1.0 Introduction

According to the World Health Organization (WHO), about 450 million people worldwide suffer from mental, behavioural and neurological and substance use disorders (WHO, 2010). The dopamine (D) and serotonin (5-hydroxytryptamine; 5-HT) pathways in the central nervous system (CNS) are putative drug targets for treating neuropsychiatric disorders, including depression, anxiety, bipolar disorder, schizophrenia and drug abuse.

Antipsychotic drugs (APDs) are the main therapeutic intervention in psychotic illness. Notably, the atypical antipsychotic drugs, such as clozapine, risperidone, olanzapine and ziprasidone are commonly used treatments for schizophrenia (Newman-Tancredi *et al.*, 2007). Meltzer *et al.*, (2003) have suggested that antagonism of both D_2 and 5-HT_{2A/2C} receptors is associated with lowered extrapyramidal effects (EPS) such as neuromuscular disturbance liability and improved capacity to alleviate negative symptoms (alogia, flattening affect, social withdrawal) and cognitive impairments (sensory-gating, working, verbal memory). Although the introduction of APDs was a major advance in the treatment of schizophrenia, there is still a need for improvement, as they have a tendency to cause weight gain and a significant number of patients remain resistant to treatment.

Naturally occurring aporphine alkaloids and their synthetic derivatives have served as leads for the development of new neurotropic drugs. Of these, (R)apomorphine (APO) and its derivatives have high affinity and specificity for dopaminergic receptors and may be a valuable template for the search of subtype selective ligands for diseases like Parkinson's disease, schizophrenia, attention-deficit hyperactivity disorder and erectile dysfunctions (Sipos *et al.*, 2008). However, despite its high intrinsic agonism activity and rapid onset of anti-parkinsonian effects, APO suffers from poor bioavailability, metabolic instability and potential central emetic side-effects (Liu *et al.*, 2008).

In contrast, compounds such as bulbocapnine, corytuberine, boldine and glaucine that share the (*S*)-configuration exhibit neuroleptic-like actions in mice upon subcutaneous injection, suggesting that they may act as dopamine antagonists (Asencio *et al.*, 1999). However, orally administered boldine has very short plasma half life and is rapidly glucuronidated in the liver, a behavior that may explain its relatively weak and short-lived systemic actions and certainly limits its potential clinical usefulness (Sobarzo-Sanchez *et al.*, 2000).

In the present study, a combination of both computational and biomolecular screening approaches have been used to evaluate the affinity of aporphines at dopamine $(D_1 \text{ and } D_2)$ and serotonin $(5\text{-}HT_{1A} \text{ and } 5\text{-}HT_{2A})$ receptors to identify selective monopotent as well as multipotent ligands for dopaminergic and serotonergic receptors. To accomplish this, a homology model of the rat $5\text{-}HT_{2A}$ receptor was built based on the crystal structure of the human β_2 -adrenergic receptor followed by *in silico* screening of potential compounds using aporphines as the reference point. Subsequently, filtration based dopamine (D₁ and D₂) and serotonin ($5\text{-}HT_{1A}$ and $5\text{-}HT_{2A}$) radioligand receptor binding assays were optimised to test the compounds selected from the docking studies across the dopamine (D₁ and D₂) and serotonin ($5\text{-}HT_{1A}$ and $5\text{-}HT_{2A}$) receptors. Thus, findings in this study could have important implications for the treatment of dopamine and serotonin circuitry dysfunction.

1.1 Aim and Objectives of the Research

The aim of the research is to identify active aporphines with significant activity at the receptors that are involved in central nervous system (CNS) disorders such as schizophrenia and depression. The specific objectives are:

- 1. To construct a 3D molecular model of the rat 5-HT_{2A} receptor against the known crystal structure of the human β_2 -adrenergic receptor (PDB ID: 2RH1) and to investigate the ligand-receptor interactions of standard 5-HT_{2A} ligands.
- 2. To search for potential 5-HT_{2A} receptor active ligands based on aporphines.
- 3. To optimise assays for the characterization of dopamine (D_1 and D_2) and serotonin (5-HT_{1A} and 5-HT_{2A}) receptor binding activity.
- 4. To evaluate the affinity of aporphines at dopamine (D_1 and D_2) and serotonin (5- HT_{1A} and 5- HT_{2A}) receptors to identify selective monopotent as well as multipotent ligands.

2.0 Literature Review

2.1 G-Protein Coupled Receptors (GPCRs)

2.1.1 G-Protein Coupled Receptor (GPCR) Overview

Currently, almost 30% of the marketed prescription drugs act on GPCRs as agonists or antagonists by activating or inhibiting the receptors, respectively (Overington *et al.*, 2006) (**Table 2.1**). They still remain among the most profitable therapeutic targets (Hopkins and Groom, 2002). GPCRs have been categorized into six classes based on the nature of their ligands and sequence similarity. They are Class A (Rhodopsin-like), Class B (Secretin receptor family), Class C (Metabotropic glutamate/pherormone), Class D (Fungal mating pheromone receptor), Class E (Cyclic AMP receptor) and Class F (Frizzled/Smoothened) (George *et al.*, 2002; Kolakowski, 1994; Lagerstrom and Schioth, 2008; Pierce *et al.*, 2002). Of these, class A (Rhodopsinlike) receptors containing biogenic amines, nucleotides, odorants, lipids, proteases and neuropeptides hormones have been studied extensively.

GPCRs are integral membrane proteins composed of seven membrane-spanning segments helices connected by intracellular and extracellular loop segments, as well as an extracellular N-terminus and an intracellular C-terminus (**Figure 2.1**). There are several highly conserved residues or sequence motifs across the GPCRs including the LXXXD motif in the transmembrane 2, the DRY motif at the end of the transmembrane 3 and the NPXXY motif on the transmembrane 7 (De La Nuez Veulens and Rodríguez, 2009). Upon binding to a GPCR, a ligand induced conformational change promotes its coupling to a heterotrimeric G-protein (alpha (G_{α}), beta (G_{β}), and gamma (G_{γ}) subunits), leading to the activation of various effector proteins that allow the release of second messenger molecule.

Table 2.1: Examples of some prescription drugs which target GPCRs for the indicated condition or disease state (adapted from Leifert *et al.*, 2010).

Brand name	Generic name	G-protein coupled receptors	Disease/Indication	
Zyprexa	Olanzapine	Serotonin 5-HT ₂ and Dopamine	Schizophrenia, Antipsychotic	
Risperdal	Risperidone	Serotonin 5-HT ₂	Schizophrenia	
Claritin	Loratidine	Histamine H ₁	Rhinitis, Allergies	
Imigran	Sumatriptan	Serotonin 5-HT _{1B/1D}	Migraine	
Cardura	Doxazosin	α -adrenoceptor	Prostate hypertrophy	
Tenormin	Atenolol	β_1 -adrenoceptor	Coronary heart disease	
Serevent	Salmeterol	β_2 -adrenoceptor	Asthma	
Duragesic	Fentanyl	Opioid	Pain	
Imodium	Loperamide	Opioid	Diarrhea	
Cozaar	Losartan	Angiotensin II	Hypertension	
Zantac	Ranitidine	Histamine H ₂	Peptic ulcer	
Cytotec	Misoprostol	Prostaglandin PGE ₁	Ulcer	
Zoladex	Goserelin	Gonadotrophin releasing factor	Prostate cancer	
Requip	Ropinirole	Dopamine	Parkinson's disease	
Atrovent	Ipratropium	Muscarinic	Chronic obstructive pulmonary disease	

Figure 2.1: Schematic diagram of GPCRs with seven transmembrane regions (TM 1–TM 7) connected by intracellular and extracellular loop segments, as well as an extracellular N-terminus and an intracellular C-terminus (adapted from Bockaert and Pin *et al.*, 2010).

2.1.2 G-Protein Coupled Receptor (GPCR) Crystal Structures

Structural designation of GPCRs, particularly the heptahelical transmembrane region, is very challenging as their greasy hydrophobic surfaces do not readily make the regular intermolecular contacts required for high quality crystallization (Kanagarajadurai *et al.*, 2009). To date, relatively a few three dimensional (3D) crystal structures of GPCRs have been obtained (**Table 2.2**). The structural data from these studies provide basis information on the drug interactions at molecular level and crystallization of other GPCRs which allow rational approach for drug design.

Receptor structure	PDB ID	Resolution (Å)	References		
Bovine rhodopsin	IF88	2.8	Palczewski et al., 2000		
Bovine rhodopsin	1HZX	2.8	Teller <i>et al.</i> , 2001		
Bovine rhodopsin	1L9H	2.6	Okada et al., 2002		
Bovine rhodopsin	1U19	2.2	Okada <i>et al.</i> , 2004		
Bovine rhodopsin	1GZM	2.65	Li et al., 2004		
Bovine rhodopsin	2135-37	4.15	Salom <i>et al.</i> , 2006		
photoproduct					
Bovine	2G87	2.6	Nakamichi and Okada,		
bathorhodopsin			2006a		
Bovine	2HPY	2HPY 2.8 Nakamichi			
lumirhodopsin			2006b		
Bovine isorhodopsin	2PED	2.95	Nakamichi et al., 2007		
Bovine rhodopsin	2J4Y	3.4	Standfuss et al., 2007		
Human β_{2}	2RH1	2.4	Cherezov et al., 2007		
adrenoceptor					
Human β_{2} .	2R4R/S	3.4/3.7	Rasmussen et al., 2007		
adrenoceptor					
0 1 1 1 1	2Z73	2.5	Murakami and		
Squid rhodopsin			Kouyama, 2008		
Squid rhodopsin	2ZIY	3.7	Shimamura <i>et al.</i> , 2008		
Human β_{2}	3D4S	2.8	Hanson et al., 2008		
adrenoceptor			,		
Turkey β_{1}	2VT4	2VT4 2.7 Warne <i>et a</i>			
adrenoceptor			·····,		
Bovine rhodopsin	3CAP	2.9	Park et al., 2008		
Bovine rhodopsin	3DOB	3.2	Scheerer et al., 2008		
Human adenosine ₂ Λ	3EML	2.6	Jaakola <i>et al.</i> , 200		
Human dopamine D_3	3PBL	2.89	Chien <i>et al.</i> , 2010		
Human CXCR4	30DU/E0/E6/	2.5/2.9/3.2/	Wu <i>et al.</i> , 2010		
	E8/E9	3.1/3.1			
Human histamine H ₁	3RZE	3.1	Shimamura et al., 2011		
M ₃ muscarinic	4DAJ	3.4	Kruse <i>et al.</i> . 2012		
acetylcholine			,		
Human M ₂	3UON	3.0	Haga <i>et al.</i> , 2012		
muscarinic					
acetylcholine					

Table 2.2: List of the three dimensional crystal structures of GPCRs.

2.2 Dopamine (D) and Serotonin (5-hydroxytryptamine; 5-HT) Receptors

2.2.1 Dopamine (D) Receptors

Dopamine functions as a catecholamine neurotransmitter and neurohormone, are found extensively in central nervous system, and constitute about 80% of the total brain content (Vallone *et al.*, 2000). Dopamine receptors are G-proteincoupled receptors that can be further classified into D₁-like (D₁, D₅) and the D₂-like (D₂, D₃, D₄) subfamilies, based on their pharmacological, structural and biochemical properties (Andersen *et al.*, 1990; Niznik and Van Tol, 1992; Vallone *et al.*, 2000). The D₁-like receptor subtypes exert its signal by activating G₈ proteins, which stimulate adenylyl cyclases and increases cyclic adenosine monophosphate (cAMP) accumulation (Monsma *et al.*, 1990; Sunahara *et al.*, 1991), whereas the D₂-like receptor subtypes mediate its actions by activating G_{i/0}-proteins, which inhibits adenylyl cyclases and decreases cyclic adenosine monophosphate (cAMP) accumulation (Bunzow *et al.*, 1988 ; Sokoloff *et al.*, 1990 ; Van Tol *et al.*, 1991). Among the many types of dopamine receptors, D₁ and D₂ are widely expressed in the brain (Dziedzicka-Wasylewska, 2004).

2.2.2 Serotonin (5-hydroxytryptamine; 5-HT) Receptors

Serotonin (5-hydroxytryptamine; 5-HT) is predominantly located in the periphery as a neuromodulator of blood vessel tone and gastrointestinal tract, and only about 1–2% of the body's serotonin is found in the brain as the tryptaminergic neurotransmitter (Skop *et al.*, 1994). On the basis of their genetic, pharmacological and functional properties, serotonin receptors are clustered into seven main families, comprising a total of 14 distinct subtypes (Barnes and Sharp, 1999; Hoyer *et al.*, 2002; Peroutka, 1993). With the exception of the ionotropic 5-HT₃ receptor (Derkach *et al.*,

1989; Maricq *et al.*, 1991), all of the other serotonin receptors are G protein-coupled metabotropic receptors and act through intracellular signaling pathways to hyperpolarize (5-HT₁) or depolarize (5-HT_{2/4/5/6/7}) their host cells (Barnes and Sharp, 1999). Of the different subclasses of serotonin receptors, 5-HT_{1A} and 5-HT_{2A} are distributed extensively in many regions of the brain (Hoyer *et al.*, 1994).

2.2.3 Clinical Significance of Dopamine and Serotonin Receptors

The biogenic amine neurotransmitters, dopamine and serotonin are responsible for regulating diverse array of psychological and physiological functions including control of appetite, behaviour, cardiovascular system, cognition, emotion, endocrine secretion, motor, memory, mood, perception and reward (Emilien *et al.*, 1999; Jones and Blackburn, 2002; Missale *et al.*, 1998; Nichols and Nichols, 2008). Alteration in dopaminergic and serotonergic neurotransmission in central nervous system have been proposed to play a fundamental role in treating neuropsychiatric disorders including schizophrenia, depression, anxiety, Parkinson's Disease and related disorders (De Almeida *et al.*, 2008; Giovanni *et al.*, 2010). Numerous psychotropic drugs including antidepressants, antipsychotics, anxiolytics and hallucinogens have been implicated as the main therapeutic intervention for psychotic illness which exert their actions via interactions with dopamine (D₁ and D₂) and serotonin (5-HT_{1A} and 5-HT_{2A}) receptors (Alex and Pehek, 2007).

Several D_2 agonists including apomorphine, pramipexole, ropinirole, piribedil, rotigotine and the ergot alkaloids pergolide, bromocriptine and cabergoline have been used in the treatment of Parkinson's diseases (Emilien *et al.*, 1999; Güldenpfennig *et al.*, 2005; Morgan and Sethi, 2006; Rascol *et al.*, 2006). D₁ receptors agonist also has been targeted in the treatment of Parkinson's diseases although its use is limited by the occurrence of dyskinesias (Mailman *et al.*, 2001). In both preclinical models and clinical trials, the role of 5-HT_{1A} agonists and 5-HT_{2A} antagonists has been implicated as potential antiparkinsonian and antidyskinetic agents (Huot *et al.*, 2011).

First generation antipsychotics like chlorpromazine and haloperidol act primarily as D_2 antagonists are ineffective against negative and cognitive symptoms and inducing extrapyramidal motor side effects (EPS). Second generation antipsychotics including clozapine, risperidone, olanzapine, sertindole, quetiapine and ziprasidone are antagonists at both 5-HT_{2A} and D_2 receptors with minimal EPS burden and effective in alleviation of negative symptoms and cognitive functions. Third generation antipsychotics such as perospirone, aripiprazole, lurasidone, bifeprunox and cariprazine possessing combined D_2 partial agonism or antagonism and 5-HT_{1A} agonism is also associated with a lower EPS liability and better efficacy in treating negative and cognitive symptoms (Abi-Dargham and Laruelle, 2005; Akhondzadeh, 2006; Gardner *et al.*, 2005; Mailman and Murthy, 2010; Meltzer *et al.*, 2003; Miyamoto *et al.*, 2005; Newman-Tancredi and Kleven, 2010).

Blockade of 5-HT_{2A} receptors by antidepressant drugs such as trazodone, nefazodone and mirtazapine are widely used treatment for depressive illness (Celada *et al.*, 2004; Richelson, 2001). Activation of 5-HT_{1A} receptors by 8-OH-DPAT, buspirone, gepirone and tandospirone revealed a significant antidepressant effects in various animal models (Koek *et al.*, 2001; Matsuda *et al.*, 1995; Schreiber *et al.*, 1994; Wieland and Lucki, 1990). Additionally, azapirone class of drugs including buspirone and its analogs ipsapirone, gepirone and tandaspirone also exert anxiolytic actions via activation of 5-HT_{1A} receptors (Barradell and Fitton, 1996; Boyer and Feighner, 1993; Csanalosi *et al.*, 1987; Goa and Ward, 1986). Also, amoxapine is an antidepressant drug which act as weak competitive antagonist of D_2 receptors (Richelson, 2001).

2.3 Computer Aided Drug Discovery

2.3.1 Structure-based Drug Design (SBDD)

Structure-based drug design (SBDD) has emerged as a valuable pharmaceutical tool in medicinal chemistry. Remarkable contributions have been made by SBDD in the field of cancer chemotherapy, drug resistant infections and neurological diseases. The general process of SBDD involves both the synthesis of new derivatives and the evaluation of their binding to the target structure either through computational docking or elucidation of the target structure as a complex with the lead compound (Grey and Thompson, 2010). A prerequisite for this approach is a high-resolution (< 2.5Å) three-dimensional structure of the target, obtained through X-ray crystallographic analysis, in the presence or absence of the drug candidate (Grey and Thompson, 2010).

2.3.2 Homology Modelling

The process of homology or comparative modelling involves identification of the known 3D structure of a protein template, sequence alignment of the protein to be modelled (target) and the template protein, model building for the target based on the 3D structure of the template and the alignment and refining, validation or evaluation of the models (Marti-Renom *et al.*, 2000). The rate of success, quality and the reliability of the homology models depend on the level of sequence identity between the template and the target (Chothia and Lesk, 1986; Moult *et al.*, 1999; Venclovas *et al.*, 2001). As a rule of thumb, the target protein should share at least 30% of sequence identity with the template structure (**Figure 2.2**) (Baker and Sali, 2001).

For the majority of the last decade, rhodopsin served as the template for homology modelling of other GPCRs. Rhodopsin is structurally stabilized by being covalently bound to a prosthetic group, 11-*cis*-retinal that sustains the receptor in the inactive conformation (Okada and Palczewski, 2001). In contrast, all other GPCRs are activated by diffusible ligands, expressed at relatively low levels in native tissues and having greater functional and structural plasticity (Cherezov *et al.*, 2007). Thus, functionally and structurally more reliable templates are desired to obtain GPCR models which can give further insight into ligand binding and activation mechanisms. Hence, with the acquisition of the structure of the first human β_2 -adrenoceptor, the world of GPCR modelling has undergone tremendous changes especially with respect to more authentic approximations of the ligand binding sites of biogenic amine receptors.

Figure 2.2: Accuracy and application of protein structure models. Shown are the different ranges of applicability of comparative protein structure modelling, threading and *de novo* prediction; the corresponding accuracy of protein models; and their sample applications (adapted from Baker and Sali, 2001).

2.3.3 Molecular Docking

Molecular docking is a computational process of searching for a ligand that is able to fit both geometrically and energetically the binding site of a protein (Teodoro *et al.*, 2001). In general, the best fit for the ligand-protein complex relies on several parameters obtained from the protein and ligand atomic coordinates, such as geometrical complementarities, atomic van der Waals radius, charge, torsion angles, intermolecular hydrogen bonds and hydrophobic contacts, which results in numerous possible conformations or poses of a ligand in the target's binding site. As such, the best docking position is chosen considering the scoring functions, which are able to evaluate intermolecular binding affinities or binding free energies and the population of the cluster (number of conformations belonging to the same cluster, as such repetition is considered a signal of a local minimum) of the ligand-protein complex (De Azevedo Jr and Dias, 2008).

2.4 Receptor Binding Assays

2.4.1 Fundamental of Receptor–ligand Interactions

According to the law of mass action, the binding of a radioligand to a receptor can be described as a biomolecular association reaction, in which a radoligand [L] binds reversibly to a single binding site on the receptor [R]. In the absence of analyte [A], the radioligand [L] binds to the receptor [R] to form a radioligand receptor complex [RL] (**Equation 1**). At equilibrium, the ratio of $k_{.1}/k_{+1}$ is denoted as the dissociation constant (K_d), which is inversely proportional to the ligand affinity towards the receptor. Binding occurs when the radioligand and receptor collide due to diffusion with the proper collision energy and orientation. The radioligand receptor complex remains bound together over a certain time period depending on the affinity of the receptor and radioligand for one another.

Equation 1:

$$[R] + [L] \underset{k_{J}}{\longleftrightarrow} [RL]$$

The origin of radio-receptor binding assays depends on the competition between an analyte [A] and the radioligand for binding to a receptor (De Jong *et al.*, 2005). As shown in **Equation 2**, the presence of the analyte [A] leads to the formation of two receptor complexes, the radioligand receptor complex [RL] and the analyte receptor complex [RA]. The analyte competes with the radioligand for the same binding site on the receptor. The concentration at 50% inhibition (IC_{50}) value, which indicates the analyte [A] concentration that displaces 50% of the bound radioligand can be determined, if the analyte concentration is varied and both the receptor and radioligand concentrations are kept constant. The inhibition constant (K_i) of the analyte can be calculated using Cheng- Prusoff equation (**Equation 3**) (Cheng and Prusoff, 1973).

Equation 2:

$$[R] + [L] + [A] \leftrightarrow [RL] + [RA]$$

Equation 3:

$$K_{\rm i} = IC_{50} / (1 + [L] / K_{\rm d})$$

2.4.2 Radioligand Receptor Binding Assays

Radioligand receptor binding assays have been utilized in drug discovery and development to identify potential lead compounds. The first example of a quantitative radio-receptor binding assay was published by Lefkowitz *et al.*, (1970) based on the

same principle as the radioimmunoassay described by Yalow and Berson (1959). Traditionally used *in vivo* or whole animal assays as high volume screening tools have been replaced by receptor binding assays due to their reliability, cost-effectiveness and rapid nature (Sweetnam *et al.*, 1993). The basic principle of receptor binding studies is to assess the ability of potential drugs to interfere with the specific binding of a radioligand to its receptor. After attaining equilibrium with receptors, excess free radioligand must be separated rapidly from the bound radio-receptor complex. In contrast to centrifugation and other techniques, filtration is the most efficient and convenient method of separating free from bound radioligand, because it requires less handling and manipulation of samples (Mckinney, 1998). The bound complex is retained on glass fiber filters and the free radioligand passes through. The filter-bound radioactivity was counted using microplate scintillation.

2.5 Aporphine Alkaloids

2.5.1 An Overview of Aporphines

The naturally occurring aporphine alkaloids constitute a broad subgroup of benzylisoquinoline compounds, with more than 500 structures reported to date (Zhang *et al.*, 2007). Examples of different classes are aporphines, proaporphines, secoaporphines, oxoaporphines, dehydroaporphines, 7-hydroxyaporphines, aporphine dimers and aristolactams. They are widely distributed in many plant species including *Annonaceae, Lauraceae, Monimiaceae, Menispermaceae, Hernandiaceae, Ranunculaceae* and others.

2.5.2 Structural Diversity of Aporphines

Figure 2.3: General structure of aporphines

Aporphines are a diverse group of tetracyclic bases derived by direct bonding between the A and D aromatic rings of the benzylisoquinoline nucleus (**Figure 2.3**). Many natural aporphines are exist as R-(-) or S-(-) configuration, depending on the stereochemistry of C-6a and usually substituted at position 1 and 2 by hydroxyl, methoxy or methlenedioxy groups. The tetracyclic skeleton can also be substituted at position 9, 10 and 11, and less frequently at positions 3 and 8 and in a few cases, the position 7 or 4 is oxygenated. The nitrogen atom at position 6 is usually tertiary in the base form but may also be quaternary, less frequently acetylated or formylated (Stevigny *et al.*, 2005).

2.5.3 Pharmacological Properties of Aporphines

Aporphines exhibit a wide range of interesting pharmacological properties including antioxidant, antiplatelet, antitumor, anticonvulsant, antiplasmodial, antineoplastic, antimalarial, antiprotozoal, antipoliovirus, cytotoxic and antiparkinsonian effects (Guinaudeau *et al.*, 1994; Rios *et al.*, 2000). Of these, R-(–)-Apomorphine (**APO; Figure 2.4**), the semisynthetic or total synthetic prototypical

aporphine (Neumeyer *et al.*, 1970), is a well established dopamine agonist and has been marketed for the treatment of Parkinson's disease and erectile dysfunction (Picada *et al.*, 2002). Despite its high intrinsic agonist activity and fast onset of anti-parkinsonian effects, APO suffers from poor bioavailability, short duration of action and potential central emetic side-effects due to its oxidation potential (Subramony, 2006). In addition, although the catechol moiety contributes to the high dopaminergic activity by H-bonding with dopamine receptors it is not physico-chemically stable (Liu *et al.*, 2008). Thus, to improve APO's pharmacological profile, there is a need for further development of novel compounds by bioisosterically replacing the catecholic component with a more stable functional group.

Likewise, *S*-(+)-boldine (**Figure 2.4**), the major active alkaloidal constituent in the leaves and bark of the Chilean boldo tree (*Peumus boldus* Molina, Monimiaceae) (O'brien *et al.*, 2006) has been commercially used for hepatic dysfunction and as an ingredient in choleretics and laxatives. In spite of the greater *in vitro* binding affinity of boldine, its *in vivo* activities are weaker than those of glaucine, which is interpreted as a result of its poor access to the central nervous system. Therefore, it has been suggested that halogenation of boldine derivative would be expected to give a better absorption and distribution properties, being more lipophilic, as well as being more stable metabolically (Asencio *et al.*, 2005). *O*-methylation of one or both of the hydroxyl groups of boldine as exhibited by predicentrine and glaucine also enhances the pharmacokinetic profile (**Figure 2.4**). Chung *et al.*, (2009b) also reported that boldine shows competitive binding to 5-HT_{2A} receptors.

R-(–)-apomorphine

S-(+)-boldine

S-(+)-predicentrine

S-(+)-glaucine

Figure 2.4: Structures of aporphines

3.0 Computational Investigation of the 5-HT_{2A} Receptor Binding Interactions of Standard Ligands and Aporphines

3.1 Introduction

3.1.1 5-HT_{2A} Receptor (5-HT_{2A}R) Structure

The 5-HT₂ receptor family consists of three subtypes, 5-HT_{2A}, 5-HT_{2B} and 5- HT_{2C} , which are similar in terms of molecular structure, pharmacology and signal transduction pathways (Barnes and Sharp, 1999). All three subtypes are single protein molecules with a high degree of homology within the seven transmembrane domains and coupled via heterotrimeric GTP binding protein of the Gq/11 type to increase the hydrolysis of inositol phosphates and elevate intracellular calcium (Hoyer *et al.*, 2002). However, due to high sequence conservation within the transmembrane region, it has been historically difficult to develop subtype selective ligands. This task has been made even more challenging in the absence of X-ray crystal structures for any of serotonin receptors. 5-HT receptors share a common molecular architecture with other members of the GPCR. The 5-HT_{2A} receptor structure consists of an extracellular domain, a membrane domain and an intracellular domain. The extracellular domain comprises the extracellular loops (ECL) ECL1, ECL2 and ECL3 between transmembrane (TM) helices TM 2 and 3, TM 4 and 5, and TM 6 and 7, respectively. The membrane domains possess seven transmembrane helices, TM1-TM7. The intracellular domain comprises the C-terminus and the intracellular loops (ICL) ICL1, ICL2 and ICL3 between TM 1 and 2, TM 3 and 4, and TM 5 and 6, respectively, and a highly conserved disulfide bond linking TM3 and ECL2 in nearly all GPCRs.

Site-directed mutagenesis studies associated with molecular modelling studies have led to the identification of a number of residues that are probably involved in ligand binding and effector coupling features of the 5-HT_{2A} receptor (Baxter *et al.*, 1995; Boess and Martin, 1994; Saudou and Hen, 1994). A number of 5-HT_{2A} receptor models have been constructed based on analogy with rhodopsin and bacteriorhodopsin and subjected to site directed mutagenesis (Almaula *et al.*, 1996a; Almaula *et al.*, 1996b; Choudhary *et al.*, 1993; Holtje and Jendretzki, 1995; Kristiansen and Dahl, 1996; Roth *et al.*, 1997a; Westkaemper and Glennon, 1993). Another X-ray crystal structure of GPCR, human β_2 -adrenergic receptor that belongs to amine subfamily has also been used as a template to build 5-HT_{2A} homology model (Kanagarajadurai *et al.*, 2009; Pecic *et al.*, 2010).

Most distinct models of the 5-HT_{2A} receptor structure share the following properties: an electrostatic interaction between the positively charged amine moiety of the agonists and antagonists with a negatively charged aspartic acid residue Asp155(3.32) (Wang *et al.*, 1993), interactions with polar/charged side chain groups including Ser159(3.36) (Almaula *et al.*, 1996b) and Ser239(5.43) (Braden and Nichols, 2007) and van der Waals interactions with aromatic residues such as Trp151(3.28), Phe243(5.47), Phe244(5.48), Trp336(6.48), Phe339(6.51), Phe340(6.52), Trp367(7.40) and Tyr370(7.43) which form a hydrophobic pocket surrounding the agonist or antagonist molecule (Choudhary *et al.*, 1995; Kroeze *et al.*, 2002; Roth *et al.*, 1997b; Shapiro *et al.*, 2000). Structural information from these studies has shown the importance of the conserved residues in the binding mode of both agonists and antagonists and also provides detailed knowledge about the ligand-receptor interactions.

3.2 Materials

Silicon graphics workstations, Sybyl modelling software, Autodock4.0 docking, Discovery Studio 3.1 and LigPlot 4.4.2 softwares.

3.3 Methodology

3.3.1 Sequence Alignments

FASTA sequences used in the analysis were retrieved from the European Bioinformatics Institute website (http://www.ebi.ac.uk) database. Sequence alignments were generated with CLUSTALW2 software (http://www.ebi.ac.uk/Tools/clustalw2/) (Thompson *et al.*, 1994). Conserved residues among the 5-HT family with respect to 5-HT_{2A} receptor were resolved through sequence comparison.

3.3.2 Model Construction

A homology model for the rat 5-HT_{2A} receptor was constructed using Sybyl 7.1 (Tripos, St. Louis, MO, USA) on a Silicon Graphics O₂ station. The FASTA sequence rat 5-HT_{2A} receptor (ID: P14842) was submitted for BLASTp analysis to search for a suitable template. The template and target sequences were aligned using CLUSTALW2. The alignment was then manually refined using JALVIEW 2.4 to ensure alignment of the known conserved motifs and minimise gaps in the transmembrane regions. The final alignment was used as the input to the Sybyl 7.1 software package to build the model. Molecular mechanics minimisations were performed using CHARMM (Brooks *et al.*, 1983) with a nonbonded interaction cutoff = 8 Å and a distance dependent dielectric constant $\varepsilon = 4$. The output structure was validated using PROCHECK

(http://nihserver.mbi.ucla.edu/SAVES/) (Laskowski *et al.*, 1993) to assess the stereochemical quality by Ramachandran plot analysis.

3.3.3 Docking Procedure

Molecular docking was conducted using the Lamarckian genetic algorithm (Morris et al., 1998) implemented in Autodock4.0. 3D structures of the 5-HT_{2A} standard ligands were taken from the ZINC database (http://zinc.docking.org) (Irwin and Shoichet, 2005). Prior to docking, the structures of the rat 5-HT_{2A} receptor and the compounds were prepared using AutoDock Tools interface. The polar hydrogen atoms were added to the receptor structure, non-polar hydrogen atoms were merged, missing atoms were repaired, Kollman charges were added and the resulting structure was saved as a pdbqt file. On the other hand, Gasteiger charges were added to each of the compound structure and these were then saved as separate pdbqt file. Using the Autogrid utility, the binding cavity was defined to cover the active site with a size of 128 x 128 x 128 points and a grid spacing of 0.2 Å. A genetic algorithm was calculated for 100 runs with a population size of 150 and a total number of 2,500,000 evaluations. Based on the generated clusters using the MGL Autodock tools 1.5.2, the docked conformations were visualized using the 3D window of Discovery Studio 3.1 (Accelrys, Inc., San Diego, CA, USA). Hydrogen bonds, hydrophobic contacts and distances were plotted by LigPlot 4.4.2 (Wallace *et al.*, 1995).

3.3.4 Compound Selection for Docking

The ZINC database with approximately ~3.7 million compounds was used as a source of compounds (http://zinc.docking.org) (Irwin and Shoichet, 2005). A set of 69

compounds were selected based on boldine as the backbone structure with at least 90% similarity, drug-like properties (molecular weight \leq 500, number of rotatable bonds \leq 8, number of hydrogen bond donors or acceptors \leq 10, log P value from -4 to 5, net charges from -5 to 5, polar desolvation value from -400 to 1 kcal/mol, apolar desolvation value from -100 to 40 kcal/mol, polar surface area of 150Å^2) and purchasable. The selected compounds were further filtered by discarding compounds with unusual substitutions not found in naturally-occurring aporphines including compounds with R₃-methylamine, R₃-hydroxymethyl, R₆-dimethyl and R₆-oxoethyl substituents (**Figure 3.1**). The remaining 52 compounds were then subjected for docking using the generated rat 5-HT_{2A} receptor model according to protocol described previously (**see Section 3.3.3**).

Figure 3.1: General structure of naturally-occuring aporphines with possible substitution sites indicated as R_1 - R_{11} .

3.4 Results and Discussion

3.4.1 Selection of Templates

Following BLASTp query, the human β_2 -adrenergic receptor structure (PDB ID: 2RH1) was selected as the template sequence. This receptor belongs to the group of GPCRs with almost 30% sequence similarity with the 5-HT_{2A} receptor, thus it is functionally connected to the family of serotonin receptors. In contrast, bovine rhodopsin shares a low sequence similarity to 5-HT_{2A} receptor with less than 20% and it is a retinal-binding protein, functionally totally different from the 5-HT_{2A} receptor (Palczewski *et al.*, 2000).

3.4.2 Sequence Analysis

Alignment of the rat 5-HT family receptor sequences revealed that they possess 19–68% identity (**Figure 8.1 in Appendix A**). The analysis revealed the presence of motif [T/S]XSI at transmembrane 3, F[Y/F]XP at transmembrane 5, WXPFF at transmembrane 6, WXGY and SX₂NPX₂Y at transmembrane 7 and DRY at intracellular loop 2. Alignment of the multiple species of 5-HT_{2A} receptor including human, orang utan, Rhesus macaque, bovin, pig, dog, rat, mouse and Chinese hamster showed that they share 88–97% identity (**Figure 8.2 in Appendix A**). The major discrepancies occur at the N-terminus and C-terminus where there is very little conservation of sequence. However, these regions are less likely to affect the putative ligand binding site. The rat and human 5-HT_{2A} receptors displayed 91% sequence identity (**Figure 8.3 in Appendix A**). A detailed comparison of their sequences indicated that all the species specific residues are found in the loop regions apart from Thr82, Ile150 and Ala242 which are located in transmembrane regions 1, 3 and 5,

respectively. The rat 5-HT_{2A} receptor is closer to rat 5-HT_{2C} than rat 5-HT_{2B} with 48% and 38 % identity respectively (**Figure 8.4 in Appendix A**).

3.4.3 Model Construction

Chain A of the human β_2 -adrenergic receptor crystal structure (PDB: 2RH1) was used as a basis structure after excision of the lysozyme adduct. A rat 5-HT_{2A} receptor homology model was constructed from the substitution of amino acids in the 3D structure of the human β_2 -adrenergic receptor and the insertion and/or deletion of amino acids according to the final sequence alignment using Sybyl 7.1. Internal water molecules were ignored during model building. The conserved disulfide bond between Cys148 in TM3 and Cys227 in extracellular loop 2 (ECL2) was maintained during the building of rat 5-HT_{2A} homology model. A protein loop search was used to fill the gaps in the intracellular and extracellular loops, the C-terminus and the N-terminus by the Biopolymer loop search facility in Sybyl 7.1 with suitable fragments from its protein database based on PDB structures.

3.4.4 Model Evaluation

The output structure was energy minimised using the CHARMM force field in order to remove as many as possible of any of unfavourable bond lengths, bond angles, torsion angles or non-bonded interactions that may have been produced during the modelling process. After the refinement process, the full-length structure was submitted to PROCHECK to verify the integrity of the structure. All together 89.4% of the residues were in the most favourable region, 9.9% in the additionally allowed region and 0.5% in the generously allowed region (**Figure 8.5 in Appendix B**).

3.4.5 Docking

In order to validate the model and computational methods, docking was performed with standard 5-HT_{2A} ligands which are classified as endogenous ligands (serotonin), agonists (tryptamine, 5-methoxytryptamine (5-MeOT), (R/S)-isomers of 2, 5-dimethoxy-4-iodoamphetamine (DOI)) and antagonists (spiperone, risperidone, haloperidol, ritanserin and ketanserin).

All the standard ligands were observed to bind within the active site. Three sets of residues were involved: Asp155 forming an electrostatic interaction with the protonated amine group of the agonists and antagonists, an aromatic network consisting of the conserved residues (Trp336, Phe339, Phe340 and Tyr370) and non-aromatic residues including Val156, Ser131, Ile152, Ser159, Thr160, Leu229, Val235, Gly238, Ser239, Ala242, Asn343 and Val366. In the case of serotonin, residues from transmembrane regions 3, 5 and 6 (Figure 8.6(a) in Appendix C) were seen to be involved in binding interactions. The protonated amine moiety was able to form an electrostatic interaction with Asp155, whereas the hydroxyl group was hydrogen interacted with Thr160. Johnson *et al.*, (1994) reported an interaction of Ser239 with the hydroxyl group. The van der Waals interactions were also observed between the endogenous ligand and the residues Trp336, Phe339 and Phe 340.

The agonists interacted with similar residues from transmembrane regions 3, 5, 6 and 7 as for serotonin (**Figure 8.6(b)–(e) in Appendix C**). However, the antagonists were found to bind with a wider range of residues from transmembrane regions 2,3,5,6,7 and extracellular loop 2 (ECL2) (**Figure 8.7(a)–(e) in Appendix C**) with a number of residues in common such as Trp151, Asp155, Ser159, Thr160, Leu229, Val235, Gly238, Ala242, Trp336, Phe339, Phe340 and Tyr370.

These observations were consistent with experimental data and also indicated that the conformation of the ligand and a preference of residues in certain helices are influenced by the type of the ligand. The electrostatic interaction with the Asp155 residue has been found to be essential for agonist and antagonist binding (Wang *et al.*, 1993). Almaula *et al.*, (1996b) have suggested that Ser159 in transmembrane 3 helps in anchoring the charged amino group of serotonin. Mutation of Ser239A causes a significant reduction in affinity of serotonin, but has less effect on 5-MeOT and (*R/S*)-DOI affinity and no effect on ketanserin, ritanserin and spiperone affinity (Johnson *et al.*, 1997; Shapiro *et al.*, 2000; Shapiro *et al.*, 2002). Other molecular modelling studies on serotonin receptors have suggested that aromatic residues in the transmembrane region, Trp151, Phe243, Phe244, Trp336, Phe339, Phe340, Trp367 and Tyr370 involved in van der Waals interactions and formed a hydrophobic pocket surrounding the agonist or antagonist ligands (Choudhary *et al.*, 1995; Kroeze *et al.*, 2002; Roth *et al.*, 1997; Shapiro *et al.*, 2000).

3.4.6 Compound Selection from Docking Studies

It is well known that aporphinods can bind to at least three types of neurotransmitters including adrenergic, dopaminergic and serotonergic receptors. Therefore, identification of compounds that have favourable affinity and selectivity for $5-HT_{2A}$ receptor as therapeutic drugs and chemical leads is pivotal. Hence, in this study, boldine based on aporphine skeleton with *S*-configuration was selected as the reference

point because it was thought to bind with high affinity to 5-HT_{2A} receptor (Chung *et al.*, 2009b).

An investigation into the ligand-receptor interactions for the 5-HT_{2A} receptor revealed the formation of an electrostatic interaction and hydrogen bonding between the protonated amine group of (S)-boldine and the carboxylate group of the conserved Asp155 (Figure 3.2). This observation was in agreement with the previous work reported by Indra et al., (2002) who had also demonstrated that the conserved Asp155 in transmembrane region 3 forms a strong reinforced electrostatic interaction with the protonated amine group of aporphines. On the other hand, the hydrophobic part of the (S)-boldine that is defined by tetracyclic core (ring A, B, C, D) was surrounded by residues from transmembrane domains 3, 5, 6 and 7 and extracellular loop 2 including the non-aromatic residues (Val156, Ser159, Thr160, Leu229, Val235, Ser239, Ala242 and Val366) and aromatic residues (Phe234, Trp336, Phe339, Phe340 and Tyr370). Of these, Val156, Ser159, Thr160 and Phe234 involved in polar interactions or hydrogen bonding and Leu229, Ser239, Ala242, Trp336, Phe339, Phe340 and Tyr370 involved in van der Waals interactions. This is consistent with the work by (Braden et al., 2006; Choudhary et al., 1993; Roth et al., 1997b) who reported the importance of the conserved aromatic residues (Trp336, Phe339, Phe340 and Tyr370) in the binding of 5-HT_{2A} receptor.

Figure 3.2: Proposed binding mode of (*S*)-boldine in the 5- HT_{2A} receptor. The residues involved in hydrogen bonding, electrostatic or polar interactions were represented in pink circles with their hydrogen bonds with their main chains (blue dashed arrow), side chains (green dashed arrow), charge interactions (pink dashed double-ended arrow) and residues involved in van der Waals interactions (green circles).

Through virtual screening against the 5-HT_{2A} receptor model, 13 purchasable compounds with higher or comparable activity to (*S*)-boldine were identified (**Table 3.1**). Of these, four of them ((*R*) and (*S*)-laureline, (*S*)-nuciferine and (*S*)-isothebaine) were only available in racemic form. The selected compounds were assayed to determine their binding affinities towards dopamine (D₁ and D₂) and serotonin (5-HT_{1A} and 5-HT_{2A}) receptors.

Compounds	6a	R ₁	R ₂	R ₆	R9	R ₁₀	R ₁₁	$K_i (\mu \mathbf{M})$
Laureline	S	O-C]	H ₂ -O	Me		OMe		2.81
2-OH-NPA	R		OH	Pr		OH	OH	5.45
Roemerine	R	O-CH ₂ -O		Me				5.82
Bulbocapnine	S	O-CH ₂ -O		Me		OMe	OH	6.82
NPA	R			Pr		OH	OH	6.73
Laureline	R	O-CH ₂ -O		Me		OMe		6.79
Isothebaine	S	OH	OMe	Me			OMe	10.94
Apomorphine	R			Me		OH	OH	11.43
Nuciferine	S	OMe	OMe	Me				12.51
Apomorphine	S			Me		OH	OH	13.70
Boldine	S	OMe	OH	Me	OH	OMe		15.32
Isocorydine	S	OMe	OMe	Me		OMe	OH	19.28
Corydine	S	OH	OMe	Me		OMe	OMe	25.07
Corytuberin	S	OH	OMe	Me		OMe	OH	28.80

Table 3.1: Computed K_i values of the selected compounds.

NPA=N-propylapomorphine; 2-OH-NPA=2-hydroxy-N-propylapomorphine

Conclusion

A 3D molecular model of the rat 5-HT_{2A} receptor was constructed by homology modelling against the human β_2 -adrenergic receptor. All standard 5-HT_{2A} receptor ligands were accommodated well at the putative ligand binding cleft, however there were slight variations in their interactions due to the different functional groups present. The constructed model is competent to be used as the starting structure to predict ligand-receptor interactions at the molecular level and future drug design. A set of 13 compounds were selected to determine their activities across the dopamine and serotonin receptors using (*S*)-boldine as the backbone structure.

4.0 Optimisation and Evaluation of Filtration Based Receptor Binding Assays for Dopamine (D₁ and D₂) and 5-Hydroxytryptamine (5-HT_{1A} and 5-HT_{2A})

4.1 Introduction

4.1.1 Properties of Receptor Binding Assays

Among the heterogeneous assays, filtration based receptor binding assays have been used widely for the biochemical identification and pharmacological characterization of the receptors. This assay is a traditional and trusted method which offer the advantages of less colour quenching, larger sample volumes, higher efficiency than the scintillation proximity assays and with a fewest development steps (De Jong *et al.*, 2005). There are two components of the radioligand binding including the specific binding to a targeted receptor sites and nonspecific binding to other receptor sites. The nonspecific binding is determined in the presence of excess unlabelled ligand to block the receptor binding sites of interest. Specific binding is defined as the difference between total binding observed in the absence of the unlabelled ligand and nonspecific binding.

It is important to meet the desired binding criteria for validating the radioligand binding assays (Mckinney, 1998; Scheinin *et al.*, 1994). These are the following criteria:

- the binding should be reversible and saturable with low ligand concentrations.
- nonspecific binding should be lower (less than 20% of the total binding).
- total binding should be equal or less than 10% of the radioligand added.
- more than 80% of the specific binding observed at K_d concentration of the radioligand.

- the binding should reach equilibrium and stable at the each concentration of the radioligand.
- the tissue and subcellular distribution of the specific binding should be consistent.
- correlation between the drug affinity *in vitro* and pharmacological potency *in vivo*.
- characteristic drug displacement with both agonists and antagonists.

The binding parameters of a ligand to its receptor also might be altered by other assay conditions including incubation time and temperature, buffer pH, filter plate type, washing times and concentration of radioligand, unlabelled ligand and membrane.

4.1.2 Selection of Receptor Source

In the brain, the D_1 and D_2 receptors are highly concentrated in the striatum and are also present at lower levels, in several other brain regions including the amyglada, cortex, globus pallidus, (Jackson and Westlind-Danielsson, 1994) hippocampus, hypothalamus, thalamus, substantia nigra and ventral tegmentum (Beaulieu and Gainetdinov, 2011; Missale *et al.*, 1998; Weiner *et al.*, 1991). The D_2 receptors are observed to be lower in cortical areas (De Keyser *et al.*, 1988; Hall *et al.*, 1991; Lidow *et al.*, 1989). Conversely, D_2 receptors are expressed at higher level in thalamus, hippocampus and brainstem (Hurd *et al.*, 2001; Jackson and Westlind-Danielsson, 1994; Weiner *et al.*, 1991). There is only a minimal amount of D_1 and D_2 receptors in the cerebellum (Beaulieu and Gainetdinov, 2011; Camps *et al.*, 1989). Radioligand-binding studies have shown that rat striatum is used widely as a D_1 and D_2 receptor source, where they are distributed abundantly (Billard *et al.*, 1984; Lo, 2007). Thus, this study was carried out using striatum from male Sprague Dawley (SD) rat brain as D_1 and D_2 receptor source.

Within the brain, 5-HT_{1A} receptors are mainly found both pre- and postsynaptically, particularly with highest expression in the cerebral cortex, hippocampus, septum, amyglada and raphe nucleus and with lower levels of expression in the basal ganglia and thalamus (Barnes and Sharp, 1999; El Mestikawy et al., 1991; Hoyer et al., 2002; Pazos and Palacios, 1985a). On the other hand, 5-HT_{2A} receptors are primarily located postynaptically, where they are most densely distributed throughout the layers of cortex, notably in the neocortex, but they are found with much lower levels in brainstem, hippocampus and striatum (Barnes and Sharp, 1999; Cornea-Hebert et al., 2002; Hoyer et al., 2002; Pazos et al., 1985b; Xu and Pandey, 2000). Radioligand binding studies have shown that either rat cerebral cortex or hippocampus is used as a 5-HT_{1A} receptor source (Arro et al., 2001; Chung et al., 2009a; Hall et al., 1985; Nénonéné et al., 1994; Nénonéné et al., 1996) in contrast to either rat prefrontal cortex or cerebral cortex as receptor source for 5-HT_{2A} receptors (Chung et al., 2009b; Harms et al., 2000; Hoyer et al., 1985). This study was conducted using the cerebral cortex from male Sprague Dawley (SD) rat brain as the 5-HT_{1A} and 5-HT_{2A} receptor source due to the higher yield of cerebral cortex.

4.1.3 Selection of Radioligand

A number of *in vitro* binding assays with radiolabelled drugs containing tritium, [³H] or iodine, [¹²⁵I] have previously been developed to characterise the interaction of ligands with different types of receptors. Tritium is the radiolabel most commonly used because it has a long half life and is less hazardous, meaning that fewer handling precautions are required and larger quantities can be stored and disposed of. The choice of radioligand used depends on if possessing high specific activity, affinity and selectivity toward the receptor being studied. The radioligand also should be pure and chemically stable in the assay medium used during incubation.

Quantitative autoradiographic as well as *in vitro* and *in vivo* binding studies have revealed the specificity and selectivity of $[^{3}H]$ SCH 23390 in labelling D₁ receptors (Andersen and Groenvald, 1986a; Billard *et al.*, 1984 ; Dawson *et al.*, 1986). Thus, $[^{3}H]$ SCH 23390 is designated as the most potent and selective antagonist radiotracer in ascribing the pharmacological and regional characteristics of D₁ receptors (Hyttel, 1983; Iorio *et al.*, 1983).

On the other hand, in case of D_2 receptors, [³H] spiperone has been used in both *in vitro* and *in vivo* binding experiments as a potent antagonist radioligand with reasonable selectivity over D_2 receptors (Bischoff and Gunst, 1997; Chung *et al.*, 2005; Kalkman *et al.*, 2001; Lo, 2007; Madras *et al.*, 1988). In addition, [³H] spiperone is also used for the visualization of D_2 receptor in rat brain using quantitative autoradiography (Boyson *et al.*, 1986).

For 5-HT_{1A} receptors, the prototypical radiolabelled agonist, [³H] 8-OH-DPAT has been used extensively to characterize their physiological, biochemical and behaviours properties (Gozlan *et al.*, 1983; Hall *et al.*, 1985). It has also been widely used as a specific radioligand for both *in vitro* and *in vivo* studies of the 5-HT_{1A} receptor (Assie and Koek, 1996; Chung *et al.*, 2005; Chung *et al.*, 2009a; Hamon *et al.*, 1984). and for quantitative autoradiographic analysis to determine the regional distribution of 5-HT_{1A} receptors in rat brain (Pazos and Palacios, 1985a). In the case of 5-HT_{2A} receptors [³H] ketanserin has been found to be the radioligand of choice for *in vitro*, *in vivo* and autoradiographical studies to investigate the neuroanatomical localization, pharmacological characterization and functions of the receptor throughout the central nervous system (Assie *et al.*, 1988; Chung *et al.*, 2009b; Harms *et al.*, 2000; Leysen *et al.*, 1982; López-Giménez *et al.*, 1997; Pazos *et al.*, 1985b).
4.2 Materials

4.2.1 Chemicals and Instrumentation

[³H] 8-OH-DPAT (150 Ci/mmol), [³H] ketanserin HCl (67 Ci/mmol), [³H] SCH 23390 (60 Ci/mmol) and [³H] spiperone (15 Ci/mmol) were purchased from American Radiolabeled Chemicals (St. Louis, MO, USA). Bradford protein reagent, tris(hydroxymethyl)aminomethane, bovine serum albumin (BSA, fraction V), spiperone, serotonin hydrochloride, butaclamol hydrochloride, SCH 23390 hydrochloride, buspirone hydrochloride, (±)-propranolol hydrochloride, dicyclomine hydrochloride were obtained from Sigma-Aldrich (St. Louis, MO, USA). All solvent and reagents were of analytical grade and purchased from Fisher Scientific (Loughborough, Leicestershire, UK).

96-well flat bottom Falcon plates were purchased from Becton Dickinson Labware (Franklin Lakes, NJ, USA). TopSeal-A, Bottom Seal, MicroScint-O scintillation cocktail, UniFilter GF/C plates and UniFilter GF/B plates were supplied by Perkin Elmer (Wellesley, MA, USA).

The instruments used included a Ultra-Turrax homogenizer (IKA Labortechnik, Staufen, Germany) and a glass-teflon motor-driven Glas-Col homogenizer (Terre Haute, Indiana, USA), an ultra high speed centrifuge (Beckman Coulter's Optima L-100 K Ultracentrifuge, Brea, CA, USA), a UV-vis spectrophotometer (UV-1601, Shimadzu, Kyoto, Japan), an incubator (Friocell 55, MMM Medcenter Einrichtungen GmbH, Grafelfing, Germany), a FilterMate Cell Harvester, a TopCount NXT microplate scintillation and a luminescence counter (Perkin Elmer).

4.3 Methodology

4.3.1 Preparation of Dopamine (D₁ and D₂) and 5-Hydroxytryptamine (5-HT_{1A} and 5-HT_{2A}) Membrane Receptors

All animal use techniques were in accordance with the guiding principles for the care and use of research animals promulgated by the Ethics Committee on Animal Welfare and Experimentation, Faculty of Medicine, University of Malaya, Malaysia (Reference number: FAR/05/11/2007/CLY (b) (R)). Male Sprague Dawley rats weighing approximately 200–400 g were killed by cervical dislocation and their brains were removed rapidly and stored at -80°C prior to use. Either rat striatum (for D₁ and D₂ receptors) or rat cerebral cortex (for 5-HT_{1A} and 5-HT_{2A} receptors) was dissected on ice, weighed and placed in 20 volumes (weight/volume) of ice-cold 50 mM Tris-HCl buffer at pH 7.4 (**Figure 4.1**). The tissues were homogenizer at 2400 rpm on ice and centrifuged at 40,000g for 45 min at 4 °C. The supernatant was then discarded and the pellet was resuspended, homogenized and centrifuged for another 45 min. The resulting supernatant was discarded and the pellet was re-homogenized and incubated at 25 °C for 20 min to destroy endogenous dopamine or serotonin before being recentrifuged as above. The final pellet was resuspended in 3 volumes of the same buffer.

Figure 4.1: Diagrammatic representations of dissection procedure for rat brain. Dotted lines indicate positions of initial sections (adapted from Glowinski and Iversen, 1966).

4.3.2 **Protein Determination**

A standard curve for Bovine Serum Albumin (BSA) was constructed for the range of 0–2.0 mg/ml. The assay contained of 0.1 ml of protein standard and 0.1 ml of tissue sample, respectively. Thereafter, 3.0 ml of Bradford reagent was added and gently vortexed to ensure even mixing. The reaction was allowed to continue for 45 min at room temperature before the absorbance was measured at the wavelength 595 nm. Protein concentration estimations were calculated from the BSA standard curve plotted using PRISM[®] software, version 3.0 (Graphpad software, Inc, San Diego, CA, USA).

4.3.3 Receptor Binding Assays

Filtration based radioligand binding assays of dopamine (D_1 and D_2) and 5hydroxytryptamine (5-HT_{1A} and 5-HT_{2A}) receptors were carried out according to the methods published previously (Billard *et al.*, 1984 ; Chung *et al.*, 2009b; Chung *et al.*, 2009a; Lo, 2007; Soo, 2006) with minor modifications.

4.3.3.1 Optimisation of Dopamine (D₁ and D₂) and 5-Hydroxytryptamine (5- HT_{1A} and 5-HT_{2A}) Receptor Binding Assays

All assays were performed in triplicate in a total volume of 250 μ l according to the protocol summarized in **Table 4.1**. To optimise a variety of assay conditions, the reaction mixtures containing 200 μ l of membrane suspension in 50 mM tris-HCl buffer at different pH values was incubated with 25 μ l of radioligand for different periods of time at a variety of controlled temperatures. Nonspecific binding was determined by parallel incubations with 25 μ l of reference ligand. Incubations of the assay mixtures were terminated by rapid filtration through GF/C or GF/B filters using a FilterMate Cell Harvester and washed with 200 μ l of ice-cold 50 mM Tris-HCl buffer at pH 7.4. The filters were then dried at room temperature overnight and sealed at the bottom. Subsequently, 25 μ l of MicroScint-O scintillation cocktail was added into each well and the plates were sealed on top. The radioactivity retained on the filters was quantified using a micro plate scintillation counter for 1 min per well.

4.3.3.2 Saturation Experiments

For the determination of K_d and B_{max} values by saturation binding assays, the reaction mixtures containing 200 μ l of either striatum (30 μ g/well (D₁) and 50 μ g/well (D₂)) or cerebral cortex (100 μ g/well (5-HT_{1A} and 5-HT_{2A})) were incubated with 25 μ l of radioligand (0.003–1.0 nM $[^{3}H]$ SCH 23390 for D₁ receptor, 0.003–2.0 nM $[^{3}H]$ spiperone for D₂ receptor, 0.020–1.0 nM [³H] 8-OH-DPAT for 5-HT_{1A} receptor or 0.003–0.8 nM [³H] ketanserin for 5-HT_{2A} receptor). Nonspecific binding was determined by parallel incubations with 25 µl of reference ligand (1 µM SCH 23390 for D_1 , 100 µM butaclamol hydrochloride for D_2 , 100 µM serotonin hydrochloride for 5-HT_{1A} or 100 μM spiperone for 5-HT_{2A}). Incubations of assay mixtures (90 min at 22 °C (D₁ and 5-HT_{2A}), 80 min at 22 °C (D₂), 90 min at 25 °C (5-HT_{1A})) were terminated by rapid filtration through a GF/C filter using a FilterMate Cell Harvester and washed with 200 μ l of ice-cold 50 mM Tris-HCl buffer at pH 7.4 (4 times (D₁ and 5-HT_{2A}), 5 times (D_2) , 3 times (5-HT_{1A})). The filters were then dried at room temperature overnight and sealed at the bottom. Subsequently, 25 µl of MicroScint-O scintillation cocktail was added into each well and the plates were sealed on top. The radioactivity retained on filters was quantified using a micro plate scintillation counter for 1 min per well.

4.3.3.3 Competition Experiments

For the determination of K_i values by competition binding assays, the reaction mixtures containing of 200 µl of either striatum (30 µg/well (D₁) and 50 µg/well (D₂)) or cerebral cortex (100 µg/well (5-HT_{1A} and 5-HT_{2A})) were incubated with 25 µl of 0.5 nM [³H] SCH 23390 (D₁), 0.8 nM [³H] spiperone (D₂), 0.4 nM [³H] 8-OH-DPAT (5-HT_{1A}) or 0.5 nM [³H] ketanserin HCl (5-HT_{2A}) and 25 µl of the standard unlabelled ligands or DMSO. Each of the standard unlabelled ligand or DMSO interference was tested at 9–12 varied concentrations. Nonspecific binding was determined by parallel incubations with 25 µl of reference ligand (1 µM SCH 23390 for D₁, 100 µM butaclamol hydrochloride for D₂, 100 µM serotonin hydrochloride for 5-HT_{1A} or 100 µM spiperone for 5-HT_{2A}). The incubations were terminated, washed and dried and the radioactivity quantified as described earlier for the saturation experiments.

4.3.3.4 Z' factor

For the determination of Z' factor, the reaction mixtures containing 200 µl of either striatum (30 µg/well (D₁) and 50 µg/well (D₂)) or cerebral cortex (100 µg/well (5-HT_{1A} and 5-HT_{2A})) were incubated with 25 µl of 0.5 nM [³H] SCH 23390 (D₁), 0.8 nM [³H] spiperone (D₂), 0.4 nM [³H] 8-OH-DPAT (5-HT_{1A}) or 0.5 nM [³H] ketanserin HCl (5-HT_{2A}). Nonspecific binding was determined by parallel incubations with 25 µl of reference ligand (1 µM SCH 23390 for D₁, 100 µM butaclamol hydrochloride for D₂, 100 µM serotonin hydrochloride for 5-HT_{1A} or 100 µM spiperone for 5-HT_{2A}). The incubations were terminated, washed and dried and the radioactivity quantified as described earlier for the saturation experiments.

Daramatars	Receptors						
	D ₁	D_2	5HT _{1A}	5HT _{2A}			
Receptor source (SD rat)	striatum	striatum	cerebral cortex	cerebral cortex			
Membrane (µg protein/well)	0–100	0–100	0–110	0–110			
Radioligand	[³ H] SCH 23390	[³ H] spiperone	[³ H] 8-OH-DPAT	[³ H] ketanserin			
Radioligand (nM)	0.003-1.0	0.003-2.0	0.020-1.0	0.003–0.8			
Reference ligand	SCH 23390 HCl	butaclamol HCl	serotonin HCl	spiperone			
Reference ligand (µM)	$10^{-4} - 10^{-13}$	$10^{-2} - 10^{-13}$	$10^{-2} - 10^{-13}$	$10^{-4} - 10^{-13}$			
buffer pH (50 mM Tris-HCl)	7.4, 8.0, 9.0	7.4, 8.0, 9.0	7.4, 8.0, 9.0	7.4, 8.0, 9.0			
Filter plate type	GF/C,GF/B	GF/C,GF/B	GF/C,GF/B	GF/C,GF/B			
Incubation time (min)	0–300	0–300	0–180	0–120			
Incubation temperature (°C)	4, 22, 37	4, 22, 37	4, 25, 37	4, 22, 37			
Washing times	1–12	1–10	1–9	1–10			
Deferment		1 - 2007	Chung et al., 2009a	Chung et al., 2009b			
Kererences	Biinard <i>et al.</i> , 1984	L0, 2007	Soo, 2006	Lo, 2007			

Table 4.1: Summary of the values used for the different parameters involved in optimising the protocols for the radioligand binding assays.

4.4 Data and Statistical Analysis

The percentage of specific binding of radioligand in the presence of standard competitors or solvents was calculated using a standard data reduction algorithm as follows: ([B - NSB] / [TB - NSB]) × 100 where B is the binding in the presence of standard competitor or solvents, NSB is the non-specific binding in the presence of excess reference ligand and TB is the total binding.

The data from the radioligand binding assays was analyzed by non-linear regression and curve fitting programmes using prism Version 3.0 (GraphPad Inc., San Diego CA, USA). Equilibrium dissociation constant for the radioligand (K_d) and maximal binding capacity (B_{max}) values were determined from saturation binding assays with one-site binding hyperbola analysis using the equation, Specific binding = $B_{max} \times [L] / (K_d + [L])$, where [L] was the concentration of radioligand used. The concentration causing 50% inhibition of specific binding (IC_{50}) values was determined from competition binding assays with one-site competition binding analysis using the equation, Specific binding = Bottom + (Top - Bottom) / (1+10 ([A] - Log IC_{50})), where [A] was the log concentration of competitor. K_i values were calculated from the IC_{50} values using the Cheng and Prusoff (1973) equation, $K_i = IC_{50} / (1 + [L] / K_d)$, where [L] was the concentration of radioligand used.

The quality of the assays was evaluated using Z' factor according to the equation: $1-(3SD_{TB}+3SD_{NSB})$ / (Mean_{TB} - Mean_{NSB}) as described by Zhang *et al.*, (1999), where SD_{TB} is the standard deviation of total binding, SD_{NSB} is the standard deviation of non-specific binding, Mean_{TB} is the mean of total binding, and Mean_{NSB} is the mean of non-specific binding.

4.5 **Results and Discussion**

4.5.1 Protein determination

The protein concentration of dopamine (D_1 and D_2) and 5-hydroxytryptamine (5-HT_{1A} and 5-HT_{2A}) receptors was determined by extrapolation of the absorbance value using the standard curve (**Figure 4.2**) developed with the BSA standards. The estimated protein concentration of the receptors was used to prepare the membranes required for subsequent experiments.

Figure 4.2: Standard curve of BSA concentration against absorbance for use in protein determination.

4.5.2 Effects of Different Physico-Chemical Properties on Dopamine (D₁ and D₂) and 5-Hydroxytryptamine (5-HT_{1A} and 5-HT_{2A}) Receptor Binding Assays

Initial optimisation of various parameters was carried out, particularly radioligand, membrane and unlabelled ligand concentration, buffer pH, filter plate type, incubation time and temperature, washing times and solvent interference to maximize total binding and minimise non-specific binding of the receptors.

4.5.2.1 Selection of Membrane Concentration

The choice of membrane concentration in incubation media is critical for receptor binding assays. Generally, the total amount of radioligand bound should be less than 10% of the total amount of radioligand added to avoid ligand depletion. Bylund and Toews (1993) reported that as the concentration of the membrane increased, the ratio of specific to nonspecific binding increased because a larger portion of the nonspecific binding is to glass fiber filters. The membrane concentration should be high enough so that at least 1000 cpm are bound when all receptors are occupied with radioligand, as this allows reasonable accuracy in counting the radioactivity at the lowest concentration of radioligand. Conversely, the membrane concentration also should not be too high because elevated membrane concentration could cause filter clogging and prolonged aspiration time (Harms *et al.*, 2000).

The effect of increasing the membrane concentration in the D_1 , D_2 , 5-HT_{1A} and 5-HT_{2A} binding assays is shown in **Figure 4.3(a)**, **4.4(a)**, **4.5(a)** and **4.6(a)** respectively. The specific binding of D_1 , D_2 , 5-HT_{1A} and 5-HT_{2A} receptors observed at 30 µg of protein/well, 50 µg of protein/well, 100 µg of protein/well and 100 µg of protein/well each yielded 90%, 89%, 90% and 92% of the total binding respectively. Under saturating conditions, the observed nonspecific binding was about 8–11%, suggesting that there is no significant depletion of the radioligand during the course of the assay. Thus, the membrane concentration of 30 µg of protein/well for D_1 , 50 µg of protein/well for 5-HT_{1A} and 5-HT_{2A} were selected for subsequent assays to achieve maximal signal to background ratio binding.

4.5.2.2 Selection of Unlabelled Ligand and its Concentration

The choice of the unlabelled ligand and its concentration to determine nonspecific binding is critical in receptor binding assays. Usually, the unlabelled ligand should be chemically different from the radioligand to avoid the labelling of specific nonreceptor sites (Bylund and Toews, 1993). The chosen unlabelled ligand should possess high specificity and selectivity towards the receptor being studied. As a general rule, the concentration of the unlabelled ligand should be 100 to 1000 fold in excess of its K_d value (Hulme and Trevethick, 2010).

The amount of radioligand bound to the D₁(Figure 4.3(b)), D₂(Figure 4.4(b)), 5-HT_{1A} (Figure 4.5(b)) and 5-HT_{2A} (Figure 4.6(b)) receptors decreased with increasing concentration of unlabelled ligand until a point where no matter how much unlabelled ligand is added, the amount of radioligand bound remains constant. This remaining binding of radioligand represents the nonspecific binding. In the D₁, D₂, 5-HT_{1A} and 5-HT_{2A} receptor binding assays, this plateau was reached at 1 μ M of *R*-(+)-SCH23390 hydrochloride, 100 μ M of butaclamol hydrochloride, 100 μ M of serotonin hydrochloride and 100 μ M of spiperone respectively. These concentrations were used in subsequent assays to obtain minimal background binding.

4.5.2.3 Selection of pH

The pH is critical for receptor binding assays. Commonly, tris(hydroxymethyl) aminomethane (tris-HCl) is often used as the homogenization or assay buffer that yields maximum binding. The pH of the buffer should be in physiological range, between pH 7 and 8, so that the *in vitro* binding assays are conducted in an isotonic medium and to

be comparable with what is seen *in vivo* (Bylund and Toews, 1993). Furthermore, a wide range of buffer pH could affect the ligand receptor interaction due to changing of the degree of ionisation of groups within the receptor or ligand, which may influence both the equilibrium binding constant and the kinetic rate constant.

In general, pH variations from 7.4 to 9.0 caused a minimal variation in binding of the radioligand to the D₁ (**Figure 4.3(c)**), D₂ (**Figure 4.4(c)**), 5-HT_{1A} (**Figure 4.5(c)**) and 5-HT_{2A} (**Figure 4.6(c)**) receptors. Nevertheless, the highest level of total binding and lowest level of nonspecific binding were observed at pH 7.4 followed by pH 8.0 and pH 9.0. The signal to background ratio of pH 7.4 was slightly higher as compared to pH 8.0 and pH 9.0. Thus, subsequent assays for the D₁, D₂, 5-HT_{1A} and 5-HT_{2A} receptor were performed at physiological pH, 7.4 as it ensured the maximal signal binding and minimal background binding.

4.5.2.4 Selection of Filter Plate Type

Vacuum filtration is a widely used method in separating bound and free radioligand by rapid filtration through filter plates (Bylund and Toews, 1993). As a general rule, filtration is unsuitable for radioligands with $K_d > 10^{-8}$ M (Hulme and Trevethick, 2010). The most commonly used filter plates are GF/B (1.0 µm), GF/C (1.2 µm) and Durapore (0.22, 0.65, 1.0 µm). In some cases, pre-treatment of filter plates with polyethylenimine (PEI) gives them a positive surface charge that helps to capture negatively charged receptors and substantially improve the specific to nonspecific binding ratio (Hulme and Trevethick, 2010).

For the D₁ (**Figure 4.3(d**)), D₂ (**Figure 4.4(d**)), 5-HT_{1A} (**Figure 4.5(d**)) and 5-HT_{2A} (**Figure 4.6(d**)) receptors, total binding reached its highest value using the GF/C filters at all concentrations of radioligand. The nonspecific binding was also lower using the GF/C filters as compared to GF/B. Thus, subsequent assays were performed using GF/C filters for the D₁, D₂, 5-HT_{1A} and 5-HT_{2A} receptors.

4.5.2.5 Selection of Incubation Temperature

It is important to control the temperature to minimise the variability in receptor binding assays. Bylund and Toews (1993) suggested that room temperature (~ 22°C) is most suitable to perform the assays. However, some assays work better at physiological temperature (37°C), as this allow the results to be compared to *in vivo* ligand receptor behaviour. In some instances, receptor binding assays are carried out below room temperature, especially on ice (4°C) to prevent degradation of peptide ligands by proteolytic enzyme. Such temperature variation can produce conformational changes in receptors and other proteins in lipid bilayer and provide insight into the molecular nature of ligand receptor interaction.

Maximum total binding for the D₁ (Figure 4.3(e)), D₂ (Figure 4.4(e)), and 5- HT_{2A} (Figure 4.6(e)) receptors were achieved at 22°C and for 5- HT_{1A} (Figure 4.5(e)) achieved at 25°C with all concentrations of radioligand. In addition, the estimated level of nonspecific binding was also minimal for all the receptors. Decreases in total binding were measured at 4 and 37°C in all assays. Thus, the remaining assays were conducted at 22°C for the D₁, D₂, and 5- HT_{2A} receptors and 25°C for the 5- HT_{1A} receptor.

4.5.2.6 Selection of Incubation Time

In receptor binding assays, the assay medium must be incubated for sufficient time to ensure that equilibrium has been reached, where the rate of association of the ligand receptor complex is equal to the rate of dissociation. The time required for complexes to achieve equilibrium depends on the temperature of the radioligand (Bylund and Toews, 1993). Most commonly used radioligands reach steady state conditions within 20–60 minutes.

Equilibrium was obtained after approximately 90 minutes for the D_1 (Figure 4.3(f)), 5-HT_{1A} (Figure 4.5(f)), and 5-HT_{2A} (Figure 4.6(f)) receptors and 80 min for D_2 (Figure 4.4(f)) receptor. After these times the total and specific binding observed for each receptor was constant as a function of incubation time, suggesting that a steady state has been attained. Thus, all further assays were carried out with an incubation period of time of 90 minutes for the D_1 , 5-HT_{1A} and 5-HT_{2A} receptors and 80 minutes for the D_2 receptor.

4.5.2.7 Selection of Washing Times

The method to separate bound and unbound radioligand after the incubation medium has attained equilibrium involves aspiration on to filters where the receptor and bound radioligand are trapped, while unbound radioligand passes through the filter plates. The filters are then washed repeatedly with ice cold buffer using a FilterMate Cell Harvester to remove unbound radioligand, as this reduces nonspecific binding (Bylund and Toews, 1993). As a rule of thumb, ice cold wash buffer is recommended as it can extend the usable range by up to 100 fold ($(K_d = 10^{-7}-10^{-6} \text{ M})$ (Hulme and Trevethick, 2010).

For the D₁ (**Figure 4.3**(g)), D₂ (**Figure 4.4**(g)), 5-HT_{1A} (**Figure 4.5**(g)) and 5-HT_{2A} (**Figure 4.6**(g)) receptors, as the number of washing times increased, the counting for total binding and nonspecific binding decreased. At a certain point, further washings had only negligible effects on the nonspecific binding. Thus, 3 washings for the 5-HT_{1A}, 4 washings for the D₁ and 5-HT_{2A} and 5 washings for the D₂ receptor were adequate for efficient removal of any free radioligand without disruption of the bound complexes.

4.5.2.8 Solvent Interference

Due to its high solvent power, low chemical reactivity and toxicity and high flash point and boiling point, dimethyl sulfoxide (DMSO) has been used extensively to dissolve a great variety of chemical classes to evaluate their biological activities (Balakin, 2003). The range of concentrations in binding assays is prepared by serially diluting a compound from the initial DMSO stock solution, which is the highest concentration of compound. Incomplete solubility of the compounds at the highest concentration results in a shift of the concentration curve and the IC_{50} will be estimated based on this 'apparent' concentration curve. The false, higher IC_{50} will classify the compound as less active (Di and Kerns, 2006).

As the concentration of DMSO increased from 0.5–10% v/v, the percentage of inhibition increased for the D₁ receptor (**Figure 4.3(h**)). For the 5-HT_{1A} receptor (**Figure 4.5(h**)), the percentage of inhibition increased from 0.5–4% v/v and there were no significant trend from 4–10% v/v. Whereas, concentrations of DMSO as high as 10% had no effect for the D₂ (**Figure 4.4(h**)) and 5-HT_{2A} receptor (**Figure 4.6(h**)) binding assays. Thus, the concentration of DMSO chosen for the D₁, D₂, 5-HT_{1A} and 5-HT_{2A} receptor assays was up to 3% which gave less than 20% of inhibition.

Figure 4.3: Optimisation of D_1 receptor binding assay. Selection of (a) membrane concentration, (b) unlabelled ligand concentration, (c) pH, (d) filter plate type, (e) incubation temperature, (f) incubation time, (g) washing times and (h) DMSO effect. TB=Total binding, NSB=Nonspecific binding, SB=Specific binding. Results are represented as mean (n=3) ± SEM.

Figure 4.4: Optimisation of D₂ receptor binding assay. Selection of (a) membrane concentration, (b) unlabelled ligand concentration, (c) pH, (d) filter plate type, (e) incubation temperature, (f) incubation time, (g) washing times and (h) DMSO effect. TB=Total binding, NSB=Nonspecific binding, SB=Specific binding. Results are represented as mean (n=3) \pm SEM. (c) – (h) adapted from Lo (2007).

Figure 4.5: Optimisation of 5-HT_{1A} receptor binding assay. Selection of (a) membrane concentration, (b) unlabelled ligand concentration, (c) pH, (d) filter plate type, (e) incubation temperature, (f) incubation time, (g) washing times and (h) DMSO effect. TB=Total binding, NSB=Nonspecific binding, SB=Specific binding. Results are represented as mean $(n=3) \pm SEM$. (c), (e) – (h) adapted from Soo (2006).

Figure 4.6: Optimisation of 5-HT_{2A} receptor binding assay. Selection of (**a**) membrane concentration, (**b**) unlabelled ligand concentration, (**c**) pH, (**d**) filter plate type, (**e**) incubation temperature, (**f**) incubation time, (**g**) washing times and (**h**) DMSO effect. TB=Total binding, NSB=Nonspecific binding, SB=Specific binding. Results are represented as mean (n=3) \pm SEM. (**c**) – (**h**) adapted from Lo (2007).

Figure 4.7: Saturation binding curve of (**a**) $[{}^{3}$ H] SCH23390 for D₁ receptor, (**b**) $[{}^{3}$ H] Spiperone for D₂ receptor, (**c**) $[{}^{3}$ H] 8-OH-DPAT for 5-HT_{1A} receptor and (**d**) $[{}^{3}$ H] Ketanserin for 5-HT_{2A} receptor. TB=Total binding, NSB=Nonspecific binding, SB=Specific binding. Results are represented as mean (n=3) ± SEM.

The respective binding of [³H] SCH23390 (Figure 4.7(a)), [³H] Spiperone (Figure 4.7(b)), [³H] 8-OH-DPAT (Figure 4.7(c)) and [³H] Ketanserin (Figure 4.7(d)) to D₁, D₂, 5-HT_{1A} and 5-HT_{2A} receptors was saturable, specific and of high affinity. The equilibrium dissociation constants (K_d) were estimated to be 0.40 nM ([³H] SCH23390; D₁), 0.86 nM ([³H] Spiperone; D₂), 0.17 nM ([³H] 8-OH-DPAT; 5-HT_{1A}), and 0.54 nM ([³H] Ketanserin; 5-HT_{2A}). The maximal binding capacities (B_{max}) were estimated to be 292.80 fmol/mg, 456.20 fmol/mg, 17.23 fmol/mg, and 74.98 fmol/mg for D₁, D₂, 5-HT_{1A} and 5-HT_{2A} receptors, respectively. These values were similar to those of (Billard *et al.*, 1984 ; Chu *et al.*, 2001) (D₁), (Chu *et al.*, 2001; Cresee *et al.*, 1977) (D₂), (Hoyer *et al.*,

56

1985; Peroutka *et al.*, 1986) (5-HT_{1A}) and (Chung *et al.*, 2009b; Leysen *et al.*, 1982) (5-HT_{2A}).

4.5.2.10 Competition Experiments

Figure 4.8: Competition binding curve of (a) $[{}^{3}\text{H}]$ SCH23390 for D₁ receptor, (b) $[{}^{3}\text{H}]$ spiperone for D₂ receptor, (c) $[{}^{3}\text{H}]$ 8-OH-DPAT for 5-HT_{1A} receptor and (d) $[{}^{3}\text{H}]$ ketanserin for 5-HT_{2A} receptor. Results are represented as mean (n=3) ± SEM.

Table 4.2 shows the K_i values obtained from the competition experiments with standard unlabelled ligands on the D₁, D₂, 5-HT_{1A} and 5-HT_{2A} receptors. For comparison, **Table 4.2** also includes previously reported K_i values for the D₂, 5-HT_{1A} and 5-HT_{2A} receptors tested using a similar methodological approach.

For the D₁ receptor binding assay, the relative potency for displacing [³H] SCH23390 was *R*-(+)-SCH23390 HCl > propranolol HCl > serotonin HCl > buspirone HCl > dicyclomine HCl (**Table 4.2**). Thus, *R*-(+)-SCH23390 HCl with a K_i value of 1.03×10^{-10} M is a suitable ligand for defining [³H] SCH23390 binding to the D₁ receptor (**Figure 4.8(a**)). This value is very similar to K_i value reported by Andersen and Braestrup (1986b).

For the D₂ receptor binding assay, the relative potency for displacing [³H] Spiperone was butaclamol HCl > serotonin HCl > propranolol HCl > buspirone HCl > (±)-8-OH-DPAT > dicyclomine HCl (**Table 4.2**). Thus, butaclamol HCl with a K_i value of 5.06 × 10⁻⁸ M is a suitable ligand for defining [³H] spiperone binding to the D₂ receptor (**Figure 4.8(b**)). This value is very similar to K_i value reported by Lo (2007).

For the 5-HT_{1A} receptor binding assay, the relative potency for displacing [³H] 8-OH-DPAT was (\pm)-8-OH-DPAT > serotonin HCl > buspirone HCl > propranolol HCl > scopolamine (**Table 4.2**). Thus, serotonin HCl with a K_i value of 3.33×10^{-9} M is a suitable ligand for defining [³H] 8-OH-DPAT binding to 5-HT_{1A} receptor (**Figure 4.8(c)**) (Chung *et al.*, 2009a; Hoyer *et al.*, 1985; Peroutka *et al.*, 1986; Schlegel and Peroutka, 1986).

For the 5-HT_{2A} receptor binding assay, the relative potency for displacing [³H] ketanserin was spiperone > phentolamine HCl > buspirone HCl > serotonin HCl > (\pm)-8-OH-DPAT > (\pm)-propranolol HCl (**Table 4.2**). Thus, spiperone with a *K*_i value of 5.51 × 10⁻⁸ M is a suitable ligand for defining [³H] ketanserin binding to the 5-HT_{2A} receptor (**Figure 4.8(d**)). This value is very similar to *K*_i value reported by Chung *et al.*, (2009b).

Standard unlabelled	Dhuricle ricel mash onigne	$K_{i}(M)$				
ligands	- Physiological mechanisms	D ₁	D2	5-HT _{1A}	5-HT _{2A}	
8-OH-DPAT	5-HT _{1A} receptor agonism	-	$1.43\times10^{\text{-6 b}}$	$1.0 \times 10^{-9 c}$	$6.32 \times 10^{-5 \text{ b}}$	
spiperone	Selective D_2 receptor antagonism and mixed 5-HT ₁ / 5-HT ₂ antagonism	-	-	-	$5.51 imes 10^{-8}$	
(+)-butaclamol HCl	D ₂ receptor antagonism	-	$5.06 imes10^{-8}$	-	-	
<i>R</i> -(+)-SCH23390 HCl	D ₁ receptor antagonism	$1.03 imes 10^{-10}$	-	-	-	
propranolol HCl	β -adrenergic receptor antagonism and mixed 5-HT ₁ / 5-HT ₂ antagonism	3.67×10^{-7}	$0.36\times10^{\text{-6 b}}$	1.37×10^{-7a}	$1.23\times10^{\text{-4 b}}$	
serotonin HCl	5-HT receptor agonism	4.11×10^{-7}	$0.13\times 10^{\text{-6 b}}$	3.33×10^{-9}	$2.39 imes 10^{-5 \text{ b}}$	
buspirone HCl	5-HT _{1A} receptor agonism	5.34× 10 ⁻⁷	$0.86\times10^{\text{-6 b}}$	$1.5\times10^{^{-8c}}$	$3.24\times10^{\text{-6b}}$	
dicyclomine HCl	M ₁ muscarinic receptor antagonism	$1.68 imes 10^{-6}$	$12.2\times10^{\text{-6 b}}$	-	-	
phentolamine HCl	α -adrenergic receptor antagonism and 5-HT _{1A} receptor antagonism	-	-	-	$2.16\times10^{\text{-6b}}$	
scopolamine	Muscarinic receptor antagonism	-	-	$1.1 imes 10^7$ a	-	

Table 4.2: K_i values obtained from competition experiments with standard unlabelled ligands on D_1 , D_2 , 5-HT_{1A} and 5-HT_{2A} receptors.

Data were taken from Soo, 2006^a; Lo, 2007^b; Peroutka, 1986^c

Figure 4.9: Z' analysis for (**a**) D_1 , (**b**) D_2 , (**c**) 5-HT_{1A} and (**d**) 5-HT_{2A} receptors. TB=Total binding, NSB=Nonspecific binding, SB=Specific binding. Results are represented as mean (n=48) ± SEM.

To confirm the robustness of the assays, a Z' analysis was performed for the D_1 (Figure 4.9(a)), D_2 (Figure 4.9(b)), 5-HT_{1A} (Figure 4.9(c)) and 5-HT_{2A} (Figure 4.9(d)) receptors each using 48 replicate values for both total binding and nonspecific binding. For each binding assay, the Z' value yielded more than 0.5, which was within the acceptable range (0.5–1.0) and confirmed the robustness of the assay (Table 4.3). The percentage of coefficient of variability (CV) for total binding and nonspecific binding for each assay was less than 20, suggesting minimal variation and good reproducibility of the assay

Table 4.3: Data from Z' factor analysis for the D_1 , D_2 , 5-HT_{1A} and 5-HT_{2A} receptors.

Receptor		S/B	Mean		SD		CV (%)	
	Z'factor		ТВ	NSB	ТВ	NSB	ТВ	NSB
D1	0.75	20.11	1028.08	51.13	72.86	8.83	7.09	17.27
D_2	0.74	6.44	1464.38	227.25	86.31	19.83	5.89	8.73
$5-HT_{1A}$	0.72	9.36	1021.92	109.17	71.08	14.73	6.96	13.49
$5\text{-}HT_{2A}$	0.75	7.56	1062.67	140.56	67.21	9.55	6.32	6.80

TB=Total binding, NSB=Nonspecific binding, S/B= Signal to background ratio; SD= Standard deviation; CV= Coefficient of variation

4.6 Conclusion

The optimised assay conditions for the dopamine (D_1 and D_2) and serotonin (5-HT_{1A} and 5-HT_{2A}) receptor binding assays were summarized in **Table 4.4**. Saturation binding assays of each receptor revealed a K_d and B_{max} of 0.40 nM and 292.80 fmol/mg (D_1), 0.86 nM and 456.20 fmol/mg (D_2), 0.17 nM and 17.23 fmol/mg (5-HT_{1A}), and 0.54 nM and 74.98 fmol/mg (5-HT_{2A}), respectively. The inhibition constant (K_i) for the respective competitive/reference ligands were 0.10 nM (SCH23390 HCl; D_1), 50.60 nM (butaclamol HCl; D_2 , 3.33 nM (serotonin HCl; 5-HT_{1A}) or 5.10 nM (spiperone; 5-HT_{2A}). The respective Z' values were 0.75, 0.74, 0.72 and 0.75 for the D_1 , D_2 , 5-HT_{1A} and 5-HT_{2A} receptors, indicated that the adopted assays were suitable, robust and reliable for medium throughput screening.

Table 4.4: Optimised assay conditions for D_1 , D_2 , 5-HT_{1A} and 5-HT_{2A} receptors.

Daramatars	Receptors						
1 al aniciel s	D ₁	D ₂	5HT _{1A}	5HT _{2A}			
Receptor source (SD rat)	striatum	striatum	cerebral cortex	cerebral cortex			
Membrane (µg protein/well)	30	50	100	100			
Radioligand	[³ H] SCH 23390	[³ H] Spiperone	[³ H] 8-OH-DPAT	[³ H] Ketanserin			
Radioligand (nM)	0.5	0.8	0.4	0.5			
Reference ligand	<i>R</i> -(+)-SCH23390 HCl	butaclamol HCl	serotonin HCl	spiperone			
Reference ligand (µM)	1	100	100	100			
pH buffer (50 mM Tris-HCl)	7.4	7.4	7.4	7.4			
Filter plate type	GF/C	GF/C	GF/C	GF/C			
Incubation time (min)	90	80	90	90			
Incubation temperature (°C)	22	22	25	22			
Washing times	4	5	3	4			

5.0 Virtual and Biomolecular Screening of Potential Ligands for 5-HT_{2A} Receptor

5.1 Introduction

5.1.1 Structure Activity Relationship (SAR) of Aporphines

In the realm of central nervous system (CNS) activity, naturally occurring aporphines and their synthetic derivatives are known to have affinity and selectivity for adrenergic, dopaminergic and serotonergic receptors (Cabedo *et al.*, 2009; Rios *et al.*, 2000; Zhang *et al.*, 2007). The structural modifications on the tetracyclic aporphine skeleton with varying substituents can lead to major changes in its pharmacological activity. Since there is no 3D X-ray structures for any of dopamine and serotonin receptors, the information gained from structure activity relationship (SAR) studies are important for the development of structure-based drug design.

For example, structure activity relationships of 2-substituted aporphines with aryl (Sondergaard *et al.*, 2005), *O*-alkyl (Sipos *et al.*, 2008), methylthio (Toth *et al.*, 2006), or halogen (Neumeyer *et al.*, 1990; Ramsby *et al.*, 1989; Zhang *et al.*, 2005) substituents suggest their potential to increase selectivity and affinity at D₂ receptors due to the existence of a lipophilic cleft or region on the surface of D₂ receptor proteins. 11-hydroxyaporphines, and especially their esters, have more prolonged behavioural arousal-inducing activity with far superior oral bioavailability (Csutoras *et al.*, 2004). Aporphines containing a single hydroxyl group at C-11 have some affinity for the D₁ dopamine receptor and properties as D₁ antagonists (Schaus *et al.*, 1990).

High affinities to 5-HT_{1A} receptors are displayed by a number of aporphines carrying sterically and electronically different C-11 substituents (Hedberg *et al.*, 1996).

The *N*-substituted 11-hydroxy-10-hydroxylmethyl aporphine and 11-hydroxy-2methoxy-10-methyl congeners displayed selective and potent affinity for the 5-HT_{1A} receptor but low affinity at D₁ and D₂. These findings support that ortho-dihydroxy substitution in the aporphine D ring enhances affinity to dopamine receptors, whereas analogous methyl or hydroxymethyl substitution enhances interactions with serotonin 5-HT_{1A} receptor (Si *et al.*, 2007).

Removal of the 11-hydroxy group from the 2-methoxy-11-hydroxy-Nalkylaporphines decreased affinity at dopamine receptors, and afforded low affinity for the serotonin 5-HT_{1A} receptor (Si *et al.*, 2008). Alkylation of the 11-hydroxy group with an alkyl, but adding a hydroxy substituent on the 2-position also decreased the affinities at dopamine and serotonin receptors, supporting the assumption that 11-hydroxy substitution in aporphines is required for dopaminergic and serotonergic activity.

5.2 Materials

The test compounds were purchased from MolPort Ltd (Riga, Latvia). Details of all the other chemicals used are given in **Section 4.2.1**.

5.3 Methodology

5.3.1 Receptor Binding Assays

The compounds selected from the docking studies on the 5- HT_{2A} receptor model were tested experimentally against the dopamine (D₁ and D₂) and serotonin (5- HT_{1A} and 5- HT_{2A}) receptors according to protocol described previously (see Section 4.3.3.3).

5.4 Results and Discussion

5.4.1 Receptor Binding Assays

The compounds selected from the docking studies on the 5-HT_{2A} receptor model were assayed *in vitro* for their ability to displace [³H] SCH 23390, [³H] spiperone, [³H] 8-OH-DPAT, and [³H] ketanserin binding to rat D₁, D₂, 5-HT_{1A} and 5-HT_{2A} receptors, respectively. The results are summarized in **Table 5.1**. The results indicate that (*R*)-roemerine has the most favourable affinity-selectivity profiles for the 5-HT_{2A} receptor and has 20–400-fold higher affinity towards the 5-HT_{2A} receptor than towards D₁, D₂ and 5-HT_{1A} receptors (**Figure 5.1(a)**). This finding confirms previous work by Chen and co-workers which showed that (*R*)-roemerine has selectivity for 5-HT₂ receptors over D₁, D₂ and 5-HT₁ receptors (Chen *et al.*, 1987). Compared to (*R*)-roemerine, all the compounds evaluated including the standard, (*S*)-boldine, have reduced affinity for the 5-HT_{2A} receptor by 20- to 300-fold.

(*S*)-bulbocapnine is particularly selective for the D₁ receptor and has a 60–6000fold greater affinity at the D₁ receptor than at the D₂, 5-HT_{1A} and 5-HT_{2A} receptors (**Figure 5.1(b)**). The observed results are in agreement with the work by Schaus and colleagues who reported only moderate to low affinity of (*S*)-bulbocapnine to D₂, 5-HT_{1A} and 5-HT_{2A} receptors due to the presence of the hydrophobic binding site at the D₁ receptor which accounted for the high antagonistic activity of (*S*)-bulbocapnine (Schaus *et al.*, 1990). Likewise, (*S*)-boldine also showed higher affinity for the D₁ over D₂ receptor by 20-fold (**Figure 5.1(c)**), in agreement with the findings of a previous study (Asencio *et al.*, 2005). All compounds with the dihydroxy substitutions at position 10 and 11 including (*R*)-apomorphine (Figure 5.1(d)), (*S*)-apomorphine (Figure 5.1(e)) and (*R*)-*N*-propylapomorphine (Figure 5.1(f)) displayed potent affinity for the dopamine receptors (D₁ and D₂) than the serotonin (5-HT_{1A} and 5-HT_{2A}) receptors. (*R*)-apomorphine exhibited a 12-fold higher affinity at the D₁ receptor and 11-fold higher affinity at the D₂ receptor than its (*S*)-enantiomer. This observation is consistent with the previous report which demonstrated that the (*R*)-configuration was more favourable for high affinity at dopamine receptors, especially of the D₂ type (Csutoras *et al.*, 2004; Gao *et al.*, 1990). Replacement of the *N*-propyl to *N*-methyl group as in (*R*)-*N*-propylapomorphine showed the higher selectivity by 19-fold for D₂ over D₁ receptor. This is in agreement with the previous study which proposed that the presence of the propyl cleft would accommodate a low energy conformation of the *N*-propyl substituent and enhanced the affinity at D₂ receptor (Csutoras *et al.*, 2004; Hedberg *et al.*, 1996).

On the other hand, there is no significant difference in the binding of (\pm) -nuciferine, (\pm) -laureline and (R)-2-hydroxy-*N*-propylapomorphine for the D₁, D2, 5-HT_{1A} and 5-HT_{2A} receptors. Lastly, (S)-isocorydine, (\pm) -isothebaine, (S)-corydine and (S)-corytuberine showed little or no affinity towards all four receptors.

Figure 5.1: Competition binding curves of (a) (*R*)-roemerine, (b) (*S*)-bulbocapnine (c) (*S*)-boldine, (d) (*R*)-apomorphine, (e) (*S*)-apomorphine and (f) *N*-propylapomorphine towards [³H] SCH23390 for D₁ receptor (\bullet), [³H] spiperone for D₂ receptor (\bullet), [³H] 8-OH-DPAT for 5-HT_{1A} receptor (\bullet) and [³H] ketanserin for 5-HT_{2A} receptor (\bullet). Results are represented as mean (n=3) ± SEM.

Compounds	60	R ₁	R ₂	R ₆	R ₁₀	R ₁₁ –	$K_i \pm \text{SEM}(n\mathbf{M})$			
Compounds	0a						D ₁	\mathbf{D}_2	5-HT _{1A}	5-HT _{2A}
Boldine	S	OMe	OH	Me	OH	OMe	128 ± 10	2530 ± 350	2450 ± 390	2500 ± 250
Roemerine	R	O-C	H ₂ -O	Me			1400 ± 100	22600 ± 2600	1170 ± 60	62.1 ± 5.0
Bulbocapnine	S	O-C	H ₂ -O	Me	OMe	OH	29.3 ± 5.0	185000 ± 2000	7260 ± 710	1780 ± 130
Laureline	±	O-C	H ₂ -O	Me	OMe		1420 ± 360	8500 ± 320	520 ± 150	3130 ± 660
Nuciferine	±	OMe	OMe	Me			820 ± 120	2050 ± 790	275 ± 37	139 ± 45
Apomorphine	R			Me	OH	OH	17.5 ± 1.0	15.9 ± 2.0	1440 ± 850	2230 ± 120
Apomorphine	S			Me	OH	OH	221 ± 13	178 ± 7	2440 ± 620	1260 ± 500
NPA	R			Pr	OH	OH	239 ± 11	12.4 ± 0.2	1590 ± 220	6300 ± 500
2-OH-NPA	R		OH	Pr	OH	OH	1320 ± 20	1220 ± 50	3750 ± 200	5400 ± 290
Isocorydine	S	OMe	OMe	Me	OMe	OH	1250 ± 200	140000 ± 7500	3290 ± 990	3040 ± 530
Isothebaine	±	OH	OMe	Me		OMe	5030 ± 370	NE	19400 ± 6200	7020 ± 390
Corydine	S	OH	OMe	Me	OMe	OMe	1800 ± 70	41300 ± 3500	27400 ± 400	21700 ± 2000
Corytuberin	S	OH	OMe	Me	OMe	OH	NE	NE	NE	NE

Table 5.1: Binding affinities of the selected ligand compounds towards rat D_1 , D_2 , 5-HT_{1A} and 5-HT_{2A} receptors.

The values shown for K_i were the mean (n = 3) ± SEM.; NE = could not be estimated (10⁻⁴ or higher); NPA=*N*-propylapomorphine; 2-OH-NPA=2-hydroxy-*N*-propylapomorphine

To gain a further insight into the binding characteristics of the highly selective 5-HT_{2A} receptor compound (R)-roemerine, the ligand-receptor interactions were investigated using the generated 5-HT_{2A} receptor model. The predicted binding pose for (R)-roemerine is shown in Figure 5.2 with the ligand bound in the site bordered by transmembrane regions 3, 5, 6 and 7 (Table 5.2). In particular, (R)-roemerine was found to bind to the 5-HT_{2A} receptor through a combination of a hydrogen bonding and electrostatic interaction formed between the protonated amino group at position R₆ of the ligand and the carboxylate group of the conserved residue Asp155 of the 5-HT_{2A} receptor, a polar interaction involving side chain of amino acid residue Tyr370, a pication interaction at Phe339 and additional van der Waals contacts between the aporphine rings and the aromatic residues (Phe234, Trp336, Phe339, Phe340 and Tyr370) and non-aromatic residues (Ser159, Thr160 and Val366). These observations were in agreement with site-directed mutagenesis experiments which have reported the importance of these amino acid residues for 5-HT_{2A} receptor ligand binding (Choudhary et al., 1993; Kristiansen et al., 2000; Roth et al., 1997; Shapiro et al., 2000; Wang et al., 1993).

Figure 5.2: Proposed binding mode of (*R*)-roemerine in the 5-HT_{2A} receptor. The residues involved in hydrogen bonding, electrostatic or polar interactions were represented in pink circles with their hydrogen bonds with their main chains (blue dashed arrow), charge interactions (pink dashed double-ended arrow), pi interaction (orange line) and residues involved in van der Waals interactions (green circles).

Investigation into the ligand-receptor interactions involving the selected compounds revealed a significant difference in the binding affinity of (*R*)-roemerine towards 5-HT_{2A} receptor versus D₁, D₂ and 5-HT_{1A} receptors. **Table 5.2** shows the complete list of residues and interactions involved in the binding of the selected aporphines with the 5-HT_{2A} receptor. In case of (±)-laureline, (±)-nuciferine and (±)-isothebaine, the (*S*)-enantiomer was selected over the (*R*)-enantiomer because better binding affinities were observed towards 5-HT_{2A} receptor in computational studies.

The results from this study showed that the (S)-boldine (Figure 3.2), (S)bulbocapnine (Figure 8.8(a) in Appendix E), (S)-laureline (Figure 8.8(b) in Appendix E), (S)-apomorphine (Figure 8.8(e) in Appendix E), (S)-corydine (Figure 8.8(j) in Appendix E) and (S)-corytuberine (Figure 8.8(k) in Appendix E) also formed hydrogen bonding and electrostatic interactions with the conserved Asp155 in 5-HT_{2A} receptor. However, apart from (*S*)-laureline, they failed to interact via a pi-cation interaction as observed in (*R*)-roemerine. This may explain the unfavourable affinities of these compounds at the 5-HT_{2A} receptor and the higher affinity-selectivity profile of (*R*)-roemerine at the 5-HT_{2A} receptor. The 50-fold reduction in affinity at the 5-HT_{2A} receptor observed for (*S*)-laureline seems to be due to the additional methoxy substitution at position 10.

On the other hand, (*R*)-apomorphine (**Figure 8.8(d) in Appendix E**), (*R*)-*N*propylnorapomorphine (**Figure 8.8(f) in Appendix E**) and (*R*)-2-hydroxy-*N*propylapomorphine (**Figure 8.8(g) in Appendix E**) were only able to form hydrogen bonds between the conserved residue Asp155 and substituents in the aporphine D-ring, particularly the hydroxyl group. Pi-cation interactions were also observed at Phe339 for (*R*)-apomorphine and at Phe234 for (*R*)-*N*-propylnorapomorphine and (*R*)-2-hydroxy-*N*propylapomorphine. Similarly, the hydroxyl substituent in the aporphine D-ring of (*S*)isocorydine (**Figure 8.8(h) in Appendix E**) was also hydrogen bonded with the Asp155, but without any pi-cation interaction. However, the lack of electrostatic interaction of the Asp155 with the protonated amino group of these ligands compared to (*R*)roemerine led to poor binding and selectivity towards the 5-HT_{2A} receptor.

(S)-nuciferine (**Figure 8.8(c) in Appendix E**) was only able to interact with Asp155 via an electrostatic interaction. Hydrogen bonding of the Asp155 with hydrogen from the protonated nitrogen and pi-cation interaction was not observed in (S)-nuciferine. Likewise, the conserved residue Asp155 failed to form electrostatic and hydrogen bond with the protonated amino group of the (S)-isothebaine (**Figure 8.8(i) in Appendix E**). Instead of a pi-cation interaction, (S)-isothebaine displayed a pi-pi
interaction at Phe234 together with hydrogen bonding between Gly238 and the hydroxyl group in the aporphine D-ring. The observed binding differs from (R)-roemerine which may suggest the lower affinity and selectivity for the 5-HT_{2A} receptor.

Table 5.2: 5-HT_{2A} residues found from the docking studies to interact with the selected aporphines

Interactions						van der Waals	
	Electrostatic	H-bond	Polar	pi-cation	pi-pi	Residues	
Compounds						Aromatic	Non-aromatic
(S)-boldine	Asp155	Asp155, Val156	Ser159, Thr160, Phe234	-	-	Trp336,Phe339, Phe340,Tyr370	Leu229, Val235, Ser239,Ala242, Val366
(<i>R</i>)-roemerine	Asp155	Asp155	Tyr370	Phe339	-	Phe234,Trp336, Phe339,Phe340	Ser159,Val156, Val366,Tyr370
(S)-bulbocapnine	Asp155	Asp155	Val156,Ser159, Thr160, Phe234	-	-	Trp336,Phe339, Phe340, Tyr370	Val235,Ser239, Val366
(S)-laureline	Asp155	Asp155	Thr160, Gly238, Tyr370	Phe339	-	Phe234,Trp336, Phe339, Phe340	Val156, Ser159, Ser239, Ala242, Val366
(S)-nuciferine	Asp155	-	Val156, Thr160	-	-	Trp336, Phe339, Phe340	Ser159,Gly238, Ser239, Ala242, Asn343
(<i>R</i>)-apomorphine	-	Asp155	Ser159, Ser239, Tyr370	Phe339	-	TRP336,Phe339, Phe340	Val156, Ala242, Gly238, Val366
(S)-apomorphine	Asp155	Asp155, Ser239	Phe234,Val235, Asn343	-	-	TRP336,Phe339, Phe340	Val156, Ser159, Thr160, Val235, Gly238

(continued)

Interactions						van der Waals		
	Electrostatic	H-bond	Polar	pi-cation	pi-pi	Residues		
Compounds						Aromatic	Non-aromatic	
(R)-NPA	-	Asp155	Ser159, Asn343,Tyr370	Phe234	-	Phe234, Trp336, Phe339, Phe340	Val156, Thr160, Val235,Ser239, Gly238,Ala242, Val366	
(<i>R</i>)- 2-OH-NPA	-	Asp155, Val156, Thr160	Leu157, Ser159, Asn343,Tyr370	Phe234	-	Phe234, Trp336, Phe339, Phe340	Val235,Ser239, Gly238,Ala242, Val366	
(S)-isocorydine	-	Asp155, Tyr370	Ser159, Asn343, Asn363,	-	-	Trp336, Phe339	Leu229,Val156, Val366	
(S)-isothebaine	-	Gly238	Thr160, Ser239, Ala242,	-	Phe234	Phe234,Phe243, Phe339, Phe340	Asp155,Val156, Ser159, Ile163, Asn343	
(S)-corydine	Asp155	Asp155	Tyr370	-	-	Phe234, Trp336, Phe339, Phe340	Val156,Ser159, Thr160,Leu229, Asp231, Ser239, Val235, Asn343, Val366,	
(S)-corytuberine	Asp155	Asp155 Ser239	Val156, Thr160, Ser239, Asn343	-	-	Phe234, Trp336, Phe339, Phe340, Tyr370	Ser159, Val235, Val366	

(*R*)-NPA =*N*-propylapomorphine; (*R*)- 2-OH-NPA =2-hydroxy-*N*-propylapomorphine

5.5 Conclusion

(*R*)-roemerine had been identified as a potential 5-HT_{2A} receptor-selective compound. This suggest that preferential affinity for the 5-HT_{2A} receptor results from that substitution at position 1 and 2, particularly with methylenedioxy group, non-substitution at position 10 and 11 and *N*-methyl substitution at position 6. Further investigation into the ligand-receptor interactions of (*R*)-roemerine also revealed that high 5-HT_{2A} selectivity over D₁, D₂ and 5-HT_{1A} receptors were probably due to the strong hydrogen bonding and electrostatic interactions involving the protonated amino group and a pi-cation interaction with Asp155 and Phe339, two of the conserved residues in the binding pocket of the 5-HT_{2A} receptor.

6.0 General Conclusion, Limitations and Future Perspectives

A combination of structure based *in silico* and *in vitro* experiments were implemented in this study to identify potential ligands for dopaminergic and serotonergic receptors. A 3D homology model of the rat 5-HT_{2A} receptor was first generated based on the crystal structure of the human β_2 -adrenergic receptor as a structural template and further validated with standard 5-HT_{2A} receptor ligands. Thereafter, a filtered set of aporphines using (*S*)-boldine as the backbone structure was docked into the generated 5-HT_{2A} receptor model. A set of 13 aporphines with higher or comparable activity to (*S*)-boldine were selected for experimental testing.

A medium throughput screening assay for dopamine (D_1 and D_2) and serotonin (5-HT_{1A} and 5-HT_{2A}) receptors based on radioligand receptor binding experiments was used to evaluate the affinity of the selected compounds towards these receptors. (*R*)roemerine was found to have potent 5-HT_{2A} affinity ($K_i = 62.1$ nM) and selectivity (20– 400-fold higher) versus D_1 , D_2 and 5-HT_{1A} receptors. Investigation into the binding mode of (*R*)-roemerine revealed the importance of the hydrogen bonding and electrostatic interactions with the conserved residue Asp155 and a pi-cation interaction at Phe339. These observations suggest that (*R*)-roemerine could form the basis of the design of aporphinoid compounds with high affinity and selectivity towards the 5-HT_{2A} receptor.

There were however, several limitations to this project. The application of structure based *in silico* methods using a homology model for the identification of new drugs is more challenging and inaccurate than docking to 3D X-ray structures. Potential reasons of error may be due to structural differences between the template and the

target, incorrect sequence alignment and difficulties in obtaining variable loop regions. Additionally, only a small number of compounds were screened due to limited availability.

On the other hand, although the *in vitro* radioligand receptor binding assays used were simple and rapid, errors may be introduced due to the limited time allowed to reach steady state and through the process of separating the bound and free ligand, drying the harvested filter plates and counting the filter plates.

In order to improve the *in silico* approach, the constructed homology model should be further refined using simulation techniques such as constrained molecular mechanics or molecular dynamics simulations and validated with known $5-HT_{2A}$ receptor active ligands. Additionally, in an attempt to rationalize the observed affinity data and to predict ligand-receptor interactions at the molecular level, homology models of D₁, D₂ and $5-HT_{1A}$ receptors also should be built. A larger set of screening compounds should be obtained from the database to dock into the newly refined model. A library could also be obtained through use of synthetic chemistry.

The receptor binding assays could be improved by using purified or cloned receptor in order to minimise the nonspecific binding and ultimately increase the sensitivity of the assay.

- Abi-Dargham, A. & Laruelle, M. (2005). Mechanisms of action of second generation antipsychotic drugs in schizophrenia: insights from brain imaging studies. *European Psychiatry*, 20, 15–27.
- Akhondzadeh, S. (2006). Pharmacotherapy of Schizophrenia: The Past, Present and Future. *Current Drug Therapy*, **1**, 1–7.
- Alex, K. D. & Pehek, E. A. (2007). Pharmacologic mechanisms of serotonergic regulation of dopamine neurotransmission. *Pharmacology and Therapeutics*, 113, 296–320.
- Almaula, N., Ebersole, B. J., Ballesteros, J. A., Weinstein, H. & Sealfon, S. C. (1996a). Contribution of a helix 5 locus to selectivity of hallucinogenic and nonhallucinogenic ligands for the human 5-hydroxytryptamine_{2A} and 5hydroxytryptamine_{2C} receptors: direct and indirect effects on ligand affinity mediated by the same locus. *Molecular Pharmacology*, **50**, 34–42.
- Almaula, N., Ebersole, B. J., Zhang, D. Q., Weinstein, H. & Sealfon, S. C. (1996b). Mapping the binding site pocket of the serotonin 5-hydroxytryptamine_(2A) receptor - Ser(3.36(159)) provides a second interaction site for the protonated amine of serotonin but not of lysergic acid diethylamide or bufotenin. *Journal of Biological Chemistry*, **271**, 14672–14675.
- Andersen, P. H. & Braestrup, C. (1986b). Evidence for different states of the dopamine D1 receptor: clozapine and fluperlapine may preferentially label an adenylate cyclase-coupled state of the D1 receptor. *Journal of Neurochemistry*, **47**, 1822– 1831.
- Andersen, P. H., Gingrich, J. A., Bates, M. D., Dearry, A., Falardeau, P., Senogles, S. E. & Caron, M. G. (1990). Dopamine receptor subtypes: beyond the D₁/D₂ classification. *Trends in Pharmacological Sciences*, **11**, 231–236.
- Andersen, P. H. & Groenvald, F. C. (1986a). Specific binding of ³H-SCH 23390 to dopamine D₁ receptors *in vivo*. *Life Sciences*, **38**, 1507–1515.
- Arro, A., Uustare, A., Harro, J. & Rinken, A. (2001). Modulation of [³H]-8-OH-DPAT binding to rat brain membranes by metal ions. *Proceedings of the Estonian Academy of Sciences. Chemistry*, **50**, 28–38.
- Asencio, M., Delaquerriere, B., Cassels, B. K., Speisky, H., Comoy, E. & Protais, P. (1999). Biochemical and behavioral effects of boldine and glaucine on dopamine systems. *Pharmacology Biochemistry and Behavior*, **62**, 7–13.

- Asencio, M., Hurtado-Guzman, C., Lopez, J. J., Cassels, B. K., Protais, P. & Chagraou, A. (2005). Structure-affinity relationships of halogenated predicentrine and glaucine derivatives at D₁ and D₂ dopaminergic receptors: Halogenation and D₁ receptor selectivity. *Bioorganic and Medicinal Chemistry*, **13**, 3699–3704.
- Assie, M. B., Charveron, M. & Briley, M. (1988). *In vivo* [³H] ketanserin binding: effect of modifying synaptic serotonin levels. *Neurochemistry International*, **12**, 85–89.
- Assie, M. B. & Koek, W. (1996). Effects of 5-HT_{1A} receptor antagonists on hippocampal 5-hydroxytryptamine levels: (S)-WAY100135, but not WAY100635, has partial agonist properties. *European Journal of Pharmacology*, **304**, 15–21.
- Baker, D. & Sali, A. (2001). Protein Structure Prediction and Structural Genomics. *Science*, **294**, 93–96.
- Balakin, K. V. (2003). DMSO solubility and bioscreening. *Current Drug Discovery*, **8**, 27–30.
- Barnes, N. M. & Sharp, T. (1999). A Review of Central 5-HT Receptors and Their Function. *Neuropharmacology*, 38, 1083–1152.
- Barradell, L. B. & Fitton, A. (1996). Tandospirone. CNS Drugs, 5, 147–153.
- Baxter, G., Kennett, G., Blaney, F. & Blackburn, T. (1995). 5-HT₂ receptor subtypes: a family re-united? *Trends in Pharmacological Sciences*, **16**, 105–110.
- Beaulieu, J. M. & Gainetdinov, R. R. (2011). The Physiology, Signaling, and Pharmacology of Dopamine Receptors. *Pharmacological Reviews*, **63**, 182–217.
- Billard, W., Ruperto, V., Crosby, G., Iorio, L. & Barnet, A. (1984). Characterization of the binding of ³H-SCH 23390, a selective D₁ receptor antagonist ligand in rat striatum. *Life Sciences*, **35**, 1885–1893.
- Bischoff, S. & Gunst, F. (1997). Distinct binding patterns of $[^{3}H]$ raclopride and $[^{3}H]$ spiperone at dopamine D₂ receptors *in vivo* in rat brain. Implications for pet studies. *Journal of Receptors and Signal Transduction*, **17**, 419–431.
- Bockaert, J. & Pin, J. P. (1999). Molecular tinkering of G protein-coupled receptors:an evolutionary success. *The EMBO Journal*, **18**, 1723–1729.
- Boess, F. G. & Martin, I. L. (1994). Molecular biology of 5-HT receptors. *Neuropharmacology*, **33**, 275–317.

- Boyer, W. F. & Feighner, J. P. (1993). A placebo-controlled double-blind multicenter trial of two doses of ipsapirone versus diazepam in generalized anxiety disorder. *International Clinical Psychopharmacology*, 8, 173–176.
- Boyson, S. J., McGonigle, J. P. & Molinoff, P. B. (1986). Quantitative Autoradiographic Localization of the D_1 and D_2 Subtypes of Dopamine Receptors in Rat Brain. *The Journal of Neuroscience*, **6**, 3177–3168.
- Braden, M. R. & Nichols, D. E. (2007). Assessment of the roles of serines 5.43(239) and 5.46(242) for binding and potency of agonist ligands at the human serotonin 5-HT_{2A} receptor. *Molecular Pharmacology*, **72**, 1200–1209.
- Braden, M. R., Parrish, J. C., Naylor, J. C. & Nichols, D. E. (2006). Molecular interaction of serotonin 5-HT2A receptor residues Phe339((6.51)) and Phe340((6.52)) with superpotent N-benzyl phenethylamine agonists. *Molecular Pharmacology*, **70**, 1956–1964.
- Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S. & Karplus, M. (1983). CHARMM: A Program for Macromolecular Energy, Minimization, and Dynamics Calculations. *Journal of Computational Chemistry*, 4, 187–217
- Bunzow, J. R., Van Tol, H. H., Grandy, D. K., Albert, P., Salon, J., Christie, M., Machida, C. A., Neve, K. A. & Civelli, O. (1988). Cloning and expression of a rat D₂ dopamine receptor cDNA. *Nature*, **336**, 783–787.
- Bylund, D. B. & Toews, M. L. (1993). Radioligand binding methods: practical guide and tips. *American Journal of Physiology (Lung Cell Mol Phys)*, **265**, 421–429.
- Cabedo, N., Berenguer, I. & Cortes, D. (2009). An overview on benzylisoquinoline derivatives with dopaminergic and serotonergic activities. *Current Medicinal Chemistry* 16, 2441–2467.
- Camps, Cortes, R., Gueye, B., Probst, A. & Palacious, J. M. (1989). Dopamine receptors in human brain: autoradiography distribution of D₂ sites. *Neuroscience*, 28, 275–290.
- Celada, P., Puig, M., Amargós-Bosch, M., Adell, A. & Artigas, F. (2004). The therapeutic role of 5-HT_{1A} and 5-HT_{2A} receptors in depression. *Journal of Psychiatry and Neuroscience*, **29**, 252–265.
- Chen, S. G., Liu, G. Q. & Min, Z. D. (1987). [The action of some tetrahydroisoquinoline alkaloids on dopamine and serotonin receptors in the rat brain]. *Yao Xue Xue Bao*, **22**, 341–346.

- Cheng, Y. C. & Prusoff, W. H. (1973). Relationship between the inhibition constant (K_i) and the concentration of inhibitor which causes 50 percent inhibition (IC_{50}) of an enzymatic reaction. *Biochemical Pharmacology*, **22**, 3099–3108.
- Cherezov, V., Rosenbaum, D. M., Hanson, M. A., Rasmussen, S. G., Thian, F. S., Kobilka, T. S., Choi, H. J., Kuhn, P., Weis, W. I., Kobilka, B. K. & Stevens, R. C. (2007). High-resolution crystal structure of an engineered human beta₂adrenergic G protein-coupled receptor. *Science*, **318**, 1258–1265.
- Chien, E. Y., Liu, W., Zhao, Q., Katritch, V., Han, G. W., Hanson, M. A., Shi, L., Newman, A. H., Javitch, J. A., Cherezov, V. & Stevens, R. C. (2010). Structure of the human dopamine D₃ receptor in complex with a D₂/D₃ selective antagonist. *Science*, **330**, 1091–1095.
- Chothia, C. & Lesk, A. M. (1986). The relation between the divergence of sequence and structure in proteins. *The EMBO Journal*, **5**, 823–826.
- Choudhary, M. S., Craigo, S. & Roth, B. L. (1993). A single point mutation (Phe340 to Leu340) of a conserved phenylalanine abolishes 4-[¹²⁵I]iodo-(2,5dimethoxy)phenylisopropylamine and [³H]mesulergine but not [³H]ketanserin binding to 5-hydroxytryptamine₂ receptors. *Molecular Pharmacology*, **43**, 755– 761.
- Choudhary, M. S., Sachs, N., Uluer, A., Glennon, R. A., Westkaemper, R. B. & Roth, B. L. (1995). Differential ergoline and ergopeptine binding to 5hydroxytryptamine_{2A} receptors: ergolines require an aromatic residue at position 340 for high affinity binding. *Molecular Pharmacology*, **47**, 450–457.
- Chu, J., Wilczynski, W. & Wilcox, R. E. (2001). Pharmacological characterization of the D₁- and D₂-like dopamine receptors from the brain of the leopard frog, Rana pipiens. *Brain, Behavior and Evolution*, **57**, 328–342.
- Chung, L. Y., Goh, S. H., I & Imiyabir, Z. (2005). Central nervous system receptor activities of some Malaysian plant species. *Pharmaceutical Biology*, **43**, 280–288.
- Chung, L. Y., Lo, M. W., Mustafa, M. R., Goh, S. H. & Imiyabir, Z. (2009b). 5hydroxytryptamine_{2A} receptor binding activity of compounds from Litsea sessilis. *Phytotherapy Research*, **23**, 330–334.
- Chung, L. Y., Soo, W. K., Mustafa, M. R., Goh, S. H. & Imiyabir, Z. (2009a). 5-Hydroxytryptamine_{1A} receptor binding activity of bisbenzyltetrahydroisoquinoline alkaloids from Popowia odoardi. *Pharmaceutical Biology*, 47, 1130–1136.

- Cornea-Hebert, V., Watkins, K. C., Roth, B. L., Kroeze, W. K., Gaudreau, P., Leclerc, N. & Descarries, L. (2002). Similar ultrastructural distribution of the 5-HT_{2A} serotonin receptor and microtubule-associated protein MAP1A in cortical dendrites of adult rat. *Neuroscience*, **113**, 23–35.
- Cresee, I., Schneider, R. & Snyder, S. H. (1977). ³H-Spiroperidol labels dopamine receptors in pituitary and brain. *European Journal of Pharmacology*, **46**, 377–381.
- Csanalosi, I., Schweizer, E., Case, W. G. & Rickels, K. (1987). Gepirone in anxiety: a pilot study. *Journal of Clinical Psychopharmacology*, **7**, 31–33.
- Csutoras, C., Zhang, A., Zhang, K., Kula, N. S., Baldessarini, R. J. & Neumeyer, J. L. (2004). Synthesis and neuropharmacological evaluation of *R*(-)-*N*-alkyl-11-hydroxynoraporphines and their esters. *Bioorganic and Medicinal Chemistry*, **12**, 3553–3559.
- Dawson, T. M., Gehlert, D. R. & Wamsley, J. K. (1986). D-1 Dopamine Receptors in the Rat Brain: A Quantitative Autoradiographic Analysis. *The Journal of Neuroscience*, 6, 2352–2365.
- De Almeida, J., Palacios, J. M. & Mengod, G. (2008). Distribution of 5-HT and DA receptors in primate prefrontal cortex: implications for pathophysiology and treatment. *Progress in Brain Research*, **172**, 101–115.
- De Azevedo Jr, W. F. & Dias, R. (2008). Computational Methods for Calculation of Ligand-Binding Affinity. *Current Drug Targets*, **9**, 1031–1039.
- De Jong, L. A., Uges, D. R., Franke, J. P. & Bischoff, R. (2005). Receptor–ligand binding assays: Technologies and Applications. *Journal of Chromatography B*, 829, 1–25.
- De Keyser, J., Claeys, A., De Backer, J. P., Ebinger, G., Roels, F. & Vauquelin, G. (1988). Autoradiographic localization of D_1 and D_2 dopamine receptors in the human brain. *Neuroscience Letter*, **91**, 142–147.
- De la Nuez Veulens, A. & Rodríguez, R. (2009). G Protein-coupled receptors as targets for drug design. *Biotecnología Aplicada*, **26**, 24–33.
- Derkach, V., Surprenant, A. & North, R. A. (1989). 5-HT₃ receptors are membrane ion channels. *Nature*, **339**, 706–709.
- Di, L. & Kerns, E. H. (2006). Biological assay challenges from compound solubility: strategies for bioassay optimization. *Drug Discovery Today*, **11**, 855–859.

- Dziedzicka-Wasylewska, M. (2004). Brain dopamine receptors—research perspectives and potential sites of regulation. *Polish Journal of Pharmacology*, **56**, 659–671.
- El Mestikawy, S., Fargin, A., Raymond, J. R., Goylan, H. & Hnatowich, M. (1991). The 5-HT_{1A} receptor: an overview of recent advances. *Neurochemical Research*, **16**, 1–10.
- Emilien, G., Maloteaux, J. M., Geurts, M., Hoogenberg, K. & Cragg, S. (1999). Dopamine receptors physiological understanding to therapeutic intervention potential. *Pharmacology and Therapeutics*, **84**, 133–156.
- Gao, Y., Baldessarini, R. J., Kula, N. S. & Neumeyer, J. L. (1990). Synthesis and Dopamine Receptor Affinities of Enantiomers of 2-Substituted Apomorphines and Their N-n -Propyl Analogues. *Journal of Medicinal Chemistry*, 33, 1800– 1805.
- Gardner, D. M., Baldessarini, R. J. & Waraich, P. (2005). Modern antipsychotic drugs: a critical overview. *Canadian Medical Association Journal*, **172**, 1703–1711.
- George, S. R., O'Dowd, B. F. & Lee, S. P. (2002). G-protein-coupled receptor oligomerization and its potential for drug discovery. *Nature Reviews Drug Discovery*, **1**, 808–820.
- Giovanni, G. D., Esposito, E. & Matteo, V. D. (2010). Role of Serotonin in Central Dopamine Dysfunction. *CNS Neuroscience and Therapeutics*, **16**, 179–194.
- Glowinski, J. & Iversen, L. L. (1996). Regional studies of catecholamines in the rat brain. I. The disposition of [³H]norepinephrine, [³H]dopamine and [³H]dopa in various regions of the brain. *Journal of Neurochemistry*, **13**, 655–669.
- Goa, K. L. & Ward, A. (1986). Buspirone. A preliminary review of its pharmacological properties and therapeutic efficacy as an anxiolytic. *Drugs*, **32**, 114–129.
- Gozlan, H., El Mestikawy, S., Pichat, L., Glowinski, J. & Hamon, M. (1983). Identification of presynaptic serotonin autoreceptors using a new ligand: ³H-PAT. *Nature*, **305**, 140–142.
- Grey, J. & Thompson, D. (2010). Challenges and Opportunities for New Protein Crystallization Strategies in Structure-Based Drug Design. *Expert opinion on drug discovery*, 5, 1039–1045.
- Güldenpfennig, W. M., Poole, K. H., Sommerville, K. W. & Boroojerdi, B. (2005). Safety, tolerability, and efficacy of continuous transdermal dopaminergic

stimulation with rotigotine patch in early-stage idiopathic Parkinson disease. *Clinical Neuropharmacology*, **28**, 106–110.

- Guinaudeau, H., Leboeuf, M. & Cave, A. (1994). Aporphinoid alkaloids. *Journal of* Natural Products, 57, 1033–1135.
- Haga, K., Kruse, A. C., Asada, H., Yurugi-Kobayashi, T., Shiroishi, M., Zhang, C., Weis, W. I., Okada, T., Kobilka, B. K., Haga, T. & Kobayashi, T. (2012). Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist. *Nature*, **482**, 547–551
- Hall, H., Hogberg, T., Halldin, C., Kohler, C., Strom, P., Ross, S. B., Larsson, S. A. & Farde, R. (1991). NCQ 298, a new selective iodinated salicylamide ligand for the labelling of dopamine D₂ receptors. *Psychopharmacology*, **103**, 6–18.
- Hall, M. D., El Mestikawy, S., Emerit, M. B., Pichat, L., Hamon, M. & Gozlan, H. (1985). [³H]8-hydroxy-2-(di-n-propylamino)tetralin binding to pre- and postsynaptic 5-hydroxytryptamine sites in various regions of the rat brain. *Journal of Neurochemistry*, 44, 1685–1696.
- Hamon, M., Bourgoin, S., Gozlan, H., Hall, M. D., Goetz, C., Artaud, F. & Horn, A. S. (1984). Biochemical evidence for the 5-HT agonist properties of PAT (8hydroxy- 2-(di-N-propylamino)tetralin) in the rat brain. *European Journal of Pharmacology*, **100**, 263–276.
- Hanson, M. A., Cherezov, V., Griffith, M. T., Roth, C. B., Jaakola, V. P., Chien, E. Y., Velasquez, J., Kuhn, P. & Stevens, R. C. (2008). A specific cholesterol binding site is established by the 2.8 A structure of the human beta2-adrenergic receptor. *Structure*, 16, 897–905.
- Harms, A., Gündisch, D., Müller, C. E. & Kovar, K. A. (2000). Development of a 5hydroxytryptamine_{2A} receptor binding assay for high throughput screening using 96-well microfilter plates. *Journal of Biomolecular Screening*, 5, 269–277.
- Hedberg, M. H., Linnanen, T., Jansen, J. M., Nordvall, G., Hjorth, S., Unelius, L. & Johansson, A. M. (1996). 11-substituted (R)-Aporphines: Synthesis, pharmacology, and modeling of D₂ and 5-HT_{1A} receptor interactions. *Journal of Medicinal Chemistry*, **39**, 3503–3513.
- Holtje, H. D. & Jendretzki, U. K. (1995). Construction of a detailed serotoninergic 5-HT_{2A} receptor model. *Archiv der Pharmazie*, **328**, 577–584.
- Hopkins, A. L. & Groom, C. R. (2002). The druggable genome. Nature Reviews Drug Discovery, 1, 727–730.

- Hoyer, D., Clarke, D. E., Fozard, J. R., Hartig, P. R., Martin, G. R., Mylecharane, E. J., Saxena, P. R. & Humphrey, P. P. A. (1994). International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (serotonin). *Pharmacological Reviews*, 46, 157–203.
- Hoyer, D., Engel, G. & Kalkman, H. O. (1985). Molecular pharmacology of 5-HT₁ and 5-HT₂ recognition sites in rat and pig brain membranes: radioligand binding studies with [³H]5-HT, [³H]8-OH-DPAT, (-)[¹²⁵I]iodocyanopindolol, [³H]mesulergine and [³H]ketanserin. *European Journal of Pharmacology*, **118**, 13–23.
- Hoyer, D., Hannon, J. P. & Martin, G. R. (2002). Molecular, pharmacological and functional diversity of 5-HT receptors. *Pharmacology Biochemistry and Behavior*, **71**, 533–554.
- Hulme, E. C. & Trevethick, M. A. (2010). Ligand binding assays at equilibrium: validation and interpretation. *British Journal of Pharmacology*, **161**, 1219–1237.
- Huot, P., Fox, S. & Brotchie, J. M. (2011). The serotonergic system in Parkinson's disease. *Progress in Neurobiology*, 95, 163–212.
- Hurd, Y. L., Suzuki, M. & Sedvall, G. C. (2001). D_1 and D_2 dopamine receptor mRNA expression in whole hemisphere sections of the human brain. *The Journal of Chemical Neuroanatomy*, **1**, 127–137.
- Hyttel, J. (1983). SCH23390-The first selective dopamine D-1 antagonist. *European Journal of Pharmacology*, **91**, 153–154.
- Indra, B., Matsunaga, K., Hoshino, O., Suzuki, M., Ogasawara, H., Ishiguro, M. & Ohizumi, Y. (2002). Structure-activity relationship on (±)-nantenine derivatives in antiserotonergic activities in rat aorta. *Canadian Journal of Physiology and Pharmacology*, **80**, 198–204.
- Iorio, L. C., Barnett, A., Leitz, F. H., Houser, V. P. & Korduba, C. A. (1983). SCH 23390, a potential benzazepine antipsychotic with unique interactions on dopaminergic systems. *Journal of Pharmacology and Experimental Therapeutics*, 226, 462–468.
- Irwin, J. J. & Shoichet, B. K. (2005). ZINC A Free Database of Commercially Available Compounds for Virtual Screening. *Journal of Chemical Information and Modeling*, **5**, 177–182.
- Jaakola, V. P., Griffith, M. T., Hanson, M. A., Cherezov, V., Chien, E. Y., Lane, J. R., Ijzerman, A. P. & Stevens, R. C. (2008). The 2.6 angstrom crystal structure of a

human A2A adenosine receptor bound to an antagonist. *Science*, **322**, 1211–1217.

- Jackson, D. M. & Westlind-Danielsson, A. (1994). Dopamine receptors: molecular biology, biochemistry and behavioural aspects. *Pharmacology and Therapeutics*, 64, 291–370.
- Johnson, M. P., Loncharich, R. J., Baez, M. & Nelson, D. L. (1994). Species variations in transmembrane region V of the 5-hydroxytryptamine type_{2A} receptor alter the structure-activity relationship of certain ergolines and tryptamines. *Molecular Pharmacology*, 45, 277–286.
- Johnson, M. P., Wainscott, D. B., Lucaites, V. L., Baez, M. & Nelson, D. L. (1997). Mutations of transmembrane IV and V serines indicate that all tryptamines do not bind to the rat 5-HT_{2A} receptor in the same manner. *Molecular Brain Research*, 49, 1–6.
- Jones, B. J. & Blackburn, T. P. (2002). The medical benefit of 5-HT research. *Pharmacology, Biochemistry and Behavior*, **71**, 555–568.
- Kalkman, H. O., Subramanian, N. & Hoyer, D. (2001). Extended radioligand binding profile of iloperidone: a broad spectrum dopamine/serotonin/norepinephrine receptor antagonist for the management of psychotic disorders. *Neuropsychopharmacology*, 25, 904–914.
- Kanagarajadurai, K., Malini, M., Bhattacharya, A., Panicker, M. M. & Sowdhamini, R. (2009). Molecular modeling and docking studies of human 5hydroxytryptamine_{2A} (5-HT_{2A}) receptor for the identification of hotspots for ligand binding. *Molecular Biosystems*, 5, 1877–1888.
- Koek, W., Vacher, B., Cosi, C., Assie, M. B., Patoiseau, J. F., Pauwels, P. J. & Colpaert, F. (2001). 5-HT_{1A} receptor activation and antidepressant-like effects: F 13714 has high efficacy and marked antidepressant potential. *European Journal of Pharmacology*, **420**, 103–112.
- Kolakowski, L. F., Jr., (1994). GCRDb: a G-protein-coupled receptor database. *Receptors Channels*, **2**, 1–7.
- Kristiansen, K. & Dahl, S. G. (1996). Molecular modeling of serotonin, ketanserin, ritanserin and their 5-HT_{2C} receptor interactions. *European Journal of Pharmacology*, **306**, 195–210.
- Kristiansen, K., Kroeze, W. K., Willins, D. L., Gelber, E. I., Savage, J. E., Glennon, R.A. & Roth, B. L. (2000). A highly conserved aspartic acid (Asp-155) anchors the terminal amine moiety of tryptamines and is involved in membrane targeting

of the 5-HT(2A) serotonin receptor but does not participate in activation via a "salt-bridge disruption" mechanism. *Journal* of *Pharmacology* and *Experimental* Therapeutics, **293**, 735–746.

- Kroeze, W. K., Kristiansen, K. & Roth, B. L. (2002). Molecular biology of serotonin receptors structure and function at the molecular level. *Current Topics in Medicinal Chemistry*, 2, 507–528.
- Kruse, A. C., Hu, J., Pan, A. C., Arlow, D. H., Rosenbaum, D. M., Rosemond, E., Green, H. F., Liu, T., Chae, P. S., Dror, R. O., Shaw, D. E., Weis, W. I., Wess, J. & Kobilka, B. K. (2012). Structure and dynamics of the M3 muscarinic acetylcholine receptor. *Nature*, 482, 552–556.
- Lagerstrom, M. C. & Schioth, H. B. (2008). Structural diversity of G protein-coupled receptors and significance for drug discovery. *Nature Reviews Drug Discovery*, 7, 339–357.
- Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures *Journal of Applied Crystallography*, 26, 283–291
- Lefkowitz, R., Roth, J. & Pastan, I. (1970). Radioreceptor assay of adrenocorticotropic hormone: new approach to assay of polypeptide hormones in plasma. *Science*, **170**, 633–635.
- Leifert, W. R., Glatz, R. V., Bailey, K., Cooper, T., Bally, M., Stadler, B. M., Reimhult, E. & Shapter, J. G. (2010). Nanoscale Biosensors And Biochips. In G. Cao, Q. Zhang and C. J. Brinker (Eds), G-Protein Coupled Receptors: Progress in Surface Display and Biosensor Technology. Annual Review of Nano Research., 1–82. Singapore: World Scientific Publishing Co. Pte. Ltd.
- Leysen, J. E., Niemegeers, C. J. E., Van Nueten, J. M. & Laduron, P. M. (1982). [³H]Ketanserin (R 41 468), a selective ³H-ligand for serontonin₂ receptor binding sites. *Molecular Pharmacology*, **21**, 301–314.
- Li, J., Edwards, P. C., Burghammer, M., Villa, C. & Schertler, G. F. (2004). Structure of bovine rhodopsin in a trigonal crystal form. *Journal of Molecular Biology*, 343, 1409–1438.
- Lidow, M. S., Goldman-Rakic, P. S., Rakic, P. & Innis, R. B. (1989). Dopamine D₂ receptors in the cerebral cortex: Distribution and pharmacological characterization with [³Hlraclopride. *Neurobiology*, **86**, 6412–6416.

- Liu, Z., Chen, X., Yu, L., Zhen, X. & Zhang, A. (2008). Synthesis and pharmacological investigation of novel 2-aminothiazole-privileged aporphines. *Bioorganic and Medicinal Chemistry*, 16, 6675–6681.
- Lo, M. W. (2007). Isolation and Characterisation of 5-Hydroxytryptamine_{2A} Receptor Active Compound from Litsea sessilis (Lauraceae), Department of Pharmacy, Faculty of Medicine, MSc Thesis: 1–205, University of Malaya: Malaysia.
- López-Giménez, J. F., Mengod, G., Palacios, J. M. & Vilaró, M. T. (1997). Selective visualization of rat brain 5-HT_{2A} receptors by autoradiography with [³H]MDL 100,907. *Naunyn-Schmiedeberg's Archives of Pharmacology*, **356**, 446–454.
- Madras, B. K., Fahey, M. A., Canfield, D. R. & Spealman, R. D. (1988). D₁ and D₂ dopamine receptors in caudate-putamen of nonhuman primates (Macaca fascicularis). *Journal of Neurochemistry*, **51**, 934–943.
- Mailman, R., Huang, X. & Nichols, D. E. (2001). Parkinson's disease and D₁ dopamine receptors. *Current Opinion in Investigational Drugs*, 2, 1582–1591.
- Mailman, R. B. & Murthy, V. (2010). Third generation antipsychotic drugs: partial agonism or receptor functional selectivity? *Current Pharmaceutical Design*, 16, 488–501.
- Maricq, A. V., Peterson, A. S., Brake, A. J., Myers, R. M. & Julius, D. (1991). Primary structure and functional expression of the 5HT₃ receptor, a serotonin-gated ion channel. *Science*, **254**, 432–437.
- Marti-Renom, M. A., Stuart, A. C., Fiser, A., Sanchez, R., Melo, F. & Sali, A. (2000). Comparative protein structure modeling of genes and genomes. *Annual Review* of Biophysics and Biomolecular Structure, **29**, 291–325.
- Matsuda, T., Somboonthum, P., Suzuki, M., Asano, S. & Baba, A. (1995). Antidepressant-like effect by postsynaptic 5-HT_{1A} receptor activation in mice. *European Journal of Pharmacology*, 280, 235–238.
- McKinney, M. (1998). Practical Aspects of Radioligand Binding. Current Protocols in Pharmacology, John Wiley & Sons, Inc., New Jersey, USA, Unit 1.3.
- Meltzer, H. Y., Li, Z., Kaneda, Y. & Ichikawa, J. (2003). Serotonin receptors : their key role in drugs to treat schizophrenia. *Progress in Neuro-Psychopharmacology* and Biological Psychiatry, 27, 1159–1172.
- Missale, C., Nash, S. R., Robinson, S. W., Jaber, M. & Caron, M. G. (1998). Dopamine receptors: from structure to function. *Physiological Reviews*, 78, 189–225.

- Miyamoto, S., Duncan, G. E., Marx, C. E. & Lieberman, J. A. (2005). Treatments for schizophrenia: a critical review of pharmacology and mechanisms of action of antipsychotic drugs. *Molecular Psychiatry*, **10**, 79–104.
- Monsma, F. J., Mc Vittie, L. D., Gerfen, C. R. & Sibley, D. R. (1990). Molecular cloning and expression of a D₁ dopamine receptor linked to adenylyl cyclase activation. *Proceedings of the National Academy of Sciences of the United States of America*, 87, 6723–6727.
- Morgan, J. C. & Sethi, K. D. (2006). Rotigotine for the treatment of Parkinson's disease. *Expert Review of Neurotherapeutics*, **6**, 1275–1282.
- Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., R.K., B. & Olson, A. J. (1998). Automated Docking Using a Lamarckian Genetic Algorithm and Empirical Binding Free Energy Function. *Journal of Computational Chemistry*, 19, 1639–1662.
- Moult, J., Hubbard, T., Fidelis, K. & Peterson, J. T. (1999). Critical Assessment of Methods of Protein Structure Prediction (CASP): round III. Proteins, Supplement, 3, 2–6.
- Murakami, M. & Kouyama, T. (2008). Crystal structure of squid rhodopsin. *Nature*, **453**, 363–367.
- Nakamichi, H., Buss, V. & Okada, T. (2007). Photoisomerization mechanism of rhodopsin and 9-cis-rhodopsin revealed by x-ray crystallography. *Biophysical Journal*, **92**, 106–108.
- Nakamichi, H. & Okada, T. (2006a). Crystallographic analysis of primary visual photochemistry. *Angewandte Chemie International Edition*, **45**, 4270–4273.
- Nakamichi, H. & Okada, T. (2006b). Local peptide movement in the photoreaction intermediate of rhodopsin. *Proceedings of the National Academy of Sciences of the United States of America*, **103**, 12729–12734.
- Nénonéné, E. K., Radja, F., Carli, M., Grondin, L. & Reader, T. A. (1994). Heterogeneity of cortical and hippocampal 5-HT_{1A} receptors: A reappraisal of homogenate binding with [³H]-8-hydroxydipropylaminotetralin. *Journal of Neurochemistry*, **62**, 1822–1834.
- Nénonéné, E. K., Radja, F., Carli, M., Van Gelder, N. M., Afkhami-Dastjerdian, S. & Reader, T. A. (1996). Alkylation of [³H]8-OH-DPAT binding sites in rat cerebral cortex and hippocampus. *Neurochemical Research*, **21**, 167–176.

- Neumeyer, J. L., Gao, Y., Kula, N. S. & Baldessarini, R. J. (1990). Synthesis and dopamine receptor affinity of (*R*)-(-)-2-fluoro-*N*-propylapmorphine: a highly potent and selective dopamine D2 agonist. *Journal of Medicinal Chemistry*, **33**, 3122–3124.
- Neumeyer, J. L., Neustadt, B. R. & Weinhardt, K. K. (1970). Aporphines. V. Total synthesis of (plus or minus)-apomorphine. *Journal of Pharmaceutical Sciences*, 59, 1850–1852.
- Newman-Tancredi, A., Assie, M. B., Martel, J. C., Cosi, C., Slot, L. B., Palmier, C., Lestienne, I. R., Colpaert, F., Vacher, B. & Cussac, D. (2007). F15063, a potential antipsychotic with D₂/D₃ antagonist, 5-HT_{1A} agonist and D₄ partial agonist properties: (I) In vitro receptor affinity and efficacy profile. *British Journal of Pharmacology*, **151**, 237–252.
- Newman-Tancredi, A. & Kleven, M. S. (2010). Pharmacology of "atypicality" of antipsychotic drugs: status and perspectives. Archives of Psychiatry and Psychotherapy, **4**, 5–11.
- Nichols, D. E. & Nichols, C. D. (2008). Serotonin Receptors. *Chemical Reviews*, **108**, 1614–1641.
- Niznik, H. B. & Van Tol, H. H. (1992). Dopamine receptor genes: new tools for molecular psychiatry. *Journal of Psychiatry and Neuroscience*, **17**, 158–180.
- O'Brien, P., Carrasco-Pozo, C. & Speisky, H. (2006). Boldine and its antioxidant or health-promoting properties. *Chemico-Biological Interactions*, **159**, 1–17.
- Okada, T., Fujiyoshi, Y., Silow, M., Navarro, J., Landau, E. M. & Shichida, Y. (2002). Functional role of internal water molecules in rhodopsin revealed by X-ray Crystallography. *Proceedings of the National Academy of Sciences of the United States of America*, **99**, 5982–5987.
- Okada, T. & Palczewski, K. (2001). Crystal structure of rhodopsin: Implications for vision and beyond. *Current Opinion in Structural Biology*, **11**, 420–426.
- Okada, T., Sugihara, M., Bondar, A. N., Elstner, M., Entel, P. & Buss, V. (2004). The retinal conformation and its environment in rhodopsin in light of a new 2.2 A crystal structure. *Journal of Molecular Biology*, **342**, 571–583.
- Overington, J. P., Al-Lazikani, P. & Hopkins, A. L. (2006). How many drug targets are there? *Nature Reviews Drug Discovery*, **5**, 993–996.

- Palczewski, K., Kumasaka, T., Hori, T., Behnke, C. A., Motoshima, H., Fox, B. A., Le Trong, I., Teller, D. C., Okada, T., Stenkamp, R. E., Yamamoto, M. & Miyano, M. (2000). Crystal structure of rhodopsin: A G protein-coupled receptor. *Science*, 289, 739–745.
- Park, J. H., Scheerer, P., Hofmann, K. P., Choe, H. W. & Ernst, O. P. (2008). Crystal structure of the ligand-free G-protein-coupled receptor opsin. *Nature*, 454, 183– 187.
- Pazos, A., Cortes, R. & Palacios, J. M. (1985b). Quantitative autoradiographic mapping of serotonin receptors in the rat brain. II. Serotonin-2 receptors. *Brain Research*, 346, 231–249.
- Pazos, A. & Palacios, J. M. (1985a). Quantitative autoradiographic mapping of serotonin receptors in the rat brain. I. Serotonin-1 receptors. *Brain Research*, 346, 205–230.
- Pecic, S., Makkar, P., Chaudhary, S., Reddy, B. V., Navarro, H. A. & Harding, W. W. (2010). Affinity of aporphines for the human 5-HT_{2A} receptor: Insights from homology modeling and molecular docking studies. *Bioorganic and Medicinal Chemistry*, 18, 5562–5575.
- Peroutka, S. J. (1993). 5-Hydroxytryptamine receptor subtypes. *Journal of Neurochemistry*, **60**, 408–416.
- Peroutka, S. J., Lebovitz, R. M. & Snyder, S. H. (1986). Pharmacological Differentiation and Characterization of 5-HT_{1A}, 5-HT_{1B}, and 5-HT_{1C} Binding Sites in Rat Frontal Cortex. *Journal of Neurochemistry*, **47**, 827–829.
- Picada, J. N., Schroder, N., Izquierdo, I., Henriques, J. A. & Roesler, R. (2002). Differential neurobehavioral deficits induced by apomorphine and its oxidation product, 8-oxo-apomorphine-semiquinone, in rats. *European Journal of Pharmacology*, 443, 105–111.
- Pierce, K. L., Premont, R. T. & Lefkowitz, R. J. (2002). Seven-transmembrane receptors. *Nature Reviews Molecular Cell Biology*, 3, 639–650
- Ramsby, S., Neumeyer, J. L., Grigoriadis, D. & Seeman, P. (1989). 2-Haloaporphines as potent dopamine agonists. *Journal of Neurochemistry*, **32**, 1198–1201.
- Rascol, O., Dubois, B., Caldas, A. C., Senn, S., Del, S. S. & Lees, A. (2006). Early piribedil monotherapy of Parkinson's disease: A planned seven-month report of the REGAIN study. *Movement Disorders*, **21**, 2110–2115.

- Rasmussen, S. G., Choi, H. J., Rosenbaum, D. M., Kobilka, T. S., Thian, F. S., Edwards, P. C., Burghammer, M., Ratnala, V. R., Sanishvili, R., Fischetti, R. F., Schertler, G. F., Weis, W. I. & Kobilka, B. K. (2007). Crystal structure of the human beta₂ adrenergic G-protein-coupled receptor. *Nature*, **450**, 383–387.
- Richelson, E. (2001). Pharmacology of antidepressants. *Mayo Clinic Proceedings*, **76**, 511–527.
- Rios, J. L., Manez, S., Giner, R. M. & Recio, M. C. (2000). Biological Aspects of Aporphinoid Alkaloids. In G. A. Cordell (Eds), The Alkaloids: Chemistry and Biology, 53, 57-117. California, USA: Academic Press.
- Roth, B. L., Choudhary, M. S., Khan, N. & Uluer, A. (1997a). High-affinity agonist binding is not sufficient for agonist efficacy at 5-hydroxytryptamine_{2A} receptors: Evidence in favor of a modified ternary complex model. *Journal of Pharmacology and Experimental Therapeutics*, 280, 576–583.
- Roth, B. L., Shoham, M., Choudhary, M. S. & Khan, N. (1997b). Identification of conserved aromatic residues essential for agonist binding and second messenger production at 5-hydroxytryptamine_(2A) receptors. *Molecular Pharmacology*, **52**, 259–266.
- Salom, D., Lodowski, D. T., Stenkamp, R. E., Trong, I. L., Golczak, M., Jastrzebska, B., Harris, T., Ballesteros, J. A. & Palczewski, K. (2006). Crystal structure of a photoactivated deprotonated intermediate of rhodopsin. *Proceedings of the National Academy of Sciences of the United States of America*, **103**, 16123– 16138.
- Saudou, F. & Hen, R. (1994). 5-Hydroxytryptamine receptor subtypes in vertebrates and invertebrates. *Neurochemistry International*, **25**, 503–532.
- Schaus, J. M., Titus, R. D., Foreman, M. M., Mason, N. R. & Truex, L. L. (1990). Aporphines as antagonists of dopamine D1 receptors *Journal of Medicinal Chemistry*, 33, 600–607.
- Scheerer, P., Park, J. H., Hildebrand, P. W., Kim, Y. J., Krauss, N., Choe, H. W., Hofmann, K. P. & Ernst, O. P. (2008). Crystal structure of opsin in its Gprotein-interacting conformation. *Nature*, **455**, 497–503.
- Scheinin, M., Sjoholm, B., Webb, S., Kovanen, S. & Hemmila, I. (1994). Receptor Binding Assays. In I. Hemmila, T. Stahlberg and P. Motram (Eds), Bioanalytical Applications of Llabelling technologies, 243–256. Turku, Finland: Wallac Oy, EG&G Company.

- Schlegel, J. R. & Peroutka, S. J. (1986). Nucleotide interactions with 5-HT_{1A} binding sites directly labeled by [³H]-8-hydroxy-2-(DI-n-propylamino)tetralin ([³H]-8-OH-DPAT). *Biochemical Pharmacology*, **35**, 1943.
- Schreiber, R., Brocco, M., Gobert, A., Veiga, S. & Millan, M. J. (1994). The potent activity of the 5-HT_{1A} receptor agonists, S 14506 and S 14671, in the rat forced swim test is blocked by novel 5-HT_{1A} receptor antagonists. *European Journal of Pharmacology*, **271**, 537–541.
- Shapiro, D. A., Kristiansen, K., Kroeze, W. K. & Roth, B. L. (2000). Differential modes of agonist binding to 5-hydroxytryptamine_{2A} serotonin receptors revealed by mutation and molecular modeling of conserved residues in transmembrane region 5. *Molecular Pharmacology*, **58**, 877–886.
- Shapiro, D. A., Kristiansen, K., Weiner, D. M., Kroeze, W. K. & Roth, B. L. (2002). Evidence for a model of agonist-induced activation of 5-HT_{2A} serotonin receptors that involves the disruption of a strong ionic interaction between helices 3 and 6. *Journal of Biological Chemistry*, 277, 11441–11449.
- Shimamura, T., Hiraki, K., Takahashi, N., Hori, T., Ago, H., Masuda, K., Takio, K., Ishiguro, M. & Miyano, M. (2008). Crystal Structure of Squid Rhodopsin with Intracellularly Extended Cytoplasmic Region. *Journal of Biological Chemistry*, 283, 17753–17756.
- Shimamura, T., Shiroishi, M., Weyand, S., Tsujimoto, H., Winter, G., Katritch, V., Abagyan, R., Cherezov, V., Liu, W., Han, G. W., Kobayashi, T., Stevens, R. C. & Iwata, S. (2011). Structure of the human histamine H₁ receptor complex with doxepin. *Nature*, **475**, 65–70.
- Si, Y. G., Gardner, M. P., Tarazi, F. I., Baldessarini, R. J. & Neumeyer, J. L. (2007). R-(-)-N-alkyl-11-hydroxy-10-hydroxymethyl and 10-methyl-aporphines as 5-HT_{1A} receptor ligands. *Bioorganic and Medicinal Chemistry Letters*, **17**, 4128–4130.
- Si, Y. G., Gardner, M. P., Tarazi, F. I., Baldessarini, R. J. & Neumeyer, J. L. (2008). Synthesis and binding studies of 2-O- and 11-O-substituted Nalkylnoraporphines. *Bioorganic and Medicinal Chemistry Letters*, 18, 3971– 3973.
- Sipos, A., Csutoras, C., Berenyi, S., Uustare, A. & Rinken, A. (2008). Synthesis and neuropharmacological characterization of 2-O-substituted apomorphines. *Bioorganic and Medicinal Chemistry*, 16, 4563–4568.
- Skop, B., Finkelstein, J., Mareth, T., Magoon, M. & Brown, T. (1994). The serotonin syndrome associated with paroxetine. An over the counter cold remedy & vascular disease. *American Journal of Emergency Medicine*, **12**, 646–648.

- Sobarzo-Sanchez, E. M., Arbaoui, J., Protais, P. & Cassels, B. K. (2000). Halogenated boldine derivatives with enhanced monoamine receptor selectivity. *Journal of Natural Product*, 63, 480–484.
- Sokoloff, P., Giros, B., Martres, M. P., Bouthenet, M. L. & Schwartz, J. C. (1990). Molecular cloning and characterization of a novel dopamine receptor (D₃) as a target for neuroleptics *Nature*, **347**, 146–151.
- Sondergaard, K., Kristensen, J. L., Palner, K., Gillings, N., Knudsen, G. M., Roth, B. L. & Begtrup, M. (2005). Synthesis and binding studies of 2-arylapomorphines. *Organic and Biomolecular Chemistry*, **3**, 4077–4081.
- Soo, W. K. (2006). Development and application of 96-well microplate lipoxygenase and 5-HT_{1A} receptor screening assays for bioactive extracts and compounds from Malaysian plants., Department of Pharmacy, Faculty of Medicine, MSc Thesis: 1–206, University of Malaya: Malaysia.
- Standfuss, J., Xie, G., Edwards, P. C., Burghammer, M., Oprian, D. D. & Schertler, G. F. (2007). Crystal Structure of a Thermally Stable Rhodopsin Mutant. *Journal of Molecular Biology*, **372**, 1179–1188.
- Stevigny, C., Bailly, C. & Quetin-Leclercq, J. (2005). Cytotoxic and antitumor potentialities of aporphinoid alkaloids. *Current Medicinal Chemistry - Anti-Cancer Agents*, 5, 173–182.
- Subramony, J. A. (2006). Apomorphine in Dopaminergic Therapy. *Molecular Pharmaceutics*, **3**, 380–385.
- Sunahara, R. K., Guan, H. C., O'Dowd, B. F., Seeman, P., Laurier, L. G., Ng, G., George, S. R., Torchia, J., Van Tol, H. H. & Niznik, H. B. (1991). Cloning of the gene for a human dopamine D₅ receptor with higher affinity for dopamine than D₁ Nature, **350**, 614–619.
- Sweetnam, P. M., Caldwell, L., Lancaster, J., Bauer Jr, C., Cmuan, B., Kinnier, W. J. & Price, C. (1993). THE ROLE OF RECEPTOR BINDING IN DRUG DISCOVERY. Journal of Natural Products, 56, 441–455.
- Teller, D. C., Okada, T., Behnke, C. A., Palczewski, K. & Stenkamp, R. E. (2001). Advances in determination of a high-resolution three-dimensional structure of rhodopsin, a model of G-protein-coupled receptors (GPCRs). *Biochemistry*, 40, 7761–7772.
- Teodoro, M. L., Phillips, G. N., Jr., & Kavraki, L. E. (2001). Molecular docking: a problem with thousands of degrees of freedom *Robotics and Automation*, 2001. *Proceedings 2001 ICRA. IEEE International Conference*, 1, 960 – 965

- Thompson, J. D., Higgins, D. G. & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. *Nucleic Acids Research*, 22, 4673–4680
- Toth, M., Berenyi, S., Csutoras, C., Kula, N. S., Baldessarini, R. J. & Neumeyer, J. L. (2006). Synthesis and dopamine receptor binding of sulfur-containing aporphines. *Bioorganic and Medicinal Chemistry*, **14**, 1918–1923.
- Vallone, D., Picetti, R. & Borrelli, E. (2000). Structure and function of dopamine receptors. *Neuroscience and Biobehavioral Reviews*, 24, 125–132.
- Van Tol, H. H., Bunzow, J. R., Guan, H. C., Sunahara, R. K., Seeman, P., Niznik, H. B. & Civelli, O. (1991). Cloning of the gene for a human dopamine D₄ receptor with high affinity for the antipsychotic clozapine. *Nature*, **350**, 610–614.
- Venclovas, C., Zemla, A., Fidelis, K., & Moult, J. (2001). Comparison of Performance in Successive CASP Experiments. *Proteins, Supplement*, 5, 163–170.
- Wallace, A. C., Laskowski, R. A. & Thornton, J. M. (1995). LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. *Protein Engineering*, 8, 127–134.
- Wang, C. D., Gallaher, T. K. & Shih, J. C. (1993). Site-directed mutagenesis of the serotonin 5-hydroxytrypamine₂ receptor: Identification of amino acids necessary for ligand binding and receptor activation. *Molecular Pharmacology*, **43**, 931– 940.
- Warne, T., Serrano-Vega, M. J., Baker, J. G., Moukhametzianov, R., Edwards, P. C., Henderson, R., Leslie, A. G., Tate, C. G. & Schertler, G. F. (2008). Structure of a beta₁-adrenergic G-protein-coupled receptor. *Nature*, **454**, 486–491.
- Weiner, D. M., Levey, A. I., Sunahara, R. K., Niznik, H. B., O' Dowd, B. F., Seeman, P. & Brann, M., R. (1991). D₁ and D₂ dopamine receptor mRNA in rat brain. *Neurobiology*, 88, 1859–1863.
- Westkaemper, R. & Glennon, R. (1993). Molecular graphics models of members of 5-HT₂ subfamily: 5-HT_{2A}, 5-HT_{2B}, and 5-HT_{2C} receptors. *Medicinal Chemistry Research*, **3**, 317–334.
- WHO (2010) Mental health:strengthening our response. http://www.who.int/mediacentre/factsheets/fs220/en/index.html [20/11/2011].

- Wieland, S. & Lucki, I. (1990). Antidepressant-like activity of 5-HT_{1A} agonists measured with the forced swim test. *Psychopharmacology (Berl)*, **101**, 497–504.
- Wu, B., Chien, Y. E. T., Mol, C. D., Fenalti, G., Liu, W., Katritch, V., Abagyan, R., Brooun, A., Wells, P., Bi, F. C., Hamel, D. J., Kuhn, P., Handel, T. M., Cherezov, V. & Stevens, R. C. (2010). Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. *Science*, 330, 1066-1071.
- Xu, T. J. & Pandey, S. C. (2000). Cellular localization of serotonin_{2A} (5HT_{2A}) receptors in the rat brain. *Brain Research Bulletin*, **51**, 499–505.
- Yalow, R. S. & Berson, S. A. (1959). Assay of plasma insulin in human subjects of immunological methods. *Nature*, 184, 1648–1649.
- Zhang, A., Csutoras, C., Zong, R. & Neumeyer, J. L. (2005). Synthesis of 2-fluoro-11hydroxy-N-propylnoraporphine: a potential dopamine D2 agonist. Organic Letters, 7, 3239–3242.
- Zhang, A., Zhang, Y., Branfman, A. R., Baldessarini, R. J. & Neumeyer, J. L. (2007). Advances in development of dopaminergic aporphinoids. *Journal of Medicinal Chemistry*, 50, 171–181.
- Zhang, J. H., Chung, T. D. Y. & Oldenburg, K. R. (1999). A simple statistical parameter for use in evaluation and validation of highthroughput screening assays. *Journal* of Biomolecular Screening, 4, 67–73.

8.0 Appendices

A: Sequence Analysis

CLUSTAL 2.0.12 multiple se	equence alignment	
uniprot P28564 5HT1B BAT	2	24
uniprot/P28565/5HT1D_RAT		5
uniprot/P30940/5HT1F BAT	MDFLNSSDONLTSEE 1	5
uniprot P19327 5HT1A RAT		15
uniprot P35364 5HT5A BAT	MDLP INLTSESLSTPS 1	6
uniprot P35365 5HT5B BAT	MEUSILSGATPGIAFPPGPESCSD 2	24
uniprot P32305 5HT7B BAT	MMDVNSSGRPDLYGHLRSLTLPEVGRGLODLSPDGGAHPVVSSWMPHLLS	50
uniprot P14842 5HT2A BAT	MELLCEDNISLSSIPNSLMOLGDGPRLYHNDENSRDANTS	10
uniprot P08909 5HT2C BAT	MUNICNAVESLIMHLIGLIVWOEDISIS 2	20
uniprot P30994 5HT2B BAT	MASSYKMSEOSTISEHILOKTODHLILTDESG-LKAES	27
uniprot 062758 5HT4B BAT	MDRLDANVSSNE 1	2
uniprot P31388 5HT6R BAT	MVPEPGPVNSSTPAWG 1	6
uniprot/P28564/5HT1B RAT	LSHNCSADDYIYODSIALPWKVLLVALLALITLATTL	51
uniprot P28565 5HT1D RAT	SNRSLNATG-AWDPEVLOALRISLVVVLSIITLATVL	51
uniprot P30940 5HT1F RAT	LLNRMPSKILVSLTLSGLALMTTT 3	39
uniprot P19327 5HT1A RAT	OEPFGTGGNVTSISDVTFSYOVITSLLLGTLIFCAVL	52
uniprot/P35364/5HT5A BAT	TLEPNRSLDTEALETSOSFLS-AFR	56
uniprot P3536515HT5B RAT	SPSSGRSMGSTPGGLILSGREPPFS-AFTVLVVTLLVLLTAATEL	58
uniprot/P32305/5HT7R RAT	GELEVTASPAPTWDAPPDNVSGCGEOTNYGRVEKVVTGSTLTLTTA 1	00
uniprot P14842 5HT2A BAT	EASNWTIDAENRTNI.SCEGYLPPTCI.STIHLOEKNWSALLTTVVIII.TIA	30
uniprot P08909 5HT2C BAT	PVAATUTDTENSSDGGRLEOFPDGVONWPALSTVVIIIMTIG	70
uniprot P30994 5HT2B BAT	AAFEMKOTAENOCNTVHWAALLIFAVIIDTIC	59
uniprot 062758 5874P PAT		25
uniprot P31388 5HT6R RAT		12
	· · ·	12
uniprot P28564 5HT1B_RAT	SNAFVIATVYRTRKLHTP-ANYLIASLAVTDLLVSILVMPISTMYTVT 1	108
uniprot P28565 5HT1D_RAT	SNAFVLTTILLTKKLHTP-ANYLIGSLATTDLLVSILVMPISIAYTTT 9	98
uniprot P30940 5HT1F_RAT	INCLVITAIIVTRKLHHP-ANYLICSLAVTDFLVAVLVMPFSIVYIVR 8	36
uniprot P19327 5HT1A_RAT	<mark>gnacvvaaia</mark> lerslqnv-any <mark>ligslavtdlmvsvlvlpmaalyqv</mark> l 9	99
	WINT T UT A TT DUDTEUDU DUNT $UA CMATCOUT UAUT UMDT CT UUET C_C 1$	
uniproc/P35364/SHTSA_RAT	WILLVERTIERV PRICE VASIALSVEVAVEVALSEV	104
uniprot P35365 5HT5B_RAT	WNLLVLATIERVRAFHRV-PHNLVASTAVSDVLVAALVMPLSLVHELS-G	L04 L17
uniprot P35365 5HT5B_RAT uniprot P32305 5HT7R_RAT	WNLLVLATIEKVATERKV-FENDVASDATSDVLVANDVMFLSLVRELS-G WNLLVLVTILRVRAFHRV-PHNLVASTAVSDVLVAALVMPLSLVSELSAG 1 GNCLVVISVCFVKKLRQP-SNYLIVSLALADLSVAVAVMPFVSVTDLI-G 1	L04 L17 L48
uniprot P35365 5HT5B_RAT uniprot P35365 5HT5B_RAT uniprot P32305 5HT7R_RAT uniprot P14842 5HT2A_RAT	WNLLVLATIERVRIFERV-FENEVASERISDVLVALUMFLSLVELSG I WNLLVLVTILRVRAFHRV-FENEVASERISDVLVAALVMPLSLVSELSAG I GNCLVVISVCFVKKLRQP-SNYLIVSLALADLSVAVAVMPFVSVTDLI-G I GNILVIMAVSLEKKLQNA-TNYFLMSLAIADMLLGFLVMPVSMLTILY-G I	L04 L17 L48 L38
uniprot P35364 54154_KA1 uniprot P35365 5HT5B_RAT uniprot P32305 5HT7R_RAT uniprot P14842 5HT2A_RAT uniprot P08909 5HT2C_RAT	WNLLVLWITIERVRIFIERV-PHERVASDALVSDALVALVMPLSLVELSAG WNLLVLWITIERVRAFERV-PHERVASDVLVALVMPLSLVSELSAG GNCLVVISVCFVKKIRQP-SNYLIVSLALADLSVAVAVMPFVSVTDLI-G GNILVIMAVSLEKKLQNA-TNYFIMSLAIADMLLGFLVMPVSMLTILY-G GNILVIMAVSMEKKLHNA-TNYFIMSLAIADMLVGLLVMPLSLAILY-D 1	L04 L17 L48 L38 L18
uniprot P35364 5H15A_KAI uniprot P35365 5H15B_RAT uniprot P32305 5H17R_RAT uniprot P14842 5H12A_RAT uniprot P08909 5H12C_RAT uniprot P30994 5H12B_RAT	WNLLVLATIAKVATAAKV - FANAVASAATSDVLVAVIAVALVAPLSLVALGAG WNLLVLVTILRVRAHRV-PHNLVASTAVSDVLVALVAPLSLVSLAG GNCLVVISVCFVKKLRQP-SNYLIVSLALADLSVAVAVMPFVSVTDLI-G GNILVIMAVSLEKKLQNA-TNYFLMSLAIADMLLGFLVMPVSMLTILY-G GNILVIMAVSMEKKLHNA-TNYFLMSLAIADMLVGLLVMPLSLLAILY-D GNILVILAVSLEKKLQYA-TNYFLMSLAIADMLVGLLVMPLSLLAILY-D	L04 L17 L48 L38 L18 L17
uniprot P35364 5H15A_KA1 uniprot P35365 5H15B_RAT uniprot P32305 5H17R_RAT uniprot P14842 5H17A_RAT uniprot P08909 5H12C_RAT uniprot P30994 5H12B_RAT uniprot Q62758 5H14R_RAT	WNLLVLATIERVRIFHRV-FHNLVASIATSDVLVAJLVMPLSLVHLGG 1 WNLVLVTIERVRAFHRV-FHNLVASIATSDVLVAALVMPLSLVSELSAG 1 GNCLVVISVCFVRKLRQF-SNYLIVSLALADLSVAVAMPFVSVTDLI-G 1 GNILVIMAVSERKRLQNA-TNYFIMSLAIADMLLGFLVMPVSMLTILY-G 1 GNILVIMAVSMEKKLHNA-TNYFIMSLAIADMLVGLLVMPLSLLAILY-D 1 GNILVILAVSLEKRLQYA-TNYFIMSLAVADLLVGLFVMPIALLTIMF-E 1 GNLLVMVAVCRDRQLRKIKTNYFIVSLAFADLLVSVLVNAFGAIELVQ 2	L04 L17 L48 L38 L18 L17 33
uniprot P35364 5H15A_RAT uniprot P35365 5H15B_RAT uniprot P32305 5H17R_RAT uniprot P14842 5H12A_RAT uniprot P30994 5H12B_RAT uniprot P30994 5H12B_RAT uniprot Q62758 5H14R_RAT uniprot P31388 5H16R_RAT	NNLLVLATIEKVATTERV-TERLVASJATSDVLVAJLVHPISLVELGG I WNLLVLVTILRVRAFHRV-PHNLVASTAVSDVLVAALVMPISLVELGG I GNCLVVISVCFVKKLRQP-SNYLIVSLALADLSVAVAVMPFVSVTDLI-G I GNILVIMAVSLEKKLQNA-TNYFIMSLAIADMLIGFLVMPVSMLTILY-G I GNILVIMAVSMEKKLHNA-TNYFIMSLAIADMLIGILVMPLSLLAILY-D 1 GNILVILAVSLEKRLQYA-TNYFIMSLAVADLLVGLFVMPIALLTIMF-E 1 GNLLVMVAVCRDRQLRKIKTNYFIVSLAFADLLVSVLVNAFGAIELVQ 8 ANSLLIVLICTQPALRNT-SNFFLVSLFTSDLMVGLVVMPPAMLNALY 8	L04 L17 L48 L38 L18 L17 33 39
uniprot P35364 5H15A_KAT uniprot P35365 5H15B_RAT uniprot P32305 5H17A_RAT uniprot P14842 5H17A_RAT uniprot P08909 5H12C_RAT uniprot P30994 5H12B_RAT uniprot Q62758 5H14R_RAT uniprot P31388 5H16R_RAT	<pre>NALLVLATIARVATAARV-FANAUSSATSDUVAVIDVALUMPLSUVALSG WNLVLVTILRVRAFARV-PHNLVASTAVSDVIVAALVMPLSUVSELSAG 1 GNCLVVISVCFVKKLRQP-SNYLIVSLALADLSVAVAVMPFVSVTDLI-G 1 GNILVIMAVSLEKKLQNA-TNYFLMSLAIADMLLGFLVMPVSMLTILY-G 1 GNILVIMAVSMEKKLHNA-TNYFLMSLAIADMLVGLLVMPLSLLAILY-D 1 GNILVIMAVSLEKKLQYA-TNYFLMSLAIADMLVGLLVMPLSLLAILY-D 1 GNILVILAVSLEKRLQYA-TNYFLMSLAVADLLVGLFVMPIALLTIMF-E 1 GNLLVMVAVCRDRQLRKIKTNYFIVSLAFADLLVSVLVNAFGAIELVQ 8 ANSLLIVLICTQPALRNT-SNFFLVSLFTSDLMVGLVVMPPAMLNALY 8 * :: : :: :: :: * :* :* :* :* :* :</pre>	L04 L17 L48 L38 L18 L17 33
uniprot P35364 5H15A_KAT uniprot P35365 5H15B_RAT uniprot P32305 5HT7R_RAT uniprot P14842 5H12A_RAT uniprot P08909 5H12C_RAT uniprot P30994 5H12B_RAT uniprot Q62758 5H14R_RAT uniprot P31388 5H16R_RAT	NALLVLATTIR.VARTHRV-PHARVASARISSULVANUMPLSIVALLAGE WNLLVLATTIR.VARTHRV-PHARVASARISSULVANUMPLSIVALSAG GNCLVVISVCFVKKLRQP-SNYLIVSLALADLSVAVAMPFVSVTDLI-G GNILVIMAVSLEKKLQNA-TNYFLMSLAIADMLLGFLVMPVSMLTILY-G GNILVIMAVSLEKKLQNA-TNYFLMSLAIADMLVGLLVMPLSLLAILY-D GNILVIMAVSLEKKLQNA-TNYFLMSLAIADMLVGLLVMPLSLLAILY-D GNILVINAVSLEKKLQYA-TNYFLMSLAIADMLVGLLVMPLSLLAILY-D GNILVILAVSLEKKLQYA-TNYFLMSLAIADMLVGLLVMPLSLLAILY-D GNLLVMVAVCRDRQLRKIKTNYFIVSLAFADLLVSVLVNAFGAIELVQ ANSLLIVLICTQPAL RNT-SNFFLVSLFTSDLMVGLVVMPPAML NALLVLICTQPAL TM TM	L04 L17 L48 L38 L18 L17 33 39
uniprot P35364 5HT5B_RAT uniprot P35365 5HT5B_RAT uniprot P32305 5HT7R_RAT uniprot P14842 5HT2A_RAT uniprot P08909 5HT2C_RAT uniprot P30994 5HT2B_RAT uniprot Q62758 5HT4R_RAT uniprot P31388 5HT6R_RAT	MALLVLATTILRVRAFHRV-PHNLVASTAVSDVLVAALVMPLSLVBLAG WNLLVLATTILRVRAFHRV-PHNLVASTAVSDVLVAALVMPLSLVSELSAG GNCLVVISVCFVKKLRQP-SNYLIVSLALADLSVAVAVMPFVSVTDLI-G GNILVIMAVSLEKKLQNA-TNYFLMSLAIADMLLGFLVMPVSMLTILY-G GNILVIMAVSLEKKLQNA-TNYFLMSLAIADMLVGLLVMPLSLLAILY-D GNILVIMAVSLEKKLQNA-TNYFLMSLAIADMLVGLLVMPLSLLAILY-D GNILVIMAVSLEKKLQNA-TNYFLMSLAIADMLVGLLVMPLSLLAILY-D GNILVILAVSLEKKLQNA-TNYFLMSLAIADMLVGLLVMPLSLLAILY-D GNLLVMAVCRDRQLRKIKTNYFIVSLAFADLLVSVLVNAFGAIELVQ ANSLLIVLICTQPALRNT-SNFFLVSLFTSDLMVGLVVMPPAMLNALY * :: : :: :: :: * :*.: * TM I GRWTLGQVVCDFWLSSDITCCTASIMHLCVIALDRYWAIT-DAVDYSAKR	L04 L17 L48 L38 L18 L17 33 39
uniprot P35364 5HT5B_RAT uniprot P35365 5HT5B_RAT uniprot P32305 5HT7R_RAT uniprot P14842 5HT2A_RAT uniprot P08909 5HT2C_RAT uniprot P30994 5HT2B_RAT uniprot P20565 5HT4R_RAT uniprot P20564 5HT1B_RAT uniprot P20565 5HT1D_RAT	NALLVLATIARVATIARV-PHNLVASTAVSDALVALVAPLISUNELSG WNLLVLVTILRVRAFHRV-PHNLVASTAVSDALVALVAPLISUNELSG GNCLVVISVCFVKKLRQP-SNYLIVSLALADLSVAVAMPFVSVTDLI-G GNILVIMAVSLEKKLQNA-TNYFLMSLAIADMLLGFLVMPVSMLTILY-G GNILVIMAVSLEKKLQNA-TNYFLMSLAIADMLVGLLVMPLSLLAILY-D GNILVIMAVSLEKKLQNA-TNYFLMSLAIADMLVGLLVMPLSLLAILY-D GNILVILAVSLEKKLQYA-TNYFLMSLAIADMLVGLLVMPLSLLAILY-D GNLLVMAVCRDRQLRKIKTNYFIVSLAFADLLVSVLVNAFGAIELVQ ANSLLIVLICTQPAL RTM TM GRWTLGQVVCD FWLSSDITCCTASIMHLCVIAL GRWTLGQVVCD FWLSSDITCCTASILHLCVIAL RTWNFGQILCDIWVSSDITCCTASILHLCVIAL	L04 L17 L48 L38 L18 L17 33 39
uniprot P35364 5HT5B_RAT uniprot P35365 5HT5B_RAT uniprot P32305 5HT7R_RAT uniprot P14842 5HT2A_RAT uniprot P08909 5HT2C_RAT uniprot P30994 5HT2B_RAT uniprot Q62758 5HT4R_RAT uniprot P31388 5HT6R_RAT uniprot P28564 5HT1B_RAT uniprot P28565 5HT1D_RAT uniprot P30940 5HT1F_RAT	NALLVLATIALKATARKY-PHNLVASTAVSDVLVAALVAPLSLVELSAG WNLLVLVTILRVRAFHRV-PHNLVASTAVSDVLVAALVAPLSLVSELSAG GNCLVVISVCFVKKLRQP-SNYLIVSLALADLSVAVAVAPFVSVTDLI-G GNILVIMAVSEKKLQNA-TNYFLMSLAIADMLLGFLVMPVSMLTILY-G GNILVIMAVSEKKLQNA-TNYFLMSLAIADMLVGLLVMPLSLLAILY-D GNILVIMAVSEKKLHNA-TNYFLMSLAIADMLVGLLVMPLSLLAILY-D GNILVILAVSLEKRLQYA-TNYFLMSLAIADMLVGLLVMPLSLLAILY-D GNLLVMAVCRDRQLRKIKTNYFIVSLAFADLLVSVLVNAFGAIELVQ ANSLLIVLICTQPAL RNT-SNFFLVSLFTSDLMVGLVVMPPAML MI TM GRWTLGQVVCD FWLSSDITCCTASIMHLCVIALDRYWAIT-DAVDYSAKR RTWNFGQ LCDIWVSSDITCCTASILHLCVIALDRYWAIT-DAVDYSAKR ESWIMGQGLCD	L04 L17 L48 L38 L18 L17 J33 J9 L57 L47 L35
uniprot P35364 5HT5B_RAT uniprot P35365 5HT5B_RAT uniprot P32305 5HT7R_RAT uniprot P14842 5HT2A_RAT uniprot P08909 5HT2C_RAT uniprot P30994 5HT2B_RAT uniprot P2058 5HT4R_RAT uniprot P31388 5HT6R_RAT uniprot P28564 5HT1B_RAT uniprot P28565 5HT1D_RAT uniprot P30940 5HT1F_RAT uniprot P19327 5HT1A_RAT	NALLVLATTERVATTERV-PHNLVASTAVSDVLVAALVMPLSLVELSAG WNLLVLVTILRVRAFHRV-PHNLVASTAVSDVLVAALVMPLSLVSELSAG GNCLVVISVCFVKKLRQP-SNYLIVSLALADLSVAVAVMPFVSVTDLI-G GNILVIMAVSEKKLQNA-TNYFLMSLAIADMLLGFLVMPVSMLTILY-G GNILVIMAVSEKKLQNA-TNYFLMSLAIADMLVGLLVMPLSLLAILY-D GNILVIMAVSEKKLHNA-TNYFLMSLAIADMLVGLLVMPLSLLAILY-D GNILVILAVSLEKRLQYA-TNYFLMSLAIADMLVGLLVMPLSLLAILY-D GNILVILAVSLEKRLQYA-TNYFLMSLAVADLLVGLFVMPIALLTIMF-E GNLLVMVAVCRDRQLRKIKTNYFIVSLAFADLLVSVLVNAFGAIELVQ ANSLLIVLICTQPAL RNT-SNFFLVSLFTSDLMVGLVVMPPAML NASLLIVLICTQPAL RTM TM GRWTLGQVVCD FWLSSDITCCTASIMHLCVIALDRYWAIT-DAVDYSAKR RTWNFGQ ILCDIWVSSDITCCTASILHLCVIALDRYWAIT-DAVDYSAKR ESWIMGQGLCD LLSVDIICCTCSILHLSAIALDRYRAIT-DAVEYARKR NKWTLGQVTCD	L04 L17 L48 L38 L18 L17 33 39 L57 L47 L35 L48
uniprot P35364 5HT5B_RAT uniprot P35365 5HT5B_RAT uniprot P32305 5HT7R_RAT uniprot P14842 5HT2A_RAT uniprot P30994 5HT2C_RAT uniprot P30994 5HT2B_RAT uniprot P31388 5HT6R_RAT uniprot P31388 5HT6R_RAT uniprot P28565 5HT1B_RAT uniprot P28565 5HT1D_RAT uniprot P30940 5HT1F_RAT uniprot P35364 5HT5A_RAT	NALLVLATTERVATTERV-PHNLVASTAVSDVLVAALVMPLSLVELSAG WNLLVLVTILRVRAFHRV-PHNLVASTAVSDVLVAALVMPLSLVSELSAG GNCLVVISVCFVKKLRQP-SNYLIVSLALADLSVAVAVMPFVSVTDLI-G GNILVIMAVSEKKLQNA-TNYFIMSLAIADMLLGFLVMPVSMLTILY-G GNILVIMAVSEKKLQNA-TNYFIMSLAIADMLVGLLVMPLSLLAILY-D GNILVIMAVSEKKLHNA-TNYFIMSLAIADMLVGLVMPLSLLAILY-D GNILVILAVSLEKKLQYA-TNYFIMSLAVADLLVGLFVMPIALLTIMF-E GNILVILAVSLEKKLQYA-TNYFIMSLAVADLLVGLFVMPIALLTIMF-E GNLLVMVAVCRDRQLRKIKTNYFIVSLAFADLLVSVLVNAFGAIELVQ ANSLLIVLICTQPAL RNT-SNFFLVSLFTSDLMVGLVVMPPAMLNALY * :: : :: :: :: :: * :* :* :* :* TM I GRWTLGQVVCD FWLSSDITCCTASIMHLCVIALDRYWAIT-DAVDYSAKR RTWNFGQILCD ESWIMGQGLCD MKWTLGQVTCD FILSS NKWTLGQVTCD IFILS RRWQLGRRLCQ	L04 L17 L48 L38 L18 L17 33 39 L57 L47 L35 L48 L53
uniprot P35364 5HT5B_RAT uniprot P35365 5HT5B_RAT uniprot P32305 5HT7R_RAT uniprot P14842 5HT2A_RAT uniprot P08909 5HT2C_RAT uniprot P30994 5HT2B_RAT uniprot Q62758 5HT4R_RAT uniprot P31388 5HT6R_RAT uniprot P31388 5HT6R_RAT uniprot P28565 5HT1B_RAT uniprot P28565 5HT1D_RAT uniprot P35364 5HT1A_RAT uniprot P35364 5HT5A_RAT uniprot P35365 5HT5B_RAT	NALLVLATTIR.VATHRAV-PHAR.VASAATSOVLVAALVAPLISUNELSG WNLLVLATTIR.VARTHRV-PHAR.VASAATSOVLVAALVAPLISUNELSG GNCLVVISUCFVKKLRQP-SNYLLVSLALADLSVAVAVMPFVSVTDLI-G GNILVIMAVSLEKKLQNA-TNYFLMSLAIADMLUGLVMPLSLLAILY-D GNILVIMAVSLEKKLQNA-TNYFLMSLAIADMLVGLLVMPLSLLAILY-D GNILVILAVSLEKKLQYA-TNYFLMSLAIADMLVGLLVMPLSLLAILY-D GNILVILAVSLEKKLQYA-TNYFLMSLAIADMLVGLLVMPLSLLAILY-D GNILVILAVSLEKKLQYA-TNYFLMSLAIADMLVGLVMPPAML GNILVILAVSLEKKLQYA-TNYFLMSLAVADLLVGLFVMPIALLTIMF-E GNILVILAVSLEKKLQYA-TNYFLMSLAVADLLVGLFVMPIALLTIMF-E GNILVILAVSLEKKLQYA-TNYFLMSLAVADLLVGLVVMPPAML MASLLIVLICTQPAL ANSLLIVLICTQPAL RTM TM GRWTLGQVVCDFWLSSDITCCTASIMHLCVIALDRYWAIT-DAVDYSAKR RTWNFGQILCDIWVSSDITCCTASILHLCVIALDRYWAIT-DAVDYSAKR RTWNFGQILCDIWVSSDITCCTASILHLCVIALDRYWAIT-DAVDYSAKR RTWNFGQILCDIWVSSDITCCTASILHLCVIALDRYWAIT-DAVEYARKR NKWTLGQVVCD FILADVLCCTSSILHLAIADRYWAIT-DAVEYARKR NKWTLGQVTCDLFIALDVLCCTASIWNVTAIALDRYWAIT-DPIDYVNKR RRWQLGRRLCQLWIACDVLCCTASIWNVTAIALDRYWSIT-RHLEYTLRA RRWQLGRSLCH	L04 L17 L48 L38 L18 L17 J33 J9 L57 L47 L35 L48 L53 L66
uniprot P35364 5HT5B_RAT uniprot P35365 5HT5B_RAT uniprot P32305 5HT7R_RAT uniprot P14842 5HT2A_RAT uniprot P08909 5HT2C_RAT uniprot P30994 5HT2B_RAT uniprot Q62758 5HT4R_RAT uniprot P31388 5HT6R_RAT uniprot P31388 5HT6R_RAT uniprot P28565 5HT1B_RAT uniprot P28565 5HT1B_RAT uniprot P1327 5HT1A_RAT uniprot P35364 5HT5A_RAT uniprot P35365 5HT5B_RAT uniprot P32305 5HT7R_RAT	MALLVLATTIR.VATHARV-PHARASSATSUSULVATUMPLSTURELSG WNLLVLVTIR.VATARKV-PHARASSATSUSULVATUMPLSTUSELSAG GNCLVVISVCFVKKLRQP-SNYLIVSLALADLSVAVAMPFVSVTDLI-G GNILVIMAVSLEKKLQNA-TNYFLMSLATADMLLGFLVMPVSMLTILY-G GNILVIMAVSLEKKLQNA-TNYFLMSLATADMLVGLLVMPLSLATLY-D GNILVIMAVSLEKKLQNA-TNYFLMSLATADMLVGLVMPLSLLATLY-D GNILVIMAVSLEKKLQYA-TNYFLMSLATADMLVGLVMPLSLLATLY-D GNILVILAVSLEKKLQYA-TNYFLMSLATADMLVGLVMPPAKLATIMF-E GNLLVMVAVCRDRQLRKIKTNYFIVSLAFADLLVSULVNAFGATELVQ ANSLLIVLICTOPALRNT-SNFFLVSLFTSDLMVGLVVMPPAKLNALY * :: : :: :: :: * :*.: * TM I GRWTLGQVVCDFWLSSDITCCTASIMHLCVIALDRYWAIT-DAVDYSAKR 1 RTWNFGQILCDIWVSSDITCCTASIHHLCVIALDRYWAIT-DAVDYSAKR 1 RTWNFGQUCDLWLSVDIICCTCSILHLSATALDRYWAIT-DAVEYARKR 1 NKWTLGQVVCDFULSVDIICCTSSILHLCATALDRYWAIT-DAVEYARKR 1 NKWTLGQVVCDLFTALDVLCCTASIMVVTATALDRYWAIT-DAVEYARKR 1 RRWQLGRRLCQLWIACDVLCCTASIMVVAATALDRYWSIT-RHLEYTLRA 1 RRWQLGRSLCHWISFDVLCCTASIMVVAATALDRYWTTT-RHLEYTLRA 1 RRWQLGRSLCHWISFDVLCCTASIMVAATALDRYWTT-RHLEYTLRA 1 RKWIFGHFFCNVFTAMDVMCCTASIMTLCVISIDRYLGIT-RPLTYPVRQ 1	L04 L17 L48 L38 L18 L17 33 39 L57 L47 L35 L48 L53 L66 L97
uniprot P35364 5HT5B_RAT uniprot P35365 5HT5B_RAT uniprot P32305 5HT7R_RAT uniprot P14842 5HT2A_RAT uniprot P30994 5HT2C_RAT uniprot P30994 5HT2B_RAT uniprot P31388 5HT6R_RAT uniprot P31388 5HT6R_RAT uniprot P28565 5HT1B_RAT uniprot P30940 5HT1F_RAT uniprot P32365 5HT1B_RAT uniprot P35364 5HT5A_RAT uniprot P32305 5HT5B_RAT uniprot P32305 5HT7R_RAT uniprot P14842 5HT2A_RAT	MALLVLATTIR.VARTHRV-PHNLVASTAVSDALVALVAPLSIA ISJA WNLLVLVTIR.VARTHRV-PHNLVASTAVSDALVALVAPLSIA ISJA GNCLVVISVCFVKKLRQP-SNYLIVSLALADLSVAVAVMPFVSVTDLI-G GNILVIMAVSLEKKLQNA-TNYFLMSLAIADMLLGFLVMPVSMLTILY-G GNILVIMAVSLEKKLQNA-TNYFLMSLAIADMLVGLLVMPLSLAILY-D GNILVIMAVSLEKKLQNA-TNYFLMSLAIADMLVGLLVMPLSLLAILY-D GNILVIMAVSLEKKLQNA-TNYFLMSLAIADMLVGLVMPLSLLAILY-D GNILVILAVSLEKKLQNA-TNYFLMSLAIADMLVGLVMPLSLLAILY-D GNILVILAVSLEKKLQNA-TNYFLMSLAIADMLVGLVMPLSLLAILY-D GNILVILAVSLEKKLQNA-TNYFLMSLAIADMLVGLVMPLSLLAILY-D GNILVILAVSLEKKLQNA-TNYFLMSLAVADLLVGLFVMPIALLTIMF-E GNILVILAVSLEKKLQNA-TNYFLMSLAVADLLVGLFVMPIALLTIMF-E GNILVILAVSLEKKLQNA-TNYFLMSLAVADLLVGLFVMPIALLTIMF-E GNILVILAVSLEKKLQNA-TNYFLMSLAVADLLVGLFVMPIALLTIMF-E GNILVILAVSLEKKLQNA-TNYFLMSLAVADLLVGLFVMPIALLTIMF-E GNILVILAVSLEKKLQNA-TNYFLMSLAVADLLVGLFVMPIALLTIMF-E GNILVILAVSLEKKLQNA-TNYFLMSLAVADLLVGLVMPPAMLNALY ANSLLIVLICTOPAL GRWTLGQVVCDFWLSSDITCCTASIMHLCVIALDRYWAIT-DAVDYSAKR GRWTLGQUVCDFWLSSDITCCTASIMHLCVIALDRYWAIT-DAVDYSAKR RTWNFGQILCDLWSSDITCCTASIMHLCAIALDRYWAIT-DAVEYARKR NKWTLGQVTCDLFIALDVLCCTSSILHLAIADRYWAIT-DAVEYARKR NKWTLGQVTCDLFIALDVLCCTASIMNVAAIALDRYWSIT-RHLEYTLRA RRWQLGRSLCHWISFDVLCCTASIMVAAIALDRYWTIT-RHLQYTLRT GKWIFGHFFCNVFIAMDVMCCT	L04 L17 L48 L38 L18 L17 33 39 L57 L47 L35 L48 L53 L66 L97 L87
uniprot P35364 5HT5B_RAT uniprot P35365 5HT5B_RAT uniprot P14842 5HT2A_RAT uniprot P08909 5HT2C_RAT uniprot P30994 5HT2B_RAT uniprot Q62758 5HT4R_RAT uniprot P31388 5HT6R_RAT uniprot P31388 5HT6R_RAT uniprot P28565 5HT1D_RAT uniprot P30940 5HT1F_RAT uniprot P32365 5HT5B_RAT uniprot P35365 5HT5B_RAT uniprot P32305 5HT5B_RAT uniprot P4842 5HT2A_RAT uniprot P08909 5HT2C_RAT	Intervention WNLLVLVTILRVRAFHRV-PHNLVASTAVSDVLVALVMPLSLVSELSAG GNCLVVISVCFVKKLRQP-SNYLIVSLALADLSVAVAMPFVSVTDLI-G GNILVIMAVSLEKKLQNA-TNYFLMSLAIADMLLGFLVMPVSMLTILY-G GNILVIMAVSLEKKLQNA-TNYFLMSLAIADMLVGLLVMPLSLLAILY-D GNILVIMAVSLEKKLQNA-TNYFLMSLAIADMLVGLLVMPLSLLAILY-D GNILVIMAVSLEKKLQNA-TNYFLMSLAIADMLVGLLVMPLSLLAILY-D GNILVIMAVSLEKKLQNA-TNYFLMSLAIADMLVGLVMPPSMLTILY-G GNILVIMAVSLEKKLQNA-TNYFLMSLAIADMLVGLVMPPSML GNILVIMAVSLEKKLQNA-TNYFLMSLAIADMLVGLVMPPSML GNILVILAVSLEKKLQNA-TNYFLMSLAIADMLVGLVMPPSML GNLLVMVAVCRDRQLRKIKTNYFIVSLAFADLLVSVLVNAFGAIELVQ ANSLLIVLICTQPAL RNT-SNFFLVSLFTSDLMVGLVVMPPAML MAIL GRWTLGQVVCDFWLSSDITCCTASIMHLCVIAL DRWTLGQVVCDFWLSSDITCCTASIMHLCVIAL DRWTLGQVVCDFWLSSDITCCTASIMHLCVIAL RTWNFGQILCDLWSSDITCCTASIMHLCVIAL RTWNFGQILCDLWSSDITCCTASIMHLCVIAL RTWNFGQILCDLWSSDITCCTASIMHLCVIAL RTWNFGQILCDLWSSDITCCTASIMHLCVIAL RTWNFGQILCDLWSSDITCCTASIMHLCVIAL RTWNFGQILCDLWSSDITCCTASIMHLCVIAL RTWNFGQILCDLWSSDITCCTASIMHLCVIAL RTWNFGQILCDLWSSDITCCTASIMHLCVIAL RTWNFGQILCDLWSSDITCCTASIMHLCVIAL RRWQLGRLCQLWIACDLWSDITCTASIMHLCAISLDRYWAIT-PALEYTRA RRWQLGRSLCH	L04 L17 L48 L38 L18 L17 33 39 L57 L47 L35 L48 L53 L66 L97 L87 L67
uniprot P35364 5HT5B_RAT uniprot P35365 5HT5B_RAT uniprot P32305 5HT7R_RAT uniprot P14842 5HT2A_RAT uniprot P30994 5HT2C_RAT uniprot P30994 5HT2B_RAT uniprot P31388 5HT6R_RAT uniprot P31388 5HT6R_RAT uniprot P31388 5HT6R_RAT uniprot P30940 5HT1F_RAT uniprot P30940 5HT1F_RAT uniprot P35364 5HT5A_RAT uniprot P35365 5HT5B_RAT uniprot P35305 5HT7R_RAT uniprot P4842 5HT2A_RAT uniprot P48099 5HT2C_RAT uniprot P30994 5HT2B_RAT	INTERVALUATION OF INTRODUCTION	L04 L17 L48 L38 L18 L17 33 39 L57 L47 L35 L48 L53 L66 L97 L87 L66 L66
uniprot P35364 5HT5B_RAT uniprot P35365 5HT5B_RAT uniprot P14842 5HT2A_RAT uniprot P14842 5HT2A_RAT uniprot P30994 5HT2C_RAT uniprot P30994 5HT2B_RAT uniprot P31388 5HT4R_RAT uniprot P31388 5HT6R_RAT uniprot P31388 5HT6R_RAT uniprot P30940 5HT1B_RAT uniprot P35365 5HT1D_RAT uniprot P35365 5HT5B_RAT uniprot P35365 5HT5B_RAT uniprot P35365 5HT5B_RAT uniprot P32305 5HT7R_RAT uniprot P4842 5HT2A_RAT uniprot P30994 5HT2B_RAT uniprot P30994 5HT2B_RAT uniprot Q62758 5HT4R_RAT	NILLVLATTILKVRITHRV-PHNLVASTATSDVLVAALVMPLSLVELSAG WNLLVLVTILRVRAFHRV-PHNLVASTAVSDVLVAALVMPLSLVSELSAG GNCLVVISVCFVKKLRQP-SNYLIVSLALADLSVAVAMPFVSVTDLI-G GNILVIMAVSLEKKLQNA-TNYFLMSLAIADMLUGELVMPVSMLTILY-G GNILVIMAVSLEKKLQNA-TNYFLMSLAIADMLVGLLVMPLSLLAILY-D GNILVIMAVSLEKKLQNA-TNYFLMSLAIADMLVGLLVMPLSLLAILY-D GNILVILAVSLEKKLQNA-TNYFLMSLAIADMLVGLLVMPLSLLAILY-D GNILVILAVSLEKKLQNA-TNYFLMSLAIADMLVGLVMPPSMLTILY-G GNILVILAVSLEKKLQNA-TNYFLMSLAIADMLVGLVMPPAMLNALY GNLLVMVAVCRDRQLRKIKTNYFIVSLAFADLLVSVLVNAFGAIELVQ ANSLLIVLICTOPAL RTM GRWTLGQVVCDFMLSSDITCCTASIMHLCVIALDRYWAIT-DAVDYSAKR RTWNFGQILCDIWVSSDITCCTASILHLCVIALDRYWAIT-DAVDYSAKR RTWNFGQILCDLWLSVDIICCTCSILHLSAIALDRYWAIT-DAVEYARKR NKWTLGQVTCDLFIALDVLCCTASIMNVAIALDRYWAIT-DAVEYARKR NKWTLGQVTCDLFIALDVLCCTASIMNVAIALDRYWAIT-DPIDYVNKR RRWQLGRSLCHWISFDVLCCTASIMNVAIALDRYWAIT-RHLEYTLRA RRWQLGRSLCHWISFDVLCCTASIMNVAIALDRYWITT-RHLEYTLRA RRWQLGRSLCHWISFDVLCCTASIMNLCAISLDRYVAIQ-NPIHHSRFN YVWPLPSKLCAIWIYLDVLFSTASIMHLCAISLDRYVAIQ-NPIHHSRFN YVWPLPRYLCPWISLDVLFSTASIMHLCAISLDRYVAIQ-NPIHHSRFN YVWPLPRYLCPWISLDVLFSTASIMHLCAISLDRYVAIR-NPIEHSRFN ATWPLPLALCPAWLFLDVLFSTASIMHLCAISLDRYVAICQPLVYRKM	L04 L17 L48 L38 L18 L17 33 39 L57 L47 L35 L47 L35 L48 L53 L66 L97 L87 L66 L33
uniprot P35364 5HT5B_RAT uniprot P35365 5HT5B_RAT uniprot P32305 5HT7R_RAT uniprot P14842 5HT2A_RAT uniprot P08909 5HT2C_RAT uniprot P30994 5HT2B_RAT uniprot Q2758 5HT4R_RAT uniprot P31388 5HT6R_RAT uniprot P28565 5HT1B_RAT uniprot P3040 5HT1F_RAT uniprot P19327 5HT1A_RAT uniprot P35364 5HT5A_RAT uniprot P35365 5HT5B_RAT uniprot P32305 5HT7R_RAT uniprot P32305 5HT7R_RAT uniprot P14842 5HT2A_RAT uniprot P18909 5HT2C_RAT uniprot P30994 5HT2C_RAT uniprot P31388 5HT6R_RAT	WNLLVLWTILRVRAFHRV-PHNLVASTAVSDVLVALVMPLSLVSELSAG WNLLVLWTILRVRAFHRV-PHNLVASTAVSDVLVALVMPLSLVSELSAG GNCLVVISVCFVKKLRQP-SNYLLVSLALADLSVAVAVMPFVSVTDLI-G GNILVIMAVSLEKKLQNA-TNYFLMSLAIADMLLGFLVMPVSMLTILY-G GNILVIMAVSLEKKLQNA-TNYFLMSLAIADMLVGLLVMPLSLAILY-D GNILVIMAVSLEKKLQYA-TNYFLMSLAIADMLVGLLVMPLSLAILY-D GNILVILAVSLEKKLQYA-TNYFLMSLAIADMLVGLVMPPANLTILTIMF-E GNILVILAVSLEKKLQYA-TNYFLMSLAVADLLVGLFVMPIALLTIMF-E GNILVILAVSLEKKLQYA-TNYFLMSLAVADLLVGLFVMPIALLTIMF-E GNILVILAVSLEKKLQYA-TNYFLMSLAVADLLVGLFVMPIALLTIMF-E GNILVILAVSLEKKLQYA-TNYFLMSLAVADLLVGLFVMPIALLTIMF-E GNILVILAVSLEKKLQYA-TNYFLMSLAVADLLVGLFVMPIALLTIMF-E GNILVILAVSLEKKLQYA-TNYFLMSLAVADLLVGLFVMPIALLTIMF-E GNILVILAVSLEKKLQYA-TNYFLMSLAVADLLVGLVMPPANLNALY-E * :: : :: :: :: * MNSLLVVACCOPAL GRWTLGQVVCDFWLSSDITCCTASIMHLCVIALDRYWAIT-DAVDYSAKR RTM I GRWTLGQUVCDFWLSSDITCCTASIMHLCVIALDRYWAIT-DAVDYSAKR RTWNFGQILCDLWSSDITCCTASIMHLCAIALDRYWAIT-DAVEYARR NKWTLQQVCDLFIALDVLCTSSILHLCAIALDRYWAIT-DAVEYARR NKWTLQQVTCDLFIALDVLCTASIMNVTAIALDRYWAIT-DAVEYARR NKWTLQQVTCDLFIALDVLCTASIMNVAAIALDRYWITT-RHLQYTLR RRWQLGRSLCHWISFDVLCCTASIMNVAAIALDRYWAIT-PHLAUCT GKWIFGHFCNVFIAMDVMCCTASIMHLCAISLDRYVAIQ-NPIHHSRFN YWPLPSKLCAIWIYLDVLFS	L04 L17 L48 L38 L18 L17 J33 J39 L57 L47 L35 L47 L35 L48 L53 L66 L97 L87 L67 L66 L33 L38
uniprot P35364 5H7B_RAT uniprot P35365 5H7B_RAT uniprot P32305 5H77R_RAT uniprot P14842 5H72A_RAT uniprot P08909 5H72C_RAT uniprot P30994 5H72B_RAT uniprot P31388 5H76R_RAT uniprot P28564 5H71B_RAT uniprot P31388 5H76R_RAT uniprot P35364 5H71B_RAT uniprot P35364 5H71A_RAT uniprot P35365 5H75A_RAT uniprot P35365 5H75A_RAT uniprot P35365 5H75B_RAT uniprot P32305 5H77R_RAT uniprot P30999 5H72C_RAT uniprot P30994 5H72B_RAT uniprot P30994 5H72B_RAT uniprot P31388 5H76R_RAT	WILLVLWTTILRVRAFHRV-PHNLVASTAVSDVLVALVMPLSLVSELSAG WILLVLWTTILRVRAFHRV-PHNLVASTAVSDVLVALVMPLSLVSELSAG GNCLVVISVCFVKKLRQP-SNYLIVSLALADLSVAVAMPFVSVTDLI-G GNILVIMAVSLEKKLQNA-TNYFLMSLAIADMLLGFLVMPVSMLTILY-G GNILVIMAVSLEKKLQNA-TNYFLMSLAIADMLVGLLVMPLSLLAILY-D GNILVILAVSLEKKLQNA-TNYFLMSLAIADMLVGLVMPVSMLTILY-G GNILVILAVSLEKKLQNA-TNYFLMSLAIADMLVGLVMPPSML GNILVILAVSLEKKLQNA-TNYFLMSLAIADMLVGLVMPPSML GNILVILAVSLEKKLQNA-TNYFLMSLAIADMLVGLVMPPSML GNILVILAVSLEKKLQNA-TNYFLMSLAVADLLVGLFVMPIALL GNILVILAVSLEKKLQNA-TNYFLMSLAVADLLVGLFVMPIALL GNILVILAVSLEKKLQNA-TNYFLMSLAVADLLVGLFVMPIALL GNILVILAVSLEKKLQNA-TNYFLMSLAVADLLVGLFVMPIALL GNILVILAVSLEKKLQNA-TNYFLMSLAVADLLVGLVMPPSML MSSLEVEN MASLIVLICTOPAL SUMMEGQUVCDFURSTASIMHLCVIAL GRWTLGQVVCDFWLSSDITCCTASIMHLCVIAL GRWTLGQUVCDFWLSSDITCCTASIMHLCVIAL GRWTLGQUVCDLWSSDITCCTASIMHLCVIAL MKWTLGQUVCDLWSSDITCCTASIMHLCVIAL NKWTLGQUVCDLWSSDITCCTASIMHLCVIAL NKWTLGQUVCDLWSSDITCCTASIMHLCVIAL RRWQLGRSLCHWISFDVLCCTASIMNVAAIAL RRWQLGRSLCHWISFDVLCCTASIMNVAAIAL RRWQLGRSLCHWISFDVLCCTASIMHLCVISIDRYLGIT-RPLTYPKQ YRWPLPSKLCANUFLUVLFSTASIMHLCAISLDRYVAIQ-NPIHHSRFN YVWPLPYLCPWISLDVLFST	L04 L17 L48 L38 L18 L17 33 39 L57 L47 L35 L48 L53 L66 L97 L87 L66 L33 L38
uniprot P35364 5HT5B_RAT uniprot P35365 5HT5B_RAT uniprot P14842 5HT7R_RAT uniprot P08909 5HT2C_RAT uniprot P30994 5HT2B_RAT uniprot P30994 5HT2B_RAT uniprot P31388 5HT6R_RAT uniprot P28565 5HT1B_RAT uniprot P30940 5HT1F_RAT uniprot P32365 5HT1A_RAT uniprot P35365 5HT5A_RAT uniprot P32305 5HT5B_RAT uniprot P4842 5HT2A_RAT uniprot P4842 5HT2A_RAT uniprot P30994 5HT2B_RAT uniprot P30994 5HT2B_RAT uniprot P31388 5HT6R_RAT uniprot P3138 5HT6R_RAT UNIPROT P3138 5HT6R_RAT UNIPROT	<pre>NULVUATILRVRAFHRV-PHNLVASTAVSDVUVALVMPLSUVELSG NULVUATILRVRAFHRV-PHNLVASTAVSDVUVALVMPLSUVSELSG GNCLVVISVCFVKKLRQP-SNYLIVSLALADLSVAVAMPFVSVTDLI-G GNILVIMAVSLEKKLQNA-TNYFLMSLAIADMLUGLVMPVSMLTILY-G GNILVIMAVSLEKKLQNA-TNYFLMSLAIADMLVGLVMPVSMLTILY-G GNILVIMAVSLEKKLQYA-TNYFLMSLAIADMLVGLVMPLSLLAILY-D GNILVILAVSLEKKLQYA-TNYFLMSLAIADMLVGLVMPPALLTIMF-E GNLLVMVAVCRDRQLRKIKTNYFIVSLAFADLLVSULVNAFGAIELVQ & ANSLLIVLICTOPALRNT-SNFFLVSLFTSDLMVGLVVMPPAMLNALY & * :: : : :: :: :: * :*.: * TM I TM II GRWTLGQVVCDFWLSSDITCCTASIMHLCVIALDRYWAIT-DAVDYSAKR 1 RTWNFGQILCDIWVSSDITCCTASIMHLCVIALDRYWAIT-DAVDYSAKR 1 NKWTLGQVTCDLFIALDVLCCTSSILHLCAIALDRYWAIT-DAVEYARKR 1 NKWTLGQVTCDLFIALDVLCCTSSILHLCAIALDRYWAIT-DAVEYAKRR 1 RRWQLGRSLCDLWISFDVLCCTASIMNVTAIALDRYWSIT-RHLEYTLRA 1 RRWQLGRSLCHWISFDVLCCTASIMNVTAIALDRYWSIT-RHLEYTLRA 1 RRWQLGRSLCHWISFDVLCCTASIMNLCAISLDRYVAIQ-NPIHHSRFN 1 YVWPLPSKLCAIWIYLDVLFSTASIMHLCAISLDRYVAIQ-NPIHHSRFN 1 YVWPLPSKLCAIWIYLDVLFSTASIMHLCAISLDRYVAIR-NPIEHSRFN 1 ATWPLPALCPAWLFLDVLLTASIFHLCCISLDRYVAIR-NPIEHSRFN 1 MWFYGEMFCLVFTSLDVLLTASIFHLCZISLDRYVAIR-NPIEHSRFN 1 ATWPLPALCPAWLFLDVLLTASIFHLCZISLDRYVAIR-NPIEHSRFN 1 MWFYGEMFCLVTTSLDVLLTASIFHLCZISLDRYVAIR-NPIEHSRFN 1 MWFIGEMFCLVTSLDVLLTASIFHLCZISLDRYVAIR-NPIEHSRFN 1 MWFIGEMFCLVTSLDVLTASIFHLCZISLDRYVAIR-NPIEHSRFN 1 MF III * * * :::** : *:*** * : TM III TM III</pre>	L04 L17 L48 L38 L18 L17 33 39 L57 L47 L35 L48 L53 L66 L97 L66 L33 L38
uniprot P35364 5HT5B_RAT uniprot P35365 5HT5B_RAT uniprot P32305 5HT7R_RAT uniprot P14842 5HT2A_RAT uniprot P08909 5HT2C_RAT uniprot P30994 5HT2B_RAT uniprot P30940 5HT2B_RAT uniprot P31388 5HT6R_RAT uniprot P31388 5HT6R_RAT uniprot P30940 5HT1F_RAT uniprot P32365 5HT1D_RAT uniprot P32305 5HT5B_RAT uniprot P32305 5HT7R_RAT uniprot P32305 5HT7R_RAT uniprot P4842 5HT2A_RAT uniprot P4842 5HT2A_RAT uniprot P31388 5HT6R_RAT uniprot P31388 5HT6R_RAT uniprot P31388 5HT6R_RAT uniprot P31388 5HT6R_RAT uniprot P31388 5HT6R_RAT	<pre>whilv Dattisky Find vastavsDv DvalvypisuvsElse whilv Dattisky Find vastavsDv DvalvypisuvsElse Gn Lv is very very set of the set</pre>	L04 L17 L48 L38 L18 L17 33 39 L57 L47 L35 L48 L53 L66 L33 L38 L38 L38 L38 L38 L38 L38 L38 L38
uniprot P35364 5HT5B_RAT uniprot P35365 5HT5B_RAT uniprot P14842 5HT2A_RAT uniprot P14842 5HT2A_RAT uniprot P30994 5HT2B_RAT uniprot Q62758 5HT4R_RAT uniprot P31388 5HT6R_RAT uniprot P31388 5HT6R_RAT uniprot P30940 5HT1F_RAT uniprot P30940 5HT1F_RAT uniprot P3365 5HT5B_RAT uniprot P32305 5HT5B_RAT uniprot P32305 5HT7R_RAT uniprot P32305 5HT7B_RAT uniprot P32305 5HT7R_RAT uniprot P30994 5HT2B_RAT uniprot P31388 5HT6R_RAT uniprot P31388 5HT6R_RAT uniprot P31388 5HT6R_RAT uniprot P31388 5HT6R_RAT uniprot P31388 5HT6R_RAT uniprot P28565 5HT1B_RAT uniprot P28565 5HT1B_RAT uniprot P28565 5HT1B_RAT uniprot P28565 5HT1B_RAT	<pre>whilvUallertErvertHerv-PhilvAstavsDvUvAlUMPLSUvELSAG 1 whilvUsTILRVRAFHRV-PhilvAstavsDvUvAlUMPLSUVSELSAG 1 GNCLVVISVCFVKKLRQP-SNYLIVSLALADLSVAVAMPFVSVTDLI-G 1 GNILVIMAVSEKKLQNA-TNYFLMSLAIADMLLGFUVMPVSMLTILY-G 1 GNILVIMAVSEKKLQNA-TNYFLMSLAIADMLVGLUVMPLSLLAILY-D 1 GNILVIMAVSEKKLHNA-TNYFLMSLAIADMLVGLUVMPLSLLAILY-D 1 GNILVILAVSLEKRLQYA-TNYFLMSLAIADMLVGLUVMPLSLLAILY-D 1 GNLUVMAVCRDRQLRKIKTNYFIVSLAFADLUVSUVNAFGAIELVQ 8 ANSLLIVLICTQPALRNT-SNFFLVSLFTSDLMVGLUVMPPAMLNALY 8 * :: : :: :: :: * :* :* :* :* :* * :*</pre>	L04 L17 L48 L38 L18 L17 33 39 L57 L47 L35 L47 L35 L48 L53 L66 L33 L38 L38 L38 L38 L38 L38 L38 L38 L38
uniprot P35364 5HT5B_RAT uniprot P35365 5HT5B_RAT uniprot P14842 5HT2A_RAT uniprot P08909 5HT2C_RAT uniprot P08909 5HT2C_RAT uniprot P30994 5HT2B_RAT uniprot Q2758 5HT4R_RAT uniprot P31388 5HT6R_RAT uniprot P28565 5HT1D_RAT uniprot P30940 5HT1F_RAT uniprot P35365 5HT5B_RAT uniprot P35365 5HT5B_RAT uniprot P32305 5HT7B_RAT uniprot P14842 5HT2A_RAT uniprot P1890940 5HT2B_RAT uniprot P31388 5HT6R_RAT uniprot P31388 5HT6R_RAT uniprot P31388 5HT6R_RAT uniprot P31388 5HT6R_RAT uniprot P31388 5HT6R_RAT uniprot P31388 5HT6R_RAT uniprot P28565 5HT1D_RAT uniprot P28565 5HT1D_RAT uniprot P28565 5HT1B_RAT uniprot P30940 5HT1F_RAT	<pre>while value is the set of th</pre>	L04 L17 L48 L38 L18 L17 33 39 L57 L47 L35 L47 L35 L48 L53 L66 L33 L38 L38 L38 L38 L38 L97 L66 L33 L38 L97 L97 L97 L97 L97 L97 L98 L97 L97 L98 L97 L98 L98 L98 L97 L97 L98 L98 L97 L97 L98 L98 L97 L97 L97 L97 L98 L97 L97 L97 L97 L97 L97 L97 L97 L97 L97
uniprot P35364 5HT5B_RAT uniprot P35365 5HT5B_RAT uniprot P32305 5HT7R_RAT uniprot P14842 5HT2A_RAT uniprot P30994 5HT2C_RAT uniprot P30994 5HT2B_RAT uniprot P31388 5HT6R_RAT uniprot P31388 5HT6R_RAT uniprot P28565 5HT1D_RAT uniprot P327 5HT1A_RAT uniprot P35364 5HT5A_RAT uniprot P35365 5HT5B_RAT uniprot P32305 5HT7R_RAT uniprot P32305 5HT7R_RAT uniprot P32305 5HT7R_RAT uniprot P38994 5HT2A_RAT uniprot P31388 5HT6R_RAT uniprot P31388 5HT6R_RAT uniprot P31388 5HT6R_RAT uniprot P31388 5HT6R_RAT uniprot P31388 5HT6R_RAT uniprot P30940 5HT1F_RAT uniprot P30940 5HT1F_RAT uniprot P30940 5HT1F_RAT uniprot P30940 5HT1F_RAT uniprot P327 5HT1A_RAT	<pre>NNLVLATILRVNATHRV-PHNLVASTAVSDVLVALVMPLSLVSLSAG 1 ONLLVLATILRVNATHRV-PHNLVASTAVSDVLVALVMPLSLVSELSAG 1 ONLLVIAVSUCFVKKLRQP-SNYLIVSLALADLSVAVAVMPFVSVTDLI-G 1 ONLLVIAVSLEKKLQNA-TNYFLMSLAIADMLUGLVMPVSMLTILY-G 1 ONLLVIAVSLEKKLQYA-TNYFLMSLAIADMLVGLLVMPLSLLAILY-D 1 ONLLVIAVSLEKKLQYA-TNYFLMSLAVADLLVGLFVMPIALLTIMF-E 1 ONLLVIAVSLEKKLQYA-TNYFLMSLAVADLLVGLFVMPIALLTIMF-E 1 ONLLVIAVSLEKKLQYA-TNYFLMSLAVADLLVGLFVMPIALLTIMF-E 1 ONLLVIAVSLEKKLQYA-TNYFLMSLAVADLLVGLFVMPIALLTIMF-E 1 ONLLVIAVSUCKDFQLKIKTNYFIVSLAFADLLVSULVNAFGATELVQ 6 ANSLLIVLICTQPALRNT-SNFFLVSLFTSDLMVGLVVMPPAMLNALY 6 * :: : :: :: :: :: :: :: :: :: :: :: ::</pre>	L04 L17 L48 L38 L18 L17 33 39 L57 L47 L35 L47 L35 L47 L35 L48 L53 L66 L97 L66 L33 L38 L93 L93 L93 L94 L99
uniprot P35364 5HT5B_RAT uniprot P35365 5HT5B_RAT uniprot P32305 5HT7R_RAT uniprot P14842 5HT2A_RAT uniprot P08909 5HT2C_RAT uniprot P30994 5HT2B_RAT uniprot P31388 5HT6R_RAT uniprot P31388 5HT6R_RAT uniprot P31388 5HT6R_RAT uniprot P31388 5HT6R_RAT uniprot P31388 5HT6R_RAT uniprot P35365 5HT1D_RAT uniprot P19327 5HT1A_RAT uniprot P35365 5HT5B_RAT uniprot P35365 5HT5B_RAT uniprot P32305 5HT7R_RAT uniprot P14842 5HT2A_RAT uniprot P14842 5HT2A_RAT uniprot P30994 5HT2C_RAT uniprot P31388 5HT6R_RAT uniprot P31388 5HT1A_RAT uniprot P31388 5HT1A_RAT uniprot P31388 5HT5A_RAT uniprot P31388 5HT5A_RAT uniprot P35366 5HT1A_RAT uniprot P35366 5HT1A_RAT uniprot P35366 5HT5A_RAT	<pre>wnihitiartiinvrithev-philvastavsduvaluvaluvaluvaluvaluvaluvaluvaluvaluval</pre>	L04 L17 L48 L38 L18 L17 J33 J9 L57 L47 L35 L48 L53 L66 L97 L67 L66 L33 L38 L38 L38 L38 L38 L38 L38 L38 L38
uniprot P35364 5HT5B_RAT uniprot P35365 5HT5R_RAT uniprot P14842 5HT2A_RAT uniprot P08909 5HT2C_RAT uniprot P30994 5HT2B_RAT uniprot P28565 5HT4R_RAT uniprot P28565 5HT4R_RAT uniprot P28565 5HT1D_RAT uniprot P19327 5HT1A_RAT uniprot P35364 5HT5B_RAT uniprot P35365 5HT5B_RAT uniprot P35365 5HT5B_RAT uniprot P35365 5HT5B_RAT uniprot P35365 5HT5B_RAT uniprot P35365 5HT2B_RAT uniprot P35365 5HT2B_RAT uniprot P35365 5HT2B_RAT uniprot P31388 5HT6R_RAT uniprot P31388 5HT6R_RAT uniprot P31388 5HT6R_RAT uniprot P31388 5HT6R_RAT uniprot P31388 5HT6R_RAT uniprot P35364 5HT1B_RAT uniprot P35365 5HT1B_RAT uniprot P35365 5HT1B_RAT uniprot P35365 5HT5B_RAT uniprot P35364 5HT1B_RAT uniprot P35364 5HT5B_RAT uniprot P35364 5HT5B_RAT uniprot P35366 5HT5B_RAT UNIPRO	<pre>wnihusiatihkvisterv-phnivastassouvavuvavuvelsivselsagi gnclvvisvcfvkirqop-snylivslaladisvavuvepsvstdlig gnilvimavslekklqna-tnyfimslaladmilgflvmpvsmltily-g gnilvimavslekklqna-tnyfimslaladmilgflvmpvsmltily-g gnilvimavslekklqna-tnyfimslaladmilgflvmpvsmltily-g gnilvinavslekklqna-tnyfimslaladmilgflvmpvsmltily-g gnilvinavslekklqna-tnyfimslavadlivglvmplsllalitimf-e gnilvinavslekklqna-tnyfimslavadlivglvmplsllalitimf-e ansllivlictopar nt :: :: :: :: :: :: :: :: :: :: :: :: ::</pre>	L04 L17 L48 L38 L18 L17 33 39 L57 L47 L35 L48 L53 L66 L97 L67 L66 L33 L38 L38 L38 L38 L48 L53 L66 L33 L38 L38 L38 L47 L48 L48 L17 L48 L17 L48 L18 L17 L47 L48 L53 L48 L18 L53 L48 L18 L53 L48 L18 L53 L48 L18 L53 L48 L53 L48 L18 L53 L48 L28 L48 L53 L48 L28 L48 L53 L48 L28 L48 L28 L48 L28 L48 L28 L48 L28 L48 L297 L47 L48 L28 L48 L28 L48 L28 L48 L297 L497 L497 L497 L497 L497 L497 L497 L4

uniprot P14842 5HT2A_RAT uniprot P08909 5HT2C_RAT uniprot P30994 5HT2B_RAT uniprot Q62758 5HT4R_RAT uniprot P31388 5HT6R_RAT	SRTK <mark>AFLKIIAVWTISVGISMPIPVFGL</mark> QDDSKVFKE-GSCLLADD SRTKAIMKIAIVWAISIGVSVPIPVIGLEDESKVFVNNTTCVLNDP SRTTAFVKITVVWLISIGIAIPVPIKGIEAD-VVNAHNITCELTKDRF TPLRIALMLGGCWVIPMFISFLPIMQGWNNIGIVDVIEKRKFNHNSNSTF TAPRALALLGAWSLAALASFLPLLLGWHELGKARTPAPGQCRLLA <mark>SLP-</mark>	232 213 213 183 187
	TM IV	
uniprot P28564 5HT1B_RAT uniprot P28565 5HT1D_RAT uniprot P30940 5HT1F_RAT uniprot P19327 5HT1A_RAT uniprot P35364 5HT5A_RAT uniprot P35365 5HT5B_RAT uniprot P32305 5HT7B_RAT uniprot P18422 5HT2A_RAT uniprot P08909 5HT2C_RAT uniprot P30994 5HT2B_RAT uniprot Q62758 5HT4R_RAT uniprot P31388 5HT6R_RAT	YTVYSTVGAFYLPTLLLIALYGRIYVEARSRILKQTPNKTGK YTIYSTGGAFYIPSILLIILYGRIYVAARSRILNP-PSLYGK YTIYSTFGAFYIPLVLILILYYKIYRAARTLYHKRQASRMIK YTIYSTGGAFYIPLLMULVIGRIFRAARFRIRKTVRKVEKK YAVFSTVGAFYLPLCVVLFVYWKIYKAAKFRMGSRKTNSVSP YAVFSTCGAFYVPLAVVLFVYWKIYKAAKFRMGSRKTNSVSP YAVFSTCGAFYVPLAVVLFVYWKIYKAAKFRFGRRRR-AVVP 	245 234 222 236 241 253 272 252 257 233 228
uniprot P28564 5HT1B_RAT uniprot P28565 5HT1D_RAT uniprot P30940 5HT1F_RAT uniprot P19327 5HT1A_RAT uniprot P35365 5HT5A_RAT uniprot P35365 5HT7B_RAT uniprot P14842 5HT2A_RAT uniprot P14842 5HT2A_RAT uniprot P08909 5HT2C_RAT uniprot P30994 5HT2B_RAT uniprot Q62758 5HT4R_RAT uniprot P31388 5HT6R_RAT	RLTRAQLITDSPGSTSSVTS	275 262 252 286 268 281 313 300 282 293 242 251
uniprot P28564 5HT1B_RAT uniprot P28565 5HT1D_RAT uniprot P30940 5HT1F_RAT uniprot P19327 5HT1A_RAT uniprot P35364 5HT5A_RAT uniprot P35365 5HT5B_RAT uniprot P32305 5HT7R_RAT uniprot P14842 5HT2A_RAT uniprot P14842 5HT2A_RAT uniprot P30994 5HT2C_RAT uniprot P30994 5HT2B_RAT uniprot Q62758 5HT4R_RAT uniprot P31388 5HT6R_RAT	ES-GSPVYVN-QVKVRVSDALLEKKKLM HTVGSPLFFN-QVKIKKRIS DPSTDFDRIHSTVKSPRSELKHEKSWRRQKIS EATLEVIEVHRVGNSKEHLPLPSESGSNSYAPACLERKNERNAEAKRKMA QTEGDTWREQ	301 289 284 336 278 291 323 314 304 314 252 261
uniprot P28564 5HT1B_RAT uniprot P28565 5HT1D_RAT uniprot P30940 5HT1F_RAT uniprot P19327 5HT1A_RAT uniprot P35364 5HT5A_RAT uniprot P35365 5HT5B_RAT uniprot P32305 5HT7R_RAT uniprot P14842 5HT2A_RAT uniprot P08909 5HT2C_RAT uniprot P30994 5HT2B_RAT uniprot P31388 5HT6R_RAT	AARERKATKTLGIILGAFIVCWLPFFIISLVMPICKDACWFHMAIFDF AARERKATKTLGIILGAFIVCWLPFFVVSLVLPICRDSCWHHMAIFDF GTRERKAATTLGIILGAFVICWLPFFVKELVVNICEKCKISEEMSNF LARERKTVKTLGIINGTFILCWLPFFVTELISPLCESSCHMPALLGAI KEQRAALMVGILIGVFVLCWIPFFTTELISPLCSWDIPALWKS-I KEKRAAMMVGILIGVFVLCWIPFFTTELVSPLCACSLPFIWKS-I REQKAATTLGIIVGAFTVCWLPFFTTELVSPLCACSLPFIWKS-I SNEQKACKVLGIVFFLFVVMWCPFFTTNIMAVICKESCNENVIGALLNV INNEKKASKVLGIVFFLFFVMWCPFFTTNILSVLCGKACNQKLMEKLLNV ISNEQRASKVLGIVFLFFLMWCPFFTTNVTLALC-DSCNQTTLKTLQI TETKAAKTLCVIMGCFCFCWAPFFTTNIVTLALC-DSCNQTTLKTLQI KALKASLTLGILLGMFFVTWLPFFVANIAQAVCDCISPGLFDV	349 337 384 322 335 371 364 354 363 296 304
	TM VI	
uniprot P28564 5HT1B_RAT uniprot P28565 5HT1D_RAT uniprot P30940 5HT1F_RAT uniprot P19327 5HT1A_RAT uniprot P35364 5HT5A_RAT uniprot P35365 5HT5B_RAT uniprot P32305 5HT7R_RAT uniprot P14842 5HT2A_RAT	FNWLGYLNSLINPIIYTMSNEDFKQAFHKLIRFKCTG FTWLGYLNSLINPIIYTVFNEDFRQAFQRVVHFRKAS LAWLGYLNSLINPIIYTIFNEDFKKAFQKLVRCRN INWLGYSNSLNPVIYAYFNKDFQNAFKKIIKCKFCRR FLWLGYSNSFFNPLIYTAFNRSYSSAFKVFFSKQQ	386 374 366 422 357 370 421 414

uniprot P08909 5HT2C_RAT uniprot P30994 5HT2B_RAT uniprot Q62758 5HT4R_RAT uniprot P31388 5HT6R_RAT	FVWIGYVCSGINPLVYTLFNKIYRRAFSKYLRCDYKPDKKP-PVRQIPRV FVWVGYVSSGVNPLIYTLFNKTFREAFGRYITCNYQATKSVKVLRKCSST FLWLGYINSGLNPFLYAFLNKSFRRAFLIILCCDDERYKRPPILGQTVPC LTWLGYCNSTMNPIIYPLFMRDFKRALGRFLPCVHCPPEHRPALPPPPCG *:** * **.:*	403 413 346 354
	TM VII	
uniprot P28564 5HT1B_RAT uniprot P28565 5HT1D_RAT uniprot P30940 5HT1F_RAT uniprot P19327 5HT1A_RAT uniprot P35364 5HT5A_RAT uniprot P35365 5HT5B_RAT uniprot P32305 5HT7R_RAT uniprot P14842 5HT2A_RAT uniprot P48909 5HT2C_RAT uniprot P30994 5HT2B_RAT uniprot P31388 5HT6R_RAT	LKLAERPERSEFVLQNSDHCGKKGHDT	448 455 444 463 396 404
uniprot P28564 5HT1B_RAT uniprot P28565 5HT1D_RAT uniprot P30940 5HT1F_RAT uniprot P35364 5HT5A_RAT uniprot P35365 5HT5B_RAT uniprot P35365 5HT5B_RAT uniprot P32305 5HT7R_RAT uniprot P14842 5HT2A_RAT uniprot P14842 5HT2A_RAT uniprot P30994 5HT2B_RAT uniprot P31388 5HT6R_RAT	NCTDNIETVNEKVSCV	

Figure 8.1: Alignment of rat 5-HT family receptor. The lowest and highest sequence identity between any two sequences was between 19% and 68%, respectively.

CLUSTAL 2.0.12 multiple seq	uence alignment	
uniprot P28223 5HT2A_HUMAN uniprot Q5R4Q6 5HT2A_PONPY uniprot P50128 5HT2A_MACMU uniprot Q75Z89 5HT2A_BOVIN uniprot P50129 5HT2A_PIG uniprot 046635 5HT2A_CANFA uniprot P14842 5HT2A_RAT uniprot P35363 5HT2A_MOUSE uniprot P18599 5HT2A_CRIGR	MDILCEENTSLSSTTNSLMQLNDDTRLYSNDFNSGEANTSDAFNWTVDSE MDILCEENTSLSSTTNSLMQLNDDTRLYSNDFNSGEANTSDAFNWTVDSE MDILCEENTSLSSTTNSLMQLNEDTRLYSNDFNSGEANTSDAFNWTVDSE MDILCEENTSLSSTTNSLMQLHADTRLYSTDFNSGEGNTSNAFNWTVDSE MDVLCEENTSLSSPTNSFMQLNDDTRLYHNDFNSGEANTSDAFNWTVDSE MDVLFEDNAPLSPTTSSLMPSNGDPRLYGNDLNAGDANTSDAFNWTVDAE MEILCEDNISLSSIPNSLMQLGDGPRLYHNDFNSRDANTSEASNWTIDAE MEILCEDNISLSSIPNSLMQLGDDSRLYPNDFNSRDANTSEASNWTIDAE MEILCEDNTSLSSIPNSLMQVDGDSGLYRNDFNSRDANTSDASNWTIDGE *::* *:* .***:* ** .*::::*:*:*	50 50 50 50 50 50 50 50
uniprot P28223 5HT2A_HUMAN uniprot Q5R4Q6 5HT2A_PONPY uniprot P50128 5HT2A_MACMU uniprot Q75Z89 5HT2A_BOVIN uniprot P50129 5HT2A_PIG uniprot 046635 5HT2A_CANFA uniprot P1842 5HT2A_RAT uniprot P35363 5HT2A_MOUSE uniprot P18599 5HT2A_CRIGR	NRTNLSCEGCLSPSCLSLLHLQEKNWSALLTAVVIILTIAGNILVIMAVS NRTNLSCEGCLSPSCLSLLHLQEKNWSALLTAVVIILTIAGNILVIMAVS NRTNLSCEGCLSPSCLSLLHLQEKNWSALLTAVVIILTIAGNILVIMAVS NRTNLSCEGCLSPPCFSLLHLQEKNWSALLTAVVIILTIAGNILVIMAVS NRTNLSCEGCLSPPCFSLLHLQEKNWSALLTAVVIILTIAGNILVIMAVS NRTNLSCEGCLSPPCFSLLHLQEKNWSALLTAVVIILTIAGNILVIMAVS NRTNLSCEGYLPPTCLSILHLQEKNWSALLTVVIILTIAGNILVIMAVS NRTNLSCEGYLPPTCLSILHLQEKNWSALLTVVIILTIAGNILVIMAVS NRTNLSCEGYLPPTCLSILHLQEKNWSALLTVVIILTIAGNILVIMAVS NRTNLSFEGYLPPTCLSILHLQEKNWSALLTAVVIILTIAGNILVIMAVS MRTNLSFEGYLPPTCLSILHLQEKNWSALLTAVVIILTIAGNILVIMAVS MRTNLSFEGYLPPTCLSILHLQEKNWSALLTAVVIILTIAGNILVIMAVS MRTNLSFEGYLPPTCLSILHLQEKNWSALLTAVVIILTIAGNILVIMAVS MRTNLSFEGYLPPTCLSILHLQEKNWSALLTAVVIILTIAGNILVIMAVS MRTNLSFEGYLPPTCLSILHLQEKNWSALLTAVVIILTIAGNILVIMAVS	100 100 100 100 100 100 100 100
uniprot P28223 5HT2A_HUMAN uniprot Q5R4Q6 5HT2A_PONPY uniprot P50128 5HT2A_MACMU uniprot Q75Z89 5HT2A_BOVIN uniprot 046635 5HT2A_PIG uniprot 046635 5HT2A_CANFA uniprot P1842 5HT2A_RAT uniprot P35363 5HT2A_MOUSE uniprot P18599 5HT2A_CRIGR	LEKKLQNATN <mark>YFLMSLAIADMLLGFLVMPVSM</mark> LTILYGYRWPLPSKL <mark>CAV</mark> LEKKLQNATNYFLMSLAIADMLLGFLVMPVSMLTILYGYRWPLPSKLCAV LEKKLQNATNYFLMSLAIADMLLGFLVMPVSMLTILYGYRWPLPSKLCAV LEKKLQNATNYFLMSLAIADMLLGFLVMPVSMLTILYGYRWPLPSKLCAV LEKKLQNATNYFLMSLAIADMLLGFLVMPVSMLTILYGYRWPLPSKLCAV LEKKLQNATNYFLMSLAIADMLLGFLVMPVSMLTILYGYRWPLPSKLCAV LEKKLQNATNYFLMSLAIADMLLGFLVMPVSMLTILYGYRWPLPSKLCAV LEKKLQNATNYFLMSLAIADMLLGFLVMPVSMLTILYGYRWPLPSKLCAV LEKKLQNATNYFLMSLAIADMLLGFLVMPVSMLTILYGYRWPLPSKLCAV LEKKLQNATNYFLMSLAIADMLLGFLVMPVSMLTILYGYRWPLPSKLCAV	150 150 150 150 150 150 150 150 150
uniprot P28223 5HT2A_HUMAN uniprot Q5R4Q6 5HT2A_PONPY uniprot P50128 5HT2A_MACMU uniprot Q75Z89 5HT2A_BOVIN uniprot P50129 5HT2A_PIG uniprot 046635 5HT2A_CANFA uniprot P14842 5HT2A_RAT uniprot P18599 5HT2A_CRIGR	TM II WIYLDVLFSTASIMHLCAISL DRYVAIQNPIHHSRFNSRTKAFLKIIAVW WIYLDVLFSTASIMHLCAISL DRYVAIQNPIHHSRFNSRTKAFLKIIAVW WIYLDVLFSTASIMHLCAISL DRYVAIQNPIHHSRFNSRTKAFLKIIAVW WIYLDVLFSTASIMHLCAISL DRYVAIQNPIHHSRFNSRTKAFLKIIAVW WIYLDVLFSTASIMHLCAISL DRYVAIQNPIHHSRFNSRTKAFLKIIAVW WIYLDVLFSTASIMHLCAISL DRYVAIQNPIHHSRFNSRTKAFLKIIAVW WIYLDVLFSTASIMHLCAISL DRYVAIQNPIHHSRFNSRTKAFLKIIAVW WIYLDVLFSTASIMHLCAISL DRYVAIQNPIHHSRFNSRTKAFLKIIAVW WIYLDVLFSTASIMHLCAISL DRYVAIQNPIHHSRFNSRTKAFLKIIAVW WIYLDVLFSTASIMHLCAISL DRYVAIQNPIHHSRFNSRTKAFLKIIAVW MIYLDVLFSTASIMHLCAISL	200 200 200 200 200 200 200 200 200
uniprot P28223 5HT2A_HUMAN uniprot Q5R4Q6 5HT2A_PONPY uniprot P50128 5HT2A_BOVIN uniprot Q75Z89 5HT2A_BOVIN uniprot P50129 5HT2A_PIG uniprot 046635 5HT2A_CANFA uniprot P14842 5HT2A_RAT uniprot P18599 5HT2A_CRIGR	TISVGISMPIPVFGLQDDSKVFKEGSCLLADDNFVLIGSFVSFFIPLTIM TISVGISMPIPVFGLQDDSKVFKEGSCLLADDNFVLIGSFVSFFIPLTIM TISVGISMPIPVFGLQDDSKVFKEGSCLLADDNFVLIGSFVSFFIPLTIM TISVGISMPIPVFGLQDDSKVFKEGSCLLADDNFVLIGSFVSFFIPLTIM TISVGISMPIPVFGLQDDSKVFKEGSCLLADDNFVLIGSFVSFFIPLTIM TISVGISMPIPVFGLQDDSKVFKEGSCLLADDNFVLIGSFVSFFIPLTIM TISVGISMPIPVFGLQDDSKVFKEGSCLLADDNFVLIGSFVAFFIPLTIM TISVGISMPIPVFGLQDDSKVFKEGSCLLADDNFVLIGSFVAFFIPLTIM TISVGISMPIPVFGLQDDSKVFKEGSCLLADDNFVLIGSFVAFFIPLTIM TISVGISMPIPVFGLQDDSKVFKEGSCLLADDNFVLIGSFVAFFIPLTIM TISVGISMPIPVFGLQDDSKVFKEGSCLLADDNFVLIGSFVAFFIPLTIM TISVGISMPIPVFGLQDDSKVFKEGSCLLADDNFVLIGSFVAFFIPLTIM TISVGISMPIPVFGLQDDSKVFKGSCLLADDNFVLIGSFVAFFIPLTIM TISVGISMPIPVFGLQDDSKVFKGSSCLLADDNFVLIGSFVAFFIPLTIM	250 250 250 250 250 250 250 250 250
uniprot P28223 5HT2A_HUMAN uniprot Q5R4Q6 5HT2A_PONPY uniprot P50128 5HT2A_MACMU uniprot Q75Z89 5HT2A_BOVIN uniprot P50129 5HT2A_PIG uniprot 046635 5HT2A_CANFA uniprot P1842 5HT2A_RAT uniprot P35363 5HT2A_MOUSE uniprot P18599 5HT2A_CRIGR	VITYFLTIKSLQKEATLCVSDLGTRAKLASFSFLPQSSLSSEKLFQRSIH VITYFLTIKSLQKEATLCVSDLGTRAKLASFSFLPQSSLSSEKLFQRSIH VITYFLTIKSLQKEATLCVSDLGTRAKLASFSFLPQSSLSSEKLFQRSIH VITYFLTIKSLQKEATLCVSDFGTRTKLASFSFLPQSSLSSEKLFQRSIH VITYFLTIKSLQKEATLCVSDLGTRAKLASFSFLPQSSLSSEKLFQRSIH VITYFLTIKSLQKEATLCVSDLSTRAKLASFSFLPQSSLSSEKLFQRSIH VITYFLTIKSLQKEATLCVSDLSTRAKLASFSFLPQSSLSSEKLFQRSIH VITYFLTIKSLQKEATLCVSDLSTRAKLASFSFLPQSSLSSEKLFQRSIH VITYFLTIKSLQKEATLCVSDLSTRAKLASFSFLPQSSLSSEKLFQRSIH VITYFLTIKSLQKEATLCVSDLSTRAKLASFSFLPQSSLSSEKLFQRSIH VITYFLTIKSLQKEATLCVSDLSTRAKLASFSFLPQSSLSSEKLFQRSIH VITYFLTIKSLQKEATLCVSDLSTRAKLASFSFLPQSSLSSEKLFQRSIH VITYFLTIKSLQKEATLCVSDLSTRAKLASFSFLPQSSLSSEKLFQRSIH VITYFLTIKSLQKEATLCVSDLSTRAKLASFSFLPQSSLSSEKLFQRSIH VITYFLTIKSLQKEATLCVSDLSTRAKLASFSFLPQSSLSSEKLFQRSIH VITYFLTIKSLQKEATLCVSDLSTRAKLASFSFLPQSSLSSEKLFQRSIH	300 300 300 300 300 300 300 300

Γ

Figure 8.2: Sequence alignment of 5-HT_{2A} multiple species. A multiple sequence alignment indicates that the rat 5-HT_{2A} receptor shares the lowest and highest sequence identity between 88% and 97% between any of two sequences. The major differences among the multiple species sequences were found at the N- and C-terminus ends.

Figure 8.3: Sequence comparison of rat 5-HT_{2A} against human 5-HT_{2A} . A close comparison of sequences between the rat and human 5-HT_{2A} indicated the species specific residues were found to be distributed in the loop regions (except three residues, Ala 82, Val 150 and Ser 242 (shaded in cyan), that were found in transmembrane 1, 4 and 5, respectively). The sequence identity between the rat and human 5-HT_{2A} receptor was 91%.

Figure 8.4: Sequence comparison of rat $5-HT_{2A}$ against rat $5-HT_{2B}$ and $5-HT_{2C}$ sequences. The sequence identity of rat $5-HT_{2A}$ with rat $5-HT_{2B}$ and $5-HT_{2C}$ is 38% and 48% respectively suggesting that the rat $5-HT_{2A}$ is closer to $5-HT_{2C}$ than $5-HT_{2B}$.

B: Ramachandran plot

Figure 8.5: Structure validation of the model using Ramachandran plot computed with the PROCHECK program. The result shows 89.4% in the most favourable region, 9.9% in the additionally allowed region, 0.5% in the generously allowed region and 0.2 % in the disallowed region.

C: Binding Mode of Standard Ligands in the 5-HT_{2A} Receptor Model

(a) The 5-HT2_A receptor model in complex with endogenous ligand, serotonin

(b) The 5-HT2_A receptor model in complex with tryptamine

(c) The 5-HT2_A receptor model in complex with 5-MeOT

(d) The 5-HT2_A receptor model in complex with (R)-(-)-DOI

(e) The 5-HT2_A receptor model in complex with (S)-(-)-DOI

Figure 8.6: The 5-HT_{2A} receptor model in complex with endogenous ligand and agonists (a) serotonin (b) tryptamine (c) 5-MeOT (d) (R)-(-)-DOI (e) (S)-(+)-DOI. The residues involved in hydrogen bonding, electrostatic or polar interactions were depicted in pink circle with their hydrogen bonds (blue dashed arrow), charge interactions (pink dashed double-ended arrow) and residues involved in van der Waals interactions (green circle).

(a) The 5-HT2_A receptor model in complex with spiperone

(b) The 5-HT2_A receptor model in complex with risperidone

(c) The 5-HT2_A receptor model in complex with haloperidol

(d) The 5-HT2_A receptor model in complex with ritanserin

(e) The 5-HT2_A receptor model in complex with ketanserin

Figure 8.7: The 5-HT_{2A} receptor model in complex with antagonists (**a**) spiperone (**b**) risperidone (**c**) haloperidol (**d**) ritanserin (**e**) ketanserin. The residues involved in hydrogen bonding, electrostatic or polar interactions were depicted in pink circle with their hydrogen bonds (blue dashed arrow), charge interactions (pink dashed double-ended arrow) and residues involved in van der Waals interactions (green circle).

D: ZINC IDs and the Corresponding Compounds Names

ZINC IDs	Compound Names
ZINC00135449	(S)-boldine
ZINC00306698	(<i>R</i>)-roemerine
ZINC00000103	(S)-bulbocapnine
ZINC00338183	(S)-laureline
ZINC00320695	(S)-nuciferine
ZINC00009073	(<i>R</i>)-apomorphine
ZINC00155525	(S)-apomorphine
ZINC02539817	(R)-N-propylapomorphine
ZINC00011665	(R)-2-hydroxy-N-propylapomorphine
ZINC00056792	(S)-isocorydine
ZINC00174790	(S)-isothebaine
ZINC01651264	(S)-corydine
ZINC02554931	(S)-corytuberine

 Table 8.1: The ZINC IDs of the compounds selected from virtual screening.

E: Binding Modes of the Selected Aporphines with the 5-HT_{2A} Receptor Model

(a) Proposed binding mode of (S)-bulbocapnine in the 5-HT_{2A} receptor

(b) Proposed binding mode of (S)-laureline in the 5-HT_{2A} receptor

(c) Proposed binding mode of (S)-nucliferine in the 5-HT_{2A} receptor

(d) Proposed binding mode (R)-apomorphine in the 5-HT_{2A} receptor

(e) Proposed binding mode (S)-apomorphine in the 5-HT_{2A} receptor

(f) Proposed binding mode of (R)-*N*-propylapomorphine in the 5-HT_{2A} receptor

(g) Proposed binding mode of (*R*)-2-hydroxy-*N*-propylapomorphine in the 5-HT_{2A} receptor

(h) Proposed binding mode of (S)-isocorydine in the 5-HT_{2A} receptor

(i) Proposed binding mode of (S)-isothebaine in the 5-HT_{2A} receptor

(j) Proposed binding mode of (S)-corydine in the 5-HT_{2A} receptor

(k) Proposed binding mode of (S)-corytuberine in the 5-HT_{2A} receptor

Figure 8.8: Proposed binding mode of (a) (S)-bulbocapnine (b) (S)-laureline (c) (S)nuciferine (d) (R)-apomorphine (e) (S)-apomorphine (f) (R)-N-propylapomorphine (g) (R)-2-hydroxy-N-propylapomorphine (h) (S)-isocorydine (i) (S)-isothebaine (j) (S)corydine (k) (S)-corytuberine in the 5-HT_{2A} receptor. The residues involved in hydrogen bonding, electrostatic or polar interactions were represented in pink circles with their hydrogen bonds with their main chains (blue dashed arrow), side chains (green dashed arrow), charge interactions (pink dashed double-ended arrow), pi interaction (orange line) and residues involved in van der Waals interactions (green circles).

F: Abstracts of Research Presentations

Following is the abstract for oral presentation at the 1st Pharmaceutical Sciences Conference & Exhibition (PSCE), Penang, Malaysia, 27th–28th September 2010

COMPUTATIONAL INVESTIGATION OF THE 5-HT_{2A} RECEPTOR BINDING INTERACTIONS OF STANDARD LIGANDS AND APORPHINES

Vani M¹, Chung LY¹, Buckle MJC¹ & Doughty SW²

¹Department of Pharmacy, University of Malaya, 50603 Kuala Lumpur ²School of Pharmacy, University of Nottingham Malaysia Campus, 43500 Semenyih, Selangor

The 5-hydroxytryptamine 2A (5-HT_{2A}) receptor has been implicated in numerous psychiatric disorders, including schizophrenia and depression. Several aporphines have been found to have 5-HT_{2A} receptor binding activity. The aim of this study was to investigate the ligand-receptor interactions of standard 5-HT_{2A} ligands and aporphines. A 3D molecular model of the rat 5- HT_{2A} receptor was constructed by homology modelling against the known crystal structure of the human β_2 -adrenergic receptor (PDB ID: 2RH1). Docking studies were then conducted using Autodock4.0. The standard ligands and aporphines were found to interact with residues belonging to transmembrane domains 2, 3,5,6,7 and extracellular loop 2 (ECL2). The proposed binding interactions involve three sets of residues, (1) Asp155 (3.32) forming a hydrogen bond with the protonated amine of the ligands, (2) an aromatic network consisting of Trp151(3.28), Trp336(6.48), Phe339(6.51), Phe340(6.52), and Tyr370(7.43), and (3) Val156(3.33), Thr160(3.37), Leu229(ECL2), Gly238(5.42), Ser239 (5.43), Asn363(7.36) as possible hydrogen bond acceptors or donors. These findings are in agreement with currently available experimental data and suggest that the model has the potential to predict ligand-receptor interactions at the molecular level.

Following is the abstract for poster presentation at the 25th Scientific Meeting of The Malaysian Society of Pharmacology and Physiology (MSPP), University Putra Malaysia, Malaysia, 25th–26th of May 2011:

DEVELOPMENT OF FILTRATION BASED DOPAMINE₁ RECEPTOR BINDING ASSAY USING 96-WELL MICROPLATE

Vani Munusamy, Chung Lip Yong & Michael James Christopher Buckle

Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.

The dopamine₁ receptor plays a pivotal role in the treatment of neuropsychiatric and neurodegenerative disorders such as schizophrenia and Parkinson's disease. This study aims to develop a medium throughput screening assay for the search of potential dopaminergic ligands. A 96 well microplate was adopted in combination with Filterplate Cell Harvester and TopCount NXT. The optimised parameters consisted of 30 µg of protein/well of striatum in the presence of 0.5 nM of [³H] SCH23390 and 1 µM of SCH 23390 HCl. The equilibration time of ligand receptor interaction was reached after 90 min of incubation at 22°C. GF/C filter plates gave lower nonspecific binding compared to GF/B filter plates after 4 times washing with Tris-HCl buffer (50mM, pH 7.4). Saturation analysis of [³H] SCH23390 binding revealed mean B_{max} and K_d values of 293.7 fmol/mg protein and 0.41 nM respectively. Competition experiments with standard ligands include R-(+)-SCH23390 HCl ($K_i = 1.05 \times 10^{-10}$), propranolol HCl ($K_i = 3.66 \times 10^{-7}$), serotonin HCl ($K_i = 4.06 \times 10^{-7}$), buspirone HCl ($K_i = 5.38 \times 10^{-7}$) and dicyclomine HCl ($K_i = 1.69 \times 10^{-6}$). A z' factor of 0.74 demonstrates the suitability, reliability and robustness of the assay for screening purposes.

Keywords: Central nervous system, dopamine₁ receptor, receptor binding assay, saturation experiment, competition experiment