.3: Pure cluster, a cluster is pure if all its members are of the members of 

natural cluster (ground truth). 

It means that the sub-clusters (made from a pre-cluster) are desirable such that most 

members are members of a natural cluster (class). That is, because the pre-clusters are 

generated approximately, not precisely, they are often mixed with time-series from 

different classes. Therefore, they should be recognized and separated by searching in the 

pre-clusters. As a result, pre-clusters are broken into so called pure sub-clusters. Of 

course assigning each object to a separate cluster (singleton cluster) provides the highest 

purity. However, the best answer is the purest clusters and smallest number of clusters. 

For illustrative purposes, a simple diagram in 2-dimensional space is used in order to 

describe the intuition behind the process of splitting approximated pre-clusters (see 

Figure  4.13). 

 

Figure 4.13: A 2-dimensional Pre-Clusters and Sub-clustering 
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Each time-series in a specific pre-cluster     is considered as an object in an n 

dimensional space. Then a similarity measure between objects can be calculated and 

stored in an m-by-m similarity matrix,     , where     is the distance (similarity) 

measure between time-series i and time-series j. Then, a developed algorithm based on 

affinity search, Pure Cluster Search (PCS), is carried out on the similarity matrix to find 

whether cluster members are scattered solidly (see Section  4.4.2.2). Then, for pre-

cluster     which its members are not scattered solidly, it divides the members into sub-

clusters. At that point, for each sub-cluster, a time-series is selected as prototype for 

further clustering.  

In the next section, cluster affinity concept is explained. Then, the process of selecting 

prototype is given in Section  4.4.3. The experimental results in  5.3.2 verify that this 

process can reduce the size of data in some datasets by approximate 70% per cent, but 

not reduce the purity greatly. 

4.4.2.1 Motivation for Using Cluster Affinity Concept 

The concept of cluster affinity is borrowed from Cluster Affinity Search Technique 

(CAST) which used to find close objects. It is used in MTC because its output is of 

discrete clusters which are separated without predetermining the number of clusters. In 

contrast to many algorithms where the number of clusters must be predefined in 

advance, the mechanism used in CAST algorithm can find clusters dynamically, and 

deals with outliers effectively (Jiang & Tang, 2004). Hence, the concept of cluster 

affinity in CAST is extended here to develop a new algorithm, PCS, to split the pre-

clusters to more pure clusters. 

Before explaining the method of Pure Cluster Search (PCS) used for splitting of pre-

clusters, at first CAST algorithm is explained briefly. 
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Cluster affinity search technique (CAST) (Ben-Dor et al., 1999) is based on graph 

theoretic method and relies on the concept of a clique graph. CAST clustering algorithm 

has a high performance in gene expression (Ben-Dor et al., 1999) clustering and also 

used for time-series mining (Lai et al., 2010). In view of the clique graph, each object is 

considered as a vertex in the graph. Similarity matrix which is based on the distance of 

objects makes indirect edges of graph. CAST makes clusters (sub-graphs) such that 

every object would be completely similar to every other object in the sub-graph and 

completely dissimilar to every object not in the sub-graph.  

Although number of clusters produced by CAST does not have to be predetermined in 

advance, it requires a connectivity threshold which is defined by an input parameter, so-

called, affinity threshold. This parameter is defined by the user and indirectly controls 

the size and number of clusters by determining the minimum required similarity 

between an object and a cluster, in order to assign an object to a cluster. CAST 

algorithm is sensitive to this parameter which is considered as a shortage for an 

algorithm, because the size and quantity of the clusters produced by the algorithm is 

directly affected by this parameter.  

4.4.2.2 Pure Cluster Search (PCS) 

PCS creates sub-clusters (from pre-clusters) sequentially with a dynamic affinity 

threshold. In this process, each sub-cluster is constructed with a time-series and 

gradually is completed by new time-series added to sub-cluster based on the average 

similarity (affinity) between unassigned time-series (in pre-cluster) and the current sub-

cluster members. Defining a specific threshold value, the cluster accepts high affinity 

time-series. That is, an affinity threshold, α, is specified to determine what is considered 

significantly similar. This parameter controls the number and sizes of the produced 

clusters. After forming a sub-cluster, PCS deletes the low affinity objects from sub-
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clusters. These adding and removing to a sub-clusters is performed consecutively until 

no more changes occur in the sub-cluster.  

Definition 4.4: Cluster affinity, the affinity of a time-series    to a sub-cluster SC is 

defined as follows (  4.14): 

 
      

∑         𝑦  ∈ 

     
 

  4.14 

where, Sim is the similarity between time-series    and  𝑦, and      is the number of 

time-series that exist in the sub-cluster. As mentioned, an affinity threshold, α, of a 

cluster C is defined to create sub-clusters of high affinity time-series. It is defined 

dynamically which is very important. One of the positive points of a data mining 

algorithm is its low number of parameters or preferably parameter-free. An algorithm 

which is parameter-free would limit our ability to impose our prejudices, expectations, 

and presumptions on the problem at hand, and would let the data itself speak to us. PCS 

is proposed as an algorithm which works without predetermining parameters. In this 

approach, the affinity threshold is calculated based on the affinity of each time-series in 

pre-cluster. The affinity threshold, α, is calculated dynamically based on the remaining 

time-series in pre-cluster, i.e., unassigned time-series in pre-cluster PCU, before 

constructing each new sub-cluster SCnew as: 

 
  

∑    𝑦        ∈ 𝐶     (𝐹  𝐹 )  

     
   

 4.15  

where 

   
∑  𝑦

    
  4.16 

is the mean of similarities of each time-series to other time-series in pre-cluster (M is 

initialized one time in the start of algorithm), and      is the number of all time-series in 

the pre-cluster. The time-series that exist in a pre-cluster have not a unify affinity to 
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each other, because pre-clusters are made based on an approximated distance measure 

(e.g., APXDIST) and a low resolution time-series (e.g., SAX). The Equation  4.15 

calculates a threshold based on the within variance of time-series in the cluster 

dynamically before creating each new sub-cluster. This value is used to distinguish the 

time-series which have not clustered properly (or outliers) by putting them into new 

sub-clusters. As a result, the output of this algorithm is some refined clusters which are 

constructed by breaking down of the pre-cluster. Figure  4.14 shows the pseudo code 

related to PCS. 

Input: Sim : an n-by-n similarity matrix  

Output: C: a collection of sub-clusters 

Method: PCS(Sim) 

Initializations: 

1. SCnew  Ø /* The constructing sub-cluster */ 

2.       {  ,…,   } /* Elements inside the pre-cluster */ 

3. M  the average similarity between time-series in the pre-cluster 

4. while (                ) do 

5. for all   ,  𝑦 in     

6.  If              

7.       
∑   (𝐹  𝐹 )  

  𝐶  
 

8.  end If 

9. end For 

10. let    be an element with maximal affinity in    . 

11. if (a(  ) >=  ) /*    is of high affinity */ 

12.                 {  } /* Insert    into       */ 

13.           \ {  }        /* Remove    from     */ 

14.  for all x in            and    in       do 
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15.   a(  ) = ∑        /|     | /* Update the affinity */ 

16.  end 

17. else /* No high affinity elements outside      */ 

18.  Let    be a vertex with minimal affinity in     . 

19.  if (a(  ) <  ) /*    is of low affinity */ 

20.       𝑒          \ {  } /* Remove    from       */ 

21.               {  } /* Insert    into     */ 

22.   For all    in            and    in       do 

23.    a(  ) = ∑        /|     | /* Update the affinity */ 

24.   end 

25.  else /*       is clean */ 

26.   C   C        /* Close the cluster */ 

27.          Ø /* Start a new cluster */ 

28.   a(.)   0 /* Reset affinity */ 

29.  end 

30. end 

31. end 

32. return the collection of sub-clusters, C. 

Figure 4.14: using PCS for purifying of pre-clusters 

4.4.3 Activity3: Summarization (Making Prototypes) 

One of the strengths of MTC is its flexibility in making different cluster shapes by 

choosing arbitrary algorithm for merging. That is, given the sub-clusters and defining a 

similarity measure, many distance based algorithms such as partitioning, hierarchical, or 

density based clustering can be used for merging the sub-clusters in the third step. 

However, instead of applying the clustering algorithm to the entire data, only the 

prototype/prototypes of each sub-cluster are participated in merging process which 

reduces the complexity of process to a high extend. Moreover, prototypes can increase 
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the accuracy to some extent. That is, highly unintuitive results may be garnered because 

some distance measures are very sensitive to some “distortions” in the data. However, 

because each prototype is made by averaging of some time-series, it decreases the effect 

of distortions or outliers in time-series. Nevertheless, one of the controversial problems 

is defining the prototypes (centroid or representative) of sub-clusters. The objective of 

this activity is finding the shape-based time-series average which is an essential 

subroutine in MTC. The quality of final clusters is highly dependent on the quality of 

averaging. Many attempts for defining an effective method for creating the prototypes 

for time-series clusters have been discussed in the literature review (see Section  2.6). In 

this study, single representative and multi-representative solutions are used for 

prototyping of sub-clusters. Choosing either single or multi representation, depends on 

the clustering scheme which is used in the third step and the required precision of 

results as well. 

Solution 1) Single-representative: ED is used to find the average shape of two time-

series. It is similar to finding centroids in k-Means algorithm. Because the number of 

time-series in each sub-cluster is not very big and it is guaranteed that they are similar 

in time, therefore, averaging method is effective for making the prototypes. 

Solution 2) Multi-representative: In order to define the multi-representative, the centroid 

of sub-clusters is used together with some other time-series of sub-clusters. They create 

a set of prototypes which effectively represents the whole sub-cluster’s members. This 

approach is used in the case that a clustering algorithm for generating arbitrary shape 

clusters is used for merging the sub-clusters. 
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4.4.3.1 Single-representative 

Single representative is defined for each sub-cluster to minimize a known criterion 

function, i.e., the Sum of Squared Error (SSE). Given a set of n time-series in a sub-

cluster    , the time-series are represented by a time-series    {             } 

    
∑    
 
   

 
  4.17 

where    {                } is a time-series in    . Figure  4.15 shows the 

representative of sub-cluster made by SSE technique. The distance between all TS in 

this sub-cluster to the representative is minimum distance. 

 

Figure 4.15: single-representative of a time-series sub-cluster 

4.4.3.2 Multiple-representative 

In order to determine the representatives of the sub-clusters, the concept of defining 

representative in CURE algorithm (Guha et al., 1998) is employed. For this activity, a 

multi-representative is used instead of one representative to merge clusters. The multi-

representative approach is chosen because it can better represent the shape of sub-

cluster, especially when the sub-clusters are big or the target merging scheme is an 

algorithm which generates arbitrary shape clusters. For example in Figure  4.16, the 

same sub-cluster in Figure  4.15 is depicted with two representatives. 
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Figure 4.16: Multi-representative of a time-series sub-cluster 

In this approach, a constant number of time-series between centroid and all extreme 

time-series are chosen as representative of a cluster. The representatives are well-

scattered time-series data in a cluster which are shrunk toward centroids. Defined 

representatives should capture the shape and extent of the sub-clusters. The main reason 

for shrinking of representatives is alleviating the effect of outliers. The outliers 

generally have greater distance from the centroid of clusters and less distance to farther 

time-series of a cluster. Shrinking representatives toward centroid with fraction  , will 

decrease the effect of outlier time-series in merging step as illustrated in Figure  4.17. 

 

Figure 4.17: Multi-representative approach for time-series clustering 

However, the multi-representative method used in this study for time-series clustering 

differs from CURE approach in two aspects: 
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1) Using the centroid as one of the representatives (beside the well-scattered time-series 

data) which help to find better results. 

2) Using a dynamic number of representatives rather than CURE algorithm which uses 

a constant number of representatives for each cluster.  

In a cluster of time-series data, it is obvious that representing a cluster with lowest 

number of representatives is ideal. To find the representatives dynamically, given a set 

of time-series, a threshold is defined for representatives as minimum density, Ԑ, such 

that the distance of each time-series in the cluster from its corresponding representative, 

is less than Ԑ. That is, adding the representatives to sub-cluster, is continued until it is 

guaranteed that all time-series are close enough (Ԑ) to at least one representative of sub-

cluster. It leads to find the representatives based on their shape, not based on a fix 

number of representatives. The representatives of the sub-clusters are calculated using 

the following algorithm (Figure  4.18): 

Input: SC: All time-series in sub-cluster  

 Ԑ: Min density 

  : Shrink factor 

Output: R: A set of representatives 

Method: Find_representatives (SC, Ԑ,  ) 

1. R=centroid(SC);  /* using the equation  4.17*/ 

2. If   >0     /* using multi-representative approach */ 

3.  max_dis= Max{distance(  , R):    ∈   }  

4.  while  max_dis> Ԑ 

  /* Add Representative: let    be the farthest object from set R */ 

5.     =         {          𝑦   𝑦 ∈     ∈    } 

6.   SC = SC     ; 

7.     =((1-  )*   +   * centroid(SC))   /* to shrink toward centroid  */ 
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8.   R = R     ; 

9.   max_dis= Max{      (  , R):    ∈   } 

10.  end while 

11. end if  

12. return R 

Figure 4.18: Algorithm of determining representatives in sub-clusters 

4.5 Step 3: Merging  

The output of second step is relatively few number of prototypes (in comparison to 

original dataset), as representatives of sub-clusters. Some sub-clusters were represented 

by only one representative, some by more than one. Now, the prototypes are combined 

to form the final clusters. Considering each prototype as one time-series, the process of 

merging is performed to group the prototypes. Different approaches (partitioning, 

hierarchical, etc.) can be adopted for merging the sub-clusters (or clustering of 

prototypes). Essentially, choice of clustering algorithm depends both on the type of 

desired clusters (arbitrary or spherical), and on the particular purpose and application of 

clustering (Warrenliao, 2005). If the size of clusters are equal (comparable size), 

clusters are hyper-ellipsoidal (or globular or spherical). In this case, k-Medoids or 

hierarchical algorithm with complete or average linkage are the best choice to cluster 

time-series, because they try to minimize the distortion in data (Chaoji, Al Hasan, 

Salem, & Zaki, 2008). In contrast, in some datasets (such as image segmentation or 

spatial data mining) where clusters are of different densities (Chaoji et al., 2008), 

algorithms for making arbitrary shape clusters are used. Some conventional algorithms 

which try to find arbitrary clusters in datasets are DBSCAN, CURE, ROCK and 

CHAMELEON. The readers are referred to (Karypis et al., 1999) for comparison and 

references. 
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Moreover, if the clusters are very close to each other or are from different density and 

size, different type of algorithms (used for merging) will result in different cluster 

structures. Therefore, choosing the proper algorithm is very critical. MTC works with 

prototype/prototypes (where are very small in compare to whole data), as a result, 

different type of clustering algorithms can be adopted, consequently, different type of 

clusters can be made depending on problem in hand. Figure  4.19 shows the overview of 

this process. 

 

Figure 4.19: The workflow of MTC clustering for third step. 

4.5.1 Activity1: Distance Calculation 

In the first two steps of MTC, similar time-series in time were grouped precisely. 

However, two time-series which are similar in shape may not be similar in time. Hence, 

in this activity the similarity in shape of time-series are computed. As explained in 

 2.5.2, Euclidean distance requires that the two time-series must have one-to-one 

alignments, which sometimes is not desirable if one is looking for shape based 

similarity between time-series that have discrepancy in x-axis values as it is depicted in 

Figure  4.20.  
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Figure 4.20: Similarity in time between sub-cluster's prototypes 

In contrast to similarity in time, DTW (Dynamic Time Wrapping) will calculate all 

possible mappings between two time-series’ data points, finding the smallest possible 

warping distance. As a result, in the third step of MTC, DTW is desirable because it can 

distinguish the time-series which are different from other time-series in the cluster in 

terms of similarity in shape. The accuracy of DTW is calculated in front of ED in 

Section  5.3.3.1. Although DTW is computationally expensive, it is not adopted on all 

dataset, and it is used to measure only the similarity on a subset of whole dataset 

(prototypes), so, it can be run very fast. Moreover, it can be applied by some constraints 

which decrease its complexity as it is explained in Section  4.7. Figure  4.21 depicts the 

intuition of using DTW in the third step of MTC. As this figure shows, the similarity 

between the time-series inside the sub-clusters is computed based on the similarity in 

time (within similarity). However, the similarity between the prototypes is calculated 

based on similarity in shape. 
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Figure 4.21: Intuition for using DTW for calculating similarity in shape between representatives of 

sub-clusters in the third step of MTC 

Therefore, to calculate the distance between two sub-clusters, the DTW of their 

prototypes are calculated. Suppose    {                } prototype of     where    

is calculated by Equation  4.17. Then, to compute the distance between prototype of     

and   𝑦 , a n × n matrix is constructed for distance of all matching pairs as M(  ,  𝑦) 

where           (     𝑦 ) and         is calculated by Equation  2.2. Given   

{          } as a set of warping paths where    = {(   ,  𝑦 ), (   ,  𝑦 ), . . . , (    , 

 𝑦  )} is a set of points that define a traversal of matrix M, DTW between two 

prototypes    and  𝑦 is a warping path that minimize the distance between    and  𝑦.  

       (    𝑦)       ∑     
 

   
   4.18 

where (   ,  𝑦 ) = (1, 1) and (   ,  𝑦 ) = (n, n), and that                and 

   𝑦   𝑦      for all    . 
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4.5.2 Activity2: Merging Sub-clusters 

As mentioned, MTC covers different schemes of clustering. In the following sub-

sections three different approaches of merging sub-clusters are explained which leads 

constructing various structures of clusters. 

4.5.2.1 Merging by Partitioning Clustering 

For merging the sub-clusters, the mechanism of each partitioning clustering algorithm 

can be used, such as k-Medoids, k-Means, etc. The k-Means algorithm uses centroids as 

cluster representatives, and the k-Medoids algorithm takes its representatives from the 

original data. However, unfortunately, k-Means algorithm which needs averaging for 

prototype, will sometimes fail to give correct results especially in the case when 

Dynamic Time Warping (DTW) is used as the distance measure in averaging the shape 

of time-series (Niennattrakul & Ratanamahatana, 2007). Therefore, the approach used 

in this thesis to define the representative for partitioning clustering is the medoid of 

each cluster. Accordingly, the medoid of a cluster,    , is defined as: 

       𝐶          𝐹   {∑                 
   ∈𝐶  

    ∈     }  4.19 

Thus a “medoid” is a time-series that best represents a set of prototypes while those 

prototypes are themselves representing more time-series (sub-clusters). Although, it is 

not a linear-time algorithm for clustering (the initial construction of the pairwise 

distance matrix Dis requires time        and the search for a new medoid (each 

iteration) takes time      ), because the number of objects, n, are the number of 

representatives which is quite small, it is practical for large datasets. Pseudocode for k-

Medoids is given in Figure  4.22. Inputs of this algorithm are Dis, the n×n matrix of 

DTW distances between all pairs of time-series, the number of medoids desired k, and 

the initial medoids. 
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Input:    ∈      the distance matrix 

   ∈     /* the set of representatives improrted from second step */ 

K: number of desired clusters 

Medoid: Initial medoids 

Output: C  /* clusters of representatives */ 

Method: k-Medoids (Dis, K, Medoid,  ) 

1. while any       𝐶 changes do 

2.  for i ∈ {1 . . . n} do /* n is the number of TS (prototypes of sub-clusters) */ 

3.   C(i)                /* find the closest medoid    to   */ 

4.  end for 

5.  for j ∈ {1 . . . k} do 

6.                   𝐹   {∑                    ∈𝐶  
    ∈     }   

7.  end for 

8. end while 

9. return C 

Figure 4.22: Pseudocode for the k-Medoids algorithm. 

Partitioning clustering of time-series data is very good as summarization or as a pre-

processing phase for more complex data mining tasks. However, considering the 

clustering as a data understanding tool, finding the hierarchical clusters is more 

meaningful and intuitive (because has the ability to show the results as a tree of 

clusters). In the following (Section  4.5.2.2), merging of sub-clusters using a hierarchical 

clustering is explained.  

4.5.2.2 Merging by hierarchically clustering 

As discussed in Section  2.8.1, the main problem of using hierarchical methods for time-

series clustering is its inability to scale well—the time complexity of hierarchical 

algorithms is at least        (where N is the total number of instances and d is the 

number of dimension of TS), which is non-linear with the number of time-series. 
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Moreover, clustering of a large number of time-series using a hierarchical algorithm is 

also characterized by huge I/O costs. However, in MTC, this problem does not exist 

anymore because the number of time-series in the third step is small (it is equal to 

number of representatives), and therefore, the advantages of hierarchical clustering 

come to account including:  

 Versatility: covering different linkage methods enable MTC with hierarchical 

scheme to make different shaped of clusters. The single-link methods, for 

example, maintain good performance on datasets containing non-isotropic 

clusters, including well separated, chain-like and concentric clusters (see Section 

 5.3.3.2). 

 Multiple partitions: hierarchical methods produce not one partition, but multiple 

nested partitions, which allow different users to choose different partitions, 

according to the desired similarity level. The hierarchical partition is presented 

using the dendrogram. Dendrogram creates a decomposition of the given data 

and provides an intuitive view for users which are very useful especially in large 

datasets. For example, MTC can produce an intuitive dendrogram of companies 

(based on their stock) which is very desirable as depicted in Figure  6.25. It is 

important to notice that in MTC, unlike other methods, all time-series are not 

contributed for constructing the dendrogram, instead, only prototypes are used. 

Considering the advantages of hierarchical clustering, each kind of hierarchical 

clustering can be used for clustering of prototypes (e.g., single linkage, complete 

linkage, etc.). These approaches are very simple and given representatives can be easily 

applied to make the clusters. However, in the following, to show the scale of the MTC, 

a hierarchical based algorithm is proposed for clustering of representative, which works 

on non-spherical data. This scheme works with sub-clusters represented by multi-

representative to generate the tree of nested and arbitrary shape clusters.  
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4.5.2.3 Merging for arbitrary shape clusters 

A good clustering algorithm should identify arbitrary shaped clusters (Gordon, 1999). In 

arbitrary shape clustering, clusters should be separated by distances larger than the 

intra-distance of clusters. Even good separated centroids in partitioning clustering, do 

not necessarily imply good separated clusters. Now the question is whether time-series 

clusters are arbitrary or spherical? The problem of centroid-based clustering also 

happens for time-series data where a time-series in a cluster is closer to centroid of 

another cluster than to its natural cluster. It occurs especially when there are clusters 

with different sizes, sparse time-series, or outlier time-series. Since the sub-cluster sizes 

are usually different, their representatives also are sparse. This is exactly such as what 

happens in 2-dimensional objects seen in Figure  4.23. As the figure shows, in some 

datasets, the sub-clusters (their representatives) of a natural cluster may be very far apart 

each other (or not be spherical around the centroid) which leads to split the cluster. 

Consequently, a partitioning clustering may perform poorly in these situations. 

 

Figure 4.23: Splitting the natural cluster due to incorrect spherical clustering 

It is shown in experimental results (see Section  5.3.3) that some time-series dataset have 

arbitrary shape, due to their diverse nature (which is of the spatial object’s 

characteristics). Other than that, time-series datasets include outlier time-series. Outliers 

are time-series data which are not belong to any cluster and should be discarded during 
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clustering process. A clustering algorithm should have the capability of the handling of 

noise and outliers. Generally, arbitrary based clustering algorithms handle outliers. 

Arbitrary shape clustering algorithms were proposed in several works. The most 

successful among others are Spectral (Shi, 2000), density-based, e.g., DBSCAN (Ester 

et al., 1996), and nearest neighbour graph based, e.g., Chameleon (Karypis et al., 1999) 

approaches. The problem of these algorithms is their poor scalability (Chaoji et al., 

2008). As a result, the existing approaches cannot be applied directly on time-series 

datasets because they are very large and high dimensional.  

In this activity, it is shown that MTC can make arbitrary shape clusters using multi-

representative approach. In this approach, the fine-clustered time-series (sub-clusters) 

are merged using an agglomerative hierarchical clustering. As mentioned, each sub-

cluster can be represented by multi-representatives. Now, the most similar 

representatives are merged. Each set of representatives in the sub-cluster is treated as 

members of a formed cluster through the merging process. Then, the merging activity is 

performed in such a way that prototypes of a sub-cluster should remind in the same sub-

cluster in final clusters.  

There are essentially different approaches to find the most similar clusters and merging 

them. It can be object closeness (it is same as single, complete, or average linkage in 

hierarchical clustering), centroid closeness such as WPGMA, WPGMC (Sneath & 

Sokal, 1973), relative inter-connectivity, or relative closeness such as CHAMELEON 

(Karypis et al., 1999). In this algorithm, the object closeness is used to find the most 

similar clusters. Figure  4.24 depicts the pseudocode for merging sub-clusters of time-

series using the representative closeness of each sub-cluster.  
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Input:    {              } set of sub-clusters 

                                        

 K: number of desired clusters 

Output: SC /* merged sub-clusters */ 

Method: Cluster (SC,k) 

1. for all           

2.  If i=j  /* representatives belong to the same sub-cluster  */ 

3.         = 0; /* a distance matrix for representatives */ 

4.  else  

5.         =              ) /* calculate the distance between all representatives, 

and store the results in a distance matrix. */ 

6.  end IF 

7. end for 

8. while (size(SC)>k) 

9.  [   ]       (      )          ;  /* Find closest sub-clusters by finding closest 

representatives of mutual exclusive sub-clusters */ 

10.              /*  Merge cluster j into cluster i */ 

11.                    

12.            /* Update distance matrix by removing the distance among 

representatives of merged clusters  */ 

13.             /*    Delete        */ 

14. end while 

15. return SC 

Figure 4.24: An outline of clustering algorithm for clustering of sub-clusters with multi-

representatives 

As mentioned, the output of the second step of the algorithm is a set of sub-clusters, 

   {              }, where the number of sub-clusters is a relatively small (in 

comparison with the original data) and each one is represented by a set of prototypes, 
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      . During the third step of the algorithm, at first a similarity measure for each pair 

of seed clusters,    , is computed. Then, the distance between the representatives which 

are from the same clusters are initialized to zero (see lines 1-6 in Figure  4.24). It leads 

to not separating the representatives of the same class to different clusters during merge 

process. The similarity between clusters is then used to merge the two clusters having 

the minimum distance. The similarity among clusters can be defined based on any 

clustering algorithm that can use the similarity function to merge the clusters. For 

example, single link or complete link method can be applied on data to define the 

distance between two clusters for sake of simplicity. The single (complete) linkage 

algorithm measures the similarity between two clusters as the similarity of the closest 

(farthest) pair of time-series belonging to different clusters. Merging the clusters means 

combining their representatives. The algorithm repeats the merging process until all the 

objects are eventually merged to form one cluster (or until the desired number of 

clusters is obtained or the distance between two closest clusters is above a certain 

threshold distance). As a result, a hierarchy of sub-clusters is generated. 

This algorithm finds the arbitrary shape clusters and is robust to outlier time-series. As 

mentioned, outliers refer to time-series which are not contained in any cluster and 

should be discarded during the mining process. After constructing the pre-clusters in the 

first step, and decomposing them in the second step, some clusters with a few time-

series are observed (beside rather large clusters). These clusters are clusters which are 

potential outliers or a part of a cluster which were grouped in the first step incorrectly, 

and then detected, and separated as a new cluster in the second step. Considering the 

outlier characteristic, outliers do not tend to merge with other clusters because of their 

larger distance in comparison with other time-series. Hence, the small clusters which are 

not merged till last iterations of merging can be discarded.  
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4.5.3 Activity3: Mapping 

The result of merging process is some clusters which are constructed from prototypes of 

sub-clusters. Thus, a mapping activity is carried out to assign the original time-series to 

their correspond prototypes. All time-series of each sub-cluster are assigned to the 

cluster which the corresponding prototype is assigned. 

4.6 MTC Algorithm 

In the following, the outline of the all steps of MTC is shown in Figure  4.25. 

Input: 

 D: A time-series dataset   /*   {           }  */ 

 WL: SAX window level 

 WS: SAX word size 

 K:cluster count 

Output: C 

Method: MTC ( D, WL, WS, K) 

/* Step-1 time-series pre-clustering */ 

1. D =z-norm(D)    /* z-normalization of all time-series */ 

2. for each time-series i 

3.   ̂  = SAX_Transform(  , WL ,WS) 

4.   ̂   ̂     ̂  

5. end for 

6. Apx_sim[n][n]=            ( ̂)  /* Find similarity array */ 

7. pre-cluster[1 to n]=Ek-Modes(Apx_sim[n][n],k)  */ see Figure  4.10  */ 

/* Step-2 cluster purifying  */ 

8. for i = 1 to k; k is the group count of pre-clusters 

9.  ts_cnt = the time-series count in pre-cluster i 

10.  TS_TMP= D(pre-cluster [1 to n]==i) 

11.  sim[i] [ts_cnt][ ts_cnt] =1-      (TS_TMP) /* similarity matrix of all TS in pre-cluster i 
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by ED */ 

12.  sub-cluster[1 to ts_cnt]=PCS(sim [1 to ts_cnt])  /* see Figure  4.14  */ 

13.  rep[i] = find_representatives(sub-cluster) /* see Figure  4.18 */ 

14. end for 

/* Step3 merging */ 

15. C_rep= Cluster (rep[i],k)   /* clustering of representatives, using an arbitrary scheme */ 

16. C=Replace_mem (C_rep, D)   /* mapping process */ 

17. validate the MTC clustering results 

18. return C 

Figure 4.25: Pseudocode of MTC model 

4.7 Interactive MTC (IMTC) 

MTC runs on datasets as a batch clustering algorithm focusing on the accuracy of final 

clusters. However, in the case that a user needs to see a primitive or meantime results 

(or cannot stand till finishing of batch), MTC is run as an interactive model. That is, the 

algorithm starts running, generates a primitive result (not accurate), and keep improving 

it gradually until user interrupts the process. In moment of interruption, the best result 

so far, is generated and is shown to the user. Figure  4.26 shows the steps of IMTC. As 

the diagram shows, the output of third step is passed again to second step for more 

revising. 
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Figure 4.26: An overview of IMTC 

Exploiting multi-step characteristic of MTC, IMCT can be carried out as an interactive 

clustering algorithm. As mentioned, in this approach, an inaccurate result is constructed 

using a low resolution time-series (in step-2) and a very narrow constraint of DTW (in 

step-2). Then, step-2 and step-3 are performed alternatively. However, in step-2, only 

one cluster is candidate to be refined (dispersed) in each iteration. Selecting the 

candidate cluster is based on within cluster variance (the criteria defined by the mean 

and standard deviation of affinity of clusters). This process is continued until all pre-

clusters are purified at least one time. In the process of purifying the candidate cluster, 

the purifying is performed more precisely in comparison with previous iteration. That 

is, in each iteration, the measurement improves (for the candidate cluster) because 

firstly the resolution of time-series that exist in the candidate cluster increased by using 

a lower compression-ratio of time-series. Second, the constraint of DTW used in the 

third level, is widened through each iteration. The whole process is same as split and 
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merge and meanwhile increasing the accuracy of calculations. This process continues 

until first, all low resolution time-series are replaced with a high resolution time-series 

(or with original time-series). Second, the distance between all pairs are calculated by 

complete DTW (without constraint), and finally, all pre-clusters have been checked for 

purifying process at least one time. This process results in improving the quality of 

clustering over time. Figure  4.27 shows the design of overall process. 

 

Figure 4.27: The activities of IMTC model 

As mentioned, DTW distance measure is used in the third step of IMTC same as MTC 

model. However, in IMTC, DTW is applied by some global constraints (Itakura, 1975; 

Sakoe & Chiba, 1978) which decreases its complexity. As mentioned in  2.5.3, DTW is 

the warping path that minimizes the total distance between two series of    and   . 

Global constraints determine the amount of warping allowed to find the minimum path. 

The width of warping window is shown by parameter     . Euclidean distance can be 

seen as an upper bound of DTW. That is, Euclidean distance is a special case of DTW 

with a very narrow constraint, where the warping path in calculation of DTW is exactly 

the diagonal of matrix. However, the constraint can be widened which means how far 
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warping path may stray from the diagonal. The widest constraint (i.e., without 

constraint) means the complete DTW, i.e.,        where d is the length of time-

series. Constraints provide a property for DTW where accuracy of similarity in shape 

between two time-series can be calculated approximately with low complexity. This 

property of DTW, i.e., applying global constraints (Itakura, 1975; Sakoe & Chiba, 

1978), is used in IMTC to calculate the distance between time-series cheaply and then 

improve it. It means whichever MTC is running as an interactive clustering, the DTW 

with a very narrow constraint (Euclidean distance) is used where       , and then 

accuracy of metric can be gradually increased by widening the constraint to complete 

DTW, i.e.,        or           . 

4.8 Chapter Summary 

In this chapter, the multi-step clustering model proposed in previous chapter were 

explained and designed in details. In the pre-clustering step, dimension of time-series 

data was reduced by SAX technique. SAX representation was used to cluster the low-

resolution time-series which can fit in memory rather than original (raw) time-series 

dataset. Then, a new distance measure compatible with SAX representation was 

developed to construct pre-clusters (APXDIST). This approach is accurate for 

clustering, because based on its definition, it considered the distance of neighbour 

symbols as a non-zero value, and does not ignores the maxima and minima points of 

time-series. Subsequently, a new clustering algorithm (Ek-Modes) was proposed for 

clustering of approximated time-series. The output of this step was pre-clusters which 

were passed to second step. Then pre-clusters were purified in the second step by PCS 

(Purify Cluster Search). As mentioned, an affinity threshold was defined to create sub-

clusters of high affinity time-series. It was defined dynamically which is very important. 

The output of second step was some sub-clusters which were represented by their 

prototypes. That is, , instead of applying the clustering algorithm to the entire data, only 
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the prototype/prototypes of each sub-cluster are participated in merging process which 

reduces the complexity of process to a high extend. Subsequently, in the third step, 

depend on the problem in hand, three clustering scheme was proposed to merge sub-

clusters. Finally, the IMTC which is the interactive model of multi-step was explained 

in detail. It was explained that IMTC is advantageous once a user needs to see a 

primitive or meantime results.   
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5.0 EXPERIMENTAL RESULTS AND ANALYSIS 

5.1 Introduction 

In this chapter, datasets used for evaluation of proposed models are introduced. Then, 

all the methods and algorithms designed to achieve the objectives of each step are 

experimentally discussed in this chapter. The performance of APXDIST and Ek-Modes 

are shown on different datasets. Then, PCS is applied on a range of datasets to show the 

obtained purity in the second step of MTC. Consequently, the observations are analysed 

to show how the results are generated using MTC and how these methods increase the 

accuracy of final clusters. Details of each dataset and generating procedure of each 

synthetic data are explained in Section  5.2. Each step of MTC model is analysed in 

Section  5.3. Then the final results gained by applying MTC on the dataset are reported 

in Section  5.4. Later, the final results are discussed extensively in the next chapter. 

5.2 Datasets 

The proposed model is experimented with 21 different datasets in various domains and 

sizes. 19 of these datasets are from the UCR Time-series Data Mining Archive (Keogh 

& Folias, 2002). The size of time-series in these datasets ranges from 28 to 6,000 

records, and their exact size is indicated in Keogh & Folias (2002). This set is chosen 

because it is of various numbers of clusters, different cluster shapes and density, 

contains noise points, and used in many articles in the literature as a benchmark. These 

datasets have two sets in the repository, namely TRAIN and TEST. In this study the 

TEST set is used because it includes large datasets and the TRAIN sets is used to 

visualize the results for the sake of simplicity. In the set of datasets used in this thesis, 

some of datasets which contain 1,000 to 12,000 time series (each time series may have 

the length 100 to 700 points) are considered to experiment MTC on large time series 

data sets. These data sets are considered large because for example one of the largest 
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dataset in the literature which includes 9,236 time-series take about 127 days using a 

batch algorithm which is a severe bottleneck in clustering of time series (Q. Zhu, 

Rakthanmanon, Batista, & Keogh, 2012). However, some small sets also are applied for 

visualization purpose or to show the behaviour of proposed model (MTC) on small 

datasets. All these 19 datasets have class labels and can be used for evaluation of MTC 

using external index. Moreover, another two datasets are chosen from real-world 

problems, namely Stock Exchange of Malaysia (KLSE) and Account Balance of 

customers of a Malaysian Bank (BTD), to show the application of the proposed model 

in different domains. Class labels of these datasets are unavailable and internal index is 

used to evaluate the accuracy of the clusters. 

Table 5.1: Number of clusters, number of instances and the length of the time-series in each dataset 

 Dataset Clusters Instances  Length Class label Type 

1 50words 50 455 270 Yes Real-world 

2 Adiac 37 391 176 Yes Real-world 

3 CBF 3 900  (up to 6000) 128 Yes Synthetic 

4 Coffee 2 28 286 Yes Real-world 

5 ECG200 2 100 96 Yes Real-world 

6 FaceAll 14 1690 131 Yes Real-world 

7 FaceFour 4 88 350 Yes Real-world 

8 FISH 7 175 463 Yes Real-world 

9 Gun_Point 2 150 150 Yes Real-world 

10 Lighting2 2 61 637 Yes Real-world 

11 Lighting7 7 73 319 Yes Real-world 

12 OliveOil 4 30 570 Yes Real-world 

13 OSULeaf 6 242 427 Yes Real-world 

14 SwedishLeaf 15 625 128 Yes Real-world 

15 synthetic_control 6 300 (up to 12000) 60 Yes Synthetic 

16 Trace 4 100 275 Yes Real-world 

17 Two_Patterns 4 4000 128 Yes Real-world 

18 Wafer 2 6164 152 Yes Real-world 

19 yoga 2 3000 426 Yes Real-world 

20 KLSE - 870 242 No Real-world 

21 BTD - 6802 360 No Real-world 
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Some of these datasets are related to real-world problems, and some include syntactic 

datasets. For the syntactic dataset, up to 10,000 records are generated to experiment on 

large datasets. Table  5.1 shows the utilized datasets for the experiments, so the results 

can be compared across different algorithms.  

5.2.1 Real-world Dataset  

The real world datasets selected from the UCR repository have been tested for 

clustering by other researchers and used as benchmarking for comparison (Keogh & 

Kasetty, 2003). To show the associative property, some of these datasets are explained 

in following subsections. Leaf, Face, Gun are of type of multimedia data transformed 

into time-series (Ratanamahatana, 2005). ECG is from health care domain and related to 

electrocardiograms of patients. 

Leaf Dataset: The Leaf dataset contains the leaf images of 6 different leaf species 

(classes) where raw image shapes are transformed to time-series data by image 

processing technique as illustrated in Figure  5.1. This dataset holds 242 time-series of 

lengths 427 data points. Class 1 through class 6 contains 34, 29, 33, 53, 36, and 38 

instances, respectively. Figure  5.2 shows some examples of the data from each class. 

 

Figure 5.1: Transformation of raw image shape of a leaf to time-series data (Ratanamahatana & 

Niennattrakul, 2006) 
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Figure 5.2: Three sample time-series of six classes (six species) of Leaf dataset 

Face Dataset: Face dataset includes different face expressions of four head profiles 

(related to four persons). This dataset contains 88 time-series of head profiles. The 

length of each time-series is between 107 to 240 data points as illustrated in Figure  5.3. 

All time-series in this dataset are normalized to the same length of 350 data points. 

Three examples of each class of face profile (which is related to the four individuals) 

are depicted in Figure  5.4. This dataset is used also for multimedia clustering 

(Ratanamahatana & Niennattrakul, 2006). 

 

Figure 5.3: Transformation of the image of a head profile to time-series data (Ratanamahatana & 

Niennattrakul, 2006) 

 

Figure 5.4: Examples of four different faces 
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ECG Dataset: The ECG dataset includes time-series of two different heart pulse 

classes, i.e., normal and abnormal. Each class includes 100 instances of length 96 data 

points, and have been normalized in this experiment. This dataset is used also in 

(Ratanamahatana & Niennattrakul, 2006). Figure  5.5 shows some examples of the data.  

 

Figure 5.5: Three examples of two classes of ECG dataset (left: ‘normal’,right:‘abnormal’.) 

Gun Dataset: Gun dataset consists of two classes of time-series obtained from the 

video surveillance domain, by plotting the movement of a hand with a gun and without 

the gun in every video frame using some image processing techniques (Ratanamahatana 

& Keogh, 2004b). Each class includes 150 instances, and the length of each instance is 

150 data points. Figure  5.6 shows some examples of the two-class Gun dataset. 

 

Figure 5.6: Three sample time-series of two classes of gun dataset 
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Cylinder–Bell–Funnel (CBF): The well-known 3-class CBF dataset contains 900 
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originally proposed by Saito (2000) and then used by many works (J. Lin et al., 2007; 

H. Zhang et al., 2006; X. Zhang et al., 2011). This dataset is one of the most commonly 

used dataset for time-series classification and clustering experiments. This dataset 

includes three types of time-series: cylinder (c), bell (b) and funnel (f). In order to show 

the scalability of MTC, different cardinalities of CBF are generated and used in this 

study. The instances are generated using random functions as follows (H. Zhang et al., 

2006). 

 

            [  𝑏]         

            [  𝑏]                 

            [  𝑏]                 

 5.1 

and 

  [  𝑏]  {
              
          

  5.2 

where t=1,..,128 and  [  𝑏] is the characteristic function.   is drawn from a standard 

normal distribution N(0,1) and cause random amplitude variation in time-series. Some 

random noise inserted in time-series by      which is drawn from a standard normal 

distribution N(0,1). The value of a is drawn uniformly from the range [16; 32] and (b-a) 

is an integer-value drawn uniformly distribution from the range [32; 96]. Since b-a can 

vary from 32 to 96, there is significant temporal variation in the duration of events. 

Moreover, the start of events also varies because of variation of a from 16 to 32. 

Examples of CBF time-series are shown in Figure  5.7. 

 

Figure 5.7: Four samples of each class of Cylinder, Bell, and Funnel (CBF) dataset  
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Control Chart (CC): Control Chart Time-series (CC) is a synthetic dataset proposed 

by Alcock & Manolopoulos (1999) and was used in many researches including 

classification (Geurts, 2001) and clustering (J. Lin, Keogh, Lonardi, et al., 2003; J. Lin 

et al., 2007; X. Zhang et al., 2011). This dataset has six classes and 300 time-series. 

Figure  5.8 depicts three sample time-series of each class where each series is produced 

by:  

      

{
 
 
 

 
 
 

                   

           
   

 
                

                          

                          

                      

                        

  5.3 

Where m=30 and s=2. r, x, g are unifrom random values in the range of [-3,3], [7.5,20], 

and [0.2,0.5] respectievly. K(t) equals to 1 for t>a where a is a uniform random value in 

the range of [20,40]. 

 

Figure 5.8: Three sample time-series of each class of CC 

Moreover, different cardinalities of dataset are used in IMTC. Up to 10,000 records are 

created to show the experiment results. 
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5.3 Analyses of Methods 

Generally, in the clustering of time-series data (especially for the large datasets), there 

are some factors which are important including database type, clustering algorithm, 

distance measurement and dimensionality reduction approach (representation method). 

For example, the type of time-series in some datasets may vary as long, short, frequent, 

noisy, equal length, and etc., or different types of clustering algorithms can be used such 

as partitioning, density based, graph based, and etc. Additionally many dimensionality 

reduction approaches and distance measurements have been developed which can be 

applied in order to reduce the dimensionality of data and calculate the similarity of time-

series. Moreover, for each factor, there are some parameters to be set, which can affect 

the final results of clustering, for example, defining the value of thresholds, number of 

iterations, alphabet size, segments, and etc. As explained in research methodology 

(chapter  3.0), in each step of MTC also, different methods are utilized. Therefore, in the 

following subsections, various algorithms, dimensionality reduction approaches and 

distance measures used in each step of MTC are evaluated and discussed using 

calculating of the quality of clustering across different datasets. All methods are 

analysed step by step. 

5.3.1 Step 1: Pre-clustering (Approximate Clustering) 

In the first step of MTC, SAX is used as representation. Then, a new distance measure 

(i.e., APXDIST) is introduced to calculate the distance among dimensionality reduced 

time-series with Ek-Modes algorithm to perform clustering. In the following 

subsections, all these three approaches are discussed. 

5.3.1.1 Representation Method (SAX) 

Ratanamahatana (2005) had discussed about the quality of time-series clustering and 

stated that representation method is a significant component in the accuracy of 

clustering. Hence, it is shown how dimensionality reduction of time-series affects the 
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quality, by comparing the quality of algorithms with and without dimensionality 

reduction. The following section indicates the problem of overlooking data by showing 

the low accuracy of systems which use dimensionality reduced time-series and 

conventional clustering algorithms. Moreover, the impact of dimensionality reduction 

on accuracy of clustering of time-series data is described by following experiments. 

5.3.1.1.1 Overlooking of Data in Clustering 

As mentioned in Section  1.2, once a dataset is very large, the complexity is very high 

and data cannot fit in the main memory. In this case, sampling or dimension reduction is 

a common solution. That is, researchers use reduction, sometimes reduction to a very 

low resolution, in order to overcome this problem. However, the cost of sampling and 

data reduction is high because of missing out the data. In other words, it leads to 

overlooking of data, and as a result, decreases the quality of clustering. 

In a scenario, let us take a dataset which consists of the time-series which represents the 

average of balance of customers of a bank in each day. The annual or even monthly 

clustering of customers based on their transactions, reveals similar customers (clusters 

of the same customers). Now, if two customers have the same monthly or yearly 

balances, one may put these customers into the same cluster. However, the value of 

transactions in each day or the variation of transactions during the day of these two 

customers may be very dissimilar. Even, one of daily transactions may consist of fraud 

or money laundries which are not discovered by approximating time-series data. As a 

result, overlooking the data may lead to loosing valuable information in data. Here, two 

examples of missing data are shown in the process of representation. 
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Example 1: Figure  5.9 depicts a special case where most of the peaks in a time-series 

are lost during SAX representation. Note that, SAX representation is one of the best 

existing representation methods, as explained in the literature review (Section  2.4.4); 

however, this event is unavoidable. 

 

Figure 5.9: Overlooking of peaks in a time-series in SAX transformation process 

Example 2: Another example is related to the same representation of three different 

time-series of a unique cluster depicted in Figure  5.10. It clearly points out the problem 

of overlooking data in the representation process (while the SAX parameters are the 

same for all three time-series) which leads to constructing inaccurate clusters. It clarifies 

how dimension reduction may lead to putting different time-series in a cluster, or how it 

may lose many important peaks. 

   

Figure 5.10: Three different time-series with similar representation method fall into a cluster 
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To experiment the overlooking data, the average of the qualities of SAX in front of raw 

time-series using different algorithms are calculated. Figure  5.11 shows how 

dimensionality reduction affects the quality. 

 

Figure 5.11: Quality of clustering of time-series represented by SAX across the raw time-series data 

The quality of algorithms shown in Figure  5.11 is based on this assumption that the 

highest resolution of time-series generates the best answer. Although, this chart does not 

imply that the quality of clustering using raw time-series is better than dimensionality 

reduced data, it shows how different it can be. That is, as this diagram shows, if the raw 

data is considered as the highest resolution of the data, then the quality decreases 

utilizing one of the best approaches for representing data, i.e., SAX. As it is observed in 

Figure  5.11 the average accuracy of all algorithms is around 70%. Therefore, it can be 

concluded that quality of clusters is decreased around 30% by average where SAX is 

used as representation in comparison with using raw data.  

To make it more intuitive, the average quality of clustering on all datasets in front of 

ground truth is depicted in Figure  5.12. In this experiment, MINDIST (J. Lin et al., 

2007) with different compression-ratio values of SAX representation are considered, 
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i.e., SAX4, SAX6, and SAX8 (See Section  5.3.1.1.2 for more details about 

compression-ratio parameter).  

 

Figure 5.12: Average quality of SAX representation data in front of raw time-series across all 

datasets 

As the above result shows, first, using a dimensionality reduction method, usually the 

quality of clustering is decreased (in comparison with raw time-series) for many 

datasets (e.g., Adiac, Coffee and Sweedish leaf). Second, using low resolution time-

series does not necessarily decrease the quality for all of the datasets (e.g., Lighting2 

and CBF). Instead, the quality increased in some datasets because of handling shift, 

outlier and noise issues in the process of representation as also was mentioned in other 

studies (Bagnall & Janacek, 2005). Finally, different compression-ratios of SAX, 

generates various qualities of clusters from each dataset. In some datasets, with 

increasing compression-ratios, the accuracy of the clustering improves (e.g., CBF), and 

in another gets worse (e.g., Sweedish Leaf). Therefore, it can be concluded that the 

result of clustering of approximated time-series is not precise (or at least is not reliable); 

sometimes it leads to worse accuracy (which is expected in most representation 

methods) and occasionally better quality. 
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5.3.1.1.2 SAX Parameter Setting 

One of the problems in the representation of data using different approaches is 

determining their input parameters. Generally, removing parameters from a data mining 

task is often a good thing (Keogh, Lonardi, et al., 2004). As mentioned, in the first step 

of the proposed model (MTC), SAX is used as a representation method. However, SAX 

representation also confronts this issue to some extent because it has some parameters to 

be set up. In the following sections, the effect of its parameters, i.e., word size and 

alphabet size, on clustering quality is investigated.  

SAX tries to attack the problem of high dimensionality from two different sides. It 

approximates a time-series in terms of length of sequence by introducing segments 

(word size) and in terms of amplitude by defining the alphabet size. Hence, it needs two 

parameters, one for controlling the granularity (word size or segments) and another one 

for approximating elements (Alphabet size). Determining a good trade-off is not 

possible for the parameters of SAX, because of its dependency to the dataset. 

Accordingly, (Keogh, Lonardi, et al. (2004) suggest an empirical approach to determine 

the best values for these parameters. 

Alphabet size (denoted as ‘a’) is discussed in some studies (J. Lin, Keogh, Lonardi, et 

al., 2003; J. Lin et al., 2007) where authors try to find the best distance measure based 

on the tightness to Euclidean distance. The experimental result shows that alphabet sizes 

are not very critical (which is the strength of SAX), however they suggest choosing an 

alphabet size in the range of 5 to 8.  

Word size or segments, as mentioned, is another SAX parameter. This parameter is 

indicated as compression ratio of representation which gives the user this chance to 

attain the ideal compression/fidelity trade-off for their particular application. Given a 

time-series    {              }, the compression ratio is calculated by:  
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   5.4 

where T is the length of time-series and nSeg indicates the number of segments. In this 

study, different compression-ratios are used from 2 to 8. For the sake of simplicity, 

hereafter, different compression-ratios are shown as SAX2, SAX3,..,and SAX8. 

To find the effect of compression-ratio on clustering accuracy, the quality of clusters 

with different compression-ratio of time-series is investigated. For this experiment, all 

the datasets in UCR are adopted, then, conventional k-Medoid algorithm is applied on 

data with various resolutions, from very low to the highest resolution (raw time-series). 

The quality of solution in front of ground truth is shown in the following chart (Figure 

 5.13). 

 

Figure 5.13: Quality of k-Medoids using SAX in front of ground truth 

Surprisingly, better results are seen in higher compression-ratio (lower segments) for 

some datasets, but not as general. For the datasets which their higher compression leads 

to higher quality, it can be concluded that sometimes there are some noises and outliers 

in time-series which impact on the distance measures and decrease the accuracy. They 
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are mitigated by representation process. It is the main reason that for some datasets, 

lower resolutions, turns to better quality.  

Furthermore, the experiment is repeated for other algorithms as well to support the 

validity of the experiment. In the following charts, namely Figure  5.14 and Figure  5.15 

the quality of clustering algorithm on different resolutions of time-series are 

investigated, and the results are reported in front of ground truth. 

 

Figure 5.14: Quality of hierarchical (Average linkage) clustering of time-series representing by 

SAX in front of ground truth 

 

Figure 5.15: Quality of hierarchical (Single linkage) clustering on time-series representing by SAX 

in front of ground truth 
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As depicted in Figure  5.14 and Figure  5.15, in most of the algorithms, there are various 

changes in different compression-ratios. That is, with increasing of resolution of time-

series, the accuracy of clustering changes around 10% for some datasets. It means that 

compression-ratio of SAX affects the quality expectedly, and it is not very stable in 

front of different ratios.  

5.3.1.2 Distance Metric (APXDIST) 

The distance metric which is used to calculate the similarity between time-series is a 

very important and essential part of time-series clustering. As mentioned in the 

methodology chapter (chapter  3.0), the distance measure designed for this step is 

APXDIST (see  4.3.3 for details of design). This distance measure was suggested (for 

answering to the first research question of this study) in order to improve the accuracy 

of similarity measurement between approximated time-series. In this section, APXDIST 

measure is evaluated. 

In the first experiment, the UCR datasets are again considered to test the new distance 

measure, APXDIST, in front of MINDIST and ED. MINDIST is the measure which is 

compatible with SAX and was suggested for indexing purpose (J. Lin et al., 2007). ED 

is the measure which is used in related works (Lai et al., 2010) for calculating the 

Euclidean distance between two time-series representing by SAX. To make a 

comparison, at first, the dataset is transferred into discrete space (SAX). Then, three 

distance matrices are made by each distance measure (i.e., APXDIST, MINDIST and 

ED). At that point, the difference between the obtained distance matrices and the 

distance matrix calculated by Euclidean distance (using raw time-series) is computed as 

tightness of each metric to Euclidean distance (ED). The tightness of the metrics, for 

example APXDIST, to Euclidean distance is calculated by the following equation. 
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where  ̂  is the SAX representation of time-series   . The average tightness of all UCR 

datasets over the cross product of the alphabet [5-8] and compression-ratio [4-8] is 

shown in Figure  5.16. The bigger tightness indicates more accurate approximation. 

 

Figure 5.16: The tightness of APXDIST to the Euclidean distance 

As the results show, APXDIST is closer to Euclidean distance (on raw time-series) 

rather than the other two approaches for most of the datasets. However, in some cases, 

Euclidean distance works better on time-series represented by SAX (e.g., Lighting7). 

These cases, can occur once the time-series in a dataset has a high frequency with many 

peaks. As a result, it may cause a decrease in normalized distribution property between 

the symbols which is the pre-assumption in SAX parameters. 

Moreover, to show the behaviour of different distance metrics in front of ground truth, 

they are tested in front of ground truth. In this experiment, SAX representation (SAX6) 

is used against different clustering algorithms (k-Means, hierarchical with average 

linkage, hierarchical with single linkage, k-Modes and k-Medoids). The average quality 

of clustering in front of the ground truth is shown in Figure  5.17.  
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Figure 5.17: The average quality of clustering in front of the ground truth 

Based on the results obtained on different datasets, it is obvious that APXDIST works 

better than other approaches in most of the datasets. For example, in synthetic datasets, 

MINDIST works better than ED. Similarly, APXDIST also works fine. However, in the 

case where ED is working better, such as on Coffee dataset, APXDIST also works 

better than MINDIST. As a result, it can be concluded that in general, APXDIST is 

more stable than others exploiting the strengths of ED and MINDIST. Although, the 

effect of these distance measures on quality of clustering is not very high, it can be 

important in large datasets (high cardinality datasets) and sensitive datasets. Moreover, 

in the next section it is shown how APXDIST can improve the quality using an 

appropriate clustering algorithm. 

5.3.1.3 Algorithm (Ek-modes) 

The proposed algorithm for symbolic representation is the Ek-Modes explained in 

Section  4.3.4. Here, in the first attempt, the quality of clustering in front of different 

algorithms is calculated to investigate the influence of different algorithms on datasets, 

which is also the answer to the second research question of this study. The quality of 

clustering are measured in this experiment using APXDIST in front of k-Means, k-
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Mediods, and hierarchy algorithms. In this experiment, SAX8, SAX6 and SAX4 are 

used as representation methods, and APXDIST has been used as a distance measure. 

The average of 100 times run is shown in Figure  5.18. 

 

Figure 5.18: Average quality of clustering of time-series represented by SAX representation vs. 

ground truth (GT) on UCR dataset (TRAIN set) 

The result reveals that generally Ek-Modes algorithm has relatively better results than 

other algorithms, and it is a good choice as a superior algorithm for pre-clustering. 

However, the average quality is calculated and is depicted graphically by a box plot as 

depicted in Figure  5.19. 
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Figure 5.19: Quality of different algorithms in the first step (across GT)  

As depicted in Figure  5.19, the average quality shows different accuracies for all 

algorithms against ground truth. The experiment shows that the quality of approximate 

clustering by hierarchical and partitioning algorithms is relatively the same against 

ground truth. However, totally Ek-Modes clustering has better results when the 

dimension of time-series is reduced. Considering this concept that Ek-Modes algorithm 

is of type of partitioning algorithm, it exploits from high speed (Huang, 1998) in 

comparison to other algorithms such as hierarchical algorithms. Hence, the best choice 

for the approximation clustering (i.e., generating pre-clusters) in the first step of MTC is 

the Ek-Modes algorithm.  

5.3.2 Step 2: Purifying and Summarization 

The objective of second step of MTC is revising the pre-clusters by splitting them into 

sub-clusters. The output of this step is some pure sub-clusters represented by 

prototypes. This action needs high (higher in comparison with first step) resolution of 
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less but purer sub-clusters, that is, more reduction and less error rate (see Section 

 4.4.2.2). In the following subsection, the purity and the amount of reduction of data are 

evaluated. 

5.3.2.1 Reduction vs. Purity 

As mentioned, the objective of this step is to obtain the purest sub-clusters and the least 

number of sub-clusters. The purest cluster is the one where its members belong to the 

same classes of ground truth. To achieve to this objective, PCS was designed in Section 

 4.4.2. The purity of a sub-cluster depends on the value of affinity threshold,  , in the 

PCS algorithm (in the case that it is not dynamic). The higher   is, the purer sub-

clusters are gained. In contrast, finding inaccurate sub-clusters leads to inaccuracy in the 

final results. However, the cost of purer sub-clusters is the higher number of sub-

clusters. Of course, the sub-clusters with only one time-series are the purest clusters. 

However, the cost of merging a lot of time-series in the last step is expensive. Hence, it 

needs a trade-off between the purity and number of sub-clusters. The following 

experiments verify that the proposed method in Section  4.4.2, i.e., PCS, can reduce the 

size of data but not reduce its effectiveness greatly.  

A parameter is defined as reduction-rate to find the best  . As mentioned, in the 

proposed model (MTC), each pre-cluster is broken down into purer sub-clusters. Given 

 𝐶  as the number of sub-clusters, then, the reduction-rate of second step is defined as: 

     𝑒      𝐶    5.6 

where     𝑒 is reduction-rate and  𝐶 /n is ratio of the size of sub-clusters to the size of 

dataset. Different values of   are used (in the second step of MTC model) to show how 

reduction-rate changes. For example in front of   =0.7, the result is depicted in Figure 

 5.20. 
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Figure 5.20: Reduction-rate in the second step of MTC against the number of clusters for   =0.7 

Figure  5.20 reveals that for some datasets, very good reduction is gained, e.g., Wafer, 

but not for all. How much purity is obtained per reduction of data? Corresponding to 

reduction-rate in the second step, the purity of sub-clusters against the ground truth is 

calculated. Here, purity of sub-clusters are calculated based on the number of items in 

the same sub-cluster that belong to the same class (ground truth) (Van Rijsbergen, 

1979) as it was discussed in Section  2.7.1. For example, in the case that   =0.7 was 

chosen as affinity threshold for PCS, then the purity of first and second steps are 

depicted in Figure  5.21. 

 

Figure 5.21: Purity of first step and second step for   =0.7 
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The results in Figure  5.21 show the purity of different datasets in the first and second 

step clustering by MTC using      . As an example, for the first dataset (50words 

dataset), purity of the obtained clusters in the first step is around 50%, but the purity of 

sub-clusters in the second step is increased by around 90%. However, it should be 

noticed that the number of clusters in the second step is more than first step which is 

around 60% of the whole number of time-series in dataset (see Figure  5.20). In Figure 

 5.22, the proportion of reduction-rate and purity of sub-clusters in the second step is 

illustrated using      . 

 

Figure 5.22: The reduction-rate and purity of the second step for  =0.7 

Figure  5.22 reveals that in some of the datasets, the effect of reduction on purity is very 

high (e.g., Adiace dataset), and in some of the datasets is not more than 10% (e.g., 

50words dataset). Therefore, it can be concluded that raising the purity of the second 

step clusters, increases the number of sub-clusters, but with different ratios. The results 

in this chart is related to      , which increases the purity of pre-clusters very much 

(in comparison with the first stage) but it reduces the number of instances a bit. In 

MTC, a new dynamic   was introduced for PCS algorithm which can find a good trade-

off between reduction-rate and purity using the approximate affinity between time-

series in pre-clusters (see Section  4.4.2.2 for more details). Therefore, the experiment 
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should be repeated for some   to show the effectiveness of the proposed dynamic  , so 

called      .  

To find a good trade-off between the reduction-ratio (    𝑒  and purity of sub-clusters 

(  𝐶), the objective function is defined as the quality-gain-ratio: 

     
 𝐶      𝑒

 
  5.7 

In order to show the effectiveness of   in PCS, the experiment is carried out for 

  [       ] across all datasets. The result is shown in Figure  5.23. 

 

Figure 5.23: The QGR of second step per different values of   

This chart shows that       is outperforming (by average) in comparison with static 

values of  , providing a good trade-off between quality and reduction-rate, and at the 

same time, it is dynamic. The dynamic characteristic of PCS is very important because 

it gives a high QGR for most of datasets but other static thresholds gives a high QGR 

only for a few datasets (e.g.       is very good on Yoga and Two pattern, but it is 

failed for other datasets). However, if the high quality is desirable in a specific dataset, 

higher   (defined by user) can result in more accurate clusters. Figure  5.24 shows the 
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QGR for       and the proportion of the purity and reduction-rate for different 

datasets. 

 

Figure 5.24: PCS approach reduction-rate in front of gained purity 

Figure  5.24 shows QGR of PCS using dynamic  . As the chart reveals, a good trade-off 

between reduction-rate and purity is obtained without parameter settings. That is, in 

PCS algorithm, the affinity threshold is adjusted dynamically regardless of 

characteristics of time-series or size of data which is of great important. To show how 

different   can affect the purity and reduction-rate of second step clusters, the 

experiment is shown specifically for different   on CBF dataset as depicted in Figure 

 5.25. 

 

Figure 5.25: The proportion of reduction-rate in front of quality for different values of   
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As Figure  5.25 shows, PCS provides better QGR in comparison with other    values. 

That is, using this approach, a good trade-off between quality and reduction-rate is 

gained dynamically. All these experiments were carried out on TRAIN set of UCR 

dataset which is not very large. However, the effect of PCS is more obvious on large 

datasets such as Wafer dataset. Hence, the experiment was repeated on CBF with 

different cardinalities to show the effect of PCS on large time-series. As expected, the 

PCS works very well on large datasets as it is depicted in Appendix F. 

Therefore, using a post-clustering algorithm, pre-clusters are revised in such a way that 

they are broken into purer clusters and then they are represented by prototypes. It is the 

answer to third research question of this study. Moreover, comparing prototypes with 

the original data, it is understood that using this approach, the data size is reduced 

dynamically based on the characteristics of time-series. 

5.3.3 Step 3: Merging 

As mentioned in Section  4.5, the objective of the third level of MTC is merging the sub-

clusters represented by their prototypes (representatives). In the following section, the 

distance metric used for calculating the distance between prototypes is evaluated, and 

then the utilized scheme for merging are discussed. 

5.3.3.1 Distance Measurement 

Prototypes of sub-clusters are high-resolution time-series which precisely represent the 

sub-clusters. As explained in Section  4.5.1, for similarity calculation between two 

prototype (which are high resolution time-series), DTW is used as an accurate distance 

measurement. At first, the quality of clustering of different datasets using ED and DTW 

is investigated as two of the most-used distance measures in the literature (as discussed 

in Section  2.5.1). 
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Figure 5.26: Quality of clustering in front of ED and DTW 

Considering the results shown in Figure  5.26, expectedly, DTW is a better choice in 

comparison with ED in terms of quality because of handling shifts in calculating the 

similarity. The experiment shows that it is true in large datasets (see Appendix D). This 

improvement in quality is at the expense of high complexity of using DTW. Although 

the number of prototypes are small in comparison with original data, DTW can be used 

with some constraints (warping window) to mitigate the high complexity of distance 

measure as explained in Section  4.5.1. There is a range of [ED, DTW(10%), 

DTW(20%) , .., DTW(90%), DTW(100%)] as different warping windows from ED (as 

upper bound of DTW) to DTW(100%) (as complete DTW), i.e.,      [      ]. In a 

study (Ratanamahatana & Keogh, 2005), the authors investigate the required percentage 

of warping window in DTW calculation for different datasets. Their results show that it 

is different and depends on the nature of dataset. Hence, to achieve the maximum 

accuracy, complete DTW should be calculated for some dataset. 

5.3.3.2 Merging Scheme 

As explained in research methodology, at the third step of MTC, an arbitrary clustering 

scheme (e.g., hierarchical or partitioning) can be used depending on the nature of the 

dataset. In order to experiment MTC, k-Medoids, hierarchical by single linkage, 
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hierarchical by average linkage, and the arbitrary shape cluster approach is implemented 

as merging scheme for the third step. In Section  4.5, it was shown that using multi-

prototype and a customized hierarchical algorithm, merging can be performed for 

arbitrary shape clusters. In the following figures, two different datasets were chosen to 

show the effect of arbitrary shape clustering (see Figure  5.27 and Figure  5.28). In this 

experiment, MTC is performed using different schemes for the third step to show its 

performance.  

 

Figure 5.27: Using schemes of merging on Trace dataset 

Figure  5.27 shows that if the size of clusters is equal or comparable size (e.g., Trace 

dataset), the clusters are globular (spherical) and the partitioning clustering is a good 

choice.  

 

Figure 5.28: A sample of gained accuracy using MTC with the arbitrary shape scheme in the third 

level. 
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However, as Figure  5.28 shows, in the case that clusters are of different sizes, in most of 

cases arbitrary shape clustering outperforms. The result of running arbitrary shape 

clustering on all datasets is reported in Appendix I. 

5.4 Final Results 

In this section, MTC is applied on all datasets and the results are reported, and then, in 

the next chapter, they are visualized, compared and discussed. However, before running 

clustering algorithm, providing a fair condition, each instance of the dataset is 

normalized. That is, each time-series changes to have zero mean and have a standard 

deviation of one. Indeed, z-normalization improves substantially the clustering accuracy 

irrespective of the chosen distance measure. The formula for normalization is given in 

Section  4.3.1. To report the result of our proposed model (MTC), much iteration is 

performed with various parameter settings. The parameter used to report the final result 

is depicted in Table  5.2.  

Table 5.2: Setting up of parameter values of MTC to generate the experimental results 

Step Parameter Description Range 

1 SAX compression-

ratio 

(                  

The value of compression-ratio for the SAX 

representation method in the first step 1 of MTC 

[4-8] 

2 Resolution Resolution of time-series  SAX2,Raw time-

series 

3 DTW warping 

window (    ) 

The DTW warping window as a constraint for 

speed up calculation  

75%, 100% 

3 

 

Algorithm scheme The type of clustering algorithm for the third step  

 

Hierarchical (average, 

single linkage), 

Partitioning (k-

Medoids) 

3 Cluster numbers 

(k) 

In particular, k is defined based on the number of 

clusters in labelled dataset (user definition). 

- 

 

In the experiment results reported in this section, the range of values (shown in Table 

 5.2) is used as the parameter values of MTC in applying on all datasets. A parameter 
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study also is performed to determine the sensitivity of MTC on the above set of 

parameters by using SAX’s                  [     ] in Section  6.4.  

As mentioned, the measure of quality in this experiment is the average value of criteria 

discussed in Section  2.7.1.  For different parameter combinations, the average quality is 

reported in Table  5.3. The quality reported in each experiment, is the average value of 

external criteria discussed in Section  3.2.7. The result and accuracy of MTC on each 

step are shown for some datasets in detail in the next chapter. 

Table 5.3: The result of MTC in comparison with conventional algorithms 

           Algorithm 

 

Dataset 

k-Medoids  MTC  

k-Medoids 

Hier 

(Avg)  

MTC 

Hier 

(Avg) 

Hier 

(Single)  

MTC 

Hier 

(Single) 

 50words  0.499 0.615 0.506 0.578 0.29 0.343 

 Adiac  0.345 0.498 0.278 0.443 0.258 0.284 

 CBF  0.44 0.836 0.383 0.623 0.347 0.328 

 Coffee  0.373 0.628 0.384 0.453 0.392 0.422 

 ECG200  0.481 0.44 0.523 0.435 0.476 0.451 

 FaceAll  0.392 0.587 0.291 0.405 0.194 0.218 

 FaceFour  0.549 0.681 0.576 0.438 0.408 0.392 

 FISH  0.371 0.486 0.303 0.366 0.231 0.231 

 Gun_Point  0.318 0.363 0.41 0.42 0.377 0.388 

 Lighting2  0.388 0.469 0.467 0.498 0.48 0.485 

 Lighting7  0.42 0.598 0.514 0.49 0.322 0.349 

 OliveOil  0.608 0.688 0.557 0.687 0.557 0.712 

 OSULeaf  0.33 0.386 0.271 0.313 0.255 0.261 

SwedishLeaf  0.39 0.513 0.264 0.35 0.193 0.21 

 synthetic_control  0.65 0.865 0.686 0.72 0.551 0.587 

 Trace  0.517 0.764 0.551 0.745 0.565 0.734 

 Two_Patterns  0.231 0.723 0.228 0.639 0.254 0.846 

 wafer  0.491 0.532 0.507 0.51 0.547 0.547 

 yoga  0.333 0.36 0.353 0.368 0.389 0.39 
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As Table  5.3 shows, the quality of MTC is superior for most of datasets using different 

schemes of clustering. The results (which are discussed further in Section  6.4) shows 

that MTC is not very sensitive on the mentioned parameters, and MTC can generate 

accurate clusters for all of these combinations of values for distance method, and 

merging algorithms. Moreover, the maximum accuracy for each scheme of MTC is 

shown in Appendix G. The results are discussed more in the next chapter by comparing 

with other algorithms. 

5.5 Chapter Summary 

In this chapter, the spectrum of datasets used for the experiment was depicted. The 

chosen datasets for experiment are from various domains and different sizes. In the next 

part of the chapter, each step of MTC was analysed. In each step, the designed 

method/methods in the previous chapter were evaluated separately using different 

datasets which are also advantageous for other researchers. Strength and scalability of 

SAX were explained. It was shown that while SAX is very scalable, it causes 

overlooking in some datasets. Then, APXDIST was evaluated by comparing with other 

distance measures. It was justified why APXDIST works better for dimensionality 

reduced time-series. For the first time, k-Modes algorithm was used on time-series 

represented by symbolic representation which leads to more stable results in comparison 

with other partitioning and hierarchical methods used in this domain. Then purifying of 

approximated clusters was discussed. It was shown how purifying by PCS can split a 

cluster into pure sub-clusters. The process of purifying was exposed numerically. It was 

shown that using affinity concept, the size of time-series data can be reduced without 

much violating the accuracy. Finally, sub-clusters were merged by various algorithms. 

In different runs, it was shown how a user can choose different schemes such as 

partitioning or hierarchical algorithm to merge the prototypes in the third step. The final 
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results of running all steps of MTC were reported which show its superiority in 

comparison with existing methods. This will be discussed more in the next chapter. 
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6.0 EXPERIMENTS EVALUATION 

6.1 Introduction 

One of the major obstacles in the data mining domain is the difficulty of evaluation of a 

clustering algorithm without taking this context into account: why does a user cluster 

his data in the first place, and what does he want to do with the clustering afterwards? 

Answering these questions widely depends on the domain of the problem in hand. 

However, as explained in the research methodology, some common approaches are 

taken here to evaluate the model. Essentially, the performance of a time-series 

clustering is evaluated with some parameters. For the proposed clustering model, MTC, 

the following parameters are used for evaluation: 

1. Accuracy evaluation: The quality of the final clusters according to the ground 

truth 

2. Scalability evaluation: Execution time and memory usage of algorithm 

3. Sensitively evaluation: Important parameters that affect the clustering results 

In this chapter the effectiveness of the proposed model (MTC) will be validated with 

performed experiments. In addition, the accuracy of the final results of the model 

(MTC) is evaluated, and compared with other widely used approaches. Although the 

objective of this thesis is enhancing accuracy of time-series clustering, the scalability 

and sensitivity of the MTC are evaluated to support the claim of the practicality of the 

method. It is shown that the proposed approach (MTC) leads to clustering of time-series 

effectively and efficiently as well.  

6.2 Accuracy Evaluation 

One of the challenges in time-series clustering is evaluating the quality of clustering 

results which is not a trivial task. It is mostly due to its unsupervised learning manner 

because of absence of ground truth (actual clusters). Whether the ground truth exists or 
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not, Visualization and Scalar measurement methods are two major techniques for 

evaluation of clustering quality (also is known as clustering validity) (Hathaway & 

Bezdek, 2003). In this study both methods are used to evaluate the accuracy of MTC in 

the following sections. 

6.2.1 MTC Visualization 

In this section, all three steps of MTC are depicted using two sample datasets for more 

intuition. As mentioned in methodology chapter, at first, approximate clustering is 

applied on datasets (using APXDIST), and then clusters are revised based on similarity 

in time in the second step (using ED). Finally, the prototypes are merged in the third 

step based on similarity in shape using DTW.  

In order to show the results visually, two datasets of the UCR repository (from TRAIN 

collection) are used in this experiment (the CBF and Coffee datasets). The results of 

clustering of the CBF and Coffee datasets are shown in the first step of MTC in Figure 

 6.1 and Figure  6.2. In this experiment, CBF dataset includes 30 instances. SAX6, 

APXDIST and k-Modes are used for clustering. 

 

Figure 6.1: k-Modes clustering of time-series represented by SAX6 for CBF dataset (first step) 
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Figure 6.2: k-Modes clustering of time-series represented by SAX6 for Coffee dataset (first step) 

Figure  6.1 and Figure  6.2 show that quality of clustering is low. For example, in CBF 

case, two time-series of second cluster has been wrongly combined with the first cluster. 

The main reason for low quality in this step is because of overlooking of data due to use 

of dimensionality reduction, and ignoring the shifts in the time-series utilizing a 

distance method which finds time-series which are similar in time. 

Then, the second step of MTC is applied on sample datasets. The clustering solutions 

depicted in Figure  6.3 and Figure  6.4 corresponds to the second step of MTC clustering 

of CBF and Coffee dataset. For each dataset, the number of clusters shown in Figure  6.3 

is more than the genuine clusters (ground truth). The additional clusters are the ones that 

contain outlier time-series or time-series related to other clusters and will be merged in 

the next step.  
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Figure 6.3: The clustering process in which MTC is able to find the genuine (pure) sub-clusters in 

the CBF dataset in the second step 

 

 

Figure 6.4: The clustering process where MTC is able to find the genuine sub-clusters in Coffee-

train in the second step 
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Figure  6.3 and Figure  6.4 shows that MTC is able to identify the genuine clusters in 

both datasets. That is, MTC finds the most similar time-series in time in the second step. 

In the case of CBF (Figure  6.3), MTC finds 13 clusters, some of them correspond to the 

genuine clusters in the dataset, and some of them correspond to rare time-series 

(outliers). In the case of coffee-train (Figure  6.4), MTC finds seven clusters, each one 

corresponding to a genuine cluster in the dataset. For each cluster, a prototype is made 

which represents the whole time-series in the sub-clusters. 

In the following figures, Figure  6.5 and Figure  6.6, the last result of CBF dataset 

containing 30 time-series and coffee dataset containing 28 time-series is shown, using 

the proposed model. In these examples, k-Medoids is utilized as merging scheme in the 

third step. 

 

Figure 6.5: Clustering of time-series in CBF dataset using MTC 
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Figure 6.6: Clustering of time-series in Coffee dataset using MTC 

As these experiments illustrate, MTC finds all the correct clusters. Similarly, MTC is 

very effective, and can make very high quality clusters for the Cofee dataset. Therefore, 

using these experiments, it was shown visually how MTC achieves very accurate 

clusters. In the next section, the accuracy of clustering is calculated objectively. 

6.2.2 MTC Accuracy 

In this experiment, accuracy of MTC is compared objectively with labelled time-series 

as ground truth. As mentioned before, nine clustering evaluation criteria are used for 

evaluating of time-series clustering algorithms, i.e., Jaccard, RI, ARI, F-measure, MNI, 

CSM, FM, Purity and Entropy. The details of each index were explained in the literature 

review in Section  2.7. Each of these clustering accuracy criteria has its own strengths 

and weaknesses in measuring quality, and there is no compromise of which measure is 

superior to other measure in the data mining community. Hence, to avoid biased 

evaluation, all of these measures (which all are between 0 to 1) are used and a 

conclusion is drawn based on the average of these measures. In this experiment 19 

datasets from UCR repository are used to calculate the accuracy of MTC. For 

hierarchical merging of prototypes, “average” linkage and “single” linkage are used in 

this study as examples of hierarchical clustering group. The k-Medoids is used to show 

the results of partitioning clustering. k-Means is not used because of its weakness in 

finding the prototypes while similarity in shape is desirable (see Section  2.8.2 for more 
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details). Moreover, the introduced method for creating the arbitrary shaped clusters is 

used to merge the clusters with more than one prototype. Accuracy of MTC is shown in 

Figure  6.7. In this figure, the quality of MTC with different schemes for merging step is 

illustrated. In this experiment, the compression-ratio of SAX in the first step of MTC 

varies in each run from between 4 to 8. The random selection of initial clusters (in Ek-

Modes) is addressed here by multiple runs of MTC to avoid obtaining the results by 

random chance (the algorithm was run 100 times), and the results are evaluated in front 

of ground truth. 

 

Figure 6.7: Clustering accuracy of MTC in front of ground truth using different schemes on 

various datasets 

The results show that the accuracy of MTC is relatively high using all merging methods. 

However, in view of the classification results in UCR repository, it may seem that the 

results are not very significant or are not very accurate. For example, most of 

classification methods achieve up to 95% accuracy for all these datasets. Nevertheless, 

it should be considered that clustering is an unsupervised approach and classification is 

supervised. Therefore, clustering methods cannot often achieve the same accuracy of 

classification methods. Usually, clustering accuracy is lower (much lower) than 
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classification because it does not have training phase with train data and because of the 

random initialization of centroids. Therefore, to show the improvement of accuracy in 

clusters, the obtained results are compared with some other partitioning or hierarchical 

clustering of time-series data. 

6.2.3 Comparing MTC with Partitioning Clustering 

In this section, the results are compared with different methods of partitioning 

clustering. At first, k-Medoid is chosen which has been shown to be effective in finding 

clusters in time-series datasets (see Section  2.8.2). The k-Medoid is preferred to provide 

a fair situation for clustering of data in both conventional clustering and MTC. 

In the beginning, raw time-series is taken into account as highest resolution. Although 

raw time-series cannot be used on the large time-series datasets, because of its high 

complexity problem (in real world problems), and as it usually contains outliers, the raw 

time-series is used ideally as input for comparison. To calculate distance between time-

series data, ED and DTW are used as distance metric. In Figure  6.8, quality of MTC 

approach in front of quality of k-Medoids on raw time-series is shown. It is the result of 

100 runs on the same datasets. Similar compression is also reported based on the purity 

measure (see Appendix E) to compare with some rival works. 
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Figure 6.8: Quality of MTC approach in front of standard k-Medoids on raw time-series  

First, using raw time-series and Euclidian distance, i.e., k-Medoids(Raw-ED), MTC 

cannot find better clusters for Coffee, ECG, and Olive oil datasets, but it was able to 

find the right clusters for remaining 13 datasets. In this experiment, k-Medoids was 

applied on raw time-series. Raw time-series have quite good quality in this sense that 

they are not overlooked or approximated by representation methods. It is the point that 

is used to justify the cases whose quality of k-Medoids is better in comparison with 

MTC (e.g., Coffee, ECG, and Olive datasets). These datasets include time-series which 

are usually either very similar in time or their dissimilarities are mostly in amplitude 

(e.g., the samples of time-series of coffee and olive datasets depicted in Appendix J). 

Moreover, looking at dataset in the Table  5.1, it is understood that the size of these 

datasets (Coffee, ECG, and Olive) is relatively small (below 100 instances) which 

decrease the effect of using representatives in the MTC. That is, prototypes are 

representing only a few time-series, and the overlooking of data in making 

representations is more costly than increasing the reduction-rate (see Section  5.3.2.1) 

and handling shifts in time-series. However, in the most of the cases (in contrast with 

using DTW and MTC), k-Medoids(Raw-ED) has failed to find the accurate clusters 
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because of existing noise and shifts in time-series of other datasets which is very usual. 

That is, existing noise and shifts in the raw time-series directly influence similarity 

measure (ED), and so, leads to decrease the accuracy of k-Medoids. It would be even 

worse in k-Means because of the effect of the prototypes (centroids) on inaccuracy 

which is more obvious there. Therefore, MTC outperforms k-Medoid(Raw-ED). 

Second, as it is expected, using raw time-series and DTW, i.e., k-Medoids(Raw-DTW), 

conventional k-Medoids works better in comparison with clustering using Euclidian 

distance, i.e., k-Medoids(Raw-ED). It is because of the strength of DTW in handling 

shifts in time-series. However, MTC is still superior to k-Medoids(Raw-DTW) on some 

datasets. It is because of the mechanism of using a prototype of similar time-series 

instead of the original time-series which mitigates the effect of noises and outliers in 

time-series datasets while DTW is sensitive in front of outliers (because in DTW, all 

points have to be matched). Moreover, using raw time-series and DTW (i.e., k-

Medoids(Raw-DTW)), is not a fair comparison because in the real world, it is not 

practically feasible due to its very high complexity. That is, just to calculate the 

confusion matrix (needed for clustering), it needs N(N-1)/2 distance calculation, where 

N is the number of time-series. Additionally, considering the length of the time-series in 

the dataset as d, the number of running the instructions to calculate a distance measure 

for a pair of time-series is   . As a result, the complexity of only the distance matrix 

(not the whole clustering process) equals to            which is very high. For 

example, in the Wafer dataset (from TRAIN set), given N=1000 and d=152, the number 

of executions of instructions is 11,540,448,000. However, the same process using MTC 

is around 177,084,440 (with SAX4 and reduction factor=90%, see Section  6.3 for more 

details). As a result, MTC is superior to k-Medoids(Raw-DTW). 

Based on literature review, most of the studies about clustering of time-series use a 

representation method to reduce the dimension of time-series before performing 
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clustering (see Section  2.8). Therefore, in the next experiment, as a fair comparison, the 

raw time-series are represented by SAX, and the MTC is compared in front of 

dimensionally reduced time-series. However, because SAX accuracy itself depends on 

the compression-ratio value, to provide also fair conditions, the raw time-series (for all 

datasets) are represented using three different compression-ratios (                 

[     ]). Then, all datasets are clustered utilizing k-Medoids algorithm. As a result, for 

each dataset, mean of three accuracies is calculated as average accuracy of k-Medoids. 

Likewise, as MTC also can accept different resolutions in the first step, the same 

resolutions have been used for MTC. The mean of accuracies is considered as the 

quality of clustering of data using MTC. The following chart shows the comparison of 

average quality of k-Medoids with the average accuracy of MTC which are compared 

against the ground truth (see Figure  6.9).  

 

Figure 6.9: Quality of MTC (k-Medoids) in front of ground truth for UCR dataset 

As Figure  6.9 shows, as expected, the accuracy of MTC is much better than k-Medoids 

for all datasets. Moreover, the maximum quality has been calculated for k-Medoids and 

the result is reported in Appendix G. It is the proof of the researcher’s claim that the 
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MTC model can outperform the conventional algorithms which use dimensionality 

reduction approaches for clustering purpose.  

6.2.4 Comparing MTC with Hierarchical Clustering 

In this section, accuracy of MTC is compared with hierarchical clustering algorithms. 

Hence, hierarchical scheme is utilized in the third step of MTC. In the case that a 

hierarchical clustering algorithm is used as merging scheme for the third stage of MTC, 

a dendrogram is produced of possible clustering solutions at different steps of 

granularity. Because merging is on prototypes of each sub-cluster which are small (in 

comparison with original data), it is very easy to visually show the hierarchy of clusters 

which is very advantageous. For each dataset, two different clustering solutions are 

experimented, i.e., Hierarchical clustering with average linkage and single linkage. 

At first, the conventional hierarchical clustering is experimented on the CBF dataset 

(from TRAIN set). In this experiment time-series are transformed to SAX4 

representation. Figure  6.10 shows the generated dendrogram using hierarchical 

clustering (average linkage) of CBF dataset. 

 

Figure 6.10: Dendogram of hierarchical clustering of CBF using average linkage 
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As it is seen, in this clustering solution (Figure  6.10), hierarchical clustering merges 

clusters wrongly. Hierarchical clustering has failed to select the correct pair of clusters 

to merge them together, and as a result, the red-colored time-series and green-colored 

time-series are merged in the first and second clusters. Table  6.1depicts the quality of 

final clustering result.  

Table 6.1: The quality of wrong clustering of CBF using Hierarchical clustering by average linkage 

and SAX4 

RI ARI Purity CEntropy f-measure Jacard FM NMI CSM Hier(Linkage.Avg) 

(SAX4) 

0.55 0.09 0.53 0.2 0.71 0.28 0.45 0.23 0.46 0.39 

 

In contrast, a successful experiment made from MTC methodology is shown in the 

following. At first the result of MTC is depicted in the first step where k-Modes and 

SAX4 should be used to generate pre-clusters. However, to provide exactly the same 

condition, the pre-clusters generated in the conventional hierarchical clustering are 

reused here as depicted in Figure  6.11. Actually, this clustering solution corresponds to 

the earliest dendrogram where the hierarchical process failed to merge sub-clusters 

which belong to two different classes (better pre-clusters are made using k-Modes as 

experiments also shows). 

 

Figure 6.11: Pre-clustering of the time-series related to CBF made by hierarchical clustering 

Then the pre-clusters are refined in the second step. Figure  6.12 shows the process of 

making sub-clusters from pre-clusters.  
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Figure 6.12: Revising pre-clusters: generating the sub-clusters 

As Figure  6.12 represents, pre-clusters are broken into the sub-clusters of similar time-

series in time. It is the result of applying PCS on pre-clusters where it purifies the 

clusters (see Section  4.4.2 for more details). As it is shown, all sub-clusters in this 

example are quite pure. Consequently, for each sub-cluster a prototype is made which 

represents the whole sub-cluster and this is depicted in Figure  6.13. 
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Figure 6.13: Selecting a time-series as the prototype of a sub-cluster 

At last, using the hierarchical scheme, the prototypes are clustered in the third step. The 

result is clusters of prototypes which are made based on the similarity in shape. 

 

Figure 6.14: Third step of MTC: Merging prototypes 

As Figure  6.14 shows, hierarchical clustering is performed only on the provided 

prototypes which are less than the original data. As a result, calculating of similarity in 
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shape (which is very costly) is carried out only on a few sets of time-series. Then the 

prototypes are replaced through mapping activity as it is illustrated in see Figure  6.15. 

 

Figure 6.15: The final result of MTC on CBF dataset 

As Figure  6.15 shows, using this approach, a high accuracy (even up to 100%) can be 

obtained in some datasets. To show how effective is this approach, the proposed model 

is applied on different datasets. The following diagram (Figure  6.16) shows the result of 

MTC clustering by the hierarchical scheme with average linkage. 
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Figure 6.16: Average quality of MTC approach in front of running hierarchical clustering (average 

linkage) on dimensionally reduced time-series.  

As the results in Figure  6.16 shows, the accuracy of MTC for most of the datasets 

outperforms the conventional hierarchical algorithm using the average linkage. 

Hierarchical clustering using single linkage also is a well-known clustering algorithm 

that is good at handling non-elliptical shapes but however, it is sensitive to noise and 

outliers (Tan et al., 2006). Figure  6.17 shows the result of running MTC where 

hierarchical clustering with single linkage is used. 

 

Figure 6.17: Average quality of MTC approach in front of running hierarchical clustering (single 

linkage) on dimensionally reduced time-series.  
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As expected, in this approach also MTC is outperforming the single linkage for most of 

the cases. To sum up, it is understood that using MTC and hierarchical schemes, the 

prototypes of time-series can be clustered which generate a dendrogram which is very 

useful for data structure understanding. Moreover, as it was shown for partitioning 

scheme, in hierarchical scheme also, approximated sub-clusters, has a less destructive 

effect on the accuracy of the final clusters compared with the use of approximate time-

series, and generates more accurate clusters than them (i.e., approximate time-series). 

Therefore, user does not need to reduce the dimension of time series to a high extend, 

and as a result, the data is not overlooked in the process of clustering. 

6.2.5 Comparing MTC with Multi-step Models (Rival Models) 

One of the novel works which is near to the proposed model in this study is a two-level 

approach proposed by Lai et al. (2010), so called 2LTSC, which was discussed in the 

literature review (Section  2.8.6). In this work, SAX transformation is used as a 

dimension reduction method and CAST as clustering algorithm in the first level. In the 

second level, to calculate distances between time-series, Dynamic Time Warping 

(DTW) has been used for varying length data, and Euclidean distance for equal length 

data. To compare 2LTSC with MTC, the fair conditions are taken. First, both models 

are applied on the similar datasets from the UCR repository as benchmark dataset. 

Second, the 2LTSC works with CAST algorithm where the number of clusters is 

determined indirectly by a threshold. Hence, after running the 2LTSC, the similar 

number of clusters (generated by 2LTSC) is used also for MTC. Third, similar 

parameters for SAX representation are used to generate the results. Four, because 

2LTSC is very sensitive to threshold parameter of CAST algorithm, the best result of 

2LTSC is captured as the quality of the model. Figure  6.18 shows the result of 

clustering for both approaches. 
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Figure 6.18: Comparison of 2LTSC and MTC in front of ground truth for test dataset 

In addition to the high complexity of CAST and its sensitivity in front of its parameter 

as explained in the literature review (Section  2.8.6), as it is presented in Figure  6.18, the 

quality of MTC is superior to 2LTSC for most of the datasets. The main reason for this 

priority is using more accurate approach in the first step of MTC in comparison with 

2LTC. As mentioned, in MTC model, SAX is used with APXDIST which is superior to 

MINDIST used in 2LTSC. As a result, the quality of MTC is increased after revising 

the pre-clusters in the second level. Moreover, in the third level of MTC, the sub-

clusters are merged again which makes the generated cluster structure more similar to 

the ground truth. 

Comparing the accuracy of MTC in this experiment (Figure  6.18) with the results of 

MTC using k-Medoid scheme (Figure  6.9), the accuracy of MTC varies a bit. It is 

because of different cluster numbers in this experiment. That is, as mentioned, the 

number of clusters in this experiment is based on the results of 2LTSC. 

Another study which is performed in more than one step is a work presented by (X. 

Zhang et al. (2011) and was discussed in the literature review (Section  2.8.6). As 
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mentioned, they proposed a new multi-level approach for shape based time-series 

clustering where some candidate time-series are chosen and clustered. Candidates are 

chosen from a one-nearest neighbour network by the triangle distance between time-

series data. To choose the candidate, they analysed different orders of neighbour 

network (graph). Then, hierarchical clustering is performed on selected candidate time-

series using DTW. To compare this approach (so called graph-based) with the MTC 

model, the maximum quality of MTC clustering in front of different orders of the 

nearest neighbour network is calculated and shown in Figure  6.19. To provide fair 

conditions, the order of 2 to 5 is considered for graph-based approach which provides a 

reasonable reduction in the second layer (see Appendix H).  

 

Figure 6.19: Quality of clustering using graph-based approach in front of MTC  

As the result shows, in the most of the cases (15 cases), MTC is superior to graph-based 

algorithm. Additionally, it should be noted that in graph-based approach, the first level 

clustering is performed on raw time-series (which is potential to generate noisy clusters) 

and needs to make a nearest neighbour graph which is very costly. However, it can be 

advantageous for datasets where the similarity in time is essentially very important such 
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as Coffee dataset (see Figure  6.16). To summarize, the proposed model (MTC), can beat 

the rival approaches, even with lower time complexity. 

6.2.6 Evaluation of MTC on Large Datasets 

In order to further confirm the effectiveness of MTC, some experiments are carried out 

on large synthetic datasets. For this purpose, CC dataset and CBF dataset with different 

cardinalities are generated up to 12000 records, and accuracy of clustering is computed 

using MTC for each dataset. 

In order to evaluate the results of the proposed model on large datasets, MTC (with 

different schemes of merging) was experimented in front of conventional k-Medoids 

and hierarchical approach (with single and average linkages). To achieve the best 

results, highest resolution of time-series, i.e., raw time-series, with the Euclidian and 

DTW distances are used for clustering by k-Medoids and hierarchical approach. For 

fairness, the average quality of running MTC with two constraint values of DTW (i.e., 

         and          ) are considered as the quality of MTC for all 

cardinalities of the dataset. The average quality of MTC with different schemes is 

depicted in Figure  6.20 and Figure  6.21. 

 

Figure 6.20: Accuracy of MTC in front of other algorithms for CBF dataset 
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Figure 6.21: Accuracy of MTC in front of other algorithms for CC 

As the result shows, the quality of MTC is superior to other algorithms. However, the 

fluctuation of MTC in both datasets is a bit more than other algorithms (except 

hierarchical algorithm using single linkage). It is the effect of, first, showing the result 

by averaging of accuracy per different parameter values of SAX, and second, using 

prototypes of data instead of original time-series, i.e., the error of the second step in 

purifying the clusters. However, for most of the cardinalities of the dataset, it is seen that 

the minimum quality of MTC is still more than other algorithms. Therefore, it can be 

concluded that in most of the datasets, MTC can generate better results. Therefore, for 

clustering large time-series datasets, it was understood that there is no need to use very 

low dimensional time-series; instead, the clustering can be applied on smaller sets of 

high dimension time-series by prototyping. That is, the cost of using representatives is 

much less than dimension reduction in terms of accuracy. 

6.2.7 Evaluation of MTC Using Internal Criteria 

In this section, accuracy of MTC is evaluated using internal criteria which are more 

realistic in comparison with external criteria, because class labels are not available in 

the most of the real world problems. Two datasets from financial systems are chosen to 
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evaluate the proposed model while ground truth does not exist for them. Financial 

domain is a proper system for clustering because there are many financial tasks in this 

domain which need pre-processing or pattern recognition, for example, forecasting 

stock market, currency exchange rate, bank bankruptcies, understanding and managing 

financial risk, trading futures, credit rating, loan management, bank customer profiling, 

and money laundering analyses as core financial tasks for data mining (Nakhaeizadeh, 

Steurer, & Bartlmae, 2002). Corresponding to these tasks, clustering and outlier 

detection are appropriate approaches. For instance, clustering of time-series related to 

transactions of customers can answer the following questions: 

1. Can one determine a customer category given a historical record of the transaction 

history? 

2. How are the movements of account balance across the various customers? 

As an example, a dataset related to a Bank in Malaysia called Banking Transaction 

Dataset (BTD) is used for this experiment. Challenging feature of this dataset is that 

time-series are very close to each other and it seems that the clusters have different 

densities. BTD consists of 6802 time-series, and each series of BTD is composed of 360 

time points, each of which denotes one customer’s daily transaction amount (balance or 

counts) in one year.  

As explained, compression-ratio can vary from 4 to 8. The compression-ratio=6 is used 

here to symbolize the time-series and to be fair in terms of the resolution. Then, MTC is 

applied to cluster the dataset. Not like CBF and CC datasets, the series of this dataset 

are not clustered in advance, so class labels cannot be used to verify the final clustering 

results. Moreover, considering the unsupervised nature of clustering and unavailability 

of number of clusters, the number of clusters should be determined by the user. 

Essentially, the right number of clusters depends on the distribution's shape and scale in 
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the dataset, as well as the clustering resolution required by the user (Han & Kamber, 

2011). For this dataset, a simple way is used to determine the number of clusters. It is 

set to about √  ⁄ , where n is the number of time-series in the dataset. That is, in each 

cluster there are around √   time-series.  

In Figure  6.22, some of the generated clusters and their prototypes are illustrated. 

 

Figure 6.22: Sample clusters of time-series related to transaction of customers 

The results show different groups of bank customers which are interpretable for banking 

system experts. For example, the first cluster is related to the customers who deposit 

their salary in their account (or it is transferred to their account by an employer) in the 

first day of each month. However, it is necessary to use some validity criteria to show 

the superiority of MTC. In order to prove that the proposed model is more efficient than 

utilized conventional algorithms for clustering whole time-series, conventional k-

Medoids is adopted. Different amounts of records (cardinalities) from the dataset are 

collected to show how MTC works in terms of accuracy. As mentioned, clustering is an 

unsupervised learning technique and there are no predefined classes to compare the 

clustering results of different clustering algorithms. For evaluation of such clusters in 

terms of accuracy, the most common measure for internal criteria, Sum of Squared 
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Error (SSE), is used (Han & Kamber, 2011). For each time-series, the error is the 

distance to the prototype of nearest cluster. The following formula is used to calculate 

SSE: 

     ∑ ∑      (     ) 
 

  ∈  

 

   
  6.1 

where,    is a time-series in cluster    and    is the prototype of cluster   . Here, dist() is 

the DTW distance which had been shown that is very useful for making natural clusters. 

The result illustrated in Figure  6.23 is related to the average of SSE of 10 times run of 

the MTC and k-Medoid with different resolutions of SAX (different compression-

ratios).  

 

Figure 6.23: Accuracy of MTC in front of different cardinalities of BTD 

The result in Figure  6.23 reveals that SSE of MTC is less than conventional clustering 

using SAX representation. As the results represent, the quality of MTC is high even in 

comparison to raw time-series (not dimensionality reduced data). The superiority of 

MTC is due to use of the similarity in shape while conventional clustering algorithms 
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are using the similarity in time. Although, there is no significant difference in the 

quality of MTC and k-Medoids (Raw) in the small cardinalities of the dataset, the result 

clearly shows that as the cardinality is increased, the difference in SSE also is increased 

and this means MTC works well with high cardinality datasets. In fact, the effect of 

using DTW shows its impact in higher cardinality, while the effect of using raw time-

series is decreased as the size of the dataset (cardinality) grows up. 

Furthermore, the experiment is repeated for another dataset with different 

characteristics.  KLSE (Kuala Lumpur Stock Exchange) is End Of Day (EOD) data 

related to the stock exchange of Kuala Lumpur, Malaysia. The historical data is 

provided by www.klseeod.com which is retrieved from public websites and is published 

freely for educational purposes. 

The objective of this task is to cluster the stock exchange time-series in order to find the 

clusters of companies which are similar in shape of their stock price. The stock 

exchange of companies is from different markets such as Main Market, ACE Market, 

Structure warrants, ETF, and Bound. These companies belong to different categories, 

such as Property, Plantation, Mining, etc. Finding groups of similar companies can be 

used for prediction tasks. For this experiment, a set of time-series related to one year 

(2010) is chosen. The number of companies (time-series) in this experiment is 870 and 

each time-series consists of 240 points. 

At first, the time-series are normalized using Z-normalized to provide fair conditions. 

Then, the number of clusters determined by √  ⁄  rule because it is not pre-defined in 

advance. Finally, MTC is applied on whole time-series data. Figure  6.24 shows a 

sample of the constructed clusters related to the stock exchange time-series. 

http://www.klseeod.com/
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Figure 6.24: A sample of clustering of time-series related to KLSE 

Different clusters that are generated by MTC are depicted in Figure  6.24. The clustering 

results show that, first, MTC can reveal the outliers in data. For example second cluster 

includes only one time-series which can be considered as outlier company or missing 

data. Second, as expected, MTC generates the clusters of different companies with the 

similar stock exchange. However, as the figure shows, the generated clusters are not 

very clear and useful because usually there are some shifts in the exchange stocks. 

Nevertheless, as explained, MTC has the ability of generating dendrogram of time-

series using the prototypes of the second step. It gives the experts the insights in 

different domains. That is, using the dendrogram of prototypes, different patterns of 

stock exchange is revealed which also can be utilized in classification tasks. 

Additionally, in lower levels of the dendrogram, similar groups of time-series can be 

used as a tool for prediction. This capability comes from the strength of MTC in finding 

similar time-series in shape. Figure  6.25 shows a sample of clustering of companies 
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based on the similarity of their stock exchange in shape. This kind of dendrograms can 

be used to predict stock exchange based on similar companies in a cluster.  

 

Figure 6.25: A sample of clustering of companies based on their stock exchange in 2010 

Figure  6.26 shows the handling of shifts in time-series of stock exchanges related to 

different companies. For example, two companies (AFFIN and AFG) which are very 

similar in shape (not in time) are shown in Figure  6.26. It shows that the changes in 

AFG are very similar to AFFIN but with a time shift. 
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Figure 6.26: Handling shifts in the clustering of time-series of stock exchange of companies in 

KLSE dataset 

As explained in the literature review, to evaluate the results, SSE is used as internal 

criteria (see Section  2.7.2). Figure  6.27 shows the quality of clustering of KLSE dataset. 

 

Figure 6.27: Accuracy of MTC in front of different cardinalities of KLSE 

In Figure  6.27 different cardinalities of the dataset are chosen for clustering by MTC. 

As the results show, the quality of MTC is competitive with k-Medoids (using RAW 
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high cardinality datasets. That is, MTC is more advantageous on large datasets in 

comparison with small datasets. 

6.2.8 Evaluation of IMTC 

An interactive version of MTC was introduced in Section  4.7, so called IMTC. IMTC is 

similar to alternate splitting and merging of MTC. In IMTC, for each iteration, only one 

pre-cluster is considered to be revised and dispersed. Therefore, the results of the first 

iterations may be bad and incorrect but gradually it is refined and gets better. 

In this experiment, the feasibility of running IMTC in its interactive manner is shown. 

CBF dataset is utilized to evaluate the accuracy of IMTC. In the first step of IMTC, 

SAX representation is utilized with APXDIST as a distance measure which was shown 

that is effective. Five sample cardinalities are chosen for this experiment to show the 

performance of IMTC on large time-series datasets. The results are depicted in Figure 

 6.28. 

 

Figure 6.28: Interactive version of Multi-Step Time-Series Clustering (IMTC) on CBF dataset 
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after only a few iterations, i.e., it is guaranteed that user can get better results after first 

iteration of the algorithm. Second, using IMTC, the final result can even be better than 

MTC at the expense of time. It is because the clusters are regularly split, their resolution 

increased, more accurate distance between their objects are calculated, and finally are 

merged. It can be continued until all low resolution time-series are replaced with high 

resolution time-series (e.g., to 35 iterations) and the confusion matrix between them are 

calculated with more accurate distance measure (e.g., DTW). However, the question is 

why it does not meet the maximum accuracy after a while. Actually, maximum 

accuracy is not reachable even if the user waits for ever (or may occur randomly), 

because firstly the error rate of second step hardly gets zero because of data reduction 

process in this step. Secondly, the quality is calculated in front of ground truth (natural 

clusters). That is, if even all the distances among all time-series in the dataset are 

calculated precisely, the quality of clusters is a bit less than 1, because the ground truth 

is the type of time-series generated syntactically, not the labels gained by clustering of 

data using a perfect distance measure such as DTW.  

To compare IMTC with competitive and similar approaches, IK-Means model (which 

was discussed in Section  2.8.6) is implemented and used. The proposed algorithm (IK-

Means) works interactively and need centroids which should be doubled in each 

iteration. In IK-Means, k-Means is chosen as the algorithm with PAA as representation 

for testing the results. CBF dataset is used to show the results of IK-Means. Figure  6.29 

shows the accuracy of applying IK-Means on CBF dataset. 
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Figure 6.29: Quality of interactive method (IK-Means) for different resolutions of data 

As Figure  6.29 shows, in this approach (IK-Means), the number of iterations to the 

termination point is less than IMTC (Figure  6.28). It is because of the dependency of 

IK-Means to the length (dimension) of time-series (as discussed in Section  2.8.6). 

Moreover, because the centroid of k-Means in each iteration (with high resolution time-

series) is provided by previous iteration (with lower resolution of time-series), the 

number of internal iterations in k-Means is decreased for each run. For example, 

running k-Means on CBF dataset with 2400 objects, it takes around 12 iterations for the 

lowest resolution time-series (i.e., dimensions=2) and it is decreased to around 4 

iterations for the highest resolutions (i.e., dimensions=128). However, as the results (of 

IK-Means) shows (Figure  6.29), in comparison with IMTC (Figure  6.28), even in the 

heights resolutions of time-series in IK-Means, maximum quality of IK-Means is less 

than IMTC. That is, the maximum accuracy of clustering using IK-Means is around 

70%, whereas the maximum accuracy is around 90% using MTC. It is because of 

finding similar time-series in shape in IMTC model which handles the shifts, and also 

pre-clustering step in IMTC which decreases the effect of outliers (as explained in 

Section  6.4.2).  
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6.3 Scalability Evaluation 

Scaling and performance are often considered together in data mining. The problem of 

scalability in the data mining community is not only how to process large sets, but how 

to do it within a useful timeframe. Analogous to conventional clustering approaches, 

MTC also simply groups similar time-series. Hence, its efficiency depends on distance 

measure process, representation process, prototype calculation, and clustering 

algorithm. In the following subsections, space complexity and time complexity of MTC 

are analysed. 

6.3.1 Space Complexity (Space Utilization) 

Space utilization means the amount of memory required to run the algorithm. In the first 

step of the model, only reduced time-series are stored, so the required space for 

algorithm depends on the amount of data (time-series dataset) and the compression-

ratio. The storage that MTC needs for the first step, is        𝐶    where N is the 

number of time-series,   𝐶 is the number of clusters (pre-clusters), and r is the length 

(dimensions) of time-series after SAX transformation. In the second step, the raw time-

series (in the worst case) are used as the highest resolution, for refining (purifying). 

However, because only one cluster of time-series is loaded for refining, and after that its 

prototype is kept for the next step, the storage that MTC needs, is        𝐶     𝐶    

where the N/  𝐶 is the approximate number of time-series with length d in each cluster, 

and   𝐶  is the number of sub-clusters (prototypes) in the second step. The third step of 

clustering is the merging process of prototypes and needs only O(  𝐶d) storage. 

Therefore, because all these steps are performed sequentially, and d<<N, the highest 

storage that MTC needs, is O((N+  𝐶)r). It is not a big memory usage, because r can be 

determined by the user to be very small in comparison to the original length of time-

series. 
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6.3.2 Time Complexity 

Time efficiency is the amount of time that is required to process the data. Time 

efficiency depends on many factors such as the size of data, the speed of the machine 

which the program is running on that, source code, and compiler. These factors may 

vary from one machine to another. Hence, only the number of times that the instructions 

are executed is counted. Therefore, computing time is calculated as follows: 

Considering T(N) as the computing time of MTC for input of size N (the worst-case 

time complexity of the algorithm), T(N) equals to the number of times that the 

instructions are executed. The overall computational complexity of MTC depends on 

the amount of time that it requires to construct the first step clusters, to refine the 

clusters in the second step, and the amount of time it requires to perform the merging of 

the prototypes in the last step of clustering algorithm. In the following, three steps are 

analysed sequentially. 

Step one: This step includes dimension reduction and pre-clustering. Suppose that the 

number of time-series is N, and the size (length) of time-series is d, which changes into 

r after dimensionality reduction process, where    . Therefore, first, all time-series 

are dimensionality reduced. The complexity of dimensionality reduction using SAX is 

O(Nd). Then, Ek-Modes clustering is used with dimensionality reduced time-series. The 

amount of time required to make the pre-clusters, depends on the dimensionality of 

time-series in hand, the distance measure and the number of iterations which it is run 

“till it is done”. Since the dimensionality reduced time-series are used, the complexity 

of APXDIST distance measurement is linear to the length of the transformed time-series 

(dimensionality reduced time-series), i.e., O(r). Each iteration in Ek-Modes takes 

O(  𝐶N) time to identify the nearest centres and do the new centre computation. Hence, 

the time complexity of Ek-Modes is O(I  𝐶Nr), where   𝐶 is the number of clusters, I 

is the number of iterations takes to converge, r is the dimension of time-series (the 
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number of points in dimensionality reduced time-series,    ), and N is the number of 

instances. This complexity is modest, that is, the required time is linear in the number of 

time-series (N), because I is not very big as the most changes happened in the first 

iterations and the number of iterations which takes to converge is not very high running 

on dimensionality reduced time-series (as discussed in Section  4.3.4).  

Step two: suppose that the number of time-series is N, and the number of the 

constructed pre-clusters from the pre-clustering step is   𝐶. This value can be taken 

either equal to k as class labels (defined by user) or equal to √
 

 
 (Han & Kamber, 2011) 

, where   𝐶   ). Complexity of PCS in the best case is same as the CAST algorithm 

which is a bit more than O(      ) (Ben-Dor et al., 1999) and in the worst case is 

O(    (Bellaachia et al., 2002). Considering the complexity of Euclidean distance as 

O(d , the complexity of PCS is O(
  

   
   . Since there are   𝐶 such partitions, the 

overall complexity becomes   
  

   
  . After using PCS to partition the pre-clusters 

(generated clusters in the first step),   𝐶  sub-clusters are generated as   𝐶    𝐶   , 

where      . Usually q is a small number because indicates the number of 

incorrect members or outliers in the cluster. 

Step three: Suppose   𝐶  is the number of sub-clusters in the second step, which reduce 

the size of dataset by the reduction-factor of  𝑓 which is defined based on reduction-rate 

(see  5.3.2.1 for definition) as: 

  𝑓        𝑒  6.2 

Then, if the final clustering scheme is for example a hierarchical clustering (e.g., 

average linkage), complexity is              (Hartigan, 1975; Murtagh, 1985) where 

N is the number of input time-series, and       for DTW between each pair of time-

series. Although there are some “lower bounds of DTW” and “DTW with constraints” 
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which are relatively cheaper than complete DTW in time complexity, i.e., O(  , as 

explained in Section  4.7, in the worst case its complexity is O(   , where d equals to 

the length of time-series (Keogh & Ratanamahatana, 2004). Therefore, total 

computation of merging is                .  

Overall complexity: Substituting    𝑓 (i.e., number of prototypes) in the equation of 

the third step, the overall time required for three steps is  

         (    𝑓
    (  𝑓)   

  
  

  𝐶
      𝐶     )  6.3 

Given the complexity of MTC (using the hierarchical scheme) as       , and 

conventional hierarchical algorithm which is in order of                 as        , 

for comparing MTC with hierarchical algorithm, the ratio of complexity is shown by: 

       
      

       
  6.4 

Therefore, ratio of complexity of MTC on hierarchical algorithm is calculated as: 
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complexity of MTC on hierarchy algorithm becomes: 

        𝑓
  

 

  𝐶       
 

   𝐶 

           
 

 

          
  6.6 

Considering for example the dimension reduction of r=d/4 (i.e., compression-ratio=4, 
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Because  𝑓    (based on Equation  6.2) and   is small (as explained in Section  4.3.4), 

then        , that is,       is always less than 1. Therefore, it can be concluded that 

the complexity of MTC is better than hierarchical algorithm. 

6.4 Sensitivity Evaluation 

In this subsection, a sensitivity analysis for MTC is performed with respect to the 

parameters. The parameters are the initialization of clustering and resolution of time-

series in the first step. The synthetic datasets and all datasets in UCR are used again to 

evaluate the sensitivity of algorithm in different conditions. In the following, at first the 

effect of random initialization in the first step is discussed. 

6.4.1 Effect of Random Initialization  

The quality of the MTC clustering model relatively depends on the quality of pre-

clusters made in the first step. However, in the first step, Ek-Modes are used where 

quality of the results depends on the choices of the initial centres, similar to other 

partitioning algorithms. That is, MTC uses a random initialization in the first step. 

Therefore, since it may encounter local minimum, the best results are not generated in 

the first step (the process of making the pre-clusters). Hence, the clustering results may 

not be stable. To test the stability of clustering results, MTC is run on 13 different 

cardinalities of CBF and CC dataset. MTC is performed numerous times and its quality 

is reported to evaluate the clustering model. Some statistical values such as minimum, 

maximum, mean, median or standard deviation is used to determine the actual quality of 

the clustering approach. MTC is carried out 100 times with random initializations. To 

remove the effect of SAX parameters, the same compression-ratio of SAX is considered 

in this experiment. The results of clustering are depicted in three boxplots in Figure 

 6.30, Figure  6.31 and Figure  6.32. 
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Figure 6.30: Quality of clustering of CBF using MTC (k-Medoids scheme) with random 

initialization 

 

Figure 6.31: Quality of clustering of CC using MTC (k-Medoids scheme) with random initialization 

0

0.2

0.4

0.6

0.8

1

1.2

90 240 660 690 720 780 900 1200 2400 3600 4800 5400 6000

A
cc

u
ra

cy
 

Cardinality of dataset 

0

0.2

0.4

0.6

0.8

1

1.2

60 240 480 600 1200 1800 2400 3000 3600 4200 4800 5400 6000

A
cc

u
ra

cy
 

Cardinality of dataset 



205 

 

Figure 6.32: Sensitivity of MTC on UCR dataset with random initialization (SAX4) 

The plots clearly suggest that some datasets are sensitive to random initialization of 

centroids in the first step of clustering, and some of them are not sensitive to the random 

initialization. However, in most of the cases the quality is not very critical to random 

initialization. It is mostly because of using the lower dimension of time-series in the 

first step, because it results in not falling in the trap of local minima which is consistent 

with the findings of  Ding et al. (2002). Moreover, a deep-looking at different datasets 

in UCR repository (see Figure  6.32), it is understood that for more datasets, MTC is 

stable and robust to random initialization, especially in large datasets (datasets with high 

cardinalities) for example Wafer and Yoga datasets. Similarly, the graph related to CC 

also shows that this variation gradually declines in high cardinalities of the dataset. As a 

result, random initialization of first level may a bit affects the final quality in some 

datasets which is unavoidable. From another point of view, usually clustering 

algorithms are performed many times to get the best results; therefore, it is solved easily 

with a few running. Moreover, generating several structures of data is not very bad in 
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6.4.2 Effect of SAX Parameters 

As mentioned, the Ek-Modes algorithm is used with time-series represented by SAX in 

the first step of the proposed model. For using SAX as representation, some parameters 

should be set up. One of them is compression-ratio. The effect of different parameters 

on the first step of MTC was investigated in Section  5.3.1.1. In the following, the effect 

of compression-ratio is investigated on MTC. To remove the effect of random 

initialization in this experiment, the maximum accuracy for each compression-ratio is 

considered. The results of different compression-ratio for time-series in the UCR 

dataset, and CBF dataset are illustrated in Figure  6.33 and Figure  6.34 respectively. 

 

Figure 6.33: Quality of clustering of UCR dataset using MTC with three different compression-

ratio of SAX 
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Figure 6.34: Quality of clustering of various cardinalities of CBF using MTC with seven different 

compression-ratio of SAX 

The results in both experiments (Figure  6.33 and Figure  6.34) show that the resolution 

of time series which are used in the first step of MTC, does not have a very critical 

effect on accuracy. Although, clustering on a specific dataset represented by a specific 

resolution may construct more precise results, or slightly worse than our expectation, in 

general they are very close. For example, Figure  6.20 shows that the average quality of 

CBF is around 0.8, and it is relatively stable with increasing the resolution. It 

demonstrates that though the choice of the SAX parameter affects the final results, it 

does not have a very significant impact on the clustering quality. Surprisingly, it rather 

gets worse in some datasets, for instance it is seen that in some higher resolutions of 

time-series (e.g., SAX2), the quality of a clustering approach may decrease as it is seen 

in Figure  6.34. It is the effect of the presence of noise and outliers in higher resolutions. 

6.5 Chapter Summary 
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clusters using MTC. Different evaluation methods were used to evaluate MTC 

extensively. MTC outperforms other conventional clustering algorithms experimenting 

on various datasets. It was shown that using pre-clustering and prototyping, accurate 

clusters are made. The results were compared with other multi-step methods to show its 

strength. The researcher’s proposed method can achieve best clustering results 

compared against several other popular time-series clustering methods. Moreover, MTC 

was applied on large time-series and the obtained result was discussed. It was revealed 

that user does not require using very low dimensional time-series for clustering of large 

datasets; instead, the clustering can be applied on smaller sets of high dimension time-

series by prototyping process. That is, the cost of using representatives is much less than 

dimension reduction in terms of accuracy. Subsequently, MTC was applied on two 

datasets, where the class labels were not available. The results show that MTC can find 

the clusters of time-series which are similar in shape especially in large datasets. As an 

extension of MTC, the interactive version of MTC (IMTC) was utilized on some 

datasets to show the scalability of the algorithm. It was shown that reasonable results 

are obtained after only a few iterations, and the quality of the final result can even be 

better than MTC at the expense of time. Space and time complexity of the proposed 

model were computed. The computation shows that the execution time of the model is 

acceptable. Finally, the sensitivity of MTC was evaluated versus random initialization 

and parameter setting. 
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7.0 CONCLUSION 

7.1 Introduction 

This study demonstrates the utility of a multi-step clustering (MTC) model for time-

series clustering. Instead of clustering dimensionality reduced time-series data (or 

naively raw data) using traditional clustering approaches, MTC clusters the time-series 

data in a multi-step manner that results in substantially higher accuracy and moderate 

cost in time complexity. This chapter concludes the research on providing a support 

environment for novice researchers working on time-series clustering. The summary of 

findings, limitations of the research and recommendations are given in the following 

subsections. 

7.2 Summary of Results and Findings  

First, the main reasons for low quality in time-series clustering are stated based on all 

the findings discussed in the literature review (Chapter 2) and the evaluation chapter 

(Chapter 6). The reasons are drawn by answering the following questions: 

What is the main reason for low quality time-series clustering?  

1. Use of dimensionality reduction approaches through the whole clustering 

process (although it is used to remedy the high complexity of distance 

measuring of time-series). 

2. Use of insufficiently accurate or inappropriate distance measures to calculate 

dissimilarity between the time-series (mostly because of the high complexity of 

accurate metrics). 

3. Use of conventional static clustering algorithms that are not suitable for time-

series data (mostly because of the high complexity of state-of-art algorithms). 

The proposed models in this study can improve the quality of clustering, while 

maintaining clustering efficiency using the principles of pre-clustering and cluster-
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revising. In Chapter 5, the effect of dimension reduction on clustering was described. 

Dimensionality reduction can lead to data oversight, and different results per 

compression. The factors that made MTC accurate are shown by discussion on the 

different steps of the model. Moreover, using evaluation methods described in Chapter 

6, MTC has been proven to work much better than other algorithms. The results were 

compared with the ground truth as natural structure of data to show meaningfulness of 

clustering. Finally, MTC has been proven practical and usable by real-world samples. 

The points that made MTC superior to other algorithms are briefly answered with the 

following question: Why is MTC more accurate than other algorithms? 

1. Time-series are clustered as low-resolution data in the first step. Therefore, the 

algorithm efficiently finds the pre-clusters, avoids local minima, and is robust to 

the outlier time-series. 

2. Given that a raw time-series or a very high-resolution time-series (in the case of 

noisy time-series) is used in the second step of MTC (instead of low-resolution 

time-series in the first step), the accuracy of the final results is very high. 

3. An accurate distance metric (DTW) can be utilized in this process that handles 

all shifts inside the time-series,  resulting in very accurate clustering, because of 

the multi-step manner of the proposed model (given the high complexity of 

DTW, its use is infeasible on large datasets in other methods). 

4. Using prototypes prepared in the middle step of MTC, the user has a chance to 

choose his final clustering scheme based on the domain and create more 

meaningful clusters, i.e., an algorithm capable of making arbitrary shape 

clusters. 

Finally, the researcher is able to deduce the following conclusions: 

1. Dimensionality reduction is a common approach for time-series clustering; 

however, it is not always a perfect approach (in clustering) to remedy the cost of 
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the high complexity of accurate dissimilarity measurement among time-series. 

Instead, a more sophisticated clustering algorithm such as MTC can be utilized 

to cluster high-dimensional time-series without overlooking and losing accuracy. 

2. Although all time-series in each sub-cluster are represented by only a few 

representative time-series, experiments show that this approximation 

(approximated sub-clusters) has less destructive effect on the accuracy of the 

final clusters compared with the use of approximate time-series. 

3. The proposed model (MTC) is a proper approach for data which are large in size 

and have shift and noise in its time-series. 

7.3 Achievement of the Objectives 

The following are the objectives of the research: 

1. To propose and develop a new clustering model that accepts large raw time-

series data as input, and generates accurate clusters without violating the time 

execution. In order to fulfill this objective, the following methods need to be 

developed.  

a. Developing a distance measure for similarity calculation. 

b. Developing a clustering approach for approximate clustering of the time-

series data transformed to symbolic representation. 

c. Developing a method to dynamically split the pre-clusters into pure 

clusters. 

2. To extend the proposed model, enabling it to run interactively. 

3. To evaluate the capability of the proposed methods in improving the accuracy. 

A multi-step clustering approach (MTC) was proposed to accurately cluster the time-

series to achieve the first objective. The model was designed, implemented and, its 
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improvement in accuracy was shown by an extensive evaluation on various domains. 

The approaches used and the outcomes are as follows: 

 A pre-clustering method was proposed to rapidly obtain the approximate clusters 

(of time-series represented by SAX). The method highly reduces the search area 

for accurate distance measurement in the purifying step. A distance measure 

method (APXDIST) was then developed to calculate the distance measure 

between the time-series represented by the SAX representation to create the pre-

clusters. The effectiveness of APXDIST on dimensionality reduced data was 

evaluated in Section  5.3.1.2 

 An extended k-Modes algorithm (Ek-Modes) was developed to create the pre-

clusters. The results showed that the combination of the APXDIST and Ek-

Modes methods generates higher accuracy of pre-clusters for MTC (and so 

IMTC) than other approaches (Section  5.3.1.3).  

 A purifying method (PCS) was proposed to checking the pre-clusters and 

splitting them into more pure clusters based on the ED distance measure. This 

process provides very similar groups of time-series that can be presented by 

one/a few prototypes precisely (Section  5.3.2). 

The proposed model is extended to achieve the second objective. Considering the 

desirability of an interactive clustering model, IMTC was proposed to generate better 

results over time. Exploiting the multi-step property of MTC and the concept of “split 

and merge”, MTC was extended to IMTC. IMTC is very practical for users who tend to 

see a prototype of clusters in each instance. The results showed that the accuracy of 

clusters improved even more when IMTC was used over MTC, but at the expense of 

time. 

An extensive evaluation was performed to show the superiority of the proposed model 

to achieve the third objective. The following concepts were considered to show that the 
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proposed model is not biased towards the dataset, size of data, parameter setting, and 

accuracy measurement. 

 The model was applied to different datasets from various domains and different 

cardinalities (taken from the largest published time-series repository in the 

world). 

 Different cardinalities of synthetic datasets were generated to show the changes 

in the accuracy of clusters. 

 Nine most-used indexing measures in the literature were utilized to calculate the 

accuracy of the clustering structure. 

 Various ranges of parameters were used to show the sensitivity of the system. 

7.4 Contributions 

There are many approaches to the clustering of time-series datasets; however, most 

focus on speeding up the clustering using dimensionality reduction of time-series and 

utilizing conventional clustering algorithms, which leads to low quality when dealing 

with large amounts of time-series data. The common problem of low quality in these 

outputs was identified. Then, focusing on the components of time-series clustering, a 

new multi-step clustering model was proposed for the accurate clustering of time-series 

datasets. Accordingly, the contributions of this thesis research are outlined as follows: 

 A new multi-step model for time-series clustering (MTC) 

 A new similarity measure compatible with SAX (APXDIST) 

 Finding and customizing the best clustering algorithm compatible with the 

symbolic representation of time-series (Ek-Modes) 

 A new approach for splitting approximate clusters to pure sub-clusters (PCS) 

 A new model for interactive clustering of time-series data (IMTC) 
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A new clustering model (MTC): The main objective of this study is to find accurate 

clusters. Accuracy means very pure and meaningful clusters, which can explain the 

structure of data precisely. It is considered a hierarchy of data that is understandable for 

human beings. The main contribution of this study is in proposing a new clustering 

model to achieve this objective. This model (MTC) can find the accurate clusters of 

large time-series that are similar in shape and can be represented visually. To the best of 

the researcher’s knowledge, MTC is the first model based on the large time-series 

datasets to obtain meaningful clustering results. This method is performed in multiple 

steps and has the following features: 

 Very accurate and interpretable: Using high-resolution time-series and high-

precise distance measure (DTW), clusters are made accurately. This model 

shows the structure of data (which are similar in time and shape) hierarchically, 

which is more usable and understandable for users. 

 Practical: Using dimensionality reduced data in the first step of MTC, data are 

clustered approximately (this action is necessary to reduces memory 

requirements because all raw time-series cannot fit in the main memory). Large 

datasets are then clustered with less distance calculation compared with 

conventional algorithms by exploiting approximated clusters. 

 Flexible for arbitrary shape clusters: In the last step of MTC, prototypes of pure 

sub-clusters are used. As a result, the number of time-series in the third step is 

much less than the original data, enabling MTC to work with all types of 

clustering algorithms to produce final clusters. This method is also desirable for 

different type of clusters (clusters of different types, clusters of various density, 

and non-globular clusters). As a result, the user can choose the final clustering 

algorithm, providing him the chance to utilize the best algorithm based on the 

domain on hand and on the shape of desired clusters.  
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 Visualization: Given that a user has the access to the middle-step results 

(prototypes), which are very small (in comparison with the whole data), the 

results can be shown visually (e.g., by dendrogram). The user can then choose a 

part of the data (e.g., by removing some outliers) for final clustering, making the 

clustering results more meaningful and practical. 

A new distance measure (APXDIST): In the first step of the time-series clustering, a 

symbolic approximation approach was used to find approximate clusters. A similarity 

measure, APXDIST, which is more accurate for finding dissimilarity among SAX time-

series than existing approaches, was developed to calculate the similarity of 

approximated time-series. The proposed new distance measure method answers the first 

research question of this study (Q1) and provides new knowledge to researchers on how 

to find accurate approximate clusters. 

A new algorithm for clustering of approximated time-series (Ek-Modes): Although 

k-Modes is not a new algorithm, its compatibility with categorical objects was used in 

this study for the first time to develop a clustering algorithm (Ek-Modes) to cluster the 

approximated time-series. The evaluation results indicated higher quality compared with 

competitive approaches, answering the second question of this research (Q2). The 

significance of this finding is its application as a clustering approach for standalone 

systems that work with symbolic representations of time-series data (e.g., SAX). 

A new post-processing approach for approximated clusters (PCS): A research 

question was posed in this study (Q3) as “How can constructed clusters be revised as a 

post-clustering action to achieve better results?” A new approach, called PCS, for 

splitting approximate clusters into pure sub-clusters was proposed in this study. PCS is 

a post-processing approach to create sub-clusters (from pre-clusters) sequentially with a 

dynamic affinity threshold. This approach is important from two different points of 

view. First, it can be considered as a post-processing method for other models that work 



216 

with multi-resolution time-series or multi-precise distance measures. Second, it is a 

dynamic approach that does not use any parameter, which is very desirable in 

clustering. 

A new model for interactive clustering of time-series (IMTC): Designing the MTC 

model as a multi-step approach provided the capability of extending the model to be 

proposed as an interactive clustering approach (Q4). Clustering can be carried out 

interactively using this model. That is, the user can stop the process, check the results, 

and let the process be continued (if the results are not satisfactory) or be terminated (if it 

met the needed accuracy). Moreover, this method provides the user with the chance to 

stop the process in the initial iterations and change the parameters of clustering if the 

results are wrong. This feature is very important for data mining approaches, especially 

for large datasets. 

An extensive evaluation: To the best of the researcher’s knowledge, there are no 

published results for different clustering algorithms on various datasets. This study is 

the first to test these ranges of datasets using different clustering approaches. Moreover, 

the effect of a representation method on time-series clustering versus a raw time-series 

was investigated for both partitioning and hierarchical clustering. The method provides 

a good range of accuracies for researchers who are working on clustering of time-series 

to compare their results (Q5). 

7.5 Limitations of the Current Study  

Some limitations that need to be considered are as follows: 

1) This research only managed to focus on proposing methods for short and 

moderate length of time-series because of the time constraint in achieving the 

main objective. For the long time-series, the same problem (low accuracy) also 

exists, which is worth carrying out as further research. 
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2) The model was not evaluated versus different dimensionality reduction methods, 

though, SAX representation was taken as the best representation method in the 

literature. However, more testing and analysis are required to determine the 

optimum representation method for the model. 

3) Given that MTC is running as interactive clustering, the results are sometimes 

not stable. This phenomenon is also observed when running MTC on different 

cardinalities of CBF and CC dataset. If the clustering of time-series is seen as a 

part of more complex task (pre-processing), then it may cause problems and 

needs to be addressed by running a few times and choosing the best answer. 

However, if time-series clustering is seen as a tool for human understanding of a 

dataset, it may be beneficial to look at more than one clustering structure. 

Moreover, an unstable algorithm usually discovers interesting structures. 

7.6 Recommendation and Future directions 

The researcher strongly believes that the proposed model in this study highly improves 

the accuracy of existing approaches in time-series clustering. It is the researcher hope 

that this work will be a good motivation for researchers who need more accurate and 

meaningful clustering in other applications, including image categorization, pattern 

recognition, and fraud detection, etc. However, there are still a few aspects that need 

further studies. The following are recommendations for future studies, suggested based 

on the limitations of this research area. 

1. In order to represent a cluster of time-series, prototype/s is needed to represent 

the cluster. Find an accurate approach to represent a cluster made by elastic 

distance measure (e.g., DTW) is also needed. As mentioned in the literature 

review, certain approaches to the prototyping of clusters of time-series are 

available. However, most of these approaches are quite expensive or inaccurate. 
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As a result, developing an efficient and effective approach to define a prototype 

for time-series clusters can be significant. 

2. Accuracy evaluation of the clustering structure is still an open problem in the 

data mining community. Although several indices (internal and external) are 

available for the evaluation of clustering accuracy, visualization is usually used 

as last resort. Visualization of the clusters for static objects is relatively easy; 

however, it is not a trivial task to visualize time-series clusters, especially for 

large datasets. Therefore, there is a need for an accurate evaluation of time-series 

clustering. 

3. The accuracy of clustering is tightly regulated by the distance measure between 

time-series. However, the accurate measurement of similarity between time-

series using existing distance metrics is expensive in terms of execution time. 

Approximating the measurement is required in time-series clustering. 
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APPENDIX A 

In banking systems, for example, the customers who commits banking fraud, have 

usually frequent transactions in a short period. This concept helps experts in fraud 

detection to find potential criminals in banking systems. Frequent transactions can be 

considered from two points of view; first, frequent transactions (of a customer) which 

are more frequent rather than his previous or later transactions. It is same as abnormal 

observation in a time-series which can be detected by monitoring or anomaly detection 

process. Second, frequent transactions which indicate rare behavior (of a customer) in 

comparison with similar customers in the same cluster. It is usually detected by 

clustering of customer. However, because frequent transactions are committed in a 

short period in comparison with whole their time-series, it is usually overlooked in 

approximation process. The second case is focused here, i.e., the case that behavior of a 

customer differs from other members of the same cluster. A solution to address this kind 

of problem, is grouping the users in more accurate clusters, then, the rare cases can be 

detected as outliers time-series (or new clusters). For example, following figure shows 

five customers by their transactions. Considering approximated time-series (brown 

lines), it seems that customer C belong to cluster (A, B). However, customer c is mostly 

belongs to cluster (E and D) in terms of the frequency. In a sensitive system, such as 

banking system, it should be detected as an outlier or a sub cluster of main groups (to be 

decided by experts) because it contains a behaviour which is rare rather than its 

homogenous customer in the same cluster. These sorts of accurate clusters cannot 

achieve by conventional clustering of approximated time-series obtained by 

dimensionally reduction methods.  
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Detecting different levels of dissimilarity in a cluster 

Another example is daily stock where if one consider the daily stock instead hourly 

stock time-series, some important times might be overlooked such as extremes or peaks 

which it reflects the quality of clusters .  
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APPENDIX B 

On evaluation of clustering of UCR dataset: 
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APPENDIX C 

Comment about using a new distance method (instead of MINDIST) for clustering 

purpose in the case that representation method is SAX. 
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APPENDIX D 

Difference between two most-used distance measures in quality of time-series clustering 

is shown in the following plots. The results are related to DTW and ED used in k-

Medoids clustering of CBF and CC dataset with different cardinalities. 

 

The quality of clustering of CBF using ED and DTW  

 

The quality of clustering of CC using ED and DTW  

The charts indicate two things: first, quality of DTW is higher than ED for all 

cardinalities. Secondly, in contrast to indexing and classification problem, quality of 

clustering using DTW and ED is quite different even for large datasets.  
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APPENDIX E 

To calculate distance between time-series data, ED and DTW are used as distance 

metric. In the following chart the maximum purity of MTC approach in front of 

maximum purity of k-Medoids approach (using raw time-series) is shown. It is the 

result of 100 run on the same datasets. The purity measure is used to compare with rival 

works such as (Ratanamahatana & Niennattrakul, 2006). However, the dataset used by 

Ratanamahatana and Niennattrakul is different from the existing and published dataset 

in UCR repository. As a result, the purity of the datasets is calculated and reported using 

the published datasets. 

 

In (H. Zhang et al., 2006), the mean of the evaluation criteria values obtained from 100 

runs of k-Means algorithm with the extracted features are reported. The results are 

compared with MTC in the following table. 
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 Mean RI Mean jaccard Mean FM Mean CSM Mean NMI 

 

(H. Zhang 

et al., 

2006) 

MTC 

(H. Zhang 

et al., 

2006) 

MTC 

(H. Zhang 

et al., 

2006) 

MTC 

(H. Zhang 

et al., 

2006) 

MTC 

(H. 

Zhang et 

al., 2006) 

MTC 

CBF 0.6447 0.844 0.3439 0.6388 0.5138 0.7769 0.5751 0.8577 0.3459 0.676 

CC 0.8514 0.9311 0.4428 0.6918 0.6203 0.8136 0.6681 0.8382 0.6952 0.8479 

Trace 0.7498 0.8112 0.3672 0.4856 0.5400 0.656 0.5537 0.6648 0.5187 0.6297 

Gun 0.4975 0.4972 0.3289 0.3291 0.4949 0.4953 0.5000 0.5146 0.0000 0.0007 

ECG 0.4919 0.5436 0.2644 0.4722 0.4314 0.6498 0.4526 0.5454 0.0547 0.032 
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APPENDIX F 

PCS provides a good trade-off between quality and reduction-rate dynamically. Here, 

the experiment is performed on CBF with different cardinalities to show the effect of 

PCS on large time-series. As expected, the PCS works very well on large datasets. 

 

Proportion of purity and reduction rate on different cardinalities of CBF 
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APPENDIX G 

In the experiment results reported in this section, the range of values (shown in Table 

 5.2) is used as the parameter values of MTC in applying on all datasets. As mentioned, 

for different parameter combinations, the maximum quality is reported in following 

table.  

The result of MTC in comparison with conventional algorithms (maximum accuracy) 

           Algorithm 

 

Dataset 

k-Medoids MTC 

k-Medoids 

Hier 

(Avg) 

MTC 

Hier-Avg 

Hier 

(Single) 

MTC 

Hier-

Single 

 50words  0.517 0.617 0.514 0.583 0.297 0.349 

 Adiac  0.363 0.531 0.289 0.52 0.294 0.292 

 CBF  0.484 0.841 0.39 0.673 0.347 0.344 

 Coffee  0.388 0.655 0.398 0.587 0.392 0.43 

 ECG200  0.512 0.457 0.544 0.448 0.476 0.476 

 FaceAll  0.407 0.631 0.335 0.559 0.199 0.229 

 FaceFour  0.573 0.753 0.642 0.541 0.428 0.404 

 FISH  0.397 0.492 0.313 0.468 0.234 0.236 

 Gun_Point  0.324 0.367 0.431 0.42 0.4 0.394 

 Lighting2  0.454 0.507 0.535 0.535 0.515 0.515 

 Lighting7  0.428 0.604 0.564 0.535 0.354 0.35 

 OliveOil  0.637 0.698 0.604 0.719 0.604 0.774 

 OSULeaf  0.332 0.388 0.28 0.356 0.255 0.261 

SwedishLeaf  0.411 0.517 0.289 0.424 0.193 0.237 

 synthetic_control  0.697 0.876 0.717 0.721 0.632 0.587 

 Trace  0.533 0.77 0.564 0.748 0.565 0.768 

 Two_Patterns  0.248 0.769 0.234 0.781 0.257 0.986 

 wafer  0.497 0.553 0.51 0.51 0.621 0.621 

 yoga  0.337 0.364 0.356 0.379 0.389 0.391 

 

As the results shows, the quality of MTC is superior for most of datasets using different 

schemes of clustering.  
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APPENDIX H 

To compare the approach proposed in (X. Zhang et al., 2011) (so called graph-based) 

with the MTC model, the maximum quality of MTC clustering in front of different 

orders of nearest neighbour network is calculated. To provide fair conditions, the order 

of 2 to 5 is considered for graph-based approach which provides reasonable reduction in 

the second layer. To make sure that this assumption is true for all datasets in hand, the 

test was repeated for 19 datasets. The reduction ratio of graph-based approach in front 

of different orders is depicted in the following chart. As this chart shows, order 1 only 

reduce the data by around 30 % (reduction-rate=0.7), while higher order of nearest-

neighbor provides around 70% reduction (reduction-rate=0.3). It is the main reason 

which we use the order 2 and upper than that for comparison purpose. 

 

Accuracy of merging algorithm using arbitrary shape clustering approach 
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APPENDIX I 

The accuracy of merging sub-clusters using arbitrary shape clustering and multi-

prototype approach. 

 

 The quality of MTC using arbitrary shape algorithms for merging the prototypes 
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APPENDIX J 

In the following sub-sections, the result of running the MTC model on some datasets is 

reported in order to show its steps. The datasets used in this experiment are from UCR 

dataset (TRAIN set). 

Leaf dataset 

Leaf dataset explained in Section  5.2, is used here for the experiment. All three steps of 

MTC are applied on this sample dataset to show the results. In the following table the 

results (reported by implementing MTC in Matlab) related to clustering of the leaf 

dataset is shown. The report shows complete process and parameters for each step 

pertaining to a sample run of MTC in order to show the results in each step. It includes 

three steps. In the first step, the quality is usually low because of approximate 

clustering. The second step shows the sub-clusters and average affinity (as a pair of 

average similarity and standard deviation) of each sub-cluster in the first step and 

second step. As it is indicated, usually, the average similarity increased in the second 

step. In the third step, using an arbitrary algorithm (e.g., k-Medoids), the prototypes are 

clustered, and then, the results are evaluated in front of ground truth. The accuracy is 

shown as average of various indices as quality of final clusters. 

The processing of clustering of Leaf dataset using MTC 

results 

Step 1 

 Algo:k-Modes | DS:200 | k:6 | dis_method:APXDIST | bound:0 | rep:SAX | alphabet_size:8 | 

compression_ratio:6 

 --> Number of clusters:6 | quality:0.34459 | error_rate:12.805 

Step 2 

 DS:200 | dis_method:ED | dtw_bound:1 | rep:RAW | alphabet_size:8 compression_ratio:2 

 --> Pre-cluster#1 Mems:34 Clus:7 avg_sim_l1:(0.26521-0.044509) avg_sim_DTW:0.44455-0.04864) 

 --> Pre-cluster#2 Mems:29 Clus:7 avg_sim_l1:(0.36488-0.09059) avg_sim_DTW:0.56717-0.089608) 

 --> Pre-cluster#3 Mems:33 Clus:10 avg_sim_l1:(0.30831-0.059757) avg_sim_DTW:0.51149-0.082026) 

 --> Pre-cluster#4 Mems:53 Clus:7 avg_sim_l1:(0.36495-0.091888) avg_sim_DTW:0.59228-0.079599) 

 --> Pre-cluster#5 Mems:36 Clus:11 avg_sim_l1:(0.32262-0.035193) avg_sim_DTW:0.51756-0.08716) 

 --> Pre-cluster#6 Mems:15 Clus:7 avg_sim_l1:(0.26329-0.068317) avg_sim_DTW:0.36841-0.079385) 

 --> Number of clusters:49 | error_rate:0 | reduction:0.755 | correct_rate:1 | purity:1 

 Making prototype ... 

Step 3 
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 DS:49 | K:6 | dis_method:DTW | dtw_bound:1 | rep:RAW | alphabet_size:8 compression_ratio:2 

 clustering:k-medoids 

 --> quality:0.42777 

 

Quality of MTC clustering on Leaf datasets  

RI  ARI Purity CSM ConEntropy F-measure Jacard FM NMI quality 

0.78 0.24 0.56 0.39 0.38 0.53 0.23 0.37 0.37 0.43 

 

Face dataset 

The similar process can be seen for Face dataset in the following tables. 

The processing of clustering of Face dataset using MTC 

Results 

Step 1 

 Algo:k-Modes | DS:24 | k:4 | dis_method:APXDIST | bound:0 | rep:SAX | alphabet_size:8 | 

compression_ratio:4 

 --> Number of clusters:4 | quality:0.5233 | error_rate:1.4167 

Step 2 

 DS:24 | dis_method:ED | dtw_bound:1 | rep:RAW | alphabet_size:8 compression_ratio:2 

 --> Pre-cluster#1 Mems:6 Clus:3 avg_sim_l1:(0.2359-0.098102) avg_sim_DTW:0.25594-0.10573) 

 --> Pre-cluster#2 Mems:4 Clus:1 avg_sim_l1:(0.20996-0.13346) avg_sim_DTW:0.20323-0.14952) 

 --> Pre-cluster#3 Mems:5 Clus:3 avg_sim_l1:(0.25888-0.086967) avg_sim_DTW:0.32599-0.13888) 

 --> Pre-cluster#4 Mems:9 Clus:4 avg_sim_l1:(0.32286-0.066735) avg_sim_DTW:0.32413-0.088161) 

 --> Number of clusters:11 | error_rate:0.15833 | reduction:0.54167 | correct_rate:0.77083 | purity:0.83333 

 Making prototype ... 

Step 3 

 DS:11 | K:4 | dis_method:DTW | dtw_bound:1 | rep:RAW | alphabet_size:8 compression_ratio:2 

 clustering: hier_avg 

 --> quality:0.60685 

 

Quality of MTC clustering on Face datasets  

RI  ARI Purity CSM ConEntropy F-measure Jacard FM NMI quality 

0.73 0.4 0.71 0.68 0.56 0.78 0.41 0.59 0.59 0.61 

 

Gun point dataset 

The following tables show the running of MTC for Gun point dataset. 
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The processing of clustering of Gun point dataset using MTC 

Results 

Step 1 

 Algo:k-Modes | DS:50 | k:2 | dis_method:Euclid | bound:0 | rep:SAX | alphabet_size:8 | 

compression_ratio:6 

 --> Number of clusters:2 | quality:0.39046 | error_rate:6.08 

Step 2 

 DS:50 | dis_method:ED | dtw_bound:1 | rep:RAW | alphabet_size:8 compression_ratio:2 

 --> Pre-cluster#1 Mems:25 Clus:7 avg_sim_l1:(0.49478-0.10146) avg_sim_DTW:0.68905-0.12435) 

 --> Pre-cluster#2 Mems:25 Clus:6 avg_sim_l1:(0.58842-0.10705) avg_sim_DTW:0.6277-0.13558) 

 --> Number of clusters:13 | error_rate:0.24 | reduction:0.74 | correct_rate:0.85465 | purity:0.88 

 Making prototype ... 

Step 3 

 DS:13 | K:2 | dis_method:DTW | dtw_bound:1 | rep:RAW | alphabet_size:8 compression_ratio:2 

 clustering:k-medoids 

 --> quality:0.48283 

 

Quality of MTC clustering on Gun point datasets  

RI  ARI Purity CSM ConEntropy F-measure Jacard FM NMI 

0.54 0.09 0.66 0.62 0.12 0.73 0.41 0.59 0.59 

 

Coffee train dataset 

 

Samples of time-series of coffee dataset 
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In the first step of algorithm the time-series data are transferred in SAX representation. 

(SAX(8,6)). Then, k-Modes algorithm is applied on data. The result of first step is 

depicted in the following chart.  

 

First step of running MTC on Coffee dataset 

In the second step, each cluster is decomposed in more pure clusters, using PCS 

algorithm explained in Section  4.4.2.2. 

 

The second step of MTC carried out on Coffee dataset 

The result of third step of algorithm is shown in following figure. In this step 

hierarchical clustering is used to merge the prototypes. 
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Result of applying MTC (Hierarchical) on Coffee dataset 

Moreover, the result related to MTC after applying all the steps is repeated using k-

Medoids.  

 

Result of applying MTC (Partitioning) on Coffee dataset 

Olive dataset 

Samples of datasets of Coffee and Olive oil 
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Samples of time-series of olive-oil dataset 

In the same process, MTC is performed on Olive dataset as another sample dataset. 

Following charts shows the results in each step of MTC. 

 

Results related to first step of running MTC on Olive dataset 
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Clusters generated in the second step of MTC on Olive dataset 

 

Results of third step of MTC related to Olive dataset 

CBF dataset 

Cylinder-Bell-Funnel (CBF) time-series in the UCR datasets, is used for the experiment. 

All three steps of MTC are applied on this sample dataset to show the results visually. 

Following figures shows the correct answer (ground truth) of CBF datasets.  
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The ground truth (labels) related to CBF dataset (with 30 instances) 

In the first step of MTC, k-Modes clustering is applied on time-series representing by 

SAX(8,6). The distance measure used for this step is APXDIST. The result of the first 

step is shown in the following figure. The time-series in the different clusters are 

represented using a combination of different colors. That is, time-series that belong to 

the same cluster have all the same color. 

 

k-Modes clustering of represented time-series using SAX(8,6) 
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The accuracy of this step is as following table.  

Quality of k-Modes clustering on datasets representing by SAX(8,6) on CBF_train dataset 

RI Purity CSM Enrtropy f-measure jacard FM 

0.63 0.63 0.50 0.24 0.65 0.27 0.43 

 

After applying the MTC model on the CBF dataset, depend on the used merging 

algorithm in the last step, different results are gained. For example, the following 

diagram depicts the result of partitioning algorithm using k-Means. Notice that the 

prototype of each cluster is made similar to centroids of simple objects. 

 

Running MTC on CBF with the k-means algorithm as the last step 

The experiment was repeated using various merging approaches in the third step of 

MTC. The average quality of 100 run is measured to report the quality. All of the runs’ 

results have better quality than first step.  
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Accuracy of MTC in front of ground truth across various algorithms in the third step 

Algorithm RI Purity CSM Enrtropy f-measure jacard FM 

MTC-hier-com 0.66 0.67 0.67 0.40 0.84 0.42 0.60 

MTC-k-means 0.74 0.73 0.72 0.57 0.83 0.45 0.63 

MTC-hier-avg 0.74 0.73 0.77 0.59 0.90 0.52 0.70 

MTC-k-medoid 0.69 0.67 0.70 0.45 0.78 0.45 0.64 

MTC-hier-sing 0.73 0.70 0.77 0.56 0.91 0.53 0.71 

 

Control Chart dataset 

As another experiment, MTC is applied on the Control Chart dataset (CC) as well. In 

the following table the results (reported by implementing MTC in Matlab) related to 

clustering of CC is shown. The report shows complete process and parameters for each 

step pertaining to a sample run of MTC. 

The results related to clustering of CC using MTC 

Results: 

step 1 

 dis_method:SAXAPX rep:SAX alphabet_size:8 compression_ratio:6 

 --> DS:300 clusters:6 

 --> quality:0.74968 

step 2 

 dis_method:DTW dtw_bound:0.5 rep:SAX alphabet_size:8 compression_ratio:6 

 --> cluster:1 Mems:33 Clus:3 

 --> cluster:2 Mems:55 Clus:4 

 --> cluster:3 Mems:99 Clus:7 

 --> cluster:4 Mems:13 Clus:4 

 --> cluster:5 Mems:73 Clus:5 

 --> cluster:6 Mems:27 Clus:5 

 Number of clusters:28 

step 3 

 dis_method:DTW dtw_bound:0.5 rep:SAX alphabet_size:8 compression_ratio:2 

 Making prototype ... 

 clustering:k-Medoids 

 --> quality:0.89394 

 

The first step of clustering is shown in the following chart for more intuition.  
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The first step of clustering of CC using MTC 

Moreover, the accuracy gained after running the first step is reported in following table. 

Accuracy of k-Modes clustering on datasets representing by SAX(8,6) on CC dataset 

RI Purity CSM Enrtropy f-measure jacard FM 

0.88 0.74 0.75 0.75 0.85 0.54 0.71 

 

After running the algorithm, the final result is shown in following. The result illusterate 

how the cluster purity is increased. Accordingly, the accuracy calculated at the end of 

the clustering is reported in the following table. 
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Running MTC on CC with the k-Medoids algorithm as the last step 

RI Purity CSM Enrtropy f-measure jacard FM 

0.96 0.94 0.88 0.87 0.94 0.79 0.88 

 

 


