
A FLEXIBLE QUERY TRANSFORMATION FRAMEWORK
FOR STRUCTURED RETRIEVAL

GAN KENG HOON

FACULTY OF COMPUTER SCIENCE AND
INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA
KUALA LUMPUR

2013

A FLEXIBLE QUERY TRANSFORMATION FRAMEWORK
FOR STRUCTURED RETRIEVAL

GAN KENG HOON

THESIS SUBMITTED IN FULFILMENT
OF THE REQUIREMENTS

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

FACULTY OF COMPUTER SCIENCE AND
INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA
KUALA LUMPUR

2013

UNIVERSITI MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Gan Keng Hoon (I.C./Passport No.:760711-07-5538)

Registration/Matrix No.: WHA050004

Name of Degree: Doctor of Philosophy

Title of Project Paper/Research Report/Dissertation/Thesis (“this Work”): A Flexible

Query Transformation Framework For Structured Retrieval

Field of Study: Information Retrieval

I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;
(2) This work is original;
(3) Any use of any work in which copyright exists was done by way of fair dealing and for

permitted purposes and any excerpt or extract from, or reference to or reproduction
of any copyright work has been disclosed expressly and sufficiently and the title of
the Work and its authorship have been acknowledged in this Work;

(4) I do not have any actual knowledge nor do I ought reasonably to know that the making
of this work constitutes an infringement of any copyright work;

(5) I hereby assign all and every rights in the copyright to this Work to the University
of Malaya (“UM”), who henceforth shall be owner of the copyright in this Work and
that any reproduction or use in any form or by any means whatsoever is prohibited
without the written consent of UM having been first had and obtained;

(6) I am fully aware that if in the course of making this Work I have infringed any copy-
right whether intentionally or otherwise, I may be subject to legal action or any other
action as may be determined by UM.

Candidate’s Signature Date

Subscribed and solemnly declared before,

Witness’s Signature Date

Name:
Designation:

ii

ABSTRACT

Recent years, there exist meaningful structured collections that can be exploited in

search task. When searching for these structured collections, the expressiveness of struc-

tured queries allows structures to be specified at the query layer in order to obtain a

more focused and precise search results. However, constructing such queries in an adhoc

search environment is difficult as users need to be familiar with the syntax of the query

languages. Heterogeneities of structure usages across different collections also hinder

users from selecting appropriate structure or concept when writing queries.

In this thesis, we are motivated to automate the construction of these queries from

keywords query which are more familiar to any user. The work of query transformation

results in two main challenges. First, to propose a generic framework such as it can be

easily adapted to changes in structured retrieval environment such as retrieval systems,

collections, scoring models. Second, to propose a query interpretation within the frame-

work that will handle structure complexities in collection. Since the usage of markups

and structures in current structured collections can be loosely defined, these collections

are now richer and more complex in their information structures, especially for text cen-

tric collection. Current works have yet to explore into these newly emerging complex

structures when capturing knowledge for query interpretation.

In order to address these challenges, a flexible query transformation framework

(FQT) is proposed. The flexibility feature is desired such that the framework can cater for

various settings of structured retrieval environment e.g. different types of structured col-

lections and structured query interfaces. This framework consists of a novel intermediate

query representation that will be the central of the transformation process, i.e. a structure

that captures the information needs of query and the syntax of query separately. Its main

strength is to allow the transformation to be generic to cater for more than single type

iii

of structure query. Supporting this intermediate query representation are the query inter-

pretation and query construction algorithms. The former uses context-based probabilistic

approach for interpreting source query, whereas the latter constructs the interpreted query

into an intermediate query. Once a source query is interpreted and represented as in-

termediate query, it can be easily mapped to a structured query language using a set of

predefined query templates in knowledge base.

Lastly, experiments are carried out at the algorithm, application and representation

levels on both synthetic and real world data sets to demonstrate the feasibility and scala-

bility of the query transformation framework. The experimental results confirm that our

framework is more effective in terms of query interpretation especially dealing with col-

lection with complex structures. The framework is also able to represent various kinds of

information needs and structured query languages with its proposed intermediate query

representation. Better performance in terms of precision has also been achieved when

structured query generated by the framework is applied in structured retrieval task.

iv

ABSTRAK

Kebelakangan ini, terdapat banyak koleksi data yang lebih kaya dari segi makna serta

strukturnya. Koleksi ini amat berguna untuk tugas seperti carian di internet. Untuk pen-

carian koleksi jenis ini, sekiranya topik pencarian dapat dinyatakan dalam bentuk yang

berstruktur, iaitu bahasa pencarian berstruktur, maka hasil carian akan menjadi lebih

fokus and tepat. Walau bagaimanapun, pembinaan topik pencarian adalah sukar atas se-

bab pengguna perlu arif dalam membentuk sintaks bahasa pencarian berstruktur tersebut.

Tambahan pula, kepelbagaian jenis struktur-struktur yang digunakan dalam koleksi data

berstruktur turut menjadi halangan kepada pengguna untuk memilih atau menggunakan

struktur yang betul semasa membentuk topik pencarian.

Dalam tesis ini, kami mengalihkan tugas untuk membentuk topik pencarian dalam

bahasa pencarian berstruktur kepada sistem transformasi pencarian, dimana pengguna

hanya perlu membentuk topik pencarian dalam bentuk kata-kata kunci sahaja. Namun,

terdapat beberapa masalah yang kita perlu selesaikan dalam sistem transformasi pencar-

ian ini. Pertama, suatu sistem yang lebih umum adalah diperlukan supaya ia mudah

disesuaikan dengan perubahan pada persekitaran pencarian berstruktur seperti jenis sis-

tem pencarian, koleksi dan model pemarkahan. Kedua, satu kaedah tafsiran pencarian di-

cadangkan untuk mengendalikan struktur yang rumit dalam koleksi. In disebabkan kemu-

dahan serta kelonggaran penggunaan struktur dalam koleksi jenis ini telah mengakibatkan

kehadiran struktur-struktur yang lebih kaya namun kompleks untuk diekploitasikan oleh

pengguna. Pendekatan sekarang masih belum meneroka untuk pengguna struktur yang

kompleks ini secara efektif.

v

Dengan ini, tesis ini mencadangkan satu rangka kerja untuk transformasi pencarian

yang lebih fleksibel, FQT (Flexible Query Transformation). Ciri fleksibiliti FQT adalah

diperlukan supaya ia dapat memenuhi keadaan pencarian berstruktur yang melibatkan

pelbagai jenis koleksi berstruktur and bahasa pencarian berstruktur. Idea utama FQT

terletak pada perwakilan pencarian perantaran, merupakan satu struktur yang mengas-

ingkan maklumat percarian dan sintaks bahasa pencarian. Pembentukan struktur peran-

taraan ini disokong oleh modul pentafsiran pencarian dan modul pembinaan pencarian.

Modul pentafsiran pencarian menggunakan model kebarangkalian berpandukan konteks

untuk membuat pentafsiran, manakala modul pembinaan pencarian bertujuan untuk mem-

bentuk topik yang ditafsir sebagai struktur perantaraan. Struktur perantaraan ini kemu-

diannya akan dipetakan kepada bahasa pencarian berstruktur dengan menggunakan tem-

plate yang terpilih dari pangkalan pengetahuan.

Penilaian prestasi atas FQT dijalankan pada tiga peringkat, iaitu algoritma, app-

likasi and perwakilan struktur pencarian dengan menggunakan dua jenis data, data sin-

tetik dan data sebenar. Keputusan eksperimen mengesahkan bahawa FQT adalah lebih

berkesan dari segi pentafsiran konteks pencarian and pembentukan pencarian dalam ba-

hasa berstruktur terutamanya bila digunakan untuk koleksi dengan struktur kompleks.

Prestasi yang lebih baik juga dicapai bila topik pencarian berbentuk bahasa struktur yang

dihasilkan oleh FQT diaplikasikan dalam sistem pencarian berstruktur.

vi

ACKNOWLEDGEMENTS

I am indebted to my supervisor, Dr. Phang Keat Keong, for the guidance he afforded

me during my entire studies. Dr. Phang has given me plenty of freedom to explore the

directions I was most interested in. At the same time, he constantly reminding me on

focusing at the right directions. Moreover, he also provided me all the support at the time

when I encountered problems with my thesis direction. I am very grateful for his patience

and his confidence in me.

Also, I would like to thank Universiti Sains Malaysia and the School of Computer

Science for their financial support of my doctoral studies.

Besides, I am thankful to Dr. Rosni Abdullah, Dr. Chan Huah Yong, Dr. Tang Enya

Kong, Dr. Tan Tien Ping, and many more mentors, colleugues and peers that i have not

mentioned here, for their words of encouragements and advices.

I am grateful to the SIGIR 2008 Doctoral Consortium Program Committee for giving

me the opportunity to present my research and get their feedback. In particular, I want to

thank my doctoral consortium advisors Jamie Callan and Charles Clarke for the fruitful

one-on-one discussions.

I am grateful to Sara Tan, my longtime friend. Sara has offered her helps on things

too many to mention, from programming to research ideas. She has given me great assis-

tance in my development works and endless discussions when i am working on my thesis.

Also, I want to thank Lian Tze for being the greatest Latex guru of thesis formatting.

I am deeply beholden to my parents for their immeasurable love and support.

And lastly, I am especially thankful to my husband for his unconditional love, for

putting up with the countless hours I spent on my thesis work, and for being there when I

needed it. Finally, to my two lovely daughters, Yuan and Mei, this thesis is dedicated to

them.

vii

TABLE OF CONTENTS

ORIGINAL LITERARY WORK DECLARATION ii

ABSTRACT iii

ABSTRAK v

ACKNOWLEDGEMENTS vii

TABLE OF CONTENTS viii

LIST OF FIGURES xi

LIST OF TABLES xiii

LIST OF SYMBOLS AND ACRONYMS xiv

LIST OF APPENDICES xv

CHAPTER 1: INTRODUCTION 1
1.1 Motivation 2

1.1.1 On Exploiting Structural Information in Search 2
1.1.2 On Automated Construction of Structured Query 5

1.2 State of the Art 8
1.2.1 Inferring Structural Information 9
1.2.2 Constructing Structured Queries 10

1.3 Query Transformation as a Structured Retrieval Problem 10
1.4 Goals of This Thesis 11
1.5 Proposed Framework 14
1.6 Thesis Contributions 15
1.7 Thesis Outline 18

CHAPTER 2: RELATED WORKS 19
2.1 Background 19

2.1.1 Structured Resources 19
2.1.2 Querying Structured Resources 24

2.2 Works in Query Transformation 30
2.2.1 Interpreting Unstructured Query 31
2.2.2 Getting Information Needs Across 36
2.2.3 Forming Structured Queries 37

2.3 Issues in Query Transformation 38
2.3.1 Information Utilization from Query Side 38
2.3.2 Information Utilization from Collection 40
2.3.3 Query Construction Methods and Outputs 42
2.3.4 Issues Summary 44

2.4 Summary 45

viii

CHAPTER 3: A FLEXIBLE QUERY TRANSFORMATION FRAMEWORK 46
3.1 Requirements for Query Transformation 46
3.2 Formal Semantics of Query Transformation 48

3.2.1 Unstructured Query Specification 49
3.2.2 Query Interpretation Requirements 50
3.2.3 Query Representation Requirements 60
3.2.4 Structured Query Expectation 62

3.3 A Probabilistic Approach for Query Interpretation 63
3.3.1 Complex Document Structure 64
3.3.2 Incorporating Context for Query Interpretation 65
3.3.3 Capturing Concept for Term Interpretation 66
3.3.4 Context-based Term Weighting 67
3.3.5 Context-based Term Weighting for Structure Term 72

3.4 A Representation for Query Construction 74
3.4.1 Intermediate Query Schema 75
3.4.2 Intermediate Query Representation 78

3.5 Summary 84

CHAPTER 4: QUERY INTERPRETATION AND CONSTRUCTION 86
4.1 Query Interpretation 86

4.1.1 Preliminary 87
4.1.2 Query Context 89
4.1.3 Query Target and Constraint 89
4.1.4 Multiple Interpretations 94
4.1.5 Interpretation for Query with Logical Operator 98

4.2 Query Representation 99
4.2.1 Basic Query Construction 99
4.2.2 Query Construction for Multiple Targets 102
4.2.3 Query Construction for Multiple Query Interpretations 104

4.3 Query Mapping 108
4.3.1 Schema Matching 108
4.3.2 Query Content Mapping 113

4.4 Query Selection 116
4.4.1 Query Ranking 116
4.4.2 Query Ranking with User Confidence 120
4.4.3 Query Ranking with External Knowledge 121

4.5 Summary 121

CHAPTER 5: EVALUATION 123
5.1 Introduction 123
5.2 Evaluation on Query Interpretation 125

5.2.1 Motivation 125
5.2.2 Test Collections 127
5.2.3 Effectiveness of Query Interpretation 134
5.2.4 Summary of Query Interpretation Evaluation 141

5.3 Evaluation on Query Transformation 142
5.3.1 Motivation 142
5.3.2 Test Collection and Experimental Setup 143

ix

5.3.3 Query Precision and Ranking 147
5.3.4 Structured Retrieval Performance 150
5.3.5 Summary of Query Transformation Evaluation 152

5.4 Evaluation on Query Representation 152
5.4.1 Data Sets 153
5.4.2 Performance Metrics 153
5.4.3 Expressiveness of Semantic Query Structure 155
5.4.4 Coverage of Syntax Query Structure Knowledge Base 159
5.4.5 Summary of Query Representation Evaluation 161

5.5 Summary 161

CHAPTER 6: CONCLUSION AND FUTURE WORK 164
6.1 Conclusion 164

6.1.1 Flexible Framework 165
6.1.2 Improved Query Transformation 167

6.2 Limitations 168
6.3 Future Works 169

APPENDICES 172

REFERENCES 177

x

LIST OF FIGURES

Figure 1.1 Search query with concept and value format in DBLP faceted
search feature. 5

Figure 1.2 Example of semantic markups in XML documents from DBLP. 7
Figure 1.3 A search scenario using structured retrieval systems on the web. 12
Figure 1.4 The Proposed Query Transformation Framework 15

Figure 2.1 A more meaningful form of Wikipedia contents (left) and DBLP
records (right). 20

Figure 2.2 Presentational Markups 21
Figure 2.3 Different document structures used to describe a “proceedings",

and “article of journal", “article in proceedings", in DBLP. 23
Figure 2.4 An illustration of structured queries on information seeking

scenario and question and answering scenario for a query
statement, “Find tel of river view in singapore”. 28

Figure 2.5 Example topics used in INEX 29
Figure 2.6 Related Works of Query Transformation in Structured Retrieval

Environment 31
Figure 2.7 Examples of Document Tree of DBLP XML 40
Figure 2.8 Part of Document Tree of a Nested Structure XML 42

Figure 3.1 Partial Document Structure of A Structured Document from
Conference Collection 52

Figure 3.2 Context Sub Graph Examples 58
Figure 3.3 Concept Structure for Structured Document 66
Figure 3.4 Weighted Edge in Term Interpretation Representation 68
Figure 3.5 Examples of Weighted Edge in Term Interpretation and Context

Sub Graph 72
Figure 3.6 Examples of Weighted Edge in Structure Term Interpretation and

Context Sub Graph 74
Figure 3.7 Intermediate Query Schema 76
Figure 3.8 Intermediate Query Representation 79
Figure 3.9 Representing Simple Information Needs 80
Figure 3.10 Representing Complex Information Needs 82
Figure 3.11 Knowledge Base Generation with Example Query 84

Figure 4.1 Example of Basic Query Construction 101
Figure 4.2 SIBling Binding vs. CHIld Binding for Multiple Targets 102
Figure 4.3 Query Construction for Multiple Targets 106
Figure 4.4 Query Construction for Multiple Query Interpretations 108
Figure 4.5 Query Construction for Multiple Query Interpretations (Nested

Constraints) 109
Figure 4.6 Finding Best Match Structure 110

xi

Figure 4.7 Case of Overwhelm Match for Query Schema Matching 111
Figure 4.8 Case of Partial Match for Query Schema Matching 113
Figure 4.9 Content Mapping between Semantic Query and Syntax Query 114
Figure 4.10 Mappings, M to Query String, ST R, of NEXI 115
Figure 4.11 Syntax Query Structure for XMLFragment 115
Figure 4.12 Mappings, M to Query String, ST R, of XMLFragment 116

Figure 5.1 The Effect of CTX, CTX+S and CTX on Constraint Concept
Selection Based on Top-1 Concept 136

Figure 5.2 Representing Interpreted Query from SIGIR Sites Topics 156
Figure 5.3 Representing Query Containing Constraint Operator. 156
Figure 5.4 Limitations of Qsem Representation for XQuery Cases 158
Figure 5.5 Expressiveness of Semantic Query Structure for Various Query

Complexities 158
Figure 5.6 The Success Rate of Query Formulation using K-Fold

Cross-Validation Technique 160
Figure 5.7 The Effect of KB Size over Success Rate of Query Transformation 160

xii

LIST OF TABLES

Table 1.1 Some examples of NEXI query 7

Table 2.1 Comparison of features between unstructured and structured queries. 30
Table 2.2 Features of Existing Query Transformation Works 44

Table 3.1 Usage of content and concept keywords in information needs. 56
Table 3.2 Characteristic of complex document structure. 65

Table 5.1 A Summary of Data Sets Statistics 125
Table 5.2 Some topics for SIGIR Sites collection 129
Table 5.3 Topic Statistics (Query Interpretation Assessment) 130
Table 5.4 Some Cases of Constraint Concepts Interpretation for Content Term

in Query 135
Table 5.5 Constraint Concept Accuracy (CRELAV G) Based on Top K Concepts

for SIGIR Collection 136
Table 5.6 Some Cases of Target Concepts Interpretation for Query 138
Table 5.7 Target Concept Accuracy for SIGIR Collection 139
Table 5.8 Query Characteristic on Query Interpretation Performance 139
Table 5.9 Topic Statistics (Query Performance Assessment) 144
Table 5.10 Transformed Queries Ranking and Precision 148
Table 5.11 Top-1 Query Retrieval Performance 150
Table 5.12 Structured Retrieval Performance Comparison 151
Table 5.13 Topic Collections 153
Table 5.14 Query Representation Expressiveness 155
Table 5.15 Query Conversion Success Rate for NEXI Knowledge Base 160

xiii

LIST OF SYMBOLS AND ACRONYMS

BEP Best Entry Point.
CAS Content-and-Structure.
CO Content-Only.
DBLP DBLP Computer Science Bibliography.
DTD Document Type Definition.
HTML Hyper Text Markup Language.
INEX Initiative for the Evaluation of XML retrieval.
IR Information Retrieval.
LM Language Model.
MRR Mean Reciprocal Rank.
NEXI Narrowed Extended XPath I.
NLP Natural Language Processing.
NLQ Natural Language Query.
POS Part-of-Speech.
RDF Resource Description Framework.
RR Reciprocal Rank.
SIGIR Special Interest Group of Information Retrieval.
SLCA Smallest Lowest Common Ancestor.
SQL Structured Query Language.
TFIDF Term Frequency Inverse Document Frequency.
TFIEF Term Frequency Inverse Element Frequency.
XML Extensible Markup Language.
XPath XML Path Language.
XQuery XML Query Language.

xiv

LIST OF APPENDICES

Appendix A Evaluations and Baselines 173

xv

CHAPTER 1

INTRODUCTION

The number of public accessible structured resources over the web like Extensible Markup

Language (XML) is growing rapidly. The flexibility of XML enables it to be used to

express meaningful contents. Several popular sites like SIGMOD, DBLP publish struc-

tured resources on their sites for the purpose of information exchanged and retrieval. In

addition, there are also collections of structured resources that have been produced for re-

search evaluation from well-known real world data like Wikipedia, IEEE journal, IMDB

etc. Moreover, many works (Graupmann et al., 2004) (Schenkel, Suchanek, & Kasneci,

2007) (Ley, 2009) have proven that these resources can be easily created from web con-

tents like semi-structured hypertext documents or contents stored in database.

The primary intention of marking up and structuring these contents is for software

agents to easily access them for various purposes, however, since these structured contents

are openly and publicly accessible over the web, this expands the usage of structured re-

sources to not only exchanging of information among pre-agreed machines, but enabling

retrieval task such as information search. Moreover, meaningful markups used in these

structured resources promote wider exploitation of such resources over the web, rather

than limited to usages among agreed parties only.

Hence, these resources have become an important subset of the information pub-

lished and shared on the web. And, it is obvious that much of the potentials of this subset

of web remain untapped. It would be an advantage to current retrieval systems if they can

utilize the structures or markups of documents for answering query needs. This leads to

the active development of XML retrieval systems in recent years, which can be seen from

the collaborative effort of Initiative for the Evaluation of XML retrieval (INEX) (Fuhr,

1

Gövert, Kazai, & Lalmas, 2002b).

Structural retrieval system exploits the structural information available in documents

to implement a more focused retrieval strategy. The system returns document compo-

nents or more precisely XML elements instead of complete documents in response to a

user query (Pal & Mitra, 2007). The emergence of research in structured retrieval system

will nevertheless benefit the field of information searching. By integrating structured re-

trieval (or also known as XML retrieval) methods in contemporary search systems, users

will be able to directly lookup information from structured resources on the web. In

such scenario, in order for users to benefit from structures or markups available in re-

sources, query can be formulated in structured forms using methods like query languages

(e.g. XML Query Language (XQuery) (Chamberlin, 2002), Narrowed Extended XPath

I (NEXI) (Trotman & Sigurbjörnsson, 2004a)), forms (e.g. advance search (Barranco,

Campaña, & Medina, 2005; Zwol, Baas, Oostendorp, & Wiering, 2006)) etc, whereby

users can explicitly specify structures or markups in the query.

1.1 Motivation

1.1.1 On Exploiting Structural Information in Search

Structural information (i.e. markups and structures) are very useful if they are spec-

ified correctly as search constraints in a search process, whereby it can directly reflect

the scope or context of a query information needs. The ability to utilize the structural

information highly depends on factor like how these information can be included in the

querying process (Kamps, Marx, Rijke, & Sigurbjörnsson, 2005). There are several meth-

ods of querying in structured retrieval that enable users to specify structural information.

These methods can be classified into path-based, fragment-based, concept-based, form-

based and keywords-based querying as follows.

2

1.1.1 (a) Path-based Querying

In path-based querying, user queries for desired information using expressions and

paths. The most popular path-based languages for querying structured resources would

be XML Path Language (XPath) (Boag et al., 2007) and XQuery (Chamberlin, 2002).

XQuery is similar to Structured Query Language (SQL) for querying records in database

system, whereby it allows user to specify keywords and structural constraints in a query.

And, the query returns all matched answer to user without performing any ranking. Fol-

lowing the emergence of XML retrieval systems, needs arise in order to allow user to

express precise information needs but in a simpler manner. Hence, query language like

NEXI (Trotman & Sigurbjörnsson, 2004a; Trotman, 2009) is introduced to provide a

more convenient querying. Unlike XQuery which is more suitable for expert user like

XML application developers, NEXI uses simplified syntax. Nevertheless, these languages

still require a great effort of syntax formulation and validation, which is less appropriate

to be in real time search needs. The complexities of this querying method also hinder

users from using the structural information efficiently.

1.1.1 (b) Fragment-based Querying

Compare to path-based querying, an effective and simpler querying method would

be XML fragment query (Carmel, Maarek, Mandelbrod, Mass, & Soffer, 2003). This

work avoids complex querying by allowing users to pose their query using xml fragment,

e.g. <chapter><title>XML tutorials</title></chapter>. Since xml fragment is a di-

rect adaptation of XML format, this avoids the needs to learn or remember another query

language. And, different from language-based query that requires users to write a syntac-

tically correct query path, this method gives users higher flexibility when composing the

target, constraint and structure paths for a query. Responsibility of handling users’ needs

is passed to the system ranking mechanism.

3

1.1.1 (c) Concept-based Querying

An even simpler yet expressive way of querying that utilizes structural informa-

tion is concept-based querying. As featured in the work by Graupmann et al. (2004) and

Graupmann (2004), structural information of keywords can be expressed as concept-value

condition in the form of concept=value, e.g. title=“War and Peace”, author=“Tolstoy”.

Very similar to web query, this querying method can be easily exploited by general users

for specifying more precise information needs. An example of an online search service

which deploys similar querying format is the DBLP categorical refinement search. Con-

cepts such as venue and author are used to refine scope of information look up. With

similar intention, Cohen, Mamou, Kanza, and Sagiv (2003) also uses this querying for-

mat, i.e. label keyword in its semantic search engine for XML.

1.1.1 (d) Form-based Querying

No matter how simple a query is to be written, requiring a general user to manually

specify the structural information or concept of keywords is not as straight forward as it

seems. If the underlying structure of search collection is homogeneous one, i.e. based on

simple, fixed and straightforward concepts like author, venue and year in DBLP Search

(see Figure 1.1), then remembering and selecting the correct structural information is

not a problem. However, for heterogeneous collection with rich annotated concepts like

Wikipedia (Graupmann et al., 2004), it is impose such feature in the look up process.

Hence, Bricks (Zwol et al., 2006) introduces a graphical approach, using an advanced

form-based query builder, to help user in selecting structural information or concepts.

Although selecting structural information for richly markups collection (e.g. Wikipedia)

or across different collections could be possible by using the approach proposed in this

work, there are issues like too many unique concepts, confusion on usage of same naming

for different concepts etc. that need to be looked into.

4

Figure 1.1: Search query with concept and value format in DBLP faceted search feature.

1.1.1 (e) Keywords-based Querying

The usage of keywords only queries (also known as content only or CO topic)

in structured retrieval systems can be seen in INEX (Fuhr, Gövert, Kazai, & Lalmas,

2002a). Although structured resources were initially designed to be queried using struc-

tured query, in order to allow more users to harness information from openly available

structured resources, keyword-based querying has become an important way of retrieving

that is much more familiar and easy for users. If we looked at the user survey carried

out by (Kazai & Trotman, 2007), comparing usage preference between keywords and

advance search form on the Web, most still prefer the former. When only keywords are

available, current works either ignore the usage of structural information in their retrieval

process, or automatically add the structural information to the query.

It is obvious that without some kind of structural hints (i.e. markups or structures)

in a query, it is hard to even determine the granularity of elements to retrieve, which is

crucial in structured retrieval. Hence, there are recent works that automate this process

(Petkova, Croft, & Diao, 2009; Kim, Xue, & Croft, 2009; Hsu, Lee, & Wu, 2004) to

improve the effectiveness of keyword-based querying.

1.1.2 On Automated Construction of Structured Query

From the querying methods mentioned above, we can see that there are basically two

ways of including structural information in a query, either manually specified by users or

automatically included by systems in their retrieval processes.

5

Comparing both, a more straight forward way for exploiting structural information

is to let users decide what they want manually, and directly include those information in

the query by either formulating the information as syntax or select them through friendly

interfaces. However, when we pose this as a search problem over the web whereby the en-

vironment is heterogeneous and information needs is defined in an adhoc manner, issues

like complex syntax, naming variations and structures heterogeneity arise during query

formulation process.

When users need to explicitly specify structural information, a primary obstacle is

that they need to be familiar with the syntax of querying languages in order to be able

to include the information in the query. Hence, we can see that many works trying to

simplify methods of querying as discussed in previous section. For example, work by

Zwol et al. (2006) presents that users have problem expressing the structural information

needs if they need to deal with syntactical features of such languages. Similarly, another

work by Carmel et al. (2003) also tries to assist users by simplifying the querying syntax.

Further, if we assume that syntax formulation issue can be addressed by using some

visual aids or tools, users still need to be familiar with the underlying document structure

in both explicit (e.g. naming, path, schema) and implicit manners (e.g. domain, applica-

tion, context). For instance (refer Table 1.1), users need know the structural path to be

able to define the correct target (e.g. inproceedings) or constraints (e.g. author). Same

goes for the issue of naming. It is not practical to expect a user to remember constraint

names like “booktitle” or “mtitle”. Graphical approaches may solve the issues related to

utilization of explicit features of document structure but not the implicit one. For exam-

ple, if there is a drop down list to let users refine the search for “SIGIR”, users must be

aware that “booktitle” in DBLP collection refers conference proceedings, while “journal”

refers to newsletter issue. This makes prerequisite knowledge necessary in order to utilize

the structural information effectively.

6

Table 1.1: Some examples of NEXI query

Collection Type Source Example NEXI Query
Conference Article DBLP //inproceedings[about(.//author, Kai-Fu Lee)

and about(.//booktitle, SIGIR)]
Forum Newsletter DBLP //article[about(.//author, Bruce Croft) and

about(.//journal, SIGIR Forum)]
Conference Abstract SIGIR Ab-

stract
//proceedings[about(.//author, Croft) and
about(.//mtitle, SIGIR)]

If we look at the results of INEX 2005 adhoc search track for the Wikipedia col-

lection, queries with added structural constraints appear to perform similarly to those

that do not specify one (Trotman & Lalmas, 2006). These results contrasted the theory of

structured query, where structural constraints improve the precision of structured retrieval

systems. The main reason mentioned is that users are bad at specifying structural hints.

A later work (Trotman, Rocio Gomez Crisostomo, & Lalmas, 2009) then reinforces this

claim through an analysis of the queries in INEX 2008 collection. The work shows that

the usages of structures are merely for targeting the size of results only, similar to the

observation made by Lehtonen, 2006.

Figure 1.2: Example of semantic markups in XML documents from DBLP.

Here, we have noted that this problem is highly related to the type of structures

used in resources. As mentioned in Zwol et al., 2006, three types of markups may be

used in a structured document, i.e. semantical, logical and presentation markups. And,

collections like IEEE, SIGMOD XML, INEX Wikipedia (up to 2008) fall into the logical

7

category. When resource structures are logical type, users cannot exploit much of the

markups to further refine or reflect their information needs conceptually. For instance,

when meaningful structural information like <author> or <editor> is used (see Figure

1.2), it will narrow the search scope to a specific concept, which will significantly improve

answers relevancy. Whereas for logical markups such as <article>,<section>, <figure>

etc., they are mostly used for defining the size of result, leading to little or no improvement

in precision.

Therefore, most of the time users find it difficult to use the correct markups as struc-

tural constraints in their queries, not to mention structuring the queries manually. This

has motivated solution that will automatically infer structural information (both markups

and their structures), switching the burden of users to retrieval system.

1.2 State of the Art

Current works on query transformation from unstructured to structured form for

structured collections on the web can be seen from those from information retrieval field

or databases field. Although both communities may refer to a similar structured represen-

tation, i.e. XML, the former works on XML documents (Petkova et al., 2009; Tannier,

2005) while the latter works on XML database repositories (Calado, Silva, Vieira, Laen-

der, & Ribeiro-Neto, 2002; Barranco et al., 2005). Since contents from XML documents

are publicly available, while contents from XML database are remained for internal us-

age, as such, it is more likely for the current web search solution to acquire contents from

the former collections rather than the latter. Therefore, in this section, we present the state

of the art concerning approaches used by the information retrieval rather than databases.

The state of the art is discussed from two aspects of the query transformation process, i.e.

the inferring of structural information and the construction of structured queries.

8

1.2.1 Inferring Structural Information

The key source of structural information that can be used for query structuring is in

fact the markups and structures of the collection itself. Unless the structures are logical

one, where corpus knowledge would not be relevant in inferring query’s intention, other-

wise collections schema or annotations are useful sources for query context analysis. The

simplest way to obtain the relationship between a term and a particular structure is by

capturing all the relationships between term and its markup/structure/structure path in the

collection, and then use them for marking up query during retrieval time. Probabilistic

methods are used to estimate the association between a term and its structure (Petkova

et al., 2009; Kim et al., 2009; Hsu et al., 2004; Bao, Lu, Ling, & Chen, 2010). As it

is one-to-many relationship, this estimation applies well when a collection has simple or

homogeneous structure, with little or no ambiguities in its structural concept for a term.

For example, an estimation that “andrew” is an “actor”, followed by “title” at a lower

probability, is probably still satisfactory under a domain with few structural types like

movie domain.

However, as we extend our problem to scenario such as searching a more general

collection like web site, which consists of many different page types, or even a collec-

tion where there are many possible schematic views; further analysis on the markups and

structures usage are required to disambiguate differences of structural concepts a term

may have. For example, for collection with different schematic views like bibliography

domain, “andrew” can be an “author” of a “journal article”, or “proceedings article”, or

“book chapter” etc. Or, when we look at “andrew” from different sites, he can be a “chair-

man”, “senior pc”, “lecturer”, etc. Hence, current works have limitations in handling this

kind of ambiguous situations.

9

1.2.2 Constructing Structured Queries

There are two main approaches used by the works on the construction of structured

queries, i.e. templates or operations. In the first approach, Woodley & Geva, 2004 and

Woodley & Geva, 2006 create a set of grammar templates based on structured queries

samples collected from INEX forum. Each grammar template corresponds to an individ-

ual information request. Similarly, Tannier, 2005 uses XSL Transformation to generate

NEXI structured query from its generic query representation known as DRS.

As template approach may suffer from its coverage of structured query formats, there

may be difficulties when new templates need to be added. Hence, in the second approach,

a set of transformation operators are used to construct the contents of a structured query,

which is mainly used to identify target term and content term in the query (Petkova et

al., 2009; J. Li, Liu, Zhou, & Ning, 2009). For example, in Petkova et al., 2009, the

operations are used to formulate target and constraint terms identified from keywords

query into NEXI query language. However, rules needs to be crafted for every possible

operation of the structured query language. As we are trying to look into the possibility

of a generic query transformation process, ability to accommodate new structured query

has become our concern.

With respect to the motivation and current state of the art of query transformation,

the next section presents the problems that make this research challenging.

1.3 Query Transformation as a Structured Retrieval Problem

A practical application of query transformation from unstructured query to struc-

tured from is to enable integration of structured retrieval features into web search so-

lution. Consider situations where these retrieval systems are used over the web. Here,

different retrieval systems mean that we are dealing with different collections (see Figure

1.3). And, this signifies that different structured collections need to be addressed accord-

10

ingly based on their own concepts and structures in its query construction. This is due to

heterogeneities in terms of information structures, document nature and lexical ambiguity

among these collections.

Next, dealing with multiple retrieval systems also means that we are dealing with

different retrieval methods, so as the structured queries employed. As these queries could

fall into categories of either concept-based, fragment-based, or path-based, therefore they

have different levels of complexity. For example, system for a text-centric structured

resource collection like Wikipedia may deploy a less strict matching option by using the

concept-based query in its retrieval method. Whereas a record-centric one like DBLP

may deploy a straight forward matching by using a path-based query.

Therefore, transformation between an unstructured query and a structured one does

not only involves a set of transformation rules, but many sets of rules if we want to

enable the transformation to more possible structured queries forms. And, it is tedious

to create different rules for different pairs of queries. Moreover, there are certainly needs

of accommodating new querying interfaces, or variants of the existing one. Thus, the

approach of redefining rules each time a new interface is introduced is less flexible in

applicability and do not generalize well across new structured forms. E.g. a separate

transformation process, SQT1, SQT2 and SQT3 (see Figure 1.3) are required for each

interface. Instead, we attempt to reduce many pairs of rules that link to different structures

into a more generic form by generalizing the structuring process.

1.4 Goals of This Thesis

The current query transformation solution for structured retrieval is designed specifi-

cally for a single type of query, scoring model as well as collection. However, this solution

lacks flexibility to cater for evolving structured retrieval environment, especially multiple

query types, collection complexities and query interpretation models. The objective of

11

Figure 1.3: A search scenario using structured retrieval systems on the web.

this thesis is to design a flexible framework that can handle the variations or evolutions

of these components, with friendlier user interface and better retrieval performance. With

respect to this objective, we present a series of goals as follows.

• Improve template-based or rule based method for incorporating new structured

queries instead of using fix templates or transformation rules.

• Optimize information utilization from collection side for better query interpretation

by

– extending the probabilistic method to include context factor for query inter-

pretation of complex collection with heterogeneous structures.

– allowing the probabilistic method to incorporate various type of basic term

scoring methods to suit its collection.

• Optimize information utilization from query side for better interpretation using

structural keywords in query, in which these keywords are used in indirect man-

ner.

Research Questions In order to justify the feasibility of our research goals, there are

several questions that need to be answered.

12

Q1 Can the proposed flexible query transformation framework scales to differnet struc-

tured collections and structured queries types?

Q2 Can the proposed flexible query transformation framework generates a structured

query that gives a better retrieval performance compare to the original query?

Q3 Can the extension of probabilistic method with context factor helps in improving the

accuracy of query transformation for collection with higher structural complexities?

Q4 Can the proposed extension of probabilistic method be used with existing term weight-

ing models?

Q5 Can query with certain features of information needs such as “more specific”, “longer

in size” and “inclusion of structural keywords” give better accuracy for its trans-

lated query?

From the stated research goals and questions, we proceed with the following method-

ologies:

1. Review and identify literatures and their limitations related to various aspects of

query transformation in structured retrieval environment (Chapter 2).

2. Develop a formal framework for flexible query transformation (Chapter 3).

3. Instantiate the framework on real information needs and structured resources. A

set of algorithms for query interpretation, representation and ranking are designed

based on the theory of formal framework (Chapter 4).

4. Evaluate the performance of flexible query transformation framework based on the

raised research questions. Evaluation is carried out at from multiple aspects such as

query interpretation algorithms, query representation and retrieval outcome (Chap-

ter 5).

13

1.5 Proposed Framework

The principle underlying our proposed query transformation framework is to have

a generic process that could be easily adapted to changes in structured retrieval environ-

ment. As such, we propose an intermediate query representation, that can represent the

interpreted query in a generic query structure form. This query structure is independent

of a specific query language. To convert this structure to a query language, a structure to

syntax mapping is defined. The mappings of query structure to syntax are defined using

an example-based knowledge base method. This method does not refine the creation of

mappings for a single query language, but it is flexible to be applied to more than one

query types.

In addition, the proposed solution also handles current limitations of query term in-

terpretation that may occur in complex collection. In complex collection, there exists

deeper structure path for a term, hence, it is insufficient if a term is only associated to

its immediate parent for term interpretation. Our solution handles this by considering

additional good ancestor structures besides its parent. As complex collection also con-

tain heterogeneous elements instead of fewer types as in homogeneous collection, the

ambiguity of term is higher. To handle this, our solution introduces context within a

collection, where a term will be associated to these contexts during interpretation. This

makes the selection of structure/concept context-specific. To capture the probability of a

term with its structural under a particular context, a context-based probabilistic model that

combines statistical information of contents occurrences and hierarchical information of

schema/structures is used.

We present an illustration of the proposed query transformation framework in Fig-

ure 1.4. There are three major parts in the proposed framework.

• the query interpretation process that consists of two sub modules, i.e. query inter-

14

pretation and query construction,

• the query representation model that represents interpreted queries in generic form

and a set of mappings for conversion to structured queries,

• the knowledge modules that consists of a context-based term weighting model for

query interpretation, a query template knowledge base for storing created templates

and mappings for structured queries conversion,

In a query transformation process, an unstructured query will go through the query

interpretation module for analysis of information needs. The interpretation and opti-

mization of the query will be carried out using the collection knowledge generated by

context-based probabilistic model. Then the interpreted contents will be constructed and

represented in a generic query form, known as intermediate query representation. This

intermediate form is represented using two separate query structures, that capture the se-

mantic and syntax of queries separately. The interpreted contents in this structure are

transformed to query syntax via pre defined mappings. The generation of these mappings

are obtained from a set of structured query examples.

Figure 1.4: The Proposed Query Transformation Framework

1.6 Thesis Contributions

The contributions of the thesis are as followed.

15

The main contribution of this thesis is its flexible framework that makes query trans-

formation process generic and adaptable for different settings of structured retrieval tasks,

such as the collections type, structured querying interface, and query interpretation scor-

ing method. Compare to existing query transformation solutions which have been de-

veloped for single transformation, our framework meant to be easily extensible and cus-

tomized to any domains and retrieval systems. Although existing solutions may have

stated that the model they employed are extensible, e.g. from simple hierarchy to com-

plex hierarchy for its query interpretation scoring model, however, it has only been stated

briefly without a detailed discussion. In contrast, our framework defines in detailed these

aspects and proves them in both theoretical and practical manners. This differentiates the

framework from current solutions as the framework targets to be a generic solution to

query transformation rather than a one time solution.

Within this framework, we have made three sub contributions.

1. A context-based term weighting approach for query interpretation. This approach

focuses on capturing a more precise concept for query term interpretation based

on its usage under different contexts in collections. This approach overcomes the

limitation of current concept weighting approaches as they still weigh concepts

based on the entire collection view, where a term may only have one best concept

per collection. This works fine for homogeneous collection but not heterogeneous

collection. Whereas, our approach addresses this problem by introducing one best

concept per context in collection. In this approach also, intermediate concepts fac-

tor is introduced to extend the current immediate concept binding for term. This is

to address the issue of non-meaningful immediate concept node.

2. An interchangeable term scoring model for query interpretation. This flexibility al-

lows incorporation of external term scoring model in its concept weighting based on

16

user preferences. Instead of using only one scoring model as in current works, this

flexibility allows usage of simple to complex scoring models based on the nature of

collections.

3. A novel intermediate query representation structure is used to represent interpreted

query. Using this uniform structure, only single query construction operations set

is required for generating the interpreted query. This structure is used to overcome

the needs of individualized operations when constructing structured queries. The

framework will only require the same operations set rather than individualized one

for each structured query type.

4. A structure-syntax template is used to reconstruct a structured query string. For

this, we propose a simple annotation and parsing method to generate the template.

This method enables the incorporate new or modified structured query syntax with

predefined query examples.

In addition, there are additional contributions.

1. We have formalized the query transformation framework. Such formalization is

necessary to ensure its applicability and reusability.

2. The practicality of the framework is shown via the instantiation of the framework

using both homogeneous and heterogeneous collections, various complexities of

information needs and term scoring models.

3. The evaluation of the framework from algorithm aspect and application aspect. The

result of the evaluation shows that context-based concept weighting approach is

able to suggest better constraint concept and target concept for query interpretation.

For application in retrieval task, the structured query generated by the framework

out performs its original query in unstructured form. Overall, this thesis changes the

17

way of designing query transformation solutions from rigid manners to a customiz-

able way under a flexible framework. Although the framework may not always give

the best combinations of its components, it is always adjustable without affecting

other parts. This characteristic is very desirable when as we are dealing with an

evolving environment. Up to date, we are not aware of any work that considers this

characteristic under a flexible framework.

1.7 Thesis Outline

The rest of the thesis is organized as follows. In Chapter 2 we provide background on

structured resources and querying methods. We also include a detailed analysis of related

works with respect to the problems of this thesis. Chapter 3 describes our query trans-

formation framework that uses intermediate query representation to overcome limitations

of the inflexibility of conventional transformation approach. This chapter also describes

the knowledge modules, i.e. a probabilistic model for context-based query interpretation

and a structure query template knowledge base for the mapping of interpreted query to

query language. Chapter 4 presents the algorithms used in query transformation. It shows

how a query is interpreted and constructed into structured query form. In Chapter 5 we

present the evaluation of the framework based on its algorithm, application and represen-

tation. Chapter 6 concludes the thesis with discussions and outlines directions for future

research.

18

CHAPTER 2

RELATED WORKS

In this chapter, we present the related works of this thesis. The chapter will first present

the background of structured resources, querying methods and query transformation.

Then, we proceed to present the related works related to the problem of this thesis,

whereby we first focus on the methods used for query interpretation and then the ap-

proaches used for constructing structured query. From there, we discuss the issues and

limitations of current works. And lastly, we conclude with a summary of related works.

2.1 Background

2.1.1 Structured Resources

Structured resources refer to contents that are well represented with markups and

structures for purposes like data exchange, data sharing, contents organization or even

contents enrichment. These markups or structures may carry some meanings (i.e. con-

cept, type, category, role etc.) that describe the contents. A number like “2008” is associ-

ated with the concept of “year”; an entity like “Gerard Salton” is associated to the concept

of “creator”, “scientist”, etc. Some examples of semantically rich structured resources

(see Figure 2.1) include data-centric ones like DBLP records , SIGMOD records, confer-

ence CFP. Data centric resources often has a nicer structures as they are normally created

based on some controlled schema. Whereas, in text-centric resource like Wikipedia col-

lection from INEX, the markups are not controlled, created based on various needs such

as for meaning annotations, contents presentation etc. More efforts are required to process

these markups from text-centric resources compared to data centric.

19

Figure 2.1: A more meaningful form of Wikipedia contents (left) and DBLP records
(right).

2.1.1 (a) Markups

As there are different kinds of meaningful markups which have been created from

different intentions, we classify them into three types, i.e. sharing-based markups (mark-

ing up and structuring contents for data exchange purpose), presentational-based markups

(marking up and structuring contents for presentational or publishing purpose), and annotation-

based markups (marking up contents for the purpose of enriching the meaning of an in-

formation unit).

Resources with Sharing-based Markups Sharing-based markups are often used in

data-centric contents representation. The markups usually refer to Document Type Def-

inition (DTD) or schema for meaning standardization. Thus, the meaning in markups is

usually well-defined, catering to the needs of the application, and the semantics are famil-

iar among the pre agreed users. Schema-based markups can be seen in the XML version

of DBLP records as in Figure 2.1. The structure is often clear and straightforward, rep-

resenting unit like a record, an object, a transaction etc. It can be simple or complex,

20

depending on the type of contents.

Resources with Presentational-based Markups Presentational-based markups are of-

ten used in text-centric contents representation. The markups are created following the

needs of structuring contents for publishing purpose. They can have a corresponding

DTD or schema as references. The design of the schema focuses more for publishing

rather than sharing. An example of these markups can be found in the XML version of

SIGMOD Record (Sigmod, 2007) (Figure 2.2).

Figure 2.2: Presentational Markups

Resources with Annotation-based Markups Another type of markups found in struc-

tured resources are those used for defining the meaning of contents. These markups are

usually based on some standards like dictionary or hand crafted knowledge base like on-

tology or taxonomy. The semantics of markups tend to reflect generic concepts for a term

or entity, such as named entity type (e.g. person, organization, location), or categories

(e.g. Google Employee, Computer Scientist, Conferences) or descriptive concept from

title or headers. Some collections with such markups are YAWN (Schenkel et al., 2007)

and The New York Times Annotated Corpus (Sandhaus, 2008).

21

Being able to utilizing the meaningful markups in these structured resources is an

advantage to the current information retrieval processes.

2.1.1 (b) Meaningful Markups and Their Document Structures

Another advantage of current structured resources are their document structures (i.e.

taxonomy). In addition to showing how information is organized, such taxonomy enables

a better understanding of a meaning (i.e. markup) used to describe a term or an entity.

This is due to the many possible meanings for an entity or term that occurs under different

scenarios and circumstances, leading us to more specific interpretation about its function,

role etc.

For example, consider DBLP collection, the entity, “Andrew Trotman” may appear

in different document structures, as illustrated in Figure 2.3. These document structures

allow us to capture application-oriented semantics based on real contents usages, which

provide us with richer meaning that explains whether “Andrew Trotman” is a proceedings

paper author, workshop proceedings editor etc.

As such, as long as contents are represented as some forms of document structure,

they carry hidden semantics as a result of the process of creation of the document structure

itself. Often, in this process, new semantics associations are formed. Such associations

lead to better understanding of meanings, which can be achieved with approaches like

probabilistic estimation.

2.1.1 (c) Elements

A fundamental feature of structured resources is that the retrieval of its document

can be carried out at various granularities, i.e. elements, based on the document structure.

Therefore, instead of returning the entire document in a retrieval task, meaningful ele-

ments are preferred instead. Some meaningful elements presented in a straight forward

manner, e.g. for a data centric collection, where each document may corresponds to a

22

Figure 2.3: Different document structures used to describe a “proceedings", and “article
of journal", “article in proceedings", in DBLP.

well-defined retrieval unit. Whereas for a text centric collection, its meaningful elements

are less obvious and they may vary per query. According to study carried out by Dopichaj,

23

2007, smaller elements have been proven to be useful in structured retrieval.

2.1.1 (d) XML

Up to date, XML (Bray, Paoli, & Sperberg-McQueen, 1997) is the most widely

adopted standard used to represent structured resources or documents. With its well-

defined standard, it is adopted for representing contents that requires both meanings and

structures. As it has been well received by both research and commercial communities,

development of methods like query languages (Chamberlin, 2002; Boag et al., 2007;

Trotman, 2009; Carmel et al., 2003), query optimization (Petkova et al., 2009; J. Li et

al., 2009), retrieval models (Itakura & Clarke, 2010; R. Li & Weide, 2009), search en-

gines (Taha & Elmasri, 2010; Theobald, Bast, Majumdar, Schenkel, & Weikum, 2008;

Liu, Walker, & Chen, 2007; Graupmann et al., 2004; Cohen et al., 2003), evaluations

(Piwowarski, Trotman, & Lalmas, 2008; Lalmas & Tombros, 2007; Voorhees, 1998;

Kazai, Lalmas, & Vries, 2004; Pehcevski & Thom, 2005), schema definitions (Fallside &

Walmsley, 2004) can be seen in many recent works.

2.1.2 Querying Structured Resources

The potential of semantically rich resources on the web is obvious. With contents

represented in a conceptual and structural rich form, these resources have more to offer

to solutions in the information seeking domain. When resources are incorporated with

concepts like role, category, topic, class, attributes, etc. (Huffman & Baudin, 1997), a

query would be able to utilize it for a better definition of information needs.

2.1.2 (a) Structured Queries

The most practical way to take advantage of structured resources is to use it in a

query. There are a number of query languages proposed so far that can utilize this ad-

vantage. Some are proper standards and widely adopted by various parties (e.g. XQuery

24

(Chamberlin, 2002), NEXI (Trotman, 2009; Trotman & Sigurbjörnsson, 2004b)) while

some remained as research proposal (e.g. XML fragment (Carmel et al., 2003)). Follows,

we present some structured queries which are more popular among the community of

XML.

XQuery XQuery (Chamberlin, 2002) is the most widely used query language for XML.

It can be used to specify both value and structure of parts of document to be returned. Its

structure is in the form of path and its expressions have similar functions as SQL to

database. For example, it can solve an information need like “Select all journal papers

where author is Andrew Trotman in the XML document called dblp.xml”.

XQuery:
for $x in doc(“dblp.xml")/dblp/article
where $x/author=“Andrew Trotman”
return $x/article

However, this query language requires exact expressions for it to retrieve desired

results correctly, which differentiate it from a search query. Its main limitation is that it is

lack of full text search feature that makes it not suitable to text-centric XML collection.

NEXI NEXI was introduced as an extension of XPath since INEX 2004 (Trotman &

Sigurbjörnsson, 2004b, 2004a). Thus, it was designed to be simpler than XPath, where

information needs can be specified in IR similar form. In XPath, the semantics of query

are stated, whereas for NEXI, the interpretation of semantics are handled by retrieval

engine. The main reason of using a simpler query is due the the high error rate of queries

written by IR experts when when XPath was as the query language for INEX. NEXI

successfully reduces the error rate from 63% to 12% (Trotman, 2009). Refer to the same

topic from the previous section, its query can be written as follow.

NEXI:
//article[about(.//author, Andrew Trotman)]

25

XML Fragment XML fragment (Carmel et al., 2003) was introduced with the intention

to avoid another complex XML query language. It allows information needs to be speci-

fied in a user familiar way, which is similar to the XML documents. Using this query, the

structural keywords can easily expressed as level of tags. Approximate matching is used

to retrieve the most similar elements that match the query fragment (Carmel, Efraty, L,

Maarek, & Mass, 2002). Compared to two previous queries, the main advantage of this

query is that it is friendlier in terms of its syntax. Its limitation is that it could not express

query that requires a join operation.

XML Fragment:
<article>

<author>Andrew Trotman</author>
</article>

Other Queries Some other works that proposed queries with structures include XML

template of INEX 2002 (Kazai, Gövert, Lalmas, & Fuhr, 2003), keyword and label query

of XSEarch (Cohen et al., 2003), COMPASS query language (Graupmann et al., 2004).

For XML template query, a query (<Title>) may consist of different components:

target elements (<te>), a set of search concepts (<cw>), and a set of context elements

(<ce>).

INEX 2002 XML Template:
<Title>

<te>article</te >
<cw>Andrew Trotman</cw><ce>author</ce>

</Title>

The keyword-label query is an extension of the normal list of keywords of a standard

search. Each keyword, k, can have a additional label, l to indicate its structure. The query

can be in the form of l : k, l : or : k.

Keyword-label query:
paper: author:Andrew Trotman

26

Another SQL-like query is COMPASS query language. Given that a list of journal

papers is listed on a page, A, a concept-value condition, concept = value, can be applied

in the query.

COMPASS:
SELECT A FROM INDEX
WHERE A.author=“Andrew Trotman”

2.1.2 (b) Structured Queries for Information Seeking and Question Answering

The main advantage of structured queries is that more controls are given to user in

query formulation to determine what to be retrieved. When more information is specified

at query layer, this will be useful to the retrieval models in getting desired results. Here,

we show two kinds of result elements of a structured query that could be beneficial to

retrieval application.

• An information/broad element. An information element is an element that satis-

fies the information needs via methods like exact or approximate matching. The

purpose of this result type is to help user focus on a smaller and relevant part of

document, instead of browsing through the entire document. In structured retrieval

evaluation, a relevant information element can even be a document (root element).

• An answer/focused element. An answer element is an exact element that fulfills the

information needs, which is similar to Q&A answer. Different from information

element that has a looser relevancy measurement, answer element requires that a

result to be accurate and exact.

Here, if we analyzed the information needs of a query statement, “Find the tel of

river view in singapore”, searching a semantically enhanced web site, one of the infor-

mation element that is relevant to this query is the “<hotel><name>River View Hotel

</name>...</hotel>” element. Hence, in an information seeking process, it is already

27

Figure 2.4: An illustration of structured queries on information seeking scenario and
question and answering scenario for a query statement, “Find tel of river view in singa-
pore”.

useful to focus at this entry point in a large article. However, in a question and answering

process, it is obvious that the answer element “<tel>+65-6732 992</tel>” will be the

relevant one. Figure 2.4 shows that a more detailed structured query is required to obtain

an answer element. It is obvious that when an accurate (i.e. syntactically and semanti-

cally correct) structured query is formed, the accuracy (i.e. precision) of results will also

be leveraged.

2.1.2 (c) Unstructured Form of Querying

The possibility of making structured contents on the web a success (Pereira et al.,

2009) has become the reason why a simpler form querying method, in an unstructured

manner, is necessary. Unstructured querying on structured resources is similar to querying

in information retrieval. There are mainly two forms of unstructured queries in area of

structured retrieval, i.e. keywords or natural language queries.

28

Figure 2.5: Example topics used in INEX

There are mainly two forms of unstructured queries in area of structured retrieval,

i.e. keywords or natural language queries. A keywords query normally contains a num-

ber of terms (usually up to three terms as reported in Spink & Jansen, 2004 or two as

reported in Arampatzis & Kamps, 2008), describing the information needs. Example of

keywords query of a structured retrieval task is shown in <title> of Figure 2.5. Com-

pare to keywords query, a natural language query is longer and contain more details. It

normally appears as a description or narration. From the same figure, example of natural

language queries is shown in <description>. These queries are often used by INEX NLP

track (Woodley & Geva, 2006; Tannier, 2005) in its retrieval task using natural language

interface.

2.1.2 (d) Comparing Unstructured and Structured Queries

Unstructured queries represent information needs created by users, usually in an

ad hoc manner to achieve their search requests. Although query appears in unstruc-

tured form, most of the time, it consists combination of information such as content

keywords, concept keywords, language structures (e.g. conjunctions, articles). On the

other hand, structured queries allow these needs to be expressed explicitly, through the

usage of markups and, structures, increasing the ability of expressibility and interpretable

of the query’s intention. Some main differences between the unstructured and structured

ones are presented in Table 2.1.

29

Table 2.1: Comparison of features between unstructured and structured queries.

Query Type
Unstructured Structured

Query complexity Natural language, keywords Formal language
Query composition Adhoc, general user Crafted, experience user
Information Needs
Expressiveness Implicit Explicit
Information Needs
Interpretability Loose, as in information retrieval Strict, as in database retrieval
Query applicability Interfacing, user layer Internal, system layer

Understanding the features differences between unstructured and structured queries

has shown the advantage of keeping both queries type in a structured retrieval process.

The unstructured query is retained for user side so that they can easily specify the query

without the need to know a structured query language, while the structured one is retained

for system side to carry out some optimization and formulation automatically. This can

be done with a query transformation process that will convert the query in unstructured

to structured form. The next section presents related works of query transformation.

2.2 Works in Query Transformation

In general, the research of query transformation is carried out due to two main rea-

sons, i.e. to automate the writing of complex query languages, and to optimize the query

with additional knowledge. We can see that this research has been going on for the fields

like database (Calado et al., 2002; Gonçalves et al., 2004) and semantic web (Zenz, Zhou,

Minack, Siberski, & Nejdl, 2009; Bobed, Trillo, Mena, & Ilarri, 2010), where their query

languages are complex. Although the research of structured retrieval has been relatively

new compared to these two fields, there are quite a number of works on query transfor-

mation that have been carried out in the field of structured retrieval. Petkova et al., 2009;

J. Li et al., 2009; Tannier, 2005; Woodley & Geva, 2004 auto construct structured queries

from keywords queries. Others like Bao et al., 2010; Kim et al., 2009 interprets and find

structures from keywords queries (used directly for retrieval without writing as structured

30

Figure 2.6: Related Works of Query Transformation in Structured Retrieval Environment

queries) (see Figure 2.6).

Follow, we will discuss two main features involved in query transformation, high-

lighting the methods used by current approaches.

2.2.1 Interpreting Unstructured Query

In query transformation, there are two types of structure/concept to be interpreted,

one is the structure that reflects the concept of a term. Second is the structure that defines

the type of information to be returned to user. Therefore, if we can select a correct concept

or structure to differentiate the meaning or role of a term, it will greatly improve the

relevancy of result. Such selection requires the ability to differentiate the structures when

ambiguous situations occur. Also, if we can find the correct target concept or structure,

it will improve the relevancy of result as well as the interface of the result, with a better

information size. To achieve this, a term is often pre associated with a structure or a

structure path based on usage in a collection. The structures priorities are ranked based

on methods like probabilistic model (Petkova et al., 2009; Kim et al., 2009; Bao et al.,

2010), or defined using nlp rules (Tannier, 2005). There are also works that look up

potential structures during query time, and decide relevant structures based on similarity

measures (J. Li et al., 2009; Hsu et al., 2004).

31

2.2.1 (a) Term-Structures Association

The first step of obtaining a structure for a term is by associating them before query

time. The common associations created are between a term and a single structure, which

is its immediate parent node (Kim et al., 2009). Association can also be performed during

query time. According to Petkova et al., 2009, a term will be associated to all its parent

structure, but only the one best structure will be considered during query interpretation.

Similarly, in Hsu et al., 2004, a term is associated to the structure path known as context

path. For J. Li et al., 2009, a term is associated to a subtree of structures. Compare to a

single structure, path and subtree are more detailed, and provide a better context during

query reasoning. After term and structures associations are formed, they can be further

weighted before query time (see next section), or ranked during query time.

2.2.1 (b) Term-Concept Weighting

A prediction of what a term means (or its association with a structure) can be in-

ferred using some term scoring methods such as term frequency probabilistic model

(e.g. TFIDF, BM25), language model etc. These models are commonly used for ele-

ment/document term scoring in xml or information retrieval. For this purpose, extension

is made on element/document term scoring algorithm to enable the weighting of term

based on unique structures or better known as concept. This results in a set of possible

ranked concepts (structures) based on the collection’s statistics. The prediction works rea-

sonably within collection using the same schema/dtd, or in the case where there is none or

little ambiguity of a term or different roles of an entity. Although the prediction may give

us a ranked prediction of a term, such as “singapore” is an organization, address, country

and so forth, in general, this set of structures resembles a list of meanings in a dictionary

without senses.

When it comes to interpretation of query term, having access to the set of structures

32

is insufficient as we are still lacking hints of which structure to pick. Therefore, it is

necessary to include details that decide whether a structure is relevant to the term contex-

tually in addition to its overall occurrences. Including context analysis is beneficial in text

centric collections, where existences of structures with large context variables (complex

taxonomy) are largely seen.

Here, we show how concepts are generated for a term in general (see algorithm

2.1). Assume a collection with a set of terms and structures, where each unique structure

is known as concept. A term in the collection is associated to a number of concepts,

ci⊂C = {c1...cn}. Let us denote by Di the collection of elements associated with concept

ci, Di = ∪k=0...miei,k.

The scoring of concepts are carried out in two levels, first the element level, and

second, the concept level. For element level, concepts for term are first scored based

on individual elements related to the concepts. Various scoring models (Wang, Li, &

Wang, 2007) (denoted as Scoremodel in algorithm 2.1) can be used in term weighting

for elements, ranging from basic Term Frequency Inverse Document Frequency (TFIDF)

(Cohen et al., 2003), unigram language model to more complex one with length normal-

ization like BM25 (Robertson & Zaragoza, 2009), and hierarchial weighting like hier-

archical language model (Ogilvie & Callan, 2004). In query transformation works that

perform concept weighting, Petkova et al., 2009 adopts the unigram language model for

its term element weighting while Kim et al., 2009 proposes the use the hierarchical lan-

guage model.

At the second level, scores for elements of the same concept are combined (denoted

as Conceptmap in algorithm 2.1) to form a single term weighting for the concept. Map-

ping elements score to concept can be carried out by extending term weighting method

for individual elements to its type, i.e. generalizing elements by their types (Petkova et

al., 2009; Kim et al., 2009).

33

Algorithm 2.1 CONCEPT GENERATOR
get element level scoring
for ci = 1→ n do

get elements subsets for each concept
Element(ci)←∪k=0...miei,k
generate term weight for elements
Element(ci)← termweighting(Scoremodel,Element(ci))

end for
get concept level scoring
for ci = 1→ n do

merge elements score for each concept
Score(ci)← conceptweighting(Conceptmap,Element(ci))

end for
rank concepts
ConceptList← conceptrank(Score,Rankmethod) return ConceptList

From the generated concept list (denoted as Conceptlist in algorithm 2.1), concept

selection for the term can be carried out based on first of the ranked concepts, or a subset

cut off by a threshold. In Bao et al., 2010, author also suggests to let user intervene to

select a concept for query.

The weighted concepts for term in a collection are then used in the interpretation

of terms given in a query. These concepts are used extensively in two manners, i.e. in

finding an overall target for a query and finding concepts of terms used in the query.

2.2.1 (c) Query’s Target Concept

During query analysis, a concept can be used to define the overall query’s scope or

focus. For example, in fragment query by Carmel et al., 2003, a target concept signifies

the component type expected as target result, e.g. <target>book</target>. In NEXI

Content and Structure (CAS) query by Trotman, 2009, a target concept defines what to

be returned to user.

Thus, in query transformation, finding target is part of the process to form a complete

structured query. In Petkova et al., 2009, target for a query is obtained from concepts

of query terms via a set of operations (i.e. expand, aggregate and order). J. Li et al.

utilizes the root node of subtree (known as master entity) associated to its query terms

34

to obtain the target. Using a different approach, Hsu et al. selects concept nodes using

a context analysis method to form its structured query. Nodes selection is carried out by

exploring structure paths of query’s terms based on semantic distance of query terms on

the document structure. Bao et al. also proposes that an effective keyword search in xml

search should be able to identify the correct type of the target node(s). This work uses

two factors to select the target node, i.e. the frequency of target node and the depth of the

target node in a document.

2.2.1 (d) Query’s Term Concept

Besides identifying target concept for a query, a concept is used to constraint the

meaning of terms in a query. For example, when a term is used in various kind of

elements, indicating a concept will restrict the query to a specific type of elements.

Collection-based probabilistic methods are often used in the selection of the most rel-

evant concept for a term based on collection statistics, e.g. Petkova et al., 2009 and Kim

et al., 2009 uses unigram language model to determine the most relevant concept for a

term. When collection-based frequency is insufficient, Bao et al., 2010 incorporates node

type (equivalent to our concept) frequency (Cvia(T,q)), with an additional factor known

as In Query Distance (IQD), utilizing keywords distance within a query in its concept

selection.

Other Query Interpretation Methods Although there are additional methods that as-

sist in query interpretation using linguistic methods like linguistic parsing (Bilotti, Ogilvie,

Callan, & Nyberg, 2007), semantic role labelling (Zhao & Callan, 2009), etc. we focus

on works that carry out query interpretation using structures provided in documents.

35

2.2.2 Getting Information Needs Across

An important issue in structuring a query is to get the contents across from the un-

structured form to structured form, so that both queries are as similar as possible in its

information needs. As such, it is important that information needs specified in the source

query are understood well, before an equivalent target query can be formed. One way

is by getting the most out of the keywords used, via their combination, implicit hint, ex-

plicit hint. For example, looking at its combination will assist us in understanding the

user’s intention, or context of query. In query interpretation, query context is important

hint leading to concepts selection. Query context has been a popular approach used in

improving IR works (Bai, Nie, Cao, & Bouchard, 2007, Chi, Ding, & Lam, 2002).

Besides, source query also contain implicit hints, that can be used in differentiating

the type of keywords used. If we look at a topic 2011104 in INEX data-centric track

(Wang, Ramírez, Marx, Theobald, & Kamps, 2011), a query “movie Ellen Page thriller”

implicitly contains both content and concept keywords, i.e. Ellen Page (content keyword),

thriller (content keyword) and movie (concept keyword). To determine the type, Petkova

et al. uses a thesaurus to determine whether a keyword is content or concept. Being able

to identify keyword’s type gives us better view of possible concepts a user is looking for.

In addition, for a source query that describe its needs in a explicit manner, like topic

219 in INEX Natural Language Query (NLQ) Track, “Find sections that discuss the gran-

ularity of learning objects”. Natural Language Processing (NLP) parsing method is used

to differentiate the type of keywords, i.e. sec (concept keyword), learning objects (content

keyword) and granularity (content keyword) in Tannier, 2005.

Query Ranking Sometimes, an unstructured query may be transformed to multiple

structured queries. This happens especially when probabilistic methods are used to sug-

gest possible structures for query. Depending on the diversities of structures available

36

from collections, a query may be related to more than one structures, hence results in

multiple structured queries. When this occurs, queries are ranked by its structures rele-

vance scores, such that the most popular structures w.r.t. a query gets the highest rank and

so forth. J. Li et al., 2009 proposes a dynamic plan to obtain top-k results by evaluating

each generated structured queries by its rank until no further relevant results are obtained.

2.2.3 Forming Structured Queries

Out of the many related works, three shows full construction of structured queries,

i.e. Petkova et al., 2009; J. Li et al., 2009; Tannier, 2005. Petkova et al., 2009 shows

a full transformation from keywords query to NEXI query language. In this work, the

inferred structures and keywords from source query are constructed into NEXI query

using a set of operations, i.e. expansion, aggregation and ordering. For example, the

aggregation function is to form a single NEXI target by combining two targets with the

same structure.

Similarly, Tannier, 2005 also attempt to construct a NEXI query, but using a natural

language query approach. Rules are defined for certain linguistic patterns of query de-

scription, such as “c2 discusses c4” is mapped into about(c2, c4). For this transformation,

it is important that the natural language query follows the predefined rules.

Two types of inputs have been proposed in this paper, i.e.:

Rule 1. Simple noun phrase [NP → (ADJ—NOUN)+ NOUN] This input consists of

combination of adjectives (or noun) followed by a primary noun. E.g. “semantic net-

works” (ADJ NOUN).

Rule 2. Complex noun phrase [NP → NP (PREP NP)+] This input consists of noun

phrases linked by prepositions. E.g. “history of Artificial Intelligence”.

These queries are then represented in a semantic representation that will automati-

cally convert to NEXI query.

37

J. Li et al., 2009 constructs XQuery from keywords query. This work requires key-

words in a query to be specified in the form of label:term pair, e.g. “year:2006 au-

thor:Philip title:xml”. Subtrees are identified based on schema and query labels, e.g.

“{year,{title,author}book}bib”, where book and bib are nodes of subtrees.

Two types of clauses of XQuery are generated, i.e.:

FOR Clause A set of FOR clauses according to the subtrees. E.g. “For $b in bibliogra-

phy/bib” for {}bib and “For $b2 in $b/book” for {}book.

WHERE Clause A set of WHERE clauses for the FOR clause. E.g. “Where $b/year=’2006’

and contains($b2/title, ’xml’) and contains($b2/author, ’Philip’)”.

2.3 Issues in Query Transformation

In the previous section, we have gone through works related to some important as-

pects of query transformation. Now, we discuss the issues of the methods used in current

works w.r.t. the goals of this thesis.

2.3.1 Information Utilization from Query Side

In an unstructured query, whether it is keywords form or short description, it may

consist of some structural keywords. Our first issue discusses whether current works are

able to exploit these structural keywords effectively. When structural keywords are used

in a query, they can be tricky as the keyword can be meant as what it tries to look for,

such as “article”, or it can meant for constraining a keyword, such as “author”. The issue

is that we need to be able to identify those keywords if they are used. However, there are

some limitations with the current solutions.

Petkova et al., 2009 proposes the usage of structure thesaurus to identify structural

keywords used in a query. However, it has limitation of identifying a keyword used as

constraint. It only applies when a specified structure is meant to be a query target. If a

structural keyword is used for constraining a term to “author” instead of “editor” in “dblp

38

author andrew trotman”, it could be mistakenly interpreted as target (see result i. from

Step 3 below).

1. Query splitting and target bindings

dblp→ structure keyword→ {//dbl p}

author→ structure keyword→ {//author}

andrew trotman→ content keyword→ {//author[“andrew trotman′′]}

2. Expansion operation.

{//dbl p} → {//dbl p} (note: no expansion)

{//author} → {//dbl p//article//author}

{//author[“andrew trotman”]} → {//dbl p//article//author[“andrew trotman′′]}

3. Aggregation operation.

{//dbl p}+{//dbl p//article//author}+{dbl p//article//author[“andrew trotman′′]}

→

i. {//dbl p//article[.//author[“andrew trotman′′]]//author}

ii. {//dbl p//article[.//author][.//author[“andrew trotman′′]]} (Invalid NEXI query)

Compare to Petkova et al., 2009, Bao et al., 2010 takes a step further in identifying

both target (known as search for node) and constraint (known as search via node) struc-

tures used in a query. It identifies a constraint structure by using in query distance (IQD)

method to find pairs of structure and keyword. And, it utilizes structure specified as target

in finding the correct subtree. However, it has a limitation if the target structure happens

to be contained within a subtree. For example, a query looking for url of articles where

title contains xml can be written as “url article title xml". Based on the contents of tree

structure in Figure 2.7, structures identified are shown below.

39

Figure 2.7: Examples of Document Tree of DBLP XML

1. Infer Search for Node

“url”
“article”

“title”
“xml”

→ “article”

2. Infer Search via Node

“xml”→ “title”

Using Bao et al., 2010’s method, we are not able to get “url" as what the query

has targeted. From these two works, we can see that the current approaches still have

limitation in exploiting structural keywords effectively.

In J. Li et al., 2009, we see that the step of structure keyword identification can be

omitted by letting user specifies them in structure:keyword form, such as “author:David

title:XML". Similar to J. Li et al., 2009, Tannier, 2005 also requires the structure to be

specified in certain way so that it can be parsed into a corresponding structure and key-

word template. Although these two works proposed a simpler way structural keywords

identification, the main drawback is their input queries have become more rigid. In this

thesis, we are interested to explore into a looser form of query instead.

2.3.2 Information Utilization from Collection

Besides being able to utilize keywords in query effectively, the knowledge from

document structures in collection is also very important in suggesting good structures

for constructing structured query. However, it is easier to find a good structure when the

40

document structure of a collection is simpler, e.g. the tree structure is shallow, its contents

are data centric, and its elements are homogeneous. When a collection is complex, issues

like element granularities and term ambiguities will arise. We present two main problems

that occur when structures of a collection are nested and heterogeneous.

Nested and Heterogeneous Structures In query interpretation, one way to locate rel-

evant structures for constructing structured query is by finding common subtree of the

query. Smallest Lowest Common Ancestor (SLCA) is one of most widely used ap-

proaches to find a common subtree given a set of keywords in a query. For example,

the root of the subtree is used as the target of a query, e.g. “workshop”, “tutorial” etc.

The main idea of SLCA is to find a smallest subtree that contain all the keywords used

in the query. Smallest subtree means that there is no other subtree (that also contain all

the keywords) within SLCA (Xu & Papakonstantinou, 2008; J. Li et al., 2009). However,

this approach has a limitation when the desired query’s target is not the ancestor.

Consider a query, “andrew trotman jaap kamps”, that is looking for any cooperation

between these two persons that can be a paper, a workshop, a tutorial. When objects are

nested, SLCA select the lowest common node, i.e. organizers, which is too small as a

answer of an exact element. In this case, the node with concept “workshop” is preferred.

Different from SLCA that looks for subtree, Petkova et al., 2009 uses structure ex-

pansion, aggregation and ordering operators to find a common concept based on schema.

Refer to the same query, Petkova et al., 2009 only manage to obtain “organizer”, which is

slightly poorer than SLCA. This is because common concept on a schema can be linked

to two different nodes on a physical document tree.

1. Structure expansion operation.

andrew trotman→ {//name[“andrew trotman′′]} →

{//organizer//name[“andrew trotman′′]}

41

Figure 2.8: Part of Document Tree of a Nested Structure XML

jaap kamps→ {//name[“jaap kamps′′]} → {//organizer//name[“jaap kamps′′]}

2. Structure aggregation operation.

{//organizer//name[“andrew trotman′′]}+{//organizer//name[“jaap kamps′′]}

→ {//organizer//name[“andrew trotman′′][“jaap kamps′′]}

We can see that both scenarios are suggesting a concept which is too small or too

low. This is partly because current methods are used for collection with simple document

structure. When a complex collection is used, they would not be able to consider higher

level structures in the hierarchy.

2.3.3 Query Construction Methods and Outputs

Current works transform a source query to a query language form using two different

approaches, by using query construction algorithm (Petkova et al., 2009; J. Li et al., 2009)

or query parsing & templates mapping (Tannier, 2005; Woodley & Geva, 2006).

In Petkova et al., 2009, its query construction algorithm finds and transforms struc-

tures (known as targets) for a source query to form a formal XML query. The construc-

tion rules are designed for transformation into a specific query type, i.e. NEXI. Similarly,

J. Li et al., 2009 uses a structured queries construction algorithm to generate clauses of

42

XQuery. Structures (known as master entities) are generated into XQuery clause through

steps like,

...
3: for all each master entity vm ∈Vm do
4: Generate FOR clause with vm, i.e. “For $x in r/.../vm”;
...

Tannier, 2005 performs linguistic analysis to infer structure for NLP query. Analysis

steps like, Part-of-Speech (POS) parsing, specific rules reduction and structure parsing

are used to identify patterns of keywords used in a query (Tannier, Girardot, & Mathieu,

2005). Specific rules per collection were also proposed to allow recognition of more pre-

cise query expressions for particular domain. This approach requires information needs

to be specified with correct linguistic structure in order to be mapped to the form of query

language structure.

Woodley & Geva, 2006 carries out the transformation by using a set of predefined

query templates obtained from previous NEXI topics. Tagged query is then matched with

the predefined templates. For a better tagging of source query, special connotations are

used to find types of words used in a query like structures requirements (e.g. section,

abstract), boundaries separating structural and content requirements (e.g. contain, about)

and instructions that indicate target to be return (e.g. find, retrieve). As NLP queries are

very diverse in nature, this approach requires consecutive extension of special connota-

tions.

Currently, most query transformation framework is designed for its intended struc-

tured query language. For example, algorithm proposed by J. Li et al., 2009 construct a

XQuery language. Since current solution remains individualized, we are interested in a

generic framework instead, which can be achieved by separating the query interpretation

outcome from the query construction of a particular query language. A generic frame-

work is desirable as a single and unified solution, that could easily scales to accommodate

43

interpretation methods or even structure query language types.

2.3.4 Issues Summary

To give an overall picture of the issues of literatures discussed, the features of meth-

ods/approaches used are summarized in Table 2.2. From the table, we can see that current

solutions have not addressed query transformation as a complete solution. This limita-

tion will be addressed in our proposed solution with the aim to provide a unified solution

within single framework.

Table 2.2: Features of Existing Query Transformation Works

Features of Query Trans-
formation

J. Li
et al.,
2009

Petkova
et al.,
2009

Kim
et al.,
2009

Bao
et al.,
2010

Tannier,
2005

Woodley
&
Geva,
2006

Information utilization from query side
Identify target structure
(Thesaurus)

no yes no no yes yes

Identify target structure
(Template)

no no no no yes yes

Identify constraint structure
(IQD)

no no no yes no no

Identify constraint structure
(Template)

yes no no no no no

Information utilization from collection (method used in bracket)
Suggest new constraint struc-
ture (Parent Node Binding)

no yes yes yes no no

Suggest new constraint struc-
ture (Ancestor Node Bind-
ing)

no no no no no no

Suggest new target structure
(SLCA)

yes yes no yes no no

Suggest new target structure
(Subtree Frequency)

no no no yes no no

Query construction methods/outputs
Use operators/algorithms to
construct query

yes yes - - no no

Use linguistics
rule/templates to construct
query

no no - - yes yes

Construct NEXI query no yes - - yes yes
Construct XQuery query yes no - - no no

44

2.4 Summary

In this chapter, we have presented some backgrounds and related works of query

transformation in a structured retrieval environment. We have highlighted three issues

where current solutions still lack a comprehensive approach to address the various fea-

tures required in query transformation. These issues will be addressed in Chapter 3 and

Chapter 4 respectively. The methods discussed in the issues will be used as the baselines

of our evaluation in Chapter 5.

45

CHAPTER 3

A FLEXIBLE QUERY TRANSFORMATION FRAMEWORK

In this chapter, we introduce our framework for the study of query transformation, and

present it in a formal manner. Such formalization is important for the purposes of further

reusability, development and comparison of the framework. This chapter is divided into

four sections. We start off by specifying the basic requirements of query transformation

framework. Then, we define the framework for query interpretation and construction in

structured retrieval environment. Following this, we describe a probabilistic approach

called context-based term weighting to capture collection-based knowledge for query in-

terpretation. And last, we define a novel query representation that is used to capture the

interpreted query as well as the mappings required to form the final structured query.

3.1 Requirements for Query Transformation

Unstructured Query, QU An unstructured query is a query written by user, describing

his information needs for the purpose of searching or finding some information from a

specific domain. An unstructured query, QU can be of multiple types, e.g. keywords,

phrase, incomplete questions, etc. We classify them into two broad categories, either a

keyword query or a descriptive query (i.e. for phrases, partial sentence, question etc.),

QU = {QUkeyword ,QUdescriptive}. Each QU consists of a set of term, qt, given as QU = {qti :

1≤ i≤ nqt}, where nqt is the total number of terms. The terms used in unstructured query

of keywords type do not required to be ordered, whereas terms used in descriptive type

can be ordered using natural language. A term is a lexical unit containing a single or

multiple words, conveying a single meaning such as river view hotel, address, gabriella

kazai etc.

46

Structured Query, QS A structured query is a query language written by expert user

to retrieve structured resources such as XML or databases. In this context, we refer

structured query as those queries meant for structured retrieval only, i.e. XML doc-

uments or data. Although these queries are more expressive for searching resources

in structured domain, they are complex, thus not meant to be used by end user. A

structured query, QS, ranges from path-based, concept-based and fragment-based, QS =

{QSpath ,QSconcept ,QS f ragment}. Each QS is a string.

Domain, D and Element, E A domain, D, is a set of structured resources or docu-

ments. A domain can be a collection of XML in the form of web sites (e.g. conference

site), records (e.g. bibliography), objects (e.g. actors, directors), articles (e.g. Wikipedia

page) etc. Consider a domain of structured resources, D, the main objects of interest are

elements, e, featuring different granularities of contents of these resources, denoted as

D = {ei : 1≤ i≤ Ne}, where Ne is the total number of elements.

There are two kinds of information in an element, i.e. its structure and its con-

tent. The structure (also referred as markup in XML and Hyper Text Markup Language

(HTML) or annotation in Resource Description Framework (RDF)) of an element is a

descriptive term describing its contents. We denote it as ES. Whereas, the content of an

element usually comes in the form of an informative text, which ranges from paragraphs

and sections of description, to entities and names like person’s name, news title, web site

url etc.

There are two types of elements, i.e. a simple element or a nested element. A simple

element is obtained from the leaf node of a structured resource tree. It is represented with

one structure and one piece of content, e.g. <tel>+65 6733 0880</tel>, <add>392

Havelock Road, Singapore 169663</add>, <url> db/conf/aaai/aaai2008.html </url>.

A leaf element is the smallest element in D. A nested element is obtained from ancestor

47

of leaf node. It is represented with one structure and concatenation of its descendant

elements, such as a <book><name>An Introduction to Information Retrieval</name>

<author>Christopher Manning</author></book>.

3.2 Formal Semantics of Query Transformation

The main purpose for query transformation in a structured retrieval environment is

the ability to transform a source query to a target query which has been improvised to suit

the problem of the environment. Given a domain, D, a target query, QS is a structured

query, that will be submitted to a retrieval system of the domain to retrieve resources as

specified in the query. Examples of structured query are NEXI (Trotman & Sigurbjörns-

son, 2004a), XSearch query (Cohen et al., 2003) and XML fragment query (Carmel et al.,

2003). A source query, QU , is an unstructured query issued by users to look up informa-

tion within the domain. An example of unstructured query is keywords query. A query

transformation, F is a process that converts QU to QS, using domain knowledge of D.

Flexible Query Transformation, F Traditionally, query transformation is a one to one

process where transformation rules are meant for transformation from one source query

type to one target query type. This kind of transformation lacks flexibility in accom-

modating new structured query. We propose a flexible query transformation model, F

where a single QU can be mapped to one or more QSs. Our goal is to enable easier adap-

tation of a new QS by generalizing the transformation between QU and QS pairs using

a more generic framework that separates the formulation of queries (i.e. syntax) from

their information needs. In this flexible query transformation framework, we introduce

an intermediate query structure, I, which is a representation for expressing the query’s

information needs (in terms of both contents and structures) so that such needs can be

converted between queries without loss of meaning.

48

Now, let us define the query transformation framework in a formal manner. Let D be

the collection where the retrieval is to be conducted. The source query of transformation

process is unstructured query, QU , while the target query is structured query, QS. The

transformation process requires the knowledge of D for query interpretation. First, we

describe the specification of the input query.

3.2.1 Unstructured Query Specification

In query specification, we assume that the user who formulates QU understand the

domain of D.

Assumption User must understand the domain in order to avoid semantic discrepancy of

the seek information.

Definition 3.1. (Query Term) An unstructured query can be specified as a list of terms,

qt, where each term may consist more than one keywords, kw, where each keyword is a

string. ∀qt ∈ QU . qt = {kw|kw > 0,kw is string}.

Two types of term can be used in the query, i.e. content term and structure term.

Definition 3.2. (Query Content Term) Query content term, qtcontent , is a term in query

that indicates the information or data the query wants to retrieve. A query content term

corresponds to the content or data of an element, EC in structured collection.

Definition 3.3. (Query Structure Term) Query structure term, qtstructure, is a term in un-

structured query that indicates the structure or tag for the information the query wants to

retrieve. A query structure term corresponds to the structure or tag of an element, ES in

structured collection.

For example, for a collection written in XML, a content term in query corresponds

to the content or data of XML element, while a structure term in query corresponds to the

tag or structure of XML element.

49

Axiom 3.1. An unstructured query may contain both content term and structure term.

Or it may contain content term only. However, it cannot contain structure term only.

QU = {qttype|qt ≥ 1, type = structure∪ content,qtcontent ≥ 1}

Where structural keywords are used in query, user may refer to schema or DTD of

collection for specification of structures if there is any. Additional thesaurus that expands

the vocabulary of the structures will improve the structural keywords specification. Oth-

erwise, user may omit the usage of structure keywords in query.

In the case where structural keywords are used in a query, there are two ways where

the query can be optimized. First, user may give a structure keyword indicating intended

element, such as “article”, “paper”, “hotel”. Second, user may give a structure keyword

indicating the meaning of the content keyword, such as “author” for content “andrew

trotman”, “hotel” for content “river view”.

By default, an unstructured query is considered as a single intention query, where

its intention is determined by the conjunction of terms used in the query. However, there

is case where there are multiple sub intentions that occur within a main intention, such

as “tutorial or workshop by andrew trotman”. Therefore, logical operator can be used to

express such intentions, which are disjunctive. However, this specification is optional as

user can leave the task of deciding the intentions to the framework.

3.2.2 Query Interpretation Requirements

Given an unstructured query in the above form, its interpretations, is determined by

the semantics of the query itself as well as the semantics of the collection. We refer these

semantics as query context and collection context. The reason behind why an interpre-

tation requires both query context and collection context is that the former reflects what

user requires while the latter reflects what collection could offer. For instance, given a

query that looks for paper written by andrew trotman (query context), it can be inter-

50

preted as workshop paper or a journal paper or a conference paper (collection context).

We observe that each interpretation refers to different part of structures used in collection.

We formalize the requirements of query interpretation as follows.

Before a query can be interpreted, knowledge for interpretation is required. The

source of knowledge is the structured document from collection, D. Given collection, D,

first, we define the source of knowledge, and then we define the knowledge required for

interpretation, called context interpretation.

Structured Document In this framework, structured documents can either be created

based on a schema or without one. Although most structured resources contain both

logical tags and descriptive tags in its contents representation, we focus on the latter as

these tags reflects concept or meaning that can be used for query interpretation.

Assumption There exist descriptive structures (i.e. markups, tags or annotations) in a

structured document, i.e. for the purpose of meaning enrichment, classification, content

representation, rather than logical, which is meant for typesetting or presentation. The

set of descriptive structures forms an information structure that resembles a knowledge

representation like taxonomy that can be used for domain specific reasoning.

Definition 3.4. (Structured Document) A structured document is a rooted, acyclic graph

defined as Gdoc = (V,ED), where V is a set of nodes which can be either a structure or

a content, V = {v : v ∈ vcontent ∪ v ∈ vstruc} . In Gdoc, its root node and all intermediate

nodes are structures, vstruc, while its leaf nodes, vcontent are contents or data. ED is a

set of directed edges representing relationship between two nodes. Likewise, there are

two types of edges, one represents the relation (instance of) between a content node and a

structure node, and one represents the relation (subclass of) between two structure nodes.

We denote the former as vcontent → vstruc ∈ ED where vcontent is a child and vstruc is a

51

Figure 3.1: Partial Document Structure of A Structured Document from Conference Col-
lection

parent node of vcontent . On the other hand, the latter is denoted as vstruci→ vstruci+1 ∈ ED,

where vstruci+1 is a parent node of vstruci .

Example 3.1. An excerpt of structured document about conference workshops from a

conference site is shown in Figure 3.1.

Having defined the structured document, now we can proceed to look at the useful

items, i.e. term, concept and context, that can be extracted from the content node, vcontent

and structure node, vstruc within the document as our knowledge source.

Term A term is a meaningful unit of string obtained from either a content node or a

structure node of a structured document, Gdoc.

Definition 3.5. (Term) Given a structured document, Gdoc, a content term, ct, is a term

obtained from content node, vcontent . A structure term, st , is a term obtained from struc-

ture node, vstruc. ct can be a single word or a phrase obtained from term parsing method,

whereas st is required to refer to the exact string of vstruc.

Concept In a structured document, the meaning of a term can be observed through the

relation between a term (content node) and its structures (structure node). As such, we

52

can obtain the prediction of what a term means, by capturing the relationships between

the term and its structures. Different from thesaurus, the meaning of a term are reflected

through the usage of structures (including tags, markups, annotations) in the tree. We

call these structures as concepts. A concept is structure (when perceived in a meaningful

manner) giving an idea of what a term is about. We use the word concept to refer to the

type (or class) of a structure, e.g. name, hotel, article etc. and the word structure to refer

a unique physical unit of a structure term, or structure node.

Definition 3.6. (Concept) Given a structured document, Gdoc, a concept, cpt, for a con-

tent term, ct, is a structure obtained from structure node, vstruc of Gdoc, where vstruc is an

ancestor of content node, vcontent containing ct.

Context A context defines a specific condition of where a concept is used. Context may

not be significant in collection where its documents have homogeneous structures, due to

the simplicity and the size of the information. However, in collection where documents

contain heterogeneous structures, there may be different parts in a document that presents

information of different kinds. Hence, when a document contains many different parts of

information, it has become not meaningful if these parts are treated as the same type under

the same document. Dividing document into contexts overcomes this by classifying parts

of the same type under the same context.

Definition 3.7. (Context) Given, a structured document, Gdoc. A context, ctx, for a con-

tent term ct and its concept cpt, is a structure obtained from structure node, vstruc of Gdoc,

where vstruc is an ancestor of structure node, vstruc containing cpt.

The number of contexts is highly depended on the heterogeneity of structures in

collection, D.

53

Proposition 3.1. A collection, D, may contain one or more contexts. Contexts in hetere-

ogeneous collection, Dhetero is higher than contexts in homogeneous collection, Dhomo.

∀D.CT XD = {ctx|ctx≥ 1}.

Let x be the unique structure node of collection, total unique structures in heterogeneous

collection is higher than homogeneous collection,

|XDhetero|> |XDhomo|

Since the number of contexts in any collection is propotional to the number of unique

structures in the collection,

|CT XD| α |XD|

Hence, |CT XDhetero |> |CT XDhomo|

Knowledge for Interpretation Follow, we define the knowledge required for query in-

terpretation. The basic unit required for interpreting a query is to interpret its term. Here,

the knowledge refers to a term and its associated concepts, known as term interpretation.

Normally, term interpretation is captured based on entire collection. In this framework,

a term interpretation is captured based on contextual view of collection. There are two

types of term interpretation, one for content term and one for structure term.

Definition 3.8. (Term Interpretation for Content Term) A term interpretation for content

term, Icontent for collection, D, is a set of triple (ct,cpt,ctx), where ct is content term of

element in D, cpt is concept describing ct, and ctx is the context where ct and cpt is in.

Icontent = {x|1≤ x≤ |I|,x = (ct,cpt,ctx)}

Each Icontent has a set of properties, Iprop = {scoreCT XPROX ,scoreCW , id}, where id

is the ref (e.g. ref to an original document or element), scoreCW is the score to measure

importance of ct in cpt and scoreCT XPROX is the score to measure whether the usage of

cpt for ct is popular under ctx.

54

Definition 3.9. (Term Interpretation for Structure Term) A term interpretation for struc-

ture term, Istructure for collection, D, is a set of tuple (st,ctx), where st is structure term

(i.e. concept) of element in D, and ctx is the context where st is in. In this case, since st is

a concept itself, st and cpt can be used interchangeably.

Istructure = {x|1≤ x≤ |I|,x = (st,ctx)}

Each Istructure has a set of properties, Iprop = {scoreCT XPROX , id}, where id is the ref

(e.g. ref to an original document or element) and scoreCT XPROX is the score to measure

whether the usage of cpt is popular under ctx.

In addition, we also define the knowledge that will assist in term identification from

an unstructured query. Given a collection, two kinds of thesaurus are created, i.e. content

term thesaurus, T HEcontent , and structure term thesaurus, T HEstructure.

Definition 3.10. (Content Term Thesaurus) A content term thesaurus, T HEcontent , is a set

of lexical items obtained from content node, vcontent of document, Gdoc, in a collection, D.

Each item is a meaningful string, e.g. word, phrase, numbers, etc. It also contain name

entity such as country, name, paper title etc.

Definition 3.11. (Structure Term Thesaurus) A structure term thesaurus, T HEstructure,

is a set of lexical items obtained from structure node, vstructure of document, Gdoc in a

collection, D. Each item is a tag.

Using thesaurus as knowledge source helps to identify meaningful consequtive key-

words in a query, rather than treating them as individual keywords for query interpreta-

tion.

Information Needs in Query Interpretation A requirement for the query transforma-

tion is to maintain the information needs specified during the transition from unstructured

form to its structured form. In order to minimize the information loss during the transi-

55

Table 3.1: Usage of content and concept keywords in information needs.

Query Structured Form Info Needs Keywords
Content Concept

Path-based: NEXI
(Trotman, 2009)

//TARGET_PATH
[about(FILTER_PATH,
FILTER_TERM) (e.g.
//movie[about(.//title, Avatar) AND
about(.//director, James Francis
Cameron)]

FILTER_TERM
(e.g. Avatar, James
Francis Cameron)

TARGET_PATH,
FILTER_PATH
(e.g. movie, title,
director)

Concept-based: COM-
PASS (Graupmann et
al., 2004), XSEarch
(Cohen et al., 2003)

CONCEPT=VALUE (e.g. au-
thor=Tolstoy), LABEL: KEYWORD,
LABEL: or : KEYWORD (e.g.
authors: Kempster : Stirling)

VALUE (e.g. Tol-
stoy, KEYWORD
(e.g. Tolstoy)

CONCEPT (e.g.
Kempster, Stir-
ling), LABEL (e.g.
authors)

Fragment-based: XML
Fragment (Carmel et
al., 2003)

<CONTEXT>TERM </CONTEXT> TERM CONTEXT
<TARGET>CONTEXT </TARGET>
(e.g. <book><year>1973</year>
<title>Search</title> </book> <TAR-
GET>book</TARGET>)

(e.g. 1973, Search) (e.g. book, year, ti-
tle)

tion, it is necessary to find the common information needs features that could bridge both

queries type. Hence, before we start interpreting a query, we must know what kind of

contents that we need to achieve from the interpretation.

Considering various structured queries form as in Table 3.1, we see that information

needs can be specified as content needs and concept needs. The content needs are key-

words indicating the information user would like to seek. Concept needs are keywords

containing the content keywords to a narrower subset of results based on categories, types,

kinds, roles, topics etc. The concept needs in a query can be further classified into target

concept and constraint concept. A target concept is used to focus the query to a certain

concepts only. For example, setting “workshop” as a target concept results in elements of

type “workshop” only. A constraint concept is used to refine a term, instead of a query.

For example, “organizer” in //workshop[about(.//organizer, andrew trotman)] and “pre-

senter” in //workshop[about(.//presenter, andrew trotman)] will return different results

due to the constraint settings. Having understand this, we have concluded that three types

of information needs need to be interpreted during query transformation, as stated below.

Definition 3.12. (Query Target) A query target, , targetcpt , of an interpreted query is a

structure that defines the type of element to be returned as a result.

Definition 3.13. (Query Constraint) A query constraint of an interpreted query is a con-

56

tent and structure pair that constraints the elements to be returned. It consists of two

parts, i.e. the content term, constraintct and the structure that constraints the content

term, constraintcpt . constraintct defines the content terms contained in elements to be

returned as a result. constraintcpt defines the type of structure for content terms in the

query.

Context-based Query Interpretation Having stated the knowledge for interpretation,

and the types of contents that need to be interpreted, we proceed to define the output of

query interpretation. First, we define the context sub graph which is the initial form of

query interpretation. It consists all possible interpretations for every terms in a query.

Second, we describe how information needs of an interpreted query are captured via unit

called query interpretation.

Definition 3.14. (Context Sub Graph) Consider a set of interpretations, I, for all the

terms in a query, QU . An interpretation sub set with unique context is denoted as ICT X ,

where ICT X ∈ I. A context sub graph for ICT X , is given as SGCT X . SGCT X is a rooted

directed acyclic graph, SGCT X(VSG,ESG), such that:

- the root node, VSGroot is the ctx of ICT X

- the leaf node, VSGlea f is either a content node, ct, or a concept node, st, of ICT X

- the intermediate node, VSG is cpt of ct from ICT X

- ESG is a subset of E interconnecting the nodes in VSG

Example 3.2. Consider a query, “andrew trotman jaap kamps” that looks for any out-

comes by these two person on a conference collection. The relevant context sub graphs

wrt. this query includes “workshop” sub graph, “paper” sub graph, “poster committee”

sub graph. If we looked another query, “andrew trotman focused retrieval”, the relevant

context sub graph w.r.t. this query may also have similar root “workshop” but with a dif-

57

Figure 3.2: Context Sub Graph Examples

ferent set of constraint concepts. If structural term is used in the query, e.g. “organizer”

and “workshop” in “organizer focused retrieval workshop”, they can be reflected in the

context sub graph as well.

Constraint Concepts for Query Interpretation Constraint concepts for query inter-

pretation can be obtained from context sub graph, SGCT X of the query. Here, we define

the possible candidates of concepts that can be selected as constraint concepts.

Definition 3.15. (Constraint Concept Candidates) Consider a context sub graph, SGCT X ,

of an unstructured query, QU . A constraint concept candidate, constraintCandcpt , for a

content term in QU is a concept node for the content term in SGCT X

∀ct ∈ QU ,constraintCandcpt = {VSG ∈ SGCT X}

where VSG is cpt and VSGlea f is qtct and E(VSG,VSGlea f) is the edge connecting both nodes.

Constraint Concept Weighting The weight for a constraint concept of a term,scoreCW

is a real number in the range of [0,1] obtained from the term weighting function for

concept, scoreCW (cpt,ct).

∀ct,scoreCW (cpt,ct) : constraintCandcpt → scoreCW

Target Concepts for Query Interpretation Target concepts for query interpretation

can be obtained from context sub graph, SGCT X of the query. Here, we define the possible

58

candidates that can be selected as target concepts.

Definition 3.16. (Target Concept Candidates) Consider a context sub graph, SGCT X , of

an unstructured query, QU . A target concept candidate, targetCandcpt , for the query can

either be the root node of SGCT X or concept leaf node of SGCT X

∀QU , targetCandcpt = {VSGroot ∈ SGCT X ∪VSGlea f ∈ SGCT X}

where VSGlea f is st.

Target Concept Weighting The weight for a target concept of a term, scoreCT XPROX

is a real number in the range of [0,1] obtained from the context proximity function for

context, scoreCT XPROX(cptct ,ctx).

∀QU ,scoreCT XPROX(cptct ,ctx) : targetCandcpt → scoreCT XPROX

Aligned with Axiom 3.1, an interpreted query contains both contents and concepts,

but cannot contain concepts only. An interpreted query can have multiple target concepts

as well as multiple constraint concepts. Each constraint concept needs to bind to a content.

We define a query interpretation as follows.

Definition 3.17. (Query Interpretation) A query interpretation, QI, is a tuple

QI = (TARGET,CONST RAINT), where TARGET = {targetcpti|1≤ i≤ n} and

CONST RAINT = {(constraintcpt j : constraintct j |1≤ j ≤ n)}.

Given the domain, D, an unstructured query can have more than one interpretations

from its query interpretation process.

Axiom 3.2. Let QI be interpretations derived from domain, D. Each unstructured query,

QU is interpreted to more than one interpretations, QI. The set can be null in the case

where QU is not within the domain, D.

59

∀QU .∃QI = {x||x| ≥ 0}

3.2.3 Query Representation Requirements

In this section, we describe how an interpreted query can be represented in a generic

structured form, rather than as a structured query language at this stage. We represent a

query interpretation as an intermediate structure, that separates the semantic (i.e. contents

and structures) of a query and the syntax of the query. Both queries are represented as

different structures and can be mapped to one another using a schema matching function

SM. Matching is used to find best matched semantic query structure and syntax query

structure to enable the construction of a structured query.

Definition 3.18. (Intermediate Query Representation) A query interpretation, QI can

be represented using an intermediate query representation in the form of triple, I =

(Qsem,Qsyn,SMQsemQsyn), where Qsem is a semantic query structure, Qsyn is a syntax query

structure, and SMQsemQsyn is a matching function that maps Qsem to Qsyn.

Both semantic query structure and syntax query structure are created based on the

Intermediate Query Schema.

Definition 3.19. (Intermediate Query Schema) Intermediate Query Schema, Ischema is a

description of the intermediate query structure. Two main components featured in the

schema are the structures (i.e. targets and constraints) and contents of a query. This

schema is required for the construction of the semantic query structure and syntax query

structure.

Definition 3.20. (Semantic Query Structure) A semantic query structure, Qsem is a struc-

ture representing the structures and contents of a query. It is constructed from an inter-

preted query, QI, based on the intermediate query schema.

60

The representation of semantic query structure is discussed in detail in section 3.4.2

(a). The construction of semantic query structure is discussed in detail in chapter 4 sec-

tion 4.2.

Different from semantic query structure, a syntax query structure is a template that

captures the syntax of a target structured query. It is generated based on a set of training

structured queries, Qeg (see section). A syntax query structure is introduced such as it is

independent from the semantic query structure. Each syntax query structure is associated

to syntax string to enable the construction of the structured query in string form.

Definition 3.21. (Syntax Query Structure) A syntax query structure, Qsyn is a triple, con-

sisting of a structure, a string and the mapping between the structure and string. It is

given as Qsyn = (synstruc,synstr,M(synstruc,synstr,X)), where synstruc is the structure con-

structed based on the intermediate query schema, synstr is the query template in string

form, M is a set of mappings that correspond structure to string and X is the query lan-

guage.

It represents the template of a query, without its content. For each query language

type, there is a set of syntax query. Each syntax query is constructed from an example

structured query, qeg, for the language.

The representation of syntax query structure is discussed in detail in section 3.4.2

(b). Methods to create its knowledge base will be discussed in detail in section 3.4.2 (c).

Having defined the two query structures, now we proceed to describe the matching

function for these two structures. The matching between semantic query structure and

syntax query structure is obtained based on the structural similarity of the two structures.

Definition 3.22. (Schema Matching between Semantic Query Structure and Syntax Query

Structure) A schema matching, SMQsemQsyn is a triple, SMQsemQsyn = (Qsem,Qsyn,θ), where

61

θ is a decision from the function, Fstrucmatch that matches the structural similarity between

Qsem and Qsyn. A matching decision is binary, θ = {0,1}. Fstrucmatch : Qsem→{0,1}

Once a semantic query structure are matched with a syntax query structure, the in-

formation needs (or contents) can be mapped to a structured query language string.

3.2.4 Structured Query Expectation

In the query transformation process, since there are more than one interpretations

per unstructured query, hence similarly there can be more than one structured queries per

unstructured query. The reason of having more than one structured queries is due to the

possibilities of many interpretations in which a query may be relevant to.

Axiom 3.3. Let F be a transformation from QU to QS. For each unstructured query, there

exists a set of structured queries. Similar to the previous proposition, the set of structured

queries can be null.

∀QU .∃QS = {y||y| ≥ 0}.F(QU ,QS)

Axiom 3.4. Given that X is a set of query language type, X = {NEXI,XMLFragment,

ConceptValue}. Each structured query can be mapped to the type of X.

QSX = {QSNEXI ,QSXMLFragment ,QSConceptValue}

Ultimately, the transformation has to achieve a better or at least an equivalent query.

A transformation process, F , transforms QU into an equal, optimized QS. Here, we say

that both queries are equivalent if they can achieve similar outcome. If the latter can give

a better outcome compare to its former, we say that it is optimized. Not forgetting, it is

necessary to consider a poor transformed case.

Proposition 3.2. Let us denote I as an interpretation on QU , where I ∈{Iequal, Ioptimized, Ipoor}.

Let us denote P(QU) as the precision outcome of QU , while P(QS) as the precision out-

come of QS.

62

∀q ∈ QU , Iequal |= P(QS)≈ P(QU)

∀q ∈ QU , Ioptimized |= P(QS)> P(QU)

∀q ∈ QU , Ipoor |= P(QS)< P(QU)

3.3 A Probabilistic Approach for Query Interpretation

In this section, we discuss the probabilistic model used for query interpretation in our

query transformation framework. From section 3.2.2, we have defined the requirements

for query interpretation. In this section, we explain how to obtain the knowledge required

for query interpretation. Our approach, i.e. probabilistic approach, is to exploit the struc-

tural information available from the collection for interpretation. This approach has been

used widely in related works to capture the usage of term and structures so that they can

be used to expand or optimize a source query to improve its effectiveness. However, cur-

rent related works that use probabilistic methods have some limitations especially in, i)

determining a query’s target (Kim et al., 2009), ii) finding concepts for term in a nested

structure (Petkova et al., 2009), iii) suggesting concepts without structural hints in query

(Bao et al., 2010).

As such, our proposed context-based probabilistic model shall focus on how to ad-

dress the limitations. We will also focus on how the probabilistic model works with

complex document structure. To begin with, we present the characteristics of complex

document structure. From these characteristics, we first summarize some features of

complex document structure of XML, and propose a model that addresses the limitations

faced by current works in handling these features. Then, we propose a context-based term

weighting model, that extends the current model used for simple document structure. The

model incorporates factors of local context of document subtree and hierarchical distance

in our probabilistic term weighting for concept selection.

63

3.3.1 Complex Document Structure

A complex document structure has the characteristic as presented in Table 3.2. Com-

pare to simple document structure, term weighting per element type (i.e. structure/concept)

is more diversified in document with complex structure, due to the several reason below.

1. Since the type of structures can be freely defined, there are many different types of

new structures which is relevant to a term in complex document structure compare

to simple document structure.

2. Each document is a combination of several kind of objects, rather than a single

type of object for document with simple structure. Hence, a term may not only be

relevant to one kind of object, but it can be related to different objects. E.g. in a

collection with complex document structure, a term, “information retrieval” can be

related to a conference name, paper title, contents in keynote summary, track name,

etc. Whereas in a collection with simple document structure, e.g. a bibliography

record, the same term is related to less structure type, e.g. paper title and name of

proceedings only.

3. Since the hierarchy of complex document structure is deeper due to nested ele-

ments, each term is related to a longer structure path, that indicates a series of

structures. Hence, since it is not common to carry out term weighting per struc-

ture path, it has become an issue to find a good structure along the structure path.

E.g. within a structure path, a structure can be meant for grouping, categorizing,

annotating. In document with simple structure, that has been created based on a

predefined schema, this is not an issue as when a structure is used for a term, it is

meants as the data type of the term.

64

Table 3.2: Characteristic of complex document structure.

Factor Simple Document Structure Complex Document Structure
Collection Homogeneous Heterogeneous
Structure Source Controlled, requires DTD,

schema
Free

Structure Number Little Many
Content Creation Data centric Text centric
Hierarchy Shallow Deep
Information Single type of information, e.g.

an abstract, a journal, an actor
Combination of multiple types
of information

3.3.2 Incorporating Context for Query Interpretation

In general, there are two purposes of incorporating contexts in our probabilistic ap-

proach, i.e. to improve the query target and constraint concepts selection during query

interpretation.

First, to improve the capturing of concepts per term (i.e. constraint concept) from the

information structures (e.g. content hierarchy, taxonomy, schema) of documents. Context

is added to improve the better selection of concepts. It is used to cater for situation where

a document has complex structures, where its consists of many small parts presenting

different types of information. Under the different contexts, e.g. [context: high school]

“Kai-Fu Lee”→ “notable alumni”, [context: google china] “Kai-Fu Lee”→ “founder”.

With this feature, we are able to select a more accurate concept which is context oriented.

Second, to improve the accuracy of retrieval units (i.e. target concept). A common

method used to determine a retrieval unit is based on the SLCA of all the terms in the

query. The main difference between a SLCA node and a context node is that SLCA node

is a physical node while a context node reflects a class. When we are dealing with a

class, we can measure the importance of this class (e.g. [context: workshop], [context:

conference]) based on its popularity in the collection to improve the selection of a retrieval

unit.

65

Figure 3.3: Concept Structure for Structured Document

3.3.3 Capturing Concept for Term Interpretation

Concept Structure A concept structure (equivalent to hierarchy or taxonomy) of a

structured document is a set of concepts (i.e. descriptive structures) abstracted from a

structured, Gdoc. Its main difference from document structure is that it only consists of

structure nodes of unique tree path. It is also different from schema or DTD as the con-

cept structure is obtained from a structured document, i.e. showing how structures relate

in real usage. Its purpose is to capture a summary of structures that appear in this docu-

ment, rather than the entire structures for all instances in the document tree. The concept

structure for structured document (featured in Figure 3.1) is shown in Figure 3.3.

Definition 3.23. (Concept Structure) A concept structure is defined as

Gconcept = (Vconcept ,EDconcept), where Vconcept = {v : v ∈ vstruc} is a set of concept nodes

and EDconcept = {e : e ∈ ED} is a set of edges connecting these concepts.

In Gdoc, concepts are structures created based on application needs (defined based

on predefined schema, or without one). Since the creation of concepts are flexible, re-

lationships between these concepts can naturally reflect a unique context. In this thesis,

we assume that a higher concept is a generalization (has broader meaning) than the lower

one, therefore forming a taxonomy of concepts. A term’s meaning can be obtained by

66

observing how concepts are used in this taxonomy.

Term Concept Association To obtain all possible structure interpretations for a term,

we associate a term and its relevant concepts as featured in the structured document.

There are two ways a concept can be formed, i.e. an individual concept (single structure

node) or a concept set (multiple structure nodes obtained from a path). A concept set for a

term consists of a sequence of structure nodes along the ancestor’s path from the content

node containing the term. The nodes can either be taken from a full path or a sub path as

follow.

cptpath f ull = {vstruc0,vstruc1 ,vstruc2 ...vstruck−1 ,vstruck}, where vstruc0 is the parent node

of a content node for the given term, and vstruc1 is the parent node of vstruc0 and so forth.

k is the number of edges from vstruc0 to root node.

Although full concept path is often regarded to have better differentiation power than

a shorter one, but its length and specificity also hinder it from being utilized practically.

Hence, a shorter path is often more useful in identifying commonly used concepts for

a term. We call this shorter path as concept subpath. A concept subpath is written as,

cptpathsub = {vstruc0 ,vstruc1 ,vstruc2...vstrucn−1,vstrucn}, where 1 ≤ n ≤ k. Finding a good

range for n is important to avoid creation of too many unuseful concept nodes.

While path defines a series of concepts as a single meaningful unit, it may be too

detailed to be used for query’s term interpretation. Hence, associating individual concept

node (e.g. name, hotel, accommodation in Figure 3.1) of the concept path with a term is

also important to avoid an overly strict concept interpretation for a term. An individual

concept node is given as cptsingle = {v : v ∈ vstruc j}, where 0≤ j ≤ k.

3.3.4 Context-based Term Weighting

The context-based term weighting is divided into two parts. Generally, term weight-

ing for structured collection measures the importance of term in an element within the

67

Figure 3.4: Weighted Edge in Term Interpretation Representation

collection. Since the term weighting is carried out based on contexts (see section 3.2.2)

within collection instead on one single collection, two levels of weighting are required.

First, we need to measure the importance of term wrt. to a structure (or concept) within

a context, second, we need to measure the importance of term wrt. to a structure among

multiple contexts. The application of these measures in a term interpretation representa-

tion is shown in Figure 3.4.

Within Context (scoreCW) Under a context, we obtain the association between the term

and its concept (i.e. within each term→ concept). Here, we will extend the basic

term weighting approaches, like TFIDF, Okapi BM25 to measure the weight of

a term in a concept. Since the term weighting method is primarily designed to

measure weight of a term in a document or element, we will generalize the element

based on its type (i.e. concept).

Among Contexts (scoreCT XPROX) For each term in a collection, we first obtain the as-

sociation between term → concept and its context, where we use the taxonomy

analysis method to measure the proximity between term → concept pair and its

associated context. We propose a contextual proximity measure that combines two

semantic similarity metrics, i.e. distance-based similarity and information-based

similarity mentioned in (McHale, 1998), (Resnik, 1995).

The query interpretation will be carried out based on these two measures, where the

former decides the selection of constraint concept for a term, while the latter decides the

selection of target concept for a query.

68

3.3.4 (a) Term Weighting Within Context

Within a context, a term may be associated to multiple concepts. First, term is

weighted against individual elements in the collection, followed by aggregation of weights

according to the element type (concept). In our term weighting measure, we take into

consideration distanced concepts in the structure hierarchy.

Term-Element Weighting Various term weighting models have been actively used in

document retrieval, such as TFIDF (Salton & Buckley, 1988), OKAPI BM25 (Robertson

& Zaragoza, 2009) and Language Model (Ogilvie & Callan, 2002). Since term weight-

ing in document has been a mature field in information retrieval, its scoring models are

extended to cater for term weighting in element (Wang et al., 2007).

In our concept weighting measure, we shall adopt these basic term weighting models.

We show the basic formulae of a popular term weighting model that have been extended

for element weighting below (refer to Appendix A for more details about these models).

The weight of a content term, ct in an element, e, is denoted as scoreTW (e,ct) below.

TFIEF (Term Frequency Inversed Element Frequency)

scoreTW (e,ct) = t fct,e ∗ log
Ne

e fct

, where e is element, ct is content term, t f (ct,e) is frequency of tc in e, Ne is frequency

of e in collection, and e fct is frequency of e in collection that contains ct.

Term-Concept Weighting Concepts are generalizations of elements based on the type

of structure of the elements. The weight of a term wrt. to a concept is estimated based

on the relatedness between a term and a type of structure (referred as concept in this

thesis) instead of an element. For weighting concept on structure hierarchy, the distance

of concept from term is taken as De,ct . Let us denote Ecpt as the set of elements of type

69

cpt, where cpt is a concept. The weight of a content term, ct in a concept, cpt, is denoted

as scoreCW (cpt,ct) below.

scoreCW (cpt,ct) =
∑e∈Ecpt [scoreTW (e,ct)∗ 1

D(e,ct)]

|Ecpt |

, where cpt is concept, ct is content term, Ecpt is set of elements of type cpt.

This scoring factor, scoreCW (cpt,ct), captures the intuition that, when ranking a

constraint concept, a direct relationship of concept and term is favoured. A direct rela-

tionship means that the lesser additional terms contained by the concept is better, e.g.

<author>Andrew Trotman</author>, compared to the one contained together in a para-

graph with other terms, e.g. <keynote_abstract>... Andrew Trotman began his career at

... </keynote_abstract>.

3.3.4 (b) Term Weighting Among Contexts

Besides weighting a term wrt. a concept within a context, it is necessary to measure

the importance of the term if it appears in multiple contexts. This is to show the impor-

tance of a term and concept under a particular context compare to another. For example,

“author: andrew troman” may be more important under the context “conference” com-

pare to “tutorial”. This is measures using the proximity between “concept:term” and its

context.

Contextual proximity between concept:term and context is obtained by combining

two proximity factors, i.e. Distance-based Closeness, and Content-based Closeness. Here

we denote concept:term unit as cpti,ct j , a context unit as ctxk.

Distance-based Closeness For distance-based closeness, we measure the distance be-

tween cpti,ct j and ctxk using the approach of semantic space in a taxonomical tree. Edges

are used as distance. Distance between concept nodes within the space is taken as mea-

70

surement of semantic closeness. To measure the semantic closeness, we measure distance

similarity, DISim, between a concept and its context for each term unit, ct j, is given as

DISim(cpti,ct j : ctxk) =
1

edge(cpti,ct j : ctxk)

, where edge is the number of nodes interval between cpti,ct j and ctxk.

Content-based Closeness For content-based closeness, we measure the occurrences of

cpti,ct j and ctxk. The semantic closeness between two concepts node in a taxonomy can

also be measured based on contents frequency that subsume concepts. Here, for a term

unit, ct j , the density, DEN, of a concept and context pair, is given as,

DEN(cpti,ct j : ctxk) =
p f (cpti,ct j ,ctxk)

∑
N
i=1 p f (cpti,ct j ,ctxk)

, where p f is the pairs frequency of cpti,ct j and ctxk.

Contextual Proximity Score Contextual proximity is taken as the product of both scor-

ing of distance-based closeness and content-based closeness,

scoreCT XPROX(cpti,ct j : ctxk)

= DISim(cpti,ct j : ctxk)×DEN(cpti,ct j : ctxk)

Example 3.3. Consider a collection of conference domain, some examples of weighted

terms with both scoreCW and scoreCT XPROX are shown in Figure 3.5. Weight on the thin

edge, scoreCW , of each term interpretation, Icontent , captures the importance of a term wrt.

a concept. Weight on the thick edge, scoreCT XPROX , of each term interpretation, Icontent ,

captures the importance of a concept:term pair wrt. a context. For instance, for term

“andrew trotman” (see “at” in Figure 3.5), within the “WORKSHOP” context, this term

71

Figure 3.5: Examples of Weighted Edge in Term Interpretation and Context Sub Graph

has stronger relationship with the concept, “organizer” and “committee”, based on the

concept score, scoreCW . For this example, term weighting model BM25 is used to cal-

culate scoreTW . Another information that is captured is the importance of context. For

instance, when “committee:andrew trotman” appears in “WORKSHOP” context with a

weight 0.06 and “FULL PAPER PC” contexts with a weight 0.25, this shows commit-

tee:andrew trotman is more relevant to the context, “FULL PAPER PC”.

3.3.5 Context-based Term Weighting for Structure Term

As structure terms can be used in query, these terms are required to be weighted

to differentiate their importance. For structure term weighting, the weight of a structure

in a context is measured wrt. the taxonomical characteristic, which is based on how

structures are related to each other in a collection. In this weighting, the main factor

taken into consideration for calculating the importance of structures is the different ways

how a structure is used in taxonomy. As repetitive structures such as a list of items of the

same structure like <book>, merely reflect the usage of the same structure type, hence it

72

does not affect the importance of a structure. As such its frequency will not be taken for

structure term weighting.

The scoring of structure term in a context is similar to distance-based closeness mea-

sure used for measuring content term. The main difference is the source of semantic

space. For content term, its semantic space is taken from the taxonomical tree of docu-

ment structure, whereas for structure term, its semantic space is taken from the taxonom-

ical tree of concept structure. The former includes both concepts and contents in its tree

structure, but the latter only includes concepts in its tree structure.

Distance-based Closeness for Structure Term For distance-based closeness of struc-

ture term, we measure the distance between sti and ctx j using the approach of semantic

space in a taxonomical tree of concept structure, Gconcept . Edges are used as distance.

Distance between concept nodes within the space is taken as measurement of semantic

closeness. To measure the semantic closeness, we measure distance similarity, DISim,

between the corresponding concept for each structure term, and its context.

DISim(sti : ctx j) =
1

edge(sti : ctx j)

, where edge is the number of nodes interval between sti and ctx j.

Contextual Proximity Score for Structure Term Contextual proximity for structure

term is taken as the average distance-based closeness for all non-repetitive term interpre-

tations for structure term, Istructure in collection,

scoreCT XPROX(sti : ctx j) =
∑

n
i=1 DISim(sti : ctx j)

n

, where n is the total of unique term interpretations for structure term, sti.

73

Figure 3.6: Examples of Weighted Edge in Structure Term Interpretation and Context Sub
Graph

Example 3.4. Consider the same collection of conference domain, the weighted structure

terms with scoreCT XPROX are shown in Figure 3.6. Different from content term, structure

term only has one weighted edge. The weight on the edge of each structure term, Istructure,

captures the importance of the structure/concept wrt. context.

In this example, we show how the weighted context sub graph for query “organizer

focused retrieval workshop” from Figure 3.2 is obtained from the weighted term interpre-

tations.

3.4 A Representation for Query Construction

In the query transformation framework, an intermediate query is introduced to rep-

resent the interpreted structured query in a generic form. Such form is useful to separate

the structured query syntax from the contents of the query. It is designed so that it could

retain the information needs for both unstructured or structured query. Its main purpose is

to ensure genericness of the process while minimizing information loss during the trans-

74

formation.

This section first presents the intermediate query schema that serves as the base

for the creation of intermediate query. Then, we present the structure of our proposed

intermediate query. Lastly, we feature a parsing method that assists in the generation of

knowledge of multiple structured query types.

3.4.1 Intermediate Query Schema

The intermediate query schema specifies how an intermediate query can be con-

structed. It defines a set of elements and their properties that may be used to represent

an intermediate query in this transformation framework. Before we start defining the

schema, we first present the information required to be represented in an intermediate

query.

Representing Query Contents There are two types of content to be represented in an

intermediate query, i.e. a query’s target (as in Definition 3.12) and a query’s constraints

(as in Definition 3.13).

Representing Query Structure As the contents of query may contain hierarchical

characteristics such as nested constraints or nested targets, these characteristics are re-

quired to be represented in the intermediate query.

Let us start by looking at an example on how query contents are represented in an

intermediate query.

Example 3.5. An intermediate query structure for query “workshop by andrew trotman”

written in xml schema language.

<targetGroup>
<target>

<concept>workshop</concept>
</target>

75

<constraintGroup op=”AND”>
<constraint>

<concept>organizer</concept>
<keyword>andrew trotman</keyword>

</constraint>
</constraintGroup>

</targetGroup>

The above example shows a simple intermediate query structure. It consists of a

main element, targetGroup. Within the targetGroup element, there are two types of

subelements, target and constraintGroup. A target has concept subelement. The con-

cept element contains a value, workshop. Under a constraintGroup element is constraint

element. A constraintGroup has an attribute op. A constraint has two subelements, con-

cept and keyword. The concept element contains a value, organizer, whereas the keyword

element contains a value, andrew trotman.

From this example, we proceed to present the components of intermediate query

schema, such as the elements in an intermediate query, the attributes of elements in an

intermediate query, the child elements, order and number of the child elements etc. Its

schema definition and properties are described as follow.

TG: target group CSG: constraint group
T: target CS: constraint C: concept K: keyword

Figure 3.7: Intermediate Query Schema

76

Schema Definition The definition of our proposed intermediate query schema is spec-

ified using XML schema definition language (Fallside & Walmsley, 2004). Refer to Fig-

ure 3.7 for the illustration of the schema.

<xsd:element name=“targetGroup” type=“TargetGroupType”/>

<xsd:complexType name=“TargetGroupType”>
<xsd:sequence>
<xsd:element name=“target” type=“TargetType” maxOccurs=“unbounded”/>
<xsd:element name=“constraintGroup” type=“ConstraintGroupType”/>
<xsd:element name=“targetGroup” type=“TargetGroupType”/>
</xsd:sequence>

</xsd:complexType>

<xsd:complexType name=“ConstraintGroupType”>
<xsd:sequence>
<xsd:element name=“constraint” type=“ConstraintType” maxOccurs=“unbounded”/>
<xsd:element name=“constraintGroup” type=“ConstraintGroupType”/>
</xsd:sequence>
<xsd:attribute name=“op” value=“AND,OR”/>

</xsd:complexType>

<xsd:simpleType name=“TargetType”>
<xsd:element name=“concept” type=“Concept”/>

</xsd:simpleType>

<xsd:complexType name=“ConstraintType”>
<xsd:sequence>
<xsd:element name=“concept” type=“Concept”/>
<xsd:element name=“keyword” type=“Keyword”/>
</xsd:sequence>

</xsd:complexType>

<xsd:simpleType name=“Concept”>
<xsd:element name=“concept” type=“xsd:string” minOccurs=“1”
maxOccurs=“unbounded”/>

</xsd:simpleType>

<xsd:simpleType name=“Keyword”>
<xsd:element name=“keyword” type=“xsd:string”/>

</xsd:simpleType>

77

Target Group The purpose of target group is to capture the target of a query and its

corresponding constraint. An intermediate query consists of one main target group ele-

ment, T G. A target group element, T G, can have one or more target elements, T . Each

target, T has one or more concept elements, C. More than one concept elements occurs if

a concept is a set of structures (path). Each structure of the path is represented as separate

concept element under the same target. The concept of target is optional. In the case

when a concept is not specified, its value is null.

A target group can have one or more constraint groups, CSG. A target group can

have another target group as its sub element (see ii. in Figure 3.7). A sub target group

defines refined target elements. In general, common queries only have one target group.

However there are cases where a specific target is required. In this case, additional target

group can be attached to existing target group as subtarget group.

Constraint Group The purpose of constraint group is to group the constraints that be-

long to the same target. A constraint group element, CSG, has one or more constraint

elements, CS. Each constraint, CS has a concept element, C, and a keyword element,

K. The concept of constraint is optional. In the case when the concept is not specified,

its value is null. A constraint group element has a logical operator as its attribute. The

logical operator attribute can either have “OR” or “AND” as its value, to indicate where

its constraint elements are disjunctive or conjunctive. A constraint group element has a

logical operator as its attribute. The logical operator attribute can either have “OR” or

“AND” as its value, to indicate whether its children are disjunctive or conjunctive.

3.4.2 Intermediate Query Representation

From the previous section, we have defined the schema of building intermediate

query. In this section, we describe how the schema is used in the intermediate query rep-

resentation of our query transformation framework. An intermediate query representation

78

consists of two query types, i.e. semantic query structure and syntax query structure. A

schema matching function is used for corresponding these structures.

Figure 3.8: Intermediate Query Representation

3.4.2 (a) Semantic Query Structure, Qsem

A semantic query structure represents the contents of an interpreted query. It is

used to capture the interpreted query in a generic manner, such that it can be constructed

into more than one target structured query later. Thus, it does not contain syntax of any

structured query, but only contents (and logics) that will be used to construct the query.

It captures three types of contents in its leaves nodes, i.e. interpreted target concept,

IT , interpreted constraint concept, IC, and interpreted constraint keyword, IK. An ex-

ample of semantic query structure is shown in Figure 3.8. The contents captured at the

leaves of semantic query structure can be mapped to its syntax query structure counterpart

to generate a structured query string.

A major requirement of the semantic query structure is its ability to bridge infor-

mation needs from unstructured to structured forms. Hence, this query structure should

be able to support essential information needs so that they can maximize the purpose

of structured queries. Follow, we show how contents and structural details of query are

represented using the intermediate query schema. We start by discussing cases of repre-

79

sentation for simple information needs, then proceed to a more complex ones that involve

nested targets and constraints.

Figure 3.9: Representing Simple Information Needs

Representing Single Content The simplest information needs for structured query

comprises of one target and one constraint. Minimally, an intermediate query should

be able to represent these two contents as they are the basic requirements of structured

queries. For example, an information needs “I am searching for the workshop organized

by andrew trotman” is interpreted into a target, “workshop” and constraint pair, with “or-

ganizer” as concept and “andrew trotman” as keyword. Both target and constraint are

represented using a target group element as in Figure 3.9 a.

80

Representing Multiple Contents A simple information needs may not be limited to a

single target or a single constraint; it can include few of them each, but they should be

indicating a single intention. An example of information needs with multiple targets is

shown in Figure 3.9 b. The needs, “I am searching for workshop or tutorial run by andrew

trotman” specifies two targets. Although this query looks for two different targets, we

understand that the intention is the same where this person is looking for information

about events organized by andrew trotman.

A query can have multiple constraints. For example in Figure 3.9 c., the query is

looking for the workshop venue organized by andrew trotman and jaap kamps. It has two

constraints, “andrew trotman” and “jaap kamps”. Both constraints are represented as a

set of conjunctive constraints under a constraint group.

Representing Concept Path To represent a target with a path of multiple concepts,

such as “/workshop/venue” in Figure 3.9 c., the concept path is split and represented as

sibling concept nodes under the same target. Please note the difference of target rep-

resentation between a. and c. in Figure 3.9. Although rarely concepts of target and

constraint are specified as path, our schema allow such representation as it is supported

by path-based structured query like NEXI.

Now, let us see how an intermediate query can be used to represent a more complex

information needs. Complex information needs occur when the interpreted query has

multiple target groups (see a. in Figure 3.10) and constraint groups (see b. in Figure 3.10).

Representing Refined Targets When a user states a needs like, “I am looking for or-

ganizer from otago who organizes the focused retrieval workshop in 2010”. This query

is interpreted such that it contains a main target, indicating it is looking for information

about “workshop”, and a descendant target, indicating that it is looking for information

81

Figure 3.10: Representing Complex Information Needs

about “organizer” of the “workshop”. In this case, the target group of the descendant

target is represented as a sub target group element of the main target.

Representing Complex Constraints In some query, constraints are required to be op-

erated based on some combinations of operators like “workshop about (focused retrieval

AND 2010) OR (xml retrieval AND 2010)”. However, each constraint group only support

one type of logical operator. As such, in this case, constraint groups are used to represent

the set of complex constraints based on their operators (see b. in Figure 3.10).

82

3.4.2 (b) Syntax Query Structure, Qsyn

A syntax query structure is a template that is used for generating structured query.

Different from semantic query structure, a syntax query structure does not contain the

contents of query. What it represents is the template of structured query, consisting the

structured query in query string form and its corresponding query structure (see Syntax

Query Structure in Figure 3.8). The contents of query is represented as variables for both

query structure and query string. This common set of variables between structure and

string enable transfer of contents from the former to the latter.

A syntax query structure is a triple, composes of a query structure, a query string

and mapping between the structure and the string. For the same query structure, there can

be multiple mappings, with each mapping denotes a different type of query languages,

e.g. M(NEXI) and M(XML) in Figure 3.8. For each query language, X , there is a knowl-

edge base of Qsyn. Although it is possible to obtain the same result by using a dedicated

algorithm, our proposal of a syntax query structure is enable scalability of query transfor-

mation.

3.4.2 (c) Knowledge Base for Query Language, X

A knowledge base, KBX is used to store the query templates for query language,

X . As it is always hard to fill up an empty knowledge base from scratch, an example-

based method is used to build a reasonable knowledge base with sufficient templates.

Example-based method is commonly used in machine translation to build pairs of lan-

guages (Sumita & Iida, 1991; Somers, 1999). For language translation, the knowledge

base consists of pairs of source language and target language of a content. Similarly, for

our query language knowledge base, it consists of pairs of source format and target for-

mat. The source query is the structure form of the query example and the target query is

the string form of the query example. As there may be repetitive examples, only unique

83

pairs are stored. In Figure 3.11, we show an example on how a query template is gener-

ated from an example query. The template can be defined manually or can be automated

by using a intermediate query structure parser.

Figure 3.11: Knowledge Base Generation with Example Query

3.4.2 (d) Schema Matching, SM

Schema matching is used to match the schema of semantic query structure with the

schema of syntax query structure (note that matching does not involve contents/leaves

of query structures). Matching is determined based on their schema similarity. Such

matching needs to be carried out in ad hoc manner since the semantic query structure is

created during query time. Given a semantic query structure, the exact (or closest) match

of its counterpart is looked up. Once a matched syntax query structure is obtained, the

contents of the semantic query structure can be mapped the corresponding query string

form.

3.5 Summary

In this chapter, we have defined the framework of query transformation. This frame-

work serves as the basis of the query interpretation and construction in the subsequent

84

chapter later. In particular, this chapter focuses on the requirements for query transforma-

tion, such as the queries, resources and domains. We then provide a formal description of

the overall framework to enable a better understanding of all the components involved in

query transformation. Also, within this framework, we have also presented an improvised

probabilistic approach for query interpretation and a novel intermediate representation for

query construction. In the following chapter, we will show how query interpretation and

construction will be carried out using this framework.

85

CHAPTER 4

QUERY INTERPRETATION AND CONSTRUCTION

In this chapter, we elaborate how query interpretation and representation is carried out

using the flexible query transformation framework. Given a source query, QU , over a

collection, D, with interpretation triple, I and a structured language mapping knowledge

base, KBX , this chapter describes how the query is interpreted, represented and finally

mapped into the language form of a target structured query QS of language X .

The chapter is divided into four main sections. The first is formulated as the prob-

lem of finding the most significant interpretations. Three types of interpretations will be

carried out, i.e. the context of the query, the concept where a query targets to find, and

the concept to refine keywords used in the query. The second construct the best represen-

tation structure of the query, that maximizes the intention of the query. The third finds

the best match query templates for the mapping of query contents to a structured query

language. The last section presents ways of query ranking and selection.

4.1 Query Interpretation

Consider a query with a set of term, first, we will interpret the context of this query,

based on the terms used in the query. Second, we are interested to interpret the query in

terms of its desired retrieval unit, i.e. what the query target for (target concept). Third,

we want to interpret the meaning of term used in the query, i.e. what does a term in a

query means (constraint concept).

Before we present how an interpretation is carried out, we discuss the type of key-

words that can be used in specifying a query. First type is content keyword that will be

used to look up the contents part of documents, and the second type is structural keyword

86

that will be used to look up the structures part of documents. During query interpreta-

tion process, it will detect the usage of both keyword types automatically. For users side,

they can either be aware or not aware of the keywords type. Users can write a query in

normal way. However, for some applications, users may have access to some structural

information that they can use in the query. In these situations, they can take advantage of

the structural information more extensively.

4.1.1 Preliminary

A query, QU consists of a set of terms, QT . Each term, qt in QT , has one or more

consecutive words. When they are composed as a query, the set of terms are infact a

continuous set of words. Hence, an initial step is to identify the terms used in the query

from this set of words.

Term Identification The main problem in term identification is that there are many

possibilities of consecutive words combinations. As we cannot decide which term is the

right one until at a later stage that involve query context analysis, therefore, we need to

consider all the possibilities at this initial step. The identification of term is carried out

based on two rules.

1. All possibilities of consecutive words must be considered.

2. For term variants, longer term is preferred over shorter.

Based on rule one, we will obtain a set of terms. However, these terms have overlap-

ping words between them. The second rule helps to segmentize the words in query into

non overlapping terms by giving priority to a term with longer keywords. In this rule,

we assume when consecutive words appear in a query, it is not a coincidence, but reflects

something that is required by the user. For example, a query written in the order of, “ad-

dress river view hotel”, we get a set of inital terms like “address”, “river”, “view”, “hotel”,

87

“address river”, “river view”, and so forth (see no. 1 in algo 4.1). However, when we want

to select query terms, both QT1 = {address, river view, hotel} and QT2 = {address, river

view hotel} are possible combinations, if we are just based on checking on thesaurus.

In this case, the second rule will prioritize the longer term first, and return QT2 as the

segmented query terms.

Algorithm 4.1 Identify Query Term
Input: unstructured query QU , structure thesaurus T HEstructure of D, content thesaurus

T HEcontent of D
Output: query terms QTstructure, QTcontent

Let QTinitial = null
. 1. Generate initial set of terms using ngram phrase generator

QU ← tokenizetoword(QU)
for all n = {1≤ n≤ |QU |} do

QTinitial ← generateNgram(QU ,n)
end for
QTinitial ← sortTermByLength(QTinitial)

. 2. Select query term based on length and collection’s thesaurus
while QTinitial! = { /0} do

for all qt ∈ QTinitial do
if qt exists in T HEcontent ∪T HEstructure then

QT ← qt
break

end if
end for
QTinitial ← removeTermSubset(qt,QTinitial)

end while
. 3. Classify query term

for all qt ∈ QT do
if qt exists in T HEstructure then

QTstructure← qt
else if qt exists in T HEcontent then

QTcontent ← qt
end if

end for

Keyword Classification Since there are two types of keywords which can be found

in the query, it is necessary to differentiate them so that they can be optimized during

query interpretation (see no. 3 in algo 4.1). This is carried out by matching them to two

separate thesaurus, i.e. content thesaurus and structure thesaurus. A content thesaurus is

88

generated from the content of documents in collection. It consists of lexical items which

are meaningful, such as “T. Andrew”, “River View Hotel”, “reservation form”, “Havelock

Road” etc. For structure thesaurus, it can be obtained from a schema (if there is one) or

generated from the structures of documents in collection. Example of items in structure

thesaurus are “address”, “country”, “affiliation”, “workshop_program_committee” etc.

In the case where a query term can either be a content keyword or structural keyword,

then we will classify it as structural keyword. For richer thesaurus, the vocabularies can

be expanded using abbreviation (e.g. “call for paper” and “cfp”), class (“paper” and

“article”) and synonym (“keynote address” and “keynote speech”).

4.1.2 Query Context

Once we have identified keywords type of a query, QU , we can proceed to interpret

the query. The first step is to identify the query context. Based on the keywords identified,

we find all their sub tree candidates. A sub tree candidate, STCT X is obtained based on all

the content and structure term interpretations for QU . Here, we used the notation, STCT X ,

instead of context sub graph, SGCT X (as in previous chapter) as we will gradually refine

the graph to tree data structure.

Since there can be multiple context sub trees for a given query, ranking of the sub

trees is necessary, to differentiate the most relevant ones from the rest. As a context

sub tree would serve as the central of a finding a good retrieval unit later, the scoring

emphasizes on context sub trees which are neither too small nor too broad with its context

proximity measure. Detailed discussion on the ranking is presented in section 4.4.1.

4.1.3 Query Target and Constraint

Given a context sub tree of a query, we can proceed to find the target and constraint

concepts for the query. Depending on the source query type, the process of finding the

target and constraint concepts is different. If an unstructured query only contain con-

89

Algorithm 4.2 Find Context Sub Tree
Input: unstructured query QU , a set of interpretation IQU = {I|I =

⋃
qt∈QU

Iqt}
Output: a set context sub tree STCT X

. 1. Get Context Candidates For Each Keyword
for all qt ∈ QU with IQU 6= /0 do

UCT X ← getUniqueContext(IQU)
end for

. 2. Generate Contexts Sub Tree For Each Unique Context
for all uCT X ∈UCT X do

STCT Xinitial = generateContextSubTree(uCT X)
for all stCT X ∈ STCT Xinitial do

if stCT X contains at least one IQU∀qt ∈ QU then
STCT Xcand ← stCT X

end if
end for

end for
. 3. Rank Context Sub Tree

STCT X = rankContexSubTree(STCT Xcand)

tent keywords, both concepts need to be identified from context sub tree. Otherwise, if

structural keywords are used in a query, they can be used as hints of selecting target or

constraint concepts.

4.1.3 (a) Unstructured Query with Content Keywords (UQC)

First, we look at the case where unstructured query contains only content keywords.

The selection of the target concept and constraint concept for this query type is described

in algorithm 4.4 Select Target and Constraint (UQC). This algorithm has two inputs, the

query, QU and its context sub tree, STCT X .

The first step is to find the target of the query. As a context sub tree can be compara-

ble to a abstracted retrieval unit. Hence, taking the root of retrieval unit as a target concept

is reasonable. A target, TARGET is the root of STCT X (see no. 1 in algorithm 4.4).

Now, for same context sub tree, STCT X , we can proceed to find the constraint concept

for terms in the query. We first obtain a subset of concept candidates for all the terms in

QU (see no. 2 in algorithm 4.4) using algorithm 4.3 Select Concept in Context Sub Tree.

This subset refines our concept candidates to a context sub tree rather than the entire

90

collection. Since there may be more than one concept candidates, the term weighting

measure, scoreCW of context-based probabilistic model is used to rank the concepts. Next,

for each term, the best constraint concept is selected (see no. 3 in algorithm 4.4). The

constraint pair consisting of a concept and content term will be inserted the the constraint

list, CONST RAINT .

Lastly, the target and constraint is returned as query interpretation,

QI = (TARGET,CONST RAINT).

Algorithm 4.3 Select Concept in Context Sub Tree
Input: unstructured query QU , context sub tree STCT X
Output: a concept array CPTQU (consisting ranked concept CPTrank for each content

term qtcontent)
. 1. Get Concept Candidates for Each Content Term in Query

for all qtcontent ∈ QU do
CPTcand ← getDistinctConcept(STCT X ,qtcontent)

. 2. Get Concept Score
for all cptcand ∈CPTcand do

cptcandscore ← scoreCW (STCT X ,cptcand,qtcontent)
end for

. 3. Rank Concept
CPTrank← rankConceptByScore(CPTcandscore)

end for
CPTQUqtcontent

←CPTrank

Algorithm 4.4 Select Target and Constraint (UQC)
Input: unstructured query QU , context sub tree STCT X
Output: query interpretation, QI, consisting a set of target, TARGET and a set of con-

straint, CONST RAINT
. 1. Find Target Concept

TARGET ← STCT Xroot

. 2. Find Concept Candidates of Query
CPTQU = selectConceptInContextSubTree(QU,STCT X)

. 3. Select Best Concept as Contraint Concept
for all qtcontent ∈ QU do

CONST RAINTqtcontent ← getBestConcept(qtcontent ,CPTQU)
end for
QI← TARGET
QI←CONST RAINT

Example 4.1. Consider a query, “river view hotel singapore”, searching a conference

collection. Its content term is QTcontent = {river view hotel, singapore} and its con-

91

text sub tree, STCT X = {hotel, I} ,where I = {(river view hotel,name,hotel)1, (river view

hotel,description,hotel)1, (singapore,address,hotel)1}. We first select the root as target,

TARGET = {hotel}.

Then, we select the constraint for the first content term, “river view hotel”. In this

example, there are two concept candidates for this term, “name” and “description” with

concept score “0.64” and “0.15”. The best concept, with higher score is selected, giving

us the first constraint, CONST RAINT = {name:river view hotel}.

Next, we proceed to select the constraint concept for the second content term in a

similar manner. This gives us the constraints set, CONST RAINT = {name:river view

hotel, address:singapore}.

Both target and constraint concepts are returned as query interpretation,

QI = {hotel}{name:river view hotel, address:singapore}

4.1.3 (b) Unstructured Query with Content and Structural Keywords (UQCAS)

For the case where query contains both content and structural keywords, the struc-

tural keywords can serve two purposes, either as a target concept for the query or as a

constraint concept describing a term. Hence, when these keywords are used, they need to

be identified. Algorithm 4.5 Selecting Target and Constraint (UQCAS) is an extension of

algorithm 4.4 Selecting Target and Constraint (UQC) to address this need.

This algorithm has two inputs, the query, QU and its context sub tree, STCT X . First,

we obtain a target concept based on the root of the context sub tree. However, for this

algorithm, we will identify whether the target concept is given by the query (see no. 1a

in algorithm 4.5). If it is specified by user in a query, it is given a source status, USER.

Otherwise, it is given a source status, SYS, to indicate that target is selected by system.

The status enables us to do prioritization later such as score(USER) >score(SY S).

Next, we can further identify the constraint concept for term in query (see 2. in

92

algo 4.5). In a similar manner, the selection of constraint concept is obtained as in the

previous algorithm. However, this time we do not pick the best concept first, but based on

the priority of the concept that has been stated as structural keywords in query (see 2a. in

algo 4.5). If only the best concept is considered at this level, we may miss other possible

concepts which may be interested by user.

If a structural keyword used specified a query matches any of the concept of a content

term, it is selected as the constraint concept for the term (see 2b(i). in algo 4.5). In this

case, the structural keyword is also selected as a target (see 2b(ii). in algo 4.5). The

reason of selecting it as a target is because when only a structural keyword is used in a

query, it is likely to be a target as well.

In the case where there is no match between structural keyword and any concept of

a content term, the selection is based on the best concept (see 2c. of algorithm 4.5).

The remaining structural keywords from query are treated as possible targets of a

query (see 3. in algo 4.5).

Example 4.2. Consider a query, “address river view hotel singapore”, searching a con-

ference collection. Its content term is QTcontent = {river view hotel, singapore}, struc-

ture term is QTstructure = {address} and its context sub tree, STCT X = {hotel, I} ,where

I = {(river view hotel,name,hotel)1, (river view hotel,description,hotel)1,

(singapore,address,hotel)1, (address,hotel)}.

We first select the root as target, TARGET = {hotel}. Since “hotel” is specified

in query, it is set as source from SYS, giving us TARGET = {hotelSY S}. (case 1c. of

algorithm 4.5)

Similar to the previous example, we select the constraint of the first content term,

“river view hotel”. However, this time, we need to check the concept candidates against

the structural keyword first. Since neither of the candidates are specified in the query, we

93

proceed to use the getBestConcept function (case 2c. of algorithm 4.5). There are two

concept candidates for this term, “name” and “description” with concept score “0.64”

and “0.15”. The best concept, with higher score is selected, giving us the constraint,

CONST RAINT = {nameSY S:river view hotel}.

Next, we proceed to select the constraint for the second content term, “singapore”

in a similar manner. In this case, the concept candidate “address” matches the struc-

tural keyword specified in the query. This gives us the constraint set, CONST RAINT =

{nameSY S:river view hotel, addressUSER:singapore}. (case 2b(i). of algorithm 4.5).

As “address” can also be meant as target of query, it is insert to the target list with

a source stated USER,

TARGET = {hotelSY S,addressUSER}. (case 2b(ii). of algorithm 4.5).

Both target and constraint are returned as query interpretation,

QI = {hotelSY S,addressUSER}{nameSY S:river view hotel, addressUSER:singapore}.

4.1.4 Multiple Interpretations

When interpretation is carried out for a query, we often look for an interpretation that

is best fitted for the query’s information needs. However, there may be situations where

more than one interpretations are relevant. This often happens to a general type of query,

where it is meant for collecting information, instead of wanting to find out an exact piece

of information. It may also occur for query that contains only content keywords. This is

because normally when structural keywords are used in a query, it will define what the

query wants exactly.

There are two situations where multiple interpretations may occur. First there are

more than one relevant contexts per query. Second, there is one relevant context, but this

context contains more than one relevant concepts.

94

Algorithm 4.5 Selecting Target and Constraint (UQCAS)
Input: unstructured query QU , context sub tree STCT X
Output: query interpretation, QI, consisting a set of target, TARGET and a set of con-

straint, CONST RAINT
. 1. Find Target Concept

TARGETi← STCT Xroot

TARGETistatus ← ROOT
. 1a. Verify Structural Keyword in Query

for all qtstructure ∈ QU do . 1b. Case Structural Keyword is Target
if match(qtstructure,TARGETi) then

TARGETisource ←USER
SELECT ED← qtstructure

else . 1c. Case Structural Keyword is Not Target
TARGETisource ← SY S

end if
end for
i++;

. 2. Find Constraint Concept
CPTQU = selectConceptInContextSubTree(QU ,STCT X)
for all qtcontent ∈ QU do

CPTQUqtcontent
← getConceptPerTerm(CPTQU ,qtcontent)

. 2a. Verify Structural Keyword in Query
for all qtstructure ∈ QU do

. 2b. Case Structural Keyword is Constraint
if match(qtstructure,CPTQUqtcontent

) then . 2b(i). Select Keyword as Constraint
CONST RAINTjqtcontent

← qtstructure
CONST RAINTjqtcontentsource

←USER . 2b(ii). Select Keyword as Target
TARGETi← qtstructure
TARGETisource ←USER
SELECT ED← qtstructure
i++;

else
. 2c. Case Structural Keyword is Not Constraint

CONST RAINTjqtcontent
← getBestConcept(qtcontent ,CPTQU)

CONST RAINTjqtcontentsource
← SY S

end if
end for
j++;

end for
. 3. Check Remain Structural Keywords

for all qtstructure ∈ QU do
if not(SELET ED) then

TARGETi← qtstructure
TARGETisource ←USER
i++;

end if
end for
QI← TARGET
QI←CONST RAINT

95

More Than One Contexts Multiple interpretations normally occur in general query.

The current algorithm 4.2 Find Context Sub Tree can address this problem by preserving

every possible context which are relevant to the query.

Example 4.3. Consider a query with no specific intention, “andrew trotman” searching

the conference collection, some relevant context sub trees are as follow.

STCT X1 = (sigir_con f , I1)

STCT X2 = (article, I2)

STCT X3 = (workshop, I3)

STCT X4 = (paper, I4) . . .

However, though the coverage of contexts are many but there will be issue of dif-

ferentiating the relevant ones from irrelevant ones. Especially, in single keyword case, it

results in very high number of contexts because there is no hint for context refinement.

Example 4.4. Consider a content term, “andrew trotman”, it has 20 relevant contexts

in the conference collection. Now, we consider another combination, “andrew trotman”

and “wei che huang”, they contain 4 relevant contexts. Whereas, “andrew trotman” and

“focused retrieval”, contain 3 relevant contexts. These show that our intuition above is

reasonable. Nevertheless, there may be situation where two content terms have much

alike roles within the same collection, they may have high contexts number too, such as

for “andrew trotman” and “jaap kamps” with 18 relevant contexts.

More Than One Concepts Multiple interpretations can also happen in the case where

there are more than one concept within the same context. In this case, an extension

algorithm 4.6, Generate Context Sub Tree Variants is used to split a context sub tree into

a set of unique variants based on a finer resource id such as document id or element id.

96

Thus, instead of having one context sub tree with one best concept, there will be variants

with different concepts.

Consider a query with terms, “andrew trotman” and a suggested context “sigir_conf”.

We obtain concepts like “doctoral_consortium” and “workshop” etc. It is obvious that

these two concept belong to different classes, and not selecting one of them will cause

loss of information. To address this issue, we allow creation of variants of the context

based on both concepts.

Example 4.5. Revisiting the above example, a context sub tree “sigir_conf” for query,

“andrew trotman” composes a set of interpretation triples, I = (qt,cpt,ctx)id . Each in-

terpretation has an resource id allocated to differentiate it in terms of document, element,

path etc. To construct a context sub tree variants, we classify Is based on their id.

I = {(andrew trotman,doctoral_consortium,sigir_conf){1},

(andrew trotman,workshop,sigir_conf){2}, (andrew trotman,name,sigir_conf){1,2},

(andrew trotman,organizer,sigir_conf){2}}

After classifying, we obtain

I1 = {(andrew trotman,doctoral_consortium,sigir_conf){1},

(andrew trotman,name,sigir_conf){1}}

I2 = {(andrew trotman,workshop,sigir_conf){2}, (andrew trotman,name,sigir_conf){2},

(andrew trotman,organizer,sigir_conf){2}}

And, the context sub tree variants are

STCT X1 = (sigir_con f , I1)

STCT X2 = (sigir_con f , I2)

Hence, we obtain two query interpretations, QI, using algorithm 4.4

QI1 = STC(QU ,STCT X1)

= {sigir_confROOT :SY S}{doctoral_consortiumSY S:andrew trotman}

97

QI2 = STC(QU ,STCT X2)

= {sigir_confROOT :SY S}{workshopSY S:andrew trotman}

Algorithm 4.6 Generate Context Sub Tree Variants
Input: context sub tree STCT X for unstructured query, QU
Output: context sub tree variants STCT Xid

. 1. Get Resource Id For Each Interpretation Triple
for all I ∈ STCT X do

Rid ← getResourceId(I) . 2. Create New Context Sub Tree Per Resource Id
STCT Xid ← classi f yContextSubTree(I,Rid)

end for

4.1.5 Interpretation for Query with Logical Operator

A more complex type query consists of one or more sub queries in it, connected with

disjunctive (and conjunctive) logical operators. This query will be decomposed based

on the usage of the operators. Such as “paper or poster by andrew trotman”, into two

sub queries, i.e. (a)“paper by andrew trotman” and (b)“poster by andrew trotman”. Each

query will be processed separately. First, we obtain query interpretations for each sub

query. For example,

QIa1 = {articleROOT :SY S, paperUSER}{authorSY S:andrew trotman}.

QIa2 = {sigir_confROOT :SY S, paperUSER}{paperUSER:andrew trotman}.

QIa3 = {paperROOT :USER}{authorSY S:andrew trotman}.

QIb1 = {sigir_confROOT :SY S, posterUSER}{posterUSER:andrew trotman}.

QIb2 = {posterROOT :USER}{authorSY S:andrew trotman}.

QIb3 = {posterROOT :USER}{reviewerSY S:andrew trotman}.

Both sub queries are combined to form a single query based on their common con-

straint. From the above combinations, combine QIa3 and QIb2 , we get

QI = {paperROOT :USER, posterROOT :USER}{authorSY S:andrew trotman}.

98

However, if two sub queries have different constraints, combining them would result

in some combinations that are incorrect. E.g. if we combine QIa3 and QIb3 , we get

QI = {paperROOT :USER, posterROOT :USER}{authorSY S:andrew trotman, reviewerSY S:andrew

trotman}. [bad combination]

Hence, we do not combine the sub queries for this case.

4.2 Query Representation

This section shows how the interpreted query will be represented using the interme-

diate query representation propoposed in the query transformation framework. The main

goal in this section is to structure the query so that it can reflect the intention of the query.

4.2.1 Basic Query Construction

We begin by looking at a basic query construction for a simple query. Let us assume

that the query consists of single target and a set of constraints after query interpretation

from section 4.1. Now, we want to construct the interpretation into a generic query struc-

ture form. For the construction, we will be referring to the intermediate query schema

(IQS) defined in Chapter 3.4.1.

Algorithm 4.7 Construct Basic Query describes the query construction process. This

algorithm requires the query interpretation, QI as input. It consists of 3 main processes.

First, it creates an instance of semantic query by using the IQSNew function. Then, it will

call the IQSNewTarget function to create the target group as the root of semantic query.

Target candidate from QI is added to the target group using IQSAddTarget function. Next,

the algorithm creates a new constraint group through the IQSNewConstraint function. A

constraint group is bound to a target group based on the re f Target. Constraints candi-

date from QI are added to the constraint group using IQSAddConstraint function. The

algorithm returns the constructed query as semantic query, Qsem.

99

Algorithm 4.7 Construct Basic Query (Single Target Multi Constraint from QI)
Input: query interpretation QI of unstructured query QU , IQS functions
Output: semantic query Qsem

Let relTarget = SIB
. 1. Create New Semantic Query Instance

Qsem← IQSNew()
. 2. Create Main Query Target

Qsem← IQSNewTarget(Qsem)
. 2a. Add Query Target

TARGETcand ← TARGET ∈ QI
for all cpt ∈ TARGETcand do

if status(cpt)≡ ROOT then
Qsem← IQSAddTarget(cpt,Qsem,re f Target,relTarget)
re f Targetvalue← cpt

end if
end for

. 3. Create Main Query Constraint
Qsem← IQSNewConstraint(Qsem,re f Target)

. 3a. Add Query Constraint
CONST RAINTcand =CONST RAINT ∈ QI
for all cons ∈CONST RAINTcand do

Qsem← IQSAddConstraint(cons,Qsem,re f Target)
re f Targetvalue← cons

end for

Example 4.6. Consider a query, “river view hotel singapore”, and its query interpreta-

tion, QI = {hotel}{name:river view hotel, address:singapore}. The steps of query con-

structions are as follow. The example is shown in Figure 4.1.

i. First, a new semantic query structure is instantiated, which is an empty structure, e.g.

QS.

ii. Then, a new target is created for the structure QS. This creates a node called “TG”

(target group) as the root of QS.

iii. The target, “hotel” is added to the “TG” node. This target, “hotel” is also set as the

reference, re f Target, for binding purpose later.

iv. Next, a new constraint is created, binding to the the “TG” node of “hotel”. This

creates a node called “CSG” (constraint group).

100

v. There are two constraints given by QI. The first constraint, “name:river view” is

added to constraint group, binding under the “CSG” node. This constraint, “name:river

view” is then set as the reference, re f Target, for binding of the next constraint.

vi. Lastly, the second constraint, “address:singapore” is added to the same constraint

group, binding under the “CSG” node as the sibling of previous constraint.

Figure 4.1: Example of Basic Query Construction

Reference of Target, re f Target Reference of target is used to identify which target

group (or constraint group) a new target (or constraint) is to be bound to. For example, in

order to add the second constraint to the same constraint group as the first constraint (see

step vi. in Example 4.6), re f Target with the value of first constraint is used as reference

to identify the correct constraint group.

Relationship with Target, relTarget Relationship with target is used to state whether

a new target will be bound as a sibling, SIB, or a child, CHI, to the current target in target

group. We show the difference between sibling binding and child binding in figure 4.2.

Sibling binding is used to indicate two different retrieval concepts. For example, between

i. and ii. in figure 4.2. This structure means that either “paper” or “poster” where its “title”

contains “xml” will be retrieved. Whereas child binding is used to narrow down the scope

101

of the main target. For example, between iii. and iv. in the same figure. As the target

“paper” is added to the target “conference” as a child, it is used to refines the scope of

“conference” to “conference\paper”. This structure means that “conference\paper” where

“title” contains “xml” will be retrieved.

Figure 4.2: SIBling Binding vs. CHIld Binding for Multiple Targets

4.2.2 Query Construction for Multiple Targets

Multiple targets occur when there are more than one retrieval unit types which are

relevant to the query. This situation can occur directly (user specifies multiple targets

in query) or indirectly (system suggested multiple targets from its interpretation). In

both cases, when multiple targets are suggested from query interpretation, they can be

interpreted as follows.

a. there are multiple specific targets in additional to a main target.

b. there are multiple main targets.

Now, we proceed to see how these targets are structured. We shall discuss the case

based on how the targets are interpreted in query interpretation, on whether they are con-

tained in the same query interpretation (a.), i.e. single QI, or the targets are contained in

different query interpretations (b.), i.e. variants of QIs.

102

Algorithm 4.8 Construct Complex Query (Multiple Targets from Single QI) shows

how additional targets are constructed in a semantic query. This algorithm requires a

query interpretation, QI as input. This main difference of this algorithm from algo-

rithm 4.7 is the handling of its additional targets suggested from QI. We call these targets

as refining targets, as they are meant for refining the main target. There are two types of

refinements, i.e. as additional targets of the main target or as the sub target of the main

target (see figure 4.3).

After the main target has been created (2a in algorithm 4.8) using the IQSAddTarget

function, we proceed to identify additional target from QI by referring to its target status.

Every remaining targets with ROOT status will be added to the same target as its siblings.

See (figure 4.3a.) for example, target “paper” is the first main target created for the Qsem,

then target “poster” is added to the target group of “paper” as sibling.

Sub Targets Then, we proceed to process the remaining target candidates. Remaining

targets are used to state a finer retrieval unit within the scope of main target, by placing

them as sub targets of the main target. When placed as a sub target, its purpose is to

return portion of the retrieval unit that matches the main target. To do this, algorithm 4.8

2c. creates a new target group under the existing one, indicating that these targets are

refinements for the higher level target. Every remaining targets will be added to this

new group. See (figure 4.3b.) for example, target “hotel” is the main target created for

the Qsem, then target “address” is added to the target group nested under the main target

“hotel” as sub target.

Special Sub Target In a special case where a fine target is actually the retrieval unit

itself but the suggested main target is a broader target. This occur for a query like “paper

about xml”, where the structural keyword “paper” is meant to be the query target. Based

103

on our intuition, when only one structural keyword is used, it has high possibility of being

a target of the query. However, when interpreted, we may get some broader concepts as

main target like “demo_papers”, “accepted_posters”, instead of “paper”. Since “paper”

also a target, it will be used as a fine target. The issue is, it is semantically incorrect to

be placed as sub target, as it will return all the papers of “accepted_posters”. In this case,

“paper” needs to be placed as the sub path of the main target “accepted_posters”.

The identification of special sub target is carried out by checking against the content

term. Here, we look at the content term “xml” and interpretation, QI for this query. It is

given as,

QI = {accepted_postersROOT :SY S,paperUSER}{paperUSER:xml}

When the fine target, “paper” is also suggested as the constraint of the content term,

this shows that structurally, the fine target cannot be placed lower than or same level as

the constraint. As Algorithm 4.8 2b. addresses this case by placing the fine target as a

child of the main target (see (figure 4.3c.).

4.2.3 Query Construction for Multiple Query Interpretations

As discussed in section 4.1.4, there may be more than one interpretations. Revisiting

this example, there are two query interpretations, QI, obtained for the query “andrew

trotman”.

QI1 = {sigir_confROOT :SY S}{doctoral_consortiumSY S:andrew trotman}

QI2 = {sigir_confROOT :SY S}{workshopSY S:andrew trotman}

The construction queries for both interpretations will be carried out separately using

algorithm 4.7 Construct Basic Query, leading to two semantic queries, Qsems.

Combining Queries The queries are combined using the IQS aggregation rule for con-

straint, CS.

Qsem1 = {

104

Algorithm 4.8 Construct Complex Query (Multiple Targets from Single QI)
Input: query interpretation QI of unstructured query QU , IQS functions
Output: semantic query Qsem

Let re f Target = null,relTarget = SIB
. 1. Create New Query Instance

Qsem← IQSNew()
. 2. Create Main Query Target

Qsem← IQSNewTarget(Qsem,re f Target)
. 2a. Add Main Query Targets

TARGETcand ← TARGET ∈ QI
for all cand ∈ TARGETcand do

if status(cand)≡ ROOT then
Qsem← IQSAddTarget(cand,Qsem,re f Target,relTarget)
re f Target← cand
remove cand from TARGETcand

end if
end for

. 2b. Remain Target Candidates (Add as Child of Main Target)
for all cand ∈ TARGETcand do

if source(cand)≡USER AND matchConstraint(cand,CONST RAINT) then
re f Target = null
relTarget =CHI
Qsem← IQSAddTarget(cand,Qsem,re f Target,relTarget)

end if
end for

. 2c. Remain Target Candidates (Add as Sub Target of Main Target)
Qsem← IQSNewTarget(Qsem,re f Target)
relTarget = SIB
for all cand ∈ TARGETcand do

Qsem← IQSAddTarget(cand,Qsem,re f Target,relTarget)
end for

. 3. Create Main Query Constraint
Qsem← IQSNewConstraint(Qsem,re f Target)

. 3a. Add Query Constraint
CONST RAINTcand ←CONST RAINT ∈ QI
for all cand ∈CONST RAINTcand do

Qsem← IQSAddConstraint(cand,Qsem,re f Target)
end for

105

Figure 4.3: Query Construction for Multiple Targets

106

T G1/T1/C1/sigir_conf,

T G1/CGS1/CS1/C1/doctoral_consortium,

T G1/CGS1/CS1/K1/andrew trotman }

Qsem2 = {

T G1/T1/C1/sigir_conf,

T G1/CGS1/CS1/C1/workshop,

T G1/CGS1/CS1/K1/andrew trotman }

CONS_AGG(Qsem1,Qsem2) = {

T G1/T1/C1/sigir_conf,

T G1/CGS[OR]1/CS1/C1/doctoral_consortium,

T G1/CGS[OR]1/CS1/K1/andrew trotman,

T G1/CGS[OR]1/CS2/C1/workshop,

T G1/CGS[OR]1/CS2/K1/andrew trotman }

Nested Constraints In the previous, we have discussed the aggregation of query inter-

pretations with single constraint in each of them. Now, we shall look at a more complex

case when there are multiple constraints per interpretations. These constraints will be

combined as nested constraint group, instead of individual constraint.

Let us look at a more complex example in Figure 4.5, there are also two query in-

terpretations, QI, obtained for the query “paper andrew trotman(xml OR inex)”. The

construction queries for both interpretations will be carried out separately using algo-

rithm 4.7 Construct Basic Query, leading to two semantic queries, Qsems. The queries are

combined using the IQS aggregation rule for constraint group, CSG.

107

Figure 4.4: Query Construction for Multiple Query Interpretations

4.3 Query Mapping

Having interpreted and represented the query, this section describes how the query

are transformed to a query language form, so that the query can be processed by retrieval

system. The mapping of semantic query to a language type is carried out matching it with

the syntax query structure of that language. Given a semantic query, we will look for the

best match syntax query structure, and then convert the contents from semantic query to

language via the query structure.

4.3.1 Schema Matching

We begin by discussing the matching between semantic query structure and syntax

query structure. Consider a semantic query structure, Qsem obtained from the query inter-

pretation and representation, and a set of syntax query structure, Qsyn from the resource

108

Figure 4.5: Query Construction for Multiple Query Interpretations (Nested Constraints)

of mappings for a language type, X . The problem of schema matching is to find the best

match structure between Qsem and Qsyn so that no information lost will occur at this stage

of conversion to language string (see Figure 4.6).

Exact Match Algorithm 4.9 describes the matching of both semantic and syntax queries.

Finding an exact match is quite straight forward. Comparison between paths of schema

can be used to check whether both schemas match. However, if an exact match cannot

be found, i.e. the syntax query is not available in the resource, then we need to look for a

nearest partial match.

Partial or Overwhelm Match Algorithm 4.10 describes partial or overwhelm match-

ing of both semantic and syntax queries. When an exact match is not found, a detailed

matching is employed based on the overlapping paths of both query schemas. The selec-

tion of syntax query is carried out based on the highest score of schema with respect to

109

Figure 4.6: Finding Best Match Structure

Algorithm 4.9 Match Schema of Semantic Query and Syntax Query
Input: semantic query, Qsem of unstructured query QU , a set of syntax query Qsyn from

knowledge base, KBX of a language type, X
Output: syntax query Qsynexact of a language type

schemaQsem ← getSchema(Qsem)
schemaQsyn ← getSchema(Qsyn)
for schema ∈ schemaQsyn do

if match(schemaQsem ,schema) then
Qsynexact ← schema
break

end if
end for

the semantic query schema.

schemaSimilarity(Qsem,Qsyn) =

totalMatchPathQsem,Qsyn
totalPathQsem

+
totalMatchPathQsem,Qsyn

totalPathQsyn

2

For the situation of non exact match, there can be two cases of a selected schema,

i.e. overwhelm match and partial match. An overwhelm match happens when a syntax

query structure is able to represent more than the required contents of the semantic query

110

(see Figure 4.7). Hence, it consists of structures which may not be utilized. When there

are two syntax query structures which are both overwhelm match, the one with the higher

score is selected as it has less under utilized structures.

Algorithm 4.10 Partial and Overwhelm Match Schema of Semantic Query and Syntax
Query
Input: semantic query, Qsem of unstructured query QU , a set of syntax query Qsyn from

resource, RX of a language type, X
Output: syntax query Qsynsele of a language type

Let PART IALscore = 0
Let OV ERscore = 0

schemaQsem ← getSchema(Qsem) . 1. Split semantic query schema into paths
Qsempath ← getPath(schemaQsem)

. 2. For each syntax query schema, split schema into paths
for all Qsyn ∈ RX do

schemaQsyn ← getSchema(Qsyn)
Qsynpath ← getPath(schemaQsyn)

. 3. Similarity Score Calculation
scoreQsyn ← schemaSimilarity(schemaQsem,schemaQsyn)

. 4. Overwhelm Match Case
if totalMatchPathQsem,Qsyn == totalPathQsem then

if scoreQsyn > OV ERscore then
Qsynover ← Qsyn
OV ERscore← scoreQsyn

end if . 5. Partial Match Case
else

if scoreQsyn > PART IALscore then
Qsynpartial ← Qsyn
PART IALscore← scoreQsyn

end if

end if
end for

Figure 4.7: Case of Overwhelm Match for Query Schema Matching

111

Example 4.7. Consider a query, “text processing summary presenter” and its interpreted

semantic query structure, Qsem as shown in Figure 4.7. When an exact match of syntax

query structure is not available, the most similar one will be selected. Here, we show how

the scoring of schema similarity is obtained.

Paths for Qsem, “text processing summary presenter”,
= {T G1/T1/C1,

T G1/CSG1,op=“AND′′/CS1/C1,

T G1/CSG1,op=“AND′′/CS1/K1,

T G1/T G1,T1/C1,

T G1/T G1,T2/C1}

totalPathQsem = 5

Paths for Qsyn from NEXI knowledge base,
= {T G1/T1/C1,

T G1/CSG1,op=“AND′′/CS1/C1,

T G1/CSG1,op=“AND′′/CS1/K1,

T G1/CSG1,op=“AND′′/CS2/C1,

T G1/CSG1,op=“AND′′/CS2/K1,

T G1/T G1,T1/C1,

T G1/T G1,T2/C1}

totalPathQsyn = 7

totalMatchPathQsem,Qsyn = 5

Schema Similarity between Qsem and Qsyn

=
5
5+

5
7

2

=0.86

Since the total matched paths of both structures (Qsem and Qsyn) is equivalent to the

total path of Qsem (see 4. in Algorithm 4.10), this means that the query contents of Qsem

can be fully mapped to Qsyn despite the differences of their structures. In this case, Qsyn

is classified as overwhelm match. An overwhelm match is preferred to partial match as it

can fully convert the contents of Qsem.

A partial match shall represent part of the information from the semantic query.

112

Although partial match is still allowed when exact match is not found. However, there

is still a minimum rule where a partial match can be optimized. For example, priority

can be placed on partial match that has higher score of unique path of constraint rather

than target. This is because loosing information about constraint will affect the results, as

content keywords are omitted. Whereas, loosing information about target will only affect

the granularity of retrieval unit.

Figure 4.8: Case of Partial Match for Query Schema Matching

4.3.2 Query Content Mapping

Once a matched schema of syntax query structure is found, the contents of semantic

query structure can be mapped to its query language form. The mapping is carried out by

matching the path of a leaf node (containing content) of semantic query structure, with

the path of a leaf node (containing variable) of syntax query structure. Path selection

method like xpath can be used to identify the corresponding path of two query structures.

Example 4.8. Let us revisit the query from example 4.6, “river view hotel singapore”, its

semantic query, Qsem, and an exact matched syntax query, Qsyn of a query language type,

113

Figure 4.9: Content Mapping between Semantic Query and Syntax Query

NEXI (see figure 4.9).

1. For example, to map the leaf content “hotel” from Qsem to Qsyn, we first get the

path of this leaf node at Qsem.

getPath(Qsem,“hotel”) = T G1/T1/C1

2. Then, we obtain the corresponding variable node from Qsyn by mapping the path

from Qsem to Qsyn.

mapPath(Qsyn, “T G1/T1/C1”) = x1

3. After the variable node is found, mapping between the content node and variable

node is formed.

formMapping(“hotel”,x1) = {“hotel”,x1}

4. After we have obtained all the corresponding variable nodes, we convert the con-

tents to the query language string. A simple way to carry out content conversion is

by placing the variables of M to ST R as shown in figure 4.10. Hence, we obtain the

structured query string for NEXI query language as follow.

STR = “//hotel[about(.//name,river view) and about(.//address,singapore)]//address”

Another Query Language The same conversion can be carried out for another query

language. Let us consider another query language, XMLFragment. Given that an exact

114

Id M
x1 hotel
x2 name
x3 river view
x4 address
x5 singapore
x6 address

Id ST R
0 //
1 x1
2 [about(.//
3 x2
4 ,
5 x3
6) and about(.//
7 x4
8 ,
9 x5
10)]//
11 x6

Figure 4.10: Mappings, M to Query String, ST R, of NEXI

Figure 4.11: Syntax Query Structure for XMLFragment

match syntax query structure, Qsyn for this query language is available (as shown in fig-

ure 4.11). Similarly, we carry out content conversion by placing the variables of M in

ST R as shown in figure 4.12.

Hence, we obtain the structured query string for XMLFragment query language as

follow.

STR = “<hotel><name>river view</name><address>singapore</address></hotel>

<target>address</target>”

115

Id M
x1 hotel
x2 name
x3 river view
x4 address
x5 singapore
x6 address

Id ST R
0 <
1 x1
2 ><
3 x2
4 >
5 x3
6 < /
7 x2
8 ><
9 x4
10 >
11 x5
12 < /
13 x4
14 >< /
15 x1
16 >< target >
17 x6
18 < /target >

Figure 4.12: Mappings, M to Query String, ST R, of XMLFragment

4.4 Query Selection

The last section of this chapter discusses the selection of interpreted queries. Al-

though now we have obtained a number of interpreted queries, there are some issues like

too many interpretations or bad interpretations. The main aim of query selection is to

address these issues by methods such as carry out overall ranking, suggesting best query

and finding cut off factors for too many interpretations. Revisit section 4.1.2, we have

earlier stated that a context sub tree is the central of a retrieval unit, now we shall discuss

the scoring of the context sub tree for determining query ranking.

4.4.1 Query Ranking

Although there are a number of factors that affect the scoring for query ranking, the

first important score for an interpreted query is based on its context sub tree. And, the

scoring of context sub tree is based on two factors, first, to find a context sub tree that

gives the best retrieval unit, and second, to find the best term concept within that context

sub tree in order to filter out irrelevant retrieval unit.

116

Context Sub Tree Ranking A good context sub tree reflects a good retrieval unit for

a query. The features that we desire is basically based on these two guidelines, i) it is

neither too big that it contains too much information, ii) it is not too small that it contains

too little information resulting in non meaningful unit.

Based on the guidelines above, we present Cretrieval(STCT X ,Q), which is the confi-

dence of a context sub tree to be the desired retrieval unit for a given query, Q, as follows:

Cretrieval(STCT X ,Q) = ∏
qt∈Q

scoreCT XPROX(STCT X ,Q)∗ scoreCT X(STCT X),

where scoreCT XPROX(STCT X ,Q) measures the importance of STCT X wrt. Q, and

scoreCT X(STCT X) measures the importance of STCT X in the collection, D. The first factor

(scoreCT XPROX(STCT X ,Q)) reflects that the more frequent a query appears in a context sub

tree, the more relevant the context sub tree is to the query. It also reflects that the smaller

distance (edge distance) a query locates from the root of a context sub tree, the more

semantically relevant they are. The second factor (scoreCT X(STCT X)) reflects that the

more frequent a context sub tree appears in a collection, the most likely it is an important

retrieval unit. Product is used in the first factor to ensure that all keywords are taken into

considerations. Therefore, if a sub tree cannot contain all the keywords in the query, we

will get a confidence score of 0.

Algorithm 4.11 shows the scoring and ranking of context sub trees using the con-

fidence of a context sub tree, Cretrieval(STCT X ,Q). The algorithm returns a set of ranked

context sub trees.

Example 4.9. Now, we show how the confidence scoring differentiates between sub trees

of different granularities. Consider the query, Q,“hotel river view”, there are some can-

didates of context sub tree, such as

STCT Xhotel = {hotel, ISTCT Xhotel∩Q}.

117

STCT Xhotel_in f ormation = {hotel_information, ISTCT Xhotel_in f ormation∩Q}.

STCT Xrates_o f _hotel = {rates_of_hotel, ISTCT Xrates_o f _hotel∩Q}.

STCT Xaccommodation = {accommodation, ISTCT Xaccommodation∩Q}.

The confidence score for each context sub tree wrt. the query is as follows.

Cretrieval(STCT Xhotel ,{river view, hotel}) = [0.133∗1.000]∗ [17
17] = 0.133

Cretrieval(STCT Xhotel_in f ormation,{river view, hotel}) = [0.286∗1.000]∗ [1
17] = 0.019

Cretrieval(STCT Xrates_o f _hotel ,{river view, hotel}) = [0.286∗1.000]∗ [1
17] = 0.019

Cretrieval(STCT Xaccommodation ,{river view, hotel}) = [0.100∗0.500]∗ [2
17] = 0.006

There are two parts of scoring in this example (shown in two square brackets). The

first part shows scores obtained for each keywords from the first factor,

scoreCT XPROX(STCT X ,{river view, hotel}). Let us look at the first keyword. The first

keyword, “river view”, is a content keyword, hence its scoreCT XPROX is based on the

density of the keyword (measuring frequency), and distance of the keyword (measuring

depth). Due to its high density in sub trees, STCT Xhotel_in f ormation and STCT Xrates_o f _hotel , the

first keyword contributes to a higher score in these two sub trees compare to others.

The second keyword, “hotel”, is a structural keyword. Its scoreCT XPROX is based on

structural distance between the structure and the sub tree (measuring depth). If we look

at “hotel” keyword in STCT Xaccommodation context sub tree, it is nested deeper in the sub tree

compare to others. The deeper a keyword is nested, the less semantically relevant it is

with the sub tree, the lower score it gets.

The second part of confidence scores shows the overall importance of the sub tree.

In this example, the scoreCT X(STCT X) factor is normalized with max frequency from this

subset. We can see that in this collection, the STCT Xhotel is more popular compare to the

rest.

118

Lastly, we rank the context sub trees by their confidence scores, that serve as the

preliminary ranking for interpreted query later.

Algorithm 4.11 Rank Context Sub Tree
Input: unstructured query QU , a set of context sub tree candidate, STCT Xcand

Output: a set ranked context sub tree STCT X
. 1. Score Context Sub Tree by Confidence Score

for all stCT X ∈ STCT Xcand do
for all qt ∈ QU do

scoreCT XPROXqt ← scoreCT XPROX(stCT X ,qt)
end for
scoreCT XPROX(QU)←∏qt∈QU scoreCT XPROXqt

stCT XCretrieval
← scoreCT XPROX(QU)∗ scoreCT X(stCT X)

end for
. 2. Rank Context Sub Tree by Confidence Score

STCT X ← sortCScore(stCT XCretrieval
)

Context Sub Tree Ranking Refining (with Concepts Weighting) The ranking of query

can be further refined using the importance of concepts selected for query terms. This is

because each concept selected for terms in query may also affect the selection of context

sub tree. Especially in the case where the earlier factors, scoreCT XPROX(STCT X ,Q) and

scoreSTCT X , could not differentiate the sub tree. Considering this, we present Cretrieval(STCT X ,STCT XCPT ,Q),

which is the confidence of a context sub tree with concepts weighting of terms in query,

Q, as follows: Cretrieval(STCT X ,STCT XCPT ,Q)

= ∏qt∈Q,cpt∈CPT scoreCT XPROX(STCT X ,Q)scoreCW (STCT XCPT ,Q)∗ scoreCT X(STCT X),

where scoreCW (STCT XCPT ,Q) measures the importance of CPT wrt. qt ∈ Q in STCT X .

Example 4.10. From the previous example, we can see that the context sub tree, STCT Xhotel_in f ormation

and STCT Xrates_o f _hotel have the same scores for its ranking. In this case, we can carry out

further analysis using the weight of concept selected for the query term. Now, we show

how the confidence scoring differentiates when concepts of terms are incorporated be-

tween these sub trees. Consider the query, Q,“hotel river view”, and the STCT Xhotel_in f ormation

and STCT Xrates_o f _hotel context sub trees,

119

The new confidence score for each context sub tree wrt. the best concept of term in

query is as follows.

Cretrieval(STCT Xhotel_in f ormation,STCT Xhotel_in f ormation:hotel∩river view,{river view, hotel})

= [(0.286∗0.592)∗ (1.000)]∗ [1
17] = 0.010

Cretrieval(STCT Xrates_o f _hotel ,STCT Xrates_o f _hotel:hotel∩river view,{river view, hotel})

= [(0.286∗0.384)∗ (1.000)]∗ [1
17] = 0.007

Here, we can see that the context sub trees can be weighted based on the importance

of the selected concept, “hotel” for the query term, “river view”, given by the factor

scoreCW (STCT XCPT ,Q). As such, now we can refine the rank of the sub tree candidates

based on this new scores.

4.4.2 Query Ranking with User Confidence

In this section, we discuss how query ranking can be prioritized with user input.

Since the a given query can consist of structural keywords (assume written correctly with

some knowledge assistances), when these keywords are used, query ranking will give

priority to these keywords. As such, we introduct a rank confidence scoring, Cuser based

on whether the concepts given in a query interpretation, QI, are suggested by user or

system.

Cuser =
∑conceptUSER

∑[conceptUSER∪ conceptSY S]

For example, there are two queries, Q1, “river view” and Q2, “hotel river view”. Both

queries give the same interpretations,

QI1 = {hotelROOT :SY S}{nameSY S:river view hotel}.

QI2 = {hotelROOT :USER}{nameSY S:river view hotel}. Both query interpretations lead to

the same query output, such as for language, NEXI,

ST R1 = “//hotel[about(.//name,river view)]”, where Cuser = 0

ST R2 = “//hotel[about(.//name,river view)]”, where Cuser = 0.5

120

Although both outputs are the same, however, the user confidence level of ST R2 is higher

than ST R1.

4.4.3 Query Ranking with External Knowledge

Basically, just like any retrieval result, it is hard to determind a cut off point of the

result list. Hence, most common approach to address this issue is to optimize the rank as

good as possible, and leave the decision to user. Similarly, query ranking can also involve

user feedbacks in the query formulation stage, before the actualy results are returned.

User Feedbacks In this framework, user feedback can be sought for both target and

constraint of query interpretation. Such as, for a query, “hotel river view”, user can be

opted with suggesion options like “hotel information” and “rates of hotel”, which are

created from the target of different query interpretations. Once a user picks an option, it

will refine the query to a smaller subset. User feedback can be interactive, allowing finer

concepts options within the subset, to reach a final query.

Domain Knowledge Besides having user feedbacks, a predefined domain knowledge

can also be used in query ranking. Domain knowledge containing a set of common object

or element types and properties can be used to boost the rank of query. By referring

to this knowledge, we can ensure that query’s target that is too broad, e.g. grouping

of types (e.g. authors, list) or incommon (or general) concepts (e.g. interested_places,

instructions_for_authors) are ranked lower.

4.5 Summary

We have shown how our query transformation framework can be applied in inter-

preting, representing and mapping unstructured query to structured query language. In

this chapter, we describe in detail how the framework handles issues arisen from the en-

tire transformation process. For query interpretation (section 4.1), we have shown the

121

creation of context sub trees based on the knowledge generated from our context-based

probabilistic approach. Then, we show interpretation of query based on these sub trees,

where we focus on two kinds of concepts interpretations, the target and the constraint

of the query. Following next is query representation (section 4.2), where the interpreted

query is constructed as an intermediate query structure based on our defined intermediate

query schema. The construction process involves constructing the interpreted query into

a generic query structure, called the semantic query. Then, to generate the query as a

structured query language, mapping of contents from semantic query structure to syntax

query structure is carried out (section 4.3). Schema matching is employed to find the best

syntax query. Lastly, we present several query selection (section 4.4) methods to optimize

the usage of generated structured queries.

122

CHAPTER 5

EVALUATION

In this chapter, we present the evaluation of the Flexible Query Transformation (FQT)

framework in structured retrieval environment. To evaluate the framework, the experi-

ments are divided into algorithm evaluations, application evaluation and representation

evaluation. Test collections used in the experiments cover structured collections for both

data-centric and text-centric types, i.e. web sites (Special Interest Group of Informa-

tion Retrieval (SIGIR)) and bibliography record (DBLP Computer Science Bibliography

(DBLP)), and topics ranging from syntactic to real world data.

This chapter consists of five sections. We first introduce our evaluation goals and

infrastructures. Then, we present experiments and discussions carried out on the frame-

work from different aspects, i.e. query interpretation, query transformation and query

representation. Lastly, we conclude by summarizing the outcomes and observations from

the evaluation.

5.1 Introduction

In this thesis, the proposed FQT framework will be evaluated from various aspects

to justify its usefulness and application. The three aspects are:

Algorithm One important evaluation on FQT is its capability of transforming informa-

tion needs from unstructured query to structured queries. Thus, it is necessary

to measure the effectiveness of query interpretation algorithms via the translated

queries. The correctness of a translated query can be measured from a few points

such as ability to identify the usage of contents and structural hints in a given query,

123

ability to suggest correct constraining structure (as filter for content keyword), abil-

ity to suggest targeting structure of structured query.

Application The second evaluation on FQT is its application in structured retrieval re-

lated tasks. In this evaluation, we will look at how good are the transformed

structured queries. Then, we proceed to show the advantage of using transformed

queries in retrieval task. For this, we measure the ability of FQT in suggesting im-

proved queries to achieve better retrieval results, which can be based on the output

of results given an information need.

Representation The last evaluation on FQT is carried out to measure its representation

genericness, to support query transformation of multiple structured query types.

For this, we show that the representation can be used to capture the information

needs for different structured query languages. We also demonstrate how well the

representation can be used to support transformation to multiple structured query

languages via their knowledge bases.

Experiment Setup To carry out the evaluations in standard way, test collections are

developed based on guidelines in information retrieval evaluation (Manning, Raghavan,

& Schütze, 2008, Chapter 10), (Gövert, Fuhr, Lalmas, & Kazai, 2006) and INEX (Kazai

et al., 2003). The test collections used consist of four major components, i.e. a document

collection, a set of information needs, a set of relevance assessments and performance

metrics.

For the purpose of evaluation, we have developed a prototyped system in PHP 5 with

MySQL 5.0 database. Experiments were performed on a 2.0GHz i7 machine with 4 GB

RAM running Windows 7. A summary of the two main datasets used in the experiments

are SIGIR Web and DBLP (see Table 5.1). The first data set has bigger average ele-

124

ment size (text centric), higher number of unique structure (heterogeneous), and higher

document complexity. Whereas, the second data set has smaller average element size

(data centric), higher number of unique structure (homogeneous), and lower document

complexity.

Table 5.1: A Summary of Data Sets Statistics

Collection
Total
XML

Element Term Doc
ComplexityTotal Size (byte) Content Structure

SIGIR Web 133 8282 192 13453 457 62.3
DBLP 112154 1358021 93 541435 25 12.1

Detailed settings of each evaluation will be described in respective sections later.

5.2 Evaluation on Query Interpretation

5.2.1 Motivation

The experiment presented in this section is to check whether FQT is able to interpret

correct structural information from information needs. The queries used in this exper-

iment are unstructured queries (similar to Content Only (CO) query in INEX). Using

our FQT framework, the unstructured queries will be transformed into structured queries

(e.g. CAS query in INEX). Our main concern here is to find out whether FQT is able to

infer correct structural information to build a compatible or better structured query that

reflects similar information needs. A series of tests is carried out using different aspects

of information needs, such as query length, types of needs and complexities of needs.

The experiment starts by comparing output of query transformation based on its

query interpretation algorithms. Comparison is made between our query interpretation

approach using context-based probabilistic model with baselines query interpretation mod-

els as follows.

• non-context approach (Kim et al., 2009), NCTX

• context with structure using IQD (Bao et al., 2010), CTX+S

125

• smallest lowest common ancestor approach (Petkova et al., 2009; J. Li et al., 2009),

SLCA

• frequent subtree approach (Bao et al., 2010), FCA+D.

We tested the models on top of three standards information retrieval term scoring func-

tions, i.e. BM25, Term Frequency Inverse Element Frequency (TFIEF) and Language

Model (LM).

Hypothesis 5.1. The accuracy of translated structured query using a context-based ap-

proach (i.e context-based probabilistic model) should be higher than non-context ap-

proach, especially in collection with higher structure complexities such as deeply nested

contents.

In addition, we want to see how the context-based probabilistic model fairs on dif-

ferent standard retrieval term weighting functions. Since the test collection consists of

elements of different length (which is a standard characteristic for text-centric structured

resource), we anticipate that our model works better when incorporating the term scoring

functions (i.e. BM25, LM) that come with normalization compare to the one without

normalization (i.e. TFIEF)

The experiment continues to compare the effectiveness query interpretation based on

two types of common information needs (i.e. specific and general) used in information

seeking processes. This comparison has driven us to make the following hypothesis.

Hypothesis 5.2. A more detailed, i.e. specific information needs should give better ac-

curacy in its translated structured query form compared to simpler one, i.e. general

information needs.

With regard to these information needs, we also evaluate whether the length of in-

formation needs and the usage of structural term in information needs have any effects on

126

the accuracy of the interpreted query. Therefore, the next hypotheses are as below.

Hypothesis 5.3. Bigger query size (i.e. more terms) gives better hints in terms of user

intention and search context during the processing of query interpretation, thus generate

better structured query.

Hypothesis 5.4. Usage of structural keywords in information needs should also give bet-

ter hints in terms of user intention and search constraints, thus generate better structured

query.

5.2.2 Test Collections

In this evaluation, the test collections consists of a text-centric data collections, a

set of information needs in unstructured queries form, a set of relevance assessment con-

sisting information needs in structured queries form, and performance metrics for the

accuracy of translated queries.

5.2.2 (a) Data Collection

Evaluations were performed using structured document under domains of confer-

ence. This collection itself has characteristics such as different complexities of the docu-

ment structures, diversities of its structure types and size of its elements/contents, there-

fore providing a diverse experimental setting for assessing the proposed query transfor-

mation framework.

SIGIR Web Collection The SIGIR 2008-2010 Web Sites Collection (referred as SIGIR

Web thereafter) consists of the structured version of the three years conference site web

pages. This is a collection has been developed since 2008 for the xml version of SIGIR

conference site’s web pages. It has a total of 133 web pages in xml. This collection is text

centric as it is developed from text contents, and not generated from database. It has a

127

complex XML structure and each article contains conference contents of different length.

On average an article contains 1234 XML nodes.

As this is a text centric collection, the semantic markups used in the collection are

not confined to predefined schema, but more for the purpose of annotation of contents of

the articles. They are meant for enabling meaningful contents over the web, rather than

data exchange. There are various types of meaningful structures or markups in this col-

lection, e.g. ontological based markups (article, workshop, tutorial, author etc.), logical

based markups (abstract, introduction, body, paragraph etc.), topic based markups (xml

retrieval, conference venue, accommodation etc.).

5.2.2 (b) Topic Set

The topics used in the evaluation are prepared in two manners, a synthetic set and a

real user set. The synthetic set of topic is used to evaluate the efficiency of our algorithm

such that various features of the algorithm can be justified. Nevertheless, for fairness of

the evaluation, we have also included some real user topic set to demonstrate the applica-

bility of the algorithm on real information needs.

For synthetic topic set, the topics are created by the author such that it can be used to

test the features of query transformation. The topics cover variations in terms of informa-

tion needs, like different query lengths, specifc needs, general needs, and so forth. The

topics also cover functional tests with different information needs patterns.

For real user topic set, the topics are created by users who are familar with web

search activity. The users were given a task to suggest topics based on a set of structured

documents of the chosen collection. Although the collection has been fixed, the users

were encouraged to create topics that reflects possible queries that they would use during

normal search routine. At the same time, users were also asked to suggest possible results

entry points that they would like see as answers for the created topics. The results would

128

be used for relevance assessment.

Type of Information Needs For both preparations of topics, the topics are further clas-

sified by its nature of specific or general.

• Specific: A topic that requests for a particular or a list of known objects. For these

topics, relevant answers can be single or multiple elements, normally in the form

of objects or entities like tel, movie, url, add etc. In these topics, users know what

they are looking for and what answers they are expecting.

• General: A topic that requests for information which is non specific and general,

covering a broader type of information. This topic normally results in more than

one answer elements, whereby the returned element types can be of multiple types.

E.g. given a topic asking for information about query representation in the domain

of conference, the answers could be a workshop, a paper, a keynote, an abstract etc.

Most of the time, for this topic type, users will learn about the topic by browsing

and going through the information returned.

We show some examples of the topics in table 5.2 .

Table 5.2: Some topics for SIGIR Sites collection

Topic [Specific/General] Description
room rate email river view [S] I am looking for the room rate and email of

River View Hotel.
text processing summary pre-
senter [S]

I want to find out who is the presenter and what
is the summary of text processing tutorial.

baeza-yates tutorial [S] I am looking for tutorial presented by Baeza-
Yates.

33rd Annual ACM SIGIR
Conference sponsors [S]

Who are the sponsors for 33rd Annual ACM SI-
GIR Conference

probabilistic models [G] I am looking for information about probabilistic
models.

google industry track [G] I am want to find out about Google’s participate
in industry track.

129

Topic Characteristics In addition to topic types, we also ensure that the evaluation

topics have the common topic size, with an average of 2.29 keywords. According to

Spink, Wolfram, Jansen, & Saracevic, 2001 and Teevan, Adar, Jones, & Potts, 2006,

the average query length by web search users is 2.4 words and 2.7 words respectively.

Further, as we also classify the topics into whether they contain implicit structural hints

or not, in order to find out the benefit of such keywords in query interpretation.

Table 5.3: Topic Statistics (Query Interpretation Assessment)

Collection Total Size(T) Keyword Type Complexity
average min,max TC +TS TC Specific General

SIGIR Web 28 2.29 1,4 67.9% 32.1% 74.1% 25.9%

5.2.2 (c) Relevance Assessment

Once the topics for evaluation are created, it is also necessary to have a set of assess-

ment to judge the outcome of experiment carried out on these topics. At the algorithm

level, we measure topics based on the generated structured query. For this, user is re-

quired to provide the golden standard, i.e. an equivalent structured query, for the topic

he creates. To make it easier for user, we let the users suggest the structural information

required using an interface, rather than asking them to write in the form of structured

queries syntax. Web page interfaces (corresponding to their structures resources) are

used to let user suggest possibile focus points the correct information are located, i.e.

Best Entry Point (BEP) that qualifies as the answer to his topic. BEP indicates where in

a document that a user should start reading (Piwowarski et al., 2008; Reid, Lalmas, Fine-

silver, & Hertzum, 2006). For example, for topic “text processing summary presenter"

in table 5.2, the evaluator has selected the entry points that resolve to these elements, i.e.

/article[1]/sigir2009[1]/ f ull_day_tutorials[1]/summary[1],

/article[1]/sigir2009[1]/ f ull_day_tutorials[1]/presenter[1] and

/article[1]/sigir2009[1]/ f ull_day_tutorials[1]. Once the relevant entry points are known,

130

we can obtain possible structures to generate structured queries for assessment. We will

measure the structures accuracy of a query in terms of its entry concepts and term con-

cepts.

Entry Concept As BEP refers to entry point of a particular physical element; at query

level, it is more appropriate to generalize the entry point to the structure of an element,

rather than referring to a specific element. We name this entry point as entry concept.

Revisit the same topic, evaluator has specified that concepts “summary”, “presenter”,

“full_day_tutorials” are all appropriate as entry point for the topic. There can be more

than one concepts for each topic. This is because elements in XML are nested and varied

in sizes, thus it is common to encounter situations where the concepts of both parent and

child elements are relevant, but to a different extent.

The accuracy of an entry concept is measured based on the concept coverage. Con-

cept coverage evaluates whether the entry concept is structurally correct or otherwise.

Here we adopt a similar scale used for measuring component coverage in standard struc-

tured retrieval evaluation (see Manning et al., 2008). The coverage can be classified into

four types, to indicate different weights for different level of concepts.

• Exact Coverage (covexact). This concept contains exactly what the topic is seeking.

• Too Broad (covbroad). This concept contains what the topic is seeking, however it

also contains other information.

• Too Small (covsmall). This concept contains what the topic is seeking, either par-

tially, or not meaningful. E.g., an entry concept like /presenter/last_name for

topic “text processing summary presenter” would be too small.

• No Coverage (covno). This concept does not contain what the topic is seeking.

131

Constraint Concept Besides entry concept, it is also necessary to measure the correct-

ness of the constraint concept of a content term. This concept filters a term to a specific

structure type such that other irrelevant structures can be omitted in the retrieval. Hence,

if a user refines a term “andrew trotman” to the concept “author”, other structures will not

be considered during retrieval. The accuracy of a constraint concept can be classified into

three categories as follows.

• Not Relevant (relnot) This concept is not able to reflect the meaning of the content

term.

• Somehow Relevant (relsomehow) This concept can somehow reflect the meaning of

the content term.

• Relevant (relexact) This concept is able to reflect the meaning of the content term.

It is necessary to include srel in the standard to handle a less rigid refinement of

concepts used for a term. For example, for a topic where “title” is a relevant concept for

a term “linguistic processing”, a broader or less strict meaning like “paper”, or “list of

accepted papers” are also by some means relevant, and can be accepted as well.

5.2.2 (d) Performance Metrics

To assess the structured query generated by our query transformation framework,

we measure the accuracy of its target concept and constraint concept using the following

performance metrics.

Entry Concept Accuracy For assessing target concept, we compare the concept of the

structured query with the entry concept specified by users. Each entry concept is scored

132

as follows.

CCOV (ec) =

0 if ec = covno

0.5 if ec = covsmall

0.5 if ec = covbroad

1 if ec = covexact

To summarize the performance, a single-figure measure is used by taking the average

of entry concepts for many topics. Given a topic, qi ∈ Q, eci j is the set of entry concepts

obtained from topic i, then the average over Q is

CCOVAV G(Q) =
1
|Q|

|Q|

∑
i=1

1
n

n

∑
j=1

CCOV (eci j),where n is total ec per i

Constraint Concept Accuracy The accuracy of constraint concept is measured by its

relevancy to the term in the context of its topic. Each term’s concept is scored as follows.

CREL(c) =

0 if c = relnot

0.5 if c = relsomehow

1 if c = relexact

Given a topic, qi ∈ Q, ti j is the set of content terms from topic i. ci j is the first concept

selected for content term ti j. The average over Q is

CRELAV G(Q) =
1
|Q|

|Q|

∑
i=1

1
n

n

∑
j=1

CREL(ci j),where n is total term per i

Note that ci j is the first ranked concept for ti j.

In order to analyse the ranked concepts, we employ CREL(ctopk) instead of CREL(c).

The scoring of topk concepts is as follows.

CREL(ctopk) = 0

i = 1

133

for cranki ≤ crankk do

CREL(cranki) =

0 if cranki = relnot

0.5 if cranki = relsomehow

1 if cranki = relexact

if CREL(cranki)>CREL(ctopk) then

CREL(ctopk) =CREL(cranki)

i++

end if

end for

This gives us

CRELAV G(Q,k) =
1
|Q|

|Q|

∑
i=1

1
n

n

∑
j=1

CREL(ctopki j)

5.2.3 Effectiveness of Query Interpretation

In this section, we measure the effectiveness of the query interpretation in finding

the target concept and constraint concept. Our context-based approach (referred as CTX

thereafter) is compared with the non-context-based (referred as NCTX) and context-based

with node specification (CTX+S) baselines.

5.2.3 (a) Interpreting Constraint Concepts

We show some cases of topics tested in Table 5.4. The table shows comparison of

concepts found using CTX approach, and two baselines, NCTX, and CTX+S. These con-

cepts are benchmark against the correct concepts suggested by user. From the experiment,

we find that CTX is able to infer a better constraint concept for content term of a topic

when a term has ambiguous concepts (e.g. T2 and T4). In such cases, our algorithm is

able to suggest a relevant concept based on the context of the topic. Otherwise, for non

ambiguous term (e.g. T1), the outcome of constraint concepts would be similar to the

baselines.

134

Table 5.4: Some Cases of Constraint Concepts Interpretation for Content Term in Query

Topic Content Term User CTX NCTX CTX+S
T1 grand copthorne

waterfront hotel
address

grand copthorne
waterfront hotel

hotel, name name location,
name

-

T2 bruce croft
committee

bruce croft senior_pc_
committee

senior_pc_
committee

bio, re-
sponder

senior_pc_
committee

T3 bruce croft in-
dustry track

bruce croft responder,
bio

responder bio, re-
sponder

-

T4 presentation
google

google company company affliation -

If we looked at the term, “grand copthorne waterfront hotel” in T1, it is only related

to one concept type in this collection, which is a “name” of a “hotel”. Hence, for this

kind of term, it will always have the same constraint concept since there is no ambiguous

in its term usage. In fact, in this case, a filtering concept can even be omitted in the

construction of structured query since it does narrow down the scope of term; whereas,

for the term “bruce croft”, it has different concepts describing its role in different parts of

collection. In this case, CTX is able to utilize its local context analysis to scope down the

constraint concepts to those relevant to a given topic. Therefore, the term is filtered with

a concept, “senior_pc_committee” when we issue a topic that looks for information about

committee (T2), while it is filtered with a concept, “responder” when we issue a topic that

looks for information about industry (T3).

The cases show that NCTX is less accurate when a term has ambiguous concepts

as it does not capture different concept usages within the same collection. The selected

concept is based on the highest rank, such as for a term “google” for topic T4, it still

ranks concept, “"affiliation” higher rather than “company”, because the former is a more

frequent concept.

Let us revisit topic T2, the result shows that CTX+S is able to infer senior_pc_committee

as the constraint for “bruce croft”. This approach is able to pick this concept as it includes

factor of structure usage in query in its query inferring process. However, this model re-

135

TFIEF BM25 LM

0.2

0.4

0.6

0.8

1

Scoring Model

C
on

ce
pt

A
cc

ur
ac

y
(C

R
E

L A
V

G
) NCTX CTX+S CTX

Figure 5.1: The Effect of CTX, CTX+S and CTX on Constraint Concept Selection Based
on Top-1 Concept

quires the structure to be specified in query.

Table 5.5: Constraint Concept Accuracy (CRELAV G) Based on Top K Concepts for SIGIR
Collection

Measure NCT XT FIEF CT X +ST FIEF CT XT FIEF
Top-1 0.364 0.250 0.500
Top-2 0.636 - 0.591
Top-3 0.727 - 0.841

Measure NCT XBM25 CT X +SBM25 CT XBM25
Top-1 0.500 0.250 0.841
Top-2 0.727 - 0.955
Top-3 0.773 - 0.955

Measure NCT XLM CT X +SLM CT XLM
Top-1 0.659 0.250 0.886
Top-2 0.682 - 0.955
Top-3 0.864 - 0.955

Stability of Concept Relevance To measure the performance of CTX in selecting con-

straint concepts, the average concept accuracy is taken based on a set of topics. Table 5.5

shows the results comparing CTX approach over NCTX. For demonstrating the stabil-

ity of our approach on different IR scoring models, we carry out the evaluation of three

most used scoring models in the structured retrieval literature, i.e. TFIEF, Okapi BM25

136

and LM. Our result shows that CTX is able to surpass its NCTX baselines in the overall

accuracy as in Figure 5.1 and Table 5.5. From this result, we have few main observations.

• CTX shows its stability on various scoring models as in Figure 5.1. If we look at

top-1 concept, when stronger scoring models are used like Okapi BM25 and LM,

CTX improves in its overall accuracy, from 0.500 (for CT XT FIEF) to 0.841 (for

CT XBM25) and 0.886 (for CT XLM). This is due to element size normalization factor

used in the latter retrieval models that emphasizes on direct term and concept rela-

tion such as <name>grand copthorne waterfront</name>, rather than indirect one

like <description>....... grand copthorne waterfront is located</description>.

• In addition to top-1 concept, we are also interested to find out whether constraint

concepts at rank 2 and 3 are relevant as shown in Table 5.5, as it could be helpful to

include these concepts in the situation where user interaction is allowed. Along with

its baseline, CTX is able to achieve better accuracy when top-2 and top-3 concepts

are considered. The concept accuracies for all the scoring models are increased to

0.841 (for CT XT FIEF) and 0.955 (for both CT XBM25 and CT XLM) respectively.

• CTX+S has a lower accuracy because most topics do not use structural keywords to

constrain the topic to search. Due to the very limited structure candidates (at most

one or two used in a topic), we cannot see the differences concept scoring models

here.

5.2.3 (b) Interpreting Target Concepts

In the experiment of finding target concepts, we compare our interpretation method

with a popular baseline, SLCA and a recent improved method of finding subtree, FCA+D.

From the experiment, we find that our query interpretation approach is able to find a bet-

ter target concept in two situations. First, in a nested situation, for example, for topic

137

Table 5.6: Some Cases of Target Concepts Interpretation for Query

Topic User CTX SLCA FCA+D
T1 grand copthorne wa-

terfront address
hotel, ad-
dress

address hotel hotel

T2 grand copthorne wa-
terfront deluxe room
rate

rate, room
rate

room rate hotel hotel

T3 wei che huang andrew
trotman

paper paper authors full papers,
paper

T4 trotman geva kaamps workshop organizers,
workshop

organizers workshops,
workshop

T4 in Table 5.6, the search term “trotman” is nested under multiple concepts like “work-

shops/workshop/organizers/organizer/name”. When a seek content is located under such

nested structures, the SLCA approach will return the nearest parents for all the terms,

which gives us “organizers” for topic T4. However, this concept is regarded as too small,

as it will return less meaningful element. What this topic is seeking is actually type of

concepts that can reflect the cooperations between these three persons, such as article,

tutorial, workshop etc. Hence, in this case, the preferred concept would be “workshop”.

Compared to SLCA, CTX extends its targets selection to multiple levels of subtree, which

enable us to obtain an addition target candidate, “workshop”, which is structurally near to

the query terms. For FCA+D, we can see that it tends to select target concepts which are

higher in the hierarchy (e.g. “full papers” for T3, “workshops” for T4) due to it enforces

less preference on concepts which are deeper (nested) in the hierarchy.

Second, when structural keywords are used in query, such as T1 and T2, our query

interpretation algorithm can identify these keywords as target concepts. Using SLCA

approach, a target concept is the root of the SLCA sub tree, whereas, our algorithm is

able to handle a target concept that is contained within the sub tree. For example, for

topic t1, the query is looking for address of a hotel. Using SLCA or FCA+D, we obtain a

sub tree rooted at “hotel”. This sub tree contains both content keyword, “grand copthorne

waterfront”, and structural keyword, “address”. There is no measure to utilize structural

138

Table 5.7: Target Concept Accuracy for SIGIR Collection

Measure
CCOVAV G

SLCA FCA+D CTX

Loose 0.574 0.629 0.759
Exact 0.185 0.296 0.667
*Loose measure includes exact, broad or small targets.

Table 5.8: Query Characteristic on Query Interpretation Performance

Query
Characteristic

Target Concept Ac-
curacy, CCOVAV G

Constraint Concept
Accuracy, CRELAV G

Info Needs
Complexity

General 0.500 0.333
Specific 0.868 0.894

Structural
Hint

Without 0.500 0.500
With 0.912 0.938

Query Size
1 term 0.400 0.333
2 terms 0.722 0.875
> 3 terms 0.923 0.929

keywords given in a query as target concepts. Our query interpretation approach addresses

this limitation by introducing an algorithm that can suggest structural keywords used in

query as target concepts within a sub tree.

To measure the overall performance of CTX in selecting target concepts, the average

concept coverage is taken based on a set of topics. Table 5.7 shows the results comparing

CTX approach over SLCA and FCA+D. In this test, we measure how accurate is the best

suggested target concept compared to its baselines. Two measures are used to evaluate the

accuracy of target concepts when they are assessed under either loose or strict manner.

For both measures, we can see that our approach has higher accuracy compare to its

baselines.

5.2.3 (c) The Effect of Query Characteristics

Based on the hypothesis made in section 5.2.1, we further explore to see how query

characteristics affect the accuracy of an interpreted query. We have made three observa-

tions from the result in Table 5.8.

Complexity of information needs Query with specific information needs obtains better

139

accuracy for both target and constraint concepts compare query with generic infor-

mation needs. This is because the search intention is clearer in the former, such

as “grand copthorne waterfront address” (T1, Table 5.6) compare to latter, such as

“probabilistic models” (Table 5.2). When a specific query is given, there are more

hints for query interpretation to find its target concept as well as constraint concept.

This results in higher accuracy for specific query. Whereas when a generic query

is given, there are often many possible suggested concepts. This increases the error

rate as there may be non-relevant ones.

Usage of structural keywords Query that uses both content and structural keywords

(UQCAS) gives better concept accuracy compare to query that uses content only

keywords (UQC) for both target and constraint concepts. The main reason is that

when structural keywords are used in query, our query interpretation algorithm will

be able to identify these keywords in the query, and used them in a more effective

way as either target concept or constraint concept; whereas for query without struc-

tural keywords, the selection of target concept or constraint concept is based on the

query context, which may results in incorrect concepts selection.

Size of query A longer query gives better description of the query context thus give bet-

ter concept accuracy compare to a shorter one. However, in this evaluation, we have

only tested up to four query terms (each term can have more than one word). We

have yet tested query with terms longer than four.

From these observations, we can conclude that FQT works best in its query inter-

pretation in the condition where query i) has specific information needs, ii) using both

content and structural keywords, and iii) containing more terms.

140

5.2.4 Summary of Query Interpretation Evaluation

This evaluation tested the query interpretation algorithm of FQT framework. To

prove the effectiveness of our proposed algorithm with respect to the raised research

question (Q2 in section 1.4), the experiment was carried out using a collection with higher

structural complexities.

Our experimental results on query interpretation algorithm showed that query in-

terpretation that uses query context factor, i.e. CT X and CT X + S, can suggest better

constraints for keywords (Section 5.2.3 (a)). The main drawback of one of the baseline,

CT X +S is that it requires the constraint to be specified in a query, which we overcome it

with CT X that can predict a constraint even it is not stated in a query. For target concept

prediction, we found out that CT X works best when structures of desired element type are

used implicitly as part of the keywords in query. CT X is able to identify these structures

and use them as target concepts when formulating structured query (Section 5.2.3 (b)).

We also found that the CT X works better using a more advanced weighting models,

i.e. LM and BM25, compared to TFIEF. The former are better in weighting terms in

query against concepts, therefore contribute to higher accuracy in query concept selection

(Section 5.2.3 (a)). In addition, we have found out that CT X shows better accuracy for

topic with specific information needs and structural hints in it. For query size, more terms

contribute to higher accuracy. However, this conclusion only applies to a maximum of 4

terms as it is longest query size of our topics (Section 5.2.3 (c)).

From this evaluation, we can conclude that query interpretation using the proposed

context-based probabilistic model has the advantage when used with collection is more

complex in terms of its document structures. With its contextual factor, it is able to

utilize the structures more effectively for query interpretation in the query transformation

process.

141

5.3 Evaluation on Query Transformation

5.3.1 Motivation

In this section, we want to evaluate the usefulness of FQT via transformed queries

and the application of the queries in retrieval task. There are two main aspects that we

want to find out regarding the transformed queries.

The precision and rankings of transformed queries The specification of information

needs in unstructured query can be done in two manners, i.e. with or without structural

keywords besides content keywords. And, depending on the information needs, the trans-

formation of unstructured query may results in a set of structured queries rather than a

single query. In this test, we are interested to check the accuracy of the translated queries,

whether they are correctly transformed or otherwise.

For this purpose, we utilize two types of queries in the experiment. First query type

has very specific information needs. In this case, the transformed queries set must be able

to reflect the information needs that have been specified in unstructured form. Second

query type has non specific or general information needs. For this case, the transformed

queries set must be able to suggest every possible query which is relevant the information

needs.

Further, we are also interested to find out how good is the framework in returning the

first relevant query, which would be a desirable feature in system that requires fully auto-

mated transformation. In such system, the best transformed query will be automatically

used for its retrieval results. For this test, we carry out the experiments on two different

collection types, i.e. homogeneous structures and heterogeneous structures. This shall

assist us in judging the type of collection that is suitable for such automated feature.

142

The effectiveness of transformed queries in retrieval task For application purpose,

this experiment tests test the usefulness of the transformed queries in structured retrieval

task.

Hypothesis 5.5. The retrieval performance of structured query should be the same or

higher than the performance of its unstructured query.

To test this hypothesis, we compare the search results of query before transformation

and query after transformation. For fairness, both queries are run using the same retrieval

engine. Their search results are then compared using the precision and recall performance

metrics.

5.3.2 Test Collection and Experimental Setup

For this evaluation, the test collection utilizes two data collections (i.e. heteroge-

neous and homogeneous), topic set for each collection, relevance assessment (i.e. whether

an element is relevant or not relevant) for each topic set and performance metrics (Amer-

Yahia & Lalmas, 2006).

5.3.2 (a) Data Collection

SIGIR Web Collection Same as section 5.2.2 (a).

DBLP Bibliography Collection The DBLP Computer Science Bibliography is a col-

lection (referred as DBLP Record thereafter) developed by the University of Trier for

computer science researchers to track the works or bibliographic details of their col-

leagues or others papers (Ley, 2009). This collection is data centric collection as it is

originated from data in database. Each xml article features a DBLP record. Different from

text centric, each article corresponds to an object type like conference paper, proceedings,

journal article, web site etc. The contents of an object are created based on structures de-

fined by the collection’s DTD. Hence, its document structure is homogeneous type. For

143

example, a record object describing a conference paper, i.e. inproceedings, has author,

title, pages, year, etc. In total, the DBLP data collection contains approximately 1.2 mil-

lion records. A subset of the collection consisting 112154 xml records is used as our

evaluation test collections.

5.3.2 (b) Topic Set

For the evaluation of query performance, the topics are prepared in similar manner

as in previous evaluation. The characteristics of topics of both SIGIR Web and DBLP

Record are reported in Table 5.9.

Table 5.9: Topic Statistics (Query Performance Assessment)

Collection Total Size(T) Keyword Type Complexity
average min,max TC +TS TC Specific General

SIGIR Web 23 2.04 1,3 69.6% 30.4% 73.9% 26.1%
DBLP Record 12 2.33 1,4 58.3% 41.7% 58.3% 41.7%

5.3.2 (c) Relevance Assessment

For query performance, we measure the relevance of xml elements retrieved wrt. a

topic. To access whether xml elements are relevant or not for a given topic, two relevance

dimensions are used (Manning et al., 2008, Chapter 10), i.e. component coverage and

topical relevance (also known as exhaustivity and specificity). Component coverage mea-

sures whether a retrieved element has the correct coverage of information needs, which

is neither too big (or high in the tree) or too small (too low in the tree). The coverage

of component can be classified into four types, to indicate different weights for different

level of components.

• Exact Coverage (covexact). This element contains exactly what the topic is seeking.

• Too Broad (covbroad). This element contains what the topic is seeking, however it

also contains other information.

144

• Too Small (covsmall). This element contains what the topic is seeking, either par-

tially, or not meaningful.

• No Coverage (covno). This element does not contain what the topic is seeking.

Topical relevance measures the level of relevancy of an element wrt. what a topic is

seeking. The relevancy of an element are classified into three categories as follows.

• Not Relevant (relnot) This element is not relevant to the topic.

• Somehow Relevant (relsomehow) This element is marginally relevant to the topic.

• Relevant (relexact) This element is fairly or highly relevant to the topic.

Combining both factors enable us to assess an element as partially relevant, instead

of binary choices of relevant/non relevant. The combinations are quantified as follows

using the quantification function, QREL,COV (e).

QREL,COV (e) =

0 if e = {covno∩ relnot}

0.25 if e = {covbroad ∩ relsomehow,covsmall ∩ relsomehow}

0.50 if e = {covbroad ∩ relexact ,covsmall ∩ relexact}

1.00 if e = {covexact ∩ relexact}

5.3.2 (d) Performance Metrics

Once we are able to assess whether elements retrieved for a topic is relevant or

not, we can decide whether a transformed query is correct or otherwise. We regard a

transformed query as correct as long as it contains one or more than one relevant elements

that satisfy the information needs of given topic. Follow, we present the metrics used in

evaluating the performance of a transformed query.

145

Precision of Transformation The precision of transformation metric measures the cor-

rectness of transformed structured queries. The precision of transformation of an unstruc-

tured query is given as, PQT

PQT =
|QSCORRECT |
|QS|

,

where QS is a set of structured queries generated from query transformation process,

QSCORRECT is a set of correct structured queries, and QSCORRECT ∈ QS.

The main drawback in this metric is we are only able to measure the structured

queries that are successfully transformed (i.e. precision), but not be able to track the

queries that are missed (i.e. recall).

Reciprocal Rank of Structured Query To evaluate the effectiveness of query ranking,

a standard Information Retrieval (IR) metric called Reciprocal Rank (RR) (Tran, Wang,

Rudolph, & Cimiano, 2009) is used. The metric measures the rank of generated structured

queries by looking for the first correct structured query. The range of the value is from 0

to 1.

RR =
1

rank(QS)
,

where QS is the first correct structured query.

For a set of queries, Q, Mean Reciprocal Rank (MRR) is used to obtain the average

of ranks.

MRR(Q) =
1
|Q|

|Q|

∑
i=1

RR(Qi)

Precision, Recall and F-measure The evaluation on query transformation can be fur-

thered measured by the structured retrieval results of generated structured queries. The

common metrics for measuring structured retrieval results are precision, recall and F-

measure (Baeza-Yates & Ribeiro-Neto, 1999; Amer-Yahia & Lalmas, 2006). In struc-

tured retrieval system, a set of elements are returned instead of documents, hence, both

146

precision and recall are adapted for elements. Precision, PSR is defined by the fraction of

the retrieved elements which is relevant. Whereas, recall, RSR is defined by the fraction

of the relevant elements that is retrieved.

PSR =
|ERELEVANT ∩ERET RIEV ED|

|ERET RIEV ED|
,

where ERET RIEV ED is a set of elements retrieved, ERELEVANT ∩ERET RIEV ED is a set of

relevant elements retrieved.

RSR =
|ERELEVANT ∩ERET RIEV ED|

|ERELEVANT |
,

where ERELEVANT is a set of relevant elements, ERELEVANT ∩ERET RIEV ED is a set of rele-

vant elements retrieved.

A weighted average for precision and recall can be computed using F-measure, FSR,

which is a single measure that trades of precision and recall scores.

FSRβ=1 =
(β 2 +1)PSRRSR

β 2PSR +RSR
,

where β < 1 emphasizes on precision, while β > 1 emphasizes on recall, and β = 1 treats

precision and recall equally.

5.3.3 Query Precision and Ranking

One Good Structured Query Before measuring the precision of generated queries and

their rankings, we first get an overview of whether FQT is able generate a usable query.

For this, we measure whether FQT is able to generate at least one correct query from a

given unstructured query. A query is correct if it is able to return at least one relevant

result (i.e. element) in retrieval task. As a result, out of all topics, FQT is able to generate

147

at least one correct query per topic (see Correct Queries in Table 5.10) except for the

SIGIR Web topic set. For SIGIR Web specific topic set has a less percentage at 93.3%

indicating there are topics where their transformed queries are all incorrect. This case

happens when a given topic does not have exact match contents or structures with the

data source.

Table 5.10: Transformed Queries Ranking and Precision

Dataset Topic Correct
Queries (%)

MRR P P@5

SIGIR Web
Specific 93.3% 0.747 0.444 0.469
General 100% 0.654 0.335 0.375

DBLP
Specific 100% 1.00 0.833 0.833
General 100% 1.00 0.625 0.625

First Correct Rank Now, we proceed to measure the precision of generated queries

and their rankings. First, we measure how good is the ranking of queries by checking

on the rank of the first correct query. For each topic, each first correct query is scored

using the RR metric. In the case where no generated queries are correct, RR is given the

value 0. Table 5.10 shows the MRR (average value of RR for all topics) of topic sets for

both SIGIR Web and DBLP data sets. We find that MRR for DBLP has perfect scores for

both specific and general topic sets, but not for SIGIR Web, which only achieves 0.747

for specific topic set and even lower at 0.654 for general topic set. DBLP has such good

result mainly because of the type of its xml source, which contains simple elements like

article, inproceedings, book etc. These objects have little depth of hierarchical contents,

and they do not contain nested (smaller) meaningful elements within them. Hence, there

are much less structured query candidates per topic. Moreover, each candidate is already

a well-defined element with no granularity problem. In this case, FQT can easily return a

correct query in its top-1 position, giving us MRR of 1.000.

However, for SIGIR Web, FQT has returned a broad range of structured queries en-

148

compassing elements of various granularities. This happens because the xml source of

SIGIR Web contains contents which are deeply nested, with irregular structures. There-

fore, it is harder to predict which are the best entry points for structured queries. This

causes some topics to rank incorrect structured queries first. In this test, we regard a gen-

erated structured query as incorrect even if the query results in either broader or smaller

relevant answer. A lower MRR is also observed for general topics, which explain that a

non-specific topic tends to create more structured queries candidates which may not be

relevant, therefore affect the rank of correct queries.

Query Transformation Precision Besides query rank, we are also interested to find out

how good is FQT is generating correct structured queries. Again, data set with simpler

document structures, i.e. DBLP, has a higher precision compared to data set with complex

structures, i.e. SIGIR Web. Our result in Table 5.10 shows that for overall precision, P,

SIGIR Web, its precision values are 0.444 (specific) and 0.335 (general) each, which

is much more lower than DBLP at 0.833 (specific) and 0.625 (general) each. Similar

scores also observed for P@5. The low values of P for SIGIR Web topics are due to

higher number of structured queries that have been suggested to users. There are two

main reasons behind large number of structured queries, first, when topics have general

information needs, they are opened to more possible element types. Second, when the

topics seek is carried out on data set with complex document structures, which causes

contents to be related to more structure types and granularities in this data set. When

this happens, a smaller subset of queries can be proposed instead the entire list. One

common technique is to select top-k queries. To ensure that this technique can be adopted

in query list reduction, a better or similar result should be achieved (see P@5 Table 5.10),

otherwise, we should still adopt the entire result list.

149

5.3.4 Structured Retrieval Performance

To verify structured queries can produce similar or better results compare to the

original query, we compare the retrieval results of both queries. The test is conducted

using the NEXI retrieval system (Trotman, 2009), which accepted both CO query and

CAS query. This is inline with our experimental needs that compare topic (unstructured

query) with its transformed structured queries. The former is submitted to NEXI system

as CO query whereas the latter is submitted to the system as CAS query. The relevancy

of returned elements are assessed based on the QREL,COV metric.

Table 5.11: Top-1 Query Retrieval Performance

Dataset Topic Precision Recall F-Measure
SQ UQ SQ UQ SQ UQ

SIGIR
Web

Specific 0.687 0.056 0.629 0.611 0.570 0.099
General 0.281 0.196 0.087 0.811 0.087 0.312

DBLP
Specific 1.000 0.042 1.000 0.500 1.000 0.076
General 1.000 0.361 0.972 0.833 0.985 0.5

In this test, we want to see how good is the retrieval result of top-1 translated struc-

tured query compared to its original query. The F-measure results (see Table 5.11) show

that the top-1 structured query (SQ) is better at retrieving relevant elements compared to

its baseline (UQ) for all the topics of DBLP dataset. The same goes for specific topic set

of SIGIR Web. However, for its general topic set, the top-1 suggested structured query

has lower F score. From the results, we made the following observations.

• A lower F score of SIGIR Web general topics is due to its low recall score (0.087

for SQ compared to 0.811 for UQ-C). The main reason of a low recall is because

a topic which is general has non-specific needs. Thus, each topic will have more

than one correct structured queries. By only taking the first structured query, we

can only cover partial of the correct results. For this topic type, UQ has better recall

value since it includes every possible element candidates in its results, however, it

also suffers from low precision because of the number of retrieved elements.

150

• For both data sets, the retrieval results for specific topics are better than general

topics. This is because a specific topic tends to include structural keywords to

indicate what it looks for specifically, therefore will filter off many non-relevant

elements. This leads to better precision scores.

• Retrieval results on homogeneous data set (DBLP) are better than heterogeneous

(SIGIR Web). The result also shows very high accuracy in precision and recall

for DBLP, that suggests that the top-1 structured query by FQT on homogeneous

data set is suitable to be adopted for application feature like “I am Feeling Lucky"

(Wikipedia, 2012).

Before we end this section, we also want to see how good is the retrieval result of

top-1 translated structured query compared to other query transformation work. For this,

we also compare our framework with a related work that performs full query transfor-

mation to construct a NEXI structure query, AQRT (Automatic Query Refinement and

Transformation by Petkova et al., 2009) on SIGIR Web. A subset of 10 queries where

used in this test. The results in Table 5.12 shows a higher F-measure score for FQT com-

pare to its baseline AQRT. It is consistent with our earlier result from query interpretation

as AQRT is based on SLCA in its expansion and aggregation operators. Also, there is

limitation of AQRT’s ordering operator when it counters a query that looks for multiple

types of elements. As for FQT, it could identify these keywords and propose them as

structures of structured query, which in turn gives advantage to the performance of FQT.

Table 5.12: Structured Retrieval Performance Comparison

Framework Precision Recall F-Measure
FQT 0.656 0.688 0.633
AQRT 0.406 0.438 0.383

151

5.3.5 Summary of Query Transformation Evaluation

This evaluation tested application of the translated query by measuring the retrieval

results based on the top-1 translated structured query. We observed higher precision of

the retrieval results for specific query type, which suggest that when writing query is writ-

ten in a specific manner, it can lead to better focused results. As for data collections, a

high precision and recall of results (≈ 1.000) were also recorded for DBLP. This indi-

cates that our framework can actually transform unstructured to structured query almost

perfectly for homogeneous collection. Our results for heterogeneous collection has a

lower precision, which suggest that some correct structured queries are actually ranked

lower (not located at the top-1). In particular, we found out that for general topics, user

intervention may be involved to increase the precision as there are too many suggested

structured queries (Section 5.3.4). Hence, this experiment suggests that FQT framework

would probably works best when coupled with interactive information retrieval features

for structures selection when used with heterogeneous collection.

5.4 Evaluation on Query Representation

The goal of the experiment in this section is to measure whether the proposed inter-

mediate query representation can represent the information needs for the transformation

of query from unstructured to structured form in a real world scenario. Evaluation carried

out for intermediate query representation focuses on two aspects as follow.

• The ability of its semantic query structure (see Section 3.4.2 (a)) in capturing infor-

mation needs specified by user for structured retrieval.

• The coverage of its syntax query structure (see Section 3.4.2 (b)) knowledge base

in capturing mappings for transforming the information needs from structure form

to query language form.

152

5.4.1 Data Sets

For this evaluation, we use information needs collections that have been created

for the purpose of retrieval for structured resources. These collections have been chosen

based on three criteria, i.e. creation fairness, domain diversities and query language types.

For the fairness of information needs creation, we include topic collections which have

been prepared as test suite (i.e. topics created under the guidelines of structured retrieval

forum (INEX)) and query logs (i.e. topics created by system’s user). To ensure that the

representation can be applied to wider coverage of information needs complexities, the

topic sets covers query languages of different types. In addition to these, the topics also

include multiple domains to ensure the fairness of selected collections.

Table 5.13: Topic Collections

Name Total Query Language Source Type Domain
INEX IMDB 70 NEXI Test Suite Movie
INEX Wiki 100 NEXI Test Suite Articles
Geobase 90 XQuery Query Log Geography
SIGIR Sites 22 IQ Test Suite Web sites
DBLP 20 IQ Test Suite Bibliography

5.4.2 Performance Metrics

Query Representation Expressiveness The expressiveness of semantic query structure

can be measured by checking whether it can represent the contents of queries used for

structured retrieval. The performance metric used is expressiveness, which is the fraction

of the structured queries in a topic set that can be expressed using the proposed semantic

query structure. To get a rough estimation of the expressiveness, we run the evaluation

based on topic sets that have been prepared as test suites for the purpose of evaluation of

structured retrieval. We believe that these topic sets which have been created by a group

of assessors can fairly represent the general information needs/queries. In addition, we

have also included a topic collection which is a subset of real query logs.

153

Each query, q, in a topic collection, Q, is scored as follows.

REP(q) =

1 if q can be represented as qsem

0 otherwise

, where qsem is the semantic query structure of q.

The expressiveness can be summarized per topic collection by taking the average

of query score for all the topics in the collection. Let us denote Q as the topics of a

collection. The average over Q is

REP(Q) =
1
|Q|

|Q|

∑
i=1

REP(qi)

Query Representation Effectiveness Besides measuring the expressiveness of the query

representation, we also measure its effectiveness in handling the transformation to mul-

tiple query languages. The effectiveness of syntax query structure is measured based on

the success rate of query mapping from a query structure represented in semantic query

form to a query string in a structured language form. The performance metric used is suc-

cess rate, which is the fraction of test query that can be translated into query language, X ,

successfully, given a knowledge base of syntax query structure for language, X . Given a

knowledge base of query language, X , each query, q, in a topic collection, Q, is scored as

follows.

CV RT (q) =

1 if qsem can be converted to qX

0 otherwise

, where qsem is the semantic query structure of q

and qX is the structured query of q in language, X .

The effectiveness can be summarized per topic collection by taking the average of

154

query score for all the topics in the collection. Let us denote Q as the topics of a collection.

The average over Q is

CV RT (Q) =
1
|Q|

|Q|

∑
i=1

CV RT (qi),

5.4.3 Expressiveness of Semantic Query Structure

We evaluated the expressiveness of semantic query structure using the topic sets

mentioned in section 5.4.1. The ability of the semantic query structure to capture in-

formation needs for various type of domain has been shown from the diversities of the

topics ranging from movies, web sites, bibliographies and geographical information. Al-

though the collections are relatively small, they reflect a reasonable test bed as topics are

originated from either test suites or subset of query logs. Both INEX IMDB and INEX

Wiki are topics prepared by participants of the INEX forum. Whereas, the SIGIR Sites

and DBLP topics are prepared in a similar manners by users familiar with both collec-

tions. For the Geobase, it is a query logs created by real users of a publicly available web

interface (Jayapandian & Jagadish, 2008).

Table 5.14: Query Representation Expressiveness

Name Total REP (%)
INEX IMDB 70 100%
INEX Wiki 100 100%
Geobase 90 60%
SIGIR Sites 22 100%
DBLP 20 100%

A summary of the performance of query representation expressiveness is shown in

Table 5.14. For SIGIR Sites and DBLP topics, we are able to express all the interpreted

queries with our semantic query structure. A topic specifying specific need, T21: room

rate email river view, which has been represented as semantic query structure is shown in

Figure 5.2.

155

Figure 5.2: Representing Interpreted Query from SIGIR Sites Topics

Figure 5.3: Representing Query Containing Constraint Operator.

For further evaluation on a larger topics set, we proceed to analyze both INEX IMDB

and INEX Wiki topics. For both collections, we are able to express all the structured

topics with our semantic query structure as well. A minor issue encountered for INEX

IMDB is that one of its topic, INEX2011111: //movie[about(., french) and .//releasedate

> 1990], requires the specification of operator, “greater than”, i.e. “releasedate > 1990”

in its information need. Although the semantic query structure is able to represent this

information needs by capturing the operator as attribute of its constraint (see Figure 5.3),

however, at the current stage, our framework do not carry out interpretation of operators

keywords in unstructured query.

Lastly, we also tested the expressiveness of XQuery, which is a query language popu-

156

larly used in querying XML database. Among all the topics, 60% can be fully represented

as semantic query structure. The percentage is lower for this topic collection as XQuery

is a declarative language, where functional commands such as let, count, max etc. are

used in topics when specifying information needs. For these topic cases, our semantic

query structure can only represent partial information needs of the topics. Follow, we

show some cases of topics that we are unable to fully represent in Figure 5.4.

Case When Topic Only Contain Concept/Structure Keywords In this case, a topic only

specifies the type of structures to look for, without keywords that look up the con-

tents of XML elements. An example of this case is seen in topic, T27: let $e :=

document("geobase.xml")

//highest_point/elevation return <result> {max($e)} </result>. For this case, al-

though we are to represent highest_point and elevation as target concepts, it is not

a complete semantic query structure as it does not contain any constraint.

Case When Topic Contain Functional Commands In this case, a topic includes us-

age of functional commands. An example of this case is seen in topic, T51: for

$s in document(“geobase.xml”)//state where $s = “Rhode Island” return <result>

{count($s/capital)} </result>. For this topic, we are able to represent the structure

of “capital”, but not the function to sum up the total elements of “capital”. This

topic illustrates the major limitation of our query representation, that makes it less

flexible when used with XML DB systems.

Lastly, we are interested to see whether the semantic query structure is able to handle

information needs of different complexities. Since the query complexities used for struc-

tured retrieval may be influenced by the type structured collections, i.e. whether they have

well-defined schema or loosely defined structures, we include topic sets of two different

INEX tracks, i.e. data centric track (INEX IMDB) and adhoc track (INEX Wiki) for this

157

Figure 5.4: Limitations of Qsem Representation for XQuery Cases

test. The distribution of complexities of the topics that are successfully expressed using

semantic query structure is shown in Figure 5.5. For the former, its topics are richer in

structures since users are more familiar with the structures/concepts used in its collection

such as actor, plot, director, genre etc. As such, users are able to utilize them during query

formulation. For the latter, the topics are simpler due to the types of structures/concepts

which are too diversified, which prohibits users from using them in query formulation.

Hence, as in Figure 5.5, we can see that the query complexities for INEX IMDB are ac-

tually slightly higher than INEX Wiki. See Appendix A for structured query complexity

scoring.

In addition, the diversities of query complexities shown in Figure 5.5 also assure the

fairness topics used in the experiment conducted in Table 5.14.

4 6 8 10 12 14 16
0

20

40

60

80

Query Complexities (SQC score)

Fr
eq

ue
nc

y
(t

ot
al

)

NEXI: INEX IMDB
NEXI: INEX Wiki

Figure 5.5: Expressiveness of Semantic Query Structure for Various Query Complexities

158

5.4.4 Coverage of Syntax Query Structure Knowledge Base

To convert the contents of query in semantic query structure form to query language

string, we need to find its corresponding syntax query structure. For this, a knowledge

base consisting syntax query structures is required. This section evaluates the stability of

this approach and whether the knowledge base of syntax query structure is able to support

the conversion to query language in query transformation framework.

Stability of Knowledge Base For estimating the stability of knowledge base in support-

ing query conversion, a cross-validation technique (Kohavi, 1995) is used. This technique

assesses how the results of performance will generalize to other data sets. The topic col-

lection is partitioned into ten subsets. Nine sets are used as examples in knowledge base,

and one set is used as test. This test was repeated 10 times, i.e. 10-fold cross-validation.

This test is carried out using two NEXI topic collections. The performance of query con-

version is shown in Table 5.15. The average success rate of query conversion is 86% for

INEX IMDB and 87% for INEX Wiki collections. For both collections, we can see that

the success rates for all the tests are scattered along the average line. An exceptional case

of a rate of 57% is found in Figure 5.6(a), which contain higher number of unconverted

queries. This is probably due to the size of topic set which is too small, leading to uneven

distribution of queries for training and testing. This phenomenon is not seen in Figure

5.6(b) where we use a bigger topic set.

Our evaluation method for this section is adopted from Sumita & Iida, 1991 in their

work of example-based machine translation where they achieve an average of 78% suc-

cess rate in using examples database for translation. It is expected that our average success

rate is higher as we are dealing with queries transformation which are definitely simpler

with smaller scope compare to natural language translation.

159

Table 5.15: Query Conversion Success Rate for NEXI Knowledge Base

Name
KB Size Test Size

AVG CVRT* (%)
(No. of Examples) (No. of Query)

INEX IMDB 63 7 86%
INEX Wiki 90 10 87%

*Average value is taken over 10 fold cross validation success rate.

2 4 6 8 10

0

50

100

MAX(100%)

MIN(57%)

AVG(87%)

Test Number (K)

Su
cc

es
s

R
at

e
(%

)

(a) NEXI Data Centric Topic Set

2 4 6 8 10

0

50

100

MAX(100%)

MIN(80%)
AVG(87%)

Test Number (K)
Su

cc
es

s
R

at
e

(%
)

(b) NEXI Text Centric Topic Set

Figure 5.6: The Success Rate of Query Formulation using K-Fold Cross-Validation Tech-
nique

Query Transformation Per Examples Figure 5.7(a) and Figure 5.7(b) show the rela-

tionship between the success rate of query formulation of an interpreted query and the

number of examples. This graph shows that in general, for topics within the same collec-

tion, the more examples we have, the higher success rate of query transformation.

10 20 30 40 50 60
0

20

40

60

80

100

KB Size (No. of Examples)

Su
cc

es
s

R
at

e
(%

)

(a) NEXI Data Centric Topic Set

20 40 60 80
0

20

40

60

80

100

KB Size (No. of Examples)

Su
cc

es
s

R
at

e
(%

)

(b) NEXI Text Centric Topic Set

Figure 5.7: The Effect of KB Size over Success Rate of Query Transformation

160

Cross Collections Test To ensure that a trained knowledge base can be used for cross

collections queries, we carry out test on SIGIR topic set based on the knowledge base

trained with INEX queries. For each topic that has been interpreted and represented

in semantic query structure form, 78% of the topics were successfully transformed into

NEXI language. The rest are partially transformed due to no exact counterpart of the

query structure. In this case, the most similar query structure match is retrieved instead.

A partially matched case can be seen in the semantic query structure for query, T 10,

“text processing summary presenter”. The nearest syntax query structure, NEXI35, from

NEXI knowledge base with the highest similarity score, 0.90, is proposed for partial

transformation. In this test, although there are limitations in converting all the queries

successfully, this is because of lacking of variation of query examples in knowledge base,

which can easily be solved by adding more examples.

5.4.5 Summary of Query Representation Evaluation

This final evaluation demostrates that our proposed query transformation framework

can be used to perform query transformation to create structured queries (e.g. NEXI,

XQuery) by using a knowledge base of examples (e.g. structured queries of NEXI/

XQuery). We have also shown that the design of proposed intermediate query repre-

sentation can handle more than one type of structured query languages. The experimental

results verified that the success rate of query conversion improves with the number of

examples in knowledge base. Hence, to further improve the success rate of query conver-

sion, the knowledge base can be easily upgraded by putting appropriate examples.

5.5 Summary

This chapter presents the evaluation objective, methodology and results of our pro-

posed FQT framework. The experiments focused on three aspects of the framework,

which are the algorithm for query interpretation, the application of structured queries ob-

161

tained from the transformation process, and the scalability of query representation for ex-

tending transformation to multiple structured query languages. The experiments of query

interpretation and transformation are performed on SIGIR Web and DBLP collections,

whereas the experiments of query representation are performed using the topic collec-

tions from INEX and Geobase. For each evaluation, we tested our hypothesis empirically

and draw conclusions based on the results we obtained from our experiments.

Query Interpretation

1. Improvised target concept selection (CTX > SLCA , CTX > FCA+D).

• Able to differentiate structural hints used in query as target.

• Able to use collection knowledge (via ctx distance and density factors) to

suggest relevant target concepts.

2. Improved constraint concept selection (CTX > CTX+S, CTX > NCTX)

• Able to suggest constraints even when it is not given.

• Able to extend constraints to more choices along the structure path.

• Able to use context of other keywords in a query to find relevant constraint.

3. Good for query with

• Specific information needs (Specific:0.868 > General:0.500)

• Structural hints (WITH:0912 > WITHOUT:0.500)

• Longer query size (3TAbove: 0.932 > 2T:0.722 > 1T:0.400)

Query Transformation

1. Tested on retrieval task using the translated structured queries using NEXI retrieval

system.

162

2. Overall, structured queries gives better retrieval results compared to unstructured

queries.

3. Application suitability

• Collection: Retrieval results on homogeneous collection are better than het-

erogeneous collection.

• Topic: Retrieval results for specific topics are better than general topics.

Query Representation

1. Test collections comprising topics of various query language types, domains and

sizes.

2. Two aspects tested, expressiveness (test the query structure) and effectiveness (test

the conversion method).

• Expressiveness: Can fully express information needs specified, except for

Xquery data set (60%).

• Effectiveness: Achieve satisfactory query conversion rate, i.e. 86% (IMDB:

70 examples) and 87% (Wiki: 100 examples) respectively compare to bench-

mark (78% Sumita & Iida 1991 for language translation).

163

CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

Using unstructured query for structured retrieval offers greater flexibility to users

in query writing, while they are still be able to explore the richer type of data with bet-

ter semantic and structure. More semantically and structure rich data are available via

common representation language like XML. These data are featured over in the web for

the purpose of enabling meaningful contents. However, in order to effectively use these

structures, a query must be able to include structures in its specification. As such, various

structured query languages like XQuery, XPath, NEXI, XML fragment etc. have been

created. However, due to the difficulties faced by users in writing syntactically and se-

mantically correct queries, efforts to automate the construction of such queries have been

carried out.

Automated query transformation is a desirable feature in the field of IR as it could

integrate the benefits of structured retrieval to improve features of existing IR. Design-

ing an effective query transformation framework is challenging as it involves problems

of various phases from source query analysis, interpreting methods, query constructions

into target language, query ranking etc. This thesis mainly resolves the flexibility issue of

query transformation by combining probabilistic approach (in which query interpretation

is based on collection statistics, and query construction is based on algorithms) with nat-

ural language approach (where query interpretation is based on context free parsing, and

query construction is based on knowledge base).

In particular, this thesis has made two main contributions in its query transformation

164

approach, i.e. the design of a framework with better flexibility and a more effective query

interpretation and construction.

6.1.1 Flexible Framework

The main contribution is a framework that formally defines query transformation

that has better flexibility to be tuned to changes in structured retrieval features, especially

its query languages and collections. The main strength of the framework design is that

it separates the outcome of query interpretation from a strict query language type. In

this thesis, the query construction algorithm creates an interpreted query which is free

from a particular query language. The generated query is represented in a format known

as semantic query structure. From the experiment in Section 5.4.3, we have shown that

this structure can capture those information needs that are frequently used for structured

retrieval.

The final step to generate the query in structured language form, is carried out by

finding the matched query template known as syntax query structure. These templates

were derived from the previous created queries, e.g. NEXI topics from INEX. We have

shown that this approach is possible from the experiment in Section 5.4.4, where up to

87% (average success rate) of queries can be mapped to the correct templates. We have

also demonstrated that the example-based method for building query templates knowl-

edge base is feasible since we are only capturing structured query which relatively few

templates are required. Moreover, the coverage of knowledge base can always be im-

proved by simply adding more unique query examples into it. Such flexibility ensures

that as long as the information needs of a source query is represented in semantic query

structure form, disregards how it is interpreted, it can be mapped to a structured query

language. This leaves room to allow additional methods to be incorporated on the query

interpretation part later.

165

Within the framework, two knowledge capturing methods are proposed, i.e. a context-

based probabilistic model is used to capture knowledge from collection for query inter-

pretation, and an example-based query templates generator is used to capture knowledge

for query language formulation. In this framework, we work on two different type of col-

lections, in which we have broadly classified them into, i.e. simple collection (e.g each

document presenting one meaningful element) and complex collection (e.g. each docu-

ment has nested meaningful elements of multiple types). We have included the analysis

of a complex collection in this thesis as we are encountering more structured resources

with deeper hierarchy and greater element heterogeneity. The latter certainly requires

more analysis when we want to suggest a good structure during query interpretation, e.g.

finding a good concept for filtering a query term, finding a good element type for a query.

As such, we proposed a probabilistic model that includes context factor when sug-

gesting a concept for a term in a query (Section 3.3.2). Without knowing the context

factor, a suggested concept may not be appropriate even though it is the popular one in

collection. We also take into consideration of including ancestor concepts as possible rel-

evant concept for a term, due to some parent structures which may not be good enough to

filter/constraint a term (Section 3.3.3). For the measurement of concept importance, our

model is independent of a fixed basic term weighting models. This enable the selection

of a different term weighting model based on the type collection. A simple, data centric

collection can use a simpler term weighting model like TFIEF whereas collection that

contains different length of texts in its element may opt for one with normalization like

BM25 (Section 3.3.4 (a)).

For scalability to extend to another structured query language, we just need to create

a template knowledge base for the query language, e.g. we can have an XQuery template

knowledge base and a NEXI template knowledge base, and so forth. Each structured

query language has its own template knowledge base, which can be flexibly shared and

166

updated with more examples to improve its mapping.

Lastly, to improve the reusability of our query transformation framework, we also

provide formal definitions of the framework such that it can be well understood and im-

plementable by other parties. Although there are a number of works that discusses query

transformation, we have yet encounter with a work that formally defines the framework.

6.1.2 Improved Query Transformation

The second contribution of this thesis is the improvement made on various features

of query transformation. We present our discussion based on the query transformation

process, from the definition of source query to the application of our generated structured

queries.

The source query of this framework can be specified with two types of keywords,

i.e. content keyword that corresponds to the contents of elements, structural keyword

that corresponds to the structure of elements. And, both keywords type can be written in

totally unstructured form. The main strength of our query interpretation is it can suggest

a structural keywords if it has not been specified in a query, whereas it can utilize it if it

is specified. We have also designed the algorithm such that it can differentiate a structure

specified as target or constraint (Section 4.1.3) as current works can only detect either

one (Bao et al., 2010; Petkova et al., 2009). If a source query contains some linguistic

structures, we still treat it as unstructured query. Main keywords will be detected using

term identification, while other words like conjunction will be ignored.

Another strength of this framework is that it can fully convert a source query to an

structured query. Although some works (Kim et al., 2009; Bao et al., 2010) prefer to

bypass this step, by using the interpret query directly to retrieve a set of results, however,

we find that this approach restricts the interpreted query to its internal retrieval model.

When we construct the query into some standard query languages, e.g. NEXI, XQuery,

167

we are opened to wider adaption of framework. Optimization are be focused on query

part, independent from their retrieval mechanisms. Up to date, we came across two works

that carried out full transformation (Petkova et al., 2009; J. Li et al., 2009), to go the extra

mile, we improve the query transformation such that it can be used to construct more than

one structured query language type.

In order to ensure that the constructed query is useful, we have tested the perfor-

mance of query interpretation based on suggested query target and query constraint.

We showed that for collection with complex structures, our query interpretation using

context-based probabilistic model surpasses its baselines (Section 5.2).

Finally, we have performed a real structured retrieval task using the transformed

query. The error free query syntax has shown that automated transformation has its ad-

vantage compared to human written query. A comparison of the retrieval results between

structured query and its original query shown that the former has higher precision espe-

cially for topics with specific needs (Section 5.3).

6.2 Limitations

Despites the contributions that we have made, there are some limitations that we

have encountered in this thesis. In this section, we will discuss the shortcomings of this

thesis as follows.

Domain Specific Query Interpretation The first limitation of this thesis is that its

query interpretation works well if the collection is domain specific. The framework may

face the problem of query misinterpretation when dealing with collection such as the

world wide web. This is due to the number of different structures are too high in such open

domain, and interpretation could be a tedious task when reasoning the correct structure.

Nevertheless, with this limitation, we still able to exploit available document structures

168

more freely (compare to schema) within a domain but not as overwhelm as the entire

structures subset of uncontrolled domain.

Under Utilization of Structured Query Functionalities The ultimate goal of query

transformation is to be able to transform information needs from one form to another form

of queries effectively. However, due to different structures complexitiy of two queries

type, i.e. between the unstructured form of source query and the structured form of target

query, the latter is often underutilized. This is because structured query languages are

often more complex than keywords query. This happens especially for structured query

like XQuery. For this query type, we can see that we are not able to exploit functions

supported by the query language like count, max etc.

The Number of Structured Resources A good structured retrieval method is highly

depending on the number and variation of the resources that we can test on. Although

structured resources are become more available nowadays, the numbers are still far be-

hind compared to unstructured documents. Hence, the application proposed query trans-

formation are still limited to relatively little collections due the limitation of structured

resources.

6.3 Future Works

We have made some significant progress into developing a flexible query transfor-

mation framework. However, there are still rooms for improvement towards the goal of

achieving a comprehensive transformation solution. We conclude this thesis by discussing

several directions for future work.

User Interaction In query transformation, a source query may have several structured

queries due to the possibility of different concepts. When this happens, query ranking

169

would produce a list of ranked queries. Although all the suggested queries maybe rel-

evant, we still find it hard to utilize them except for the top-1 query in which we can

propose to user as the best query. Therefore, if users can involve at the stage of query se-

lection, it could greatly help to improve the precision. Nevertheless, the interaction should

be carried out in a user friendly and indirect manner, rather than letting them selecting a

list of structured queries.

Linguistic Approach for Query Interpretation When a source query contains linguis-

tic structure, e.g. a description of information needs, we find that simple linguistic parser

or rules can be useful to identify structural and content keywords used in a query. It will

save the cost of processing especially, when a keyword turns out to be both structural and

content keywords using thesaurus matching method, we are required to use all the com-

binations as possible structured query candidates. However, we cannot rely on linguistic

method alone as well, as we know that there can be quite a number of linguistic patterns

that may appear in a query. We may not be able to define all of them. Thus, a combination

of linguistic and collection thesaurus could be useful to address the issue.

Markups Classification Sometimes, a collection may consists of combination of dif-

ferent types of markups, including logical, linguistic (Zhao & Callan, 2008), thesaurus,

categorical etc. Although all these markups may be meaningful, they serve different

purposes. Combining them during a query transformation may result in a mix up inter-

pretation. Therefore, we are interested to explore on how to classify such markups so that

they can be used efficiently.

Structured Query to Structured Query Transformation Lastly, the outcome of our

initial motivation of transforming unstructured query to structured query can actually be

extended to allow transformation of one structured query to another type structured query.

170

This could be useful for internal usage among structured retrieval systems experts, where

they can query systems that use other query languages automatically.

171

Appendices

172

APPENDIX A

EVALUATIONS AND BASELINES

This appendix describes some formulas used in evaluation.

A.1 Structured Query Complexity

Structure query complexity, SQC is an approximate measurement to calculate the

complexity of a structured query based on three factors, i.e. the frequency of structural

term, the frequency of content term, and the level of complexity such as total main(or

sub) queries or total conditions.

SQC = fST + fCT +L

, where fST is the total number of structure terms, fCT is the total number of content

terms, L is the total levels of complexity.

fST ≥ 0, indicating that structure term is optional. fCT ≥ 1, indicating that there must

be at least one content term. L≥ 1, indicating that there must be at least one main query

or condition.

A.1.1 Examples

Here, we show some examples of SQC score on different types of structured queries.

NEXI

• Structured query = //movie[about(.//director ,“terry gilliam")]//actor[about(.//name,

“benicio del toro") AND about(.//character, “dr gonzo")]

• Structure terms = {movie, director, actor, name, character}.

173

• Content terms = {terry gilliam, benicio del toro, dr gonzo}.

• Levels = {//movie[about(.//director ,“terry gilliam")], //actor[about(.//name, “beni-

cio del toro") AND about(.//character, “dr gonzo")]}.

• SQC = 5 + 3 + 2 = 10

XQuery

• Structured Query = for $c in document(“geobase.xml")//city where $c/state = “Vir-

ginia" return <result>{$c/text()} </result>

• Structure terms = {city, state}.

• Content terms = {Virginia}.

• Levels = {for $c in document(“geobase.xml")//city where $c/state = “Virginia" re-

turn <result>{$c/text()} </result>}.

• SQC = 2 + 1 + 1 = 4

A.2 Term Weighting Models for XML Element

This section presents some basic term weighting models (Manning et al., 2008;

Wang et al., 2007) that can be used with Context-based Term Weighting in the query

transformation framework.

Requirements Here is a list of statistics required by the models. We denote t for a term,

and e for an element. score(e, t) is the score of a term in an element.

t f (t,e) - the number of term, t, in an element, e.

e f (t) - the number of elements containing term, t.

Ne - the total number of elements in a collection.

len(e) - the size of element, e, measured by number of terms.

174

len(col) - the size of collection, measured by number of terms.

avgl - the average length of elements in the collection, measured by taking the proportion

of len(col) againsts Ne.

Term Frequency This model is the basic of term scoring, it states that if an element

mentions a query term more than others, it is likely to be more related to the query, and

such that gets a better score.

score(e, t) = t f (t,e)

Term Frequency Inversed Document Frequency If a term appears in almost all el-

ements, it looses its discriminative power, as all the elements would be relevant to this

query term. This model extends the basic term frequency by a factor that controls the

score of a term based on its occurrences in the collection. If a term occurs in more ele-

ments, the score is lower, and vice versa.

score(e, t) = t f (t,e)∗ log
Ne

e f (t)

Okapi BM25 In a collection, the length of elements may not be consistent. This model

introduces additional parameters to address this issue. The size of element is included this

weighting scheme by taking the length of element, e against the average element length

of the whole collection. k is a parameter to calibrate the weight of term frequency. b is

another parameter to determine the weight of element length (0≤ b≤ 1, b=1 means fully

scaling a term weight by element length, b=0 means no length normalization) (Jones,

Walker, & Robertson, 2000).

score(e, t) =
(k+1)∗ t f (t,e)

k ∗ ((1−b)+b∗ len(e)
avgl)+ t f (t,e)

∗ log
Ne− e f (t)+0.5

e f (t)+0.5

175

Language Model This model uses the idea of an element is a good match to a query of

the element is likely to generate the query. The intuition behind this model is that for each

element, we want to find out what is the probabilistic of generating a query based on the

words appear in this element. There are two parts of query estimation, the first estimates

the query likelihood in an element and the second estimates the query likelihood in the

collection. λ is a parameter to adjust the weight for the former and latter (0 < λ < 1)

(Ponte & Croft, 1998).

score(e, t) = (1−λ)
t f (t,e)
len(e)

+λ
t f (t,col)
len(col)

176

REFERENCES

Amer-Yahia, S., & Lalmas, M. (2006). Xml search: languages, inex and scoring. SIG-
MOD Record, 35(4), 16-23.

Arampatzis, A., & Kamps, J. (2008). A study of query length. In S.-H. Myaeng,
D. W. Oard, F. Sebastiani, T.-S. Chua, & M.-K. Leong (Eds.), Sigir (p. 811-812).
ACM.

Baeza-Yates, R. A., & Ribeiro-Neto, B. (1999). Modern information retrieval. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc.

Bai, J., Nie, J.-Y., Cao, G., & Bouchard, H. (2007). Using query contexts in information
retrieval. In Proceedings of the 30th annual international acm sigir conference on
research and development in information retrieval (pp. 15–22). New York, NY,
USA: ACM. Available from http://doi.acm.org/10.1145/1277741.1277747

Bao, Z., Lu, J., Ling, T. W., & Chen, B. (2010). Towards an effective xml keyword
search. IEEE Transactions on Knowledge and Data Engineering, 22, 1077-1092.

Barranco, C. D., Campaña, J. R., & Medina, J. M. (2005). Towards a xml fuzzy structured
query language. In E. Montseny & P. Sobrevilla (Eds.), Eusflat conf. (p. 1188-1193).
Universidad Polytecnica de Catalunya.

Bilotti, M. W., Ogilvie, P., Callan, J., & Nyberg, E. (2007). Structured retrieval for ques-
tion answering. In Proceedings of the 30th annual international acm sigir conference
on research and development in information retrieval (pp. 351–358). New York, NY,
USA: ACM. Available from http://doi.acm.org/10.1145/1277741.1277802

Boag, S., Berglund, A., Chamberlin, D., Siméon, J., Kay, M., Robie, J., et al. (2007,
January). XML path language (XPath) 2.0 (W3C Recommendation). W3C.
(http://www.w3.org/TR/2007/REC-xpath20-20070123/)

Bobed, C., Trillo, R., Mena, E., & Ilarri, S. (2010). From keywords to queries: discov-
ering the user’s intended meaning. In Proceedings of the 11th international confer-
ence on web information systems engineering (pp. 190–203). Berlin, Heidelberg:
Springer-Verlag. Available from http://dl.acm.org/citation.cfm?id=1991336
.1991359

Bray, T., Paoli, J., & Sperberg-McQueen, C. M. (1997). Extensible markup language
(xml). World Wide Web Journal, 2(4), 27-66.

Calado, P., Silva, A. S. da, Vieira, R. C., Laender, A. H. F., & Ribeiro-Neto, B. A. (2002).
Searching web databases by structuring keyword-based queries. In Cikm’ (p. 26-33).

Carmel, D., Efraty, N., L, G. M., Maarek, Y. S., & Mass, Y. (2002). An extension of the
vector space model for querying xml documents via xml fragments. In In workshop
on xml and information retrieval, sigir.

177

http://doi.acm.org/10.1145/1277741.1277747
http://doi.acm.org/10.1145/1277741.1277802
http://dl.acm.org/citation.cfm?id=1991336.1991359
http://dl.acm.org/citation.cfm?id=1991336.1991359

Carmel, D., Maarek, Y., Mandelbrod, M., Mass, Y., & Soffer, A. (2003). Searching xml
documents via xml fragments. In Proceedings of the 26th annual international acm
sigir conference on research and development in informaion retrieval (p. 151-158).
New York: ACM.

Chamberlin, D. D. (2002). Xquery: An xml query language. IBM Systems Journal, 41(4),
597-615.

Chi, C.-H., Ding, C., & Lam, K.-Y. (2002). Context query in information retrieval. In
Ictai (p. 101-106). IEEE Computer Society.

Cohen, S., Mamou, J., Kanza, Y., & Sagiv, Y. (2003). Xsearch: a semantic search engine
for xml. In Proceedings of the 29th international conference on very large data bases
- volume 29 (pp. 45–56). VLDB Endowment. Available from http://dl.acm.org/
citation.cfm?id=1315451.1315457

Dopichaj, P. (2007). Improving content-oriented xml retrieval by exploiting small ele-
ments. In Bncod workshops (p. 68-74). IEEE Computer Society.

Fallside, D. C., & Walmsley, P. (2004, October). Xml schema part 0: Primer sec-
ond edition. W3C Recommendation. Available from http://www.w3.org/TR/
xmlschema-0/

Fuhr, N., Gövert, N., Kazai, G., & Lalmas, M. (2002a). INEX: INitiative for the Evalua-
tion of XML retrieval.

(http://www.is.informatik.uni-duisburg.de/bib/docs/Fuhr_etal_02a
.html)

Fuhr, N., Gövert, N., Kazai, G., & Lalmas, M. (Eds.). (2002b, December 9-11). Proceed-
ings of the first workshop of the initiative for the evaluation of xml retrieval (inex).
Schloss Dagstuhl, Germany.

Fuhr, N., Lalmas, M., Malik, S., & Szlávik, Z. (Eds.). (2005). Advances in xml informa-
tion retrieval, third international workshop of the initiative for the evaluation of xml
retrieval, inex 2004, dagstuhl castle, germany, december 6-8, 2004, revised selected
papers (Vol. 3493). Springer.

Gonçalves, M. A., Fox, E. A., Krowne, A., Calado, P., Laender, A. H. F., Silva, A. S.
da, et al. (2004). The effectiveness of automatically structured queries in digital
libraries. In Proceedings of the 4th acm/ieee-cs joint conference on digital libraries
(pp. 98–107). New York, NY, USA: ACM. Available from http://doi.acm.org/
10.1145/996350.996377

Graupmann, J. (2004). Concept-based search on semi-structured data exploiting mined
semantic relations. In Proceedings of the 2004 international conference on current
trends in database technology (pp. 34–43). Berlin, Heidelberg: Springer-Verlag.
Available from http://dx.doi.org/10.1007/978-3-540-30192-9_4

Graupmann, J., Biwer, M., Zimmer, C., Zimmer, P., Bender, M., Theobald, M., et al.
(2004). Compass: a concept-based web search engine for html, xml, and deep web
data. In Proceedings of the 30th international conference on very large data bases

178

http://dl.acm.org/citation.cfm?id=1315451.1315457
http://dl.acm.org/citation.cfm?id=1315451.1315457
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.is.informatik.uni-duisburg.de/bib/docs/Fuhr_etal_02a.html
http://www.is.informatik.uni-duisburg.de/bib/docs/Fuhr_etal_02a.html
http://doi.acm.org/10.1145/996350.996377
http://doi.acm.org/10.1145/996350.996377
http://dx.doi.org/10.1007/978-3-540-30192-9_4

(Vol. 30, p. 1313-1316). VLDB Endowment.

Gövert, N., Fuhr, N., Lalmas, M., & Kazai, G. (2006). Evaluating the effectiveness
of content-oriented xml retrieval methods. Information Retrieval, 9(6), 699-722.
Available from http://dx.doi.org/10.1007/s10791-006-9008-2

Hsu, W., Lee, M. L., & Wu, X. (2004). Path-augmented keyword search for xml docu-
ments. In Proceedings of the 16th ieee international conference on tools with arti-
ficial intelligence (pp. 526–530). Washington, DC, USA: IEEE Computer Society.
Available from http://dx.doi.org/10.1109/ICTAI.2004.99

Huffman, S. B., & Baudin, C. (1997). Toward structured retrieval in semi-structured
information spaces. In Ijcai (1) (p. 751-757). Morgan Kaufmann.

Itakura, K. Y., & Clarke, C. L. A. (2010). A framework for bm25f-based xml retrieval. In
F. Crestani, S. Marchand-Maillet, H.-H. Chen, E. N. Efthimiadis, & J. Savoy (Eds.),
Sigir (p. 843-844). ACM.

Jayapandian, M., & Jagadish, H. V. (2008). Automated creation of a forms-based database
query interface. PVLDB, 695-709.

Jones, K. S., Walker, S., & Robertson, S. E. (2000, November). A probabilistic
model of information retrieval: development and comparative experiments. Inf.
Process. Manage., 36(6), 779–808. Available from http://dx.doi.org/10.1016/
S0306-4573(00)00015-7

Kamps, J., Marx, M., Rijke, M. de, & Sigurbjörnsson, B. (2005). Structured queries
in xml retrieval. In O. Herzog, H.-J. Schek, N. Fuhr, A. Chowdhury, & W. Teiken
(Eds.), Cikm (p. 4-11). ACM.

Kazai, G., Gövert, N., Lalmas, M., & Fuhr, N. (2003). The inex evaluation initiative. In
H. M. Blanken, T. Grabs, H.-J. Schek, R. Schenkel, & G. Weikum (Eds.), Intelligent
search on xml data (Vol. 2818, p. 279-293). Springer.

Kazai, G., Lalmas, M., & Vries, A. P. de. (2004). The overlap problem in content-
oriented xml retrieval evaluation. In Proceedings of the 27th annual international
acm sigir conference on research and development in information retrieval (pp. 72–
79). New York, NY, USA: ACM. Available from http://doi.acm.org/10.1145/
1008992.1009008

Kazai, G., & Trotman, A. (2007). Users’ perspectives on the usefulness of structure for
xml information retrieval. In In proceedings of the 1st international conference on
the theory of inofrmation retrieval (pp. 247–260).

Kim, J. Y., Xue, X. B., & Croft, W. B. (2009). A probabilistic retrieval model for
semistructured data. In Ecir (p. 228-239).

Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation
and model selection. In Proceedings of the 14th international joint conference on
artificial intelligence - volume 2 (pp. 1137–1143). San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc. Available from http://dl.acm.org/citation.cfm?id=

179

http://dx.doi.org/10.1007/s10791-006-9008-2
http://dx.doi.org/10.1109/ICTAI.2004.99
http://dx.doi.org/10.1016/S0306-4573(00)00015-7
http://dx.doi.org/10.1016/S0306-4573(00)00015-7
http://doi.acm.org/10.1145/1008992.1009008
http://doi.acm.org/10.1145/1008992.1009008
http://dl.acm.org/citation.cfm?id=1643031.1643047
http://dl.acm.org/citation.cfm?id=1643031.1643047

1643031.1643047

Lalmas, M., & Tombros, A. (2007). Evaluating xml retrieval effectiveness at inex. SIGIR
Forum, 41(1), 40-57.

Lehtonen, M. (2006, August). Designing user studies for xml retrieval. In Proceedings of
the sigir 2006 workshop on xml element retrieval methodology (pp. 28–34). Dunedin,
New Zealand: University of Otago.

Ley, M. (2009). Dblp - some lessons learned. PVLDB, 2(2), 1493-1500.

Li, J., Liu, C., Zhou, R., & Ning, B. (2009). Processing xml keyword search by con-
structing effective structured queries. In Q. Li, L. Feng, J. Pei, X. S. Wang, X. Zhou,
& Q.-M. Zhu (Eds.), Apweb/waim (Vol. 5446, p. 88-99). Springer.

Li, R., & Weide, T. P. van der. (2009). Language models for xml element retrieval. In
S. Geva, J. Kamps, & A. Trotman (Eds.), Inex (Vol. 6203, p. 95-102). Springer.

Liu, Z., Walker, J., & Chen, Y. (2007). Xseek: A semantic xml search engine using
keywords. In C. Koch et al. (Eds.), Vldb (p. 1330-1333). ACM.

Manning, C. D., Raghavan, P., & Schütze, H. (2008). Introduction to information re-
trieval. Cambridge University Press.

McHale, M. (1998, August). A comparison of wordnet and roget’s taxonomy for mea-
suring semantic similarity. In S. Harabagiu & J. Y. Chai (Eds.), Proceedings of the
coling/acl workshop on usage of wordnet in natural language processing systems.
Montreal, Canada: Association for Computational Linguistics, Morristown, NJ,
USA. Available from http://www.citebase.org/abstract?id=oai:arXiv.org:
cmp-lg/9809003

Ogilvie, P., & Callan, J. (2002). Language models and structured document retrieval. In
N. Fuhr, N. Gövert, G. Kazai, & M. Lalmas (Eds.), Inex workshop (p. 33-40).

Ogilvie, P., & Callan, J. (2004). Hierarchical language models for xml component re-
trieval. In N. Fuhr, M. Lalmas, S. Malik, & Z. Szlávik (Eds.), Inex (Vol. 3493,
p. 224-237). Springer.

Pal, S., & Mitra, M. (2007). Xml retrieval: A survey. Technical Report, CVPR.
TR/ISI/CVPR/IR07-01.

Pehcevski, J., & Thom, J. A. (2005). Hixeval: Highlighting xml retrieval evaluation. In
In proceedings of the inex 2005 workshop (pp. 43–57).

Pereira, F., Rajaraman, A., Sarawagi, S., Tunstall-Pedoe, W., Weikum, G., & Halevy,
A. Y. (2009). Answering web questions using structured data - dream or reality?
PVLDB, 2(2), 1646.

Petkova, D., Croft, W. B., & Diao, Y. (2009). Refining keyword queries for xml retrieval
by combining content and structure. In Ecir (p. 662-669).

180

http://dl.acm.org/citation.cfm?id=1643031.1643047
http://dl.acm.org/citation.cfm?id=1643031.1643047
http://www.citebase.org/abstract?id=oai:arXiv.org:cmp-lg/9809003
http://www.citebase.org/abstract?id=oai:arXiv.org:cmp-lg/9809003

Piwowarski, B., Trotman, A., & Lalmas, M. (2008, December). Sound and complete rele-
vance assessment for xml retrieval. ACM Trans. Inf. Syst., 27(1), 1:1–1:37. Available
from http://doi.acm.org/10.1145/1416950.1416951

Ponte, J. M., & Croft, W. B. (1998). A language modeling approach to information
retrieval. In Proceedings of the 21st annual international acm sigir conference on
research and development in information retrieval (pp. 275–281). New York, NY,
USA: ACM. Available from http://doi.acm.org/10.1145/290941.291008

Reid, J., Lalmas, M., Finesilver, K., & Hertzum, M. (2006). Best entry points for struc-
tured document retrieval - part i: Characteristics. Inf. Process. Manage., 42(1), 74-
88.

Resnik, P. (1995). Using information content to evaluate semantic similarity in a tax-
onomy. In In proceedings of the 14th international joint conference on artificial
intelligence (ijcai-95 (pp. 448–453). Morgan Kaufmann.

Robertson, S., & Zaragoza, H. (2009, April). The probabilistic relevance framework:
Bm25 and beyond. Found. Trends Inf. Retr., 3(4), 333–389. Available from http://
dx.doi.org/10.1561/1500000019

Salton, G., & Buckley, C. (1988, August). Term-weighting approaches in automatic text
retrieval. Inf. Process. Manage., 24(5), 513–523. Available from http://dx.doi
.org/10.1016/0306-4573(88)90021-0

Sandhaus, E. (2008). The new york times annotated corpus [Computer software manual].
Philadelphia.

Schenkel, R., Suchanek, F., & Kasneci, G. (2007, March). Yawn: A semantically anno-
tated wikipedia xml corpus. In Proceedings of 12th symposium on database systems
for business, technology and the web of the german society for computer science.
(p. 277-291).

Sigmod. (2007). Sigmod record in xml. Available from http://www.sigmod.org/
publications/sigmod-record/xml-edition ([Online; accessed 22 May 2013])

Somers, H. L. (1999). Review article: Example-based machine translation. Machine
Translation, 14(2), 113-157.

Spink, A., & Jansen, B. J. (2004). Web search: Public searching of the web. In (p. 77-99).
Springer Netherlands.

Spink, A., Wolfram, D., Jansen, M. B. J., & Saracevic, T. (2001, February). Searching
the web: the public and their queries. J. Am. Soc. Inf. Sci. Technol., 52(3), 226–234.
Available from http://dx.doi.org/10.1002/1097-4571(2000)9999:9999<::AID
-ASI1591>3.3.CO;2-I

Sumita, E., & Iida, H. (1991). Experiments and prospects of example-based machine
translation. In D. E. Appelt (Ed.), Acl (p. 185-192). ACL.

Taha, K., & Elmasri, R. (2010). Xcdsearch: An xml context-driven search engine. IEEE

181

http://doi.acm.org/10.1145/1416950.1416951
http://doi.acm.org/10.1145/290941.291008
http://dx.doi.org/10.1561/1500000019
http://dx.doi.org/10.1561/1500000019
http://dx.doi.org/10.1016/0306-4573(88)90021-0
http://dx.doi.org/10.1016/0306-4573(88)90021-0
http://www.sigmod.org/publications/sigmod-record/xml-edition
http://www.sigmod.org/publications/sigmod-record/xml-edition
http://dx.doi.org/10.1002/1097-4571(2000)9999:9999<::AID-ASI1591>3.3.CO;2-I
http://dx.doi.org/10.1002/1097-4571(2000)9999:9999<::AID-ASI1591>3.3.CO;2-I

Trans. Knowl. Data Eng., 22(12), 1781-1796.

Tannier, X. (2005). From natural language to nexi, an interface for inex 2005 queries. In
Inex (p. 373-387).

Tannier, X., Girardot, J.-J., & Mathieu, M. (2005). Analysing natural language queries
at inex 2004. In Proceedings of the third international conference on initiative for
the evaluation of xml retrieval (pp. 395–409). Berlin, Heidelberg: Springer-Verlag.
Available from http://dx.doi.org/10.1007/11424550_32

Teevan, J., Adar, E., Jones, R., & Potts, M. (2006). History repeats itself: repeat queries in
yahoo’s logs. In Proceedings of the 29th annual international acm sigir conference
on research and development in information retrieval (pp. 703–704). New York, NY,
USA: ACM. Available from http://doi.acm.org/10.1145/1148170.1148326

Theobald, M., Bast, H., Majumdar, D., Schenkel, R., & Weikum, G. (2008). Topx:
efficient and versatile top-k query processing for semistructured data. VLDB J.,
17(1), 81-115.

Tran, T., Wang, H., Rudolph, S., & Cimiano, P. (2009). Top-k exploration of query candi-
dates for efficient keyword search on graph-shaped (rdf) data. In Proceedings of the
2009 ieee international conference on data engineering (pp. 405–416). Washington,
DC, USA: IEEE Computer Society. Available from http://dx.doi.org/10.1109/
ICDE.2009.119

Trotman, A. (2009). Narrowed extended xpath i. In L. Liu & M. T. Özsu (Eds.), Ency-
clopedia of database systems (p. 1876-1880). Springer US.

Trotman, A., & Lalmas, M. (2006). Why structural hints in queries do not help xml-
retrieval. In Proceedings of the 29th annual international acm sigir conference on
research and development in information retrieval (pp. 711–712). New York, NY,
USA: ACM. Available from http://doi.acm.org/10.1145/1148170.1148330

Trotman, A., Rocio Gomez Crisostomo, M. del, & Lalmas, M. (2009). Visualizing the
problems with the inex topics. In J. Allan, J. A. Aslam, M. Sanderson, C. Zhai, &
J. Zobel (Eds.), Sigir (p. 826). ACM.

Trotman, A., & Sigurbjörnsson, B. (2004a). Narrowed extended xpath i (nexi). In N. Fuhr,
M. Lalmas, S. Malik, & Z. Szlávik (Eds.), Inex (Vol. 3493, p. 16-40). Springer.

Trotman, A., & Sigurbjörnsson, B. (2004b). Nexi, now and next. In N. Fuhr, M. Lalmas,
S. Malik, & Z. Szlávik (Eds.), Inex (Vol. 3493, p. 41-53). Springer.

Voorhees, E. M. (1998). Variations in relevance judgments and the measurement of
retrieval effectiveness. In Proceedings of the 21st annual international acm si-
gir conference on research and development in information retrieval (pp. 315–
323). New York, NY, USA: ACM. Available from http://doi.acm.org/10.1145/
290941.291017

Wang, Q., Li, Q., & Wang, S. (2007). Preliminary work on xml retrieval. In Inex (p. 70-
76).

182

http://dx.doi.org/10.1007/11424550_32
http://doi.acm.org/10.1145/1148170.1148326
http://dx.doi.org/10.1109/ICDE.2009.119
http://dx.doi.org/10.1109/ICDE.2009.119
http://doi.acm.org/10.1145/1148170.1148330
http://doi.acm.org/10.1145/290941.291017
http://doi.acm.org/10.1145/290941.291017

Wang, Q., Ramírez, G., Marx, M., Theobald, M., & Kamps, J. (2011). Overview of the
INEX 2011 data centric track. In S. Geva, J. Kamps, & R. Schenkel (Eds.), Inex
2011 workshop pre-proceedings (pp. 88–106).

Wikipedia. (2012). Google search — wikipedia, the free encyclopedia. Available
from http://en.wikipedia.org/w/index.php?title=Google_Search&oldid=
526339125 ([Online; accessed 5-December-2012])

Woodley, A., & Geva, S. (2004). Nlpx at inex 2004. In N. Fuhr, M. Lalmas, S. Malik, &
Z. Szlávik (Eds.), Inex (Vol. 3493, p. 382-394). Springer.

Woodley, A., & Geva, S. (2006). Nlpx at inex 2006. In N. Fuhr, M. Lalmas, & A. Trotman
(Eds.), Inex (Vol. 4518, p. 302-311). Springer.

Xu, Y., & Papakonstantinou, Y. (2008). Efficient lca based keyword search in xml data.
In A. Kemper et al. (Eds.), Edbt (Vol. 261, p. 535-546). ACM.

Zenz, G., Zhou, X., Minack, E., Siberski, W., & Nejdl, W. (2009, September). From key-
words to semantic queries-incremental query construction on the semantic web. Web
Semant., 7(3), 166–176. Available from http://dx.doi.org/10.1016/j.websem
.2009.07.005

Zhao, L., & Callan, J. (2008). A generative retrieval model for structured documents. In
Proceedings of the 17th acm conference on information and knowledge management
(pp. 1163–1172). New York, NY, USA: ACM. Available from http://doi.acm
.org/10.1145/1458082.1458236

Zhao, L., & Callan, J. (2009). Effective and efficient structured retrieval. In Proceedings
of the 18th acm conference on information and knowledge management (pp. 1573–
1576). New York, NY, USA: ACM. Available from http://doi.acm.org/10.1145/
1645953.1646175

Zwol, R. van, Baas, J., Oostendorp, H. van, & Wiering, F. (2006). Bricks: The building
blocks to tackle query formulation in structured document retrieval. In M. Lalmas,
A. MacFarlane, S. M. Rüger, A. Tombros, T. Tsikrika, & A. Yavlinsky (Eds.), Ad-
vances in information retrieval, 28th european conference on ir research, ecir 2006,
london, uk, april 10-12, 2006, proceedings (Vol. 3936, p. 314-325). Springer.

183

http://en.wikipedia.org/w/index.php?title=Google_Search&oldid=526339125
http://en.wikipedia.org/w/index.php?title=Google_Search&oldid=526339125
http://dx.doi.org/10.1016/j.websem.2009.07.005
http://dx.doi.org/10.1016/j.websem.2009.07.005
http://doi.acm.org/10.1145/1458082.1458236
http://doi.acm.org/10.1145/1458082.1458236
http://doi.acm.org/10.1145/1645953.1646175
http://doi.acm.org/10.1145/1645953.1646175

	Original Literary Work Declaration
	Abstract
	Abstrak
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Symbols and Acronyms
	List of Appendices
	Introduction
	Motivation
	State of the Art
	Query Transformation as a Structured Retrieval Problem
	Goals of This Thesis
	Proposed Framework
	Thesis Contributions
	Thesis Outline

	Related Works
	Background
	Works in Query Transformation
	Issues in Query Transformation
	Summary

	A Flexible Query Transformation Framework
	Requirements for Query Transformation
	Formal Semantics of Query Transformation
	A Probabilistic Approach for Query Interpretation
	A Representation for Query Construction
	Summary

	Query Interpretation and Construction
	Query Interpretation
	Query Representation
	Query Mapping
	Query Selection
	Summary

	Evaluation
	Introduction
	Evaluation on Query Interpretation
	Evaluation on Query Transformation
	Evaluation on Query Representation
	Summary

	Conclusion and Future Work
	Conclusion
	Limitations
	Future Works

	Appendices
	References

