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Abstract 

Today’s huge volumes of data are maintained in conventional database systems. The 

data distributed in these systems sometimes come in inconsistent formats.  On the other 

hand, data analysts require an environment so that they are able to obtain the required 

information. However, the distributed and heterogeneous structure of these systems 

prevents them from taking advantage of these data for analytical purposes. 

In order to  overcome this weakness the data warehouse concept was introduced 

(Inmon, 1992). The main idea is such that, incompatible data spread over heterogeneous 

systems are extracted and after transformations to a unified form are loaded to a central 

and separate database for analytical purposes. 

Since analytical queries are complex and take a long time to be processed under normal 

circumstance, there is a need for a strategy to improve the speed of such queries. One of 

the ways for resolving this problem is by using pre-computed results of queries. In this 

approach, results of possible queries are computed in advance and whenever a user 

submits a query, instead of referring to the main table with enormous numbers of 

records, a proper pre-computed result is fetched and used for answering the query. 

The results of each query can be a logical table which is derived from the base tables. 

Such tables are called views in database terminology. Once the records of a view are 

stored on disk, the view is called a materialized view.  

Another important issue resulting from materializing view is updating the views. If 

during periodical reload from the conventional database systems new records are 

inserted to the fact table, the views that have been derived from the fact table need to be 

updated. The process of updating views in response to changes to base tables is called 

view update or view maintenance (Kotidis, 2002). This process is expensive because it 
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is time consuming. In today’s systems availability is one goal and this is achieved by 

minimizing the update window during which the system is down. 

Although using materialized views for answering queries reduces the query response 

time but at the same time it increases the view update time. Selecting a subset of views 

which gives the best compromise between minimizing query response time and 

minimizing total update time is known as the view selection problem. This is considered 

a multi-objective problem because the problem involves optimizing more than one 

problem simultaneously subject to constraint(s). 

Evolutionary multi-objective algorithms are considered as good candidate for solving 

multi-objective optimization problems and have been applied to variety of problems in 

different areas.  

In this research, we showed how evolutionary multi-objective algorithms can be used to 

solve the view selection problem and its advantage over classical optimization problems 

were described. As a comparative study, the performance of the algorithms was 

evaluated based on various standard metrics. In addition to the normal metrics, the 

computational time for executing each algorithm was also measured and compared. 

Our results show that algorithms which use elitism feature are superior to other 

algorithms in most of the metrics. At the same time implementing elitism feature 

increases the computational complexity of the algorithm. Furthermore, niching 

strategies in some algorithms play an important role in delivering a diverse set of 

solutions. 

Generally, it can be said that two algorithms SPEA-II and NSGA-II perform better than 

other algorithms in terms of convergence to the optimal solution and diversity.  
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Chapter 1. Introduction 

1.1 Background 

Today’s large volume of data is kept in conventional database (or operational) systems. 

These systems are useful in performing the routine tasks for organizations. On the other 

hand, business analysts realized the importance of these data. Due to competitive nature 

of business they are motivated to take advantage of the data for the purpose of decision 

making. However, the data which reside in conventional database systems are not in a 

form suitable for analysis for the following reasons: the data is distributed over multiple 

independent sources; the data is represented in inconsistent formats. The type of 

software and hardware architecture differs from one source to another. In addition, 

operational systems or OnLine Transaction Processing (OLTP) systems are designed to 

efficiently respond to regular queries. The regular queries in operational systems are 

simple queries accessing small numbers of records. In fact, the goal of OLTP systems is 

to maximize transaction throughput. In contrast to OLTP queries the analytical queries 

are complex and involved in aggregating large number of records which are 

accumulated over several years. In order to overcome those weaknesses the Data 

Warehouse concept was introduced (Inmon, 1992). Data warehouse is a service by 

which incompatible and heterogeneous data are extracted from different operational 

sources, transformed into a unified form and then loaded into a central and huge 

repository. The aim of Data Warehouse is to easily and efficiently support decision 

making and business analysis (Agrawal, 2005; Ponniah, 2001). 

As mentioned the analytical queries are complex queries and therefore take a 

considerably long time to be answered under normal circumstance. For example, a 
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query that asks for the sum of sales of a particular product category in a particular 

country in the last decades may result in the calculation of millions of records. 

Moreover, the executives of the organization require the result of analytical queries in a 

short time so that they are able to make fast and proper decisions. As a result, improving 

the performance of queries in a data warehouse environment is an essential need. One of 

the common techniques for speeding up queries is utilizing pre-computed result. The 

results are called materialized views and calculated in advance to submitting queries by 

end users. In the relational database terminology view is a derived table computed from 

a set of base tables on the fly (Teorey, Lightstone, Nadeau, & Jagadish, 2005). In the 

materialized view approach, the query response time is saved up since instead of 

calculating the complex queries through a large number of records the ready result is 

returned in significantly shorter time.  For example, a query which may be processed in 

one day under the normal situation can be answered less than one hour through 

materialized views. 

The ideal choice would be pre-computing the results for all the possible queries and 

storing them on disk (which is called materializing) so that each possible query can be 

responded quickly. However, that is not a practical choice. Materializing all possible 

views requires a great size of available disk space which is not supported by some 

computer systems (Kumar & Ghoshal, 2009). Moreover, loading new data from 

operational sources causes changes to the base table from which the views are already 

computed. In order to avoid inconsistency between views and base table the views need 

to be re-calculated. The task of computing the changes made to the base table and 

applying them to the previously saved views is called view update or view maintenance. 

The update window interferes with the working time of the system. Therefore, in order 

to increase availability, minimizing the update time is desired. Materializing all the 

possible views causes the update time to increase because the update process takes a 
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long time since all the views may need to be updated. Therefore because of the 

mentioned limitations we are forced to select only a subset of view to be saved on disk. 

Selecting the right set of materialized views is a crucial decision in designing a data 

warehouse (Shah, Ramachandran, & Raghavan, 2006). 

1.2 Motivation 

The problem of selecting the right views to be stored on disk space is well studied in the 

single objective form (see Table  2.3). Several methods like greedy, genetic algorithm, 

simulated annealing have been applied to solve different variations of the problem. All 

of these variations share a common characteristic which is the consideration of only one 

objective function. The objective can be minimizing the query response time, update 

time or even the weighted sum of these two primitive objectives. However, in the real-

world, the data warehouse designer might be interested in minimizing two problem 

objectives simultaneously. This variation of the problem is called the multi-objective 

materialized view selection problem (Dhote & Ali, 2009). 

So far, few studies  (Lawrence, 2006) have addressed the multi-objective view selection 

problem. In this research, we investigate the materialized view selection problem 

especially pertaining to the multi-objective variation of the problem. We study the 

application of evolutionary multi-objective optimization algorithms in solving the two 

objectives view selection problem. 

1.3 Problem Statement 

This research is about finding a set of solutions which gives a good trade-off between 

two conflicting goals, that is: minimizing the total query response time and minimizing 

the total update time subject to the constraints of available hard disk space for saving 

the views. The following sub-topics discuss the problem statement in greater details and 
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describe the objectives and constraints of the problem. The research problem is formally 

stated in Section  1.3.5. 

1.3.1 Total Query Response Time 

Having a set of materialized views;  , the total time required for evaluating all possible 

queries in the system;  ( ) can be calculated as below (Lawrence & Rau-Chaplin, 

2006): 

  ( )  ∑    (   )

   

 1.1 

where Q is set of all queries,   is a particular query,    is the frequency of the query q  

This equation applies, as long as some queries are posed often while some other queries 

occur rarely, The  (   ) denotes the time needed for processing the query   in the  

presence of   .  

1.3.2 Update Time  

Materialized views work like a cache system in the topic of memory management. In a 

cache system, the frequently accessed data in main memory are duplicated in fast and 

small capacity storage. Any future request for the data that has already been cached is 

done through the cache rather than referring to the main memory. This reduces the 

access time (Silberschatz, 1998).  

In the cache technique, whenever the original data in main memory are modified, the 

cached data needs to be also updated. Similarly, in the materialized view selection, 

whenever the data warehouse is loaded, and the new records are inserted to the fact 

table and cause changes, the views which have been derived before from the fact table 

needs to be updated as well. Normally, in order to reduce disruption to the working 

window of a data warehouse, the update process is done when the system is idle or at 

night (Liang, Wang, & Orlowska, 2001; Theodoratos & Bouzeghoub, 2000). 
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Furthermore, when companies extend their operation hours, the update window 

becomes shorter. 

The total update time for a set    of materialized views can be calculated as below 

(Lawrence & Rau-Chaplin, 2006): 

  ( )  ∑     (

   

   ) 1.2 

where    is the frequency of updating view   ,  ( ,  ) is the required time of updating 

the materialized view    in the presence of M. 

1.3.3 Total Disk Space 

The total size of disk spac required for saving a subset of views considered for 

materialization;   ( ) can be calculated as below (Hung, Huang, Yang, & Hsueh, 

2007): 

   ( )  ∑   ( )

   

 1.3 

where   ( )  is the size of the disk space required for storing view   . 

1.3.4 View Selection Problem 

The problem of choosing a subset of views to be stored on disk is known as the 

materialized view selection problem. In general, the view selection problem involves 

minimizing one or two goal functions possibly subject to one or more constraints. The 

view selection problem may be considered as a constrained optimization problem 

(Dhote & Ali, 2009; Gou, Yu, & Lu, 2006) and it has been proven to be an NP-Hard 

(non-deterministic polynomial-time hard) problem (Gupta, Harinarayan, & Rajaraman, 

1997). NP-Hard problems are a class of problems at least as difficult as NP problems. 

NP Problems, themselves, are a type of problem that is very difficult to solve (Wang, 

Chang, & Cheng, 2009). According to the literatures (Hanusse, Maabout, & Tofan, 

2009; Harinarayan, Rajaraman, & Ullman, 1996; Liang et al., 2001; Lin & Kuo, 2004; 

Zhou, Wu, & Ge, 2008), there are many variations of the view selection problems and 
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they have been well studied. All of them can be classified in two main categories; 

namely, a single objective view selection category or a multi-objective view selection 

category. 

1.3.5 Multi-Objective View Selection Problem 

When two objective functions needs to be minimized simultaneously, we are dealing 

with the multi-objective view selection problem (Dhote & Ali, 2009). While single 

objective view selection problems received significant attention in the past and several 

heuristic methods have been proposed for solving this class of problems (see Table  2.3) 

the multi-objective view selection is rarely addressed in the literature and introduces a 

broad area of research. The multi-objective view selection problem that is investigated 

in this research is defined as below: 

Select a subset,  , of views among a set of all views,    such that: 

  ( )        ( ) minimized 

and:   

   ( )     is satisfied 

   

This problem can be stated as minimizing both the total query response time,  ( ) and 

the total view update time,  ( ) such that total disk space,   ( ) for storing all views 

is less than   , a pre-defined size of the disk. In fact,   , is the size of the allocated  

disk space for saving all the views. 

1.4 Evolutionary Multi-Objective Optimization 

Evolutionary Algorithms are a type of heuristics which imitates biological evolution in 

nature and are based on the Darwinian Principle of “natural selection”.  In nature, at a 

given time, several organisms co-exist and compete for obtaining limited available 

resources. However, only strong and highly fit organisms will win the competition, 

survive and reproduce. Evolutionary algorithms are a research area in computer science 
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and are increasingly applied to many complex optimization problems in several fields 

such as: Medicine (Yang, Reinstein, Pai, Xu, & Carroll, 1998), Robotic (Zalzala & 

Fleming, 1997), Engineering (Bowden, 1992) and Image Processing (Chen, Nakao, & 

Arakaki, 1997). A conventional evolutionary algorithm works as follows: at first a real-

world problem solution must be encoded as a computer data structure (often an array of 

binary values). The encoded solution is called an individual or chromosome. The 

algorithm starts by random creation of the first generation. Then the individuals within 

the current generation are evaluated by means of a fitness function to measure how good 

they are. Each individual is assigned a score called the fitness value which reflects the 

goodness degree of the individual. Thereafter, a selection operator will select 

individuals with the highest fitness value among the whole population. Then crossover 

and mutation operators are applied to the selected individuals as parents to produce the 

new offspring. The offspring forms part of the new generation and the same procedure 

will be repeated for the next generation until the termination criteria holds. The 

termination criteria can be a convergence to a satisfactory solution or exceeding a pre-

determined number of generations. Figure  1.1 shows a general flowchart for an 

evolutionary algorithm (Deb, 2001; Haupt & Haupt, 1997; Sivanandam & Deepa, 

2009). 

The single objective optimization problem is the minimization/maximization problem of 

only one objective function in the presence of some constraints. So far a large amount of 

effort has been devoted to the understanding, design (Coley, 1998; Michalewicz, 1996; 

Sivanandam & Deepa, 2009) and application (Chen et al., 1997; Cohoon, Hegde, 

Martin, & Richards, 1991; Nordvik & Renders, 1991; Schulze-Kremer, 1994; Yang et 

al., 1998; Zalzala & Fleming, 1997) of single objective genetic algorithms. 
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Figure 1.1 Basic Evolutionary Algorithm’s Flowchart 

However, in the real-world there exist some problems which naturally involve 

optimization of multiple goals at the same time. These types of optimization problem 

are different and are called the multi-objective optimization problem. In this kind of 

optimization problem all the objectives must be taken into account simultaneously. 

Furthermore, instead of a single optimal solution which is expected in a single objective 
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optimization we deal with a set of trade-off solutions each of which can be regarded as 

the optimal solution. Most classical approaches for solving the multi-objective problem 

transform the inherently multi-objective problem to the parametric single objective 

problem and then applying the common methods designed for the single objective 

problems. Such reduction ignores the fundamental difference between these two types 

of problems and is highly dependent on the parameters chosen. Advantages of 

evolutionary algorithms for solving multi-objective algorithms such as view selection 

problem are as follows: 

 The population based feature of these algorithms allows multiple solution of the 

problem to co-evolve within a single run of the algorithm. This characteristic is 

well suited to multi-objective problems where a set of solutions are desirable 

rather than a single solution. 

 Secondly, these algorithms introduce some sense of parallelism in solving the 

problem since in a single run of the algorithm, the evolution process is 

performed for several individuals in the population simultaneously and thus they 

improve the overall performance.  

 Evolutionary algorithms do not require much knowledge (such as gradient 

evaluation) about the given problem. All the information they need is only the 

objective function (Coello & Lamont, 2004). 
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1.5 Research Objectives 

The objectives considered for this research are the following: 

 Investigate the application of different evolutionary multi-objective algorithms 

in order to solve the view selection problem. 

 To compare the performance of different evolutionary algorithms with respect to 

total query response time and total view update time subject to the constraint of 

total disk space. 

 To investigate the convergence, diversity and computational time of the 

evolutionary multi-objective algorithms. 

1.6 Research Scope 

The data warehouse is a repository of integrated information extracted from several 

source of operational systems and are made available for analytical queries for the 

purpose of decision making. This research is focused on the study of the view selection 

problem in a data warehouse environment only. Given a set of possible queries, and disk 

space constraint, the goal of selection is to select a subset of views to minimize both the 

total query response time and the total view update time simultaneously subject to this 

constraint. There are two well-known schemas that are used as the data structure for 

modeling data in a warehouse, called the star schema and the snowflake schema. 

However, in this research the star schema is used as a data warehouse model because it 

is more popular and efficient in data access (England & Powell, 2007; Han, Kamber, & 

Pei, 2005). Furthermore it is simpler and more consistent than the snowflake schema (Itl 

Education Solutions Limited, 2010; Rainardi, 2007) . For calculating the query response 

time using a view the linear cost model which will be discussed in Section  2.9 is used. 

Dimension hierarchies as logical arrangement of attributes in dimension tables provide a 
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navigational path for roll up and drill down queries. Some researchers in view selection 

field ignore the issue of dimension hierarchies in solving the problem while other 

researchers accommodate them in their problem statement. However, this research 

investigates the view selection problem in the presence of dimension hierarchies (refer 

to Section  2.6 for a discussion on dimension hierarchies). Two common structures are 

found in previous works for logical organization of views. These are AND-OR view 

graphs (Gupta & Mumick, 2005) and dependency lattice framework (Harinarayan et al., 

1996). This  research is only based on the dependency lattice framework which is 

suggested in (Harinarayan et al., 1996).The view selection algorithms can be static or 

dynamic. In dynamic view selection the pattern of user queries changes over time while 

it is fixed in static. In this research the investigated algorithm operate merely on the 

static form of view selection. However, the static selection of views is also useful in the 

starter phase of any dynamic algorithm. The view selection algorithms investigated in 

this research will be evaluated against some problem instances. Each problem instance 

is defined as a set of possible views (which includes view size, view update frequency 

and query update frequency) as well as the relationships with them. The database for 

problem instances is populated based on the Transaction Processing Performance 

Council (TPC) (http://www.tpc.org) proposal which is a database generator and 

extensively used in decision support research. The data are uniformly populated with 

zero skew. 

1.7 Research Methodology 

Our methodology for this research is divided by the three following phases: 

A. Problem based phase: 

 To study the view selection problem fundamental and principles. 

 To review different methods used for solving view selection problem. 
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 To review different variation of the problem addressed in the past. 

 To examine different techniques for estimating the size of views. 

B. Method Based phase: 

 To study evolutionary multi-objective principles and fundamentals 

 To identify and investigate well-known evolutionary multi-objective algorithms.  

 To study the different performance metrics in order to assess the performance of 

evolutionary multi-objective optimization algorithms. In particular, we are interested 

to find out which metrics is suitable for evaluating evolutionary algorithms designed 

to solve the view selection problem. 

C. Development Phase: 

 To define an appropriate way for representing the view selection problem solution 

with respect to the evolutionary algorithm. 

 To study different methods for dealing with problem constraints and adopting a 

proper constraint handler to the problem 

 To develop an application to implement the evolutionary algorithms as well as 

implementing a framework for the definition of view selection problem instances 

using Visual Basic  

D. Analysis 

 To assess different convergence, diversity and computational time of the 

evolutionary algorithms applied to a set of problem instances of view selection 

problem. 

Figure  1.2 shows different phases of our methodology for this research. 
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Figure 1.2 Different Phases of Research Methodology 

1.8 Thesis Outline 

The current chapter is a summary of what is intended to be presented to the readers of 

this thesis. However, the remainder of thesis is organized as the following chapters: 

 Chapter 2: Materialized View Selection 

This chapter discusses principles and fundamentals related to the view selection 

problem as well as the related works that has been done in this area.  The chapter starts 

with a background to the data warehouse concept. Then, some principles and definitions 

in relation to the view selection problem are explained. Thereafter, the single and multi-

objective view selection problem is formally defined. The overview of related works is 

divided into two categories: The works addressed by the single objective view selection 

problem and the work pertinent to the multi-objective view selection problem. 

 Chapter 3 :Evolutionary Multi-Objective Optimization 

This chapter gives an introduction to the multi-objective problems principles; 

evolutionary algorithms fundamentals as well as describing some well-known multi-

objective evolutionary algorithms intended to solve the general multi-objective 

optimization problem.  The chapter then continues by presenting the existing 

Problem Based Framework Method Based Framework

Development

Analysis
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performance metric for the performance assessment of evolutionary multi-objective 

algorithm. 

 Chapter 4:Methodology 

In  Chapter 4, the application of several multi-objective optimization algorithms to the 

multi-objective view selection problem is discussed. The eight (8) different evolutionary 

algorithms: WBGA, VEGA, NSGA, NSGA-II, SPEA, SPEA-II, MOGA, NPGA is 

examined over a set of problem instances for the view selection problem. 

 Chapter 5 : Results and Discussion 

 This chapter presents the experimental result obtained by applying the algorithms over 

the problem instances.  

 Chapter 6 :Conclusion 

This chapter is our conclusion of the work done in this research. The chapter gives the 

recommendation for the most suitable algorithms which outperforms all the other 

algorithms experimented with in solving the multi-objective view selection problem. 
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Chapter 2. Materialized View Selection 

2.1 Background 

Over the years, huge amounts of data has been collected in conventional database 

systems in the form of relational tables, spreadsheets, documents, flat files or even 

external data (Ponniah, 2001). This data has been scattered over multiple, independent 

and heterogeneous data sources with different types of software or even hardware. For 

example, one system may use the IBM hardware architecture while the other system is 

based on the Mac hardware design. The Database Management System (DBMS) may 

differ from Oracle to the SQL Server between these two different sources. Furthermore, 

often, the data is stored in different databases and may include some inconsistencies and 

incompatibilities. For example, in one source the length of measurement may be based 

on the metric while in another system, the measurement may be based on the imperial 

system. Again, encoding and naming conventions may differ. 

Traditional database systems perform the normal daily operations of an organization. 

For example, they generate invoice, print payrolls and bills, and carry out transactions 

on bank accounts. In fact, the Online transaction processing (OLTP) systems have been 

effective systems for the requirements they have been designed for and, organizations 

are extremely dependent on this type of systems without which the wheel of business 

will not turn (Ponniah, 2001). 

On the other hand, business analysts realized the importance of the large volume of data 

that has been collected on a regular basis. These data is useful for efficient decision 

making (Lin & Kuo, 2004). These professional users are interested in detecting the 
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business trends in these data. For instance, the analyst may look for an answer to the 

question: “why the total sales for the specific city and specific product have not been as 

expected during last decade”. The information that analysts require is called strategic 

information (Ponniah, 2001), and are used for the  purpose of efficient decision making 

by managers and executives.  An example of a decision can be, establishing a new store, 

or decreasing the price of a specific product. 

However, the different nature and aims of OLTP systems may prevent analysts from 

easily retrieving such kinds of information and thus they require a central, coherent, 

integrated and homogeneous environment to perform their analytical queries. 

As a promising response to this weakness, the data warehouse concept (Inmon & 

Kelley, 1993) and On-line Analytical Processing (OLAP) systems was introduced. The 

main idea of the data warehouse concept is to extract heterogeneous and inconsistent 

data scattered over several operational databases, transform them into a consistent and 

homogeneous form and load them to the central and standalone repository for the 

purpose of decision making. Table  2.1 lists some of the key difference between OLTP 

and OLAP systems (Ponniah, 2001).  

Table 2.1 Differences Between OLTP and OLAP Systems 

 “A Data Warehouse is a subject oriented, integrated, nonvolatile, and time variant 

collection of data in support of the management’s decisions.” (Inmon, 2005, p. 29). 

Unlike conventional operational systems in which the data stored is based on a 

particular application, data in the data warehouse is oriented to major business subjects. 

 OLTP OLAP 

Data  Content Current values Historical values 

Data structure Optimized for transactions Optimized for complex queries 

Access type Read-Write Read Only 

Response time Sub-seconds Several hours to days 

Size MB-GB GB-TB 
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Examples of business subjects can be stores, products or customers as illustrated in 

Figure  2.4 (Bhansali, 2009; Ponniah, 2001). Data warehouse is built by integrating 

heterogeneous data from multiple operational systems (Han et al., 2005; Ponniah, 

2001). The data warehouse is nonvolatile because in contrast to operational systems in 

which records are deleted, modified or added, the data in the data warehouse is read-

only and the only changes that would occur in the data warehouse is the insertion of 

new rows to the base table during periodical load from operational sources. As a result, 

the data warehouse repository is always growing (Rob & Coronel, 2007). In order to 

retain the history of the data, the previous records remain unchanged (Bhansali, 2009). 

In operational systems, the value of a specific record reflects the current information. If 

the value is updated by a transaction, the old value may be lost. For example, the 

balance of a banking account implies the customer’s balance as of that moment and not 

necessarily the balance of one week ago. But often, analysts need past information in 

order to discern the trends. For example, an analyst may be interested in knowing the 

buying pattern of a group of customer within a specific time frame and requires a 

history of purchases that have been made by these customers in that period of time. The 

data in the data warehouse consists of a series of snapshots that may be taken during a 

period of 15 years, instead of a 3 months basis which is customary in business 

operational systems (Khan, 2003) , and thus, tend to be very large and grow over time. 

These data provide a historical perspective to analytical users. The time variant feature 

is considered as a significant element of a data warehouse (Ponniah, 2001). 

2.2 The Data Warehouse Architecture 

The data warehouse building process starts by extracting autonomous data from 

different data sources such as operational databases, flat files and webpages. Thereafter 

these data are cleansed and filtered; any data inconsistencies are resolved. Examples of 
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inconsistencies can be the difference in encoding, naming conventions and units of 

measurement. Thereafter, they are subsequently transformed to a common format, the 

data are then loaded to a separate dedicated central database (Hobbs & Hillson, 1999). 

This database will then be available for: 

 End users 

 Data mining tools  

 Reporting tasks 

The three main steps of building a common data warehouse called the Extract, 

Transform, Load  (ETL) process can be summarized as below: 

 Extract: gathering raw data through several operational sources with diverse 

formats 

 Transform: cleaning , resolving inconsistencies  and converting  to the uniform 

format 

 Load: move the processed data to the central database. 

Figure  2.1shows the general procedure for building a common data warehouse. 

 

Figure 2.1 Data Warehouse Architecture 

As a result of the periodical ETL processes, a central and integrated repository with a 

huge amount of historical data collected during several years are made available to the 
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analysts allowing them to issue analytical queries efficiently and in a more convenient 

manner (Ponniah, 2001). 

The following are some of the advantages of a data warehouse (Limaye, 2009; Ye, Gu, 

Yang, & Liu, 2005): 

 A data warehouse provides decision makers with a consolidated environment to 

access data which were difficult to obtain previously. 

 By isolating decision support systems from operational systems, local processing at 

OLTP systems remain un-affected 

 A data warehouse can operate even when operational sources are unavailable 

temporarily 

The disadvantages of the data warehouse are as follows (Błażewicz, Kubiak, Morzy, & 

Rusinkiewicz, 2003): 

 Since the data warehouse stores large amount of data from multiple sources during 

several years separate from the operational database, a big capacity of storage is 

required for accommodating these data. 

 After they have been loaded to the central database of a data warehouse, the data in 

the operational sources are liable to change which will cause data inconsistency. In 

order to keep the data in the data warehouse consistent with the source data, 

periodical updates are performed. The frequency of the update is decided by the 

administrator. Considering this weakness, one can conclude that the data 

warehouse is not well suited for users who are interested to access current data. 
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2.3 Terminology 

 Relational Model 

The Relational model is a simple and powerful database model. The model 

represents data in the form of two dimensional tables. Each table represents a real-

world object such as a place or a person. In other words, a relational database model 

is based on a set of tables (Narang, 2006; Shenai & Krishna, 1992). An example of a 

relational model for a sale system is shown in Figure  2.5 

 Entity-Relationship Model 

Introduced by (Chen, 1976) the Entity-Relationship (E-R) model is the most popular 

conceptual model for designing database (Itl Education Solutions Limited, 2010). 

The E-R model, as the name suggests views the real world as entities and 

relationships between them. The entity is an object of interest such as person, place, 

thing or concept. Figure  2.2 shows an example of an E-R model  (Shenai & Krishna, 

1992). 

 Query 

A query is a question asked by the user against the existing relations in the database. 

For example, asking the total sales for each product type sold in each city in each 

customer region constitutes a query. A sample query is shown in Section  2.7. 

 Row, Tuple , Record 

In database terminology, rows, tuples or records are interchangeable terms for 

addressing a line of data within a table. Throughout this thesis, the terms row, tuple 

and record are used interchangeably. As an example, each row of the tables in 

Figure  2.5 is considered as a tuple or record (Norman, 2003; Telles, 2007). 

 View, Pre-computed result or pre-aggregated result 

In database theory view is a virtual table that is derived from a set of base tables 

(Teorey et al., 2005). Therefore, the view defines a function from a set of base tables 
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to the derived table (Gupta & Mumick, 1995). The rows in view are computed from 

underlying tables and in contrast to base tables are not necessarily stored in the 

physical disk (Elmasri & Navathe, 2003; Ramakrishnan & Gehrke, 2002). 

Thereafter, throughout this thesis, the term view, pre-computed result, and pre-

aggregated result are used interchangeably. Examples of views are shown 

Figure  2.9. 

 Materialized View 

The view is called a materialized view if the view’s record is saved on disk (Gupta 

& Mumick, 1995). 

 Table or Relation 

A table or relation is a two dimensional structure consisting of rows and columns. 

For better understanding, the table can be imagined like a spreadsheet. The table 

consists of all information related to a specific object (Adamski & Finnegan, 2007; 

Telles, 2007). Throughout this thesis, the terms table and relation are used 

interchangeably. An example of a table is shown in Figure  2.5 

2.4 Dimensional Modeling 

In operational systems data are commonly represented as an Entity Relationship (E-R) 

model. Within this model each entity is represented by a table, the attributes of the 

entities are shown as columns of the tables and the tables are connected together by 

using the primary/foreign keys. In order to optimize storage in these systems, the 

normalization procedure is applied to these tables in several forms. By keeping only one 

copy of data, normalization helps to eliminate data redundancy in tables and hence 

establish data consistency (Farrell, 2010; Hobbs & Hillson, 1999; Sumathi & 

Esakkirajan, 2007). As an alternative approach to the popular entity relationship (E-R) 

modeling mostly used in commercial database systems, and in order to meet the user 
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requirements of a data warehousing environment, a dimensional modeling approach is 

used (Hobbs & Hillson, 1999). Dimensional modeling is a technique for the logical 

design to support user queries in a data warehouse and improving the query 

performance. Even though E-R modeling is advantageous in  online transactional 

systems where queries are short and simple (Petkovic, 2000) it is not well suited for 

decision support systems in which the query efficiency and loading data are important 

(Chaudhuri & Dayal, 1997).  

Although normalization is considered as an appropriate technique in OLTP databases it 

is not sufficient in OLAP systems for following reasons (Hobbs, Hillson, & Lawande, 

2003; Nagabhushana, 2008) : 

         They are too complex to be easily understood 

A normalized entity-relationship diagram adds extra tables and relationship and thus 

increases the complexity of the diagram. Therefore a normalized E-R diagram does not 

have enough simplicity and is not user friendly. For example, a reader may compare the 

simple star-like diagram in Figure  2.4 with the normalized E-R model in Figure  2.2. 

         Users require Standard Query Language (SQL) knowledge to deal with normalized 

data structures 

Even for simple forms of queries the user needs to know SQL However, decision 

makers and senior executives are not expected to learn programming codes. 

         Normalized databases are not well optimized for analytical queries. 

Analytical queries by their nature involve the aggregation of large numbers of records. 

Processing such complex queries in normalized structures is slow and inefficient. 
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Based on the relational model, there are two most common schemas that are used as the 

data structure for modeling data in a warehouse, called the star schema and the 

snowflake schema (Ponniah, 2001). 

 

Figure 2.2 Example of Normalized Entity Relationship Model 

2.5 The Star Schema 

The star schema is the most simple and natural way for a logical design of a data 

warehouse (Parida, 2005) .The star schema, consists of two basic objects. One fact table 

(placed in center of star) and many dimension tables (placed on points of star). The way 

the fact table and dimension tables are connected together is similar to the star shape 

(see Figure  2.3). The fact table and dimensional tables are connected together by means 

of the primary and foreign keys. The primary key of a fact table is a composite key, 

consisting of the primary keys from each dimension table. For example for the star 

schema  in  Figure  2.4 the primary key of the Sales fact table is the composite key 

consisting of CustomerID, StoreID, ProductID which are the primary keys in the 

Customer, Store and Product dimension tables respectively. The fact table’s attributes 

consist of two types; namely, measurements type attributes and the primary keys from 

the dimensional tables. Often, the fact table is a deep table, that is, it includes large 

amount of historical records. In contrast to the fact tables, dimensional tables do not 

have too many records but instead, they are wide tables, which means they have large 

number of attributes (Ponniah, 2001). 
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Figure 2.3 Star-Like Modeling of Data Warehouse 

 

Figure 2.4 Star Schema for Sales System. 

Figure  2.4 shows a sample star schema for a sales system. It models a sales system 

where products are sold to customers through a store. The sample fact tables and 

dimensional tables are shown in Figure  2.5. The dimension tables describe the business 

subjects such as Customer, Store, Product, while the fact tables store some 

measurements about dimensions such as the amount of sales. The measurement attribute 

in the fact table are often in the form of numerical values while the dimensional tables 

usually include descriptive textual attributes. In a star schema each record in the fact 

table corresponds to a single record in each dimension surrounded by it. For example, 

each record in the fact table of Figure  2.5 represents the price of the specific product in 
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the product dimension table sold to a specific customer in the customer dimension table 

at a specific store in the store dimension table. However, although the star schema is an 

easy to understand and implement model, it increases the degree of data redundancy. 

(Hobbs & Hillson, 1999; Hoberman, 2009; Ponniah, 2001). 

 

Figure 2.5 Fact Table and Dimensional Tables 

2.6 Dimension Hierarchies 

The attributes in the dimension tables, usually form a hierarchy as a logical structure to 

facilitate the roll up and drill down operations (see Figure  2.6). Roll up operation is a 

series of user queries that navigates from detailed results to summarized result. Drill 

down are the reverse operation of roll up in which a user issues a series of queries to 

navigate from summarized results to more granular results (see Figure  2.7) (Han et al., 

2005). Within each hierarchy, a particular level is connected to more detailed level 

below and less detailed level above (except the top and bottom level) (Parida, 2005). 

Each level in the hierarchy indicates a specific granularity degree. Figure  2.6 depicts 

one hierarchy for each dimension table of the sales system example in Figure  2.4. For 

instance, consider the store dimension table where the attributes storeID, city, region 

form a hierarchy as illustrated in Figure  2.6. Going up from storeID towards the Region 

the data is summarized and vice versa. The notation All in Figure  2.6 indicates 

aggregation of all records in the corresponding dimension. 
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Figure 2.6 Dimension Hierarchies for Sales System 

 

Figure 2.7 Roll Up And Drill Down Queries 

2.7 OLAP Query format 

A sample SQL query for star schema is as below (Runapongsa, Nadeau, & Teorey, 

1999): 

SELECT SUM(Price), Customer.Region, Store.City, Product.Type 

FROM Sales, Store, Customer, Product 

GROUP BY Customer.Region, Store.City, Product.Type 

  

In the select clause the calculation made is based on the numeric measurement attribute 

in the fact table, and in the groups-by clause, each attribute is an aggregation level 

picked from a dimension hierarchy. For example, in the above sample query, in the 

group by clause, Region is selected from the dimension table Customer, City is selected 
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from the dimension table Store and Type is selected from the dimension table Product 

as illustrated in Figure  2.8. For simplicity, hereafter we denote this query as: 

Sales (Region, City, Type) 

 

Figure 2.8 Picking Up a Hierarchy Level from Each Dimension Hierarchy to Form a Group-By Query 

If a star schema consists of   different dimension tables and within dimension   , there 

exist    different hierarchy levels, then the number of all possible combination of 

group-by queries with this format is calculated as (Ahmed, Agrawal, Nandkeolyar, & 

Sundararaghavan, 2007): 

 
| |  ∏  

 

   

 2.1 

where   is the set of all possible group-by queries. The result of each of these queries 

can be considered as a view and thus each query corresponds to a particular view and 

therefore, the number of all possible views is equal to the number of the group by 

queries, (| |  | |). In the example shown in Figure  2.8, since in each dimension 

hierarchy there are 4 different levels (| |  ∏ ( )     
   ), therefore the number of all 

possible views/queries is 64. Each time, the user submits a query; the query is one of 

these    possible queries. Hereafter throughout this thesis, it is assumed that whenever 
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a user requests a view by issuing a specific group-by query, the request is for the entire 

view and not a part of it.  

2.8 Dependency lattice 

The set of all views can be structured as a lattice framework as introduced by 

(Harinarayan et al., 1996) to display the relationship between different views (see 

Figure  2.9). In that lattice, the relationship between views are expressed as partial order 

denoted by   . (Lawrence & Rau-Chaplin, 2006). Since there is a corresponding group-

by query for each view a dependency lattice which is made from equivalent queries of 

views as depicted in Figure  2.9 can be constructed. This dependency lattice is shown in 

Figure  2.10. 

As an example, consider the dependency lattice for the sales system illustrated in 

Figure  2.11. We denote the lattice by     (    ) where    is set of nodes and   is 

set of directed edges. Each node in this lattice represents a particular view/group by 

query. A directed edge (     )    or       if     can be computed through    . For 

instance, in the sales system lattice of Figure  2.11, 5    since the view number 5 can 

be computed from view number 1. By organizing the views as dependency lattice, the 

problem of finding the right set of views can be reduced to the problem of finding the 

proper set of nodes among all possible nodes in the lattice. There is a top and largest 

view in the lattice, which represents the fact table and by using it every other view in the 

lattice is computable. The data in the fact table are in the highest level of detail. 

Similarly, the bottom and smallest view represents a view which includes only one 

record. This record is the aggregation of all existing records in the fact table and is the 
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Figure 2.9 A Dependency Lattice Organized From All Possible Views 

 

Figure 2.10 Dependency Lattice Organized From All Possible Group by Queries 

most summarized view. This view can be computed from every other view in the lattice. 

In fact, the smallest materialized ancestor of a view is used to answer a query unless the 

corresponding view to that query is materialized. 

Sore City Product Type Customer City Price

Kuala Lumpur Laptop Singapore 1500

Kuala Lumpur Laptop Paris 1500

Kuala Lumpur Desktop Singapore 1000

Kuala Lumpur Desktop Paris 1000

Los Angles Laptop Singapore 1500

Los Angles Laptop Paris 1500

Los Angles Desktop Singapore 1000

Los Angles Desktop Paris 1000

Store  City Product Type Price

Kuala Lumpur Laptop 3000

Kuala Lumpur Desktop 2000

Los Angles Laptop 3000

Los Angles Desktop 2000

Store City Customer City Price

Kuala Lumpur Singapore 2500

Kuala Lumpur Paris 2500

Los Angles Singapore 2500

Los Angles Paris 2500

Product Type Customer City Price

Laptop Singapore 3000

Laptop Paris 3000

Desktop Singapore 2000

Desktop Paris 2000

Store City Price

Kuala Lumpur 5000

Los Angles 5000

Product Type Price

Laptop 6000

Desktop 4000

Customer City Price

Singapore 5000

Paris 5000

Price

10000

Fact Table

SELECT  SUM(Price), Customer.Region, Store.City, Product.Type

FROM  Sales, Store, Customer, Product

GROUP BY Customer.City, Store.City, Product.Type

SELECT  SUM(Price),   Store.City, Product.Type

FROM  Sales, Store,  Product

GROUP BY  Store.City, Product.Type

SELECT  SUM(Price) Store.City, Customer.City

FROM  Sales, Store, Customer,

GROUP BY Store.City, Customer.Region, 

SELECT  SUM(Price ), Product.Type, Customer.City

FROM  Sales, Product,  Customer

GROUP BY   Product.Type,  Customer.City

SELECT  SUM(Price),  Product.Type

FROM  Sales, Product

GROUP BY  Product.Type

SELECT  SUM(Price), Customer.City

FROM  Sales,  Customer

GROUP BY Customer.City

SELECT  SUM(Price), Store.City

FROM  Sales, Store

GROUP BY   Store.City

SELECT  SUM(Price), Customer.Region, Store.City, Product.Type

FROM  Sales, Store, Customer, Product
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Figure 2.11 Dependency Lattice for Sales System 

2.9 Linear Cost Model 

The linear cost was proposed by (Harinarayan et al., 1996) who assumed that the time 

for answering  a query using view     has a linear relationship to the number of records 

in view   (or alternatively the size of the view). i.e.: 

 
 ( )    | |    2.2 

where  ( ) , is query response time for answering a query using view  , and   and   are 

constants.  Hereafter, throughout this thesis we use linear cost model for computing the 

query response time using a specific view. It is to be noted in this research, queries are 

assumed to access all records in the view rather than the partial view 
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2.10 Total query response time 

The total query response time is the time for answering all the possible queries as stated 

earlier in Section  1.3.1 . It is to be noted that since query speedup is caused through the 

help of materialized views, hence, the maximum query response time, occurs when 

there is no materialized view;       ( ) . Similarly, when all views are 

materialized, we have a minimum query response time,      ( ) , since for every 

incoming query there is a pre-computed result. 

 
      ( )       2.3 

However the required time for answering query, q, in presence of a set of materialized 

views, M, is calculated as following:  

 
 (   )  {

    
    

| |        

| |                 
 2.4 

 
               ( ) 2.5 

where | | is the number of records in view   and   is the set of materialized ancestor  

for query  . | | is the number of records in the fact table and          ( ) is the set of 

ancestors for view v in the dependency lattice (Gou et al., 2006). 

 Example 2.1 the Figure  2.12 shows a dependency lattice with the current set of 

materialized views (the nodes are shown in gray),           . The number of records 

in each view is written in the nodes. Assuming that we intend to calculate the time 

needed for answering a query which corresponds to view d.       (   ) is calculated 

as below: 

          ( )          2.6 

          2.7 

  (         )                 2.8 
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Figure 2.12 A Sample Dependency Lattice with a Current Set of Materialized Views 

where Ancestors(d) is a set of ancestors for view d in dependency lattice of Figure  2.12.  

Note that the computation of  (   ) is based on the linear cost model suggested in 

(Harinarayan et al., 1996). 

2.11 Total View Update Time (or View Maintenance Time) 

As mentioned before in Section  1.3.2 the total update time refers to the time required for 

updating all the materialized views.  It is to be noted that minimum update time (    ) 

happens when there is no materialized view (    ) and thus no update process 

required. On the other hand, when all possible views are materialized (   ), all 

views may need to be updated and therefore the time for updating views reach the 

highest value (    ). 

 
            2.9 

Generally, there are two update policies and for both of them we use the fact table or the 

smallest ancestor of views as a source of updating: these are: incremental update and re-

computational update (Shah et al., 2006) 
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2.12 View Size Estimation 

The calculation of the query response time and the storage requirement of views need 

the prior knowledge about the size of views as a parameter. The determination of the 

exact and actual size of a view requires computing the view from the fact table and is 

thus, an expensive exercise (Teorey et al., 2005). As a sub-problem of the view 

selection problem, view size estimation addresses the issue of how the amount of disk 

space required for storing a view can be predicted without actually computing and 

saving it on disk. Two main objectives for view size estimation are accuracy and speed 

of estimation. The methods used to perform the estimation may underestimate or 

overestimate. Although overestimation is acceptable because they present a 

conservative  approach in managing disk space but underestimation is not desirable 

(Nadeau & Teorey, 2001). In order to represent the error of estimation, the following 

formula can be considered as denoted in (Nadeau & Teorey, 2001): 

 
                

                        

          
 2.10 

According to (Shukla, Deshpande, Naughton, & Ramasamy, 1996) three different types  

of methods can be used to estimate view sizes which are analytical methods, linear 

sampling methods and probabilistic counting method.  

2.13 View Selection Problem 

In dealing with materialized views the following choices are considered based on 

(Zhang, Yao, & Yang, 2001): 

 Full materialization 

As an ideal choice, we would like to save all possible views in the system on hard disk. 

In terms of query response time, we will gain maximum acceleration because, for every 
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incoming query, there is a pre-computed result which can be used to answer the query. 

However, in practice, this option is not feasible in some systems because storing all 

possible views can take a large amount of disk space which may not be supported by 

these systems. Moreover, materializing all views will cause the update process to take a 

long time. 

 No Materialization 

By using this option, no views are materialized at all. Although the amount of disk 

space used for storing the views would thus, be zero and no update process is required, 

this option has the poorest performance in terms of query response time, since for every 

incoming query we need to refer to the base table. 

 Partial Materialization 

In partial materialization only a subset of all possible views are selected to be 

materialized. Hence, a balance may be achievable between the query response time, 

update time and the size of disk space.  

Figure  2.13 shows above three choices in a 2D space. 

The question that arises here is, if we are going to select a subset of views to save on 

disk space, which subset is the most appropriate one?(Horng, Chang, Lin, & Kao, 1999) 

The answer is, the subset which most optimize our objectives function(s) while 

satisfying our constraint(s) (Jamil & Modica, 2001). For example, Figure  2.14 shows 

three view selection problem solutions with corresponding Q and U values. Of these 

solutions, solution A is considered as the best solution since it has the minimum values 

of U and Q 
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Figure 2.13 Full, Partial and No Materialization in a 2D space 

.  

Figure 2.14 Selecting the Best Trade-Off View Selection Problem Solution 

View selection problems can be regarded as a search problem where the search space is 

the set of all possible subset of views and the search goals is a particular subset which 

minimizes one function(s) subject to constraint(s) (Jamil & Modica, 2001). The problem 

is important to the design and optimization of data warehouses (Shah et al., 2006; Zhang 

et al., 2001) and is considered as NP-Hard (Kumar & Ghoshal, 2009). 

In order to select a subset of views two approaches are possible as follows (Jamil & 

Modica, 2001; Talebi, Chirkova, & Fathi, 2009; Zhang & Yang, 1999a): 
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Umax
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Full Materialization

No Materialization

U(M)

Q(M)

(Q,U)= (3,3)

(Q,U)= (7,4)

(Q,U)= (9,7)

A={v1, v2, v4, v5}

B={v1, v2, v3}

C={ v1,v2 }
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A) In an exhaustive search strategy all points in the search space needs to be 

enumerated in order to find the optimal solution (if there exists any). 

B) Adopting heuristic algorithms to deliver a near-optimal solution within reasonable 

time. 

In the first approach, we enumerate all  | |  candidates in order to find the best one 

among all subsets of views. Although the optimal solution will be found by this search 

method if it exists and the method is easy to implement, it takes a long time to find 

unless the size of the search space is small. The time complexity for this method is 

 ( | |). However, in practice, we avoid this approach.  

In the heuristic search method we try to find a near optimal solution by pruning the 

search space and spending a reasonable time rather than carrying out an exhaustive 

search in execution time (Zhang et al., 2001). If the true optimal solution cannot be 

obtained in practice we can trade the optimality for efficiency. That means we sacrifice 

the exact optimal solutions for obtaining near-optimal solution in reasonable time 

(Dorigo & Stützle, 2004) .  

According to the literature (Hanusse et al., 2009; Harinarayan et al., 1996; Liang et al., 

2001; Lin & Kuo, 2004; Zhou, Wu, et al., 2008), there are many variation of the view 

selection problems and they have been well studied. All of them can be classified into 

main categories; namely, a single objective view selection category or a multi-objective 

view selection category. 

2.14 Single Objective View Selection Problem 

A single objective view selection problem is concerned with finding a proper subset of 

all possible views such that one objective function (or combination of multiple 

objectives) is minimized and constraints are satisfied as defined below: 
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Select a subset  of views among the set of all view,    such that: 

Single Objective Function e.g. Q(M) or U(M) Minimized 

Constraint e.g. DS(M)≤DS is satisfied 

   

Table  2.2 is a list of the single objective view selection problem and its variations as 

well as works which addressed that particular variation. Note that the last two variants 

in Table  2.2 considers a linear combination (or weighted sum) of query response time 

and update time as a single objective.  In this case the multi-objective view selection 

problem has been reduced to a single objective problem and single objective methods 

are applied to it. 

Table 2.2 Single Objective View Selection Problem Variations 

Objective(Minimize) Constraint Works 

Total query response time Disk Space Consumption 

(Harinarayan et al., 1996) 

(Kalnis, Mamoulis, & Papadias, 

2002) 

(Agrawal, Sundararaghavan, 

Ahmed, & Nandkeolyar, 2007) 

(Li, Talebi, Chirkova, & Fathi, 

2005) 

(Lin & Kuo, 2000) 

Total query response time Update Time 

(Liang et al., 2001) 

(Uchiyama, Runapongsa, & Teorey, 

1999) 

(Boukra, Nace, & Bouroubi, 2007) 

(Yu, Choi, Gou, & Lu, 2004) 

(Gou, Yu, Choi, & Lu, 2003) 

(Shukla, Deshpande, & Naughton, 

1998a) 

Disk space Consumption Total query response time (Hanusse et al., 2009) 

Total update time Total query response time (Zhou, Wu, et al., 2008) 

Combination of total query 

response time and total update 

time 

Disk Space Consumption 

(Lin & Kuo, 2004) 

(Baralis, Paraboschi, & Teniente, 

1997) 

(Wang & Zhang, 2005) 

(Zhang, Sun, & Wang, 2009) 

(Yang, Huang, & Hung, 2002) 

Combination of total query 

response time and total update 

time 

Free 

(Zhang et al., 2001) 

(Horng, Chang, & Liu, 2003) 

(Phuboon-ob & Auepanwiriyakul, 

2007a) 

(Zhang, Yao, & Yang, 1999) 

(Yang, Karlapalem, & Li, 1997) 
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2.14.1 Benefit Function 

Let      , (see Figure  2.15) be a non-materialized view. The benefit gained after 

materializing view    (or adding   to set  ) with respect to  , the set of already 

materialized views,  is denoted by  (   ) and defined as below (Gupta & Mumick, 

2005; Harinarayan et al., 1996): 

 
 (   )   ( )   (   ) 2.11 

In the above equation,  ( ) is query response time for answering all queries in the 

presence of set M of materialized views.  (   ) is the query response time for all 

queries when view   is added to the current set of materialized views. Note that 

 (   )    because by increasing the number of materialized views the query 

response time does not decrease that is   ( )   (   ). 

Indeed, the benefit of a non-materialized view is the amount of reduction in the total 

query response time after materializing that view. 

 

Figure 2.15 Benefit Calculation 

2.14.2 Related Works for Single Objective View Selection Problem 

Even though this research concentrates only on the multi-objective form of the view 

selection problem but a number of prominent works in single objective area are also 

overviewed.Table  2.4 lists different works which were carried out for the single 

objective view selection problem as well as their performances. 

V-M M

v1

v2

B(v1, M)

B(v2, M)

Set of non-materialized views Set of materialized views
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One of the fundamental works in the area of materialized view selection has been done 

by (Harinarayan et al., 1996).View dependency lattice which plays an important role in 

the formulation of the view selection problem has been introduced for the first time in 

this work. Gupta proposed a greedy algorithm which selects the most beneficial view 

per unit of disk space at each stage and adds it to the set of already materialized views. 

The authors prove that if the largest views take   percent of the total allocated disk 

space for view materialization, the benefit of the selected set of views is at least 

(      )  times the benefit of the optimal set of views. The time complexity of the 

algorithm is  (    ) where   is the number of materialized views and   is the number 

of all candidate views. Hereafter, throughout this chapter this algorithm is called BPUS. 

The paper by (Gupta & Mumick, 1999) is one of  the early paper that considers the view 

selection problem when the objective is minimizing the total query response time and 

the constraint is the time needed for updating the materialized views. As the view 

selection problem under update time constraint comes with non-monotonic benefit 

function, the problem becomes intractable and the greedy algorithm which has been 

adopted  in (Harinarayan et al., 1996) is not applicable. In this case this makes the 

problem more difficult. In order to satisfy the monotonicity property (Bauer & Lehner, 

2003; Gupta & Mumick, 1997), for the special case of the problem the authors have 

partitioned the lattice into sub-lattices called inverted tree set. Then a greedy algorithm 

is used to select the best inverted tree set among others at each stage.  

The authors in (Shukla et al., 1998a) designed an algorithm called PBS (Pick By Size) 

which selects the views based on increasing orders of their size and return the solution 

with the same total query response time as in BPUS. The time complexity of the PBS is 

much less than the BPUS algorithm and is  (       )  where   is the number of 

possible views.  



 

40 
 

In (Shukla, Deshpande, & Naughton, 2000), as a novel study, the problem of selecting 

views to materialize through a single cube has been extended to multiple cubes in which 

several fact tables exist. As expected, the multi-cube view materialization seems to be 

significantly more complex than the conventional single cube version and single cube 

algorithms must be extended for the multi-cube case. To deal well with the multi-cube 

case, three different special algorithms called, SimpleLocal, SimpleGlobal and 

ComplexGlobal were devised. Their results show that applying the multi-cube algorithm 

to this kind of problem leads to a noticeable performance improvement rather than the 

traditional single cube view selection algorithms. 

(Baralis et al., 1997) proposed two techniques for reducing the size of the search space 

by keeping only relevant views and removing the views which have the lesser effect on 

the optimal solution.  

(Derakhshan, Dehne, Korn, & Stantic, 2006) introduced an application of simulated 

annealing approach in solving the view selection problem. Comparing to a heuristic and 

genetic method the proposed approach provides significant improvement in quality 

(sum of total query response time and total update time) of obtained solution. 

(Lee & Hammer, 1999) investigated the view selection problem when the structure of 

views is the OR view graph (Gupta & Mumick, 2005) using genetic algorithm. They 

compared their proposed algorithm with optimal solutions. The optimal solution is 

calculated using an exhaustive search algorithm for an example of 20 views. The results 

indicate that the proposed algorithm yields a solution within 90% of the optimal 

solution quality while exhibiting a linear increase in execution time by increasing the 

number of views. 

The authors in (Yu, Yao, Choi, & Gou, 2003) proposed a constrained  evolutionary 

algorithm but unlike (Lee & Hammer, 1999) they have a novel stochastic ranking 
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procedures instead of a direct integration of penalty function for handling the constraint. 

Their algorithm was evaluated against two heuristics and another evolutionary 

algorithm. The result shows the proposed algorithm performs better than the compared 

algorithms in terms of minimizing the total query response time and the feasibility of 

solution. 

In (Gou et al., 2006) an A* algorithm has been developed to solve the view selection 

problem under disk space constraint. It was claimed that the proposed algorithm 

improved the solution quality when the disk space limit is small and in that case the 

greedy BPUS does not work as expected. They used two pruning technique called H-

Pruning and F-Pruning in order to reduce the size of the search space and therefore 

accelerate the A* algorithm. Their theoretical and experimental results show the 

suggested algorithm is powerful, efficient and flexible to this problem. 

(Zhang et al., 2001) combined the pure evolutionary algorithm and heuristic algorithm 

to form a hybrid algorithm. Their experimental result shows that the hybrid algorithm 

reduces the total query response time and total update time significantly. Furthermore, 

their study shows either of these algorithms were found to be impractical or 

unsatisfactory.  

In (Nadeau & Teorey, 2002), Algorithm Polynomial Genetic Algorithm (PGA), was 

presented as an alternative in order to improve the time complexity and scalability of the 

Algorithm in BPUS. The proposed algorithm has polynomial time complexity rather 

than exponential time complexity of the BPUS algorithm.   In addition, with increasing 

number of dimensions PGA performs better. 

The authors of (Kalnis et al., 2002) explored the application of randomized search 

heuristic, namely, Iterative Improvement (II) and Simulated Annealing (SA) for solving 

the view selection problem. They modeled the search space as a graph of connected 
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state. Every node represents a feasible set of views subject to the update/query time 

constraint. They found that randomized algorithms are applicable to problems with 

bigger sizes, can be adopted for several variations of the problem and provide near-

optimal solution in limited time. 

The authors in (Kotidis & Roussopoulos, 1999) proposed a dynamic view selection 

system, called Dynamat. This system constantly monitors incoming queries and 

dynamically materializes views at multiple levels of granularity. The system unifies the 

selection of views and the updating of views in one problem and considers both disk 

space and update constraints. Another promising feature of Dynamat is it does not 

materialize the entire view but only a segment of the view that are relevant to queries. 

The experiment shows that Dynamat outperforms optimal static view selection 

algorithm. 

(Ashadevi & Balasubramanian, 2008) developed a framework for materialized view 

selection in order to achieve the best combination of query response time and update 

time subject to disk space constraint. The views with a high query frequency are 

selected as initial materialized views.  The proposed method, removes the views with 

low query frequency and high disk space requirements from the pool of already selected 

views. No comparisons to similar works were carried out. 

In (Wang & Zhang, 2005), The proposed method works in two stages. In the first stage, 

the initial content of individuals is produced by using a greedy algorithm. The greedy 

algorithm selects the most beneficial views subject to a dedicated disk space. In the 

second stage, the solution is improved by using genetic algorithm. In order to deal with 

disk space constraint during the genetic algorithm process, a repair method is used.  

Their experimental result shows that the proposed algorithm is superior to heuristic and 

canonical genetic algorithm. 
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In the paper by (Kumar & Ghoshal, 2009), in order to decrease the high time 

complexity of the BPUS algorithm, an improved algorithm, called RLGA was suggested. 

RLGA selects views to materialize through a reduced dependency lattice instead of a 

complete lattice which is used in BPUS. The authors claimed that, the high time 

complexity of the BPUS algorithm is because of the high number of computation of the 

benefit functions.  According to their experiments, in comparison to BPUS, RLGA 

selects good views with fewer re-computations and thus improves the execution time. 

The authors in (Li et al., 2005) introduced the Integer Programming model in order to 

obtain an exact global optimal solution. The experimental result shows the practicality 

of the proposed approach in problem instances with realistic sizes. 

The authors in (Talebi et al., 2009), have modeled the view selection problem as an 

Integer Programming (IP). An IP model was used to obtain the guaranteed optimal 

solutions. In addition, a heuristic method was proposed in order to find the competitive 

inexact solution in the cases that an exact method is not applicable. The authors 

experimentally compared the proposed approach against works in (Harinarayan et al., 

1996) and (Shukla, Deshpande, & Naughton, 1998b) and delineate the applicability 

areas of the proposed and compared approaches. 

In (Horng et al., 1999) the researchers applied Genetic Algorithm combining with Local 

Search (GLS). While the local search finds good solutions in a small region of the 

search space, the genetic algorithm finds good solutions for the whole search space. 

After the creation of the initial population and after applying the crossover and mutation 

operator the local search is used to improve the solution. Although no comparison to 

other works was done their result shows that GLS can steadily reach a good solution in a 

few seconds. 
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(Horng et al., 2003) proposed a genetic local search algorithm for solving the view 

selection problem. From the experimental results they found the proposed approach 

performed well in comparison to researchers’ previous work called YKL97 

The work in (Aouiche, Jouve, & Darmont, 2006) takes advantage of clustering, a data 

mining technique, to decide clusters of similar views. Also a greedy algorithm was 

proposed to select a set of views. Their experimental result shows the proposed strategy 

caused substantial gain in performance. 

(Bauer & Lehner, 2003) and (Ye et al., 2005) focused on solving the view selection 

problem in a distributed data warehouse environment. Their study shows that the 

proposed approach yields significantly better results than greedy algorithm directly 

applied to each node. 

In (Lin & Kuo, 2000), the authors adopted a simple genetic algorithm for the view 

selection problem. A reverse version of the BPUS algorithm was used as a repair 

method in order to deal with the problem constraint. Whenever the requirement exceeds 

the view buffer size, the reverse greedy algorithm removes the less beneficial view from 

the current materialized views set until the disk space constraint was satisfied.  The 

experimental result shows that the genetic algorithm is superior to BPUS algorithm. 

(Lin & Kuo, 2004) examined the application of genetic algorithm in solving the view 

selection problem. For dealing with infeasible solutions, a greedy repair method was 

incorporated.  According to the experimental result the proposed genetic algorithm 

generates a better solution than the greedy algorithm. 

The authors in (Boukra et al., 2007) tried to improve the work in (Yu et al., 2003). They 

proposed an evolutionary algorithm which replaces the crossover and mutation by an 
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ant colony algorithm. The experimental result shows that the performance of proposed 

algorithm is within 90% of the optimal solution while generates feasible solutions. 

In (Zhang et al., 1999), explored using genetic algorithm for the selection of views 

based on a multiple global processing plan (Sellis, 1988; Shim, Sellis, & Nau, 1994; 

Zhang et al., 1999). They studied the performance of genetic algorithm and other 

heuristics. Their results reveal that in terms of performance and evaluation cost the 

combination of genetic algorithm and heuristic algorithm works better than using only 

one of them. However, they concluded that the genetic algorithm outperforms heuristics 

algorithm.  

(Zhang & Yang, 1999b) addressed dynamic view selection issues. A set of algorithms 

for the dynamic view selection were proposed. In addition, a framework was developed 

for dynamic materialized views. The experimental work shows that the introduction of 

genetic algorithm to the problem may decrease the total cost (a combination of total 

query response time and total update time) 

Several static and dynamic algorithms were proposed in (Fan, 1997). The proposed 

static algorithms share the greedy skeleton of the algorithm in (Harinarayan et al., 1996) 

and differs only in how the benefit function was defined. The dynamic algorithm 

consisted of admission and replacement algorithms. The admission algorithm works like 

a static algorithm. If the query response time of a specific query exceeds a threshold, the 

admission algorithm finds the best view to be materialized. As a replacement algorithm, 

the LRU (Least Recently Used) strategy is adopted. The simulation work was done by 

comparing the static and dynamic algorithms against several different data warehouses. 

The result shows that the performance of the proposed static algorithms are close to 

algorithm in (Harinarayan et al., 1996), and are much faster. However the dynamic 

algorithms did not work as expected probably because of two reasons: first locality and 
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second lack of overall performance due to using a combination of admission and 

replacement algorithms. 

(Mami, Coletta, & Bellahsene, 2011) modeled the view selection problem as constraint 

satisfaction problem (CSP) (Russell & Norvig, 2009) and applied the constraint 

programming approach to solve the problem. The experiments show that the proposed 

approach provides better performance than the genetic algorithm subject to solution 

quality in limited time. The quality of the obtained solution was measured in proportion 

to the combination of total query response time and total update time.  The authors also 

showed that their approach support scalability with increasing number of views. 

In (Yin, Yu, & Lin, 2007), a dynamic method was addressed for solving the view 

selection problem. The proposed method uses the greedy algorithm, BPUS to select the 

primary set of materialized views. Decision for admission and replacing view is made 

based on the ratio of the query frequency over view size, i.e. 
  

  ( )
 , and the history of 

incoming views within a certain period of time, i.e. ,          . However, no 

experimental study has been presented. 

(Lawrence & Rau-Chaplin, 2006) investigated dynamic view selection. They studied 

BPUS and three randomized techniques (iterative improvement, simulated annealing 

and two-phase optimization). The experimental result shows that BPUS perform better 

than three randomized techniques. However, when the number of dimensions increases, 

the computational cost of the BPUS algorithm is too high and is thus impractical. 

The authors in (Qiu & Ling, 2000) investigated the issue of pruning the search space  

prior to applying the view selection algorithm. They proposed two methods, called 

functional dependency filter and size filter in order to filter out large number of 

unhelpful views.  Their test shows impressive result compared to other works. 
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The authors of (Agrawal, 2005) proposed two heuristic algorithms as well as a 0-1 

integer programming for the materialized view selection issue. The heuristic and integer 

programming algorithms were aimed to solve different versions of the view selection 

problem.  They also addressed the issue of view size estimation. Their findings show 

that the solutions which are returned by heuristic algorithms are very close to the 

optimal solution. 

In (Shah et al., 2006), the authors proposed a hybrid approach for solving the view 

selection problem. The basic idea of their approach is to partition the view dependency 

lattice into two partitions, static partition and dynamic partition. The static views are 

selected from more detailed views and the dynamic views are selected from the more 

aggregated views. For selecting both static and dynamic set of materialized views they 

proposed a greedy algorithm. The proposed approach was compared to the Dynamat 

system  (Kotidis & Roussopoulos, 1999). The result shows that average query and 

update time saving of the suggested method is higher than Dynamat.  

(Hung, 2001) presented similar proofs as that in (Karloff & Mihail, 1999) to show that 

the optimality degree of BPUS (total response time of greedy solutions /total response 

time of optimal solution) can be as bad  as 
   

 
 where     is the number of all 

possible views and higher than  
 

  
 as stated in (Karloff & Mihail, 1999).  

Table  2.4 summarizes different works carried out with respect to the single objective 

view selection problem as well as their performances. 
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Table 2.3 Different Works for Single Objective View Selection Problem 

Methods Proposed for Solving Single Objective View 

Selection Problem 
Works 

Greedy Algorithm 

(Harinarayan et al., 1996) 

(Gupta et al., 1997) 

(Gupta & Mumick, 1997) 

(Nadeau & Teorey, 2002) 

(Wang & Zhang, 2005) 

(Uchiyama et al., 1999) 

(Dhote & ALi, 2007) 

(Aouiche et al., 2006) 

(Bauer & Lehner, 2003) 

(Ye et al., 2005) 

(Yu et al., 2004) 

(Kumar, Haider, & Kumar, 2010) 

(Agrawal et al., 2007) 

(Lin & Kuo, 2000) 

(Zhou, Xu, Shi, & Hao, 2008) 

(Fan, 1997) 

(Chan, Li, & Feng, 2001) 

(Yin et al., 2007) 

(Serna-Encinas & Hoyo-Montano, 

2007) 

(Yousri, Ahmed, & El-Makky, 

2005) 

(Ligoudistianos, Theodoratos, & 

Sellis, 1998) 

(Shah et al., 2006) 

(Chan, Li, & Feng, 1999) 

(Yang et al., 2002) 

A* Algorithm 

(Gupta & Mumick, 1999) 

(Gou et al., 2006) 

(Gou et al., 2003) 
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Simulated Annealing 

(Derakhshan et al., 2006) 

(Kalnis et al., 2002) 

(Phuboon-ob & Auepanwiriyakul, 

2007a) 

(Zhou, Xu, et al., 2008) 

(Lawrence & Rau-Chaplin, 2006) 

(Zhou, Wu, et al., 2008) 

Genetic Algorithm 

(Lee & Hammer, 1999) 

(Yu et al., 2003) 

(Nadeau & Teorey, 2002) 

(Wang & Zhang, 2005) 

(Horng et al., 1999) 

(Lin & Kuo, 2004) 

(Boukra et al., 2007) 

(Lin & Kuo, 2000) 

(Zhou, Xu, et al., 2008) 

(Zhang et al., 1999) 

(Zhou, Wu, et al., 2008) 

Particle Swarm Algorithm (Sun & Wang, 2009) 

Integer Programming 

(Talebi et al., 2009) 

(Agrawal et al., 2007) 

(Agrawal, 2005) 

(Talebi et al., 2009) 

(Agrawal et al., 2007) 

Memtic Algorithm 
(Zhang et al., 2009) 

(Horng et al., 1999) 

(Horng et al., 2003) 

  

Table 2.4 Different Works for Solving Single Objective View Selection and Their Performance 

Paper Performance 

(Harinarayan et al., 

1996) 

The proposed greedy algorithm finds near optimal solution with O(k.n
2
) 

time complexity where k is number of views to be selected and n is 

number of all possible views 

(Gupta et al., 1997) 

The time complexity of proposed R-Greedy algorithm is O(Km
2
) where k 

is number of structures to be selected and m is number of all possible 

views. 

(Gupta & Mumick, 

1997) 
A  polynomial time heuristic presented 

(Nadeau & Teorey, 

2002) 

The time complexity of the proposed algorithm is O(dk
2
l) in which d is 

number of dimension tables and k is number of views and l is number of 

views in dependency lattice. The space complexity is O(dk
2
l). 

(Wang & Zhang, 2005) 
The proposed algorithm delivers solution with less cost (Q(M)+U(M)) 

than (Gupta & Mumick, 1997) and (Horng et al., 2003) 

(Uchiyama et al., 1999) 
The proposed algorithm, PVMA, provides significantly  better results than 

BPUS in (Harinarayan et al., 1996) in large lattices. 

(Aouiche et al., 2006) The presented strategy guarantees a substantial gain in performance. 

(Bauer & Lehner, 

2003) 

The distributed greedy algorithm outperforms than greedy algorithm 

which directly applied to the each node 

(Ye et al., 2005) 

In comparison to applying central methods on individual nodes, the 

proposed approach in distributed data warehouse is far better in terms of 

both query response time disk space usage. 

(Kumar et al., 2010) Proposed algorithm, PVGA, gives significant reduction in execution time. 

(Agrawal et al., 2007) 

Heuristic methods find near optimal solutions for some problem instances. 

The execution time of heuristic method are linear with problem size and 

less than the that of integer programming. 

(Lin & Kuo, 2000) 

In comparison to BPUS, the proposed algorithm reach lower Q(M) when 

the allocated disk space is less than 30% percent of S(V). However, for 

disk space allocation more than 30% the Q(M) is same. 

(Zhou, Xu, et al., 2008) Randomized algorithm outperform than traditional greedy Algorithm . 
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(Fan, 1997) 

Although the proposed static algorithm performs close to the BPUS 

algorithm and even executed faster but their dynamic did not act well as 

expected 

(Ligoudistianos et al., 

1998) 

Comparing to exhaustive search, The heuristic algorithm explores a small 

fraction of the search space and gives the near optimal solution in most of 

the cases. The r-Greedy algorithm explores more states than heuristic 

algorithm to find the near optimal solution. 

(Shah et al., 2006) 

Average query and update cost saving of the suggested method is higher 

than Dynamat (Kotidis & Roussopoulos, 1999). Also, the method requires 

small number of replacements and eventually makes an optimal balance 

between query response time and update time. 

(Gupta & Mumick, 

1999) 

Experimental results exhibits optimal solution in most of the problem 

cases and for the other cases it delivers near optimal solutions 

(Gou et al., 2006) 
Their theoretical and experimental results show the suggested algorithm is 

powerful, efficient and flexible to this problem. 

(Derakhshan et al., 

2006) 

Comparing to a heuristic and genetic method the proposed approach 

provides significant improvement in quality (sum of total query response 

time and total update time) of obtained solution. 

(Kalnis et al., 2002) 

Randomized algorithms are applicable to problem with bigger sizes , can 

adopted to several variations of the problem and provide near-optimal 

solution in limited time. 

(Phuboon-ob & 

Auepanwiriyakul, 

2007a) 

total time for update and query response in hybrid algorithm less than both 

total time in deterministic and Simulates Annealing Algorithm. 

(Zhou, Xu, et al., 2008) 

Randomized algorithm outperform than traditional greedy algorithm in 

solving view selection problem. Even, the quality of the solution attained 

by the synthetic algorithm has more quality than simple genetic algorithm. 

(Lawrence & Rau-

Chaplin, 2006) 
 

BPUS perform better than three randomized techniques. However, when 

the number of dimensions increases, the computational cost of the BPUS 

algorithm is too high and thus impractical. 

(Zhou, Wu, et al., 

2008) 

Synthesis algorithm outperforms Genetic Algorithm especially in the 

quality of solutions disk space usage. 

(Lee & Hammer, 1999) 

The proposed algorithm yields a solution within 90% of the optimal 

solution quality while exhibits a linear increase in execution time by 

increasing the number of views. 

(Yu et al., 2003) 
the proposed algorithm performs better than compared algorithms in terms 

of minimizing total query response time and feasibility of solution 

(Nadeau & Teorey, 

2002) 

The proposed algorithm has polynomial time complexity rather than 

exponential time complexity of BPUS algorithm.   In addition, with 

increasing number of dimensions PGA performs better. 

(Wang & Zhang, 2005) 
The proposed algorithm is superior to heuristic and canonical genetic 

algorithm 

(Horng et al., 1999) 
Although no comparison to other works carried out but their result shows 

that GLS can steadily reach to a good solution in a few seconds 

(Lin & Kuo, 2004) 
the proposed genetic algorithm generates a better solution than the greedy 

algorithm 

(Boukra et al., 2007) 
the performance of proposed algorithm is within 90% of optimal solution 

while generates feasible solutions 

(Lin & Kuo, 2000) that the genetic algorithm is superior to BPUS algorithm 

(Zhou, Xu, et al., 2008) 

Randomized algorithm outperform than traditional greedy algorithm in 

solving view selection problem. Even, the quality of the solution attained 

by the synthetic algorithm has more quality than simple genetic algorithm. 

(Zhang et al., 1999) 

In terms of performance and evaluation cost the combination of genetic 

algorithm and heuristic algorithm works better than using only one of 

them. However, they concluded that the genetic algorithm outperforms 

heuristics algorithm 

(Sun & Wang, 2009) 
The PSO based algorithm reach better performance than traditional 

algorithms (Heuristic Algorithm and Genetic Algorithm) 

(Talebi et al., 2009) 

The authors experimentally compared the proposed approach against 

works in (Harinarayan et al., 1996) and (Shukla et al., 1998b) and 

delineate the applicability areas of the proposed and compared approaches. 
(Agrawal, 2005) Their findings show that the solutions which are returned by heuristic 
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algorithms are very close to the optimal solution 

(Zhang et al., 2009) 
The proposed MA-Based algorithm works better than heuristic and genetic 

algorithm 

(Horng et al., 2003) 
The proposed approach performs well in comparison to author’s previous 

work called YKL97 

(Agrawal et al., 2007) heuristic methods find solution close to the optimal solution 

  

2.15 Multi-Objective View Selection Problem 

When two objective functions needs to be minimized simultaneously, we are dealing 

with the multi-objective view selection problem (Dhote & Ali, 2009). The single 

objective view selection problems received significant attention in the past and several 

heuristic methods proposed for solving this class of problems (see Table  2.3).While the 

multi-objective view selection problem introduces a broad area of research, it is rarely 

addressed in the literature. The multi-objective view selection problem is defined as 

stated in Section  1.3.5. 

2.15.1 Related Works for Multi-Objective View Selection Problem 

The paper by (Lawrence, 2006) is one of the early papers that considers the multi-

objective view selection problem in which both the query response time and the update 

time needs to be minimized simultaneously under the disk space constraint. All of the 

previous researches reviewed in this chapter involving both query response time and 

update time were carried out by converting the pure and original multi-objective 

problem to the reduced linear combination of two objectives as a single objective 

problem. In the work by Lawrence (2006), two non-elitist well-known multi-objective 

evolutionary algorithms, Multiple Objective Genetic Algorithm (MOGA) and Niched-

Pareto Genetic Algorithm (NPGA) were adopted to solve the view selection problem. In 

order to deal with constraints two methods have been chosen. The first constraint 

handling method integrates the constraint into the objective and defines the dominance 

notation in such way that an infeasible individual is always dominated by a feasible 

individual. The second one allows the infeasible offspring to be created and utilize a 
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repair function to convert an infeasible individual to a feasible one. In most of the 

problem instances these two Multi-Objective Evolutionary Algorithms (MOEA) work 

similarly but in some cases with high skew the NPGA performs better than other. The 

experiment shows the proposed algorithm delivers competitive solution in comparison 

with BPUS. However, the obtained result was not assessed using a performance metric. 

In addition, monotonicity is an important requirement for greedy heuristics to deliver 

reasonably good solutions (Bauer & Lehner, 2003; Gupta & Mumick, 2005). However 

the authors did not present any proofs that the combination of total query response time 

and total update time as a benefit function in BPUS satisfies the monotonicity property. 

2.16 Summary 

The analytical queries in data warehouse are complex queries which require the 

aggregation of large numbers of records. One of the common ways for accelerating the 

analytical queries is using views as a pre-calculated result of queries. Since 

materializing all possible views is not possible, in practice a subset of views is selected. 

In selecting views two goals are taken into account: minimizing the total query response 

time and minimizing the total view update time. The view selection problem can be 

defined in single objective or multi-objective form. 

This chapter started with some background information about the area in which the 

view selection problem arises. Thereafter, some preliminary principles were presented. 

Two forms of view selection problems were formally defined, together with a number 

of related works for each of the forms. 
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Chapter 3. Evolutionary Multi-Objective 

Optimization 

3.1 Introduction 

Optimization is a procedure of finding and comparing different solutions from a set of 

possible values until no better solution is found. Measuring how good a solution is done 

by means of an objective function. These objectives for example can be the efficiency 

of a process, product reliability or the cost of production (Deb, 2001).  

When the problem involves optimizing (either minimizing or maximizing) only one 

objective function, it is called single objective optimization problem. So far a significant 

amount of study has been devoted to techniques for optimization of single objective 

problems. These techniques may consist of deterministic search strategies or heuristic 

based approaches (Coley, 1998). 

However, many real-world problems inherently include multiple objectives which must 

be optimized simultaneously. In some cases the objectives may even be conflicting, that 

is, trying to optimize one objective in our direction of interest cause the other objective 

value to change in contrast to the interest and vice versa. This type of optimization 

problem is called the multi-objective optimization problem. The multi objective 

optimization can be considered as a general form of single objective optimization 

problem. 

In the presence of multiple objectives, the optimization process cannot concentrate on 

individual objectives and here we are seeking a set of equal solutions in order to balance 
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between the multiple objectives although some of them may be conflictive. A particular 

solution may be a very good solution subject to one objective but returns a poor value 

for another objective and vice versa. For example when you are planning to buy a 

laptop computer, two distinct goals are imaginable: computational power of laptop and 

price of the laptop. One desires to maximize the computation power while minimize the 

price as much as possible. The objectives are conflictive objectives since by choosing 

powerful laptops the price increases and by selecting the cheap laptop, the computation 

power drops. A set of solutions for the problem is shown in Figure  3.1. When only 

computation power matters solution 5 would be the optimal solution while if price is 

considered as the only objective, then, the optimal solution is solution 1. In fact, we are 

interested in solutions that make a good compromise between these two conflictive 

objectives. Solutions 1 and 5 define the two extreme points, while between these two 

there are some solutions that form trade-off solutions. All solutions in Figure  3.1 are 

equally good. Comparing any two of these solutions, when the first solution is better 

that second solution subject to first objective, it is worse subject to other objective. For 

example, solution 3 is computationally more powerful than solution 2 but cost more 

than solution 2. 

Objective 1: Price (to be minimized)
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Figure 3.1 Multi-Objective and Conflictive Optimization Problem 
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In contrast to single objective problems where a single best solution is desirable, in 

multiple objective problems there is no single optimal solution and instead we deal with 

a number of optimal solutions called the Pareto Optimal Solutions. The image of pareto 

optimal solutions in the objective space is called the Pareto Front (Talbi, 2009). Similar 

to pareto optimal solutions, no single solution in the pareto front is preferable to another 

(Deb, 2001). 

Due to lack of suitable methods the earliest approach for solving multi-objective 

problems were artificially converting the problem into a single objective problem and 

then applying the methods originally designed for solving single objective problems. 

However, although, theoretically, all multi-objective problems may be transformed to 

some form of single objective problems, such reduction ignores the fundamental 

difference between these two classes of problem (Deb, 2001). 

Evolutionary algorithms as nature-inspired methods are now becoming more popular 

especially in solving complex problems with a large search space. They are based on 

the Darwinian theory of Evolution (survival of fittest) in which the fittest individuals 

survive and produce the next generation. Evolutionary computation consists of several 

branches as shown in Figure  3.2 and forms a broad area of research. Many books (Bäck, 

Fogel, & Michalewicz, 1997; Deb, 2001; Goldberg, 1989; Holland, 1975; Michalewicz, 

1996; Mitchell, 1998), conferences (Genetic and Evolutionary Computation 

COnference GECCO and IEEE Congress on Evolutionary Computation CEC) and 

journals ('Evolutionary Computation Journal' published by MIT Press, 'Transactions on 

Evolutionary Computation' published by IEEE and 'Genetic Programming , Evolvable 

Machines' published by Kluwer Academic Publishers and IEEE Transactions on 

Systems, Man, and Cybernetics published by IEEE) are dedicated to this topic.  



 

56 
 

 

Figure 3.2 Evolutionary Algorithms Branches 

An Evolutionary algorithm uses a population of potential solutions to the problems in 

each run. In classical or mathematical optimization methods, only one solution is 

returned after several point-to-point iterations and in each iteration the solution is 

supposed to be improved as compared to the previous one. In such methods a 

preference vector is assigned to objectives prior to solving the problem. Since in these 

methods there is no potential for dealing with several solutions at the same time they 

may not be appropriate for multi-objective problems. Furthermore some problems are 

too complex to be well solved by traditional techniques (Coello & Lamont, 2004; 

Coello, Lamont, & Veldhuizen, 2007; Deb, 2001; Sumathi, Hamsapriya, & Surekha, 

2008). 

In converse to the classical methods, the population-based feature of evolutionary 

algorithms allows multiple solutions for the problem to co-exist simultaneously within a 

single run. This feature is well suited for the nature of multi-objective problem in which 

a set of solutions are expected. However, In the case of the single objective problem, all 

members of the population converge to identical solutions to the problem. 

Furthermore, since in each population of the evolutionary algorithm multiple solutions 

to the problem evolved at the same time some sense of parallelism is observed in these 

algorithms. This capability helps them to be computationally quick in searches (Branke, 

Deb, Miettinen, & Slowinski, 2008; Deb, 2001, 2010). 
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In addition, evolutionary algorithms do not require gradient information in their 

working process. The only knowledge they require is the objective function and 

therefore can be applied to a variety of applications (Coello & Lamont, 2004). 

This chapter presents the principle and fundamentals of multi-objective optimization. 

Then, the evolutionary methods that are proposed for solving the multi-objective 

problems are described. Finally, the performance metric for assessment of evolutionary 

algorithms is explained. 

3.2 Multi-Objective Optimization Principles 

In order to understand multi-objective optimizations a series of useful definitions are 

required. These definitions provide a background for study and analysis of the multi-

objective optimization problems. We start by discussing a formal definition of multi-

objective optimization problem. 

3.2.1 Multi-Objective Optimization Problem Definition 

Each multi-objective optimization problem comes with at-least two objective function, 

each of which either to be minimized or maximized. Most of the problems include some 

constraints which restrict the feasible area of solutions. The constraint function can be 

in an equation or inequality form. Formally the multi-objective optimization problem 

can be formulated as below: 

Find the vector    (  
    

      
 )       

Such that Minimize/Maximize   ( )           

Subject to: m inequality constraints:   ( )              

And: p equality constraints:   ( )              

    

where   ( ) is the i
th

 objective function and   is the number of objective functions. 

Each objective is a function from    to   , that is,      
   . The set   forms 

decision variable space while   forms the objective space. Each objective takes one 
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point from the decision space to the objective space (see Figure  3.3) (Coello et al., 

2007; Deb, 2001; Engelbrecht, 2007; Talbi, 2009). 

 

Figure 3.3 Decision Variable Space Versus Objective Function Space 

The goal is to find a vector    that can optimize the objective functions while satisfying 

the problem constraints. The default inequality constraint is based on less than. 

However, the greater than form can be converted to less than by multiplying the 

function with -1. Likewise, the maximization objective function can be converted to a 

minimization objective function. The solution that satisfies all constraints is called the 

feasible solution. 

3.2.2 Dominance Relation 

Dominance is a fundamental concept in dealing with multi-objective optimization. This 

relation is used to compare two different solutions with respect to multiple objectives. 

The dominance concept is defined as follows: 

Definition 3.1. The solution    is said to dominate solution    if the following 

conditions hold: 

X1

X2

F1

F2

x1, x2

f1, f2

Decision Variables Space Objectives Space
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1.    is no worse than    subject to all objective functions values 

2.    is strictly better than    subject to at least one objective function. 

It is to be noted that worse and better notation depends on the form of the objective 

functions. In minimization sense the objective function, worse (better)  means greater 

(less) than while in maximization of the objective worse (better) means less (greater) 

(Alba, Blum, Isasi, Leon, & Gomez, 2009; Deb, 2001; Koziel & Yang, 2011; Talbi, 

2009; Tan, Khor, & Lee, 2005). 

Given two different solutions    and    one of these situations happens: 

1.    dominates    or 

2.    dominates     or 

3.    does not dominate    nor does    dominates    

The situation number 3 implies that if    does not dominate   , then    does not 

necessarily dominate   . As an example, consider the objective space for a two 

objective problem as shown in Figure  3.4. Both objectives are assumed to be in 

minimization form. If    was the only objective, the solution    would be a single 

global optimal solution. Similarly, in the presence of only objective     the solution     

would be a global optimal solution. Here, we can observe how dominance concept 

enables us to make a comparison between two different solutions in multi-objective 

space (Wiak & Juszczak, 2010; Xiaopeng, 2007). 

Comparing solution    and     , based on definition 3.1 we can conclude that     

dominates    because: 
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1.   (  )     (  )  and    (  )     (  ) 

2.   (  )    (  ) 

 

Figure 3.4 A Set of 7 Solutions in Objective Space 

As another instance consider solutions    and   .    does not dominate    because: 

   (  )    (  ) 

Thus, condition 1 does not hold. Also,    does not dominate    according to condition 

1, since: 

   (  )    (  ) 

 Therefore, solutions    and    are considered incomparable or non-dominated by each 

other. As the dominance concept provides a way for comparing two different solutions 

subject to multiple objectives, it is used by most multi-objective optimization methods 

(Burke & Kendall, 2005; Coello et al., 2007; Deb, 2001). 
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3.2.3 Non-Dominated set of solutions 

Let us continue with example of Figure  3.4. The solution    does not dominate    and 

   also does not dominate    thus solutions     and    are non-dominated with respect 

to each other because one cannot say which solution is better than the other. In other 

words, these two solutions are not comparable together. Also, (    and   ) , (    and 

  ) have the same property as well. In order to find the set of all pairs of solutions that 

have such a property, we can compare all possible pairwise combinations of solutions. 

For the current example, this set is as indicated below: 

 (     ) (     ) (     )  

Any two solutions in the set             do not dominate each other. Any solution that 

is not included in this set may be dominated by at least one solution in this set. The 

solutions belonging to this set have preference to all other possible solutions and are 

called non-dominated set of solutions. (Burke & Kendall, 2005; Deb, 2001; 

Michalewicz & Fogel, 2004) 

Definition 3.2 If    is a set of solutions, the set     is called the non-dominated set of 

solutions if all solutions that belong to   are not dominated by any solution in    . 

The Figure  3.5 shows the non-dominated ( ) and dominated set (   ) for the 

mentioned example in Figure  3.4. 

  is called the pareto-optimal set if   is the entire search space (Deb, 2001). The image 

of pareto optimal solutions in the objective space is called Pareto Front (Talbi, 2009). 

The pareto front for two different search spaces has been illustrated in Figure  3.6. On 

the left part of Figure  3.6 both the objectives are in minimization form while on the 

right part both objectives are in maximization form.  
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Figure 3.5 Classification of Non-Dominated and Dominated Set for Example in Figure 3.4 

 

Figure 3.6 Pareto Front Curves for Two Different Search Spaces 

3.2.4 Non-dominated Sorting (or Pareto ranking) 

Although most of the topics on multi-objective evolutionary algorithm discussed in 

Section  3.3 only require the best non-dominated subset of solutions there exist some 

algorithms that need classifications of solutions space in several different levels of 

domination. The best non-dominated set of solutions falls into level 1. In order to find 

the other levels, first, the solutions of level 1 are removed from the population and then 

the non-dominated solutions of the remaining population are found by running the same 

algorithm. These non-dominated solutions form the level 2 solutions. In order to 

identify level 3 of the solutions, similar to the previous step, the level 2 solutions are 

removed from the population and then the non-dominated solution finding algorithm is 
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re-executed. The subsequent levels are also found in the same way until there are no 

solutions left in the population 

The Figure  3.7 shows the result of non-dominated sorting for the example of Figure  3.4.  

 

Figure 3.7 Non-Dominated Sorting For Solution Set of Figure 3.4 

3.3 Evolutionary Multi-objective Algorithms 

Evolutionary algorithms are search methods inspired from nature to solve complex 

problem with large search space. Some interesting features of this technique make them 

popular and motivate researchers to study in diverse areas of applications as alternative 

to classical methods as described earlier. 

This section aims to provide an overview of a number of well-known evolutionary 

algorithms designed for handling multi-objective optimization problems. Although this 

section mainly concerns multi-objective algorithms, but, since evolutionary multi-

objective algorithms are designed based on the standard single objective genetic 

algorithm principle, for better understanding, an introduction to simple genetic 

algorithm is presented first. 
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3.3.1 Genetic Algorithm 

Genetic algorithm (GA) is a computer program that mimics biological evolution in 

nature where the fittest living organisms will win the competition for available 

resources and produce the next generation. They are known as a robust search and 

optimization technique specially for finding approximate solution for complex problems 

with a large search space. The genetic algorithm concept was first introduced by John 

Holland in the University of Michigan (Holland, 1975). Today, the field of genetic 

algorithm and corresponding applications has received significant attention in literature 

(Gen & Cheng, 1999). Moreover, there are many books (Bäck, 1996; Burke & Kendall, 

2005; Coello et al., 2007; Deb, 2001; Gen & Cheng, 1997, 1999; Goldberg, 1989; 

Haupt & Haupt, 1997; Michalewicz, 1996; Mitchell, 1998; Sivanandam & Deepa, 2009; 

Yu & Gen, 2010), journal (IEEE Transactions on Evolutionary Computation published 

by IEEE and Evolutionary Computation published by MIT Press) and conferences 

(Genetic and Evolutionary Computation Conference (GECCO) and IEEE Congress on 

Evolutionary Computation(CEC))  devoted to this topic. The flowchart shown in 

Chapter 1 (Figure  1.1) presents a general procedure for a simple genetic algorithm. A 

conventional genetic algorithm breaks into several cycles called generations. The initial 

generation is a population of potential random solutions to the problem. Each solution is 

called an individual. In each generation all individuals in the population are evaluated 

by means of a fitness function to measure how good they are. Then a selection 

mechanism is used to select the fittest individuals. Thereafter, crossover and mutation 

operators are applied to the selected individual in order to produce the offspring and 

these offspring forms the new generation. The same process is repeated in the next 

generation. The evolution terminates once the stopping criteria is met. The evolution 

cycle is illustrated in Figure  3.8. 
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Figure 3.8 Evolution Cycle for Genetic Algorithm 

Every genetic algorithm consists of the following: 

 Representation(or encoding) : a way for expressing a real-world problem into a 

computer data structure 

 Initialization: a number of initial guesses to the problem 

 Genetic Operators (selection, mutation and crossover): methods for choosing 

good solutions, mixing parts of good solution and altering some part of  a solution 

 Fitness function : a way for calculating how good a solution is 

 Termination Condition: when to stop the execution of the Genetic Algorithm 

3.3.1.1 Vocabulary of Genetic algorithm 

Genetic algorithm borrows terminology from genetic science. Here, some related terms 

are defined as following: 

 Phenotype:  a potential real-world solution to the problem. It refers to the 

observable appearance of an individual. The mapping from genotype to phenotype in 

called decoding (see Figure  3.9). 

 Individual or chromosome: representation of problem solution as a computer 

data structure. 
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 Population : A collection of individuals 

 Genotype: refers to the genetic structure of individual. Mapping from phenotype 

to genotype is called encoding (see Figure  3.9) 

 Gene: the smallest unit of a chromosome is called a gene. The gene encodes a 

particular feature of organism. 

 Allele: A specific value for a gene is called the allele. 

(Bagchi, 1999; Chakrabarti & Cox, 2008; Coello et al., 2007; Donoso & Fabregat, 

2007; Engelbrecht, 2007; Gen & Cheng, 1997; Larose, 2006; Mitchell, 1998; Reeves & 

Rowe, 2002) 

 

Figure 3.9 Real World Space versus Genetic Space 

Example 3.1 In order to give a better understanding of how genetic algorithm works we 

use the following simple single-objective optimization example in the next sections: 

Minimize   ( )        ( ) 

Subject to:   ( )      

   ( )       

3.3.1.2 Representation 

In genetic algorithm, representation means encoding a real-world problem solution, 

called the phenotype, to the computer data structure, called the genotype or 

chromosome. Representation is regarded as a key issue and fundamental step in 

designing every genetic algorithm (Gen & Cheng, 1999). The common data structures 
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are of fixed length array of bits, strings or real values. Amongst these, the array of 

binary values defined by Holland (1975) is the simplest and most used encoding form 

(Sivanandam & Deepa, 2009; Zalzala & Fleming, 1997). Choosing a proper 

representation is an important decision in designing a good genetic algorithm as it 

affects the performance of the genetic algorithm (Zhang & Tsai, 2007). In fact, the type 

of representation depends on the problem (Huang, Wunsch, Levine, & Jo, 2008) and 

may vary from one problem to other problem according to the problem characteristic. 

The Figure  3.10 shows a structure of a binary encoding for the Example 3.1. An array 

of binary values is used for encoding a real number variable as a solution to the example 

problem. The size of the array depends on the expected level of precision. For this 

example, we allocate 10 binary cells for the array. According to the problem 

specification, the domain length for the problem is (      ). Thus, the distance 

between -1 and 1 is divided by       equal size steps. The decoding procedure from 

the array of bits to a real-world solution is as follows: 

 Convert the binary number to the decimal number 

(          )  (∑  

  

   

   )     

 Adjust the value   

  (  )  
 

     
 

 

Figure 3.10 A Sample Representation 

3.3.1.3 Initialization 

Usually the genetic algorithm starts with a population of random generated individuals 

as a first generation. Therefore individuals in the first population may have a low fitness 

0 1 1 0 0 1 1 0 0 1

10 bits
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value as compared to the consequent generations. The quality of the initial population 

has a significant impact on the performance of the genetic algorithm. The initial 

population must be evenly distributed over the search space to increase the population 

diversity (Li, Jia, Sun, Fei, & Irwin, 2010). However, there are other intelligent 

alternatives to form a better initial population such as (Miettinen, Neittaanmäki, 

Mäkelä, & Périaux, 1999)  :  

 A previously saved set of good solutions. 

 A set of solutions suggested by a human expert. 

 A set of solutions which are returned by a heuristic program. 

A sample initial population with 10 individuals for Example 3.1 is shown in 

Figure  3.11. The population size is an important factor that must be decided during the 

design of a genetic algorithm (Michalewicz, 1996). It indicates the number of 

individuals which exists within a population. Too small a population size lacks diversity 

and may cause the genetic algorithm to get stuck in the local optima by converging too 

quickly and may prevent the genetic algorithm to reach the global optimal solution. On 

the other hand, too large a population size slows down the genetic algorithm since the 

computation time will then increase (Ahn, 2006; Raphael & Smith, 2003; Tzafestas, 

1999). Thus, the population size must be carefully tuned to a tradeoff  value between 

efficiency and effectiveness (Reeves & Rowe, 2002). 

 

Figure 3.11 A sample random initial population with 10 members 
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3.3.1.4 Operators 

The genetic algorithm includes three operators called selection, crossover and mutation. 

The operators are applied to individuals of current population in order to produce a new 

offspring for the new generation. Figure  3.12 shows how the genetic operators act on 

the current population. In this section we will describe the selection, crossover and 

mutation operators. 

 Selection 

Selection is a process of choosing two parents to breed the new offspring based on the 

Darwinian principle of natural selection (Gen & Cheng, 1999). Normally, the fitter 

individuals are given more chance to be selected since they are more likely to produce 

good children. The selection pressure is defined as the degree of tendency (or 

probability) to select the best individuals in the population. With more selection 

pressure more individuals with higher fitness values are favored by the selection 

operator. If the selection pressure is too small the convergence slows down and if it is 

too high the genetic algorithm may prematurely converge to a local optimal solution 

and fail to reach the global optimal solution. In fact, a proper balance between these two 

is required. The magnitude of the selection pressure has a significant effect on the 

convergence speed of the genetic algorithm (Diaz-Gomez, 2007; Haupt & Haupt, 1997; 

Kaylani, 2008; Sas Institute, 2003; Sivanandam & Deepa, 2009; Vonk, Jain, & Johnson, 

1998). Often, a low pressure is selected in the early stages of evolution to cover wide 

parts of the search space and at the end of the evolution the selection pressure is 

decreased to  narrow the search space (Gen & Cheng, 1999). Several forms of selection 

have been proposed but common methods of selection include the random selection, 

roulette –wheel selection, tournament selection and ranking selection (Alba & 

Dorronsoro, 2008; Blickle, 1997; Eiben & Smith, 2008; Engelbrecht, 2007; Freitas, 

2002; Gendreau & Potvin, 2010; Gorunescu, 2011; Haupt & Werner, 2007; Lee & El-
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Sharkawi, 2008; Reeves & Rowe, 2002; Shukla, Tiwari, & Kala, 2010; Sivanandam & 

Deepa, 2009; Talbi, 2009; Yu & Gen, 2010). 

 

Figure 3.12 Genetic Operators: Selection, Crossover and Mutation 

 Crossover (Recombination) 

Crossover is a genetic operator which takes two parent individuals as operand and 

exchange parts of them to produce two offspring which share some features with their 

parents (Negnevitsky, 2004). The crossover operator comes in several forms such as 

single point, multi-point and uniform. In the single point crossover in its traditional and 

simplest form, a single position of the chromosome, called the crossover point, splits the 

entire individual into two parts and the parts after the point are swapped to create two 

new offsprings. Figure  3.13 illustrates the single point crossover for two individuals 

which are designed for Example 3.1. In the multi-point crossover, multiple crossover 

points are used to divide the chromosome into more than two parts and corresponding 
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parts from the two individuals are exchanged. For instance, in a two point crossover as 

shown in Figure  3.14, two crossover points divide the chromosome into three parts and 

the middle part located between two points are exchanged between two parents 

(Achenie, Venkatasubramanian, & Gani, 2002; Laplante, 2003; Sivanandam & Deepa, 

2009). 

The crossover point is often randomly chosen between   and   where   is the length of 

the chromosome (Laplante, 2003; Sivanandam & Deepa, 2009). 

 

 

Figure 3.13 Single point crossover 

 

Figure 3.14 Two Points Crossover 

Generally, the crossover operation is performed with the probability of     which is also 

called the crossover rate. Normally, the crossover rate is set to more than 0.5. If there 

are no crossovers the children are exact copies of their parents (Haupt & Haupt, 1997; 

Mitchell, 1998; Sivanandam & Deepa, 2009; Sumathi et al., 2008; Yu & Gen, 2010). 

 Mutation 

Mutation as unary operator is applied to each offspring after crossover. The operator 

alters a gene value in random position of a chromosome. Mutation rarely happens in 

nature, similarly, in GA, the mutation operator takes place with only a small probability, 
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  , called the mutation rate, typically between 0.001 to 0.01 (Negnevitsky, 2004). 

Figure  3.15 shows how the mutation operator modifies the individual of Example 3.1. 

The mutation operator (Gong & Zhao, 2008) acts like a random walk in the search 

space (Pedrycz & Gomide, 1998) and plays a significant role in maintaining population 

diversity (Engelbrecht, 2007; Sivanandam & Deepa, 2009).The goal of the mutation 

operator is to extend the search space by introducing a new solution which has not been 

discovered before and thus prevents the genetic algorithm to trap into a local optima 

(Negnevitsky, 2004). If crossover is responsible for the exploitation of the 

characteristics of the parents in order to obtain better children, then, the mutation 

operator is responsible for the exploration of the search space for diversity (Sivanandam 

& Deepa, 2009). For a binary representation, the uniform mutation is performed by 

flipping gene values at randomly chosen positions as illustrated in Figure  3.15 

(Engelbrecht, 2007). 

 

Figure 3.15 Mutation Operator 

3.3.1.5 Fitness Function (or evaluation function) 

The fitness function is used to measure how good an individual is. The greater the 

fitness value, the smaller is the distance of the solution to the optimal solution. 

In the case of a single objective optimization, the fitness function may have a direct 

relationship to the problem objective (with some adjustments). In order to calculate the 

fitness value for an individual its genotype is first converted to the phenotypic 

equivalent. Then the fitness function maps the phenotype to a real number.  That real 

number is the fitness of the individual. In other words, the individuals are evaluated 

using their phenotype but not their genotype (Chakrabarti & Cox, 2008; Lee & El-

Sharkawi, 2008; Rennard, 2006; Yanushkevich, 2004; Ziman, 2003).  
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For the Example 3.1 the fitness function can be defined as following: 

 
       ( )   ( )        ( ) 3.1 

However, in contrast to the single objective problems, in multi-objective optimization 

problems, defining fitness function so that individuals in a population can be compared 

is not an easy task (Sivanandam & Deepa, 2009). A simple approach is to convert the 

multiple objectives into a single objective and then treat the problem as a single 

objective problem. 

Since the fitness function must be calculated thousands of times (for every chromosome 

in the population at each generation), and is therefore regarded as a computational 

bottleneck of the genetic algorithm, it is recommended that the function be a fast 

computed one and thus should not be a computationally complex function. 

(Champandard, 2003; Goodman, 2009). Conventionally, the fitness function returns a 

positive value. However, in case the value is negative the fitness function can be 

adjusted by some fitness scaling methods such as :Linear  Scaling , Sigma Scaling or 

Power Law Scaling (Lee & El-Sharkawi, 2008). 

3.3.1.6 Termination Condition 

Evolution in nature never stops but in computer we need to stop the  genetic cycle 

sometime (Yu & Gen, 2010). The criteria for stopping genetic algorithm is called the 

termination condition (Cox, 2005).The genetic algorithm stops when at least one of the 

pre-defined termination conditions are satisfied. The condition may be the following 

items (Chen, 2002; Engelbrecht, 2007; Gen & Cheng, 1999; Reeves & Rowe, 2002; 

Sivanandam & Deepa, 2009; Yu & Gen, 2010): 

 Reach a satisfactory result 

 Maximum number of generations exceeded. 

 Elapsed running time exceeded the predetermined value. 

 Small amount of improvement observed in last generations. 
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 Fixed number of fitness evaluation reached 

 Population convergence (when fitness values for all individuals within 

population are identical) 

3.3.2 Elitism 

Evolutionary multi-objective optimization algorithm can be classified into two main 

groups; non-elitist algorithms and elitist algorithms. The idea of elitism was first 

introduced by Jong (1975) . Elitism is a mechanism to preserve good individuals of the 

current generation by saving them in a separate secondary population called an archive 

and forwarding them to the next generation (Bui & Alam, 2008; Drechsler & Drechsler, 

2002). The archive stores a number of best solutions encountered since the start of the 

execution of the genetic algorithm (Talbi, 2009). Elitism ensures that good solutions 

that has been found will not be lost unless a better solution is discovered (Deb, 2001). 

The addition of the elitism feature to the evolutionary multi-objective optimization 

provides a monotonically non-decreasing performance (Branke et al., 2008; Talbi, 

2009). Using the elitism capability, it has been demonstrated that the genetic algorithm 

converges to the global optimal solution in some problems (Rudolph, 1996). 

In the single objective optimization, the identification of an elite solution from the 

population is an easy task. The individual with the highest fitness value (for 

maximization problem) will be selected as the elite solution. However, discovering elite 

solutions in the presence of multiple objectives is not as simple as the single objective 

case. In such area, the concept of domination as a remedy enables us to sort the 

individuals in the population to different groups. The individuals who form the first 

group of the non-dominated set are considered as the elite solutions. Note that in 

contrast to the single objective optimization where there is only one elite solution, here 

we deal with a set of elite solutions which are equally important (Deb, 2001). 
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In the non-elitist algorithm no explicit form of keeping the best found individuals for 

the next generation is foreseen while the elitist-algorithms take advantage of  such 

feature in order to reach a faster convergence toward the pareto front and more precise 

approximation of the pareto front shape (Talbi, 2009). 

3.3.3 Non-Elitist Algorithms 

The evolutionary multi-objective algorithms tend to be discussed hereafter are divided 

into two section: non-elitist algorithms and elitist algorithms. In the current section the 

algorithms, Weight Based Genetic Algorithm (WBGA), Vector Evaluated Genetic 

Algorithm (VEGA), Non-dominated Sorting Genetic Algorithm (NSGA), Niched Pareto 

Genetic Algorithm (NPGA) and Multi-Objective Genetic Algorithm (MOGA) is 

explained. 

3.3.3.1 Weight Based Genetic Algorithm 

The Weight Based Genetic Algorithm (WBGA) (also called HLGA) was proposed by 

Hajela and Lin in (Hajela & Lin, 1992). In this method, the objective functions,    is 

multiplied to a weight coefficient    to form a weighted sum of objectives. However, in 

contrast to the simple weighted sum approach where a predefined fixed weight vector is 

used, WBGA encodes a weight vector to each chromosome in addition to the normal 

decision variable and allows weight coefficients to be evolved as well. Therefore, 

instead of finding a single solution for a fixed weight vector a population of individuals 

with variable weight vectors is maintained in parallel to reach the diverse set of pareto 

optimal points in a single run. The diversity of solutions is preserved in WBGA in two 

ways: In the first way a niching method is applied to the weight vector part of the 

individual while in the second way, selected subpopulations are evaluated based on pre-

determined weight vectors similar to the VEGA approach. The advantage of WBGA is 

its low complexity and only a minor modification of the simple objective approach is 

required to convert the simple objective method to WBGA.  The disadvantage of the 
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algorithm is when one objective is in minimization form and other objective is in 

maximization form the fitness function becomes unduly complex (Coello et al., 2007; 

Deb, 2001; Konaka, Coit, & Smith, 2006; Tan et al., 2005; Zitzler & Thiele, 1999). 

3.3.3.2 Vector Evaluated Genetic Algorithm 

Vector Evaluated Genetic Algorithm (VEGA) (Schaffer, 1985) was first introduced by 

Shaffer in the mid-1980s (1984, 1985). VEGA is considered as the early efforts of using 

genetic algorithm for solving multi-objective optimization problems (Nedjah & 

Mourelle, 2005) .VEGA differs from a simple genetic algorithm only in the way the 

selection is performed (Nedjah & Mourelle, 2005; Sarker, Mohammadian, & Yao, 

2002). The main idea of VEGA is to divide the population into several subpopulations 

equal to the number of the objective functions. That is, for a problem with   objective 

functions and population size of  , the whole population is divided by    sub-

populations of size 
 

 
 individuals. Then, evolution takes place for all sub-populations in 

parallel. That is, every sub-population is evaluated based on a single corresponding 

objective and the roulette wheel selection is also performed on the same objective. 

The selected individuals of each subpopulation then form a mating sub-pool. All sub-

pools merged together and the entire population is shuffled and then the crossover and 

mutation operators are applied on it. After applying the operators, the resultant offspring 

forms the new generation. A schematic of the way in which VEGA works is shown in 

Figure  3.16. 
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Figure 3.16 Schematic Procedure of VEGA 

VEGA is straightforward and easy to implement (Zitzler, Deb, Thiele, Coello, & Corne, 

2001) , however, the solution returned by VEGA are locally non-dominated and not 

necessarily pareto front (Nedjah & Mourelle, 2005). Since VEGA emphasizes each 

objective their results have a tendency to be in the vicinity of the minimum for each 

individual objective and therefore it may be unable to deliver tradeoff solutions subject 

to all objective functions (H. Nakayama, z. Yun, & M. Yoon, 2009b). Furthermore, 

VEGA behaves like aggregating methods and thus, shares the problems of such 

techniques (Zitzler, Deb, et al., 2001). 

3.3.3.3 Non-dominated Sorting Genetic Algorithm 

Non-dominated Sorting Genetic Algorithm (NSGA) (Srinivas & Deb, 1994) was 

introduced by Srinivas and Deb in 1995. The approach is based on the classification of 

the entire population into several layers according to the domination concept (Goldberg, 

1989). The algorithm starts by initial randomly generated individuals. Among these 

individuals the non-dominated set is identified and forms the first non-dominated front 

and they are given a dummy fitness value equal to the population size;        ; in 

order to give same reproductive chance to all individuals that exist in the first front 

(Michalewicz, 1996). In order to maintain the diversity of the population, a fitness 

sharing method (Deb, 2001; Eiben & Smith, 2008; Engelbrecht, 2007; Gen & Cheng, 

1999; Mumford & Jain, 2009; Nakayama et al., 2009b; Yu & Gen, 2010) is used to give 

different fitness value to individuals of the same rank. Thereafter, the first front 

individuals are removed temporarily from the population (or ignored) and the non-
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dominated set of individuals within the rest of the population is determined. Again, the 

second non-dominated front’s individual are assigned a new dummy fitness value less 

than the dummy fitness value given to the first front. The smaller value is assigned to 

reflect the superiority of the first front’s individuals to the second front’s individuals.  

The procedure is repeated until the entire population is classified into several distinct 

layers. After classification has been completed, the stochastic remainder selection is 

adopted to select individuals according to their shared fitness. Then, crossover and 

mutation are performed. The advantage of NSGA is its fitness assignment based non-

dominated levels. However NSGA is considered as a computationally complex 

algorithm because of the ranking and fitness sharing procedures (Coello et al., 2007; 

Deb, 2001; Lee & El-Sharkawi, 2008). 

3.3.3.4 Niched Pareto Genetic Algorithm 

The Niched Pareto Genetic Algorithm (NPGA) was proposed by Horn et al in (Horn, 

Nafpliotis, & Goldberg, 1994). Different selection strategy has been used in this 

algorithm. In contrast to VEGA, NSGA and MOGA where the proportionate selection 

method is used, the authors preferred to adopt a tournament as well as dominance 

concept. In NPGA, first, a subpopulation of entire population; S; (typically 10 percent of 

the main population) is picked from the main population. Consequently, two random 

competitor individuals a and b are drawn from the main population. Then individuals a 

and b are compared to each individuals in the subpopulation for domination. After 

comparison there are four different results imaginable:  

(1)   dominated by at least one individual in the subset   but   is not dominated 

(2)   dominated by at least one individual in the subset   but   is not dominated 

(3)   and   both dominated by at least one individual in the subset   

(4)   and   both are non-dominated subject to the subset   
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In the case of situation 1individual b is chosen and in the case of situation 2 individual a 

is chosen. 

When situation 3 or 4 happens, the tie is broken by comparing both individuals a and b 

to the partially filled offspring population. Each individual is placed in the offspring 

population and the niche count is calculated for them. Finally, the individual with the 

smaller niche count value is the winner of the tournament. The selection mechanism of 

NPGA is shown in Figure  3.17. The advantage of NPGA is that it does not need any 

direct fitness assignment. The disadvantage of NPGA is the need for setting proper 

values for the parameters of      and         which may affect the performance of the 

algorithm. 

(Coello et al., 2007; Deb, 2001; Nedjah & Mourelle, 2005).  

 

Figure 3.17 NPGA Selection Mechanism 

3.3.3.5 Multiple Objective Genetic Algorithm 

The Multiple Objective Genetic Algorithm (MOGA) Algorithm was introduced by 

Fonseca and Fleming in (Fonseca & Fleming, 1993). In MOGA, a rank is assigned to 

each individual equal to the number of individuals in the population by which it is 

dominated. For example, if the individual  , is dominated by   different individuals in 
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the population then     ( )     . Therefore, all non-dominated individuals receive 

the same rank value 1 since they are not dominated by any other individual. In this way, 

the individual dominated by more individuals receives a higher rank. The rank itself is 

not used as a fitness function. Instead, an efficiency function is defined based on the 

individual’s rank. The efficiency function can be calculated as below:  

 Sorting the individuals based on their ranks 

 Use a linear function;  (    ) as fitness function in order to assign an efficiency 

value to each individual. The efficiency function is often in linear form but it is 

not necessarily. The  (    ) must satisfy following condition: 

If              then  (     )   (     ) 

The advantage of MOGA is its simple fitness assignment and it can be easily applied to 

different optimization problems because the niching is done in the objective space. 

Despite of the dominance concept which is used in this algorithm, there is a strong 

possibility that the algorithm may bias towards specific solutions in the search space. 

Moreover, the algorithm might be sensitive to the shape of the pareto front. 

(Bagchi, 1999; Coello et al., 2007; Collette & Siarry, 2003; Erickson, Mayer, & Horn, 

2002; Nedjah & Mourelle, 2005; Tan et al., 2005) 

3.3.4 Elitist Algorithms 

In this section, the evolutionary algorithms which use the elitism concept will be 

described. These algorithms are Non-dominated Sorting Genetic Algorithm II (NSGA-

II), Strength Pareto Evolutionary Algorithm (SPEA) and Strength Pareto Evolutionary 

Algorithm (SPEA-II). Elitism ensures that the quality of the solution never degrades 

during the evolution process from the current generation to the next generation. Elitism 

accelerates the convergence of the population toward a pareto front (Bui & Alam, 2008; 

Engelbrecht, 2007; Talbi, 2009; Vonk et al., 1998). 
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3.3.4.1 Non-dominated Sorting Genetic Algorithm II 

The Non-dominated Sorting Genetic Algorithm II (NSGA-II) algorithm was proposed 

by Kalyanmoy Deb and others in (Deb, Agrawal, Pratap, & Meyarivan, 2000). The 

procedure for one iteration of the NSGA-II is illustrated in Figure  3.19. The algorithm 

starts by generating an initial population of random individuals with a predetermined 

size known as        . Then the offspring population with identical size is produced 

by applying the usual operators (selection, crossover and mutation). Then, the offspring 

population is combined to the parent population to form a whole population with size 

         . Thereafter, the non-dominated sorting algorithm (Goldberg, 1989) is used 

to classify the entire population into several hierarchical fronts. The fronts are assigned 

a label 1, 2, … N such that the best non-dominated front receives label 1 and worst one 

receives N. Once, the classification is completed, the new population is filled by 

inserting the front’s individuals starting from the best non-dominated fronts (with label 

1) and with the increasing order of label values. Since, the size of the accumulated 

population is twice        , it is not possible to accommodate all fronts to the new 

population.  When there is no room, the remaining fronts are simply eliminated. 

However, for the last feasible front, there still may exist some individuals which cannot 

be accommodated. In that case the last allowed front is partially inserted to the new 

population. Instead of simply deleting extra individual from the last front it would be 

wise to select those individuals that help diversify the new population. Hence, the 

individuals of the last allowed front are sorted based on descending order of a metric 

which is called the crowding distance. The crowding distance for an individual is a 

measure to determine crowding by other individuals in the same front. It is an estimate 

for the density of solutions surrounded by them. As shown in Figure  3.18 the crowding 

distance for individual   is defined as a half perimeter of cuboid formed by the closest 

left and right neighboring individuals that encompass individual  . The advantage of the 
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algorithms is that it does not need setting for niching parameters like       . The 

disadvantage of this algorithm is that the crowded comparison as means of limiting the 

size of population weaken its convergence power (Benyoucef & Grabot, 2010; Deb, 

2001; Drechsler & Drechsler, 2002; Nakayama et al., 2009b; Nedjah & Mourelle, 2006; 

Sarker et al., 2002; Talbi, 2009; Yu & Gen, 2010). 

 

Figure 3.18 Crowding Distance Calculation 
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Figure 3.19 Schematic of NSGA-II procedure 

3.3.4.2 Strength Pareto Evolutionary Algorithm 

The Strength Pareto Evolutionary Algorithm (SPEA) was designed by Zitzler and 
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population. At each generation, the external population is updated by copying the newly 

found non-dominated individuals in the current generation. Once the size of the external 

population exceeds a pre-determined amount, it is pruned to reach a standard size by 

using a clustering technique called the average linkage method (Morse, 1980). After the 

termination of the algorithm individuals placed in the external population forms the 

output of the algorithm. A binary tournament selection is used to choose individuals 

with the smaller fitness from both main and external population. The strength value; 

 ( )  similar to rank used in MOGA is assigned to each individual within the external 

population. The strength value of an individual in the external population is a real value 

in     )  and is proportional to the number of individuals in the main population it 

dominates. The strength value for the member  of the main population is calculated as 

the following: 

  ( )  
  

         
 3.2 

where    is the number of individuals in the main population dominated by individual 

 ..On the other hand, the fitness value;  ( )  for an individual   in the main population 

is computed as the sum of the strength values of individuals in the external population 

dominated by them plus one and calculated as the following: 

  ( )    ∑  ( )

    ⋀    

 3.3 

where    represents the external population and     means individual  (in main 

population) is dominated by individual   (in external population). The addition of 1 

ensures that the fitness of any member within the main population is greater than the 

fitness of any external population member and therefore the external individuals always 

have a higher fitness value. Figure  3.20 illustrates the SPEA fitness assignment for a 

number of sample solutions (Barba, 2009; Coello & Lamont, 2004; Coello et al., 2007; 

Deb, 2001; Mumford & Jain, 2009; Nedjah & Mourelle, 2005; Talbi, 2009). 
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Figure 3.20 SPEA Fitness Assignment For a Set of Solutions 

The advantage of SPEA algorithm is in its parameter-less clustering technique which 

provides a better spread among non-dominated solutions. Moreover, the individuals’ 

fitness in SPEA can be easily calculated (Deb, 2001). 

3.3.4.3 Strength Pareto Evolutionary Algorithm II 

The Strength Pareto Evolutionary Algorithm II (SPEA-II) was suggested by Zitzler 

(Zitzler, Laumanns, & Thiele, 2001) as an improvement to the original SPEA. Three 

major enhancements have been made to its predecessor: 
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fitness values (for example solutions X4 and X5 in Figure  3.20). To avoid such situations 

in SPEA-II, in calculating the fitness for each individual both dominating and 
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the main population and the archive population (represented by    ̅) the strength 

X1

1 2 3 4 5 6 7

1

2

3

4

5

6

7

X2

X3

X4

X5

X6

X7

Minimize

M
in

im
iz

e

F1

F2

4/6

3/6 0+1

7/6+1

External 

Population

Main 

Population
4/6+1

7/6+1

7/6+1



 

85 
 

value;  ( ); is computed as the number of individuals in    ̅ which are dominated by 

  as stated in the following equation  : 

 
 ( )  |  |      ̅         | 3.4 

| |represents the cardinality or the number of the elements in the set and   indicates 

the dominance relation ( i.e. i dominates j). A larger value of S(i) indicates that 

individual i is stronger. Thereafter, the raw fitness value for individual i ;  ( ); in    ̅ 

is calculated as a sum of the strength values of individuals in    ̅ which dominate    

and is expressed by the following equation: 

  ( )  ∑  ( )

      ̅     

 3.5 

Note that  ( )    implies that the individual   is a non-dominated solution. A higher 

value of  ( ) means that individual   is dominated by more individuals and thus the 

fitness is to be minimized. Figure  3.21 shows the strength and raw fitness for a set of 

solution. 

 

Figure 3.21 SPEA-II Strength And Raw Fitness for a Set of Solutions 

X1

1 2 3 4 5 6 7

1

2

3

4

5

6

7

X2

X3

X4

X5

X6

X7

Minimize

M
in

im
iz

e

F1

F2

Strength/Raw Fitness

4/0

3/0

2/0

0/4

1/7

1/9

0/11



 

86 
 

In order to discriminate between the individuals that have the same fitness value, a 

density estimation is adopted. The density value (Zitzler, Laumanns, et al., 2001);  ( ) ; 

is  calculated as follows:  

 
 ( )  

 

  
   

 3.6 

where   √               ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and   
  is the distance of individual i to the k

th
 nearest 

neighbor and          and        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  are sizes of the main and archive populations 

respectively. Then the density used to convert the raw fitness to the new fitness value is 

the following: 

 
 ( )   ( )   ( ) 3.7 

The archive population in SPEA-II has a constant size over time and whenever the size 

goes beyond the predetermined value a truncation method is used to decrease the size of 

the archive population. During the selection, all non-dominated solution in the main and 

archive population with fitness value less than 1 are moved to the archive population as 

expressed by the following equation: 

 
 ̅      |       ̅     ( )     3.8 

If the non-dominated solutions fit the archive exactly, that is ( | ̅   |         ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  ) no 

more task is performed; otherwise if the archive population is too large, that is ( 

| ̅   |         ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) the archive truncation procedure is invoked.  

(Drechsler & Drechsler, 2002; Gandibleux, Sevaux, Sörensen, & T'Kindt, 2004; H. 

Nakayama, Y. Yun, & M. Yoon, 2009a; Yu & Gen, 2010; Zitzler, Laumanns, et al., 

2001) 

The main advantage of SPEA-II is in its strong performance in diversity and 

convergence (Zheng, Ling, Shi, & Xie, 2005). 
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3.3.5 Constraint Handling 

The existence of constraints in real-world problems motivates researchers to pay special 

attention in dealing with constraints. The constraints divide the entire search space by 

two regions: feasible region and infeasible region as illustrated in Figure  3.22. The 

optimal solutions are desirable only from the feasible region. Since not all individuals in 

a population may be a feasible solution we need to devise a method in order to deal with 

infeasible solutions.  

In this section a technique for tackling constraints in evolutionary multi-objective 

optimization is introduced. (Coello et al., 2007; Deb, 2001; Engelbrecht, 2007; Talbi, 

2009) 

 

Figure 3.22 Search Space, Feasible and Infeasible Regions 
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dominate each other. The constrained dominance concept for two solutions x and y is 

defined as follows: 

Definition: The solution x is said to constraint dominate solution y if any of the 

following conditions hold: 

a) Solution x is feasible and solution y is infeasible 

b) Both x and y are not feasible solutions but x have less constraint violation. 

c) Both x and y are feasible solutions but solution x dominates solution y according to 

the normal dominance concept presented in definition  3.1 

In this method, two solutions are picked from the population and a better solution in 

terms of constrained dominance is selected as the winner. 

 All algorithms based on the prior definition of dominance, such as the NSGA, which 

has been described in Section  3.3 can still work with constraint dominance. The only 

required change is the replacement of new dominance definition. 

(Branke et al., 2008; Deb, 2001; Freschi & Repetto, 2005; King & Rughooputh, 2003; 

Mezura-Montes, 2009; Yu & Gen, 2010) 

3.3.6 Applications of Evolutionary Multi-Objective Algorithms in Other Areas. 

Apart from view selection problem, evolutionary multi-objective algorithms have been 

applied to a variety of optimization problems in different areas. Table  3.1 shows the 

application of evolutionary multi-objective algorithm in a number of problems in 

different areas. 
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Table 3.1 List of some other Applications of Evolutionary Algorithms  

Area 
Algorithm(s) 

Used 
Paper(s) 

Gas supply network VEGA 
(Surry, Radcliffe, & Boyd, 1995), (Surry & 

Radcliffe, 1997) 

Allocation in radiological 

facilities 

MOGA, NPGA 

and SPEA 
(Lahanas, Milickovic, Baltas, & Zamboglou, 2001) 

Data Mining SPEA-II (Hetland & Sætrom, 2005) 

Design of electromagnetic 

devices 
NPGA, NSGA (Weile, Michielssen, & Goldberg, 1996) 

Design of an 

electromechanical system 
NSGA-II (R´egnier, Sareni, & Roboam, 2005) 

Design of combinational 

circuits 
VEGA 

(Coello, Aguirre, & Buckles, 2000), (Luna, Coello, & 

Aguirre, 2004), (Luna & Coello, 2004) 

Network Design 
Modified 

NSGA-II 
(Kleeman, Lamont, Hopkinson, & Graham, 2007) 

Design of control systems MOGA 
(Chipperfield & Fleming, 1995) (Chipperfield & 

Fleming, 1996) 

Multicast flows SPEA (Meisel, 2005) 

Design of a thermal system 

for a building 
MOGA 

(Wright & Loosemore, 2001) (Wright, Loosemore, & 

Farmani, 2002) 

Road systems NPGA (Haastrup & Pereira, 1997) 

Aerodynamic optimization NSGA-II 
(Nariman-Zadeh, Atashkari, Jamali, Pilechi, & Yao, 

2005) 

Treatment planning SPEA (Petrovski & McCall, 2001) 

   

3.4 Performance Metrics (indicators) 

Although in the early years of evolutionary multi-objective optimization visual 

comparison between the obtained solutions and the optimal set of solutions in objective 

space seemed to be sufficient for evaluating algorithms but with the emerging number 

of evolutionary algorithms in recent years, there is a greater need for an evaluation tool. 

Two distinct goals for multi objective optimization are the diversity of solutions and the 

convergence toward the true pareto front. The first goal refers to how a set of found 

solutions are well distributed along the pareto front and the second goals says how well 

the solutions have converged toward the true pareto front. Figure  3.23 illustrates these 

two goals for a hypothetical search space. In designing the performance metrics for 

evolutionary algorithms these two goals must be taken into account. These two goals 

are sometimes conflictive. An algorithm may return a well distributed set of solutions 

while the solutions do not converge well towards the pareto front. In the other 

algorithm, the opposite situation may happen. In fact, obtaining the algorithm which 
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optimizes both of these goals, can be regarded as another multi-objective optimization 

(Deb, 2001). In this section a number of performance metrics which have been 

proposed for the assessment of multi-objective optimization algorithms are explained. 

These metrics can be classified into two categories (Branke et al., 2008; Talbi, 2009): 

1. The metrics designed to measure diversity of solutions 

2. The metrics are meant to measure convergence 

3. The metrics measure both the diversity and convergence goals 

 

Figure 3.23 Convergence and Diversity 

Please note that some metrics require the knowledge of the pareto optimal set while in 

others there is no need to access the pareto optimal set. However, in most real-world 

optimization problems the true pareto optimal set is unknown (Talbi, 2009) unless using 

a brute force algorithm to search the entire search space for a long time. Since the true 

pareto optimal set is not available in the view selection problem we exclude the metrics 

which require the set.  
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3.4.1 Set Coverage (C) 

(Zitzler, 1999) proposed a binary metric for comparing the performance of two 

algorithms. Having two sets of solutions; A and B; the set coverage metric measures the 

percentage of solutions in B which are dominated by at least one solution in A. The 

metric is represented as follows: 

 
 (   )  

|    |         |

| |
 3.9 

 (   )    means that no solution in B is dominated by solutions in A; likewise  

 (   )    indicates that all the solutions in B are dominated by at least one solution 

in A. Since the domination relation is not a symmetric operator, in which   (   )  

   (   ) therefore both  (   ) and  (   ) should be calculated separately. 

(Coello et al., 2007; Deb, 2001; Janssens & Pangilinan, 2010; Yu & Gen, 2010) 

 

Figure 3.24 Ideal Value for Coverage Metric 
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3.4.2 Spacing (SP) 

This metric was introduced by Schott (1995) and measures how solutions are uniformly 

distributed. Spacing calculates the standard deviation of distances between consecutive 

solutions. The metric is represented as follows: 

 
   √

 

| |
∑(    ̅)

 

| |

   

 3.10 

where : 
      

       
∑|  

    
 |

 

   

 3.11 

   represents the minimum distance between solution i  and any other solution in the  

obtained set. Figure  3.25 Illustrates    for a set of obtained solutions. 

 ̅ is average of all    distances and is calculated as follows: 

 
 ̅  

 

| |
∑  

| |

   

 3.12 

A small SP indicates more equally spaced solutions.       means that the solutions in 

  are evenly distributed. That is, the distance between consecutive solutions in the 

obtained set is identical.Figure  3.26 shows a set of solutions with Spacing equal to zero. 

 

Figure 3.25 Distances between Neighboring Solutions in Set of Obtained Solutions 
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(Abraham & Goldberg, 2005; Coello et al., 2007; Deb, 2001; Goh, Ong, & Tan, 2009; 

Janssens & Pangilinan, 2010; Tan et al., 2005) 

 

Figure 3.26 Ideal Value for Spacing Metric 

3.4.3 Maximum Spread (MS) 

(Zitzler, 1999) proposed a metric which calculates the length of the diagonal of the 

hyperbox formed by extreme solutions in the obtained set as follows: 

    

√
  
  
  
  
 

∑(   
    

   | |

   
     

   
    | |

    
 )

 
 

   

 3.13 

In the case of two objective optimization problems the metrics is equal to the Euclidian 

distance between the two extreme solutions in each objective. As an example, 

Figure  3.27 illustrates the maximum spread for a set of the discovered non-dominated 

solutions: 
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Figure 3.27Maximum Spread for A Set of Solutions 

The larger the maximum spread, the better the values are, since it implies that the 

obtained solution set are spanned along a larger part of the pareto front. However, the 

Maximum Spread metric does not measure the uniformity of intermediate solutions. 

(Alberto & Mateo, 2008; Deb, 2001; Tan et al., 2005) 

The maximum possible extent for a set of solutions is illustrated in Figure  3.28 

 

Figure 3.28 Ideal Value for Maximum Spread Metric 
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3.4.4 Hypervolume (HV) 

The hypervolume metric (Zitzler & Thiele, 1999) as a metric which evaluates both 

diversity and convergence calculates the volume covered by set of obtained solutions; 

Q; in the objective space for minimization problems. In the example of Figure  3.29 the 

Hypervolume is the enclosed area within the dashed line. For each point     the 

hypercube    is constructed between the reference point w and solution i as the diagonal 

corner of the hypercube. The reference point can be identified by combining the worst 

values in each objective as a vector. Thereafter, the hypervolume is calculated as a 

union of all constructed hypercubes as follows: 

(Alba et al., 2009; Chiong, 2009; Coello et al., 2007; Deb, 2001; Janssens & Pangilinan, 

2010; Talbi, 2009; Tan et al., 2005; Yu & Gen, 2010) 

          (⋃  

| |

   

) 3.14 

 

Figure 3.29 Hypervolume for a Set of Non-Dominated Solutions 
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Figure 3.30 Ideal Value For Hypervolume Metric 

3.5 Summary 

Optimization is a procedure of finding and comparing different solutions from a set of 

possible values until no better solution is found. In many real-world optimization 

problems multiple objectives must be optimized at the same time. Evolutionary multi-

objective algorithms are considered as good candidates for solving these problems. In 

this chapter some principles and fundamentals for evolutionary multi-objective 

optimization was presented. The evolutionary algorithms were divided into two 

different classes: the elitist algorithms and the non- elitist algorithms. In the elitist 

algorithm, a percentage of individual with highest quality are preserved while in the 

non- elitist such a capability is not foreseen. Of non-elitist algorithms, WBGA, VEGA, 

NPGA, MOGA and NSGA were discussed. Among the elitist algorithms, SPEA, SPEA-

II and NSGA-II were described. Finally four different performance metrics Coverage, 

Hypervolume, Spacing and Maximum Spread for evaluating evolutionary multi-

objective algorithms were presented. 
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Chapter 4. Methodology 

4.1 Introduction 

The current chapter is an introduction to the way that the mentioned algorithms have 

been applied to the view selection problem. The general structure of the current work 

can be classified into different domains as the following: 

 The Problem domain where the characteristics of the problem at hand is defined. 

 The Methodology consisting of the algorithm which acts on the problem. 

Figure  4.1 illustrates this classification. The left panel belongs to the method domain 

which includes the different evolutionary multi-objective optimization algorithms such 

as NSGA, and SPEA while the right panel is the problem domain consisting of the 

problem to be solved by these algorithms. 

 

Figure 4.1 Classifications of Methods and Problem 

The entire design and implementation of the solution system is based on this 

abstraction. Breaking the system into two manageable domains reduces the complexity 

and makes it easy to understand. In addition, the individual methods and problem 
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variants can be easily substituted by alternative ones and thus enhance the extendibility 

of the system. 

The rest of this chapter is organized as follows: 

Since both the method and problem domain are designed according to the object 

oriented concept the first section is devoted to the definition of objects and relationship 

between them. Each evolutionary algorithm requires some configuration to be well 

suited to a particular problem. The parameter setting for the applied algorithms will be 

given in the next section. Then metrics which is used for the evaluation of the 

algorithms is stated. The problem representation schema is explained next. The 

initialization, stopping criteria, constraint handling technique and objective 

normalization is discussed in subsequent sections. The view size estimation used is 

given in following section. Thereafter, the problem instances which are used as the 

inputs of the algorithms will be introduced. Finally, the last section presents the 

hardware and software platform in which the algorithms are implemented.  

4.2 Object Oriented Architecture 

This section explains the designed objects, their properties and methods as well as the 

relationship between them. The entire objects are classified in two domains: the objects 

which are defined within the problem domain and the objects that belong to the method 

domain. The UML class diagram for the architecture is shown in Figure  4.2. 
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Figure 4.2 The UML Class Diagram 

4.2.1 Objects in Problem Domain 

 View 

As a basic object in the problem domain, the view object encapsulates the 

characteristics of a view such as size, view update frequency and query frequency. The 
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+ChildsItems(in O : Object) : Listof (object)
+ChildIndexes(in n : Short) : Listof(short)
+Draw()

-Adjacency(,) : Boolean
-ItemList : Object

Lattice

-Contains 0..*

0..*

-Contains 0..*0..*

+V(in i : Short) : Boolean
+Search Space Size() : Long
+Count() : Short

-F1 : Double
-F2 : Double
-Materialized() : Boolean

VSP Phenotype

-Encoding
*

-Decoding*

-End1

0..*
-End2 1..*

-End31

-End4*
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property hierarchy levels in view class (see Table  4.1) is a list of hierarchy levels in 

which the view is constructed from them. As mentioned earlier in Section  2.6 , in the 

presence of dimension hierarchies each view is built by choosing one level per 

dimension hierarchy. For example, Figure  4.3 illustrates 3 hierarchies for three different 

dimension tables named Supplier, Customer and Part. Figure  4.4 is a view dependency 

lattice which is constructed based on the mentioned hierarchies in Figure  4.3. Each view 

in the lattice of Figure  4.4 is built by choosing only one level from each dimension 

hierarchy. For instance, the view SuppliedID-CustomerID-Size is made up from level 

SuppliedID, CustomerID and Size from the dimension hierarchy Supplier, Customer and 

Part respectively. The corresponding group by query is as follows: 

Select Supplier. SupplierID , Customer.CustomerID,  Part.Size, SUM(Sales.Price) 

From Sales 

Group By     Supplier. SupplierID , Customer.CustomerID, Part.Size 

  

Table 4.1View Class 

Properties Description 

ID Unique number given to  the view 

Size The number of records in the view 

Update Frequency Frequency by which the view is updated 

Query Frequency Frequency by which the view is queried 

Hierarchy Levels 
List of hierarchy levels in different dimensions which from this view 

constructed from. 

Maximum Size Maximum possible size of the view 

IsTopView The view is fact table or not 
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Figure 4.3  Hierarchy Defined Within Each Dimension Table 

 

Figure 4.4 View Dependency Lattice Calculated Based On Hierarchies in Figure 4.2 

 Lattice 

The lattice object is a data structure which consists of all possible views as well as the 

relationships between them. Table  4.2 shows the properties and methods for the lattice 

object. Also, Figure  4.5 visualizes a sample instance of a lattice object as well as the 

corresponding properties and methods. 
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Table 4.2 Lattice Class 

Properties Description 

Connections List of edges between views in the lattice; an adjacency matrix 

Items List of views in the lattice 

Count Number of views in the lattice 

TopNode The Top node(or fact table) in the lattice 

ButtomNode The bottom node in the lattice 

Edge(i,j) Whether there is an edge between view i and j or not 

Methods Description 

ParentsOf(V) List of views which are parent of view V 

AncestorsOf(V) List of views which are Ancestor of view V 

Childs(V) List of views which are child of view V 

Draw Draws the lattice 

Clear Deletes all views and edges in the lattice 

  

 

Figure 4.5 The Lattice Object 

 VSP (View Selection Problem) 

The VSP is the main object in the problem domain representing the view selection 

problem instance. Table  4.3 shows the list of properties and methods for the VSP class. 

The objective1 and objective2 property holds the address of methods which act as 

objectives to the problem. These properties can be flexibly set to the UpdateTime, 

QueryTime, Space or any other extendable methods. Note that such a way provides  

i
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D
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E

E
dge(i,j)=true

TopNode

BottomNode

Count=8

ParentsOf(V)=A, j

Childs(V)=C
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Table 4.3 VSP Class 

Properties Description 

Objective 1 Refers to the first objective of the problem 

Objective 2 Refers to the second objective of the problem 

Constraint Refers to the constraint of the problem 

TheLattice The lattice which is associated with the problem 

CubeSize The disk space amount needed to store all views 

Qmin 
Minimum query response time for answering all possible 

queries 

Qmax 
Maximum query response time for answering all possible 

queries 

Umin Minimum update time for updating all materialized views  

Umax Maximum update time for updating all materialized views 

Methods Description 

UpdateTime (M) The time needed for updating set M of materialized views 

QueryTime (M) 
The time needed for answering all queries in presence of set M 

of views 

Space (M) The disk space required for storing set M of Materialized views 

DiskSpaceViolation (M) 
Amount of disk space violation caused by materializing set M 

of views 

MostBeneficialView (M) 
The view if added to current set of views; M; cause maximum 

reduction in query response time 

RepairFunction (M) The function to repair infeasible solution 

LeastCostMaterializedAncestor(V) The smallest materialized ancestor of V  

SearchSpaceSize The size of search space 

  

freedom to change the objectives of the problem based on the view selection problem 

variation at any time in future. For example, when the view selection problem is only a 

single objective case the first objective may refer to the UpdateTime or QueryTime and 

the second objectives may be left as null. Moreover, when a combination of query 

response time and view update time as a single objective is taken into consideration 

Objective1 refers to the extended method which adds UpdateTime and QueryTime 

(QuerryTime+UpdateTime). Similarly, the constraint refers to a method which acts as a 

constraint to the problem. In this research, objective1 refers to QueryTime, objective2 

refers to UpdateTime and constraint refers to Space.  An instance of the lattice object as 

the property indicates the lattice associated with each view selection problem. The 

parameter M in the VSP methods is defined as the VSPPhenotype class which will be 

discussed in the next section. 
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 VSP Phenotype 

In biology the phenotype is the observable features of an organism such as color, shape 

and size which directly originates from the genotype (Gorunescu, 2011). In 

evolutionary algorithms the phenotypes are possible solutions to a given problems. 

Likewise, the VSPPhenotype object is defined as the potential solution to the view 

selection problem.  Table  4.4 shows the different properties and methods for the VSP 

Phenotype class. Each view selection problem is associated with two values which are 

total query response time and total update time in this research respectively. These two 

values are represented by F1 and F2 properties. 

Table 4.4 VSP Phenotype Class 

Properties Description 

F1 The value for the first objective function 

F2 The value for the second objective function 

A(i) whether the i
th 

view is selected  

Methods Description 

Count Number of all possible views 

Clone Creates a copy of the current phenotype 

  

4.2.2 Objects in Method Domain 

The method domain consists of objects that are pertinent to techniques used to solve the 

view selection problem. However, these objects are classified into two types, namely, 

core objects and shell objects. Figure  4.6 shows a scheme for such classification. The 

objects which are defined within the core section are considered as essential objects. 

Examples of such basic objects are the individual and the population. The core objects 

play a fundamental role in the working of each evolutionary algorithm. Every 

evolutionary algorithm may take advantage of these fundamental objects in its 

procedure. These objects do not direct any evolutionary process to themselves but 

instead, they provide ready structure for higher level objects. The shell objects consist 

of fully independent evolutionary routines such as VEGA, WBGA, NSGA or so on. The 
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advantage of such classification is the re-usability of the carefully designed core 

objects. 

 

Figure 4.6 Core And Shell Objects 

4.2.2.1 Core Objects 

 GA Object 

All classes within the method domain share a common behavior. Each of these classes 

implements an evolutionary algorithm which follows a common logic. The GA class as 

an abstract base class provides a way for representing all such shared features among 

the shell classes in a single entity. The list of properties and methods for the GA class is 

shown in Table  4.5. In object oriented principle in contrast to normal classes (called 

concrete classes), abstract classes cannot be instantiated. The abstract class can merely 

be inherited by deriving the classes (Deitel, Deitel, & Nieto, 2001). The purpose of the 

abstract class is to provide an elegant logical organization for closely related objects. 

Examples of the shared properties in classes defined in the methods domain are 

population size, crossover rate and mutation rate which are customary parameters for 

all evolutionary algorithms. In addition to these general settings, most of the multi-

objective optimization algorithms require common calculations. An example of such 

calculation is the measurement of the distance between two different individuals either 

in the decision variable space or objective space. Dominance check is another frequent 

calculation which determines whether one individual is better than another individual 

Core

Shell

Individual Population

Crossover Mutation Selection
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with respect to the multiple objectives. All of these tasks are placed as inheritable ready 

methods inside the GA class and they do not need to be re-defined in the derived 

classes. The class diagram in Figure  4.7 shows the inheritance between the GA class and 

the shell objects. 

Table 4.5 GA Class 

Properties Description 

PopulationSize Number of individuals in population 

MaximumGeneration Maximum number of generations to be evolved 

CrossoverRate Probability by which crossover is applied 

MutationRate Probability by which mutation is applied 

Methods Description 

Dominate(a,b) Whether individual a dominates individual b or not 

ConstrainedDominate(a,b) Whether individual a constrained dominates individual b or not 

VariableDistance(a,b) The distance between individual a and b in decision variable space 

ObjectiveDistance(a,b) The distance between individual a and b in objectives space 

  

 

Figure 4.7 Inheritance In Method Domain 

 Individual 

The Individual class contains all characteristics, data structures and procedures which 

are required in a typical chromosome. Table  4.6 shows the list of properties, methods 

and operators for the individual class. Each chromosome consists of a series of smaller 

cells called gene. The GList property is an internal structure of individual class which 

+Dominate(in a : Individual, in b : Individual) : Boolean
+Constrained Dominate(in a : Individual, in b : Individual) : Boolean
+Variable Distance(in a : Individual, in b : Individual) : Double
+Objective Distance(in a : Individual, in b : Individual) : Double

+Population Size : Short
+Maximum Generation : Short
+Crossover Rate : Double
+Mutation Rate : Double

GA

+Run()

NSGA

+Run()

NSGA-II

+Run()

+Archive Size : Short

SPEA-II

+Run()

+External Size : Short

SPEA

+Run()

MOGA

+Run()

+Tdom : Short

NPGA

+Run()

VEGA

+Run()

WBGA
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stores a list of such genes. Each item of GList may take the value of either 0 or 1. 

Furthermore, The Evaluate() function calculates the value of the objectives and 

constraints and assign these values to the corresponding properties in the individual 

class. The properties Objective1Value and Objective2Value and ConstraintValue store 

the calculated values by the evaluate method. In the case of this research this properties 

take values as shown in Table  4.7. In some evolutionary multi-objective algorithm such 

as NSGA there is a need for a dummy fitness function. For these cases, a property 

named Fitness is meant to store the dummy fitness value. For the individual class, two 

operators have been defined: equality and inequality. The equality operators return true 

when the two individuals are exactly the same otherwise it returns false.  

Table 4.6 Individual Class 

Properties Description 

GList List of genes 

Objective1Value The value returned by first objective function 

Objective2Value The value returned by second objective function 

ConstraintValue The value returned by constraint function 

Fitness Dummy Fitness 

Rank Pareto rank assigned by the non-dominated sorting algorithm 

Crowding Distance The crowding distance of the individuals in a population 

Methods Description 

Count Number of genes in chromosome 

IsFeasible() Whether the chromosome violates the constraint 

Evaluate(Objective1

,Objective2,Constrai

nt) 

Calculate Objectives and constraint functions and assign the values to the 

relevant properties 

Clone() Create the a full copy of the chromosome 

Exchange(index1, 

index2) 
Exchanges gene values in positions index1 and index2 

Decode() Maps a genotype to the corresponding phenotype(VSP_Phenotype) 

Flip(i) Alters a gene value at position i from 0 to 1 or vice versa 

Random() Generate random value for each gene 
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DominateAny (P as 

population) 
Checks whether this individual dominates population p 

Dominate(I as 

Individual) 
Checks whether this individual dominates individual I 

Operators Description 

= Chromosome a=chromosome b 

<> Chromosome a<>chromosome b 

  

Table 4.7  Assignment of Values for Objectives and Constraint 

Property Value 

Objective1Value Q(M) 
Objective2Value U(M) 
ConstraintValue DS(M)-DS 

  

Two individuals are identical when they include equal values in corresponding 

positions. The inequality operator works in the inverse manner. 

Each chromosome or genotype in the evolutionary algorithm is a code of a real-world 

problem encompassing the process of evolution. The original possible solution in the 

real- world is called the phenotype. To bridge the problem between the solution in the 

real world and the genetic world a two way link is required. This link is carried out 

through the mapping from the phenotype to the genotype and is a fundamental step of 

the evolutionary algorithm called representation. The inverse is the map of the genotype 

to the phenotype. Each chromosome must be designed to be invertible (Eiben & Smith, 

2008). In the chromosome class a special method simply called Decode is responsible 

for mapping the chromosome in evolutionary algorithms space to a phenotypic solution 

(described earlier as VSP_Phenotype class) in real-world space. 

 Population 

The population class as a container stores a number of individuals in a single object. 

Table  4.8 shows the list of properties, methods and operators which are defined for the 

population class. The list which includes individuals is represented by IList property. 
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The function Evaluate is responsible for the evaluation of all individuals in the 

population. The non-dominated set of individuals in the population are calculated using 

the Non-dominated function 

One of the most important methods which play a key role in the working of every 

evolutionary algorithm is defined in the population class as Random Generate method. 

This method will be explained later in Section  4.6 

Table 4.8 Population Class 

Properties Description 

IList List of individual inthis population 

Count Number of individuals in this population 

ID A unique number given to each population 

Rank The rank of the population 

Member(i) The i
th

 member of the population 

Methods Description 

Evaluate(Objective1, Objective2, 

Constraint) 
Evaluates all individuals in population 

Nondominated() Identifies a non-dominated set of solutions 

Dominate(i,j) 
Returns true if member with index i dominates member 

with index j otherwise returns flase 

Classify() 
Perform non-dominated sorting algorithm and classify 

entire population into several fronts 

PartitionFeasibility() 
Partitions the entire population into two subpopulation: 

feasible subpopulation and infeasible subpopulation 

Clone() Create the true copy of the population 

Add(Individual) Add an individual to the population 

Sum(IndividualField) 
Calculates the sum of a particular field among all 

individuals in the population 

Sort(IndividualField) 
Sorts individuals in the population according to an 

particular field of individual 

RemoveAt(i) Removes the individual at index i from the population 

Remove(I) Removes the individual I from the population 

Clear() Deletes all the individuals in the population 

Contains(Individual) 
Determines whether the population contains the 

individual  

RandomGenerate(PopulationSize, 

ChromosomeSize) 

Generates a population of  PopulationSize individuals 

such that the size of each individual is ChromosomeSize 

AssignCrowdingDistance() 

Calculates the crowding distance (as discussed in Section 

3.3.9.1) of each individual in the population and assigns it 

to the crowding property in the individual class 

FitnessSharing() 

Calculates the shared fitness of each individual in the 

population and assigns it to the Fitness property in the 

individual class 

NicheCount(individual, alpha, 

SigmaShare) 

Calculates the niche count for the individual in the 

population based on the given parameters alpha and 

       

Min(IndividualField) 
Identifies the minimum value for the specified property 

among all individuals in population 
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Max(IndividualFiled) 
Identifies the maximum value for the specified property 

among all individuals in population 

Find() 

Searches for an individual that matches the conditions 

defined by the specified parameter, and returns the first 

occurrence within the entire population 

Sum(IndividualField) 
Returns the sum of a particular field for all individuals in 

the population 

Sort(IndividualField) 
Sorts the individual in the population according to a 

particular field. 

Contains(Individual) Checks whether the population contains the individual 

FindMin(IndividualField) 
Searches for an individual that have the minimum value 

of the specified property, and returns the value 

FindMax(IndividualField) 
Searches for an individual that have the maximum value 

of the specified property, and returns the value 

Top() Returns the top half of the population 

Bottom() Returns the bottom half of the population 

SaveToFile(address) 
Saves the objective values of the population into a text 

file 

DoClustering(Size) 
Applies the clustering technique on the population and 

returns a PopulationSet of the specified Size  

Representative() 
Selects one individual in the population  (cluster) as 

representative of that cluster 

SuggestSigmaShare() 
Propose a value for       according to the Fonseca and 

Fleming Rule 

Operators Description 

- Subtracts one population from another population  

+ Joins two populations into a single population 

= Tests whether population a is equal to  population b 

<> Tests whether population a is  not equal to  population b 

  

 Population Set 

Some of the procedures like non-dominated sorting or clustering return a set of 

populations as output rather than a single population. In order to maintain the history of 

evolution one may need to maintain a number of populations in one place.  

The PopulationSet class serves as a container for storing a series of relevant 

populations. However, any population set can be consolidated to an accumulated 

population by calling the Consolidate method. Table  4.9 shows the list of properties and 

methods for the PopulationSet class. 
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Table 4.9 PopulationSet Class 

Properties Description 

Count Number of population in the population set 

PList List of including populations 

Member(i) Returns i
th

Population 

Methods Description 

Add(Population) Adds a population to the population set 

Remove(Population) Removes a population from population set 

Consolidate 
Consolidates all population in population set and returns a 

single accumulated population 

Merge(Population 1, Population 2) 
Merges two member populations: Population 1 and Population  

and thus the Count  is deducted by one 

ClusterDistance(Cluster1, Cluster 

2) 

Measures the distance between two populations (as Cluster1 

and Cluster 2) in the population set 

  

 Crossover 

The crossover class comprises of all different techniques which are devised for the 

recombination of two different parent individuals. Table  4.10 shows the properties and 

methods for the crossover class. The class comes with shared members. In contrast to 

the normal classes where each instance have their own copy of members, in classes with 

shared members all instances  share a single copy of a specific property or method 

(Deitel et al., 2001). Three different types of crossover are implemented; these are 

namely, the Uniform, SinglePoint and Twopoint crossovers. The Rate property 

represents the probability by which the crossover operator is applied and is set to 0.9 by 

default for this research. 

Table 4.10 Crossover Class 

Properties Description 

Rate The probability by which crossover is applied 

Methods Description 

Uniform (individual x, individual y) 
Performs uniform crossover on two parent individuals: 

individual x and individual y 

SinglePoint(individual x, individual y) 
Performs Single crossover on two parent individuals: 

individual x and individual y 

Two-Point(individual x, individual y) 
Performs Two-pint crossover on two parent individuals: 

individual x and individual y 
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 Mutation 

The mutation operator is represented by the mutation class. Similar to the crossover 

class, the mutation class also includes shared property and methods. Table  4.11 shows 

the properties and methods for the mutation class. The Rate property refers to the 

probability by which the mutation is applied. By default the Rate is set to 0.01.Two 

types of implemented mutation are the uniform and random methods. 

Table 4.11 Mutation Class 

Properties Description 

Rate The probability by which mutation is applied 

Methods Description 

Uniform(individual) Performs uniform mutation on the parent individual 

Random(individual) Performs random mutation on the parent individual 

  

 Selection 

The selection class includes all different ways for selecting one set of parent among a 

given population. Table  4.12 shows the methods in the selection class for the four 

different selection techniques namely, the Roulette wheel(), Random(), 

StochasticRemainderSelection() and Tournament(). All the methods take an instance of 

the population class as well as a field of individual as input and return a single 

individual as output. However, in the case of random selection no field is specified. The 

selection is done according to the field specified. For selecting two mates the selection 

function is required to be called twice. In the case of the tournament selection, the 

Bios={greater, less} parameter  specifies whether the selection is done based on 

smaller values or bigger values. 
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Table 4.12 Selection Class 

Methods Description 

Roulette wheel(Population, IndividualField) 

Implements the Roulette wheel selection 

technique on a population based on the 

individualfield 

Random(Population) 
Implements therandom selection technique 

on a population 

StochasticRemainderSelection(Population, , 

IndividualField) 

Implements the stochastic remainder 

selection technique on a population based on 

the individualfield 

Tournament(Population, IndividualField, Bios) 

Implements the tournament selection 

technique on a population based on the 

individual field and Bios 

  

4.2.2.2 Shell Objects 

Shell classes implement evolutionary algorithms based on the fundamental object 

defined in the core area. These algorithms present a complete evolutionary algorithm 

and can be executed independently. The shell classes follow a shared interface as shown 

in Figure  4.8.The interface comes with only one method named Run (see Table  4.13) 

which serves as a starter of the algorithm. 

Table 4.13 Evolutionary Multi-Objective Algorithm Interface 

Methods Description 

Run(Objective1, Objective2, 

Constraint) 

Takes the three parameters: the first objective , second objective 

and constraint of the problem and starts the evolutionary algorithm 

  

The parameters for Run are objective1 as first objective to the problem, objective2 as 

second objective to the problem and constraint as the problem constraint, as presented 

in Table  4.13.These parameters hold the address of an already defined function. 
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Figure 4.8 Evolutionary Multi-Objective Optimization Interface 

4.2.3 Performance Evaluation 

In order to evaluate the performance of the applied algorithms a special class is 

designed. All the used metrics are defined as methods in this class. These methods 

receive one or two approximations and calculate the metrics. Each approximation is a 

set of obtained non-dominated solutions by a specific algorithm in the final population. 

As an example, the metric Coverage takes two approximations called approximation1 

and approximation2 and returns the corresponding value for the two set coverage. The 

list of methods in the performance evaluation class is shown in Table  4.14. 

Table 4.14  Performance Evaluation Class 

Methods Description 

Maximum Spread (Approximation) 
Calculates the maximum spread metric for an 

approximation 

HyperVolume (Approximation, ReferencePoint) Calculates the hypervolume metric 

Coverage(Approximation1,Approximation2) 

Calculates the coverage metric for an two 

approximations: Approximation1 and 

Approximation2 

Spacing(Approximation) 
Calculates the spacing metric for an 

approximation 

  

4.3 Parameter Setting 

Each evolutionary algorithm consists of a set of parameters which need to be well-

determined before the execution of the algorithm, as the performance of the algorithm is 

affected by such parameters. For example, if the population size is too small, the 

+Run(in Objective 1, in Objective 2, in Constraint) : Boolean

«interface»
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evolutionary algorithm may be trapped in the local optima and may fail to discover the 

global optima. On the other hand too large a population size slows down the algorithm 

and wastes the computational resource. Choosing a proper value for such parameter is 

not an easy task and in practice is usually done by trial-and-error (Haupt & Haupt, 

1997; Michalewicz, 1996). Although some studies (Back, 1993; Davis, 1989; 

Grefenstette, 1986; Jong, 1975; Srinivas & Patnaik, 1994) were performed to find the 

optimal parameter settings for particular test cases,  in general, a theoretical prescription 

is not available (Bagchi, 1999) and there is no conclusion on what setting is best 

(Mitchell, 1998). In fact, the control parameters are problem-specific (Bagchi, 1999). In 

this research, the crossover, population size and generation number have been 

experimentally tuned. The mutation rate was set to 
 

               
 as recommended by 

(Back, 1993). The distance between two individuals is calculated as the Euclidian 

distance in objective space. For example, the Euclidean distance between two points 

shown in Figure  4.9 is calculated as the following: 

   √((  ( )    ( ))
 
 (  ( )    ( ))

 
) 4.1 

Table  4.15 shows the list of chosen parameters for the research. 

 

Figure 4.9 Calculation of distance in 2D objective space 
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Table 4.15 GA Parameter Setting 

Parameter Value 

Main Population Size 100 

Secondary Population Size 20 

tdom 10% 

       
According to the procedure proposed by (Fonseca & Fleming, 

1993) 

Maximum Generation Number 100 

Crossover Type Single-point 

Crossover Rate 0.8 

Mutation Type Bit-wise 

Mutation Rate 1/number of views 

Selection Method Binary Tournament Selection unless specified by algorithm 

Number of Runs 30 

  

Concerning the hypervolume metric the reference point defined by the value 100 in each 

objective as shown in Figure  4.10. 

In algorithms NSGA, MOGA and NPGA where a sharing strategy is required the niche 

radius ,        , was calculated using the Fonseca and Fleming update rule (Fonseca & 

Fleming, 1993). 

 

Figure 4.10 Defined Reference Point for Hypervolume Metric 
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them is required a slightly modified version of sharing called continuously updating 

sharing (Oei et al., 1991) is used. Although in the original paper of NPGA (Horn et al., 

1994) no procedure was proposed for setting the       but the authors recommend 10% 

of the main population. For NPGA,          was selected. For SPEA and SPEA-II 

the external population size of 20 was selected while 100 was selected as size of the 

primary population. 

The non-dominated solutions from the last generation of each run were identified and 

they are considered as outcome of the optimization run. 

4.4 Performance Metrics Used 

It is to be noted that as mentioned in Section  3.4, some performance metrics for the 

assessment of evolutionary multi-objective optimization algorithms require knowledge 

of the true pareto optimal set. These metric are useful when the set of optimal solution 

for a specific problem is available. Example of such metrics is the Generational 

Distance (GD) or Error Ratio (ER) (Deb, 2001). Since in the case of the view selection 

problem the pareto optimal set is unknown therefore the metrics could not be applied. 

As stated in Section  3.4 the metrics for examining the performance of the evolutionary 

multi-objective algorithms are convergent based or diversity based. However some 

hybrid metrics measure both of these aspects. Four complementary metrics used for 

performance assessment of the algorithms. Two Set Coverage as a convergence based 

metrics and Maximum Spread and Spacing as two diversity based metrics were used.  In 

addition the hypervolume metric as a hybrid metric which measures both convergence 

and spread of solutions are used.  All the metric used except the two set coverage are 

considered as unary metric since they take the result obtained by one algorithm and 

return one real value as output. The Two Set Coverage as a binary metric takes the 
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obtained result from two different algorithms and returns an output value which implies 

the comparison of two algorithms. 

For each metric the ideal values is listed in Table  4.16. The ideal value represents the 

best imaginable value for a particular metric. The Maximum Spread and Hypervolume is 

calculated by substituting the value of 100 to the variable F1max and F2max in Figure  3.28 

and Figure  3.30 

Table 4.16 Ideal Values for Metrics Used 

Metric Ideal Value 

HyperVolume 10000 

Spacing 0 

Maximum Spread √          

Two Sets Coverage 1 

  

4.5 Problem Representation 

Representation is considered as a fundamental step and key element in designing an 

evolutionary algorithm. As mentioned in Chapter 3, representation refers to encoding a 

real-world problem characteristic to an appropriate computer data structure. An array of 

binary values is the most common way of encoding (Sivanandam & Deepa, 2009).  In 

the case of the view selection problem, a potential solution to the problem is encoded to 

an array of binary values. The size of the array is identical to the number of possible 

views. A one (1) in the i
th 

position of the array means that the i
th 

view is selected for 

materialization while a zero (0) in the i
th

 position indicates the i
th

 view is not selected. 

For example, Figure  4.11 shows a dependency lattice for a view selection problem with 

8 possible views. In addition, a corresponding array with 8 cells is shown. The views 

which are labeled with numbers 2, 3, and 6 (shown in grey) are the views that have been 

selected for materialization and the rest of the views that have not been selected. As can 

be seen, the array cells with number 2, 3 and 6 are set to one while the other cells take 
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the value of zero. Based on this form of encoding, it is clear that with | | possible views 

the total number of points in the search space (as search space size) is the number of all 

the combination of arrays with different values and is equal to  | |. For the example 

shown in Figure  4.11, the search space size is    (see Figure  4.12). 

All the eight (8) algorithms were implemented using the same binary encoding scheme 

presented here with 64 bits for VSP1 and 48 bits for VSP2 to represent the decision 

variable. 

 

Figure 4.11 View Selection Problem Encoding 

 

Figure 4.12 Calculating the Size of Search Space 

4.6 Initialization 

An evolutionary algorithm starts by an initial population. The common way for creating 

an initial population is to generate a population by assigning random values. An ideal 

random population is supposed to be well distributed in the entire search space 

(Engelbrecht, 2007). For the view selection problem, a random population of 
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individuals is generated by the RandomGenerate method in the population class. The 

parameter Populationsize determines the size of the population to be generated while 

the ChromosomeSize refers to the number of genes which an individual include. Before 

calling RandomGenerate the population is supposed to be empty, otherwise all existing 

individuals are simply deleted first. 

In all studies, in order to avoid the impact of random effect, 30 independent runs with 

different random seeds (to create different random initial population) were made per  

algorithm/problem instance which leads to 30 sets of solutions in the final generation.  

4.7 Stopping Criteria 

An evolutionary algorithm stops when a specific stopping criteria holds. The different 

possible criteria were discussed in Termination Condition in. Section  3.3.1.6. However, 

the algorithms implemented in this research are terminated when they reach to the 

maximum number of generation. 

4.8 Constraint Handling 

As mentioned in Section  1.3 the variation of the view selection problem pertinent to this 

research involves the disk space constraint. That is a potential solution to the problem 

that must be fulfilled is the total disk space requirement for storing all views. Otherwise, 

the solution is regarded as an infeasible solution. The constrained dominance technique 

(Deb, 2001) is a parameterless constraint handling approach which uses the original 

dominance concept and the binary tournament. The advantage for such technique is that 

all methods designed based on the normal dominance definition can still work with only 

minor modifications. In addition, the approach results in a better pareto spread and 

convergence as stated in (Deb, 2001). For VEGA and WBGA which are not based on 

dominance concept a modified binary tournament selection operator is used as 



 

121 
 

described in (Deb, 2001). The modified binary tournament selection operator picks two 

random individual; x and y from the population and of them one individual is chosen 

based on two criteria: feasibility and objective value. Taking constraints into 

consideration three different situations may happen: 

a) Both individuals are feasible 

b) One individual is feasible and the other is infeasible 

c) Both individuals are infeasible 

Thereafter one individual is chosen following a simple rule: 

Case a) An individual with better objective value is chosen 

Case b) The feasible individual is chosen 

Case c) The individual with less constraint violation is chosen. 

4.9 Objective Normalization 

The objective of a multi-objective optimization problem may take values of different 

order of magnitude. In order to make each objective to be in the same order of 

magnitude and equally important the objectives need to be scaled properly. The 

procedure is called objective normalization and requires the knowledge of maximum 

and minimum values for each objective (Deb, 2001). In the case of view selection 

problem, both objectives, i.e. total query response time and total view update time, were 

normalized to give value between 0 and 100 and calculated using following equations: 

 
  ( )  

 ( )      

         
     4.2 

 
  ( )  

 ( )      

         
     4.3 
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The   ( ) and   ( ) corresponds to the normalized values for total query response 

time and total view update time respectively.     ,     ,      and      were 

described in Sections  2.10 and   2.11. 

4.10 View Size Estimation 

As mentioned in  Chapter 2, the view selection algorithms require the knowledge of the 

size of a view without actually computing it since the computation of large number of 

views is considered as an expensive task and is considered to be impractical. Without 

the actual computation of a view, determining the exact size of a view may not be 

possible. In practice, in order to determine the size of a view, view size estimation is 

used instead. Of various suggested techniques for estimation the Cardenas’ formula 

(Cardenas, 1975) is utilized due to its simplicity and low computational complexity. 

4.11 Problem Instances 

TPC-H benchmark ("The TPC Benchmark™H," 2011) is a database generator which is 

recommended by the Transaction Processing Performance Council (TPC) 

(http://www.tpc.org)  and is widely used as a standard in decision support applications. 

All view selection problem instances are derived from the database. The populated 

database has 1 GB size and is uniformly distributed. The star schema for this database is 

shown in Figure  4.15. The schema consists of three dimensions, that is: Supplier, Part 

and Customer; as well as a central fact table, Sales. The parts are obtained from a 

supplier and are sold to a customer for a specific price. All aggregations are applied to 

the price attribute as a measure of interest. In order to define the VSP instances a special 

tool is designed.  The tool takes the meta-data which is driven from the synthetic 

database and calculates an instance of the VSP class. Figure  4.13 and Figure  4.14 show 
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the different steps for creating the problem instance and the tool interface for defining 

the problem instance respectively. 

 

Figure 4.13 Screenshot of the Tool for Defining the View Selection Problem Instance 

 

Figure 4.14 Creating VSP Instance 

 

 

Figure 4.15 The Star Schema for the Supplier-Parts Database 
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The dimension hierarchy differs from one problem instance to another. Since we are 

interested to investigate the behavior (convergence, diversity and computational time) 

of the algorithms with different size of the problem we derived two problem instances 

with 64 and 48 views.  The smaller problem was created by logically ignoring the 

Region level from Customer hierarchy. 

The reason behind selecting only two problem instances is that the performance of the 

view selection algorithms was expected to be more dependent on the metadata rather 

than the actual content of data. These metadata are view sizes, query frequency and 

view update frequency and logical structure of views. Since the calculation of actual 

view sizes is impractical as stated in Section  2.12 the view sizes are estimated using an 

analytical method (Cardenas, 1975).The query and view update frequency are also 

determined by a probability model and the structure of views are derived from the 

dimension hierarchies. Furthermore, the dimension hierarchies are logically assigned to 

each dimension table. As a result our main concern was to identify how the algorithm 

works with different sizes of the search space. Apart from this, a number of outstanding 

research works in the field of view selection problem such as the works by (Aouiche et 

al., 2006; Baralis et al., 1997; Baril & Bellahsene, 2003; Harinarayan et al., 1996; Hung 

et al., 2007; Lin & Kuo, 2004; Phuboon-ob & Auepanwiriyakul, 2007b; Song & Gao, 

2010; Wang & Zhang, 2005) also use one or two problem instances in their 

experiments.  

 For the query and update frequency, a uniform frequency is assumed which indicates 

identical probability for query and update.  For the disk space constraint, the disk space 

quota was set to 10% of the total size of all views. 
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4.11.1 VSP1 

The first problem instance called VSP1 introduces the largest search space among the 

problem instances. All the dimension tables have four levels (or nodes) of 

summarization as shown in Figure  4.16.  As mentioned earlier in  Chapter 2, the 

hypothetical attribute All, implies aggregation of all records in a dimension. The total 

number of possible views are calculated as the product of the number of hierarchy 

nodes in the different dimension hierarchies (i.e.      ); and in the case of VSP1, is 

equal to 64. The list of all derived views is detailed in Table  4.17. Furthermore, the size 

of the search space is the power set of all the views which is 2
64

.  The dependency 

lattice with 64 views for VSP1 is shown in Figure  4.17. 

 

Figure 4.16 Dimension Hierarchies for VSP1 
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Table 4.17 List of Views For VSP1 

Node Attributes Node Attributes 

0 Supplier ID, Customer ID, Part ID, 32 Nation, All, Part ID, 

1 Nation, Customer ID, Part ID, 33 Nation, Region, Type, 

2 Supplier ID, Nation, Part ID, 34 Nation, Region, Size, 

3 Supplier ID, Customer ID, Type, 35 Nation, Nation, All, 

4 Supplier ID, Customer ID, Size, 36 Supplier ID, All, Type, 

5 Region, Customer ID, Part ID, 37 Supplier ID, All, Size, 

6 Nation, Nation, Part ID, 38 Supplier ID, Region, All, 

7 Nation, Customer ID, Type, 39 All, Region, Part ID, 

8 Nation, Customer ID, Size, 40 All, Nation, Type, 

9 Supplier ID, Region, Part ID, 41 All, Nation, Size, 

10 Supplier ID, Nation, Type, 42 All, Customer ID, All, 

11 Supplier ID, Nation, Size, 43 Region, All, Part ID, 

12 Supplier ID, Customer ID, All, 44 Region, Region, Type, 

13 All, Customer ID, Part ID, 45 Region, Region, Size, 

14 Region, Nation, Part ID, 46 Region, Nation, All, 

15 Region, Customer ID, Type, 47 Nation, All, Type, 

16 Region, Customer ID, Size, 48 Nation, All, Size, 

17 Nation, Region, Part ID, 49 Nation, Region, All, 

18 Nation, Nation, Type, 50 Supplier ID, All, All, 

19 Nation, Nation, Size, 51 All, All, Part ID, 

20 Nation, Customer ID, All, 52 All, Region, Type, 

21 Supplier ID, All, Part ID, 53 All, Region, Size, 

22 Supplier ID, Region, Type, 54 All, Nation, All, 

23 Supplier ID, Region, Size, 55 Region, All, Type, 

24 Supplier ID, Nation, All, 56 Region, All, Size, 

25 All, Nation, Part ID, 57 Region, Region, All, 

26 All, Customer ID, Type, 58 Nation, All, All, 

27 All, Customer ID, Size, 59 All, All, Type, 

28 Region, Region, Part ID, 60 All, All, Size, 

29 Region, Nation, Type, 61 All, Region, All, 

30 Region, Nation, Size, 62 Region, All, All, 

31 Region, Customer ID, All, 63 All, All, All, 
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Figure 4.17 Dependency Lattice for VSP1 

4.11.2 VSP2 

The second problem instance is called VSP2. The Supplier dimension table includes four 

levels of aggregation as Supplier ID, Nation, Region and All. The Customer dimension 

table consists of three levels as CustomerID, Nation and All. The third dimension table, 

the Part dimension, consists of four hierarchy nodes as PartID, Type, Size and All. The 

dimension hierarchies are shown in Figure  4.18. The total number of possible views is 

48 and hence the size of the search space is 2
48

. The list of derived views is presented in 

Table  4.18 while Figure  4.19 shows the dependency lattice for VSP2. 
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Figure 4.18 Dimension Hierarchies for VSP2 

Table 4.18 List Of Views for VSP2 

Node Attributes Node Attributes 

0 Supplier ID, Customer ID, Part ID, 24 All, Nation, Part ID, 

1 Nation, Customer ID, Part ID, 25 All, Customer ID, Type, 

2 Supplier ID, Nation, Part ID, 26 All, Customer ID, Size, 

3 Supplier ID, Customer ID, Type, 27 Region, All, Part ID, 

4 Supplier ID, Customer ID, Size, 28 Region, Nation, Type, 

5 Region, Customer ID, Part ID, 29 Region, Nation, Size, 

6 Nation, Nation, Part ID, 30 Region, Customer ID, All, 

7 Nation, Customer ID, Type, 31 Nation, All, Type, 

8 Nation, Customer ID, Size, 32 Nation, All, Size, 

9 Supplier ID, All, Part ID, 33 Nation, Nation, All, 

10 Supplier ID, Nation, Type, 34 Supplier ID, All, All, 

11 Supplier ID, Nation, Size, 35 All, All, Part ID, 

12 Supplier ID, Customer ID, All, 36 All, Nation, Type, 

13 All, Customer ID, Part ID, 37 All, Nation, Size, 

14 Region, Nation, Part ID, 38 All, Customer ID, All, 

15 Region, Customer ID, Type, 39 Region, All, Type, 

16 Region, Customer ID, Size, 40 Region, All, Size, 

17 Nation, All, Part ID, 41 Region, Nation, All, 

18 Nation, Nation, Type, 42 Nation, All, All, 

19 Nation, Nation, Size, 43 All, All, Type, 

20 Nation, Customer ID, All, 44 All, All, Size, 

21 Supplier ID, All, Type, 45 All, Nation, All, 

22 Supplier ID, All, Size, 46 Region, All, All, 

23 Supplier ID, Nation, All, 47 All, All, All, 
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Figure 4.19 Dependency Lattice for VSP2 

4.12 Hardware and Software Specification 

All experiments were performed on a computer with Intel Core 2 duo 1.8 GHz 

processor, 3 GB of memory and 160 GB of hard disk running Microsoft windows 7 

Professional. The system was free from other computation or being interrupted by other 

programs. The implementation of the algorithms was carried out using Microsoft Visual 

Basic 2008. The Visual Basic programming code is presented in  Appendix A. 

4.13 Summary 

The general structure of the current work is classified into different domains as the 

following: The problem domain where the characteristics of the problem at hand are 

defined and the methodology consisting of the algorithm which acts on the problem. In 

this chapter different objects defined for each domain were discussed. Each 
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evolutionary algorithm works with a set of parameters; the values chosen for the 

parameters in this research were stated. The metrics which has been used for evaluating 

the performance of the evolutionary multi-objective algorithm listed. Thereafter, 

problem representation, stopping criteria, constraint handling technique and object 

normalization used was discussed. 

Two problem instances called VSP1 and VSP2 were used in this research. The 

description for each problem instance was given and finally the hardware and software 

specification for experimental work mentioned. 
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Chapter 5. Results and Discussion 

This chapter presents the results for the comparison of eight well-known evolutionary 

multi-objective algorithms based on four different measures and computational time. 

The algorithms included in the experiments were ,WBGA (Hajela & Lin, 1992), NSGA 

(Srinivas & Deb, 1994), NSGA-II (Deb, Pratap, Agarwal, & Meyarivan, 2002), SPEA 

(Zitzler & Thiele, 1999), SPEA-II (Zitzler, Laumanns, et al., 2001), VEGA (Schaffer, 

1985) , MOGA (Fonseca & Fleming, 1993) and NPGA (Horn et al., 1994) which was 

described in  Chapter 3. 

VEGA, NPGA, MOGA and NSGA are considered as the most important and most 

popular algorithms for MOEA as stated in (Coello, 1999). The eight (8) chosen 

algorithms come with different perspectives and approaches and are frequently used in 

different real-world applications as stated in Table  3.1. Some of these algorithms use 

the dominance concept (NSGA-II, NSGA, SPEA, SPEA-II, MOGA, NPGA) while there 

are algorithms (VEGA, WBGA) which are not based on the concept of dominance. Some 

of the algorithms use the elitism (SPEA, SPEA-II, NSGA-II) feature while other 

algorithms (WBGA, NPGA, MOGA, VEGA, NSGA) do not use elitism feature. 

Furthermore, different selection mechanisms and different fitness assignment 

techniques of these algorithms make them a diverse set of algorithms for 

experimentation. 

Table  5.2 to Table  5.23, Figure  5.2 and Figure  5.3 summarize the experimental results 

for each problem instance with respect to the performance metrics Two Set Coverage, 

Hypervolume, Spacing, Maximum Spread and computational time. It is to be noted that 
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the comparison between different algorithms were made based on the mean values of 

each metric and computational time in 30 runs. 

The distribution of values for each metric and problem instance in 30 simulation runs is 

shown in a set of box plots (also known as Box and Whisker (Chambers, Cleveland, 

Tukey, & Kleiner, 1983)) in  Appendix B which visualize the distribution of data set 

across a range at glance. Each plot includes a central box with 50% of the data as well 

as two tails which called whiskers. The plot (see Figure  5.1) consists of five numbers 

(called five number summary): lower extreme, lower quartile, median, upper quartile 

and upper extreme which divide the whole data into four parts. Each of four parts 

contains 25 percent of data. The box extends from lower quartile to upper quartile. The 

horizontal line inside the middle of the box corresponds to the median of data. The 

upper and lower edge of the box shows the upper quartile and lower quartile which are 

75th and 25th percentile of data respectively. The upper and lower horizontal line 

represent the maximum and minimum observed value. All other observed values 

beyond the whiskers are called outliers and marked by *. (Dekking, Kraaikamp, 

Lopuhaä, & Meester, 2007; Ouellette, 2009; Ross, 1987; Wackerly, Mendenhall, & 

Scheaffer, 2001; Zhang, 2006) 

Multiple comparisons between different algorithms subject to a performance metric are 

shown in a number of tables. Each cell of the multiple comparisons gives the difference 

between the mean value of one algorithm (in row) with respect to another algorithm (in 

column). In addition, difference between algorithms which do not show any statistical 

significance is denoted by an asterisk (*). 
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Figure 5.1 A sample box plot 

 

For each metric and problem instance, the algorithms are ranked based on the metric 

value from the algorithm with the best value to the algorithm with the worst value. 

Moreover, when there is no statistically significance difference between two or more 

algorithm they are placed in identical ranks. 

5.1 Coverage Metric Results 

Table  5.2 and Table  5.3 show the mean values for the two set coverage metric subject to 

VSP1 and VSP2. Each cell in Table  5.2 and Table  5.3 represents the two set coverage 

metric value with respect to the algorithm in the corresponding row and column. For 

example, the value 0.04 in row 3 and column 2 in Table  5.2 represents C(SPEA, NSGA-

II). As mentioned in Section  3.4 , the metric C(A,B) calculates the  percentage of 

solutions in set B which are dominated by solutions in set A. C(A,B)=1 indicates that all 

the solutions in set B are dominated by solutions in A while C(A,B)=0 indicates that 

there is no solution in B which is dominated by a solution in A. Since the two set 
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coverage is not a symmetric relation then   (   )     (   ). C(A,A) always takes 

the value of zero since equal populations do not dominate each other.  

Two multiple comparisons of the coverage metric for VSP1 and VSP2  are derived from 

the mean of two set coverage metric (Table  5.2 and Table  5.3) and the values are 

represented in Table  5.4 and Table  5.5 for VSP1 and VSP2 respectively. Each cell in 

Table  5.4 and Table  5.5 represents the values of C(A,B)-C(B,A) with algorithm A in the 

row and algorithm B in the column of the table. 

Next, the ranking of the algorithm is calculated based on the following: 

A particular algorithm is placed in rank i and called Ai if for each j>i (higher ranks): 

     (     )    5.1 

where     (     ) is a particular cell in Table  5.4 or Table  5.5 with algorithm    in row 

and algorithm    in column. For example, SPEA-II is placed in rank 1 in Table  5.6 

because the above condition holds as listed in Table  5.1: 

Table 5.1 Checking 5.1 Condition for SPEA-II 

Comparison 

Cell(SPEA-II,NSGA-II)>0 

Cell(SPEA-II,SPEA)>0 

Cell(SPEA-II,NSGA)>0 

Cell(SPEA-II,VEGA)>0 

Cell(SPEA-II,WBGA)>0 

Cell(SPEA-II,NPGA)>0 

Cell(SPEA-II,MOGA)>0 



 

135 

 

Table 5.2 Mean Values of Two Set Coverage Metric for VSP1 

 SPEA-II NSGA-II SPEA NSGA VEGA WBGA NPGA MOGA 

SPEA-II  0.77 0.95 0.95 1 1 1 1 

NSGA-II 0.42  0.97 1 1 1 1 1 

SPEA 0.15 0.04  0.72 1 1 1 1 

NSGA 0 0 0.22  0.97 1 1 1 

VEGA 0 0 0 0  0.78 0.85 0.94 

WBGA 0 0 0 0 0.17  0.62 0.92 

NPGA 0 0 0 0 0.09 0.47  0.95 

MOGA 0 0 0 0 0.24 0.11 0.11  

Table 5.3 Mean Values of Two Set Coverage Metric for VSP2 

 SPEA-II NSGA-II SPEA NSGA VEGA WBGA NPGA MOGA 

SPEA-II  0.58 0.71 0.96 1 1 1 1 

NSGA-II 0.56  0.90 0.93 1 1 1 1 

SPEA 0.07 0.180  0.91 1 1 1 1 

NSGA 0 0 0.117  0.80 1 1 1 

VEGA 0 0 0 0  0.715 0.911 0.83 

WBGA 0 0 0 0 0.26  0.500 0.60 

NPGA 0 0 0 0 0.10 0.60  0.90 

MOGA 0 0 0 0 0.17 0.08 0.19  

Table 5.4 Multiple Comparison of Coverage Metric for VSP1. 

 SPEA-II NSGA-II SPEA NSGA VEGA WBGA NPGA MOGA 

SPEA-II  0.35 0.79 0.95 1.00 1.00 1.00 1.00 

NSGA-II   0.94 1.00 1.00 1.00 1.00 1.00 

SPEA    0.50 1.00 1.00 1.00 1.00 

NSGA     0.97 1.00 1.00 1.00 

VEGA      0.61 0.77 0.70 

WBGA       0.15* 0.81 

NPGA        0.85 

MOGA         

Table 5.5 Multiple Comparison of Coverage Metric for VSP2. 

 SPEA-II NSGA-II SPEA NSGA VEGA WBGA NPGA MOGA 

SPEA-II  0.02* 0.64 0.96 1.00 1.00 1.00 1.00 

NSGA-II   0.72 0.93 1.00 1.00 1.00 1.00 

SPEA    0.80 1.00 1.00 1.00 1.00 

NSGA     0.80 1.00 1.00 1.00 

VEGA      0.45 0.82 0.66 

WBGA       -0.10* 0.52 

NPGA        0.72 

MOGA         

         

However two algorithms, A and B are placed in equal rank if there is no statistical 

significance between C(A,B) and C(B,A) (or cell(A,B) is represented by * ). For example 
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in Table  5.6 , WBGA and NPGA are in rank 6 since cell (WBGA, NPGA) represented by 

* in  Table  5.4. 

Table  5.6 represents a ranking table based on the values of the multiple comparison of 

VSP1 and Table  5.7 shows the ranking table for VSP2. From Table  5.6 and Table  5.7 it 

can be observed that all elitist multi-objective algorithms (SPEA-II, NSGA-II, SPEA) 

perform better than the non-elitist algorithms (NSGA, MOGA, NPGA, VEGA, WBGA). 

This implies that elitism plays an important role in directing the population towards the 

pareto optimal set. Among the elitist algorithms, the SPEA-II is slightly better than the 

NSGA-II. However, the difference is not significant for VSP2. That indicates two rival 

algorithms may have almost equal performances in solving VSP2. This may be due to 

the smaller size of the VSP2 problem and therefore both algorithms encounter fewer 

difficulties to converge to the pareto optimal set.  Amongst the non-elitist algorithms 

NSGA seems to be superior. MOGA is particularly weak in converging to the true pareto 

optimal set as compared to the other algorithms.  In solving both VSP1 and VSP2, no 

significance difference is seen between WBGA and NPGA. In both problem instances 

VEGA exhibit a fair performance. The set of solutions returned by NSGA-II and SPEA-

II mostly cover that of NSGA and SPEA. This is reasonable since they are improved 

versions of their predecessor. 

Table 5.6 Ranking of the Algorithms Based on Two Set Coverage Metric and for VSP1 

Elitism Rank Algorithm VSP1 

Elitist 
1 SPEA-II 

2 NSGA-II 

3 SPEA 

Non-Elitist 

4 NSGA 

5 VEGA 

6 
WBGA 

NPGA 

7 MOGA 
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Table 5.7 Ranking of the Algorithms Based on Two Set Coverage Metric With Respect to VSP2 

Elitism Rank Algorithm VSP2 

Elitist 1 
SPEA-II 

NSGA-II 

2 SPEA 

Non-Elitist 

3 NSGA 

4 VEGA 

5 
NPGA 

WBGA 

6 MOGA 

   

5.2 Hypervolume Metric Results 

Table  5.10 and Table  5.11 show the mean values of the Hypervolume metric as well as 

the variance of the values for VSP1 and VSP2. Larger values of the Hypervolume are 

better since they represent a larger area in the objective space which is covered by a set 

of solutions. The rows in Table  5.10 and Table  5.11are ordered based on the descending 

values of the mean column so that each row in the first column represents the rank of 

the algorithm. In addition, Table  5.8 and Table  5.9 show multiple comparisons of 

Hypervolume metric for VSP1 and VSP2  respectively. 

Table 5.8 Multiple Comparison of Hypervolume for VSP1 

 SPEA-II NSGA-II SPEA NSGA VEGA WBGA NPGA MOGA 

SPEA-II  126.98 345.81 563.78 928.92 895.56 1061.21 1368.64 

NSGA-II   218.83 436.80 801.94 768.58 934.23 1241.66 

SPEA    217.97 583.10 549.75 715.40 1022.83 

NSGA     365.13 331.78 497.42 804.86 

VEGA      -33.35* 132.29 439.73 

WBGA       165.64 473.08 

NPGA        307.44 

MOGA         

Table 5.9 Multiple Comparison of Hypervolume for VSP2 

 SPEA-II NSGA-II SPEA NSGA VEGA WBGA NPGA MOGA 

SPEA-II  161.46* 256.28 376.82 852.32 1243.50 1018.24 1568.68 

NSGA-II   94.82 215.36 690.86 1082.05 856.78 1407.23 

SPEA    120.54* 596.04 987.22 761.96 1312.40 

NSGA     475.50 866.68 641.42 1191.86 

VEGA      391.18 165.92 716.36 

WBGA       -225.27 325.18 

NPGA        550.45 

MOGA         
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Table 5.10 Mean and variance values of the Hypervolume metric for VSP1 

Rank Algorithm Mean Variance 

1 SPEA-II 6032.43 50842.88 

2 NSGA-II 5905.45 12025.93 

3 SPEA 5686.62 132297.39 

4 NSGA 5468.65 95957.57 

5 
WBGA 5136.87 36853.64 

VEGA 5103.51 10601.85 

6 NPGA 4971.22 26155.29 

7 MOGA 4663.77 46047.95 

Table 5.11 Mean and Variance Values of the Hypervolume Metric for VSP2 

Rank Algorithm Mean Variance 

1 
SPEA-II 6060.84 213843.74 

NSGA-II 5899.39 58051.47 

2 
SPEA 5804.02 93335.57 

NSGA 5684.02 53668.22 

3 VEGA 5208.52 77758.32 

4 NPGA 5042.61 9143.25 

5 WBGA 4817.34 129496.55 

6 MOGA 4492.16 86648.48 

    

According to Table  5.10 SPEA-II outperforms NSGA-II for VSP1.  However, from 

Table  5.11 it is observed that both SPEA-II and NSGA-II give the highest values for 

VSP2 since there is no significant difference between them. In addition, based on the 

hypervolume metric, the performance of the most non-elitist algorithms is inferior to the 

elitist algorithms. 

Among the non-elitist algorithms NSGA is the most promising one while the VEGA and 

WBGA exhibit fair performance. The results also show that the MOGA algorithm is the 

weakest algorithm in terms of the hypervolume metric.  The performance gap which is 

seen between the SPEA and NSGA in VSP1 could be because of the lack of the elitism 

mechanism in NSGA. However, in VSP2 which is the smaller problem instance, both 

algorithms exhibit similar performance. 

The results for the hypervolume metric are almost supported by results of the two set 

coverage because both of the metrics evaluate the same aspects which is the closeness 

of solutions to the pareto optimal set. 
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5.3 Result for Spacing metric 

Table  5.14 and Table  5.15 shows the mean and variance of values for the Spacing 

metric. The Table’s rows are ordered based on the ascending order of the mean and are 

ranked accordingly. The lower Spacing values are regarded as better values since they 

indicate less variation between distances and therefore the solutions are near uniformly 

spaced (Deb, 2001). In addition, Table  5.12 and Table  5.13 show multiple comparisons 

of Spacing metric for VSP1 and VSP2 respectively. It can be observed from the 

Table  5.14 and Table  5.15 that SPEA-II performs well with respect to the population 

diversity which reveals its ability to preserve a well distributed set of solutions.  The 

results also show that spread of solutions returned by SPEA is similar to NSGA-II for  

 Table 5.12 Multiple Comparison of Spacing for VSP1 

 SPEA-II NSGA-II SPEA NSGA VEGA WBGA NPGA MOGA 

SPEA-II  -0.25 -0.20 -0.65 -0.90 -0.96 -1.20 -1.41 

NSGA-II   0.04* -0.41 -0.65 -0.72 -0.95 -1.17 

SPEA    -0.45 -0.69 -0.76 -0.99 -1.21 

NSGA     -0.25 -0.31 -0.54 -0.76 

VEGA      -0.07* -0.30 -0.52 

WBGA       -0.23 -0.45 

NPGA        -0.22 

MOGA         

Table 5.13 Multiple Comparison of Spacing for VSP2 

 SPEA-II NSGA-II SPEA NSGA VEGA WBGA NPGA MOGA 

SPEA-II  -0.48 -0.10 -0.52 -0.85 -0.94 -1.30 -1.17 

NSGA-II   0.39 -0.04 -0.36 -0.46 -0.82 -0.68 

SPEA    -0.43 -0.75 -0.84 -1.21 -1.07 

NSGA     -0.32 -0.42 -0.78 -0.65 

VEGA      -0.09* -0.46 -0.32 

WBGA       -0.36 -0.23 

NPGA        0.13 

MOGA         
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Table 5.14 Mean and Variance Values for Spacing Metric for VSP1 

Rank VSP 1 Mean Variance 

1 SPEA-II 0.20 0.004 

2 
SPEA 0.40 0.021 

NSGA-II 0.45 0.018 

3 NSGA 0.85 0.123 

4 
VEGA 1.10 0.170 

WBGA 1.16 0.086 

5 NPGA 1.40 0.144 

6 MOGA 1.61 0.140 

Table 5.15 Mean and Variance Values for Spacing Metric for VSP2 

Rank VSP 2 Mean Variance 

1 SPEA-II 0.30 0.004 

2 SPEA 0.39 0.012 

3 NSGA-II 0.78 0.026 

4 NSGA 0.82 0.061 

5 
VEGA 1.14 0.228 

WBGA 1.24 0.098 

6 MOGA 1.46 0.232 

7 NPGA 1.60 0.113 

    

VSP1 while SPEA outperforms in VSP2. This is also supported by the work of (Deb, 

Mohan, & Mishra, 2003). However, the NPGA and MOGA are amongst the poorest 

algorithms in terms of the Spacing algorithm. VEGA and WBGA also show similar 

performance in both problem instances. 

5.4 Maximum Spread Metric Results 

Table  5.18 and Table  5.19 present the mean and variance of values for the Maximum 

Spread metric. Larger values are better since they indicate the solutions are spanned 

over larger region of the objective space. The Table’s rows are ordered based on the 

descending values of the mean column and each row in the first column represents the 

rank for a particular algorithm. In addition, Table  5.16 and Table  5.17 show multiple 

comparisons of Maximum Spread metric for VSP1 and VSP2 respectively. 

From Table  5.18 it can be seen that the SPEA-II is best in VSP1. However according to 

the results in Table  5.19 the difference between two algorithm’s means is not 
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statistically significant in VSP2. The results also show that WBGA performs worst 

among all the algorithms while algorithms NSGA exhibit a fair performance.  

Table 5.16 Multiple Comparison for Maximum Spread Metric for VSP1 

 SPEA-II NSGA-II SPEA NSGA VEGA WBGA NPGA MOGA 

SPEA-II  1.65 10.25 15.37 23.84 35.95 28.02 25.15 

NSGA-II   8.60 13.72 22.19 34.30 26.37 23.50 

SPEA    5.13 13.59 25.71 17.77 14.90 

NSGA     8.47 20.58 12.65 9.77 

VEGA      12.11 4.18 1.31* 

WBGA       -7.93 -10.81 

NPGA        -2.87 

MOGA         

Table 5.17 Multiple Comparison for Maximum Spread Metric for VSP2 

 SPEA-II NSGA-II SPEA NSGA VEGA WBGA NPGA MOGA 

SPEA-II  -0.03* 8.22 14.69 32.13 35.48 27.02 24.26 

NSGA-II   8.25 14.72 32.16 35.51 27.05 24.29 

SPEA    6.47 23.91 27.26 18.80 16.04 

NSGA     17.44 20.79 12.33 9.57 

VEGA      3.35 -5.11 -7.87 

WBGA       -8.46 -11.22 

NPGA        -2.76* 

MOGA         

Table 5.18 Mean and Variance values of the Maximum Spread Metric for VSP1 

Rank VSP 1 Mean Variance 

1 SPEA-II 55.00 1.253 

2 NSGA-II 53.35 0.163 

3 SPEA 44.76 7.405 

4 NSGA 39.63 18.327 

5 
VEGA 31.17 44.102 

MOGA 29.86 84.414 

6 NPGA 26.99 42.329 

7 WBGA 19.05 31.753 

Table 5.19 Mean and Variance Values of the Maximum Spread Metric for VSP2 

Rank VSP 2 Mean Variance 

1 
NSGA-II 54.04 0.294 

SPEA-II 54.00 2.097 

3 SPEA 45.78 10.547 

4 NSGA 39.32 14.608 

5 
MOGA 29.74 56.439 

NPGA 26.98 50.921 

7 VEGA 21.87 21.216 

8 WBGA 18.52 29.203 
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5.5 Visual Comparison for 30 runs 

The final populations from all 30 independent runs for each algorithm were combined 

to form an accumulated population and thereafter the non-dominated solutions were 

identified. The non-dominated solutions are visualized in Figure  5.2 and Figure  5.3 

corresponding to the VSP1 and VSP2 respectively.  

From the Figure  5.2 and Figure  5.3 it can observed that the SPEA-II and NSGA-II 

perform best among all the algorithms with respect to convergence because the curve of  

 

Figure 5.2 Non-Dominated Front Obtained By Each Evolutionary Algorithm Solving VSP1 
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Figure 5.3 Non-Dominated Front Obtained By Each Evolutionary Algorithm Solving VSP2 

solutions for these two algorithms are closer to the point (0,0). In addition the extent of 

the solutions of these two algorithms is much larger than the other algorithms. 

However, MOGA is the poorest algorithm with respect to convergence and extent of 

solutions. Furthermore, it can be seen that solutions by VEGA is denser in the center 

region. This is the region where both objectives are individually minimized. That 

implies that VEGA has a tendency to deliver good values subject to each objective 

rather than a distributed set of trade-off solutions. This issue is also mentioned in the 

work by (Deb, 2001; Nakayama et al., 2009a) 

5.6 Computational Time Results 

In order to compare the computational time of the algorithms the mean computational 

time for each algorithm in 30 runs is shown in Table  5.22 and Table  5.23. The Table’s 

rows are ordered based on the ascending order of the mean and each row in the first 

column represents the rank for a particular algorithm. In addition, Table  5.20 and 
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Table  5.21 show multiple comparisons of computational time metric for VSP1 and VSP2 

respectively. 

According to Table  5.22 and Table  5.23 most elitist algorithms except NSGA-II require 

more time to execute as compared to the non-elitist algorithms. VEGA appeared to be 

the fastest algorithm. However, as mentioned before its performance is less than the 

elitist algorithms in terms of diversity and convergence. Among the elitist algorithms 

the NSGA-II is considerably fast. This is likely due to the fast non-dominated sorting of 

this algorithm. In both problem instances NSGA is the slowest algorithm possibly due to 

its ranking and fitness sharing procedures. The result reveals that the elitism feature 

adds computational overhead on the evolutionary algorithm. As a result most elitist 

algorithms are slower than the algorithms which do not support elitism. For example the 

SPEA is slower than the MOGA.  For each algorithm the computational time for VSP1 is  

Table 5.20 Multiple Comparisons for Computational Time Metric for VSP1 

 SPEA-II NSGA-II SPEA NSGA VEGA WBGA NPGA MOGA 

SPEA-II  2.59 0.31 -2.15 7.16 2.33 0.83 1.39 

NSGA-II   -2.28 -4.73 4.58 -0.26 -1.75 -1.20 

SPEA    -2.45 6.86 2.02 0.53* 1.08 

NSGA     9.31 4.48 2.98 3.54 

VEGA      -4.83 -6.33 -5.77 

WBGA       -1.50 -0.94 

NPGA        0.56 

MOGA         

Table 5.21 Multiple Comparisons for Computational Time Metric for VSP2 

 SPEA-II NSGA-II SPEA NSGA VEGA WBGA NPGA MOGA 

SPEA-II  2.49 0.64 -2.72 3.93 2.65 1.88 1.46 

NSGA-II   -1.86 -5.21 1.43 0.16* -0.61 -1.03 

SPEA    -3.35 3.29 2.02 1.24 0.83 

NSGA     6.64 5.37 4.60 4.18 

VEGA      -1.27 -2.05 -2.46 

WBGA       -0.77 -1.19 

NPGA        -0.42 

MOGA         
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Table 5.22 Mean of Computational Time (in Second) for VSP1 

Rank Algorithm Mean Computational 
Time 

Variance 

1 VEGA 18.027 0.51 

2 NSGA-II 22.604 0.89 

3 WBGA 22.859 0.77 

4 MOGA 23.799 1.05 

5 
NPGA 24.356 0.61 

SPEA 24.883 2.65 

6 SPEA-II  25.191 0.59 

7 NSGA 27.337 6.75 

Table 5.23 Mean of Computational Time (in Second) for VSP2 

Rank Algorithm Mean Computational 
Time 

Variance 

1 VEGA 14.769 0.39 

2 
NSGA-II 16.202 1.03 

WBGA 16.042 0.65 

3 MOGA 17.231 0.28 

4 NPGA 16.816 0.96 

5 SPEA 18.058 1.47 

6 SPEA-II  18.694 0.45 

7 NSGA 21.412 2.34 

    

noticeably higher than that of VSP2. This is explained by a larger search space of VSP1 

than VSP2. NSGA-II as an enhanced version is significantly faster than NSGA. However, 

in the case of SPEA-II the older version i.e. SPEA is faster in solving VSP2. Since 

SPEA-II uses a fine-grained fitness assignment strategy it has more computational time 

than its predecessor; SPEA. 

Generally, it can be said that none of the eight (8) algorithms can be considered as the 

best with respect to the four performance metrics and computational time. However, in 

most of the metrics NSGA-II and SPEA-II perform better than the other algorithms. The 

result shows also that features such as elitism and sharing strategy which are 

implemented in SPEA-II, SPEA, NSGA-II are important factors in order to reach better 

convergence and diversity of solutions while at the same time it increases the 

computational overhead. 
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Chapter 6. Conclusion 

This chapter presents the conclusion of this thesis. The chapter is organized as follows: 

Section  6.1 gives a summary of the research undertaken.  Section  6.2 presents the 

research results and the contributions and finally the future work will be stated in 

Section  6.3 

6.1 Summary of Research 

The materialized view selection problem is considered as an important challenge in data 

warehouse optimization. The problem of selecting the right subset of views such that a 

goal is minimized is an NP-Hard problem (Gupta & Mumick, 1999). The problem 

received significant attention in the past. Several approaches such as greedy, Genetic 

Algorithm, A
*
, simulated annealing and etc. has been suggested (see Table  2.3).  

However, most of the proposed works merely consider the problem in a single objective 

form where either the total query response time, total update time or a combination of 

these are taken into consideration. The multi-objective view selection is an innovative 

approach to the problem and refers to selecting a subset of views such that both goals, 

that is the total query response time and the total view update time is minimized 

simultaneously. On the other hand, evolutionary algorithms are regarded as a promising 

candidate to solve the general multi-objective problems (Deb, 2001). The application of 

these algorithms were investigated in several optimization problems with multiple 

objectives in different areas (Coello, 2007; Deb, 2001; Goldberg, 1989; Yu & Gen, 

2010). However, in the field of the view selection problem in the multi-objective 

variation no published comprehensive and comparative study has been carried out. This 

research is about the application of evolutionary multi-objective optimization 
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algorithms in the multi-objective view selection problem. As a comparative study a 

number of well-known evolutionary algorithms were applied to the multi-objective 

view selection problem. 

The entire architecture for the proposed object oriented model is classified into two 

different domains: 

 Problem domain 

 Methods domain 

The problem domain includes all relevant classes to the problem such as Lattice, view 

and VSP problem instance. The methods domain includes all classes that are relevant to 

the methods. The classes in the methods domain are divided in two different groups: 

The shell classes and core classes. The core classes are fundamental classes which are 

used as a basic part in the shell classes. Examples of the core classes are the individual, 

population, selection operator, mutation operator and crossover operator. The shell 

classes implement a fully standalone evolutionary algorithm and can be executed 

independently. These algorithms rely on ready-made classed in the core area. The 

advantage of such a classification is that any time in future, the problems and methods 

can be replaced to other problems and methods.  

In order to deal with the disk space constraint of the view selection problem in this 

research, constrain dominance is used for constraint handling, since it was shown as a 

promising technique in (Deb, 2001). The technique slightly modifies the definition of 

the original dominance concept so as to make the right decisions about the infeasible 

solutions encountered. 
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Most view selection algorithms require the knowledge of the size of the views. 

However, the exact size of views would be obtainable only by creating and storing the 

view. For view size estimation the Caredenas’ formula (Cardenas, 1975) was used. 

6.2 Contribution and results 

Two different goals for the evolutionary multi-objective algorithms are (Mumford & 

Jain, 2009): 

1. Finding a set of solutions which are close to the true pareto optimal set. 

2. Finding a set of solutions that are well distributed. 

In designing the performance metric for the evolutionary multi-objective algorithms 

these two goals are taken into consideration. Several performance metrics (Deb, 2001) 

are suggested for the assessment of the evolutionary multi-objective algorithms. 

Generally, the metrics are classified in three groups: the convergence based metric 

which measure a set of obtained solutions based on the first goal, diversity based 

metrics which evaluates the set of solutions based on the second goal and hybrid metrics 

which are meant to measure the performance based on both of the two above goals. 

Two problem instances, called VSP1 and VSP2, is derived from a synthetic database 

populated according to the TPC-H proposal ("The TPC Benchmark™H," 2011). The 

size of the search space for VSP1 and VSP2 is     and      respectively. 

For evaluating the performance of the algorithms studied in this research, Two Sets 

Coverage as convergence based, Hypervolume as a hybrid metric, spacing and 

maximum spread as a diversity based was used. It is to be noted that some metrics 

require the knowledge of the true pareto optimal set. Examples of such measures are the 

Error Ratio, Generational Distance and Spread (Deb, 2001). However, in the case of 

the view selection problem these metrics were not applicable since the set of true pareto 
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optimal set is unknown. The outcomes of all the eight (8) algorithms in 30 different runs 

with different initial population were compared based on these three metrics. In 

addition, the computational times for these algorithms were also compared. 

 It is to be noted that the contribution of this research is limited to the multi-objective 

view selection problem area.The general contributions of this research (with respect to 

the multi-objective view selection problem) are as follows: 

 Identification of the algorithm which performed well (as compared to various 

others) in solving the multi-objective view selection problem; and these 

algorithms are namely, SPEA-II and NSGA-II. These two algorithms is 

recommendation of this research for solving multi-objective view selection 

problem. 

 Our findings show that the elitist algorithms (SPEA-II, SPEA, and NSGA-II) 

perform better than the non-elitist algorithms (MOGA, NPGA, WBGA and 

VEGA) in solving the multi-objective view selection problem. 

 The strategies such as fitness sharing and crowding help in the diversity of the 

solutions to the multi-objective view selection problem. 

 In solving the multi-objective view selection problem, although using a 

secondary population for preserving the best ever found solutions helps to 1) 

give a more distributed solution; and 2) obtain a set of solutions which are closer 

to the optimal solution, however at the same time managing the secondary 

population increases the computational complexity of the algorithm. 

6.3 Future Work 

Future perspective on the view selection problem can be the investigation of the 

following items: 
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 Study the application of other possible meta-heuristic such as the ant colony 

optimization, Particle swarm optimization, Bee algorithms on the multi-

objective view selection problem 

 A new evolutionary multi-objective algorithm developed by combining good 

features of different evolutionary multi-objective algorithms. 

 Investigate the application of parallel genetic algorithms on the multi-objective 

view selection problem. 
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Appendix A. Visual Basic Code 

A.1 Classes in Method Domain 

A.1.1 Core Classes 

A.1.1.1 Individuals Class 

Imports GA_for_View_Selection.General 
Namespace GeneticAlgorithm 
 
<Serializable()> Public Class Individual 
 
        Implements System.IEquatable(Of Individual) 
 
        Private GList() As Integer 
 
 
 
        Public Objective1Value As Double 
        Public Objective2Value As Double 
 
        Public ConstraintValue As Double 
 
        Public Fitness As Double 
 
        Public Value1 As Double 
        Public Value2 As Double 
        Public Value3 As Double 
        Public Value4 As Double 
 
        Public Rank As Short 
        Public CrowdingDistance As Double 
 
 
 
        Sub New(ByVal Size As Integer) 
            ReDim GList(Size - 1) 
        End Sub 
 
 
 
        Default Public Property Gene(ByVal i As Short) As Integer 
            Get 
                Return GList(i) 
            End Get 
            Set(ByVal value As Integer) 
                GList(i) = value 
            End Set 
 
        End Property 
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        Public Function EqualTo(ByVal I As Individual) As Boolean Implements 
IEquatable(Of Individual).Equals 
 
            If GList.SequenceEqual(I.GList) = True Then 
                Return True 
            Else 
                Return False 
            End If 
 
        End Function 
 
 
        Public ReadOnly Property Count() As Integer 
            Get 
                Return GList.Count 
            End Get 
 
        End Property 
        Public Overrides Function ToString() As String 
 
            Return GList.ToString() 
 
        End Function 
 
        Public Function IsFeasible() As Boolean 
            Return ConstraintValue <= 0 
        End Function 
 
 
        Public Shared Operator =(ByVal x As Individual, ByVal y As Individual) As 
Boolean 
 
            If x.GList.SequenceEqual(y.GList) Then 
                Return True 
            Else 
                Return False 
            End If 
 
        End Operator 
        Public Shared Operator <>(ByVal x As Individual, ByVal y As Individual) 
As Boolean 
 
            If x.GList.SequenceEqual(y.GList) = False Then 
                Return True 
            Else 
                Return False 
            End If 
 
        End Operator 
 
        Public Sub Evaluate(ByVal Objective1 As Func(Of Object, Double), ByVal 
Objective2 As Func(Of Object, Double), ByVal Constraint As Func(Of Object, 
Double)) 
            Dim a As VSPPhenotype 
 
 
 
            a = DecodeToPhenotype() 
 
 
 
            Objective1Value = Objective1(a) 
            Objective2Value = Objective2(a) 
 
            ConstraintValue = Constraint(a) 
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        End Sub 
        Public Function Clone() As Individual 
            Dim I As Individual 
            I = MemberwiseClone() 
            I.GList = GList.Clone() 
            Return I 
        End Function 
 
        Public Sub Random() 
 
            For i = 0 To Count - 1 
                GList(i) = Random01() 
            Next 
        End Sub 
 
        Public Function Dominate(ByVal P As Population) As Population  
'individuals in P which this individual dominates 
            Dim DominatedIndividuals As New Population 
 
            For Each I As Individual In P 
                If GA.Dominate(Me, I) = True Then 
                    DominatedIndividuals.Add(I) 
                End If 
            Next 
 
            Return DominatedIndividuals 
        End Function 
        Public Function DominateAny(ByVal P As Population) As Boolean ' checkes 
wether this individual dominates population p or not 
            Dim DominatedIndividuals As New Population 
 
            For Each I As Individual In P 
                If GA.Dominate(Me, I) = True Then 
                    Return True 
                End If 
            Next 
 
            Return False 
        End Function 
        Public Function Dominate(ByVal I As Individual) As Boolean 
            Return GA.Dominate(Me, I) 
        End Function 
 
 
        Public Function Exchange(ByVal index1 As Short, ByVal index2 As Short) As 
Boolean 
 
            If GList(index1) <> GList(index2) Then 
                Dim temp As Short 
 
                temp = GList(index1) 
                GList(index1) = GList(index2) 
                GList(index2) = temp 
 
                Exchange = True 
            Else 
                Return False 
            End If 
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        End Function 
 
 
        Public Function DecodeToPhenotype() As VSPPhenotype 
            Dim S As New VSPPhenotype(GList.Count) 
 
            S.List = GList 
            Return S 
 
        End Function 
 
        Public Function ToArray() As Array 
            Return GList.ToArray() 
 
        End Function 
 
        Public Sub Flip(ByVal i As Integer) 
            GList(i) = 1 - GList(i) 
        End Sub 
 
 
        Private Function Random01() As Short 
            Dim R As Double 
 
            Randomize() 
            R = Rnd() 
            If R <= 0.5 Then 
                Return 0 
            Else 
                Return 1 
            End If 
        End Function 
 
        Private Class IndividualCounter 
            Implements IEnumerator 
            Private Ilist As List(Of Individual) 
            Private Position As Integer = -1 
            Public Sub New(ByVal L As List(Of Individual)) 
                Ilist = L 
            End Sub 
            Public ReadOnly Property Current() As Object Implements 
System.Collections.IEnumerator.Current 
                Get 
                    If Position < Ilist.Count Then 
                        Return Ilist(Position) 
                    Else 
                        Return Nothing 
                    End If 
                End Get 
            End Property 
 
            Public Function MoveNext() As Boolean Implements 
System.Collections.IEnumerator.MoveNext 
                If Position < Ilist.Count - 1 Then 
                    Position = Position + 1 
                    Return True 
                Else 
                    Return False 
                End If 
            End Function 
 
            Public Sub Reset() Implements System.Collections.IEnumerator.Reset 
                Position = -1 
            End Sub 
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        End Class 
 
    End Class 
End Namespace 
 
 
 

A.1.1.2 Population Class 

 
Imports GA_for_View_Selection.General 
Imports System.Math 
Imports GA_for_View_Selection.GeneticAlgorithm.GA 
Imports System.Runtime.Serialization.Formatters.Binary 
Imports System.IO 
 
Namespace GeneticAlgorithm 
 
<Serializable()> Public Class Population 
 
        Implements ICloneable 
        Implements IEnumerable 
 
 
 
        Private IList As List(Of Individual) 
        Public ID As Integer 
 
        Private DominatedBy() As List(Of Integer) 
        Private Dominates() As List(Of Integer) 
 
        Public Event AddEvent(ByVal I As Individual) 
        Public Event RemoveEvent(ByVal I As Individual) 
 
 
        Public Sub New() 
            IList = New List(Of Individual) 
        End Sub 
 
        Public ReadOnly Property Count() As Integer 
            Get 
                Return IList.Count 
            End Get 
 
        End Property 
        Public WriteOnly Property Rank() As Integer 
 
 
            Set(ByVal value As Integer) 
 
                For Each Individual In IList 
                    Individual.Rank = value 
                Next 
            End Set 
        End Property 
 
 
        Default Public Property Member(ByVal i As Integer) As Individual 
            Set(ByVal value As Individual) 
                IList(i) = value 
            End Set 
            Get 
                If i < Count And i >= 0 Then 
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                    Return IList(i) 
                Else 
                    Return Nothing 
                End If 
 
            End Get 
 
        End Property 
 
        Private Function IndexOf(ByVal I As Individual) As Integer 
 
            Return IList.IndexOf(I) 
 
        End Function 
        Public Sub Evaluate(ByVal Objective1 As Func(Of Object, Double), ByVal 
Objective2 As Func(Of Object, Double), ByVal Constraint As Func(Of Object, 
Double)) 
 
 
 
            For Each I As Individual In IList 
 
                I.Evaluate(Objective1, Objective2, Constraint) 
            Next 
 
 
 
 
        End Sub 
 
 
        Public Function NonDominated() As Population 'Method two for finding non-
dominated individuals 
            Dim PartialSet As New Population 
            Dim flag As Boolean 
 
            If Count = 0 Then 
                Return Nothing 
            End If 
 
            PartialSet.Add(Member(0)) 
            For Each a As Individual In Me 
                flag = False 
                For Each b As Individual In PartialSet 
                    If GA.Dominate(a, b) = True Then 
                        PartialSet.Remove(b) 
                    ElseIf GA.Dominate(b, a) = True Then 
                        flag = True 
                        Exit For 
                    End If 
 
                Next 
 
                If flag = False Then 
                    PartialSet.Add(a) 
                End If 
 
            Next 
            Return PartialSet 
        End Function 
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        Public Function Top() As Population 'returns top division of population 
            Dim T As New Population 
 
            T.IList = IList.GetRange(0, Count \ 2) 
 
            Return T 
        End Function 
 
        Public Function Buttom() As Population 'returns buttom division of 
population 
 
            Dim B As New Population 
            B.IList = IList.GetRange((Count \ 2), (Count - Count \ 2)) 
            Return B 
 
        End Function 
 
 
 
        Public Sub DominationCheck() 'Upddates Dominates and Dominatedby Lists 
 
            ReDim Dominates(Count) 
            ReDim DominatedBy(Count) 
 
            For i = 0 To Count - 1 
                Dominates(i) = New List(Of Integer) 
                DominatedBy(i) = New List(Of Integer) 
            Next 
 
            For i = 0 To Count - 1 
                For j = i + 1 To Count - 1 
                    If Dominate(i, j) = True Then 
                        Dominates(i).Add(j) 
                        DominatedBy(j).Add(i) 
                    End If 
                    If Dominate(j, i) = True Then 
                        Dominates(j).Add(i) 
                        DominatedBy(i).Add(j) 
                    End If 
 
                Next 
            Next 
 
 
        End Sub 
 
        Public Sub SaveToFile(ByVal Address As String) 
            Dim W As StreamWriter = New StreamWriter(Address) 
            W.WriteLine("A=[ ") 
            For i = 0 To Count - 1 
                W.Write(Member(i).Objective1Value) 
                W.Write(" ") 
                W.Write(Member(i).Objective2Value) 
                W.WriteLine() 
            Next 
            W.Write("]") 
            W.Close() 
 
        End Sub 
 
 
        Public Function Dominate(ByVal I As Individual) As Boolean ' checkes 
wether any individual from the population dominates individual I or not 
            For Each Individual In Me 
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                If GA.Dominate(Individual, I) = True Then 
                    Return True 
                End If 
            Next 
 
            Return False 
        End Function 
 
 
 
 
        Public Function Dominate(ByVal i As Integer, ByVal j As Integer) As 
Boolean 
            Return GA.Dominate(Member(i), Member(j)) 
        End Function 
 
 
        Public Function Classify() As PopulationSet 
            Dim Level As Population 
            Dim PSet As New PopulationSet 
            Dim Rank As Integer = 1 
            Dim CheckList(Count) As Boolean 
 
            DominationCheck() 
            Level = PickNonDominated(CheckList) 
            UpdateDomination(Level) 
            While (Level.Count > 0) 
                Level.Rank = Rank 
                Rank = Rank + 1 
                PSet.Add(Level) 
                Level = PickNonDominated(CheckList) 
                UpdateDomination(Level) 
            End While 
 
            Return PSet 
        End Function 
 
 
        Private Function PickNonDominated(ByVal CheckList() As Boolean) As 
Population 
            Dim NonDominatedPopulation As New Population 
 
            For i = 0 To Count - 1 
                If (DominatedBy(i).All(Function(B As Boolean) B = False)) And 
CheckList(i) = False Then 
                    CheckList(i) = True 
                    NonDominatedPopulation.Add(Member(i)) 
                End If 
            Next 
            Return NonDominatedPopulation 
        End Function 
 
        Private Sub UpdateDomination(ByVal Level As Population) 
            Dim Ind As Short 
            For i = 0 To Level.Count - 1 
                Ind = IndexOf(Level(i)) 
                For j = 0 To Dominates(Ind).Count - 1 
                    DominatedBy(Dominates(Ind)(j)).Remove(Ind) 
 
                Next 
                Dominates(Ind).Clear() 
            Next 
        End Sub 
        Public Function Partition_Feasibility() As PopulationSet 
            Dim PS As New PopulationSet 
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            Dim NonFeasible As New Population 
            Dim Feasible As New Population 
 
            For Each Individual In IList 
                If Individual.IsFeasible() = True Then 
                    Feasible.Add(Individual) 
                Else 
                    NonFeasible.Add(Individual) 
                End If 
            Next 
 
            PS.Add(Feasible) 
            PS.Add(NonFeasible) 
 
            Return PS 
        End Function 
 
        Public Function ShallowClone() As Object Implements ICloneable.Clone 
            Dim P As New Population 
 
            P = DirectCast(Me.MemberwiseClone, Population) 
            P.IList = IList.ToList() 
 
            Return P 
        End Function 
 
        Public Function DeepClone() As Object 
            Dim s As New MemoryStream 
            Dim B As New BinaryFormatter() 
            B.Serialize(s, Me) 
            s.Seek(0, SeekOrigin.Begin) 
            Return B.Deserialize(s) 
        End Function 
        Public Function Add(ByVal I As Individual) As Boolean 
 
            If IList.Contains(I) = False Then 
                IList.Add(I) 
                RaiseEvent AddEvent(I) 
                Return True 
            Else 
                Return False 
            End If 
 
        End Function 
 
 
        Public Function Sum(ByVal F As Func(Of Individual, Double)) As Double 
            Dim Result As Double 
 
 
            Result = IList.Sum(F) 
 
 
            Return Result 
        End Function 
 
 
 
 
 
        Public Sub Sort(ByVal F As Func(Of Individual, Double)) 
            Dim IC As New IndividualComparer 
            IC.Element = F 
            IList.Sort(IC) 
        End Sub 
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        Public Function Compare(ByVal x As Individual, ByVal y As Individual, 
ByVal F As Func(Of Individual, Double)) As Integer 
 
            If F(x) < F(y) Then 
                Return 1 
 
 
            End If 
            If F(x) > F(y) Then 
                Return -1 
 
            End If 
 
            If F(x) = F(y) Then 
                Return 0 
            End If 
 
 
        End Function 
 
        Public Shared Operator -(ByVal x As Population, ByVal y As Population) As 
Population 
            Dim Z As Population 
 
 
            Z = x.ShallowClone() 
            For Each Individual In y 
                If Z.Contains(Individual) Then 
                    Z.Remove(Individual) 
                End If 
            Next 
 
 
 
            Return Z 
        End Operator 
 
 
        Public Shared Operator +(ByVal x As Population, ByVal y As Population) As 
Population 
            Dim z As New Population 
            z.ID = x.ID 
            z.IList = x.IList.Union(y.IList).ToList() 
            Return z 
        End Operator 
 
        Public Shared Operator =(ByVal x As Population, ByVal y As Population) As 
Boolean 
            If x.IList.SequenceEqual(y.IList) Then 
                Return True 
            Else 
                Return False 
 
            End If 
        End Operator 
 
        Public Shared Operator <>(ByVal x As Population, ByVal y As Population) 
As Boolean 
 
            If x.IList.SequenceEqual(y.IList) = False Then 
                Return False 
            Else 
                Return True 
            End If 
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        End Operator 
 
 
        Public Function RemoveAt(ByVal i As Integer) As Boolean 
 
            If i < IList.Count Then 
                IList.RemoveAt(i) 
                RaiseEvent RemoveEvent(IList(i)) 
                Return True 
            Else 
                Return False 
            End If 
 
        End Function 
 
        Public Function Remove(ByVal I As Individual) As Boolean 
            IList.Remove(I) 
            RaiseEvent RemoveEvent(I) 
 
        End Function 
 
 
        Public Sub Clear() 
            IList.Clear() 
            ID = 0 
        End Sub 
 
 
        Public Function Contains(ByVal x As Individual) As Boolean 
 
            Return IList.Contains(x) 
 
        End Function 
 
 
        Public Sub RandomGenerate(ByVal PSize As Integer, ByVal ISize As Integer) 
            Dim x As Individual 
 
            Clear() 
 
            While Count < PSize 
                x = New Individual(ISize) 
                x.Random() 
                Add(x) 
            End While 
 
        End Sub 
 
        Public Sub AssignCrowdingDistance() 
 
            Dim List1 As List(Of Individual) = IList.ToList() 
            Dim List2 As List(Of Individual) = IList.ToList() 
 
 
            Dim Max1, Max2, Min1, Min2 As Double 
 
            List1.Sort(Function(a As Individual, b As Individual) 
a.Objective1Value < b.Objective1Value) 
            List2.Sort(Function(a As Individual, b As Individual) 
a.Objective2Value < b.Objective2Value) 
 
            Min1 = List1(0).Objective1Value 
            Max1 = List1(Count - 1).Objective1Value 
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            Min2 = List2(0).Objective1Value 
            Max2 = List2(Count - 1).Objective2Value 
 
 
            List1(0).CrowdingDistance = Double.MaxValue 
            List2(0).CrowdingDistance = Double.MaxValue 
 
            List1(Count - 1).CrowdingDistance = Double.MaxValue 
            List2(Count - 1).CrowdingDistance = Double.MaxValue 
 
 
            For i = 1 To Count - 2 
                List1(i).CrowdingDistance = Calc(List1(i + 1).Objective1Value, 
List1(i - 1).Objective1Value, Max1, Min1) 
            Next 
 
            For i = 1 To Count - 2 
                List2(i).CrowdingDistance = List2(i).CrowdingDistance + 
Calc(List2(i + 1).Objective2Value, List2(i - 1).Objective2Value, Max2, Min2) 
            Next 
 
 
        End Sub 
        Private Function Calc(ByVal Right As Double, ByVal Left As Double, ByVal 
MaxF As Double, ByVal MinF As Double) As Double 
            Dim a, b, result As Double 
 
            a = Right - Left 
            b = MaxF - MinF 
            result = a / b 
            Return result 
        End Function 
        Public Sub FitnessSharing(ByVal alpha As Short, ByVal SigmaShare As 
Double) 
            Dim NC As Double 
 
            For i = 0 To Count - 1 
                NC = NicheCount(Member(i), alpha, SigmaShare) 
                Member(i).Fitness = Member(i).Fitness / NC 
            Next 
 
        End Sub 
 
 
        Public Function NicheCount(ByVal a As Individual, ByVal alpha As Short, 
ByVal SigmaShare As Double) As Double 
            Dim Sum As Double = 0 
            Dim d As Double 
 
 
            For i = 0 To Count - 1 
                d = Distance(a, IList(i), DistanceCalculationType.Objectives) 
                Sum += SharingFunction(d, alpha, SigmaShare) 
            Next 
 
            Return Sum 
        End Function 
 
        Private Function SharingFunction(ByVal d As Double, ByVal alpha As Short, 
ByVal SigmaShare As Double) As Double 
 
 
            Dim s As Double 
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            If d <= SigmaShare Then 
                s = 1 - Pow((d / SigmaShare), alpha) 
                Return s 
            Else 
                Return 0 
            End If 
        End Function 
 
 
        Public Function Min(ByVal F As Func(Of Individual, Double)) As Double 
 
            Return IList.Min(F) 
 
        End Function 
 
        Public Function Max(ByVal F As Func(Of Individual, Double)) As Double 
 
            Return IList.Max(F) 
        End Function 
 
        Public Function Find(ByVal Pre As Predicate(Of Individual)) As Individual 
            Return IList.Find(Pre) 
        End Function 
 
        Public Function FindMax(ByVal F As Func(Of Individual, Double)) As 
Individual 
            Dim Max As Double = Double.MinValue 
            Dim MaxIndividual As Individual 
 
            For Each Individual In IList 
                If F(Individual) > Max Then 
                    Max = F(Individual) 
                    MaxIndividual = Individual 
                End If 
            Next 
            Return MaxIndividual 
        End Function 
 
        Public Function FindMin(ByVal F As Func(Of Individual, Double)) As 
Individual 
            Dim Min As Double = Double.MaxValue 
            Dim MinIndividual As Individual 
 
            For Each Individual In IList 
                If F(Individual) < Min Then 
                    Min = F(Individual) 
                    MinIndividual = Individual 
                End If 
            Next 
            Return MinIndividual 
        End Function 
 
        Public Sub ForEach(ByVal Action As Action(Of Individual)) 
            IList.ForEach(Action) 
        End Sub 
        Private Function GetEnumerator() As System.Collections.IEnumerator 
Implements System.Collections.IEnumerable.GetEnumerator 
            Return New IndividualCounter(IList) 
        End Function 
 
 
        Public Function DoClustering(ByVal Size As Short) As PopulationSet 
            Dim ClusterList As New PopulationSet 
            Dim Cluster As Population 
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            Dim TobeMerged_first, ToBeMergedSecond As Short 
 
 
            For i = 0 To Count - 1 
                Cluster = New Population 
                Cluster.Add(Member(i)) 
                ClusterList.Add(Cluster) 
            Next 
 
            While ClusterList.Count > Size 
                ClusterList.DistanceList(TobeMerged_first, ToBeMergedSecond) 
                ClusterList.Merge(TobeMerged_first, ToBeMergedSecond) 
            End While 
 
            Return ClusterList 
        End Function 
 
 
        Private Function SimpleDistance(ByVal x1 As Double, ByVal y1 As Double, 
ByVal x2 As Double, ByVal y2 As Double) As Double 
            Return ((x1 - y1) ^ 2 + (x2 - y2) ^ 2) ^ 0.5 
        End Function 
        Public Function Representative() As Individual 
            Dim sum1, sum2, x, y, D As Double 
            Dim MinDistance As Double = Double.MaxValue 
            Dim MinDistanceIndividual As Individual 
 
            If Count = 1 Then 
                Return Member(0) 
            End If 
 
            For Each I As Individual In IList 
                sum1 = sum1 + I.Objective1Value 
                sum2 = sum2 + I.Objective2Value 
            Next 
 
            x = sum1 / Count 
            y = sum2 / Count 
 
 
            For Each I As Individual In IList 
                D = SimpleDistance(I.Objective1Value, I.Objective2Value, x, y) 
                If D < MinDistance Then 
                    MinDistance = D 
                    MinDistanceIndividual = I 
                End If 
            Next 
 
            Return MinDistanceIndividual 
        End Function 
 
        Public Function Representative2() As Individual 
            Dim MinDistance As Double = Double.MaxValue 
            Dim MinIndividualIndex As Short 
            Dim Sum As Double = 0 
            Dim i As Short 
            For i = 0 To Count - 1 
                Sum = 0 
                For j = i + 1 To Count - 1 
                    Sum = Sum + Distance(Member(i), Member(j), 
DistanceCalculationType.Objectives) 
                Next 
                Sum = Sum / Count 
                If Sum < MinDistance Then 
                    MinDistance = Sum 
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                    MinIndividualIndex = i 
                End If 
            Next 
            Return Member(MinIndividualIndex) 
        End Function 
        Public Function SpecialAdd(ByVal I As Individual) As Boolean 
            Dim TobeRemoved As New Population 
 
            For Each J As Individual In IList 
                If J.Dominate(I) Then 
                    Return False 
                End If 
                If I.Dominate(J) Then 
                    TobeRemoved.Add(J) 
                End If 
            Next 
            For Each J As Individual In TobeRemoved 
                Remove(J) 
            Next 
            Add(I) 
            Return True 
        End Function 
 
        Public Function SuggestSigmaShare() As Double 
 
            Dim Y1min As Double = Double.MaxValue 
            Dim Y1max As Double = Double.MinValue 
            Dim Y2min As Double = Double.MaxValue 
            Dim Y2max As Double = Double.MinValue 
            Dim SigmaShare As Double 
 
            If Count = 1 Then 
                Return 1 
            End If 
 
            For i = 0 To IList.Count - 1 
                If IList(i).Objective1Value < Y1min Then 
                    Y1min = IList(i).Objective1Value 
                End If 
                If IList(i).Objective1Value > Y1max Then 
                    Y1max = IList(i).Objective1Value 
                End If 
                If IList(i).Objective2Value < Y2min Then 
                    Y2min = IList(i).Objective2Value 
                End If 
                If IList(i).Objective2Value > Y2max Then 
                    Y2max = IList(i).Objective2Value 
                End If 
 
 
            Next 
 
 
            SigmaShare = ((Y1max - Y1min) + (Y2max - Y2min)) / (Count - 1) 
 
            Return SigmaShare 
 
        End Function 
 
        Private Class IndividualComparer 
            Implements IComparer(Of Individual) 
            Public Element As Func(Of Individual, Double) 
 
            Public Sub New() 
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            End Sub 
            Public Sub New(ByVal F As Func(Of Individual, Double)) 
                Element = F 
            End Sub 
            Public Function Compare(ByVal x As Individual, ByVal y As Individual) 
As Integer Implements IComparer(Of 
GA_for_View_Selection.GeneticAlgorithm.Individual).Compare 
                Return Element(x) > Element(y) 
            End Function 
 
 
        End Class 
 
    End Class 
 
 
End Namespace 
 
 

A.1.1.3 GA 

Imports GA_for_View_Selection.General 
Imports System.Math 
Imports GA_for_View_Selection.ViewSelection 
 
 
 
Namespace GeneticAlgorithm 
    Public MustInherit Class GA 
 
 
 
        Public ChromosomeSize As Short 
        Public PopulationSize As Integer = 100 
        Public MaximumGeneration As Integer = 100 
        Protected GenerationNumber As Integer = 0 
 
 
 
 
        Public Property CrossoverRate() As Double 
            Get 
                Return Crossover.Rate 
            End Get 
            Set(ByVal value As Double) 
                Crossover.Rate = value 
            End Set 
        End Property 
 
 
 
        Public Property MutationRate() As Double 
            Get 
                Return Mutation.Rate 
            End Get 
            Set(ByVal value As Double) 
                Mutation.Rate = value 
            End Set 
        End Property 
 
 
        Public Shared Function Dominate(ByVal a As Individual, ByVal b As 
Individual) As Boolean 
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            Dim flag As Boolean = False 
 
            If a.Objective1Value > b.Objective1Value Then 
                Return False 
            End If 
            If a.Objective1Value < b.Objective1Value Then 
                flag = True 
            End If 
 
 
            If a.Objective2Value > b.Objective2Value Then 
                Return False 
            End If 
            If a.Objective2Value < b.Objective2Value Then 
                flag = True 
            End If 
 
            Return flag 
        End Function 
 
        Public Shared Function ConstrainedDominate(ByVal a As Individual, ByVal b 
As Individual) As Boolean 
            If a.IsFeasible = False And b.IsFeasible = False Then 
                Return a.ConstraintValue < b.ConstraintValue 
            End If 
 
            If a.IsFeasible = False And b.IsFeasible = True Then 
                Return False 
            End If 
 
 
            If a.IsFeasible = True And b.IsFeasible = False Then 
                Return True 
            End If 
 
            If a.IsFeasible = True And b.IsFeasible = True Then 
                Return Dominate(a, b) 
            End If 
        End Function 
 
 
 
        Public Shared Function Distance(ByVal a As Individual, ByVal b As 
Individual, ByVal type As DistanceCalculationType) As Double 
            Select Case type 
                Case DistanceCalculationType.Variables 
                    Return VariableDistance(a, b) 
                Case DistanceCalculationType.Objectives 
                    Return ObjectiveDistance(a, b) 
 
                Case DistanceCalculationType.Genotypic 
 
            End Select 
 
        End Function 
 
 
 
        Public Shared Function VariableDistance(ByVal a As Individual, ByVal b As 
Individual) As Double 
            Dim Sum As Double = 0 
 
            For i = 0 To a.Count() - 1 
 
                Sum += Pow((a(i) - b(i)), 2) 
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            Next 
 
            Return Pow(Sum, 0.5) 
 
        End Function 
 
        Public Shared Function ObjectiveDistance(ByVal a As Individual, ByVal b 
As Individual) As Double 
 
            Dim PartA, PartB As Double 
            Dim Sum As Double = 0 
            Dim Distance As Double = 0 
 
            PartA = Pow((a.Objective1Value - b.Objective1Value), 2) 
            PartB = Pow((a.Objective2Value - b.Objective2Value), 2) 
            Sum = PartA + PartB 
            Distance = Pow(Sum, 0.5) 
 
            Return Distance 
 
        End Function 
 
        Public Enum DistanceCalculationType 
            Variables = 0 
            Objectives = 1 
            Genotypic = 2 
        End Enum 
    End Class 
 
 
 
End Namespace 
 
 
 
 
 
 
 
 

A.1.1.4 Crossover 

 
Namespace GeneticAlgorithm 
    Public Class Crossover 
        Public Shared Rate As Double 
 
 
        Public Shared Sub Uniform(ByRef x As Individual, ByRef y As Individual) 
            Dim i, R As Double 
 
            For i = 0 To x.Count - 1 
                If (x(i) <> y(i)) Then 
                    Randomize() 
                    R = Rnd() 
                    If R < Rate Then 
                        Exchange(x(i), y(i)) 
                    End If 
                End If 
 
            Next 
 
        End Sub 
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        Public Shared Sub SinglePoint(ByVal x As Individual, ByVal y As 
Individual, ByRef Offspring1 As Individual, ByRef Offspring2 As Individual) 
            Dim Site As Integer 
            Dim R As Double 
 
            Offspring1 = New Individual(x.Count) 
            Offspring2 = New Individual(y.Count) 
 
            Randomize() 
            R = Rnd() 
            Site = Int(Rnd() * x.Count) 
            For i = 0 To Site 
                Offspring1(i) = x(i) 
                Offspring2(i) = y(i) 
            Next 
            If R > Rate Then 
                For i = Site + 1 To x.Count - 1 
                    Offspring1(i) = y(i) 
                    Offspring2(i) = x(i) 
                Next 
            Else 
                For i = Site + 1 To x.Count - 1 
                    Offspring1(i) = x(i) 
                    Offspring2(i) = y(i) 
                Next 
            End If 
 
        End Sub 
 
        Public Shared Sub Exchange(ByRef a As Integer, ByRef b As Integer) 
            Dim temp As Integer 
 
            temp = a 
            a = b 
            b = temp 
        End Sub 
 
 
    End Class 
End Namespace 
 
 
 

A.1.1.5 Mutation 

 
Namespace GeneticAlgorithm 
    Public Class Mutation 
        Public Shared Rate = 0.01 
 
        Public Shared Sub Uniform(ByRef x As Individual) 
            Dim R As Double 
 
            For i = 0 To x.Count - 1 
                Randomize() 
                R = Rnd() 
                If R < Rate Then 
                    x.Flip(i) 
                End If 
            Next 
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        End Sub 
 
        Public Shared Sub Random(ByRef x As Individual) 
            Dim index As Integer 
 
            Randomize() 
            index = Int(Rnd() * x.Count) 
 
            x.Flip(index) 
 
 
 
        End Sub 
        Public Shared Sub Swap(ByRef x As Individual) 
            Dim S, S1, S2 As Double 
            Dim Original As Individual 
 
            Original = x.Clone 
 
            Randomize() 
            S = Rnd() 
 
            If S < Rate Then 
 
                S1 = Int(Rnd() * x.Count) 
                S2 = Int(Rnd() * x.Count) 
                x.Exchange(S1, S2) 
 
            End If 
        End Sub 
 
    End Class 
End Namespace 
 
 

A.1.1.6 Selection 

Imports System.Math 
Namespace GeneticAlgorithm 
    Public Class Selection 
 
 
        Public Shared Function RouletteWheel(ByVal P As Population, ByVal F As 
Func(Of Individual, Double)) As Individual 
            Dim i, sum, PartialSum As Double 
            Dim R As Double 
 
            sum = P.Sum(F) 
            Randomize() 
            R = sum * Rnd() 
            For i = 0 To P.Count - 1 
                PartialSum = PartialSum + F(P(i)) 
                If PartialSum > R Then 
                    Return P(i) 
                End If 
            Next 
 
        End Function 
 
        Public Shared Function Random(ByVal P As Population) As Individual 
            Dim R As Integer 
            Randomize() 
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            R = (P.Count - 1) * Rnd() 
            If P(R).Objective1Value = 0 Then 
                Dim B As Boolean = True 
            End If 
 
            Return P(R) 
 
        End Function 
 
 
  Public Shared Function SUS(ByVal P As Population, ByVal F As Func(Of 
Individual, Double), ByVal N As Short) As Population 
            Dim partsize As Double = 0 
            Dim partialsum As Double = 0 
            Dim Parents As New Population 
            Dim pickednumber As Short = 0 
            Dim i As Short = 0 
 
            Dim r As Double = 0 
            partsize = P.Sum(F) / N 
            Randomize() 
            r = Rnd() * partsize 
 
            While (pickednumber < N) 
                partialsum = partialsum + F(P(i)) 
                While partialsum > r + pickednumber * partsize 
                    Parents.Add(P(i)) 
                    pickednumber = pickednumber + 1 
 
                End While 
                i = i + 1 
 
 
            End While 
 
 
            Return Parents 
        End Function 
 
 
 
        Public Shared Function StochasticReminderSelection(ByVal P As Population, 
ByVal F As Func(Of Individual, Double), ByVal n As Short) As Population 
            Dim P2 As Population = P.ShallowClone 
            Dim Result As New Population 
            P2 = ScalePopulation(P) 
            P2 = CreateParentPool(P2) 
            Return P2 
        End Function 
 
        Public Shared Function Tournament(ByVal P As Population, ByVal Size As 
Integer, ByVal F As Func(Of Individual, Double), Optional ByVal FBios As 
FitnessBios = FitnessBios.BiggerFitness) As Individual 
            Dim Pool As New Population 
            Dim Ind As Individual 
            Dim Winner As Individual 
 
            Randomize() 
 
            For i = 0 To Size - 1 
                Ind = Random(P) 
                Pool.Add(Ind) 
            Next 
            If FBios = FitnessBios.BiggerFitness Then 
                Winner = Pool.FindMax(F) 
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            Else 
                Winner = Pool.FindMin(F) 
            End If 
            Return Winner 
        End Function 
 
        Public Shared Function CrowdedTournament(ByVal P As Population) As 
Individual 
            Dim a, b As Individual 
 
            Randomize() 
 
            a = Random(P) 
            b = Random(P) 
            If a.Rank < b.Rank Then 
                Return a 
            End If 
            If b.Rank < a.Rank Then 
                Return b 
            End If 
            If a.CrowdingDistance > b.CrowdingDistance Then 
                Return a 
            Else 
                Return b 
 
            End If 
 
 
        End Function 
 
        Private Shared Function ScalePopulation(ByVal P As Population) As 
Population 
            Dim Sum As Double = P.Sum(Function(individual) individual.Fitness) 
            Dim D As Individual 
 
            For i = 0 To P.Count - 1 
                D = P(i) 
                D.Fitness = ((P(i).Fitness * P.Count) / Sum) 
                P(i) = D 
            Next 
 
            Return P 
        End Function 
 
        Private Shared Function CreateParentPool(ByVal P As Population) As 
Population 
            Dim NumberofCopies(P.Count - 1) As Short 
            Dim UpperMid As New Population 
            Dim LowerMid As New Population 
            Dim Ind As Individual 
            Dim Result As Population 
            Dim int As Integer 
            Dim D As Individual 
 
 
            UpperMid.ID = P.ID 
            For i = 0 To P.Count - 1 
                D = P(i) 
                int = Floor(P(i).Fitness) 
                D.Fitness -= int 
                P(i) = D 
                For j = 0 To int - 1 
                    UpperMid.Add(P(i)) 
                Next 
                If int = 0 Then 
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                    LowerMid.Add(P(i)) 
                End If 
            Next 
            Result = UpperMid 
            For i = UpperMid.Count To P.Count / 2 - 1 
                Ind = Tournament(LowerMid, 2, Function(individual) 
individual.Fitness) 
                Result.Add(Ind) 
            Next 
 
            Return UpperMid 
 
        End Function 
        Enum FitnessBios 
            BiggerFitness 
            SmallerFitness 
        End Enum 
 
    End Class 
End Namespace 
 

A.1.2 Shell classes 

A.1.2.1 WBGA  

Imports GA_for_View_Selection.GeneticAlgorithm 
Imports System.IO 
 
Public Class WBGA 
 
    Inherits GA 
 
    Public Sub Run(ByVal Objective1 As Func(Of Object, Double), ByVal Objective2 
As Func(Of Object, Double), ByVal Constraint As Func(Of Object, Double)) 
        Dim CurrentGeneration As New Population 
        Dim NextGeneration As New Population 
        Dim a, b As Individual 
 
        CurrentGeneration.RandomGenerate(PopulationSize, ChromosomeSize + 7) 
 
        For i = 0 To MaximumGeneration - 1 
 
            For j = 0 To (PopulationSize / 2) - 1 
 
                Evaluate(CurrentGeneration, 7, Objective1, Objective2, 
Constraint) 
 
                a = Selection.Tournament(CurrentGeneration, 2, 
Function(individual) individual.Fitness, Selection.FitnessBios.SmallerFitness) 
                b = Selection.Tournament(CurrentGeneration, 2, 
Function(individual) individual.Fitness, Selection.FitnessBios.SmallerFitness) 
 
                Crossover.SinglePoint(a, b, a, b) 
                Mutation.Random(a) 
                Mutation.Random(b) 
 
                NextGeneration.Add(a) 
                NextGeneration.Add(b) 
            Next 
 
            CurrentGeneration = NextGeneration.ShallowClone() 
            NextGeneration.Clear() 
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        Next 
 
        Evaluate(CurrentGeneration, 7, Objective1, Objective2, Constraint) 
        CurrentGeneration.SaveToFile("C:\WBGA.txt") 
 
    End Sub 
 
    Private Sub Evaluate(ByVal P As Population, ByVal size As Short, ByVal 
Objective1 As Func(Of Object, Double), ByVal Objective2 As Func(Of Object, 
Double), ByVal Constraint As Func(Of Object, Double)) 
        Dim a, b As Short 
        Dim w1, w2 As Double 
        Dim ind As Individual 
 
        For i = 0 To P.Count - 1 
            a = GetWeightsIndex(P(i), 7) 
            b = 127 - a 
            w1 = (a / 127) 
            w2 = 1 - w1 
 
            ind = New Individual(P(0).Count - size) 
            For j = size To P(0).Count - 1 
                ind(j - size) = P(i)(j) 
            Next 
            ind.Evaluate(Objective1, Objective2, Constraint) 
            P(i).Objective1Value = ind.Objective1Value 
            P(i).Objective2Value = ind.Objective2Value 
            P(i).Fitness = w1 * ind.Objective1Value + w2 * ind.Objective2Value 
            P(i).Fitness = P(i).Fitness / NicheCount(P(i), P) 
 
        Next 
 
    End Sub 
    Private Function GetObjectiveValues(ByVal Ind As Individual, ByVal size As 
Short, ByRef Obj1 As Double, ByRef obj2 As Double, ByVal Objective1 As Func(Of 
Object, Double), ByVal Objective2 As Func(Of Object, Double), ByVal Constraint As 
Func(Of Object, Double)) 
        Dim NewInd As New Individual(Ind.Count - size) 
 
        For i = size To Ind.Count - 1 
 
            NewInd(i) = Ind(i) 
        Next 
 
        NewInd.Evaluate(Objective1, Objective2, Constraint) 
        Obj1 = NewInd.Objective1Value 
        obj2 = NewInd.Objective2Value 
 
    End Function 
    Private Function GetWeightsIndex(ByVal Ind1 As Individual, ByVal size As 
Short) As Short 
 
        Dim a As Short 
 
        For j = 0 To size - 1 
            a += Ind1(size - 1 - j) * Math.Pow(2, j) 
        Next 
 
 
        Return a 
 
    End Function 
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    Private Function NicheCount(ByVal Ind As Individual, ByVal P As Population) 
As Double 
        Dim NC As Double = 0 
        Dim SourceIndex, DestinationIndex As Short 
 
        SourceIndex = GetWeightsIndex(Ind, 7) 
 
        For i = 0 To P.Count - 1 
            DestinationIndex = GetWeightsIndex(P(i), 7) 
            NC += SharingFunction(Math.Abs(SourceIndex - DestinationIndex), 20) 
        Next 
        Return NC 
    End Function 
 
    Private Function SharingFunction(ByVal distance As Short, ByVal SigmaShare As 
Double) As Double 
 
        If distance <= SigmaShare Then 
 
            Return 1 - (distance / SigmaShare) 
        Else 
            Return 0 
 
        End If 
    End Function 
 
 
End Class 
 

A.1.2.2 VEGA 

Imports GA_for_View_Selection.GeneticAlgorithm 
 
Public Class VEGA 
    Inherits GA 
    Public Sub Run(ByVal Objective1 As Func(Of Object, Double), ByVal Objective2 
As Func(Of Object, Double), ByVal Constraint As Func(Of Object, Double)) 
        Dim CurrentGeneration As New Population 
        Dim NextGeneration As New Population 
        Dim MatingPool As New Population 
        Dim P1, P2 As New Population 
 
 
 
        Dim a = New Individual(ChromosomeSize) 
        Dim b = New Individual(ChromosomeSize) 
 
        CurrentGeneration.RandomGenerate(PopulationSize, ChromosomeSize) 
 
 
        For i = 0 To MaximumGeneration - 1 
            CurrentGeneration.Evaluate(Objective1, Objective2, Constraint) 
 
            P1 = CurrentGeneration.Top() 
            P2 = CurrentGeneration.Buttom() 
 
            MatingPool.Clear() 
            For j = 0 To (PopulationSize / 4) 
                a = Selection.Tournament(P1, 2, Function(individual) 
individual.Objective1Value, Selection.FitnessBios.SmallerFitness) 
                MatingPool.Add(a) 
            Next 
            For j = 0 To (PopulationSize / 4) 
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                b = Selection.Tournament(P2, 2, Function(individual) 
individual.Objective2Value, Selection.FitnessBios.SmallerFitness) 
                MatingPool.Add(b) 
            Next 
 
            NextGeneration.Clear() 
            For j = 0 To PopulationSize / 2 - 1 
 
                a = Selection.Random(MatingPool) 
                b = Selection.Random(MatingPool) 
 
                Crossover.SinglePoint(a, b, a, b) 
 
                Mutation.Random(a) 
                Mutation.Random(b) 
 
                NextGeneration.Add(a) 
                NextGeneration.Add(b) 
 
            Next 
 
            CurrentGeneration = NextGeneration.ShallowClone() 
 
        Next 
 
        CurrentGeneration.Evaluate(Objective1, Objective2, Constraint) 
        MatingPool.SaveToFile("C:\VEGA.txt") 
 
    End Sub 
 
End Class 
 

A.1.2.3 NPGA 

Imports GA_for_View_Selection.GeneticAlgorithm 
Public Class NPGA 
    Inherits GA 
    Public Tdom As Short = 10 
    Public Sub Run(ByVal Objective1 As Func(Of Object, Double), ByVal Objective2 
As Func(Of Object, Double), ByVal Constraint As Func(Of Object, Double)) 
 
        Dim CurrentGeneration As New Population 
        Dim NextGeneration As New Population 
 
        Dim Parent1, Parent2 As Individual 
 
 
        CurrentGeneration.RandomGenerate(PopulationSize, ChromosomeSize) 
 
 
        For i = 0 To MaximumGeneration - 1 
 
            CurrentGeneration.Evaluate(Objective1, Objective2, Constraint) 
 
            For j = 0 To PopulationSize / 2 - 1 
 
                Parent1 = NPGA_Selection(CurrentGeneration, NextGeneration, Tdom) 
                Parent2 = NPGA_Selection(CurrentGeneration, NextGeneration, Tdom) 
 
                Crossover.SinglePoint(Parent1, Parent2, Parent1, Parent2) 
 
                Mutation.Random(Parent1) 
                Mutation.Random(Parent2) 
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                Parent1.Evaluate(Objective1, Objective2, Constraint) 
                Parent2.Evaluate(Objective1, Objective2, Constraint) 
 
                NextGeneration.Add(Parent1) 
                NextGeneration.Add(Parent2) 
 
            Next 
 
 
            CurrentGeneration = NextGeneration.ShallowClone() 
            NextGeneration.Clear() 
 
        Next 
 
        CurrentGeneration.NonDominated.SaveToFile("C:\NPGA.txt") 
 
    End Sub 
 
    Private Function NPGA_Selection(ByVal P As Population, ByVal Q As Population, 
ByVal Tdom As Short) As Individual 
        Dim a, b As Individual 
        Dim nca, ncb As Short 
        Dim Subpopulation As New Population 
        Dim Temp As Population 
 
        Dim SigmaShare As Double 
 
        For i = 0 To ((Tdom * P.Count) / 100) - 1 
            a = Selection.Random(P) 
            Subpopulation.Add(a) 
        Next 
 
 
 
 
        a = Selection.Random(P) 
        b = Selection.Random(P) 
 
        If a.DominateAny(Subpopulation) = True Then 
 
            If b.DominateAny(Subpopulation) = False Then 
                Return a 
            End If 
        End If 
 
        If a.DominateAny(Subpopulation) = False Then 
 
            If b.DominateAny(Subpopulation) = True Then 
                Return b 
            End If 
        End If 
        If Q.Count < 2 Then 
            Dim R As Double 
 
            Randomize() 
            R = Rnd() 
            If R <= 0.5 Then 
                Return a 
            Else 
                Return b 
            End If 
        End If 
 
        Temp = Q.ShallowClone() 
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        Temp.Add(a) 
        Temp.Add(b) 
 
        SigmaShare = Temp.SuggestSigmaShare() 
        nca = Temp.NicheCount(a, 1, SigmaShare) 
        ncb = Temp.NicheCount(b, 1, SigmaShare) 
 
        If nca < ncb Then 
            Return a 
        Else 
            Return b 
        End If 
 
 
 
    End Function 
 
End Class 
 

 

A.1.2.4 MOGA 

Imports GA_for_View_Selection.GeneticAlgorithm 
Public Class MOGA 
    Inherits GA 
    Public Sub Run(ByVal Objective1 As Func(Of Object, Double), ByVal Objective2 
As Func(Of Object, Double), ByVal Constraint As Func(Of Object, Double)) 
        Dim CurrentGeneration As New Population 
        Dim NextGeneration As New Population 
 
        Dim a As New Individual(ChromosomeSize) 
        Dim b As New Individual(ChromosomeSize) 
 
        CurrentGeneration.RandomGenerate(PopulationSize, ChromosomeSize) 
 
        For i = 0 To MaximumGeneration - 1 
 
            CurrentGeneration.Evaluate(Objective1, Objective2, Constraint) 
            MOGA_Fitness_Assignment(CurrentGeneration) 
            For j = 0 To (PopulationSize / 2) - 1 
 
  a = Selection.RouletteWheel(CurrentGeneration, Function(individual) 
individual.Fitness) 
                b = Selection.RouletteWheel(CurrentGeneration, 
Function(individual) individual.Fitness) 
 
                Crossover.SinglePoint(a, b, a, b) 
 
                Mutation.Random(a) 
                Mutation.Random(b) 
 
                NextGeneration.Add(a) 
                NextGeneration.Add(b) 
            Next 
            CurrentGeneration = NextGeneration.ShallowClone() 
            NextGeneration.Clear() 
 
        Next 
        CurrentGeneration.Evaluate(Objective1, Objective2, Constraint) 
 
        CurrentGeneration.NonDominated.SaveToFile("C:\MOGA.txt") 
    End Sub 
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    Private Sub MOGA_Fitness_Assignment(ByVal P As Population) 
        Dim i As Short 
        Dim Rank As PopulationSet 
        Dim Sum1, Sum2 As Double 
        Dim SigmaShare As Double 
 
        Dim a As Individual 
 
        Rank = P.Classify() 
 
        For i = 0 To Rank.Count - 1 
 
            Sum1 = 0 
            For j = 0 To i - 1 
                Sum1 = Sum1 + Rank(j).Count 
            Next 
            Sum2 = 0 
            For j = 0 To Rank(i).Count - 1 
 
                Rank(i)(j).Fitness = P.Count - Sum1 - 0.5 * (Rank(i).Count - 1) 
                Rank(i)(j).Value1 = Rank(i)(j).Fitness 
                a = Rank(i)(j) 
                SigmaShare = Rank(i).SuggestSigmaShare() 
                Rank(i)(j).Fitness = Rank(i)(j).Fitness / Rank(i).NicheCount(a, 
1, SigmaShare) 
                Sum2 = Sum2 + Rank(i)(j).Fitness 
            Next 
 
            For j = 0 To Rank(i).Count - 1 
                Rank(i)(j).Fitness *= Rank(i)(j).Value1 * (Rank(i).Count / Sum2) 
            Next 
 
        Next 
 
 
 
 
 
 
    End Sub 
 
 
 
 
End Class 
 

 

A.1.2.5 SPEA 

Imports GA_for_View_Selection.GeneticAlgorithm 
 
Public Class SPEA 
    Inherits GA 
    Public ExternalSize As Short = 0.2 * PopulationSize 
 
    Public Sub Run(ByVal Objective1 As Func(Of Object, Double), ByVal Objective2 
As Func(Of Object, Double), ByVal Constraint As Func(Of Object, Double)) 
        Dim CurrentGeneration As New Population 
        Dim NextGeneration As New Population 
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        Dim CombinedGeneration As Population 
        Dim ExternalPopulation As New Population 
 
        Dim Clusterlist As PopulationSet 
 
        Dim Parent1, Parent2, Child1, Child2 As Individual 
 
        CurrentGeneration.RandomGenerate(PopulationSize, ChromosomeSize) 
 
        For i = 0 To MaximumGeneration - 1 
 
            CurrentGeneration.Evaluate(Objective1, Objective2, Constraint) 
 
            ExternalPopulation = ExternalPopulation + 
CurrentGeneration.NonDominated.DeepClone() 
            ExternalPopulation = ExternalPopulation.NonDominated 
 
 
 
            If ExternalPopulation.Count > ExternalSize Then 
                Clusterlist = ExternalPopulation.DoClustering(ExternalSize) 
                ExternalPopulation = Clusterlist.ClustersRepresentative() 
            End If 
 
            Calculate_External_Population_Fitness(CurrentGeneration, 
ExternalPopulation) 
            Calculate_Main_Population_Fitness(CurrentGeneration, 
ExternalPopulation) 
 
 
            For j = 0 To PopulationSize / 2 - 1 
 
                CombinedGeneration = ExternalPopulation + CurrentGeneration 
 
                Parent1 = Selection.Tournament(CombinedGeneration, 2, 
Function(Ind As Individual) Ind.Fitness, Selection.FitnessBios.SmallerFitness) 
                Parent2 = Selection.Tournament(CombinedGeneration, 2, 
Function(Ind As Individual) Ind.Fitness, Selection.FitnessBios.SmallerFitness) 
 
 
                Crossover.SinglePoint(Parent1, Parent2, Child1, Child2) 
 
                Mutation.Random(Child1) 
                Mutation.Random(Child2) 
 
                NextGeneration.Add(Child1) 
                NextGeneration.Add(Child2) 
 
            Next 
            CurrentGeneration = NextGeneration.ShallowClone 
            NextGeneration.Clear() 
        Next 
 
        CurrentGeneration.Evaluate(Objective1, Objective2, Constraint) 
        CurrentGeneration.NonDominated.SaveToFile("C:\SPEA.txt") 
 
    End Sub 
 
    Private Sub Calculate_External_Population_Fitness(ByVal Main As Population, 
ByVal External As Population) 
        For Each I As Individual In External 
            I.Fitness = 0 
            For Each J As Individual In Main 
                If Dominate(I, J) Then 
                    I.Fitness = I.Fitness + (1 / (Main.Count + 1)) 
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                End If 
            Next 
        Next 
    End Sub 
 
    Private Sub Calculate_Main_Population_Fitness(ByVal Main As Population, ByVal 
External As Population) 
        For Each I As Individual In Main 
            I.Fitness = 1 
            For Each J As Individual In External 
                If Dominate(J, I) Then 
                    I.Fitness = I.Fitness + J.Fitness 
                End If 
            Next 
        Next 
    End Sub 
 
 
End Class 
 

A.1.2.6 SPEA-II 

Imports GA_for_View_Selection.GeneticAlgorithm 
Public Class SPEA_II 
    Inherits GA 
    Public ArchiveSize As Short = 0.2 * PopulationSize 
    Private K As Short 
 
    Public Sub Run(ByVal Objective1 As Func(Of Object, Double), ByVal Objective2 
As Func(Of Object, Double), ByVal Constraint As Func(Of Object, Double)) 
        Dim CurrentGeneration As New Population 
        Dim NextGeneration As New Population 
        Dim CombinedPopulation As Population 
        Dim CurrentArchive As New Population 
        Dim NextArchive As New Population 
 
        Dim Child1, Child2, Parent1, Parent2 As Individual 
 
        K = Math.Pow((ArchiveSize + PopulationSize), 0.5) 
 
        CurrentGeneration.RandomGenerate(PopulationSize, ChromosomeSize) 
 
        For i = 0 To MaximumGeneration - 1 
            CurrentGeneration.Evaluate(Objective1, Objective2, Constraint) 
 
            CombinedPopulation = CurrentGeneration + CurrentArchive 
 
            CalculateFitness(CombinedPopulation) 
 
            NextArchive = NonDominated(CombinedPopulation) 
 
            If i > 0 Then 
                NextArchive = NonDominated(NextArchive) 
            End If 
 
            If NextArchive.Count > ArchiveSize Then 
                NextArchive = Truncate(NextArchive) 
            ElseIf NextArchive.Count < ArchiveSize Then 
                FillUpfromDominated(CombinedPopulation, NextArchive) 
            End If 
 
 
            For j = 0 To PopulationSize / 2 - 1 
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                Parent1 = Selection.Tournament(NextArchive, 2, Function(Ind As 
Individual) Ind.Fitness, Selection.FitnessBios.SmallerFitness) 
                Parent2 = Selection.Tournament(NextArchive, 2, Function(Ind As 
Individual) Ind.Fitness, Selection.FitnessBios.SmallerFitness) 
 
                Crossover.SinglePoint(Parent1, Parent2, Child1, Child2) 
 
                Mutation.Random(Child1) 
                Mutation.Random(Child2) 
 
 
                NextGeneration.Add(Child1) 
                NextGeneration.Add(Child2) 
 
            Next 
 
            CurrentArchive = NextArchive.ShallowClone() 
            CurrentGeneration = NextGeneration.ShallowClone() 
            NextArchive.Clear() 
            NextGeneration.Clear() 
 
        Next 
 
 
        CurrentArchive.Evaluate(Objective1, Objective2, Constraint) 
 
 
        CurrentArchive.SaveToFile("C:\SPEA2.txt") 
    End Sub 
    Private Sub CalculateFitness(ByVal P As Population) 
        CalculateRAWFitness(P) 
        CalculateFULLFitness(P) 
    End Sub 
 
    Private Function CalculateDistances(ByVal P As Population) As Array 
        Dim Dlist(P.Count) As List(Of Double) 
        Dim D As Double 
        For i = 0 To P.Count - 1 
            For j = i + 1 To P.Count - 1 
                D = GA.Distance(P(i), P(j), DistanceCalculationType.Objectives) 
                If IsNothing(Dlist(i)) Then 
                    Dlist(i) = New List(Of Double) 
                End If 
                Dlist(i).Add(D) 
                If IsNothing(Dlist(j)) Then 
                    Dlist(j) = New List(Of Double) 
                End If 
                Dlist(j).Add(D) 
            Next 
 
        Next 
        For i = 0 To P.Count - 1 
            Dlist(i).Sort() 
        Next 
        Return Dlist 
    End Function 
    Private Sub CalculateRAWFitness(ByVal P As Population) 
        Dim Strength(P.Count) As Short 
        Dim Sum(P.Count) As Short 
 
        For i = 0 To P.Count - 1 
            For j = 0 To P.Count - 1 
                If GA.Dominate(P(i), P(j)) And i <> j Then 
                    Strength(i) += 1 
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                End If 
            Next 
        Next 
 
 
        For i = 0 To P.Count - 1 
            For j = 0 To P.Count - 1 
                If GA.Dominate(P(j), P(i)) And i <> j Then 
                    P(i).Fitness += Strength(j) 
                End If 
            Next 
        Next 
 
    End Sub 
 
    Private Sub CalculateFULLFitness(ByVal P As Population) 
        Dim D As Double 
        Dim DList() As List(Of Double) 
 
        DList = CalculateDistances(P) 
        For i = 0 To P.Count - 1 
            D = 1 / (DList(i)(K - 1) + 2) 
            P(i).Fitness = P(i).Fitness + D 
        Next 
    End Sub 
 
    Private Function NonDominated(ByVal P As Population) As Population 
        Dim ND As New Population 
 
        For i = 0 To P.Count - 1 
            If P(i).Fitness < 1 Then 
                ND.Add(P(i)) 
            End If 
        Next 
        Return ND 
    End Function 
    Private Function Truncate(ByVal P As Population) As Population 
        Dim i As Integer 
        Dim DistanceList As New List(Of PairDistance) 
        Dim PD As PairDistance 
        Dim MinDistance As Double = Double.MaxValue 
 
        For i = 0 To P.Count - 1 
            For j = i + 1 To P.Count - 1 
                PD = New PairDistance 
                PD.Source = i 
                PD.Destination = j 
                PD.Distance = Distance(P(i), P(j), 
DistanceCalculationType.Objectives) 
                DistanceList.Add(PD) 
            Next 
        Next 
        DistanceList.Sort(AddressOf PairDistance.Compare) 
        i = 0 
        While P.Count > ArchiveSize 
            P.RemoveAt(DistanceList(i).Source) 
            i += 1 
        End While 
        Return P 
    End Function 
    Private Structure PairDistance 
        Dim Source As Short 
        Dim Destination As Short 
        Dim Distance As Double 
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        Public Shared Function Compare(ByVal ItemaA As PairDistance, ByVal ItemB 
As PairDistance) As Integer 
            Return ItemaA.Distance < ItemB.Distance 
        End Function 
    End Structure 
 
    Private Function FillUpfromDominated(ByVal Combined As Population, ByVal 
Archive As Population) 
        Dim i As Short = 0 
 
        While i <= Combined.Count - 1 And Archive.Count < ArchiveSize 
 
            If Combined(i).Fitness > 0 Then 
                Archive.Add(Combined(i)) 
            End If 
            i = i + 1 
        End While 
 
        Return Archive 
    End Function 
 
End Class 

A.1.2.7 NSGA 

Imports GA_for_View_Selection.GeneticAlgorithm 
 
Public Class NSGA 
    Inherits GA_for_View_Selection.GeneticAlgorithm.GA 
 
 
    Public Sub Run(ByVal Objective1 As Func(Of Object, Double), ByVal Objective2 
As Func(Of Object, Double), ByVal Constraint As Func(Of Object, Double)) 
        Dim CurrentGeneration As New Population 
        Dim NextGeneration As New Population 
        Dim SigmaShare As Double 
 
        Dim ClassifiedPopulation As PopulationSet 
 
        Dim NC As Double 
        Dim Fmin As Double 
 
        Dim a As Individual 
        Dim Parent1 As Individual 
        Dim Parent2 As Individual 
        Dim Child1 As Individual 
        Dim Child2 As Individual 
 
        CurrentGeneration.RandomGenerate(PopulationSize, ChromosomeSize) 
 
 
        For i = 0 To MaximumGeneration - 1 
 
 
            CurrentGeneration.Evaluate(Objective1, Objective2, Constraint) 
 
            ClassifiedPopulation = CurrentGeneration.Classify() 
 
            Fmin = PopulationSize + 0.01 
 
            For t1 = 0 To ClassifiedPopulation.Count - 1 
 
                SigmaShare = ClassifiedPopulation(t1).SuggestSigmaShare() 
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                For t2 = 0 To ClassifiedPopulation(t1).Count - 1 
                    a = ClassifiedPopulation(t1)(t2) 
                    a.Fitness = Fmin - 0.01 
                    NC = ClassifiedPopulation(t1).NicheCount(a, 1, SigmaShare) 
                    a.Fitness = a.Fitness / NC 
                Next 
 
                Fmin = ClassifiedPopulation(t1).FindMin(Function(ind As 
Individual) ind.Fitness).Fitness 
            Next 
 
            CurrentGeneration = ClassifiedPopulation.Merge() 
 
            For j = 0 To (PopulationSize / 2) - 1 
 
                Parent1 = Selection.Tournament(CurrentGeneration, 2, 
Function(individual) individual.Fitness, Selection.FitnessBios.BiggerFitness) 
                Parent2 = Selection.Tournament(CurrentGeneration, 2, 
Function(individual) individual.Fitness, Selection.FitnessBios.BiggerFitness) 
 
 
                Crossover.SinglePoint(Parent1, Parent2, Child1, Child2) 
 
                Mutation.Random(Child1) 
                Mutation.Random(Child2) 
 
                NextGeneration.Add(Child1) 
                NextGeneration.Add(Child2) 
 
            Next 
 
            CurrentGeneration = NextGeneration.ShallowClone 
            NextGeneration.Clear() 
 
        Next 
 
        CurrentGeneration.Evaluate(Objective1, Objective2, Constraint) 
 
        CurrentGeneration.NonDominated.SaveToFile("C:\NSGA.txt") 
 
 
    End Sub 
 
End Class 
 

A.1.2.8 NSGA-II 

Imports GA_for_View_Selection.GeneticAlgorithm 
Public Class NSGA_II 
    Inherits GA 
 
    Public Sub Run(ByVal Objective1 As Func(Of Object, Double), ByVal Objective2 
As Func(Of Object, Double), ByVal Constraint As Func(Of Object, Double)) 
        Dim Parents As New Population 
        Dim Childs As New Population 
        Dim CombinedPopulation As Population 
        Dim ClassifiedPopulation As PopulationSet 
        Dim i, j, index, t As Short 
 
        Parents.RandomGenerate(PopulationSize, ChromosomeSize) 
 
        For i = 0 To MaximumGeneration - 1 
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            Parents.Evaluate(Objective1, Objective2, Constraint) 
 
            Parents.AssignCrowdingDistance() 
 
            Childs = ProduceChilds(Parents) 
            Childs.Evaluate(Objective1, Objective2, Constraint) 
 
            CombinedPopulation = Parents + Childs 
            Parents.Clear() 
            ClassifiedPopulation = CombinedPopulation.Classify 
 
            index = 0 
            While (Parents.Count + ClassifiedPopulation(index).Count) < 
PopulationSize 
                Parents = Parents + ClassifiedPopulation(index) 
                index = index + 1 
            End While 
 
            ClassifiedPopulation(index).AssignCrowdingDistance() 
 
            ClassifiedPopulation(index).Sort(Function(individual) 
individual.CrowdingDistance) 
 
            t = 0 
            While Parents.Count < PopulationSize 
                Parents.Add(ClassifiedPopulation(index).Member(t)) 
                t = t + 1 
            End While 
 
 
        Next 
 
 
 
 
        Parents.NonDominated().SaveToFile("C:\NSGA2.txt") 
 
    End Sub 
 
    Public Function ProduceChilds(ByVal P As Population) As Population 
        Dim Childs As New Population 
        Dim Parent1, Parent2, Child1, Child2 As Individual 
        Dim Classified As PopulationSet 
 
        Classified = P.Classify() 
        P = Classified.Merge() 
 
        For i = 0 To PopulationSize / 2 - 1 
 
            Parent1 = Selection.CrowdedTournament(P) 
            Parent2 = Selection.CrowdedTournament(P) 
 
            Crossover.SinglePoint(Parent1, Parent2, Child1, Child2) 
 
            Mutation.Random(Child1) 
            Mutation.Random(Child2) 
 
            Childs.Add(Child1) 
            Childs.Add(Child2) 
        Next 
 
        Return Childs 
    End Function 
End Class 
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A.2 Classes in Problem Domain 

A.2.1 View 

Namespace ViewSelection 
    Public Class View 
        Public Size As Double 
 
        Public HierarchyNodes As List(Of HierarchyNode) 
        Public HierarchyLevels As String 
 
        Public IsTopView As Boolean 
 
        Public QueryFrequency As Double 
        Public UpdateFrequency As Double 
 
        Public Id As Integer 
 
        Public Function MaximumSize() As Integer 
            Dim Product As Integer = 1 
            For i = 0 To HierarchyNodes.Count - 1 
                Product *= HierarchyNodes(i).Cardinality 
            Next 
            Return Product 
        End Function 
    End Class 
 
 
End Namespace 
 

A.2.2 Lattice 

Imports System.IO 
 
Public Class Lattice 
    Public AdjacencyMatrix(100, 100) As Boolean 
    Private ItemList As New List(Of Object) 
 
    Public Property Connections() As DataTable 
        Get 
            Dim dt As New DataTable 
            Dim Dc As DataColumn 
            Dim Dr As DataRow 
 
            For i = 0 To Count - 1 
                Dc = New DataColumn 
                Dc.DataType = GetType(Boolean) 
                dt.Columns.Add(Dc) 
                Dr = dt.NewRow() 
                dt.Rows.Add(Dr) 
 
            Next 
 
            For i = 0 To Count - 1 
                For j = 0 To Count - 1 
                    dt.Rows(i).Item(j) = Edge(i, j) 
                Next 



 

210 
 

            Next 
 
            Return dt 
 
 
        End Get 
 
        Set(ByVal value As DataTable) 
            For i = 0 To value.Rows.Count - 1 
                For j = i + 1 To value.Columns.Count - 1 
 
                    Edge(i, j) = value.Rows(i).Item(j) 
                Next 
            Next 
        End Set 
    End Property 
 
 
    Public ReadOnly Property Count() 
        Get 
            Return ItemList.Count 
        End Get 
    End Property 
 
    Public ReadOnly Property TopNode() As Object 
        Get 
            Return ItemList(0) 
        End Get 
    End Property 
 
    Public ReadOnly Property ButtomNode() As Object 
        Get 
            Dim Lastindex = ItemList.Count - 1 
            Return ItemList(Lastindex) 
        End Get 
    End Property 
 
    Default Public Property Item(ByVal i As Integer) 
        Get 
            Return ItemList(i) 
        End Get 
        Set(ByVal value) 
            ItemList(i) = value 
        End Set 
    End Property 
    Public Sub SaveAdjacencyLattice() 
        Dim W As StreamWriter = New StreamWriter("C:\test.txt") 
        For i = 0 To ItemList.Count - 1 
            For j = 0 To ItemList.Count - 1 
                If AdjacencyMatrix(i, j) = True Then 
                    W.Write("1 ") 
                Else 
                    W.Write("0 ") 
                End If 
 
            Next 
            W.WriteLine() 
        Next 
        W.Close() 
    End Sub 
 
    Public Sub Add(ByVal Item As Object) 
        If ItemList.Contains(Item) = False Then 
            ItemList.Add(Item) 
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        End If 
 
    End Sub 
 
    Public Function Indexof(ByVal O As Object) As Integer 
        Return ItemList.IndexOf(O) 
 
    End Function 
 
    Public Sub Clear() 
        For i = 0 To ItemList.Count - 1 
            For j = 0 To ItemList.Count - 1 
                AdjacencyMatrix(i, j) = False 
            Next 
        Next 
 
        ItemList.Clear() 
 
    End Sub 
    Public Property Edge(ByVal index1 As Integer, ByVal index2 As Integer) 
        Get 
            Return AdjacencyMatrix(index1, index2) 
        End Get 
        Set(ByVal value) 
            AdjacencyMatrix(index1, index2) = value 
            AdjacencyMatrix(index2, index1) = value 
        End Set 
    End Property 
 
 
 
    Public Function ParentsOf(ByVal Item As Object) As List(Of Object) 
        Dim j As Integer 
        Dim ParentsList As New List(Of Object) 
        Dim Index As Short = ItemList.IndexOf(Item) 
 
        For j = 0 To Index - 1 
            If AdjacencyMatrix(j, Index) = True Then 
                ParentsList.Add(ItemList(j)) 
            End If 
 
        Next 
 
        Return ParentsList 
    End Function 
 
 
 
    Public Function AncestorsOf(ByVal Item As Object) As List(Of Object) 
 
        Dim AncestorsList = New List(Of Object) 
        Dim ParentsList As New List(Of Object) 
        Dim Q As New Queue(Of Object) 
        Dim Index As Short 
        Dim Item2 As Object = Item 
 
        Q.Enqueue(Item2) 
 
        While Q.Count > 0 
 
            Item2 = Q.Dequeue() 
            Index = ItemList.IndexOf(Item2) 
 
            For i = 0 To Index - 1 
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                If AdjacencyMatrix(i, Index) = True And 
AncestorsList.Contains(ItemList(i)) = False Then 
                    AncestorsList.Add(ItemList(i)) 
                    Q.Enqueue(ItemList(i)) 
                End If 
            Next 
 
        End While 
        Return AncestorsList 
 
 
    End Function 
    Public Function IsAncestorOf(ByVal i As Integer, ByVal j As Integer) 
        Dim A As List(Of Object) 
        A = AncestorsOf(ItemList(j)) 
        If A.Contains(ItemList(i)) Then 
            Return True 
        Else 
            Return False 
        End If 
    End Function 
    Public Function ChildsItems(ByVal O As Object) As List(Of Object) 
        Dim ChildList As New List(Of Object) 
        Dim n As Integer 
        n = Indexof(O) 
        For i = n + 1 To Count 
            If AdjacencyMatrix(i, n) = True Then 
                ChildList.Add(ItemList(i)) 
            End If 
        Next 
        Return ChildList 
    End Function 
    Public Function ChildsIndexes(ByVal n As Integer) As List(Of Short) 
        Dim ChildList As New List(Of Short) 
        For i = n + 1 To Count 
            If AdjacencyMatrix(i, n) = True Then 
                ChildList.Add(i) 
            End If 
        Next 
        Return ChildList 
    End Function 
 
    Public Sub DrawLattice(ByRef GBox As GroupBox) 
 
        Dim visited(Count) As Boolean 
        Dim positions(Count) As Point 
 
        Dim Level(Count) As Queue 
        Dim q As New Queue 
 
 
        Dim g As System.Drawing.Graphics 
        Dim p As New Pen(Color.Black, 2) 
        Dim drawFont As New Font("Arial", 9) 
        Dim drawBrush As New SolidBrush(Color.Black) 
        Dim drawFormat As New StringFormat() 
        If ItemList.Count > 0 Then 
            g = GBox.CreateGraphics() 
            g.Clear(GBox.BackColor) 
            positions = DeterminesPositions(GBox.Height, GBox.Width) 
            DrawAllCircles(positions, g, Pens.Black, 12) 
            DrawLines(positions, g, p) 
            DrawCircleNumbers(positions, g, drawFont) 
        Else 
            GBox.Refresh() 
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        End If 
 
 
 
    End Sub 
 
    Private Sub DrawACircle(ByRef g As Graphics, ByRef center As Point, ByVal 
radius As Integer) 
        Dim rect As New Rectangle(center.X - radius, center.Y - radius, 2 * 
radius, 2 * radius) 
        g.FillEllipse(Brushes.Black, rect) 
    End Sub 
 
    Private Function DeterminesPositions(ByVal hight As Short, ByVal width As 
Short) As Array 
        Dim Positions(Count - 1) As Point 
        Dim i, t, s As Short 
        Dim Q As New Queue 
        Dim L As List(Of Short) 
        Dim Li As New List(Of Short) 
        Dim n As New node 
        Dim m As New node 
        Dim sum(Count - 1) As Short 
        Dim MaxLevel As Short 
        Dim NodeLevel(Count - 1) As Short 
        Dim Level(Count - 1, Count - 1) As Boolean 
        Dim nodeorder(Count - 1) As Short 
        n.Id = 0 
        n.Level = 0 
        Q.Enqueue(n) 
        MaxLevel = 0 
 
 
        While (Q.Count > 0) 
 
            n = Q.Dequeue() 
            sum(n.Level) += 1 
            NodeLevel(n.Id) = n.Level 
            nodeorder(n.Id) = sum(n.Level) 
            Level(n.Level, n.Id) = True 
 
            If (MaxLevel < n.Level) Then 
                MaxLevel = n.Level 
            End If 
            L = ChildsIndexes(n.Id) 
            For i = 0 To L.Count - 1 
                m.Id = L(i) 
                m.Level = n.Level + 1 
                If Q.Contains(m) = False Then 
                    Q.Enqueue(m) 
                End If 
 
            Next 
 
 
        End While 
 
 
 
        For i = 0 To Count - 1 
 
            t = NodeLevel(i) 
            s = nodeorder(i) 
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            Positions(i).X = (width / (sum(t) + 1)) * (s) 
            Positions(i).Y = (hight / (MaxLevel + 2)) * t + 100 
        Next 
 
 
        Return Positions 
    End Function 
 
 
    Private Sub DrawAllCircles(ByVal positions() As Point, ByVal g As 
System.Drawing.Graphics, ByVal p As Pen, ByVal radius As Short) 
 
 
        For i = 0 To positions.Length - 1 
            DrawACircle(g, positions(i), radius) 
        Next 
 
 
    End Sub 
    Private Sub DrawLines(ByVal positions() As Point, ByVal g As 
System.Drawing.Graphics, ByVal p As Pen) 
 
        Dim i As Short = 0 
        For i = 0 To Count - 1 
            For j = i + 1 To Count - 1 
                If AdjacencyMatrix(j, i) = True Then 
                    g.DrawLine(p, positions(i), positions(j)) 
 
                End If 
            Next 
        Next 
    End Sub 
    Private Sub DrawCircleNumbers(ByVal positions() As Point, ByVal g As 
System.Drawing.Graphics, ByVal drawFont As Font) 
        For i = 0 To positions.Length - 1 
            g.DrawString(i.ToString, drawFont, Brushes.White, positions(i).X - 8, 
positions(i).Y - 8) 
        Next 
 
    End Sub 
 
 
    Private Structure node 
        Public Id As Integer 
        Public Level As Integer 
 
    End Structure 
End Class 
 

 

A.2.3 VSP 

Imports GA_for_View_Selection.General 
Imports GA_for_View_Selection.ViewSelection 
Imports System.Math 
Namespace ViewSelection 
 
<Serializable()> Public Class VSP 
        Public DiskSpaceLimitValue As Double 
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        Private MinQ As Double 
        Private MaxQ As Double 
        Private MinU As Double 
        Private MaxU As Double 
 
 
        Private _TheLattice As Lattice 
        Private AncestorList() As List(Of View) 
 
        Public Sub New(ByVal ViewLattice As Lattice) 
            _TheLattice = ViewLattice 
 
            ReDim AncestorList(_TheLattice.Count) 
 
            For i = 0 To _TheLattice.Count - 1 
                AncestorList(i) = AncestorsOf(i) 
            Next 
 
            MinQ = q(All) 
            MaxQ = q(Null) 
            MinU = U(Null) 
            MaxU = U(All) 
 
 
        End Sub 
 
        Public Property Thelattice() As Lattice 
            Get 
                Return _TheLattice 
            End Get 
            Set(ByVal value As Lattice) 
                _TheLattice = value 
 
            End Set 
        End Property 
 
        Public ReadOnly Property View(ByVal i As Integer) As View 
            Get 
                Return Thelattice.Item(i) 
            End Get 
        End Property 
 
        Public ReadOnly Property NumberOfViews() 
            Get 
                Return Thelattice.Count 
            End Get 
        End Property 
 
        Public Function CubeSize() As Double 
            Return Space(All) 
        End Function 
 
 
 
        Public Function U(ByVal M As VSPPhenotype) As Double 
            Dim i As Integer 
            Dim Sum As Double = 0 
 
 
            For i = 1 To NumberOfViews - 1 
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                If M(i) = 1 Then 
                    Sum = Sum + View(i).UpdateFrequency * u(View(i), M) 
                End If 
 
            Next 
 
            U = Sum 
 
        End Function 
 
 
        Public Function NormalizedU(ByVal M As VSPPhenotype) As Double 
            Dim i As Integer 
            Dim Sum As Double = 0 
            Dim NU As Double 
 
            For i = 1 To NumberOfViews - 1 
                If M(i) = 1 Then 
                    Sum = Sum + View(i).UpdateFrequency * u(View(i), M) 
                End If 
 
            Next 
 
 
            NU = (Sum - MinU) / (MaxU - MinU) 
            NU = NU * 100 
            Return NU 
        End Function 
 
 
 
 
 
 
 
        Public Function Space(ByVal M As VSPPhenotype) As Double 
            Dim i As Integer 
            Dim Sum As Double 
 
            For i = 1 To NumberOfViews - 1 
                If M(i) = 1 Then 
                    Sum = Sum + Thelattice(i).Size 
                End If 
 
            Next 
            Space = Sum 
        End Function 
 
        Public Function DiskSpaceConstraint(ByVal M As VSPPhenotype) 
            Dim C As Double 
 
            C = Space(M) - DiskSpaceLimitValue 
 
            Return C 
        End Function 
 
 
 
        Public Function q(ByVal v As View, ByVal M As VSPPhenotype) As Double 
            Dim LCMV As View 
 
 
            If M(v.Id) = 1 Or v.Id = 0 Then 
                LCMV = v 
            Else 
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                LCMV = LeastCostMaterializedAncestor(v, M) 
            End If 
 
 
            Return LCMV.Size 
 
        End Function 
 
 
        Public Function Q(ByVal M As VSPPhenotype) As Double 
            Dim i As Integer 
            Dim sum As Double 
 
            For i = 0 To NumberOfViews - 1 
                sum += View(i).QueryFrequency * Q(View(i), M) 
            Next 
            Q = sum 
 
        End Function 
 
        Public Function NormalizedQ(ByVal M As VSPPhenotype) As Double 
            Dim i As Integer 
            Dim sum As Double 
            Dim NQ As Double 
 
            For i = 0 To NumberOfViews - 1 
                sum += View(i).QueryFrequency * q(View(i), M) 
            Next 
 
            NQ = (sum - MinQ) / (MaxQ - MinQ) 
            NQ = NQ * 100 
            Return NQ 
        End Function 
 
 
 
 
        Public Function u(ByVal v As View, ByVal M As VSPPhenotype) As Double 
            Dim Min As Double = Double.MaxValue 
            Dim SmallestAncestor As Integer 
            Dim index As Integer 
            Dim Size As Double 
            Dim TheAncestors As List(Of View) 
 
 
            index = Thelattice.Indexof(v) 
            TheAncestors = AncestorList(index) 
 
 
            M(0) = 1 
 
            For i = 0 To M.Count - 1 
                If M(i) = 1 And i <> index And TheAncestors.Contains(View(i)) = 
True Then 
                    Size = View(i).Size 
                    If Size < Min Then 
                        Min = Size 
                        SmallestAncestor = i 
                    End If 
                End If 
            Next 
            Return Min 
 
        End Function 
        Public Function AncestorsOf(ByVal i As Short) As List(Of View) 
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            Dim A As New List(Of View) 
            For n = 0 To i - 1 
                If ISAncestor(View(n), View(i)) = True Then 
                    A.Add(View(n)) 
                End If 
            Next 
 
            Return A 
        End Function 
 
        Private Function AncestorsOf(ByVal v As View) As List(Of View) 
            Return AncestorsOf(Thelattice.Indexof(v)) 
        End Function 
        Private Function ISAncestor(ByVal V1 As View, ByVal V2 As View) 
            If V1.HierarchyLevels = V2.HierarchyLevels Then 
                Return False 
            End If 
            For i = 0 To V1.HierarchyLevels.Count - 1 
                If V2.HierarchyLevels(i) < V1.HierarchyLevels(i) Then 
                    Return False 
                End If 
            Next 
 
            Return True 
        End Function 
 
        Private Function All() As VSPPhenotype 
            Dim A As New VSPPhenotype(NumberOfViews) 
 
            For i = 0 To NumberOfViews - 1 
                A(i) = 1 
            Next 
            Return A 
        End Function 
 
        Private Function Null() As VSPPhenotype 
            Dim A As New VSPPhenotype(NumberOfViews) 
 
            For i = 0 To NumberOfViews - 1 
                A(i) = 0 
            Next 
 
 
            Return A 
        End Function 
        Public Function LeastCostMaterializedAncestor(ByVal v As View, ByVal M As 
VSPPhenotype) As View 
 
            Dim MaterializedAncestorsList As List(Of View) 
            Dim Minimum As View 
            Dim n As Short 
 
            MaterializedAncestorsList = MaterializedAncestors(v, M) 
            If MaterializedAncestorsList.Count = 0 Then 
                Return Thelattice.TopNode() 
            End If 
 
 
            Minimum = MaterializedAncestorsList(0) 
 
            n = MaterializedAncestorsList.Count 
 
            For i = 1 To n - 1 
                If Minimum.Size > MaterializedAncestorsList(i).Size Then 
                    Minimum = MaterializedAncestorsList(i) 
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                End If 
            Next 
 
 
            Return Minimum 
 
        End Function 
 
 
        Private Function MaterializedAncestors(ByVal V As View, ByVal M As 
VSPPhenotype) As List(Of View) 
            Dim MaterializedAncestorsList As New List(Of View) 
            Dim AncestorsList As New List(Of View) 
            Dim c As View 
            Dim n As Short 
            c = Thelattice.TopNode() 
            AncestorsList = AncestorList(V.Id) 
 
            n = AncestorsList.Count 
 
            For Each MyView In AncestorsList 
 
                If M(MyView.Id) = 1 Or MyView.Id = 0 Then 
                    MaterializedAncestorsList.Add(MyView) 
                End If 
            Next 
 
 
            Return MaterializedAncestorsList 
 
 
        End Function 
 
        Public Function SearchSpaceSize() As Long 
            If NumberOfViews > CInt(Log(Long.MaxValue, 2)) Then 
                Return Long.MaxValue 
            Else 
                Return Pow(2, NumberOfViews) 
            End If 
 
        End Function 
    End Class 
 
 
 
End Namespace 
 
 

A.2.4 VSP Phenotype 

Namespace General 
    Public Class VSPPhenotype 
        Private _array() As Integer 
        Public F1, F2 As Double 
 
        Public Property List() As Integer() 
            Get 
                Return _array 
            End Get 
            Set(ByVal value() As Integer) 
                _array = value.ToArray() 
            End Set 
        End Property 
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        Public Sub New(ByVal Size As Short) 
            ReDim _array(Size - 1) 
            _array(0) = 1 
        End Sub 
        Public Sub New(ByVal o1 As Double, ByVal o2 As Double) 
            F1 = o1 
            F2 = o2 
        End Sub 
 
 
        Default Public Property A(ByVal i As Short) As Integer 
            Get 
                If i < _array.Count Then 
                    Return _array(i) 
                Else 
                    Return Nothing 
                End If 
            End Get 
 
            Set(ByVal value As Integer) 
                _array(i) = value 
            End Set 
        End Property 
 
        Public ReadOnly Property SearchSpaceSize() As Double 
            Get 
                Return Math.Pow(2, Count) 
            End Get 
        End Property 
        Public ReadOnly Property Count() 
            Get 
                Return _array.Count 
            End Get 
        End Property 
 
 
 
 
        Public Function Clone() As VSPPhenotype 
            Dim S2 As New VSPPhenotype(Count) 
            S2._array = _array.Clone() 
            S2.F1 = F1 
            S2.F2 = F2 
            Return S2 
        End Function 
 
        Public Sub Clear() 
            For i = 0 To Count - 1 
                _array(i) = 0 
            Next 
 
        End Sub 
 
        Public Overrides Function ToString() As String 
            Return _array.ToString() 
        End Function 
 
    End Class 
End Namespace 
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A.3 Performance metrics 

'Imports GA_for_View_Selection.General 
Imports System.IO 
Imports System.Math 
Imports Microsoft.Office.Interop 
 
 
 
Public Class PerformanceMetric 
    Private Approximation1 As New List(Of ObjectiveSpacePoint) 
    Private Approximation2 As New List(Of ObjectiveSpacePoint) 
 
 
    Private Filename As String 
 
Private Function Coverage(ByVal Approx1 As List(Of ObjectiveSpacePoint), ByVal 
Approx2 As List(Of ObjectiveSpacePoint)) 
        Dim A, B As Short 
        Dim C As Double 
 
        A = 0 
        B = Approx2.Count 
 
        For Each y As ObjectiveSpacePoint In Approx2 
            If Dominate(Approx1, y) = True Then 
                A += 1 
            End If 
        Next 
 
        C = A / B 
        Return C 
 
    End Function 
 
 
Private Function Dominate(ByVal P1 As ObjectiveSpacePoint, ByVal P2 As 
ObjectiveSpacePoint) As Boolean 
 
        If P1.X > P2.X Then 
            Return False 
        End If 
 
 
        If P1.Y > P2.Y Then 
            Return False 
        End If 
        If P1.Y < P2.Y Then 
            Return True 
        End If 
        Return True 
    End Function 
 
 
 
Private Function Dominate(ByVal Approximation As List(Of ObjectiveSpacePoint), 
ByVal P As ObjectiveSpacePoint) As Boolean 
        For Each D As ObjectiveSpacePoint In Approximation 
            If Dominate(D, P) = True Then 
                Return True 
            End If 
        Next 
        Return False 
    End Function 
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Private Function DominatedPoints(ByVal Approximation As List(Of 
ObjectiveSpacePoint)) As List(Of ObjectiveSpacePoint) 
        Dim Dominated As New List(Of ObjectiveSpacePoint) 
 
        For i = 0 To Approximation.Count - 1 
            For j = i + 1 To Approximation.Count - 1 
                If Dominate(Approximation(i), Approximation(j)) = True And 
Dominated.Contains(Approximation(j)) = False Then 
                    Dominated.Add(Approximation(j)) 
                End If 
                If Dominate(Approximation(j), Approximation(i)) = True And 
Dominated.Contains(Approximation(i)) = False Then 
 
                    Dominated.Add(Approximation(i)) 
                End If 
            Next 
        Next 
        Return Dominated 
    End Function 
 
  Private Function HyperVolume(ByVal Approx As List(Of ObjectiveSpacePoint), 
ByVal ReferencePoint As ObjectiveSpacePoint) As Double 
        Dim Volume As Double = 0 
        Dim Rectangular As Double = 0 
        Dim width, hieght As Double 
        width = 0 
        Height = 0 
 
        Approx.Sort(AddressOf Xcompare) 
 
        For i = Approx.Count - 1 To 0 Step -1 
            If i = Approx.Count - 1 Then 
                width = ReferencePoint.X - Approx(i).X 
            Else 
                width = Approx(i + 1).X - Approx(i).X 
            End If 
            hieght = ReferencePoint.Y - Approx(i).Y 
            Rectangular = width * hieght 
            Volume = Volume + Rectangular 
        Next 
        Return Volume 
    End Function 
 
Private Function MaximumSpread(ByVal Approx1 As List(Of ObjectiveSpacePoint)) 
 
        Dim A, B As Double 
 
 
 
        Dim MS As Double 
 
 
 
        A = Approx1.Max(Function(objectivespacepoint) objectivespacepoint.X) - 
(Approx1.Min(Function(objectivespacepoint) objectivespacepoint.X)) 
        B = Approx1.Max(Function(objectivespacepoint) objectivespacepoint.Y) - 
(Approx1.Min(Function(objectivespacepoint) objectivespacepoint.Y)) 
        A = Pow(A, 2) 
        B = Pow(B, 2) 
 
        MS = Pow(A + B, 0.5) 
 
        Return MS 
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    End Function 
 
 
 
  Private Function Mean(ByVal approximation As List(Of ObjectiveSpacePoint)) As 
Double 
        Dim Sum As Double 
        Dim MeanValue As Double 
 
        For Each P As ObjectiveSpacePoint In approximation 
            Sum += MinDistance(P, approximation) 
        Next 
        MeanValue = Sum / approximation.Count 
 
        Return MeanValue 
    End Function 
 
Private Function MinDistance(ByVal P As ObjectiveSpacePoint, ByVal Approximation 
As List(Of ObjectiveSpacePoint)) As Double 
        Dim Sum As Double 
        Dim MinSum As Double = Double.MinValue 
        Dim MinPoint As New ObjectiveSpacePoint(0, 0) 
 
        For Each D As ObjectiveSpacePoint In Approximation 
            If (D.X <> P.X Or D.Y <> P.Y) Then 
                Sum = Abs(P.Y - D.Y) + Abs(P.X - D.X) 
                If Sum > MinSum Then 
                    MinSum = Sum 
                    MinPoint = D 
                End If 
            End If 
        Next 
 
        Return MinSum 
    End Function 
 
Private Function NonDominated(ByVal Approximation As List(Of 
ObjectiveSpacePoint)) As List(Of ObjectiveSpacePoint) 
 
        Dim flag As Boolean 
        Dim ND As New List(Of ObjectiveSpacePoint) 
 
        For i = 0 To Approximation.Count - 1 
            flag = False 
            For j = 0 To Approximation.Count - 1 
 
                If Dominate(Approximation(j), Approximation(i)) = True And i <> j 
Then 
                    flag = True 
                    Exit For 
                End If 
            Next 
            If flag = False Then 
                ND.Add(Approximation(i)) 
            End If 
        Next 
 
        Return ND 
    End Function 
 
 
Private Function OpenFile() As Boolean 
 
        OpenFileDialog1.DefaultExt = "Input Approximation" 
        If OpenFileDialog1.ShowDialog() = Windows.Forms.DialogResult.OK Then 
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            Return True 
        Else 
            Return False 
 
        End If 
 
    End Function 
 
 
Private Function ReadData() As List(Of ObjectiveSpacePoint) 
 
        Dim R As StreamReader = New StreamReader(OpenFileDialog1.FileName) 
        Dim Line As String 
        Dim x, y As String 
        Dim Point As ObjectiveSpacePoint 
        Dim i, j As Short 
        Dim Approximation As New List(Of ObjectiveSpacePoint) 
 
 
 
 
 
        Line = R.ReadLine() 
        While R.EndOfStream = False 
 
            Point = New ObjectiveSpacePoint 
            Line = R.ReadLine() 
            x = "" 
            y = "" 
            If Line = "]" Then 
                Exit While 
            End If 
 
            i = 0 
            While Line(i) <> " " 
                x = x + Line(i) 
                i = i + 1 
            End While 
 
            For j = i + 1 To Line.Length - 1 
                y = y + Line(j) 
            Next 
 
            Point.X = CDbl(x) 
            Point.Y = CDbl(y) 
            Approximation.Add(Point) 
        End While 
 
        R.Close() 
        Return Approximation 
    End Function 
 
Private Function Spacing(ByVal Approximation As List(Of ObjectiveSpacePoint)) 
        Dim Sum As Double 
        Dim MeanValue As Double 
        Dim S As Double 
 
        MeanValue = Mean(Approximation) 
 
        For Each P As ObjectiveSpacePoint In Approximation 
            Sum = Pow((MinDistance(P, Approximation) - MeanValue), 2) 
        Next 
 
        S = Sum / (Approximation.Count - 1) 
        S = Pow(S, 0.5) 
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        Return S 
 
    End Function 
 
Private Function Xcompare(ByVal A As ObjectiveSpacePoint, ByVal B As 
ObjectiveSpacePoint) As Integer 
        If A.X > B.X Then 
            Return 1 
        End If 
 
        If A.X = B.X Then 
            Return 0 
        End If 
 
        If A.X < B.X Then 
            Return -1 
        End If 
    End Function 
 
 
End Class 
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Appendix B. Box Plots 

 

Figure B.1 Box Plot Showing Two Set Coverage , C(A,B). Algorithm A Refers to Algorithm In row And 

Algorithm B Refers to Algorithm In Column. 
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Figure B.2 Box Plot for Metric of hypervolume 
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Figure B.3 (continued) Box Plot for Metric of hypervolume 
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Figure B.4Box Plot for Metric of Spacing 
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Figure B.5(Continued) Box Plot for Metric of Spacing 
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Figure B.6Box Plot for Metric of Maximum Spread 
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Figure B.7(Continued) Box Plot for Metric of Maximum Spread 
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