APPENDIX A

ADDITIONAL RESULT FOR CHAPTER III: OUTPUT RESULT FROM THE ANALYSIS OF VH OF ANTI-C2 MONOCLONAL ANTIBODY USING 'AMPHI' SOFTWARE

VHC2-Dharshan SEQ. LENGTH: 118 AMINOACIDS

BLOCK	ζ	MID	POINT	OF BLOCKS	THETA	I(THETA)	HEL	A1	A2
	I	RES NO	. RES.	. HYD.					
		1	ASP	770					
		2	VAL	1.220					
		3	GLN	220					
		4	LEU	1.700					
		5	GLN	220					
1- 1	L1	6	GLU	640	170.	6.53	0	.59	.40
2- 1	L2	7	SER	040	150.	4.17	0	1.05	.56
3- 1	L3	8	GLY	.000	100.	5.22	1	2.36	1.22
4- 1	L4	9	PRO	.720	100.	4.86	1	2.14	1.35
5- 1	L5	10	ASP	770	145.	2.73	0	1.32	1.65
6- 1	L6	11	LEU	1.700	115.	3.32	1	1.31	1.91
7- 1	L7	12	VAL	1.220	135.	3.36	1	1.19	2.36
8- 1	18	13	LYS	990	115.	4.71	1	1.45	2.06
9- 1	19	14	PRO	.720	110.	5.88	1	1.67	2.43
10- 2	20	15	SER	040	120.	5.73	1	1.03	2.03
11- 2	21	16	GLN	220	120.	3.91	1	.85	1.59
12- 2	22	17	SER	040	180.	4.49	0	.65	1.13
13- 2	23	18	LEU	1.700	180.	3.84	0	.79	.81
14- 2	24	19	SER	040	165.	3.54	0	.45	.27
15- 2	25	20	LEU	1.700	165.	3.69	0	.32	.27
16- 2	26	21	THR	.260	160.	4.12	0	.37	.54
17- 2	27	22	CYS	1.540	165.	4.50	0	.24	.44
18- 2	28	23	THR	.260	165.	4.47	0	.19	.43
19-2	29	24	VAL	1.220	160.	4.67	0	.19	.29
20-3	30	25	THR	.260	155.	4.18	0	.14	.21
21- 3	31	26	GLY	.000	145.	3.50	0	.38	.78
22-3	32	27	TYR	.960	150.	2.93	0	.39	.71
23-3	33	28	SER	040	155.	1.62	0	.65	1.33
24-3	34	29	ILE	1.800	125.	2.24	Ţ	.93	1.75
25- 3	35	30	THR	.260	180.	3.86	0	.56	2.02
26- 3	36	31	SER	040	180.	3.95	0	.49	2.13
27- 3	37	32	ALA	.310	180.	5.86	0	.32	1.17
28-3	38	33	TYR	.960	130.	4.52	1	.33	1.36
29- 3	39	34	ASN	600	130.	6.43	Ţ	.58	1.58
30-4	10	35	TRP	2.250	130.	4.42	1	.51	1.18
31-4	ŧ⊥	36	HIS	.130	130.	6.01	1	.97	1.68
32-4	±2	37	TRP	2.250	135.	4.60	1	1.14	1.67
33-4	±3	38	111 Scr	1.800	120.	6.12	⊥ ∩	1.26	1.84
34-4	±4	39	ARG	-1.010	/5.	5.27	0	1.26	1.32
35-4	±5	40	GLN	220	υ.	5.83	0	.99	1.31
36- 4	£6	4⊥	PHE	I.790	80.	⊥0.46	\perp	⊥.48	1.08

37- 47	42	PRO	.720	85.	9.56	1	1.45	.88
38- 48	43	GLY	.000	140.	7.66	0	.97	.83
39-49	44	ASN	- 600	55.	6.45	0	.79	.70
40- 50	45	LYS	- 990	150	6 46	0	69	75
41 - 51	46	LEII	1 700	150	6 01	0	43	90
42 - 52	47	GLU	- 640	120	4 51	1	63	1 56
42 52	49		2 250	120.	4.72	1	.05	1 72
43-53	40	IRP	2.250	105	4.72	1	.05	2 02
44- 54	49	MEI	1.230	125.	0.83	1	.44	2.03
45- 55	50	GLY	.000	135.	6.18	1	. 29	1.33
46- 56	51	TYR	.960	125.	5.72	T	.80	2.17
47- 57	52	ILE	1.800	120.	3.52	1	1.24	1.84
48- 58	53	SER	040	0.	3.34	0	.87	1.16
49- 59	54	TYR	.960	130.	1.92	1	.31	1.19
50- 60	55	ASN	600	40.	1.72	0	.34	1.26
51- 61	56	GLY	.000	130.	2.30	1	.19	1.15
52- 62	57	THR	.260	180.	2.81	0	.14	.99
53- 63	58	THR	.260	130.	1.61	1	.43	2.21
54- 64	59	SER	040	180.	2.90	0	.70	.76
55- 65	60	TYR	.960	180.	4.21	0	.96	.64
56- 66	61	ASN	600	165.	3.48	0	1.02	.59
57- 67	62	PRO	720	165.	4.36	0	.38	.16
58- 68	63	SER	- 040	180	6 60	0	87	20
59- 69	64	LEII	1 700	170	6 21	0	1 06	.20
59 = 09	65	LEU	1.700	100.	0.21	0	1.00	.20
60 - 70	60	LIS	990	170	0.00	0	. 30	. 24
61- 71	00	SER	040	1/0.	/.11	0	.24	. 27
62- 72	67	ARG	-1.010	160.	6.//	0	.34	./6
63-73	68	工工店	1.800	165.	5.60	0	.60	.57
64- 74	69	SER	040	55.	6.52	0	.59	.53
65- 75	70	ILE	1.800	50.	4.64	0	.35	.47
66- 76	71	THR	.260	160.	3.52	0	.55	.81
67- 77	72	ARG	-1.010	180.	3.61	0	.60	.65
68- 78	73	ASP	770	0.	4.86	0	.71	.59
69- 79	74	THR	.260	80.	6.90	1	1.17	.33
70- 80	75	SER	040	Ο.	8.46	0	.57	.29
71- 81	76	LYS	990	15.	8.29	0	.20	.13
72- 82	77	ASN	600	30.	6.09	0	.26	.17
73- 83	78	GLN	220	30.	6.33	0	.42	.33
74- 84	79	PHE	1.790	40.	7.39	0	.30	.35
75- 85	80	PHE	1.790	40	7.24	0	.33	39
76- 86	81	T.EII	1 700	50	7 16	0	.55	61
70 00	82	GLN	- 220	45	4 20	0	1 08	86
78- 88	83	LEII	1 700	115	3 58	1	1 03	1 50
70 00	0.0	ACM	1.700		1 27	0	1.05	1.JU 61
79-89	84	ASN	600	125	4.3/	1	./8	.01
80-90	85	SER	040	135. 145	4.91	T	.35	1.23
81- 91	80	VAL	1.220	145.	3.65	0	.13	.80
82-92	87	THR	.260	130.	2.61	Ţ	.98	1.55
83-93	88	THR	.260	75.	2.30	0	.84	1.27
84- 94	89	GLU	640	55.	2.64	0	.42	.95
85- 95	90	ASP	770	45.	2.33	0	.46	.49
86- 96	91	THR	.260	30.	4.16	0	.24	.18
87- 97	92	ALA	.310	35.	3.28	0	.64	.23
88- 98	93	THR	.260	40.	4.20	0	.80	.46
89- 99	94	TYR	.960	35.	4.96	0	.48	.23
90-100	95	TYR	.960	35.	5.19	0	.22	.14
91-101	96	CYS	1.540	35.	4.94	0	.18	.27
92-102	97	ALA	.310	30.	6.20	0	.38	.11
93-103	98	ARG	-1 010	35	6 32	n	. 43	20
94-104	99	ASN	- 600	35	9 20	n	70	.20
95-105	100	AGD	- 770	20. 20.	11 27	0	.70 .70	10
96_106	101	CLU	- 610	40	10 24	0	.02	. 1 0
07 107	101	7 D C	_1 010	чU. Эг	10.24	0	כו. גרי	. 1 /
9/-1U/	102	AKG	-1.UIU 210	35. 20	0.9/ 10 0F	0	./4	. 4 /
90-100	103	АЦА	.310	∠∪. ⊃0	TO'82	0	1.10	. 33
AA-T0A	104	TRP	2.250	30.	8.73	U	$\perp . \perp 4$.60

100-110	105	PHE	1.790	30.	8.08	0	1.06	.55
101-111	106	ALA	.310	85.	7.55	1	1.50	.29
102-112	107	TYR	.960	90.	5.65	1	2.02	.68
103-113	108	TRP	2.250	85.	3.99	1	1.62	1.27
104-114	109	GLY	.000	80.	3.76	1	1.04	.92
105-115	110	GLN	220	130.	3.14	1	.76	1.44
106-116	111	GLY	.000	75.	2.98	0	.64	1.21
107-117	112	THR	.260	55.	3.40	0	.41	1.03
108-118	113	LEU	1.700	55.	3.68	0	.52	1.12
	114	VAL	1.220					
	115	THR	.260					
	116	VAL	1.220					
	117	SER	040					
	118	ALA	.310					

PREDICTED AMPHIPATHIC SEGMENTS

MID POINT OF BLOCKS	'S ANGLES	AS
KP 8-9	100100.	4.5
P 11- 16	110135.	12.4
P 33-38	120135.	9.3
47- 52	120135.	10.7
106-110	80130.	7.6
NO. OF PR	EDICTED BLOCK	KS: 25

APPENDIX B

ADDITIONAL RESULT FOR CHAPTER III: OUTPUT RESULT FROM THE ANALYSIS OF VL OF ANTI-C2 MONOCLONAL ANTIBODY USING

'AMPHI' SOFTWARE

VLC2Dharshan SEQ. LENGTH: 119 AMINOACIDS

BLOCK	MID	POINT OF	BLOCKS	THETA	I(THETA)	HEL	A1	A2
	RES NO.	RES.	HYD.					
	1	ASP	770					
	2	VAL	1.220					
	3	VAL	1.220					
	4	MET	1.230					
	5	THR	.260					
1- 11	6	GLN	220	180.	3.18	0	.44	.49
2- 12	7	THR	.260	50.	2.47	0	.18	.32
3- 13	8	PRO	.720	175.	2.12	0	.27	.27
4- 14	9	LEU	1.700	160.	2.84	0	.38	.15
5- 15	10	THR	.260	170.	3.53	0	.36	.16
6- 16	11	LEU	1.700	175.	4.06	0	.47	.46
7- 17	12	SER	040	160.	3.97	0	.61	.63
8- 18	13	VAL	1.220	160.	3.65	0	.68	.52
9- 19	14	THR	.260	165.	4.02	0	.46	.53
10- 20	15	ILE	1.800	170.	2.39	0	1.40	.73
11- 21	16	GLY	.000	180.	2.56	0	1.14	1.29
12- 22	17	GLN	220	130.	3.27	1	.60	2.25
13- 23	18	PRO	.720	130.	3.91	1	.21	1.91
14- 24	19	ALA	.310	180.	4.00	0	.86	1.26
15- 25	20	SER	040	135.	4.15	1	.85	1.26
16- 26	21	ILE	1.800	160.	3.33	0	.25	.46
17- 27	22	SER	040	155.	4.61	0	.23	.45
18- 28	23	CYS	1.540	155.	3.50	0	.26	.50
19- 29	24	LYS	990	175.	3.18	0	.53	.95
20- 30	25	SER	040	45.	4.32	0	.61	.48
21- 31	26	SER	040	180.	4.99	0	.93	.87
22- 32	27	GLN	220	105.	4.59	1	1.74	1.32
23- 33	28	SER	040	50.	5.12	0	1.08	.94
24- 34	29	LEU	1.700	45.	3.78	0	.98	.53
25- 35	30	LEU	1.700	40.	3.30	0	.99	.40
26- 36	31	ASP	770	40.	3.70	0	1.19	.45
27- 37	32	SER	040	45.	4.65	0	1.64	.50
28- 38	33	ASP	770	40.	6.21	0	.99	.31
29- 39	34	GLY	.000	45.	6.12	0	1.18	.37
30- 40	35	LYS	990	180.	5.59	0	.97	.72
31- 41	36	THR	.260	10.	7.13	0	1.10	.81
32- 42	37	TYR	.960	20.	7.37	0	.74	.52
33- 43	38	LEU	1.700	25.	6.35	0	.86	.46
34- 44	39	ASN	600	85.	7.04	1	.95	.14
35- 45	40	TRP	2.250	85.	6.67	1	1.11	.26
36- 46	41	LEU	1.700	150.	4.13	0	.98	.42

37- 47	42	T.ETT	1 700	30	3 86	0	1 1 4	46
20 10	12	CIN	1.700	20.	4 16	0	1 00	. 10
30- 40	43	GLIN	220	30.	4.10	0	1.00	.20
39-49	44	ARG	-1.010	80.	4.38	T	.84	.28
40- 50	45	PRO	.720	0.	6.92	0	.62	.54
41- 51	46	GLY	.000	100.	6.02	1	2.25	.80
42- 52	47	GLN	220	105.	7.60	1	2.36	1.83
43- 53	48	SER	- 040	100	6 32	1	2 41	1 05
10 55	10		.010	100. 0E	4 26	1	1 60	1.00
44- 54	49	PRO	.720	95.	4.30	T	1.09	. /0
45- 55	50	LYS	990	25.	5.13	0	1.11	.86
46- 56	51	ARG	-1.010	30.	5.58	0	1.37	.90
47- 57	52	LEU	1.700	35.	5.66	0	1.41	1.33
48- 58	53	ILE	1.800	40.	7.93	0	1.37	.79
49- 59	54	TYR	. 960	50.	7.78	0	1.84	. 91
50- 60	55	LEII	1 700	105	707	0 0	1 10	0.0
50 - 00	55	1120	1 220	110	7.07 6.06	0	1 15	1 40
51- 61	50	VAL	1.220	110.	6.96	0	1.15	1.48
52- 62	57	SER	040	20.	5.36	0	1.13	.92
53- 63	58	LYS	990	25.	4.21	0	1.05	.96
54- 64	59	LEU	1.700	90.	3.81	1	1.51	.56
55- 65	60	ASP	770	95.	5.81	1	2.26	.63
56- 66	61	SER	- 040	90	4 75	1	1 90	1 04
	60	CIV	.010	00	£ 06	1	2 10	01
57- 07	02	GLI	.000	90.	0.00	1	2.10	. 99
58- 68	63	VAL	1.220	90.	6.60	T	2.22	.93
59- 69	64	PRO	.720	80.	6.32	1	1.94	1.01
60- 70	65	ASP	770	80.	4.22	1	1.86	1.04
61- 71	66	ARG	-1.010	85.	3.64	1	2.62	1.20
62- 72	67	PHE	1.790	90.	3.28	1	2.52	1.36
63-73	68	THR	260	100	3 06	1	2 41	1 19
64 - 74	60	CIV	.200	100	2.00	1	2.16	1 05
	70	GED	.000	110	2.20	1	2.10	1 07
65- 75	70	SER	040	110.	2.33	Ţ	1.20	1.2/
66- 76	71	GLY	.000	180.	5.34	0	.63	1.26
67- 77	72	SER	040	165.	2.63	0	.48	.95
68- 78	73	GLY	.000	180.	3.13	0	.06	.30
69- 79	74	THR	.260	180.	4.75	0	.38	.17
70- 80	75	ASP	770	180.	7.32	0	.68	.24
71- 81	76	PHE	1 790	175	8 93	0	48	42
72 02	, c 77		210	160	7 66	0	- 10	60
72- 02	77		.310	100.	7.00	0	. / 4	.00
73-83	/8	LEO	1.700	160.	8.30	0	.98	.90
74-84	79	LYS	990	155.	9.39	0	.74	1.04
75- 85	80	ILE	1.800	160.	8.21	0	.68	1.02
76- 86	81	ARG	-1.010	150.	8.15	0	.53	.57
77- 87	82	ARG	-1.010	140.	9.17	0	.17	1.46
78- 88	83	VAL	1.220	140.	11.71	0	.35	1.27
79- 89	84	GLU	- 640	135	9 0 9	1	1 0 9	1 92
80- 90	85	717	310	140	8 25	0	±.09	1 22
00 90	05		.510	140.	6 27	0	.00	1 01
81- 91	00	GLU	040	140.	0.37	0	. 30	1.01
82-92	87	ASP		150.	5.18	0	.38	.52
83- 93	88	LEU	1.700	145.	4.57	0	.11	.80
84- 94	89	GLY	.000	Ο.	6.77	0	.15	1.00
85- 95	90	VAL	1.220	30.	3.89	0	.45	1.31
86- 96	91	TYR	.960	0.	4.80	0	.52	1.26
87- 97	92	TYR	960	180	3 24	0	41	95
	02	CVC	1 540	±00.	2.62	0		1 27
00- 90	23		1.340	JJ. 4E	2.02	0		1 25
89-99	94	TRP	2.250	45.	3.05	0	.58	1.25
90-100	95	GLN	220	45.	2.29	0	.45	.94
91-101	96	GLY	.000	60.	3.33	0	.36	1.21
92-102	97	THR	.260	65.	4.10	0	.32	.92
93-103	98	HIS	.130	70.	4.69	0	.60	1.05
94-104	99	PHE	1.790	80.	3.19	1	.81	1.34
95-105	100		720	105	2 05	1	1 67	1 10
96_10C	101	UTO DTO	120	- UJ.	2.00	1	2 02	و ± • ± ۵ ک
90-100	101	UT2	.130	05.	2.01 0 10	1	4.03	1 00
A1-T0.1	102	THR	.260	85.	2.12	1	4.33	1.06
98-108	T03	PHE	1.790	100.	3.57	1	2.14	1.03
99-109	104	GLY	.000	105.	4.13	1	1.60	1.39

100-110	105	GLY	.000	180.	3.86	0	.69	2.04
101-111	106	GLY	.000	180.	5.83	0	.35	1.22
102-112	107	THR	.260	180.	7.61	0	.51	.82
103-113	108	LYS	990	135.	4.85	1	.58	1.03
104-114	109	LEU	1.700	160.	5.91	0	.14	.33
105-115	110	GLU	640	160.	5.99	0	.14	.37
106-116	111	ILE	1.800	160.	6.13	0	.16	.31
107-117	112	LYS	990	180.	5.62	0	.04	.57
108-118	113	ARG	-1.010	180.	6.38	0	.04	.59
109-119	114	LYS	990	50.	5.72	0	.10	.77
	115	SER	040					
	116	THR	.260					
	117	LEU	1.700					
	118	THR	.260					
	119	GLY	.000					

PREDICTED AMPHIPATHIC SEGMENTS

MID POINTS OF BLOCKS	ANGLES	AS
P 17- 18	130130.	4.2
P 46-49	95105.	8.7
59- 70	80110.	24.8
K P 99-104	80105.	11.1
NO. OF PREI	DICTED BLOCKS	: 24

APPENDIX C

COMPONENTS OF cDNA, PCR AND LIGATION MIXTURE

cDNA Mix

Volume
2.0 µl
4.0 µl
2.0 µl
1.0 µl
1.0 µl

PCR Mix

Components	Volume
Buffer (10X)	5.0 µl
dNTP (10 mM)	1.0 µl
MgCl (25 mM)	3.0 µl
Taq DNA Polymerase Recombinant	1.0 µl
DNA	2.0 µl
Forward primer	2.0 µl
Reverse primer	2.0 µl
Sterile water	34.0 µl

Ligation Mix

Components	Volume
Salt solution	1.0 µl
pCR2.1-TOPO vector	1.0 µl
DNA	2.0 µl
Sterile water	2.0 µl

APPENDIX D

COMPONENTS OF DIGESTION MIXTURES

Digestion mixture 1

Components	Volume
Buffer 2	5.0 µl
BSA	0.5 µl
EcoRV	0.5 µl
NheI	0.5 µl
Sterile water	40.0 µ1

Digestion mixture 2

Components	Volume
Buffer 3	5.0 µl
BSA (100X)	0.5 µl
EcoRV	0.5 µl
SalI	0.5 µl
Sterile water	40.0 µl

Digestion mixture 3

Components	Volume
Buffer 3	5.0 µl
BSA (100X)	0.5 µl
РуиІ	1.0 µl

Digestion mixture 4

Components	Volume
Buffer 1	5.0 µ1
BSA (100X)	0.5 µl
AgeI	0.5 µl
Sterile water	40.5 µl

Digestion mixture 5

Components	Volume
Buffer 3	5.0 µl
BSA (100X)	0.5 μl
BsiWI	0.5 µl

Digestion mixture 6

Components	Volume
Buffer 4	5.0 µl
BSA (100X)	0.5 µl
NheI	0.5 µl
NgoMIV	0.5 µl
Sterile water	40.0 µl

Digestion mixture 7

Components	Volume
Buffer 4	5.0 µl
BSA (100X)	0.5 µl
NgoMIV	0.5 µl
Sterile water	40.5 µl

Digestion mixture 8

Components	Volume
Buffer 3	5.0 µ1
BSA (100X)	0.5 µl
NotI	0.5 µl
Sterile water	40.5 µl

Digestion mixture 9

Components	Volume
Buffer 4	5.0 µl
BSA (100X)	0.5 µl
NgoMIV	0.5 µl
BstBI	0.5 µl

APPENDIX E

CLONEPIX FL SYSTEM

Source:

Molecular Devices, USA

APPENDIX F

ÄKTAPRIME PLUS SYSTEM

Source:

GE Healthcare, USA

APPENDIX G

ETHICAL CLEARANCE LETTER FOR THE USE OF MONKEYS

APPENDIX H

LIST OF KITS

Kit	Supplier
One Shot Mach1-T1 Chemically Competent E. coli	Life Technologies, USA
(cat. no.: C8620-03)	
QIAEX gel extraction (cat. no.: 20021)	Qiagen, Germany
QIAfilter Plasmid Maxi (cat. no.: 12263)	Qiagen, Germany
QIAprep spin Miniprep (cat. no.: 27106)	Qiagen, Germany
QIAquick gel extraction (cat. no.: 28704)	Qiagen, Germany
QIAquick PCR purification (cat. no.: 28104)	Qiagen, Germany
RNeasy Mini (cat. no.: 74104)	Qiagen, Germany
Superscript III First strand Synthesis System (cat. no.:	Life Technologies, USA
1800080-051	
Taq DNA Polymerase Recombinant (cat. no.: 11615-010)	Life Technologies, USA
TOPO-TA cloning (cat. no.: K4500-01)	Life Technologies, USA

APPENDIX I

LIST OF EQUIPMENT

Equipment	Supplier
Äktaprime Plus system	GE Healthcare, USA
AlphaImager 2200	ProteinSimple, USA
ClonePix FL system	Molecular Devices, USA
CO ₂ incubator	Binder, Germany
Coolcell	Biocision, USA
Inverted microscope	Nikon, USA
Mini 50 VP model	Major Science, USA
Nanophotometer	Implen, Germany
Peltier Thermal Cycler-100	MJ Research, USA
Synergy HT multi-mode microplate reader	BioTek, USA
Vivascience Vivaflow 200	Sartorius, USA

APPENDIX J

LIST OF SOFTWARE

Software	Source
AMPHI	Centre of Molecular Immunology, Cuba
Bioedit	http://www.mbio.ncsu.edu/BioEdit/BioEdit.zip
IgBLAST	http://www.ncbi.nlm.nih.gov/igblast/

APPENDIX K

LIST OF CONSUMABLES

Consumables	Supplier
1 kb DNA ladder	Promega, USA
100 bp DNA ladder	Promega, USA
6-well plates (cat. no.: 3516)	Corning, USA
ABTS	Roche, Germany
Agarose	1 st BASE Laboratories,
	Malaysia
Ampicillin	Life Technologies, USA
Antibiotic/antimycotic (cat. no.: 15240)	Life Technologies, USA
Anti-human capture antibody conjugated to fluorescein	Molecular Devices,
isothiocyanate (FITC) (cat. no.: K8200)	USA
Anti-human IgG antibody (AHIgG) (cat. no.: I2136)	Sigma-Aldrich, USA
Anti-human IgG conjugated to peroxidase enzyme (cat. no.:	Sigma-Aldrich, USA
A6029)	
Anti-mouse detection agent-FITC (cat. no.: K8220)	Molecular Devices,
	USA
Bicistronic UCOE expression vector (CET1019AD)	Milipore, USA
BstBI	New England Biolabs,
	USA
Calf Intestinal Alkaline Phosphatase (CIAP)	Life Technologies, USA

Complete Freund's adjuvant (CFA)	Sigma-Aldrich, USA
Cryotubes (cat. no.: 377224)	Thermo Fisher
	Scientific, USA)
Dulbecco's modified eagle medium (DMEM)	Biochrom, Germany
E. coli Fast-Media agar with zeocin (cat. no.: fas-zn-s)	InvivoGen, USA
E. coli Fast-Media broth with blasticidin (cat. no.: fas-bl-l)	InvivoGen, USA
E. coli Fast-Media broth with blasticidin (cat. no.: fas-bl-s)	InvivoGen, USA
E. coli Fast-Media broth with zeocin (cat. no.: fas-zn-l)	InvivoGen, USA
EcoRV	New England Biolabs,
	USA
Ethidium bromide	Sigma-Aldrich, USA
Fetal bovine serum (cat. no.: S0615)	Biochrom, Germany
FuGENE HD transfection reagent	Roche, Germany
Full range Rainbow marker	GE Healthcare, USA
Glutamax (cat. no.: 35050)	Life Technologies, USA
HiTrap Protein A HP 1 ml column	GE Healthcare, USA
Hybridoma-SFM (cat. no.: 12045)	Life Technologies, USA
IgG Elution Buffer with a pH of 2.8 (cat. no.: 21004)	Thermo Fisher
	Scientific, USA
Immuno 96 micro well solid plates (cat. no.: 442404)	Thermo Fisher
	Scientific, USA
Incomplete Freund's adjuvant (IFA)	Sigma-Aldrich, USA
I-SceI	New England Biolabs,
	USA
LB-agar	Lennox, USA
LB-broth	Lennox, USA

Leibovitz's L-15 medium	Sigma-Aldrich, USA
L-histidinol dihydrochloride	Sigma-Aldrich, USA
Lipofectamine 2000 (cat. no.: 11668027)	Life Technologies, USA
Monocistronic expression vectors, pFUSe2-CLIg-hk	Invivogen, USA
Monocistronic expression vectors, pFUSE-CHIG-hG1	Invivogen, USA
Monocistronic UCOE expression vector (CET1019AS)	Milipore, USA
NgoMIV	New England Biolabs,
	USA
NheI	New England Biolabs,
	USA
NotI	New England Biolabs,
	USA
NS0 cells	ATCC, USA
Opti-MEM reduced-serum medium (cat. no.: 51985034)	Life Technologies, USA
PvuI	New England Biolabs,
	USA
SalI	New England Biolabs,
	USA
Semi-solid media for hybridomas/myelomas (cat. no.: K8600)	Molecular Devices,
	USA
Serum-free cell freezing media containing DMSO (cat. no.:	Sigma-Aldrich, USA
C6295)	
SFM4CHO media (cat. no.: SH30518)	Thermo Fisher
	Scientific, USA)
Supercoiled DNA ladder (cat. no.: 15622-012)	Life Technologies, USA

SW1116 cell line (cat. no.: CCL-23)	ATCC, USA
Synthechol (cat. no.: S5442)	Sigma-Aldrich, USA
T4 DNA ligase	Promega, USA
T75 flasks (cat. no.: 156472)	Thermo Fisher
	Scientific, USA)
Triple flasks	Thermo Fisher
	Scientific, USA)
Trypan blue dye	(Biochrom, Germany).

APPENDIX L

LIST OF PUBLICATIONS

1. ELECTRONIC JOURNAL OF BIOTECHNOLOGY

2011, Volume: 14, Issue: 2

http://dx.doi.org/10.2225/vol14-issue2-fulltext-7

Suba Dharshanan, Heilly Chong, Cheah Swee Hung, Zulkeflie Zamrod & Nazlee Kamal

Title: Rapid automated selection of mammalian cell line secreting high level of humanized monoclonal antibody using ClonePixFL system and the correlation between exterior median intensity and antibody productivity.

(Manuscript accepted and published)

2. ASIA PACIFIC JOURNAL OF MOLECULAR BIOLOGY AND BIOTECHNOLOGY

2011, Volume: 19, Issue: 2, Page 63-71

http://www.msmbb.org.my/apjmbb/html192/192b.pdf

Suba Dharshanan, Heilly Chong, Cheah Swee Hung & Zulkeflie Zamrod Title: Application of cytotechnology techniques: a case study for production, purification and characterization of humanized antibody secreted by NS0 transfectoma

(Manuscript accepted and published)

3. SCIENTIFIC RESEARCH AND ESSAY

Suba Dharshanan, Heilly Chong, Cheah Swee Hung & Zulkeflie Zamrod Title: Development of humanized monoclonal antibodies by logical approach: characterization, functional studies *in vitro* and immunogenicity studies *in vivo* in non-human primates

(Manuscript submitted)

4. CYTOTECHNOLOGY

Suba Dharshanan, Heilly Chong, Cheah Swee Hung & Zulkeflie Zamrod Title: Stable expression of humanized anti-C2 monoclonal antibody in NS0 and CHO cells using pFUSE and UCOE expression system (Manuscript submitted)

APPENDIX M

LIST OF PRESENTATIONS

1. BIOPROCESS INTERNATIONAL CONFERENCE AND EXHIBITION, BEIJING, CHINA.

7-8 SEPTEMBER 2009

Title: Humanization of anti-C2 antibody and the fast selection of high-antibody producing clones using an automated system.

Abstract:

Murine anti-C2 antibody recognized epitopes expressed in ior C2 antigen, a glycoprotein complex expressed in human malignant colorectal cells. The anti-C2 antibody was humanized using a novel method developed and licensed from Center of Molecular Immunology, Cuba. An automated system was used for rapid selection of the high-producing clones.

2. IMMUNOTHERAPY AND CANCER SEMINAR BY CARIF, SUBANG

JAYA, MALAYSIA. (Invited speaker)

11 JUNE 2010

Title: Humanized monoclonal antibodies targeting receptors.

3. XV INTERNATIONAL SCIENTIFIC CONGRESS CNIC, HAVANA, CUBA.

28 JUNE-1 JULY 2010

Title: High throughput selection of high-producing mammalian cell line using a rapid automated clonal selection method.

Abstract:

The selection of high-producing mammalian cell lines represents a bottleneck in process development for the production of biopharmaceuticals. Traditional methods are time consuming, low probability of monoclonality and significantly limited by the number of clones that can be feasibly screened. Here, we describe the use of ClonePixTM FL (a high-throughput automated colony picking system) to screen and pick high producer clones secreting humanized anti-C2 monoclonal antibody (hC2-mAb) from over 100,000 clones in less than 1 hour. Transfected NS0 cells expressing hC2-mAb are immobilized in semi-solid medium and incubated for 1-2 weeks to form colonies. Secreted hC2-mAbs are retained in the proximity of its corresponding colony due to medium viscosity and it can be visualized by the addition of fluorescently labeled capture antibody. When measuring secretion by fluorescence, data from white light and fluorescent images are merged and the system can exclude high-producing colonies that might be close to non-producing colonies, thus preventing contamination with non-producing cells. The highest producing colonies are identified and picked automatically by pre-programmed software for downstream applications. 100,000 clones were screened and only 271 (~0.27%) clones were above threshold value of 1000 fluorescence unit (FU). Out of those 271 clones, 217, 51 and 3 clones were between 1000-2000 FU, 2000-3000 FU and 3000-4000 FU respectively with the highest FU equal to 3840. The highthroughput ability of ClonePix system enables the screening high number of clones to give a reasonable probability of finding high-producing clones which are extremely rare.

RESEARCH AND DEVELOPMENT SEMINAR SERIES, INNO BIOLOGICS SDN BHD, NILAI, MALAYSIA. (Invited speaker) 14 FEBRUARY 2011.

Title: Development and characterization of humanized anti-c2 monoclonal antibody.

Abstract:

Three versions of humanized anti-C2 monoclonal antibodies (hum-C2 mabs) were developed and transfected into NSO cells. Instead of limiting dilution cloning method, Clone Pix FL system was used to screen and pick high producer transfectomas secreting hum-C2 mabs. In order to obtain hum-C2 mabs that are free from contaminating exogenous proteins present in serum, the high-producer transfectomas were adapted to serum-free media and cultured in triple flasks. The hum-C2 mabs in the culture supernatant were purified using HiTrap Protein A column and Äktaprime Plus system. The purified hum-C2 mabs was then analyzed by SDS-PAGE under reducing and non-reducing conditions. Under reducing conditions, only two bands were stained with approximately 50 kDa and 25 kDa which correspond to the heavy chain and light chain respectively. Under non-reducing conditions, a higher molecular weight band with an apparent molecular mass of 150 kDa was observed. Two versions of hum-C2 mabs were then immunized intradermically in *Macaca fascicularis* on days 0, 14, 28, and 42. Blood was collected prior to the first immunization and then every 14 days. The antibody response which measured by ELISA shows that both versions of the hum-C2 mabs induces lower antibody response in monkeys compared to mouse-C2 mabs. A cell-based ELISA done also shows that the engineered hum-C2 mabs were still able to bind to C2 antigen expressed by SW1116 colorectal carcinoma cells. However, since the productivity of hum-C2

mabs were low (~6 mg/L), currently hum-C2 mabs are being developed using different expression vectors to significantly improve the yield of antibody.

5. WEB SEMINAR, MOLECULAR DEVICES, HAMPSHIRE, ENGLAND.

22 JULY 2011. (Invited speaker)

Title: Using high throughput automated selection to increase discovery of rare, high producing mammalian cell lines.

Abstract:

The selection of high-producing mammalian cell lines represents a bottleneck in process development for the production of biopharmaceuticals. Traditional methods are time consuming; significantly limiting the number of clones that can be feasibly screened and can result in low probability of monoclonality. Here, we describe the use of ClonePix[™] to screen and pick high producer clones secreting humanized anti-C2 monoclonal antibody from 100,000 clones in a short duration. The ability of ClonePix to screen high numbers of clones in less time increases the probability of finding high-producing clones that are extremely rare.

6. POSTGRADUATE SEMINAR, NATIONAL UNIVERSITY OF MALAYSIA, BANGI, MALAYSIA. (Invited speaker) 10 OCTOBER 2011.

Title: Cancer immunotherapy: humanized monoclonal antibodies.

7. 16th Biological Sciences Graduate Congress, NATIONAL UNIVERSITY OF SINGAPORE, SINGAPORE.

12-14 DECEMBER 2011.

Title: Rapid and high expression of humanized monoclonal antibodies in mammalian cells.

Abstract:

Humanized monoclonal antibodies (mAbs) are widely used for cancer immunotherapy due to their reduced immunogenicity and high specificity. Production of these valuable biopharmaceuticals often requires the use of mammalian cells, which is an expensive process with usually disappointingly low yields and long development times. Therefore four technologies were integrated to circumvent the limitations of conventional methods for the expression of humanized mAbs. First, T-cell epitope humanization technology was used to replace the conventional method of reducing the immunogenicity of murine mAbs, which often requires some amino acids from murine frameworks to be back mutated to recover its binding capacity. Conversely, T-cell epitope humanization method only judiciously and minimally substitutes potential immunogenic mouse residues in order to reduce its immunogenicity without compromising the binding capacity. Second, although by PCR mutagenesis, it is possible to humanize immunogenic mouse residues, however due to the high error-rate of Taq DNA polymerase, a large number of samples are required for DNA sequence confirmation. Thus, synthetic genes coding the humanized variable domains were used instead. Third, an automated colony picker ClonePix FL system was used to identify and isolate high producing transfectomas secreting humanized mAbs. The limiting dilution cloning method which is commonly applied for this purpose, is time-consuming, has low probability of monoclonality and is significantly limited by the number of clones that can be feasibly screened. In contrast, the high-throughput, rapid and automated nature of ClonePix FL system, allows the screening of large number

of cells in a short period of time with also an increased in the probability of obtaining rare and precious high-producing clones. Finally, the choice of expression vectors is also a crucial factor for a high and stable expression of humanized antibodies. In summary, the integration of four technology platforms allows the rapid and high expression of humanized mAbs.

APPENDIX N

PUBLICATION: CHAPTER 4

APPENDIX O

PUBLICATION: CHAPTER 5

APPENDIX P

PUBLICATION: CHAPTER 6

APPENDIX Q

CERTIFICATE OF AWARD

APPENDIX R

INVITATION TO WRITE A CHAPTER IN LAB-PROTOCOL BOOK: METHODS IN MOLECULAR BIOLOGY (HUMANA/SPRINGER PUSLISHING GROUP)

From: Fischer, Nicolas

Sent: vendredi 13 juillet 2012 11:52

To: suba.dharshanan@innobiologics.com

Subject: Invitation to contribute to a new edition of 'Monoclonal Antibodies'

Dear Dr Dharshanan,

As a specialist in your field of research, I am pleased to invite you to contribute a chapter to the new edition of 'Monoclonal Antibodies' that I have the pleasure to coedit with Dr. Vincent Ossipow. This chapter could be entitled 'Hybridoma subcloning using solid matrices' or you can propose another title that you would find to be more appropriate.

This book will be part of the lab-protocol based 'Methods in Molecular Biology' series, published by Humana Press (part of the Springer publishing group). Over 750 volumes have been published in the series to date. Full details of all the Methods series can be found at Humana's web site http://www.springer.com/series/7651. The Series is prestigious, well established and each chapter appears in PubMed and on the Web of Science.

If you accept this proposal, I will send you detailed explanations. The deadline for draft submission is October 31th 2012.

I would like to stress the fact that the aim is to present routinely used protocols in a defined format, which requires much less work than contributing a more comprehensive discursive chapter. I have attached a previous chapter as an example for your consideration.

I hope that you will be able to contribute to this exciting new edition that aims at being a key reference for people working with monoclonal antibodies. If you would like to suggest a colleague/collaborator/post-doc as a potential author or co-author, this is perfectly possible as well.

You are welcome to contact me at any time should you have any question.

Kind regards,

Nicolas Fischer.

Nicolas FISCHER, PhD

Head of Research Department

NovImmune SA

14 Chemin des Aulx

1228 Plan-Les-Ouates

Geneva, Switzerland

Office +41 22 593 51 84

- Fax +41 22 839 71 56
- mail nfischer@novimmune.com
- web www.novimmune.com