CONTENTS

ORIGINAL LITERARY WORK DECLARATION	ii
ABSTRACT	iii
ABSTRAK	v
ACKNOWLEDGEMENTS	vii
CONTENTS	xi
LIST OF FIGURES	xix
LIST OF TABLES	xxiv
LIST OF SYMBOLS AND ABBREVIATIONS	xxvi
LIST OF APPENDICES	xxxiii

CHAPTER I	INTRODUCTION

1.1	Overview	1
1.2	Research objectives	5
1.3	Thesis outline	6
1.4	Thesis flowchart	9

CHAPTER II	LITERATURE REVIEW		
2.1	Antib	ody	11
	2.1.1	Antibody structure	15
	2.1.2	Therapeutic antibody	18
	2.1.3	Monoclonal antibody	21
2.2	Antib	ody engineering	29
	2.2.1	Chimeric monoclonal antibody	29

	2.2.2 Humanized monoclonal antibody	29
	2.2.3 Full human antibody	38
2.3	Approved therapeutic monoclonal antibody	39
2.4	DNA recombinant technology in antibody engineering	43
2.5	Anti-C2 monoclonal antibody	46

CHAPTER III CONSTRUCTION OF EXPRESSION VECTORS WITH HUMANIZED ANTI-C2 VARIABLE REGIONS USING DEIMMUNIZATION AND LOGICAL APPROACH METHODS

3.1	Object	tive		48
3.2	Introd	uction		49
3.3	Materi	als and r	nethods	50
	3.3.1	Amplifi	cation, cloning and sequence analysis	51
		of the n	nouse anti-C2 variable regions	
		3.3.1.1	Culture of hybridoma cells secreting	51
			anti-C2 mAb	
		3.3.1.2	RNA extraction	53
		3.3.1.3	cDNA synthesis of VH and VL	54
		3.3.1.4	PCR amplification of mouse VH and VL	54
		3.3.1.5	Agarose gel electrophoresis	55
		3.3.1.6	Purification of VH and VL from agarose	56
			gel	
		3.3.1.7	Cloning mouse-VH and mouse-VL into	57
			cloning vectors	
		3.3.1.8	Transformation	57

		3.3.1.9 Isolation and culture of bacterial colonies	57
		3.3.1.10 Vector extraction (small-scale)	58
		3.3.1.11 DNA sequencing and multiple alignments	59
	3.3.2	Humanization of mouse anti-C2 mAbs	59
		3.3.2.1 Deimmunization method	60
		3.3.2.2 Logical approach method	60
	3.3.3	Humanization and subcloning of humanized	61
		variable regions into expression vectors	
		3.3.3.1 Deimmunization method	61
		3.3.3.1.1 Overlapping-PCR mutagenesis	61
		3.3.3.1.2 Double-Digestion	65
		3.3.3.1.3 Ligation	65
		3.3.3.1.4 Vector extraction (large-scale)	66
		3.2.3.1.5 Linearization of vectors	67
		3.3.3.2 Logical approach method	68
		3.3.3.2.1 Overlapping-PCR mutagenesis	69
		3.3.3.2.2 Cloning into expression vectors.	70
3.4	Resul	ts and discussion	71
	3.4.1	Amplification, cloning and sequence analysis of	71
		mouse variable regions	
	3.4.2	Development of humanized anti-C2 mAbs	76
		3.4.2.2 Deimmunization method	76
		3.4.2.2 Logical approach method	97
3.4	Concl	usion	106

RAPID CHAPTER IV AUTOMATED SELECTION OF NS0 MAMMALIAN CELL LINE SECRETING HIGH LEVEL OF H1C2 MONOCLONAL ANTIBODY USING **CLONEPIX FL SYSTEM** 4.1 Objective 108

4.2	Introd	uction	108
4.3	Mater	ials and methods	112
	4.3.1	Expression vector construction	112
	4.3.2	Transfection of NS0 mammalian cells	112
	4.3.3	Seeding of transfected NS0 cells in semi-solid	113
		media	
	4.3.4	Isolation of single high producing clones	113
	4.3.5	Quantitative ELISA to determine the	114
		antibody productivity of clones	
4.4	Resul	ts	116
	4.4.1	Transfection and antibiotic selection	116
	4.4.2	Screening and selection of transfectomas using	117
		ClonePix FL system	
	4.4.3	Correlation between exterior median intensities	121
		of transfectomas and antibody productivity	
4.5	Discu	ssion	123
4.6	Concl	usion	125

CHAPTER VAPPLICATION OF CYTOTECHNOLOGY TECHNIQUES:
A CASE STUDY FOR PRODUCTION AND
PURIFICATION OF H1C2 MONOCLONAL ANTIBODY
SECRETED BY NS0 TRANSFECTOMA5.1Objective127

5.2	Introd	Introduction		
5.3	Mater	ials and methods	129	
	5.3.1	Isolation of monoclonal NS0 transfectoma	129	
		secreting H1C2 mAb		
	5.3.2	Adaptation of NS0 transfectoma in serum-free	129	
		media		
	5.3.3	Production of NS0 transfectoma in serum-free	131	
		media		
	5.3.4	Purification of H1C2 mAb	131	
5.4	Result	ts and Discussion	133	
	5.4.1	Adaptation of NS0 transfectoma in serum-free	133	
		media		
	5.4.2	Production of NS0 transfectoma in serum-free	136	
		media		
	5.4.3	Purification of H1C2 mAb	139	
5.6	Concl	usion	141	

CHAPTER VI CHARACTERIZATION OF HUMANIZED MONOCLONAL ANTIBODIES DEVELOPED USING DEIMMUNIZATION METHOD AND LOGICAL APPROACH METHOD: BINDING STUDIES *IN VITRO* USING CELL-BASED ELISA AND IMMUNOGENICITY STUDIES *IN VIVO* IN NON-HUMAN PRIMATES

6.1	Objective		
6.2	Introd	uction	144
6.3	Mater	ials and methods	145
	6.3.1	Characterization of mAbs	145
		6.3.1.1 SDS-PAGE	145
		6.3.1.2 In vitro binding studies	146
		6.3.1.2.1 Immunofluorescence cell-based	146
		assay	
		6.3.1.2.2 Competitive cell-based ELISA	147
		6.3.1.3 In vivo immunogenicity studies	148
		6.3.1.4 Immunization and blood collection of	148
		M. fascicularis	
		6.3.1.5 Measurement of monkeys' anti-antibody	149
		response	
6.4	Result	TS	150
	6.4.1	SDS-PAGE	150
	6.4.2	In vitro binding studies	152
		6.4.2.1 Immunofluorescence cell-based assay	152
		6.4.2.2 Competitive cell-based ELISA	153

	6.4.3 In vivo immunogenicity studies	156
6.5	Discussion	159
6.6	Conclusion	161

CHAPTER VII STABLE EXPRESSION OF H1C2 MONOCLONAL ANTIBODY IN NS0 AND CHO CELLS USING pFUSE AND UCOE EXPRESSION SYSTEM

7.1	Objec	tive	163
7.2	Introd	uction	164
7.3	Mater	ials and methods	166
	7.3.1	Construction of expression vectors with synthetic	168
		genes coding the variable region of HIC2 mAb	
		7.3.1.1 Monocistronic pFUSE expression vectors	168
		7.3.1.2 Monocistronic UCOE expression vectors	170
		7.3.1.3 Bicistronic UCOE expression vectors	174
	7.3.2	Transfection, selection and qualitative ELISA	175
	7.3.3	Isolation of high producer transfectomas using	177
		ClonePix FL system and characterization of H1C2	
		mAb	
7.4	Resul	ts	179
	7.4.1	Construction of expression vectors	179
		7.4.1.1 Monocistronic pFUSE expression vectors	179
		7.4.1.2 Monocistronic UCOE expression vectors	184
		7.4.1.3 Bicistronic UCOE expression vectors	186
	7.4.2	Transfection and expression of H1C2 mAbs	192
	7.4.3	Productivity of H1C2 mAb in NS0 cells using	194

		pFUSE expression vectors	
	7.4.4	Productivity of H1C2 mAb in CHO cells using	196
		UCOE expression vectors	
	7.4.5	Selection of high H1C2 mAb producing NS0 and	196
		CHO transfectomas using ClonePix FL system	
7.5	Discus	ssion	200
	7.5.1	Synthetic DNA	202
	7.5.2	Comparison between linearized and unlinearized	201
		pFUSE vectors	
	7.5.3	Comparison between monocistronic and bicistronic	202
		UCOE expression vector	
	7.5.4	Stable expression of H1C2 mAb	204
	7.5.5	Advantages of CHO cells over NS0 cells	207
7.6	Concl	usion	208

CHAPTER VIII OVERALL CONCLUSION

8.1	Summary	210
8.2	Conclusion	214
8.3	Future research	215

REFERENCES

217

LIST OF FIGURES

Figure		Page
1.1	Section I-Development, production and characterization of	9
	humanized anti-C2 monoclonal antibodies.	
1.2	Section II-Optimization of the development and production	10
	phase of humanized anti-C2 monoclonal antibody (H1C2	
	mAb).	
2.1	General structures of the five major classes of secreted	13
	antibody.	
2.2	General structure of the four subclasses of human IgG.	14
2.3	Antibody structure.	16
2.4	Anti-tumor mechanisms of action.	19
2.5	Production of polyclonal and monoclonal antibodies.	22
2.6	Engineered forms of monoclonal antibodies.	30
2.7	Immunogenicity of mouse, chimeric and humanized	37
	monoclonal antibodies administered to humans.	
2.8	Production of chimeric monoclonal antibodies.	45
3.1	Agarose gel electrophoresis profile of PCR-amplified cDNA	72
	of mouse variable regions.	
3.2	Agarose gel electrophoresis profiles of recombinant vectors	73
	containing mouse-PCR-VH and mouse-PCR-VL.	
3.3	Profile of DNA sequence of mouse VH compared with	74
	reference sequence provided.	
3.4	Profile of DNA sequence of mouse VL compared with	75
	reference sequence provided.	

xix

3.5	Profile of DNA and amino acid sequence comparison between	77
	mouse and human VH.	
3.6	Profile of DNA and amino acid sequence comparison between	78
	mouse and human VL.	
3.7	Agarose gel electrophoresis profiles of humanization of	83
	residue 10 of mouse VH and 68 of VL.	
3.8	Humanization of residue 10 of VH from aspartic acid (GAC)	85
	to glycine (GGC).	
3.9	Humanization of residue 17 of VH from serine (TCA) to	86
	threonine (ACA).	
3.10	Humanization of residues 44 and 45 of VH from asparagine	87
	(AAC) to lysine (AAA) and from lysine (AAA) to glycine	
	(GGA) respectively.	
3.11	Humanization of residue 15 of VL from isoleucine (ATT) to	88
	leucine (CTT).	
3.12	Humanization of residue 50 of VL from lysine (AAG) to	89
	arginine (AGG).	
3.13	Humanization of residue 68 of VL from threonine (ACT) to	90
	serine (AGT).	
3.14	Monocistronic expression vector pAH4602 for the expression	93
	of heavy chain of antibody.	
3.15	Monocistronic expression vector pAG4622 for the expression	94
	of light chain of antibody.	
3.16	Agarose gel electrophoresis profiles of double-digested	95
	recombinant cloning and expression vectors containing VH	
	and VL.	

xx

- 3.17 Agarose gel electrophoresis profiles of recombinant 96 humanized-pAH4602A and humanized-pAG4622A purified in large-scale in non-linearized and linearized forms.
- 3.18 Profile of DNA and amino acid sequence comparison between 100 mouse and human VH.
- 3.19 Profile of DNA and amino acid sequence comparison between 101 mouse and human VL.
- 3.20 Humanization of residue 68 of VL from threonine (ACT) to 104 serine (AGT).
- 3.21 Humanization of residue 81 of VL from arginine (AGG) to 105 serine (AGC).
- 4.1 Screening of colonies under white light and under 119 fluorescence.
- 4.2 Dot-plot analysis of fluorescence unit against colony size. 120
- 5.1 Comparison of growth characteristics and productivity of NS0 138
 A33-transfectomas cultured in the absence or presence of serum using triple flasks.
- 5.2 Real-time chromatograms obtained during purification of 140 humanized anti-C2 monoclonal antibodies (H1C2 mAb) using Äktaprime Plus.
- 6.1 *In vitro* characterization of purified mAbs using SDS-PAGE 151 under non-reducing and reducing conditions.
- 6.2 In vitro characterization of purified mAbs by cell-based 154
 ELISA using colorectal carcinoma expressing C2-antigen.
- 6.3 *In vitro* reactivity of purified mAbs measured by competitive 155 cell-based ELISA

xxi

- 6.4 Monkeys' anti-antibody responses to mouse-, chimeric- and 157 humanized anti-C2 antibodies using MC2 mAb as capture antibody.
- 6.5 Monkeys' anti-antibody responses to mouse-, chimeric- and 158 humanized anti-C2 antibodies using QC2 mAb as capture antibody.
- 7.1 pFUSE monocistronic expression vector; pFUSE-CHIg-hG1 180for the expression of heavy chain of antibody.
- pFUSE monocistronic expression vector; pFUSE-CLIg-hk for 181the expression of light chain of antibody.
- 7.3 Agarose gel electrophoresis profiles of cloning vectors 182 containing synthetic variable genes of H1C2 mAb and pFUSE expression vectors.
- 7.4 Agarose gel electrophoresis profiles of recombinant pFUSE 183
 expression vectors pFUSE-hVH and pFUSE-hVL containing
 the synthetic humanized variable regions.
- 7.5 UCOE monocistronic expression vector CET1019AS for the 185 expression of heavy or light chains of antibody.
- 7.6 UCOE bicistronic expression vector: CET1019AD for the 187 expression of both heavy and light chains of antibody.
- 7.7 Agarose gel electrophoresis profiles of cloning vectors 188 containing synthetic variable genes of H1C2 mAb and UCOE expression vectors.
- 7.8 Agarose gel electrophoresis profiles of recombinant 189 monocistronic and bicistronic UCOE expression vectors containing the synthetic syn-hVL-hCL.

xxii

- 7.9 Agarose gel electrophoresis profiles of recombinant 190 monocistronic UCOE expression vectors containing the synthetic syn-hVH-hCHm.
- 7.10 Agarose gel electrophoresis profiles of recombinant 191
 bicistronic UCOE expression vectors containing the synthetic syn-hVH-hCHb.
- 7.11 Qualitative ELISA of antibiotic resistant parental 195 transfectomas.
- 7.12 Dot-blot analysis of transfectomas using ClonePix FL system: 198Sum total intensity.
- 7.13 Quantitative ELISA of monoclonal high-producer 199 transfectomas isolated using ClonePix FL system.

LIST OF TABLES

Table		Page
2.1	Reported AAR; human anti-mouse antibody (HAMA)	25
	responses.	
2.2	Reported AAR; human anti-chimeric antibody (HACA)	31
	responses.	
2.3	Reported AAR; human anti-human antibody (HAHA)	34
	responses.	
2.4	Approved monoclonal antibodies for therapeutic use.	40
3.1	List of primers and their DNA sequences.	63
3.2	Amino acid residues of VH and VL that are located in the	80
	CDR and vernier regions.	
3.3	Humanization of amphipathic mouse residues to their	82
	homologous human residues using deimmunization	
	method.	
3.4	Comparison of percentage homology between mouse and	98
	human framework regions and percentage of mismatched	
	mouse-human residues on VH and VL of anti-C2	
	monoclonal antibody obtained using IgBLAST.	
3.5	Humanization of mismatched mouse-human residue to its	103
	homologous human residue using logical approach	
	method.	
4.1	Comparison of exterior fluorescence intensity (FU) and	122
	antibody productivity ($\mu g/ml$) of clones selected by	
	ClonePix FL system.	

xxiv

- 7.1 Summary of combinations of vectors used for the 167expression of H1C2 mAbs in NS0 and CHO cells.
- 7.2 Viability of stable parental transfectomas after antibiotic 193 selection.

LIST OF SYMBOLS AND ABBREVIATIONS

$(NH_4)_2SO_4$	Ammonium sulphate
~	Approximately
<	Less than
>	Greater than
\leq	Less than or equal to
2	Greater than or equal to
μl	Microlitre
3'	3'-end
5'	5'-end
99mTc-mC2	Mouse anti-C2 monoclonal antibodies labelled with Technetium-
	99m
А	Adenine
А	Alanine
AAR	Anti-antibody response
Ab	Antibody
ABTS	2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid
ACUC	Animal Care and Use Committee
ADCC	Antibody-dependent cell-mediated cytotoxicity
ADEPT	Antibody-directed enzyme prodrug therapy
AhIgG	Anti-human IgG antibody
amp	Ampicillin
ATCC	American Type Culture Collection
bIgG	Bovine polyclonal IgG antibody

bp	Base pair
BSA	Bovine serum albumin
С	Cytosine
С	Cysteine
CA	Cancer Antigen
cat. no.	Catalogue number
CDC	Complement-dependent cytotoxicity
cDNA	Complementary DNA
CDR	Complementarity-determining regions
CEA	Carcinoembryonic antigen
CFA	Complete Freund's adjuvant
cGMP	Current Good Manufacturing Practises
СН	Constant region of antibody heavy chain
СНО	Chinese hamster ovary
CHO-UCOE-B	CHO cells with bicistronic UCOE expression vector
CHO-UCOE-M	CHO cells with monocistronic UCOE expression vectors
CIAP	Calf intestinal alkaline phosphatase
CITES	Convention on International Trade in Endangered Species of Wild
	Fauna and Flora
CL	Constant region of antibody light chain
cm	Centimetre
CO_2	Carbon dioxide
D	Aspartic acid
DMEM	Dulbecco's modified eagle media
DMSO	Dimethyl sulfoxide

DNA	Deoxyribonucleic acid
dNTP	Deoxyribonucleotide triphosphate
DTT	Dithiothreitol
Е	Glutamic acid
E. coli	Escherichia coli
e.g	For example
EBV	Epstein-Barr virus
EDTA	Ethylenediaminetetraacetic acid
EFGR	Epidermal growth factors receptors
ELISA	Enzyme-linked immunosorbent assay
F	Phenylalanine
Fab	Fragment antigen binding
FACS	Fluorescence activated cell sorter
FBS	Fetal bovine serum
Fc	Fragment-crystallizable
FDA	Food and Drug Administration
FITC	Fluorescein isothiocyanate
FU	Fluorescence units
FWR	Framework regions
g	Gram
G	Guanine
G	Glycine
GM	Growth media
GMT	Gel microdrop technology
Н	Heavy

Н	Histidine
H1C2	Humanized anti-C2 mAb (Deimmunization method)
H2C2	Humanized anti-C2 mAb (Logical approach method)
HACA	Human anti-chimeric antibody
НАНА	Human anti-human antibody
HAMA	Human anti-mouse antibody
hum-C2 mab	Humanized anti-C2 monoclonal antibodies
Ι	Isoleucine
i.e	That is
IFA	Immunofluorescence assay
IgA	Immunoglobulin A
IgA1	Immunoglobulin A subclass 1
IgA2	Immunoglobulin A subclass 2
IgBLAST	Immunoglobulin basic local alignment search tool
IgD	Immunoglobulin D
IgE	Immunoglobulin E
IgG	Immunoglobulin G
IgG1	Immunoglobulin isotype G subclass 1
IgG2	Immunoglobulin isotype G subclass 2
IgG3	Immunoglobulin isotype G subclass 3
IgG4	Immunoglobulin isotype G subclass 4
IgM	Immunoglobulin M
К	Lysine
K ₂ HPO ₄	Dipotassium hydrogen orthophosphate
kb	Kilo base

KCl	Potassium chloride
kDa	Kilo Dalton
kg	Kilogram
KH ₂ HPO ₄	Potassium dihydrogen orthophosphate
L	Liter
L	Leucine
LB	Luria Bertani
LDC	Limiting dilution cloning
LEAP	Laser-enabled analysis and processing
М	Molar
М	Methionine
M. fascicularis	Macaca fascicularis
mAb	Monoclonal antibody
MBSA	Matrix-based selection assay
MC2	Mouse anti-C2 mAb
mg	Milligram
MgCl	Magnesium chloride
МНС	Major histocompatibility complex
ml	Milliliters
mM	millimolar
MWCO	Molecular weight cut-off
Ν	Normality
Ν	Asparagine
NaCl	Sodium chloride
ng	Nanogram

nm	Nanometer
NS0	Myeloma cell line
NS0-pFUSE-M	NS0 cells with monocistronic pFUSE expression vectors
NS0-TFA33	Monoclonal NS0-A33 transfectoma
°C	Degree Celsius
Opti-MEM	Opti-Minimum Essential Medium Eagle
Р	Proline
PCR	Polymerase chain reaction
Q	Glutamine
QC2	Chimeric anti-C2 mAb
R	Arginine
rcf	Relative centrifugal force
RNA	Ribonucleic acid
rpm	Revolutions per minute
RT-PCR	Reverse transcription polymerase chain reaction
S	Serine
SDS-PAGE	Sodium dodecyl sulfate polyacrylamide gel electrophoresis
SFGM	Serum-free growth media
SFM	Serum-free media
SOC	Super optimal broth with catabolite repression
Т	Thymine
Т	Threonine
T75	Cell culture flask with 75 cm^2 surface area
TAA	Tumor associated antigen
Taq	Thermus aquaticus

TFF	Tangential flow filtration
UCOE	Ubiquitous chromatin opening element
USA	United States of America
USAN	United States Adopted Names
UV	Ultraviolet
V	Variable
V	Volt
V	Valine
v/v	Volume/volume
VH	Variable region of antibody heavy chain
VL	Variable region of antibody light chain
W	Tryptophan
w/v	Weight/volume.
X-gal	5-bromo-4-chloro-3-indolyl-β-d-galactopyranoside
Y	Tyrosine

LIST OF APPENDICES

А	Additional result for Chapter III: VH	234
В	Additional result for Chapter III: VL	237
С	Components of cDNA, PCR and ligation mixture	240
D	Components of digestion mixtures	242
Е	ClonePix FL system	245
F	Äktaprime plus system	246
G	Ethical clearance letter for the use of monkeys	247
Н	List of kits	248
Ι	List of equipment	249
J	List of software	250
K	List of consumables	251
L	List of publications	255
М	List of presentations	257
Ν	Publication: chapter 4	263
0	Publication: chapter 5	274
Р	Publication: chapter 6	284
Q	Certificate of award	297
ъ		1 200

R Invitation to write a chapter in lab-protocol book: methods in molecular 299 Biology (humana/springer puslishing group)