Abstract

Alteration in dopaminergic and serotonergic neurotransmission influences various neurological and mental disorders such as depression, anxiety, bipolar disorder, schizophrenia and drug abuse. The naturally occurring aporphine alkaloids are well known for their activity at D_1 , D_2 and 5-HT_{1A} receptors, but only a few have been shown to bind to the 5-HT_{2A} receptor. Aim of this study was to identify aporphines with significant activity at dopamine and serotonin receptors using both in silico and in vitro screening approaches. A 3D homology model of the rat 5-HT_{2A} receptor was generated using the crystal structure of the human β_2 -adrenergic receptor (PDB ID: 2RH1) and validated with standard 5-HT_{2A} receptor ligands. A filtered set of aporphines obtained from the ZINC database using (S)-boldine as the backbone structure was docked into the generated 5-HT_{2A} receptor model. A set of 13 compounds were identified with higher or comparable activity to (S)-boldine for experimental testing across the D_1 , D_2 , 5-HT_{1A} and 5-HT_{2A} receptors using a medium throughput radioligand receptor binding assay. (R)-roemerine was found to have selective 5-HT_{2A} binding affinity with 20-400fold higher affinity for the 5-HT_{2A} receptor versus the D_1 , D_2 , and 5-HT_{1A} receptors. Investigation into the structures of the selected compounds revealed that substitution at positions 1 and 2, particularly with a methylenedioxy group, non-substitution at positions 10 and 11 and a protonated amino group at position 6 may be responsible for the good affinity-selectivity profile of (R)-roemerine for the 5-HT_{2A} receptor compared to the other compounds. Further analysis of the binding modes of the selected compounds also showed that the combination of an electrostatic interaction and the hydrogen bonding between the protonated amino group of (R)-roemerine and Asp155 and a pi-cation interaction with Phe339 appears to explain its enhanced affinity and selectivity as compared to the other compounds. The results illustrate the usefulness of a combined *in silico* and *in vitro* approach in the search for lead molecules for the development of new selective drugs acting at dopamine and serotonin receptors.

Abstrak

Perubahan pada neurotransmisi dopamin dan serotonin mempengaruhi pelbagai gangguan neurologi dan mental seperti kemurungan, keresahan, gangguan bipolar, skizofrenia dan penyalahgunaan dadah. Alkaloid aporphine semulajadi terkenal dengan aktivitinya pada reseptor D₁, D₂ dan 5-HT_{1A}, tetapi hanya sebilangan daripadanya menunjukkan ikatan pada reseptor 5-HT_{2A}. Tujuan kajian ini adalah untuk mengenalpasti aporphine dengan aktiviti yang siknifikan pada reseptor dopamin dan serotonin menggunakan kedua-dua pendekatan in silico dan in vitro. Satu model homologi 3D bagi reseptor tikus 5-HT_{2A} telah dijana dengan menggunakan struktur kristal reseptor manusia β_2 -adrenergik (PDB ID: 2RH1) dan divalidasi dengan ligan asas 5-HT_{2A}. Satu set aporphines yang ditapis diperoleh dari pangkalan data ZINC dengan menggunakan (S)-boldine sebagai struktur asas untuk didok dalam reseptor 5-HT_{2A} yang telah dijana. Sebanyak 13 kompaun telah dikenalpasti dengan aktiviti yang lebih tinggi atau setanding dengan (S)-boldine untuk diuji secara experimental pada reseptor D₁, D₂, 5-HT_{1A} dan 5-HT_{2A} dengan pengendalian asei reseptor radioligan. (R)roemerine menunjukkan ikatan afiniti yang selektif pada reseptor 5-HT_{2A} dengan 20-400-kali ganda lebih tinggi untuk reseptor 5-HT_{2A} berbanding dengan reseptor D₁, D₂ dan 5-HT_{1A.} Kajian menyeluruh bagi struktur kompaun yang terpilih menunjukkan bahawa (R)-roemerine dengan penggantian pada kedudukan 1 dan 2, khususnya dengan kumpulan metilenadioksi, tanpa penggantian pada kedudukan 10 dan 11 dan kumpulan amino berproton pada kedudukan 6 bertanggungjawab kepada profil afiniti-selektiviti yang baik oleh (R)-roemerine bagi reseptor 5-HT_{2A} berbanding kompaun lain. Analisis lanjutan bagi jenis interaksi oleh kompaun terpilih juga menunjukkan bahawa gabungan interaksi elektrostatik dan ikatan hidrogen antara kumpulan amino berproton dalam (R)roemerine dan Asp155 dan interaksi pi-kation dengan Phe339 menjurus kepada peningkatan afiniti dan selektiviti berbanding dengan kompaun lain. Keputusan ini menunjukkan kepentingan gabungan kedua-dua kaedah *in silico* dan *in vitro* dalam pencarian molekul baru bagi perkembangan ligan yang selektif yang bertindak pada reseptor dopamin dan serotonin.

v

Acknowledgements

First and foremost, I'm indebted to my supervisors, Prof. Dr. Chung Lip Yong and Dr. Michael James Christopher Buckle for their support, guidance and encouragement throughout this project. I'm thankful to Prof. Dr. Stephen Doughty for his comments and guidance, especially in molecular modelling.

I wish to express my special and sincere thanks to Dr. Azura and all the staff from the animal house for their assistance. I would also like to acknowledge the help of all the staff from Department of Pharmacy and Department of Molecular Medicine. I wish to thank my labmates and friends for their support and friendship.

I sincerely thank to Ministry of Science, Technology and Innovation, Malaysia for the National Science Fellowship award (Ref No: M/0138/02/2008/LAIN2) and University of Malaya for the research grants (PPP vote: PS192/2009C; UMRG: RG009/09BIO).

At last but not the least I would like to thank my beloved family for their undying support, love and blessings, and finally to God who made all the things possible.

Table of Contents

Title	page		i
Abst	ract		ii
Abst	rak		iv
Ackr	nowledge	ements	vi
Tabl	e of Con	tents	vii
List	of Figur	es	xii
List	of Table	s	xviii
List	of Symb	ols and Abbreviations	xix
1.0	Introd	uction	1
1.1	Aim ar	nd Objectives of the Research	3
2.0	Litera	ture Review	
2.1	G-Prot	ein Coupled Receptors (GPCRs)	4
	2.1.1	G-Protein Coupled Receptor (GPCR) Overview	4
	2.1.2	G-Protein Coupled Receptor (GPCR) Crystal Structures	6
2.2	Dopan	nine (D) and Serotonin (5-hydroxytryptamine; 5-HT) Receptors	8
	2.2.1	Dopamine (D) Receptors	8
	2.2.2	Serotonin (5-hydroxytryptamine; 5-HT) Receptors	8
	2.2.3	Clinical Significance of Dopamine and Serotonin Receptors	9
2.3	Compu	iter Aided Drug Design	11
	2.3.1	Structure-Based Drug Design (SBDD)	11
	2.3.2	Homology Modelling	11
	2.3.3	Molecular Docking	14
2.4	Recept	or Binding Assays	14
	2.4.1	Fundamental of Receptor-ligand Interactions	14

	2.4.2	Radioligand Receptor Binding Assays	15
2.5	Aporph	ine Alkaloids	16
	2.5.1	An Overview of Aporphines	16
	2.5.2	Structural Diversity of Aporphines	17
	2.5.3	Pharmacological Properties of Aporphines	17
3.0	Compu	itational Investigation of the 5-HT _{2A} Receptor Binding	
	Interac	ctions of Standard Ligands and Aporphines	
3.1	Introdu	ction	20
	3.1.1	5-HT _{2A} Receptor (5-HT _{2A} R) Structure	20
3.2	Materia	als	22
3.3	Method	lology	22
	3.3.1	Sequence Alignments	22
	3.3.2	Model Construction	22
	3.3.3	Docking Procedure	23
	3.3.4	Compound Selection for Docking	23
3.4	Results	and Discussion	25
	3.4.1	Selection of Templates	25
	3.4.2	Sequence Analysis	25
	3.4.3	Model Construction	26
	3.4.4	Model Evaluation	26
	3.4.5	Docking	27
	3.4.6	Compound Selection from Docking Studies	28
3.5	Conclu	sion	31
4.0	Optim	isation and Evaluation of Filtration Based Receptor Binding	
	Assays	for Dopamine (D_1 and D_2) and 5-Hydroxytryptamine (5-	

 HT_{1A} and $5-HT_{2A}$)

4.1	Introd	uction		32
	4.1.1	Propertie	es of Receptor Binding Assays	32
	4.1.2	Selection	n of Receptor Source	33
	4.1.3	Selection	n of Radioligand	34
4.2	Mater	ials		37
	4.2.1	Chemica	ls and Instrumentation	37
4.3	Metho	odology		38
	4.3.1	Preparat	ion of Dopamine $(D_1 \text{ and } D_2)$ and	38
		5-Hydro	xytryptamine (5-HT _{1A} and 5-HT _{2A}) Membrane	
		Receptor	rs	
	4.3.2	Protein I	Determination	40
	4.3.3	Receptor	r binding assays	40
		4.3.3.1	Optimisation of Dopamine (D_1 and D_2) and 5-	40
			Hydroxytryptamine (5-HT _{1A} and 5-HT _{2A}) Receptor	
			Binding Assays	
		4.3.3.2	Saturation experiments	41
		4.3.3.3	Competition experiments	42
		4.3.3.4	Z' factor	42
4.4	Data a	and Statistic	al Analysis	44
4.5	Result	ts and Discu	ission	45
	4.5.1	Protein de	termination	45
	4.5.2	Effects of	Different Physico-Chemical Properties on Dopamine	45
		$(D_1 and D$	₂) and 5-Hydroxytryptamine (5-HT _{1A} and 5-HT _{2A})	
		Receptor	Binding Assays	
		4.5.2.1	Selection of Membrane Concentration	46
		4.5.2.2	Selection of Unlabelled Ligand and its Concentration	47

		4.5.2.3	Selection of pH	47
		4.5.2.4	Selection of Filter Plate Type	48
		4.5.2.5	Selection of Incubation Temperature	49
		4.5.2.6	Selection of Incubation Time	50
		4.5.2.7	Selection of Washing Times	50
		4.5.2.8	Solvent Interference	51
		4.5.2.9	Saturation Experiments	56
		4.5.2.10	Competition Experiments	57
		4.5.2.11	Z' factor	60
4.6	Concl	usion		61
5.0	Virtu	al and Bior	nolecular Screening of Potential Ligands for $5-HT_{2A}$	
	Recep	otor		
5.1	Introd	luction		63
	5.1.1	Structure A	Activity Relationship (SAR) of Aporphines	63
5.2	Mater	ials		65
5.3	Metho	odology		65
	5.3.1	Receptor I	Binding Assays	65
5.4	Resul	ts and Discu	ission	66
	5.4.1	Receptor I	Binding Assays	66
5.5	Concl	usion		76
6.0	Gene	ral Conclus	ion, Limitations and Future Perspectives	77
7.0	Refer	ences		79
8.0	Appe	ndices		98
	А	Sequence	Analysis	98
	В	Ramachan	idran Plot	105
	С	Binding M	lodes of Standard Ligands in 5-HT _{2A} Receptor Model	106

D	ZINC IDs and the Corresponding Compound Names	112
Е	Binding Modes of the Selected Aporphines with the 5-HT_{2A}	113
	Receptor Model	
F	Abstracts of Research Presentations	119

List of Figures

Figure 2.1	Schematic diagram of GPCRs with seven transmembrane	6
	regions (TM1-TM7) connected by intracellular and	
	extracellular loop segments, as well as an extracellular N-	
	terminus and an intracellular C-terminus	
Figure 2.2	Accuracy and application of protein structure models	13
Figure 2.3	General structure of aporphines 17	
Figure 2.4	Structures of aporphines	19
Figure 3.1	General structure of naturally-occuring aporphines with	24
	possible substitution sites indicated as R ₁ -R ₁₁	
Figure 3.2	Proposed binding mode of (S)-boldine in the 5 -HT _{2A} receptor	30
Figure 4.1	Diagrammatic representations of dissection procedure for rat	39
	brain	
Figure 4.2	Standard curve of BSA concentration against absorbance for	45
	use in protein determination	
Figure 4.3(a)	Selection of membrane concentration for D_1 receptor	52
Figure 4.4(a)	Selection of membrane concentration for D_2 receptor	53
Figure 4.5(a)	Selection of membrane concentration for 5 -HT _{1A} receptor	54
Figure 4.6(a)	Selection of membrane concentration for 5-HT_{2A} receptor	55
Figure 4.3(b)	Selection of unlabelled ligand concentration for D_1 receptor	52
Figure 4.4(b)	Selection of unlabelled ligand concentration for D ₂ receptor	53
Figure 4.5(b)	Selection of unlabelled ligand concentration for $5\text{-}HT_{1A}$	54
	receptor	
Figure 4.6(b)	Selection of unlabelled ligand concentration for $5\text{-}HT_{2A}$	55

receptor

Figure 4.3(c)	Selection of pH for D ₁ receptor	52
Figure 4.4(c)	Selection of pH for D ₂ receptor	53
Figure 4.5(c)	Selection of pH for 5-HT _{1A} receptor	54
Figure 4.6(c)	Selection of pH for 5-HT _{2A} receptor	55
Figure 4.3(d)	Selection of filter plate type for D_1 receptor	52
Figure 4.4(d)	Selection of filter plate type for D ₂ receptor	53
Figure 4.5(d)	Selection of filter plate type for 5 -HT _{1A} receptor	54
Figure 4.6(d)	Selection of filter plate type for 5 -HT _{2A} receptor	55
Figure 4.3(e)	Selection of incubation temperature for D ₁ receptor	52
Figure 4.4(e)	Selection of incubation temperature for D ₂ receptor	53
Figure 4.5(e)	Selection of incubation temperature for 5 -HT _{1A} receptor	54
Figure 4.6(e)	Selection of incubation temperature for 5 -HT _{2A} receptor	55
Figure 4.3(f)	Selection of incubation time for D ₁ receptor	52
Figure 4.4(f)	Selection of incubation time for D ₂ receptor	53
Figure 4.5(f)	Selection of incubation time for 5 -HT _{1A} receptor	54
Figure 4.6(f)	Selection of incubation time for 5 -HT _{2A} receptor	55
Figure 4.3(g)	Selection of washing times for D ₁ receptor	52
Figure 4.4(g)	Selection of washing times for D ₂ receptor	53
Figure 4.5(g)	Selection of washing times for 5 -HT _{1A} receptor	54
Figure 4.6(g)	Selection of washing times for 5 -HT _{2A} receptor	55
Figure 4.3(h)	Selection of DMSO effect for D ₁ receptor	52
Figure 4.4(h)	Selection of DMSO effect for D ₂ receptor	53
Figure 4.5(h)	Selection of DMSO effect for 5-HT _{1A} receptor	54
Figure 4.6(h)	Selection of DMSO effect for 5 -HT _{2A} receptor	55
Figure 4.7(a)	Saturation binding curve of [³ H] SCH23390 for D ₁ receptor	56
Figure 4.7(b)	Saturation binding curve of $[^{3}H]$ spiperone for D ₂ receptor	56

- **Figure 4.7(c)** Saturation binding curve of $[^{3}H]$ 8-OH-DPAT for 5-HT_{1A} 56 receptor
- **Figure 4.7(d)** Saturation binding curve of $[^{3}H]$ ketanserin for 5-HT_{2A} 56 receptor
- **Figure 4.8(a)** Competition binding curve of $[^{3}H]$ SCH23390 for D₁ receptor 57
- **Figure 4.8(b)** Competition binding curve of $[^{3}H]$ spiperone for D₂ receptor 57
- **Figure 4.8(c)** Competition binding curve of $[^{3}H]$ 8-OH-DPAT for 5-HT_{1A} 57 receptor
- **Figure 4.8(d)** Competition binding curve of $[^{3}H]$ ketanserin for 5-HT_{2A} 57 receptor
- **Figure 4.9(a)** Z' analysis for D_1 receptor 60
- **Figure 4.9(b)** Z' analysis for D_2 receptor 60
- Figure 4.9(c)Z' analysis for 5-HT $_{1A}$ receptor60
- **Figure 4.9(d)** Z' analysis for 5-HT_{2A} receptor
- Figure 5.1(a) Competition binding curves of (*R*)-roemerine towards [³H]
 68
 SCH23390 for D₁ receptor, [³H] spiperone for D₂ receptor,
 [³H] 8-OH-DPAT for 5-HT_{1A} receptor and [³H] ketanserin for
 5-HT_{2A} receptor
- Figure 5.1(b) Competition binding curves of (S)-bulbocapnine towards [³H] 68
 SCH23390 for D₁ receptor, [³H] spiperone for D₂ receptor,
 [³H] 8-OH-DPAT for 5-HT_{1A} receptor and [³H] ketanserin for 5-HT_{2A} receptor
- Figure 5.1(c) Competition binding curves of (S)-boldine towards [³H]
 68
 SCH23390 for D₁ receptor, [³H] spiperone for D₂ receptor,
 [³H] 8-OH-DPAT for 5-HT_{1A} receptor and [³H] ketanserin for
 5-HT_{2A} receptor

60

- Figure 5.1(d) Competition binding curves of (*R*)-apomorphine towards [³H] 68
 SCH23390 for D₁ receptor, [³H] spiperone for D₂ receptor,
 [³H] 8-OH-DPAT for 5-HT_{1A} receptor and [³H] ketanserin for
 5-HT_{2A} receptor
- Figure 5.1(e) Competition binding curves of (S)-apomorphine towards [³H] 68
 SCH23390 for D₁ receptor, [³H] spiperone for D₂ receptor,
 [³H] 8-OH-DPAT for 5-HT_{1A} receptor and [³H] ketanserin for 5-HT_{2A} receptor
- Figure 5.1(f) Competition binding curves of *N*-propylapomorphine towards 68
 [³H] SCH23390 for D₁ receptor, [³H] spiperone for D₂
 receptor, [³H] 8-OH-DPAT for 5-HT_{1A} receptor and [³H]
 ketanserin for 5-HT_{2A} receptor
- Figure 5.2Proposed binding mode of (R)-roemerine in the 5-HT2A71receptor
- Figure 8.1Alignment of rat 5-HT family receptor98
- Figure 8.2Sequence alignment of 5-HT2A multiple species101
- **Figure 8.3** Sequence comparison of rat 5-HT_{2A} against human 5-HT_{2A} 103
- **Figure 8.4** Sequence comparison of rat 5-HT_{2A} against rat 5-HT_{2B} and 5- 104 HT_{2C} sequences
- Figure 8.5 Structure validation of the model using Ramachandran plot 105 computed with the PROCHECK program
- **Figure 8.6(a)** The 5-HT2_A receptor model in complex with endogenous 106 ligand, serotonin
- **Figure 8.6(b)** The 5-HT2_A receptor model in complex with tryptamine 106
- **Figure 8.6(c)** The 5-HT2_A receptor model in complex with 5-MeOT 107
- **Figure 8.6(d)** The 5-HT2_A receptor model in complex with (R)-(-)-DOI 107

- **Figure 8.6(e)** The 5-HT2_A receptor model in complex with (S)-(-)-DOI 108
- **Figure 8.7(a)** The 5-HT2_A receptor model in complex with spiperone 109
- **Figure 8.7(b)** The 5-HT2_A receptor model in complex with risperidone 109
- **Figure 8.7(c)** The 5-HT2_A receptor model in complex with haloperidol 110
- **Figure 8.7(d)** The 5-HT2_A receptor model in complex with ritanserin 110
- **Figure 8.7(e)** The 5-HT2_A receptor model in complex with ketanserin 111
- **Figure 8.8(a)** Proposed binding mode of (S)-bulbocapnine in the $5-HT_{2A}$ 113 receptor
- **Figure 8.8(b)** Proposed binding mode of (*S*)-laureline in the $5-HT_{2A}$ 113 receptor
- **Figure 8.8(c)** Proposed binding mode of (S)-nucliferine in the 5-HT_{2A} 114 receptor
- **Figure 8.8(d)** Proposed binding mode (*R*)-apomorphine in the 5-HT_{2A} 114 receptor
- **Figure 8.8(e)** Proposed binding mode (*S*)-apomorphine in the 5-HT_{2A} 115 receptor
- Figure 8.8(f)Proposed binding mode of (R)-N-propylapomorphine in the 5-115 HT_{2A} receptor
- **Figure 8.8(g)** Proposed binding mode of (*R*)-2-hydroxy-*N* 116 propylapomorphine in the 5-HT_{2A} receptor
- **Figure 8.8(h)** Proposed binding mode of (S)-isocorydine in the 5-HT_{2A} 116 receptor
- **Figure 8.8(i)** Proposed binding mode of (S)-isothebaine in the $5-HT_{2A}$ 117 receptor
- **Figure 8.8(j)** Proposed binding mode of (S)-corydine in the 5-HT_{2A} receptor 117

Figure 8.8(k) Proposed binding mode of (S)-corytuberine in the 5-HT_{2A} 118 receptor

List of Tables

Table 2.1	Examples of some prescription drugs which target GPCRs for	5
	the indicated condition or disease state	
Table 2.2	List of three dimensional crystal structures of GPCRs	7
Table 3.1	Computed K_i values of the selected compounds	31
Table 4.1	Summary of the values used for the different parameters	43
	involved in optimising the protocols for the radioligand	
	binding assays	
Table 4.2	$K_{\rm i}$ values of the standard ligands for D ₁ , D ₂ , 5-HT _{1A} and 5-	59
	HT _{2A} receptors	
Table 4.3	Data from Z' factor analysis for the D_1 , D_2 , 5-HT _{1A} and 5-	61
	HT _{2A} receptors	
Table 4.4	Optimised assay conditions for D_1 , D_2 , 5-HT _{1A} and 5-HT _{2A}	62
	receptors	
Table 5.1	Binding affinities of the selected ligands towards rat D_1 , D_2 , 5-	69
	HT_{1A} and 5- HT_{2A} receptors	
Table 5.2	5-HT _{2A} residues found from the docking studies to interact	74
	with the selected aporphines	
Table 8.1	The ZINC IDs of the compounds selected from virtual	112
	screening	

List of Symbols and Abbreviations

2D	2 Dimensional
3D	3 Dimensional
5-HT	5-hydroxytryptamine, serotonin
5-HT _{1A}	5-hydroxytryptamine _{1A}
5-HT _{2A}	5-hydroxytryptamine _{2A}
5-MeOT	5-methoxytryptamine
8-OH-DPAT	(±)-8-hydroxy-2-(di- <i>n</i> -propylamino)-tetralin
[³ H] 8-OH-DPAT	8-Hydroxy-2-[2,3- ³ H]di- <i>n</i> -(propylamino)tetralin
[³ H] SCH 23390	[³ H] 7-chloro-8-hydroxy-3-methyl-5-phenyl-2,3,4,5-
	tetrahydro-1-H-3-benzazepine
aa	Amino acid
AMP	Adenosine monophosphate
APDs	Antipsychotic drugs
$B_{\rm max}$	Maximal binding capacity
BSA	Bovine serum albumin
cAMP	Cyclic adenosine monophosphate
CNS	Central nervous system
CV	Coefficient of variation
D ₁	Dopamine ₁
D ₂	Dopamine ₂
DOI	(±)-2, 5-dimethoxy-4-iodoamphetamine
DMSO	Dimethyl sulphoxide
ECL	Extracellular loop
EtOH	Ethanol

GF/B	Glass fibre type B
GF/C	Glass fibre type C
GPCR	G-protein coupled receptor
HCl	Hydrochloride
IC_{50}	Concentration at 50% inhibition
K _d	Equilibrium dissociation constant
Ki	Inhibition constant
[L]	concentration of radioligand
MDMA	Methylenedioxymethamphetamine
MeOH	Methanol
NSB	Nonspecific binding
PDB	Protein Data Bank
SAR	Structure activity relationship
SB	Specific binding
S/B	Signal to background ratio
SCH 23390	<i>R</i> -(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-
	tetrahydro-1H-3-benzazepine
SD	Standard deviation
SEM	Standard error mean
SBDD	Structure-based drug design
ТВ	Total binding
Tris	Tris(hydroxymethyl)aminomethane
UV	Ultraviolet
WHO	World Health Organization

Units of Measurement

%	Percent
Å	Angstrom
°C	Degree celsius
Ci	Curie
3	Epsilon
imes g	Times gravity
μg	Microgram
cpm	Count per minute
М	Molar
mg	Milligram
min	Minute
ml	Milliliter
mM	Millimolar
nM	Nanomolar
min	Minute
Rpm	Revolutions per minute
v/v	Volume per volume
w/v	Weight per volume

List of Amino Acids

Ala (A)	Alanine
Arg (R)	Arginine
Asn (N)	Asparagine
Asp (D)	Aspartate
Cys (C)	Cysteine
Gln (Q)	Glutamine
Glu (E)	Glutamate
Gly (G)	Glycine
His (H)	Histidine
Ile (I)	Isoleucine
Leu (L)	Leucine
Leu (L) Lys (K)	Leucine Lysine
Lys (K)	Lysine
Lys (K) Met (M)	Lysine Methionine
Lys (K) Met (M) Phe (F)	Lysine Methionine Phenylalanine
Lys (K) Met (M) Phe (F) Pro (P)	Lysine Methionine Phenylalanine Proline
Lys (K) Met (M) Phe (F) Pro (P) Ser (S)	Lysine Methionine Phenylalanine Proline Serine
Lys (K) Met (M) Phe (F) Pro (P) Ser (S) Thr (T)	Lysine Methionine Phenylalanine Proline Serine Threonine
Lys (K) Met (M) Phe (F) Pro (P) Ser (S) Thr (T) Trp (W)	Lysine Methionine Phenylalanine Proline Serine Threonine Tryptophan