
 II

AN ONTOLOGY-BASED APPROACH FOR TEST CASE

MANAGEMENT SYSTEM USING SEMANTIC

TECHNOLOGY

MANSOOR ABDULLATEEF ABDULGABBER ABDULHAK

FACULTY OF COMPUTER SCIENCE AND

INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA

KUALA LUMPUR

MALAYSIA

2013

 III

AN ONTOLOGY-BASED APPROACH FOR TEST CASE

MANAGEMENT SYSTEM USING SEMANTIC

TECHNOLOGY

MANSOOR ABDULLATEEF ABDULGABBER ABDULHAK

THESIS SUBMITTED IN FULFILMENT OF THE

REQUIREMENTS FOR THE DEGREE OF DOCTOR OF

PHILOSOPHY

FACULTY OF COMPUTER SCIENCE AND

INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA

KUALA LUMPUR

MALAYSIA

2013

 IV

UNIVERSITI MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: MANSOOR ABDULLATEEF (I.C/Passport No: 02064802)

 ABDULGABBER ABDULHAK

Registration/Matric No: WHA060019

Name of Degree: DOCTOR OF PHILOSOPHY

Title of Project Paper/Research Report/Dissertation/Thesis (“this Work”):

AN ONTOLOGY-BASED APPROACH FOR TEST CASE MANAGEMENT

SYSTEM USING SEMANTIC TECHNOLOGY

Field of Study: SOFTWARE TESTING AND SEMANTIC TECHNOLOGY

I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;

(2) This Work is original;

(3) Any use of any work in which copyright exists was done by way of fair dealing and

for permitted purposes and any excerpt or extract from, or reference to or

reproduction of any copyright work has been disclosed expressly and sufficiently

and the title of the Work and its authorship have been acknowledged in this Work;

(4) I do not have any actual knowledge nor do I ought reasonably to know that the

making of this work constitutes an infringement of any copyright work;

(5) I hereby assign all and every rights in the copyright to this Work to the University

of Malaya (“UM”), who henceforth shall be owner of the copyright in this Work

and that any reproduction or use in any form or by any means whatsoever is

prohibited without the written consent of UM having been first had and obtained;

(6) I am fully aware that if in the course of making this Work I have infringed any

copyright whether intentionally or otherwise, I may be subject to legal action or any

other action as may be determined by UM.

Candidate’s Signature Date: Jan 2013

Subscribed and solemnly declared before,

Witness’s Signature Date: Jan 2013

Name: Prof. Dr. Mohd Sapiyan Baba

Designation: Supervisor

 V

To the world of Semantic Quality

 VI

Abstract

The Ontology-based Test Case Management System has been developed to maximize

the use of Semantic Technology in representing and processing individual test cases for

automate and reuse purpose. Effective and efficient use of test cases is desirable of any

testing process. In order to achieve this an automated test case management system

that is ‘knowledgeable’ is needed, where concepts and terms related to testing are

important to support automated reasoning about test cases as well as for promoting

common understanding among software testing practitioners involved. This thesis

presents an ontology-based approach for test case management that leverages on the

emerging semantic technology for developing its knowledge component. Under this

approach individual test cases are structured in such a way that the important attributes,

metadata, as well as linkages to related software artefacts and software testing ontology

are all captured and represented using Semantic Web languages. The software testing

ontology is constructed using a software testing glossary that is based on IEEE Standard

as a basis. As a proof of concept an ontology-based test case management system has

been developed based on this approach with the incorporation of novel features such as

Automated Information Extraction and Test Case Semantic Search. The Semantic

Software Testing Case Management System is found to be useful in representing and

managing the Well-Structure Test Case. The thesis also discusses how the system has

been validated against its objectives and argues for some perceived benefits it can bring

to software testing environments.

 VII

Abstrak

Sistem Pengurusan Kes Ujian berasaskan Ontologi telah dihasilkan bagi

memaksimumkan penggunaan Teknologi Semantik dalam menerangkan dan

memproses kes-kes ujian yang berasingan bagi tujuan automasi dan penggunaan

semula. Penggunaan kes-kes ujian secara cekap dan berkesan adalah wajar untuk apa

jua proses ujian. Bagi mencapai matlamat ini, suatu sistem pengurusan kes ujian

automatik yang ‘berpengetahuan’ diperlukan, di mana konsep dan istilah yang berkaitan

dengan ujian adalah penting bagi menyokong taakulan secara automatik mengenai kes-

kes ujian serta mempromosikan pemahaman umum di kalangan pengamal ujian perisian

yang terlibat. Tesis ini mengemukakan satu pendekatan berasaskan ontologi bagi

pengurusan kes ujian dengan memanfaatkan teknologi semantik yang sedang

membangun untuk menghasilkan komponen pengetahuannya. Dengan pendekatan ini,

kes-kes ujian individu distrukturkan sedemikian rupa agar ciri-ciri penting, metadata

serta rantaian kepada artifak perisian dan perisian ujian ontologi yang berkaitan

kesemuannya dirangkumkan dan diterangkan menggunakan bahasa Web Semantik.

Ontologi ujian perisian dihasilkan dengan menggunakan glosari ujian perisian

berdasarkan Standard IEEE. Untuk pembuktian konsep, suatu sistem pengurusan kes

ujian berasaskan ontologi telah dihasilkan berdasarkan pendekatan ini dengan

penggabungan ciri-ciri baru seperti Pengekstrakan Maklumat Secara Automatik dan

Gelintaran Kes Ujian Semantik. Sistem Pengurusan Kes Ujian Perisian Semantik

didapati amat berguna dalam menerangkan dan menguruskan Kes Ujian Tersusun.

Tesis ini juga membincangkan bagaimana sistem ini telah disahkan selaras dengan

objektif-objektifnya serta mempertahankan manfaat yang dianggap boleh membawa

faedah kepada persekitaran ujian perisian.

 VIII

Acknowledgments

First and foremost, I would like to thank the Creator of the Universe, Most Gracious

and Most Merciful, without whose Will, it would not have been possible for me to

fulfill my wish of completing this PhD.

I have no words to express my heartfelt gratitude to my beloved parents, Abdullateef

and Asia; and my brother Abdulgabber, and sisters Noam, Shifa and Mahlia for their

unconditional love, continuous support and trust in me.

My most sincere thanks to my supervisors, Prof. Sapian, for his unceasing guidance and

assistance in encouraging me to grow professionally; and Prof Nor Adnan for his

efforts, ideas and supervision throughout these years. I want give special appreciation to

Prof. Siti Salwah and Prof. Nazim Madhavji for all their help and cooperation during

my initial period as a researcher.

There are many other individuals whom I would like to thank for their direct and

indirect support during the completion of my thesis, mainly Samih and Tirad for they

have made the experience of doing my PhD research much more bearable. Thank you

for all the wonderful memories and moments we shared together, the endless

discussions during our tea breaks, the late nights spent working at the lab, and for all the

constructive and positive feedback. I want to give special gratitude and affection to

Samih, without whom the development of this work would not have been possible, my

thanks also to Suraya for proof reading my thesis.

Last but not the least; I would like to thank the government of the Republic of Yemen

for providing me with a full PhD scholarship, which has enabled me to complete my

studies here in Malaysia.

 IX

Table of Contents
To the world of Semantic Quality... V

Abstract .. VI

Abstrak .. VII

Acknowledgments ... VIII

Table of Contents ... IX

List of Figures ... XII

List of Tables ... XIV

List of Abbreviations ... XV

1.0 Introduction ... 1

1.1 Motivation ... 2

1.2 Problem Statement .. 3

1.3 Research Aim .. 5

1.4 Statement of Objectives ... 5

1.5 Research Methodology .. 7

1.6 Thesis Overview .. 9

2.0 Semantic Technology and Software Testing ... 11

2.1 Semantic Web Technology ... 11

2.1.1 Semantic Applications ... 13

2.1.2 Semantic Web Technology and Knowledge Management 15

2.2 Ontology-Based System .. 16

2.2.1 Building Ontology .. 18

2.3 Software Testing .. 25

2.3.1 Testing Concepts .. 26

2.3.2 Testing Activity .. 27

2.3.3 Testing Efforts .. 29

2.4 Software Testing Automation and Management ... 30

2.4.1 Test Case .. 32

2.4.2 Test Case Assessment .. 33

2.4.3 Test Case Elements .. 34

2.4.4 Test Case Management Systems .. 35

2.4.5 TCMS Attribute ... 36

2.4.6 TCMS Differing Factors .. 37

2.4.7 Lack of Management.. 38

 X

2.5 Summary ... 39

3.0 Limitation of Test Case Management ... 42

3.1 Automation .. 42

3.2 Individual Test Case .. 44

3.3 Software Testing Terms .. 46

3.4 Search Technology .. 47

3.5 Summary ... 49

4.0 Ontology-based Semantic Test Case Management ... 50

4.1 Automated Software Testing Information Extraction ... 50

4.2 Representing well-structured Individual Test Case ... 55

4.2.1 Design of Well Structured Test Case: .. 55

4.2.2 Design RDFS for Test Case: .. 57

4.3 Incorporation of Software Testing Ontology .. 61

4.4 Integration of Semantic Search Technology ... 63

5.0 Designing of Software Testing Ontology .. 66

5.1 Building STO with the 101 Guide ... 68

5.2 Implementation with PROTÉGÉ 4.0 ... 76

5.3 Summary ... 87

6.0 Implementation of Semantic Test Case Management System 88

6.1 Requirement .. 89

6.2 Test Case Collection .. 89

6.2.1 Test Case Template .. 90

6.2.2 Test Case Sources .. 92

6.3 STCMS Discussion ... 93

6.4 Limitation .. 102

6.5 Summary ... 103

7.0 Evaluation .. 104

7.1 Evaluation Criteria .. 104

7.2 Evaluation Process .. 105

7.2.1 Evaluation of Software Test Ontology ... 105

7.2.2 Semantic Similarity .. 108

7.2.3 Usability ... 110

7.2.4 Performance of Semantic Search ... 115

7.3 Discussion ... 120

7.3.1 STCMS vs. Other Web Test Case Management System: 120

7.3.2 Benefit of using Semantic Technology: ... 122

 XI

7.4 Summary ... 124

8.0 Conclusion ... 125

8.1 Findings ... 127

8.2 Contribution ... 129

8.3 Future Work .. 130

References .. 131

Appendixes ... 141

Appendix A: Ontology Vocabulary ... 142

Appendix B: STCMS Documentation ... 168

Appendix C: Test Cases Data .. 190

Appendix D: SUS DATA ... 216

 XII

List of Figures

Figure 2-1 Usage categories for Ontologies in Software Engineering 18

Figure 2-2 Ontology development 101 Method adapted from (Natasha & Deborah,

2001) .. 20
Figure 2-3 Classification of languages adapted from(Su & Ilebrekke, 2006) 21
Figure 2-4 Protégé 2000 OWL Graphic Visualization View ... 24
Figure 2-5 Simple Software Testing Model ... 25

Figure 2-6 Functional vs. Structural Methods .. 26
Figure 2-7 Software Testing Life Cycle adopted (Kamde, Nandavadekar, & Pawar,

2006) .. 28
Figure 2-8 Typical Test Case Information adopted (Jorgensen, 2008) 35
Figure 2-9 Test case management tools VS. Factors adopted (Louridas, 2011) 37

Figure 2-10 Number of Organization using TCMS ... 38
Figure 3-1 Automated Tools Model ... 43

Figure 4-1 Graph Representation of RDF Triple ... 52
Figure 4-2 Attributes of Test Case ... 55

Figure 4-3 Metadata of Test Case .. 56
Figure 4-4 The Well-Structure Test Case RDFS ... 60
Figure 4-5 Demo the Term Error with similar Terms .. 62

Figure 4-6 Logic Innovative Services of Test Case ... 65
Figure 5-1 STO Active Ontology Tab ... 66

Figure 5-2 Hierarchy Storage Test Case Suite in STO .. 67
Figure 5-3 General Classes View for STO .. 76
Figure 5-4 Sub Classes view for STO .. 77

Figure 5-5 Sub-Sub Class view of STO ... 78

Figure 5-6 Object Properties View of STO.. 81
Figure 5-7 Data Properties View of STO ... 82
Figure 5-8 Individuals’ view of STO ... 83

Figure 5-9 STO Some Values From restriction ... 84
Figure 5-10 STO all Values From restriction .. 85
Figure 5-11 STO Data restriction ... 86

Figure 6-1 STCMS’ Component Architecture ... 94
Figure 6-2 Create Test Case Form ... 95
Figure 6-3 View Test Case ... 96
Figure 6-4 Edit Test Case ... 96
Figure 6-5 Semantic Search Form for Test Cases .. 97

Figure 6-6 Search Test Case by ID .. 97

Figure 6-7 STO Class View ... 98

Figure 6-8 STO Properties View.. 99
Figure 6-9 STO Individual View ... 100
Figure 6-10 STO Query View .. 101
Figure 7-1 Reasoners Used to evaluate the STO ... 105
Figure 7-2 FaCT++ “Nothing” class shows the “no exists” of Inconsistent Class 106
Figure 7-3 Pellet reasoner shows the “no exists” of Inconsistent Class 107
Figure 7-4: GUI transforms the free-text query into the semantic representation 108
Figure 7-5 A Fragment of STO terms .. 109

file:///C:/Users/Mansoor/SkyDrive/My%20PhD/ResearchWork/Documents/Thesis/Version2.0/Mansoor-WHA060019_PhD_Thesis_v2.0.docx%23_Toc347340660
file:///C:/Users/Mansoor/SkyDrive/My%20PhD/ResearchWork/Documents/Thesis/Version2.0/Mansoor-WHA060019_PhD_Thesis_v2.0.docx%23_Toc347340662
file:///C:/Users/Mansoor/SkyDrive/My%20PhD/ResearchWork/Documents/Thesis/Version2.0/Mansoor-WHA060019_PhD_Thesis_v2.0.docx%23_Toc347340662
file:///C:/Users/Mansoor/SkyDrive/My%20PhD/ResearchWork/Documents/Thesis/Version2.0/Mansoor-WHA060019_PhD_Thesis_v2.0.docx%23_Toc347340667
file:///C:/Users/Mansoor/SkyDrive/My%20PhD/ResearchWork/Documents/Thesis/Version2.0/Mansoor-WHA060019_PhD_Thesis_v2.0.docx%23_Toc347340698

 XIII

Figure 7-6 Questionnaire Results ... 112

Figure 7-7 The Acceptability of SUS Score Adapted from (Bangor, Kortum, &

Miller, 2008) .. 113
Figure 7-8 Test Case Semantic Search ... 115
Figure 7-9 STCMS’ main features ... 120

Figure 7-10 The Test Case seen by a human ... 122
Figure 7-11 The Test Case seen by a machine ... 123
Figure 3.2-1 SWTCMS Use Cases Diagram.. 163
Figure 2-1 SWTCMS Architecture Diagram ... 175

 XIV

List of Tables

Table 1-1 Research Methodology .. 7
Table 2-1 Semantic Web Technology layers description .. 12
Table 2-2 Framework to analyze proposed building ontology methods 19

Table 2-3 List of Ontology Languages .. 22
Table 2-4 List of Ontology Tools... 23
Table 2-5 Total effort breakdown for projects of different sizes adopted (Louridas,

2011) .. 29
Table 2-6 Test Case Role in Testing Measurement ... 31

Table 2-7 Test Case components description ... 33
Table 3-1 List of Sample Test Management System ... 48

Table 4-1 Representing TestCaeDetails Data ... 51
Table 4-2 Representing TestCaseDetails Data in Logical Formalism 54
Table 4-3 Brief description of the Test Case Attributes .. 56
Table 4-4 Brief description of the Test Case Metadata.. 56

Table 4-5 Dublin Core Elements Set ... 57
Table 4-6 Quality Assurance Elements Set .. 57

Table 4-7 Common Elements Set .. 58
Table 4-8 Mapping Test Case Terms to STO Concepts .. 59
Table 4-9 Login Test Case description .. 64

Table 5-1 Questions & Answers determine STO’s domain & scope 69
Table 5-2 Analysed Findings for Existing STO ... 70

Table 5-3 Definition and general classification of STO .. 71
Table 5-4 Identifying the sub and sub-sub concepts of STO terms 72

Table 5-5 Examples of Properties and their inverses ... 73
Table 5-6 Examples of Data Properties with their domain and range 74

Table 5-7 Examples of Concepts’ Individuals ... 75
Table 5-8 STO hierarchy class rules .. 80
Table 5-9 STO property rules .. 81

Table 6-1 Test Case Template for Collecting Data .. 91
Table 7-1 Results of semantic similarity .. 110
Table 7-2 Validation Checklist .. 114

Table 7-3 Queries Vs General Classification ... 116
Table 7-4 Tester Search Terms Evaluation .. 117
Table 7-5 Task Testing Search Terms Evaluation ... 118
Table 7-6 Artefact Search Terms Evaluation ... 118

Table 7-7 Environment Search Terms Evaluation ... 119
Table 7-8 STCMS Vs Other Testing Tools .. 121
Table 8-1 Sections map showing where in thesis research questions answered 126

 XV

List of Abbreviations

Term Definition

OWL Ontology Web Language

TC Test Case

TCMS Test Case Management System

STCMS Semantic Test Case Management System

STO Software Testing Ontology

ST Software Testing

SE Software Engineering

DBMS Database Management System

ISTQB International Software Testing Qualifications Board

XML Extensible Markup Language

URI Uniform Resource Identifier

RDF Resource Description Framework

RDFS Resource Description Framework Schema

RIF Rule Interchange Format

SPARQL Protocol and RDF Query Language

W3C World Wide Web Consortium

ISPN International Standard Book Number

DL Description Logic

KM Knowledge Management

KMS Knowledge Management System

IEEE Institute of Electrical and Electronics Engineers

SRS Software Requirements Specification

SDD System Design Description

RUP Rational Unified Process

UML Unified Modelling Language

SQL Structure Query Language

API Application Programming Interface

DC Dublin Core

QA Quality Assurance

jOWL Plug-in JavaScript library for visualizing OWL-RDFS documents

STD Software Test Description

GUI Graphical User Interface

SUS System Usability Scale

 1

1.0 Introduction

Software testing happens to be one of the major intense activities in software

engineering process. Under current software testing practices, this process also

includes validation and verification of software applications. Although in principle

software testing cannot prove the correctness of real world software applications, the

process nevertheless can provide confidence in the quality of the software. In any

testing process, the choice of test cases is fundamental to its effectiveness. For large-

scale software systems the number of test cases involved can be very voluminous where

an automated test case management that is intelligent and knowledgeable is desirable.

Semantic web technology lies upon a set of technology layers built on each other.

These layers provide a descriptive data that can be queried by machine. Moreover,

Semantic Web is being considered the future Web, which is basically formed by

semantic extensions to support the data necessary for connectivity and for enhancing

human-computer and computer-computer cooperation. Current and future defector

standards are used to describe and reason with the data on the Web. Nevertheless,

Semantic Web is an extension of the current web, which is aimed at exploiting the

enormous amount of documents available in the current Web.

Hence, by using the features provided by semantic web technology, opportunities will

be wide open for better management, reusability and maintenance of the test cases.

Using semantic technology, which is the new trend in developing knowledge-based

systems (Li, Xie, & Xu, 2011), is a promising approach to be adopted for making

testing more efficient and effective. This thesis presents one such approach for test case

 2

management which is envisaged to crucial to the success, efficiency and effectiveness

of any software testing process.

1.1 Motivation

Software testing process has become essential for the software industry and its

implementation to the software development life cycle would provide us with high

quality and trustworthy products (Ammann & Offutt, 2008). However, the testing

process is also a challenging and costly activity. Hence, proper management through

automating the process would results in minimizing human errors as well as the testing

costs. This thesis focuses on the development of a test case management system that, in

turn, can be incorporated into any software testing system and environment.

Essentially, a test case management system is about providing support for systematic

development, storing and reuse of test cases. It is obvious that, the better test cases are

managed, the more efficient the time and cost of the test process would be. Moreover,

proper management of the linkages between test cases and other test and software

artefacts will facilitate the reuse of test cases (write once, use many).

Semantic web technology grasps a range of promises for developing efficient

conceptual data represented in a formalised approach. It has shown efficient results on

search engines, agents, personal desktops, knowledge management and so many other

areas (Shadbolt, Hall, & Berners-Lee, 2006). Furthermore, ontology leads to

knowledge reuse for sharing common terms and concepts by modelling the domain

knowledge constructed with the reasoning behaviour. It is notable that a sheer amount

of ontology-based systems have emerged as a mainstream application in various

 3

domains such as knowledge management, which entails the delivery of relevant

knowledge within a sufficient or required time frame (Simperl, Mochol, & Bürger,

2010).

Unfortunately, existing test case management systems are not utilizing semantic

technology. Hence, with the initiation of the Semantic Web concept in the

aforementioned semantic technology, opportunities for ontology-based approaches are

wide open for the development of semantic test case management systems. Such

systems could be considered as a sub-class of knowledge-based software testing

systems that has become the dream of software testing practitioners

1.2 Problem Statement

Software testing provides a wide area for research. Today, having automated support

for test management is vital in many software development projects where

representational issues pertaining to test cases need to be resolved These are explored

thoroughly in this thesis since they are considered to be foundational to the

development of any software testing process.

Software Testing is still largely ad hoc, expensive and unpredictably effective, and that

is the reason why software-testing research is facing the challenge of automation and

management. This challenge of fully automating and managing the testing process that

comprehensively covers all aspects of software testing that would guarantee the

improvement of its usability (Bertolino, 2007). With the advent of semantic

technology, we are of the opinion that the development of effective ontology-based

 4

semantic test case management system is achievable and this effort would give some

insights on how we can further achieve the goal of having fully automated software

testing systems.

Test cases play a central role in software testing in gathering both functional and non

functional information that relates to the quality of the software under test. For

instance, Microsoft created one million individual test cases to test the Word

application (Louridas, 2011). With this amount of test cases available, we should be

able to utilize the usefulness of this tremendous amount of data. Unfortunately, there

has been very little focus on the reusability of these individual test cases, as most

computer science researchers have only been concentrating on test suites (Miller &

Voas, 2006). This under-utility of the power of individual test cases motivates us to

propose a novel approach to represent individual test cases in a semantic-based

environment in order to enhance their reusability as well as become more amenable to

automated reasoning.

Moreover, software testing terminology lacks standardization, common identification

and placement. All these lead to confusion and delay among testers. Obviously, such

confusion would not only give an impact on human but also any automated software

(tools) testers, and it would consequently affect production costs and time within and

without (third part, outsourcing, etc.) an organization (Tauhida, Scott, & George, 2007).

Herein lies the strength of building the terms in the so-called Ontology: it provides

clarification to remove the confusion of various terms used by users to describe the

same component.

 5

1.3 Research Aim

The aim of this research is to utilize the power of individual test cases and in

representing them and their relationships with other test-ware and software artefacts in a

semantic test case management system so that they can be well managed and reused.

Test cases on their own is not quite helpful since reasoning on them would be difficult

without knowledge of how they relates to other aspects in software testing in particular

and software engineering in general. It is intuitively clear that in order to support this

kind of reasoning a comprehensive software testing ontology is needed.

1.4 Statement of Objectives

To achieve the aim of this research and in order to contribute our research towards the

testing body of knowledge, we set objectives for the research as follows:

 Objective 1: To analyse and derive individual Well-Structured Test Case using

Resource Description Framework Schema (RDFS);

o Review different test case definitions in the literature and capture the main

combination of the test case

o Derive an individual Well-Structured Test Case based on descriptions given in

sources such as IEEE standard

o Represent the structure using Semantic Web languages

 6

 Objective 2: To formalize terms for Software Testing Ontology and use the Ontology

Web Language to represent it in such a way that it can easily be used by other

automated tools, software agents and knowledge management;

o Categorise the software testing glossary

o Building the Software Testing Ontology

o Capture the logical relationship between the testing terms.

 Objective 3: To apply the Well-Structured Test Case representation, integrated with the

Software Testing Ontology, to a semantic information retrieval mechanism to act as

a knowledge base system for retrieving and managing knowledge in the domain of

Software Testing;

o Utilize an existing semantic search engine to perform the semantic search for

individual test cases in the proposed system.

 Objective 4: To evaluate the approach in a Semantic Management Application;

under the name Semantic Test Case Management System

o Develop Ontology-based Semantic Test Case Management System, which can

serve as a useful component to any automated Software Testing System

o Evaluate the performance of the developed system

 7

1.5 Research Methodology

This research conducted can be explained by the following table:-

Table 1-1 Research Methodology

Method Phase Activity

Theoretical

Research

Methods

Investigation Investigate (Articles, Papers, Journals,

stat of art, interviews, conferences

etc…)

Practical

Research

Methods

Development Analyze visualize and design the

problem and propose solution

Evaluation Implement & Evaluate the prototype

 Theoretical Research Methods

This research studies the automation and management challenges in the software-testing

domain. The Investigation Phase sub-tasks involved are:

1. Reviewing the literature and analyzing the gap guided by the following

questions to be answered:-

Q1. What do we understand about the weaknesses of the current testing –

automation and management?

Q2. What is the value of individual test cases? Is there any need for a test case to be

well-structured and represented individually? What type of metadata and

attributes need to be considered?

 8

2. Identifying the challenges guided by the following questions to be answered

Q3. How can we use the semantic technology for individual test case management to

minimize the painstaking effort and time spent on auditing all test artefacts?

Q4. How to formulate well-known standard software testing terms in ontology to

minimize the confusion that occurs among software testing practitioners? How

to evaluate the reasoning of the formulated terms and the TCMS efficiency?

 Practical Research Methods:

In order to improve the management tool for software testing process, the Development

and Evaluation Phase sub-tasks includes:

1. Develop a prototype test case management system which supports semantic

testing information retrieval in order to show how our proposed approach is

going to work based on the following:-

a. Functional & Non Functional Requirement gathering

b. Specification Designing

c. Implementation & Testing

2. Validate the trustworthiness of the approach based on the following:-

a. Precision and Recall measurement for the exactness and completeness of

the search result

b. Evaluate the usability of the prototype for the effectiveness, efficiency

and satisfaction of users

c. Semantic Similarity to evaluate the proximity of the matching results

 9

1.6 Thesis Overview

Semantic Test Case Management System is a formalised approach to improve the

management and automation process of testing by using efficient software test terms.

This thesis consists of eight chapters, which commences with outlining the main

objectives and research methodology and stating the research problem and motivations.

Presenting literature reviews of semantic technology and software testing immediately

follows this introduction, giving special focus to test management and ontology in

Computer Science have a collection of fruitful promises. These promises reflect

extracting concepts instead of mere words, enhancing the search experience in any

domain knowledge, automatically matching users to whatever they are searching for,

and maintaining and accessing structured data sources. These reviews also explain the

costly nature of testing efforts and the existing test case management tools. After the

general concepts discussed in the second chapter, the novelty of this research work is

expounded on by exploring the obstacles in the testing process, the proposed solution

and its implementation. Within this exploration, we present the salient features of the

Ontology-based Semantic TCMS, which include extracting information and managing

test cases in semantic form.

The chapter also presents the theoretical foundation and shows how the data is

identified and represented with its logic in semantic layers. Furthermore, the chapter

answers the “how to build ontology” question and discusses in brief the ontology-based

software testing systems.

 10

The approach is put into practice by the following two chapters where we discuss the

steps followed to develop the software testing ontology. This involves the

implementation of the ontology using Protégé 4.0 and the illustration on it is evaluated

using built-in reasoners. Then, we demonstrate the design and limitations of the

STCMS. The data collection process is also presented in this applied approach to

STCMS.

To conclude this thesis, we compress the evaluation of the results and the summary of

the contributions made by the research. Chapter 7 describes in detail the results

achieved from the Software testing ontology, test case representation, information

extraction and semantic search, which were used to evaluate the quality performance.

Finally, in the last chapter, we summarize the major contributions and findings made in

this thesis, followed by the limitations and a glimpse of future work.

 11

2.0 Semantic Technology and Software Testing

2.1 Semantic Web Technology

Semantic Web is considered as the future web that provides a descriptive data that can

be queried by machine (Tim, James, & Ora, 2001). The semantic is emerging

technology for developing its knowledge component Semantic Web Technology has

been applied in various areas such as in e-Learning in (Rathod, Prajapati, & Singh,

2012), graph query processing in (Yıldırım, Chaoji, & Zaki, 2012), cloud computing in

(Husain, McGlothlin, Masud, Khan, & Thuraisingham, 2011) and recommendation

system in (Mahadevan, 2012). The W3C making it available for interested parties to

share the success applications to maximize the use of Semantic Technology.

The data represented in the semantic web have a well-defined meaning combined with

its rules of reasoning. The Semantic is achieved by describing the meaning of the

resources and supporting its reasoning using Ontology Web Language. The Semantic

Web Technology lies on a set of technologies layers build on each other. These layers

provide a descriptive data that can be queried by machine (Antoniou & Harmelen,

2008). This approach facilitates large scale integration and sharing of the web data. In

this approach the web data is linked and connected to its resources by the Uniform

Resource Identifier URIs.

The layers are described in Table 2.1 as follows:-

 12

Table 2-1 Semantic Web Technology layers description

Layer : Definition

URI : The Uniform Resource Identifier (URI) is a string of

characters for identifying an abstract or physical object or

resource. URI is particularly suitable for referring to objects

on the web.

XML : The Extensible Markup Language (XML) is a language for

users to mark up content using tags to structure a web

document. XML is particularly suitable for sending

documents across the Web.

RDF : The Resource Description Framework (RDF) is a language

that has XML-base syntax for representing information about

resources in the web. RDF is particularly suitable for

representing metadata about web sources.

RDF(S) : The Resource Description Framework Schema RDF(S) is a

language to create vocabulary for describing the RDF

resources such as classes, subclasses, and properties. RDF(S)

is particularly suitable for providing modelling for the Web

objects.

RIF : The Rule Interchange Format (RIF) is a language (under

process) to give the basic rules for checking.

 13

OWL : The Web Ontology Language (OWL) is another extension of

RDF(S) for describing and sharing ontologies (more info

about ontology on chapter 3). OWL is defined as three

sublanguages: OWL Full, OWL DL, and OWL Lite.

SPARQL : The Protocol and RDF Query Language (SPARQL) is a

special query language for express queries across diverse

data sources. SPARQL is particularly suitable as the results

of query can be result set or RDF graph.

2.1.1 Semantic Applications

User interface and applications layer puts the semantic technology in practice. The

layer explores how the technology effects positively and improves the efficiencies by

integrating to the business flow in different areas. Since the last decade, the semantic

literature recorded quite number of successful semantic applications. Meanwhile, the

W3C is making it available for interested parties and communities to record their

success applications.

In fact, the Semantic Technology has been applied in various areas such as information

publishing, data integration, e-learning, e-government, e-commerce, web-services,

multimedia collection indexing etc and have different focused communities for instance

e-science (Hall & O'Hara, 2009). However, Breitman, et al. (2007) claims that

applications can be categorized into the following:-

 14

 Semantic Agent:

Seeing that the semantic technology provides a promising communication facilities for

agents to integrate with each other and perform services for end users (Hendler, 2001).

In addition, to overcome drawbacks problems of semantic technology & agents on

either end will be possible in integrating them (García-Sánchez, Valencia-García,

Martínez-Béjar, & Fernández-Breis, 2009).

 Semantic Desktop:

Seeing that the semantic technology promises the information management and

metadata ontologies which make it possible to allow what so-called semantic desktop

vision to become real by manage, distribute, integrated and collaborate the personal

information to the web (Dengel, 2007).

 Semantic Art:

Seeing that the semantic technology promises the ability of conceptualizing the underlie

knowledge to represent a common vocabulary to be shared between cultural heritage

organizations and retrieving comprehensible data that can be applied for images to

enable third parties to make an intelligent decision about the relevance of the images

(Osman, Thakker, Schaefer, Leroy, & Fournier, 2007).

 Semantic Geospatial:

Seeing that the semantic technology promises the ability of standardizing information

infrastructure, machine to machine interactions and automating the service chaining for

deriving knowledge, that can lead to successful discovery, automation and integration

of the geospatial data and services (Zhao et al., 2009).

 15

2.1.2 Semantic Web Technology and Knowledge Management

There are also some successful applications of semantic technology in the knowledge

management area that are related to this thesis research. The following two cases from

(Antoniou & Harmelen, 2008) are exemplary.

 Skill Finding:

It is a feature which has been created using the semantic technology. An ontology was

built to represent various types of employee skills which consist of more than 1000

categorized concepts. Through this semantic extension the knowledge management

system was able to construct a skill repository of different employees with different

skills located in different locations. One of the major motives for such system was to

establish an electronic repository of employees’ experiences and skills.

 Think Tank Portal:

It is a feature which has been created using the semantic technology. The domain

ontology used defines the knowledge domain of the research organization knowledge

domain. Thorough this semantic extension the knowledge management system was

able to represent semantically the contents such as research topics, authors, and

relations between authors and respective topics of the organization’s website in several

ways. One of the major motives for such system was the need to disseminate the

knowledge of a virtual organization.

 16

2.2 Ontology-Based System

Ontologies have been defined in the literature and used in the industries as well, to

provide conceptual vocabularies that describe a certain domain. For instance, in

Science the term ontology is used to describe semantic constructs using words meaning.

Ontology-based System is an established discipline that features intelligence and insight

capabilities. It delivers the most related up-to-date information in the shortest possible

period of time.

Ontology-based system has emerged in the mainstream of many application domains

such as: E-commerce, Medical, Chemistry and the foremost Knowledge Management

(KM) system (KMS). Most strategies in KM entail the delivery of relevant knowledge

at the sufficient time required. There are three types of KM Ontologies (Gómez-Pérez,

Fernández-López, & Corcho, 2004):

1) Information Ontology, which contains generic concepts and attributes;

2) Domain Ontology, which is used to describe the contents;

3) Enterprise Ontology, which is used for the organization context description.

The term ontology was first introduced in the field of philosophy. Several fields of

study have now used the term with interpretations that suite their respective interests.

In philosophy, the term ontology answered few questions concerned by the Greeks

(philosophy of being). It tries to understand and distinguish the meaning of things, the

changes of their status, and to classify the entities of the world (Gómez-Pérez et al.,

2004). In Science the term ontology is derived from cognitive semantic or the science

of being and used to describe semantic constructs using the meaning words (as

 17

dictionary in linguistic)(Kang & Lau, 2007). We quote Gruber on defining Ontology as:

“Ontology is an explicit specification of a conceptualization”. (Gruber, 1993)

Ontologies should provide classes as the various concepts in the domain, relationships

among these concepts, and properties as the attributes possess by the concepts

(Breitman et al., 2007). Generally the intended purposes would determine their usages,

and most of them are intended for re-use purposes. Ontology as a formal structure will

be defined as O=<C, R, I, A> where C is a set of classes representing the domain

concepts, R is sets of relations between the classes, I is sets of instances where each

instance can be instance of one or more classes and can be linked to other instance by

relation, and A is sets of axioms, representing a conceptualization of a specific domain.

Happel & Seedorf (2006) provide a framework for classifying the usage of ontology in

software engineering. In their framework they propose two dimensions (runtime and

development in one side and domain and infrastructure on the other side) to classify the

uses of ontology and came up with four basic areas of classification as shown in Figure

2.1 and described as follows:

 Ontology-driven development (ODD): Where ontologies used in development

time to describe the problem domain

 Ontology-enabled development (OED): Where ontologies used in development

time to support the development tasks

 Ontology-based architectures (OBA):Where ontologies used in run-time as

primary artefact

 Ontology-enabled architectures (OEA): Where ontologies used in run-time as

infrastructure support

 18

Figure 2-1 Usage categories for Ontologies in Software Engineering

2.2.1 Building Ontology

Ontology technology has reached the level of maturity by the availability of enough

methodologies, tools and languages. Furthermore, ontologies are artefacts designed,

formed for a purpose, and evaluated against objective criteria. The five principles for

designing ontologies to be used in knowledge sharing are: clarity, coherence,

extendibility, minimal encoding bias, and minimal ontological commitment (Simperl et

al., 2010). Moreover, methods, languages, and tools are the main items of building up

ontologies. Hence, following a comprehensive guide and using a recommended

language by W3C and a stable tool will avoid what might go wrong during the runtime

of the ontology.

 Methods:

There are no standard methods to build ontologies. Hence there are different attempts in

the literature from different interest parties. Gómez-Pérez, et al. (2004) elaborated a

framework to compare different methods to help users select the most useful one to

 19

build their ontology. This framework can be used to analyze any method for building

ontology. The framework provides a set of criteria and features. Table 2.2 summarize

and describe their objective in short details.

Table 2-2 Framework to analyze proposed building ontology methods

Criteria Features Objective Description

C
o
n

st
ru

ct
io

n
 S

tr
a
te

g
y

Life Cycle Proposal To describe activities should

perform throughout the stages of

ontology development.

Strategy with respect to the application To measure the dependency of

ontology with the application

using it

Strategy to identify concepts To determine either, bottom-up,

top-down, or middle-out

approach.

Use of core ontology To analyze the possibility of using

core ontology as starting point.

S
o
ft

w
a
re

S
u

p
p

o
rt

 Tools that give support To find if supported either fully or

partially by tools.

D
ev

el
o
p

m
en

t
P

ro
ce

ss
es

Management Activities To find out if management

activities described and

documented.

Development Oriented Activities To find out if pre, during and post

development process are

described and documented.

Support Activities To find out if development

support activities described and

documented.

 20

Figure 2-2 Ontology development 101 Method adapted from (Natasha & Deborah, 2001)

For the purpose of this research selection, we highlight the simplified methods proposed

in (Natasha & Deborah, 2001) as a guide to create our first ontology. The authors

devised the method based on their experience in using ontology-editing environment

and by adopting some ontology-design ideas from the object-oriented design on

literature. The method is illustrated in Figure 2.2.

In short there is no correct way to model. Constructing ontology is an iterative process

that basically captures the concepts their relations in the domain of interests. There are 7

steps in the chosen method where after defining the initial version it is either evaluated

by experts in the field, implemented in a case study or both.

 21

 Languages:

The need of representing and exchanging data on the Internet led to the creation of web-

based ontology languages. For the last few years a number of languages to support

ontology in the context of what so called Semantic Web have been developed. In a

summary form, Table 2.3 illustrates the most famous ontology languages. Other

languages have also been used as shown in the classification of languages in Figure 2.3,

traditionally, for building ontologies, but that is out of the scope of our research. The

table indicates the name of the ontology, the base developed upon, reference to the

developers, and purpose of developing.

Figure 2-3 Classification of languages adapted from(Su & Ilebrekke, 2006)

 22

Table 2-3 List of Ontology Languages

Name of

Ontology

Languages

Developed On Developed By Purpose

Ontology

Exchange

Language

(XOL)

XML
(Karp, Chaudhri,

& Thomere, 1999)

To provide a format for

exchanging ontology

definitions among a

heterogeneous set of

software systems.

Simple HTML

Ontology

Extension

(SHOE)

HTML (Luke S, 2000)

To improve search

mechanisms on the Web by

collecting meaningful

information about Web

pages and documents.

Ontology

Inference Layer

(OIL) +

DARPA Agent

Markup

Language

(DAML)

RDF(S) (Horrocks, 2002)
To allow semantic markup

of Web resources.

Web Ontology

Language

(OWL)

XML &

RDF(S)

(McGuinness &

Van Harmelen,

2004)

To publish and share

ontologies in the Web

For the purpose of this research selection, we highlight in the context of Semantic Web

to use the languages which are XML-based such as RDF and OWL. Among the main

advantages are beside the easily of reading and managing, is the huge support from

different groups and communities, which leads to the availability of more tools to edit

and develop the ontology.

 23

 Tools:

Building ontologies is considered as a huge complex task that requires a lot of time and

manpower. Consequently, during the last decade communities and research groups

build different tools aiming to facilitate the process development and the reuse of

ontologies. As a result, a number of tools came to the surface with different purposes

and interfaces that help users carry out their development tasks (Gómez-Pérez et al.,

2004). In an ontology tools survey Perez et al.(2002) had classified tools into

development tools, evaluation tools, merge and alignment tools, ontology-based

annotation tools, querying tools and inference engines, and learning tools. Moreover, in

a comparative study with the help of an evaluation framework, Su & Ilebrekke (2006)

had found the most relevant tools to facilitate the development of ontologies. They are

listed in Table 2.4 with a summary description, the name of the tool; reference to the

developers, and the additional special purposes beside the editing and creating of the

ontology.

Table 2-4 List of Ontology Tools

Ontology Tool Developed by Special Purposes

Ontolingua
(Farquhar, Fikes, & Rice,

1997)

To ease the development of Ontolingua

ontologies in a shared environment

between distributed groups

WebOnto
(Domingue, 1998)

To support the collaborative browsing,

creation and editing of ontologies

Prot´eg´e-

2000

(Noy, Fergerson, & Musen,

2000)

To support the graphical software

development environment.

OilEd
(Bechhofer, Horrocks,

Goble, & Stevens, 2001)

To provide consistency checking

functions and automatic concept

classifications

OntoEdit
(Sure et al., 2002)

To ease the development in a plug-in

architecture

WebODE (Arpírez, Corcho,

Fernández-López, & Gómez-

Pérez, 2003)

To support the access services by

services and applications plugged in the

server

 24

For the purpose of this research selection, we look at Prot´eg´e-2000 which is an open

source standalone application written in Java and provides a plug-and-play environment

that specifically supports an OWL editor and reasoner. As shown in Figure 2.4 Protégé

2000 OWL plug-in provides a graphic visualization of the classes and properties using

different colour codes to help developers distinguish between different types of classes

(Breitman et al., 2007).

Figure 2-4 Protégé 2000 OWL Graphic Visualization View

 25

2.3 Software Testing

The foundational philosophy of software testing as an art of finding bugs was

introduced by Glenford J. Myers in 1979. When we talk about reliable software, we

evidently mean a free error program. Herewith, our art falls in; to add the quality and

reliability of the produced program (Myers, 2004). Software testing process is essential

and important activity practiced widely in industry to ensure the quality of their

products. In Figure 2.5, we show a simple Software Testing Model with the basic

components of testing which are test input, system under test and the test results.

Software testing is a broad area of research. It started since the beginning of computer

science although it only became recognized in the middle of 70s. Research groups,

professionals and practitioners from both academia and industry have been contributing

to the literature with voluminous amount of research papers, books, practical reports,

review papers etc (Whittaker, 2000). Despite such a progress, Bertolino (2007) argues

that software testing research still faces a lot of challenges due to it being naturally

unpredictably effective. To understand the importance of software testing research, it’s

relevant to first review the fundamental concepts of software testing.

Figure 2-5 Simple Software Testing Model

Syste

m

Unde

r Test

Test

Input

Test

Resul

ts

 26

2.3.1 Testing Concepts

Testing techniques are considered as different approaches used to perform the testing

processes which include human testing techniques or mathematic testing techniques.

Testing techniques are classified into static and dynamic testing. Unlike static

techniques, dynamic techniques require the execution of the software. Static techniques,

also known as static analysis or static code analyses, rely on reviewing and analyzing

the code or other testing artefacts (Ammann & Offutt, 2008).

Two important dynamic testing techniques are black and white box testing. The

purpose of the black box technique is to find out situations that the system behaves in

such way it shouldn’t without interfere with the internal structure of the program.

Black box testing (also known as functional testing) is based on requirement and/or

specification design to design the test cases. Where, the purpose of the white box

method is to examine the internal structure of the program. White box testing also

known as structural testing the designing of its test cases based on the implementation

of the software entity. As shown in figure 2.6, structure-based testing applies the

validation of the code while the functional testing is more to the system level (Heiser,

1997; Woodward & Hennell, 2004).

Figure 2-6 Functional vs. Structural Methods

 27

In Beizer (2002) approach, tests are derived based on the maturity level which is

characterized by the goals of test engineers. However, each test would differ in its

nature and objective. Testing can be derived based on the software activities i.e.

requirement, design artefact, or the source code.

2.3.2 Testing Activity

Software testing is an important process comprising of activities being practised widely

in software industry to validate the software they produced. Since it provides a realistic

feedback about software behaviour it can thus be viewed as an important of software

quality assurance. Activities related to software testing put great emphasis on the

importance evaluation in support of quality assurance through gathering information

about the software under test.

Essentially software testing process should cover analysis, design, and execution of test

cases as well as evaluation of the test results (Mary Jean, 2000). Furthermore,

whenever a tester decides to test any program he has to also consider the environment

related to the software such as the platform, source code and the interfaces. The main

predicament, testing process is a challenging and costly and flaws of designing a good

test cases. As well, testing is part of an overall project. Thus testing must respond to

real project needs, so test projects require test project management (Rex, 2002).

In light of this understanding, we could say that testing is a wide area which involves

both technical and non technical activities. In addition, it’s a process that depends on

 28

context that needs to be well managed. Figure 2.7 illustrates the testing activities in

PDCA (Plan, Do, Check, and Act) steps used in management.

 Plan Testing Phase

In this phase testers describe scope and approach of the test, schedule the testing

process and identify the items need to be tested.

 Execute Testing Phase

In this phase testers develop the test cases and then run them to test the required code.

 Review Results Phase

In this phase testers review reports of actual testing results and compare them with

expected test results.

 Report Bugs Phase

In this phase testers report the bugs to the development team to fix and generate

matrices for the final report on whether the product can or cannot be released.

Check

Results

Report

Bugs

Execute

Testing

Plan

Testing

Figure 2-7 Software Testing Life Cycle adopted (Kamde, Nandavadekar, & Pawar, 2006)

 29

2.3.3 Testing Efforts

As we have seen with testing activities during the development of software products in

the previous sub heading, the efforts of these activities is costly. Depending on the size

and the nature of the software product, the testing efforts will be affected. Generally,

more testing efforts are needed in security critical products that have high impact on

real life. Real-time systems normally also require more testing efforts in order to

validate the timing aspects of the requirements.

Table 2-5 Total effort breakdown for projects of different sizes adopted (Louridas, 2011)

Activity

KLOC Requirements Architecture

& planning

Construction System

Test

Management,

overheads

1 4% 10% 61% 16% 9%

25 4% 14% 49% 23% 10%

125 7% 15% 44% 23% 11%

500 8% 15% 35% 29% 13%

Table 2.5 illustrates the size of testing efforts testing relative to other software

development activities and how it grows with respect to the size of the product

measured in KLOC (KLOC is called as 1000 lines of code). It will require 16 to 29

percent of the total efforts of the project to perform the testing activities. Therefore,

with this amount of effort, proper management of the activities will help minimize the

time required and reduce the total cost of the final products. Moving beyond the

activities, related concepts and efforts, the most important consideration in software

testing is the test case itself (Myers, 2004).

 30

2.4 Software Testing Automation and Management

Software testing automation is a set of concepts and tools that facilitate the testing

process. There are numbers of frame work such as in (Puri, 2012) and approaches such

as in (Heiskanen, Maunumaa, & Katara, 2012) have been developed to make test

automation more efficient. Moreover we found some of these techniques still selecting

test cases manually for instance (Kekkonen, Kanstrén, & Heikkinen, 2012). Meanwhile,

in Wiklund, Eldh, Sundmark, & Lundqvist (2012) qualitative evaluation indicate that

development of test automation tools encounter problems. Additionally, Rafi, Moses,

Petersen, & Mantyla (2012) found that automation bares a high initial cost in designing

the test cases.

Therefore, these frameworks and approaches are giving less attention to individual test

case management and reusability. Actually the testing process is an extensive area

involving technical and non technical activities and to perform the testing process test

cases are the inputs to test the software. The efforts of these activities bare a high cost

and the context of these test cases requires well management. Automated testing and

testing management are critical issues in many software development projects and we

quote Louridas saying: “In many projects, testing consumes the single biggest amount

of resources of all activities. We tend to collect test cases like stamps without clear

strategy— just in case. Many companies suffer with insufficient quality, visibility, and

test progress management.” (Louridas, 2011)

 31

The test case increases the quality of testing to such an extent that it becomes the most

valuable component in the testing activities, not just in the central position of testing.

Hence, the test case is used as the main element to measure the efficiency of the test

process. If the test case is structured and developed well, the testing performance will

be more accurate. Therefore, with whatever approaches is used to measure the testing

somehow consider the test case is a major element for the accuracy of the testing. In

Table 2.6, we show an example of the role of test case in test process efficiency

measurement.

Table 2-6 Test Case Role in Testing Measurement

Measurement Approach Role of Test Case

Defect removal efficiency The number of Bugs found by the Test Cases to the

total number of bugs found in the complete product life

cycle.

Test efficiency The number of Test Cases executed divided by time

of execution and/or Test Cases executed divided by

number of total Test Cases required.

Test effectiveness The number of bugs found in a product divided by the

number of Test Cases executed.

Test coverage The number of Test Cases covered the different phase

of requirements, design, code and interfaces of the

product life cycle.

 32

Understanding the purpose of test cases can assist in developing the test case itself by

providing comprehendible language and standard order (Gupta & Surve, 2011). These

elements affect the quality of the test case (Kamde et al., 2006). If the language used to

develop test cases is vague and the attributes of the test case are disordered, the testers

waste a tremendous amount of time trying to decipher the language and the order of the

test case before proceeding with the evaluation. This impacts the re-usability of the test

case. However, this drawback can be avoided by having a good test case management

system.

2.4.1 Test Case

Software testing can improve the quality of any software by gathering information

during analysis, design, and execution of test cases. The IEEE Standard Glossary of

Software Engineering Terminology (1990) defines test case as “A set of input values,

execution preconditions, expected results and execution postconditions, developed for a

particular objective or test condition, such as to exercise a particular program path or to

verify compliance with a specific requirement”. Test cases occupy a central position in

testing that has a set of input with a list of expected results that has an identity and is

associated with program behaviour. Each test case defines the inputs and procedures to

be tried and followed to test software. The test case can be a structural or behavioural

design (Jorgensen, 2008).

Based on the above, a test case can be considered as a road map that provides the

information necessary to execute the testing process. On the other hand, Ammann &

Offutt (2008) claim that it is the role of a test engineer who designs the artefact since he

 33

is in the best position to define the test cases as each of the software artefact produced

should have an associated set of test cases. Table 2.7 illustrates the purpose of the main

components of a test case based on the 892-1998- IEEE standard for Software Test

Documentation as follows:-

Table 2-7 Test Case components description

Component Purpose

Test Case specification

identifier

Test Case ID

Test items Brief description of the item to be tested

Input specifications Brief description of the input values

Output specifications Brief description of the expected output

values

Environmental needs Brief description on the testware

Special procedural

requirements;

Brief description on constraints

Intercase dependencies Brief description on the nature of

dependencies

2.4.2 Test Case Assessment

Over the last decade, many professionals wrote on the art of test case engineering. Test

case engineering involves designing good test cases, which can be a challenge without a

systematic approach to the process. There are no secret guidelines to produce so-called

good test cases. However, the purpose of the test itself determines if it results in a good

 34

test case. Test cases are designed, in the first place, to retrieve information from the test

regardless if that is pass or fail (Kaner, 2003).

We can say that to achieve test systems that are effective, efficient, integrated and

maintainable, especially the testware (i.e. test case), we must develop the practice of

building well-structured test cases. What underlies an effective test system is when

each test case’s foundation is built with proper components. Each one should consist of

the test case setup to describe the steps needed to configure the test environment, the

test conditions to assess the quality of the system, and the test case teardown to specify

the steps needed to restore the test environment (Rex, 2002).

2.4.3 Test Case Elements

A test case comprises test case values, expected results, prefix values, and postfix

values (Ammann & Offutt, 2008). Furthermore, a well developed test case would

consist of the most obvious information input, expected output and management

information. The input information is called precondition (the prior circumstances),

and the actual input (developed by testing methods). While the expected output

includes the post condition and the actual expected output. The test cases have an

identity, purpose, date of execution, results, creator, and version information to support

the management. Hence, test cases need to be developed, reviewed, used, managed,

and saved as shown in Figure 2.8 (Jorgensen, 2008).

 35

Figure 2-8 Typical Test Case Information adopted (Jorgensen, 2008)

2.4.4 Test Case Management Systems

A Test Case Management System (TCMS) is a system in which test cases can be

created, modified, retrieved, restored and traced (Tauhida et al., 2007). The motivation

of a TCMS could be to minimize the pain and times spent on auditing and tracking all

the test artefacts (Majchrzak, 2010). In addition, a TCMS starts with a test case

template or a graphical user interface, which guides the testers to construct a well-

structured test case. The number of test cases will approach into the hundreds of

thousands or even millions. Microsoft for instance, which will be discussed further in

the coming chapters, developed one million test cases to evaluate the Word application.

Desai (1994) developed a TCMS using object-oriented design and relational database to

support management of test cases and test results, maintenance of a standardized test

case format, execution manual as well as automated test cases and generation of

customized reports. In managing test cases, the system provides the storage, retrieve

 36

and updating of test cases using command line and/or user interface. Furthermore, Rex

(2002) enriched the literature with his team experience in developing a test management

system based on their practices. A recent implementation for a web TCMS showed

how the quality and efficiency of testing process improves among its users (Yuan,

2011).

2.4.5 TCMS Attribute

The test management tool includes features to assist on test planning, current test

tracking and aiding the traceability. This tool in its basic form contains a standard test

case template, an upload feature, test organizer, a historical data retrieval feature, and a

summary report of the tests. An additional factor in an advanced tool may include a

series of templates in which the end user fills in the fields that structure the test case.

Building the relations of the test cases with other testware and artefacts will be very

useful features in re-using them.

On the other hand, tracking test cases is a task to allow management of the test process

for any mentioned project. Nevertheless, test case management is not just about

tracking test cases, but it also involves organizing testing artefacts in a systematic

manner (Tauhida et al., 2007). The most vital element of any test case management tool

is how it represents the test cases for making them easy to be manipulated by a third

party, regardless of their level of testing knowledge.

 37

2.4.6 TCMS Differing Factors

To have an efficient TCMS tool certain factors have to be considered when we develop

or choose any one of these tools. These factors make the tools differ from each other in

their performance and results. These factors have been identified and discussed by

different interest groups from both academic and practitioner based on research and

experience such as in (Chunyue, 2011; Damm, Lundberg, & Olsson, 2005; Louridas,

2011; Mordechai, 2008).

Figure 2.9 illustrates the main factors used in a sophisticated TCMS approaches as

stated in (Louridas, 2011) as follows:

Figure 2-9 Test case management tools VS. Factors adopted (Louridas, 2011)

 38

2.4.7 Lack of Management

There are certain specialized journals and research interest groups, which have written

articles concerning quality management in IT development. As a result, there is a

significant amount of applicable and important literature in that field. However,

although they address many methods and approaches to quality management,

practically none of it intended to address the issue of management of IT and software

assets. A study in ("Lack of Test Case Management Threatens Software Quality," 26

June 2008) revealed that only approximately a quarter of business organizations are

utilizing any TCMS application at this time. In the Figure 2.10 according to the study,

it is shown that the percentage amount of manual testing process is quite low compared

to an automated TCSM. TCSM is still in its infancy, and therefore the manual process

of analyzing of the sheer amount of test cases produced in every testing process makes

it impossible to link the individual test cases to their test-ware and effectively utilize

them as management assets.

Figure 2-10 Number of Organization using TCMS

0%
20%
40%
60%

Lack of Test Case Management Threatens
Software Quality

Organization

 39

Lack of utilizing available TCMSs is not because of any shortage of substantial amount

of them, but because of misunderstandings created between the business project and

technical management. Software engineers do not really understand business

management, although you can find their management applications in almost every

business and office nowadays. They only develop the management applications in

every field based on their technical knowledge, not from a standpoint of overall

business acumen. The software engineers understand management only in the terms of

technical configuration management (i.e. versioning) for developing the products, so

they rely on the project managers to lead the project. However, at this stage, the project

managers need help from the technicians to understand the software. This lack of

understanding creates a “disconnect” in communication, which contributes to the costly

and delayed end product.

2.5 Summary

Semantic web technology holds various promises for developing efficient conceptual

web data represented in a formalism approach, which can be meaningful to be accessed

by third parties, regardless if human or machine. It has shown efficient results on

search engines, agents, personal desktops, knowledge management and other areas.

The web of data is structured in several technology layers, which works together to

fulfil the required tasks as noted earlier. Since the semantic technology idea opens up

many possibilities of harnessing the linked data, there is a high chance that the

technology can bring many benefits in developing semantic test case management

systems (TCMS).

 40

Moreover, in this chapter we overviewed basic concepts, technologies, and applications

of semantic web technology and ontology-base systems. Furthermore, with the help of

the bookstore data example, we illustrated how the semantic technology differs from

the current syntax technology. Finally, we provided examples of applications of

semantic technology and ontology-based systems in the knowledge management area;

and from that, we foresee that semantic web technology and ontology-base systems

stand out as a promising technology for knowledge development and management.

As aforementioned, a test case underlies the effectiveness and efficiency of the testing

process. Each test case comprises management information, such as IDs, creator, date,

and version; condition information, such as prefix and postfix values; and the input and

expected output information refer to our discussion in section 2.2. It was pointed that a

TCMS is to be featured with create, store, retrieve, and update for test cases, to contain

a standard test case template and to be able to summarize the test results.

Nevertheless, as long as the process remains manual, testers continue to battle the

challenges of the lack of management. However, the amount of management systems

available, as shown in section 2.3.2, is not providing any usable solution; especially in

relation to test case reusability refer to section 2.3.3. Although journals and special

interest groups for testing management exist, the lack of utilizing efficient management

in testing is an issue.

The related problems are discussed further in chapter 3. From this, we argue the

following:

 41

I. The loss of definition to test terms renders initial test cases un-reusable. When

automation is implemented, information can be extracted with precision regardless

of the term chosen for the search.

II. Incorporating Software Testing Ontology to support wider use of the automated

process allows for various words to be defined as synonymous terms.

III. By integrating semantic search technology in TCMS, the search will become a more

productive experience for testers.

IV. Well-structured individual test cases are applicable to be represented in Semantic

Test Case Management (STCM) system.

42

3.0 Limitation of Test Case Management

To support wider use of Test Case Management System, it is important to capture and

represent not only just test cases, but also other related testware and software artefacts.

This is especially useful in supporting analysis tasks for the purpose of reusing test

cases, where association of metadata into test case structure as well as provision of

vocabulary in the form of ontologies is required. This chapter addresses the problems

in the software testing process in the following sections:

3.1 Automation

Test automation has a collection of promises. These promises might include efficient

performance, run more tests than manual, perform tests that could be unreachable by

manual test, and reuse of test. Using automated test tools would facilitate the testing

process.

For instance unit testing, even for small program would need a huge manual task and as

the program grows, that task would be overwhelming. Likewise, automating the

software testing process would not only facilitate the process, but it would also

minimize the human error and extensively reduce the total cost as testing costs up to

50% or more in a safety critical applications of the software development life cycle

(Ammann & Offutt, 2008).

43

Figure 3-1 Automated Tools Model

In figure 3.1, we show the assumed simple automated process models representing the

manual process. Automated tools and systems supporting software testing process

become a key technology for today’s software industry. However, complete deployed

100% software testing automation system is a goal for the long term of research. The

research towards that goal is active in either test generation or innovative support

procedures.

Furthermore, one way of minimizing cost and maximizing efficiency is to reuse the test

cases (Bertolino, 2007). However, Hayes (2000) said “A test automation system is an

application which allows a test case written in a tester-friendly format to be executed

and the results reported”. In addition, Yahaya (2008) pointed out, the development of

knowledge-based software testing system is more achievable with the advantage of

semantic technology concept.

44

Therefore, here we proposed an ontology-based semantic test case management system

as it gains its advantages from the power of semantic technology to provide automated

support for creating, modifying, retrieving, restoring and tracing individual test cases

that are linked with other testware and artefacts.

3.2 Individual Test Case

As stated above, the research towards comprehensive fully automated testing is active.

In this case we consider the importance of test management. From that, we focus on the

problem of managing individual test cases. Obviously testing systems as a daily task

would require writing and executing tens of thousands of test cases, which in turn, will

lead to correcting thousands of errors found, handling their links to test artefacts such as

modules, documents, codes, etc. Hence, management is a must (Louridas, 2011;

Myers, 2004). Moreover, if testers do not keep track of the test cases to be run, how can

they gauge the test coverage later on? This question been highlighted by (Rex, 2002).

However, taking into account that test cases can be thousands and millions in numbers

and without a way organizing, storing, and retrieving them, it could be a pool of mess

(Patton, 2001).

The current test case management systems use keywords matching as a search method

combined with information retrieval rather than semantic search method combined with

conceptual information retrieval as we going to see in the coming sub-chapter. In

addition, these systems offer limited representation of the linkages between test cases

and related testware and software artefacts as well as they don’t support the individual

test case reusable information.

45

In this context, we address the aforementioned weaknesses by first finding a good way

of representing the individual test case. We focuses our research work on the individual

test cases themselves, in line with most computer science researchers that have already

continuously been doing so by focusing on test suites, as mentioned in (Miller & Voas,

2006). Most researchers have focused on working in the test suites by creating methods

for evaluation and automatically generating test suites, and they pay less attention to the

individual test cases. The power of individual test cases helps to identify bugs in the

test process, for instance in mutation testing of System X (hereafter called the System).

There is software, which will create different versions from the System, so we end up

with Systems X1-Xn, which are only slight differences from the original. The

individual test case power will be clear during this part of testing, where we create

different individual test cases, which creates a base of results for the System. After

testing X1-Xn, we will compare the outputs with the original results to confirm the

absence of bugs in the System. The individual test cases should be utilized for the

purpose of reusability.

Reusing test cases, instead of creating new ones in each instance, will prove the

usability of this process as reusing software components has proved to be cost efficient

for software products. There are several problems, however, with being able to reuse

these components. The main problem that concerns our research in software

component reuse is how to find the component that should be selected for this process.

The same problem may occur and arise whenever reusing individual test cases is

desired. Furthermore, we found (Nakagawa, Simao, Ferrari, & Maldonado, 2007) shed

some light on this situation that testing-tools developers lack consideration, paying less

46

attention to the evaluation, maintenance, and reuse features on the tools design than

saving the cases for reference and reporting.

We say the solution to this problem is by representing the individual test case

semantically, which means linking them to the testware and other test artefacts. So in

this scenario, presenting these components (individual test cases) in a conceptual

framework would definitely help the end-users to search for them in an efficient way.

By doing this, we will produce a better representation for test case management. This

representation is being utilized in our ontology-based test case management system. At

first, we identified the well-structured items of the individual test case based on the

literature review, and then represent each item in the Resource Description Framework.

The whole process is described in the implementation chapter.

3.3 Software Testing Terms

Testing terminology comprises of all terms that belong to the testing process in the

software engineering domain of knowledge. Defining standard terms in any domain

will benefit all parties working within that specific field. Machines, understanding how

to manipulate the process, will also gain the same benefits gained by humans from

standardizing the terms in that field.

With testing terminology, different personnel involved in the testing process might use

different terms for the same item. For example, one test manager calls an item a “bug”,

while the tester calls it “error,” and the programmer calls it a “fault.” All three

personnel are actually referring to the same item; however, by using different

47

terminology, they may think the other is referring to a separate item. In another

scenario, if this data is input into a machine for an automated testing process, the

machine cannot detect that these three terms are actually synonyms referring to the

same item, not three separate things. This causes delay in the job or work due to the

confusion caused. We found that, in a case study that was held in an industrial setting,

it was found that the job was delayed due to the terminology confusion (Tauhida et al.,

2007).

We say that a shared understanding among different terminology would definitely;

overcome the overlapping and miss-matched concepts, benefit the knowledge

integration, and potential the re-use of sources. Computer science is one of the fields

that has benefited from ontology mechanism. This mechanism is simplified as,

modelling the domain knowledge constructed with the reasoning behaviours. This

mechanism enables the end users to reuse knowledge. Knowledge reuse is a higher

level practices allowing the share of common terms and concepts of a domain.

3.4 Search Technology

In TCMS tools, it is crucially important to have the technical capability to be effective

in its usage. If we refer to the TCMS in general, where millions of test cases are stored

therein, using the traditional search algorithm would end up with an enormous volume

of isolated test cases again. Obviously, these results would not be effective for the

testers to actually reuse. It would be easier for them to create new test cases instead of

searching in this manner for one to reuse (Fraser & Zeller, 2011).

48

Search is a feature that allows end users to search and retrieve documents. Essentially,

search programs have different approaches, for example a search based on a

combination of textual keywords with an importance ranking of the documents. This

traditional search algorithm has various limitations, which focus on the frequency of the

word appearance in the documents. Most of management systems use the traditional

approach to searching for the assets they are managing (Tonta, 2011). This information

lacks a semantic approach to the searching results (Juan, Lizhi, Weiqing, Zhenyu, &

Ying, 2009). There are large numbers of Testing Management Systems. Table 3.1

identifies the matrices followed on selecting the required systems. Our selection was

based on the: web-based application, open source, method of the domain search and

technique of storing the data. In Table 3.1, we can observe that testing management

systems do not emphasize on the search feature and storing mechanism. As a result, the

reuse facility is not considered as a factor, which our system overcomes.

Table 3-1 List of Sample Test Management System

System Application Base Search

Approach

Storing

ApTest Manager Web based Test

Management

Not applicable Keyword Index

(Database)

Chrysilla Test

Case

Web-based

service

Not applicable Keyword Index

(Database)

TestUP Web based Test

Management

Keyword

Search

Keyword Index

(Database)

One of the current trends in searching is utilizing semantic search approaches. It is an

improved form of search, where meaning and structure are extracted from the user’s search

49

queries to be exploited during the search process. One of its capabilities is to provide more

information in the search results (Hendler, 2010). For instance, in TCMS the results of the

semantic search will not deliver an isolated test case, but it will retrieve other related

information linked to the targeted test case. This capability will facilitate the tester by

greatly improving the chances of finding the right test case to be reused. Not only that, but

it will provide the user with other relevant information to help them in expanding their

search scope in a related way. For illustration, if a tester is searching for a test case with a

specific test environment, the engine will provide the tester with not only the specific test

case but also with all test cases that have been executed in the same environment. This

scenario will significantly aid the tester to find more test cases related to this same attribute.

The semantic search approach will change the search experience in the testing domain

knowledge. Therefore, we utilize the semantic search approach in our Semantic Test Case

Management System to increase the degree of test case reusability.

3.5 Summary

It’s time to restate that this chapter’s intent is to view the weaknesses regarding

automating and managing test assets, in particular test cases. So, we have covered the

concepts of automation, individual test case, testing terms and searching algorithm. To

show the significance in making the testing process manageable, we proposed four

main aspects: (1) automated information extraction (2) representation of well-structured

test cases (3) incorporation of software testing ontology, and (4) semantic searches. In

this direction we consider designing the four aspects to prove the strength of what we

call Semantic Test Case Management System in the following chapter.

50

4.0 Ontology-based Semantic Test Case Management

The work presented here is novel in the following:-

I. its automated information extraction,

II. its application of well-structured representation of individual test cases for the

Semantic Test Case Management (STCM) system,

III. its incorporation of Software Testing Ontology to support wider use of the STCM

system and

IV. its integrated semantic search technology

4.1 Automated Software Testing Information Extraction

Semantic Web is considered as the future web and it promises to unburden users to

retrieve heterogeneous information as it will have well-defined meaning. To

understand how it works, we are outlining the collection of the main concepts and

standard technologies and providing an example of bookstore data that need to be

published and processed by a third party. They are organized, in a form of, illustrating

how the data is identified, represented and accessed in the web.

 Data Identification

The data represented in the semantic web have a well-defined meaning and contain

information about their contents in the form of metadata. Metadata is defined as

“Metadata is data about data. The term refers to any data used to aid the

identification, description and location of networked electronic resources. Many

different metadata formats exist, some quite simple in their description, others quite

51

complex and rich” (IFLA, October 24, 2005). To narrow down the Metadata definition

to the content of web Berners-Lee (January 6, 1997) define it as “Metadata is machine

understandable information about web resources or other things”. The use of metadata

is to represent a shared understanding data which can be processed by not only human

but also machine (Antoniou & Harmelen, 2008).

In our example, the info of the test case can be represented in a standard metadata such

as Dublin Core (DC) that was proposed in a workshop held at Dublin, Ohio 1994. The

simplicity of DC elements that describes resources was behind its popularity (Core,

1995). Hence, we select the elements (Subject, Creator, Source, Purpose, and

Identifier) from the DC elements to represent the main basic data of our TestCaeDetails

example as demonstrated in Table 4.1.

Table 4-1 Representing TestCaeDetails Data

Subject Creator Source Purpose Identifier RDF

Login Mansoor University

Malaya

Validate User TC-ID = 0001 www.um.edu.my

This metadata can be presented in XML syntax as follows:-

<TestCaseDetails>

<TestCaseID =TC-ID >

<Subject>Login</Subject>

<Creator>Mansoor</Creator>

 <Source>University Malaya</Source>

<Purpose>Validate User</Purpose>

<RDF>www.um.edu.my</RDF>

</TestCaseDetails>

52

 Data Representation:

The Web of Data is providing languages that allow the combination of data and its rules

of reasoning to be represented. The official recommended by World Wide Web

Consortium (W3C) languages such as RDF-RDF(S), and SPARQL built up to serve

various purposes of managing the knowledge at the web (Grobe, 2009).

o RDF-RDF(S):

RDF basic concept is to represent the metadata which describe the resources and using

URIs to identify them. Meanwhile, RDF(S) basic concept is to allow the users to identify

their own vocabulary schemas: e.g. class hierarchy (Gupta, Malik, Prakash, Rizvi, &

Arora, 2004). The following Figure 4.1 is to illustrate RDF triples (object-attribute-

property) that forms RDF statement (subject, predicate and object) using our bookstore

example.

Figure 4-1 Graph Representation of RDF Triple

dc:purpose
isSourcedIn

hasHomepage

dc:creator

http://…/TC-ID

N/001

http://www.um.edu.my

http://…/subject/Login

http://…/creator/Mansoo

r

http://.../Purpose/Valu

http://…/ Source/UM

hasTitle

53

o SPARQL:

It is considered as the query languages for the semantic web and gained the W3C

recommendation, the essential idea is to use graph pattern to query the RDF data and

retrieve the data in a form of a result set or RDF graph contains the existing recourse

references and their relations (Antoniou & Harmelen, 2008).

 For instance we are using the SPARQL basic example to query the ISPN in our

Bookstore Data.

SELECT?TC-ID

WHERE

{

http://www.um.edu.my/Identifier?TC-ID

}

 The results of this query will be as follows:-

TC-ID

0001

 Data Logic Representation

The underlining aim of semantic technology is not just to present data on the web but to

provide the data with a facility to reason the knowledge that need to be represented.

Hence, one of the main components of the web of data is OWL as it defines the

reasonable subset of logic (Antoniou & Harmelen, 2008). Logic is considered as the

foundation of knowledge representation as it was described in (Brachman & Levesque,

2004).

54

o OWL:

OWL fundamental model is to present the resources semantically for machine process.

Semantically would be achieved by describing the meaning of the resources and

supporting its reasoning. OWL is defined in three different sub languages: OWL Full,

which uses all primitive of the language; OWL DL (Description Logic), which supports

the logical reasoning; and OWL Lite, which uses simple restriction (Antoniou &

Harmelen, 2009).

o Description Logic (DL):

DL underlining aim is to give a logical formalism to model the class, property and instance

of an application domain. Concept means here, the set of individuals which the domain

data representing, the role is the binary relation among these concepts and the instances are

representing the individuals (Breitman et al., 2007). For instance and expressivity on

representing our bookstore data we show the construction of DL to describe some data of

our example in Table 4.2:-

Table 4-2 Representing TestCaseDetails Data in Logical Formalism

Concept Role Contents

Subject hasSubject “Login”

Creator isWrittenBy “Mansoor”

Source isSourcedIn “University Malaya”

Purpose hasPurpose Validate user

Identifier hasValue “0001”

Homepage hasValue “http://www.um.edu.my”

Construction Comments

0001 TestCaseDetails The Identifier book is a subclass of

TestCaseDetails

“Login” hasValue 0001 The value is use a universal restriction only as a

unique ID for the title of the test case

0001 isSourcedIn “University Malaya” The TC-ID 0001 exist in the publisher UM

55

4.2 Representing well-structured Individual Test Case

We define well-structured test case as a set of identified variables and terms that are linked

to serve the semantic of the related software artefact and software testing terms required for

the third party (human or machine) to understand, and to complete the reasoning of the test

cases.

4.2.1 Design of Well Structured Test Case:

Standard test cases would include attributes and metadata. We refer the attributes to the

information or values that are for conducting the test and the metadata to the information or

values that are required either for identification, selection, discovery or other analyses on

test cases, and they are not directly relevant to the act of conducting the required test itself.

I. Attributes as shown in Figure 4.2 and described in Table 4.3:

Figure 4-2 Attributes of Test Case

56

Table 4-3 Brief description of the Test Case Attributes

Attributes : Description

Purpose : Data describes the objective of the Test Case

Precondition Data describes the conditions that must be met before the Test

Case is executed

Inputs : Data describes the steps of the Test Process

Expected Outputs : Data describes the results of the steps of the Test Process

Post conditions : Data describes the conditions that must be met after the Test

Case is executed

II. Metadata as shown in Figure 4.3 and described in Table 4.4

Figure 4-3 Metadata of Test Case

Table 4-4 Brief description of the Test Case Metadata

Metadata : Description

ID : Data to present the identification of the Test Case

Result : Data to present the status of the Test Case

Version : Data to distinguish between different revisions of the Test Case

Run By : Data of the Test Case creator

Date : Data of the date captures by the system

57

4.2.2 Design RDFS for Test Case:

Semantic technology allows users to build their own hierarchy schema (RDFS), and by

utilising two metadata schemas that are connected to semantic initiative

1. Dublin Core (DC) (Weibel, Kunze, Lagoze, & Wolf, 1998) and Test Metadata

2. W3C Quality Assurance Work Group (QA) (W3C)

We designed our own hierarchy schema to represent individual test case semantically as

illustrated in the following steps:

I. DC: defines 15 elements applicable to resources in general as shown in Table 4.5.

Table 4-5 Dublin Core Elements Set

Contributor Format Identifier Relation Subject

Coverage Date Language Rights Title

Creator Description Publisher Source Type

II. QA: claims the minimal set that can be applied to test case as shown in Table 4.6.

Table 4-6 Quality Assurance Elements Set

Identifier Title Purpo

se

Description Stat

us

SpecRef Preconditions Inputs ExpectedResults Version

Contributor Rights Grouping seeAlso

58

III. Common Elements:

It is observed that there are several common metadata terms for both the schemes as

shown in Table 4.7.

Table 4-7 Common Elements Set

Elements

Identifier

Title

Contributor

Description

Rights

IV. Principles:

To derive the RDFS of test case structure, we followed the following principles:

 Use the prefix dc for the terms borrowed from DC

 Use the prefix qa for the terms borrowed from QA

 Use the prefix xx for new defined terms

 Obliterate non-required terms

V. Well-Structured Test Case:

Well structured test case should identify terms that are related and serve the concepts of

the STO as it facilitates the semantic of the testing terms required for the third party

(human or machine) to understand and to complete reasoning on test cases. The

mapping is demonstrated in Table 4.8.

59

Table 4-8 Mapping Test Case Terms to STO Concepts

Prefix Term Concepts

Rdf about Artefact

Dc Creator Tester

Qa Purpose Artefact

Dc Source Artefact

Dc Subject Artefact

Dc Relation Artefact

Qa Preconditions Environment

Xx TestType Task_Testing

Qa Input Artefact

Qa Expected

Result

Artefact

From Table 4.8, can observe that we have done the following:

 Represented the Metadata Test ID with the rdf: about as it is provided by the

rdf scheme.

 Replaced the Metadata Run By with the dc:creator as DC is well established.

 Utilised the DC source, subject and relation terms to represent the test case for

the following reasons:-

o dc:source is useful for test case analysis for re-use purposes as it links the

test case with its artefact.

o dc:subject is required to interpret the test case for searching purposes.

o dc:relation is a technique element to show the relation of the test case

with other test cases.

 Included a new term xx:TestType to relate the test case to the Software

Testing process tasks.

60

 Obliterated the Metadata date, result & version as date can be captured by the

system whenever the test case is created; version when the test case is edited;

and result is not required to be represented.

 Obliterated the attribute Postcondition as it can be included with the test case

Purpose and not required as a separate term.

VI. Test Case RDFS:

We represented the Well-Structure Test Case terms in RDFS schema as shown in

Figure 4.4. Note that xx is implemented as the default name space.

Figure 4-4 The Well-Structure Test Case RDFS

61

VII. Automat Software Testing Information Extraction Component Design

The design is based on jOWL (jQuery plug-in for navigating and visualising

OWL_RDF) for the Software Testing information extraction, which provides a set of

gates to browse and navigate between different terms, taxonomy and relations in the

STO.

4.3 Incorporation of Software Testing Ontology

An ontology-based system is about featuring intelligence and insight provision

capabilities. In order to deliver the relevant knowledge, the ontology-based system

takes into consideration the ontology changes according the business environment.

Ontology-based systems attract software testing researchers where we can find

numerous attempts to solve various software testing research problems using ontology-

based systems. For instance an ontology-based question answering system on software

test document domain (Serhatli & Alpaslan, 2009) is concerned with retrieving test

documents and discusses how to improve the searching by ‘questions and answers’ in a

natural language. The work proposed a new algorithm to filter the question tokens and

asserted to the reasoner to retrieve exact information. This work been implemented to

retrieve related testing documents for new member joining the testing team. Another

example is an ontology-based approach for GUI testing (Han et al., 2009) which is

concerned with generating GUI test cases according to existing testers’ experience and

information provided in the ontology. The ontology stores information about the GUI

and makes use of the reverse engineering to capture the knowledge provided.

62

We conclude that ontology-based systems is an established discipline as shown in the

empirical study by (Simperl et al., 2010). Moreover, ontology-based systems provide a

shared knowledge model and become an important area to solve the problems in

knowledge management systems. (Fu, Yue, Song, & Xin, 2008).

In figure 4.5, we demonstrate the term Error in ontology showing how it is related to the

other similar terms that belongs to the same concept.

Figure 4-5 Demo the Term Error with similar Terms

Furthermore, ontologies are main components in Semantic Web. They represent the

domain knowledge enabling the cooperation between people and machine to machine.

Building up an ontology will help the testers and other involved personnel, whether

machines or humans, in reusing these terms efficiently.

63

In conclusion, standardizing the terms and putting them in a conceptual manner will

minimize the confusion in the testing process, resulting in more efficient software

production. When the confusion is eliminated, the testing time is reduced, which

usually takes 50% of the software life cycle production. This time reduction will affect

the total cost of building software, producing a more time and cost effective testing

process.

We have built conceptual terminology into software-testing ontology [STO] covering a

standard testing glossary. Our STO consists of hundreds of concepts of software testing

based on the mentioned standard testing glossary, which is large enough to supply

accurate reasoning terms for our STCMS. It also defines the relations between these

concepts, for instance as “isTestedBy” and “hasTestID.” This is elaborated on in the

STO implementation chapter.

4.4 Integration of Semantic Search Technology

The semantic search will deliver test cases and retrieve other related information linked

to the targeted test case. This facilitates the tester by greatly improving the chances of

finding the right test case to be reused. It provides the user with other relevant

information to help them in expanding their search scope in a related way. To achieve

the approach we discuss the design in the following:

I. The purpose of interpretation, we illustrate the Login Test Case example to show

how the data are created and represented based on RDFS.

64

II. Logic Innovative Service: we present the innovative services provided by illustrating

the authentication (Log-in) Test Case example. Table 4.9 presents the test case

description.

Table 4-9 Login Test Case description

System: MFIT FoodReg

Test Case No. 1-MFIT_Login Test Case Version Version 1.0

Test Title Login

Test Objective To validate the entered User name and Password

Pre-requisite Valid username and password

Tester Mansoor

Step Description Expected Result

1 Fill Username field Username is entered

2 Fill Password field Password is entered

3 Click Login button If details are valid login is successful and

user page is displayed. Else login is failed

and “Alert message is generated”

This test case description is represented in RDFS and saved in the database for future

search and retrieve. The logic of the service is shown in figure 4.6. For instance, the

test case title is represented logically with (Test Case hasTitle MFIT_Login),

creator is a sub class of Tester, and Test Type is an element of Task Testing, which

requires interpreting from the software testing ontology STO.

65

Figure 4-6 Logic Innovative Services of Test Case

Test Case
 hasTitle

MFIT_Login

? Creator

rdfs:

subClassOf

? Tester

Test

Type

Task_

Testing

66

5.0 Designing of Software Testing Ontology

Software Testing Ontology (STO) is a formal and an explicit description of software

testing concept. STO is about modelling the Software Testing domain. It allows

automatic reasoning to provide a formal semantic for the software testing terms

(Veenendaal, 2010). STO was built to make software testing domain amenable to be

interpreted and processed by third party (i.e. human, machine, software agent, etc). It is

considered a semantic repository which manages the storage and query, offers easier

integration and dynamic interpretation of software testing data. The semantic

repository approach allows easier changes and automated interpretation of the data

compared to approach in relational DBMS (John Davies, Rudi Studer, & Warren,

2006). The Software Testing Ontology is presented in the Active Ontology Tap of

Protégé as shown in Figure 5.1.

Figure 5-1 STO Active Ontology Tab

Shows the metrics of

the STO number of

classes, properties &

instances

Describes what the

accessed Ontology

is about

Shows the STO

in RDF syntax

67

For instance, let’s store a software testing datum such as Test Case Suit that relates to

the Tester who performs it in a typical rational database. It will be achievable to query

the stored data and retrieve typical data such as the Tester’s details and the Test Case

Suit that had been performed. Meanwhile, storing the same data in the STO semantic

repository as shown in Figure 5.2 enables us to do much more than retrieving typical

data.

Figure 5-2 Hierarchy Storage Test Case Suite in STO

Hierarchy

storage Test

Case Suite

Property between

related concepts in

STO & datum Test

Case Suite

68

From the semantic repository in the STO, it is possible to deduce more details about the

datum Test Case Suite: for example, the ability to figure it is a type of Test Case

document in a relation property called “is-a” which shows that it is a sub concept of the

general concept “Test Case Document”. In addition to this information, inverse

relation from “hasTest”, the “isTestBy” information will be deduced as it was

identified by the semantic repository.

5.1 Building STO with the 101 Guide

Building ontologies requires the selection of a comprehensive guide. The STO layer

creates the logical relationships between test cases and other relevant testware and

software artefacts in the software testing domain. Keeping in mind that usually

ontologies can be reused, and so does STO, we built up the ontology structure in a very

high level conceptualization to be more flexible, maintainable and understandable.

Furthermore, the Natasha and Deborah (2001) method was selected based on famous

approach, simple explanation on how to develop and evaluate the first ontology and

clear identified steps. Several challenges were met while building the ontology. In

particular, the main one was classifying terms to formalize the conceptualization. This

task consumed a lot of effort and required critical decisions. In the aforementioned

guide, there are seven main steps to build STO, and the following subsections explain

the journey that we went through:

69

I. Determine the domain and scope of STO

To define the domain and scope of STO, we had to answer several selected questions,

which had been suggested by the guide to help determine the following goals: purpose,

usage, type of information, and who will need the STO. Table 5.1 illustrates the questions

& answers used:-

Table 5-1 Questions & Answers determine STO’s domain & scope

Question Answer

What is the domain the Ontology will

cover?

The purpose of building this ontology is to

cover the software testing area as a

Domain & we call it STO.

What is STO going to be used for? STO is built to be used as an

infrastructure for Semantic Technology

regardless of which application uses it

with the intention of focusing on

representing test cases for management

and reusability.

What type of answers should STO

provide?

STO needs to provide an understandable,

conceptualized and linked vocabulary

required by the Software Testing Domain.

Who will use STO? The STO end users are identified as third

party whether they are machines such as

(Semantic Agents, Semantic Desktop, etc)

or humans such as (Software Testers, Test

Managers Test Case Creators, etc)

II. Consider reusing existing Software Testing Ontologies

There are Software Testing Ontologies which have already been built and published in the

literature. Studying some of the existing ontologies was an important process for this step.

Hence Table 5.2 demonstrates the analysed findings of the study:-

70

Table 5-2 Analysed Findings for Existing STO

Ontology Name Description Reference

Ontology of

Software

Testing

OntoTest

Defines software testing concepts in a layered

approach. The main layer covers main testing

concepts and relations. The sub layers cover

Testing Processes, Testing Phases, Testing

Artefact, Testing Steps, Testing Procedures and

Testing Resources.

(Barbosa,

Nakagawa, &

Maldonado, 2006)

Software

Testing

Ontology for

WS (STOWS)

Defines concepts related to software testing into

two groups: the basic concepts include context,

activity, method, artefact, and environment; and

compound concepts include tester, capability and

test task.

(Hong, 2006)

Test Ontology

Model (TOM)

Defined to specify the test concepts, relationships

and semantics from two aspects: Test Design

such as test data, test behaviour and Test Cases;

and Test Execution such as test plan, schedule

and configuration.

(Bai, Lee, Tsai, &

Chen, 2008)

From the analysed findings table above, we found limitations on the domain terms

(especially those related to test case as individual); and relations between concepts and

specific tasks. Therefore, instead of reusing the whole ontology, we used some of the

concepts’ names and built up the remaining concepts on our own to overcome the

aforementioned limitations.

III. Enumerate important terms in the ontology

International Software Testing Qualifications Board is a not-for-profit association founded

in Edinburgh in November 2002. One of their missions is to promote common language for

testers globally. They form groups in different areas of Software Testing and one of the

71

groups is the ISTQB Glossary working group. This group aims to deliver a glossary of

testing and related terms (ISTQB, 2002). There are various versions of the glossary as the

group keeps updating the new terms when necessary. STO was built based on ISQB-

glossary Version 2.1 (Veenendaal, 2010) as it presents the most current concepts, terms and

definitions of Software Testing domain and the related artefact. All terms and concepts

presented in the glossary were covered and the taxonomy was based on our understanding

of the domain. In the following section, we elaborate on how the concepts are classified.

IV. Define the concepts and the concepts’ hierarchy of STO

Defining the concepts and their hierarchies concern several approaches identified in the

literature as mentioned in the guidelines of the proposed method. We selected the top-down

approach assuming it would be more understandable by end users.

This definition engaged us with several steps as described briefly below:-

1) Categorise the main concepts according to the general classification as shown in Table

5.3:-

Table 5-3 Definition and general classification of STO

General Classification Definition

Tester > Terms include particular parties that conduct the test activity.

Task_Testing > Terms include everyday jobs for performing the testing process.

Artefact > Terms include related pieces to the test and testing process.

Environment > Terms include the surrounding of the testing process and the

trait terms from which the process can be described.

72

2) Identify the sub and sub-sub concepts of the high level concepts (the general

classifications) as shown in Table 5.4:-

Table 5-4 Identifying the sub and sub-sub concepts of STO terms

Main Concept Sub Concept Sub-Sub Concept

Tester

Human

Individual

Team

Software_Tool

Environment

Features

Hardware

Software

Artefact

Text

Code

Document

Data

Measurement

Images

Standard

Criteria

Guide

Report

Plan

Term

Task_Testing

Context

Purpose

Scope

Activities

Intrinsic

Extrinsic

Method

Technique

Approach

Practice

3) Classifying the remaining terms in the glossary into the identified concepts. For the full

list of the classified terms, please refer to Appendix A-1 STO Terms Classification.

73

V. Define the properties of STO concepts

Usually concepts alone are not enough to give all necessary information. Hence, defining

the properties to show the relations between different concepts in the ontology is a

necessary step. As shown in Table 5.5, examples of relations between different concepts are

identified.

The examples demonstrate a sample view, as STO was built within 59 different types of

properties. For the full list of the properties, please refer to Appendix A-2: STO Terms

Properties.

Table 5-5 Examples of Properties and their inverses

Concept Object Property Inverse Property

Individual hasCheck isCheckedBy

Team hasControl isContoledBy

Software_Tool hasAutoProcess isPerformedBy

Code hasTest isTestedBy

Data hasResult isResultsOf

Measurement hasMeasurement isMeasurementOf

Criteria hasReview isReviewedBy

Guide hasStandard isStandardFor

Plan hasPlan isPlanedBy

Term hasModerate isModerateBy

Purpose hasPurpose isPurposeFor

Scope hasScope isScopeOf

Extrinsic hasPractice isPracticeBy

Technique hasTechnique isTechniqueOf

Approach has Approach isApproachOf

74

VI. Define the data properties of STO concepts

This step required identifying the data type for each property. The benefit of using data type

is the link which can be created between the classes and XML scheme. STO was built

within 32 data type properties. Table5.6 shows a sample of the data type. The domain field

shows names of concepts that data represent, while the range shows the types of the data.

For the full list of the data type, please refer to Appendix A-3: STO Terms Data

Properties.

Table 5-6 Examples of Data Properties with their domain and range

Data Property Domain Range

hasTestID Individual string

hasNumberofLine Code integer

hasCreator Artefact string

hasStatus Text Boolean

isInfectedCode Code Boolean

hasSource Test Case Suite String

hasValue Text string

hasActualResuslts Measurement string

hasCriteriaDescription Criteria string

hasExpectedResutls Text string

hasPlanDescription Plan string

hasRatio Feature Null

hasSoftwareID Null string

hasGuidTitle Guide string

hasReportDescription Report string

75

VII. Create instances and individuals of classes

Once the concepts, properties and their data properties were defined, the last step in

preparing STO is to create the instances and individuals of these concepts. Table 5.7

displays a sample of individuals. With regard to STO concepts, 106 individuals were built

in. For the full list of the instances and individuals, please refer to Appendix A-1 STO

Terms Classification.

Table 5-7 Examples of Concepts’ Individuals

Class Individual

Images

Call_Graph

Cause-effect_Diagram

Cause-effect_Graph

Control_Flow_Graph

Diagram

Fishbone_Diagram

Ishikaw_Diagram

Mind-Map

State_Diagram

Features

Accuracy

Adaptability

Availability

Behavior

Changeability

Complexity

Deviation

Efficiency

Executable

Install-ability

Maintainability

76

5.2 Implementation with PROTÉGÉ 4.0

We selected Protégé 4.0 as an open source standalone application, which is written in

Java, and provides plug-and-play environment used for OWL editor to implement the

STO. After the hard work to get the STO taxonomy ready as discussed in the previous

section, we started the implementation by following the Protégé guide. Protégé with its

plug in OWLViz provides a graphical view for the ontology. The graphic view makes it

easy to understand the relations. Hence, we demonstrate the output of our process using

the graphic view. The following steps demonstrate the accomplishments:-

I. Building the Classes Hierarchy

Classes are a concrete representation of concepts. We started building the classes to

represent the STO taxonomy concepts. The following steps are described in detail as

follows:-

1) Building parents classes to represent the general classification as shown in Figure 5.3

Figure 5-3 General Classes View for STO

77

2) Building children classes to represent the sub classes as shown in Figure 5.4

Figure 5-4 Sub Classes view for STO

78

3) Building grandchildren classes to represent the sub-sub classes as shown in Figure 5.5

Figure 5-5 Sub-Sub Class view of STO

79

As shown, STO has four main layers. Each layer is described as follows:-

a) Tester:

This holds the meaning of what/who performs the task of testing. In this layer,

Tester is either a person (i.e. human either individual or team) or software (i.e. tools

for testing).

b) Environment:

This holds the meaning of related characteristics to Test. Environment has Features,

Hardware and Software as subclasses.

o Feature Class comprises the behaviour terms such as (Pass, Fail and

Testability, etc).

o Hardware Class comprises terms involving hardware such as (Sub, Storage,

and Simulator etc).

o Software Class comprises the software terms such as (Buffer, System and

Compiler, etc).

c) Artefact:

This holds the meaning of objects under the test activities. In the Artefact, we

created Text, Image and Standard as subclasses.

o Text Class – all included terms describe the Code, Document, Data or

Measurement Data.

o Image Class portrays instances of graphic terms in the domain.

o Standard Class includes all standards that have been inherited from standard

organizations or frameworks. It is classified in Guide, Criteria, Report, Plan

or Term classes.

80

d) Task Testing:

This defines terms of the main activities in the software testing domain that is in

Context, Activity or Method classes.

o Context Class holds terms describing activities that occur in various software

development stages, either for Purpose or Scope.

o Activity Class includes terms pointing to activities other than testing itself

within (Intrinsic) or without (Extrinsic) the system.

o Method Class takes account of testing activities, whether it is a Technique,

Approach or Practice.

Obviously with this simple explanation, the key factor that we depended on in

building the general hierarchy classes of STO is to give effortless meaningful

representation for a normal user with basic knowledge in software testing domain.

Description Logic specifies hierarchy using restricted set of first-order formulas,

and so does OWL reasoning rules. We defined a sub-set of OWL reasoning rules

that support our hierarchy classes. For Instance, Individual class is illustrated in

Table5.8:-

Table 5-8 STO hierarchy class rules

Rule Description

subClassOf (?Individual rdfs:subClassOf ?Human) (?Human rdfs:subClassOf ?Tester)

 (?Individual rdfs:subClassOf ?Tester)

disjointWith (?Individual owl:disjointWith ?Team) (?Inspector rdf:type ?Individual)

(?Change_Control_Board rdf:type ?Team) (?Inspector owl:differentFrom ?

Change_Control_Board)

81

II. Building the Object Properties

Object Properties are binary relations between the classes. After finishing building all

classes, we created the possible relations (Object Property) between these classes. Figure

5.6 illustrates the object properties:

Figure 5-6 Object Properties View of STO

We defined a sub-set of OWL reasoning rules that support our object properties. For

instance, hasText & hasTest property are illustrated in Table 5.9.

Table 5-9 STO property rules

Rule Description

subPropertyOf (?hasDocument rdfs:subPropertyOf ?hasData) (?hasData

rdfs:subPropertyOf ?hasText) (?hasDocument rdfs:subPropertyOf

?hasText)

inverseOf (?hasTest owl:inverseOf ?isTestedBy) (?Tester ?hasTest ?Code)

(?Code ?isTestedBy ?Tester)

E.g. Property and Its inverse

82

III. Building the Classes Data Properties

Data properties describe relationship between classes and data values. Some STO classes

can be represented by data values. For instance, a test case needs to be represented by an ID

or a Software Tool needs to contain a version to be traced. Hence, we created the data

properties as shown in Figure 5.7.

Figure 5-7 Data Properties View of STO

 E.g. Data Type

83

IV. Building the Classes’ Individuals

Individuals represent objects in the domain. For instance, Oracle is an object term for

Software class in the Environment concept in STO domain. Figure 5.8 demonstrates the

examples of individuals, which had been built in STO.

Figure 5-8 Individuals’ view of STO

E.g.

Individuals

84

V. Building OWL Restrictions Rules

A restriction describes a class of individuals based on the relationships that members of the

class participate in. STO restrictions are illustrated as follows:-

1) Property Restrictions which consist of:-

a) someValuesFrom –

Existential Restrictions are also known as Some Restrictions, or as some values from

restrictions. For instance, Figure 5.9 demonstrates the some restriction for the Test Case

class.

Figure 5-9 STO Some Values From restriction

It can be denoted in DL-Syntax as:

 hasTest Tester

E.g.

Some

85

b) allValuesFrom –

Universal Restrictions are also known as all values from restrictions. For instance,

Figure 5.10 demonstrates the only restriction for the Task Testing class.

Figure 5-10 STO all Values From restriction

It can be denoted in DL-Syntax as:

 isCheckedBy Human or Software_Tool

E.g.

Only

86

2) Data Restrictions - A datatype property can also be used in a restriction to relate

individuals to members of a given datatype. For instance, we demonstrate the Code

class that has a Boolean data type to check if infected with bugs, has a String data type

to carry the name of the code creator and Integer data type to store the number of codes

as shown in Figure 5.11.

Figure 5-11 STO Data restriction

E.g.

Data

87

5.3 Summary

In this chapter, we presented the outcome of each step which has been followed to build

the ontology for Software Testing domain. We emphasis again that STO presents

concepts and terms of Software Testing domain based on a standard up-to-date

glossary. These concepts and terms are linked in a formal structure. The formal

structure of the STO consists of 626 Classes linked with 60 Object properties, identified

by 32 Data properties and instanced by 106 Individuals. STO is a goal for developing

Semantic Web for Test Case Management System. To build STO we followed the 101

guide for developing ontology, used the standard web ontology language recommended

by W3C-OWL, and selected Protégé version 4.0 as a tool to implement it.

88

6.0 Implementation of Semantic Test Case Management System

Semantic Test Case Management System (STCMS) is the first Test Case Management

System that implements Software Testing Ontology. The uniqueness of the system are

the illustration of Well-Structured Test Case as individuals with comprised management

information, which is represented semantically, and the integration of the Software

Testing Ontology to facilitate the management testing process.

STCMS allows the users to create, store, retrieve and update test cases using semantic

technology. It also implements automate information retrieval for terminologies and

taxonomies of software testing domain based on explicit conceptual hyperlinked

relations. It enhances the traditional search results (which is based on word occurrence).

The requirements of STCMS were gathered from different perspectives. We initially

used the literature and relevant work in chapter 2. Secondly, they were observed by

studying other testing management systems’ requirements.

Following the aforementioned ways of gathering requirements, we are able to come out

with functional and non functional requirements for the STCMS, which are specified

and documented in Software Requirement Specification IEEE standard. The IEEE

standard was tailored to fit our required template. Then the system use cases are

created according our template.

The system development lifecycle adopted the software engineering disciplines using

the Rational Unified Process (RUP) as it provides structured and well-controlled

methods. The development relies on the use of Unified Modelling Language (UML) on

89

modelling the modules of the system. The system is a web application solution, which

uses JSP as a front end and My-SQL as a back end. Furthermore, the system uses Java

language for the module implementation, Jena API as it is a full-feature Java for RDF

and SPARQL as a special query language and suitable for RDF. For the requirements’

specification and details design of the system, see Appendix B-1 SRS & B-2 SDD.

6.1 Requirement

The main objective here is to achieve the ability of representing and searching

semantically the individual test cases. This requirement includes the following:

1. Automation process for sharing and reusing test cases for computer to manipulate.

2. Effective and efficient facilitation of the testing process by providing well

structured test cases linked to other testware and software artefact.

3. Minimising cost and maximizing efficiency by providing a semantic search.

4. Software Testing information retrieval to provide a component that can be utilized

by third party (regardless of machine or human) to not only explore the term, but

be able to pull all relevant data for that term

6.2 Test Case Collection

Test case documents are considered as archival data, which is a third degree level of

data collection technique. In this technique, as the data is not developed with the

intention to provide data for the research (STCMS in our case), the quality may be

affected (Runeson & Höst, 2009).

90

To overcome this issue in the test case collection for our research case study, we

developed a Test Case Template. Moreover, there were several different sources for

collecting the test cases. The followings describe the process of STCMS test case

collection.

6.2.1 Test Case Template

We formulated a template for the required parties to fill the mandatory data for our research

to constitute a standard format. The Template is shown in Table 6.1. Industry testers are

overloaded with too much work. Hence, we kept the mandatory data required to fill in the

template and provided description for each field as follows:-

1. System: The acronym of the system’s name for the test case to test (e.g.

Semantic Test Case Management System – STCMS)

2. Test Case No.: The identification number for the test case plus the name of the

test case (e.g. 1. Login)

3. Test Case Version: The version of the test case was assigned with Version 1.0

since it was created for the first time in our case study.

4. Test Title: A unique title which starts with the acronym of the system’s name

and the name of the test case (e.g. STCMS_Login)

5. Test Objective: The objective to conduct the test case (e.g. To check whether

the entered User name and Password are valid or Invalid)

6. Pre-requisite: The precondition of the test case (e.g. The web site is uploaded

and the user is registered)

7. Tester: The name of the creator of the test case (e.g. Mansoor)

91

8. Step: The index of the input required (e.g. 1.2.3.or I.II.III)

9. Description: The input procedures for the test case to be followed (e.g. 1. Actor

enters username/ password and click sign in)

10. Expected Result: The expected reaction from the tested system after each input

(e.g. System generates error message/ Invalid ID or password Please try

again)

Table 6-1 Test Case Template for Collecting Data

System:

Test Case No. 1. Test Case

Version

Version

1.0

Test Title

Test Objective

Pre-requisite

Tester

Step Description Expected Result

1.

2.

3.

92

6.2.2 Test Case Sources

We identified two sources – (1) Academic Prototype Systems and (2) Industry Company

System to collect the test cases from. For the test cases please refer to Appendix C. The

sources are discussed as follows:-

I. Academic Prototype Systems:

For this source, we gathered test cases from two prototype systems as follows:-

 STCMS: We created test cases to validate the functionality of our system and

used the test cases as sample data to run the system, refer to Appendix B-3

STD.

 FSKTM PERSONALIZED WEBSITE (FPW): is Faculty of Computer

Science and Information Technology users’ personalised website. For the

purpose of giving support, our lab colleagues who had developed this

prototype provided us with their test cases, refer to Appendix C-1.

II. Industry Companies System:

For this source, we contacted several companies based in Malaysia. The selection of the

companies was based on their willingness to share and publish the test cases in the

research thesis. Those who gave a positive response are discussed below:-

 i-Cognitive Software Solution: Provided us with iLogger System test cases.

iLogger does health checks on the machine performance without requiring

human to monitor, refer to Appendix C-2

 Sapura Secured Technologies: Provided us with two Systems test cases -

FoodReg, a web-based application, refer to Appendix C-3

93

6.3 STCMS Discussion

STCMS is a Test Case knowledge management system that has been deployed in a

Semantic Web-based environment. It captures and represents not only test cases, but

also other related testware and software artefact with the association of metadata into

test case structure, as well as the provision of ontology to harness the real power of the

semantic representation.

In the previous sub-headings, we described the design process of what we call Well-

Structured Test Case, and we presented how we collected the test cases data. In this

sub-heading and for the purpose of showing how we developed the system and used the

test case data, we demonstrate the component architecture and features of the system,

then brief on inserting the test cases to run the system.

The process undertaken to develop STCMS culminated in the following procedures:-

I. Component Architecture

In this process, we developed the modelling diagram, which describes the main

components of STCMS using the Unified Modeling Language (UML) as shown in

Figure 6.1. The architecture shows the STCMS’s platform-independent. The main

features of the component are described in the following sub-section.

94

Figure 6-1 STCMS’ Component Architecture

II. Features:

The main features were implemented are reflecting the research objectives. They are

illustrated as follows:-

95

a) Test Case Management: here, we facilitate the following functions:-

 Create the test cases based on RDFS using the Jena API. The created test case

is saved in MySQL database as shown in Figure 6.2.

Figure 6-2 Create Test Case Form

 View the test cases based on RDFS using the Jena API. The stored test case

will be retrieved from the database, and displayed and represented for the user

as shown in Figure 6.3.

Additional

inputs for

test case

96

Figure 6-3 View Test Case

 Edit &Delete the test case features are provided in the View test case list as

shown in Figure 6.4.

Figure 6-4 Edit Test Case

97

b) Test Cases Semantic Search: the facility here is to search for test cases. The

semantic search feature assists the user (regardless of human or machine) with

dynamic terms that match the search terms if available in the STO. Furthermore,

there is a Navigation Bar, which displays all the available concepts belonging to

the searched term as shown in Figure 6.5.

Figure 6-5 Semantic Search Form for Test Cases

c) Search Test Case by ID: This keyword search feature is just to ease the process

of finding the test cases if the ID is known to the user as shown in Figure 6.6.

Figure 6-6 Search Test Case by ID

98

d) Class View: provides all STO conceptual terms in a hyperlink and search text

field, where a user can find the hierarchy, the related descriptions and all possible

relations of the search term as shown in Figure 6.7.

Figure 6-7 STO Class View

By Clicking the

link

Or Searching the terms

99

e) Property View: provides all STO object properties in a hyperlink, where a user

can find the related description of the selected object as shown in Figure 6.8.

Figure 6-8 STO Properties View

Shows the

description of the

property for

manipulating

100

f) Individual View: provides all STO individuals in a hyperlink, where a user can

find the related concept of the selected individual as shown in Figure 6.9.

Figure 6-9 STO Individual View

Shows the

main class

of the term

101

g) SPARQL-DL: provides users with a query text area for entering SPARQL-DL

syntax to query the STO as shown in Figure 6.10.

Figure 6-10 STO Query View

III. Insert Test Cases:

In this process, we inserted the aforementioned test cases in the test case Collection

sub-heading. With the amount of the test cases collected, we were able to run the

system and the results are discussed in the result evaluation chapter 7.

Shows the results

of the class of Test

Case

Examples of SPARQL-

DL query syntax to help

users

102

6.4 Limitation

Having completed the discussion above, we still believe there are more to be done and

we consider them as out of our case study scope. Nevertheless, they are limitations for

STCMS and can be implemented in future work. From our point of view, they include

the following:-

I. Integration with other Database:

A limitation in STCMS is not having the relevant feature to integrate with other

existing systems to restructure their test cases. Currently, users need to create test cases

manually or key in to the system. Adding the integration feature to add the capability to

read from other systems’ databases or auto reading from text files will facilitate the

reuse of existing test cases without the burden of creating or keying in to the STCMS.

II. Complex-Structure Test Case:

This can be counted as another limitation. We refer to the work that had been done by

Christophe Strobbe et al. (2006) and C. Strobbe & Velasco (2005), where they linked

test cases to Test Suits, which results in having more required elements for the test case

structure. Our research focuses on dealing with individual test cases to be represented.

Hence, future work for STCMS could be upgraded to dealing with group test cases that

build Test Suits.

III. Ontology Update Interface:

It is a feature that might assist the system in updating the STO to give more to-date

terms in semantic search. This feature can serve as a manual process at the beginning,

and can be automated in the future

103

6.5 Summary

In this chapter, we presented the implementation of the Semantic Test Case Management

System STCMS. STCMS is an ontology-based application that is implemented using

semantic technology concepts and featured with the management process (create, view,

edit, delete and search). At present, STCMS represents 51 test cases of different systems,

which can be scaled up to be within the limitation of storage capability. Moreover Well-

Structured Test Case attributes and metadata are designed and presented in RDFS. This

representation makes it possible for the retrieval of test case for reusability purposes and

machine manipulation. Finally the automatic information extraction on STO is a gate to

search up-to-date Software Testing Terms in an efficient way to help users locate the

matching terms to minimize their search efforts.

104

7.0 Evaluation

We have argued that the work presented in this thesis is novel in the following aspects:

Software Test Ontology, automated software testing information extraction,

representing well-structured individual test cases and test case Semantic Search. The

STO represents the conceptual connection between the software testing terms in

STCMS. Therefore, STCMS is capable of extracting the testing information

automatically from the STO. Moreover, representing individual test cases in RDFS

makes it easier for searching the test cases semantically for managing and reusing them.

By evaluating the novelty presented in this work, we will prove the significance and

benefits of the STCMS to the body of knowledge.

7.1 Evaluation Criteria

To determine whether objectives 3 and 4 described in section 1.4 are achieved, we

designed the following evaluation criteria:

1. Correctness of Software Test Ontology using built-in reasoners, discussed in section

7.2.1

2. Proximity of the automated software testing information extraction using semantic

similarity, discussed in 7.2.2

3. System Usability Scale (SUS) developed by Brooke (1996) to allow the practitioner to

quickly and easily assess the usability of a given product or service.7.2.3

4. Performance of the semantic search using precision and recall, discussed in section

7.2.4

105

7.2 Evaluation Process

7.2.1 Evaluation of Software Test Ontology

STO is evaluated by using reasoning service offered by reasoners plugged in Protégé.

The main benefits of the services are computing the classes’ hierarchy and logical

consistency checking. The STO verification process started at the early stages of the

development to ensure the correctness and avoid propagation errors. We used two

reasoners to verify STO as shown in Figure 7.1.

Figure 7-1 Reasoners Used to evaluate the STO

The task of computing the inferred class hierarchy is also known as classifying the

ontology is described as follows:-

106

I. FaCT++: the first reasoner was used as it is shipped with Protégé. The inferred

hierarchy is the automatically computed class hierarchy by the reasoner. Figure 7.2

presents the inferred hierarchy graph showing the “no exists” of the inconsistent class.

In case of inconsistencies, Protégé would highlight them in red. Meanwhile, the class

“Nothing” is to identify the inconsistent classes if any exist.

Figure 7-2 FaCT++ “Nothing” class shows the “no exists” of Inconsistent Class

107

II. Pellet: the complete OWL-DL reasoner (Sirin, Parsia, Grau, Kalyanpur, & Katz, 2007).

Protégé allows Pellet plug-in to be installed and compute the OWL. Hence, we

computed STO via Pellet for a second evaluation. Figure 7.3 presents the inferred

hierarchy graph showing the “no exists” of inconsistent class.

Figure 7-3 Pellet reasoner shows the “no exists” of Inconsistent Class

108

7.2.2 Semantic Similarity

Our STCMS provides context aware query capability. Firstly, we allow users to insert

request in their natural language (English as default). Then, we automatically process

and match on-the-fly the request with our semantic indexing. The matching performs

the actual comparison between the request and the semantic index. The related

information is then retrieved and displayed in the user browser.

For instance, the concept Method has been randomly selected to be examined. The

GUI interface shown in figure 7.4 transforms the free-text query into the semantic

representation. On-the-fly matching retrieves and displays the related information to the

requested query.

Figure 7-4: GUI transforms the free-text query into the semantic representation

109

In order to evaluate the proximity of our matching results, we use the semantic

similarities adopted from Lin’s (1998). It refers to the similarity between the

corresponding generic concepts of the query term and results to show its precision. It is

measured using the following formula:

where is the generic concept in the ontology, is from and is the

randomly selected probability. & are independent concepts, while is the most

specific concepts subsume them. In our experiments, we identified the following:-

1. matched concepts are similar when

2. matched concepts are less similar when

Following the instanced concept Method used earlier, Figure 7.5 illustrates a fragment of

the STO where the concept Method connected with other concepts.

For example Approach and Practice the semantic between these retrieved concepts are

which is equal to 0.69.

Figure 7-5 A Fragment of STO terms

Met

hod

Techni

que
Appro

ach

Pract

ice

Generic Concept with

random probability

(0.083)

Independent

Concept with

random

probability

(0.027)

110

Table 7.1 shows that similar concepts to the requested concept are automatically

extracted. These concepts are semantically represented for the user as discussed in

section 6.4. We observed that the matched concepts are semantically similar to the

requested concept. The results show that our STCMS is capable of semantic

information retrieval.

Table 7-1 Results of semantic similarity

7.2.3 Usability

I. User-based Usability Evaluation

STCMS was built in order to allow Testers to manage individual well-structured test

cases. In order to know if the system is used easily and effectively, we evaluated the

system usability as its correlates directly by the aforementioned reasons. In general the

aim of measuring the usability of STCMS is to evaluate the systems’ core features

specifically the semantic search from the user’s point of view.

The methodology we used to perform the experiment was to observe users in a session

of the system. Users were given a period of time with STCMS and then asked to fill a

questionnaire to express their views on the different features of the system. The

questionnaire used for evaluating was driven from the System Usability Scale (SUS)

(Brooke, 1996) as SUS is one of the most popular questionnaires containing a

standardized collection of questions.

Approach Practice Technique

Method 0.69 0.69 0.69

111

Measurements of usability have several different aspects:

 Effectiveness: Can users successfully achieve their objectives?

 Efficiency: How much effort and resource is expended in achieving those

objectives?

 Satisfaction: Was easy to use the system?

The result of the questionnaire is a value between 1 and 100, where 1 signifies that a

user found a system absolutely useless and 100 that a user found a system optimally

useful.

We chose a total of 30 participants to perform the experiment. All participants were

professional software engineers with variety years of experience who are familiar with

system development process. Therefore, they were able to give us good feedback

regarding the core features. We uploaded the system online during the testing period

and then each participant was asked to navigate and go through each feature of the

system. Finally, the participants were given the SUS questionnaire. The participants

were asked to rate the system with a scale of 1 as strongly disagrees to 5 as strongly

agree based on the following questions:

Q1. I think that I would like to use this system frequently.

Q2. I found the system unnecessarily complex.

Q3. I thought the system was easy to use.

Q4. I think that I would need the support of a technical person to be able to use this

system.

Q5. I found the various functions in this system were well integrated.

Q6. I thought there was too much inconsistency in this system.

112

Q7. I would imagine that most people would learn to use this system very quickly.

Q8. I found the system very cumbersome to use.

Q9. I felt very confident using the system.

Q10. I needed to learn a lot of things before I could get going with this system.

“To calculate the score, first we sum the score contributions from each item. Each

item's score contribution will range from 0 to 4. For the items 1,3,5,7 and 9 the score

contribution is the scale position minus 1. For items 2, 4, 6, 8 and 10 the contribution is

5 minus the scale position. Multiply the sum of the scores by 2.5 to obtain the overall

value of SU. SUS scores have a range of 0 to 100” (Brooke, 1996). The results from

the questionnaire about how useful of the STCMS are shown in figure 7.6. The results

indicate that the participants found that: the use of STCMS is attractive, the system is

easy to use and it provides the participants with related software testing terms and test

cases.

Figure 7-6 Questionnaire Results

72.00
74.00
76.00
78.00
80.00
82.00
84.00
86.00

Questionnaire Score

113

As the score shows, users found STCMS significantly better suited to the required task.

From a range of 0 to 100 , uses gives the STCMS an average score of 79.17 (Appendix

D SUS DATA).The interpretation of the scores describing the acceptability of the

system is according of figure 7-7.this shows that the STCMS is EXCELLENT

Figure 7-7 The Acceptability of SUS Score Adapted from (Bangor, Kortum, & Miller, 2008)

The STCMS retrieval information consists of well-structured test cases items and

software artefact to aid tester in linking test cases to their sources. Our results show that

this composition gained users satisfaction. Hence we conclude that utilizing of the

semantic technology allows us to provide information with particular interest to the

tester.

II. Validity: The validation process is necessary to ensure the trustworthiness of STCMS’

features and results. The classification’s schemas are selected based on tailoring to what

have been usually used in Software Engineering. Table 7.2 illustrates the different

aspects covered in the validation process via a checklist to control the constancy.

114

Table 7-2 Validation Checklist

Validity

Criteria

Checklist Result Feature

Construct Does the system design cover the objectives of

the Case Study?

Internal Do the system outputs reflect the objectives?

External Have the beneficiaries of the system been

identified?

Reliable Has the data collection been standardized?

Functional Do the test cases cover all functions of the

system?

Usable Does it require users to learn any special

programming languages?

Scalable Are there any limitations?

From the above table, the checklist questions had been developed and answered

throughout the research phases. This development is represented in three main points:

a) We identified the objectives that reflect the research purpose, designed the case

study accordingly, and ensured that the outputs present these objectives.

b) We named the concerned groups to circulate the findings and generated a

standard format to collect the data.

c) We prepared the test cases (Appendix B-3 STD) to test each function in the

system, ensured that the interfaces are friendly and that any extra coding or help

is not needed, and acknowledged the functions and storage limitation of the

system.

115

7.2.4 Performance of Semantic Search

The test case search feature is integrating the semantic technology as discussed in

section 4.4. The feature, as shown in the GUI figure 7.8, helps users to hunt for the

required test cases. The text field search converts the query into tokens. The tokens are

then matched semantically with the Software Testing Ontology as shown in section

7.2.1. This helps users to identify more related search terms.

Figure 7-8 Test Case Semantic Search

116

To evaluate the accuracy and completeness of the search result, we used the precision

and recall measurement adopted from (Chinchor & Sundheim, 1993). The precision is

measured by the number of relevant documents from the total documents retrieved,

while the recall is measured by the relevant documents retrieved from the total relevant

documents that exist. The measurement for precision and recall using the following

formula:

Our STO covers four general classifications in software testing filed as described in IV

of section 5.1. In order to test the test cases collected as described in section 6.1.2, we

set four queries description to carry out the evaluation. The four classifications and

queries are listed in table 7.3.

Table 7-3 Queries Vs General Classification

General Classification Queries Description

Tester > Set of queries that extract Test Cases based on tester

details, for instance creator name or group id

Task_Testing > Set of queries that extract Test Cases based on testing tasks,

for instance subject of testing or testing type

Artefact > Set of queries that extract Test Cases based on linked

artefact and testware, for instance source and relation

Environment > Set of queries that extract Test Cases based on the purpose,

objective or input descriptions

117

Tables 7.4 to 7.7 show the precision and recall analysis results of the throughput of

semantic test case search. The search data taken from testing scenarios developed while

in the period of data collection. The first two tables (table 7.4 and table 7.5) show the

Tester and Task scenarios whereas the last two tables (table 7.6 and table 7.7) show the

Artefact and Environment scenario.

I. Tester Query

Table 7-4 Tester Search Terms Evaluation

Search

Term

Relevant

Test Cases

Retrieved

Test Cases

Recall Precision

1 Developers 21 21 100% 100%

2 Faduma 7 7 100% 100%

3 Mansoor 10 10 100% 100%

4 Zak 10 10 100% 100%

In the data collection we identified 4 different recourses as described in section 6.3.2.

Hence, we tested the 4 possible scenarios for testers as shown in the Search Term

column. Table 7.4 results show 100% in both precision and recall for all scenarios.

Tester scenario is considered direct information that is known by the user. We expected

these results as Tester is one of the main elements represented in the RDFS.

118

II. Task_Testing Query

Table 7-5 Task Testing Search Terms Evaluation

Search

Term

Relevant

Test Cases

Retrieved

Test Cases

Recall Precision

1 Functional 38 37 97% 100

2 Black Box 10 10 100% 100%

When filtering the collected test cases, we found them categorized into two types:

Functional Testing and Black Box Testing. Therefore, we tested the two scenarios as

shown in the Search Term column. Table 7.5 results show 100% for precision in both

scenarios, whereas it was 97% to 100% in the recall. Although our expectation was to

have 100% for both recall and precision, after analyzing the results, we observed that

STCMS does not retrieve similar documents. We found that in the collected test cases,

there were two similar test cases collected from different resources.

III. Artefact

Table 7-6 Artefact Search Terms Evaluation

Search

Term

Relevant

Test Cases

Retrieved

Test Cases

Recall Precision

1 iLogger 21 21 100% 100%

2 STCMS 10 10 100% 100%

3 MFIT 10 10 100% 100%

4 FWP 7 7 100% 100%

119

Standard development requires consistence in standard names for all software artefacts.

For instance, the requirements of the iLogger system will start with the iLogger pretext,

so do the designing and testing. STCMS links the Individual Test Case sources element

to other software artefacts. STCMS was prototyped using the four main systems as

described in section 6.3.2 and consequently, the testing considerate to test the four

scenarios as shown in the Search Term columns. Table 7.6 results show 100% in both

precision and recall for all scenarios.

IV. Environment

Table 7-7 Environment Search Terms Evaluation

Search

Term

Relevant

Test Cases

Retrieved

Test Cases

Recall Precision

1 File 13 15 100% 87

2 Home

Page

19 20 100% 95%

3 Mobile 2 2 100% 100%

4 Server 10 12 100% 83%

5 Semantic 1 1 100% 100%

6 Personalize 5 4 80% 100%

7 Add 5 6 100% 83%

The collected test cases were created for different purposes. For the evaluation we

randomly selected search terms that cover all aspects. Table 7.7 shows results between

80% to 100% for precision and recall.

120

7.3 Discussion

7.3.1 STCMS vs. Other Web Test Case Management System:

The main features of STCMS are represented in figure 7.9. For instance:

Comprehensive Test Case Management comprises create, edit, view of the test case;

RDFS representation, which has been discussed in the design sub-heading; Semantic

Web Environment, which applies the Semantic Technology layers; and finally,

Semantic Search, which relies on the STO.

Figure 7-9 STCMS’ main features

121

The comparisons of the innovative services of STCMS with the other Testing

Management System tools are illustrated in Table 7.8. For instance, Search Approach

feature in STCMS is based on the RDFS representation. The benefit of RDFS is to

provide basic vocabulary for describing the hierarchies of test cases metadata and

attributes, and specifying properties and relations among them.

Moreover, the mechanism of STCMS Storing feature is to store the test case annotation

in relational database (MySQL), which increases the retrieval phase using the query

language (SPARQL). Based on the mapping of the query words with the Software

Testing explicit conceptual description (STO), the (Semantic Web) vision of supporting

automate tasks and enabling agents to automatically discover the services to be fulfilled

Table 7-8 STCMS Vs Other Testing Tools

Tools Type Search

Approach

Information

Retrieval

Storing

ApTest

Manager

Web based test

management

Not applicable Not applicable Keyword

Index

Chrysilla

Test

Case

Web-based service Not applicable Not applicable Keyword

Index

TestUP Web based test

management

Keyword

Search

Not applicable Keyword

Index

STCMS Semantic Test

Case

Management

Semantic

Discovery base

on RDFS

Automatic

Based on

Software

Testing

Ontology

Semantic

Index

122

7.3.2 Benefit of using Semantic Technology:

The current web uses a human understandable format to display its content and

services. The vision of the Semantic Web (considered as future web) aims to use a

human and machine understandable format by data integration. In figure 7.10 and

Figure 7.11, we illustrate the differences on how human and machine can access the test

case in STCMS.

Figure 7-10 The Test Case seen by a human

123

Figure 7-11 The Test Case seen by a machine

The goal here (Type is sub class of Method, Creator is instance of Individual, and

MFIT_Login is equivalent value of Test Case) is to show how machine can recognise

the different information of test case and reason their relations. With these results, the

vision of STCMS to automate tasks is achievable.

STO
Artifac

t

Text

Document

Test Case

Tester

Human

Individual

Task Testing

Method

is-a

is-a

is-a

is-a

is-a

is-a

is-a

124

7.4 Summary

In this thesis, we described the benefits of representing individual test case and

integrating conceptually connected testing terms. The results presented here show their

significance by properly storing and utilizing the individual test cases, so they are easily

found during future searches. This makes the testing process and management well-

organized.

The results showed four main aspects: the incorporation of Software Testing Ontology,

automated information extraction, representation of well-structured test cases, and

semantic searches. We evaluated the STO using FaCT++ and Pellet plug-in reasoners

provided by Protégé. This evaluation gave the STO accuracy with its DL-syntax for

reasoning purposes. The automated information extraction evaluation matched

semantic similarities between the retrieved concepts with the query concept, so the

tester obtained the correct terms from all possibilities. We utilized the Login Test Case

to evaluate the representation of Well-Structured Test Cases, through which we

illustrated the benefits of a machine-readable representation. Finally, by using the

precision and recall equation, we proved the efficiency of the semantic search

mechanism. In conclusion, the STCMS is a unique product that stands above the rest.

125

8.0 Conclusion

The invention of a fully automated Software Testing System can be sometime away, yet

our work is a step towards that destination. The challenge, though, is that the testing

process is time-consuming and costly throughout production due to millions of

individual test cases that are underutilized and mismanaged by testers that are

unaccustomed to general asset management. However, in this piece of research-work,

we showed a high expectation emerging from the significant results of integrating

semantic technology with the test case management process to help software engineers

to produce higher-quality software in a time effective manner at a lower cost.

To encapsulate, in this thesis we have discussed four main objectives, as stated below:

 Objective 1: To analyse and derive individual Well-Structured Test Case

using RDFS

 Objective 2: To formalize terms for Software Testing Ontology and use the

Ontology Web Language to represent it in such a way that it can easily be used

by other automated tools, software agents and knowledge management

 Objective 3: To apply the Well-Structured Test Case representation, integrated

with the Software Testing Ontology, to a semantic information retrieval

mechanism to act as a knowledge base system for retrieving and managing

knowledge in the domain of Software Testing

 Objective 4: To evaluate the approach in a Semantic Management

Application; under the name Semantic Test Case Management System

126

To achieve our goal, we came out with questions that have been answered in the

previous chapters. In Table 8.1, we illustrate where in this thesis these questions have

been clarified and answered.

Table 8-1 Sections map showing where in thesis research questions answered

Objective Questions Chapters Sections

Objective 1 Q1. What do we understand about the

weaknesses of the current testing

– automation and management?

2/4 2.3-4.1

Objective 1 Q2. What is the value of individual

test cases? Is there any need for a

test case to be well-structured

and represented individually?

and what type of metadata and

attributes need to be considered?

2/4/6 2.2-4.2-

6.2

Objective 2 Q3. How to formulate well-known

standard software testing terms

in ontology to minimize the

confusion that occurs among

software testing practitioners?

3/4/5 3.2-4.3-

5.1-5.2

Objective 3 Q4. How can we use the semantic

technology for individual test

case management to minimize

the painstaking effort and time

spent on auditing all test

artefacts?

3/4/6 3.1-4.4-

6.4

Objective 4 Q5. How to evaluate the TCMS

efficiency and the reasoning of

the formulated terms?

7 7.1-7.2-

7.3-7.4

127

Through answering these questions, we have come to certain conclusions and findings.

From which, we proposed an effective contribution in the testing process by integrating

semantic technology. The findings and contributions are discussed in the following

sections.

8.1 Findings

Researchers around the globe are currently discussing automating the software testing

process and the challenges of successfully producing such a system. From our

investigation, we found a management problem, which if solved would definitely help

in automating the testing process. We obtained the following findings, which reveal the

weaknesses and potential solutions to managing and automating the current testing

process:

I. Individual Test Cases: Research reveals that the power of individual test cases,

although playing a very crucial role in the test process, has been virtually ignored due to

several factors.

o A lack of quality management overseeing the usage of individual cases.

o Individual test cases are not being reused efficiently due to poor organization

and no link between the test cases and other test-ware and artefacts.

Our solution is to present these test cases in a well-structured semantic technology

management, which we call STCMS. Test cases represented in our STCMS linked

the individual test cases with other test-ware and artefacts, creating a real-time

automated format for information retrieval. This linkage helps in making the

128

decisions on which test cases can be reused in various environments and cases

based on the available information.

II. Software Testing Concepts and Terms: Software-testing practitioners often interpret

similar terms in different ways causing misunderstandings and confusion, which has

resulted in delays within the testing process as repeatedly demonstrated. This

misunderstanding and confusion affects the management of the testing process because

each party (i.e. testers, managers, share holders) identifies a different component by the

term used instead of referring to the same concept, as it does. So, we propose that the

solution lies in ontologies. These are artefacts in knowledge-based systems, which

define concepts and terms, streamlining them into a single meaning. When the

misunderstandings and confusion are eliminated, the specific relation and meaning of

the domain structure are exposed, and the process is then simplified so it can be well

managed.

III. Test Case Management & Search: On a daily basis, testers always create vast

amount of test cases to test any software product. Current TCMS are using a rational

database, which stores isolated test cases. In order to utilize these stored individual test

cases, we are led to search through this un-semantic database using the normal

“keyword search” approach. This is an ineffective method to find all of the applicable

test cases available. When we implemented our Semantic Test Case Management

System (STCMS), we attached individual test cases with other testing artefacts

semantically. We found the semantic search to be a useful search to link reusable

common-share knowledge among test cases and testing practitioners. Not only does this

create reusability of test cases, but also aiding the practitioners with additional concepts

129

related to their search term may expound their searching functionality beyond their

initial search.

8.2 Contribution

We focused our contribution to advance the testing committee knowledge on the

following points:

I. Automated Information Extraction: Integrating semantic technology in a TCMS

contributes to automated support for retrieving, storing and tracing any individual test

cases stored in the system.

II. Representing well-structured Individual Test Cases: A Well-Structured Test Case in

RDFS form input into our STCMS reflects how test cases stored in semantic format can

be easily retrieved for reuse in a future test case. The representative illustrates the

power of the individual test cases that are “tagged” for knowledge-based semantic

searches in order for repeated recognition.

III. Software Test Ontology: Supporting the testing process with the Software Testing

Ontology captures the logical relationship between standard software testing terms.

These streamlined definitions in knowledge-based systems provide various terms with a

structured meaning for the testing process.

130

IV. Semantic Search: This approach changes the search capability in the testing domain

knowledge. By providing the testers and practitioners with a variety of information

related to their search, we make the search experience more beneficial.

8.3 Future Work

Our desire for this research topic is limitless, and this thesis is just the beginning.

Possible extensions that we are looking at in the current work can be summarized in the

following questions:

1. How to represent other test artefact, in particular Use Case using the

Semantic Technology?

2. How to match between the represented test case and represented Use Case

for reasoning and test cases auto extraction?

3. What is the benefit of having Semantic Agent as a main component for the

Semantic Software Testing System?

Finally in this chapter, we have shown how the objectives of this thesis have been

achieved and where the research questions have been answered. Moreover, we

managed to summarise the findings from answering the derived questions, the

contributions made from our proposed solutions and glance of ideas for future research

work.

131

References

Ammann, P., & Offutt, J. (2008). Introduction to software testing: Cambridge Univ Pr.

Antoniou, G., & Harmelen, F. v. (2008). A Semantic Web Primer: The MIT Press.

Antoniou, G., & Harmelen, F. v. (2009). Web Ontology Language: OWL. In S. Staab & R.

Studer (Eds.), Handbook on Ontologies (pp. 91-110): Springer Berlin Heidelberg.

Arpírez, J., Corcho, O., Fernández-López, M., & Gómez-Pérez, A. (2003). WebODE in a

nutshell. Ai Magazine, 24(3), 37.

Bai, X., Lee, S., Tsai, W. T., & Chen, Y. (2008). Ontology-based test modeling and

partition testing of web services. Paper presented at the IEEE International

Conference on Web Services, 2008. ICWS'08. , Beijing.

Bangor, A., Kortum, P. T., & Miller, J. T. (2008). An Empirical Evaluation of the System

Usability Scale. International Journal of Human-Computer Interaction, 24(6), 574-

594. doi: 10.1080/10447310802205776

Barbosa, E. F., Nakagawa, E. Y., & Maldonado, J. C. (2006). Towards the establishment of

an ontology of software testing. Paper presented at the 18th International

Conference on Software Engineering and Knowledge Engineering (SEKE 2006).

Bechhofer, S., Horrocks, I., Goble, C., & Stevens, R. (2001). OilEd: a reason-able ontology

editor for the semantic web. KI 2001: Advances in Artificial Intelligence, 396-408.

Beizer, B. (2002). Software testing techniques: Dreamtech Press.

Berners-Lee, T. (January 6, 1997). Axioms of Web Architecture: Metadata Retrieved

15/12, 2010, from http://www.w3.org/DesignIssues/Metadata.html

Bertolino, A. (2007). Software Testing Research: Achievements, Challenges, Dreams.

132

Brachman, R. J., & Levesque, H. J. (2004). Knowledge representation and reasoning:

Morgan Kaufmann Pub.

Breitman, K. K., Casanova, M. A., & Truszkowski, W. (2007). Semantic Web: concepts,

technologies and applications: Springer Verlag.

Brooke, J. (1996). SUS-A quick and dirty usability scale. Usability evaluation in industry,

189, 194.

Chinchor, N., & Sundheim, B. (1993). MUC-5 evaluation metrics. Paper presented at the

Proceedings of the 5th conference on Message understanding, Baltimore, Maryland.

Chunyue, L. (2011). Test Automation Method for Software Programs (Vol. US

7930683B2). United States: SAP AG, Walldorf (DE).

Core, D. (1995). Dublin Core Metadata Element Set, Version 1.1. from

http://dublincore.org/documents/dces/

Damm, L.-O., Lundberg, L., & Olsson, D. (2005). Introducing Test Automation and Test-

Driven Development: An Experience Report. Electronic Notes in Theoretical

Computer Science, 116(0), 3-15. doi: 10.1016/j.entcs.2004.02.090

Dengel, A. (2007). Knowledge Technologies for the Social Semantic Desktop. In Z. Zhang

& J. Siekmann (Eds.), Knowledge Science, Engineering and Management (Vol.

4798, pp. 2-9): Springer Berlin / Heidelberg.

Desai, H. D. (1994). Test Case Management System (TCMS). Paper presented at the Global

Telecommunications Conference, 1994. GLOBECOM '94. Communications: The

Global Bridge., IEEE.

Domingue, J. (1998). Tadzebao and WebOnto: Discussing, browsing, and editing

ontologies on the web.

133

Farquhar, A., Fikes, R., & Rice, J. (1997). The ontolingua server: A tool for collaborative

ontology construction. International Journal of Human-Computers Studies, 46(6),

707-727.

Fraser, G., & Zeller, A. (2011). Exploiting common object usage in test case generation.

Paper presented at the IEEE Fourth International Conference on Software Testing,

Verification and Validation (ICST) Berlin, Germany.

Fu, R.-x., Yue, X., Song, M., & Xin, Z.-h. (2008). An architecture of knowledge

management system based on agent and ontology. The Journal of China

Universities of Posts and Telecommunications, 15(4), 126-130.

García-Sánchez, F., Valencia-García, R., Martínez-Béjar, R., & Fernández-Breis, J. T.

(2009). An ontology, intelligent agent-based framework for the provision of

semantic web services. Expert Systems with Applications, 36(2, Part 2), 3167-3187.

doi: DOI: 10.1016/j.eswa.2008.01.037

Gómez-Pérez, A., Fernández-López, M., & Corcho, O. (2004). Ontological Engineering:

with examples from the areas of Knowledge Management, e-Commerce and the

Semantic Web: Springer Verlag.

Grobe, M. (2009). RDF, Jena, SparQL and the 'Semantic Web'. Paper presented at the

Proceedings of the 37th annual ACM SIGUCCS fall conference, St. Louis,

Missouri, USA.

Gruber, T. R. (1993). A translation approach to portable ontology specifications. Knowl.

Acquis., 5(2), 199-220. doi: 10.1006/knac.1993.1008

Gupta, P., Malik, S. K., Prakash, N., Rizvi, S. A. M., & Arora, M. (2004). RDF: AN

ANALYSIS. Science (Vol. I), 34513, 0034515.

134

Gupta, P., & Surve, P. (2011). Model based approach to assist test case creation,

execution, and maintenance for test automation. Paper presented at the Proceedings

of the First International Workshop on End-to-End Test Script Engineering.

Hall, W., & O'Hara, K. (2009). Semantic Web. Robert A. Meyers (ed.), Encyclopedia of

Complexity and Systems Science.

Han, L., Feng, C., Hongji, Y., He, G., Chu, W. C. C., & Yuansheng, Y. (2009, 20-24 July

2009). An Ontology-Based Approach for GUI Testing. Paper presented at the 33rd

Annual IEEE International Computer Software and Applications Conference

(COMPSAC '09), Seattle, Washington, USA.

Happel, H. J., & Seedorf, S. (2006). Applications of ontologies in software engineering.

Paper presented at the Proc. of Workshop on Sematic Web Enabled Software

Engineering"(SWESE) on the ISWC.

Hayes, L. (2000). Establishing a Test Automation Function. Journal of Software Testing

Professionals.

Heiser, J. E. (1997). An Overview of Software Testing. Paper presented at the IEEE

Autotestcon Proceedings (AUTOTESTCON, 97).

Heiskanen, H., Maunumaa, M., & Katara, M. (2012). A Test Process Improvement Model

for Automated Test Generation. Product-Focused Software Process Improvement,

17-31.

Hendler, J. (2001). Agents and the semantic web. IEEE Intelligent Systems, 16(2), 30-37.

Hendler, J. (2010). Web 3.0: The Dawn of Semantic Search. Computer, 43(1), 77-80.

Hong, Z. (2006, 17-21 Sept. 2006). A Framework for Service-Oriented Testing of Web

Services. Paper presented at the COMPSAC '06. 30th Annual International

Computer Software and Applications Conference, 2006. , Chicago, USA.

135

Horrocks, I. (2002). DAML+ OIL: a description logic for the semantic web. Bulletin of the

Technical Committee on, 51(4).

Husain, M., McGlothlin, J., Masud, M. M., Khan, L., & Thuraisingham, B. M. (2011).

Heuristics-Based Query Processing for Large RDF Graphs Using Cloud

Computing. Knowledge and Data Engineering, IEEE Transactions on, 23(9), 1312-

1327.

IFLA. (October 24, 2005). Digital Libraries: Metadata Resources. Retrieved 15/12, 2010,

from http://archive.ifla.org/II/metadata.htm

ISTQB. (2002). International Software Testing Qualifications Board. Retrieved Feburary

03, 2011, from http://istqb.org/display/ISTQB/Home

John Davies, Rudi Studer, & Warren, P. (2006). Semantic Web Technologies, trends and

research in ontology-based systems: Wiley.

Jorgensen, P. C. (2008). Software testing: a craftsman's approach: Auerbach Publications.

Juan, Z., Lizhi, C., Weiqing, T., Zhenyu, L., & Ying, L. (2009). A Dynamic Metrics

Method for Test Case Reuse Based on Bayesian Network. Paper presented at the

CiSE 2009. International Conference on Computational Intelligence and Software

Engineering, 2009. , Wuhan, China.

Kamde, P. M., Nandavadekar, V. D., & Pawar, R. G. (2006, 21-23 June 2006). Value of

Test Cases in Software Testing. Paper presented at the IEEE International

Conference on Management of Innovation and Technology, Singapore.

Kaner, C. (2003). What is a good test case. Relation, 10(1.100), 5569.

Kang, S. H., & Lau, S. K. (2007). Ontology Revision on the Semantic Web: Integration of

belief revision theory. Paper presented at the 40th Annual Hawaii International

Conference on System Sciences (HICSS), Hawaii.

136

Karp, P., Chaudhri, V., & Thomere, J. (1999). XOL: An XML-based ontology exchange

language. Version 0.3, July, 3.

Kekkonen, T., Kanstrén, T., & Heikkinen, J. (2012). Experiences in Test Automation for

Multi-Client System with Social Media Backend. Paper presented at the VALID

2012, The Fourth International Conference on Advances in System Testing and

Validation Lifecycle.

Lack of Test Case Management Threatens Software Quality. (26 June 2008). Business

Wire.

Li, B. M., Xie, S. Q., & Xu, X. (2011). Recent development of knowledge-based systems,

methods and tools for One-of-a-Kind Production. Knowledge-Based Systems, 24(7),

1108-1119. doi: DOI 10.1016/j.knosys.2011.05.005

Lin, D. (1998). An information-theoretic definition of similarity.

Louridas, P. (2011). Test Management. Software, IEEE, 28(5), 86-91.

Luke S, H. J. (2000). SHOE 1.01. Proposed Specification. Technical Report. Retrieved

14th November, 2010, from http://www.cs.umd.edu/projects/plus/SHOE/

Mahadevan, G. (2012). Semantic Information and Web based Product Recommendation

System–A Novel Approach. International Journal of Computer Applications, 55(9),

10-14.

Majchrzak, T. A. (2010). Best practices for technical aspects of software testing in

enterprises. Paper presented at the International Conference on Information Society

(i-Society), London, United Kingdom.

Mary Jean, H. (2000). Testing: a roadmap. Paper presented at the Proceedings of the

Conference on The Future of Software Engineering, Limerick, Ireland.

McGuinness, D., & Van Harmelen, F. (2004). OWL web ontology language overview.

W3C recommendation, 10, 2004-2003.

137

Miller, K., & Voas, J. (2006). Software test cases: is one ever enough? IT Professional,

8(1), 44-48.

Mordechai, B.-M. (2008). Towards management of software as assets: A literature review

with additional sources. Information and Software Technology, 50(4), 241-258. doi:

10.1016/j.infsof.2007.08.001

Myers, G. J. (2004). The art of software testing (2nd ed.): Wiley.

Nakagawa, E. Y., Simao, A., Ferrari, F., & Maldonado, J. C. (2007). Towards a reference

architecture for software testing tools. Paper presented at the SEKE.

Natasha, F. N., & Deborah, M. (2001). Ontology Development 101: A Guide to Creating

Your First Ontology (K. S. Laboratory, Trans.): Stanford University.

Noy, N., Fergerson, R., & Musen, M. (2000). The Knowledge Model of Protégé-2000:

Combining Interoperability and Flexibility. In R. Dieng & O. Corby (Eds.),

Knowledge Engineering and Knowledge Management Methods, Models, and Tools

(Vol. 1937, pp. 69-82): Springer Berlin / Heidelberg.

Osman, T., Thakker, D., Schaefer, G., Leroy, M., & Fournier, A. (2007). Semantic

Annotation and Retrieval of Image Collections. Paper presented at the Proceedings

21st European Conference on Modelling and Simulation.

Patton, R. (2001). Software testing: Sams.

Perez, A., Angele, J., Lopez, M., Christophides, V., Stutt, A., & Sure, Y. (2002). A survey

on ontology tools. Citeseer, .

Puri, A. (2012). Automation Framework of Browser Based Testing Tool Watir.

International Journal of Computers & Distributed System (IJCDS), 1(3), 113-117.

Rafi, D. M., Moses, K. R. K., Petersen, K., & Mantyla, M. (2012). Benefits and limitations

of automated software testing: Systematic literature review and practitioner survey.

138

Paper presented at the 7th International Workshop on Automation of Software Test

(AST), Zurich, Switzerland.

Rathod, M. D., Prajapati, M. R., & Singh, M. A. (2012). Applying Semantic Web Mining

Technologies In Personalized E-Learning. International Journal of Engineering,

1(3).

Rex, B. (2002). Managing the Testing Process: Practical Tools and Techniques for

Managing Hardware and Software Testing (2nd ed.): Robert Ipsen.

Runeson, P., & Höst, M. (2009). Guidelines for conducting and reporting case study

research in software engineering. Empirical Software Engineering, 14(2), 131-164.

doi: 10.1007/s10664-008-9102-8

Serhatli, M., & Alpaslan, F. N. (2009). An ontology based question answering system on

software test document domain. World Academy of Science.

Shadbolt, N., Hall, W., & Berners-Lee, T. (2006). The semantic web revisited. IEEE

Intelligent Systems, 21(3), 96-101.

Simperl, E., Mochol, M., & Bürger, T. (2010). Achieving maturity: The state of practice in

ontology engineering in 2009. International Journal of Computer Science and

Applications, 7(1), 45-65.

Sirin, E., Parsia, B., Grau, B. C., Kalyanpur, A., & Katz, Y. (2007). Pellet: A practical owl-

dl reasoner. Web Semantics: science, services and agents on the World Wide Web,

5(2), 51-53.

Strobbe, C., Herramhof, S., Vlachogiannis, E., & Velasco, C. (2006). Test Case Description

Language (TCDL): Test Case Metadata for Conformance Evaluation. In K.

Miesenberger, J. Klaus, W. Zagler & A. Karshmer (Eds.), Computers Helping

People with Special Needs (Vol. 4061, pp. 164-171): Springer Berlin / Heidelberg.

139

Strobbe, C., & Velasco, C. (2005). Test Suites' State of the Art and Quality Assurance

Methods for W3C Recommendations (pp. 45). BenToWeb.

Su, X., & Ilebrekke, L. (2006). A Comparative Study of Ontology Languages and Tools. In

A. Pidduck, M. Ozsu, J. Mylopoulos & C. Woo (Eds.), Advanced Information

Systems Engineering (Vol. 2348, pp. 761-765): Springer Berlin / Heidelberg.

Sure, Y., Erdmann, M., Angele, J., Staab, S., Studer, R., & Wenke, D. (2002). OntoEdit:

Collaborative ontology development for the semantic web. The Semantic Web—

ISWC 2002, 221-235.

Tauhida, P., Scott, T., & George, G. (2007). A case study in test management. Paper

presented at the Proceedings of the 45th annual southeast regional conference,

Winston-Salem, North Carolina.

Terminology, I. S. G. o. S. E. (1990). IEEE Std 610.12-1990, 1.

Tim, B.-L., James, H., & Ora, L. (2001). The Semantic Web. Scientific American

Magazine.

Tonta, Y. (2011). Analysis of Search Failures in Document Retrieval Systems: A Review.

Public Access-Computer Systems Review, 3(1).

Veenendaal, E. (2010). Standard glossary of terms used in Software Testing, Version 2.1.

International Software Testing Qualification Board.

W3C. Test Metadata. Test Metadata. 2011, from http://www.w3.org/TR/2005/NOTE-test-

metadata-20050914/

Weibel, S., Kunze, J., Lagoze, C., & Wolf, M. (1998). Dublin core metadata for resource

discovery. Internet Engineering Task Force RFC, 2413.

Whittaker, J. A. (2000). What is software testing? And why is it so hard? IEEE software,

17(1), 70-79.

140

Wiklund, K., Eldh, S., Sundmark, D., & Lundqvist, K. (2012). Technical Debt in Test

Automation. Paper presented at the IEEE Fifth International Conference on

Software Testing, Verification and Validation (ICST), Montréal.

Woodward, M. R., & Hennell, M. A. (2004). Strategic benefits of software test

management: a case study. Journal of Engineering and Technology Management,

22(1-2), 113-140. doi: 10.1016/j.jengtecman.2004.11.006

Yahaya, N. (2008). Using Semantic Web Languages in Representing Test Cases. Paper

presented at the Information Technology and Multimedia, UNITEN, Malaysia.

Yıldırım, H., Chaoji, V., & Zaki, M. J. (2012). GRAIL: a scalable index for reachability

queries in very large graphs. The VLDB Journal, 21(4), 509-534.

Yuan, G. (2011). Study of Implementation of Software Test Management System based on

Web. Paper presented at the IEEE 3rd International Conference on Communication

Software and Networks (ICCSN), Beijing.

Zhao, P., Di, L., Yu, G., Yue, P., Wei, Y., & Yang, W. (2009). Semantic Web-based

geospatial knowledge transformation. Computers & Geosciences, 35(4), 798-808.

doi: DOI: 10.1016/j.cageo.2008.03.013

Appendices

141

Appendixes

 Appendix A: Ontology Vocabulary

142

Appendix A: Ontology Vocabulary

 Appendix A-1: STO Terms Classification

143

Terms Definition Terms Definition

Tester

The individual,

Team or software

conduct the test

Human Living thing

Software_Tool Code of Application

Context

The circumstance

to perform the

testing task

Scope

Testing activities

occurs in various

development stages

Purpose

Testing activities

occurs for various

purposes

Activity

The primary,

organizational or

supporting

activities of

testing task

Intrinsic
Activities occurs

within the system

Extrinsic
Activities occurs

without the system

Method

The way of

performing the

testing task

Approach
Approaches to

perform testing task

Practice
Practices to perform

testing task

Technique
Techniques to

perform testing task

Artefact

Anything Tester-

made such as

(text, image, or

standard) related

to the testing task

Text String of character

Images Picture or chart

Standard
Approved

documents or guide

Environment

The aggregate

surrounding such

as (Software,

Hardware,

Features) of

Testing

Features

distinguishing

characteristic of

software and

software testing

Hardware

Device integrated

with Software

Application

Software
Program

Application

 Appendix A-1: STO Terms Classification

144

Tester

Human Software_ Tool

Assessor Analyzer

Automated_ Testware

 Bug_ Tracking_ Tool

Balanced_ Scorecard

Change_ Control_ Board

Checker

Configuration_ Control_ Board

(Ccb)

Capture-Playback_ Tool

Capture-Replay_ Tool

Code_ Analyzer

Comparator

Configuration_ Management_ Tool

Coverage_ Measurement_ Tool

Coverage_ Tool

 Debugger

Debugging_ Tool

Defect_ Management_ Tool

Defect_ Tracking_ Tool

Driver

Dynamic_ Analysis_ Tool

 Error_ Seeding_ Tool

 Fault_ Seeding_ Tool

 Hyperlink_ Test_ Tool

Inspection_ Leader

Inspector

Incident_ Management_ Tool

Instrumenter

Lead_ Assessor Load_ Testing_ Tool

Moderator Modelling_ Tool

Monitor

Monitoring_ Tool

Pair_ Testing Performance_ Testing_ Tool

Program_ Instrumenter

Recorder

Reviewer

Record-Playback_ Tool

Requirements_ Management_ Tool

Review_ Tool

Scribe Security_ Testing_ Tool

Security_ Tool

Static_ Analysis _Tool

Static_ Analyzer

Static_ Code_ Analyzer

Stress_ Testing_ Tool

Test_ Leader

Test_ Manager

Test_ Process_ Group

Test_ Process_ Improver

Test_ Comparator

Test_ Data_ Preparation_ Tool

Test_ Design_ Tool

Test_ Driver

 Appendix A-1: STO Terms Classification

145

Test_ Execution_ Tool

Test_ Generator

Test_ Management_ Tool

Test_ Tool

 Unit_ Test_ Framework

 Appendix A-1: STO Terms Classification

146

Environment

Features Hardware Software

Accuracy

Adaptability

Analyzability

Anomaly

Attractiveness

Availability

Behavior

Bug

Buffer_ Overflow

 Bespoke_ Software

Buffer

Changeability

Co-Existence

Compliance

Complexity

 Commercial_ Off-The-

Shelf_ Software

Compiler

Component

Cots

Custom_ Software

Defect

Deviation

Efficiency

Error

Error_ Tolerance

Executable

Exercised

Emulator

Fail

Failure

Fault_ Tolerance

Functionality

Incident

Installability

Interoperability

 Installation_ Wizard

Learnability

Maintainability

Maturity

Memory_ Leak

Milestone

Mistake

 Module

Non-Conformity

Operability Operational_

Environment

Off-The-Shelf_ Software

Operational_

Environment

Oracle

Pass

Performance

Portability

 Appendix A-1: STO Terms Classification

147

Priority

Probe_ Effect

Problem

Product_ Risk

Project_ Risk

Quality

Recoverability

Reliability

Replaceability

Robustness

 Resource_ Utilization

Safety

Scalability

Software_ Test_ Incident

Stability

State_ Transition

Suitability

Simulator

Storage

Stub

Safety_ Critical_ System

Scripting_ Language

Standard_ Software

System

System_ Of_ Systems

Test_ Execution_ Phase

Test_ Fail

Test_ Incident

Test_ Pass

Testability

Test_ Session

Time_ Behavior

Traceability

Test_ Harness

Test_ Bed

Test_ Environment

Test_ Rig

Understandability

Usability

 Appendix A-1: STO Terms Classification

148

Artefact

Text

Code Document Data Measurement

 Abstract_ Test_

Case

 Actual_ Outcome

Actual_ Result

Agile_ Manifesto

Audit_ Trail

Basic_ Block

Branch

Branch_ Condition

Basis_ Test_ Set

Blocked_ Test_

Case

Boundary_ Value_

Coverage

Branch_

Condition_

Combination_

Coverage

Branch_

Condition_

Coverage

Branch_ Coverage

Boundary_ Value

Compound_

Condition

Cause-effect_

Decision_ Table

Charter

Concrete_ Test_

Case

CASE

CAST

Chow's_

Coverage_ Metrics

Condition_

Combination_

Coverage

Condition_

Coverage

Condition_

Determination_

Coverage

Cost_ Of_ Quality

Critical_ Success_

Factor

Classification_

Tree

Component_

Specification

Configuration

Control_ Flow

Control_ Flow_

Path

Corporate_

Dashboard

Coverage_ Item

Dead_ Code

Decision_ Table

Deliverable

Data_ Flow_

Coverage

Decision_

Condition_

Coverage

Decision_

Coverage

Defect_ Density

Defect_ Detection_

Percentage (DDP)

Domain

Data_ Definition

Decision_

Outcome

Definition-use_

Pair

Entry_ Point

Equivalence_ Class

Equivalence_

Partition

 Equivalence_

Partition_

Coverage

Exit_ Point

Expected_

Outcome

Expected_ Result

 Appendix A-1: STO Terms Classification

149

 Fault_ Density

Fault_ Detection_

Percentage (FDP)

False-fail_ Result

False-pass_ Result

False-positive_

Result

False-negative_

Result

Feasible_ Path

Hyperlink High_ Level_

Test_ Case

 Installation_ Guide

Input_ Domain Indicator

Infeasible_ Path

Input

Input_ Value

LCSAJ

Load_ Profile

Logical_ Test_

Case

Low_ Level_ Test_

Case

LCSAJ_ Coverage

Multiple_

Condition

 Multiple_

Condition_

Coverage

Modified_

Condition_

Decision_

Coverage

Modified_

Multiple_

Condition_

Coverage

Maturity_ Level

Mean_ Time_

Between_ Failures

Mean_ Time_ To_

Repair

 N-switch_

Coverage

Orthogonal_ Array

Operational_

Profile

Output_ Domain Outcome

Output

Output_ Value

 Performance_

Profiling

Path_ Coverage

Path

Postcondition

Precondition

Predicted_

Outcome

Pseudo-random

 Reliability_

Growth_ Model

Risk_ Category

Risk_ Type

Result

Source_ Statement State_ Table Statement_ Specified_ Input

 Appendix A-1: STO Terms Classification

150

Statement

Subpath

 Coverage

Structural_

Coverage

Test_ Item

Test_ Object

Test_ Case_ Suite

Test_ Charter

Test_ Deliverable

Test_ Estimation

Test_ Evaluation_

Report

Test_ Execution_

Schedule

Test_ Objective

Test_ Policy

Test_ Progress_

Report

Test_ Schedule

Test_ Script

Test_ Set

Test_ Specification

Test_ Strategy

Test_ Suite

Test_ Target

Test_ Process_

Improvement_

Manifesto

Test_

Performance_

Indicator

Test_ Condition

Test_ Data

Test_ Input

Test_ Outcome

Test_ Requirement

Test_ Result

Test_ Situation

Unreachable_ Code

Use_ Case

 Abstract_ Test_

Case

Blocked_ Test_

Case

Concrete_ Test_

Case

High_ Level_

Test_ Case

Logical_ Test_

Case

Low_ Level_ Test_

Case

Test_ Case_ Suite

 Variable

 Wild_ Pointer

 Appendix A-1: STO Terms Classification

151

Artefact

Standard

Guide Criteria Report Plan Term

Agile_

Software_

Development

Acceptance_

Criteria

Assessment_

Report

 Bug_ Report

 Baseline

Benchmark

_Test

Best_

Practice

Capability_

Maturity_

Model

(CMM)

Capability_

Maturity_

Model_

Integration

(CMMI)

Content-

based_ Model

Cyclomatic_

Complexity

Cyclomatic_

Number

Completion_

Criteria

 Certification

Code

Configuration

_ Item

Continuous_

Representatio

n

Deming_

Cycle

 Data_ Flow

Dashboard

European_

Foundation_

for_ Quality_

Management

Entry_

Criteria

Exit_ Criteria

 Emotional_

Intelligence

 Failure_

Mode

Failure_ Rate

Frozen_

Test_ Basis

Functional_

Requirement

IDEAL

Acting

Diagnosin

g

Establishi

ng

Initiating

 Incident_

Report

Item_

Transmittal_

Report

 Appendix A-1: STO Terms Classification

152

Learning

 Key_

Performance_

Indicator

 Level_ Test_

Plan

Lifecycle_

Model

 Master_

Test_ Plan

Maturity_

Model

Measure

Measurement

_ Scale

Metric

Manufacturin

g-

based_Qualit

y

 Non-

functional_

Requirement

Process_

Model

Pass-Fail_

Criteria

 Phase_ Test_

Plan

Project_

Test_ Plan

Pareto_

Analysis

Performance_

Indicator

Pointer

Process

Process_

Assessment

Process_

Improvement

Product-

based_

Quality

Project

Project_

Retrospective

 Qualification

Quality

Quality_

Attribute

Quality_

Characteristic

Quality_ Gate

Rational_

Unified_

Process

Root_ Cause

 Requirement

Requirements

_ Phase

Release_

Note

 Appendix A-1: STO Terms Classification

153

SCRUM

Software_

Process_

Improvement

Staged_

Representatio

n

Suspension_

Criteria

Software_

Test_

Incident_

Report

 Scorecard

Software_

Life_ Cycle

Software_

Product_

Characteristic

Software_

Quality_

Characteristic

Status_

Accounting

Specification

Test_ Basis

Test_ Case

Test_ Case_

Specification

Test_

Design_

Specification

Test_

Maturity_

Model

(TMM)

Test_

Maturity_

Model_

Integrated

(TMMi)

Test_

Completion_

Criteria

Test_

Incident_

Report

Test_

Improvement

_ Plan

Test_ Item_

Transmittal_

Report

Test_ Report

Test_

Summary_

Report

Test_ Plan Test

Test_

Automation

Test_ Cycle

Test_ Level

Test_ Log

Test_ Oracle

Test_

Procedure

Test_

Procedure_

Specification

Test_ Record

Test_ Run_

Log

Test_

Scenario

Test_ Type

Testability_

Review

Testware

Transcendent-

based_

Quality

Total_

Quality_

Management

Transactional

_ Analysis

Work_

Breakdown_

Structure

 User-based_

Quality

V-model

 Appendix A-1: STO Terms Classification

154

 Appendix A-1: STO Terms Classification

155

Artefact

Image

Call_ Graph

Cause-effect_ Diagram

Cause-effect_ Graph

Control_ Flow_ Graph

Fishbone_ Diagram

State_ Diagram

Ishikaw_ Diagram

Mind-Map

 Appendix A-1: STO Terms Classification

156

Context.

Purpose Scope

Acceptance

Acceptance_ Testing

Accuracy_ Testing

Alpha_ Testing

Agile Testing

Ad Hoc Testing

Beta _Testing

Black-Box _Testing

Big-Bang _Testing

Code-Based _Testing

Compatibility _Testing

Compliance _Testing

Concurrency _Testing

Conformance _Testing

Clear-Box_ Testing

Component _Testing

Development _Testing

Efficiency _Testing

Functional _Testing

Functionality _Testing

Glass-Box _Testing

Interoperability _Testing

Installability _Testing

Integration _Testing

Integration Testing In The Large

Integration Testing In The Small

Interface _Testing

Logic-Coverage _Testing

Logic-Driven _Testing

 Module _Testing

 Non-Functional _Testing

 Operational Acceptance _Testing

Operational Profile _Testing

Operational _Testing

Performance _Testing

Portability _Testing

Procedure _Testing

Production Acceptance _Testing

Program _Testing

Recoverability _Testing

Recovery _Testing

Regression _Testing

Regulation _Testing

Reliability _Testing

Resource Utilization _Testing

Robustness _Testing

Safety _Testing

Security _Testing

Serviceability _Testing

Site_ Acceptance _Testing

Static _Testing

System Integration _Testing

System _Testing

 Appendix A-1: STO Terms Classification

157

Specification-Based _Testing

Standards _Testing

Storage _Testing

Structurebased _Testing

Structural _Testing

User Acceptance _Testing Unit _Testing

 Volume _Testing

White-Box _Testing

 Appendix A-1: STO Terms Classification

158

Activity

Intrinsic

Trace Function Attack

 Bebugging

Causal_ Analysis

Control _Flow

_Analysis

Critical_ Testing_

Processes

Data _Flow _Analysis

Defect _Management

Dynamic _Analysis

Daily _Build

Debugging

Defect _Masking

Desk _Checking

Dynamic _Comparison

 Error _Seeding

 Fault _Attack

Fault _Masking

Fault _Seeding

 Maintenance

 Resumption _Criteria

Static _Code _Analysis Software _Attack

 Test_ Design

Test_ Driven_

Development

Test_ Execution

Test_ Execution_

Automation

Test_ Implementation

Test_ Run

Vertical_ Traceability Validation

Verification

 Appendix A-1: STO Terms Classification

159

Activity

Extrinsic

Analysis Control Manage

ment

Report Review Procedu

re

 Ad-hoc_

Review

Audit

Analyze

 Change_

Control

Configur

ation_

Control

Change_

Managem

ent

Configura

tion_

Identificat

ion

Configura

tion_

Managem

ent

 Configur

ation_

Auditing

 Defect_

Report

Deviatio

n_

Report

 Formal_

Review

Hazard_

Analysis

 Horizont

al_

Traceabi

lity

Impact_

Analysis

 Incident_

Managem

ent

 Informal

_

Review

Inspecti

on

Incident

_

Logging

Indepen

dence_

of_

Testing

 Manage

ment_

Review

 Appendix A-1: STO Terms Classification

160

 Problem_

Managem

ent

Problem

_ Report

Peer_

Review

Post-

executio

n_

Compari

son

Post-

project_

Meeting

 Quality_

Assuranc

e

Quality_

Managem

ent

Risk_

Analysis

Risk_

Control

Risk_

Mitigati

on

Risk_

Identificat

ion

Risk_

Managem

ent

 Retrospe

ctive_

Meeting

Static_

Analysis

 Structur

ed_

Walkthr

ough

 Test_

Control

Test_

Monitori

ng

Test_

Managem

ent

Test_

Planning

 Technic

al_

Review

Test_

Closure

Test_

Compari

son

Test_

Logging

Test_

Phase

Test_

Process

Test_

Process_

Improve

ment

(TPI)

Test_

Recordi

ng

Test_

Stage

 Appendix A-1: STO Terms Classification

161

 Version

_

Control

 Walkthr

ough

 Appendix A-1: STO Terms Classification

162

Method.

Technique Approach Practice

Action_ Word_ Driven_

Testing

Algorithm_ Test

Arc_ Testing

 Accessibility_ Testing

Black-box_ Technique

Black-box_ Test_

Design_ Technique

Boundary_ Value_

Analysis

Boundary_ Value_

Testing

Branch_ Condition_

Combination_ Testing

Branch_ Testing

Business_ Process-

based_ Testing

Bottom-up_ Testing

Back-to-back_ Testing

Cause-effect_ Analysis

Cause-effect_ Graphing

Checklist-based_

Testing

Classification_ Tree_

Method

Condition_

Combination_ Testing

Condition_

Determination_ Testing

Condition_ Testing

Complete_ Testing

Code_ Coverage

Component_

Integration_ Testing

Condition_ Outcome

Confidence_ Test

Configuration_ Testing

Confirmation_ Testing

Conversion_ Testing

Coverage_ Analysis

Data_ Driven_ Testing

Data_ Flow_ Testing

Decision_ Table_

Testing

Decision_ Testing

Defect_ Based_

Technique

Defect_ Based_ Test_

Design_ Technique

Design-based_ Testing

Data_ Integrity_ Testing

Database_ Integrity_

Testing

Decision

Decision_ Condition_

Testing

dd-path

Dirty_ Testing

Documentation_ Testing

Dynamic_ Testing

Elementary_

Comparison_ Testing

Equivalence_

Partitioning_ Error_

Guessing

Experienced-based_

Technique

Experienced-based_

Test_ Design_

Technique

Exhaustive_ Testing

Exploratory_ Testing

Exception_ Handling

Fault_ Tree_ Analysis Failure_ Mode-and- Field_ Testing

 Appendix A-1: STO Terms Classification

163

(FTA)

Finite_ State_ Testing

Functional_ Test_

Design_ Technique

Effect_ Analysis

(FMEA)

Failure_ Mode-Effect-

and-Criticality_ Analysis

(FMECA)

Functional_ Integration

Function_ Point_

Analysis (FPA)

 Goal_ Question_ Metric

Heuristic_ Evaluation

 Incremental_

Development_ Model

Incremental_ Testing

Instrumentation

Intake_ Test

Integration

Invalid_ Testing

Isolation_ Testing

Iterative_ Development_

Model

Keyword_ Driven_

Testing

LCSAJ_ Testing Link_ Testing

Load_ Testing

Modified_ Condition_

Decision_ Testing

Modified_ Multiple_

Condition_ Testing

Multiple_ Condition_

Testing

 Maintenance_ Testing

Maintainability_ Testing

Measurement

Migration_ Testing

Monkey_ Testing

Mutation_ Analysis

Mutation_ Testing

Non-functional_ Test_

Design_ Techniques

 Negative_ Testing

N-switch_ Testing

Orthogonal_ Array_

Testing

Pairwise_ Testing

Partition_ Testing

Path_ Testing

Process_ Cycle_ Test

Pair_ Programming

path sensitizing

pretest

Random_ Testing

Root_ Cause_ Analysis

Requirements-based_

Testing

Risk-based_ Testing

Re-Testing

Scenario_ Testing

Specification-based_

Technique

Specification-based_

Test_ Design_

Technique

State_ Transition_

Session-based_ Testing

Software_ Failure_

Mode-and-Effect_

Analysis (SFMEA)

Software_ Failure_

Mode_ Effect-and-

Criticality_ Analysis

Sanity_ Test

Session-based_ Test_

Management

Scalability_ Testing

Scripted_ Testing

Smoke_ Test

Stress_ Testing

 Appendix A-1: STO Terms Classification

164

Testing

Statement_ Testing

Structure- based_

Technique

Structural_ Test_

Design_ Technique

Structure-based_ Test_

Design_ Technique

Statistical_ Testing

Syntax_ Testing

Systematic_ Test_ and_

Evaluation_ Process

Suitability_ Testing

(SFMECA)

Software_ Fault_ Tree_

Analysis (SFTA)

Software_ Usability_

Measurement_ Inventory

(SUMI)

Test_ Case_ Design_

Technique

Test_ Design_

Technique

Test_ Execution_

Technique

Test_ Specification_

Technique

Test_ Technique

Top-down_ Testing

Test_ Approach

Test_ Point_ Analysis

(TPA)

Use_ Case_ Testing

User_ Scenario_ Testing

 Usability_ Testing

User_ Test

White-box_ Techniques

White-box_ Test_

Design_ Technique

Wide_ Band_ Delphi

 Appendix A-2: STO Terms Properties

165

Object Property Inverse Property

has Approach isApproachOf

hasAutoProcess isPerformedBy

hasCertification Null

hasCheck isCheckedBy

hasCode isCodeOf

hasConfigure isConfiguredBy

hasControl isContoledBy

hasCriteria isCriteriaOf

hasData isDataOf

hasDebugger Null

hasDocument isDocumentOf

hasExtrinsicActivity Null

hasFeature Null

hasHardware Null

hasImage Null

hasIntrinsicActivity Null

hasMeasurement isMeasurementOf

hasModerate isModerateBy

hasPlan isPlanedBy

hasPractice isPracticeBy

hasPurpose isPurposeFor

hasRecord Null

hasReference isReferenceOf

hasReport Null

hasResult isResultsOf

hasReview isReviewedBy

hasScope isScopeOf

hasSignificance Null

hasSoftware Null

hasStandard isStandardFor

hasTechnique isTechniqueOf

hasTerminology isTerminologyOf

hasTest isTestedBy

hasText isTextOf

 Appendix A-3: STO Terms Data Properties

166

Data Property Domain Range

hasActualResults Measurement string

hasContributor Test Case Suit string

hasCreator Artefact string

hasCriteriaDescri

ption

Criteria string

hasExpectedResu

lts

Text string

hasGroupID Test Case Suit string

hadGuidTitle Guide string

hasImageID Image string

hasInputSpecifica

tion

Text string

hasItemID Null string

hasNumberofLin

e

Code integer

hasPlanDescripti

on

Plan string

hasPostCondition Test Case Suit string

hasRatio Features Null

hasPrecondition Test Case Suit string

hasReleaseVersio

n

Null string

hasReportDescrip

tion

Report string

hasSoftwareID Null string

hasSource Doc Doc

hasStatus Text Boolean

hasTarget Null string

hasTermDescripti

on

Term string

hasTestCaseVersi

on

Null string

hasTestDescriptio

n

Test Case Suite string

hasTestObjective Test Case Suite string

hasTestScript Null string

hasTestTitle Text string

hasTestType Task Testing string

hasTestID Individual string

hasTitle Null string

 Appendix A-3: STO Terms Data Properties

167

isInfectedCode Code Boolean

Appendix B: STCMS Documentation

168

Appendix B: STCMS Documentation

Appendix B-1: SWTCMS SRS Document

159

1. Introduction

This Software Requirements Specification (SRS) is written to identify the

requirement of Semantic Web-based Test Case Management System. This

project is implemented to verify the fulfilment of PhD research on Semantic Web

& Test Case Management System supported by Semantic Technology.

1.1. Purpose

The SRS is to clearly identify the requirements that need to be included in

the system. The SRS is used in further development stages. It is very vital to

state every requirement precisely. Each requirement introduces the most

important issue of the system functionality. The findings of the SRS are the

system main functionalities.

1.2. Scope

The system uses the inspiration of semantic web based system to represent

and supercharge the testing case management. The system is engine with the

support of semantic technology. There are 2 main pivots our system

discerned its requirement out of. The first pivot is the recommended

standards by W3C for the semantic web layered; this was by referring to the

main sources stored in their website. The second pivot is the test case

management system requirements from users (testers) point of view; this

was by studying an existing software test management system.

Appendix B-1: SWTCMS SRS Document

160

1.3. Out of Scope

The proposed software will not cover the registration, expiry dates, and

activating the registered clients.

1.4. Application of the Software

The application will enable wide range of industry and individuals to

interact with test cases. The usage of the application will facilitate the

clients test process management. It will manage the execution of test

cases in the system. The list of the goals that can be achieved includes:

task managements, powerful searches, increase business opportunities.

1.4.1. Task Managements

The client will be able to use the application to perform specific

tasks; for example search on test cases from all over the world.

These tasks can be performed at the client suitable time. Creating,

Monitoring, and other tasks can be delegated to specific people to

do. The overall administration grants will enable the client’s user

to carry out their task in independent way. The main benefit gained

from such task is that the ability to modify and add new fields as

they occur in the future. Another benefit is ease of update of these

fields to match any further field renaming.

Appendix B-1: SWTCMS SRS Document

161

1.4.2. Powerful searches

The search is used by any user. The user can search in semantic

way to get the best hits for the test cases. The search will help the

tester and user to find which test case to be reused, and which can

suit the current test requirement.

1.4.2.1. Increase Business Opportunities

Using this application client will have an opportunity to increase

its business by managing and researching a large number of test

cases.

1.5. Definitions, acronyms, and abbreviations

This document uses the following terms and abbreviation

Abbreviat

ion

Description

SRS Software Requirement Specification

Client The business which required the system to be

developed

User Any type of users who uses the systems

UML Unified Modeling Language

STO Software Testing Ontology

1.6. References

Guide:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=278253&isnumber

=6883

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=278253&isnumber=6883
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=278253&isnumber=6883

Appendix B-1: SWTCMS SRS Document

162

Practice:http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=720574&i

snumber=15571

2. Overall Descriptions

2.1. Product perspective

This System is an independent System. The system is divided into three

major modules. These modules will cooperate with each other to perform the

required tasks.

2.2. Product functions

The main functions of the product will be as follows:-

 Creating Test Cases

 Managing Test Cases

 Reporting Test Cases in IEEE standard

 Save the Test Cases Semantically

 Search Test Cases Semantically

2.3. User characteristics

The general characteristics of the intended users of the System should be:-

 Test Planner

 Test Engineer

 QA Analyst

 Test Manager

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=720574&isnumber=15571
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=720574&isnumber=15571

Appendix B-1: SWTCMS SRS Document

163

3. Specific Requirements

3.1. External interface requirements

 User interface

 Software interface

 Communication interface

3.2. Functional requirements

The Functional requirements describe the functions of the systems in a form of

use cases as shown in the following UML diagram and use case description.

Figure 3.2-1 SWTCMS Use Cases Diagram

Tester

AccessHomePage

CreateTestCase

SearchTestCaseByID

SemanticSearchTestCase

ViewTestCases
SemanticSearchSTO

CheckAvailable

<<include>>

EditeTestCase

<<extend>>

DeleteTestCase

<<extend>>

Appendix B-1: SWTCMS SRS Document

164

3.2.1. Access Homepage

i. Description

This use case is used by user to access the main page of the system.

ii. Flow of Event(s)

1. The user launch the system browser

2. The system displays the homepage

3. The system provides user to do other functions on the system

4. The use case continues

3.2.2. Create Test Case

i. Description

This use case is used by user to create test cases in the system.

ii. Flow of Event(s)

1. The user enters the test case specification identifier

2. The user enter Test Case details (System Check Availability)

3. The user specify the pre requirement for test case execution

4. The user enter these details (Input & Expected Output)

5. The system prompts user to create the test case or rest the form

6. System records the Execution History [Date, Version] & save

7. The use case ends

Appendix B-1: SWTCMS SRS Document

165

3.2.3. Search Test Case by ID

i. Description

This use case is used by user to search test cases if ID is known.

ii. Flow of Event(s)

1. The user enter test case ID

2. The system search for matching ID

3. The system view results

4. The use case ends

3.2.4. Semantic Search Test Case

i. Description

This use case is used by user to search test cases semantically.

ii. Flow of Event(s)

1. The user enter key word to search

2. The system navigate the key word with the STO

3. The system view available matching in the STO to help user

find more related key words

4. Upon user word selection system search test cases & display

results

5. The use case ends

Appendix B-1: SWTCMS SRS Document

166

3.2.5. View Test Case

i. Description

This use case is used by user to view available test cases.

ii. Flow of Event(s)

1. The system prompts user to view or delete available test cases

2. If user delete test case system proceeds upon confirmation

3. If user select details of test case

4. The system displays test case details and provide edit facility

5. The user edit test case system displays data in Create Test Case

Form [3.5.1: Create Test Case]

6. The use case ends

3.2.6. View Software Test Ontology

i. Description

This use case is used by user to browse software testing ontology

ii. Flow of Event(s)

1. The system displays software testing ontology

2. The system provide user to browse by one of the following

a. Class

b. Properties

c. Individual

3. The system displays details of the selected option

4. The use case continues

Appendix B-1: SWTCMS SRS Document

167

3.2.7. STO Concept Search

i. Description

This use case is used by user to search for STO concepts.

ii. Flow of Event(s)

1. The user enter key word to search

2. The system navigate the key word with the STO concepts

3. The system view available matching in the STO to help user

find more related key words

4. Upon user word selection system search & display results

5. The use case ends

3.2.8. STO Properties Search

i. Description

This use case is used by user to search for STO properties.

ii. Flow of Event(s)

1. The user enter key word to search

2. The system navigate the key word with the STO properties

3. The system view available matching in the STO to help user

find more related key words

4. Upon user word selection system search & display results

5. The use case ends

Appendix B-1: SWTCMS SRS Document

168

3.2.9. STO Individual Search

i. Description

This use case is used by user to search for STO individuals.

ii. Flow of Event(s)

1. The user enter key word to search

2. The system navigate the key word with the STO individuals

3. The system view available matching in the STO to help user

find more related key words

4. Upon user word selection system search & display results

5. The use case ends

3.2.10. Query Software Test Ontology

i. Description

This use case is used by user to query the software testing ontology

ii. Flow of Event(s)

1. The user enter query syntax

2. The system inquiry the ontology

3. The system display results

4. The use case ends

Appendix B-1: SWTCMS SRS Document

169

3.3. Performance requirements

The system will be a semantic web base solution. It will interact with the users.

The system will able to handle requests simultaneously. The speeds of

performing each request will depend on two items are:

 Internet speed: there will be no control over on the network.

 Servers speed: most requests will be handled within less than 30 seconds.

The performance can be enhanced if the client rented a leased line with minimum

of 128 bit. As far as more request start flying to the server the client is requested

to upgrade the line speed.

3.4. Logical Database requirements

The proposed system is capable to store information about the test cases in a

database that defines relationships between different test cases terms.

3.5. Design constraints

The solution will be used in a web based environment. It will be better if the

design is oriented to an Object-Oriented Design. In case of using an Internet

Service Provider Hosting (ISPH) to host the site, then the hardware is out of

control. Firewall configuration might be another issue to be looked after.

Appendix B-1: SWTCMS SRS Document

170

3.6. Software system attributes

 Availability:

The system will be available to the every one who can reach the internet.

In addition the time availability depends on the ISPH and the Internet. It is

possible to have an additional backup system. This option depends on the

ISPH used software facilities.

 Security:

The system will maintain the security to the level of the application. The

actual data is laying in the ISPH servers. This way of hosting will enable

access the data at application level. The database might be accessed by

authorized administrators of the ISPH. In addition the Open Source

Database engine may not supports high level security.

 Portability:

The solution is portable to different platforms. It can be use in Windows,

Mac, UNIX, or Linux environment. The web clients can still see the same

layout and the same results. The main reason is that the communication

might be a standard recommended by W3C.

 Usability:

The solution is using friendly Graphical User Interfaces (GUI) which does

not require any knowledge or guide to be used.

Appendix B-1: SWTCMS SRS Document

171

4. Traceability Matrix

Name of ID Requirements

1. SWTCMS_SRS_100.01 Access Homepage

2. SWTCMS_SRS

_100.02

Create Test Case

3. SWTCMS_SRS

_100.03

Search Test Case by ID

4. SWTCMS_SRS

_100.04

Semantic Search Test Case

5. SWTCMS_SRS

_100.05

View Test Case

6. SWTCMS_SRS

_101.01

View Software Test Ontology

7. SWTCMS_SRS

_101.02

STO Concept Search

8. SWTCMS_SRS

_101.03

STO Properties Search

9. SWTCMS_SRS

_101.04

STO Individual Search

10. SWTCMS_SRS

_101.05

Query Software Test Ontology

Appendix B-2: SWTCMS SDD Document

172

1. INTRODUCTION

This document defines the activities and responsibilities of research on Semantic

Web & Test Case Management System with regard to the study, design,

development, qualification, testing and delivery of the software concerning the

SWTCMS System Application.

1.1. PURPOSE

The application to be developed shall enable searching test cases semantically and

enhances the scope of the information sharing. For SWTCMS, the application will

be web application with automated workflow for initiating test case processing,

which will further improve the efficiency and services of software testing.

1.2. SCOPE

The application provides features to capture the information create, update and

delete the transaction in order to provide full management for new test cases

available in the System.

1.3. DEFINITIONS, ACRONYMS, AND ABBREVIATIONS

This document uses the following terms and abbreviation.

Abbreviat

ion

Description

SDD System Design Description

SWTCMS Semantic web testing case management system

MVC Model-View-Controller

Appendix B-2: SWTCMS SDD Document

173

1.4. REFERENCES

Guide

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=741934&isnumber=16

019

2. ARCHITECTURAL DESIGN

SWTCMS System will be developed by applying Model-View-Controller (MVC)

architecture. The MVC architecture is a widely-used architectural approach for

interactive applications. It divides functionality among objects involved in

maintaining and presenting data to minimize the degree of coupling between the

objects. The architecture maps traditional application tasks (input, processing, and

output) to the graphical user interaction model. They also map into the domain of

multitier Web-based enterprise applications.

The MVC architecture divides applications into three layers (model, view, and

controller) and decouples their respective responsibilities. Each layer handles specific

tasks and has specific responsibilities to the other areas.

 A model represents business data and business logic or operations that govern

access and modification of this business data. Often the model serves as a software

approximation to real-world functionality. The model notifies views when it

changes and provides the ability for the view to query the model about its state. It

also provides the ability for the controller to access application functionality

encapsulated by the model. In SWTCMS, model will represent the rational

database and the semantic test case data.

Appendix B-2: SWTCMS SDD Document

174

 A view renders the contents of a model. It accesses data from the model and

specifies how that data should be presented. It updates data presentation when the

model changes. A view also forwards user input to a controller.

 A controller defines application behaviour. It dispatches user requests and selects

views for presentation. It interprets user inputs and maps them into actions to be

performed by the model. In a stand-alone GUI client, user inputs include button

clicks and menu selections. In a Web application, they are HTTP GET and POST

requests to the Web tier. A controller selects the next view to display based on the

user interactions and the outcome of the model operations. An application

typically has one controller for each set of related functionality. Some applications

use a separate controller for each client type, because view interaction and

selection often vary between client types.

The relationship described is shown in the following figure.

Appendix B-2: SWTCMS SDD Document

175

Figure 2-1 SWTCMS Architecture Diagram

3. DETAILED DESIGN

The internal organizational structure and detail description in the SWTCMS

Application as describe below.

3.1. Component DESIGN

Information System /

Appendix B-2: SWTCMS SDD Document

176

3.2. CREATE TEST CASE CLASS DIAGRAM

Appendix B-2: SWTCMS SDD Document

177

3.3. STATE DIAGRAM

3.3.1. Test Case Management

3.3.2. Test Cases Semantic Search

AccessHomePage

CreateTestCase

success

ViewTestCase

SearchTestCaseID

EditTestCase

success

success

success

success

ErrorMessage

fail

fail

fail

fail

Appendix B-2: SWTCMS SDD Document

178

3.3.3. SOFTWARE TEST ONTOLOGY

4. TRACEABILITY MATRIX

Name of ID Covers in SRS Description

AccessHomePage

ErrorMessage
FilterTerm

SearchTestCase

success

ViewTestCase

fail

success

fail

AccessHomePage

ViewSTO

SearchSTO

success

ViewSTO

do/viewConcept
do/viewPropoerty
do/viewIndividual

success

Appendix B-2: SWTCMS SDD Document

179

11. SWTCMS_SDD_100

SWTCMS_SRS_100.01

Test Case

Management

State Diagram

SWTCMS_SRS

_100.02

SWTCMS_SRS

_100.03

SWTCMS_SRS

_100.05

12. SWTCMS_SDD_101

SWTCMS_SRS

_100.04

Test Cases

Semantic Search

State Diagram

13. SWTCMS_SDD_102

SWTCMS_SRS

_101.01

Software Test

Ontology State

Diagram

SWTCMS_SRS

_101.02

SWTCMS_SRS

_101.03

SWTCMS_SRS

_101.04

SWTCMS_SRS

_101.05

Appendix B-3: SWTCMS STD Document

180

Test Case No. 1. Access Homepage Test Case Version Version 1.0

Test Title SWTCMS_AccessHomePage

Test Objective To access the home page of SWTCMS

Pre-requisite Server should be on

Tester Mansoor

Ste

p

Description Expected Result Remarks

4. Launch System website on

browser
Home screen will be displayed

5. Move mouse on home screen bar Title colour changes to get ready to

be accessed

System: SWTCMS

Appendix B-3: SWTCMS STD Document

181

Test Case No. 2. Create Test Case Test Case Version Version 1.0

Test Title SWTCMS_CreateTestCase

Test Objective To create a test case and save it in the system

Pre-requisite

Tester Mansoor

Ste

p

Description Expected Result Remarks

1. Click on Create Test Case from

the main home page/
Create Test Case Form will be

displayed

2. Enter the Test Case ID with no

space
System checks the ID and notify

actor if space was provided

3. Click on Add Input System provides input and

expected results text field.

4. Click on Submit button System save test case data and

notify actor with confirmation

message.

System: SWTCMS

Appendix B-3: SWTCMS STD Document

182

Test Case No. 3. Rest Test Case Form Test Case Version Version 1.0

Test Title SWTCMS_RestTestCaseForm

Test Objective To rest the text fields in the Create Test Case Form

Pre-requisite Data had been filled in

Tester Mansoor

St

ep

Description Expected Result Remarks

1. Click on Create Test Case from

the main home page/

Create Test Case Form will be

displayed

2. Key in data in the text field Data in the text field

3. Click reset button Text filed will empty the text

System: SWTCMS

Appendix B-3: SWTCMS STD Document

183

Test Case No. 4. Search Test Case ID Test Case Version Version 1.0

Test Title SWTCMS_SearchTestCaseID

Test Objective To search a specific Test Case if ID is known to the actor

Pre-requisite Data filled in

Tester Mansoor

St

ep

Description Expected Result Remarks

1. Click on Search Test Case by ID Search Test Case ID form will be

displayed

2. Key in Test Case ID and click

Search button

Search results will be displayed

3. Click on Test Case Details Test case details will be displayed

System: SWTCMS

Appendix B-3: SWTCMS STD Document

184

Test Case No. 5. Semantic Search Test

Case

 Test Case Version Version 1.0

Test Title SWTCMS_SearchTestCase

Test Objective To search semantically Test Case according search Term

Pre-requisite Test Cases availability in the system database

Tester Mansoor

St

ep

Description Expected Result Remarks

1. Click on Search Test Case Search Test Case Form will be

displayed

2. Key in search term Semantic drop down list show

available terms match with search

term

3. Click search button Search results will be displayed

4. Click on Test Case Details Test case details will be displayed

System: SWTCMS

Appendix B-3: SWTCMS STD Document

185

Test Case No. 6. View Software Testing

Term

 Test Case Version Version 1.0

Test Title SWTCMS_ViewSoftwareTestingTerm

Test Objective To view Software Testing Terms to help search

Pre-requisite Test Cases availability in the system database

Tester Mansoor

St

ep

Description Expected Result Remarks

1. Click on View Test Case View Test Case List will be

displayed

2. Click on Navigation Bar Terms related to Software Testing

will be displayed

3. Select required term Term selected will be displayed in

search field

4. Click search button Search results will be displayed

System: SWTCMS

Appendix B-3: SWTCMS STD Document

186

Test Case No. 7. View Test Case List Test Case Version Version 1.0

Test Title SWTCMS_ViewTestCaseList

Test Objective To view Test Case available in the System

Pre-requisite Test Cases availability in the system database

Tester Mansoor

St

ep

Description Expected Result Remarks

1. Click on View Test Case View Test Case List will be

displayed

2. Click on Test Case Details Test case details will be displayed

3. Click on Test Case Delete Reconfirmation Message will be

displayed

4. Click Yes/ No Test Case will/ will not be deleted

System: SWTCMS

Appendix B-3: SWTCMS STD Document

187

Test Case No. 8. STO Concept Search Test Case Version Version 1.0

Test Title SWTCMS_SOTConceptSearch

Test Objective To search the concept and classes of Software Testing Ontology

Pre-requisite

Tester Mansoor

St

ep

Description Expected Result Remarks

1. Click on Software Testing

Ontology

Software Testing Ontology Form

will be displayed

2. Click on Classes Tap Class Form displays All classes

and concepts available for

Software Testing

3. Click on Tree View or

Navigation Bar

Tree view or Navigation view for

Concepts will be displayed

4. C Click on Concept Description of the Concept with its

relations will be displayed

System: SWTCMS

Appendix B-3: SWTCMS STD Document

188

Test Case No. 9. STO Properties Search Test Case Version Version 1.0

Test Title SWTCMS_SOTPropertiesSearch

Test Objective To search the properties of Software Testing Ontology

Pre-requisite

Tester Mansoor

St

ep

Description Expected Result Remarks

1. Click on Software Testing

Ontology

Software Testing Ontology Form

will be displayed

2. Click on Properties Tap Properties Form displays All

Properties available for Software

Testing

3. Click on Tree View or

Navigation Bar

Tree view or Navigation view for

Properties will be displayed

4. C Click on Properties Description of the Properties with

its relations will be displayed

System: SWTCMS

Appendix B-3: SWTCMS STD Document

189

Test Case No. 10. STO Individual Search Test Case Version Version 1.0

Test Title SWTCMS_SOTIndividualSearch

Test Objective To search the Individual of Software Testing Ontology

Pre-requisite

Tester Mansoor

St

ep

Description Expected Result Remarks

1. Click on Software Testing

Ontology

Software Testing Ontology Form

will be displayed

2. Click on Individual Tap Individual Form displays All

Individual available for Software

Testing

3. Click on Tree View or

Navigation Bar

Tree view or Navigation view for

Individual will be displayed

4. C Click on Individual Description of the Individual with

its relations will be displayed

System: SWTCMS

Appendix C: Test Cases Data

190

Appendix C: Test Cases Data

Appendix C-1: FSKTM PERSONALIZED WEBSITE Test Case

191

Test Case No. 11. Access Homepage Test Case Version Version

1.0

Test Title FPW_AccessHomePage

Test Objective To access the home page of FSKTM PERSONALIZED WEBSITE

Pre-requisite Server should be on

Tester Faduma

Ste

p

Description Expected Result Remarks

6. Launch System website on

browser

Home screen will be displayed

7. Move mouse on home screen

bar

Links are ready to be accessed

Test Case No. 12. Login Test Case Version Version

1.0

Test Title FPW_Login

Test Objective To login with a pre registered user ID

Pre-requisite Lunch FSKTM website

Tester Faduma

Ste

p

Description Expected Result Remarks

5. Click on login the main home

page

Login form will display

6. Key in the correct user ID and

password

System will display the main

home page under the user’s ID

Test Case No. 13. Personalize Background Test Case Version Version 1.0

Test Title FPW_Personalize_Background

Test Objective To personalize backgrounds and save it with the user ID

Pre-requisite Login with registered user ID

Tester Faduma

Ste

p

Description Expected Result Remarks

1. Click on Background from the

main home page/

Background list will be

displayed

2. Select the preferred

Background

System will display the

background and save it under

the user’s ID

System: FSKTM PERSONALIZED WEBSITE

Appendix C-1: FSKTM PERSONALIZED WEBSITE Test Case

192

Test Case No. 14. Personalize Layout Test Case Version Version 1.0

Test Title FPW_Personalize_Layout

Test Objective To personalize layout and save it with the user ID

Pre-requisite Login with registered user ID

Tester Faduma

St

ep

Description Expected Result Remarks

4. Click on Background from

the main home page/

Background list will be

displayed

5. Select the preferred

Background

System will display the

background and save it under

the user’s ID

Test Case No. 15. Rearrange Panels Test Case Version Version 1.0

Test Title FPW _Rearrange_Panels

Test Objective To rearrange panels and save it with the user ID

Pre-requisite Login with registered user ID

Tester Faduma

St

ep

Description Expected Result Remarks

5. Rearrange panels by drag and

drop on the main home page/

Personalized panels will be

displayed and saved under the

user’s ID

6. Click on Home page Panels in personalized order

will be displayed

Test Case No. 16. Personalize Panels Test Case Version Version 1.0

Test Title FPW _Personalized_Panels

Test Objective To personalize panels and save them under the user ID

Pre-requisite Login with Admin ID

Tester Faduma

St

ep

Description Expected Result Remarks

5. Hide, show less links and

show more links in each

panel on the main home page

Actions will be displayed and

saved under the user’s ID

6. Click on Home page Panels in personalized order

will be displayed

Test Case No. 17. Quick Links Test Case Version Version 1.0

Test Title FPW _Quick_Links

Test Objective To create quick links and save them under the user’s ID

Pre-requisite Login with Admin ID

Tester Faduma

St

ep

Description Expected Result Remarks

1. Select links from different

panels and click save
links will be displayed under

quick links panel and saved

under the user’s ID

2. Click on Home page Updated Quick links Panels is

displayed

Appendix C-1: FSKTM PERSONALIZED WEBSITE Test Case

193

Test Case No. 18. System Management Test Case Version Version 1.0

Test Title FPW_System_Managment

Test Objective To check admin functions

Pre-requisite Login with Admin ID

Tester Faduma

St

ep

Description Expected Result Remarks

1. Click on user ID Registered users list will be

displayed

2. Click on add Menu to add users will display

3. Add users credentials Added credentials will be saved

in the database

4. Edit users credentials Registered users will be edited.

5. d Delete users credentials Registered users will be

deleted.

Test Case No. 19. Logout Test Case Version Version 1.0

Test Title FPW_Logout

Test Objective To logout from FSKTM website

Pre-requisite Login with registered user ID

Tester Faduma

St

ep

Description Expected Result Remarks

5. Click on logout Home screen will be displayed

6. Move mouse on home screen

bar

Links are ready to be accessed

Appendix C-2: iLogger Test Case

194

Test Case No. 1. iLogger_iSmart_100.01 Test Case Version Version

1.0

Test Title iRegisterService

Test Objective It will allow admin to register the particular module.

Pre-requisite Server should be on

Tester Developers

S

t

e

p

Description Expected Result Remarks

1. Launch the system. Main interface displayed.

2. Enter URL Particular module is registered

or not.

Test Case No. 2. iLogger_iSmart_100.02 Test Case Version Version

1.0

Test Title iUnregisterService

Test Objective It will allow admin to unregister the particular module

Pre-requisite Server should be on

Tester Developers

S

t

e

p

Description Expected Result Remarks

1. Launch the system Main interface displayed

2. Enter URL Particular module is

unregistered or not

unregistered.

Test Case No. 3. iLogger_iSmart_100.03 Test Case Version Version

1.0

Test Title iIdentifyFreeService

Test Objective It will identify free service/module and assign task

Pre-requisite Module should be registered

Tester Developers

S

t

e

p

Description Expected Result Remarks

1. Enter the module type Module type match with the

suitable process

2. Check the availability of the

process matched

Particular Process is Free to

Process, NULL if all busy

Test Case No. 4. iLogger_iSmart_100.04 Test Case Version Version

1.0

System: iLogger

Appendix C-2: iLogger Test Case

195

Test Title iSynchronizeVersion

Test Objective It will synchronize the modules version number.

Pre-requisite Modules should be registered

Tester Developers

S

t

e

p

Description Expected Result Remarks

1. True or false System will synchronize the

version

Test Case No. 5. iLogger_iModule_101.01 Test Case Version Version

1.0

Test Title iCheckBusy

Test Objective It will check whether the particular module is busy or free and return the status

Pre-requisite A component will produce an URL

Tester Developers

S

t

e

p

Description Expected Result Remarks

1. System will get the URL from

one of the component

The URL is checked whether it

is busy or free.

Test Case No.

6. iLogger_iModule_101.02

 Test Case Version Version

1.0

Test Title iCheckLive

Test Objective It will check whether the particular module is live or down and return the status.

Pre-requisite A component/module will produce an URL

Tester Developers

S

t

e

p

Description Expected Result Remarks

1. System will get the URL from

one of the component/module

The URL is checked whether it

is live or down.

Test Case No. 7. iLogger_iModule_101.03 Test Case Version Version

1.0

Test Title iCheckVersion

Test Objective It will check the particular Version Number and return the Version Number in

String

Pre-requisite A component/module will produce an URL

Tester Developers

S

t

e

p

Description Expected Result Remarks

1. System will get the URL from

one of the component/module

The URL is checked what the

version is using.

Appendix C-2: iLogger Test Case

196

Test Case No. 8. iLogger_iModule_101.04 Test Case Version Version

1.0

Test Title iRecoverErro

Test Objective It will check whether the process is completed or failed and return the status

Pre-requisite Server should be started

Tester Developers

S

t

e

p

Description Expected Result Remarks

1. Recover errors. Transforms back to Live state.

Test Case No. 9. iLogger_iModule_101.05 Test Case Version Version

1.0

Test Title iRecordProcessTime

Test Objective It will record the transaction of process time and return the time.

Pre-requisite A component/module will produce a Path

Tester Developers

S

t

e

p

Description Expected Result Remarks

1. System will get the Path from one

of the component/module

The Path is checked whether

the whole process is completed

or failed.

Test Case No.

10. iLogger_iFile_102.01

 Test Case Version Version

1.0

Test Title iAcceptFile

Test Objective Must accept file (preferably zipped file) from clients’ side machine.

Pre-requisite Server should be on and user must be logged in

Tester Developers

S

t

e

p

Description Expected Result Remarks

1. Waiting for zipped file from

clients

Server ready to accept the file.

Test Case No. 11. iLogger_iFile_102.02 Test Case Version Version

1.0

Test Title iCount

Test Objective Must return process count (% of process/upload byte/sec/total time use to upload)

Pre-requisite Server should be on and user must be logged in

Tester Developers

Appendix C-2: iLogger Test Case

197

S

t

e

p

Description Expected Result Remarks

1. System accept preferably zipped Particular Process Count

Test Case No. 12. iLogger_iFile_102.03 Test Case Version Version

1.0

Test Title iUnzipFile

Test Objective Must perform action of unzipping file from the clients file

Pre-requisite Server has accepted the file

Tester Developers

S

t

e

p

Description Expected Result Remarks

1. Reads the file. Display the files found in

archive.

Test Case No. 13. iLogger_iFile_102.04 Test Case Version Version

1.0

Test Title iRejectFile

Test Objective Must able to reject unwanted file which found in the unzipped file.

Pre-requisite Server has accepted the file

Tester Developers

S

t

e

p

Description Expected Result Remarks

1. Check the file type. Display all the file type.

2. Select file to be moved Reject file except .log & .txt

file

Test Case No. 14. iLogger_iFile_102.05 Test Case Version Version

1.0

Test Title iMoveFile

Test Objective Must transfer the file to specific folder that is Reject File folder.

Pre-requisite Reject file moves to reject folder

Tester Developers

S

t

e

p

Description Expected Result Remarks

1. Save to database. .log and .txt file save to

database.

Test Case No. 15. iLogger_iFile_102.06 Test Case Version Version

1.0

Test Title iZipFile

Test Objective Must compress/zip required files

Pre-requisite Server has accepted the file

Tester Developers

Appendix C-2: iLogger Test Case

198

S

t

e

p

Description Expected Result Remarks

1. System receives log file Zipped the log file

Test Case No. 16. iLogger_iPattern_103.01 Test Case Version Version

1.0

Test Title iFilterPattern

Test Objective Collect the log files from different machines analyse and filter the same pattern log

entries into a pattern text file.

Pre-requisite Server has accepted the log file

Tester Developers

S

t

e

p

Description Expected Result Remarks

1. Collect the log file from different

machines.

Server ready to filter the log

files collected.

2. Analyze and filter the same

pattern log entries.

Output into pattern text files.

Test Case No. 17. iLogger_iPattern_103.02 Test Case Version Version

1.0

Test Title iNormalizePattern

Test Objective Standardize multiple log entries of the same pattern to a preferred pattern

Pre-requisite Server has accepted the log file

Tester Developers

S

t

e

p

Description Expected Result Remarks

1. Identify similar log entries Server ready to combine similar

log entries.

2. Combine multiple similar log

entries into one entry

Output the log entries into a

pattern text file.

Test Case No. 18. iLogger_iPattern_103.03 Test Case Version Version

1.0

Test Title iIdentifyPattern

Test Objective Search the log files for the log entries containing keyword specified by user and

output them into a pattern text file once confirmed by user.

Pre-requisite Server has accepted the log file

Tester Developers

S

t

e

p

Description Expected Result Remarks

Appendix C-2: iLogger Test Case

199

S

t

e

p

Description Expected Result Remarks

1. Prompt user for keyword. Display log entries containing

the specified keyword.

2. User confirms to set the keyword

as default log pattern.

System ready to filter files.

3. System filters the specified

pattern.

Output the log entries into a

pattern text file.

Appendix C-2: iLogger Test Case

200

Test Case No.

19. iLogger_iStatistic_104.01

 Test Case Version Version

1.0

Test Title iCalculateFrequency

Test Objective Calculate the frequency of a particular process count within certain period

Pre-requisite Receive pattern.txt file from iPattern

Tester Developers

S

t

e

p

Description Expected Result Remarks

1. Open the pattern .txt file. Display the pattern.txt file.

2. Calculate the frequency. Successfully count the

frequency of pattern.

Test Case No. 20. iLogger_iStatistic_104.02 Test Case Version Version

1.0

Test Title iCalculateProcessTime

Test Objective Calculate the process time in between a process ends and the start of a new process

Pre-requisite Receive pattern.txt file from iPattern

Tester Developers

S

t

e

p

Description Expected Result Remarks

1. Open the pattern text file Display the pattern .txt file.

2. Check for sections of process

occurrence.

No reaction

3. Calculate the process time of each

sections

Successfully count the process

time and display the time.

Test Case No. 21. iLogger_iStatistic_104.03 Test Case Version Version

1.0

Test Title iCalculateStandardDeviation

Test Objective Calculate the standard deviation transaction recorded from each pattern.

Pre-requisite Receive pattern.txt file from iPattern

Tester Developers

S

t

e

p

Description Expected Result Remarks

1. Receive user prompt for the axis

(time interval).

2. Use the min frequency for the x

axis.

3. The information in x and y axis

are used to plot the diagram of

standard deviation

Show the diagram of standard

deviation based on its statistics.

Test Case No. 22. iLogger_iStatistic_104.04 Test Case Version Version

1.0

Test Title iCalculateHistogram

Test Objective Calculate the histogram transaction recorded from each pattern.

Appendix C-2: iLogger Test Case

201

Pre-requisite Receive pattern.txt file from iPattern

Tester Developers

S

t

e

p

Description Expected Result Remarks

1. Receive user prompt for the y axis

(time interval).

2. Use the frequency for the x axis

3. The information in x and y axis

are used to plot the diagram of

standard deviation

Show the diagram of histogram

based on its statistics

Appendix C-3: M-FIT - Chicken Broiler Test Case

202

System: MFIT FoodReg Chicken Boiler

Test Script

No.

1. MFIT_Login Test Script Version 1.0

Test Title Login (Timer name : “Login”)

Test

Objective

Login to the system.

Pre-requisite Valid username and password.

S

t

e

p

Description Expected Result Remarks

1. Launch IE 6.0 browser IE 6.0 browser is launched

2. Type the URL link

<https://secure2.foodreg.net/m

dtcf.html>

MFIT FoodReg page is displayed.

3. Enter username in the

“Username” field.

Username is entered. Compulsory e.g.

<mdec>

4. Enter password in the

“Password” field

Password is entered. Compulsory e.g.

<mdec01>

5. <Start Block - Login>

Click on Login button.

Login is successful and “Personal

Information” page is displayed.

<Stop Block – Login>

6. Click “Logout” button on the

top right hand corner of the

MFIT FoodReg main page.

User is successfully sign out and

MFIT FoodReg main page is

displayed.

Appendix C-3: M-FIT - Chicken Broiler Test Case

203

Test Script

No.

2. MFIT_AddWorker Test Script Version 1.0

Test Title AddWorker (Timer name : “add_wkr”)

Test

Objective

Add new workers information into the system

Pre-requisite Valid username and password

S

t

e

p

Description Expected Result Remarks

1. Launch IE 6.0 browser IE 6.0 browser is launched

2. Type the URL link

<https://secure2.foodreg.net/m

dtcf.html>

MFIT FoodReg page is displayed.

3. Enter username in the

“Username” field.

Username is entered. Compulsory

e.g.<mdec>

4. Enter password in the

“Password” field

Password is entered. Compulsory

e.g.<mdec01>

5. Click on “General Data” tab “General Data” page is displayed.

6. Click on “Your Company”

link

“Your Company” page is

displayed.

7. Click on “Add A New

Worker” link

“Create Worker” page is displayed.

8. Enter Known as in the

“Known as” field

Known as is entered. Compulsory

e.g.<sadc>

9. Enter First name in the “First

name” field

First name is entered. Recommended

e.g.<sadc>

10. Enter Surename in the

“Surename” field

Surename is entered. Recommended

e.g.<sadc>

11. Select Company in

“Company” field

Company is selected Recommended

e.g.<DBE Food

Processing>

12. Select User in the “Insert

additional person profile” field

User is selected. Compulsory

e.g.<User>

13. Enter Username in the

“Username” field

Username is entered. Compulsory

Unique e.g.<sadc>

14. Enter New Password in the

“NEW PASSWORD” field

New Password is entered. Compulsory

Unique (min 6 char

with numeric)

e.g.<password1>

15. Enter Retype New Password

in the “RETYPE NEW

PASSWORD” field

Retype New Password is entered. Compulsory

Unique (min 6 char

with numeric)

e.g.<password1>

16. Select Status in “Status” filed Status is selected. Compulsory

e.g.<active>

Appendix C-3: M-FIT - Chicken Broiler Test Case

204

S

t

e

p

Description Expected Result Remarks

17. Enter Email in the “Email”

field

Email is entered. Compulsory

e.g.<sadc@sadc.co

m.my>

18. Select Profile in the “Profile”

field

Profile is selected. e.g.<operator>

19. <Start Block – add_wkr >

Click on “Save”

“Manage Worker” page is

displayed.

<Stop Block – add_wkr >

20. Click on “Logout” User is successfully sign out and

MFIT FoodReg main page is

displayed.

Test Script

No.

3. MFIT_AddClient Test Script Version 1.0

Test Title AddClient (Timer name : “add_clnt”)

Test

Objective

Add new client information into the system.

Pre-requisite Valid username and password

S

t

e

p

Description Expected Result Remarks

1. Launch IE 6.0 browser IE 6.0 browser is launched

2. Type the URL link

<https://secure2.foodreg.net/m

dtcf.html>

MFIT FoodReg page is displayed.

3. Enter username in the

“Username” field.

Username is entered. Compulsory e.g.

<mdec>

4. Enter password in the

“Password” field

Password is entered. Compulsory e.g.

<mdec01>

5. Click on “General Data” tab “General Data” page is displayed.

6. Click on “Companies and

People” link

“Companies and People” page is

displayed.

7. Click on “Add A New Client”

link

“Create Worker” page is displayed.

8. Enter Known as in the

“Known as” field

Known as is entered. Compulsory e.g.

<AYAMAS>

9. Enter Legal name in the Legal name is entered. Recommended e.g.

Appendix C-3: M-FIT - Chicken Broiler Test Case

205

S

t

e

p

Description Expected Result Remarks

“Legal name” field <AYAMAS>

10. Enter Company Registration

no in the “Company

Registration no” field

Company Registration no is

entered.

Compulsory

Unique e.g.

<0001>

11. Select Provider in the “Insert

additional company profile”

field

Provider is selected. Compulsory

12. <Start Block – add_ clnt >

Click on “Save”

“Manage Client” page is displayed.

<Stop Block – add_ clnt >

13. Click on “Logout” User is successfully sign out and

MFIT FoodReg main page is

displayed.

Appendix C-3: M-FIT - Chicken Broiler Test Case

206

Test Script

No.

4. MFIT_AddFinishedProd Test Script Version 1.0

Test Title AddFinishedProd (Timer name : “add_fp”)

Test

Objective

Adding finished product information into the system

Pre-requisite Valid username and password

S

t

e

p

Description Expected Result Remarks

1. Launch IE 6.0 browser IE 6.0 browser is launched

2. Type the URL link

<https://secure2.foodreg.net/m

dtcf.html>

MFIT FoodReg page is displayed.

3. Enter username in the

“Username” field.

Username is entered. Compulsory e.g.

<mdec>

4. Enter password in the

“Password” field

Password is entered. Compulsory e.g.

<mdec01>

5. Click on “General Data” tab “General Data” page is displayed.

6. Click on “Products” link “Products” page is displayed.

7. Click on “Manage Finished

Product” link

“Manage Finished Product” page is

displayed.

8. Click on “Create Finished

Product” button.

Create Finished Product page is

displayed.

9. Enter Name in the “Name”

field

Name is entered Compulsory e.g.

<Live Birds - Ross

2>

10. <Start Block – add_fp>

Click on “Save”

“Data stored Finished Product”

page is displayed.

<Start Block – add_fp>

11. Click on “Continue” “Manage Finished Product” page is

displayed.

12. Click on “Logout” User is successfully sign out and

MFIT FoodReg main page is

displayed.

Appendix C-3: M-FIT - Chicken Broiler Test Case

207

Test Script

No.

5. MFIT_ BACKWARD TRACEABILITY Test Script Version 1.

0

Test Title Backward Traceability (Timer name : “back_trace”)

Test

Objective

To test Backward Traceability function

Pre-requisite Valid username and password

S

t

e

p

Description Expected Result Remarks

1. Launch IE 6.0 browser IE 6.0 browser is launched

2. Type the URL link

<https://secure2.foodreg.net/m

dtcf.html>

MFIT FoodReg page is displayed.

3. Enter username in the

“Username” field.

Username is entered. Compulsory e.g.

<mdec>

4. Enter password in the

“Password” field

Password is entered. Compulsory e.g.

<mdec01>

5. Click on “General Data” tab “General Data” page is displayed.

6. Go to Home tab, Select

Tracepoint

“Tracepoint” page is displayed.

7. Select “Search by reference or

Tracepoint”

List of Tracepoint page is

displayed

8. Select “Despatch of Live

Birds”

“Despatch of Live Birds” page is

displayed.

9. Click on “ Search “ Search Results is displayed

10. Choose any Tracepoints Tracepoint details is displayed

11. Click on “Backwards” “Backwards” details is displayed

12. <Start Block – back_trace>

Expand the “Backwards”

button

List of backward tracepoint is

displayed

<Stop Block – back_trace>

13. Click on “Exit” “Your Company” page is

displayed.

14. Click on “Logout” User is successfully sign out and

MFIT FoodReg main page is

displayed.

Appendix C-3: M-FIT - Chicken Broiler Test Case

208

Test Script

No.

6. MFIT_Receiving and Stocking of Broiler DOC Test Script

Version

1

.

0

Test Title Receiving and Stocking of Broiler DOC (Timer name : “rcv_sdoc”)

Test

Objective

Receiving and Stocking

Pre-requisite Valid username and password Delivery Order

S

t

e

p

Description Expected Result Remarks

1. Launch IE 6.0 browser IE 6.0 browser is launched

2. Type the URL link

<https://secure2.foodreg.net/m

dtcf.html>

MFIT FoodReg page is displayed.

3. Enter username in the

“Username” field.

Username is entered. e.g.<mdec>

4. Enter password in the

“Password” field

Password is entered. e.g.<mdec01>

5. Go to Home tab, Select

Tracepoint-Broiler Farm

Operation

Home page displayed.

6. Select Receiving and Stocking

of Broiler DOC

Receiving and Stocking of Broiler

DOC page displayed

7

.

Select ‘date of action’ Select date from calendar provided Mandatory

e.g.<29.07.07>

8

.

Select Supplier ID Drop down list of Supplier id <MDTCH>

9

.

Enter the Delivery order Key in delivery order Mandatory

e.g.<060818H>

1

0

.

Select purchase product from

drop down list.

Drop down list. Mandatory

e.g.<DOC Cobb>

1

1

.

Enter or Scan the Lot no of the

broiler DOC received

Lot no appear if scanned Mandatory

e.g.<010101>

1

2

.

Enter Quantity of DOC

received

Key in DOC Mandatory

e.g.<10,000>

1

3

.

Generate a new id for

receiving & stocking by

clicking “generate” button.

Code generated e.g.<

RG5MDTCFR000

0TB>

1

4

.

Select House no Drop down list for House no e.g.<Broiler House

99>

1 Enter stocking quantity Key in amount Mandatory

Appendix C-3: M-FIT - Chicken Broiler Test Case

209

S

t

e

p

Description Expected Result Remarks

5

.

e.g.<3300>

1

6

.

Enter total Dead On Arrival Key in amount Mandatory

e.g.<0>

1

7

.

<Start Block – rcv_sdoc >

After complete, click the

 ‘Save’ button

The record is saved.

<Stop Block – rcv_sdoc >

Mandatory

1

8

.

Click on “Logout” User is successfully sign out and

MFIT FoodReg main page is

displayed.

Appendix C-3: M-FIT - Chicken Broiler Test Case

210

Test Script

No.

7. MFIT_Mortality Mobile Record Test Script Version 1.0

Test Title Mortality Mobile Record (Timer name : “mmr”)

Test

Objective

Mortality Mobile Record

Pre-requisite Valid username and password

Total dead and cull birds

S

t

e

p

Description Expected Result Remarks

1

.

Launch IE 6.0 browser IE 6.0 browser is launched

2

.

Type the URL link

<https://secure2.foodreg.net/m

dtcf.html>

MFIT FoodReg page is displayed.

3

.

Enter username in the

“Username” field.

Username is entered. e.g.<mdec>

4

.

Enter password in the

“Password” field

Password is entered. e.g.<mdec01>

5

.

Go to Home tab, Select

Tracepoint-Broiler Farm

Operation

Home page displayed.

6

.

Select Mortality Mobile

Record

Mortality Mobile Record

page displayed

7

.

Select ‘date of action’ Select date from calendar provided Mandatory

e.g.<29.07.07>

8

.

Select the House no List of House appear. Mandatory

e.g.< Broiler House

99>

9

.

Enter the total dead birds Key in the amount. Mandatory

e.g.<10>

1

1

.

Enter number of cull birds Key in the amount Mandatory

e.g.<5>

1

2

.

Enter Username and

Password.

Key in username and password

who carried out the process.

Mandatory

1

3

.

<Start Block – mmr >

Click ‘save’ button

The record is saved

<Stop Block – mmr >

Mandatory

1

4

.

Click on “Logout” User is successfully sign out and

MFIT FoodReg main page is

displayed.

Appendix C-3: M-FIT - Chicken Broiler Test Case

211

Appendix C-3: M-FIT - Chicken Broiler Test Case

212

Test Script

No.

8. MFIT_Growth Monitoring Mobile Record Test Script Version 1

.

0

Test Title Growth Monitoring Mobile Record (Timer name : “gmmr”)

Test

Objective

Growth Monitoring

Pre-requisite Valid username and password

S

t

e

p

Description Expected Result Remarks

1

.

Launch IE 6.0 browser IE 6.0 browser is launched

2

.

Type the URL link

<https://secure2.foodreg.net/m

dtcf.html>

MFIT FoodReg page is displayed.

3

.

Enter username in the

“Username” field.

Username is entered. e.g.<mdec>

4

.

Enter password in the

“Password” field

Password is entered. e.g.<mdec01>

5

.

Go to Home tab, Select

Tracepoint-Broiler Farm

Operation

Home page displayed.

6

.

Select Growth Monitoring

Mobile Record

Growth Monitoring Mobile Record

page displayed

7

.

Select ‘date of action’ Select date from calendar provided Mandatory

e.g.<29.07.07>

8

.

Select the House no List of House appear. Mandatory

e.g.<house 99>

9

.

Enter the average body weight

of birds

Key in the weight and the unit Mandatory

e.g.<0.05kg>

1

0

.

Enter Username and

Password.

Key in username and password

who carried out the process.

Mandatory

1

1

.

<Start Block – gmmr >

Click ‘save’ button

The record is saved.

<Stop Block – gmmr >

Mandatory

1

4

.

Click on “Logout” User is successfully sign out and

MFIT FoodReg main page is

displayed.

Appendix C-3: M-FIT - Chicken Broiler Test Case

213

Test Script

No.

9. MFIT_Despatch of Live Birds Test Script Version 1.0

Test Title Despatch of Live Birds (Timer name : “desp_lb”)

Test

Objective

Despatching

Pre-requisite Valid username and password

Customer

S

t

e

p

Description Expected Result Remarks

1

.

Launch IE 6.0 browser IE 6.0 browser is launched

2

.

Type the URL link

<https://secure2.foodreg.net/m

dtcf.html>

MFIT FoodReg page is displayed.

3

.

Enter username in the

“Username” field.

Username is entered. e.g.<mdec>

4

.

Enter password in the

“Password” field

Password is entered. e.g.<mdec01>

5

.

Go to Home tab, Select

Tracepoint-Broiler Farm

Operation

Home page displayed.

6

.

Select Despatch of Live Birds Despatch of Live Birds page

displayed

7

.

Select ‘date of action’ Select date from calendar provided Mandatory

e.g.<29.07.07>

8

.

Select Customer ID from the

drop down list

List of Customer appear. Mandatory

e.g.<MDTCP>

9

.

Enter Delivery Order Key in order amount. Mandatory

e.g.<060818H>

1

0

.

Select the House no. Click

‘Add’ button after complete.

May add more than 1 lot

receive.

Key in House no. Mandatory

e.g.<HOUSE 99>

1

1

.

Enter quantity of birds

harvested.

Key in quantity. Mandatory

e.g.<2500>

1

2

.

Enter weight of birds

harvested

Key in weight and unit. Mandatory

e.g.<4050kg>

1

3

.

Click generate button to

generate Id code for the

despatch

Code generated. Mandatory

1

4

Select the medication

withdrawal date from the date

Select date from calendar provided e.g.<01.08.07>

Appendix C-3: M-FIT - Chicken Broiler Test Case

214

S

t

e

p

Description Expected Result Remarks

. wizards.

1

5

.

Select the feed withdrawal

date and time from the date

wizards.

Select date and time from calendar

provided

e.g.<17.08.07>

1

6

.

<Start Block – desp_lb >

Click ‘save’ button

The record is saved.

<Stop Block – desp_lb >

Mandatory

1

7

.

Click on “Logout” User is successfully sign out and

MFIT FoodReg main page is

displayed.

Appendix C-3: M-FIT - Chicken Broiler Test Case

215

Test Script

No.

10. MFIT_Search by reference or trace point Test Script Version 1.

0

Test Title Search by reference or trace point (Timer name : “srch_tp”)

Test

Objective

Search by reference or trace point

Pre-requisite Valid username and password

S

t

e

p

Description Expected Result Remarks

1. Launch IE 6.0 browser IE 6.0 browser is launched

2. Type the URL link

<https://secure2.foodreg.net/m

dtcf.html>

MFIT FoodReg page is displayed.

3. Enter username in the

“Username” field.

Username is entered. e.g.<mdec>

4. Enter password in the

“Password” field

Password is entered. e.g.<mdec01>

5. Go to Home tab, Select

Tracepoint-Broiler Farm

Operation

Home page displayed.

6. Select Search by reference or

trace point

Search by reference or trace point

page displayed

7. Go to Traceability Tab Search by reference or trace point

page appear.

8. Select the search criteria, by

Reference, Product, Trace

point, Date Start or Date End

Product and Trace point provide

drop down list.

e.g.<Product = old-

chick ross>

9. Key in search criteria Search criteria is entered

10. <Start Block – srch_tp >

Click Search button

Search Result appears.

<Start Block – srch_tp >

11. Click on “Logout” User is successfully sign out and

MFIT FoodReg main page is

displayed.

Appendix D: SUS DATA

216

Appendix D: SUS DATA

Appendix D: SUS DATA

217

U
ser

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

S
ca

le

P
o

sitio
n

S
co

re

S
ca

le

P
o

sitio
n

S
co

re

S
ca

le

P
o

sitio
n

S
co

re

S
ca

le

P
o

sitio
n

S
co

re

S
ca

le

P
o

sitio
n

S
co

re

S
ca

le

P
o

sitio
n

S
co

re

S
ca

le

P
o

sitio
n

S
co

re

S
ca

le

P
o

sitio
n

S
co

re

S
ca

le

P
o

sitio
n

S
co

re

S
ca

le

P
o

sitio
n

S
co

re

1 5 4 1 4 4 3 1 4 4 3 2 3 5 4 5 0 4 3 1 4

2 5 4 1 4 4 3 2 3 5 4 1 4 5 4 1 4 5 4 2 3

3 3 2 1 4 4 3 4 1 5 4 1 4 4 3 2 3 4 3 2 3

4 4 3 1 4 5 4 1 4 5 4 1 4 5 4 1 4 5 4 2 3

5 5 4 1 4 5 4 1 4 5 4 1 4 5 4 1 4 5 4 1 4

6 4 3 2 3 3 2 2 3 3 2 2 3 3 2 2 3 4 3 1 4

7 3 2 4 1 4 3 3 2 4 3 2 3 3 2 4 1 3 2 4 1

8 5 4 1 4 5 4 1 4 4 3 2 3 4 3 1 4 5 4 1 4

9 4 3 3 2 5 4 1 4 3 2 1 4 5 4 1 4 4 3 2 3

10 3 2 2 3 2 1 2 3 4 3 1 4 1 0 2 3 1 0 1 4

11 5 4 1 4 4 3 2 3 4 3 2 3 5 4 4 1 5 4 1 4

12 3 2 2 3 4 3 1 4 4 3 3 2 4 3 4 1 4 3 2 3

13 3 2 3 2 2 1 4 1 4 3 3 2 1 0 3 2 3 2 3 2

14 2 1 4 1 3 2 5 0 3 2 4 1 2 1 2 3 3 2 4 1

15 5 4 2 3 4 3 1 4 4 3 3 2 5 4 2 3 5 4 1 4

16 4 3 1 4 5 4 1 4 4 3 1 4 5 4 2 3 4 3 2 3

17 5 4 1 4 4 3 2 3 4 3 1 4 5 4 3 2 4 3 2 3

18 5 4 2 3 5 4 1 4 4 3 3 2 4 3 2 3 3 2 1 4

19 4 3 1 4 4 3 2 3 4 3 1 4 5 4 1 4 4 3 2 3

20 5 4 2 3 5 4 1 4 4 3 3 2 4 3 1 4 4 3 1 4

21 3 2 2 3 4 3 2 3 4 3 1 4 4 3 1 4 4 3 2 3

Appendix D: SUS DATA

218

22 4 3 2 3 5 4 2 3 4 3 2 3 5 4 1 4 5 4 1 4

23 5 4 2 3 5 4 1 4 4 3 1 4 4 3 1 4 5 4 1 4

24 4 3 2 3 4 3 1 4 3 2 2 3 4 3 2 3 3 2 2 3

25 3 2 1 4 4 3 1 4 5 4 2 3 4 3 2 3 4 3 1 4

26 5 4 2 3 4 3 1 4 5 4 2 3 4 3 1 4 5 4 1 4

27 5 4 2 3 4 3 1 4 4 3 3 2 5 4 2 3 5 4 1 4

28 4 3 2 3 4 3 1 4 4 3 2 3 5 4 2 3 4 3 1 4

29 4 3 1 4 5 4 1 4 4 3 2 3 4 3 1 4 4 3 2 3

30 4 3 1 4 5 4 2 3 4 3 1 4 5 4 1 4 5 4 1 4

Total

Score 93

97

95

99

92

94

94

92

93

101

SUS

Score
77.50

80.83

79.17

82.50

76.67

78.33

78.33

76.67

77.50

84.17

Total SUS Score 79.17

