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Abstract 

 

 Alteration in dopaminergic and serotonergic neurotransmission influences 

various neurological and mental disorders such as depression, anxiety, bipolar disorder, 

schizophrenia and drug abuse. The naturally occurring aporphine alkaloids are well 

known for their activity at D1, D2 and 5-HT1A receptors, but only a few have been 

shown to bind to the 5-HT2A receptor. Aim of this study was to identify aporphines with 

significant activity at dopamine and serotonin receptors using both in silico and in vitro 

screening approaches. A 3D homology model of the rat 5-HT2A receptor was generated 

using the crystal structure of the human β2-adrenergic receptor (PDB ID: 2RH1) and 

validated with standard 5-HT2A receptor ligands. A filtered set of aporphines obtained 

from the ZINC database using (S)-boldine as the backbone structure was docked into 

the generated 5-HT2A receptor model. A set of 13 compounds were identified with 

higher or comparable activity to (S)-boldine for experimental testing across the D1, D2, 

5-HT1A and 5-HT2A receptors using a medium throughput radioligand receptor binding 

assay. (R)-roemerine was found to have selective 5-HT2A binding affinity with 20–400-

fold higher affinity for the 5-HT2A receptor versus the D1, D2, and 5-HT1A receptors. 

Investigation into the structures of the selected compounds revealed that substitution at 

positions 1 and 2, particularly with a methylenedioxy group, non-substitution at 

positions 10 and 11 and a protonated amino group at position 6 may be responsible for 

the good affinity-selectivity profile of (R)-roemerine for the 5-HT2A receptor compared 

to the other compounds. Further analysis of the binding modes of the selected 

compounds also showed that the combination of an electrostatic interaction and the 

hydrogen bonding between the protonated amino group of (R)-roemerine and Asp155 

and a pi-cation interaction with Phe339 appears to explain its enhanced affinity and 

selectivity as compared to the other compounds. The results illustrate the usefulness of a 
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combined in silico and in vitro approach in the search for lead molecules for the 

development of new selective drugs acting at dopamine and serotonin receptors. 
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Abstrak   

 

 Perubahan pada neurotransmisi dopamin dan serotonin mempengaruhi pelbagai 

gangguan neurologi dan mental seperti kemurungan, keresahan, gangguan bipolar, 

skizofrenia dan penyalahgunaan dadah. Alkaloid aporphine semulajadi terkenal dengan 

aktivitinya pada reseptor D1, D2 dan 5-HT1A, tetapi hanya sebilangan daripadanya 

menunjukkan ikatan pada reseptor 5-HT2A. Tujuan kajian ini adalah untuk 

mengenalpasti aporphine dengan aktiviti yang siknifikan pada reseptor dopamin dan 

serotonin menggunakan kedua-dua pendekatan in silico dan in vitro. Satu model 

homologi 3D bagi reseptor tikus 5-HT2A telah dijana dengan menggunakan struktur 

kristal reseptor manusia β2-adrenergik (PDB ID: 2RH1) dan divalidasi dengan ligan 

asas 5-HT2A. Satu set aporphines yang ditapis diperoleh dari pangkalan data ZINC 

dengan menggunakan (S)-boldine sebagai struktur asas untuk didok dalam reseptor 5-

HT2A yang telah dijana. Sebanyak 13 kompaun telah dikenalpasti dengan aktiviti yang 

lebih tinggi atau setanding dengan (S)-boldine untuk diuji secara experimental pada 

reseptor D1, D2, 5-HT1A dan 5-HT2A dengan pengendalian asei reseptor radioligan. (R)-

roemerine menunjukkan ikatan afiniti yang selektif pada reseptor 5-HT2A dengan 20–

400-kali ganda lebih tinggi untuk reseptor 5-HT2A berbanding dengan reseptor D1, D2 

dan 5-HT1A. Kajian menyeluruh bagi struktur kompaun yang terpilih menunjukkan  

bahawa (R)-roemerine dengan penggantian pada kedudukan 1 dan 2, khususnya dengan 

kumpulan metilenadioksi, tanpa penggantian pada kedudukan 10 dan 11 dan kumpulan 

amino berproton pada kedudukan 6 bertanggungjawab kepada profil afiniti-selektiviti 

yang baik oleh (R)-roemerine bagi reseptor 5-HT2A berbanding kompaun lain. Analisis 

lanjutan bagi jenis interaksi oleh kompaun terpilih juga menunjukkan bahawa gabungan 

interaksi elektrostatik dan ikatan hidrogen antara kumpulan amino berproton dalam (R)-

roemerine dan Asp155 dan interaksi pi-kation dengan Phe339 menjurus kepada 
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peningkatan afiniti dan selektiviti berbanding dengan kompaun lain. Keputusan ini 

menunjukkan kepentingan gabungan kedua-dua kaedah in silico dan in vitro dalam 

pencarian molekul baru bagi perkembangan ligan yang selektif yang bertindak pada 

reseptor dopamin dan serotonin. 
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