

INVESTIGATION OF EVOLUTIONARY

MULTI-OBJECTIVE ALGORITHMS IN SOLVING

VIEW SELECTION PROBLEM

SEYED HAMID TALEBIAN

THESIS SUBMITTED IN FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF DOCTOR

OF PHILOSOPHY

FACULTY OF COMPUTER SCIENCE &

INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA

KUALA LUMPUR

2013

UNIVERSITI MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Seyed Hamid Talebian (I.C/Passport No: R10764969)

Registration/Matric No: WHA070020

Name of Degree: Doctor of Philosophy

Title of Project Paper/Research Report/Dissertation/Thesis (“this Work”):

Investigation of Evolutionary Multi-Objective Algorithms in Solving View Selection
Problem

Field of Study:

I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;
(2) This Work is original;
(3) Any use of any work in which copyright exists was done by way of fair dealing and for

permitted purposes and any excerpt or extract from, or reference to or reproduction of
any copyright work has been disclosed expressly and sufficiently and the title of the
Work and its authorship have been acknowledged in this Work;

(4) I do not have any actual knowledge nor do I ought reasonably to know that the making
of this work constitutes an infringement of any copyright work;

(5) I hereby assign all and every rights in the copyright to this Work to the University of
Malaya (“UM”), who henceforth shall be owner of the copyright in this Work and that
any reproduction or use in any form or by any means whatsoever is prohibited without
the written consent of UM having been first had and obtained;

(6) I am fully aware that if in the course of making this Work I have infringed any copyright
whether intentionally or otherwise, I may be subject to legal action or any other action
as may be determined by UM.

Candidate’s Signature Date:

Subscribed and solemnly declared before,

Witness’s Signature Date Witness’s Signature Date:

Name:

Designation:

iii

Abstract

Today’s huge volumes of data are maintained in conventional database systems. The

data distributed in these systems sometimes come in inconsistent formats. On the other

hand, data analysts require an environment so that they are able to obtain the required

information. However, the distributed and heterogeneous structure of these systems

prevents them from taking advantage of these data for analytical purposes.

In order to overcome this weakness the data warehouse concept was introduced

(Inmon, 1992). The main idea is such that, incompatible data spread over heterogeneous

systems are extracted and after transformations to a unified form are loaded to a central

and separate database for analytical purposes.

Since analytical queries are complex and take a long time to be processed under normal

circumstance, there is a need for a strategy to improve the speed of such queries. One of

the ways for resolving this problem is by using pre-computed results of queries. In this

approach, results of possible queries are computed in advance and whenever a user

submits a query, instead of referring to the main table with enormous numbers of

records, a proper pre-computed result is fetched and used for answering the query.

The results of each query can be a logical table which is derived from the base tables.

Such tables are called views in database terminology. Once the records of a view are

stored on disk, the view is called a materialized view.

Another important issue resulting from materializing view is updating the views. If

during periodical reload from the conventional database systems new records are

inserted to the fact table, the views that have been derived from the fact table need to be

updated. The process of updating views in response to changes to base tables is called

view update or view maintenance (Kotidis, 2002). This process is expensive because it

iv

is time consuming. In today’s systems availability is one goal and this is achieved by

minimizing the update window during which the system is down.

Although using materialized views for answering queries reduces the query response

time but at the same time it increases the view update time. Selecting a subset of views

which gives the best compromise between minimizing query response time and

minimizing total update time is known as the view selection problem. This is considered

a multi-objective problem because the problem involves optimizing more than one

problem simultaneously subject to constraint(s).

Evolutionary multi-objective algorithms are considered as good candidate for solving

multi-objective optimization problems and have been applied to variety of problems in

different areas.

In this research, we showed how evolutionary multi-objective algorithms can be used to

solve the view selection problem and its advantage over classical optimization problems

were described. As a comparative study, the performance of the algorithms was

evaluated based on various standard metrics. In addition to the normal metrics, the

computational time for executing each algorithm was also measured and compared.

Our results show that algorithms which use elitism feature are superior to other

algorithms in most of the metrics. At the same time implementing elitism feature

increases the computational complexity of the algorithm. Furthermore, niching

strategies in some algorithms play an important role in delivering a diverse set of

solutions.

Generally, it can be said that two algorithms SPEA-II and NSGA-II perform better than

other algorithms in terms of convergence to the optimal solution and diversity.

v

Acknowledgment

This thesis would not be completed without the continuous support of my supervisor

Associative Professor Dr. Sameem Abdul Kareem. Her encouragement was invaluable

and her tolerance during period of research was remarkable. I also would like to thank

University of Malaya for support for this research.

vi

Table of Contents

Chapter 1. Introduction .. 1

1.1 Background .. 1

1.2 Motivation .. 3

1.3 Problem Statement.. 3

1.3.1 Total Query Response Time .. 4

1.3.2 Update Time .. 4

1.3.3 Total Disk Space .. 5

1.3.4 View Selection Problem .. 5

1.3.5 Multi-Objective View Selection Problem .. 6

1.4 Evolutionary Multi-Objective Optimization .. 6

1.5 Research Objectives ... 10

1.6 Research Scope ... 10

1.7 Research Methodology ... 11

1.8 Thesis Outline ... 13

Chapter 2. Materialized View Selection .. 15

2.1 Background .. 15

2.2 The Data Warehouse Architecture ... 17

2.3 Terminology ... 20

2.4 Dimensional Modeling ... 21

2.5 The Star Schema ... 23

2.6 Dimension Hierarchies ... 25

2.7 OLAP Query format ... 26

vii

2.8 Dependency lattice ... 28

2.9 Linear Cost Model .. 30

2.10 Total query response time .. 31

2.11 Total View Update Time (or View Maintenance Time) .. 32

2.12 View Size Estimation ... 33

2.13 View Selection Problem ... 33

2.14 Single Objective View Selection Problem ... 36

2.14.1 Benefit Function .. 38

2.14.2 Related Works for Single Objective View Selection Problem .. 38

2.15 Multi-Objective View Selection Problem .. 51

2.15.1 Related Works for Multi-Objective View Selection Problem ... 51

2.16 Summary .. 52

Chapter 3. Evolutionary Multi-Objective Optimization ... 53

3.1 Introduction .. 53

3.2 Multi-Objective Optimization Principles ... 57

3.2.1 Multi-Objective Optimization Problem Definition .. 57

3.2.2 Dominance Relation .. 58

3.2.3 Non-Dominated set of solutions .. 61

3.2.4 Non-dominated Sorting (or Pareto ranking) .. 62

3.3 Evolutionary Multi-objective Algorithms .. 63

3.3.1 Genetic Algorithm ... 64

3.3.1.1 Vocabulary of Genetic algorithm ... 65

3.3.1.2 Representation ... 66

3.3.1.3 Initialization ... 67

3.3.1.4 Operators.. 69

3.3.1.5 Fitness Function (or evaluation function) .. 72

3.3.1.6 Termination Condition ... 73

viii

3.3.2 Elitism ... 74

3.3.3 Non-Elitist Algorithms .. 75

3.3.3.1 Weight Based Genetic Algorithm .. 75

3.3.3.2 Vector Evaluated Genetic Algorithm ... 76

3.3.3.3 Non-dominated Sorting Genetic Algorithm ... 77

3.3.3.4 Niched Pareto Genetic Algorithm .. 78

3.3.3.5 Multiple Objective Genetic Algorithm .. 79

3.3.4 Elitist Algorithms .. 80

3.3.4.1 Non-dominated Sorting Genetic Algorithm II ... 81

3.3.4.2 Strength Pareto Evolutionary Algorithm ... 82

3.3.4.3 Strength Pareto Evolutionary Algorithm II .. 84

3.3.5 Constraint Handling ... 87

3.3.6 Applications of Evolutionary Multi-Objective Algorithms in Other Areas. 88

3.4 Performance Metrics (indicators) ... 89

3.4.1 Set Coverage (C) ... 91

3.4.2 Spacing (SP) .. 92

3.4.3 Maximum Spread (MS) ... 93

3.4.4 Hypervolume (HV) .. 95

3.5 Summary .. 96

Chapter 4. Methodology ... 97

4.1 Introduction .. 97

4.2 Object Oriented Architecture.. 98

4.2.1 Objects in Problem Domain .. 99

4.2.2 Objects in Method Domain .. 104

4.2.2.1 Core Objects .. 105

4.2.2.2 Shell Objects .. 113

4.2.3 Performance Evaluation .. 114

4.3 Parameter Setting.. 114

4.4 Performance Metrics Used ... 117

ix

4.5 Problem Representation .. 118

4.6 Initialization .. 119

4.7 Stopping Criteria .. 120

4.8 Constraint Handling.. 120

4.9 Objective Normalization .. 121

4.10 View Size Estimation ... 122

4.11 Problem Instances ... 122

4.11.1 VSP1 .. 125

4.11.2 VSP2 .. 127

4.12 Hardware and Software Specification .. 129

4.13 Summary .. 129

Chapter 5. Results and Discussion .. 131

5.1 Coverage Metric Results .. 133

5.2 Hypervolume Metric Results .. 137

5.3 Result for Spacing metric ... 139

5.4 Maximum Spread Metric Results ... 140

5.5 Visual Comparison for 30 runs ... 142

5.6 Computational Time Results .. 143

Chapter 6. Conclusion .. 146

6.1 Summary of Research ... 146

6.2 Contribution and results ... 148

6.3 Future Work ... 149

x

List of Figures

Figure 1.1 Basic Evolutionary Algorithm’s Flowchart ... 8

Figure 1.2 Different Phases of Research Methodology .. 13

Figure 2.1 Data Warehouse Architecture .. 18

Figure 2.2 Example of Normalized Entity Relationship Model 23

Figure 2.3 Star-Like Modeling of Data Warehouse .. 24

Figure 2.4 Star Schema for Sales System. .. 24

Figure 2.5 Fact Table and Dimensional Tables .. 25

Figure 2.6 Dimension Hierarchies for Sales System .. 26

Figure 2.7 Roll Up And Drill Down Queries .. 26

Figure 2.8 Picking Up a Hierarchy Level from Each Dimension Hierarchy to Form a

Group-By Query ... 27

Figure 2.9 A Dependency Lattice Organized From All Possible Views 29

Figure 2.10 Dependency Lattice Organized From All Possible Group by Queries 29

Figure 2.11 Dependency Lattice for Sales System ... 30

Figure 2.12 A Sample Dependency Lattice with a Current Set of Materialized Views . 32

Figure 2.13 Full, Partial and No Materialization in a 2D space...................................... 35

Figure 2.14 Selecting the Best Trade-Off View Selection Problem Solution 35

Figure 2.15 Benefit Calculation .. 38

Figure 3.1 Multi-Objective and Conflictive Optimization Problem 54

Figure 3.2 Evolutionary Algorithms Branches ... 56

Figure 3.3 Decision Variable Space Versus Objective Function Space 58

Figure 3.4 A Set of 7 Solutions in Objective Space.. 60

Figure 3.5 Classification of Non-Dominated and Dominated Set for Example in Figure

3.4 .. 62

xi

Figure 3.6 Pareto Front Curves for Two Different Search Spaces 62

Figure 3.7 Non-Dominated Sorting For Solution Set of Figure 3.4 63

Figure 3.8 Evolution Cycle for Genetic Algorithm .. 65

Figure 3.9 Real World Space versus Genetic Space ... 66

Figure 3.10 A Sample Representation .. 67

Figure 3.11 A sample random initial population with 10 members................................ 68

Figure 3.12 Genetic Operators: Selection, Crossover and Mutation 70

Figure 3.13 Single point crossover ... 71

Figure 3.14 Two Points Crossover .. 71

Figure 3.15 Mutation Operator ... 72

Figure 3.16 Schematic Procedure of VEGA .. 77

Figure 3.17 NPGA Selection Mechanism ... 79

Figure 3.18 Crowding Distance Calculation ... 82

Figure 3.19 Schematic of NSGA-II procedure .. 82

Figure 3.20 SPEA Fitness Assignment For a Set of Solutions 84

Figure 3.21 SPEA-II Strength And Raw Fitness for a Set of Solutions 85

Figure 3.22 Search Space, Feasible and Infeasible Regions ... 87

Figure 3.23 Convergence and Diversity ... 90

Figure 3.24 Ideal Value for Coverage Metric ... 91

Figure 3.25 Distances between Neighboring Solutions in Set of Obtained Solutions 92

Figure 3.26 Ideal Value for Spacing Metric ... 93

Figure 3.27Maximum Spread for A Set of Solutions .. 94

Figure 3.28 Ideal Value for Maximum Spread Metric .. 94

Figure 3.29 Hypervolume for a Set of Non-Dominated Solutions 95

Figure 3.30 Ideal Value For Hypervolume Metric .. 96

Figure 4.1 Classifications of Methods and Problem ... 97

xii

Figure 4.2 The UML Class Diagram ... 99

Figure 4.3 Hierarchy Defined Within Each Dimension Table..................................... 101

Figure 4.4 View Dependency Lattice Calculated Based On Hierarchies in Figure 4.2 101

Figure 4.5 The Lattice Object ... 102

Figure 4.6 Core And Shell Objects ... 105

Figure 4.7 Inheritance In Method Domain.. 106

Figure 4.8 Evolutionary Multi-Objective Optimization Interface 114

Figure 4.9 Calculation of distance in 2D objective space ... 115

Figure 4.10 Defined Reference Point for Hypervolume Metric 116

Figure 4.11 View Selection Problem Encoding .. 119

Figure 4.12 Calculating the Size of Search Space .. 119

Figure 4.13 Screenshot of the Tool for Defining the View Selection Problem Instance

 ... 123

Figure 4.14 Creating VSP Instance ... 123

Figure 4.15 The Star Schema for the Supplier-Parts Database 123

Figure 4.16 Dimension Hierarchies for VSP1 ... 125

Figure 4.17 Dependency Lattice for VSP1 .. 127

Figure 4.18 Dimension Hierarchies for VSP2 ... 128

Figure 4.19 Dependency Lattice for VSP2 .. 129

Figure 5.1 A sample box plot .. 133

Figure 5.2 Non-Dominated Front Obtained By Each Evolutionary Algorithm Solving

VSP1 .. 142

Figure 5.3 Non-Dominated Front Obtained By Each Evolutionary Algorithm Solving

VSP2 .. 143

xiii

List of Tables

Table 2.1 Differences Between OLTP and OLAP Systems .. 16

Table 2.2 Single Objective View Selection Problem Variations 37

Table 2.3 Different Works for Single Objective View Selection Problem 48

Table 2.4 Different Works for Solving Single Objective View Selection and Their

Performance .. 49

Table 3.1 List of some other Applications of Evolutionary Algorithms 89

Table 4.1View Class .. 100

Table 4.2 Lattice Class .. 102

Table 4.3 VSP Class .. 103

Table 4.4 VSP Phenotype Class .. 104

Table 4.5 GA Class ... 106

Table 4.6 Individual Class .. 107

Table 4.7 Assignment of Values for Objectives and Constraint 108

Table 4.8 Population Class ... 109

Table 4.9 PopulationSet Class .. 111

Table 4.10 Crossover Class ... 111

Table 4.11 Mutation Class .. 112

Table 4.12 Selection Class .. 113

Table 4.13 Evolutionary Multi-Objective Algorithm Interface 113

Table 4.14 Performance Evaluation Class ... 114

Table 4.15 GA Parameter Setting .. 116

Table 4.16 Ideal Values for Metrics Used .. 118

Table 4.17 List of Views For VSP1 ... 126

Table 4.18 List Of Views for VSP2 ... 128

xiv

Table 5.1 Checking 5.1 Condition for SPEA-II .. 134

Table 5.2 Mean Values of Two Set Coverage Metric for VSP1 135

Table 5.3 Mean Values of Two Set Coverage Metric for VSP2 135

Table 5.4 Multiple Comparison of Coverage Metric for VSP1. 135

Table 5.5 Multiple Comparison of Coverage Metric for VSP2. 135

Table 5.6 Ranking of the Algorithms Based on Two Set Coverage Metric and for VSP1

 ... 136

Table 5.7 Ranking of the Algorithms Based on Two Set Coverage Metric With Respect

to VSP2 .. 137

Table 5.8 Multiple Comparison of Hypervolume for VSP1 .. 137

Table 5.9 Multiple Comparison of Hypervolume for VSP2 .. 137

Table 5.10 Mean and variance values of the Hypervolume metric for VSP1 138

Table 5.11 Mean and Variance Values of the Hypervolume Metric for VSP2 138

Table 5.12 Multiple Comparison of Spacing for VSP1 ... 139

Table 5.13 Multiple Comparison of Spacing for VSP2 ... 139

Table 5.14 Mean and Variance Values for Spacing Metric for VSP1 140

Table 5.15 Mean and Variance Values for Spacing Metric for VSP2 140

Table 5.16 Multiple Comparison for Maximum Spread Metric for VSP1 141

Table 5.17 Multiple Comparison for Maximum Spread Metric for VSP2 141

Table 5.18 Mean and Variance values of the Maximum Spread Metric for VSP1 141

Table 5.19 Mean and Variance Values of the Maximum Spread Metric for VSP2 141

Table 5.20 Multiple Comparisons for Computational Time Metric for VSP1 144

Table 5.21 Multiple Comparisons for Computational Time Metric for VSP2 144

Table 5.22 Mean of Computational Time (in Second) for VSP1 145

Table 5.23 Mean of Computational Time (in Second) for VSP2 145

xv

List of Symbols

Symbol Description

Q The set of all possible queries

 () Total query response time in the presence of M

 ()
query response time for all queries when view would be added

to the M

 The frequency by which query is issued

 The frequency by which view is updated

 () The query cost for answering a query q using M

 A particular view

 The set of materialized views

 () The total time required for updating M

 (,)
The required time of updating the materialized view in the

presence of the set of M materialized views.

 () The total disk space required for materializing the M

 () size of the disk space required for storing view

 the size of the allocated disk space for saving views

 The number of hierarchy levels in dimension table

 The number of dimension tables

V The set of all possible views

| | The number of all possible views

 The maximum query response time

 The minimum query response time

 () Query response time when no view is materialized

 () Query response time when all possible views are materialized

 () The Total query response time after materializing the M

Qinterval History of incoming views within a certain period of time

F Fact Table

| | The number of records in the fact table

 () Ancestor views of view in the lattice

 Minimum view update time

 Maximum view update time

The amount of change has been made to a view since last update

of fact table

| | The number of records in v

| | theoretical maximum number of records in v

| | the number of records that exist in

Di Dimension table i

 ()
Query Benefit of view in presence of . Defined as decrease

in the Query response time caused by adding view ,

S A set of solutions

N A non-dominated set of solutions

xvi

 The weight coefficient for objective function i

 () Objective function i

 () equality constraints

 () inequality constraints

 The number of equality constraints

 The number of inequality constraints

 The number of objective functions

Pc Crossover probability

Pm Mutation probability

 () Fitness value of individual i

 () Strength of individual i

 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ The size of external population

 Population Size

 The main population at generation t

 ̅ The archive population at generation t

 () The overall violation of solution x

D(i) Density for individual i

 () The violation of solution x with respect to constraint i
th

 () The penalty function for solution x

 () Coverage of set A with respect to B

 The number of individuals in the comparison set for NPGA

| | A set of solutions

 the niche radius

B(M) Query benefit which is yielded after materializing all views in M.

xvii

List of Abbreviations

Abbreviation Description

IBM International Business Machines

Mac Macintosh

DBMS Database Management System

SQL Structured Query Language

OLTP Online Transaction Processing

OLAP Online Analytical Processing

WBGA Weight-Based Genetic Algorithm

VEGA Vector Evaluated Genetic Algorithm

NSGA Non-Dominated Sorting Genetic Algorithm

NSGA-II Non-Dominated Sorting Genetic Algorithm-II

SPEA Strength Pareto Evolutionary Algorithm

SPEA-II Strength Pareto Evolutionary Algorithm-Ii

MOGA Multiple Objective Genetic Algorithm

NPGA Niched Pareto Genetic Algorithm

E-R Entity Relationship

LRU Least Recently Used

PBS Pick By Size

A* A Star

BPUS Benefit Per Unit Space

PGA Polynomial Genetic Algorithm

SA Simulated Annealing

II Iterative Improvement

MA Memetic Algorithm

IP Integer Programming

RLGA Reduced Lattice Greedy Algorithm

GLS Genetic Local Search

MOEA Multi-Objective Evolutionary Algorithm

HLGA Hajela & Lin Genetic Algorithm

 Maximum Spread

HV Hypervolume

SP Spacing

VSP View Selection Problem

GA Genetic Algorithm

EA Evolutionary Algorithm

GList Gene List

GD Generational Distance

ER Error Ratio

VSP1 View Selection Problem Instance 1

VSP2 View Selection Problem Instance 2

TPC Transaction Processing Performance Council

xviii

PSO Particle Swarm Optimization

CSP Constraint Satisfaction Problem

NP Non-Deterministic Polynomial Time

NP-Hard Non-Deterministic Polynomial-Time Hard

1

Chapter 1. Introduction

1.1 Background

Today’s large volume of data is kept in conventional database (or operational) systems.

These systems are useful in performing the routine tasks for organizations. On the other

hand, business analysts realized the importance of these data. Due to competitive nature

of business they are motivated to take advantage of the data for the purpose of decision

making. However, the data which reside in conventional database systems are not in a

form suitable for analysis for the following reasons: the data is distributed over multiple

independent sources; the data is represented in inconsistent formats. The type of

software and hardware architecture differs from one source to another. In addition,

operational systems or OnLine Transaction Processing (OLTP) systems are designed to

efficiently respond to regular queries. The regular queries in operational systems are

simple queries accessing small numbers of records. In fact, the goal of OLTP systems is

to maximize transaction throughput. In contrast to OLTP queries the analytical queries

are complex and involved in aggregating large number of records which are

accumulated over several years. In order to overcome those weaknesses the Data

Warehouse concept was introduced (Inmon, 1992). Data warehouse is a service by

which incompatible and heterogeneous data are extracted from different operational

sources, transformed into a unified form and then loaded into a central and huge

repository. The aim of Data Warehouse is to easily and efficiently support decision

making and business analysis (Agrawal, 2005; Ponniah, 2001).

As mentioned the analytical queries are complex queries and therefore take a

considerably long time to be answered under normal circumstance. For example, a

2

query that asks for the sum of sales of a particular product category in a particular

country in the last decades may result in the calculation of millions of records.

Moreover, the executives of the organization require the result of analytical queries in a

short time so that they are able to make fast and proper decisions. As a result, improving

the performance of queries in a data warehouse environment is an essential need. One of

the common techniques for speeding up queries is utilizing pre-computed result. The

results are called materialized views and calculated in advance to submitting queries by

end users. In the relational database terminology view is a derived table computed from

a set of base tables on the fly (Teorey, Lightstone, Nadeau, & Jagadish, 2005). In the

materialized view approach, the query response time is saved up since instead of

calculating the complex queries through a large number of records the ready result is

returned in significantly shorter time. For example, a query which may be processed in

one day under the normal situation can be answered less than one hour through

materialized views.

The ideal choice would be pre-computing the results for all the possible queries and

storing them on disk (which is called materializing) so that each possible query can be

responded quickly. However, that is not a practical choice. Materializing all possible

views requires a great size of available disk space which is not supported by some

computer systems (Kumar & Ghoshal, 2009). Moreover, loading new data from

operational sources causes changes to the base table from which the views are already

computed. In order to avoid inconsistency between views and base table the views need

to be re-calculated. The task of computing the changes made to the base table and

applying them to the previously saved views is called view update or view maintenance.

The update window interferes with the working time of the system. Therefore, in order

to increase availability, minimizing the update time is desired. Materializing all the

possible views causes the update time to increase because the update process takes a

3

long time since all the views may need to be updated. Therefore because of the

mentioned limitations we are forced to select only a subset of view to be saved on disk.

Selecting the right set of materialized views is a crucial decision in designing a data

warehouse (Shah, Ramachandran, & Raghavan, 2006).

1.2 Motivation

The problem of selecting the right views to be stored on disk space is well studied in the

single objective form (see Table 2.3). Several methods like greedy, genetic algorithm,

simulated annealing have been applied to solve different variations of the problem. All

of these variations share a common characteristic which is the consideration of only one

objective function. The objective can be minimizing the query response time, update

time or even the weighted sum of these two primitive objectives. However, in the real-

world, the data warehouse designer might be interested in minimizing two problem

objectives simultaneously. This variation of the problem is called the multi-objective

materialized view selection problem (Dhote & Ali, 2009).

So far, few studies (Lawrence, 2006) have addressed the multi-objective view selection

problem. In this research, we investigate the materialized view selection problem

especially pertaining to the multi-objective variation of the problem. We study the

application of evolutionary multi-objective optimization algorithms in solving the two

objectives view selection problem.

1.3 Problem Statement

This research is about finding a set of solutions which gives a good trade-off between

two conflicting goals, that is: minimizing the total query response time and minimizing

the total update time subject to the constraints of available hard disk space for saving

the views. The following sub-topics discuss the problem statement in greater details and

4

describe the objectives and constraints of the problem. The research problem is formally

stated in Section 1.3.5.

1.3.1 Total Query Response Time

Having a set of materialized views; , the total time required for evaluating all possible

queries in the system; () can be calculated as below (Lawrence & Rau-Chaplin,

2006):

 () ∑ ()

 1.1

where Q is set of all queries, is a particular query, is the frequency of the query q

This equation applies, as long as some queries are posed often while some other queries

occur rarely, The () denotes the time needed for processing the query in the

presence of .

1.3.2 Update Time

Materialized views work like a cache system in the topic of memory management. In a

cache system, the frequently accessed data in main memory are duplicated in fast and

small capacity storage. Any future request for the data that has already been cached is

done through the cache rather than referring to the main memory. This reduces the

access time (Silberschatz, 1998).

In the cache technique, whenever the original data in main memory are modified, the

cached data needs to be also updated. Similarly, in the materialized view selection,

whenever the data warehouse is loaded, and the new records are inserted to the fact

table and cause changes, the views which have been derived before from the fact table

needs to be updated as well. Normally, in order to reduce disruption to the working

window of a data warehouse, the update process is done when the system is idle or at

night (Liang, Wang, & Orlowska, 2001; Theodoratos & Bouzeghoub, 2000).

5

Furthermore, when companies extend their operation hours, the update window

becomes shorter.

The total update time for a set of materialized views can be calculated as below

(Lawrence & Rau-Chaplin, 2006):

 () ∑ (

) 1.2

where is the frequency of updating view , (,) is the required time of updating

the materialized view in the presence of M.

1.3.3 Total Disk Space

The total size of disk spac required for saving a subset of views considered for

materialization; () can be calculated as below (Hung, Huang, Yang, & Hsueh,

2007):

 () ∑ ()

 1.3

where () is the size of the disk space required for storing view .

1.3.4 View Selection Problem

The problem of choosing a subset of views to be stored on disk is known as the

materialized view selection problem. In general, the view selection problem involves

minimizing one or two goal functions possibly subject to one or more constraints. The

view selection problem may be considered as a constrained optimization problem

(Dhote & Ali, 2009; Gou, Yu, & Lu, 2006) and it has been proven to be an NP-Hard

(non-deterministic polynomial-time hard) problem (Gupta, Harinarayan, & Rajaraman,

1997). NP-Hard problems are a class of problems at least as difficult as NP problems.

NP Problems, themselves, are a type of problem that is very difficult to solve (Wang,

Chang, & Cheng, 2009). According to the literatures (Hanusse, Maabout, & Tofan,

2009; Harinarayan, Rajaraman, & Ullman, 1996; Liang et al., 2001; Lin & Kuo, 2004;

Zhou, Wu, & Ge, 2008), there are many variations of the view selection problems and

6

they have been well studied. All of them can be classified in two main categories;

namely, a single objective view selection category or a multi-objective view selection

category.

1.3.5 Multi-Objective View Selection Problem

When two objective functions needs to be minimized simultaneously, we are dealing

with the multi-objective view selection problem (Dhote & Ali, 2009). While single

objective view selection problems received significant attention in the past and several

heuristic methods have been proposed for solving this class of problems (see Table 2.3)

the multi-objective view selection is rarely addressed in the literature and introduces a

broad area of research. The multi-objective view selection problem that is investigated

in this research is defined as below:

Select a subset, , of views among a set of all views, such that:

 () () minimized

and:

 () is satisfied

This problem can be stated as minimizing both the total query response time, () and

the total view update time, () such that total disk space, () for storing all views

is less than , a pre-defined size of the disk. In fact, , is the size of the allocated

disk space for saving all the views.

1.4 Evolutionary Multi-Objective Optimization

Evolutionary Algorithms are a type of heuristics which imitates biological evolution in

nature and are based on the Darwinian Principle of “natural selection”. In nature, at a

given time, several organisms co-exist and compete for obtaining limited available

resources. However, only strong and highly fit organisms will win the competition,

survive and reproduce. Evolutionary algorithms are a research area in computer science

7

and are increasingly applied to many complex optimization problems in several fields

such as: Medicine (Yang, Reinstein, Pai, Xu, & Carroll, 1998), Robotic (Zalzala &

Fleming, 1997), Engineering (Bowden, 1992) and Image Processing (Chen, Nakao, &

Arakaki, 1997). A conventional evolutionary algorithm works as follows: at first a real-

world problem solution must be encoded as a computer data structure (often an array of

binary values). The encoded solution is called an individual or chromosome. The

algorithm starts by random creation of the first generation. Then the individuals within

the current generation are evaluated by means of a fitness function to measure how good

they are. Each individual is assigned a score called the fitness value which reflects the

goodness degree of the individual. Thereafter, a selection operator will select

individuals with the highest fitness value among the whole population. Then crossover

and mutation operators are applied to the selected individuals as parents to produce the

new offspring. The offspring forms part of the new generation and the same procedure

will be repeated for the next generation until the termination criteria holds. The

termination criteria can be a convergence to a satisfactory solution or exceeding a pre-

determined number of generations. Figure 1.1 shows a general flowchart for an

evolutionary algorithm (Deb, 2001; Haupt & Haupt, 1997; Sivanandam & Deepa,

2009).

The single objective optimization problem is the minimization/maximization problem of

only one objective function in the presence of some constraints. So far a large amount of

effort has been devoted to the understanding, design (Coley, 1998; Michalewicz, 1996;

Sivanandam & Deepa, 2009) and application (Chen et al., 1997; Cohoon, Hegde,

Martin, & Richards, 1991; Nordvik & Renders, 1991; Schulze-Kremer, 1994; Yang et

al., 1998; Zalzala & Fleming, 1997) of single objective genetic algorithms.

8

Figure ‎1.1 Basic Evolutionary Algorithm’s Flowchart

However, in the real-world there exist some problems which naturally involve

optimization of multiple goals at the same time. These types of optimization problem

are different and are called the multi-objective optimization problem. In this kind of

optimization problem all the objectives must be taken into account simultaneously.

Furthermore, instead of a single optimal solution which is expected in a single objective

Start

Create Initial Random Population

Evaluate Fitness of Each Individual in Current

Generation

Stopping Criteria Finish

Apply Crossover and Mutation Operators

Yes

No

Select a Pair of Individuals for mating

Place the Resulting Offsprings to the New

Generation

New Generation is Full?

No

Replace the Current Generation with New

Generation

Yes

9

optimization we deal with a set of trade-off solutions each of which can be regarded as

the optimal solution. Most classical approaches for solving the multi-objective problem

transform the inherently multi-objective problem to the parametric single objective

problem and then applying the common methods designed for the single objective

problems. Such reduction ignores the fundamental difference between these two types

of problems and is highly dependent on the parameters chosen. Advantages of

evolutionary algorithms for solving multi-objective algorithms such as view selection

problem are as follows:

 The population based feature of these algorithms allows multiple solution of the

problem to co-evolve within a single run of the algorithm. This characteristic is

well suited to multi-objective problems where a set of solutions are desirable

rather than a single solution.

 Secondly, these algorithms introduce some sense of parallelism in solving the

problem since in a single run of the algorithm, the evolution process is

performed for several individuals in the population simultaneously and thus they

improve the overall performance.

 Evolutionary algorithms do not require much knowledge (such as gradient

evaluation) about the given problem. All the information they need is only the

objective function (Coello & Lamont, 2004).

10

1.5 Research Objectives

The objectives considered for this research are the following:

 Investigate the application of different evolutionary multi-objective algorithms

in order to solve the view selection problem.

 To compare the performance of different evolutionary algorithms with respect to

total query response time and total view update time subject to the constraint of

total disk space.

 To investigate the convergence, diversity and computational time of the

evolutionary multi-objective algorithms.

1.6 Research Scope

The data warehouse is a repository of integrated information extracted from several

source of operational systems and are made available for analytical queries for the

purpose of decision making. This research is focused on the study of the view selection

problem in a data warehouse environment only. Given a set of possible queries, and disk

space constraint, the goal of selection is to select a subset of views to minimize both the

total query response time and the total view update time simultaneously subject to this

constraint. There are two well-known schemas that are used as the data structure for

modeling data in a warehouse, called the star schema and the snowflake schema.

However, in this research the star schema is used as a data warehouse model because it

is more popular and efficient in data access (England & Powell, 2007; Han, Kamber, &

Pei, 2005). Furthermore it is simpler and more consistent than the snowflake schema (Itl

Education Solutions Limited, 2010; Rainardi, 2007) . For calculating the query response

time using a view the linear cost model which will be discussed in Section 2.9 is used.

Dimension hierarchies as logical arrangement of attributes in dimension tables provide a

11

navigational path for roll up and drill down queries. Some researchers in view selection

field ignore the issue of dimension hierarchies in solving the problem while other

researchers accommodate them in their problem statement. However, this research

investigates the view selection problem in the presence of dimension hierarchies (refer

to Section 2.6 for a discussion on dimension hierarchies). Two common structures are

found in previous works for logical organization of views. These are AND-OR view

graphs (Gupta & Mumick, 2005) and dependency lattice framework (Harinarayan et al.,

1996). This research is only based on the dependency lattice framework which is

suggested in (Harinarayan et al., 1996).The view selection algorithms can be static or

dynamic. In dynamic view selection the pattern of user queries changes over time while

it is fixed in static. In this research the investigated algorithm operate merely on the

static form of view selection. However, the static selection of views is also useful in the

starter phase of any dynamic algorithm. The view selection algorithms investigated in

this research will be evaluated against some problem instances. Each problem instance

is defined as a set of possible views (which includes view size, view update frequency

and query update frequency) as well as the relationships with them. The database for

problem instances is populated based on the Transaction Processing Performance

Council (TPC) (http://www.tpc.org) proposal which is a database generator and

extensively used in decision support research. The data are uniformly populated with

zero skew.

1.7 Research Methodology

Our methodology for this research is divided by the three following phases:

A. Problem based phase:

 To study the view selection problem fundamental and principles.

 To review different methods used for solving view selection problem.

12

 To review different variation of the problem addressed in the past.

 To examine different techniques for estimating the size of views.

B. Method Based phase:

 To study evolutionary multi-objective principles and fundamentals

 To identify and investigate well-known evolutionary multi-objective algorithms.

 To study the different performance metrics in order to assess the performance of

evolutionary multi-objective optimization algorithms. In particular, we are interested

to find out which metrics is suitable for evaluating evolutionary algorithms designed

to solve the view selection problem.

C. Development Phase:

 To define an appropriate way for representing the view selection problem solution

with respect to the evolutionary algorithm.

 To study different methods for dealing with problem constraints and adopting a

proper constraint handler to the problem

 To develop an application to implement the evolutionary algorithms as well as

implementing a framework for the definition of view selection problem instances

using Visual Basic

D. Analysis

 To assess different convergence, diversity and computational time of the

evolutionary algorithms applied to a set of problem instances of view selection

problem.

Figure 1.2 shows different phases of our methodology for this research.

13

Figure ‎1.2 Different Phases of Research Methodology

1.8 Thesis Outline

The current chapter is a summary of what is intended to be presented to the readers of

this thesis. However, the remainder of thesis is organized as the following chapters:

 ‎Chapter 2: Materialized View Selection

This chapter discusses principles and fundamentals related to the view selection

problem as well as the related works that has been done in this area. The chapter starts

with a background to the data warehouse concept. Then, some principles and definitions

in relation to the view selection problem are explained. Thereafter, the single and multi-

objective view selection problem is formally defined. The overview of related works is

divided into two categories: The works addressed by the single objective view selection

problem and the work pertinent to the multi-objective view selection problem.

 Chapter 3 :Evolutionary Multi-Objective Optimization

This chapter gives an introduction to the multi-objective problems principles;

evolutionary algorithms fundamentals as well as describing some well-known multi-

objective evolutionary algorithms intended to solve the general multi-objective

optimization problem. The chapter then continues by presenting the existing

Problem Based Framework Method Based Framework

Development

Analysis

14

performance metric for the performance assessment of evolutionary multi-objective

algorithm.

 Chapter 4:Methodology

In Chapter 4, the application of several multi-objective optimization algorithms to the

multi-objective view selection problem is discussed. The eight (8) different evolutionary

algorithms: WBGA, VEGA, NSGA, NSGA-II, SPEA, SPEA-II, MOGA, NPGA is

examined over a set of problem instances for the view selection problem.

 Chapter 5 : Results and Discussion

 This chapter presents the experimental result obtained by applying the algorithms over

the problem instances.

 Chapter 6 :Conclusion

This chapter is our conclusion of the work done in this research. The chapter gives the

recommendation for the most suitable algorithms which outperforms all the other

algorithms experimented with in solving the multi-objective view selection problem.

15

Chapter 2. Materialized View Selection

2.1 Background

Over the years, huge amounts of data has been collected in conventional database

systems in the form of relational tables, spreadsheets, documents, flat files or even

external data (Ponniah, 2001). This data has been scattered over multiple, independent

and heterogeneous data sources with different types of software or even hardware. For

example, one system may use the IBM hardware architecture while the other system is

based on the Mac hardware design. The Database Management System (DBMS) may

differ from Oracle to the SQL Server between these two different sources. Furthermore,

often, the data is stored in different databases and may include some inconsistencies and

incompatibilities. For example, in one source the length of measurement may be based

on the metric while in another system, the measurement may be based on the imperial

system. Again, encoding and naming conventions may differ.

Traditional database systems perform the normal daily operations of an organization.

For example, they generate invoice, print payrolls and bills, and carry out transactions

on bank accounts. In fact, the Online transaction processing (OLTP) systems have been

effective systems for the requirements they have been designed for and, organizations

are extremely dependent on this type of systems without which the wheel of business

will not turn (Ponniah, 2001).

On the other hand, business analysts realized the importance of the large volume of data

that has been collected on a regular basis. These data is useful for efficient decision

making (Lin & Kuo, 2004). These professional users are interested in detecting the

16

business trends in these data. For instance, the analyst may look for an answer to the

question: “why the total sales for the specific city and specific product have not been as

expected during last decade”. The information that analysts require is called strategic

information (Ponniah, 2001), and are used for the purpose of efficient decision making

by managers and executives. An example of a decision can be, establishing a new store,

or decreasing the price of a specific product.

However, the different nature and aims of OLTP systems may prevent analysts from

easily retrieving such kinds of information and thus they require a central, coherent,

integrated and homogeneous environment to perform their analytical queries.

As a promising response to this weakness, the data warehouse concept (Inmon &

Kelley, 1993) and On-line Analytical Processing (OLAP) systems was introduced. The

main idea of the data warehouse concept is to extract heterogeneous and inconsistent

data scattered over several operational databases, transform them into a consistent and

homogeneous form and load them to the central and standalone repository for the

purpose of decision making. Table 2.1 lists some of the key difference between OLTP

and OLAP systems (Ponniah, 2001).

Table ‎2.1 Differences Between OLTP and OLAP Systems

 “A Data Warehouse is a subject oriented, integrated, nonvolatile, and time variant

collection of data in support of the management’s‎ decisions.” (Inmon, 2005, p. 29).

Unlike conventional operational systems in which the data stored is based on a

particular application, data in the data warehouse is oriented to major business subjects.

 OLTP OLAP

Data Content Current values Historical values

Data structure Optimized for transactions Optimized for complex queries

Access type Read-Write Read Only

Response time Sub-seconds Several hours to days

Size MB-GB GB-TB

17

Examples of business subjects can be stores, products or customers as illustrated in

Figure 2.4 (Bhansali, 2009; Ponniah, 2001). Data warehouse is built by integrating

heterogeneous data from multiple operational systems (Han et al., 2005; Ponniah,

2001). The data warehouse is nonvolatile because in contrast to operational systems in

which records are deleted, modified or added, the data in the data warehouse is read-

only and the only changes that would occur in the data warehouse is the insertion of

new rows to the base table during periodical load from operational sources. As a result,

the data warehouse repository is always growing (Rob & Coronel, 2007). In order to

retain the history of the data, the previous records remain unchanged (Bhansali, 2009).

In operational systems, the value of a specific record reflects the current information. If

the value is updated by a transaction, the old value may be lost. For example, the

balance of a banking account implies the customer’s balance as of that moment and not

necessarily the balance of one week ago. But often, analysts need past information in

order to discern the trends. For example, an analyst may be interested in knowing the

buying pattern of a group of customer within a specific time frame and requires a

history of purchases that have been made by these customers in that period of time. The

data in the data warehouse consists of a series of snapshots that may be taken during a

period of 15 years, instead of a 3 months basis which is customary in business

operational systems (Khan, 2003) , and thus, tend to be very large and grow over time.

These data provide a historical perspective to analytical users. The time variant feature

is considered as a significant element of a data warehouse (Ponniah, 2001).

2.2 The Data Warehouse Architecture

The data warehouse building process starts by extracting autonomous data from

different data sources such as operational databases, flat files and webpages. Thereafter

these data are cleansed and filtered; any data inconsistencies are resolved. Examples of

18

inconsistencies can be the difference in encoding, naming conventions and units of

measurement. Thereafter, they are subsequently transformed to a common format, the

data are then loaded to a separate dedicated central database (Hobbs & Hillson, 1999).

This database will then be available for:

 End users

 Data mining tools

 Reporting tasks

The three main steps of building a common data warehouse called the Extract,

Transform, Load (ETL) process can be summarized as below:

 Extract: gathering raw data through several operational sources with diverse

formats

 Transform: cleaning , resolving inconsistencies and converting to the uniform

format

 Load: move the processed data to the central database.

Figure 2.1shows the general procedure for building a common data warehouse.

Figure ‎2.1 Data Warehouse Architecture

As a result of the periodical ETL processes, a central and integrated repository with a

huge amount of historical data collected during several years are made available to the

Operational

Source 1

Flat Files

Central

Repositoty

Extract

Transform

Load

Operational

Source 2

OLAP

Analysis

Data

mining

End User

Reporting

19

analysts allowing them to issue analytical queries efficiently and in a more convenient

manner (Ponniah, 2001).

The following are some of the advantages of a data warehouse (Limaye, 2009; Ye, Gu,

Yang, & Liu, 2005):

 A data warehouse provides decision makers with a consolidated environment to

access data which were difficult to obtain previously.

 By isolating decision support systems from operational systems, local processing at

OLTP systems remain un-affected

 A data warehouse can operate even when operational sources are unavailable

temporarily

The disadvantages of the data warehouse are as follows (Błażewicz, Kubiak, Morzy, &

Rusinkiewicz, 2003):

 Since the data warehouse stores large amount of data from multiple sources during

several years separate from the operational database, a big capacity of storage is

required for accommodating these data.

 After they have been loaded to the central database of a data warehouse, the data in

the operational sources are liable to change which will cause data inconsistency. In

order to keep the data in the data warehouse consistent with the source data,

periodical updates are performed. The frequency of the update is decided by the

administrator. Considering this weakness, one can conclude that the data

warehouse is not well suited for users who are interested to access current data.

20

2.3 Terminology

 Relational Model

The Relational model is a simple and powerful database model. The model

represents data in the form of two dimensional tables. Each table represents a real-

world object such as a place or a person. In other words, a relational database model

is based on a set of tables (Narang, 2006; Shenai & Krishna, 1992). An example of a

relational model for a sale system is shown in Figure 2.5

 Entity-Relationship Model

Introduced by (Chen, 1976) the Entity-Relationship (E-R) model is the most popular

conceptual model for designing database (Itl Education Solutions Limited, 2010).

The E-R model, as the name suggests views the real world as entities and

relationships between them. The entity is an object of interest such as person, place,

thing or concept. Figure 2.2 shows an example of an E-R model (Shenai & Krishna,

1992).

 Query

A query is a question asked by the user against the existing relations in the database.

For example, asking the total sales for each product type sold in each city in each

customer region constitutes a query. A sample query is shown in Section 2.7.

 Row, Tuple , Record

In database terminology, rows, tuples or records are interchangeable terms for

addressing a line of data within a table. Throughout this thesis, the terms row, tuple

and record are used interchangeably. As an example, each row of the tables in

Figure 2.5 is considered as a tuple or record (Norman, 2003; Telles, 2007).

 View, Pre-computed result or pre-aggregated result

In database theory view is a virtual table that is derived from a set of base tables

(Teorey et al., 2005). Therefore, the view defines a function from a set of base tables

21

to the derived table (Gupta & Mumick, 1995). The rows in view are computed from

underlying tables and in contrast to base tables are not necessarily stored in the

physical disk (Elmasri & Navathe, 2003; Ramakrishnan & Gehrke, 2002).

Thereafter, throughout this thesis, the term view, pre-computed result, and pre-

aggregated result are used interchangeably. Examples of views are shown

Figure 2.9.

 Materialized View

The view is called a materialized view if the view’s record is saved on disk (Gupta

& Mumick, 1995).

 Table or Relation

A table or relation is a two dimensional structure consisting of rows and columns.

For better understanding, the table can be imagined like a spreadsheet. The table

consists of all information related to a specific object (Adamski & Finnegan, 2007;

Telles, 2007). Throughout this thesis, the terms table and relation are used

interchangeably. An example of a table is shown in Figure 2.5

2.4 Dimensional Modeling

In operational systems data are commonly represented as an Entity Relationship (E-R)

model. Within this model each entity is represented by a table, the attributes of the

entities are shown as columns of the tables and the tables are connected together by

using the primary/foreign keys. In order to optimize storage in these systems, the

normalization procedure is applied to these tables in several forms. By keeping only one

copy of data, normalization helps to eliminate data redundancy in tables and hence

establish data consistency (Farrell, 2010; Hobbs & Hillson, 1999; Sumathi &

Esakkirajan, 2007). As an alternative approach to the popular entity relationship (E-R)

modeling mostly used in commercial database systems, and in order to meet the user

22

requirements of a data warehousing environment, a dimensional modeling approach is

used (Hobbs & Hillson, 1999). Dimensional modeling is a technique for the logical

design to support user queries in a data warehouse and improving the query

performance. Even though E-R modeling is advantageous in online transactional

systems where queries are short and simple (Petkovic, 2000) it is not well suited for

decision support systems in which the query efficiency and loading data are important

(Chaudhuri & Dayal, 1997).

Although normalization is considered as an appropriate technique in OLTP databases it

is not sufficient in OLAP systems for following reasons (Hobbs, Hillson, & Lawande,

2003; Nagabhushana, 2008) :

 They are too complex to be easily understood

A normalized entity-relationship diagram adds extra tables and relationship and thus

increases the complexity of the diagram. Therefore a normalized E-R diagram does not

have enough simplicity and is not user friendly. For example, a reader may compare the

simple star-like diagram in Figure 2.4 with the normalized E-R model in Figure 2.2.

 Users require Standard Query Language (SQL) knowledge to deal with normalized

data structures

Even for simple forms of queries the user needs to know SQL However, decision

makers and senior executives are not expected to learn programming codes.

 Normalized databases are not well optimized for analytical queries.

Analytical queries by their nature involve the aggregation of large numbers of records.

Processing such complex queries in normalized structures is slow and inefficient.

23

Based on the relational model, there are two most common schemas that are used as the

data structure for modeling data in a warehouse, called the star schema and the

snowflake schema (Ponniah, 2001).

Figure ‎2.2 Example of Normalized Entity Relationship Model

2.5 The Star Schema

The star schema is the most simple and natural way for a logical design of a data

warehouse (Parida, 2005) .The star schema, consists of two basic objects. One fact table

(placed in center of star) and many dimension tables (placed on points of star). The way

the fact table and dimension tables are connected together is similar to the star shape

(see Figure 2.3). The fact table and dimensional tables are connected together by means

of the primary and foreign keys. The primary key of a fact table is a composite key,

consisting of the primary keys from each dimension table. For example for the star

schema in Figure 2.4 the primary key of the Sales fact table is the composite key

consisting of CustomerID, StoreID, ProductID which are the primary keys in the

Customer, Store and Product dimension tables respectively. The fact table’s attributes

consist of two types; namely, measurements type attributes and the primary keys from

the dimensional tables. Often, the fact table is a deep table, that is, it includes large

amount of historical records. In contrast to the fact tables, dimensional tables do not

have too many records but instead, they are wide tables, which means they have large

number of attributes (Ponniah, 2001).

Store

Sales

Product

Acount

Account Type

Product Type

Customer

Individual

Customer

Corporate

Customer

24

Figure ‎2.3 Star-Like Modeling of Data Warehouse

Figure ‎2.4 Star Schema for Sales System.

Figure 2.4 shows a sample star schema for a sales system. It models a sales system

where products are sold to customers through a store. The sample fact tables and

dimensional tables are shown in Figure 2.5. The dimension tables describe the business

subjects such as Customer, Store, Product, while the fact tables store some

measurements about dimensions such as the amount of sales. The measurement attribute

in the fact table are often in the form of numerical values while the dimensional tables

usually include descriptive textual attributes. In a star schema each record in the fact

table corresponds to a single record in each dimension surrounded by it. For example,

each record in the fact table of Figure 2.5 represents the price of the specific product in

Fact Table

Dimension Table A

Dimension Table B

Dimension Table CDimension Table D

Dimension Table E

Fact Table

Sales

CustomerID

StoreID

ProductID

Price

Dimension Table

Product

ProductID

Type

Size

Dimension Table

Store

StoreID

City

Region

Dimension Table

Customer

CustomerID

City

Region

25

the product dimension table sold to a specific customer in the customer dimension table

at a specific store in the store dimension table. However, although the star schema is an

easy to understand and implement model, it increases the degree of data redundancy.

(Hobbs & Hillson, 1999; Hoberman, 2009; Ponniah, 2001).

Figure ‎2.5 Fact Table and Dimensional Tables

2.6 Dimension Hierarchies

The attributes in the dimension tables, usually form a hierarchy as a logical structure to

facilitate the roll up and drill down operations (see Figure 2.6). Roll up operation is a

series of user queries that navigates from detailed results to summarized result. Drill

down are the reverse operation of roll up in which a user issues a series of queries to

navigate from summarized results to more granular results (see Figure 2.7) (Han et al.,

2005). Within each hierarchy, a particular level is connected to more detailed level

below and less detailed level above (except the top and bottom level) (Parida, 2005).

Each level in the hierarchy indicates a specific granularity degree. Figure 2.6 depicts

one hierarchy for each dimension table of the sales system example in Figure 2.4. For

instance, consider the store dimension table where the attributes storeID, city, region

form a hierarchy as illustrated in Figure 2.6. Going up from storeID towards the Region

the data is summarized and vice versa. The notation All in Figure 2.6 indicates

aggregation of all records in the corresponding dimension.

26

Figure ‎2.6 Dimension Hierarchies for Sales System

Figure ‎2.7 Roll Up And Drill Down Queries

2.7 OLAP Query format

A sample SQL query for star schema is as below (Runapongsa, Nadeau, & Teorey,

1999):

SELECT SUM(Price), Customer.Region, Store.City, Product.Type

FROM Sales, Store, Customer, Product

GROUP BY Customer.Region, Store.City, Product.Type

In the select clause the calculation made is based on the numeric measurement attribute

in the fact table, and in the groups-by clause, each attribute is an aggregation level

picked from a dimension hierarchy. For example, in the above sample query, in the

group by clause, Region is selected from the dimension table Customer, City is selected

All

Region

City

CustomerID

All

Region

City

StoreID

All

Type

ProductID

Size

High Summarized

High Detailed

Customer

 Hierarchy

Store

 Hierarchy

Product

 Hierarchy

Query A : Total sales for All product sold to All customers through All stores

Query B: Total sales for All product sold to All customers through stores of each Region

Query C: Total sales for All product sold to All customers through stores of each City

High Summarized

High Detailed

Roll Up Query PatternDrill Down Query Pattern

High Summarized

High Detailed

27

from the dimension table Store and Type is selected from the dimension table Product

as illustrated in Figure 2.8. For simplicity, hereafter we denote this query as:

Sales (Region, City, Type)

Figure ‎2.8 Picking Up a Hierarchy Level from Each Dimension Hierarchy to Form a Group-By Query

If a star schema consists of different dimension tables and within dimension , there

exist different hierarchy levels, then the number of all possible combination of

group-by queries with this format is calculated as (Ahmed, Agrawal, Nandkeolyar, &

Sundararaghavan, 2007):

| | ∏

 2.1

where is the set of all possible group-by queries. The result of each of these queries

can be considered as a view and thus each query corresponds to a particular view and

therefore, the number of all possible views is equal to the number of the group by

queries, (| | | |). In the example shown in Figure 2.8, since in each dimension

hierarchy there are 4 different levels (| | ∏ ()
), therefore the number of all

possible views/queries is 64. Each time, the user submits a query; the query is one of

these possible queries. Hereafter throughout this thesis, it is assumed that whenever

All

Region

City

CustomerID

All

Region

City

StoreID

All

Type

ProductID

Size

High Summarized

High Detailed

Customer

 Hierarchy

Store

 Hierarchy

Product

 Hierarchy

4 Levels 4 Levels 4 Levels =64 Queries/View s 

28

a user requests a view by issuing a specific group-by query, the request is for the entire

view and not a part of it.

2.8 Dependency lattice

The set of all views can be structured as a lattice framework as introduced by

(Harinarayan et al., 1996) to display the relationship between different views (see

Figure 2.9). In that lattice, the relationship between views are expressed as partial order

denoted by . (Lawrence & Rau-Chaplin, 2006). Since there is a corresponding group-

by query for each view a dependency lattice which is made from equivalent queries of

views as depicted in Figure 2.9 can be constructed. This dependency lattice is shown in

Figure 2.10.

As an example, consider the dependency lattice for the sales system illustrated in

Figure 2.11. We denote the lattice by () where is set of nodes and is

set of directed edges. Each node in this lattice represents a particular view/group by

query. A directed edge () or if can be computed through . For

instance, in the sales system lattice of Figure 2.11, 5 since the view number 5 can

be computed from view number 1. By organizing the views as dependency lattice, the

problem of finding the right set of views can be reduced to the problem of finding the

proper set of nodes among all possible nodes in the lattice. There is a top and largest

view in the lattice, which represents the fact table and by using it every other view in the

lattice is computable. The data in the fact table are in the highest level of detail.

Similarly, the bottom and smallest view represents a view which includes only one

record. This record is the aggregation of all existing records in the fact table and is the

29

Figure ‎2.9 A Dependency Lattice Organized From All Possible Views

Figure ‎2.10 Dependency Lattice Organized From All Possible Group by Queries

most summarized view. This view can be computed from every other view in the lattice.

In fact, the smallest materialized ancestor of a view is used to answer a query unless the

corresponding view to that query is materialized.

Sore City Product Type Customer City Price

Kuala Lumpur Laptop Singapore 1500

Kuala Lumpur Laptop Paris 1500

Kuala Lumpur Desktop Singapore 1000

Kuala Lumpur Desktop Paris 1000

Los Angles Laptop Singapore 1500

Los Angles Laptop Paris 1500

Los Angles Desktop Singapore 1000

Los Angles Desktop Paris 1000

Store City Product Type Price

Kuala Lumpur Laptop 3000

Kuala Lumpur Desktop 2000

Los Angles Laptop 3000

Los Angles Desktop 2000

Store City Customer City Price

Kuala Lumpur Singapore 2500

Kuala Lumpur Paris 2500

Los Angles Singapore 2500

Los Angles Paris 2500

Product Type Customer City Price

Laptop Singapore 3000

Laptop Paris 3000

Desktop Singapore 2000

Desktop Paris 2000

Store City Price

Kuala Lumpur 5000

Los Angles 5000

Product Type Price

Laptop 6000

Desktop 4000

Customer City Price

Singapore 5000

Paris 5000

Price

10000

Fact Table

SELECT SUM(Price), Customer.Region, Store.City, Product.Type

FROM Sales, Store, Customer, Product

GROUP BY Customer.City, Store.City, Product.Type

SELECT SUM(Price), Store.City, Product.Type

FROM Sales, Store, Product

GROUP BY Store.City, Product.Type

SELECT SUM(Price) Store.City, Customer.City

FROM Sales, Store, Customer,

GROUP BY Store.City, Customer.Region,

SELECT SUM(Price), Product.Type, Customer.City

FROM Sales, Product, Customer

GROUP BY Product.Type, Customer.City

SELECT SUM(Price), Product.Type

FROM Sales, Product

GROUP BY Product.Type

SELECT SUM(Price), Customer.City

FROM Sales, Customer

GROUP BY Customer.City

SELECT SUM(Price), Store.City

FROM Sales, Store

GROUP BY Store.City

SELECT SUM(Price), Customer.Region, Store.City, Product.Type

FROM Sales, Store, Customer, Product

30

Figure ‎2.11 Dependency Lattice for Sales System

2.9 Linear Cost Model

The linear cost was proposed by (Harinarayan et al., 1996) who assumed that the time

for answering a query using view has a linear relationship to the number of records

in view (or alternatively the size of the view). i.e.:

 () | | 2.2

where () , is query response time for answering a query using view , and and are

constants. Hereafter, throughout this thesis we use linear cost model for computing the

query response time using a specific view. It is to be noted in this research, queries are

assumed to access all records in the view rather than the partial view

31

2.10 Total query response time

The total query response time is the time for answering all the possible queries as stated

earlier in Section 1.3.1 . It is to be noted that since query speedup is caused through the

help of materialized views, hence, the maximum query response time, occurs when

there is no materialized view; () . Similarly, when all views are

materialized, we have a minimum query response time, () , since for every

incoming query there is a pre-computed result.

 () 2.3

However the required time for answering query, q, in presence of a set of materialized

views, M, is calculated as following:

 () {

| |

| |
 2.4

 () 2.5

where | | is the number of records in view and is the set of materialized ancestor

for query . | | is the number of records in the fact table and () is the set of

ancestors for view v in the dependency lattice (Gou et al., 2006).

 Example 2.1 the Figure 2.12 shows a dependency lattice with the current set of

materialized views (the nodes are shown in gray), . The number of records

in each view is written in the nodes. Assuming that we intend to calculate the time

needed for answering a query which corresponds to view d. () is calculated

as below:

 () 2.6

 2.7

 () 2.8

32

Figure ‎2.12 A Sample Dependency Lattice with a Current Set of Materialized Views

where Ancestors(d) is a set of ancestors for view d in dependency lattice of Figure 2.12.

Note that the computation of () is based on the linear cost model suggested in

(Harinarayan et al., 1996).

2.11 Total View Update Time (or View Maintenance Time)

As mentioned before in Section 1.3.2 the total update time refers to the time required for

updating all the materialized views. It is to be noted that minimum update time ()

happens when there is no materialized view () and thus no update process

required. On the other hand, when all possible views are materialized (), all

views may need to be updated and therefore the time for updating views reach the

highest value ().

 2.9

Generally, there are two update policies and for both of them we use the fact table or the

smallest ancestor of views as a source of updating: these are: incremental update and re-

computational update (Shah et al., 2006)

4550

30

1

100

40

3035

F

a

b

c

d

e

g

h

33

2.12 View Size Estimation

The calculation of the query response time and the storage requirement of views need

the prior knowledge about the size of views as a parameter. The determination of the

exact and actual size of a view requires computing the view from the fact table and is

thus, an expensive exercise (Teorey et al., 2005). As a sub-problem of the view

selection problem, view size estimation addresses the issue of how the amount of disk

space required for storing a view can be predicted without actually computing and

saving it on disk. Two main objectives for view size estimation are accuracy and speed

of estimation. The methods used to perform the estimation may underestimate or

overestimate. Although overestimation is acceptable because they present a

conservative approach in managing disk space but underestimation is not desirable

(Nadeau & Teorey, 2001). In order to represent the error of estimation, the following

formula can be considered as denoted in (Nadeau & Teorey, 2001):

 2.10

According to (Shukla, Deshpande, Naughton, & Ramasamy, 1996) three different types

of methods can be used to estimate view sizes which are analytical methods, linear

sampling methods and probabilistic counting method.

2.13 View Selection Problem

In dealing with materialized views the following choices are considered based on

(Zhang, Yao, & Yang, 2001):

 Full materialization

As an ideal choice, we would like to save all possible views in the system on hard disk.

In terms of query response time, we will gain maximum acceleration because, for every

34

incoming query, there is a pre-computed result which can be used to answer the query.

However, in practice, this option is not feasible in some systems because storing all

possible views can take a large amount of disk space which may not be supported by

these systems. Moreover, materializing all views will cause the update process to take a

long time.

 No Materialization

By using this option, no views are materialized at all. Although the amount of disk

space used for storing the views would thus, be zero and no update process is required,

this option has the poorest performance in terms of query response time, since for every

incoming query we need to refer to the base table.

 Partial Materialization

In partial materialization only a subset of all possible views are selected to be

materialized. Hence, a balance may be achievable between the query response time,

update time and the size of disk space.

Figure 2.13 shows above three choices in a 2D space.

The question that arises here is, if we are going to select a subset of views to save on

disk space, which subset is the most appropriate one?(Horng, Chang, Lin, & Kao, 1999)

The answer is, the subset which most optimize our objectives function(s) while

satisfying our constraint(s) (Jamil & Modica, 2001). For example, Figure 2.14 shows

three view selection problem solutions with corresponding Q and U values. Of these

solutions, solution A is considered as the best solution since it has the minimum values

of U and Q

35

Figure ‎2.13 Full, Partial and No Materialization in a 2D space

.

Figure ‎2.14 Selecting the Best Trade-Off View Selection Problem Solution

View selection problems can be regarded as a search problem where the search space is

the set of all possible subset of views and the search goals is a particular subset which

minimizes one function(s) subject to constraint(s) (Jamil & Modica, 2001). The problem

is important to the design and optimization of data warehouses (Shah et al., 2006; Zhang

et al., 2001) and is considered as NP-Hard (Kumar & Ghoshal, 2009).

In order to select a subset of views two approaches are possible as follows (Jamil &

Modica, 2001; Talebi, Chirkova, & Fathi, 2009; Zhang & Yang, 1999a):

U
(M

)

Q(M)

P
artial M

aterialization

Umax

Qmax

Full Materialization

No Materialization

U(M)

Q(M)

(Q,U)= (3,3)

(Q,U)= (7,4)

(Q,U)= (9,7)

A={v1, v2, v4, v5}

B={v1, v2, v3}

C={ v1,v2 }

36

A) In an exhaustive search strategy all points in the search space needs to be

enumerated in order to find the optimal solution (if there exists any).

B) Adopting heuristic algorithms to deliver a near-optimal solution within reasonable

time.

In the first approach, we enumerate all | | candidates in order to find the best one

among all subsets of views. Although the optimal solution will be found by this search

method if it exists and the method is easy to implement, it takes a long time to find

unless the size of the search space is small. The time complexity for this method is

 (| |). However, in practice, we avoid this approach.

In the heuristic search method we try to find a near optimal solution by pruning the

search space and spending a reasonable time rather than carrying out an exhaustive

search in execution time (Zhang et al., 2001). If the true optimal solution cannot be

obtained in practice we can trade the optimality for efficiency. That means we sacrifice

the exact optimal solutions for obtaining near-optimal solution in reasonable time

(Dorigo & Stützle, 2004) .

According to the literature (Hanusse et al., 2009; Harinarayan et al., 1996; Liang et al.,

2001; Lin & Kuo, 2004; Zhou, Wu, et al., 2008), there are many variation of the view

selection problems and they have been well studied. All of them can be classified into

main categories; namely, a single objective view selection category or a multi-objective

view selection category.

2.14 Single Objective View Selection Problem

A single objective view selection problem is concerned with finding a proper subset of

all possible views such that one objective function (or combination of multiple

objectives) is minimized and constraints are satisfied as defined below:

37

Select a subset of views among the set of all view, such that:

Single Objective Function e.g. Q(M) or U(M) Minimized

Constraint e.g. DS(M)≤‎DS is satisfied

Table 2.2 is a list of the single objective view selection problem and its variations as

well as works which addressed that particular variation. Note that the last two variants

in Table 2.2 considers a linear combination (or weighted sum) of query response time

and update time as a single objective. In this case the multi-objective view selection

problem has been reduced to a single objective problem and single objective methods

are applied to it.

Table ‎2.2 Single Objective View Selection Problem Variations

Objective(Minimize) Constraint Works

Total query response time Disk Space Consumption

(Harinarayan et al., 1996)

(Kalnis, Mamoulis, & Papadias,

2002)

(Agrawal, Sundararaghavan,

Ahmed, & Nandkeolyar, 2007)

(Li, Talebi, Chirkova, & Fathi,

2005)

(Lin & Kuo, 2000)

Total query response time Update Time

(Liang et al., 2001)

(Uchiyama, Runapongsa, & Teorey,

1999)

(Boukra, Nace, & Bouroubi, 2007)

(Yu, Choi, Gou, & Lu, 2004)

(Gou, Yu, Choi, & Lu, 2003)

(Shukla, Deshpande, & Naughton,

1998a)

Disk space Consumption Total query response time (Hanusse et al., 2009)

Total update time Total query response time (Zhou, Wu, et al., 2008)

Combination of total query

response time and total update

time

Disk Space Consumption

(Lin & Kuo, 2004)

(Baralis, Paraboschi, & Teniente,

1997)

(Wang & Zhang, 2005)

(Zhang, Sun, & Wang, 2009)

(Yang, Huang, & Hung, 2002)

Combination of total query

response time and total update

time

Free

(Zhang et al., 2001)

(Horng, Chang, & Liu, 2003)

(Phuboon-ob & Auepanwiriyakul,

2007a)

(Zhang, Yao, & Yang, 1999)

(Yang, Karlapalem, & Li, 1997)

38

2.14.1 Benefit Function

Let , (see Figure 2.15) be a non-materialized view. The benefit gained after

materializing view (or adding to set) with respect to , the set of already

materialized views, is denoted by () and defined as below (Gupta & Mumick,

2005; Harinarayan et al., 1996):

 () () () 2.11

In the above equation, () is query response time for answering all queries in the

presence of set M of materialized views. () is the query response time for all

queries when view is added to the current set of materialized views. Note that

 () because by increasing the number of materialized views the query

response time does not decrease that is () ().

Indeed, the benefit of a non-materialized view is the amount of reduction in the total

query response time after materializing that view.

Figure ‎2.15 Benefit Calculation

2.14.2 Related Works for Single Objective View Selection Problem

Even though this research concentrates only on the multi-objective form of the view

selection problem but a number of prominent works in single objective area are also

overviewed.Table 2.4 lists different works which were carried out for the single

objective view selection problem as well as their performances.

V-M M

v1

v2

B(v1, M)

B(v2, M)

Set of non-materialized views Set of materialized views

39

One of the fundamental works in the area of materialized view selection has been done

by (Harinarayan et al., 1996).View dependency lattice which plays an important role in

the formulation of the view selection problem has been introduced for the first time in

this work. Gupta proposed a greedy algorithm which selects the most beneficial view

per unit of disk space at each stage and adds it to the set of already materialized views.

The authors prove that if the largest views take percent of the total allocated disk

space for view materialization, the benefit of the selected set of views is at least

() times the benefit of the optimal set of views. The time complexity of the

algorithm is () where is the number of materialized views and is the number

of all candidate views. Hereafter, throughout this chapter this algorithm is called BPUS.

The paper by (Gupta & Mumick, 1999) is one of the early paper that considers the view

selection problem when the objective is minimizing the total query response time and

the constraint is the time needed for updating the materialized views. As the view

selection problem under update time constraint comes with non-monotonic benefit

function, the problem becomes intractable and the greedy algorithm which has been

adopted in (Harinarayan et al., 1996) is not applicable. In this case this makes the

problem more difficult. In order to satisfy the monotonicity property (Bauer & Lehner,

2003; Gupta & Mumick, 1997), for the special case of the problem the authors have

partitioned the lattice into sub-lattices called inverted tree set. Then a greedy algorithm

is used to select the best inverted tree set among others at each stage.

The authors in (Shukla et al., 1998a) designed an algorithm called PBS (Pick By Size)

which selects the views based on increasing orders of their size and return the solution

with the same total query response time as in BPUS. The time complexity of the PBS is

much less than the BPUS algorithm and is () where is the number of

possible views.

40

In (Shukla, Deshpande, & Naughton, 2000), as a novel study, the problem of selecting

views to materialize through a single cube has been extended to multiple cubes in which

several fact tables exist. As expected, the multi-cube view materialization seems to be

significantly more complex than the conventional single cube version and single cube

algorithms must be extended for the multi-cube case. To deal well with the multi-cube

case, three different special algorithms called, SimpleLocal, SimpleGlobal and

ComplexGlobal were devised. Their results show that applying the multi-cube algorithm

to this kind of problem leads to a noticeable performance improvement rather than the

traditional single cube view selection algorithms.

(Baralis et al., 1997) proposed two techniques for reducing the size of the search space

by keeping only relevant views and removing the views which have the lesser effect on

the optimal solution.

(Derakhshan, Dehne, Korn, & Stantic, 2006) introduced an application of simulated

annealing approach in solving the view selection problem. Comparing to a heuristic and

genetic method the proposed approach provides significant improvement in quality

(sum of total query response time and total update time) of obtained solution.

(Lee & Hammer, 1999) investigated the view selection problem when the structure of

views is the OR view graph (Gupta & Mumick, 2005) using genetic algorithm. They

compared their proposed algorithm with optimal solutions. The optimal solution is

calculated using an exhaustive search algorithm for an example of 20 views. The results

indicate that the proposed algorithm yields a solution within 90% of the optimal

solution quality while exhibiting a linear increase in execution time by increasing the

number of views.

The authors in (Yu, Yao, Choi, & Gou, 2003) proposed a constrained evolutionary

algorithm but unlike (Lee & Hammer, 1999) they have a novel stochastic ranking

41

procedures instead of a direct integration of penalty function for handling the constraint.

Their algorithm was evaluated against two heuristics and another evolutionary

algorithm. The result shows the proposed algorithm performs better than the compared

algorithms in terms of minimizing the total query response time and the feasibility of

solution.

In (Gou et al., 2006) an A* algorithm has been developed to solve the view selection

problem under disk space constraint. It was claimed that the proposed algorithm

improved the solution quality when the disk space limit is small and in that case the

greedy BPUS does not work as expected. They used two pruning technique called H-

Pruning and F-Pruning in order to reduce the size of the search space and therefore

accelerate the A* algorithm. Their theoretical and experimental results show the

suggested algorithm is powerful, efficient and flexible to this problem.

(Zhang et al., 2001) combined the pure evolutionary algorithm and heuristic algorithm

to form a hybrid algorithm. Their experimental result shows that the hybrid algorithm

reduces the total query response time and total update time significantly. Furthermore,

their study shows either of these algorithms were found to be impractical or

unsatisfactory.

In (Nadeau & Teorey, 2002), Algorithm Polynomial Genetic Algorithm (PGA), was

presented as an alternative in order to improve the time complexity and scalability of the

Algorithm in BPUS. The proposed algorithm has polynomial time complexity rather

than exponential time complexity of the BPUS algorithm. In addition, with increasing

number of dimensions PGA performs better.

The authors of (Kalnis et al., 2002) explored the application of randomized search

heuristic, namely, Iterative Improvement (II) and Simulated Annealing (SA) for solving

the view selection problem. They modeled the search space as a graph of connected

42

state. Every node represents a feasible set of views subject to the update/query time

constraint. They found that randomized algorithms are applicable to problems with

bigger sizes, can be adopted for several variations of the problem and provide near-

optimal solution in limited time.

The authors in (Kotidis & Roussopoulos, 1999) proposed a dynamic view selection

system, called Dynamat. This system constantly monitors incoming queries and

dynamically materializes views at multiple levels of granularity. The system unifies the

selection of views and the updating of views in one problem and considers both disk

space and update constraints. Another promising feature of Dynamat is it does not

materialize the entire view but only a segment of the view that are relevant to queries.

The experiment shows that Dynamat outperforms optimal static view selection

algorithm.

(Ashadevi & Balasubramanian, 2008) developed a framework for materialized view

selection in order to achieve the best combination of query response time and update

time subject to disk space constraint. The views with a high query frequency are

selected as initial materialized views. The proposed method, removes the views with

low query frequency and high disk space requirements from the pool of already selected

views. No comparisons to similar works were carried out.

In (Wang & Zhang, 2005), The proposed method works in two stages. In the first stage,

the initial content of individuals is produced by using a greedy algorithm. The greedy

algorithm selects the most beneficial views subject to a dedicated disk space. In the

second stage, the solution is improved by using genetic algorithm. In order to deal with

disk space constraint during the genetic algorithm process, a repair method is used.

Their experimental result shows that the proposed algorithm is superior to heuristic and

canonical genetic algorithm.

43

In the paper by (Kumar & Ghoshal, 2009), in order to decrease the high time

complexity of the BPUS algorithm, an improved algorithm, called RLGA was suggested.

RLGA selects views to materialize through a reduced dependency lattice instead of a

complete lattice which is used in BPUS. The authors claimed that, the high time

complexity of the BPUS algorithm is because of the high number of computation of the

benefit functions. According to their experiments, in comparison to BPUS, RLGA

selects good views with fewer re-computations and thus improves the execution time.

The authors in (Li et al., 2005) introduced the Integer Programming model in order to

obtain an exact global optimal solution. The experimental result shows the practicality

of the proposed approach in problem instances with realistic sizes.

The authors in (Talebi et al., 2009), have modeled the view selection problem as an

Integer Programming (IP). An IP model was used to obtain the guaranteed optimal

solutions. In addition, a heuristic method was proposed in order to find the competitive

inexact solution in the cases that an exact method is not applicable. The authors

experimentally compared the proposed approach against works in (Harinarayan et al.,

1996) and (Shukla, Deshpande, & Naughton, 1998b) and delineate the applicability

areas of the proposed and compared approaches.

In (Horng et al., 1999) the researchers applied Genetic Algorithm combining with Local

Search (GLS). While the local search finds good solutions in a small region of the

search space, the genetic algorithm finds good solutions for the whole search space.

After the creation of the initial population and after applying the crossover and mutation

operator the local search is used to improve the solution. Although no comparison to

other works was done their result shows that GLS can steadily reach a good solution in a

few seconds.

44

(Horng et al., 2003) proposed a genetic local search algorithm for solving the view

selection problem. From the experimental results they found the proposed approach

performed well in comparison to researchers’ previous work called YKL97

The work in (Aouiche, Jouve, & Darmont, 2006) takes advantage of clustering, a data

mining technique, to decide clusters of similar views. Also a greedy algorithm was

proposed to select a set of views. Their experimental result shows the proposed strategy

caused substantial gain in performance.

(Bauer & Lehner, 2003) and (Ye et al., 2005) focused on solving the view selection

problem in a distributed data warehouse environment. Their study shows that the

proposed approach yields significantly better results than greedy algorithm directly

applied to each node.

In (Lin & Kuo, 2000), the authors adopted a simple genetic algorithm for the view

selection problem. A reverse version of the BPUS algorithm was used as a repair

method in order to deal with the problem constraint. Whenever the requirement exceeds

the view buffer size, the reverse greedy algorithm removes the less beneficial view from

the current materialized views set until the disk space constraint was satisfied. The

experimental result shows that the genetic algorithm is superior to BPUS algorithm.

(Lin & Kuo, 2004) examined the application of genetic algorithm in solving the view

selection problem. For dealing with infeasible solutions, a greedy repair method was

incorporated. According to the experimental result the proposed genetic algorithm

generates a better solution than the greedy algorithm.

The authors in (Boukra et al., 2007) tried to improve the work in (Yu et al., 2003). They

proposed an evolutionary algorithm which replaces the crossover and mutation by an

45

ant colony algorithm. The experimental result shows that the performance of proposed

algorithm is within 90% of the optimal solution while generates feasible solutions.

In (Zhang et al., 1999), explored using genetic algorithm for the selection of views

based on a multiple global processing plan (Sellis, 1988; Shim, Sellis, & Nau, 1994;

Zhang et al., 1999). They studied the performance of genetic algorithm and other

heuristics. Their results reveal that in terms of performance and evaluation cost the

combination of genetic algorithm and heuristic algorithm works better than using only

one of them. However, they concluded that the genetic algorithm outperforms heuristics

algorithm.

(Zhang & Yang, 1999b) addressed dynamic view selection issues. A set of algorithms

for the dynamic view selection were proposed. In addition, a framework was developed

for dynamic materialized views. The experimental work shows that the introduction of

genetic algorithm to the problem may decrease the total cost (a combination of total

query response time and total update time)

Several static and dynamic algorithms were proposed in (Fan, 1997). The proposed

static algorithms share the greedy skeleton of the algorithm in (Harinarayan et al., 1996)

and differs only in how the benefit function was defined. The dynamic algorithm

consisted of admission and replacement algorithms. The admission algorithm works like

a static algorithm. If the query response time of a specific query exceeds a threshold, the

admission algorithm finds the best view to be materialized. As a replacement algorithm,

the LRU (Least Recently Used) strategy is adopted. The simulation work was done by

comparing the static and dynamic algorithms against several different data warehouses.

The result shows that the performance of the proposed static algorithms are close to

algorithm in (Harinarayan et al., 1996), and are much faster. However the dynamic

algorithms did not work as expected probably because of two reasons: first locality and

46

second lack of overall performance due to using a combination of admission and

replacement algorithms.

(Mami, Coletta, & Bellahsene, 2011) modeled the view selection problem as constraint

satisfaction problem (CSP) (Russell & Norvig, 2009) and applied the constraint

programming approach to solve the problem. The experiments show that the proposed

approach provides better performance than the genetic algorithm subject to solution

quality in limited time. The quality of the obtained solution was measured in proportion

to the combination of total query response time and total update time. The authors also

showed that their approach support scalability with increasing number of views.

In (Yin, Yu, & Lin, 2007), a dynamic method was addressed for solving the view

selection problem. The proposed method uses the greedy algorithm, BPUS to select the

primary set of materialized views. Decision for admission and replacing view is made

based on the ratio of the query frequency over view size, i.e.

 ()
 , and the history of

incoming views within a certain period of time, i.e. , . However, no

experimental study has been presented.

(Lawrence & Rau-Chaplin, 2006) investigated dynamic view selection. They studied

BPUS and three randomized techniques (iterative improvement, simulated annealing

and two-phase optimization). The experimental result shows that BPUS perform better

than three randomized techniques. However, when the number of dimensions increases,

the computational cost of the BPUS algorithm is too high and is thus impractical.

The authors in (Qiu & Ling, 2000) investigated the issue of pruning the search space

prior to applying the view selection algorithm. They proposed two methods, called

functional dependency filter and size filter in order to filter out large number of

unhelpful views. Their test shows impressive result compared to other works.

47

The authors of (Agrawal, 2005) proposed two heuristic algorithms as well as a 0-1

integer programming for the materialized view selection issue. The heuristic and integer

programming algorithms were aimed to solve different versions of the view selection

problem. They also addressed the issue of view size estimation. Their findings show

that the solutions which are returned by heuristic algorithms are very close to the

optimal solution.

In (Shah et al., 2006), the authors proposed a hybrid approach for solving the view

selection problem. The basic idea of their approach is to partition the view dependency

lattice into two partitions, static partition and dynamic partition. The static views are

selected from more detailed views and the dynamic views are selected from the more

aggregated views. For selecting both static and dynamic set of materialized views they

proposed a greedy algorithm. The proposed approach was compared to the Dynamat

system (Kotidis & Roussopoulos, 1999). The result shows that average query and

update time saving of the suggested method is higher than Dynamat.

(Hung, 2001) presented similar proofs as that in (Karloff & Mihail, 1999) to show that

the optimality degree of BPUS (total response time of greedy solutions /total response

time of optimal solution) can be as bad as

 where is the number of all

possible views and higher than

 as stated in (Karloff & Mihail, 1999).

Table 2.4 summarizes different works carried out with respect to the single objective

view selection problem as well as their performances.

48

Table ‎2.3 Different Works for Single Objective View Selection Problem

Methods Proposed for Solving Single Objective View

Selection Problem
Works

Greedy Algorithm

(Harinarayan et al., 1996)

(Gupta et al., 1997)

(Gupta & Mumick, 1997)

(Nadeau & Teorey, 2002)

(Wang & Zhang, 2005)

(Uchiyama et al., 1999)

(Dhote & ALi, 2007)

(Aouiche et al., 2006)

(Bauer & Lehner, 2003)

(Ye et al., 2005)

(Yu et al., 2004)

(Kumar, Haider, & Kumar, 2010)

(Agrawal et al., 2007)

(Lin & Kuo, 2000)

(Zhou, Xu, Shi, & Hao, 2008)

(Fan, 1997)

(Chan, Li, & Feng, 2001)

(Yin et al., 2007)

(Serna-Encinas & Hoyo-Montano,

2007)

(Yousri, Ahmed, & El-Makky,

2005)

(Ligoudistianos, Theodoratos, &

Sellis, 1998)

(Shah et al., 2006)

(Chan, Li, & Feng, 1999)

(Yang et al., 2002)

A* Algorithm

(Gupta & Mumick, 1999)

(Gou et al., 2006)

(Gou et al., 2003)

49

Simulated Annealing

(Derakhshan et al., 2006)

(Kalnis et al., 2002)

(Phuboon-ob & Auepanwiriyakul,

2007a)

(Zhou, Xu, et al., 2008)

(Lawrence & Rau-Chaplin, 2006)

(Zhou, Wu, et al., 2008)

Genetic Algorithm

(Lee & Hammer, 1999)

(Yu et al., 2003)

(Nadeau & Teorey, 2002)

(Wang & Zhang, 2005)

(Horng et al., 1999)

(Lin & Kuo, 2004)

(Boukra et al., 2007)

(Lin & Kuo, 2000)

(Zhou, Xu, et al., 2008)

(Zhang et al., 1999)

(Zhou, Wu, et al., 2008)

Particle Swarm Algorithm (Sun & Wang, 2009)

Integer Programming

(Talebi et al., 2009)

(Agrawal et al., 2007)

(Agrawal, 2005)

(Talebi et al., 2009)

(Agrawal et al., 2007)

Memtic Algorithm
(Zhang et al., 2009)

(Horng et al., 1999)

(Horng et al., 2003)

Table ‎2.4 Different Works for Solving Single Objective View Selection and Their Performance

Paper Performance

(Harinarayan et al.,

1996)

The proposed greedy algorithm finds near optimal solution with O(k.n
2
)

time complexity where k is number of views to be selected and n is

number of all possible views

(Gupta et al., 1997)

The time complexity of proposed R-Greedy algorithm is O(Km
2
) where k

is number of structures to be selected and m is number of all possible

views.

(Gupta & Mumick,

1997)
A polynomial time heuristic presented

(Nadeau & Teorey,

2002)

The time complexity of the proposed algorithm is O(dk
2
l) in which d is

number of dimension tables and k is number of views and l is number of

views in dependency lattice. The space complexity is O(dk
2
l).

(Wang & Zhang, 2005)
The proposed algorithm delivers solution with less cost (Q(M)+U(M))

than (Gupta & Mumick, 1997) and (Horng et al., 2003)

(Uchiyama et al., 1999)
The proposed algorithm, PVMA, provides significantly better results than

BPUS in (Harinarayan et al., 1996) in large lattices.

(Aouiche et al., 2006) The presented strategy guarantees a substantial gain in performance.

(Bauer & Lehner,

2003)

The distributed greedy algorithm outperforms than greedy algorithm

which directly applied to the each node

(Ye et al., 2005)

In comparison to applying central methods on individual nodes, the

proposed approach in distributed data warehouse is far better in terms of

both query response time disk space usage.

(Kumar et al., 2010) Proposed algorithm, PVGA, gives significant reduction in execution time.

(Agrawal et al., 2007)

Heuristic methods find near optimal solutions for some problem instances.

The execution time of heuristic method are linear with problem size and

less than the that of integer programming.

(Lin & Kuo, 2000)

In comparison to BPUS, the proposed algorithm reach lower Q(M) when

the allocated disk space is less than 30% percent of S(V). However, for

disk space allocation more than 30% the Q(M) is same.

(Zhou, Xu, et al., 2008) Randomized algorithm outperform than traditional greedy Algorithm .

50

(Fan, 1997)

Although the proposed static algorithm performs close to the BPUS

algorithm and even executed faster but their dynamic did not act well as

expected

(Ligoudistianos et al.,

1998)

Comparing to exhaustive search, The heuristic algorithm explores a small

fraction of the search space and gives the near optimal solution in most of

the cases. The r-Greedy algorithm explores more states than heuristic

algorithm to find the near optimal solution.

(Shah et al., 2006)

Average query and update cost saving of the suggested method is higher

than Dynamat (Kotidis & Roussopoulos, 1999). Also, the method requires

small number of replacements and eventually makes an optimal balance

between query response time and update time.

(Gupta & Mumick,

1999)

Experimental results exhibits optimal solution in most of the problem

cases and for the other cases it delivers near optimal solutions

(Gou et al., 2006)
Their theoretical and experimental results show the suggested algorithm is

powerful, efficient and flexible to this problem.

(Derakhshan et al.,

2006)

Comparing to a heuristic and genetic method the proposed approach

provides significant improvement in quality (sum of total query response

time and total update time) of obtained solution.

(Kalnis et al., 2002)

Randomized algorithms are applicable to problem with bigger sizes , can

adopted to several variations of the problem and provide near-optimal

solution in limited time.

(Phuboon-ob &

Auepanwiriyakul,

2007a)

total time for update and query response in hybrid algorithm less than both

total time in deterministic and Simulates Annealing Algorithm.

(Zhou, Xu, et al., 2008)

Randomized algorithm outperform than traditional greedy algorithm in

solving view selection problem. Even, the quality of the solution attained

by the synthetic algorithm has more quality than simple genetic algorithm.

(Lawrence & Rau-

Chaplin, 2006)

BPUS perform better than three randomized techniques. However, when

the number of dimensions increases, the computational cost of the BPUS

algorithm is too high and thus impractical.

(Zhou, Wu, et al.,

2008)

Synthesis algorithm outperforms Genetic Algorithm especially in the

quality of solutions disk space usage.

(Lee & Hammer, 1999)

The proposed algorithm yields a solution within 90% of the optimal

solution quality while exhibits a linear increase in execution time by

increasing the number of views.

(Yu et al., 2003)
the proposed algorithm performs better than compared algorithms in terms

of minimizing total query response time and feasibility of solution

(Nadeau & Teorey,

2002)

The proposed algorithm has polynomial time complexity rather than

exponential time complexity of BPUS algorithm. In addition, with

increasing number of dimensions PGA performs better.

(Wang & Zhang, 2005)
The proposed algorithm is superior to heuristic and canonical genetic

algorithm

(Horng et al., 1999)
Although no comparison to other works carried out but their result shows

that GLS can steadily reach to a good solution in a few seconds

(Lin & Kuo, 2004)
the proposed genetic algorithm generates a better solution than the greedy

algorithm

(Boukra et al., 2007)
the performance of proposed algorithm is within 90% of optimal solution

while generates feasible solutions

(Lin & Kuo, 2000) that the genetic algorithm is superior to BPUS algorithm

(Zhou, Xu, et al., 2008)

Randomized algorithm outperform than traditional greedy algorithm in

solving view selection problem. Even, the quality of the solution attained

by the synthetic algorithm has more quality than simple genetic algorithm.

(Zhang et al., 1999)

In terms of performance and evaluation cost the combination of genetic

algorithm and heuristic algorithm works better than using only one of

them. However, they concluded that the genetic algorithm outperforms

heuristics algorithm

(Sun & Wang, 2009)
The PSO based algorithm reach better performance than traditional

algorithms (Heuristic Algorithm and Genetic Algorithm)

(Talebi et al., 2009)

The authors experimentally compared the proposed approach against

works in (Harinarayan et al., 1996) and (Shukla et al., 1998b) and

delineate the applicability areas of the proposed and compared approaches.
(Agrawal, 2005) Their findings show that the solutions which are returned by heuristic

51

algorithms are very close to the optimal solution

(Zhang et al., 2009)
The proposed MA-Based algorithm works better than heuristic and genetic

algorithm

(Horng et al., 2003)
The proposed approach performs well in comparison to author’s previous

work called YKL97

(Agrawal et al., 2007) heuristic methods find solution close to the optimal solution

2.15 Multi-Objective View Selection Problem

When two objective functions needs to be minimized simultaneously, we are dealing

with the multi-objective view selection problem (Dhote & Ali, 2009). The single

objective view selection problems received significant attention in the past and several

heuristic methods proposed for solving this class of problems (see Table 2.3).While the

multi-objective view selection problem introduces a broad area of research, it is rarely

addressed in the literature. The multi-objective view selection problem is defined as

stated in Section 1.3.5.

2.15.1 Related Works for Multi-Objective View Selection Problem

The paper by (Lawrence, 2006) is one of the early papers that considers the multi-

objective view selection problem in which both the query response time and the update

time needs to be minimized simultaneously under the disk space constraint. All of the

previous researches reviewed in this chapter involving both query response time and

update time were carried out by converting the pure and original multi-objective

problem to the reduced linear combination of two objectives as a single objective

problem. In the work by Lawrence (2006), two non-elitist well-known multi-objective

evolutionary algorithms, Multiple Objective Genetic Algorithm (MOGA) and Niched-

Pareto Genetic Algorithm (NPGA) were adopted to solve the view selection problem. In

order to deal with constraints two methods have been chosen. The first constraint

handling method integrates the constraint into the objective and defines the dominance

notation in such way that an infeasible individual is always dominated by a feasible

individual. The second one allows the infeasible offspring to be created and utilize a

52

repair function to convert an infeasible individual to a feasible one. In most of the

problem instances these two Multi-Objective Evolutionary Algorithms (MOEA) work

similarly but in some cases with high skew the NPGA performs better than other. The

experiment shows the proposed algorithm delivers competitive solution in comparison

with BPUS. However, the obtained result was not assessed using a performance metric.

In addition, monotonicity is an important requirement for greedy heuristics to deliver

reasonably good solutions (Bauer & Lehner, 2003; Gupta & Mumick, 2005). However

the authors did not present any proofs that the combination of total query response time

and total update time as a benefit function in BPUS satisfies the monotonicity property.

2.16 Summary

The analytical queries in data warehouse are complex queries which require the

aggregation of large numbers of records. One of the common ways for accelerating the

analytical queries is using views as a pre-calculated result of queries. Since

materializing all possible views is not possible, in practice a subset of views is selected.

In selecting views two goals are taken into account: minimizing the total query response

time and minimizing the total view update time. The view selection problem can be

defined in single objective or multi-objective form.

This chapter started with some background information about the area in which the

view selection problem arises. Thereafter, some preliminary principles were presented.

Two forms of view selection problems were formally defined, together with a number

of related works for each of the forms.

53

Chapter 3. Evolutionary Multi-Objective

Optimization

3.1 Introduction

Optimization is a procedure of finding and comparing different solutions from a set of

possible values until no better solution is found. Measuring how good a solution is done

by means of an objective function. These objectives for example can be the efficiency

of a process, product reliability or the cost of production (Deb, 2001).

When the problem involves optimizing (either minimizing or maximizing) only one

objective function, it is called single objective optimization problem. So far a significant

amount of study has been devoted to techniques for optimization of single objective

problems. These techniques may consist of deterministic search strategies or heuristic

based approaches (Coley, 1998).

However, many real-world problems inherently include multiple objectives which must

be optimized simultaneously. In some cases the objectives may even be conflicting, that

is, trying to optimize one objective in our direction of interest cause the other objective

value to change in contrast to the interest and vice versa. This type of optimization

problem is called the multi-objective optimization problem. The multi objective

optimization can be considered as a general form of single objective optimization

problem.

In the presence of multiple objectives, the optimization process cannot concentrate on

individual objectives and here we are seeking a set of equal solutions in order to balance

54

between the multiple objectives although some of them may be conflictive. A particular

solution may be a very good solution subject to one objective but returns a poor value

for another objective and vice versa. For example when you are planning to buy a

laptop computer, two distinct goals are imaginable: computational power of laptop and

price of the laptop. One desires to maximize the computation power while minimize the

price as much as possible. The objectives are conflictive objectives since by choosing

powerful laptops the price increases and by selecting the cheap laptop, the computation

power drops. A set of solutions for the problem is shown in Figure 3.1. When only

computation power matters solution 5 would be the optimal solution while if price is

considered as the only objective, then, the optimal solution is solution 1. In fact, we are

interested in solutions that make a good compromise between these two conflictive

objectives. Solutions 1 and 5 define the two extreme points, while between these two

there are some solutions that form trade-off solutions. All solutions in Figure 3.1 are

equally good. Comparing any two of these solutions, when the first solution is better

that second solution subject to first objective, it is worse subject to other objective. For

example, solution 3 is computationally more powerful than solution 2 but cost more

than solution 2.

Objective 1: Price (to be minimized)

O
b

je
c
ti

v
e

 2
:

C
o
m

p
u
ta

ti
o
n
a
l
P

o
w

e
r

(t
o
 b

e
 m

a
x
im

iz
e
d
)

S
olution 1

S
olution 2

S
olution 3

S
olution 4

S
olution 5

Figure ‎3.1 Multi-Objective and Conflictive Optimization Problem

55

In contrast to single objective problems where a single best solution is desirable, in

multiple objective problems there is no single optimal solution and instead we deal with

a number of optimal solutions called the Pareto Optimal Solutions. The image of pareto

optimal solutions in the objective space is called the Pareto Front (Talbi, 2009). Similar

to pareto optimal solutions, no single solution in the pareto front is preferable to another

(Deb, 2001).

Due to lack of suitable methods the earliest approach for solving multi-objective

problems were artificially converting the problem into a single objective problem and

then applying the methods originally designed for solving single objective problems.

However, although, theoretically, all multi-objective problems may be transformed to

some form of single objective problems, such reduction ignores the fundamental

difference between these two classes of problem (Deb, 2001).

Evolutionary algorithms as nature-inspired methods are now becoming more popular

especially in solving complex problems with a large search space. They are based on

the Darwinian theory of Evolution (survival of fittest) in which the fittest individuals

survive and produce the next generation. Evolutionary computation consists of several

branches as shown in Figure 3.2 and forms a broad area of research. Many books (Bäck,

Fogel, & Michalewicz, 1997; Deb, 2001; Goldberg, 1989; Holland, 1975; Michalewicz,

1996; Mitchell, 1998), conferences (Genetic and Evolutionary Computation

COnference GECCO and IEEE Congress on Evolutionary Computation CEC) and

journals ('Evolutionary Computation Journal' published by MIT Press, 'Transactions on

Evolutionary Computation' published by IEEE and 'Genetic Programming , Evolvable

Machines' published by Kluwer Academic Publishers and IEEE Transactions on

Systems, Man, and Cybernetics published by IEEE) are dedicated to this topic.

56

Figure ‎3.2 Evolutionary Algorithms Branches

An Evolutionary algorithm uses a population of potential solutions to the problems in

each run. In classical or mathematical optimization methods, only one solution is

returned after several point-to-point iterations and in each iteration the solution is

supposed to be improved as compared to the previous one. In such methods a

preference vector is assigned to objectives prior to solving the problem. Since in these

methods there is no potential for dealing with several solutions at the same time they

may not be appropriate for multi-objective problems. Furthermore some problems are

too complex to be well solved by traditional techniques (Coello & Lamont, 2004;

Coello, Lamont, & Veldhuizen, 2007; Deb, 2001; Sumathi, Hamsapriya, & Surekha,

2008).

In converse to the classical methods, the population-based feature of evolutionary

algorithms allows multiple solutions for the problem to co-exist simultaneously within a

single run. This feature is well suited for the nature of multi-objective problem in which

a set of solutions are expected. However, In the case of the single objective problem, all

members of the population converge to identical solutions to the problem.

Furthermore, since in each population of the evolutionary algorithm multiple solutions

to the problem evolved at the same time some sense of parallelism is observed in these

algorithms. This capability helps them to be computationally quick in searches (Branke,

Deb, Miettinen, & Slowinski, 2008; Deb, 2001, 2010).

Evolutionary Algorithm

Genetic Algorithm

(GA)

Genetic Programming

(GP)

Evolution Sterategies

(ES)

Evolutionary

Programming (EP)

Learning Classifier

Systems (LCS)

57

In addition, evolutionary algorithms do not require gradient information in their

working process. The only knowledge they require is the objective function and

therefore can be applied to a variety of applications (Coello & Lamont, 2004).

This chapter presents the principle and fundamentals of multi-objective optimization.

Then, the evolutionary methods that are proposed for solving the multi-objective

problems are described. Finally, the performance metric for assessment of evolutionary

algorithms is explained.

3.2 Multi-Objective Optimization Principles

In order to understand multi-objective optimizations a series of useful definitions are

required. These definitions provide a background for study and analysis of the multi-

objective optimization problems. We start by discussing a formal definition of multi-

objective optimization problem.

3.2.1 Multi-Objective Optimization Problem Definition

Each multi-objective optimization problem comes with at-least two objective function,

each of which either to be minimized or maximized. Most of the problems include some

constraints which restrict the feasible area of solutions. The constraint function can be

in an equation or inequality form. Formally the multi-objective optimization problem

can be formulated as below:

Find the vector (

)

Such that Minimize/Maximize ()

Subject to: m inequality constraints: ()

And: p equality constraints: ()

where () is the i
th

 objective function and is the number of objective functions.

Each objective is a function from to , that is,
 . The set forms

decision variable space while forms the objective space. Each objective takes one

58

point from the decision space to the objective space (see Figure 3.3) (Coello et al.,

2007; Deb, 2001; Engelbrecht, 2007; Talbi, 2009).

Figure ‎3.3 Decision Variable Space Versus Objective Function Space

The goal is to find a vector that can optimize the objective functions while satisfying

the problem constraints. The default inequality constraint is based on less than.

However, the greater than form can be converted to less than by multiplying the

function with -1. Likewise, the maximization objective function can be converted to a

minimization objective function. The solution that satisfies all constraints is called the

feasible solution.

3.2.2 Dominance Relation

Dominance is a fundamental concept in dealing with multi-objective optimization. This

relation is used to compare two different solutions with respect to multiple objectives.

The dominance concept is defined as follows:

Definition 3.1. The solution is said to dominate solution if the following

conditions hold:

X1

X2

F1

F2

x1, x2

f1, f2

Decision Variables Space Objectives Space

59

1. is no worse than subject to all objective functions values

2. is strictly better than subject to at least one objective function.

It is to be noted that worse and better notation depends on the form of the objective

functions. In minimization sense the objective function, worse (better) means greater

(less) than while in maximization of the objective worse (better) means less (greater)

(Alba, Blum, Isasi, Leon, & Gomez, 2009; Deb, 2001; Koziel & Yang, 2011; Talbi,

2009; Tan, Khor, & Lee, 2005).

Given two different solutions and one of these situations happens:

1. dominates or

2. dominates or

3. does not dominate nor does dominates

The situation number 3 implies that if does not dominate , then does not

necessarily dominate . As an example, consider the objective space for a two

objective problem as shown in Figure 3.4. Both objectives are assumed to be in

minimization form. If was the only objective, the solution would be a single

global optimal solution. Similarly, in the presence of only objective the solution

would be a global optimal solution. Here, we can observe how dominance concept

enables us to make a comparison between two different solutions in multi-objective

space (Wiak & Juszczak, 2010; Xiaopeng, 2007).

Comparing solution and , based on definition 3.1 we can conclude that

dominates because:

60

1. () () and () ()

2. () ()

Figure ‎3.4 A Set of 7 Solutions in Objective Space

As another instance consider solutions and . does not dominate because:

 () ()

Thus, condition 1 does not hold. Also, does not dominate according to condition

1, since:

 () ()

 Therefore, solutions and are considered incomparable or non-dominated by each

other. As the dominance concept provides a way for comparing two different solutions

subject to multiple objectives, it is used by most multi-objective optimization methods

(Burke & Kendall, 2005; Coello et al., 2007; Deb, 2001).

X1

1 2 3 4 5 6 7

1

2

3

4

5

6

7

X2

X3

X4

X5

X6

X7

Minimize

M
in

im
iz

e

F2

F1

61

3.2.3 Non-Dominated set of solutions

Let us continue with example of Figure 3.4. The solution does not dominate and

 also does not dominate thus solutions and are non-dominated with respect

to each other because one cannot say which solution is better than the other. In other

words, these two solutions are not comparable together. Also, (and) , (and

) have the same property as well. In order to find the set of all pairs of solutions that

have such a property, we can compare all possible pairwise combinations of solutions.

For the current example, this set is as indicated below:

 () () ()

Any two solutions in the set do not dominate each other. Any solution that

is not included in this set may be dominated by at least one solution in this set. The

solutions belonging to this set have preference to all other possible solutions and are

called non-dominated set of solutions. (Burke & Kendall, 2005; Deb, 2001;

Michalewicz & Fogel, 2004)

Definition 3.2 If is a set of solutions, the set is called the non-dominated set of

solutions if all solutions that belong to are not dominated by any solution in .

The Figure 3.5 shows the non-dominated () and dominated set () for the

mentioned example in Figure 3.4.

 is called the pareto-optimal set if is the entire search space (Deb, 2001). The image

of pareto optimal solutions in the objective space is called Pareto Front (Talbi, 2009).

The pareto front for two different search spaces has been illustrated in Figure 3.6. On

the left part of Figure 3.6 both the objectives are in minimization form while on the

right part both objectives are in maximization form.

62

Figure ‎3.5 Classification of Non-Dominated and Dominated Set for Example in Figure 3.4

Figure ‎3.6 Pareto Front Curves for Two Different Search Spaces

3.2.4 Non-dominated Sorting (or Pareto ranking)

Although most of the topics on multi-objective evolutionary algorithm discussed in

Section 3.3 only require the best non-dominated subset of solutions there exist some

algorithms that need classifications of solutions space in several different levels of

domination. The best non-dominated set of solutions falls into level 1. In order to find

the other levels, first, the solutions of level 1 are removed from the population and then

the non-dominated solutions of the remaining population are found by running the same

algorithm. These non-dominated solutions form the level 2 solutions. In order to

identify level 3 of the solutions, similar to the previous step, the level 2 solutions are

removed from the population and then the non-dominated solution finding algorithm is

X1

1 2 3 4 5 6 7

1

2

3

4

5

6

7

X2

X3

X4

X5

X6

X7

Minimize

M
in

im
iz

e

F1

F2

Dominated

Non-

Dominated

F1

F2

F1

F2

Maximize

M
a
x
im

iz
e

Minimize

M
in

im
iz

e

P
areto Front

P
areto Front

Search Space
Search Space

63

re-executed. The subsequent levels are also found in the same way until there are no

solutions left in the population

The Figure 3.7 shows the result of non-dominated sorting for the example of Figure 3.4.

Figure ‎3.7 Non-Dominated Sorting For Solution Set of Figure 3.4

3.3 Evolutionary Multi-objective Algorithms

Evolutionary algorithms are search methods inspired from nature to solve complex

problem with large search space. Some interesting features of this technique make them

popular and motivate researchers to study in diverse areas of applications as alternative

to classical methods as described earlier.

This section aims to provide an overview of a number of well-known evolutionary

algorithms designed for handling multi-objective optimization problems. Although this

section mainly concerns multi-objective algorithms, but, since evolutionary multi-

objective algorithms are designed based on the standard single objective genetic

algorithm principle, for better understanding, an introduction to simple genetic

algorithm is presented first.

X1

1 2 3 4 5 6 7

1

2

3

4

5

6

7

X2

X3

X4

X5

X6

X7

Minimize

M
in

im
iz

e

F1

F2

Level 1

Level 2
Level 3

64

3.3.1 Genetic Algorithm

Genetic algorithm (GA) is a computer program that mimics biological evolution in

nature where the fittest living organisms will win the competition for available

resources and produce the next generation. They are known as a robust search and

optimization technique specially for finding approximate solution for complex problems

with a large search space. The genetic algorithm concept was first introduced by John

Holland in the University of Michigan (Holland, 1975). Today, the field of genetic

algorithm and corresponding applications has received significant attention in literature

(Gen & Cheng, 1999). Moreover, there are many books (Bäck, 1996; Burke & Kendall,

2005; Coello et al., 2007; Deb, 2001; Gen & Cheng, 1997, 1999; Goldberg, 1989;

Haupt & Haupt, 1997; Michalewicz, 1996; Mitchell, 1998; Sivanandam & Deepa, 2009;

Yu & Gen, 2010), journal (IEEE Transactions on Evolutionary Computation published

by IEEE and Evolutionary Computation published by MIT Press) and conferences

(Genetic and Evolutionary Computation Conference (GECCO) and IEEE Congress on

Evolutionary Computation(CEC)) devoted to this topic. The flowchart shown in

Chapter 1 (Figure 1.1) presents a general procedure for a simple genetic algorithm. A

conventional genetic algorithm breaks into several cycles called generations. The initial

generation is a population of potential random solutions to the problem. Each solution is

called an individual. In each generation all individuals in the population are evaluated

by means of a fitness function to measure how good they are. Then a selection

mechanism is used to select the fittest individuals. Thereafter, crossover and mutation

operators are applied to the selected individual in order to produce the offspring and

these offspring forms the new generation. The same process is repeated in the next

generation. The evolution terminates once the stopping criteria is met. The evolution

cycle is illustrated in Figure 3.8.

65

Figure ‎3.8 Evolution Cycle for Genetic Algorithm

Every genetic algorithm consists of the following:

 Representation(or encoding) : a way for expressing a real-world problem into a

computer data structure

 Initialization: a number of initial guesses to the problem

 Genetic Operators (selection, mutation and crossover): methods for choosing

good solutions, mixing parts of good solution and altering some part of a solution

 Fitness function : a way for calculating how good a solution is

 Termination Condition: when to stop the execution of the Genetic Algorithm

3.3.1.1 Vocabulary of Genetic algorithm

Genetic algorithm borrows terminology from genetic science. Here, some related terms

are defined as following:

 Phenotype: a potential real-world solution to the problem. It refers to the

observable appearance of an individual. The mapping from genotype to phenotype in

called decoding (see Figure 3.9).

 Individual or chromosome: representation of problem solution as a computer

data structure.

Population

Evaluation

Selection

Genetic Operations

Initial Population

Offspring

Most fit Parents Fitness Values

66

 Population : A collection of individuals

 Genotype: refers to the genetic structure of individual. Mapping from phenotype

to genotype is called encoding (see Figure 3.9)

 Gene: the smallest unit of a chromosome is called a gene. The gene encodes a

particular feature of organism.

 Allele: A specific value for a gene is called the allele.

(Bagchi, 1999; Chakrabarti & Cox, 2008; Coello et al., 2007; Donoso & Fabregat,

2007; Engelbrecht, 2007; Gen & Cheng, 1997; Larose, 2006; Mitchell, 1998; Reeves &

Rowe, 2002)

Figure ‎3.9 Real World Space versus Genetic Space

Example 3.1 In order to give a better understanding of how genetic algorithm works we

use the following simple single-objective optimization example in the next sections:

Minimize () ()

Subject to: ()

 ()

3.3.1.2 Representation

In genetic algorithm, representation means encoding a real-world problem solution,

called the phenotype, to the computer data structure, called the genotype or

chromosome. Representation is regarded as a key issue and fundamental step in

designing every genetic algorithm (Gen & Cheng, 1999). The common data structures

Real World Space
Genetic Space

Encoding/Representation

Decoding

0 1 1 0

Genotype/Chromosome/Individual
Phenotype/Problem Solution

Gene

0/1=Allele

67

are of fixed length array of bits, strings or real values. Amongst these, the array of

binary values defined by Holland (1975) is the simplest and most used encoding form

(Sivanandam & Deepa, 2009; Zalzala & Fleming, 1997). Choosing a proper

representation is an important decision in designing a good genetic algorithm as it

affects the performance of the genetic algorithm (Zhang & Tsai, 2007). In fact, the type

of representation depends on the problem (Huang, Wunsch, Levine, & Jo, 2008) and

may vary from one problem to other problem according to the problem characteristic.

The Figure 3.10 shows a structure of a binary encoding for the Example 3.1. An array

of binary values is used for encoding a real number variable as a solution to the example

problem. The size of the array depends on the expected level of precision. For this

example, we allocate 10 binary cells for the array. According to the problem

specification, the domain length for the problem is (). Thus, the distance

between -1 and 1 is divided by equal size steps. The decoding procedure from

the array of bits to a real-world solution is as follows:

 Convert the binary number to the decimal number

() (∑

)

 Adjust the value

 ()

Figure ‎3.10 A Sample Representation

3.3.1.3 Initialization

Usually the genetic algorithm starts with a population of random generated individuals

as a first generation. Therefore individuals in the first population may have a low fitness

0 1 1 0 0 1 1 0 0 1

10 bits

68

value as compared to the consequent generations. The quality of the initial population

has a significant impact on the performance of the genetic algorithm. The initial

population must be evenly distributed over the search space to increase the population

diversity (Li, Jia, Sun, Fei, & Irwin, 2010). However, there are other intelligent

alternatives to form a better initial population such as (Miettinen, Neittaanmäki,

Mäkelä, & Périaux, 1999) :

 A previously saved set of good solutions.

 A set of solutions suggested by a human expert.

 A set of solutions which are returned by a heuristic program.

A sample initial population with 10 individuals for Example 3.1 is shown in

Figure 3.11. The population size is an important factor that must be decided during the

design of a genetic algorithm (Michalewicz, 1996). It indicates the number of

individuals which exists within a population. Too small a population size lacks diversity

and may cause the genetic algorithm to get stuck in the local optima by converging too

quickly and may prevent the genetic algorithm to reach the global optimal solution. On

the other hand, too large a population size slows down the genetic algorithm since the

computation time will then increase (Ahn, 2006; Raphael & Smith, 2003; Tzafestas,

1999). Thus, the population size must be carefully tuned to a tradeoff value between

efficiency and effectiveness (Reeves & Rowe, 2002).

Figure ‎3.11 A sample random initial population with 10 members

0 1 0 1 1 0 1 0 1 1

1 1 1 0 1 1 1 1 0 1

1 1 0 1 1 0 1 1 1 0

1 1 0 1 1 0 1 1 1 1

0 1 0 1 1 1 0 1 1 1

1 0 0 1 0 1 1 1 1 0

1 0 1 1 1 0 1 1 1 0

1 0 1 0 1 0 1 0 1 1

1 0 1 1 0 1 1 1 1 0

1 0 1 0 1 1 0 1 1 0

69

3.3.1.4 Operators

The genetic algorithm includes three operators called selection, crossover and mutation.

The operators are applied to individuals of current population in order to produce a new

offspring for the new generation. Figure 3.12 shows how the genetic operators act on

the current population. In this section we will describe the selection, crossover and

mutation operators.

 Selection

Selection is a process of choosing two parents to breed the new offspring based on the

Darwinian principle of natural selection (Gen & Cheng, 1999). Normally, the fitter

individuals are given more chance to be selected since they are more likely to produce

good children. The selection pressure is defined as the degree of tendency (or

probability) to select the best individuals in the population. With more selection

pressure more individuals with higher fitness values are favored by the selection

operator. If the selection pressure is too small the convergence slows down and if it is

too high the genetic algorithm may prematurely converge to a local optimal solution

and fail to reach the global optimal solution. In fact, a proper balance between these two

is required. The magnitude of the selection pressure has a significant effect on the

convergence speed of the genetic algorithm (Diaz-Gomez, 2007; Haupt & Haupt, 1997;

Kaylani, 2008; Sas Institute, 2003; Sivanandam & Deepa, 2009; Vonk, Jain, & Johnson,

1998). Often, a low pressure is selected in the early stages of evolution to cover wide

parts of the search space and at the end of the evolution the selection pressure is

decreased to narrow the search space (Gen & Cheng, 1999). Several forms of selection

have been proposed but common methods of selection include the random selection,

roulette –wheel selection, tournament selection and ranking selection (Alba &

Dorronsoro, 2008; Blickle, 1997; Eiben & Smith, 2008; Engelbrecht, 2007; Freitas,

2002; Gendreau & Potvin, 2010; Gorunescu, 2011; Haupt & Werner, 2007; Lee & El-

70

Sharkawi, 2008; Reeves & Rowe, 2002; Shukla, Tiwari, & Kala, 2010; Sivanandam &

Deepa, 2009; Talbi, 2009; Yu & Gen, 2010).

Figure ‎3.12 Genetic Operators: Selection, Crossover and Mutation

 Crossover (Recombination)

Crossover is a genetic operator which takes two parent individuals as operand and

exchange parts of them to produce two offspring which share some features with their

parents (Negnevitsky, 2004). The crossover operator comes in several forms such as

single point, multi-point and uniform. In the single point crossover in its traditional and

simplest form, a single position of the chromosome, called the crossover point, splits the

entire individual into two parts and the parts after the point are swapped to create two

new offsprings. Figure 3.13 illustrates the single point crossover for two individuals

which are designed for Example 3.1. In the multi-point crossover, multiple crossover

points are used to divide the chromosome into more than two parts and corresponding

0 1 0 1 1 0 1 0 1 1

1 1 1 0 1 1 1 1 0 1

1 1 0 1 1 0 1 1 1 0

1 1 0 1 1 0 1 1 1 1

0 1 0 1 1 1 0 1 1 1

1 0 0 1 0 1 1 1 1 0

1 0 1 1 1 0 1 1 1 0

1 0 1 0 1 0 1 0 1 1

1 0 1 1 0 1 1 1 1 0

1 0 1 0 1 1 0 1 1 0

0 1 0 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1 0

Selection

0 1 0 1 1 0 1 1 1 0 1 0 1 1 1 1 0 1 1 1

Mutation

1 1 0 1 1 0 1 1 1 0 1 0 1 1 0 1 0 1 1 1

Crossover

Offspring 1 Offspring 2

Current Population

Genetic Operators

New Population

71

parts from the two individuals are exchanged. For instance, in a two point crossover as

shown in Figure 3.14, two crossover points divide the chromosome into three parts and

the middle part located between two points are exchanged between two parents

(Achenie, Venkatasubramanian, & Gani, 2002; Laplante, 2003; Sivanandam & Deepa,

2009).

The crossover point is often randomly chosen between and where is the length of

the chromosome (Laplante, 2003; Sivanandam & Deepa, 2009).

Figure ‎3.13 Single point crossover

Figure ‎3.14 Two Points Crossover

Generally, the crossover operation is performed with the probability of which is also

called the crossover rate. Normally, the crossover rate is set to more than 0.5. If there

are no crossovers the children are exact copies of their parents (Haupt & Haupt, 1997;

Mitchell, 1998; Sivanandam & Deepa, 2009; Sumathi et al., 2008; Yu & Gen, 2010).

 Mutation

Mutation as unary operator is applied to each offspring after crossover. The operator

alters a gene value in random position of a chromosome. Mutation rarely happens in

nature, similarly, in GA, the mutation operator takes place with only a small probability,

0 1 0 1 1 1 0 1 1 1

1 0 1 1 1 0 1 1 1 0

Crossover Point

0 1 0 1 1 0 1 1 1 0

1 0 1 1 1 1 0 1 1 1

Crossover Point

Before Crossover After Crossover

Parent 1

Parent 2

Child 1

Child 2

Swapping

0 1 0 1 1 1 0 1 1 1

1 0 1 1 1 0 1 1 1 0

Point 1

Before Crossover After Crossover

Parent 1

Parent 2

Child 1

Child 2

Point 2

0 1 0 1 1 0 1 1 1 1

1 0 1 1 1 1 0 1 1 0

Point 1 Point 2

72

 , called the mutation rate, typically between 0.001 to 0.01 (Negnevitsky, 2004).

Figure 3.15 shows how the mutation operator modifies the individual of Example 3.1.

The mutation operator (Gong & Zhao, 2008) acts like a random walk in the search

space (Pedrycz & Gomide, 1998) and plays a significant role in maintaining population

diversity (Engelbrecht, 2007; Sivanandam & Deepa, 2009).The goal of the mutation

operator is to extend the search space by introducing a new solution which has not been

discovered before and thus prevents the genetic algorithm to trap into a local optima

(Negnevitsky, 2004). If crossover is responsible for the exploitation of the

characteristics of the parents in order to obtain better children, then, the mutation

operator is responsible for the exploration of the search space for diversity (Sivanandam

& Deepa, 2009). For a binary representation, the uniform mutation is performed by

flipping gene values at randomly chosen positions as illustrated in Figure 3.15

(Engelbrecht, 2007).

Figure ‎3.15 Mutation Operator

3.3.1.5 Fitness Function (or evaluation function)

The fitness function is used to measure how good an individual is. The greater the

fitness value, the smaller is the distance of the solution to the optimal solution.

In the case of a single objective optimization, the fitness function may have a direct

relationship to the problem objective (with some adjustments). In order to calculate the

fitness value for an individual its genotype is first converted to the phenotypic

equivalent. Then the fitness function maps the phenotype to a real number. That real

number is the fitness of the individual. In other words, the individuals are evaluated

using their phenotype but not their genotype (Chakrabarti & Cox, 2008; Lee & El-

Sharkawi, 2008; Rennard, 2006; Yanushkevich, 2004; Ziman, 2003).

0 1 0 1 1 1 0 1 1 1Original Individual Mutated Individual1 1 0 1 0 1 0 1 1 1

Before Mutation After Mutation

01

73

For the Example 3.1 the fitness function can be defined as following:

 () () () 3.1

However, in contrast to the single objective problems, in multi-objective optimization

problems, defining fitness function so that individuals in a population can be compared

is not an easy task (Sivanandam & Deepa, 2009). A simple approach is to convert the

multiple objectives into a single objective and then treat the problem as a single

objective problem.

Since the fitness function must be calculated thousands of times (for every chromosome

in the population at each generation), and is therefore regarded as a computational

bottleneck of the genetic algorithm, it is recommended that the function be a fast

computed one and thus should not be a computationally complex function.

(Champandard, 2003; Goodman, 2009). Conventionally, the fitness function returns a

positive value. However, in case the value is negative the fitness function can be

adjusted by some fitness scaling methods such as :Linear Scaling , Sigma Scaling or

Power Law Scaling (Lee & El-Sharkawi, 2008).

3.3.1.6 Termination Condition

Evolution in nature never stops but in computer we need to stop the genetic cycle

sometime (Yu & Gen, 2010). The criteria for stopping genetic algorithm is called the

termination condition (Cox, 2005).The genetic algorithm stops when at least one of the

pre-defined termination conditions are satisfied. The condition may be the following

items (Chen, 2002; Engelbrecht, 2007; Gen & Cheng, 1999; Reeves & Rowe, 2002;

Sivanandam & Deepa, 2009; Yu & Gen, 2010):

 Reach a satisfactory result

 Maximum number of generations exceeded.

 Elapsed running time exceeded the predetermined value.

 Small amount of improvement observed in last generations.

74

 Fixed number of fitness evaluation reached

 Population convergence (when fitness values for all individuals within

population are identical)

3.3.2 Elitism

Evolutionary multi-objective optimization algorithm can be classified into two main

groups; non-elitist algorithms and elitist algorithms. The idea of elitism was first

introduced by Jong (1975) . Elitism is a mechanism to preserve good individuals of the

current generation by saving them in a separate secondary population called an archive

and forwarding them to the next generation (Bui & Alam, 2008; Drechsler & Drechsler,

2002). The archive stores a number of best solutions encountered since the start of the

execution of the genetic algorithm (Talbi, 2009). Elitism ensures that good solutions

that has been found will not be lost unless a better solution is discovered (Deb, 2001).

The addition of the elitism feature to the evolutionary multi-objective optimization

provides a monotonically non-decreasing performance (Branke et al., 2008; Talbi,

2009). Using the elitism capability, it has been demonstrated that the genetic algorithm

converges to the global optimal solution in some problems (Rudolph, 1996).

In the single objective optimization, the identification of an elite solution from the

population is an easy task. The individual with the highest fitness value (for

maximization problem) will be selected as the elite solution. However, discovering elite

solutions in the presence of multiple objectives is not as simple as the single objective

case. In such area, the concept of domination as a remedy enables us to sort the

individuals in the population to different groups. The individuals who form the first

group of the non-dominated set are considered as the elite solutions. Note that in

contrast to the single objective optimization where there is only one elite solution, here

we deal with a set of elite solutions which are equally important (Deb, 2001).

75

In the non-elitist algorithm no explicit form of keeping the best found individuals for

the next generation is foreseen while the elitist-algorithms take advantage of such

feature in order to reach a faster convergence toward the pareto front and more precise

approximation of the pareto front shape (Talbi, 2009).

3.3.3 Non-Elitist Algorithms

The evolutionary multi-objective algorithms tend to be discussed hereafter are divided

into two section: non-elitist algorithms and elitist algorithms. In the current section the

algorithms, Weight Based Genetic Algorithm (WBGA), Vector Evaluated Genetic

Algorithm (VEGA), Non-dominated Sorting Genetic Algorithm (NSGA), Niched Pareto

Genetic Algorithm (NPGA) and Multi-Objective Genetic Algorithm (MOGA) is

explained.

3.3.3.1 Weight Based Genetic Algorithm

The Weight Based Genetic Algorithm (WBGA) (also called HLGA) was proposed by

Hajela and Lin in (Hajela & Lin, 1992). In this method, the objective functions, is

multiplied to a weight coefficient to form a weighted sum of objectives. However, in

contrast to the simple weighted sum approach where a predefined fixed weight vector is

used, WBGA encodes a weight vector to each chromosome in addition to the normal

decision variable and allows weight coefficients to be evolved as well. Therefore,

instead of finding a single solution for a fixed weight vector a population of individuals

with variable weight vectors is maintained in parallel to reach the diverse set of pareto

optimal points in a single run. The diversity of solutions is preserved in WBGA in two

ways: In the first way a niching method is applied to the weight vector part of the

individual while in the second way, selected subpopulations are evaluated based on pre-

determined weight vectors similar to the VEGA approach. The advantage of WBGA is

its low complexity and only a minor modification of the simple objective approach is

required to convert the simple objective method to WBGA. The disadvantage of the

76

algorithm is when one objective is in minimization form and other objective is in

maximization form the fitness function becomes unduly complex (Coello et al., 2007;

Deb, 2001; Konaka, Coit, & Smith, 2006; Tan et al., 2005; Zitzler & Thiele, 1999).

3.3.3.2 Vector Evaluated Genetic Algorithm

Vector Evaluated Genetic Algorithm (VEGA) (Schaffer, 1985) was first introduced by

Shaffer in the mid-1980s (1984, 1985). VEGA is considered as the early efforts of using

genetic algorithm for solving multi-objective optimization problems (Nedjah &

Mourelle, 2005) .VEGA differs from a simple genetic algorithm only in the way the

selection is performed (Nedjah & Mourelle, 2005; Sarker, Mohammadian, & Yao,

2002). The main idea of VEGA is to divide the population into several subpopulations

equal to the number of the objective functions. That is, for a problem with objective

functions and population size of , the whole population is divided by sub-

populations of size

 individuals. Then, evolution takes place for all sub-populations in

parallel. That is, every sub-population is evaluated based on a single corresponding

objective and the roulette wheel selection is also performed on the same objective.

The selected individuals of each subpopulation then form a mating sub-pool. All sub-

pools merged together and the entire population is shuffled and then the crossover and

mutation operators are applied on it. After applying the operators, the resultant offspring

forms the new generation. A schematic of the way in which VEGA works is shown in

Figure 3.16.

77

Figure ‎3.16 Schematic Procedure of VEGA

VEGA is straightforward and easy to implement (Zitzler, Deb, Thiele, Coello, & Corne,

2001) , however, the solution returned by VEGA are locally non-dominated and not

necessarily pareto front (Nedjah & Mourelle, 2005). Since VEGA emphasizes each

objective their results have a tendency to be in the vicinity of the minimum for each

individual objective and therefore it may be unable to deliver tradeoff solutions subject

to all objective functions (H. Nakayama, z. Yun, & M. Yoon, 2009b). Furthermore,

VEGA behaves like aggregating methods and thus, shares the problems of such

techniques (Zitzler, Deb, et al., 2001).

3.3.3.3 Non-dominated Sorting Genetic Algorithm

Non-dominated Sorting Genetic Algorithm (NSGA) (Srinivas & Deb, 1994) was

introduced by Srinivas and Deb in 1995. The approach is based on the classification of

the entire population into several layers according to the domination concept (Goldberg,

1989). The algorithm starts by initial randomly generated individuals. Among these

individuals the non-dominated set is identified and forms the first non-dominated front

and they are given a dummy fitness value equal to the population size; ; in

order to give same reproductive chance to all individuals that exist in the first front

(Michalewicz, 1996). In order to maintain the diversity of the population, a fitness

sharing method (Deb, 2001; Eiben & Smith, 2008; Engelbrecht, 2007; Gen & Cheng,

1999; Mumford & Jain, 2009; Nakayama et al., 2009b; Yu & Gen, 2010) is used to give

different fitness value to individuals of the same rank. Thereafter, the first front

individuals are removed temporarily from the population (or ignored) and the non-

Select n

Subpopulation based

on each objective

Shuffle
Apply Crossover

and Mutation

Generation t Generation t+1

Individual 1

Individual n

Sub-population 1

Sub-population n

Individual 1

Individual n

Individual 1

Individual n

78

dominated set of individuals within the rest of the population is determined. Again, the

second non-dominated front’s individual are assigned a new dummy fitness value less

than the dummy fitness value given to the first front. The smaller value is assigned to

reflect the superiority of the first front’s individuals to the second front’s individuals.

The procedure is repeated until the entire population is classified into several distinct

layers. After classification has been completed, the stochastic remainder selection is

adopted to select individuals according to their shared fitness. Then, crossover and

mutation are performed. The advantage of NSGA is its fitness assignment based non-

dominated levels. However NSGA is considered as a computationally complex

algorithm because of the ranking and fitness sharing procedures (Coello et al., 2007;

Deb, 2001; Lee & El-Sharkawi, 2008).

3.3.3.4 Niched Pareto Genetic Algorithm

The Niched Pareto Genetic Algorithm (NPGA) was proposed by Horn et al in (Horn,

Nafpliotis, & Goldberg, 1994). Different selection strategy has been used in this

algorithm. In contrast to VEGA, NSGA and MOGA where the proportionate selection

method is used, the authors preferred to adopt a tournament as well as dominance

concept. In NPGA, first, a subpopulation of entire population; S; (typically 10 percent of

the main population) is picked from the main population. Consequently, two random

competitor individuals a and b are drawn from the main population. Then individuals a

and b are compared to each individuals in the subpopulation for domination. After

comparison there are four different results imaginable:

(1) dominated by at least one individual in the subset but is not dominated

(2) dominated by at least one individual in the subset but is not dominated

(3) and both dominated by at least one individual in the subset

(4) and both are non-dominated subject to the subset

79

In the case of situation 1individual b is chosen and in the case of situation 2 individual a

is chosen.

When situation 3 or 4 happens, the tie is broken by comparing both individuals a and b

to the partially filled offspring population. Each individual is placed in the offspring

population and the niche count is calculated for them. Finally, the individual with the

smaller niche count value is the winner of the tournament. The selection mechanism of

NPGA is shown in Figure 3.17. The advantage of NPGA is that it does not need any

direct fitness assignment. The disadvantage of NPGA is the need for setting proper

values for the parameters of and which may affect the performance of the

algorithm.

(Coello et al., 2007; Deb, 2001; Nedjah & Mourelle, 2005).

Figure ‎3.17 NPGA Selection Mechanism

3.3.3.5 Multiple Objective Genetic Algorithm

The Multiple Objective Genetic Algorithm (MOGA) Algorithm was introduced by

Fonseca and Fleming in (Fonseca & Fleming, 1993). In MOGA, a rank is assigned to

each individual equal to the number of individuals in the population by which it is

dominated. For example, if the individual , is dominated by different individuals in

Random Selection

 a Subset of Individuals

a

b

Random Selection

 of an Individual

Random Selection

of an Individual

Tournament Pool

Main Population

D
om

ination C
heck

D
om

ination C
heck

80

the population then () . Therefore, all non-dominated individuals receive

the same rank value 1 since they are not dominated by any other individual. In this way,

the individual dominated by more individuals receives a higher rank. The rank itself is

not used as a fitness function. Instead, an efficiency function is defined based on the

individual’s rank. The efficiency function can be calculated as below:

 Sorting the individuals based on their ranks

 Use a linear function; () as fitness function in order to assign an efficiency

value to each individual. The efficiency function is often in linear form but it is

not necessarily. The () must satisfy following condition:

If then () ()

The advantage of MOGA is its simple fitness assignment and it can be easily applied to

different optimization problems because the niching is done in the objective space.

Despite of the dominance concept which is used in this algorithm, there is a strong

possibility that the algorithm may bias towards specific solutions in the search space.

Moreover, the algorithm might be sensitive to the shape of the pareto front.

(Bagchi, 1999; Coello et al., 2007; Collette & Siarry, 2003; Erickson, Mayer, & Horn,

2002; Nedjah & Mourelle, 2005; Tan et al., 2005)

3.3.4 Elitist Algorithms

In this section, the evolutionary algorithms which use the elitism concept will be

described. These algorithms are Non-dominated Sorting Genetic Algorithm II (NSGA-

II), Strength Pareto Evolutionary Algorithm (SPEA) and Strength Pareto Evolutionary

Algorithm (SPEA-II). Elitism ensures that the quality of the solution never degrades

during the evolution process from the current generation to the next generation. Elitism

accelerates the convergence of the population toward a pareto front (Bui & Alam, 2008;

Engelbrecht, 2007; Talbi, 2009; Vonk et al., 1998).

81

3.3.4.1 Non-dominated Sorting Genetic Algorithm II

The Non-dominated Sorting Genetic Algorithm II (NSGA-II) algorithm was proposed

by Kalyanmoy Deb and others in (Deb, Agrawal, Pratap, & Meyarivan, 2000). The

procedure for one iteration of the NSGA-II is illustrated in Figure 3.19. The algorithm

starts by generating an initial population of random individuals with a predetermined

size known as . Then the offspring population with identical size is produced

by applying the usual operators (selection, crossover and mutation). Then, the offspring

population is combined to the parent population to form a whole population with size

 . Thereafter, the non-dominated sorting algorithm (Goldberg, 1989) is used

to classify the entire population into several hierarchical fronts. The fronts are assigned

a label 1, 2, … N such that the best non-dominated front receives label 1 and worst one

receives N. Once, the classification is completed, the new population is filled by

inserting the front’s individuals starting from the best non-dominated fronts (with label

1) and with the increasing order of label values. Since, the size of the accumulated

population is twice , it is not possible to accommodate all fronts to the new

population. When there is no room, the remaining fronts are simply eliminated.

However, for the last feasible front, there still may exist some individuals which cannot

be accommodated. In that case the last allowed front is partially inserted to the new

population. Instead of simply deleting extra individual from the last front it would be

wise to select those individuals that help diversify the new population. Hence, the

individuals of the last allowed front are sorted based on descending order of a metric

which is called the crowding distance. The crowding distance for an individual is a

measure to determine crowding by other individuals in the same front. It is an estimate

for the density of solutions surrounded by them. As shown in Figure 3.18 the crowding

distance for individual is defined as a half perimeter of cuboid formed by the closest

left and right neighboring individuals that encompass individual . The advantage of the

82

algorithms is that it does not need setting for niching parameters like . The

disadvantage of this algorithm is that the crowded comparison as means of limiting the

size of population weaken its convergence power (Benyoucef & Grabot, 2010; Deb,

2001; Drechsler & Drechsler, 2002; Nakayama et al., 2009b; Nedjah & Mourelle, 2006;

Sarker et al., 2002; Talbi, 2009; Yu & Gen, 2010).

Figure ‎3.18 Crowding Distance Calculation

Parent(t)

Childs(t)

Front 1

Front 2

Front 3

Front n

Parent(t+1)

Non-Dominated Sorting

size=popsize

size=popsize Rejected Fronts

Tournament

Selection

Crossover

Mutation

Crow ding

Distance Sorting

Partial Move

Figure ‎3.19 Schematic of NSGA-II procedure

3.3.4.2 Strength Pareto Evolutionary Algorithm

The Strength Pareto Evolutionary Algorithm (SPEA) was designed by Zitzler and

Thiele (1999). SPEA is considered as a combination of several multi-objective

optimization algorithms. The method stores non-dominated individuals discovered since

the beginning of the algorithm and is continuously updated with a fixed size external

x3

x1

x2

x4

x5

Minimize

M
in

im
iz

e

F1

F2

C1

C2

Crowding Distance=C1+C2

83

population. At each generation, the external population is updated by copying the newly

found non-dominated individuals in the current generation. Once the size of the external

population exceeds a pre-determined amount, it is pruned to reach a standard size by

using a clustering technique called the average linkage method (Morse, 1980). After the

termination of the algorithm individuals placed in the external population forms the

output of the algorithm. A binary tournament selection is used to choose individuals

with the smaller fitness from both main and external population. The strength value;

 () similar to rank used in MOGA is assigned to each individual within the external

population. The strength value of an individual in the external population is a real value

in) and is proportional to the number of individuals in the main population it

dominates. The strength value for the member of the main population is calculated as

the following:

 ()

 3.2

where is the number of individuals in the main population dominated by individual

 ..On the other hand, the fitness value; () for an individual in the main population

is computed as the sum of the strength values of individuals in the external population

dominated by them plus one and calculated as the following:

 () ∑ ()

 ⋀

 3.3

where represents the external population and means individual (in main

population) is dominated by individual (in external population). The addition of 1

ensures that the fitness of any member within the main population is greater than the

fitness of any external population member and therefore the external individuals always

have a higher fitness value. Figure 3.20 illustrates the SPEA fitness assignment for a

number of sample solutions (Barba, 2009; Coello & Lamont, 2004; Coello et al., 2007;

Deb, 2001; Mumford & Jain, 2009; Nedjah & Mourelle, 2005; Talbi, 2009).

84

Figure ‎3.20 SPEA Fitness Assignment For a Set of Solutions

The advantage of SPEA algorithm is in its parameter-less clustering technique which

provides a better spread among non-dominated solutions. Moreover, the individuals’

fitness in SPEA can be easily calculated (Deb, 2001).

3.3.4.3 Strength Pareto Evolutionary Algorithm II

The Strength Pareto Evolutionary Algorithm II (SPEA-II) was suggested by Zitzler

(Zitzler, Laumanns, & Thiele, 2001) as an improvement to the original SPEA. Three

major enhancements have been made to its predecessor:

 Incorporate a fine-grained fitness assignment for each individual taking into

consideration the number of individuals it dominates and the number of

individuals dominated by them.

 A density estimation technique

 Enhanced archive population truncation method.

In SPEA, the individuals which are dominated by the same archive members have equal

fitness values (for example solutions X4 and X5 in Figure 3.20). To avoid such situations

in SPEA-II, in calculating the fitness for each individual both dominating and

dominated solutions are taken into consideration. For each individual in the union of

the main population and the archive population (represented by ̅) the strength

X1

1 2 3 4 5 6 7

1

2

3

4

5

6

7

X2

X3

X4

X5

X6

X7

Minimize

M
in

im
iz

e

F1

F2

4/6

3/6 0+1

7/6+1

External

Population

Main

Population
4/6+1

7/6+1

7/6+1

85

value; (); is computed as the number of individuals in ̅ which are dominated by

 as stated in the following equation :

 () | | ̅ | 3.4

| |represents the cardinality or the number of the elements in the set and indicates

the dominance relation (i.e. i dominates j). A larger value of S(i) indicates that

individual i is stronger. Thereafter, the raw fitness value for individual i ; (); in ̅

is calculated as a sum of the strength values of individuals in ̅ which dominate

and is expressed by the following equation:

 () ∑ ()

 ̅

 3.5

Note that () implies that the individual is a non-dominated solution. A higher

value of () means that individual is dominated by more individuals and thus the

fitness is to be minimized. Figure 3.21 shows the strength and raw fitness for a set of

solution.

Figure ‎3.21 SPEA-II Strength And Raw Fitness for a Set of Solutions

X1

1 2 3 4 5 6 7

1

2

3

4

5

6

7

X2

X3

X4

X5

X6

X7

Minimize

M
in

im
iz

e

F1

F2

Strength/Raw Fitness

4/0

3/0

2/0

0/4

1/7

1/9

0/11

86

In order to discriminate between the individuals that have the same fitness value, a

density estimation is adopted. The density value (Zitzler, Laumanns, et al., 2001); () ;

is calculated as follows:

 ()

 3.6

where √ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ and
 is the distance of individual i to the k

th
 nearest

neighbor and and ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ are sizes of the main and archive populations

respectively. Then the density used to convert the raw fitness to the new fitness value is

the following:

 () () () 3.7

The archive population in SPEA-II has a constant size over time and whenever the size

goes beyond the predetermined value a truncation method is used to decrease the size of

the archive population. During the selection, all non-dominated solution in the main and

archive population with fitness value less than 1 are moved to the archive population as

expressed by the following equation:

 ̅ | ̅ () 3.8

If the non-dominated solutions fit the archive exactly, that is (| ̅ | ̅̅ ̅̅ ̅̅ ̅̅ ̅̅) no

more task is performed; otherwise if the archive population is too large, that is (

| ̅ | ̅̅ ̅̅ ̅̅ ̅̅ ̅̅) the archive truncation procedure is invoked.

(Drechsler & Drechsler, 2002; Gandibleux, Sevaux, Sörensen, & T'Kindt, 2004; H.

Nakayama, Y. Yun, & M. Yoon, 2009a; Yu & Gen, 2010; Zitzler, Laumanns, et al.,

2001)

The main advantage of SPEA-II is in its strong performance in diversity and

convergence (Zheng, Ling, Shi, & Xie, 2005).

87

3.3.5 Constraint Handling

The existence of constraints in real-world problems motivates researchers to pay special

attention in dealing with constraints. The constraints divide the entire search space by

two regions: feasible region and infeasible region as illustrated in Figure 3.22. The

optimal solutions are desirable only from the feasible region. Since not all individuals in

a population may be a feasible solution we need to devise a method in order to deal with

infeasible solutions.

In this section a technique for tackling constraints in evolutionary multi-objective

optimization is introduced. (Coello et al., 2007; Deb, 2001; Engelbrecht, 2007; Talbi,

2009)

Figure ‎3.22 Search Space, Feasible and Infeasible Regions

Constrained dominance

Deb (2000) proposed a new technique for handling constraints which is well suited for

evolutionary multi-objective optimization. The technique is a modification of the

standard dominance concept and does not need any penalty function. They combined

dominance concept and feasibility check to define a constrained dominance concept.

Two solutions can be feasible or infeasible while at the same time they may or may not

1 2 3 4 5 6 7

1

2

3

4

5

6

7

Minimize

M
in

im
iz

e

F1

F2

Search Space

Feasible

Region

Infeasible

Region

88

dominate each other. The constrained dominance concept for two solutions x and y is

defined as follows:

Definition: The solution x is said to constraint dominate solution y if any of the

following conditions hold:

a) Solution x is feasible and solution y is infeasible

b) Both x and y are not feasible solutions but x have less constraint violation.

c) Both x and y are feasible solutions but solution x dominates solution y according to

the normal dominance concept presented in definition 3.1

In this method, two solutions are picked from the population and a better solution in

terms of constrained dominance is selected as the winner.

 All algorithms based on the prior definition of dominance, such as the NSGA, which

has been described in Section 3.3 can still work with constraint dominance. The only

required change is the replacement of new dominance definition.

(Branke et al., 2008; Deb, 2001; Freschi & Repetto, 2005; King & Rughooputh, 2003;

Mezura-Montes, 2009; Yu & Gen, 2010)

3.3.6 Applications of Evolutionary Multi-Objective Algorithms in Other Areas.

Apart from view selection problem, evolutionary multi-objective algorithms have been

applied to a variety of optimization problems in different areas. Table 3.1 shows the

application of evolutionary multi-objective algorithm in a number of problems in

different areas.

89

Table ‎3.1 List of some other Applications of Evolutionary Algorithms

Area
Algorithm(s)

Used
Paper(s)

Gas supply network VEGA
(Surry, Radcliffe, & Boyd, 1995), (Surry &

Radcliffe, 1997)

Allocation in radiological

facilities

MOGA, NPGA

and SPEA
(Lahanas, Milickovic, Baltas, & Zamboglou, 2001)

Data Mining SPEA-II (Hetland & Sætrom, 2005)

Design of electromagnetic

devices
NPGA, NSGA (Weile, Michielssen, & Goldberg, 1996)

Design of an

electromechanical system
NSGA-II (R´egnier, Sareni, & Roboam, 2005)

Design of combinational

circuits
VEGA

(Coello, Aguirre, & Buckles, 2000), (Luna, Coello, &

Aguirre, 2004), (Luna & Coello, 2004)

Network Design
Modified

NSGA-II
(Kleeman, Lamont, Hopkinson, & Graham, 2007)

Design of control systems MOGA
(Chipperfield & Fleming, 1995) (Chipperfield &

Fleming, 1996)

Multicast flows SPEA (Meisel, 2005)

Design of a thermal system

for a building
MOGA

(Wright & Loosemore, 2001) (Wright, Loosemore, &

Farmani, 2002)

Road systems NPGA (Haastrup & Pereira, 1997)

Aerodynamic optimization NSGA-II
(Nariman-Zadeh, Atashkari, Jamali, Pilechi, & Yao,

2005)

Treatment planning SPEA (Petrovski & McCall, 2001)

3.4 Performance Metrics (indicators)

Although in the early years of evolutionary multi-objective optimization visual

comparison between the obtained solutions and the optimal set of solutions in objective

space seemed to be sufficient for evaluating algorithms but with the emerging number

of evolutionary algorithms in recent years, there is a greater need for an evaluation tool.

Two distinct goals for multi objective optimization are the diversity of solutions and the

convergence toward the true pareto front. The first goal refers to how a set of found

solutions are well distributed along the pareto front and the second goals says how well

the solutions have converged toward the true pareto front. Figure 3.23 illustrates these

two goals for a hypothetical search space. In designing the performance metrics for

evolutionary algorithms these two goals must be taken into account. These two goals

are sometimes conflictive. An algorithm may return a well distributed set of solutions

while the solutions do not converge well towards the pareto front. In the other

algorithm, the opposite situation may happen. In fact, obtaining the algorithm which

90

optimizes both of these goals, can be regarded as another multi-objective optimization

(Deb, 2001). In this section a number of performance metrics which have been

proposed for the assessment of multi-objective optimization algorithms are explained.

These metrics can be classified into two categories (Branke et al., 2008; Talbi, 2009):

1. The metrics designed to measure diversity of solutions

2. The metrics are meant to measure convergence

3. The metrics measure both the diversity and convergence goals

Figure ‎3.23 Convergence and Diversity

Please note that some metrics require the knowledge of the pareto optimal set while in

others there is no need to access the pareto optimal set. However, in most real-world

optimization problems the true pareto optimal set is unknown (Talbi, 2009) unless using

a brute force algorithm to search the entire search space for a long time. Since the true

pareto optimal set is not available in the view selection problem we exclude the metrics

which require the set.

X1

X2

Minimize

M
in

im
iz

e

G(t)

G(t+1)

Convergence

Diversity

91

3.4.1 Set Coverage (C)

(Zitzler, 1999) proposed a binary metric for comparing the performance of two

algorithms. Having two sets of solutions; A and B; the set coverage metric measures the

percentage of solutions in B which are dominated by at least one solution in A. The

metric is represented as follows:

 ()

| | |

| |
 3.9

 () means that no solution in B is dominated by solutions in A; likewise

 () indicates that all the solutions in B are dominated by at least one solution

in A. Since the domination relation is not a symmetric operator, in which ()

 () therefore both () and () should be calculated separately.

(Coello et al., 2007; Deb, 2001; Janssens & Pangilinan, 2010; Yu & Gen, 2010)

Figure ‎3.24 Ideal Value for Coverage Metric

Figure 3.24 shows the two sets of solutions, A and B. All solutions in set B are

dominated by at least a solution in set A. In this condition the maximum value for

C(A,B) is obtained as 1

100

100

Total Query Response Time

T
o
ta

l U
p
d
a
te

 T
im

e

Set B

Set A

C(A,B)=1

92

3.4.2 Spacing (SP)

This metric was introduced by Schott (1995) and measures how solutions are uniformly

distributed. Spacing calculates the standard deviation of distances between consecutive

solutions. The metric is represented as follows:

 √

| |
∑(̅)

| |

 3.10

where :

∑|

 |

 3.11

 represents the minimum distance between solution i and any other solution in the

obtained set. Figure 3.25 Illustrates for a set of obtained solutions.

 ̅ is average of all distances and is calculated as follows:

 ̅

| |
∑

| |

 3.12

A small SP indicates more equally spaced solutions. means that the solutions in

 are evenly distributed. That is, the distance between consecutive solutions in the

obtained set is identical.Figure 3.26 shows a set of solutions with Spacing equal to zero.

Figure ‎3.25 Distances between Neighboring Solutions in Set of Obtained Solutions

F1

F2

Minimize

M
in

im
iz

e

Pareto Optimal Set

Search Space

d1

d2

d3

d4

d5

93

(Abraham & Goldberg, 2005; Coello et al., 2007; Deb, 2001; Goh, Ong, & Tan, 2009;

Janssens & Pangilinan, 2010; Tan et al., 2005)

Figure ‎3.26 Ideal Value for Spacing Metric

3.4.3 Maximum Spread (MS)

(Zitzler, 1999) proposed a metric which calculates the length of the diagonal of the

hyperbox formed by extreme solutions in the obtained set as follows:

√

∑(

 | |

 | |

)

 3.13

In the case of two objective optimization problems the metrics is equal to the Euclidian

distance between the two extreme solutions in each objective. As an example,

Figure 3.27 illustrates the maximum spread for a set of the discovered non-dominated

solutions:

100

100

Total Query Response Time

T
o
ta

l U
p
d
a
te

 T
im

e

Spacing=0

d1

d2

d3

d4

d1=d2=d3=d4

94

Figure ‎3.27Maximum Spread for A Set of Solutions

The larger the maximum spread, the better the values are, since it implies that the

obtained solution set are spanned along a larger part of the pareto front. However, the

Maximum Spread metric does not measure the uniformity of intermediate solutions.

(Alberto & Mateo, 2008; Deb, 2001; Tan et al., 2005)

The maximum possible extent for a set of solutions is illustrated in Figure 3.28

Figure ‎3.28 Ideal Value for Maximum Spread Metric

F1

F2

Minimize

M
in

im
iz

e

Pareto Optimal Set

Search Space

M
axim

um
 S

pread

Extreme 1

Extreme 2

F1max

F2max

Total Query Response Time

T
o
ta

l U
p
d
a
te

 T
im

e

M
axim

um
 Spread=

m
ax

2
2

m
ax

1
2

F

F



95

3.4.4 Hypervolume (HV)

The hypervolume metric (Zitzler & Thiele, 1999) as a metric which evaluates both

diversity and convergence calculates the volume covered by set of obtained solutions;

Q; in the objective space for minimization problems. In the example of Figure 3.29 the

Hypervolume is the enclosed area within the dashed line. For each point the

hypercube is constructed between the reference point w and solution i as the diagonal

corner of the hypercube. The reference point can be identified by combining the worst

values in each objective as a vector. Thereafter, the hypervolume is calculated as a

union of all constructed hypercubes as follows:

(Alba et al., 2009; Chiong, 2009; Coello et al., 2007; Deb, 2001; Janssens & Pangilinan,

2010; Talbi, 2009; Tan et al., 2005; Yu & Gen, 2010)

 (⋃

| |

) 3.14

Figure ‎3.29 Hypervolume for a Set of Non-Dominated Solutions

For hypervolume metric the maximum value is the area which is shown in grey in

Figure 3.30. However, this value may not be the outcome of a practical set of solutions.

F1

F2

Minimize

M
in

im
iz

e

P
areto Front

Search Space

A

B

C

w

Hyp
erV

olume

96

Figure ‎3.30 Ideal Value For Hypervolume Metric

3.5 Summary

Optimization is a procedure of finding and comparing different solutions from a set of

possible values until no better solution is found. In many real-world optimization

problems multiple objectives must be optimized at the same time. Evolutionary multi-

objective algorithms are considered as good candidates for solving these problems. In

this chapter some principles and fundamentals for evolutionary multi-objective

optimization was presented. The evolutionary algorithms were divided into two

different classes: the elitist algorithms and the non- elitist algorithms. In the elitist

algorithm, a percentage of individual with highest quality are preserved while in the

non- elitist such a capability is not foreseen. Of non-elitist algorithms, WBGA, VEGA,

NPGA, MOGA and NSGA were discussed. Among the elitist algorithms, SPEA, SPEA-

II and NSGA-II were described. Finally four different performance metrics Coverage,

Hypervolume, Spacing and Maximum Spread for evaluating evolutionary multi-

objective algorithms were presented.

F1max

F2max

Total Query Response Time

T
o
ta

l U
p
d
a
te

 T
im

e

Reference Point

(F1max,F2max)

Ideal Value=F1max F2max

97

Chapter 4. Methodology

4.1 Introduction

The current chapter is an introduction to the way that the mentioned algorithms have

been applied to the view selection problem. The general structure of the current work

can be classified into different domains as the following:

 The Problem domain where the characteristics of the problem at hand is defined.

 The Methodology consisting of the algorithm which acts on the problem.

Figure 4.1 illustrates this classification. The left panel belongs to the method domain

which includes the different evolutionary multi-objective optimization algorithms such

as NSGA, and SPEA while the right panel is the problem domain consisting of the

problem to be solved by these algorithms.

Figure ‎4.1 Classifications of Methods and Problem

The entire design and implementation of the solution system is based on this

abstraction. Breaking the system into two manageable domains reduces the complexity

and makes it easy to understand. In addition, the individual methods and problem

Method Area Problem Area

NSGA

VSP

NSGA-II

SPEA SPEA-II

WBGA VEGA

MOGA NPGA

View Lattice

Individual Population

PopulationSet

Crossover Mutation

Selection

VSPPhenotype

98

variants can be easily substituted by alternative ones and thus enhance the extendibility

of the system.

The rest of this chapter is organized as follows:

Since both the method and problem domain are designed according to the object

oriented concept the first section is devoted to the definition of objects and relationship

between them. Each evolutionary algorithm requires some configuration to be well

suited to a particular problem. The parameter setting for the applied algorithms will be

given in the next section. Then metrics which is used for the evaluation of the

algorithms is stated. The problem representation schema is explained next. The

initialization, stopping criteria, constraint handling technique and objective

normalization is discussed in subsequent sections. The view size estimation used is

given in following section. Thereafter, the problem instances which are used as the

inputs of the algorithms will be introduced. Finally, the last section presents the

hardware and software platform in which the algorithms are implemented.

4.2 Object Oriented Architecture

This section explains the designed objects, their properties and methods as well as the

relationship between them. The entire objects are classified in two domains: the objects

which are defined within the problem domain and the objects that belong to the method

domain. The UML class diagram for the architecture is shown in Figure 4.2.

99

Figure ‎4.2 The UML Class Diagram

4.2.1 Objects in Problem Domain

 View

As a basic object in the problem domain, the view object encapsulates the

characteristics of a view such as size, view update frequency and query frequency. The

+Count() : Short
+IsFeasible() : Boolean
+Clone()
+Exchange(in i : Short, in j : Short)
+Decode() : Individual
+Flip(in i : Short)
+=(in a : Individual, in b : Individual) : Boolean
+<>(in a : Individual, in b : Individual) : Boolean
+Evaluate(in Objective1, in Objective2, in Constraoint)
+Random()
+DominateAny(in P : Population) : Boolean
+Dominate(in I : Individual) : Boolean

+GList : Individual
+Objective1Value : Double
+Objective2value : Double
+ConstraintValue : Double
+Fitness : Double
+Rank : Double
+Crowding Distance : Double

Individual

+Member(in i : Short) : Individual
+Count() : Short
+Evaluate(in Objective1, in Objective2, in Constraint)
+NonDominated() : Population
+Dominate(in i : Short, in j : Short) : Boolean
+Classify() : PopulationSet
+Assign Rank()
+Partition Feasibility() : PopulationSet
+Clone() : Population
+Add(in I : Individual)
+Sum() : Double
+Sort()
+Compare() : Boolean
+RemoveAt(in i : Short)
+Remove(in I : Individual)
+Clear()
+Contain(in I : Individual) : Boolean
+RandomGenerate(in PopulationSize : Short, in ChromosomeSize : Short)
+Crowding Distance()
+Fitness Sharing()
+Min() : Double
+Max() : Double
+Find() : Individual
+Find Min() : Individual
+Find Max() : Individual
+DoClustering() : PopulationSet
+-(in P1 : Population, in P2 : Population) : Population
++(in P1 : Population, in P2 : Population) : Population
+=(in P1 : Population, in P2 : Population) : Boolean
+<>(in P1 : Population, in P2 : Population) : Boolean
+NicheCount() : Short
+Top() : Population
+Buttom() : Population
+SaveToFile(in Address : String)
+Representative() : Individual
+SuggestSigmaShare() : Double
+NicheCount(in P : Population, in Alpha : Short, in SigmaShare : Double) : Short

-IList : ListOf(Individual)
+ID : Short
+Rank : Short

Population

+Member(in i : Short) : Population
+Count() : Short
+Add(in P : Population)
+Remove(in P : Population)
+Consolidate() : Population
+Merge(in P1 : Population, in P2 : Population)
+ClusterDistance(in C1 : Population, in C2 : Population) : Double

-PList : ListOf(Population)

PopulationSet

+Uniform(in a : Individual, in b : Individual)
+Single Point(in a : Individual, in b : Individual)
+TwoPoint(in a : Individual, in b : Individual)

+Rate : Double

Crossover

+Uniform(in I : Individual)
+Random(in I : Individual)

-Rate : Double

Mutation

+Roulette Wheel(in P : Population) : Individual
+Random(in P : Population) : Individual
+Stochastic Remainder Selection(in P : Population) : Individual
+Tournament(in P : Population, in Inidividual Field, in Bios) : Individual

Selecion

+Update Time() : Double
+Query Time() : Double
+Space() : Double
+Disk Space Violation() : Double
+Most Beneficial View()
+Min Query Time() : Double
+Max Query Time() : Double
+Min Update Time() : Double
+Max Update Time() : Double
+Repair Function() : Double
+Least Cost Materialized Ancestor() : Double
+Search Space Size() : Double

-Disk Space Limit : Double
-Objective 1
-Objective 2
-Constraint : Double
-TheLattice

VSP

+Maximum Size() : Integer

+Size : Double
+Hierarchy Nodes
+IsTopview : Boolean
+Query Frequency : Double
+Update Frequency : Double
+ID : Short

View

+Count() : Short
+Top Node() : Object
+ButtomNode() : Object
+Item() : Object
+Add(in O : Object)
+IndexOf(in O : Object) : Short
+Clear()
+Edge(in i : Short, in j : Short)
+ParentsOf(in O : Object) : Listof (object)
+AncestosOf(in O : Object) : Listof (object)
+IsAncestorOf(in i : Short, in j : Short) : Boolean
+ChildsItems(in O : Object) : Listof (object)
+ChildIndexes(in n : Short) : Listof(short)
+Draw()

-Adjacency(,) : Boolean
-ItemList : Object

Lattice

-Contains 0..*

0..*

-Contains 0..*0..*

+V(in i : Short) : Boolean
+Search Space Size() : Long
+Count() : Short

-F1 : Double
-F2 : Double
-Materialized() : Boolean

VSP Phenotype

-Encoding
*

-Decoding*

-End1

0..*
-End2 1..*

-End31

-End4*

100

property hierarchy levels in view class (see Table 4.1) is a list of hierarchy levels in

which the view is constructed from them. As mentioned earlier in Section 2.6 , in the

presence of dimension hierarchies each view is built by choosing one level per

dimension hierarchy. For example, Figure 4.3 illustrates 3 hierarchies for three different

dimension tables named Supplier, Customer and Part. Figure 4.4 is a view dependency

lattice which is constructed based on the mentioned hierarchies in Figure 4.3. Each view

in the lattice of Figure 4.4 is built by choosing only one level from each dimension

hierarchy. For instance, the view SuppliedID-CustomerID-Size is made up from level

SuppliedID, CustomerID and Size from the dimension hierarchy Supplier, Customer and

Part respectively. The corresponding group by query is as follows:

Select Supplier. SupplierID , Customer.CustomerID, Part.Size, SUM(Sales.Price)

From Sales

Group By Supplier. SupplierID , Customer.CustomerID, Part.Size

Table ‎4.1View Class

Properties Description

ID Unique number given to the view

Size The number of records in the view

Update Frequency Frequency by which the view is updated

Query Frequency Frequency by which the view is queried

Hierarchy Levels
List of hierarchy levels in different dimensions which from this view

constructed from.

Maximum Size Maximum possible size of the view

IsTopView The view is fact table or not

101

Figure ‎4.3 Hierarchy Defined Within Each Dimension Table

Figure ‎4.4 View Dependency Lattice Calculated Based On Hierarchies in Figure 4.2

 Lattice

The lattice object is a data structure which consists of all possible views as well as the

relationships between them. Table 4.2 shows the properties and methods for the lattice

object. Also, Figure 4.5 visualizes a sample instance of a lattice object as well as the

corresponding properties and methods.

Level 1

Level 2

Level 3

Level 4

Hierarchy in

Dimension Table

Supplier

Hierarchy in

Dimension Table

Customer

Hierarchy in

Dimension Table

Part

Customer IDSupplier ID

Nation

Region

All

Nation

Region

All

Part ID

Type Size

All

Supplier ID

Customer ID

Part ID

Supplier ID

Customer ID

Type

Supplier ID

Customer ID

Size

Supplier ID

Nation

PartID

Nation

Customer ID

PartID

102

Table ‎4.2 Lattice Class

Properties Description

Connections List of edges between views in the lattice; an adjacency matrix

Items List of views in the lattice

Count Number of views in the lattice

TopNode The Top node(or fact table) in the lattice

ButtomNode The bottom node in the lattice

Edge(i,j) Whether there is an edge between view i and j or not

Methods Description

ParentsOf(V) List of views which are parent of view V

AncestorsOf(V) List of views which are Ancestor of view V

Childs(V) List of views which are child of view V

Draw Draws the lattice

Clear Deletes all views and edges in the lattice

Figure ‎4.5 The Lattice Object

 VSP (View Selection Problem)

The VSP is the main object in the problem domain representing the view selection

problem instance. Table 4.3 shows the list of properties and methods for the VSP class.

The objective1 and objective2 property holds the address of methods which act as

objectives to the problem. These properties can be flexibly set to the UpdateTime,

QueryTime, Space or any other extendable methods. Note that such a way provides

i

V

jA
B

D

C

E

E
dge(i,j)=true

TopNode

BottomNode

Count=8

ParentsOf(V)=A, j

Childs(V)=C

Ancestors(V)=A,j,i

Items=i,A,B,j,D,V,E,C

103

Table ‎4.3 VSP Class

Properties Description

Objective 1 Refers to the first objective of the problem

Objective 2 Refers to the second objective of the problem

Constraint Refers to the constraint of the problem

TheLattice The lattice which is associated with the problem

CubeSize The disk space amount needed to store all views

Qmin
Minimum query response time for answering all possible

queries

Qmax
Maximum query response time for answering all possible

queries

Umin Minimum update time for updating all materialized views

Umax Maximum update time for updating all materialized views

Methods Description

UpdateTime (M) The time needed for updating set M of materialized views

QueryTime (M)
The time needed for answering all queries in presence of set M

of views

Space (M) The disk space required for storing set M of Materialized views

DiskSpaceViolation (M)
Amount of disk space violation caused by materializing set M

of views

MostBeneficialView (M)
The view if added to current set of views; M; cause maximum

reduction in query response time

RepairFunction (M) The function to repair infeasible solution

LeastCostMaterializedAncestor(V) The smallest materialized ancestor of V

SearchSpaceSize The size of search space

freedom to change the objectives of the problem based on the view selection problem

variation at any time in future. For example, when the view selection problem is only a

single objective case the first objective may refer to the UpdateTime or QueryTime and

the second objectives may be left as null. Moreover, when a combination of query

response time and view update time as a single objective is taken into consideration

Objective1 refers to the extended method which adds UpdateTime and QueryTime

(QuerryTime+UpdateTime). Similarly, the constraint refers to a method which acts as a

constraint to the problem. In this research, objective1 refers to QueryTime, objective2

refers to UpdateTime and constraint refers to Space. An instance of the lattice object as

the property indicates the lattice associated with each view selection problem. The

parameter M in the VSP methods is defined as the VSPPhenotype class which will be

discussed in the next section.

104

 VSP Phenotype

In biology the phenotype is the observable features of an organism such as color, shape

and size which directly originates from the genotype (Gorunescu, 2011). In

evolutionary algorithms the phenotypes are possible solutions to a given problems.

Likewise, the VSPPhenotype object is defined as the potential solution to the view

selection problem. Table 4.4 shows the different properties and methods for the VSP

Phenotype class. Each view selection problem is associated with two values which are

total query response time and total update time in this research respectively. These two

values are represented by F1 and F2 properties.

Table ‎4.4 VSP Phenotype Class

Properties Description

F1 The value for the first objective function

F2 The value for the second objective function

A(i) whether the i
th

view is selected

Methods Description

Count Number of all possible views

Clone Creates a copy of the current phenotype

4.2.2 Objects in Method Domain

The method domain consists of objects that are pertinent to techniques used to solve the

view selection problem. However, these objects are classified into two types, namely,

core objects and shell objects. Figure 4.6 shows a scheme for such classification. The

objects which are defined within the core section are considered as essential objects.

Examples of such basic objects are the individual and the population. The core objects

play a fundamental role in the working of each evolutionary algorithm. Every

evolutionary algorithm may take advantage of these fundamental objects in its

procedure. These objects do not direct any evolutionary process to themselves but

instead, they provide ready structure for higher level objects. The shell objects consist

of fully independent evolutionary routines such as VEGA, WBGA, NSGA or so on. The

105

advantage of such classification is the re-usability of the carefully designed core

objects.

Figure ‎4.6 Core And Shell Objects

4.2.2.1 Core Objects

 GA Object

All classes within the method domain share a common behavior. Each of these classes

implements an evolutionary algorithm which follows a common logic. The GA class as

an abstract base class provides a way for representing all such shared features among

the shell classes in a single entity. The list of properties and methods for the GA class is

shown in Table 4.5. In object oriented principle in contrast to normal classes (called

concrete classes), abstract classes cannot be instantiated. The abstract class can merely

be inherited by deriving the classes (Deitel, Deitel, & Nieto, 2001). The purpose of the

abstract class is to provide an elegant logical organization for closely related objects.

Examples of the shared properties in classes defined in the methods domain are

population size, crossover rate and mutation rate which are customary parameters for

all evolutionary algorithms. In addition to these general settings, most of the multi-

objective optimization algorithms require common calculations. An example of such

calculation is the measurement of the distance between two different individuals either

in the decision variable space or objective space. Dominance check is another frequent

calculation which determines whether one individual is better than another individual

Core

Shell

Individual Population

Crossover Mutation Selection

Population

Set

NSGA NSGA-II SPEA SPEA-II

VEGA WBGA MOGA NPGA

GA

106

with respect to the multiple objectives. All of these tasks are placed as inheritable ready

methods inside the GA class and they do not need to be re-defined in the derived

classes. The class diagram in Figure 4.7 shows the inheritance between the GA class and

the shell objects.

Table ‎4.5 GA Class

Properties Description

PopulationSize Number of individuals in population

MaximumGeneration Maximum number of generations to be evolved

CrossoverRate Probability by which crossover is applied

MutationRate Probability by which mutation is applied

Methods Description

Dominate(a,b) Whether individual a dominates individual b or not

ConstrainedDominate(a,b) Whether individual a constrained dominates individual b or not

VariableDistance(a,b) The distance between individual a and b in decision variable space

ObjectiveDistance(a,b) The distance between individual a and b in objectives space

Figure ‎4.7 Inheritance In Method Domain

 Individual

The Individual class contains all characteristics, data structures and procedures which

are required in a typical chromosome. Table 4.6 shows the list of properties, methods

and operators for the individual class. Each chromosome consists of a series of smaller

cells called gene. The GList property is an internal structure of individual class which

+Dominate(in a : Individual, in b : Individual) : Boolean
+Constrained Dominate(in a : Individual, in b : Individual) : Boolean
+Variable Distance(in a : Individual, in b : Individual) : Double
+Objective Distance(in a : Individual, in b : Individual) : Double

+Population Size : Short
+Maximum Generation : Short
+Crossover Rate : Double
+Mutation Rate : Double

GA

+Run()

NSGA

+Run()

NSGA-II

+Run()

+Archive Size : Short

SPEA-II

+Run()

+External Size : Short

SPEA

+Run()

MOGA

+Run()

+Tdom : Short

NPGA

+Run()

VEGA

+Run()

WBGA

107

stores a list of such genes. Each item of GList may take the value of either 0 or 1.

Furthermore, The Evaluate() function calculates the value of the objectives and

constraints and assign these values to the corresponding properties in the individual

class. The properties Objective1Value and Objective2Value and ConstraintValue store

the calculated values by the evaluate method. In the case of this research this properties

take values as shown in Table 4.7. In some evolutionary multi-objective algorithm such

as NSGA there is a need for a dummy fitness function. For these cases, a property

named Fitness is meant to store the dummy fitness value. For the individual class, two

operators have been defined: equality and inequality. The equality operators return true

when the two individuals are exactly the same otherwise it returns false.

Table ‎4.6 Individual Class

Properties Description

GList List of genes

Objective1Value The value returned by first objective function

Objective2Value The value returned by second objective function

ConstraintValue The value returned by constraint function

Fitness Dummy Fitness

Rank Pareto rank assigned by the non-dominated sorting algorithm

Crowding Distance The crowding distance of the individuals in a population

Methods Description

Count Number of genes in chromosome

IsFeasible() Whether the chromosome violates the constraint

Evaluate(Objective1

,Objective2,Constrai

nt)

Calculate Objectives and constraint functions and assign the values to the

relevant properties

Clone() Create the a full copy of the chromosome

Exchange(index1,

index2)
Exchanges gene values in positions index1 and index2

Decode() Maps a genotype to the corresponding phenotype(VSP_Phenotype)

Flip(i) Alters a gene value at position i from 0 to 1 or vice versa

Random() Generate random value for each gene

108

DominateAny (P as

population)
Checks whether this individual dominates population p

Dominate(I as

Individual)
Checks whether this individual dominates individual I

Operators Description

= Chromosome a=chromosome b

<> Chromosome a<>chromosome b

Table ‎4.7 Assignment of Values for Objectives and Constraint

Property Value

Objective1Value Q(M)
Objective2Value U(M)
ConstraintValue DS(M)-DS

Two individuals are identical when they include equal values in corresponding

positions. The inequality operator works in the inverse manner.

Each chromosome or genotype in the evolutionary algorithm is a code of a real-world

problem encompassing the process of evolution. The original possible solution in the

real- world is called the phenotype. To bridge the problem between the solution in the

real world and the genetic world a two way link is required. This link is carried out

through the mapping from the phenotype to the genotype and is a fundamental step of

the evolutionary algorithm called representation. The inverse is the map of the genotype

to the phenotype. Each chromosome must be designed to be invertible (Eiben & Smith,

2008). In the chromosome class a special method simply called Decode is responsible

for mapping the chromosome in evolutionary algorithms space to a phenotypic solution

(described earlier as VSP_Phenotype class) in real-world space.

 Population

The population class as a container stores a number of individuals in a single object.

Table 4.8 shows the list of properties, methods and operators which are defined for the

population class. The list which includes individuals is represented by IList property.

109

The function Evaluate is responsible for the evaluation of all individuals in the

population. The non-dominated set of individuals in the population are calculated using

the Non-dominated function

One of the most important methods which play a key role in the working of every

evolutionary algorithm is defined in the population class as Random Generate method.

This method will be explained later in Section 4.6

Table ‎4.8 Population Class

Properties Description

IList List of individual inthis population

Count Number of individuals in this population

ID A unique number given to each population

Rank The rank of the population

Member(i) The i
th

 member of the population

Methods Description

Evaluate(Objective1, Objective2,

Constraint)
Evaluates all individuals in population

Nondominated() Identifies a non-dominated set of solutions

Dominate(i,j)
Returns true if member with index i dominates member

with index j otherwise returns flase

Classify()
Perform non-dominated sorting algorithm and classify

entire population into several fronts

PartitionFeasibility()
Partitions the entire population into two subpopulation:

feasible subpopulation and infeasible subpopulation

Clone() Create the true copy of the population

Add(Individual) Add an individual to the population

Sum(IndividualField)
Calculates the sum of a particular field among all

individuals in the population

Sort(IndividualField)
Sorts individuals in the population according to an

particular field of individual

RemoveAt(i) Removes the individual at index i from the population

Remove(I) Removes the individual I from the population

Clear() Deletes all the individuals in the population

Contains(Individual)
Determines whether the population contains the

individual

RandomGenerate(PopulationSize,

ChromosomeSize)

Generates a population of PopulationSize individuals

such that the size of each individual is ChromosomeSize

AssignCrowdingDistance()

Calculates the crowding distance (as discussed in Section

3.3.9.1) of each individual in the population and assigns it

to the crowding property in the individual class

FitnessSharing()

Calculates the shared fitness of each individual in the

population and assigns it to the Fitness property in the

individual class

NicheCount(individual, alpha,

SigmaShare)

Calculates the niche count for the individual in the

population based on the given parameters alpha and

Min(IndividualField)
Identifies the minimum value for the specified property

among all individuals in population

110

Max(IndividualFiled)
Identifies the maximum value for the specified property

among all individuals in population

Find()

Searches for an individual that matches the conditions

defined by the specified parameter, and returns the first

occurrence within the entire population

Sum(IndividualField)
Returns the sum of a particular field for all individuals in

the population

Sort(IndividualField)
Sorts the individual in the population according to a

particular field.

Contains(Individual) Checks whether the population contains the individual

FindMin(IndividualField)
Searches for an individual that have the minimum value

of the specified property, and returns the value

FindMax(IndividualField)
Searches for an individual that have the maximum value

of the specified property, and returns the value

Top() Returns the top half of the population

Bottom() Returns the bottom half of the population

SaveToFile(address)
Saves the objective values of the population into a text

file

DoClustering(Size)
Applies the clustering technique on the population and

returns a PopulationSet of the specified Size

Representative()
Selects one individual in the population (cluster) as

representative of that cluster

SuggestSigmaShare()
Propose a value for according to the Fonseca and

Fleming Rule

Operators Description

- Subtracts one population from another population

+ Joins two populations into a single population

= Tests whether population a is equal to population b

<> Tests whether population a is not equal to population b

 Population Set

Some of the procedures like non-dominated sorting or clustering return a set of

populations as output rather than a single population. In order to maintain the history of

evolution one may need to maintain a number of populations in one place.

The PopulationSet class serves as a container for storing a series of relevant

populations. However, any population set can be consolidated to an accumulated

population by calling the Consolidate method. Table 4.9 shows the list of properties and

methods for the PopulationSet class.

111

Table ‎4.9 PopulationSet Class

Properties Description

Count Number of population in the population set

PList List of including populations

Member(i) Returns i
th

Population

Methods Description

Add(Population) Adds a population to the population set

Remove(Population) Removes a population from population set

Consolidate
Consolidates all population in population set and returns a

single accumulated population

Merge(Population 1, Population 2)
Merges two member populations: Population 1 and Population

and thus the Count is deducted by one

ClusterDistance(Cluster1, Cluster

2)

Measures the distance between two populations (as Cluster1

and Cluster 2) in the population set

 Crossover

The crossover class comprises of all different techniques which are devised for the

recombination of two different parent individuals. Table 4.10 shows the properties and

methods for the crossover class. The class comes with shared members. In contrast to

the normal classes where each instance have their own copy of members, in classes with

shared members all instances share a single copy of a specific property or method

(Deitel et al., 2001). Three different types of crossover are implemented; these are

namely, the Uniform, SinglePoint and Twopoint crossovers. The Rate property

represents the probability by which the crossover operator is applied and is set to 0.9 by

default for this research.

Table ‎4.10 Crossover Class

Properties Description

Rate The probability by which crossover is applied

Methods Description

Uniform (individual x, individual y)
Performs uniform crossover on two parent individuals:

individual x and individual y

SinglePoint(individual x, individual y)
Performs Single crossover on two parent individuals:

individual x and individual y

Two-Point(individual x, individual y)
Performs Two-pint crossover on two parent individuals:

individual x and individual y

112

 Mutation

The mutation operator is represented by the mutation class. Similar to the crossover

class, the mutation class also includes shared property and methods. Table 4.11 shows

the properties and methods for the mutation class. The Rate property refers to the

probability by which the mutation is applied. By default the Rate is set to 0.01.Two

types of implemented mutation are the uniform and random methods.

Table ‎4.11 Mutation Class

Properties Description

Rate The probability by which mutation is applied

Methods Description

Uniform(individual) Performs uniform mutation on the parent individual

Random(individual) Performs random mutation on the parent individual

 Selection

The selection class includes all different ways for selecting one set of parent among a

given population. Table 4.12 shows the methods in the selection class for the four

different selection techniques namely, the Roulette wheel(), Random(),

StochasticRemainderSelection() and Tournament(). All the methods take an instance of

the population class as well as a field of individual as input and return a single

individual as output. However, in the case of random selection no field is specified. The

selection is done according to the field specified. For selecting two mates the selection

function is required to be called twice. In the case of the tournament selection, the

Bios={greater, less} parameter specifies whether the selection is done based on

smaller values or bigger values.

113

Table ‎4.12 Selection Class

Methods Description

Roulette wheel(Population, IndividualField)

Implements the Roulette wheel selection

technique on a population based on the

individualfield

Random(Population)
Implements therandom selection technique

on a population

StochasticRemainderSelection(Population, ,

IndividualField)

Implements the stochastic remainder

selection technique on a population based on

the individualfield

Tournament(Population, IndividualField, Bios)

Implements the tournament selection

technique on a population based on the

individual field and Bios

4.2.2.2 Shell Objects

Shell classes implement evolutionary algorithms based on the fundamental object

defined in the core area. These algorithms present a complete evolutionary algorithm

and can be executed independently. The shell classes follow a shared interface as shown

in Figure 4.8.The interface comes with only one method named Run (see Table 4.13)

which serves as a starter of the algorithm.

Table ‎4.13 Evolutionary Multi-Objective Algorithm Interface

Methods Description

Run(Objective1, Objective2,

Constraint)

Takes the three parameters: the first objective , second objective

and constraint of the problem and starts the evolutionary algorithm

The parameters for Run are objective1 as first objective to the problem, objective2 as

second objective to the problem and constraint as the problem constraint, as presented

in Table 4.13.These parameters hold the address of an already defined function.

114

Figure ‎4.8 Evolutionary Multi-Objective Optimization Interface

4.2.3 Performance Evaluation

In order to evaluate the performance of the applied algorithms a special class is

designed. All the used metrics are defined as methods in this class. These methods

receive one or two approximations and calculate the metrics. Each approximation is a

set of obtained non-dominated solutions by a specific algorithm in the final population.

As an example, the metric Coverage takes two approximations called approximation1

and approximation2 and returns the corresponding value for the two set coverage. The

list of methods in the performance evaluation class is shown in Table 4.14.

Table ‎4.14 Performance Evaluation Class

Methods Description

Maximum Spread (Approximation)
Calculates the maximum spread metric for an

approximation

HyperVolume (Approximation, ReferencePoint) Calculates the hypervolume metric

Coverage(Approximation1,Approximation2)

Calculates the coverage metric for an two

approximations: Approximation1 and

Approximation2

Spacing(Approximation)
Calculates the spacing metric for an

approximation

4.3 Parameter Setting

Each evolutionary algorithm consists of a set of parameters which need to be well-

determined before the execution of the algorithm, as the performance of the algorithm is

affected by such parameters. For example, if the population size is too small, the

+Run(in Objective 1, in Objective 2, in Constraint) : Boolean

«interface»
Evolutionary Multi-Objective Optimization

Algorithm

+Run()

NPGA

+Run()

MOGA

+Run()

NSGA-II

+Run()

NSGA

+Run()

SPEA-II

+Run()

SPEA

+Run()

WBGA

+Run()

VEGA

115

evolutionary algorithm may be trapped in the local optima and may fail to discover the

global optima. On the other hand too large a population size slows down the algorithm

and wastes the computational resource. Choosing a proper value for such parameter is

not an easy task and in practice is usually done by trial-and-error (Haupt & Haupt,

1997; Michalewicz, 1996). Although some studies (Back, 1993; Davis, 1989;

Grefenstette, 1986; Jong, 1975; Srinivas & Patnaik, 1994) were performed to find the

optimal parameter settings for particular test cases, in general, a theoretical prescription

is not available (Bagchi, 1999) and there is no conclusion on what setting is best

(Mitchell, 1998). In fact, the control parameters are problem-specific (Bagchi, 1999). In

this research, the crossover, population size and generation number have been

experimentally tuned. The mutation rate was set to

 as recommended by

(Back, 1993). The distance between two individuals is calculated as the Euclidian

distance in objective space. For example, the Euclidean distance between two points

shown in Figure 4.9 is calculated as the following:

 √((() ())

 (() ())

) 4.1

Table 4.15 shows the list of chosen parameters for the research.

Figure ‎4.9 Calculation of distance in 2D objective space

Objective1

O
b

je
c
ti
ve

2

f1(a), f2(a)

Objectives Space

a

b

f1(b), f2(b)

d

116

Table ‎4.15 GA Parameter Setting

Parameter Value

Main Population Size 100

Secondary Population Size 20

tdom 10%

According to the procedure proposed by (Fonseca & Fleming,

1993)

Maximum Generation Number 100

Crossover Type Single-point

Crossover Rate 0.8

Mutation Type Bit-wise

Mutation Rate 1/number of views

Selection Method Binary Tournament Selection unless specified by algorithm

Number of Runs 30

Concerning the hypervolume metric the reference point defined by the value 100 in each

objective as shown in Figure 4.10.

In algorithms NSGA, MOGA and NPGA where a sharing strategy is required the niche

radius , , was calculated using the Fonseca and Fleming update rule (Fonseca &

Fleming, 1993).

Figure ‎4.10 Defined Reference Point for Hypervolume Metric

Since combining the fitness sharing and tournament selection may cause chaotic

behavior as reported by (Oei, Goldberg, & Chang, 1991) wherever a combination of

100

100

Total Query Response Time

T
o
ta

l U
p
d
a
te

 T
im

e

Reference Point

(100,100)

117

them is required a slightly modified version of sharing called continuously updating

sharing (Oei et al., 1991) is used. Although in the original paper of NPGA (Horn et al.,

1994) no procedure was proposed for setting the but the authors recommend 10%

of the main population. For NPGA, was selected. For SPEA and SPEA-II

the external population size of 20 was selected while 100 was selected as size of the

primary population.

The non-dominated solutions from the last generation of each run were identified and

they are considered as outcome of the optimization run.

4.4 Performance Metrics Used

It is to be noted that as mentioned in Section 3.4, some performance metrics for the

assessment of evolutionary multi-objective optimization algorithms require knowledge

of the true pareto optimal set. These metric are useful when the set of optimal solution

for a specific problem is available. Example of such metrics is the Generational

Distance (GD) or Error Ratio (ER) (Deb, 2001). Since in the case of the view selection

problem the pareto optimal set is unknown therefore the metrics could not be applied.

As stated in Section 3.4 the metrics for examining the performance of the evolutionary

multi-objective algorithms are convergent based or diversity based. However some

hybrid metrics measure both of these aspects. Four complementary metrics used for

performance assessment of the algorithms. Two Set Coverage as a convergence based

metrics and Maximum Spread and Spacing as two diversity based metrics were used. In

addition the hypervolume metric as a hybrid metric which measures both convergence

and spread of solutions are used. All the metric used except the two set coverage are

considered as unary metric since they take the result obtained by one algorithm and

return one real value as output. The Two Set Coverage as a binary metric takes the

118

obtained result from two different algorithms and returns an output value which implies

the comparison of two algorithms.

For each metric the ideal values is listed in Table 4.16. The ideal value represents the

best imaginable value for a particular metric. The Maximum Spread and Hypervolume is

calculated by substituting the value of 100 to the variable F1max and F2max in Figure 3.28

and Figure 3.30

Table ‎4.16 Ideal Values for Metrics Used

Metric Ideal Value

HyperVolume 10000

Spacing 0

Maximum Spread √

Two Sets Coverage 1

4.5 Problem Representation

Representation is considered as a fundamental step and key element in designing an

evolutionary algorithm. As mentioned in Chapter 3, representation refers to encoding a

real-world problem characteristic to an appropriate computer data structure. An array of

binary values is the most common way of encoding (Sivanandam & Deepa, 2009). In

the case of the view selection problem, a potential solution to the problem is encoded to

an array of binary values. The size of the array is identical to the number of possible

views. A one (1) in the i
th

position of the array means that the i
th

view is selected for

materialization while a zero (0) in the i
th

 position indicates the i
th

 view is not selected.

For example, Figure 4.11 shows a dependency lattice for a view selection problem with

8 possible views. In addition, a corresponding array with 8 cells is shown. The views

which are labeled with numbers 2, 3, and 6 (shown in grey) are the views that have been

selected for materialization and the rest of the views that have not been selected. As can

be seen, the array cells with number 2, 3 and 6 are set to one while the other cells take

119

the value of zero. Based on this form of encoding, it is clear that with | | possible views

the total number of points in the search space (as search space size) is the number of all

the combination of arrays with different values and is equal to | |. For the example

shown in Figure 4.11, the search space size is (see Figure 4.12).

All the eight (8) algorithms were implemented using the same binary encoding scheme

presented here with 64 bits for VSP1 and 48 bits for VSP2 to represent the decision

variable.

Figure ‎4.11 View Selection Problem Encoding

Figure ‎4.12 Calculating the Size of Search Space

4.6 Initialization

An evolutionary algorithm starts by an initial population. The common way for creating

an initial population is to generate a population by assigning random values. An ideal

random population is supposed to be well distributed in the entire search space

(Engelbrecht, 2007). For the view selection problem, a random population of

3 42

5 7

8

6

1

0 1 1 0 0 1 0 0

1 2 3 4 5 6 7 8

0 or 1 0 or 1 0 or 1 0 or 1 0 or 1 0 or 1 0 or 1 0 or 1

2 X 2 X 2 X 2 X 2 2 X 2 X 2X = 28

120

individuals is generated by the RandomGenerate method in the population class. The

parameter Populationsize determines the size of the population to be generated while

the ChromosomeSize refers to the number of genes which an individual include. Before

calling RandomGenerate the population is supposed to be empty, otherwise all existing

individuals are simply deleted first.

In all studies, in order to avoid the impact of random effect, 30 independent runs with

different random seeds (to create different random initial population) were made per

algorithm/problem instance which leads to 30 sets of solutions in the final generation.

4.7 Stopping Criteria

An evolutionary algorithm stops when a specific stopping criteria holds. The different

possible criteria were discussed in Termination Condition in. Section 3.3.1.6. However,

the algorithms implemented in this research are terminated when they reach to the

maximum number of generation.

4.8 Constraint Handling

As mentioned in Section 1.3 the variation of the view selection problem pertinent to this

research involves the disk space constraint. That is a potential solution to the problem

that must be fulfilled is the total disk space requirement for storing all views. Otherwise,

the solution is regarded as an infeasible solution. The constrained dominance technique

(Deb, 2001) is a parameterless constraint handling approach which uses the original

dominance concept and the binary tournament. The advantage for such technique is that

all methods designed based on the normal dominance definition can still work with only

minor modifications. In addition, the approach results in a better pareto spread and

convergence as stated in (Deb, 2001). For VEGA and WBGA which are not based on

dominance concept a modified binary tournament selection operator is used as

121

described in (Deb, 2001). The modified binary tournament selection operator picks two

random individual; x and y from the population and of them one individual is chosen

based on two criteria: feasibility and objective value. Taking constraints into

consideration three different situations may happen:

a) Both individuals are feasible

b) One individual is feasible and the other is infeasible

c) Both individuals are infeasible

Thereafter one individual is chosen following a simple rule:

Case a) An individual with better objective value is chosen

Case b) The feasible individual is chosen

Case c) The individual with less constraint violation is chosen.

4.9 Objective Normalization

The objective of a multi-objective optimization problem may take values of different

order of magnitude. In order to make each objective to be in the same order of

magnitude and equally important the objectives need to be scaled properly. The

procedure is called objective normalization and requires the knowledge of maximum

and minimum values for each objective (Deb, 2001). In the case of view selection

problem, both objectives, i.e. total query response time and total view update time, were

normalized to give value between 0 and 100 and calculated using following equations:

 ()

 ()

 4.2

 ()

 ()

 4.3

122

The () and () corresponds to the normalized values for total query response

time and total view update time respectively. , , and were

described in Sections 2.10 and 2.11.

4.10 View Size Estimation

As mentioned in Chapter 2, the view selection algorithms require the knowledge of the

size of a view without actually computing it since the computation of large number of

views is considered as an expensive task and is considered to be impractical. Without

the actual computation of a view, determining the exact size of a view may not be

possible. In practice, in order to determine the size of a view, view size estimation is

used instead. Of various suggested techniques for estimation the Cardenas’ formula

(Cardenas, 1975) is utilized due to its simplicity and low computational complexity.

4.11 Problem Instances

TPC-H benchmark ("The TPC Benchmark™H," 2011) is a database generator which is

recommended by the Transaction Processing Performance Council (TPC)

(http://www.tpc.org) and is widely used as a standard in decision support applications.

All view selection problem instances are derived from the database. The populated

database has 1 GB size and is uniformly distributed. The star schema for this database is

shown in Figure 4.15. The schema consists of three dimensions, that is: Supplier, Part

and Customer; as well as a central fact table, Sales. The parts are obtained from a

supplier and are sold to a customer for a specific price. All aggregations are applied to

the price attribute as a measure of interest. In order to define the VSP instances a special

tool is designed. The tool takes the meta-data which is driven from the synthetic

database and calculates an instance of the VSP class. Figure 4.13 and Figure 4.14 show

123

the different steps for creating the problem instance and the tool interface for defining

the problem instance respectively.

Figure ‎4.13 Screenshot of the Tool for Defining the View Selection Problem Instance

Figure ‎4.14 Creating VSP Instance

Figure ‎4.15 The Star Schema for the Supplier-Parts Database

Database VSP Definition Tool

Extracting

Meta-Data Creating VSP

Instance

View Selection Proclem

Instance

Sales SupplierPart

Customer

Dimension Table Dimension Table

Dimension Table

Fact Table

124

The dimension hierarchy differs from one problem instance to another. Since we are

interested to investigate the behavior (convergence, diversity and computational time)

of the algorithms with different size of the problem we derived two problem instances

with 64 and 48 views. The smaller problem was created by logically ignoring the

Region level from Customer hierarchy.

The reason behind selecting only two problem instances is that the performance of the

view selection algorithms was expected to be more dependent on the metadata rather

than the actual content of data. These metadata are view sizes, query frequency and

view update frequency and logical structure of views. Since the calculation of actual

view sizes is impractical as stated in Section 2.12 the view sizes are estimated using an

analytical method (Cardenas, 1975).The query and view update frequency are also

determined by a probability model and the structure of views are derived from the

dimension hierarchies. Furthermore, the dimension hierarchies are logically assigned to

each dimension table. As a result our main concern was to identify how the algorithm

works with different sizes of the search space. Apart from this, a number of outstanding

research works in the field of view selection problem such as the works by (Aouiche et

al., 2006; Baralis et al., 1997; Baril & Bellahsene, 2003; Harinarayan et al., 1996; Hung

et al., 2007; Lin & Kuo, 2004; Phuboon-ob & Auepanwiriyakul, 2007b; Song & Gao,

2010; Wang & Zhang, 2005) also use one or two problem instances in their

experiments.

 For the query and update frequency, a uniform frequency is assumed which indicates

identical probability for query and update. For the disk space constraint, the disk space

quota was set to 10% of the total size of all views.

125

4.11.1 VSP1

The first problem instance called VSP1 introduces the largest search space among the

problem instances. All the dimension tables have four levels (or nodes) of

summarization as shown in Figure 4.16. As mentioned earlier in Chapter 2, the

hypothetical attribute All, implies aggregation of all records in a dimension. The total

number of possible views are calculated as the product of the number of hierarchy

nodes in the different dimension hierarchies (i.e.); and in the case of VSP1, is

equal to 64. The list of all derived views is detailed in Table 4.17. Furthermore, the size

of the search space is the power set of all the views which is 2
64

. The dependency

lattice with 64 views for VSP1 is shown in Figure 4.17.

Figure ‎4.16 Dimension Hierarchies for VSP1

Part ID

Type Size

All

Nation

Customer IDSupplier ID

Nation

Region

All

Region

All

Supplier Customer Part

126

Table ‎4.17 List of Views For VSP1

Node Attributes Node Attributes

0 Supplier ID, Customer ID, Part ID, 32 Nation, All, Part ID,

1 Nation, Customer ID, Part ID, 33 Nation, Region, Type,

2 Supplier ID, Nation, Part ID, 34 Nation, Region, Size,

3 Supplier ID, Customer ID, Type, 35 Nation, Nation, All,

4 Supplier ID, Customer ID, Size, 36 Supplier ID, All, Type,

5 Region, Customer ID, Part ID, 37 Supplier ID, All, Size,

6 Nation, Nation, Part ID, 38 Supplier ID, Region, All,

7 Nation, Customer ID, Type, 39 All, Region, Part ID,

8 Nation, Customer ID, Size, 40 All, Nation, Type,

9 Supplier ID, Region, Part ID, 41 All, Nation, Size,

10 Supplier ID, Nation, Type, 42 All, Customer ID, All,

11 Supplier ID, Nation, Size, 43 Region, All, Part ID,

12 Supplier ID, Customer ID, All, 44 Region, Region, Type,

13 All, Customer ID, Part ID, 45 Region, Region, Size,

14 Region, Nation, Part ID, 46 Region, Nation, All,

15 Region, Customer ID, Type, 47 Nation, All, Type,

16 Region, Customer ID, Size, 48 Nation, All, Size,

17 Nation, Region, Part ID, 49 Nation, Region, All,

18 Nation, Nation, Type, 50 Supplier ID, All, All,

19 Nation, Nation, Size, 51 All, All, Part ID,

20 Nation, Customer ID, All, 52 All, Region, Type,

21 Supplier ID, All, Part ID, 53 All, Region, Size,

22 Supplier ID, Region, Type, 54 All, Nation, All,

23 Supplier ID, Region, Size, 55 Region, All, Type,

24 Supplier ID, Nation, All, 56 Region, All, Size,

25 All, Nation, Part ID, 57 Region, Region, All,

26 All, Customer ID, Type, 58 Nation, All, All,

27 All, Customer ID, Size, 59 All, All, Type,

28 Region, Region, Part ID, 60 All, All, Size,

29 Region, Nation, Type, 61 All, Region, All,

30 Region, Nation, Size, 62 Region, All, All,

31 Region, Customer ID, All, 63 All, All, All,

127

Figure ‎4.17 Dependency Lattice for VSP1

4.11.2 VSP2

The second problem instance is called VSP2. The Supplier dimension table includes four

levels of aggregation as Supplier ID, Nation, Region and All. The Customer dimension

table consists of three levels as CustomerID, Nation and All. The third dimension table,

the Part dimension, consists of four hierarchy nodes as PartID, Type, Size and All. The

dimension hierarchies are shown in Figure 4.18. The total number of possible views is

48 and hence the size of the search space is 2
48

. The list of derived views is presented in

Table 4.18 while Figure 4.19 shows the dependency lattice for VSP2.

128

Figure ‎4.18 Dimension Hierarchies for VSP2

Table ‎4.18 List Of Views for VSP2

Node Attributes Node Attributes

0 Supplier ID, Customer ID, Part ID, 24 All, Nation, Part ID,

1 Nation, Customer ID, Part ID, 25 All, Customer ID, Type,

2 Supplier ID, Nation, Part ID, 26 All, Customer ID, Size,

3 Supplier ID, Customer ID, Type, 27 Region, All, Part ID,

4 Supplier ID, Customer ID, Size, 28 Region, Nation, Type,

5 Region, Customer ID, Part ID, 29 Region, Nation, Size,

6 Nation, Nation, Part ID, 30 Region, Customer ID, All,

7 Nation, Customer ID, Type, 31 Nation, All, Type,

8 Nation, Customer ID, Size, 32 Nation, All, Size,

9 Supplier ID, All, Part ID, 33 Nation, Nation, All,

10 Supplier ID, Nation, Type, 34 Supplier ID, All, All,

11 Supplier ID, Nation, Size, 35 All, All, Part ID,

12 Supplier ID, Customer ID, All, 36 All, Nation, Type,

13 All, Customer ID, Part ID, 37 All, Nation, Size,

14 Region, Nation, Part ID, 38 All, Customer ID, All,

15 Region, Customer ID, Type, 39 Region, All, Type,

16 Region, Customer ID, Size, 40 Region, All, Size,

17 Nation, All, Part ID, 41 Region, Nation, All,

18 Nation, Nation, Type, 42 Nation, All, All,

19 Nation, Nation, Size, 43 All, All, Type,

20 Nation, Customer ID, All, 44 All, All, Size,

21 Supplier ID, All, Type, 45 All, Nation, All,

22 Supplier ID, All, Size, 46 Region, All, All,

23 Supplier ID, Nation, All, 47 All, All, All,

Part ID

Type Size

All

Nation

Customer IDSupplier ID

Nation

Region

All

All

Supplier Customer Part

129

Figure ‎4.19 Dependency Lattice for VSP2

4.12 Hardware and Software Specification

All experiments were performed on a computer with Intel Core 2 duo 1.8 GHz

processor, 3 GB of memory and 160 GB of hard disk running Microsoft windows 7

Professional. The system was free from other computation or being interrupted by other

programs. The implementation of the algorithms was carried out using Microsoft Visual

Basic 2008. The Visual Basic programming code is presented in Appendix A.

4.13 Summary

The general structure of the current work is classified into different domains as the

following: The problem domain where the characteristics of the problem at hand are

defined and the methodology consisting of the algorithm which acts on the problem. In

this chapter different objects defined for each domain were discussed. Each

130

evolutionary algorithm works with a set of parameters; the values chosen for the

parameters in this research were stated. The metrics which has been used for evaluating

the performance of the evolutionary multi-objective algorithm listed. Thereafter,

problem representation, stopping criteria, constraint handling technique and object

normalization used was discussed.

Two problem instances called VSP1 and VSP2 were used in this research. The

description for each problem instance was given and finally the hardware and software

specification for experimental work mentioned.

131

Chapter 5. Results and Discussion

This chapter presents the results for the comparison of eight well-known evolutionary

multi-objective algorithms based on four different measures and computational time.

The algorithms included in the experiments were ,WBGA (Hajela & Lin, 1992), NSGA

(Srinivas & Deb, 1994), NSGA-II (Deb, Pratap, Agarwal, & Meyarivan, 2002), SPEA

(Zitzler & Thiele, 1999), SPEA-II (Zitzler, Laumanns, et al., 2001), VEGA (Schaffer,

1985) , MOGA (Fonseca & Fleming, 1993) and NPGA (Horn et al., 1994) which was

described in Chapter 3.

VEGA, NPGA, MOGA and NSGA are considered as the most important and most

popular algorithms for MOEA as stated in (Coello, 1999). The eight (8) chosen

algorithms come with different perspectives and approaches and are frequently used in

different real-world applications as stated in Table 3.1. Some of these algorithms use

the dominance concept (NSGA-II, NSGA, SPEA, SPEA-II, MOGA, NPGA) while there

are algorithms (VEGA, WBGA) which are not based on the concept of dominance. Some

of the algorithms use the elitism (SPEA, SPEA-II, NSGA-II) feature while other

algorithms (WBGA, NPGA, MOGA, VEGA, NSGA) do not use elitism feature.

Furthermore, different selection mechanisms and different fitness assignment

techniques of these algorithms make them a diverse set of algorithms for

experimentation.

Table 5.2 to Table 5.23, Figure 5.2 and Figure 5.3 summarize the experimental results

for each problem instance with respect to the performance metrics Two Set Coverage,

Hypervolume, Spacing, Maximum Spread and computational time. It is to be noted that

132

the comparison between different algorithms were made based on the mean values of

each metric and computational time in 30 runs.

The distribution of values for each metric and problem instance in 30 simulation runs is

shown in a set of box plots (also known as Box and Whisker (Chambers, Cleveland,

Tukey, & Kleiner, 1983)) in Appendix B which visualize the distribution of data set

across a range at glance. Each plot includes a central box with 50% of the data as well

as two tails which called whiskers. The plot (see Figure 5.1) consists of five numbers

(called five number summary): lower extreme, lower quartile, median, upper quartile

and upper extreme which divide the whole data into four parts. Each of four parts

contains 25 percent of data. The box extends from lower quartile to upper quartile. The

horizontal line inside the middle of the box corresponds to the median of data. The

upper and lower edge of the box shows the upper quartile and lower quartile which are

75th and 25th percentile of data respectively. The upper and lower horizontal line

represent the maximum and minimum observed value. All other observed values

beyond the whiskers are called outliers and marked by *. (Dekking, Kraaikamp,

Lopuhaä, & Meester, 2007; Ouellette, 2009; Ross, 1987; Wackerly, Mendenhall, &

Scheaffer, 2001; Zhang, 2006)

Multiple comparisons between different algorithms subject to a performance metric are

shown in a number of tables. Each cell of the multiple comparisons gives the difference

between the mean value of one algorithm (in row) with respect to another algorithm (in

column). In addition, difference between algorithms which do not show any statistical

significance is denoted by an asterisk (*).

133

Figure ‎5.1 A sample box plot

For each metric and problem instance, the algorithms are ranked based on the metric

value from the algorithm with the best value to the algorithm with the worst value.

Moreover, when there is no statistically significance difference between two or more

algorithm they are placed in identical ranks.

5.1 Coverage Metric Results

Table 5.2 and Table 5.3 show the mean values for the two set coverage metric subject to

VSP1 and VSP2. Each cell in Table 5.2 and Table 5.3 represents the two set coverage

metric value with respect to the algorithm in the corresponding row and column. For

example, the value 0.04 in row 3 and column 2 in Table 5.2 represents C(SPEA, NSGA-

II). As mentioned in Section 3.4 , the metric C(A,B) calculates the percentage of

solutions in set B which are dominated by solutions in set A. C(A,B)=1 indicates that all

the solutions in set B are dominated by solutions in A while C(A,B)=0 indicates that

there is no solution in B which is dominated by a solution in A. Since the two set

Median

Lower Extreme

Upper Extreme

Upper Quartile

Lower Quartile

Outlier

Outlier

134

coverage is not a symmetric relation then () (). C(A,A) always takes

the value of zero since equal populations do not dominate each other.

Two multiple comparisons of the coverage metric for VSP1 and VSP2 are derived from

the mean of two set coverage metric (Table 5.2 and Table 5.3) and the values are

represented in Table 5.4 and Table 5.5 for VSP1 and VSP2 respectively. Each cell in

Table 5.4 and Table 5.5 represents the values of C(A,B)-C(B,A) with algorithm A in the

row and algorithm B in the column of the table.

Next, the ranking of the algorithm is calculated based on the following:

A particular algorithm is placed in rank i and called Ai if for each j>i (higher ranks):

 () 5.1

where () is a particular cell in Table 5.4 or Table 5.5 with algorithm in row

and algorithm in column. For example, SPEA-II is placed in rank 1 in Table 5.6

because the above condition holds as listed in Table 5.1:

Table ‎5.1 Checking 5.1 Condition for SPEA-II

Comparison

Cell(SPEA-II,NSGA-II)>0

Cell(SPEA-II,SPEA)>0

Cell(SPEA-II,NSGA)>0

Cell(SPEA-II,VEGA)>0

Cell(SPEA-II,WBGA)>0

Cell(SPEA-II,NPGA)>0

Cell(SPEA-II,MOGA)>0

135

Table ‎5.2 Mean Values of Two Set Coverage Metric for VSP1

 SPEA-II NSGA-II SPEA NSGA VEGA WBGA NPGA MOGA

SPEA-II 0.77 0.95 0.95 1 1 1 1

NSGA-II 0.42 0.97 1 1 1 1 1

SPEA 0.15 0.04 0.72 1 1 1 1

NSGA 0 0 0.22 0.97 1 1 1

VEGA 0 0 0 0 0.78 0.85 0.94

WBGA 0 0 0 0 0.17 0.62 0.92

NPGA 0 0 0 0 0.09 0.47 0.95

MOGA 0 0 0 0 0.24 0.11 0.11

Table ‎5.3 Mean Values of Two Set Coverage Metric for VSP2

 SPEA-II NSGA-II SPEA NSGA VEGA WBGA NPGA MOGA

SPEA-II 0.58 0.71 0.96 1 1 1 1

NSGA-II 0.56 0.90 0.93 1 1 1 1

SPEA 0.07 0.180 0.91 1 1 1 1

NSGA 0 0 0.117 0.80 1 1 1

VEGA 0 0 0 0 0.715 0.911 0.83

WBGA 0 0 0 0 0.26 0.500 0.60

NPGA 0 0 0 0 0.10 0.60 0.90

MOGA 0 0 0 0 0.17 0.08 0.19

Table ‎5.4 Multiple Comparison of Coverage Metric for VSP1.

 SPEA-II NSGA-II SPEA NSGA VEGA WBGA NPGA MOGA

SPEA-II 0.35 0.79 0.95 1.00 1.00 1.00 1.00

NSGA-II 0.94 1.00 1.00 1.00 1.00 1.00

SPEA 0.50 1.00 1.00 1.00 1.00

NSGA 0.97 1.00 1.00 1.00

VEGA 0.61 0.77 0.70

WBGA 0.15* 0.81

NPGA 0.85

MOGA

Table ‎5.5 Multiple Comparison of Coverage Metric for VSP2.

 SPEA-II NSGA-II SPEA NSGA VEGA WBGA NPGA MOGA

SPEA-II 0.02* 0.64 0.96 1.00 1.00 1.00 1.00

NSGA-II 0.72 0.93 1.00 1.00 1.00 1.00

SPEA 0.80 1.00 1.00 1.00 1.00

NSGA 0.80 1.00 1.00 1.00

VEGA 0.45 0.82 0.66

WBGA -0.10* 0.52

NPGA 0.72

MOGA

However two algorithms, A and B are placed in equal rank if there is no statistical

significance between C(A,B) and C(B,A) (or cell(A,B) is represented by *). For example

136

in Table 5.6 , WBGA and NPGA are in rank 6 since cell (WBGA, NPGA) represented by

* in Table 5.4.

Table 5.6 represents a ranking table based on the values of the multiple comparison of

VSP1 and Table 5.7 shows the ranking table for VSP2. From Table 5.6 and Table 5.7 it

can be observed that all elitist multi-objective algorithms (SPEA-II, NSGA-II, SPEA)

perform better than the non-elitist algorithms (NSGA, MOGA, NPGA, VEGA, WBGA).

This implies that elitism plays an important role in directing the population towards the

pareto optimal set. Among the elitist algorithms, the SPEA-II is slightly better than the

NSGA-II. However, the difference is not significant for VSP2. That indicates two rival

algorithms may have almost equal performances in solving VSP2. This may be due to

the smaller size of the VSP2 problem and therefore both algorithms encounter fewer

difficulties to converge to the pareto optimal set. Amongst the non-elitist algorithms

NSGA seems to be superior. MOGA is particularly weak in converging to the true pareto

optimal set as compared to the other algorithms. In solving both VSP1 and VSP2, no

significance difference is seen between WBGA and NPGA. In both problem instances

VEGA exhibit a fair performance. The set of solutions returned by NSGA-II and SPEA-

II mostly cover that of NSGA and SPEA. This is reasonable since they are improved

versions of their predecessor.

Table ‎5.6 Ranking of the Algorithms Based on Two Set Coverage Metric and for VSP1

Elitism Rank Algorithm VSP1

Elitist
1 SPEA-II

2 NSGA-II

3 SPEA

Non-Elitist

4 NSGA

5 VEGA

6
WBGA

NPGA

7 MOGA

137

Table ‎5.7 Ranking of the Algorithms Based on Two Set Coverage Metric With Respect to VSP2

Elitism Rank Algorithm VSP2

Elitist 1
SPEA-II

NSGA-II

2 SPEA

Non-Elitist

3 NSGA

4 VEGA

5
NPGA

WBGA

6 MOGA

5.2 Hypervolume Metric Results

Table 5.10 and Table 5.11 show the mean values of the Hypervolume metric as well as

the variance of the values for VSP1 and VSP2. Larger values of the Hypervolume are

better since they represent a larger area in the objective space which is covered by a set

of solutions. The rows in Table 5.10 and Table 5.11are ordered based on the descending

values of the mean column so that each row in the first column represents the rank of

the algorithm. In addition, Table 5.8 and Table 5.9 show multiple comparisons of

Hypervolume metric for VSP1 and VSP2 respectively.

Table ‎5.8 Multiple Comparison of Hypervolume for VSP1

 SPEA-II NSGA-II SPEA NSGA VEGA WBGA NPGA MOGA

SPEA-II 126.98 345.81 563.78 928.92 895.56 1061.21 1368.64

NSGA-II 218.83 436.80 801.94 768.58 934.23 1241.66

SPEA 217.97 583.10 549.75 715.40 1022.83

NSGA 365.13 331.78 497.42 804.86

VEGA -33.35* 132.29 439.73

WBGA 165.64 473.08

NPGA 307.44

MOGA

Table ‎5.9 Multiple Comparison of Hypervolume for VSP2

 SPEA-II NSGA-II SPEA NSGA VEGA WBGA NPGA MOGA

SPEA-II 161.46* 256.28 376.82 852.32 1243.50 1018.24 1568.68

NSGA-II 94.82 215.36 690.86 1082.05 856.78 1407.23

SPEA 120.54* 596.04 987.22 761.96 1312.40

NSGA 475.50 866.68 641.42 1191.86

VEGA 391.18 165.92 716.36

WBGA -225.27 325.18

NPGA 550.45

MOGA

138

Table ‎5.10 Mean and variance values of the Hypervolume metric for VSP1

Rank Algorithm Mean Variance

1 SPEA-II 6032.43 50842.88

2 NSGA-II 5905.45 12025.93

3 SPEA 5686.62 132297.39

4 NSGA 5468.65 95957.57

5
WBGA 5136.87 36853.64

VEGA 5103.51 10601.85

6 NPGA 4971.22 26155.29

7 MOGA 4663.77 46047.95

Table ‎5.11 Mean and Variance Values of the Hypervolume Metric for VSP2

Rank Algorithm Mean Variance

1
SPEA-II 6060.84 213843.74

NSGA-II 5899.39 58051.47

2
SPEA 5804.02 93335.57

NSGA 5684.02 53668.22

3 VEGA 5208.52 77758.32

4 NPGA 5042.61 9143.25

5 WBGA 4817.34 129496.55

6 MOGA 4492.16 86648.48

According to Table 5.10 SPEA-II outperforms NSGA-II for VSP1. However, from

Table 5.11 it is observed that both SPEA-II and NSGA-II give the highest values for

VSP2 since there is no significant difference between them. In addition, based on the

hypervolume metric, the performance of the most non-elitist algorithms is inferior to the

elitist algorithms.

Among the non-elitist algorithms NSGA is the most promising one while the VEGA and

WBGA exhibit fair performance. The results also show that the MOGA algorithm is the

weakest algorithm in terms of the hypervolume metric. The performance gap which is

seen between the SPEA and NSGA in VSP1 could be because of the lack of the elitism

mechanism in NSGA. However, in VSP2 which is the smaller problem instance, both

algorithms exhibit similar performance.

The results for the hypervolume metric are almost supported by results of the two set

coverage because both of the metrics evaluate the same aspects which is the closeness

of solutions to the pareto optimal set.

139

5.3 Result for Spacing metric

Table 5.14 and Table 5.15 shows the mean and variance of values for the Spacing

metric. The Table’s rows are ordered based on the ascending order of the mean and are

ranked accordingly. The lower Spacing values are regarded as better values since they

indicate less variation between distances and therefore the solutions are near uniformly

spaced (Deb, 2001). In addition, Table 5.12 and Table 5.13 show multiple comparisons

of Spacing metric for VSP1 and VSP2 respectively. It can be observed from the

Table 5.14 and Table 5.15 that SPEA-II performs well with respect to the population

diversity which reveals its ability to preserve a well distributed set of solutions. The

results also show that spread of solutions returned by SPEA is similar to NSGA-II for

 Table ‎5.12 Multiple Comparison of Spacing for VSP1

 SPEA-II NSGA-II SPEA NSGA VEGA WBGA NPGA MOGA

SPEA-II -0.25 -0.20 -0.65 -0.90 -0.96 -1.20 -1.41

NSGA-II 0.04* -0.41 -0.65 -0.72 -0.95 -1.17

SPEA -0.45 -0.69 -0.76 -0.99 -1.21

NSGA -0.25 -0.31 -0.54 -0.76

VEGA -0.07* -0.30 -0.52

WBGA -0.23 -0.45

NPGA -0.22

MOGA

Table ‎5.13 Multiple Comparison of Spacing for VSP2

 SPEA-II NSGA-II SPEA NSGA VEGA WBGA NPGA MOGA

SPEA-II -0.48 -0.10 -0.52 -0.85 -0.94 -1.30 -1.17

NSGA-II 0.39 -0.04 -0.36 -0.46 -0.82 -0.68

SPEA -0.43 -0.75 -0.84 -1.21 -1.07

NSGA -0.32 -0.42 -0.78 -0.65

VEGA -0.09* -0.46 -0.32

WBGA -0.36 -0.23

NPGA 0.13

MOGA

140

Table ‎5.14 Mean and Variance Values for Spacing Metric for VSP1

Rank VSP 1 Mean Variance

1 SPEA-II 0.20 0.004

2
SPEA 0.40 0.021

NSGA-II 0.45 0.018

3 NSGA 0.85 0.123

4
VEGA 1.10 0.170

WBGA 1.16 0.086

5 NPGA 1.40 0.144

6 MOGA 1.61 0.140

Table ‎5.15 Mean and Variance Values for Spacing Metric for VSP2

Rank VSP 2 Mean Variance

1 SPEA-II 0.30 0.004

2 SPEA 0.39 0.012

3 NSGA-II 0.78 0.026

4 NSGA 0.82 0.061

5
VEGA 1.14 0.228

WBGA 1.24 0.098

6 MOGA 1.46 0.232

7 NPGA 1.60 0.113

VSP1 while SPEA outperforms in VSP2. This is also supported by the work of (Deb,

Mohan, & Mishra, 2003). However, the NPGA and MOGA are amongst the poorest

algorithms in terms of the Spacing algorithm. VEGA and WBGA also show similar

performance in both problem instances.

5.4 Maximum Spread Metric Results

Table 5.18 and Table 5.19 present the mean and variance of values for the Maximum

Spread metric. Larger values are better since they indicate the solutions are spanned

over larger region of the objective space. The Table’s rows are ordered based on the

descending values of the mean column and each row in the first column represents the

rank for a particular algorithm. In addition, Table 5.16 and Table 5.17 show multiple

comparisons of Maximum Spread metric for VSP1 and VSP2 respectively.

From Table 5.18 it can be seen that the SPEA-II is best in VSP1. However according to

the results in Table 5.19 the difference between two algorithm’s means is not

141

statistically significant in VSP2. The results also show that WBGA performs worst

among all the algorithms while algorithms NSGA exhibit a fair performance.

Table ‎5.16 Multiple Comparison for Maximum Spread Metric for VSP1

 SPEA-II NSGA-II SPEA NSGA VEGA WBGA NPGA MOGA

SPEA-II 1.65 10.25 15.37 23.84 35.95 28.02 25.15

NSGA-II 8.60 13.72 22.19 34.30 26.37 23.50

SPEA 5.13 13.59 25.71 17.77 14.90

NSGA 8.47 20.58 12.65 9.77

VEGA 12.11 4.18 1.31*

WBGA -7.93 -10.81

NPGA -2.87

MOGA

Table ‎5.17 Multiple Comparison for Maximum Spread Metric for VSP2

 SPEA-II NSGA-II SPEA NSGA VEGA WBGA NPGA MOGA

SPEA-II -0.03* 8.22 14.69 32.13 35.48 27.02 24.26

NSGA-II 8.25 14.72 32.16 35.51 27.05 24.29

SPEA 6.47 23.91 27.26 18.80 16.04

NSGA 17.44 20.79 12.33 9.57

VEGA 3.35 -5.11 -7.87

WBGA -8.46 -11.22

NPGA -2.76*

MOGA

Table ‎5.18 Mean and Variance values of the Maximum Spread Metric for VSP1

Rank VSP 1 Mean Variance

1 SPEA-II 55.00 1.253

2 NSGA-II 53.35 0.163

3 SPEA 44.76 7.405

4 NSGA 39.63 18.327

5
VEGA 31.17 44.102

MOGA 29.86 84.414

6 NPGA 26.99 42.329

7 WBGA 19.05 31.753

Table ‎5.19 Mean and Variance Values of the Maximum Spread Metric for VSP2

Rank VSP 2 Mean Variance

1
NSGA-II 54.04 0.294

SPEA-II 54.00 2.097

3 SPEA 45.78 10.547

4 NSGA 39.32 14.608

5
MOGA 29.74 56.439

NPGA 26.98 50.921

7 VEGA 21.87 21.216

8 WBGA 18.52 29.203

142

5.5 Visual Comparison for 30 runs

The final populations from all 30 independent runs for each algorithm were combined

to form an accumulated population and thereafter the non-dominated solutions were

identified. The non-dominated solutions are visualized in Figure 5.2 and Figure 5.3

corresponding to the VSP1 and VSP2 respectively.

From the Figure 5.2 and Figure 5.3 it can observed that the SPEA-II and NSGA-II

perform best among all the algorithms with respect to convergence because the curve of

Figure ‎5.2 Non-Dominated Front Obtained By Each Evolutionary Algorithm Solving VSP1

30

40

50

60

70

80

90

0 5 10 15 20

To
ta

l V
ie

w
 U

p
d

at
e

Ti
m

e

Total Query Response Time

spea-ii NSGA-II

spea NSGA

VEGA NPGA

WBGA MOGA

143

Figure ‎5.3 Non-Dominated Front Obtained By Each Evolutionary Algorithm Solving VSP2

solutions for these two algorithms are closer to the point (0,0). In addition the extent of

the solutions of these two algorithms is much larger than the other algorithms.

However, MOGA is the poorest algorithm with respect to convergence and extent of

solutions. Furthermore, it can be seen that solutions by VEGA is denser in the center

region. This is the region where both objectives are individually minimized. That

implies that VEGA has a tendency to deliver good values subject to each objective

rather than a distributed set of trade-off solutions. This issue is also mentioned in the

work by (Deb, 2001; Nakayama et al., 2009a)

5.6 Computational Time Results

In order to compare the computational time of the algorithms the mean computational

time for each algorithm in 30 runs is shown in Table 5.22 and Table 5.23. The Table’s

rows are ordered based on the ascending order of the mean and each row in the first

column represents the rank for a particular algorithm. In addition, Table 5.20 and

30

40

50

60

70

80

90

100

0 5 10 15 20 25

To
ta

l V
ie

w
 U

p
d

at
e

Ti
m

e

Total Query Response Time

SPEA-II NSGA-II

SPEA NSGA

VEGA NPGA

WBGA MOGA

144

Table 5.21 show multiple comparisons of computational time metric for VSP1 and VSP2

respectively.

According to Table 5.22 and Table 5.23 most elitist algorithms except NSGA-II require

more time to execute as compared to the non-elitist algorithms. VEGA appeared to be

the fastest algorithm. However, as mentioned before its performance is less than the

elitist algorithms in terms of diversity and convergence. Among the elitist algorithms

the NSGA-II is considerably fast. This is likely due to the fast non-dominated sorting of

this algorithm. In both problem instances NSGA is the slowest algorithm possibly due to

its ranking and fitness sharing procedures. The result reveals that the elitism feature

adds computational overhead on the evolutionary algorithm. As a result most elitist

algorithms are slower than the algorithms which do not support elitism. For example the

SPEA is slower than the MOGA. For each algorithm the computational time for VSP1 is

Table ‎5.20 Multiple Comparisons for Computational Time Metric for VSP1

 SPEA-II NSGA-II SPEA NSGA VEGA WBGA NPGA MOGA

SPEA-II 2.59 0.31 -2.15 7.16 2.33 0.83 1.39

NSGA-II -2.28 -4.73 4.58 -0.26 -1.75 -1.20

SPEA -2.45 6.86 2.02 0.53* 1.08

NSGA 9.31 4.48 2.98 3.54

VEGA -4.83 -6.33 -5.77

WBGA -1.50 -0.94

NPGA 0.56

MOGA

Table ‎5.21 Multiple Comparisons for Computational Time Metric for VSP2

 SPEA-II NSGA-II SPEA NSGA VEGA WBGA NPGA MOGA

SPEA-II 2.49 0.64 -2.72 3.93 2.65 1.88 1.46

NSGA-II -1.86 -5.21 1.43 0.16* -0.61 -1.03

SPEA -3.35 3.29 2.02 1.24 0.83

NSGA 6.64 5.37 4.60 4.18

VEGA -1.27 -2.05 -2.46

WBGA -0.77 -1.19

NPGA -0.42

MOGA

145

Table ‎5.22 Mean of Computational Time (in Second) for VSP1

Rank Algorithm Mean Computational
Time

Variance

1 VEGA 18.027 0.51

2 NSGA-II 22.604 0.89

3 WBGA 22.859 0.77

4 MOGA 23.799 1.05

5
NPGA 24.356 0.61

SPEA 24.883 2.65

6 SPEA-II 25.191 0.59

7 NSGA 27.337 6.75

Table ‎5.23 Mean of Computational Time (in Second) for VSP2

Rank Algorithm Mean Computational
Time

Variance

1 VEGA 14.769 0.39

2
NSGA-II 16.202 1.03

WBGA 16.042 0.65

3 MOGA 17.231 0.28

4 NPGA 16.816 0.96

5 SPEA 18.058 1.47

6 SPEA-II 18.694 0.45

7 NSGA 21.412 2.34

noticeably higher than that of VSP2. This is explained by a larger search space of VSP1

than VSP2. NSGA-II as an enhanced version is significantly faster than NSGA. However,

in the case of SPEA-II the older version i.e. SPEA is faster in solving VSP2. Since

SPEA-II uses a fine-grained fitness assignment strategy it has more computational time

than its predecessor; SPEA.

Generally, it can be said that none of the eight (8) algorithms can be considered as the

best with respect to the four performance metrics and computational time. However, in

most of the metrics NSGA-II and SPEA-II perform better than the other algorithms. The

result shows also that features such as elitism and sharing strategy which are

implemented in SPEA-II, SPEA, NSGA-II are important factors in order to reach better

convergence and diversity of solutions while at the same time it increases the

computational overhead.

146

Chapter 6. Conclusion

This chapter presents the conclusion of this thesis. The chapter is organized as follows:

Section 6.1 gives a summary of the research undertaken. Section 6.2 presents the

research results and the contributions and finally the future work will be stated in

Section 6.3

6.1 Summary of Research

The materialized view selection problem is considered as an important challenge in data

warehouse optimization. The problem of selecting the right subset of views such that a

goal is minimized is an NP-Hard problem (Gupta & Mumick, 1999). The problem

received significant attention in the past. Several approaches such as greedy, Genetic

Algorithm, A
*
, simulated annealing and etc. has been suggested (see Table 2.3).

However, most of the proposed works merely consider the problem in a single objective

form where either the total query response time, total update time or a combination of

these are taken into consideration. The multi-objective view selection is an innovative

approach to the problem and refers to selecting a subset of views such that both goals,

that is the total query response time and the total view update time is minimized

simultaneously. On the other hand, evolutionary algorithms are regarded as a promising

candidate to solve the general multi-objective problems (Deb, 2001). The application of

these algorithms were investigated in several optimization problems with multiple

objectives in different areas (Coello, 2007; Deb, 2001; Goldberg, 1989; Yu & Gen,

2010). However, in the field of the view selection problem in the multi-objective

variation no published comprehensive and comparative study has been carried out. This

research is about the application of evolutionary multi-objective optimization

147

algorithms in the multi-objective view selection problem. As a comparative study a

number of well-known evolutionary algorithms were applied to the multi-objective

view selection problem.

The entire architecture for the proposed object oriented model is classified into two

different domains:

 Problem domain

 Methods domain

The problem domain includes all relevant classes to the problem such as Lattice, view

and VSP problem instance. The methods domain includes all classes that are relevant to

the methods. The classes in the methods domain are divided in two different groups:

The shell classes and core classes. The core classes are fundamental classes which are

used as a basic part in the shell classes. Examples of the core classes are the individual,

population, selection operator, mutation operator and crossover operator. The shell

classes implement a fully standalone evolutionary algorithm and can be executed

independently. These algorithms rely on ready-made classed in the core area. The

advantage of such a classification is that any time in future, the problems and methods

can be replaced to other problems and methods.

In order to deal with the disk space constraint of the view selection problem in this

research, constrain dominance is used for constraint handling, since it was shown as a

promising technique in (Deb, 2001). The technique slightly modifies the definition of

the original dominance concept so as to make the right decisions about the infeasible

solutions encountered.

148

Most view selection algorithms require the knowledge of the size of the views.

However, the exact size of views would be obtainable only by creating and storing the

view. For view size estimation the Caredenas’ formula (Cardenas, 1975) was used.

6.2 Contribution and results

Two different goals for the evolutionary multi-objective algorithms are (Mumford &

Jain, 2009):

1. Finding a set of solutions which are close to the true pareto optimal set.

2. Finding a set of solutions that are well distributed.

In designing the performance metric for the evolutionary multi-objective algorithms

these two goals are taken into consideration. Several performance metrics (Deb, 2001)

are suggested for the assessment of the evolutionary multi-objective algorithms.

Generally, the metrics are classified in three groups: the convergence based metric

which measure a set of obtained solutions based on the first goal, diversity based

metrics which evaluates the set of solutions based on the second goal and hybrid metrics

which are meant to measure the performance based on both of the two above goals.

Two problem instances, called VSP1 and VSP2, is derived from a synthetic database

populated according to the TPC-H proposal ("The TPC Benchmark™H," 2011). The

size of the search space for VSP1 and VSP2 is and respectively.

For evaluating the performance of the algorithms studied in this research, Two Sets

Coverage as convergence based, Hypervolume as a hybrid metric, spacing and

maximum spread as a diversity based was used. It is to be noted that some metrics

require the knowledge of the true pareto optimal set. Examples of such measures are the

Error Ratio, Generational Distance and Spread (Deb, 2001). However, in the case of

the view selection problem these metrics were not applicable since the set of true pareto

149

optimal set is unknown. The outcomes of all the eight (8) algorithms in 30 different runs

with different initial population were compared based on these three metrics. In

addition, the computational times for these algorithms were also compared.

 It is to be noted that the contribution of this research is limited to the multi-objective

view selection problem area.The general contributions of this research (with respect to

the multi-objective view selection problem) are as follows:

 Identification of the algorithm which performed well (as compared to various

others) in solving the multi-objective view selection problem; and these

algorithms are namely, SPEA-II and NSGA-II. These two algorithms is

recommendation of this research for solving multi-objective view selection

problem.

 Our findings show that the elitist algorithms (SPEA-II, SPEA, and NSGA-II)

perform better than the non-elitist algorithms (MOGA, NPGA, WBGA and

VEGA) in solving the multi-objective view selection problem.

 The strategies such as fitness sharing and crowding help in the diversity of the

solutions to the multi-objective view selection problem.

 In solving the multi-objective view selection problem, although using a

secondary population for preserving the best ever found solutions helps to 1)

give a more distributed solution; and 2) obtain a set of solutions which are closer

to the optimal solution, however at the same time managing the secondary

population increases the computational complexity of the algorithm.

6.3 Future Work

Future perspective on the view selection problem can be the investigation of the

following items:

150

 Study the application of other possible meta-heuristic such as the ant colony

optimization, Particle swarm optimization, Bee algorithms on the multi-

objective view selection problem

 A new evolutionary multi-objective algorithm developed by combining good

features of different evolutionary multi-objective algorithms.

 Investigate the application of parallel genetic algorithms on the multi-objective

view selection problem.

151

References

Abraham, A., & Goldberg, R. (2005). Evolutionary Multiobjective Optimization:

Theoretical Advances and Applications: Springer.

Achenie, L., Venkatasubramanian, V., & Gani, R. (2002). Computer Aided Molecular

Design, Volume 12: Theory and Practice: Elsevier Science.

Adamski, J. J., & Finnegan, K. T. (2007). New Perspectives on Microsoft Office Access

2007, Introductory: Course Technology.

Agrawal, V., Sundararaghavan, P. S., Ahmed, M. U., & Nandkeolyar, U. (2007). View

Materialization in a Data Cube: Optimization Models and Heuristics. Journal of

Database Management (JDM), 18(3), 1-20.

Agrawal, V. R. (2005). Data Warehouse Operational Design: View Selection and

Performance Simulation. (Doctoral dissertation), University of Toledo.

Ahmed, M. U., Agrawal, V., Nandkeolyar, U., & Sundararaghavan, P. S. (2007).

Statistical Sampling to Instantiate Materialized View Selection Problems in Data

Warehouses. International Journal of Data Warehousing and Mining, 3(1), 1-

28.

Ahn, C. W. (2006). Advances in Evolutionary Algorithms: Theory, Design and

Practice: Springer.

Alba, E., Blum, C., Isasi, P., Leon, C., & Gomez, J. A. (2009). Optimization Techniques

For Solving Complex Problems: Wiley.

Alba, E., & Dorronsoro, B. (2008). Cellular Genetic Algorithms (1st ed.): Springer.

Alberto, I., & Mateo, P. M. (2008). Using Pareto Optimality for Defining the Mutation

Operator Step Size (Vol. 8, pp. 1-19): University of Zaragoza.

Aouiche, K., Jouve, P.-E., & Darmont, A. J. E. O. (2006). Clustering-Based

Materialized View Selection in Data Warehouses Advances in Databases and

Information Systems (pp. 81-95): Springer.

152

Ashadevi, B., & Balasubramanian, R. (2008). Cost Effective Approach for Materialized

Views Selection in Data Warehousing Environment. International Jouranl of

Computer Science and Network Security, 8(10), 236-242.

Back, T. (1993). Optimal Mutation Rates in Genetic Search. Paper presented at the 5th

International Conference on Genetic Algorithms.

Bäck, T. (1996). Evolutionary Algorithms in Theory and Practice: Evolution Strategies,

Evolutionary Programming, Genetic Algorithms: Oxford University Press.

Bäck, T., Fogel, D. B., & Michalewicz, Z. (1997). Handbook of Evolutionary

Computation: Oxford University Press.

Bagchi, T. P. (1999). Multiobjective Scheduling by Genetic Algorithms: Springer.

Baralis, E., Paraboschi, S., & Teniente, E. (1997). Materialized View Selection in a

Multidimensional Database.

Barba, P. D. (2009). Multiobjective Shape Design in Electricity and Magnetism:

Springer.

Baril, X., & Bellahsene, Z. (2003). Selection of Materialized Views: A Cost-Based

Approach. Paper presented at the 15th International Conference on Advanced

Information Systems Engineering, Klagenfurt, Austria.

Bauer, A., & Lehner, W. (2003). On solving the View Selection Problem in Distributed

Data Warehouse Architectures. Paper presented at the 15th International

Conference on Scientific and Statistical Database Management, Cambridge,

MA.

Benyoucef, L., & Grabot, B. (2010). Artificial Intelligence Techniques for Networked

Manufacturing Enterprises Management (1st ed.): Springer.

Bhansali, N. (2009). Strategic Data Warehousing: Achieving Alignment with Business

(1st ed.): Auerbach Publications.

Błażewicz, J., Kubiak, W., Morzy, T., & Rusinkiewicz, M. (2003). Handbook on Data

Management in Information Systems: Springer.

Blickle, T. (1997). Theory of Evolutionary Algorithms and Application to System

Synthesis: Hochschulverlag.

153

Boukra, A., Nace, M. A., & Bouroubi, S. (2007). Selection of Views to Materialize in

Data warehouse: A Hybrid Solution. International Journal of Computational

Intelligence Research, 3(4), 327–334.

Bowden, R. O. (1992). Genetic algorithm based machine learning applied to the

dynamic routing of discrete parts. (Doctoral dissertation), Mississippi State

University.

Branke, J., Deb, K., Miettinen, K., & Slowinski, R. (2008). Multiobjective

Optimization: Interactive and Evolutionary Approaches: Springer.

Bui, L. T., & Alam, S. (2008). An introduction to Multi-Objective Optimization Multi-

Objective Optimization in Computational Intelligence: Theory and Practice (pp.

1-19): IGI Global.

Burke, E. K., & Kendall, G. (2005). Search Methodologies: Introductory Tutorials in

Optimization and Decision Support Techniques: Springer.

Cardenas, A. F. (1975). Analysis and Performance of Inverted Data Base Structures.

Communications of the ACM, 18(5), 253-263. doi:

http://doi.acm.org/10.1145/360762.360766

Chakrabarti, S., & Cox, E. (2008). Data Mining: Know It All: Morgan Kaufmann.

Chambers, J. M., Cleveland, W. S., Tukey, P. A., & Kleiner, B. (1983). Graphical

Methods for Data Analysis: Duxbury Press.

Champandard, A. J. (2003). AI Game Development: Synthetic Creatures with Learning

and Reactive Behaviors: New Riders Games.

Chan, G. K. Y., Li, Q., & Feng, L. (1999). Design and Selection of Materialized Views

in a Data Warehousing Environment: A Case Study. Paper presented at the 2nd

ACM International Workshop on Data Warehousing and OLAP, Kansas City,

Missouri, United States.

Chan, G. K. Y., Li, Q., & Feng, L. (2001). Optimized Design of Materialized Views in

a Real-Life Data Warehousing Environment. International Journal of

Information Technology, 7(1), 30-54.

Chaudhuri, S., & Dayal, U. (1997). An Overview of Data Warehousing and OLAP

Technology. ACM SIGMOD Record, 26(1), 65-74. doi:

http://doi.acm.org/10.1145/248603.248616

http://doi.acm.org/10.1145/360762.360766
http://doi.acm.org/10.1145/248603.248616

154

Chen, P. P.-S. (1976). The Entity-Relationship Model-Toward a Unified View of Data.

ACM Transactions on Database Systems, 1(1), 9-36. doi:

10.1145/320434.320440

Chen, S.-H. (2002). Genetic Algorithms and Genetic Programming in Computational

Finance: Springer.

Chen, Y.-W., Nakao, Z., & Arakaki, K. (1997). Blind Deconvolution Based on Genetic

Algorithms. IEICE Transactions on Fundamentals of Electronics,

Communications and Computer Science, E80-A, 2603-2607.

Chiong, R. (2009). Nature-Inspired Algorithms for Optimisation (1st ed.): Springer.

Chipperfield, A. J., & Fleming, P. J. (1995). Gas Turbine Engine Controller Design

using Multiobjective Genetic Algorithms. Paper presented at the First IEE/IEEE

International Conference on Genetic Algorithms in Engineering Systems :

Innovations and Applications, GALESIA’95, Halifax Hall, University of

Sheffield, UK.

Chipperfield, A. J., & Fleming, P. J. (1996). Multiobjective Gas Turbine Engine

Controller Design Using Genetic Algorithms. IEEE Transactions on Industrial

Electronics, 43(5), 583–587.

Coello, C. A., & Lamont, G. B. (2004). Applications of Multi-Objective Evolutionary

Algorithms: World Scientific Publishing Company.

Coello, C. a. C. (1999). An Updated Survey of Evolutionary Multiobjective Optimization

Techniques: State of the Art and Future Trends. Paper presented at the Congress

On Evolutionary Computation, Veracruz.

Coello, C. a. C. (2007). Evolutionary Multi-Objective Optimization in Finance

Handbook of Research on Machine Learning Applications and Trends (pp. 74-

89): IGI Global.

Coello, C. a. C., Aguirre, A. H. A., & Buckles, B. P. (2000). Evolutionary

Multiobjective Design of Combinational Logic Circuits. Paper presented at the

Second NASA/DoD Workshop on Evolvable Hardware, Los Alamitos,

California.

Coello, C. a. C., Lamont, G. B., & Veldhuizen, D. a. V. (2007). Evolutionary

Algorithms for Solving Multi-objective Problems: Springer.

155

Cohoon, J. P., Hegde, S. U., Martin, W. N., & Richards, D. S. (1991). Distributed

Genetic Algorithms for the Floorplan Design Problem. IEEE Transactions on

Integrated Circuits and Systems, 10(4), 483-492.

Coley, D. A. (1998). An Introduction to Genetic Algorithms for Scientists and

Engineers: World Scientific Publishing Co., Inc.

Collette, Y., & Siarry, P. (2003). Multiobjective Optimization: Principles and Case

Studies: Springer.

Cox, E. (2005). Fuzzy Modeling and Genetic Algorithms for Data Mining and

Exploration (1st ed.): Morgan Kaufmann.

Davis, L. (1989). Adapting Operator Probabilities in Genetic Algorithms. Paper

presented at the Third International Conference on Genetic algorithms, George

Mason University, United States.

Deb, K. (2000). An Efficient Constraint Handling Method for Genetic Algorithms.

Computer Methods in Applied Mechanics and Engineering, 186, 311-338.

Deb, K. (2001). Multi-objective Optimization Using Evolutionary Algorithms: Wiley.

Deb, K. (2010). Recent Developments in Evolutionary Multi-Objective Optimization

Trends in Multiple Criteria Decision Analysis: Springer.

Deb, K., Agrawal, S., Pratap, A., & Meyarivan, T. (2000). A Fast Elitist Non-dominated

Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II. Paper

presented at the 6th International Conference on Parallel Problem Solving from

Nature.

Deb, K., Mohan, M., & Mishra, S. (2003). Towards a Quick Computation of Well-

Spread Pareto-Optimal Solutions. Paper presented at the 2nd international

Conference on Evolutionary Multi-criterion Optimization, Faro, Portugal.

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A Fast and Elitist

Multiobjective Genetic Algorithm: NSGA-II. IEEE Transactions on

Evolutionary Computation, 6(2), 182-197.

Deitel, H. M., Deitel, P. J., & Nieto, T. R. (2001). Visual Basic.NET How to Program

(2nd ed.): Prentice Hall.

156

Dekking, F. M., Kraaikamp, C., Lopuhaä, H. P., & Meester, L. E. (2007). A Modern

Introduction to Probability and Statistics: Understanding Why and How:

Springer.

Derakhshan, R., Dehne, F., Korn, O., & Stantic, B. (2006). Simulated Annealing for

Materialized View Selection In Data Warehousing Environment. Paper

presented at the 24th IASTED international conference on Database and

applications, Innsbruck, Austria.

Dhote, C. A., & Ali, D. M. S. (2007). Materialized View Selection in Data

Warehousing. Paper presented at the International Conference on Information

Technology.

Dhote, C. A., & Ali, M. S. (2009). Materialized View Selection in Data Warehousing:

A Survey. Journal of Applied Sciences, 9(3), 401-414.

Diaz-Gomez, P. A. (2007). Optimization of parameters for binary genetic algorithms.

(Doctoral dissertation), University of Oklahoma, Oklahoma.

Donoso, Y., & Fabregat, R. (2007). Multiobjective Optimization in Computer Networks

Using Metaheuristic: Auerbach Publications.

Dorigo, M., & Stützle, T. (2004). Ant Colony Optimization: The MIT Press.

Drechsler, R., & Drechsler, N. (2002). Evolutionary Algorithms for Embedded System

Design (Genetic Algorithms and Evolutionary Computation): Springer.

Eiben, A. E., & Smith, J. E. (2008). Introduction to Evolutionary Computing: Springer.

Elmasri, R., & Navathe, S. B. (2003). Fundamentals of Database Systems: Addison

Wesley.

Engelbrecht, A. P. (2007). Computational Intelligence: An Introduction: Wiley.

England, K., & Powell, G. J. (2007). Microsoft SQL Server 2005 Performance

Optimization and Tuning Handbook: Digital Press.

Erickson, M., Mayer, A., & Horn, J. (2002). Multi-objective Optimal Design of

Groundwater Remediation Systems: Application of the Niched Pareto Genetic

Algorithm (NPGA). Advances in Water Resources, 25(1), 51-65.

157

Fan, Y. (1997). Materialized View Algorithms. (Masters dissertation), Portland State

University.

Farrell, J. (2010). Programming Logic and Design, Comprehensive (6th ed.): Course

Technology.

Fonseca, C. M., & Fleming, P. J. (1993). Genetic Algorithm for Multiobjective

Optimization, Formulation, Discussion and Generalization. Paper presented at

the 5th International Conference: Genetic Algorithms.

Freitas, A. A. (2002). Data Mining and Knowledge Discovery with Evolutionary

Algorithms: Springer.

Freschi, F., & Repetto, M. (2005). Multiobjective Optimization by a Modified Artificial

Immune System Algorithm. Paper presented at the 4th International Conference

on Artificial Immune Systems, Banff, Alberta, Canada.

Gandibleux, X., Sevaux, M., Sörensen, K., & T'kindt, V. (2004). Metaheuristics for

Multiobjective Optimisation: Springer.

Gen, M., & Cheng, R. (1997). Genetic Algorithms and Engineering Design: Wiley-

Interscience.

Gen, M., & Cheng, R. (1999). Genetic Algorithms and Engineering Optimization:

Wiley-Interscience.

Gendreau, M., & Potvin, J.-Y. (2010). Handbook of Metaheuristics (2nd ed.): Springer.

Goh, C.-K., Ong, Y.-S., & Tan, K. C. (2009). Multi-Objective Memetic Algorithms (1st

ed.): Springer.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine

Learning: Addison-Wesley Professional.

Gong, A., & Zhao, W. (2008). Clustering-Based Dynamic Materialized View Selection

Algorithm. Paper presented at the Fifth International Conference on Fuzzy

Systems and Knowledge Discovery.

Goodman, E. D. (Producer). (2009, 20 Oct 2011). Introduction to Genetic Algorithms.

[Presentation] Retrieved from

http://www.egr.msu.edu/~goodman/GECSummitIntroToGA_Tutorial-

goodman.pdf

http://www.egr.msu.edu/~goodman/GECSummitIntroToGA_Tutorial-goodman.pdf
http://www.egr.msu.edu/~goodman/GECSummitIntroToGA_Tutorial-goodman.pdf

158

Gorunescu, F. (2011). Data Mining: Concepts, Models and Techniques (1st ed.):

Springer.

Gou, G., Yu, J. X., Choi, C.-H., & Lu, H. (2003). An Efficient and Interactive A*-

Algorithm with Pruning Power: Materialized View Selection Revisited. Paper

presented at the Eighth International Conference on Database Systems for

Advanced Applications.

Gou, G., Yu, J. X., & Lu, H. (2006). A* Search: An Efficient and Flexible Approach to

Materialized View Selection. IEEE transactions on systems, man and

cybernetics. Part C, Applications and reviews, 36, 411-425.

Grefenstette, J. J. (1986). Optimization of Control Parameters for Genetic Algorithms.

IEEE Transactions on Systems, Man and Cybernetics, 16(1), 122-128. doi:

10.1109/tsmc.1986.289288

Gupta, A., & Mumick, I. S. (1995). Maintenance of Materialized Views: Problems,

Techniques, and Applications. IEEE Data Engineering Bulletin, 18(2).

Gupta, H., Harinarayan, V., & Rajaraman, A. (1997). Index Selection for OLAP. Paper

presented at the Thirteenth International Conference on Data Engineering.

Gupta, H., & Mumick, I. S. (1997). Selection of Views to Materialize in a Data

Warehouse. Paper presented at the 6th International Conference on Database

Theory.

Gupta, H., & Mumick, I. S. (1999). Selection of Views to Materialize Under a

Maintenance Cost Constraint. Paper presented at the 7th International

Conference on Database Theory.

Gupta, H., & Mumick, I. S. (2005). Selection of Views to Materialize in a Data

Warehouse. IEEE Transactions on Knowledge and Data Engineering, 17(1), 24-

43. doi: 10.1109/tkde.2005.16

Haastrup, P., & Pereira, A. G. A. (1997). Exploring the Use of Multi-Objective Genetic

Algorithms for Reducing Traffic Generated Urban Air and Noise Pollution.

Paper presented at the 5th European Congress on Intelligent and Soft

Computing, Aachen, Germany.

Hajela, P., & Lin, C.-Y. (1992). Genetic Search Strategies in Multicriterion Optimal

Design. Structural Optimization, 4(2), 99-107.

Han, J., Kamber, M., & Pei, J. (2005). Data Mining: Concepts and Techniques (2nd

ed.): Morgan Kaufmann.

159

Hanusse, N., Maabout, S., & Tofan, R. (2009). A View Selection Algorithm with

Performance Guarantee. Paper presented at the 12th International Conference

on Extending Database Technology: Advances in Database Technology, Saint

Petersburg, Russia.

Harinarayan, V., Rajaraman, A., & Ullman, J. D. (1996). Implementing Data Cubes

Efficiently. Paper presented at the 1996 ACM SIGMOD International

Conference on Management of Data, Montreal, Quebec, Canada.

Haupt, R. L., & Haupt, S. E. (1997). Practical Genetic Algorithms: Wiley-Interscience.

Haupt, R. L., & Werner, D. H. (2007). Genetic Algorithms in Electromagnetics (1st

ed.): Wiley-IEEE Press.

Hetland, M. L., & Sætrom, P. (2005). Evolutionary Rule Mining in Time Series

Databases. Machine Learning, 58(2-3), 107-125. doi: 10.1007/s10994-005-

5823-8

Hobbs, L., & Hillson, S. (1999). Oracle 8i Data Warehousing: Digital Press.

Hobbs, L., Hillson, S., & Lawande, S. (2003). Oracle 9iR2 Data Warehousing: Digital

Press.

Hoberman, S. (2009). Data Modeling Made Simple: A Practical Guide for Business and

IT Professionals: Technics Publications, LLC.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems: University of

Michigan Press.

Horn, J., Nafpliotis, N., & Goldberg, D. E. (1994). A Niched Pareto Genetic Algorithm

for Multiobjective Optimization. Paper presented at the First IEEE Conference

on Evolutionary Computation, Orlando, FL.

Horng, J.-T., Chang, Y.-J., & Liu, B.-J. (2003). Applying Evolutionary Algorithms to

Materialized View Selection in a Data Warehouse. Soft Computing - A Fusion of

Foundations, Methodologies and Applications, 7(8), 574-581.

Horng, J. T., Chang, Y. J., Lin, B. J., & Kao, C. Y. (1999). Materialized View Selection

Using Genetic Algorithms in a Data Warehouse System. Paper presented at the

1999 Congress on Evolutionary Computation.

160

Huang, D.-S., Wunsch, D. C., Levine, D. S., & Jo, K.-H. (2008). Advanced Intelligent

Computing Theories and Applications: With Aspects of Contemporary

Intelligent Computing Techniques: Springer.

Hung, E. (2001). Inapproximability of Materialized View Selection Problem and Non-

metric K-medians Problem.

Hung, M.-C., Huang, M.-L., Yang, D.-L., & Hsueh, N.-L. (2007). Efficient Approaches

for Materialized Views Selection In A Data Warehouse. Information Sciences,

177(6), 1333-1348. doi: 10.1016/j.ins.2006.09.007

Inmon, W. H. (1992). Building the Data Warehouse: John Wiley & Sons, Inc.

Inmon, W. H. (2005). Building the Data Warehouse (4th ed.): Wiley.

Inmon, W. H., & Kelley, C. (1993). Rdb/VMS: Developing the Data Warehouse: QED.

Itl Education Solutions Limited. (2010). Introduction to Database Systems: Pearson

Education.

Jamil, H. M., & Modica, G. A. (2001). A View Selection Tool for Multidimensional

Databases. Paper presented at the 14th international conference on industrial

and engineering applications.

Janssens, G. K., & Pangilinan, J. M. (2010). Multiple Criteria Performance Analysis of

Non-dominated Sets Obtained by Multi-objective Evolutionary Algorithms for

Optimisation. Paper presented at the Artificial Intelligence Applications and

Innovations, Larnaca, Cyprus.

Jong, K. a. D. (1975). An Analysis of The Behavior of a Class of Genetic Adaptive

Systems. (Doctoral dissertation), University of Michigan.

Kalnis, P., Mamoulis, N., & Papadias, D. (2002). View Selection Using Randomized

Search. Data & Knowledge Engineering, 42(1), 89-111. doi:

http://dx.doi.org/10.1016/S0169-023X(02)00045-9

Karloff, H., & Mihail, M. (1999). On the Complexity of the View-Selection Problem.

Paper presented at the 18th ACM SIGMOD-SIGACT-SIGART Symposium on

Principles of Database Systems, Philadelphia, Pennsylvania, United States.

Kaylani, A. (2008). An adaptive multiobjective evolutionary approach to optimize

ARTMAP neural networks. (Doctoral dissertation), University of Central

Florida, United States, Florida.

http://dx.doi.org/10.1016/S0169-023X(02)00045-9

161

Khan, A. (2003). Data Warehousing 101: Concepts and Implementation: Khan

Consulting and Publishing.

King, R. T. F. A., & Rughooputh, H. C. S. (2003). Elitist Multiobjective Evolutionary

Algorithm for Environmental/Economic Dispatch. Paper presented at the IEEE

Congress on Evolutionary Computation.

Kleeman, M. P., Lamont, G. B., Hopkinson, K. M., & Graham, S. R. (2007). Solving

Multicommodity Capacitated Network Design Problems using a Multiobjective

Evolutionary Algorithm. Paper presented at the IEEE Symposium on

Computational Intelligence in Security and Defense Applications (CISDA

2007).

Konaka, A., Coit, D. W., & Smith, A. E. (2006). Multi-objective Optimization Using

Genetic Algorithms: A Tutorial. Reliability Engineering & System Safety, 91(9).

Kotidis, Y. (2002). Aggregate View Management in Data Warehouses. In A. James, M.

P. Panos & G. C. R. Mauricio (Eds.), Handbook of Massive Data Sets (pp. 711-

741): Kluwer Academic Publishers.

Kotidis, Y., & Roussopoulos, N. (1999). DynaMat: A Dynamic View Management

System for Data Warehouses. Paper presented at the 1999 ACM SIGMOD

International Conference on Management of Data, Philadelphia, Pennsylvania,

United States.

Koziel, S., & Yang, X.-S. (2011). Computational Optimization, Methods and

Algorithms: Springer.

Kumar, T. V. V., & Ghoshal, A. (2009). A Reduced Lattice Greedy Algorithm for

Selecting Materialized Views Information Systems, Technology and

Management (Vol. 31, pp. 6-18): Springer Berlin Heidelberg.

Kumar, T. V. V., Haider, M., & Kumar, S. (2010). Proposing Candidate Views for

Materialization Information Systems, Technology and Management (Vol. 54, pp.

89-98): Springer Berlin Heidelberg.

Lahanas, M., Milickovic, N., Baltas, D., & Zamboglou, N. (2001). Application of

Multiobjective Evolutionary Algorithms for Dose Optimization Problems in

Brachytherapy. Paper presented at the First International Conference on

Evolutionary Multi-Criterion Optimization.

Laplante, P. A. (2003). Biocomputing: Nova Science Publishers.

Larose, D. T. (2006). Data Mining Methods and Models: Wiley-IEEE Press.

162

Lawrence, M. (2006). Multiobjective Genetic Algorithms for Materialized View

Selection in OLAP Data Warehouses. Paper presented at the 8th Annual

Conference on Genetic and Evolutionary Computation, Seattle, Washington,

USA.

Lawrence, M., & Rau-Chaplin, A. (2006). Dynamic View Selection for OLAP Data

Warehousing and Knowledge Discovery (Vol. 4081, pp. 33-44): Springer.

Lee, K. Y., & El-Sharkawi, M. A. (2008). Modern Heuristic Optimization Techniques:

Theory and Applications to Power Systems: Wiley-IEEE Press.

Lee, M., & Hammer, J. (1999). Speeding Up Warehouse Physical Design Using A

Randomized Algorithm. Paper presented at the International Workshop on

Design and Management of data Warehouses.

Li, J., Talebi, Z. A., Chirkova, R., & Fathi, Y. (2005). A Formal Model for the Problem

Of View Selection for Aggregate Queries Advances in Databases and

Information Systems (Vol. 3631, pp. 125-138): Springer.

Li, K., Jia, L., Sun, X., Fei, M., & Irwin, G. W. (2010). Life System Modeling and

Intelligent Computing (1st ed.): Springer.

Liang, W., Wang, H., & Orlowska, M. E. (2001). Materialized View Selection Under

the Maintenance Time Constraint. Data & Knowledge Engineering, 37(2), 203-

216. doi: http://dx.doi.org/10.1016/S0169-023X(01)00007-6

Ligoudistianos, S., Theodoratos, D., & Sellis, T. (1998). Experimental Evaluation of

Data Warehouse Configuration Algorithms. Paper presented at the 9th

International Workshop on Database and Expert Systems Applications.

Limaye, S. (2009). Software Testing: Tata McGraw-Hill.

Lin, W.-Y., & Kuo, I.-C. (2000). OLAP Data Cubes Configuration with Genetic

Algorithms. Paper presented at the International Conference on Systems, Man,

and Cybernetics.

Lin, W.-Y., & Kuo, I.-C. (2004). A Genetic Selection Algorithm for OLAP Data Cubes.

Knowledge and Information Systems, 6(1), 83-102.

Luna, E. H., & Coello, C. a. C. (2004). Using a Particle Swarm Optimizer with a Multi-

Objective Selection Scheme to Design Combinational Logic Circuits

Applications of Multi-Objective Evolutionary Algorithms (pp. 101-124).

Singapore: World Scientific.

http://dx.doi.org/10.1016/S0169-023X(01)00007-6

163

Luna, E. H., Coello, C. a. C., & Aguirre, A. H. (2004). On the Use of a Population-

Based Particle Swarm Optimizer to Design Combinational Logic Circuits. Paper

presented at the 2004 NASA/DoD Conference on Evolvable Hardware, Los

Alamitos, California, USA.

Mami, I., Coletta, R., & Bellahsene, Z. (2011). Modeling View Selection as a Constraint

Satisfaction Problem. Paper presented at the 22nd international conference on

Database and expert systems applications, Toulouse, France.

Meisel, Y. D. (2005). Multi-Objective Optimization Scheme for Static and Dynamic

Multicast Flows. (Doctoral dissertation), Universitat de Girona, Girona, Spain.

Mezura-Montes, E. (2009). Constraint-Handling in Evolutionary Optimization:

Springer.

Michalewicz, Z. (1996). Genetic Algorithms + Data Structures = Evolution Programs:

Springer.

Michalewicz, Z., & Fogel, D. B. (2004). How to Solve It: Modern Heuristics: Springer.

Miettinen, K., Neittaanmäki, P., Mäkelä, M. M., & Périaux, J. (1999). Evolutionary

Algorithms in Engineering and Computer Science: Wiley.

Mitchell, M. (1998). An Introduction to Genetic Algorithms: The MIT Press.

Morse, J. N. (1980). Reducing the Size of the Nondominated Set: Pruning by

Clustering. Computers & Operations Research, 7(1-2), 55-66.

Mumford, C. L., & Jain, L. C. (2009). Computational Intelligence: Collaboration,

Fusion and Emergence: Springer.

Nadeau, T. P., & Teorey, T. J. (2001). A Pareto Model for OLAP View Size Estimation.

Paper presented at the 2001 Conference of the Centre for Advanced Studies on

Collaborative research, Toronto, Ontario, Canada.

Nadeau, T. P., & Teorey, T. J. (2002). Achieving Scalability in OLAP Materialized

View Selection. Paper presented at the 5th ACM International Workshop on

Data Warehousing and OLAP, McLean, Virginia, USA.

Nagabhushana, S. (2008). Data Warehousing Olap And Data Mining: New Age

International Pvt Ltd Publishers.

164

Nakayama, H., Yun, Y., & Yoon, M. (2009a). Sequential Approximate Multiobjective

Optimization Using Computational Intelligence (Vector Optimization): Springer.

Nakayama, H., Yun, Z., & Yoon, M. (2009b). Sequential Approximate Multiobjective

Optimization Using Computational Intelligence (Vector Optimization): Springer.

Narang, R. (2006). Database Management Systems: Prentice-Hall of India Pvt.Ltd.

Nariman-Zadeh, N., Atashkari, K., Jamali, A., Pilechi, A., & Yao, X. (2005). Inverse

Modelling of Multi-objective Thermodynamically Optimized Turbojet Engines

Using GMDH-type Neural Networks and Evolutionary Algorithms. Engineering

Optimization, 37(5), 437–462.

Nedjah, N., & Mourelle, L. D. M. (2005). Real-world Multi-objective System

Engineering: Nova Science Publishers.

Nedjah, N., & Mourelle, L. D. M. (2006). Evolutionary Machine Design: Methodology

& Applications (Intelligent System Engineering): Nova Science Publishers.

Negnevitsky, M. (2004). Artificial Intelligence: A Guide to Intelligent Systems (2nd

ed.): Addison Wesley.

Nordvik, J., & Renders, J. (1991). Genetic Algorithms and Their Potential for Use in

Process Control: A Case Study. Paper presented at the 4th International

Conference on Genetic Algorithms.

Norman, M. (2003). Database Design Manual: using MySQL for Windows (1st ed.):

Springer.

Oei, C. K., Goldberg, D. E., & Chang, S.-J. (1991). Tournament Selection, Niching, and

the Preservation of Diversity. Urbana: University of Illinois.

Ouellette, S. (2009). TI-Nspire For Dummies: Wiley.

Parida, R. (2005). Principles and Implementation of Datawarehousing: Laxmi

Publications.

Pedrycz, W., & Gomide, F. (1998). An Introduction to Fuzzy Sets Analysis and Design:

MIT Press.

Petkovic, D. (2000). SQL Server 2000: A Beginner's Guide: McGraw-Hill Osborne

Media.

165

Petrovski, A., & Mccall, J. (2001). Multi-objective Optimisation of Cancer

Chemotherapy Using Evolutionary Algorithms. Paper presented at the First

International Conference on Evolutionary Multi-Criterion Optimization.

Phuboon-Ob, J., & Auepanwiriyakul, R. (2007a). Two-Phase Optimization for

Selecting Materialized Views in a Data Warehouse. International Journal of

Applied Science, Engineering and Technology, 4(1), 277-281.

Phuboon-Ob, J., & Auepanwiriyakul, R. (2007b). Two-Phase Optimization for

Selecting Materialized Views in a Data Warehouse. Enformatika, 19, 277.

Ponniah, P. (2001). Data Warehousing Fundamentals: A Comprehensive Guide for IT

Professionals: Wiley-Interscience.

Qiu, S. G., & Ling, T. W. (2000). View Selection in OLAP Environment. Paper

presented at the 11th International Conference on Database and Expert Systems

Applications.

R´Egnier, J., Sareni, B., & Roboam, X. (2005). System Optimization by Multiobjective

Genetic Algorithms and Analysis of the Coupling between Variables,

Constraints and Objectives. COMPEL-The International Journal for

Computation and Mathematics in Electrical and Electronic Engineering, 24(3),

805-820.

Rainardi, V. (2007). Building a Data Warehouse: With Examples in SQL Server (1st

ed.): Apress.

Ramakrishnan, R., & Gehrke, J. (2002). Database Management Systems: McGraw-Hill.

Raphael, B., & Smith, I. F. C. (2003). Fundamentals of Computer-Aided Engineering:

Wiley.

Reeves, C. R., & Rowe, J. E. (2002). Genetic Algorithms - Principles and Perspectives:

A Guide to GA Theory: Springer.

Rennard, J.-P. (2006). Handbook of Research on Nature-inspired Computing for

Economics and Management (1st ed.): IGI Global.

Rob, P., & Coronel, C. (2007). Database Systems: Design, Implementation, and

Management (8th ed.): Course Technology.

Ross, S. M. (1987). Introduction to Probability and Statistics for Engineers and

Scientists (1st ed.): John Wiley & Sons.

166

Rudolph, G. (1996). Convergence of Evolutionary Algorithms in General Search

Spaces. Paper presented at the IEEE International Conference on Evolutionary

Computation.

Runapongsa, K., Nadeau, T. P., & Teorey, T. J. (1999). Storage Estimation for

Multidimensional Aggregates in OLAP. Paper presented at the 1999 Conference

of the Centre for Advanced Studies on Collaborative Research, Mississauga,

Ontario, Canada.

Russell, S., & Norvig, P. (2009). Artificial Intelligence: A Modern Approach (3rd ed.):

Prentice Hall.

Sarker, R., Mohammadian, M., & Yao, X. (2002). Evolutionary Optimization: Springer.

Sas Institute. (2003). SAS/OR 9.1 User's Guide: Local Search Optimization: SAS

Institute.

Schaffer, J. D. (1985). Multiple Objective Optimization with Vector Evaluated Genetic

Algorithms. Paper presented at the First International Conference on Genetic

Algorithms.

Schott, J. R. (1995). Fault Tolerant Design Using Single and Multicriteria Genetic

Algorithm Optimization. (Masters dissertation), Massachusetts Institute of

Technology.

Schulze-Kremer, S. (1994). Genetic Algorithms for Protein Tertiary Structure

Prediction. Paper presented at the IEE Colloquium on Applications of Genetic

Algorithms, Germany.

Sellis, T. K. (1988). Multiple-Query Optimization. ACM Transactions on Database

Systems, 13(1), 23-52. doi: 10.1145/42201.42203

Serna-Encinas, M. T., & Hoyo-Montano, J. A. (2007). Algorithm for Selection of

Materialized Views: Based on a Costs Model. Paper presented at the Eighth

Mexican International Conference on Current Trends in Computer Science.

Shah, B., Ramachandran, K., & Raghavan, V. (2006). A Hybrid Approach for Data

Warehouse View Selection. International Journal of Data Warehousing and

Mining, 2(2), 1-37.

Shenai, K., & Krishna, S. (1992). Introduction to Database and Knowledge-Base

Systems: World Scientific Publishing Company.

167

Shim, K., Sellis, T., & Nau, D. (1994). Improvements on a Heuristic Algorithm for

Multiple-Query Optimization. Data & Knowledge Engineering, 12(2), 197-222.

doi: 10.1016/0169-023x(94)90014-0

Shukla, A., Deshpande, P., & Naughton, J. F. (1998a). Materialized View Selection for

Multidimensional Datasets. Paper presented at the 24th International Conference

on Very Large Data Bases.

Shukla, A., Deshpande, P., & Naughton, J. F. (1998b). Materialized View Selection for

Multidimensional Datasets. Paper presented at the 24th International Conference

on Very Large Data Bases.

Shukla, A., Deshpande, P., & Naughton, J. F. (2000). Materialized View Selection for

Multi-Cube Data Models. Paper presented at the 7th International Conference on

Extending Database Technology: Advances in Database Technology.

Shukla, A., Deshpande, P., Naughton, J. F., & Ramasamy, K. (1996). Storage

Estimation for Multidimensional Aggregates in the Presence of Hierarchies.

Paper presented at the 22nd International Conference on Very Large Data Bases.

Shukla, A., Tiwari, R., & Kala, R. (2010). Towards Hybrid and Adaptive Computing: A

Perspective (1st ed.): Springer.

Silberschatz, A. (1998). Operating System Concepts (5th ed.): Addison Wesley.

Sivanandam, S. N., & Deepa, S. N. (2009). Introduction to Genetic Algorithms:

Springer Berlin Heidelberg.

Song, X., & Gao, L. (2010). An Ant Colony Based Algorithm for Optimal Selection of

Materialized View. Paper presented at the Intelligent Computing and Integrated

Systems (ICISS).

Srinivas, M., & Patnaik, L. M. (1994). Adaptive Probabilities of Crossover and

Mutation in Genetic Algorithms. Paper presented at the IEEE Transcations on

Systems, Man, and Cybernetics, Bangalore, India.

Srinivas, N., & Deb, K. (1994). Muiltiobjective Optimization Using Nondominated

Sorting in Genetic Algorithms. Evolutionary Computation, 2(3), 221-248. doi:

10.1162/evco.1994.2.3.221

Sumathi, S., & Esakkirajan, S. (2007). Fundamentals of Relational Database

Management Systems (1st ed.): Springer.

168

Sumathi, S., Hamsapriya, T., & Surekha, P. (2008). Evolutionary Intelligence: An

Introduction to Theory and Applications with Matlab: Springer.

Sun, X., & Wang, Z. (2009). An Efficient Materialized Views Selection Algorithm Based

on PSO. Paper presented at the Intelligent Systems and Applications.

Surry, P. D., & Radcliffe, N. J. (1997). The COMOGA Method: Constrained

Optimisation by Multiobjective Genetic Algorithms. Control and Cybernetics,

26(3), 391-412.

Surry, P. D., Radcliffe, N. J., & Boyd, I. D. (1995). A Multi-objective Approach to

Constrained Optimisation of Gas Supply Networks: the COMOGA Method.

Paper presented at the Selected Papers from AISB Workshop on Evolutionary

Computing.

Talbi, E.-G. (2009). Metaheuristics: From Design to Implementation: Wiley.

Talebi, Z. A., Chirkova, R., & Fathi, Y. (2009). Exact and inexact methods for solving

the problem of view selection for aggregate queries. International Journal of

Business Intelligence and Data Mining, 4(3/4), 391-415. doi:

http://dx.doi.org/10.1504/IJBIDM.2009.029086

Tan, K. C., Khor, E. F., & Lee, T. H. (2005). Multiobjective Evolutionary Algorithms

and Applications: Springer.

Telles, M. (2007). Python Power!: The Comprehensive Guide: Course Technology

PTR.

Teorey, T. J., Lightstone, S. S., Nadeau, T., & Jagadish, H. V. (2005). Database

Modeling and Design: Logical Design (4th ed.): Morgan Kaufmann.

Theodoratos, D., & Bouzeghoub, M. (2000). A General Framework for the View

Selection Problem for Data Warehouse Design and Evolution. Paper presented

at the 3rd ACM International Workshop on Data Warehousing and OLAP,

McLean, Virginia, United States.

The TPC Benchmark™H. (2011). Retrieved 20 Feb 2011, from

http://www.tpc.org/tpch/default.asp

Tzafestas, S. G. (1999). Soft Computing in Systems and Control Technology: World

Scientific Publishing Company.

http://dx.doi.org/10.1504/IJBIDM.2009.029086
http://www.tpc.org/tpch/default.asp

169

Uchiyama, H., Runapongsa, K., & Teorey, T. J. (1999). A Progressive View

Materialization Algorithm. Paper presented at the 2nd ACM international

Workshop on Data warehousing and OLAP, Kansas City, Missouri, United

States.

Vonk, E., Jain, L. C., & Johnson, R. P. (1998). Automatic Generation of Neural

Network Architecture Using Evolutionary Computation: World Scientific Pub

Co Inc.

Wackerly, D., Mendenhall, W., & Scheaffer, R. L. (2001). Mathematical Statistics with

Applications: Duxbury Press.

Wang, L.-T., Chang, Y.-W., & Cheng, K.-T. T. (2009). Fundamentals of Algorithms

Electronic Design Automation: Synthesis, Verification, and Test (Systems on

Silicon): Morgan Kaufmann.

Wang, Z., & Zhang, D. (2005). Optimal Genetic View Selection Algorithm Under

Space Constraint. International Journal of Information Technology, 11(5), 44-

51.

Weile, D. S., Michielssen, E., & Goldberg, D. E. (1996). Genetic Algorithm Design of

Pareto Optimal Broadband Microwave Absorbers. IEEE Transactions on

Electromagnetic Compatibility, 38(3), 518-525.

Wiak, S., & Juszczak, E. N. (2010). Computational Methods for the Innovative Design

of Electrical Devices: Springer.

Wright, J., & Loosemore, H. (2001). The Multi-Criterion Optimization of Building

Thermal Design and Control. Paper presented at the 7th IBPSA Conference:

Building Simulation, Rio de Janeiro, Brazil.

Wright, J. A., Loosemore, H. A., & Farmani, R. (2002). Optimization of Building

Thermal Design and Control by Multi-criterion Genetic Algorithm. Energy and

Buildings, 34(9), 959–972.

Xiaopeng, F. (2007). Engineering Design Using Genetic Algorithms. (Doctoral

dissertation), Iowa State University, Iowa.

Yang, D.-L., Huang, M.-L., & Hung, M.-C. (2002). Efficient Utilization of Materialized

Views in a Data Warehouse. Paper presented at the 6th Pacific-Asia Conference

on Advances in Knowledge Discovery and Data Mining.

170

Yang, G., Reinstein, L. E., Pai, S., Xu, Z., & Carroll, D. L. (1998). A New Genetic

Algorithm Technique in Optimization of Prostate Implants. Medical Physics

Journal, 25(12), 2308-2315.

Yang, J., Karlapalem, K., & Li, Q. (1997). A Framework for Designing Materialized

Views in Data Warehousing Environment. Paper presented at the 17th

International Conference on Distributed Computing Systems (ICDCS '97).

Yanushkevich, S. N. (2004). Artificial Intelligence in Logic Design: Springer.

Ye, W., Gu, N., Yang, G., & Liu, Z. (2005). Extended Derivation Cube Based View

Materialization Selection in Distributed Data Warehouse Advances in Web-Age

Information Management (Vol. 3739, pp. 245-256): Springer.

Yin, G., Yu, X., & Lin, L. (2007). Strategy of Selecting Materialized Views Based on

Cache updating. Paper presented at the IEEE International Conference on

Integration Technology.

Yousri, N. a. R., Ahmed, K. M., & El-Makky, N. M. (2005). Algorithms for Selecting

Materialized Views in a Data Warehouse. Paper presented at the ACS/IEEE

2005 International Conference on Computer Systems and Applications.

Yu, J. X., Choi, C.-H., Gou, G., & Lu, H. (2004). Selecting Views with Maintenance

Cost Constraints: Issues, Heuristics and Performance. Journal of Research and

Practice in Information Technology, 36(2), 89-110.

Yu, J. X., Yao, X., Choi, C.-H., & Gou, A. G. (2003). Materialized View Selection as

Constrained Evolutionary Optimization. Paper presented at the IEEE

Transactions on Systems, Man and Cybernetics.

Yu, X., & Gen, M. (2010). Introduction to Evolutionary Algorithms: Springer.

Zalzala, A. M. S., & Fleming, P. J. (1997). Genetic Algorithms in Engineering Systems:

The Institution of Engineering and Technology.

Zhang, A. (2006). Advanced Analysis of Gene Expression Microarray Data: World

Scientific Pub Co Inc.

Zhang, C., & Yang, J. (1999a). Genetic Algorithm for Materialized View Selection in

Data Warehouse Environments. Paper presented at the First International

Conference on Data Warehousing and Knowledge Discovery.

171

Zhang, C., & Yang, J. (1999b). Materialized View Evolution Support in Data

Warehouse Environment. Paper presented at the Sixth International Conference

on Database Systems for Advanced Applications.

Zhang, C., Yao, X., & Yang, J. (1999). Evolving Materialized Views in Data

Warehouse. Paper presented at the Congress on Evolutionary Computation.

Zhang, C., Yao, X., & Yang, J. (2001). An Evolutionary Approach to Materialized

Views Selection in a Data Warehouse Environment. IEEE Transactions on

Systems, Man, and Cybernetics, Part C: Applications and Reviews, 31(3), 282-

294.

Zhang, D., & Tsai, J. J. P. (2007). Advances in Machine Learning Applications in

Software Engineering: Idea Group Publishing.

Zhang, Q., Sun, X., & Wang, Z. (2009). An Efficient MA-Based Materialized Views

Selection Algorithm. Paper presented at the International Conference on Control,

Automation and Systems Engineering, Zhangjiajie, China.

Zheng, J., Ling, C. X., Shi, Z., & Xie, Y. (2005). A New Method to Construct the Non-

Dominated Set in Multi-Objective Genetic Algorithms Intelligent Information

Processing II (Vol. 163, pp. 457-470): Springer US.

Zhou, L., Wu, M., & Ge, X. (2008). The Model and Realization of Materialized Views

Selection in Data Warehouse. Paper presented at the Fifth International

Conference on Fuzzy Systems and Knowledge Discovery.

Zhou, L., Xu, M., Shi, Q., & Hao, Z. (2008). Research on Materialized Views

Technology in Data Warehouse. Paper presented at the IEEE International

Symposium on Knowledge Acquisition and Modeling Workshop, Wuhan.

Ziman, J. (2003). Technological Innovation as an Evolutionary Process: Cambridge

University Press.

Zitzler, E. (1999). Evolutionary Algorithms for Multiobjective Optimization Methods

and Applications. (Doctoral dissertation), Swiss Federal Institute of Technology

(ETH), Zurich.

Zitzler, E., Deb, K., Thiele, L., Coello, C. a. C., & Corne, D. (2001). Evolutionary

Multi-criterion Optimization: First International Conference: Springer.

Zitzler, E., Laumanns, M., & Thiele, L. (2001). SPEA2: Improving the Strength Pareto

Evolutionary Algorithm.

172

Zitzler, E., & Thiele, L. (1999). Multiobjective Evolutionary Algorithms: Comparative

Case Study and The Strength Pareto Approach. IEEE Transactions on

Evolutionary Computation, 3(4), 257-271.

173

Appendix A. Visual Basic Code

A.1 Classes in Method Domain

A.1.1 Core Classes

A.1.1.1 Individuals Class

Imports GA_for_View_Selection.General
Namespace GeneticAlgorithm

<Serializable()> Public Class Individual

 Implements System.IEquatable(Of Individual)

 Private GList() As Integer

 Public Objective1Value As Double
 Public Objective2Value As Double

 Public ConstraintValue As Double

 Public Fitness As Double

 Public Value1 As Double
 Public Value2 As Double
 Public Value3 As Double
 Public Value4 As Double

 Public Rank As Short
 Public CrowdingDistance As Double

 Sub New(ByVal Size As Integer)
 ReDim GList(Size - 1)
 End Sub

 Default Public Property Gene(ByVal i As Short) As Integer
 Get
 Return GList(i)
 End Get
 Set(ByVal value As Integer)
 GList(i) = value
 End Set

 End Property

174

 Public Function EqualTo(ByVal I As Individual) As Boolean Implements
IEquatable(Of Individual).Equals

 If GList.SequenceEqual(I.GList) = True Then
 Return True
 Else
 Return False
 End If

 End Function

 Public ReadOnly Property Count() As Integer
 Get
 Return GList.Count
 End Get

 End Property
 Public Overrides Function ToString() As String

 Return GList.ToString()

 End Function

 Public Function IsFeasible() As Boolean
 Return ConstraintValue <= 0
 End Function

 Public Shared Operator =(ByVal x As Individual, ByVal y As Individual) As
Boolean

 If x.GList.SequenceEqual(y.GList) Then
 Return True
 Else
 Return False
 End If

 End Operator
 Public Shared Operator <>(ByVal x As Individual, ByVal y As Individual)
As Boolean

 If x.GList.SequenceEqual(y.GList) = False Then
 Return True
 Else
 Return False
 End If

 End Operator

 Public Sub Evaluate(ByVal Objective1 As Func(Of Object, Double), ByVal
Objective2 As Func(Of Object, Double), ByVal Constraint As Func(Of Object,
Double))
 Dim a As VSPPhenotype

 a = DecodeToPhenotype()

 Objective1Value = Objective1(a)
 Objective2Value = Objective2(a)

 ConstraintValue = Constraint(a)

175

 End Sub
 Public Function Clone() As Individual
 Dim I As Individual
 I = MemberwiseClone()
 I.GList = GList.Clone()
 Return I
 End Function

 Public Sub Random()

 For i = 0 To Count - 1
 GList(i) = Random01()
 Next
 End Sub

 Public Function Dominate(ByVal P As Population) As Population
'individuals in P which this individual dominates
 Dim DominatedIndividuals As New Population

 For Each I As Individual In P
 If GA.Dominate(Me, I) = True Then
 DominatedIndividuals.Add(I)
 End If
 Next

 Return DominatedIndividuals
 End Function
 Public Function DominateAny(ByVal P As Population) As Boolean ' checkes
wether this individual dominates population p or not
 Dim DominatedIndividuals As New Population

 For Each I As Individual In P
 If GA.Dominate(Me, I) = True Then
 Return True
 End If
 Next

 Return False
 End Function
 Public Function Dominate(ByVal I As Individual) As Boolean
 Return GA.Dominate(Me, I)
 End Function

 Public Function Exchange(ByVal index1 As Short, ByVal index2 As Short) As
Boolean

 If GList(index1) <> GList(index2) Then
 Dim temp As Short

 temp = GList(index1)
 GList(index1) = GList(index2)
 GList(index2) = temp

 Exchange = True
 Else
 Return False
 End If

176

 End Function

 Public Function DecodeToPhenotype() As VSPPhenotype
 Dim S As New VSPPhenotype(GList.Count)

 S.List = GList
 Return S

 End Function

 Public Function ToArray() As Array
 Return GList.ToArray()

 End Function

 Public Sub Flip(ByVal i As Integer)
 GList(i) = 1 - GList(i)
 End Sub

 Private Function Random01() As Short
 Dim R As Double

 Randomize()
 R = Rnd()
 If R <= 0.5 Then
 Return 0
 Else
 Return 1
 End If
 End Function

 Private Class IndividualCounter
 Implements IEnumerator
 Private Ilist As List(Of Individual)
 Private Position As Integer = -1
 Public Sub New(ByVal L As List(Of Individual))
 Ilist = L
 End Sub
 Public ReadOnly Property Current() As Object Implements
System.Collections.IEnumerator.Current
 Get
 If Position < Ilist.Count Then
 Return Ilist(Position)
 Else
 Return Nothing
 End If
 End Get
 End Property

 Public Function MoveNext() As Boolean Implements
System.Collections.IEnumerator.MoveNext
 If Position < Ilist.Count - 1 Then
 Position = Position + 1
 Return True
 Else
 Return False
 End If
 End Function

 Public Sub Reset() Implements System.Collections.IEnumerator.Reset
 Position = -1
 End Sub

177

 End Class

 End Class
End Namespace

A.1.1.2 Population Class

Imports GA_for_View_Selection.General
Imports System.Math
Imports GA_for_View_Selection.GeneticAlgorithm.GA
Imports System.Runtime.Serialization.Formatters.Binary
Imports System.IO

Namespace GeneticAlgorithm

<Serializable()> Public Class Population

 Implements ICloneable
 Implements IEnumerable

 Private IList As List(Of Individual)
 Public ID As Integer

 Private DominatedBy() As List(Of Integer)
 Private Dominates() As List(Of Integer)

 Public Event AddEvent(ByVal I As Individual)
 Public Event RemoveEvent(ByVal I As Individual)

 Public Sub New()
 IList = New List(Of Individual)
 End Sub

 Public ReadOnly Property Count() As Integer
 Get
 Return IList.Count
 End Get

 End Property
 Public WriteOnly Property Rank() As Integer

 Set(ByVal value As Integer)

 For Each Individual In IList
 Individual.Rank = value
 Next
 End Set
 End Property

 Default Public Property Member(ByVal i As Integer) As Individual
 Set(ByVal value As Individual)
 IList(i) = value
 End Set
 Get
 If i < Count And i >= 0 Then

178

 Return IList(i)
 Else
 Return Nothing
 End If

 End Get

 End Property

 Private Function IndexOf(ByVal I As Individual) As Integer

 Return IList.IndexOf(I)

 End Function
 Public Sub Evaluate(ByVal Objective1 As Func(Of Object, Double), ByVal
Objective2 As Func(Of Object, Double), ByVal Constraint As Func(Of Object,
Double))

 For Each I As Individual In IList

 I.Evaluate(Objective1, Objective2, Constraint)
 Next

 End Sub

 Public Function NonDominated() As Population 'Method two for finding non-
dominated individuals
 Dim PartialSet As New Population
 Dim flag As Boolean

 If Count = 0 Then
 Return Nothing
 End If

 PartialSet.Add(Member(0))
 For Each a As Individual In Me
 flag = False
 For Each b As Individual In PartialSet
 If GA.Dominate(a, b) = True Then
 PartialSet.Remove(b)
 ElseIf GA.Dominate(b, a) = True Then
 flag = True
 Exit For
 End If

 Next

 If flag = False Then
 PartialSet.Add(a)
 End If

 Next
 Return PartialSet
 End Function

179

 Public Function Top() As Population 'returns top division of population
 Dim T As New Population

 T.IList = IList.GetRange(0, Count \ 2)

 Return T
 End Function

 Public Function Buttom() As Population 'returns buttom division of
population

 Dim B As New Population
 B.IList = IList.GetRange((Count \ 2), (Count - Count \ 2))
 Return B

 End Function

 Public Sub DominationCheck() 'Upddates Dominates and Dominatedby Lists

 ReDim Dominates(Count)
 ReDim DominatedBy(Count)

 For i = 0 To Count - 1
 Dominates(i) = New List(Of Integer)
 DominatedBy(i) = New List(Of Integer)
 Next

 For i = 0 To Count - 1
 For j = i + 1 To Count - 1
 If Dominate(i, j) = True Then
 Dominates(i).Add(j)
 DominatedBy(j).Add(i)
 End If
 If Dominate(j, i) = True Then
 Dominates(j).Add(i)
 DominatedBy(i).Add(j)
 End If

 Next
 Next

 End Sub

 Public Sub SaveToFile(ByVal Address As String)
 Dim W As StreamWriter = New StreamWriter(Address)
 W.WriteLine("A=[")
 For i = 0 To Count - 1
 W.Write(Member(i).Objective1Value)
 W.Write(" ")
 W.Write(Member(i).Objective2Value)
 W.WriteLine()
 Next
 W.Write("]")
 W.Close()

 End Sub

 Public Function Dominate(ByVal I As Individual) As Boolean ' checkes
wether any individual from the population dominates individual I or not
 For Each Individual In Me

180

 If GA.Dominate(Individual, I) = True Then
 Return True
 End If
 Next

 Return False
 End Function

 Public Function Dominate(ByVal i As Integer, ByVal j As Integer) As
Boolean
 Return GA.Dominate(Member(i), Member(j))
 End Function

 Public Function Classify() As PopulationSet
 Dim Level As Population
 Dim PSet As New PopulationSet
 Dim Rank As Integer = 1
 Dim CheckList(Count) As Boolean

 DominationCheck()
 Level = PickNonDominated(CheckList)
 UpdateDomination(Level)
 While (Level.Count > 0)
 Level.Rank = Rank
 Rank = Rank + 1
 PSet.Add(Level)
 Level = PickNonDominated(CheckList)
 UpdateDomination(Level)
 End While

 Return PSet
 End Function

 Private Function PickNonDominated(ByVal CheckList() As Boolean) As
Population
 Dim NonDominatedPopulation As New Population

 For i = 0 To Count - 1
 If (DominatedBy(i).All(Function(B As Boolean) B = False)) And
CheckList(i) = False Then
 CheckList(i) = True
 NonDominatedPopulation.Add(Member(i))
 End If
 Next
 Return NonDominatedPopulation
 End Function

 Private Sub UpdateDomination(ByVal Level As Population)
 Dim Ind As Short
 For i = 0 To Level.Count - 1
 Ind = IndexOf(Level(i))
 For j = 0 To Dominates(Ind).Count - 1
 DominatedBy(Dominates(Ind)(j)).Remove(Ind)

 Next
 Dominates(Ind).Clear()
 Next
 End Sub
 Public Function Partition_Feasibility() As PopulationSet
 Dim PS As New PopulationSet

181

 Dim NonFeasible As New Population
 Dim Feasible As New Population

 For Each Individual In IList
 If Individual.IsFeasible() = True Then
 Feasible.Add(Individual)
 Else
 NonFeasible.Add(Individual)
 End If
 Next

 PS.Add(Feasible)
 PS.Add(NonFeasible)

 Return PS
 End Function

 Public Function ShallowClone() As Object Implements ICloneable.Clone
 Dim P As New Population

 P = DirectCast(Me.MemberwiseClone, Population)
 P.IList = IList.ToList()

 Return P
 End Function

 Public Function DeepClone() As Object
 Dim s As New MemoryStream
 Dim B As New BinaryFormatter()
 B.Serialize(s, Me)
 s.Seek(0, SeekOrigin.Begin)
 Return B.Deserialize(s)
 End Function
 Public Function Add(ByVal I As Individual) As Boolean

 If IList.Contains(I) = False Then
 IList.Add(I)
 RaiseEvent AddEvent(I)
 Return True
 Else
 Return False
 End If

 End Function

 Public Function Sum(ByVal F As Func(Of Individual, Double)) As Double
 Dim Result As Double

 Result = IList.Sum(F)

 Return Result
 End Function

 Public Sub Sort(ByVal F As Func(Of Individual, Double))
 Dim IC As New IndividualComparer
 IC.Element = F
 IList.Sort(IC)
 End Sub

182

 Public Function Compare(ByVal x As Individual, ByVal y As Individual,
ByVal F As Func(Of Individual, Double)) As Integer

 If F(x) < F(y) Then
 Return 1

 End If
 If F(x) > F(y) Then
 Return -1

 End If

 If F(x) = F(y) Then
 Return 0
 End If

 End Function

 Public Shared Operator -(ByVal x As Population, ByVal y As Population) As
Population
 Dim Z As Population

 Z = x.ShallowClone()
 For Each Individual In y
 If Z.Contains(Individual) Then
 Z.Remove(Individual)
 End If
 Next

 Return Z
 End Operator

 Public Shared Operator +(ByVal x As Population, ByVal y As Population) As
Population
 Dim z As New Population
 z.ID = x.ID
 z.IList = x.IList.Union(y.IList).ToList()
 Return z
 End Operator

 Public Shared Operator =(ByVal x As Population, ByVal y As Population) As
Boolean
 If x.IList.SequenceEqual(y.IList) Then
 Return True
 Else
 Return False

 End If
 End Operator

 Public Shared Operator <>(ByVal x As Population, ByVal y As Population)
As Boolean

 If x.IList.SequenceEqual(y.IList) = False Then
 Return False
 Else
 Return True
 End If

183

 End Operator

 Public Function RemoveAt(ByVal i As Integer) As Boolean

 If i < IList.Count Then
 IList.RemoveAt(i)
 RaiseEvent RemoveEvent(IList(i))
 Return True
 Else
 Return False
 End If

 End Function

 Public Function Remove(ByVal I As Individual) As Boolean
 IList.Remove(I)
 RaiseEvent RemoveEvent(I)

 End Function

 Public Sub Clear()
 IList.Clear()
 ID = 0
 End Sub

 Public Function Contains(ByVal x As Individual) As Boolean

 Return IList.Contains(x)

 End Function

 Public Sub RandomGenerate(ByVal PSize As Integer, ByVal ISize As Integer)
 Dim x As Individual

 Clear()

 While Count < PSize
 x = New Individual(ISize)
 x.Random()
 Add(x)
 End While

 End Sub

 Public Sub AssignCrowdingDistance()

 Dim List1 As List(Of Individual) = IList.ToList()
 Dim List2 As List(Of Individual) = IList.ToList()

 Dim Max1, Max2, Min1, Min2 As Double

 List1.Sort(Function(a As Individual, b As Individual)
a.Objective1Value < b.Objective1Value)
 List2.Sort(Function(a As Individual, b As Individual)
a.Objective2Value < b.Objective2Value)

 Min1 = List1(0).Objective1Value
 Max1 = List1(Count - 1).Objective1Value

184

 Min2 = List2(0).Objective1Value
 Max2 = List2(Count - 1).Objective2Value

 List1(0).CrowdingDistance = Double.MaxValue
 List2(0).CrowdingDistance = Double.MaxValue

 List1(Count - 1).CrowdingDistance = Double.MaxValue
 List2(Count - 1).CrowdingDistance = Double.MaxValue

 For i = 1 To Count - 2
 List1(i).CrowdingDistance = Calc(List1(i + 1).Objective1Value,
List1(i - 1).Objective1Value, Max1, Min1)
 Next

 For i = 1 To Count - 2
 List2(i).CrowdingDistance = List2(i).CrowdingDistance +
Calc(List2(i + 1).Objective2Value, List2(i - 1).Objective2Value, Max2, Min2)
 Next

 End Sub
 Private Function Calc(ByVal Right As Double, ByVal Left As Double, ByVal
MaxF As Double, ByVal MinF As Double) As Double
 Dim a, b, result As Double

 a = Right - Left
 b = MaxF - MinF
 result = a / b
 Return result
 End Function
 Public Sub FitnessSharing(ByVal alpha As Short, ByVal SigmaShare As
Double)
 Dim NC As Double

 For i = 0 To Count - 1
 NC = NicheCount(Member(i), alpha, SigmaShare)
 Member(i).Fitness = Member(i).Fitness / NC
 Next

 End Sub

 Public Function NicheCount(ByVal a As Individual, ByVal alpha As Short,
ByVal SigmaShare As Double) As Double
 Dim Sum As Double = 0
 Dim d As Double

 For i = 0 To Count - 1
 d = Distance(a, IList(i), DistanceCalculationType.Objectives)
 Sum += SharingFunction(d, alpha, SigmaShare)
 Next

 Return Sum
 End Function

 Private Function SharingFunction(ByVal d As Double, ByVal alpha As Short,
ByVal SigmaShare As Double) As Double

 Dim s As Double

185

 If d <= SigmaShare Then
 s = 1 - Pow((d / SigmaShare), alpha)
 Return s
 Else
 Return 0
 End If
 End Function

 Public Function Min(ByVal F As Func(Of Individual, Double)) As Double

 Return IList.Min(F)

 End Function

 Public Function Max(ByVal F As Func(Of Individual, Double)) As Double

 Return IList.Max(F)
 End Function

 Public Function Find(ByVal Pre As Predicate(Of Individual)) As Individual
 Return IList.Find(Pre)
 End Function

 Public Function FindMax(ByVal F As Func(Of Individual, Double)) As
Individual
 Dim Max As Double = Double.MinValue
 Dim MaxIndividual As Individual

 For Each Individual In IList
 If F(Individual) > Max Then
 Max = F(Individual)
 MaxIndividual = Individual
 End If
 Next
 Return MaxIndividual
 End Function

 Public Function FindMin(ByVal F As Func(Of Individual, Double)) As
Individual
 Dim Min As Double = Double.MaxValue
 Dim MinIndividual As Individual

 For Each Individual In IList
 If F(Individual) < Min Then
 Min = F(Individual)
 MinIndividual = Individual
 End If
 Next
 Return MinIndividual
 End Function

 Public Sub ForEach(ByVal Action As Action(Of Individual))
 IList.ForEach(Action)
 End Sub
 Private Function GetEnumerator() As System.Collections.IEnumerator
Implements System.Collections.IEnumerable.GetEnumerator
 Return New IndividualCounter(IList)
 End Function

 Public Function DoClustering(ByVal Size As Short) As PopulationSet
 Dim ClusterList As New PopulationSet
 Dim Cluster As Population

186

 Dim TobeMerged_first, ToBeMergedSecond As Short

 For i = 0 To Count - 1
 Cluster = New Population
 Cluster.Add(Member(i))
 ClusterList.Add(Cluster)
 Next

 While ClusterList.Count > Size
 ClusterList.DistanceList(TobeMerged_first, ToBeMergedSecond)
 ClusterList.Merge(TobeMerged_first, ToBeMergedSecond)
 End While

 Return ClusterList
 End Function

 Private Function SimpleDistance(ByVal x1 As Double, ByVal y1 As Double,
ByVal x2 As Double, ByVal y2 As Double) As Double
 Return ((x1 - y1) ^ 2 + (x2 - y2) ^ 2) ^ 0.5
 End Function
 Public Function Representative() As Individual
 Dim sum1, sum2, x, y, D As Double
 Dim MinDistance As Double = Double.MaxValue
 Dim MinDistanceIndividual As Individual

 If Count = 1 Then
 Return Member(0)
 End If

 For Each I As Individual In IList
 sum1 = sum1 + I.Objective1Value
 sum2 = sum2 + I.Objective2Value
 Next

 x = sum1 / Count
 y = sum2 / Count

 For Each I As Individual In IList
 D = SimpleDistance(I.Objective1Value, I.Objective2Value, x, y)
 If D < MinDistance Then
 MinDistance = D
 MinDistanceIndividual = I
 End If
 Next

 Return MinDistanceIndividual
 End Function

 Public Function Representative2() As Individual
 Dim MinDistance As Double = Double.MaxValue
 Dim MinIndividualIndex As Short
 Dim Sum As Double = 0
 Dim i As Short
 For i = 0 To Count - 1
 Sum = 0
 For j = i + 1 To Count - 1
 Sum = Sum + Distance(Member(i), Member(j),
DistanceCalculationType.Objectives)
 Next
 Sum = Sum / Count
 If Sum < MinDistance Then
 MinDistance = Sum

187

 MinIndividualIndex = i
 End If
 Next
 Return Member(MinIndividualIndex)
 End Function
 Public Function SpecialAdd(ByVal I As Individual) As Boolean
 Dim TobeRemoved As New Population

 For Each J As Individual In IList
 If J.Dominate(I) Then
 Return False
 End If
 If I.Dominate(J) Then
 TobeRemoved.Add(J)
 End If
 Next
 For Each J As Individual In TobeRemoved
 Remove(J)
 Next
 Add(I)
 Return True
 End Function

 Public Function SuggestSigmaShare() As Double

 Dim Y1min As Double = Double.MaxValue
 Dim Y1max As Double = Double.MinValue
 Dim Y2min As Double = Double.MaxValue
 Dim Y2max As Double = Double.MinValue
 Dim SigmaShare As Double

 If Count = 1 Then
 Return 1
 End If

 For i = 0 To IList.Count - 1
 If IList(i).Objective1Value < Y1min Then
 Y1min = IList(i).Objective1Value
 End If
 If IList(i).Objective1Value > Y1max Then
 Y1max = IList(i).Objective1Value
 End If
 If IList(i).Objective2Value < Y2min Then
 Y2min = IList(i).Objective2Value
 End If
 If IList(i).Objective2Value > Y2max Then
 Y2max = IList(i).Objective2Value
 End If

 Next

 SigmaShare = ((Y1max - Y1min) + (Y2max - Y2min)) / (Count - 1)

 Return SigmaShare

 End Function

 Private Class IndividualComparer
 Implements IComparer(Of Individual)
 Public Element As Func(Of Individual, Double)

 Public Sub New()

188

 End Sub
 Public Sub New(ByVal F As Func(Of Individual, Double))
 Element = F
 End Sub
 Public Function Compare(ByVal x As Individual, ByVal y As Individual)
As Integer Implements IComparer(Of
GA_for_View_Selection.GeneticAlgorithm.Individual).Compare
 Return Element(x) > Element(y)
 End Function

 End Class

 End Class

End Namespace

A.1.1.3 GA

Imports GA_for_View_Selection.General
Imports System.Math
Imports GA_for_View_Selection.ViewSelection

Namespace GeneticAlgorithm
 Public MustInherit Class GA

 Public ChromosomeSize As Short
 Public PopulationSize As Integer = 100
 Public MaximumGeneration As Integer = 100
 Protected GenerationNumber As Integer = 0

 Public Property CrossoverRate() As Double
 Get
 Return Crossover.Rate
 End Get
 Set(ByVal value As Double)
 Crossover.Rate = value
 End Set
 End Property

 Public Property MutationRate() As Double
 Get
 Return Mutation.Rate
 End Get
 Set(ByVal value As Double)
 Mutation.Rate = value
 End Set
 End Property

 Public Shared Function Dominate(ByVal a As Individual, ByVal b As
Individual) As Boolean

189

 Dim flag As Boolean = False

 If a.Objective1Value > b.Objective1Value Then
 Return False
 End If
 If a.Objective1Value < b.Objective1Value Then
 flag = True
 End If

 If a.Objective2Value > b.Objective2Value Then
 Return False
 End If
 If a.Objective2Value < b.Objective2Value Then
 flag = True
 End If

 Return flag
 End Function

 Public Shared Function ConstrainedDominate(ByVal a As Individual, ByVal b
As Individual) As Boolean
 If a.IsFeasible = False And b.IsFeasible = False Then
 Return a.ConstraintValue < b.ConstraintValue
 End If

 If a.IsFeasible = False And b.IsFeasible = True Then
 Return False
 End If

 If a.IsFeasible = True And b.IsFeasible = False Then
 Return True
 End If

 If a.IsFeasible = True And b.IsFeasible = True Then
 Return Dominate(a, b)
 End If
 End Function

 Public Shared Function Distance(ByVal a As Individual, ByVal b As
Individual, ByVal type As DistanceCalculationType) As Double
 Select Case type
 Case DistanceCalculationType.Variables
 Return VariableDistance(a, b)
 Case DistanceCalculationType.Objectives
 Return ObjectiveDistance(a, b)

 Case DistanceCalculationType.Genotypic

 End Select

 End Function

 Public Shared Function VariableDistance(ByVal a As Individual, ByVal b As
Individual) As Double
 Dim Sum As Double = 0

 For i = 0 To a.Count() - 1

 Sum += Pow((a(i) - b(i)), 2)

190

 Next

 Return Pow(Sum, 0.5)

 End Function

 Public Shared Function ObjectiveDistance(ByVal a As Individual, ByVal b
As Individual) As Double

 Dim PartA, PartB As Double
 Dim Sum As Double = 0
 Dim Distance As Double = 0

 PartA = Pow((a.Objective1Value - b.Objective1Value), 2)
 PartB = Pow((a.Objective2Value - b.Objective2Value), 2)
 Sum = PartA + PartB
 Distance = Pow(Sum, 0.5)

 Return Distance

 End Function

 Public Enum DistanceCalculationType
 Variables = 0
 Objectives = 1
 Genotypic = 2
 End Enum
 End Class

End Namespace

A.1.1.4 Crossover

Namespace GeneticAlgorithm
 Public Class Crossover
 Public Shared Rate As Double

 Public Shared Sub Uniform(ByRef x As Individual, ByRef y As Individual)
 Dim i, R As Double

 For i = 0 To x.Count - 1
 If (x(i) <> y(i)) Then
 Randomize()
 R = Rnd()
 If R < Rate Then
 Exchange(x(i), y(i))
 End If
 End If

 Next

 End Sub

191

 Public Shared Sub SinglePoint(ByVal x As Individual, ByVal y As
Individual, ByRef Offspring1 As Individual, ByRef Offspring2 As Individual)
 Dim Site As Integer
 Dim R As Double

 Offspring1 = New Individual(x.Count)
 Offspring2 = New Individual(y.Count)

 Randomize()
 R = Rnd()
 Site = Int(Rnd() * x.Count)
 For i = 0 To Site
 Offspring1(i) = x(i)
 Offspring2(i) = y(i)
 Next
 If R > Rate Then
 For i = Site + 1 To x.Count - 1
 Offspring1(i) = y(i)
 Offspring2(i) = x(i)
 Next
 Else
 For i = Site + 1 To x.Count - 1
 Offspring1(i) = x(i)
 Offspring2(i) = y(i)
 Next
 End If

 End Sub

 Public Shared Sub Exchange(ByRef a As Integer, ByRef b As Integer)
 Dim temp As Integer

 temp = a
 a = b
 b = temp
 End Sub

 End Class
End Namespace

A.1.1.5 Mutation

Namespace GeneticAlgorithm
 Public Class Mutation
 Public Shared Rate = 0.01

 Public Shared Sub Uniform(ByRef x As Individual)
 Dim R As Double

 For i = 0 To x.Count - 1
 Randomize()
 R = Rnd()
 If R < Rate Then
 x.Flip(i)
 End If
 Next

192

 End Sub

 Public Shared Sub Random(ByRef x As Individual)
 Dim index As Integer

 Randomize()
 index = Int(Rnd() * x.Count)

 x.Flip(index)

 End Sub
 Public Shared Sub Swap(ByRef x As Individual)
 Dim S, S1, S2 As Double
 Dim Original As Individual

 Original = x.Clone

 Randomize()
 S = Rnd()

 If S < Rate Then

 S1 = Int(Rnd() * x.Count)
 S2 = Int(Rnd() * x.Count)
 x.Exchange(S1, S2)

 End If
 End Sub

 End Class
End Namespace

A.1.1.6 Selection

Imports System.Math
Namespace GeneticAlgorithm
 Public Class Selection

 Public Shared Function RouletteWheel(ByVal P As Population, ByVal F As
Func(Of Individual, Double)) As Individual
 Dim i, sum, PartialSum As Double
 Dim R As Double

 sum = P.Sum(F)
 Randomize()
 R = sum * Rnd()
 For i = 0 To P.Count - 1
 PartialSum = PartialSum + F(P(i))
 If PartialSum > R Then
 Return P(i)
 End If
 Next

 End Function

 Public Shared Function Random(ByVal P As Population) As Individual
 Dim R As Integer
 Randomize()

193

 R = (P.Count - 1) * Rnd()
 If P(R).Objective1Value = 0 Then
 Dim B As Boolean = True
 End If

 Return P(R)

 End Function

 Public Shared Function SUS(ByVal P As Population, ByVal F As Func(Of
Individual, Double), ByVal N As Short) As Population
 Dim partsize As Double = 0
 Dim partialsum As Double = 0
 Dim Parents As New Population
 Dim pickednumber As Short = 0
 Dim i As Short = 0

 Dim r As Double = 0
 partsize = P.Sum(F) / N
 Randomize()
 r = Rnd() * partsize

 While (pickednumber < N)
 partialsum = partialsum + F(P(i))
 While partialsum > r + pickednumber * partsize
 Parents.Add(P(i))
 pickednumber = pickednumber + 1

 End While
 i = i + 1

 End While

 Return Parents
 End Function

 Public Shared Function StochasticReminderSelection(ByVal P As Population,
ByVal F As Func(Of Individual, Double), ByVal n As Short) As Population
 Dim P2 As Population = P.ShallowClone
 Dim Result As New Population
 P2 = ScalePopulation(P)
 P2 = CreateParentPool(P2)
 Return P2
 End Function

 Public Shared Function Tournament(ByVal P As Population, ByVal Size As
Integer, ByVal F As Func(Of Individual, Double), Optional ByVal FBios As
FitnessBios = FitnessBios.BiggerFitness) As Individual
 Dim Pool As New Population
 Dim Ind As Individual
 Dim Winner As Individual

 Randomize()

 For i = 0 To Size - 1
 Ind = Random(P)
 Pool.Add(Ind)
 Next
 If FBios = FitnessBios.BiggerFitness Then
 Winner = Pool.FindMax(F)

194

 Else
 Winner = Pool.FindMin(F)
 End If
 Return Winner
 End Function

 Public Shared Function CrowdedTournament(ByVal P As Population) As
Individual
 Dim a, b As Individual

 Randomize()

 a = Random(P)
 b = Random(P)
 If a.Rank < b.Rank Then
 Return a
 End If
 If b.Rank < a.Rank Then
 Return b
 End If
 If a.CrowdingDistance > b.CrowdingDistance Then
 Return a
 Else
 Return b

 End If

 End Function

 Private Shared Function ScalePopulation(ByVal P As Population) As
Population
 Dim Sum As Double = P.Sum(Function(individual) individual.Fitness)
 Dim D As Individual

 For i = 0 To P.Count - 1
 D = P(i)
 D.Fitness = ((P(i).Fitness * P.Count) / Sum)
 P(i) = D
 Next

 Return P
 End Function

 Private Shared Function CreateParentPool(ByVal P As Population) As
Population
 Dim NumberofCopies(P.Count - 1) As Short
 Dim UpperMid As New Population
 Dim LowerMid As New Population
 Dim Ind As Individual
 Dim Result As Population
 Dim int As Integer
 Dim D As Individual

 UpperMid.ID = P.ID
 For i = 0 To P.Count - 1
 D = P(i)
 int = Floor(P(i).Fitness)
 D.Fitness -= int
 P(i) = D
 For j = 0 To int - 1
 UpperMid.Add(P(i))
 Next
 If int = 0 Then

195

 LowerMid.Add(P(i))
 End If
 Next
 Result = UpperMid
 For i = UpperMid.Count To P.Count / 2 - 1
 Ind = Tournament(LowerMid, 2, Function(individual)
individual.Fitness)
 Result.Add(Ind)
 Next

 Return UpperMid

 End Function
 Enum FitnessBios
 BiggerFitness
 SmallerFitness
 End Enum

 End Class
End Namespace

A.1.2 Shell classes

A.1.2.1 WBGA

Imports GA_for_View_Selection.GeneticAlgorithm
Imports System.IO

Public Class WBGA

 Inherits GA

 Public Sub Run(ByVal Objective1 As Func(Of Object, Double), ByVal Objective2
As Func(Of Object, Double), ByVal Constraint As Func(Of Object, Double))
 Dim CurrentGeneration As New Population
 Dim NextGeneration As New Population
 Dim a, b As Individual

 CurrentGeneration.RandomGenerate(PopulationSize, ChromosomeSize + 7)

 For i = 0 To MaximumGeneration - 1

 For j = 0 To (PopulationSize / 2) - 1

 Evaluate(CurrentGeneration, 7, Objective1, Objective2,
Constraint)

 a = Selection.Tournament(CurrentGeneration, 2,
Function(individual) individual.Fitness, Selection.FitnessBios.SmallerFitness)
 b = Selection.Tournament(CurrentGeneration, 2,
Function(individual) individual.Fitness, Selection.FitnessBios.SmallerFitness)

 Crossover.SinglePoint(a, b, a, b)
 Mutation.Random(a)
 Mutation.Random(b)

 NextGeneration.Add(a)
 NextGeneration.Add(b)
 Next

 CurrentGeneration = NextGeneration.ShallowClone()
 NextGeneration.Clear()

196

 Next

 Evaluate(CurrentGeneration, 7, Objective1, Objective2, Constraint)
 CurrentGeneration.SaveToFile("C:\WBGA.txt")

 End Sub

 Private Sub Evaluate(ByVal P As Population, ByVal size As Short, ByVal
Objective1 As Func(Of Object, Double), ByVal Objective2 As Func(Of Object,
Double), ByVal Constraint As Func(Of Object, Double))
 Dim a, b As Short
 Dim w1, w2 As Double
 Dim ind As Individual

 For i = 0 To P.Count - 1
 a = GetWeightsIndex(P(i), 7)
 b = 127 - a
 w1 = (a / 127)
 w2 = 1 - w1

 ind = New Individual(P(0).Count - size)
 For j = size To P(0).Count - 1
 ind(j - size) = P(i)(j)
 Next
 ind.Evaluate(Objective1, Objective2, Constraint)
 P(i).Objective1Value = ind.Objective1Value
 P(i).Objective2Value = ind.Objective2Value
 P(i).Fitness = w1 * ind.Objective1Value + w2 * ind.Objective2Value
 P(i).Fitness = P(i).Fitness / NicheCount(P(i), P)

 Next

 End Sub
 Private Function GetObjectiveValues(ByVal Ind As Individual, ByVal size As
Short, ByRef Obj1 As Double, ByRef obj2 As Double, ByVal Objective1 As Func(Of
Object, Double), ByVal Objective2 As Func(Of Object, Double), ByVal Constraint As
Func(Of Object, Double))
 Dim NewInd As New Individual(Ind.Count - size)

 For i = size To Ind.Count - 1

 NewInd(i) = Ind(i)
 Next

 NewInd.Evaluate(Objective1, Objective2, Constraint)
 Obj1 = NewInd.Objective1Value
 obj2 = NewInd.Objective2Value

 End Function
 Private Function GetWeightsIndex(ByVal Ind1 As Individual, ByVal size As
Short) As Short

 Dim a As Short

 For j = 0 To size - 1
 a += Ind1(size - 1 - j) * Math.Pow(2, j)
 Next

 Return a

 End Function

197

 Private Function NicheCount(ByVal Ind As Individual, ByVal P As Population)
As Double
 Dim NC As Double = 0
 Dim SourceIndex, DestinationIndex As Short

 SourceIndex = GetWeightsIndex(Ind, 7)

 For i = 0 To P.Count - 1
 DestinationIndex = GetWeightsIndex(P(i), 7)
 NC += SharingFunction(Math.Abs(SourceIndex - DestinationIndex), 20)
 Next
 Return NC
 End Function

 Private Function SharingFunction(ByVal distance As Short, ByVal SigmaShare As
Double) As Double

 If distance <= SigmaShare Then

 Return 1 - (distance / SigmaShare)
 Else
 Return 0

 End If
 End Function

End Class

A.1.2.2 VEGA

Imports GA_for_View_Selection.GeneticAlgorithm

Public Class VEGA
 Inherits GA
 Public Sub Run(ByVal Objective1 As Func(Of Object, Double), ByVal Objective2
As Func(Of Object, Double), ByVal Constraint As Func(Of Object, Double))
 Dim CurrentGeneration As New Population
 Dim NextGeneration As New Population
 Dim MatingPool As New Population
 Dim P1, P2 As New Population

 Dim a = New Individual(ChromosomeSize)
 Dim b = New Individual(ChromosomeSize)

 CurrentGeneration.RandomGenerate(PopulationSize, ChromosomeSize)

 For i = 0 To MaximumGeneration - 1
 CurrentGeneration.Evaluate(Objective1, Objective2, Constraint)

 P1 = CurrentGeneration.Top()
 P2 = CurrentGeneration.Buttom()

 MatingPool.Clear()
 For j = 0 To (PopulationSize / 4)
 a = Selection.Tournament(P1, 2, Function(individual)
individual.Objective1Value, Selection.FitnessBios.SmallerFitness)
 MatingPool.Add(a)
 Next
 For j = 0 To (PopulationSize / 4)

198

 b = Selection.Tournament(P2, 2, Function(individual)
individual.Objective2Value, Selection.FitnessBios.SmallerFitness)
 MatingPool.Add(b)
 Next

 NextGeneration.Clear()
 For j = 0 To PopulationSize / 2 - 1

 a = Selection.Random(MatingPool)
 b = Selection.Random(MatingPool)

 Crossover.SinglePoint(a, b, a, b)

 Mutation.Random(a)
 Mutation.Random(b)

 NextGeneration.Add(a)
 NextGeneration.Add(b)

 Next

 CurrentGeneration = NextGeneration.ShallowClone()

 Next

 CurrentGeneration.Evaluate(Objective1, Objective2, Constraint)
 MatingPool.SaveToFile("C:\VEGA.txt")

 End Sub

End Class

A.1.2.3 NPGA

Imports GA_for_View_Selection.GeneticAlgorithm
Public Class NPGA
 Inherits GA
 Public Tdom As Short = 10
 Public Sub Run(ByVal Objective1 As Func(Of Object, Double), ByVal Objective2
As Func(Of Object, Double), ByVal Constraint As Func(Of Object, Double))

 Dim CurrentGeneration As New Population
 Dim NextGeneration As New Population

 Dim Parent1, Parent2 As Individual

 CurrentGeneration.RandomGenerate(PopulationSize, ChromosomeSize)

 For i = 0 To MaximumGeneration - 1

 CurrentGeneration.Evaluate(Objective1, Objective2, Constraint)

 For j = 0 To PopulationSize / 2 - 1

 Parent1 = NPGA_Selection(CurrentGeneration, NextGeneration, Tdom)
 Parent2 = NPGA_Selection(CurrentGeneration, NextGeneration, Tdom)

 Crossover.SinglePoint(Parent1, Parent2, Parent1, Parent2)

 Mutation.Random(Parent1)
 Mutation.Random(Parent2)

199

 Parent1.Evaluate(Objective1, Objective2, Constraint)
 Parent2.Evaluate(Objective1, Objective2, Constraint)

 NextGeneration.Add(Parent1)
 NextGeneration.Add(Parent2)

 Next

 CurrentGeneration = NextGeneration.ShallowClone()
 NextGeneration.Clear()

 Next

 CurrentGeneration.NonDominated.SaveToFile("C:\NPGA.txt")

 End Sub

 Private Function NPGA_Selection(ByVal P As Population, ByVal Q As Population,
ByVal Tdom As Short) As Individual
 Dim a, b As Individual
 Dim nca, ncb As Short
 Dim Subpopulation As New Population
 Dim Temp As Population

 Dim SigmaShare As Double

 For i = 0 To ((Tdom * P.Count) / 100) - 1
 a = Selection.Random(P)
 Subpopulation.Add(a)
 Next

 a = Selection.Random(P)
 b = Selection.Random(P)

 If a.DominateAny(Subpopulation) = True Then

 If b.DominateAny(Subpopulation) = False Then
 Return a
 End If
 End If

 If a.DominateAny(Subpopulation) = False Then

 If b.DominateAny(Subpopulation) = True Then
 Return b
 End If
 End If
 If Q.Count < 2 Then
 Dim R As Double

 Randomize()
 R = Rnd()
 If R <= 0.5 Then
 Return a
 Else
 Return b
 End If
 End If

 Temp = Q.ShallowClone()

200

 Temp.Add(a)
 Temp.Add(b)

 SigmaShare = Temp.SuggestSigmaShare()
 nca = Temp.NicheCount(a, 1, SigmaShare)
 ncb = Temp.NicheCount(b, 1, SigmaShare)

 If nca < ncb Then
 Return a
 Else
 Return b
 End If

 End Function

End Class

A.1.2.4 MOGA

Imports GA_for_View_Selection.GeneticAlgorithm
Public Class MOGA
 Inherits GA
 Public Sub Run(ByVal Objective1 As Func(Of Object, Double), ByVal Objective2
As Func(Of Object, Double), ByVal Constraint As Func(Of Object, Double))
 Dim CurrentGeneration As New Population
 Dim NextGeneration As New Population

 Dim a As New Individual(ChromosomeSize)
 Dim b As New Individual(ChromosomeSize)

 CurrentGeneration.RandomGenerate(PopulationSize, ChromosomeSize)

 For i = 0 To MaximumGeneration - 1

 CurrentGeneration.Evaluate(Objective1, Objective2, Constraint)
 MOGA_Fitness_Assignment(CurrentGeneration)
 For j = 0 To (PopulationSize / 2) - 1

 a = Selection.RouletteWheel(CurrentGeneration, Function(individual)
individual.Fitness)
 b = Selection.RouletteWheel(CurrentGeneration,
Function(individual) individual.Fitness)

 Crossover.SinglePoint(a, b, a, b)

 Mutation.Random(a)
 Mutation.Random(b)

 NextGeneration.Add(a)
 NextGeneration.Add(b)
 Next
 CurrentGeneration = NextGeneration.ShallowClone()
 NextGeneration.Clear()

 Next
 CurrentGeneration.Evaluate(Objective1, Objective2, Constraint)

 CurrentGeneration.NonDominated.SaveToFile("C:\MOGA.txt")
 End Sub

201

 Private Sub MOGA_Fitness_Assignment(ByVal P As Population)
 Dim i As Short
 Dim Rank As PopulationSet
 Dim Sum1, Sum2 As Double
 Dim SigmaShare As Double

 Dim a As Individual

 Rank = P.Classify()

 For i = 0 To Rank.Count - 1

 Sum1 = 0
 For j = 0 To i - 1
 Sum1 = Sum1 + Rank(j).Count
 Next
 Sum2 = 0
 For j = 0 To Rank(i).Count - 1

 Rank(i)(j).Fitness = P.Count - Sum1 - 0.5 * (Rank(i).Count - 1)
 Rank(i)(j).Value1 = Rank(i)(j).Fitness
 a = Rank(i)(j)
 SigmaShare = Rank(i).SuggestSigmaShare()
 Rank(i)(j).Fitness = Rank(i)(j).Fitness / Rank(i).NicheCount(a,
1, SigmaShare)
 Sum2 = Sum2 + Rank(i)(j).Fitness
 Next

 For j = 0 To Rank(i).Count - 1
 Rank(i)(j).Fitness *= Rank(i)(j).Value1 * (Rank(i).Count / Sum2)
 Next

 Next

 End Sub

End Class

A.1.2.5 SPEA

Imports GA_for_View_Selection.GeneticAlgorithm

Public Class SPEA
 Inherits GA
 Public ExternalSize As Short = 0.2 * PopulationSize

 Public Sub Run(ByVal Objective1 As Func(Of Object, Double), ByVal Objective2
As Func(Of Object, Double), ByVal Constraint As Func(Of Object, Double))
 Dim CurrentGeneration As New Population
 Dim NextGeneration As New Population

202

 Dim CombinedGeneration As Population
 Dim ExternalPopulation As New Population

 Dim Clusterlist As PopulationSet

 Dim Parent1, Parent2, Child1, Child2 As Individual

 CurrentGeneration.RandomGenerate(PopulationSize, ChromosomeSize)

 For i = 0 To MaximumGeneration - 1

 CurrentGeneration.Evaluate(Objective1, Objective2, Constraint)

 ExternalPopulation = ExternalPopulation +
CurrentGeneration.NonDominated.DeepClone()
 ExternalPopulation = ExternalPopulation.NonDominated

 If ExternalPopulation.Count > ExternalSize Then
 Clusterlist = ExternalPopulation.DoClustering(ExternalSize)
 ExternalPopulation = Clusterlist.ClustersRepresentative()
 End If

 Calculate_External_Population_Fitness(CurrentGeneration,
ExternalPopulation)
 Calculate_Main_Population_Fitness(CurrentGeneration,
ExternalPopulation)

 For j = 0 To PopulationSize / 2 - 1

 CombinedGeneration = ExternalPopulation + CurrentGeneration

 Parent1 = Selection.Tournament(CombinedGeneration, 2,
Function(Ind As Individual) Ind.Fitness, Selection.FitnessBios.SmallerFitness)
 Parent2 = Selection.Tournament(CombinedGeneration, 2,
Function(Ind As Individual) Ind.Fitness, Selection.FitnessBios.SmallerFitness)

 Crossover.SinglePoint(Parent1, Parent2, Child1, Child2)

 Mutation.Random(Child1)
 Mutation.Random(Child2)

 NextGeneration.Add(Child1)
 NextGeneration.Add(Child2)

 Next
 CurrentGeneration = NextGeneration.ShallowClone
 NextGeneration.Clear()
 Next

 CurrentGeneration.Evaluate(Objective1, Objective2, Constraint)
 CurrentGeneration.NonDominated.SaveToFile("C:\SPEA.txt")

 End Sub

 Private Sub Calculate_External_Population_Fitness(ByVal Main As Population,
ByVal External As Population)
 For Each I As Individual In External
 I.Fitness = 0
 For Each J As Individual In Main
 If Dominate(I, J) Then
 I.Fitness = I.Fitness + (1 / (Main.Count + 1))

203

 End If
 Next
 Next
 End Sub

 Private Sub Calculate_Main_Population_Fitness(ByVal Main As Population, ByVal
External As Population)
 For Each I As Individual In Main
 I.Fitness = 1
 For Each J As Individual In External
 If Dominate(J, I) Then
 I.Fitness = I.Fitness + J.Fitness
 End If
 Next
 Next
 End Sub

End Class

A.1.2.6 SPEA-II

Imports GA_for_View_Selection.GeneticAlgorithm
Public Class SPEA_II
 Inherits GA
 Public ArchiveSize As Short = 0.2 * PopulationSize
 Private K As Short

 Public Sub Run(ByVal Objective1 As Func(Of Object, Double), ByVal Objective2
As Func(Of Object, Double), ByVal Constraint As Func(Of Object, Double))
 Dim CurrentGeneration As New Population
 Dim NextGeneration As New Population
 Dim CombinedPopulation As Population
 Dim CurrentArchive As New Population
 Dim NextArchive As New Population

 Dim Child1, Child2, Parent1, Parent2 As Individual

 K = Math.Pow((ArchiveSize + PopulationSize), 0.5)

 CurrentGeneration.RandomGenerate(PopulationSize, ChromosomeSize)

 For i = 0 To MaximumGeneration - 1
 CurrentGeneration.Evaluate(Objective1, Objective2, Constraint)

 CombinedPopulation = CurrentGeneration + CurrentArchive

 CalculateFitness(CombinedPopulation)

 NextArchive = NonDominated(CombinedPopulation)

 If i > 0 Then
 NextArchive = NonDominated(NextArchive)
 End If

 If NextArchive.Count > ArchiveSize Then
 NextArchive = Truncate(NextArchive)
 ElseIf NextArchive.Count < ArchiveSize Then
 FillUpfromDominated(CombinedPopulation, NextArchive)
 End If

 For j = 0 To PopulationSize / 2 - 1

204

 Parent1 = Selection.Tournament(NextArchive, 2, Function(Ind As
Individual) Ind.Fitness, Selection.FitnessBios.SmallerFitness)
 Parent2 = Selection.Tournament(NextArchive, 2, Function(Ind As
Individual) Ind.Fitness, Selection.FitnessBios.SmallerFitness)

 Crossover.SinglePoint(Parent1, Parent2, Child1, Child2)

 Mutation.Random(Child1)
 Mutation.Random(Child2)

 NextGeneration.Add(Child1)
 NextGeneration.Add(Child2)

 Next

 CurrentArchive = NextArchive.ShallowClone()
 CurrentGeneration = NextGeneration.ShallowClone()
 NextArchive.Clear()
 NextGeneration.Clear()

 Next

 CurrentArchive.Evaluate(Objective1, Objective2, Constraint)

 CurrentArchive.SaveToFile("C:\SPEA2.txt")
 End Sub
 Private Sub CalculateFitness(ByVal P As Population)
 CalculateRAWFitness(P)
 CalculateFULLFitness(P)
 End Sub

 Private Function CalculateDistances(ByVal P As Population) As Array
 Dim Dlist(P.Count) As List(Of Double)
 Dim D As Double
 For i = 0 To P.Count - 1
 For j = i + 1 To P.Count - 1
 D = GA.Distance(P(i), P(j), DistanceCalculationType.Objectives)
 If IsNothing(Dlist(i)) Then
 Dlist(i) = New List(Of Double)
 End If
 Dlist(i).Add(D)
 If IsNothing(Dlist(j)) Then
 Dlist(j) = New List(Of Double)
 End If
 Dlist(j).Add(D)
 Next

 Next
 For i = 0 To P.Count - 1
 Dlist(i).Sort()
 Next
 Return Dlist
 End Function
 Private Sub CalculateRAWFitness(ByVal P As Population)
 Dim Strength(P.Count) As Short
 Dim Sum(P.Count) As Short

 For i = 0 To P.Count - 1
 For j = 0 To P.Count - 1
 If GA.Dominate(P(i), P(j)) And i <> j Then
 Strength(i) += 1

205

 End If
 Next
 Next

 For i = 0 To P.Count - 1
 For j = 0 To P.Count - 1
 If GA.Dominate(P(j), P(i)) And i <> j Then
 P(i).Fitness += Strength(j)
 End If
 Next
 Next

 End Sub

 Private Sub CalculateFULLFitness(ByVal P As Population)
 Dim D As Double
 Dim DList() As List(Of Double)

 DList = CalculateDistances(P)
 For i = 0 To P.Count - 1
 D = 1 / (DList(i)(K - 1) + 2)
 P(i).Fitness = P(i).Fitness + D
 Next
 End Sub

 Private Function NonDominated(ByVal P As Population) As Population
 Dim ND As New Population

 For i = 0 To P.Count - 1
 If P(i).Fitness < 1 Then
 ND.Add(P(i))
 End If
 Next
 Return ND
 End Function
 Private Function Truncate(ByVal P As Population) As Population
 Dim i As Integer
 Dim DistanceList As New List(Of PairDistance)
 Dim PD As PairDistance
 Dim MinDistance As Double = Double.MaxValue

 For i = 0 To P.Count - 1
 For j = i + 1 To P.Count - 1
 PD = New PairDistance
 PD.Source = i
 PD.Destination = j
 PD.Distance = Distance(P(i), P(j),
DistanceCalculationType.Objectives)
 DistanceList.Add(PD)
 Next
 Next
 DistanceList.Sort(AddressOf PairDistance.Compare)
 i = 0
 While P.Count > ArchiveSize
 P.RemoveAt(DistanceList(i).Source)
 i += 1
 End While
 Return P
 End Function
 Private Structure PairDistance
 Dim Source As Short
 Dim Destination As Short
 Dim Distance As Double

206

 Public Shared Function Compare(ByVal ItemaA As PairDistance, ByVal ItemB
As PairDistance) As Integer
 Return ItemaA.Distance < ItemB.Distance
 End Function
 End Structure

 Private Function FillUpfromDominated(ByVal Combined As Population, ByVal
Archive As Population)
 Dim i As Short = 0

 While i <= Combined.Count - 1 And Archive.Count < ArchiveSize

 If Combined(i).Fitness > 0 Then
 Archive.Add(Combined(i))
 End If
 i = i + 1
 End While

 Return Archive
 End Function

End Class

A.1.2.7 NSGA

Imports GA_for_View_Selection.GeneticAlgorithm

Public Class NSGA
 Inherits GA_for_View_Selection.GeneticAlgorithm.GA

 Public Sub Run(ByVal Objective1 As Func(Of Object, Double), ByVal Objective2
As Func(Of Object, Double), ByVal Constraint As Func(Of Object, Double))
 Dim CurrentGeneration As New Population
 Dim NextGeneration As New Population
 Dim SigmaShare As Double

 Dim ClassifiedPopulation As PopulationSet

 Dim NC As Double
 Dim Fmin As Double

 Dim a As Individual
 Dim Parent1 As Individual
 Dim Parent2 As Individual
 Dim Child1 As Individual
 Dim Child2 As Individual

 CurrentGeneration.RandomGenerate(PopulationSize, ChromosomeSize)

 For i = 0 To MaximumGeneration - 1

 CurrentGeneration.Evaluate(Objective1, Objective2, Constraint)

 ClassifiedPopulation = CurrentGeneration.Classify()

 Fmin = PopulationSize + 0.01

 For t1 = 0 To ClassifiedPopulation.Count - 1

 SigmaShare = ClassifiedPopulation(t1).SuggestSigmaShare()

207

 For t2 = 0 To ClassifiedPopulation(t1).Count - 1
 a = ClassifiedPopulation(t1)(t2)
 a.Fitness = Fmin - 0.01
 NC = ClassifiedPopulation(t1).NicheCount(a, 1, SigmaShare)
 a.Fitness = a.Fitness / NC
 Next

 Fmin = ClassifiedPopulation(t1).FindMin(Function(ind As
Individual) ind.Fitness).Fitness
 Next

 CurrentGeneration = ClassifiedPopulation.Merge()

 For j = 0 To (PopulationSize / 2) - 1

 Parent1 = Selection.Tournament(CurrentGeneration, 2,
Function(individual) individual.Fitness, Selection.FitnessBios.BiggerFitness)
 Parent2 = Selection.Tournament(CurrentGeneration, 2,
Function(individual) individual.Fitness, Selection.FitnessBios.BiggerFitness)

 Crossover.SinglePoint(Parent1, Parent2, Child1, Child2)

 Mutation.Random(Child1)
 Mutation.Random(Child2)

 NextGeneration.Add(Child1)
 NextGeneration.Add(Child2)

 Next

 CurrentGeneration = NextGeneration.ShallowClone
 NextGeneration.Clear()

 Next

 CurrentGeneration.Evaluate(Objective1, Objective2, Constraint)

 CurrentGeneration.NonDominated.SaveToFile("C:\NSGA.txt")

 End Sub

End Class

A.1.2.8 NSGA-II

Imports GA_for_View_Selection.GeneticAlgorithm
Public Class NSGA_II
 Inherits GA

 Public Sub Run(ByVal Objective1 As Func(Of Object, Double), ByVal Objective2
As Func(Of Object, Double), ByVal Constraint As Func(Of Object, Double))
 Dim Parents As New Population
 Dim Childs As New Population
 Dim CombinedPopulation As Population
 Dim ClassifiedPopulation As PopulationSet
 Dim i, j, index, t As Short

 Parents.RandomGenerate(PopulationSize, ChromosomeSize)

 For i = 0 To MaximumGeneration - 1

208

 Parents.Evaluate(Objective1, Objective2, Constraint)

 Parents.AssignCrowdingDistance()

 Childs = ProduceChilds(Parents)
 Childs.Evaluate(Objective1, Objective2, Constraint)

 CombinedPopulation = Parents + Childs
 Parents.Clear()
 ClassifiedPopulation = CombinedPopulation.Classify

 index = 0
 While (Parents.Count + ClassifiedPopulation(index).Count) <
PopulationSize
 Parents = Parents + ClassifiedPopulation(index)
 index = index + 1
 End While

 ClassifiedPopulation(index).AssignCrowdingDistance()

 ClassifiedPopulation(index).Sort(Function(individual)
individual.CrowdingDistance)

 t = 0
 While Parents.Count < PopulationSize
 Parents.Add(ClassifiedPopulation(index).Member(t))
 t = t + 1
 End While

 Next

 Parents.NonDominated().SaveToFile("C:\NSGA2.txt")

 End Sub

 Public Function ProduceChilds(ByVal P As Population) As Population
 Dim Childs As New Population
 Dim Parent1, Parent2, Child1, Child2 As Individual
 Dim Classified As PopulationSet

 Classified = P.Classify()
 P = Classified.Merge()

 For i = 0 To PopulationSize / 2 - 1

 Parent1 = Selection.CrowdedTournament(P)
 Parent2 = Selection.CrowdedTournament(P)

 Crossover.SinglePoint(Parent1, Parent2, Child1, Child2)

 Mutation.Random(Child1)
 Mutation.Random(Child2)

 Childs.Add(Child1)
 Childs.Add(Child2)
 Next

 Return Childs
 End Function
End Class

209

A.2 Classes in Problem Domain

A.2.1 View

Namespace ViewSelection
 Public Class View
 Public Size As Double

 Public HierarchyNodes As List(Of HierarchyNode)
 Public HierarchyLevels As String

 Public IsTopView As Boolean

 Public QueryFrequency As Double
 Public UpdateFrequency As Double

 Public Id As Integer

 Public Function MaximumSize() As Integer
 Dim Product As Integer = 1
 For i = 0 To HierarchyNodes.Count - 1
 Product *= HierarchyNodes(i).Cardinality
 Next
 Return Product
 End Function
 End Class

End Namespace

A.2.2 Lattice

Imports System.IO

Public Class Lattice
 Public AdjacencyMatrix(100, 100) As Boolean
 Private ItemList As New List(Of Object)

 Public Property Connections() As DataTable
 Get
 Dim dt As New DataTable
 Dim Dc As DataColumn
 Dim Dr As DataRow

 For i = 0 To Count - 1
 Dc = New DataColumn
 Dc.DataType = GetType(Boolean)
 dt.Columns.Add(Dc)
 Dr = dt.NewRow()
 dt.Rows.Add(Dr)

 Next

 For i = 0 To Count - 1
 For j = 0 To Count - 1
 dt.Rows(i).Item(j) = Edge(i, j)
 Next

210

 Next

 Return dt

 End Get

 Set(ByVal value As DataTable)
 For i = 0 To value.Rows.Count - 1
 For j = i + 1 To value.Columns.Count - 1

 Edge(i, j) = value.Rows(i).Item(j)
 Next
 Next
 End Set
 End Property

 Public ReadOnly Property Count()
 Get
 Return ItemList.Count
 End Get
 End Property

 Public ReadOnly Property TopNode() As Object
 Get
 Return ItemList(0)
 End Get
 End Property

 Public ReadOnly Property ButtomNode() As Object
 Get
 Dim Lastindex = ItemList.Count - 1
 Return ItemList(Lastindex)
 End Get
 End Property

 Default Public Property Item(ByVal i As Integer)
 Get
 Return ItemList(i)
 End Get
 Set(ByVal value)
 ItemList(i) = value
 End Set
 End Property
 Public Sub SaveAdjacencyLattice()
 Dim W As StreamWriter = New StreamWriter("C:\test.txt")
 For i = 0 To ItemList.Count - 1
 For j = 0 To ItemList.Count - 1
 If AdjacencyMatrix(i, j) = True Then
 W.Write("1 ")
 Else
 W.Write("0 ")
 End If

 Next
 W.WriteLine()
 Next
 W.Close()
 End Sub

 Public Sub Add(ByVal Item As Object)
 If ItemList.Contains(Item) = False Then
 ItemList.Add(Item)

211

 End If

 End Sub

 Public Function Indexof(ByVal O As Object) As Integer
 Return ItemList.IndexOf(O)

 End Function

 Public Sub Clear()
 For i = 0 To ItemList.Count - 1
 For j = 0 To ItemList.Count - 1
 AdjacencyMatrix(i, j) = False
 Next
 Next

 ItemList.Clear()

 End Sub
 Public Property Edge(ByVal index1 As Integer, ByVal index2 As Integer)
 Get
 Return AdjacencyMatrix(index1, index2)
 End Get
 Set(ByVal value)
 AdjacencyMatrix(index1, index2) = value
 AdjacencyMatrix(index2, index1) = value
 End Set
 End Property

 Public Function ParentsOf(ByVal Item As Object) As List(Of Object)
 Dim j As Integer
 Dim ParentsList As New List(Of Object)
 Dim Index As Short = ItemList.IndexOf(Item)

 For j = 0 To Index - 1
 If AdjacencyMatrix(j, Index) = True Then
 ParentsList.Add(ItemList(j))
 End If

 Next

 Return ParentsList
 End Function

 Public Function AncestorsOf(ByVal Item As Object) As List(Of Object)

 Dim AncestorsList = New List(Of Object)
 Dim ParentsList As New List(Of Object)
 Dim Q As New Queue(Of Object)
 Dim Index As Short
 Dim Item2 As Object = Item

 Q.Enqueue(Item2)

 While Q.Count > 0

 Item2 = Q.Dequeue()
 Index = ItemList.IndexOf(Item2)

 For i = 0 To Index - 1

212

 If AdjacencyMatrix(i, Index) = True And
AncestorsList.Contains(ItemList(i)) = False Then
 AncestorsList.Add(ItemList(i))
 Q.Enqueue(ItemList(i))
 End If
 Next

 End While
 Return AncestorsList

 End Function
 Public Function IsAncestorOf(ByVal i As Integer, ByVal j As Integer)
 Dim A As List(Of Object)
 A = AncestorsOf(ItemList(j))
 If A.Contains(ItemList(i)) Then
 Return True
 Else
 Return False
 End If
 End Function
 Public Function ChildsItems(ByVal O As Object) As List(Of Object)
 Dim ChildList As New List(Of Object)
 Dim n As Integer
 n = Indexof(O)
 For i = n + 1 To Count
 If AdjacencyMatrix(i, n) = True Then
 ChildList.Add(ItemList(i))
 End If
 Next
 Return ChildList
 End Function
 Public Function ChildsIndexes(ByVal n As Integer) As List(Of Short)
 Dim ChildList As New List(Of Short)
 For i = n + 1 To Count
 If AdjacencyMatrix(i, n) = True Then
 ChildList.Add(i)
 End If
 Next
 Return ChildList
 End Function

 Public Sub DrawLattice(ByRef GBox As GroupBox)

 Dim visited(Count) As Boolean
 Dim positions(Count) As Point

 Dim Level(Count) As Queue
 Dim q As New Queue

 Dim g As System.Drawing.Graphics
 Dim p As New Pen(Color.Black, 2)
 Dim drawFont As New Font("Arial", 9)
 Dim drawBrush As New SolidBrush(Color.Black)
 Dim drawFormat As New StringFormat()
 If ItemList.Count > 0 Then
 g = GBox.CreateGraphics()
 g.Clear(GBox.BackColor)
 positions = DeterminesPositions(GBox.Height, GBox.Width)
 DrawAllCircles(positions, g, Pens.Black, 12)
 DrawLines(positions, g, p)
 DrawCircleNumbers(positions, g, drawFont)
 Else
 GBox.Refresh()

213

 End If

 End Sub

 Private Sub DrawACircle(ByRef g As Graphics, ByRef center As Point, ByVal
radius As Integer)
 Dim rect As New Rectangle(center.X - radius, center.Y - radius, 2 *
radius, 2 * radius)
 g.FillEllipse(Brushes.Black, rect)
 End Sub

 Private Function DeterminesPositions(ByVal hight As Short, ByVal width As
Short) As Array
 Dim Positions(Count - 1) As Point
 Dim i, t, s As Short
 Dim Q As New Queue
 Dim L As List(Of Short)
 Dim Li As New List(Of Short)
 Dim n As New node
 Dim m As New node
 Dim sum(Count - 1) As Short
 Dim MaxLevel As Short
 Dim NodeLevel(Count - 1) As Short
 Dim Level(Count - 1, Count - 1) As Boolean
 Dim nodeorder(Count - 1) As Short
 n.Id = 0
 n.Level = 0
 Q.Enqueue(n)
 MaxLevel = 0

 While (Q.Count > 0)

 n = Q.Dequeue()
 sum(n.Level) += 1
 NodeLevel(n.Id) = n.Level
 nodeorder(n.Id) = sum(n.Level)
 Level(n.Level, n.Id) = True

 If (MaxLevel < n.Level) Then
 MaxLevel = n.Level
 End If
 L = ChildsIndexes(n.Id)
 For i = 0 To L.Count - 1
 m.Id = L(i)
 m.Level = n.Level + 1
 If Q.Contains(m) = False Then
 Q.Enqueue(m)
 End If

 Next

 End While

 For i = 0 To Count - 1

 t = NodeLevel(i)
 s = nodeorder(i)

214

 Positions(i).X = (width / (sum(t) + 1)) * (s)
 Positions(i).Y = (hight / (MaxLevel + 2)) * t + 100
 Next

 Return Positions
 End Function

 Private Sub DrawAllCircles(ByVal positions() As Point, ByVal g As
System.Drawing.Graphics, ByVal p As Pen, ByVal radius As Short)

 For i = 0 To positions.Length - 1
 DrawACircle(g, positions(i), radius)
 Next

 End Sub
 Private Sub DrawLines(ByVal positions() As Point, ByVal g As
System.Drawing.Graphics, ByVal p As Pen)

 Dim i As Short = 0
 For i = 0 To Count - 1
 For j = i + 1 To Count - 1
 If AdjacencyMatrix(j, i) = True Then
 g.DrawLine(p, positions(i), positions(j))

 End If
 Next
 Next
 End Sub
 Private Sub DrawCircleNumbers(ByVal positions() As Point, ByVal g As
System.Drawing.Graphics, ByVal drawFont As Font)
 For i = 0 To positions.Length - 1
 g.DrawString(i.ToString, drawFont, Brushes.White, positions(i).X - 8,
positions(i).Y - 8)
 Next

 End Sub

 Private Structure node
 Public Id As Integer
 Public Level As Integer

 End Structure
End Class

A.2.3 VSP

Imports GA_for_View_Selection.General
Imports GA_for_View_Selection.ViewSelection
Imports System.Math
Namespace ViewSelection

<Serializable()> Public Class VSP
 Public DiskSpaceLimitValue As Double

215

 Private MinQ As Double
 Private MaxQ As Double
 Private MinU As Double
 Private MaxU As Double

 Private _TheLattice As Lattice
 Private AncestorList() As List(Of View)

 Public Sub New(ByVal ViewLattice As Lattice)
 _TheLattice = ViewLattice

 ReDim AncestorList(_TheLattice.Count)

 For i = 0 To _TheLattice.Count - 1
 AncestorList(i) = AncestorsOf(i)
 Next

 MinQ = q(All)
 MaxQ = q(Null)
 MinU = U(Null)
 MaxU = U(All)

 End Sub

 Public Property Thelattice() As Lattice
 Get
 Return _TheLattice
 End Get
 Set(ByVal value As Lattice)
 _TheLattice = value

 End Set
 End Property

 Public ReadOnly Property View(ByVal i As Integer) As View
 Get
 Return Thelattice.Item(i)
 End Get
 End Property

 Public ReadOnly Property NumberOfViews()
 Get
 Return Thelattice.Count
 End Get
 End Property

 Public Function CubeSize() As Double
 Return Space(All)
 End Function

 Public Function U(ByVal M As VSPPhenotype) As Double
 Dim i As Integer
 Dim Sum As Double = 0

 For i = 1 To NumberOfViews - 1

216

 If M(i) = 1 Then
 Sum = Sum + View(i).UpdateFrequency * u(View(i), M)
 End If

 Next

 U = Sum

 End Function

 Public Function NormalizedU(ByVal M As VSPPhenotype) As Double
 Dim i As Integer
 Dim Sum As Double = 0
 Dim NU As Double

 For i = 1 To NumberOfViews - 1
 If M(i) = 1 Then
 Sum = Sum + View(i).UpdateFrequency * u(View(i), M)
 End If

 Next

 NU = (Sum - MinU) / (MaxU - MinU)
 NU = NU * 100
 Return NU
 End Function

 Public Function Space(ByVal M As VSPPhenotype) As Double
 Dim i As Integer
 Dim Sum As Double

 For i = 1 To NumberOfViews - 1
 If M(i) = 1 Then
 Sum = Sum + Thelattice(i).Size
 End If

 Next
 Space = Sum
 End Function

 Public Function DiskSpaceConstraint(ByVal M As VSPPhenotype)
 Dim C As Double

 C = Space(M) - DiskSpaceLimitValue

 Return C
 End Function

 Public Function q(ByVal v As View, ByVal M As VSPPhenotype) As Double
 Dim LCMV As View

 If M(v.Id) = 1 Or v.Id = 0 Then
 LCMV = v
 Else

217

 LCMV = LeastCostMaterializedAncestor(v, M)
 End If

 Return LCMV.Size

 End Function

 Public Function Q(ByVal M As VSPPhenotype) As Double
 Dim i As Integer
 Dim sum As Double

 For i = 0 To NumberOfViews - 1
 sum += View(i).QueryFrequency * Q(View(i), M)
 Next
 Q = sum

 End Function

 Public Function NormalizedQ(ByVal M As VSPPhenotype) As Double
 Dim i As Integer
 Dim sum As Double
 Dim NQ As Double

 For i = 0 To NumberOfViews - 1
 sum += View(i).QueryFrequency * q(View(i), M)
 Next

 NQ = (sum - MinQ) / (MaxQ - MinQ)
 NQ = NQ * 100
 Return NQ
 End Function

 Public Function u(ByVal v As View, ByVal M As VSPPhenotype) As Double
 Dim Min As Double = Double.MaxValue
 Dim SmallestAncestor As Integer
 Dim index As Integer
 Dim Size As Double
 Dim TheAncestors As List(Of View)

 index = Thelattice.Indexof(v)
 TheAncestors = AncestorList(index)

 M(0) = 1

 For i = 0 To M.Count - 1
 If M(i) = 1 And i <> index And TheAncestors.Contains(View(i)) =
True Then
 Size = View(i).Size
 If Size < Min Then
 Min = Size
 SmallestAncestor = i
 End If
 End If
 Next
 Return Min

 End Function
 Public Function AncestorsOf(ByVal i As Short) As List(Of View)

218

 Dim A As New List(Of View)
 For n = 0 To i - 1
 If ISAncestor(View(n), View(i)) = True Then
 A.Add(View(n))
 End If
 Next

 Return A
 End Function

 Private Function AncestorsOf(ByVal v As View) As List(Of View)
 Return AncestorsOf(Thelattice.Indexof(v))
 End Function
 Private Function ISAncestor(ByVal V1 As View, ByVal V2 As View)
 If V1.HierarchyLevels = V2.HierarchyLevels Then
 Return False
 End If
 For i = 0 To V1.HierarchyLevels.Count - 1
 If V2.HierarchyLevels(i) < V1.HierarchyLevels(i) Then
 Return False
 End If
 Next

 Return True
 End Function

 Private Function All() As VSPPhenotype
 Dim A As New VSPPhenotype(NumberOfViews)

 For i = 0 To NumberOfViews - 1
 A(i) = 1
 Next
 Return A
 End Function

 Private Function Null() As VSPPhenotype
 Dim A As New VSPPhenotype(NumberOfViews)

 For i = 0 To NumberOfViews - 1
 A(i) = 0
 Next

 Return A
 End Function
 Public Function LeastCostMaterializedAncestor(ByVal v As View, ByVal M As
VSPPhenotype) As View

 Dim MaterializedAncestorsList As List(Of View)
 Dim Minimum As View
 Dim n As Short

 MaterializedAncestorsList = MaterializedAncestors(v, M)
 If MaterializedAncestorsList.Count = 0 Then
 Return Thelattice.TopNode()
 End If

 Minimum = MaterializedAncestorsList(0)

 n = MaterializedAncestorsList.Count

 For i = 1 To n - 1
 If Minimum.Size > MaterializedAncestorsList(i).Size Then
 Minimum = MaterializedAncestorsList(i)

219

 End If
 Next

 Return Minimum

 End Function

 Private Function MaterializedAncestors(ByVal V As View, ByVal M As
VSPPhenotype) As List(Of View)
 Dim MaterializedAncestorsList As New List(Of View)
 Dim AncestorsList As New List(Of View)
 Dim c As View
 Dim n As Short
 c = Thelattice.TopNode()
 AncestorsList = AncestorList(V.Id)

 n = AncestorsList.Count

 For Each MyView In AncestorsList

 If M(MyView.Id) = 1 Or MyView.Id = 0 Then
 MaterializedAncestorsList.Add(MyView)
 End If
 Next

 Return MaterializedAncestorsList

 End Function

 Public Function SearchSpaceSize() As Long
 If NumberOfViews > CInt(Log(Long.MaxValue, 2)) Then
 Return Long.MaxValue
 Else
 Return Pow(2, NumberOfViews)
 End If

 End Function
 End Class

End Namespace

A.2.4 VSP Phenotype

Namespace General
 Public Class VSPPhenotype
 Private _array() As Integer
 Public F1, F2 As Double

 Public Property List() As Integer()
 Get
 Return _array
 End Get
 Set(ByVal value() As Integer)
 _array = value.ToArray()
 End Set
 End Property

220

 Public Sub New(ByVal Size As Short)
 ReDim _array(Size - 1)
 _array(0) = 1
 End Sub
 Public Sub New(ByVal o1 As Double, ByVal o2 As Double)
 F1 = o1
 F2 = o2
 End Sub

 Default Public Property A(ByVal i As Short) As Integer
 Get
 If i < _array.Count Then
 Return _array(i)
 Else
 Return Nothing
 End If
 End Get

 Set(ByVal value As Integer)
 _array(i) = value
 End Set
 End Property

 Public ReadOnly Property SearchSpaceSize() As Double
 Get
 Return Math.Pow(2, Count)
 End Get
 End Property
 Public ReadOnly Property Count()
 Get
 Return _array.Count
 End Get
 End Property

 Public Function Clone() As VSPPhenotype
 Dim S2 As New VSPPhenotype(Count)
 S2._array = _array.Clone()
 S2.F1 = F1
 S2.F2 = F2
 Return S2
 End Function

 Public Sub Clear()
 For i = 0 To Count - 1
 _array(i) = 0
 Next

 End Sub

 Public Overrides Function ToString() As String
 Return _array.ToString()
 End Function

 End Class
End Namespace

221

A.3 Performance metrics

'Imports GA_for_View_Selection.General
Imports System.IO
Imports System.Math
Imports Microsoft.Office.Interop

Public Class PerformanceMetric
 Private Approximation1 As New List(Of ObjectiveSpacePoint)
 Private Approximation2 As New List(Of ObjectiveSpacePoint)

 Private Filename As String

Private Function Coverage(ByVal Approx1 As List(Of ObjectiveSpacePoint), ByVal
Approx2 As List(Of ObjectiveSpacePoint))
 Dim A, B As Short
 Dim C As Double

 A = 0
 B = Approx2.Count

 For Each y As ObjectiveSpacePoint In Approx2
 If Dominate(Approx1, y) = True Then
 A += 1
 End If
 Next

 C = A / B
 Return C

 End Function

Private Function Dominate(ByVal P1 As ObjectiveSpacePoint, ByVal P2 As
ObjectiveSpacePoint) As Boolean

 If P1.X > P2.X Then
 Return False
 End If

 If P1.Y > P2.Y Then
 Return False
 End If
 If P1.Y < P2.Y Then
 Return True
 End If
 Return True
 End Function

Private Function Dominate(ByVal Approximation As List(Of ObjectiveSpacePoint),
ByVal P As ObjectiveSpacePoint) As Boolean
 For Each D As ObjectiveSpacePoint In Approximation
 If Dominate(D, P) = True Then
 Return True
 End If
 Next
 Return False
 End Function

222

Private Function DominatedPoints(ByVal Approximation As List(Of
ObjectiveSpacePoint)) As List(Of ObjectiveSpacePoint)
 Dim Dominated As New List(Of ObjectiveSpacePoint)

 For i = 0 To Approximation.Count - 1
 For j = i + 1 To Approximation.Count - 1
 If Dominate(Approximation(i), Approximation(j)) = True And
Dominated.Contains(Approximation(j)) = False Then
 Dominated.Add(Approximation(j))
 End If
 If Dominate(Approximation(j), Approximation(i)) = True And
Dominated.Contains(Approximation(i)) = False Then

 Dominated.Add(Approximation(i))
 End If
 Next
 Next
 Return Dominated
 End Function

 Private Function HyperVolume(ByVal Approx As List(Of ObjectiveSpacePoint),
ByVal ReferencePoint As ObjectiveSpacePoint) As Double
 Dim Volume As Double = 0
 Dim Rectangular As Double = 0
 Dim width, hieght As Double
 width = 0
 Height = 0

 Approx.Sort(AddressOf Xcompare)

 For i = Approx.Count - 1 To 0 Step -1
 If i = Approx.Count - 1 Then
 width = ReferencePoint.X - Approx(i).X
 Else
 width = Approx(i + 1).X - Approx(i).X
 End If
 hieght = ReferencePoint.Y - Approx(i).Y
 Rectangular = width * hieght
 Volume = Volume + Rectangular
 Next
 Return Volume
 End Function

Private Function MaximumSpread(ByVal Approx1 As List(Of ObjectiveSpacePoint))

 Dim A, B As Double

 Dim MS As Double

 A = Approx1.Max(Function(objectivespacepoint) objectivespacepoint.X) -
(Approx1.Min(Function(objectivespacepoint) objectivespacepoint.X))
 B = Approx1.Max(Function(objectivespacepoint) objectivespacepoint.Y) -
(Approx1.Min(Function(objectivespacepoint) objectivespacepoint.Y))
 A = Pow(A, 2)
 B = Pow(B, 2)

 MS = Pow(A + B, 0.5)

 Return MS

223

 End Function

 Private Function Mean(ByVal approximation As List(Of ObjectiveSpacePoint)) As
Double
 Dim Sum As Double
 Dim MeanValue As Double

 For Each P As ObjectiveSpacePoint In approximation
 Sum += MinDistance(P, approximation)
 Next
 MeanValue = Sum / approximation.Count

 Return MeanValue
 End Function

Private Function MinDistance(ByVal P As ObjectiveSpacePoint, ByVal Approximation
As List(Of ObjectiveSpacePoint)) As Double
 Dim Sum As Double
 Dim MinSum As Double = Double.MinValue
 Dim MinPoint As New ObjectiveSpacePoint(0, 0)

 For Each D As ObjectiveSpacePoint In Approximation
 If (D.X <> P.X Or D.Y <> P.Y) Then
 Sum = Abs(P.Y - D.Y) + Abs(P.X - D.X)
 If Sum > MinSum Then
 MinSum = Sum
 MinPoint = D
 End If
 End If
 Next

 Return MinSum
 End Function

Private Function NonDominated(ByVal Approximation As List(Of
ObjectiveSpacePoint)) As List(Of ObjectiveSpacePoint)

 Dim flag As Boolean
 Dim ND As New List(Of ObjectiveSpacePoint)

 For i = 0 To Approximation.Count - 1
 flag = False
 For j = 0 To Approximation.Count - 1

 If Dominate(Approximation(j), Approximation(i)) = True And i <> j
Then
 flag = True
 Exit For
 End If
 Next
 If flag = False Then
 ND.Add(Approximation(i))
 End If
 Next

 Return ND
 End Function

Private Function OpenFile() As Boolean

 OpenFileDialog1.DefaultExt = "Input Approximation"
 If OpenFileDialog1.ShowDialog() = Windows.Forms.DialogResult.OK Then

224

 Return True
 Else
 Return False

 End If

 End Function

Private Function ReadData() As List(Of ObjectiveSpacePoint)

 Dim R As StreamReader = New StreamReader(OpenFileDialog1.FileName)
 Dim Line As String
 Dim x, y As String
 Dim Point As ObjectiveSpacePoint
 Dim i, j As Short
 Dim Approximation As New List(Of ObjectiveSpacePoint)

 Line = R.ReadLine()
 While R.EndOfStream = False

 Point = New ObjectiveSpacePoint
 Line = R.ReadLine()
 x = ""
 y = ""
 If Line = "]" Then
 Exit While
 End If

 i = 0
 While Line(i) <> " "
 x = x + Line(i)
 i = i + 1
 End While

 For j = i + 1 To Line.Length - 1
 y = y + Line(j)
 Next

 Point.X = CDbl(x)
 Point.Y = CDbl(y)
 Approximation.Add(Point)
 End While

 R.Close()
 Return Approximation
 End Function

Private Function Spacing(ByVal Approximation As List(Of ObjectiveSpacePoint))
 Dim Sum As Double
 Dim MeanValue As Double
 Dim S As Double

 MeanValue = Mean(Approximation)

 For Each P As ObjectiveSpacePoint In Approximation
 Sum = Pow((MinDistance(P, Approximation) - MeanValue), 2)
 Next

 S = Sum / (Approximation.Count - 1)
 S = Pow(S, 0.5)

225

 Return S

 End Function

Private Function Xcompare(ByVal A As ObjectiveSpacePoint, ByVal B As
ObjectiveSpacePoint) As Integer
 If A.X > B.X Then
 Return 1
 End If

 If A.X = B.X Then
 Return 0
 End If

 If A.X < B.X Then
 Return -1
 End If
 End Function

End Class

226

Appendix B. Box Plots

Figure ‎B.1 Box Plot Showing Two Set Coverage , C(A,B). Algorithm A Refers to Algorithm In row And

Algorithm B Refers to Algorithm In Column.

.

SPEA

NSGA

SPEA-II

NSGA-II

VEGA

MOGA

WBGA

NPGA

227

Figure ‎B.2 Box Plot for Metric of hypervolume

228

Figure ‎B.3 (continued) Box Plot for Metric of hypervolume

229

Figure ‎B.4Box Plot for Metric of Spacing

230

Figure ‎B.5(Continued) Box Plot for Metric of Spacing

231

Figure ‎B.6Box Plot for Metric of Maximum Spread

232

Figure ‎B.7(Continued) Box Plot for Metric of Maximum Spread

233

Appendix C. Publications

 Talebian, S. H. and Kareem, S. A. Using genetic algorithm to select materialized

views subject to dual constraints. In Proceedings of International Conference on

Signal Processing Systems. Singapore, pp. 633–638, 2009

 Talebian, S. H. and Kareem, S. A. A Lexicographic Ordering Genetic Algorithm

for Solving Multi-objective View Selection Problem. In Proceedings of the 2010

Second International Conference on Computer Research and Development.

Kuala Lumpur, pp. 110-115, 2010

 Talebian, S. H. and Kareem, S. A. Materialized View Selection Using Vector

Evaluated Genetic Algorithm. In Proceeding of International Conference on

Computer Engineering and Technology, 3rd (ICCET 2011), Kuala Lumpur, pp.

115-123, 2011

 Talebian, S. H. and Kareem, S. A. A Weight Based Genetic Algorithm for

Selecting Views. Advanced Materialis Research Journal, 2011

