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Abstrak 

Pelbagai kajian telah dijalankan dalam pembangunan terapeutik terhadap 

jangkitan dengue. Malah, kini, vaksin mahupun ejen anti-dengue yang berkesan masih 

belum ditemui. Dalam kajian ini, kami memberi tumpuan pada penemuan drug yang 

rasional terhadap ejen anti-dengue yang berpotensi dengan merujuk pada perencatan 

protease DEN-2 NS2B-NS3 yang tidak kompetitif. Sebuah model homologi, DH-1, 

untuk DEN-2 NS2B-NS3 (yang menggunakan kompleks protease West Nile Virus 

NS2B-NS3, 2FP7, sebagai rujukan) telah digunakan sebagai reseptor sasaran untuk reka 

bentuk tersebut. Pinostrobin, suatu flavanone, telah digunakan sebagai ligan piawai 

dalam kajian ini. Sejumlah 13,341 sebatian kecil, berstruktur yang mengandungi tulang 

belakang chalcone, flavanone and flavone, yang terdapat daripada pangkalan data yang 

bernama ZINC, telah digunakan untuk penyaringan maya. Keputusan penyaringan 

menghasilkan molekul yang mempunyai daya ikatan lebin kuat terhadap reseptor 

berbanding dengan ligan piawai. Cerakin perencatan terhadap aktiviti proteolitik DEN-2 

NS2B-NS3 daripada sebatian terpilih yang berkedudukan tinggi dalam keputusan 

penyaringan menunjukkan perencatan lebin baik yang signifikan berbanding dengan 

ligan piawai, pinostrobin. Kesimpulannya, melalui cara rasional, kami telah berjaya 

menemui perencat yang berpotensi sebagai langkah pertama penemuan ejen anti-dengue. 

Sebatian 1 telah didapati menunjukkan aktiviti perencatan yang terbaik dengan Ki exp in 

vitro bernilai 69 ± 9 µM. Kami juga mencadangkan satu sebatian petunjuk atau 

farmakofor yang berpotensi untuk perencat tidak kompetitif terhadap protease DEN-2 

NS2B-NS3. 
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Abstract 

Various works have been carried out in developing therapeutics against dengue 

infections. However, to date, no effective vaccine or anti-dengue agent has yet been 

discovered. In this study, we focused on rational drug discovery of potential anti-dengue 

agents based on non-competitive inhibition of DEN-2 NS2B-NS3 protease. A suitable 

DEN-2 NS2B-NS3 homology model DH-1 (using West Nile Virus NS2B-NS3 protease 

complex, 2FP7, as template) was used as the target receptor for the design. Pinostrobin, 

a flavanone, was used as the standard ligand in this study. A total of 13,341 small 

compounds, with the backbone structures of chalcone, flavanone and flavone, available 

from ZINC database were used in the virtual screening performed. Ranking of resulting 

compounds yielded those with higher binding affinities compared to the standard 

ligand. Inhibition assay of selected top ranking compounds against DEN-2 NS2B-NS3 

proteolytic activity resulted in significantly better inhibition compared to the standard, 

pinostrobin. In conclusion, through rational approach, we have been able to discover 

potential inhibitors in our early step towards discovering anti-dengue agents. Compound 

1 was found to exhibit the best inhibition activity with in vitro Ki exp value of 69 ± 9 µM. 

We also suggested a potential lead structure or pharmacophore for non-competitive 

inhibitor against DEN-2 NS2B-NS3 protease. 
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CHAPTER ONE 

INTRODUCTION 
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1.1 General Introduction 

Dengue virus causes diseases such as dengue fever, dengue haemorrhagic fever 

and dengue shock syndrome. It is among the major causes of morbidity and mortality, 

especially in children in many endemic Asian and South American countries (Gubler, 

1998; Guha-Sapir & Schimmer, 2005). However, to date, there is no effective vaccine 

or anti-viral drug available in the market to protect against dengue diseases.  

 

The protease, NS2B-NS3 (protease complex), of dengue virus type 2 (DEN-2) 

was reported to be involved in the cleavage of most of the non-structural 

proteins needed in viral replication. Inhibition of NS2B-NS3 protease complex is 

believed to suppress viral infections. It was previously reported that cardamonin (a 

chalcone) and pinostrobin (a flavanone) showed non-competitive inhibition towards 

DEN-2 NS2B-NS3 proteolytic activities, while panduratin A and 4-hydroxypanduratin 

A (both cyclohexenyl chalcone derivatives) showed competitive inhibition activities 

(Kiat et al., 2006).  

 

In this study, the models of DEN-2 NS2B-NS3 were studied computationally (in 

silico) using cardamonin, R-pinostrobin and S-pinostrobin to verify the suitability of the 

models as target receptors for non-competitive inhibition studies. Virtual screening of a 

series of small compounds from the ZINC database (Irwin & Shoichet, 2005) with 

backbone structures similar to chalcone, flavanone and flavone were then performed 

towards the suitable DEN-2 NS2B-NS3 model in an attempt to discover potential non-

competitive inhibitors. The selected compounds were then submitted to DEN-2 NS2B-

NS3 protease cleavage inhibition assay to validate their activities in vitro. A novel anti-

dengue candidate was then obtained from the in silico and in vitro results. 
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1.2 Problem Statement 

Dengue fever has been one of the most common diseases in the tropical and 

subtropical countries. It is reported to be one of the most fatal diseases in Malaysia 

(KPKM, 2012). To date, there is still no licensed vaccine for prevention, or anti-viral 

drug for treatment of dengue infections. The computational molecular modelling 

approach for new compound development is still in its early stage in Malaysia. It is a 

tool that can be used to design new compounds and simulate their potential activities on 

particular proteins by referring to their inter-molecular interactions. Thus, in this study, 

in silico molecular modelling and docking approaches were used to verify the suitability 

of DEN-2 NS2B-NS3 protease models for non-competitive inhibition studies. Screening 

of compounds using both in silico and in vitro methods were also performed, in an 

effort to search for compounds with activities against viral infections. The whole study 

design involved in this research can be considered as a holistic approach towards drug 

discovery of new compounds with expected therapeutic activities. The involvements of 

computational and experimental techniques in this study are essential in our effort 

towards the search for therapeutic drugs against dengue virus infections. Hence, it is 

believed that the approaches used in this study will be beneficial to the advancement of 

drug development area of research in the country. 

 

1.3 Study Aim and Objectives 

The aim of this study is to obtain a suitable model for non-competitive inhibition 

study towards DEN-2 NS2B-NS3 protease, and use this model in the rational discovery 

of new potential anti-dengue agents. 
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1.3.1 Study Objectives                            

i. To obtain the suitable DEN-2 NS2B-NS3 protease models for in silico docking 

study in search of hits for non-competitive inhibition activity. 

ii. To perform virtual screening of chalcones, flavanones, flavones and other 

compounds which are structurally similar towards DEN-2 NS2B-NS3 protease. 

iii. To clone, express and purify recombinant DEN-2 NS2B-NS3 protease and 

perform DEN-2 NS2B-NS3 protease assay on selected top ranking compounds 

from virtual screening experiment. 

iv. To perform structure-activity relationship (SAR) studies for the biologically 

screened potential non-competitive inhibitors. 
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1.4 Research Project Workflow 

 

 

 
 

Figure 1.1 Workflow of overall research project. 
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CHAPTER TWO 

BACKGROUND / LITERATURE REVIEW 
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2.1 Dengue 

2.1.1 Dengue Epidemiology in the World and Malaysia 

Every year, the World Health Organization (WHO) estimates that there are 50 - 

100 million cases of dengue infection worldwide. Over 2.5 billion people (over 40% of 

the world’s population) who live in tropical or sub-tropical regions of the world (as 

shown in Figure 2.1) are at risk from dengue infections, and about 1.8 billion of these 

people (more than 70%) reside in Asia Pacific countries (WHO, 2008; WHO, 2012a). 

 

 

Figure 2.1 Countries or areas of the world that are at risk of dengue infection 

(WHO, 2011b). The two dark red lines indicate latitudes around 35 
o
N and 35 

o
S. 

 

Based on Figure 2.2, in 2010, it was reported that there were 354,009 cases with 

1,075 deaths (CFR 0.30%) in the Western Pacific Region. It is the highest reported 

number of cases since the large dengue outbreaks in 1998 (WHO, 2012b). 
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Figure 2.2 The number of reported dengue cases (DF/DHF cases) and Case Fatality 

Rates (CFR) in the Western Pacific Region from 1991 - 2010 (WHO, 2011a). 

 

In the year 2009, Malaysia was reported to have 41,486 dengue cases with 88 

deaths (CFR 0.21%); while in 2010 and 2011, 46,171 cases with 134 deaths (CFR 

0.29%) and 19,884 cases with 36 deaths (CFR 0.18%) were reported respectively 

(KPKM, 2011b; KPKM, 2011a). From the beginning of the year 2012 up to the 5th 

week of 2012, there were already 2,413 dengue cases with 10 deaths (CFR 0.41%) 

reported in Malaysia (KPKM, 2012), which marks the highest CFR in recent years and 

reaches a worrying situation. In 2011, ASEAN Health Ministers had even declared 15 

of June to be ASEAN Dengue Day as an important annual event that allows the ASEAN 

members, in coordination with the WHO, to reinforce dengue prevention and control 

measures (WHO, 2011a). 
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2.1.2  Dengue Transmission 

There are two predominant arthropod vectors, Aedes aegypti and Aedes 

albopictus mosquitoes (Figure 2.3), that are implicated in the transmission of dengue 

virus (Simmons et al., 1931; Hammon et al., 1960; Gould et al., 1968; Rosen, 1983). 

People in tropical and subtropical regions of the world are at risk of dengue infection 

because the mosquitoes are widely in such regions, mostly between latitudes 35
o
N and 

35
o
S, corresponding approximately to a winter isotherm of 10

o
C (Figure 2.1) (WHO, 

2009). After virus incubation for 4 to 10 days, the infected mosquitoes are capable of 

transmitting the virus to humans during probing and blood feeding for the rest of their 

lives (WHO, 2012a).  

 

Meanwhile, infected humans are the main carriers, multipliers and sources of the 

virus for uninfected mosquitoes (WHO, 2012a). Various methods involving 

environmental management and usage of pesticide had been introduced for vector 

control and dengue prevention (WHO, 2009). The types of environmental management 

include environmental modification by installation of reliable piped water supply to 

communities to reduce vector larval habitats; environmental manipulation by frequent 

emptying and cleaning of water containers to manipulate the vector habitats; and 

changes to human habitation or behaviour by installing mosquito screens on windows, 

doors and other entry points, and using mosquito nets while sleeping to reduce human-

vector contact (WHO, 2009).  
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 Aedes aegypti      Aedes albopictus 

Figure 2.3 Images of the two predominant arthropod vectors of dengue virus, Aedes 

aegypti and Aedes albopictus (images are adopted from the Centers for Disease Control 

and Prevention (CDC)’s Public Health Image Library (PHIL), with identification 

number, 9258 and 2165, respectively).  

 

2.1.3 Dengue Characteristic 

Symptomatic dengue virus infection can be categorized into three categories, 

which are undifferentiated fever, dengue fever (DF) and dengue haemorrhagic fever 

(DHF), whilst DHF, can be further classified into four severity grades, with grades III 

and IV being defined as dengue shock syndrome (DSS) (WHO, 2009). DF is a flu-like 

illness with a variety of nonspecific signs and symptoms and should be suspected when 

a high fever (40
o
C) concurrently appearing with two of the following symptoms: severe 

headache, pain behind the eyes, nausea, vomiting, muscle and joint pains, swollen 

glands or rashes (Gubler, 1998; WHO, 2012a). These symptoms usually occur 

following an incubation period of 3 - 14 days after the infective mosquito bite (WHO, 

2012a). On the other hand, DHF is a potentially deadly complication that is 

characterized by high fever and can cause haemorrhagic manifestations, which may lead 

to DSS (Gubler, 1998; WHO, 2012a). The warning signs such as severe abdominal pain, 

rapid breathing, bleeding gums, restlessness, fatigue, persistent vomiting and/or blood 
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in vomit appear 3 - 7 days after the first symptoms along with a decrease in temperature 

(below 38 
o
C) (WHO, 2012a). Patients in shock may die within 8 to 24 hours but 

usually recover following anti-shock therapy (Gubler, 1998). As a result, various studies 

have been performed for the development of therapeutics against dengue, including the 

use of anti-viral inhibitors (Leung et al., 2001; Hrobowski et al., 2005; Whitby et al., 

2005; Kiat et al., 2006; Yin et al., 2006a; Yin et al., 2006b; Lee et al., 2007; Lescar et 

al., 2008; Othman et al., 2008; Frecer & Miertus, 2010; Muhamad et al., 2010; 

Frimayanti et al., 2011) and vaccines (McKee et al., 1987; Durbin et al., 2001; 

Whitehead et al., 2003; Hanley et al., 2004; Durbin et al., 2005; Robert Putnak et al., 

2005; Edelman, 2007).  

 

However, to date, there is no effective vaccine or anti-viral drug available in the 

market to protect against dengue (Monath, 1994; Kautner et al., 1997). Nevertheless, 

early detection and access to proper medical care, such as maintenance of the patient’s 

body fluid volume, could lower fatality rates from more than 20% to less than 1% 

(WHO, 2012a).  

 

2.1.4 Dengue Virus Taxonomy 

Dengue viruses belong to the Flavivirus genus, member of the Flaviviridae 

family (Westaway et al., 1985). In fact, there are more than 70 viruses belonging to 

Flavivirus genus and many of them are arthropod-borne human pathogens, such as 

dengue virus, Japanese encephalitis virus (JEV), West Nile virus (WNV), and yellow 

fever virus (YFV) (Lindenbach et al., 2007).  
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The dengue viruses can be categorized into four serotypes based on the antigens 

on the surface of the virus, which are dengue virus type 1, 2, 3 and 4 (DEN-1 to DEN-4) 

(Lanciotti et al., 1992; Siqueira et al., 2005; Lindenbach et al., 2007). As members of 

the Flaviviridae family, all the dengue viruses share common morphological 

characteristics, genome structures, and replication and translation strategies (Westaway 

et al., 1985; Kautner et al., 1997; Gubler, 1998; Lindenbach et al., 2007).  

 

2.1.5 Dengue Virus Morphology and Life Cycle  

The virus particle (virion) is about 50 nm in diameter, surrounded by structural 

proteins - envelope (E) protein and membrane (M) protein on the surface, with 

nucleocapsid, which consists of capsid (C) protein and genomic RNA, in the inner part 

(Figure 2.4) (Lindenbach et al., 2007).  

 

Figure 2.4 Illustrated virions of flavivirus by ViralZone (http://viralzone.expasy.org) 

based on cryo-electron microscopy images by Zhang et al. (2003) (images are adopted 

from http://viralzone.expasy.org/all_by_species/43.html). 
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The dengue virus life cycle is shown in Figure 2.5B. Dengue virus, as well as 

other flaviviruses, uses cell surface receptor-mediated endocytosis for cell entry 

(Rodenhuis-Zybert et al., 2010). The process is followed by membrane fusion of the 

viral membrane with the host cell membrane, which is catalyzed by acidic pH of the 

environment, to uncoat the nucleocapsid and release the viral RNA genome into the cell 

cytosol. Subsequently, the RNA genome is translated as a single polyprotein by the host 

ribosomes, which translocate across the ER membrane (Figure 2.5) (Lindenbach et al., 

2007; Rodenhuis-Zybert et al., 2010). The polyprotein is then processed co- and post-

translationally by the cellular (host) and virus-derived proteases into three structural 

proteins and seven nonstructural proteins (Svitkin et al., 1984; Markoff, 1989; 

Lindenbach et al., 2007; Rodenhuis-Zybert et al., 2010). Then, the nonstructural 

proteins initiate the replication of viral RNA genome right after the protein translation 

and folding of the individual proteins (Clyde et al., 2006). The replication of RNA is 

catalyzed by virus replicase, which associates with membranes through interactions 

involving nonstructural proteins, viral RNA and probably some host factor (Lindenbach 

et al., 2007). After this, the newly synthesized RNA is packaged by the C protein to 

form a nucleocapsid, while the prM and E proteins form heterodimers that are oriented 

into the lumen of the ER. Immature virion budding subsequently takes place through 

encapsulation of nucleocapsid by the prM/E heterodimers. However, the engulfment 

mechanism of the nucleocapsid by prM/E proteins is still unclear (Rodenhuis-Zybert et 

al., 2010). Then, the immature virions formed in the ER will be transported and released 

through the host secretory pathway by travelling to the Golgi compartment and 

maturing in the secretion (Clyde et al., 2006; Lindenbach et al., 2007; Rodenhuis-

Zybert et al., 2010). Mature virion are formed and able to infect new cells when prM 

protein is cleaved into soluble pr peptide and M protein by host protease, furin (Stadler 
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et al., 1997; Keelapang et al., 2004; Clyde et al., 2006; Lindenbach et al., 2007; 

Rodenhuis-Zybert et al., 2010). 

 

 

 

 

 

 

Figure 2.5 Polyprotein of dengue virus. A: Polyprotein processing and cleavage 

products of dengue virus. Structural proteins are coloured in cyan and nonstructural 

proteins are coloured in white. ♦ indicates cleavage sites for host signal peptidase, ↓ 

indicates cleavage sites for viral serine protease and ? indicates cleavage site for 

unknown protease. B: Dengue virus life cycle. C: The proposed topology of the 

flavivirus polyprotein cleavage products with respect to the endoplasmic reticulum (ER) 

membrane (Lindenbach et al. 2007). 

B 

C 

A 
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2.1.5.1 Dengue Virus RNA  

The viral genomic RNA is a single-stranded RNA of positive polarity with about 

11 kb and type 1 cap at the 5’-end but lacking the poly A tail at the 3’-end (Russell et 

al., 1980). The RNA gene order for a single polyprotein precursor of 3,391 amino acids 

is C-prM(M)-E-NS1-NS2A-NS2B-NS3-NS4A-NS4B-NS5, consisting of three 

structural (C, prM and E) and seven nonstructural proteins (NS1, NS2A, NS2B, NS3, 

NS4A, NS4B and NS5) as shown in Figure 2.5A (Irie et al., 1989). 

 

2.1.5.2 Structural Proteins 

The C protein is a highly basic protein of about 11 kDa that serves to 

encapsulate the viral RNA genome for protecting and disseminating the viral RNA to 

suitable hosts (Lucas, 2001; Lindenbach et al., 2007). The prM protein, about 18 kDa, is 

the glycoprotein precursor of M protein with a major function of preventing E protein 

from undergoing acid-catalyzed rearrangement to the T=3 fusogenic form during 

transport through the host secretory pathway, that would lead to premature membrane 

fusion of virus particle towards the Golgi compartment before release from the cell as 

secretion (Stadler et al., 1997; Keelapang et al., 2004; Clyde et al., 2006; Lindenbach et 

al., 2007; Rodenhuis-Zybert et al., 2010). The M protein, about 8 kDa, is a small 

proteolytic fragment of the precursor prM protein, produced after being cleaved by host 

protease, furin, during maturation of nascent virus particles within the host secretory 

pathway after the soluble pr peptide is cleaved from prM (Stadler et al., 1997; 

Keelapang et al., 2004; Lindenbach et al., 2007). Meanwhile, the functions of E protein 

(about 50 kDa) are to mediate binding and fusion during virus entry, and it is the main 

antigenic determinant on the virus particle as the target for immune system (Lindenbach 

et al., 2007).  
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2.1.5.3 Nonstructural Proteins 

The NS1 glycoprotein, is about 46 kDa in size (Lindenbach et al., 2007). It was 

reported to be an important antigen along with E protein in immunization of mice for 

human vaccine development (Zhang et al., 1988; Srivastava et al., 1995). However, in 

recent year, it had been used for the early detection of dengue virus infection (Xu et al., 

2006; Hang et al., 2009; Datta & Wattal, 2010; Lima Mda et al., 2011). One of the 

examples of commercially available dengue NS1 detection kits is Platelia Dengue NS1 

Ag (Bio-Rad). 

 

The NS2A protein is a hydrophobic protein with size of about 22 kDa 

(Lindenbach et al., 2007). It plays an important role in virus assembly (Leung et al., 

2008). On the other hand, the NS2B protein, which is about 14 kDa, is a membrane-

associated protein. It forms a stable complex with NS3 and also acts as a cofactor for 

the NS2B-NS3 serine protease (Lindenbach et al., 2007). 

 

The NS3 protein is about 70 kDa, a large multifunctional protein, containing 

several functions required for polyprotein processing and RNA replication (Lindenbach 

et al., 2007). As referred to Figure 2.5A, it consists of a trypsin-like serine protease 

domain within the N-terminal 180 residues (Bazan & Fletterick, 1989) and a domain 

with NTPase/helicase acitivity at the C-terminal (Li et al., 1999; Luo et al., 2008). The 

active site of NS3 serine protease carries the catalytic triad, comprising of three amino 

acid residues, namely His51, Asp75 and Ser135, with NS2B acting as a cofactor of NS3 

protease for optimal catalytic activity (Preugschat et al., 1990; Arias et al., 1993). The 

NS2B-NS3 protease complex was reported to be responsible for cleaving the 

NS2A/NS2B, NS2B/NS3, NS3/NS4A and NS4B/NS5 junctions, preferentially with 

adjacent basic residues (Preugschat et al., 1990; Falgout et al., 1991; Cahour et al., 1992; 
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Zhang et al., 1992). Besides, the protease also generates the C-termini of mature C 

protein (Amberg et al., 1994; Yamshchikov & Compans, 1994) and NS4A (Lin et al., 

1993). Meanwhile, the role for NS3 NTPase/helicase activity in flavivirus life cycle has 

been shown in the genomic RNA replication in an unwinding step, where the NS3 

NTPase/helicase catalyzes the hydrolysis of ATP that is required for the unwinding of 

the double-stranded RNA for RNA replication (Li et al., 1999). 

 

NS4A and NS4B are both hydrophobic proteins of about 16 kDa and 27 kDa in 

sizes (Lindenbach et al., 2007). The two proteins are membrane-associated and were 

reported to play an important role in RNA replication by colocalization with replication 

complexes, which involved NS3 (Preugschat & Strauss, 1991; Lin et al., 1993; 

Umareddy et al., 2006). As shown in Figure 2.5A and 2.5C, there is a signal peptide, 

designated 2k fragment, located at the C-terminal region of NS4A, serving as a signal 

sequence for the translocation of the adjacent NS4B into the ER lumen (Miller et al., 

2007). 

 

NS5 is a multifunctional protein, about 103 kDa in size, with methyltransferase 

(MTase) and  RNA-dependent RNA polymerase (RdRp) activities (Figure 2.5A) 

(Lindenbach et al., 2007). The NS5 MTase is responsible for methylating the viral RNA 

cap structure to cap-1 structure, which further is being recognized for polyprotein 

translation (Zhou et al., 2007). On the other hand, the NS5 RdRp catalyzed the viral 

replication by synthesizing a transient double-stranded replicative RNA intermediate 

which consists viral plus- and minus-strand RNAs (Bartholomeusz & Thompson, 1999; 

Yap et al., 2007). The newly synthesized minus strand is subsequently used as a 

template for synthesizing additional plus-strand RNAs (Bartholomeusz & Thompson, 

1999; Yap et al., 2007).  
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2.1.6 The DEN-2 NS2B-NS3 Protease 

Until now, many studies on DEN-2 had been carried out for better understanding 

of its replication mechanism. Amongst these studies, DEN-2 nonstructural proteins were 

some of the common research targets (Falgout et al., 1991; Brinkworth et al., 1999; 

Yusof et al., 2000). As mentioned in section 2.1.5.3, the NS2B-NS3 virus protease 

complex was reported to play a very important role in cleaving most of dengue virus 

nonstructural proteins and some structural proteins (Falgout et al., 1991; Yusof et al., 

2000) which will further complete the virus replication cycle (Lindenbach et al., 2007). 

Thus, in this study, the inhibition of DEN-2 NS2B-NS3 protease was targeted for drug 

discovery.  

 

2.2 Plant Extracts Against Dengue Infection 

Dengue is a famous disease among the tropical and subtropical regions of the 

world and the native people of these regions have used various traditional herbal 

remedies to treat the disease. Since 1960s, it was reported that aqueous agar extracts 

give inhibition effects on infectious and hemagglutinating properties of DEN-2 (Schulze 

& Schlesinger, 1963). In recent years, various studies of plant extracts against dengue 

infection had been carried out, which included the use of plant extracts as mosquito 

larvicidal agents (Wandscheer et al., 2004; Chowdhury et al., 2008; Kumar et al., 2010; 

Kalaivani et al., 2012; Kovendan et al., 2012; Mahesh Kumar et al., 2012; Marimuthu 

et al., 2012), mosquito repellents (Rajkumar & Jebanesan, 2010), plant-derived vaccines 

(Malabadi et al., 2011), treatment for dengue fever (Ahmad et al., 2011) and also anti-

viral agents (Kiat et al., 2006; Muliawan et al., 2006; Jain et al., 2008; Muhamad et al., 

2010; Tang et al., 2012).  
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2.2.1 Boesenbergia rotunda Extract 

Boesenbergia rotunda (L.) Mansf. (synonym of Boesenbergia pandurata), 

which is known as fingerroot, Chinese ginger (China and Southeast Asia) or “temu 

kunci” (Malaysia and Indonesia) (Porcher, 2003), is a common spice and herb 

belonging to the Zingiberaceae (ginger) family. Its extract has been reported to contain 

essential oils (Ultee, 1957) and various small compounds such as boesenbergin, 

cardamonin, pinostrobin, pinocembrin, alpinetin, panduratin A, 4-hydroxypanduratin A, 

5,7-dimethoxyflavone and 1,8-cineole (Jaipetch et al., 1982; Pancharoen et al., 1987; 

Kiat et al., 2006). These small compounds exhibit anti-bacterial (Ungsurungsie et al., 

1982), anti-fungal (Taweechaisupapong et al., 2010), anti-inflammatory, anti-oxidant 

(Panthong et al., 1989; Tuchinda et al., 2002; Shindo et al., 2006; Isa et al., 2012), anti-

ulcerogenic (Abdelwahab et al., 2011), anti-tumor (Morikawa et al., 2008), anti-HIV 

(Tewtrakul et al., 2003; Cheenpracha et al., 2006) and anti-dengue activities (Kiat et al., 

2006). As DEN-2 NS2B-NS3 protease inhibitors, cardamonin, pinostrobin, panduratin 

A and 4-hydroxypanduratin A have shown good inhibition activities (Kiat et al., 2006).  

 

2.2.2 Competitive and Non-competitive Inhibitors of DEN-2 NS2B-NS3 Protease 

Competitive inhibitors competed with the active substrates for the same binding 

site (the active site). Thus, the concentration of the inhibitors is a variable that needs to 

be monitored since too high a concentration may be toxic to the human body. For this 

reason, our study focuses on the non-competitive inhibition of DEN-2 NS2B-NS3 

protease, where the inhibition of ligand happens at binding site other than the active site. 

In this case, the inhibitor will not have to compete with the existing substrate for the 

binding site. 
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Cardamonin (chalcone) and pinostrobin (flavanone) showed non-competitive 

inhibition towards DEN-2 NS2B-NS3 proteolytic activities, while panduratin A and 4-

hydroxypanduratin A (both cyclohexenyl chalcone derivatives) showed competitive 

inhibition activities (Figure 2.6) (Kiat et al., 2006). As non-competitive inhibitors, 

cardamonin and pinostrobin were reported to show experimental inhibition constants (Ki 

exp) of 377 ± 77 μM and 345 ± 70 μM, respectively. Whereas the competitive inhibitors, 

panduratin A and 4-hydroxypanduratin A demonstrated Ki exp values of 25 ± 8 μM and 

21 ± 6 μM, respectively (Kiat et al., 2006). In this study, the reported small compounds, 

cardamonin and pinostrobin (with non-competitive inhibition activities) were used as 

standards in our effort to develop anti-dengue agents. 

 

2.3 In Silico (Computational) Study 

Computational molecular modelling was first developed in the 1960’s and since 

then it has become increasingly popular and is now frequently used in the molecular 

design field. Previous studies have reported the use of computational molecular 

modelling softwares for developing new molecule models (Ooms, 2000) in the 

development of new drugs such as local anesthetic drugs (Lipkind & Fozzard, 2005), 

anti-cancer agents (Bartulewic et al., 2000), potential anti-malarials (Portela et al., 

2003), and anti-fungal drugs (Baginski et al., 2005). 
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 Cardamonin     B = Front : R-pinostrobin 

       B = Back : S-pinostrobin 

 

 

    R = OMe : Panduratin A 

    R = OH  : 4-hydroxypanduratin A 

 

Figure 2.6 Structures of the small compounds which showed competitive and non-

competitive inhibition activities towards DEN-2 NS2B-NS3 proteolytic activities (Kiat 

et al., 2006).  

 

2.3.1 Automated Docking 

Automated docking is a computational simulation method for predicting an ideal 

binding site and orientation of a ligand towards a macromolecule target (protein 

receptor) via specific ligand-protein interaction formula and followed by scoring 

function to indicate the binding affinity (Lengauer & Rarey, 1996; Morris et al., 1998). 

AutoDock 4.2 is an automated molecular docking software for calculating the free 

energy of binding (  ) in a implicit water environment using a semiempirical free 

energy force field, which includes six pair-wise evaluations ( ) and an estimation of the 
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conformational entropy lost upon binding (      ) (Huey et al., 2007).    is given by 

the following equation: 

 

          
             

             
             

     

                              
             

                  ...(1) 

 

where   is ligand and   is protein. It is assumed that the ligand and the protein are 

sufficiently distant from one another in the unbound state that         
    is zero. The 

disallowed motion in the protein results in the bound state of the protein (      
   ) being 

identical with the protein in the unbound state (        
   ), which causes the difference 

in their intramolecular energy to be zero (Huey et al., 2007). Thus, the formula for    

becomes: 

 

           
             

             
               ...(2) 

 

As for  , the pair-wise atomic terms include evaluations for dispersion/repulsion, 

hydrogen bonding, electrostatics, and desolvation (Huey et al., 2007): 

 

         
   

   
    

   

   
                   

   

   
    

   

   
       

                         
    

         
                       

     
      

        ...(3) 

 

where     ,       ,       and      are the weighting constants, which are also 

known as the free energy coefficients, and are optimized for each pair-wise terms to 

calibrate the empirical free energy based on a set of experimentally characterized 

complexes. For     ,   and   are all pairs of atoms in the ligand that are separated by 
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three or more bonds while for     ,   and   are pairs of ligand and protein atoms, 

respectively, with     being the distance between atoms   and   (Morris et al., 1998).   

and   are parameters taken from the Amber force field (Weiner et al., 1984), used for 

optimizing the first term based on the Lennard-Jones 12-6 potential for 

dispersion/repulsion interactions (Jones, 1924).   and   are parameters assigned to give 

a maximal well depth of 5 kcal/mol at 1.9 Å for O-H and N-H and a depth of 1 kcal/mol 

at 2.5 Å for S-H for the second term, a directional 12-10 hydrogen bonding term 

(Goodford, 1985) with directionality      dependent on the angle   away from ideal 

bonding geometry (Boobbyer et al., 1989; Morris et al., 1998). The third term in 

equation (3) is for electrostatic interactions, which is based on a screened Coulomb 

potential, where   is the partial atomic charge of an atom and        is a distant-

dependent dielectric constant (Mehler & Solmajer, 1991). The final term is a 

desolvation potential based on the volume ( ) of the atoms surrounding a given atom, 

weighted by a solvation parameter ( ) and an exponential term based on the distance, 

with the distance weighting factor   set to 3.5 Å (Stouten et al., 1993). 

 

On the other hand, the term for the loss of conformational entropy upon binding 

(      ) is directly proportional to the number of rotatable bonds in the molecule (     ) 

(Huey et al., 2007): 

 

                        ...(4) 

 

where       is the weighting constant for torsional term, and hence, equation (2) 

becomes: 

 

          
             

           
                  ...(5) 
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So, the estimated free energy of binding (  ) can now be summarized as: 

 

Estimated free energy of binding (  ) = Final Total Internal Energy – Unbound System’s 

Energy + Final Intermolecular Energy + Torsional Free Energy    ...(6) 

 

which is the expression used in the AutoDock 4 series. 

 

The estimated Ki between protein and ligand is calculated by: 

 

                ...(7) 

 

where   is the gas constant, 1.987 cal K
-1

 mol
-1

, and   is the absolute temperature of 

body temperature, 310.15 K (Morris et al., 1998). 

 

2.3.2 The Lamarckian Genetic Algorithm in AutoDock   

The Lamarckian genetic algorithm had been well described by Morris et al. 

(1998). It is a search algorithm available in AutoDock 3.0 software and later versions, 

for estimating the optimum free energy of binding of ligands with proteins in a given 

number of cycles (known as number of evaluations in AutoDock software). The 

Lamarckian genetic algorithm uses the concept of a genetic algorithm for a wider global 

search. The genetic algorithm is based on Darwinian evolution theory, where crossover 

with random pairs of individuals to produce new offspring, and random mutation of 

offspring will occur. The fitness of a particular generation is determined by the free 

energy of binding, in which the gene with better fitness will be selected for inheritance. 

In the genetic algorithm of molecular docking, the ligand’s translation, orientation and 

conformation with respect to the protein correspond to the genotype (genetic 
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constitution), whereas the ligand’s atomic coordinates correspond to the phenotype 

(characteristic as a result of genetic or environmental factor).  

 

Besides the genetic algorithm for global search, Lamarckian genetic algorithm 

refines its search by implementing a more specific local search based on Lamarckian 

inheritance theory, where the characteristic of an individual resulting from an 

environmental factor can be passed on to its offspring. The concept of the Lamarckian 

genetic algorithm is illustrated in Figure 2.7. However, in molecular docking, a local 

search is carried on by continuously converting from the genotype to the phenotype, and 

thus, inverse mapping (as shown in Figure 2.7) is not required. Nevertheless, the 

parent’s genotype will be replaced by the resulting genotype with better fitness that 

follows the Lamarckian inheritance theory. 
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Figure 2.7 Genotypic and phenotypic search. It is based on global search with 

Darwinian evolution theory (right-hand side of the figure) and local search with 

Lamarckian inheritance theory (left-hand side) (Morris et al., 1998). The result of the 

search is the fitness function, f(x). 

 

2.3.3 AutoDock Virtual Screening and Zinc Database 

Virtual screening, which is the use of computational tools to identify a reduced 

number of compounds from a large group with increased potential for bioactivity 

(Alvarez, 2004), has recently been contributing greatly to the drug discovery process 

(Schneider et al., 2000; Bailey & Brown, 2001). AutoDock is a common and suitable 

tool for performing virtual screening (Li et al., 2004; Park et al., 2006). In virtual 

screening, large libraries of known or even unknown compounds (database of 

compounds) were usually being screened. Hence, ZINC, a free database of 
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commercially available compounds (Irwin & Shoichet, 2005) is a suitable database of 

compounds for virtual screening. 

 

2.3.4 DEN-2 NS2B-NS3 Protease Models 

For the in silico study, especially in molecular docking, a good DEN-2 NS2B-

NS3 protease model that is suitable for the study of a specific type of inhibition 

(competitive or non-competitive) is really necessary. Currently, there is only one DEN-

2 NS2B-NS3 protease crystal (PDB id: 2FOM) (Erbel et al., 2006) available in the 

Protein Data Bank (PDB). However, other NS2B-NS3 protease crystals from West Nile 

Virus (WNV) (PDB id: 2FP7; 2GGV; 2IJO; 3E90) (Erbel et al., 2006; Aleshin et al., 

2007; Robin et al., 2009), DEN-1 (PDB id: 3L6P; 3LKW) (Chandramouli et al., 2010) 

and DEN-3 (PDB id: 3U1I; 3U1J) (Noble et al., 2012) have been reported. A few 

homology modelling studies of DEN-2 NS2B-NS3 have been performed using Hepatitis 

C Virus (HCV) NS3-NS4A (PDB id: 1JXP) (Yan et al., 1998; Lee et al., 2006), a 

mixture of NS2B from 2FP7, NS3 from 2FOM, 2FP7 and whole 2IJO (Wichapong et 

al., 2010) as templates. Modeller software (Sali & Blundell, 1993) was used in these 

studies for homology modelling. Nevertheless, these studies focused on the active site 

(for competitive inhibition) of the protease.  

 

In this study, nine models of DEN-2 NS2B-NS3 protease, namely 2FOM and 

eight homology models (DH-1 to DH-8) generated using 2FP7, 2GGV, 2IJO, 3E90, 

3L6P, 3LKW, 3U1I and 3U1J as the templates were evaluated in order to obtain a 

suitable DEN-2 NS2B-NS3 protease model for non-competitive inhibition study. 
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2.3.5 Evaluation of Homology Model 

The quality of homology model can be determined by using Ramachandran plot 

(Ramachandran et al., 1963) and Verify3D software (Bowie et al., 1991; Luthy et al., 

1992). Ramachandran plot (Figure 2.8) can be used to visualize backbone dihedral 

angels (Figure 2.9), ψ (psi) against φ (phi) of amino acid residues in protein structure. 

Based on Figure 2.8, the regions drawn with solid lines are regions allowed at standard 

full radii, dashed lines at reduced radii and dotted lines at relaxed tau angle (N-C
α
-C). 

The edges of the Ramachandran plot continued right to left and bottom to top as 

dihedral angle values are circular and 0
o
 is the same as 360

o
. Protein structure can then 

be predicted or validated according to the regions the amino acid residues fall into. 

 

Procheck software (Laskowski et al., 1993) was programed to generate 

Ramachandran plot for a specific protein. It summarizes the result of Ramachandran 

plot into favoured, allowed, generously allowed and disallowed region for the involving 

amino acid residues of the protein model. Protein model with more amino acid residues 

in the favoured region show better stereochemical quality while more amino acid 

residues in the disallowed region indicate more stereochemical errors of a model and 

thus low in quality. 

 

Verify3D software analyzes the compatibility of folded 3D protein structure 

with its own 1D amino acid sequences by finding sequences that are most compatible 

with the environments of the residues in the 3D structure (Bowie et al., 1991). These 

environments are categorized into, i) the area of the residue buried in the protein and 

inaccessible to solvent, ii) the fraction of side-chain area that is covered by polar atoms 

(O and N) and iii) the local secondary structure. By determining the environment class 

of a given position in a protein structure, a score is assigned for finding each of the 20 
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amino acid types at that position in some related protein structure. These scores are 

called 3D-1D scores and can be used in a sequence alignment algorithm to find the best 

alignment of amino acid sequences to the environment string. A sequence database is 

then derived from a collection of good structures and used as a reference for alignment 

and compatibility validation of new 3D structures according to the 3D-1D scores. 

 

 

Figure 2.8 Outline example of original Ramachandran plot. Regions labeled with β 

for β-sheet, polyP for polyproline helix, 310α for 3-10 helix and Lα for left-handed α 

helix. 

 

 

 

 
Figure 2.9 Dihedral angles (ψ, φ and ω) of a protein. 
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2.4 In Vitro Study 

2.4.1 Cloning, Expression and Purification of DEN-2 NS2B-NS3 Protease 

One of the earliest cloning experiments of the NS2B-NS3 protease was carried 

out by Chambers et al. (1990), for yellow fever virus (YFV). Subsequently, 

recombinant DEN-4 NS2B-NS3 protease was constructed and activated as two separate 

protein chains, NS2B cofactor and NS3 serine protease, after expression in mammalian 

cells (Falgout et al., 1991). This was followed by recombinant DEN-2 NS2B-NS3 

protease, which was expressed in mammalian cells (Zhang et al., 1992; Clum et al., 

1997) or in bacterial cells (Yusof et al., 2000) and purified into two protein chains as the 

active form (Clum et al., 1997; Yusof et al., 2000). Purification was conducted either by 

recognition of soluble fractions through inclusion of a FLAG monoclonal antibody 

(Hopp et al., 1988) into the recombinant DEN-2 NS2B-NS3 protease (Clum et al., 

1997), or by applying Ni
2+

-NTA-agarose His-tagged protein binding through the 

inclusion of hexahistidine tag into the protease (Yusof et al., 2000). On the other hand, 

the deletion of hydrophobic regions of the NS2B leaving just the hydrophilic region 

with 40 amino acid residues relieved the membrane requirement for the activation of 

NS3 serine protease, while keeping the original activity of the recombinant DEN-2 

NS2B-NS3 protease leaving very little precursor unprocessed (Clum et al., 1997). 

Single chain recombinant DEN-2 NS2B-NS3 protease was then created by genetically 

fusing the hydrophilic NS2B cofactor region with the NS3 serine protease domain via a 

glycine linker between the two proteins (Leung et al., 2001). This single chain 

recombinant DEN-2 NS2B-NS3 protease showed good protease activity as the glycine 

linker provided enough flexibility for the NS2B cofactor to interact with NS3 serine 

protease to fold into active form and was able to be purified in its native form as the 

NS2B-NS3 cleavage site was removed. 
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2.4.2 DEN-2 NS2B-NS3 Protease Assay (Activity and Inhibition Assays) 

As the DEN-2 NS2B-NS3 protease was reported to be responsible for cleaving 

the NS2A/NS2B, NS2B/NS3, NS3/NS4A and NS4B/NS5 junctions, preferentially with 

adjacent basic residues as the recognition site (Preugschat et al., 1990; Falgout et al., 

1991; Cahour et al., 1992; Zhang et al., 1992), the substrates for the protease assay were 

designed to have an amino acid sequence which resembled that of the cleavage site, 

containing dibasic amino acid residues (Clum et al., 1997; Yusof et al., 2000; Leung et 

al., 2001; Chanprapaph et al., 2005; Ganesh et al., 2005; Kiat et al., 2006; Yin et al., 

2006b; Yang et al., 2011). However, different approaches such as radioisotope trans-

[
35

S]methionine labeled (Clum et al., 1997), fluorogenic with 7-amino-4-

methylcoumarin (AMC) attached (Yusof et al., 2000; Ganesh et al., 2005; Kiat et al., 

2006; Yin et al., 2006b) and chromogenic with para-nitroaniline attached (Leung et al., 

2001; Chanprapaph et al., 2005; Yang et al., 2011) substrates were used in various 

studies. In this study, our protease assay was based on the assays from studies 

previously conducted and reported by our group, using Boc-Gly-Arg-Arg-AMC as a 

fluorogenic peptide substrate (Yusof et al., 2000; Kiat et al., 2006). Like other 

fluorophores, AMC needs to be excited by absorbing a certain wavelength of light or 

electromagnetic radiation in order to emit various wavelengths of fluorescent radiation 

(Harris, 2004). 
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2.4.3 Determination of Mechanisms of Enzyme Inhibition through Enzyme 

Kinetics 

In order to determine the mechanisms of enzyme-substrate-inhibitor reactions 

(competitive or non-competitive inhibition), a study of the enzyme kinetics is necessary. 

Enzyme kinetics involves the measurement of the velocity of an enzyme-catalyzed 

reaction (rate of reaction) under varying conditions. A very common model is the 

Michaelis-Menten kinetics model, which consists of the parameters,     , the 

maximum enzyme-catalyzed reaction velocity without inhibitor, and    ( Michaelis 

constant), the substrate concentration that provides a reaction velocity that is half of the 

     obtained under saturating substrate conditions (Figure 2.10) (Copeland, 2002b). 

Furthermore, the strength of an inhibitor can also be determined by its inhibition 

constant,    through the Michaelis-Menten kinetics model.  

 

Generally, linear regression which uses the Lineweaver-Burk plot for linearizing 

enzyme kinetics data, and nonlinear regression which directly uses Michaelis-Menten 

equation, are the two methods that can be used to determine enzyme kinetics parameters 

(Motulsky & Christopoulos, 2004). However, the use of linear regression should be 

avoided as it transforms nonlinear data to create a linear relationship (Y = slope · X + 

intercept) where the transformation distorts the experimental error. This is because the 

linear regression assumes that the scatter of points around the line follows a Gaussian 

distribution and that the standard deviation is the same at every value of X, and these 

assumptions are rarely true after transformation of data (Motulsky & Christopoulos, 

2004). Thus, the values derived from the slope and the intercept of the linear regression 

line are also less accurate. Nevertheless, Lineweaver-Burk plot is still widely used as it 

can easily display the type of inhibitions (competitive or non-competitive) as shown in 

Figure 2.11. 
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On the other hand, nonlinear regression fits data to any equation that defines Y 

as a function of X and one or more parameters. This requires a computationally 

intensive and iterative approach, hence, it produces enzyme kinetics parameters more 

accurately (Motulsky & Christopoulos, 2004). The Michaelis-Menten equation 

(Copeland, 2002a) is defined as: 

 

                
       

      
             

 

 

Figure 2.10 Michaelis-Menten saturation curve of an enzyme reaction 

. 
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Figure 2.11 Lineweaver-Burk plots showing: (a) competitive inhibition, and (b) non-

competitive inhibition (Chang, 2005). The arrow indicates the effect of the inhibitor, I, 

with increasing concentrations. 

 

2.4.3.1 Competitive and Non-competitive Inhibition 

The enzyme kinetics of competitive and non-competitive inhibitions has been 

well explained by Copeland (2002). The reaction schemes and simplified mechanisms 

for both competitive and non-competitive inhibitions are shown in Figure 2.12 and 2.13, 

respectively. As shown in Figure 2.12A, a competitive inhibitor competes with the 



35 

 

substrate for the same binding site (the active site) in the free enzyme, and not at all in 

the    complex. As a result, by referring to Figure 2.13, complete competitive 

inhibition is characterized by values of   = ∞ and   = 0. The effect of a competitive 

inhibitor is to increase the concentration of substrate that is required to reach half-

maximal velocity (   of enzyme for its substrate will increase) without affecting the 

value of     . However in competitive inhibition, a high concentration of substrate can 

easily displace the inhibitor. The formula of the reaction velocity for competitive 

inhibition is given by: 

   

  
        

          
   
  

 
                                                                  

            

 On the other hand, in the case of non-competitive inhibition, the inhibitor binds 

at an allosteric site of the enzyme and does not compete with the substrate for binding 

towards the enzyme at the active site (Figure 2.12B). Thus, the inhibitor shows a 

binding affinity for both the free enzyme and the    complex. By referring to Figure 

2.13, complete non-competitive inhibition is then characterized by values of   = 1 and 

  = 0. As the non-competitive inhibitor binds at the allosteric site and not the active site 

of the enzyme, it cannot be overcome by increasing the concentration of substrate. 

Hence, the effect of a non-competitive inhibitor is to decrease the value of      without 

affecting the   . The formula of the reaction velocity for non-competitive inhibition is 

given by: 

 

   
        

            
   
  

 
                    

 

…(9) 

…(10) 
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Figure 2.12 Simplified mechanism of, A: competitive inhibition. B: non-competitive 

inhibition. 
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Figure 2.13 Equilibrium scheme to illustrate the enzyme reactions in the presence 

and absence of an inhibitor.   = enzyme,   = substrate,   = inhibitor,    = enzyme-

substrate complex,    = enzyme-inhibitor complex,     = enzyme-substrate-inhibitor 

complex,   = product,    = equilibrium constant for dissociation of   ,    = 

dissociation constant for the    and     = forward rate constant for product formation 

from    or    .   = effect of inhibitor on the affinity of the enzyme for its substrate as 

well as the effect of substrate on the affinity of the enzyme for the inhibitor;   = change 

of the rate of product formation caused by the inhibitor. Competitive inhibition = black 

reaction pathways, non-competitive inhibition = black and light blue reaction pathways. 

(Copeland, 2002b). 

 

2.4.3.2 Nonlinear Regression Mixed Model Inhibition Equation in GraphPad 

Prism 5.0 Software  

GraphPad Prism 5.0 software can be used for both linear and nonlinear 

regression curve fitting from enzymatic assay data. For determining the mechanism of 

inhibition accurately, the use of nonlinear regression mixed model inhibition equation is 

suggested (Motulsky & Christopoulos, 2004). The equation defines   (velocity of 

enzyme reactions) as a function of   (concentration of substrate) and it is shown by the 

following formula:    
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As mentioned in section 2.4.3.2,   determines the mechanism where its value 

determines the degree to which the binding of inhibitor changes the affinity of the 

enzyme for substrate. Its value should always be greater than zero. When   = 1, the 

mixed-model is identical to non-competitive inhibition (equation 20). When   is very 

large, the mixed-model becomes identical to competitive inhibition (equation 21). When 

  is very small (but greater than zero), binding of the inhibitor enhances substrate 

binding to the enzyme, and the mixed model becomes nearly identical to an 

uncompetitive model, where uncompetitive inhibitors bind exclusively to the enzyme-

substrate complex rather than to the free enzyme form (Copeland, 2002b). The formula 

of the reaction velocity for uncompetitive inhibition is given by: 

 

  

    

   
   
   

 
    

  

   
   
   

 
     

                               

                             

Hence, the nonlinear regression mixed model inhibition equation in GraphPad 

Prism 5.0 software was used for the determination of inhibition mechanism from 

enzymatic assay data in this study. 

 

 

 

…(11) 

…(12) 

mk:@MSITStore:C:/Program%20Files/GraphPad/Prism%205/prism5.chm::/reg_noncompetitive_inhibition.htm
mk:@MSITStore:C:/Program%20Files/GraphPad/Prism%205/prism5.chm::/reg_competitive_inhibition.htm
mk:@MSITStore:C:/Program%20Files/GraphPad/Prism%205/prism5.chm::/reg_uncompetitive_inhibition.htm
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3.1 Methodology 

In this part of the study, a workstation with four Intel Core 2 Duo E6850 3.00 

GHz microprocessors, 8 GigaBytes of RAM and Ubuntu 10.04 Linux operating system 

was used. 

 

3.1.1 Structure Verification of DEN-2 NS2B-NS3 Protease Models 

The structures of DEN-2 NS2B-NS3 protease were first verified for their 

suitability to be the correct model as non-competitive docking target receptor. Then the 

suitable structure was used for virtual screening. 

 

3.1.1.1 Homology Modelling 

The 2FP7, 2GGV, 2IJO, 3E90, 3L6P, 3LKW, 3U1I and 3U1J crystal structures 

were obtained from the PDB. After removing water molecules and the substrates (if 

present), these crystal structures were used as a template for automatically generating 

homology models of the DEN-2 NS2B-NS3 protease using Modeller 9.11 software 

(Sali & Blundell, 1993). The homology models were built according to the amino acid 

sequence identical to that of 2FOM. The sequences were aligned using ClustalX 2.0 

software (Thompson et al., 1997; Larkin et al., 2007) as shown in Figure 3.1. The 

sequence alignment in Figure 3.1 also showed that there are more than 50% identical 

amino acids between the crystal structures. Hence, the crystal structures are suitable to 

be used as template for DEN-2 protease homology model building. This is because a 

protein model that shares more than 30% sequence identity with another protein is 

indicative of an accurate structure for homology modelling (Eswar et al., 2006). The 

homology modellings were carried out by referring to the Modeller online manual 

(Webb et al., 2011), and run by using the command line: 

mod9.11 model-default.py 
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Ten homology models were created using multiple templates and were then 

analyzed using Ramachandran plots generated by Procheck software for checking the 

stereochemical quality of a protein (Laskowski et al., 1993), and Verify3D software for 

determining the compatibility of the 3D atomic models with their own 1D amino acid 

sequence (Luthy et al., 1992). These softwares are available in their online server 

versions at the Structural Analysis and Verification Server of UCLA (University of 

California, Los Angeles; http://nihserver.mbi.ucla.edu/SAVES/). The homology model 

for each template that produced the best scores in structural analyses, namely DH-1 to 

DH-8, were then selected for docking studies. 

 

3.1.1.2 Preparation of Macromolecule for Blind Docking 

Blind docking that allowed the ligands to be docked freely in the whole structure 

of the macromolecule was performed for the DEN-2 apo protease (2FOM), and the 

homology models using AutoDock 4.2 software. The 3D crystal structure of DEN-2 

NS2B-NS3 apo protease (2FOM) (Erbel et al., 2006) was retrieved from the PDB, and 

chlorine atoms, water and glycerol molecules were removed. AutoDockTools 1.5.4 

software was then used to add all hydrogen atoms, merging nonpolar hydrogen atoms, 

checking and repairing missing atoms, adding Gasteiger charges, checking and fixing 

total charges on residues, and assigning atom types to the protein structure (Figure 

3.2A). A grid box of the protein structure was then generated using AutoGrid 4 software 

with default atom types (carbon, hydrogen, oxygen and nitrogen), grid spacing of 0.41 

Å, dimension of 126 x 126 x 126 points along the x, y and z axes, and centered on the 

protein, covering the whole protein for the blind docking (Figure 3.2B).  

 

As for the homology models, DH-1 to DH-8, docking parameters were set 

following those described above for 2FOM using the AutoDockTools 1.5.4 software. 



42 

 

3.1.1.3 Preparation of Flexible Ligands 

Cardamonin, R-pinostrobin and S-pinostrobin were used as standard ligands.  

Structures (3D) of these ligands were constructed using Hyperchem Pro 8.0 software. 

The energies of all the ligands were also minimized using Hyperchem Pro 8.0 software, 

employing the steepest descent and conjugate gradient methods (termination conditions 

set to a maximum of 500 cycles or 0.1 kcal/Å mol rms gradient) (Othman et al., 2008). 

The minimized structures were subsequently prepared with detected root of torsion and 

number of torsions for flexible-ligand docking using AutodockTools 1.5.4 software and 

saved as “ligand’s name”.pdbqt (e.g. cardamonin.pdbqt). 

 

3.1.1.4 Preparation of AutoDock Parameters for Cardamonin, R-pinostrobin and 

S-pinostrobin 

Parameters for blind docking of flexible ligands to DEN-2 protease were set to a 

population size of 150 individuals and 10,000,000 number of energy evaluations for 100 

runs to produce 100 distinct conformations using the Lamarckian genetic algorithm 

search function (Morris et al., 1998). The resulting 100 distinct conformations were set 

to be clustered in the same group with RMSD of not more than 0.5 Å, for the ease of 

analysis. The flexible-ligand (blind) dockings for each of the small compound (ligand) 

were performed using the AutoDock 4.2 software by applying all the parameters stored 

in the docking parameter file – “ligand’s name”.dpf. 

 

 



 

 

 

Figure 3.1 The sequence alignment of NS2B and NS3 of 2FOM, 2FP7, 2GGV, 2IJO, 3E90, 3L6P, 3LKW, 3U1I and 3U1J using ClustalX 2.0 

software. The grey histogram represents the level of convergence between two amino acids. Amino acids that were identical in both sequences will 

have a full grey bar and an asterisk symbol (*) on top of the specific amino acids, followed by colon symbol (:) for high similarity, period symbol (.) 

for low similarity and blank ( ) for non convergence. 
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A          B 

 

Figure 3.2 Example of 3D structure of DEN-2 NS2B-NS3 crystal (2FOM). A: Cyan 

– NS2B cofactor; Orange – NS3 serine protease; Green – catalytic triad residues of the 

active site, His-51, Asp-75 and Ser135. B: Grid box was set to cover the whole protease.  

 

3.1.1.5 Running AutoGrid 4 and AutoDock 4.2 

AutoGrid 4 and AutoDock 4.2 softwares were installed in Ubuntu 10.04 Linux 

operating system of the workstation. AutoGrid 4 was run following instructions in the 

“AutoDock Version 4.2” user’s manual (Morris et al., 2010) using the command line: 

 

autogrid4 -p protein.gpf -l protein.glg 

 

and AutoDock 4.2 was run using the command line: 

 

autodock4 -p ligand.dpf -l ligand.dlg 
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3.1.1.6 Analysis of Results 

After the docking jobs were completed, the compounds were ranked based on the 

lowest estimated mean free energy of binding (∆Gdock) coupled with the largest NumCl. 

∆Gdock (equation (6) in section 2.3.1) was calculated using Autodock 4.2 software, while 

the estimated inhibition constant (Ki dock) was calculated using the formula (Morris et 

al., 1998): 

 

Ki dock = e
∆Gdock/RT

 

 

where R is the gas constant, 1.987 cal K
-1

 mol
-1

, and T is the reaction or body 

temperature, 310.15 K (37 
o
C). 

 

The number of distinct conformations that were grouped into the same cluster 

based on RMSD (NumCl) was used as a measure of the probability of a particular 

conformer to interact with the macromolecule target, where the higher NumCl number 

is proportionate to increased probability of interaction. All of the docked conformers 

were then subjected for interaction analyses using Ligplot 4.5.3 software. The hydrogen 

bonding distance was set to the range of 2.7 to 3.35 Å, and the hydrophobic interaction 

distance was set to the range of 2.9 to 3.9 Å (Wallace et al., 1995). Interaction 

Frequency (IF) is determined as follows: 

 

IF(Acceptor)Res X, IF(Donor)Res X and IF(Hydrophobic)Res X  

where IF(Acceptor)Res X  is the number of interactions as hydrogen bond acceptor in 

Residue X, IF(Donor)Res X  is the number of interactions as hydrogen bond donor in 

Residue X, and IF(Hydrophobic)Res X  is the number of hydrophobic interactions for 

Residue X. 
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The conformation from the docked conformational cluster, having the largest 

NumCl and exhibiting interaction with Lys74 from NS3, was selected as the best 

binding conformation. In cases where there were two or more clusters with similar 

NumCl (difference in NumCl ≤ 10), the cluster that showed lower ∆Gdock was chosen. 

Further interaction analyses using Discovery Studio Visualizer 3.1 (Accelrys Software 

Inc.) were performed for better insight. 

 

The most suitable DEN-2 NS2B-NS3 protease model for non-competitive 

inhibition study was then identified following the completion of analysis of results.  

 

3.1.2 Virtual Screening for Potential Non-competitive Inhibitors 

3.1.2.1 Preparation of Parameters for Virtual Screening Parameters 

Autodock 4.2 software was used for virtual screening. The suitable model of 

DEN-2 NS2B-NS3 protease for non-competitive inhibition and its docking parameters 

were prepared according to the method described in section 3.1.1.2. The docking 

parameters of the small compounds for virtual screening were modified to a population 

size of 150 individuals, and 1,750,000 number of energy evaluations for 20 runs using 

the Lamarckian genetic algorithm search function. Twenty distinct conformations that 

were produced were further clustered into the same group (NumCl) with RMSD of not 

more than 2.0 Ǻ. The docking parameters were modified to reduce the duration for 

running the large number of docking calculations in the virtual screening process. 

Pinostrobin was used as the standard as its reported Ki exp value (345 ± 70 µM) was 

smaller than cardamonin’s (377 ± 77 µM) (Kiat et al., 2006) and was also rerun in 

docking with the same parameters as the rest of the small compounds in virtual 

screening. 
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A series of small compounds with structures having more than 50% similarity to 

chalcone (3,458), flavanone (4,886) and flavone (4,997) (Figure 3.3) were downloaded 

from the ZINC database (Irwin & Shoichet, 2005). Raccoon 1.0 software (Forli, 2010) 

was used for the preparation of all the input files for the virtual screening.  

 

     

           Chalcone             Flavanone              Flavone 

 

Figure 3.3 Structures of the chalcone, flavanone and flavone.  

 

3.1.2.2 Running Virtual Screening 

Virtual screening was run by using a script file generated by Raccoon 1.0, which 

sequentially and automatically runs all the docking of the compounds towards the 

suitable model of DEN-2 NS2B-NS3 protease using AutoDock 4.2. After the 

virtual screening is completed, the compounds were ranked based on the lowest 

estimated binding energy with largest NumCl for ease of analysis. 

 

3.1.2.3 High-throughput Analysis of Virtual Screening Results 

Bash 4.1 software (Fox, 1989) was used to program automated sequential data 

submission, extraction and identification for high-throughput analysis. Those small 

compounds with ∆Gdock lower than the ∆Gdock for both of the standards, cardamonin and 

pinostrobin, and with NumCl more than 10, were further subjected to interaction 

analysis using Ligplot 4.5.3 software using the same parameters as described in section 

3.1.1.6 (determination of IF). Data about the group, name, NumCl, ∆Gdock, Ki dock value, 
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and interaction properties (IF(Acceptor)Res X, IF(Donor)Res X and IF(Hydrophobic)Res X) 

corresponding to these small compounds was then extracted. Further interaction 

analyses using Discovery Studio Visualizer 3.1 were also performed.  

 

Further selection of the small compounds was then carried out to identify 

potential non-competitive inhibitors, based on the lowest ∆Gdock and interaction with 

Lys74 from NS3 (Othman et al., 2008). The programming scripts are attached in the 

Appendix section. The selected small compounds were then traced from the ZINC 

database for their availability for purchase. The purchased compounds were then 

subjected to DEN-2 NS2B-NS3 protease cleavage inhibition assay. 
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3.2 Results and Discussions 

3.2.1 Quality Verification of DEN-2 Protease Homology Models  

From Ramachandran plots (Figure 3.4 – 3.11), it could be seen that more than 

89% of residues of the homology models, DH-1 to DH-8, were located in the most 

favoured regions, and no residue was detected in the disallowed regions (Laskowski et 

al., 1993). Thus, these models are of adequate stereochemical quality. Analyses with 

Verify3D (Figure 3.12 – 3.19) revealed that DH-1 to DH-8 contained adequate 3D 

atomic models that were compatible with their 1D amino acid sequences, with more 

than 73% of of the residues with an averaged 3D to 1D score of more than 0.2 (Luthy et 

al., 1992), respectively. 
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Figure 3.4 Ramachandran plot generated by Procheck software for homology model 

DH-1. 
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Figure 3.5 Ramachandran plot generated by Procheck software for homology model 

DH-2. 
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Figure 3.6 Ramachandran plot generated by Procheck software for homology model 

DH-3. 
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Figure 3.7 Ramachandran plot generated by Procheck software for homology model 

DH-4. 
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Figure 3.8 Ramachandran plot generated by Procheck software for homology model 

DH-5. 
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Figure 3.9 Ramachandran plot generated by Procheck software for homology model 

DH-6. 
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Figure 3.10 Ramachandran plot generated by Procheck software for homology model 

DH-7. 
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Figure 3.11 Ramachandran plot generated by Procheck software for homology model 

DH-8. 

 

 

 

 

 



 

Figure 3.12 Verify3D plot for homology model DH-1. 92.8% of the residues had an averaged 3D-1D score of more than 0.2.



 

Figure 3.13 Verify3D plot for homology model DH-2. 74.5% of the residues had an averaged 3D-1D score of more than 0.2. 



 

Figure 3.14 Verify3D plot for homology model DH-3. 95.0% of the residues had an averaged 3D-1D score of more than 0.2. 

 

 

 



 
 

Figure 3.15 Verify3D plot for homology model DH-4. 85.3% of the residues had an averaged 3D-1D score of more than 0.2. 

 

 

 

 



 

Figure 3.16 Verify3D plot for homology model DH-5. 82.1% of the residues had an averaged 3D-1D score of more than 0.2. 

 

 

 

 

 



 

Figure 3.17 Verify3D plot for homology model DH-6. 73.0% of the residues had an averaged 3D-1D score of more than 0.2. 

 

 

 

 

 

 

 



 

Figure 3.18 Verify3D plot for homology model DH-7. 93.8% of the residues had an averaged 3D-1D score of more than 0.2. 

 

 

 

 

 



 

Figure 3.19 Verify3D plot for homology model DH-8. 97.3% of the residues had an averaged 3D-1D score of more than 0.2. 
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3.2.2 Docking of Standards towards DEN-2 NS2B-NS3 Models 

An example of clustering histograms and estimated free energy of binding 

calculations for the docking results of standards – cardamonin, R-pinostrobin and S-

pinostrobin docked towards 2FOM are shown in the Appendix section. From the 

histograms, the value of “Mean Binding Energy” was referred to instead of “Lowest 

Binding Energy” as “Mean Binding Energy” represents the free energy of binding for a 

group of conformations in a particular cluster while “Lowest Binding Energy” only 

represents one conformation with the lowest binding energy in a cluster. However, the 

conformation generated from each cluster is the conformation with the lowest binding 

energy; and this conformation is used for subsequent studies. The corresponding atomic 

coordinates of the standards were then merged with the atomic coordinates of 2FOM 

(same case for the other homology models, DH-1 to DH-8) for analysis using Ligplot 

4.5.3 software. An example of Ligplot results are also shown in the Appendix section. 

These data were extracted computationally (following methods described in section 

3.1.2.3) and are summarized in Table 3.1. 
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Table 3.1 : Docking output of the best binding conformations of the standard ligands 

towards DEN-2 NS2B-NS3 protease models which interacted with Lys74 from NS3. 

The Ki exp values were obtained from a previously reported study (Kiat et al., 2006). 

Models Compound Identity 
  

Ki exp (µM) 

from previous 

study[9] 

 

Cardamonin 

  

377 ± 77 

Pinostrobin 

  

345 ± 70 

 

 

NumCl 
∆Gdock 

(kcal mol
-1

) 
Ki dock(µM) 

2FOM 

Cardamonin 10/100 -6.90 13 

R-pinostrobin 15/100 -7.55 3.8 

S-pinostrobin 14/100 -7.69 3.8 

DH-1 

(2FP7 as template) 

Cardamonin 13/100 -4.75 449 

R-pinostrobin 28/100 -5.13 243 

S-pinostrobin 11/100 -4.80 414 

DH-2 

(2GGV as template) 

Cardamonin 1/100 -4.29 948 

R-pinostrobin 58/100 -4.55 622 

S-pinostrobin 59/100 -4.66 520 

DH-3 

(2IJO as template) 

Cardamonin 1/100 -4.66 520 

R-pinostrobin 1/100 -4.84 388 

S-pinostrobin 5/100 -4.45 731 
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Table 3.1, continued 

DH-4 

(3E90 as template) 

Cardamonin 5/100 -5.41 154 

R-pinostrobin 29/100 -5.36 167 

S-pinostrobin 23/100 -4.78 428 

DH-5 

(3L6P as template) 

Cardamonin 2/100 -5.68 99 

R-pinostrobin 0/100 - - 

S-pinostrobin 6/100 -4.74 457 

DH-6 

(3LKW as template) 

Cardamonin 0/100 - - 

R-pinostrobin 0/100 - - 

S-pinostrobin 0/100 - - 

DH-7 

(3U1I as template) 

Cardamonin 2/100 -4.95 325 

R-pinostrobin 1/100 -4.24 1028 

S-pinostrobin 12/100 -4.41 780 

DH-8 

(3U1J as template) 

Cardamonin 1/100 -3.44 3765 

R-pinostrobin 6/100 -4.34 874 

S-pinostrobin 1/100 -3.81 2066 

 

Bold and black = estimation of Ki about the same as Ki exp. 

Bold and red = overestimation of Ki.  

Bold and blue = underestimation of Ki. 

NumCl = the number of conformations with RMSD < 0.5.  

∆Gdock = free energy of binding estimated from AutoDock 4.2 software. 

Ki dock = inhibition constant derived from ∆Gdock. 

Ki exp = inhibition constant calculated from in vitro experiment. 

 

 

 



 

69 

 

3.2.3 Selection of Model for Non-competitive Inhibition Study 

Docking of the standard ligands, cardamonin, R-pinostrobin and S-pinostrobin, 

yielded best binding conformations with Ki dock values that were in range with the 

reported Ki exp values (Kiat et al., 2006), and interated with Lys74 from NS3 only when 

DH-1 was used as the docking target (Tables 3.1). Thus, we suggest that the 

conformation of the allosteric binding pocket should resemble closely to that of DH-1. 

However, R-pinostrobin docked into DH-1 with a lower Ki dock value than that of S-

pinostrobin and the previously reported Ki exp value. Future interaction analyses 

suggested that the better ∆Gdock and Ki dock values of R-pinostrobin compared to S-

pinostrobin might be due to the extra pi-cation interations between the phenyl side chain 

of R-pinostrobin and the ammonium groups of residues Lys73 and Lys74 (Figure 3.20). 

Hence, DH-1 and R-pinostrobin were used as the target receptor and standard for virtual 

screening, respectively.  
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Figure 3.20 R-pinostrobin and S-pinostrobin docked at the allosteric binding site of 

DH-1. A: 3D representations of the binding poses. Ile78 and Met84 are from NS2B 

(chain A) while the rest of the residues are from NS3 (chain B). B: 2D representations 

of the binding modes. Residues with hydrogen bond interactions are coloured in pink, 

residues with hydrophobic or van der Waals interactions are coloured in green and pi-

interactions are coloured in orange. The arrows are pointing from hydrogen bond donors 

towards hydrogen bond acceptors. 
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3.2.4 Virtual Screening 

From the virtual screening of a total of 13,341 small compounds, 34 were 

identified to fulfill all the criteria of having ∆Gdock lower than that of the R-pinostrobin 

(standard), with NumCl of more than 10, and interacting with Lys74 of the NS3 

protease in the allosteric binding site. However, only four of the small compounds 

(namely compounds 1 - 4 in this study) were available for purchase (Figure 3.21 and 

Table 3.2). The interactions of these 4 compounds (compound 1-4) towards the 

allosteric binding pocket of DH-1 model are shown in Figure 3.22, which were 

summarized in Table 3.2. The results from Ligplot analysis show there are hydrophobic 

or van der Waals interactions between compounds 1-4 and Lys74 from NS3 (Table 3.2). 

Further interaction analyses using Discovery Studio Visualizer 3.1 suggest the presence 

of pi-cation interactions between Lys74 and compounds 1, 2 and 3 (Figure 3.22). In 

addition, there were also hydrogen bonding interactions between Glu88, Gly124, 

Asn167 from NS3, and compounds 1, 2 and 4. The role of these amino acid residues 

(Lys74, Glu88, Gly124 and Asn167) is worth to be subjected for further study through 

site directed mutagenesis or protease-ligand interactions study by using x-ray 

crystallography. 

 

Compounds 1 - 4 were then procured and tested for inhibition antivities. 
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1    2 

 

 

    

3    4 

 

Figure 3.21 Structures of the small compounds identified from virtual screening 

against the DH-1 homology model, and were purchased due to their availability. 
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Figure 3.22A. 
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Figure 3.22B. 
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Figure 3.22 Compounds 1-4 docked at the allosteric binding site of DH-1. A: 3D 

representations of the binding poses. Ile78 and Met84 are from NS2B (chain A) while 

the rest of the residues are from NS3 (chain B). B: 2D representations of the binding 

modes. Residues with hydrogen bond interactions are coloured in pink, residues with 

hydrophobic or van der Waals interactions are coloured in green and pi-interactions are 

coloured in orange. The arrows are pointing from hydrogen bond donors towards 

hydrogen bond acceptors. 
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Table 3.2 : Small compounds identified from virtual screening against the DH-1 

homology model which were available for purchase, with ∆Gdock lower than that of the 

standard R-pinostrohin, NumCl more than 10 and interacted with Lys74 from NS3.  

Cpd 

Zinc Codename 

 

Chemical Name 

 

(Source) 

NumCl 

∆Gdock 

(kcal 

mol-1) 

Ki dock 

(µM) 
Acceptor# Donor# 

Hydrophobic/ 

VDW# 

1 ZINC00161709 

 

2-phenyl-6-(1H-1,2,3,4-tetraa 

zol-5-yl)-4H-chromen-4-one 

 

(Maybridge) 

12/20 -6.17 45 B-ASN-167:1 B-ASN-167:1  A-ILE-78:2, 

B-LYS-73:5, 

*B-LYS-74:5,  

B-ILE-123:8, 

B-ASN-167:3 

2 ZINC00148638 

 

2-[4-(dimethylamino)phenyl] 

-5,7-dimethyl-3,4-dihydro-

2H-1-benzopyran-4-one  

 

(Life Chemicals) 

13/20 -5.77 86 B-GLU-88:1    A-ILE-78:5,  

A-MET-84:1, 

B-LYS-73:1,  

* B-LYS-74:4, 

B-GLU-88:1,  

B-ILE-123:9, 

B-ALA-166:2 

3 ZINC16133933 

 

6-phenyl-6a,12a-dihydro-

6H,7H-chromeno[4,3-

b]chromene  

 

(ChemBridge) 

15/20 -5.33 175     A-ILE-78:1,  

A-MET-84:2, 

*B-LYS-74:7,  

B-ILE-123:9,  

B-ALA-164:2,  

B-ALA-166:8  

4 ZINC00064430 

 

2-(2,3-dihydro-1,4-benzodio 

xin-6-yl)-3,4-dihydro-2H-1- 

benzopyran-4-one  

 

(Szintekon) 

11/20 -5.29 187   B-GLY-124:1, 

B-ASN-167:1  

A-MET-84:2,  

*B-LYS-74:1, 

B-GLU-88:1,  

B-ILE-123:9, 

B-ALA-164:2,  

B-ALA-166:4, 

B-ASN-167:1 

NumCl = the number of conformations with RMSD < 2.0.  

∆Gdock = free energy of binding estimated from AutoDock 4.2 software. 

Ki dock = inhibition constant derived from ∆Gdock. 

Acceptor = Hydrogen bond acceptor; Donor = Hydrogen bond donor; Hydrophobic/VDW = Hydrophobic 

or van der Waals interaction. 

IF =Interaction frequency (number of interactions from the residues in binding site with the small 

compounds).  

#Format of interaction indication = (Chain identity)-(Residue name)-(Residue number) : (IF). 

Chain identity: A = NS2B; B = NS3. 

*, bold and underlined: NS3 Lys74 (suggested key residue found in the allosteric site (Othman et al., 

2008)). 
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4.1 Methodology  

4.1.1 Cloning, Expression and Purification of Soluble DEN-2 NS2B-NS3 Protease 

 The following Table 4.1 shows the list of recipes or contents for the reaction 

mixtures or kits which were used for the in vitro studies:- 

 

Table 4.1 : Reaction mixtures or kits used in this study.  

Code Reaction Mixture/Kit Recipe/Content Amount 

RMK01 

10x PCR Buffer (1.0 mL) 

(200 mM Tris, 500 mM KCl, pH 

8.4) 

- Tris Base 

- KCl 

- pH 8.4 

- RNase-free Water 

24.0 mg 

37.0 mg 

adjusted with HCl (and KOH)* 

topped up to 1.0 mL 

RMK02 PCR Master Mix (45.0 µL) 

- 10x PCR Buffer (RMK01) 

- 25 mM MgCl2 

- 10 mM dNTP Mix 

- Forward Primer NS2B_F1 or GT_F1 

- Reserve Primer NS3_R1 or GT_R1 

- RNase-free Water 

5.0 µL 

2.0 µL 

5.0 µL 

0.5 µL 

0.5 µL 

topped up to 45.0 µL 

RMK03 
QIAquick PCR Purification Kit 

(Qiagen) 

- QIAquick Spin Columns 

- Buffer PBI 

- Buffer PE 

- Buffer EB 

- Collection Tubes (2 mL) 

50 

30.0 mL 

2 x 6.0 mL 

15.0 mL 

50 

RMK04 
QIAquick Gel Extraction Kit 

(Qiagen) 

- QIAquick Spin Columns 

- Buffer QG 

- Buffer PE 

- Buffer EB 

- Collection Tubes (2 mL) 

50 

2 x 50.0 mL 

2 x 10.0 mL 

15.0 mL 

50 

RMK05 LB Medium (1.0 L) 

- Yeast Extract  

- Bacto-tryptone  

- NaCl  

- dH2O   

5.0 g 

10.0 g 

10.0 g 

topped up to 1.0 L 

RMK06 
TransformAid Bacterial 

Transformation Kit (Fermentas) 

- C-Medium 

- T-Solution (A) 

- T-Solution (B) 

35.0 mL 

2 x 1.25 mL 

2 x 1.25 mL 

RMK07 LB Agar (200.0 mL) 

- Yeast Extract 

- Bacto-tryptone 

- NaCl 

- Agar 

- dH2O   

1.0 g 

2.0 g 

2.0 g 

3.0 g 

topped up to 200.0 mL 
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Table 4.1, continued 

RMK08 
QIAprep Spin Miniprep Kit 

(Qiagen) 

- QIAprep Spin Columns 

- Buffer P1 (with RNase A added) 

- Buffer P2 

- Buffer N3 

- Buffer PB 

- Buffer PE 

- Buffer EB 

- Collection Tubes (2 mL) 

50 

20.0 mL 

20.0 mL 

30.0 mL 

30.0 mL 

2 x 6.0 mL 

15.0 mL 

50 

RMK09 

10x TBE Buffer (1.0 L) 

(890 mM Tris, 890 mM Boric Acid, 

20 mM EDTA, pH 8.0) 

- Tris Base 

- Boric Acid 

- EDTA 

- pH 8.0  

- dH2O 

108.0 g 

55.0 g 

40.0 mL 

adjusted with HCl (and NaOH)* 

topped up to 1.0 L 

RMK10 

Lysis Buffer (50.0 mL) 

(50mM HEPES, 300 mM NaCl, 20 

mM Imidazole, 5% Glycerol, pH 

7.5) 

- HEPES 

- NaCl 

- Imidazole 

- Glycerol 

- Lysozyme 

- pH 7.5 

- dH2O 

600.0 mg 

875.0 mg 

68.0 mg 

2.5 mL 

50.0 mg 

adjusted with HCl (and NaOH)* 

top up to 50.0 mL 

RMK11 

Column Buffer (1.0 L) 

(50 mM HEPES, 300 mM NaCl, 20 

mM Imidazole, pH 7.5) 

- HEPES 

- NaCl 

- Imidazole 

- pH 7.5 

- dH2O 

12.0 g 

17.5 g 

1.4 g 

adjusted with HCl (and NaOH)* 

top up to 1.0 L 

RMK12 

Elution Buffer (10.0 mL) 

(50 mM HEPES, 300 mM NaCl, 100 

mM Imidazole, pH 7.5) 

- HEPES 

- NaCl 

- Imidazole 

- pH 7.5 

- dH2O 

120.0 mg 

175.0 mg 

68.0 mg 

adjusted with HCl (and NaOH)* 

top up to 10.0 mL 

RMK13 

Monomer Stock Solution (250.0 

mL) 

(30% Acrylamide, 0.8% N,N’-

methylenebisacrylamide)  

- Acrylamide 

- N,N’-methylenebisacrylamide 

- dH2O 

75.0 g 

2.0 g 

top up to 250.0 mL 

RMK14 
4x Resolving Gel Buffer (500.0 mL) 

(1.5 M Tris, 0.4% SDS, pH 8.8)  

- Tris Base 

- SDS 

- pH 8.8 

- dH2O 

91.0 g 

2.0 g 

adjusted with HCl (and NaOH)* 

top up to 500.0 mL 

RMK15 
4x Stacking Gel Buffer (100.0 mL) 

(0.5 M Tris, 0.4% SDS, pH 6.8)  

- Tris Base 

- SDS 

- pH 6.8 

- dH2O 

6.1 g 

0.4 g 

adjusted with HCl (and NaOH)* 

top up to 100.0 mL 

RMK16 
12% Acrylamide in Resolving Gel 

Solution (1 gel) 

- Monomer Stock Solution (RMK13) 

- 4x Resolving Gel Buffer (RMK14) 

- dH2O 

- TEMED 

- 10% APS (100 mg/mL) 

3000.0 µL 

1875.0 µL 

2625.0 µL 

5.0 µL 

25.0 µL 
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Table 4.1, continued 

RMK17 Stacking Gel Solution (1 gel) 

- Monomer Stock Solution (RMK13) 

- 4x Resolving Gel Buffer (RMK15) 

- dH2O 

- TEMED 

- 10% APS (100 mg/mL) 

325.0 µL 

625.0 µL 

1502.5 µL 

2.5 µL 

12.5 µL 

RMK18 

SDS Electrophoresis Buffer (1.0 L) 

(25 mM Tris, 192 mM Glycine, 

0.1% SDS) 

- Tris Base 

- Glycine 

- SDS 

- dH2O 

3.0 g 

14.4 g 

1.0 g 

topped up to 1.0 L 

RMK19 

2x SDS-PAGE Loading Buffer (10.0 

mL) 

(125 mM Tris, 20% Glycerol, 

0.5% SDS, 2% 2-mercaptoethanol,  

0.001% Bromophemol Blue) 

- 4x Stacking Gel Buffer (RMK15) 

- Glycerol 

- SDS 

- 2-mercaptoethanol 

- Bromophenol Blue 

- dH2O 

2.5 mL 

2.0 mL 

0.4 g 

0.2 mL 

0.1 mg 

topped up to 10.0 mL 

RMK20 

Fixing Solution and Destaining 

Solution (1.0 L) 

(50% Methanol, 10% Acetic Acid) 

- Methanol 

- Acetic Acid 

- dH2O 

500.0 mL 

100.0 mL 

topped up to 1.0 L 

RMK21 

Staining Solution (1.0 L) 

(0.1% CBB R-250, 50% Methanol, 

10% Acetic Acid) 

- CBB R-250 

- Methanol 

- Acetic Acid 

- dH2O 

1.0 g 

500.0 mL 

100.0 mL 

topped up to 1.0 L 

RMK22 
Storage Solution (1.0 L) 

(5% Acetic Acid) 

- Acetic Acid 

- dH2O 

50.0 mL 

topped up to 1.0 L 

RMK23 

Transfer Buffer (1.0 L) 

(25 mM Tris, 192 mM Glycine,  

10% Methanol) 

- Tris Base 

- Glycine 

- Methanol 

- dH2O 

3.0 g 

14.4 g 

100.0 mL 

topped up to 1.0 L 

RMK24 
Blocking Solution (50.0 mL) 

(5% Non-fat Dry Milk in TBS) 

- Non-fat Dry Milk 

- TBS (RMK25) 

2.5 g 

50.0 mL 

RMK25 

TBS Solution (500.0 mL) 

(50 mM Tris, 150 mM NaCl, pH 

7.6) 

- Tris Base 

- NaCl 

- pH 7.6 

- dH2O 

3029.0 mg 

4383.0 mg 

adjusted with HCl (and NaOH)* 

topped up to 500.0 mL 

RMK26 

TBST Solution (500.0 mL) 

(50 mM Tris, 150 mM NaCl,  

0.05% Tween 20, pH 7.6) 

- Tris Base 

- NaCl 

- Tween 20 

- pH 7.6 

- dH2O 

3029.0 mg 

4383.0 mg 

250.0 µL 

adjusted with HCl (and NaOH)* 

topped up to 500.0 mL 

RMK27 
Tris-HCl Buffer (250.0 mL) 

(200 mM Tris, pH 8.5) 

- Tris Base 

- pH 8.5 

- dH2O 

6.0 g 

adjusted with HCl (and NaOH)* 

topped up to 250.0 mL 

*If pH was decreased below the favourable value by HCl, KOH or NaOH would be used to 

increase the pH for readjustment. 

All buffers were stored at 4°C before further usage, with a maximum of 6 months storage period. 
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4.1.1.1 Designing of Soluble DEN-2 NS2B-NS3 Protease Gene Insert 

The NS2B-NS3 serine protease nucleotide sequence begins from nucleotide 

4132 to nucleotide 5031 in the full length nucleotide sequence of DEN-2 gene, New 

Guinea C strain (Irie et al., 1989). Designing of the nucleotide sequence for His-tagged 

recombinant soluble functional NS2B-NS3 protease (CF40.gly(T).NS3pro) is based on 

previous studies on insoluble DEN-2 NS2B-NS3 protease (Yusof et al., 2000), soluble 

DEN-2 NS2B-NS3 protease with truncated NS2B region (CF40.gly.NS3pro) (Leung et 

al., 2001) and DEN-2 NS2B-NS3 protease crystal structure, 2FOM (Erbel et al., 2006). 

According to these studies, a glycine linker should be constructed and inserted between 

the hydrophilic NS2B gene (CF40: nucleotide 4276-4416) and NS3 serine protease gene 

(NS3pro: nucleotide 4522-5076) in order to get a single soluble DEN-2 NS2B-NS3 

virus protease. This protease is flexible enough to be active without cleaving itself into 

individual NS2B cofactor and NS3 serine protease. However, in constrast to the 

previous works, in this study, a glycine linker with the peptide sequence Gly4ThrGly4 

(nucleotide sequence – GGGGGCGGAGGTACCGGTGGAGGCGGG) was designed, 

instead of Gly4SerGly4. This was mainly because, by using Threonine (Thr) instead of 

Serine (Ser) would be more beneficial by giving an extra KpnI restriction site, with 

GGTACC recognition nucleotide sequence in both CF40 and NS3pro genes for easier 

digestion and subsequent ligation. An additional nine nucleotides were also added to the 

NS3pro gene in the design of the reverse primer. This is to prevent primer dimerization 

of the reverse primer used, as reported previously (Leung et al., 2001). Nevertheless, 

same to the study by Leung et al. (2001), the insert’s forward primer was designed to 

have the BamHI restriction site, with recognition sequence (GGATCC), while the 

reverse primer was designed to have HindIII restriction site, with recognition sequence 

(AAGCTT). Hence, this design allowed the protease gene to be cloned into the vector, 

pQE30 (Qiagen) (Figure 4.1), which also contains the two restriction sites. In addition, 
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pQE30 vector also contains the ampicilin resistant gene, which is required in subsequent 

culture work. These features of the designed insert are shown in Figure 4.2. 

 

 

 

Figure 4.1 Sequence map of pQE30 vector from Qiagen. The image was adopted 

from http://www.qiagen.com/literature/pqesequences/pqe3x.pdf. 
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Figure 4.2 Nucleotide sequence of NS2B and NS3 genes. NS2B nucleotide 

sequence is from 4132 to 4521 while NS3 serine protease nucleotide sequence is from 

4522 until 5031. The first sequence in red is the hydrophilic region of NS2B, CF40 

(4276 - 4416), and the second sequence in red is the region of NS3 serine protease, 

NS3pro (4522 - 5076) that was used in previous study (Leung et al., 2001). Our 

designed sequence of the NS3pro was chosen from 4522 to 5085 instead. The two 

sequences in red boxes were used for designing the forward primer, NS2B_F1 and 

reverse primer, NS3_R1 for insoluble and soluble DEN-2 NS2B-NS3 protease gene. 

BamHI restriction site (GGATCC) is underlined in the upper red box and HindIII 

restriction site (AAGCTT) is underlined in the lower red box. The two sequences in 

blue boxes are the nucleotide sequence (GGGGGCGGAGGTACCGGTGGAGGCGGG) 

 

ggg ggc gga ggt acc  

ggt gga ggc ggg  

 

ggg ggc gga ggt acc 

ggt gga ggc ggg  

 

KpnI restriction 

enzyme will act 

here followed 

by DNA ligase 

 

HindIII restriction 

enzyme will act here 

ccg gga tcc 

aag ctt ggg 

 

 4041                                                      agctggcca 

    4141 ctaaatgagg ctatcatggc agtcgggatg gtgagcattt tggccagttc actcctaaag 

    4201 aatgacattc ccatgacagg accattagtg gctggagggc tcctcactgt gtgctacgtg 

    4261 ctcactggac gatcggccga tttggaactg gagagagccg ccgatgtcaa atgggaagat 

  4321 caggcagaga tatcaggaag cagtccaatc ctgtcaataa caatatcaga agatggtagc 

    4381 atgtcgataa aaaacgaaga ggaagaacaa acactgacca tactcatcag aacaggattg 

 

 

 

 

 

 

 

    4441 ctggtgatct caggactttt tcctgtatca ataccaatca cggcagcagc atggtacctg 

    4501 tgggaagtga agaaacaacg ggctggagta ttgtgggatg tcccttcacc cccacccgtg 

    4561 ggaaaggctg aactggaaga tggagcctat agaatcaagc aaaaagggat tcttggatat 

    4621 tcccagatcg gagccggagt ttacaaagaa ggaacattcc atacaatgtg gcatgtcaca 

    4681 cgcggcgctg ttctaatgca taaaggaaag aggattgaac catcatgggc ggacgttaag 

    4741 aaagacctaa tatcatatgg aggaggctgg aagctagaag gagaatggaa ggaaggagaa 

    4801 gaagtccagg tcttggcatt ggagcctgga aaaaatccaa gagccgtcca aacaaaacct 

    4861 ggtcttttca aaaccaacgc cggaaccata ggtgccgtat ctctggactt ttctcctgga 

    4921 acctcaggat cgccaatcat cgacaaaaaa ggaaaagttg tgggtcttta tggtaatggt 

    4981 gttgttacaa ggagtggagc atatgtgagt gctatagccc agactgaaaa aagtattgaa 

    5041 gacaatccag agatcgaaga tgacattttt cgaaagagaa aattg                 

       

BamHI restriction enzyme 

will act here 
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for glycine linkers, which were used for designing the forward and reverse primer pairs, 

GT_F1 and GT_R1. KpnI restriction site (GGTACC) is underlined in the blue boxes. 

 

4.1.1.2 Primers’ Design 

All the primers were designed using an online PrimerAnalyser software 

(http://primerdigital.com/tools/PrimerAnalyser.html) from the PrimerDigital website 

(http://primerdigital.com), a web tool for calculating primer’s melting temperature for 

suitable PCR annealing temperature. The website also predicts the efficiency of PCR by 

identifying primers’ dimer formation (Kalendar, 2010) before the primers’ sequences 

were sent for synthesis in a commercial company. 

 

4.1.1.3 Construction of Soluble DEN-2 NS2B-NS3 Protease Gene Insert from 

Insoluble DEN-2 NS2B-NS3 Protease Gene 

Reverse Transcription Polymerase Chain Reactions (RT-PCR) were conducted 

for DEN-2 virus RNA (obtained from Sungai Buloh Health Laboratory) with forward 

primer NS2B_F1, 5’-CCGGGATCCGCCGATTTGGAACTG-3’ (BamHI restriction 

site is underlined) and reverse primer NS3_R1, 5’-

CCCAAGCTTCAATTTTCTCTTTCG-3’ (HindIII restriction site is underlined) to get 

complimentary deoxyribonucleic acid (cDNA) of insoluble DEN-2 NS2B-NS3 protease 

gene with 828 base pairs (bp). The PCR Master Mix (Table 4.1:RMK02) was prepared 

in a 1.5 mL microcentrifuge. 2.5 µL of 40 µg/mL DEN-2 virus RNA and 2.5 µL of Taq 

polymerase (Fermentas) were then added into the PCR Master Mix just before the 

reaction mixture was subjected to RT-PCR. The heating steps for RT-PCR were 

followed as shown in Table 4.2 and were performed in a thermal cycler. The RT-PCR 

product was purified using QIAquick PCR Purification Kit (Qiagen) (Table 

4.1:RMK03).  
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Table 4.2 : Heating steps for RT-PCR and PCR. 

Reaction Process 
Number of 

cycle 
Temperature Duration 

RT-PCR 

 cDNA synthesis 1 50°C 30 minutes 

PCR 

Denaturation 1 94°C 2 minutes 

PCR amplification 40 

94°C 

60°C 

72°C 

15 seconds 

(Denature) 

30 seconds (Anneal) 

1 minute (Extend) 

Final Extension 1 72°C 10 minutes 

 

For purification of PCR using QIAquick PCR Purification Kit, firstly, 5 volumes 

of Buffer PBI were added and mixed to one volume of the PCR reaction mixture. Then, 

a QIAquick spin column was placed in a 2 mL collection tube, and the sample was 

applied to the column, and centrifuged at 13,000 rpm at room temperature for 1 minute 

for DNA binding. The flow-through was then discarded and the column was placed 

back into the same tube. Subsequently, 0.75 mL of Buffer PE was added to the 

QIAquick spin column, and the column, along with the collection tube was centrifuged 

at 13,000 rpm at room temperature for 1 minute to wash out the unwanted primers and 

impurities, such as salts, enzymes, unincorporated nucleotides, agarose, dyes, ethidium 

bromide, oils and detergents. The flow-through was then discarded and the column was 

placed back again in the same tube. Following this, the column was centrifuged at 

13,000 rpm at room temperature in the 2 mL collection tube for another 1 minute to 

remove residual ethanol from Buffer BE which may interfere with subsequent 

enzymatic reactions. The column was then placed in a clean 1.5 mL microcentrifuge 

tube. Next, 50 µl of Buffer EB was added to the center of the QIAquick membrane, and 

the column was let to stand for 1 minute before it was centrifuged at 13,000 rpm at 

room temperature for 1 minute to elute the purified DNA. The purified DNA was kept 

at -20°C until further use. 
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PCR was then carried out for amplifying individual CF40 with 177 bp and 

NS3pro with 600 bp from insoluble DEN-2 NS2B-NS3 cDNA. The amplification for 

CF40 was carried out using the same reaction mixture of PCR Master Mix, but replaced 

with different forward and reverse primer pairs, NS2B_F1 / GT_R1 (5’-

CCCGCCTCCACCGGTACCTCCGCCCCCCAGTGTTTGTTCTTCCTC-3’; KpnI 

restriction site is underlined), and DEN-2 virus RNA was also replaced with insoluble 

DEN-2 NS2B-NS3 cDNA. On the other hand, the forward and reverse primer pairs, 

GT_F1 (5’-GGGGGCGGAGGTACCGGTGGAGGCGGGGCTGGAGTATTGTGGGA 

-T-3’) / NS3_R1 were used for amplifying NS3pro and the rest of the reaction mixture 

was followed same as that of CF40. The heating steps for PCR were done according to 

Table 3.2 by using a thermal cycler. The PCR product was then purified using 

QIAquick PCR Purification Kit (Qiagen) with the same protocol mentioned in the 

previous paragraph. Calculations for number of base pairs in RT-PCR and PCR 

products are shown in Table 4.3. 

 

Table 4.3 : Base pairs calculation of each gene. 

Gene from  

RT-PCR / PCR 

Base pairs from nucleotide 

sequence 

Base pairs from primers / 

glycine linker 

Total base 

pairs 

Insoluble 

NS2B-NS3 

(4276 - 5085) 

5085 – 4276 + 1 = 810 2 x 9 =18 828 

Hydrophillic 

NS2B, CF40  

(4276 - 4416) 

4416 – 4276 + 1 = 141 9 + 27 = 36 177 

NS3 Serine 

Protease, NS3pro 

(4522 - 5085) 

5085 – 4522 + 1 = 564 9 + 27 = 36 600 

Soluble NS2B-

NS3, CF40- 

gly(T).NS3pro 

141 + 564 = 705 (2 x 9) + 27 = 45 750 
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Subsequently, digestions were performed for both genes of the hydrophilic 

NS2B and NS3 serine protease (CF40 and NS3pro) with glycine linker (Gly4ThrGly4) 

genes at the 3’ and 5’ ends, respectively, using KpnI restriction enzyme at 37°C for 4 

hours. The two digested genes were then ligated with DNA ligase at 16°C for 1 hour in 

the ratio of 1 to 1. The ligation of genes was verified using agarose gel electrophoresis 

(described in later section, 4.1.1.5) and the gene with the correct base pairs was cut out 

from the agarose gel and extracted by using a QIAquick Gel Extraction Kit (Qiagen) 

(Table 4.1:RMK04).  

 

For gel extraction using the QIAquick Gel Extraction Kit, firstly, the DNA 

fragment was excised from the agarose gel with a clean and sharp scalpel. The size of 

the gel slice was minimized by removing extra agarose. The gel slice was then weighed 

in a colourless 1.5 mL microcentrifuge tube. Buffer QG (3 volumes) was added to 1 

volume of gel (100 mg equivalent to approximately 100 µL) in the same tube. For gel 

slices which were more than 400 mg, more than one QIAquick spin columns were used 

since the maximum amount of gel slice per QIAquick spin column is 400 mg. The tube 

was then incubated at 50°C for 10 minutes until the gel slice had completely dissolved. 

The reaction mixture was mixed by vortexing the tube every 2 - 3 minutes during the 

incubation to help dissolve the gel. After the gel slice had dissolved completely, the 

colour of the mixture was checked. This should be yellow to ensure that the pH ≤ 7.5 in 

order to maximize the adsorption of DNA to the QIAquick membrane. If pH > 7.5, the 

colour of Buffer QG turns to orange or violet, and the adsorption of DNA becomes less 

optimal. Next, the QIAquick spin column was placed in a 2 mL collection tube. The 

dissolved sample was applied to the QIAquick spin column and was centrifuged at 

13,000 rpm at room temperature for 1 minute for DNA binding. As the maximum 

volume of the column reservoir was 800 µl, sample volumes of more than 800 µl were 
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loaded and spun again. The flow-through was discarded and the column was placed 

back in the same collection tube. Then, 0.5 mL of Buffer QG was added to the 

QIAquick spin column and was centrifuged at 13,000 rpm at room temperature for 1 

minute to remove all traces of agarose. Buffer PE (0.75 mL) was then added to the 

column and it was centrifuged at room temperature for 1 minute to wash out the 

unwanted primers and impurities. The flow-through was discarded and the column was 

centrifuged at 13,000 rpm at room temperature for an additional 1 minute to remove 

residual ethanol from Buffer PE which could interfere with subsequent enzymatic 

reactions. QIAquick spin column was then placed into a clean 1.5 mL microcentrifuge 

tube. Subsequently, 50 µl of Buffer EB was added to the center of the QIAquick 

membrane, the column was let to stand for 1 minute and then was centrifuged at 13,000 

rpm at room temperature for 1 minute to elute the DNA. The eluted DNA was kept at -

20°C until further use. 

 

Subsequent PCR was then performed to amplify the ligated gene 

CF40.gly(T).NS3pro (CF40-Gly4ThrGly4-NS3pro) with primer pairs 

NS2B_F1/NS3_R1, so that the concentration was enough for it to become an insert for 

cloning. This was followed by BamHI and HindIII restriction enzymes’ digestions of 

both the insert and pQE30 vector for 4 hours at 37°C, for each of the digestion process. 

The products were then ligated with DNA ligase at 16°C for 1 hour for the insert and 

pQE30 vector (ratio 1:1) with concentration of 20 µg/mL each. 

 

4.1.1.4 Transformation of Ligated Insert and Vector 

XL1-blue MRF’ strain Escherichia coli bacteria, purchased from Stratagene 

company was cultured overnight for a maximum of 16 hours in Lysogeny Broth (LB) 

medium (Table 4.1:RMK05) on the day before transformation. The medium was then 
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autoclaved and 1 mL of 100 mg/mL of ampicillin was added after it was cooled to 50°C. 

The final ligation product, pQE30.CF40.gly(T).NS3pro was then transformed into XL1-

blue MRF’ bacteria using TransformAid Bacterial Transformation Kit (Fermentas) 

(Table 4.1:RMK06), followed by culture on LB agar plate containing 100 µg/mL of 

ampicilin with incubation of 16 hours at 37°C.  

 

For preparation of LB agar plates, firstly, LB agar (Table 4.1:RMK07) was 

autoclaved and 200 µL of 100 mg/mL of ampicillin was added after it was cooled to 

50°C. Then, the agar was poured into different Petri plates containing about 25 mL of 

agar, and the LB agar plates were then stored at 4°C prior to usage.  

 

For transformation of plasmid to the bacteria using TransformAid Bacterial 

Transformation Kit, firstly, 2 mL of C-Medium was inoculated with XL1-blue MRF’ 

strain Escherichia coli bacteria (from frozen stock) in a culture tube. The culture was 

then incubated overnight in a shaker at 37°C. The next day, the culture tube containing 

1.5 mL of new C-Medium, an amount sufficient for 2 transformations was pre-warmed 

at 37°C. Then, 1/10 volume of the overnight culture (0.15 mL) was added to the culture 

tube and the tube was incubated in a shaker at 37°C for 20 minutes. Subsequently, 2 LB 

agar plates containing 100 µg/mL of ampicillin each, were pre-warmed at 37°C for 20 

minutes. TransformAid T-Solution was prepared by mixing 250 µl of T-Solution A and 

250 µl of T-Solution B, to a total volume of 500 µl for 2 transformations. The T-

Solution was then kept on ice. Fresh culture (1.5 mL) was dispensed into a tube and 

centrifuged at 13,000 rpm at room temperature for 1 minute. The supernatant was 

discarded and the pelleted cells were resuspended in 300 µl TransformAid T-Solution. 

The mixture was incubated on ice for 5 minutes. The cells were centrifuged at 13,000 

rpm at room temperature again for 1 minute and then the supernatant was removed. 
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Next, the cells were resuspended in 120 µl of TransformAid T-Solution and incubated 

on ice for 5 minutes. After that, 2 sets of 2.5 µl of ligation products, 

pQE30.CF40.gly(T).NS3pro were dispensed into new microcentrifuge tubes and placed 

on ice for 2 minutes. Resuspended cells (50 µl) were added to each tube containing the 

pQE30.CF40.gly(T).NS3pro and incubated on ice for 5 minutes. Finally, the cells were 

plated on pre-warmed LB agar plates with 100 µg/mL of ampicillin and then incubated 

overnight at 37°C. 

 

Ten bacteria colonies were then picked and cultured again, separately, in LB 

medium containing 100 µg/mL of ampicilin, with incubation for 16 hours at 37°C. 

Plasmids of the colonies’ cultures were extracted using a QIAprep Spin Miniprep Kit 

(Qiagen) (Table 4.1:RMK08). For plasmid extraction from one colony of the bacterial 

culture using the kit, firstly, the 1 mL of bacteria culture was centrifuged at 13,000 rpm 

at room temperature for 1 minute and then the supernatant was removed. The pelleted 

bacterial cells were then resuspended in 250 µl of Buffer P1 and transferred to a 

microcentrifuge tube. Buffer P2 (250 µl) was added into the tube and the mixture was 

mixed thoroughly by inverting the tube 4 - 6 times. Buffer N3 (350 µl) was then added 

and the mixture was mixed immediately and thoroughly, by inverting the tube 4 - 6 

times. The mixture was, then, centrifuged at 13,000 rpm at room temperature for 10 

minutes. The supernatant obtained was then pipetted to the QIAprep spin column, 

placed in a 2 mL collection tube and centrifuged at 13,000 rpm at room temperature for 

1 minute. Next, the flow-through was discarded. Subsequently, 0.5 mL of Buffer PB 

was added to the QIAprep spin column and the column along with the tube was 

centrifuged at 13,000 rpm at room temperature for 1 minute to wash and remove 

endonucleases. This was to ensure that the plasmid DNA was not degraded. Buffer PE 

(0.75 mL) was added to the QIAprep spin column and it was centrifuged at 13,000 rpm 
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at room temperature for 1 minute to wash and remove salts. The flow-through was then 

discarded and the tube was centrifuged at 13,000 rpm at room temperature for an 

additional 1 minute to remove residual ethanol from Buffer PE. Then, the QIAprep 

column was placed into a clean 1.5 mL microcentrifuge tube. Following this, 50 µl of 

Buffer EB was added to the center of the QIAprep membrane and the column was left to 

stand for 1 minute and centrifuged at 13,000 rpm at room temperature for 1 minute to 

elute the plasmid. The extracted plasmid was then kept at -20°C for further use. 

 

After the extraction process was completed, the plasmids were verified with 

digestion of the BamHI and HindIII restriction enzymes. This was to confirm that the 

soluble DEN-2 NS2B-NS3 protease gene had been transformed into the vector prior to 

further nucleotide sequencing (section 4.1.1.5). The successfully transformed cultures 

were than kept as glycerol stock, in 15% of glycerol, and stored at -80°C for future use. 

 

4.1.1.5 Verification of Gene Products  

All gene products from RT-PCR, PCR, digestions and ligations were verified 

using agarose gel electrophoresis (1% w/v agarose gel – 0.5 g agarose in 50 mL TBE 

buffer (Table 4.1:RMK09), containing 0.5 µg/mL ethidium bromide). For running of 

agarose gel electrophoresis, firstly, the agarose gel was cast with 8 wells in a horizontal 

gel box. After the gel had solidified, it was transferred into a gel tank and the gel was 

then submerged in TBE buffer. The loading samples were prepared as a mixture of 5 µL 

of DNA samples (RT-PCR and PCR products, ligated genes and plasmids) and 2 µL of 

DNA loading dye, and were loaded into the wells of the agarose gel, along with 5 µL of 

1 kb DNA ladder in one of the wells. The electrophoresis experiment was run at 100 V 

constant voltages for 1 hour. DNA stained with ethidium bromide will produce 

fluorescence under ultraviolet (UV) light, and thus, its base pairs can be recognized 
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after separation using gel electrophoresis and compared with the DNA ladder. To 

validate the identity of the protease gene, nucleotide sequencing for the plasmids 

extracted from the successfully transformed cultures (as mentioned in section 4.1.1.4) 

was done at Medigene Sdn. Bhd.  

 

4.1.1.6 Expression and Purification of Soluble DEN-2 NS2B-NS3 Protease 

pQE30 vector was used for high level, inducible expression of amino-terminal 

hexahistidine-tagged recombinant proteins (Yusof et al., 2000; Leung et al., 2001). 

Cultures of XL1-blue bacteria, transformed with pQE30.CF40.gly(T).NS3pro (plasmid 

with soluble DEN-2 NS2B-NS3 protease gene), were grown in 1 liters of LB medium 

containing 100 µg/mL of ampicilin at 37°C, until A600 nm reached 0.6. One mL of the 

culture was pelleted by centrifugation at 13,000 rpm for 1 minute and kept as 

“Uninduced Protein” in -20°C for further analysis. The bacteria cells were then induced 

for expression by the addition of IPTG to a final concentration of 1 mM and incubated 

for an additional 3 hours at 37°C. After the incubation, 1 mL of the culture was also 

pelleted by centrifugation at 13,000 rpm for 1 minute and kept as “Induced Protein” in -

20°C for further analysis. The rest of the cells were harvested by centrifugation at 6,000 

x rpm for 15 minutes and the pellets were stored at -80°C until used. 

 

For protein purification, the cell pellets were initially thawed and resuspended in 

5.0 mL of lysis buffer (Table 4.1:RMK10) for every 1.0 g of cell pellet. The 

resuspended cells were subjected to probe sonication for five 30 seconds pulses on ice 

and then centrifuged at 10,000 rpm for 1 hour at 4°C. Then, the supernatant was filtered 

through a 0.45 µm sterilized filter and 0.5 mL of the filtered supernatant was kept as 

“Total Protein” in -20°C for further analysis. The rest of the filtrate was then, 

immediately incubated with 2 mL of Ni
2+

-NTA-agarose (Qiagen), which was pre-
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equilibrated with column buffer (Table 4.1:RMK11), in a 50 mL centrifuge tube for 1 

hour. This step ensures the His-tagged protein binds to the Ni
2+

-NTA-agarose. The 

mixture was then pelleted by centrifugation at 6,000 rpm for 30 minutes. Following this, 

1.0 mL of the supernatant was collected and kept as “Non-Binding Protein” in -20°C for 

further analysis. The pellet was then transferred into a 5 mL polypropylene column 

using column buffer and the column was extensively washed with 30 mL of column 

buffer. The first and last milliliters of the wash fractions were collected and kept as 

“Wash-First” and “Wash-Last” in -20°C for further analysis. Finally, the protease was 

eluted from the column using elution buffer (Table 4.1:RMK12) into ten separate 1.5 

mL microcentrifuge tubes. Each tube contained 1 mL of eluant and kept as “E1” to 

“E10” in -20°C for further analysis and use. 

 

4.1.1.7 Verification of Protease Using SDS-PAGE and Western Blot 

All the proteins collected were analyzed using 12% SDS-PAGE (Sodium 

Dodecyl Sulfate Polyacrylamide Gel Electrophoresis) with CBB R-250 staining and 

Western Blot. To run 12% SDS-PAGE, firstly, the 12% acrylamide gel was cast with 10 

wells in a gel casting chamber. Acrylamide (12%) in resolving gel solution (Table 

4.1:RMK16) was pipetted into the gel casting chamber, until the solution level was just 

0.5 cm below the wells. When the resolving gel had solidified, stacking gel solution 

(Table 4.1:RMK17) was poured on top of the resolving gel. A comb forming 10 wells 

was inserted into the chamber before the stacking gel solidified. Subsequently, the comb 

was removed and SDS electrophoresis buffer (Table 4.1:RMK18) was poured into the 

chamber to cover the gel. The loading samples were prepared by mixing 7 µL of protein 

samples and 7 µL of 2x SDS-PAGE loading buffer (Table 4.1:RMK19), and heated to 

100°C for 5 minutes. This denatures the proteins prior to loading into the wells along 

with a protein ladder. The electrophoresis experiment was run at 100 V constant 
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voltages for 2 hours. Next, the gel was fixed with a fixing solution (Table 4.1:RMK20) 

for 1 hour to prevent the protein from leaching out of the gel, followed by staining with 

CBB R-250 staining solution (Table 4.1:RMK21) for 30 minutes and then, destaining 

overnight with the destaining solution (Table 4.1:RMK20), shaking slowly on a shaker 

for each step. CBB R-250 binds to the protein and separated protein bands having 

different molecular weights will be detected as blue bands in the gel on a clear 

background. The gel was then stored in storage solution (Table 4.1:RMK22) for further 

use or reference. 

 

For the western blot analysis, the gel preparation was the same as for SDS-

PAGE analysis without any staining. A nitrocellulose membrane was first attached 

beside the gel with filter paper covered at both outer sides of the membrane and the gel. 

Another fiber pad was then attached to both outer sides of the filter paper. It was 

ensured that there was no bubble between the nitrocellulose membrane and the gel to 

avoid interference of result. Two cassette holders were then attached to the outer part of 

both the fiber pad and the whole attachment was fixed in the western blot apparatus 

with the nitrocellulose membrane facing the anode and the gel facing the cathode. An 

ice block was added, followed by the transfer buffer (Table 4.1:RMK23). The apparatus 

was run at 100 V constant voltages for 1 hour. Then, the nitrocellulose membrane was 

incubated overnight at 4°C with blocking solution (Table 4.1:RMK24). Next, the 

membrane was transferred into the blocking solution with monoclonal anti-human 

adiponectin antibody (final concentration of 1 µg/mL) and incubated at room 

temperature for 1 hour on a shaker with low speed. Subsequently, the membrane was 

rinsed with TBS solution (Table 4.1:RMK25) and washed 3 times with TBST solution 

(Table 4.1:RMK26), 15 minutes each time, and then rinsed again with TBS solution. 

After soaking the membrane again with the blocking solution, a second antibody, mouse 
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IgG antibody (final concentration of 1 µg/mL) was added. The membrane was 

incubated again for 1 hour and washed again with TBS and TBST solutions, as 

mentioned in previously. Lastly, Western Blue Stabilized Substrate (Promega) was 

added to the membrane to catalyze the alkaline phosphatase for conjugation with the 

second antibody. The protein of interest was then detected as a purple band on a clear 

background in the membrane. 

 

4.1.1.8 Protease Quantification using Bradford Protein Assay 

Bradford protein assay was used in this study to quantitate the concentration of 

the protease. The assay was performed using a microplate reader. Reaction mixtures 

with a total volume of 200 µL per mixture were prepared in UV-transparent 96-well 

plates. At first, standard reaction mixtures containing 10 µL of 5 different 

concentrations of Bovine Serum Albumin (BSA) (0.2, 0.4, 0.6, 0.8 and 1.0 mg/mL) and 

without BSA were prepared in Quick Start Bradford Dye Reagent (Bio-Rad) with a total 

of 200 µL per mixture. The mixtures were then measured for UV absorption at a 

wavelength of 595 nm using a microplate reader. A BSA standard curve was then 

plotted and was later used for determination of the concentration of purified protease. 

The concentration of purified protease was determined by using a reaction mixture 

containing 10 µL of purified protease added in Quick Start Bradford Dye Reagent with 

a total volume of 200 µL per mixture. 

 

4.1.1.9 Protease Activity and Inhibition Assays using Fluorogenic Peptide 

The assays were performed using a Tecan Infinite M200 Pro fluorescence 

spectrophotometer. Reaction mixtures with a total volume of 200 µL per mixture were 

prepared in black 96-well plates. Firstly, standard solutions were prepared where 

reaction mixtures with 5 different concentrations of AMC (5, 10, 15, 20 and 25 µM) and 
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without AMC were mixed with 10 µL of DMSO each, buffered at pH 8.5 using 200 

mM Tris-HCl (Table 4.1:RMK27). The standard solutions were used to plot AMC 

standard curve, which was used to calculate the amount of AMC released in subsequent 

assays. For the protease activity assay, the reaction mixtures were optimized at 2 µM of 

dengue protease CF40.gly(T).NS3pro and 100 µM of fluorogenic peptide substrate 

(Boc-Gly-Arg-Arg-AMC) (Peptide Institute, Inc), buffered at pH 8.5 using 200 mM 

Tris-HCl. The mixtures were then incubated at 37°C for 30 minutes before 

measurements were taken. Substrate cleavage was optimized at 440 nm for emission 

and 350 nm for excitation. For the protease inhibition assay, reaction mixtures 

containing 100 µM of fluorogenic peptide substrate Boc-Gly-Arg-Arg-AMC, 2 µM 

dengue protease CF40.gly(T).NS3pro with or without potential inhibitors of varying 

concentrations, buffered at pH 8.5 using 200 mM Tris-HCl were prepared. The potential 

inhibitors were initially prepared in 10 µL of DMSO, and assayed at 5 different 

concentrations, which were 25, 50, 100, 200 and 400 mg/L. Kinetic studies were also 

performed by using 5 different concentrations (20, 40, 60, 80 and 100 µM) of the 

peptide substrate with the same reaction mixtures to determine the type of inhibition 

(competitive or non-competitive). For both the protease activity assay and protease 

inhibition assay, reaction mixtures without the addition of dengue protease 

CF40.gly(T).NS3pro were used as controls to correct the error obtained in measurement 

of the fluorescence intensity due to release of AMC by self-hydrolysis of the peptide 

substrate. For elimination of the DMSO solvent effect in the inhibition assay, those 

mixtures without potential inhibitors were tested with the addition of DMSO in the 

same amount as when the potential inhibitors were used. The reaction mixtures were 

incubated at 37°C for 30 minutes before addition of the final fluorogenic peptide 

substrate. The mixture was then further incubated at 37°C for 30 minutes before 

measurements. All measurements were carried out in triplicate.  
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The fluorescence intensity of AMC (released by the fluorogenic peptide 

substrate in the assay) was derived based on the fluorescence intensity detected after 30 

minutes, using the following formula: 

 

Isample – Icontrol = Iprotease – I0 

 

where Isample is fluorescence intensity of the sample which is equivalent to Iprotease, the 

fluorescence intensity of reaction mixture with the protease (CF40.gly(T).NS3pro), 

while Icontrol is fluorescence intensity of the control which is equivalent to I0, the 

fluorescence intensity of reaction mixture without protease. 

 

Next, the velocity of enzyme-catalyzed reaction, which is equivalent to the rate 

of AMC released, was obtained from the AMC standard curve and the fluorescence 

intensity of AMC released after 30 minutes. The reaction velocities were then used to 

calculate the Km and Vmax for the protease activity assay, using nonlinear regression 

Michaelis-Menten equation in GraphPad Prism 5.0 software. The reaction velocities in 

the presence of potential inhibitors were also used to calculate the Ki values of the 

potential inhibitors and to verify the type of inhibitors, by using nonlinear regression 

mixed model inhibition (Copeland, 2002b) equation in GraphPad Prism 5.0 software. 

On the other hand, Lineweaver-Burk plots were used for better display of the type of 

inhibition. Unpaired t-tests were also performed by comparing the Ki exp values of all the 

tested compounds with the standard, using GraphPad Prism 5.0 software to evaluate the 

statistical significance of the inhibition activities of the compounds. 
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4.1.2 Structure-Activity Relationship (SAR) Study 

Structure-activity relationship (SAR) study was performed by comparing and 

relating the structure of the compounds with the inhibition activities in the in vitro 

study, based on the binding interactions observed from the docking experiments. 

 

4.2 Results and Discussions 

4.2.1 Cloning, Expression, Purification and Verification of Soluble DEN-2 NS2B-

NS3 Protease 

The RT-PCR result of DEN-2 virus RNA produced using designed primers 

showed that the correct insoluble DEN-2 NS2B-NS3 cDNA with 828 bp was being 

amplified (Figure 4.3A). The PCR result for the hydrophilic NS2B cofactor, CF40 gene 

with a glycine linker at the 3’ end and NS3 serine protease, NS3pro gene with a glycine 

linker, gly-(T), at the 5’ end also showed the desired length of 177 bp and 600 bp 

respectively (Figure 4.3B). Set 2 in Figure 4.28B was selected for digestion with KpnI 

restriction enzyme, followed by ligation with DNA ligase as fewer impurities from PCR 

products were detected.  

 

The ligation of the NS2B cofactor and NS3 serine protease genes, with glycine 

linker in between them was successfully carried out. Two by-products were generated 

due to the ligation process, which were two NS2B cofactor genes ligated together with 

the glycine linker and two NS3 serine protease genes ligated together with the glycine 

linker. Two precursor genes were also present even after the ligation process was 

completed (Figure 4.4A). The 1% agarose gel electrophoresis for PCR amplified NS2B 

cofactor gene, ligated with NS3 serine protease gene via a glycine linker after sequential 

double digestions by BamHI and HindIII restriction enzymes, showed the desired gene 

length of about 750 bp (Figure 4.4B). The agarose gel electrophoresis profiles of the 
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DNA from the undigested, single digested (with only BamHI restriction enzyme) and 

double digested (with both BamHI and HindIII restriction enzymes in sequence) pQE30 

vectors also showed that they had been digested correctly (Figure 4.4B). 

 

 

 

        

 

Figure 4.3 RT-PCR and PCR result. A: RT-PCR of insoluble DEN-2 NS2B-NS3 

protease gene with 828 bp. B: PCR of 2 sets of CF40 gene with gly-(T) at the 3’ end 

containing 177 bp and NS3pro gene with gly-(T) at the 5’ end containing 600 bp. Tick 

signs show the bands wth the desired length of genes which were selected for further 

cloning work.   

 

 

 

 

 

Set 1           Set 2 
B A 
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Figure 4.4 Ligation and digestion result. A: Ligation of CF40 gene with gly-(T) at 

3’ end and NS3pro gene with gly-(T) at 5’ end (band shown with a tick). The agarose 

gel profile shows that there were two other by-products, CF40-gly(T)-CF40 and 

NS3pro-gly(T)-NS3pro genes. The two precursor genes of CF-gly(T) and gly(T)-

NS3pro were also detected in the gel even after the reaction had ended. 

CF40.gly(T).NS3pro gene (ticked) was then extracted for further amplification with 

PCR. B: Differences in the DNA profiles in 1% agarose gel between the undigested, 

single digested, double digested and amplified CF40.gly(T).NS3pro gene after PCR and 

double digestion. 
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For the transformation of the pQE30 vector ligated with insert (soluble DEN-2 

NS2B-NS3 protease, CF40.gly(T).NS3pro gene) into XL1-blue bacteria, only 1 out of a 

total of 24 selected bacteria colonies after 4 trials were shown to produce the desired 

gene length of about 750 bp from the sequential double digestion with BamHI and 

HindIII of their extracted plasmid (Figure 4.5). 

 

Subsequently, the successfully transformed bacteria culture was used for protein 

expression and purification with the protein profile as shown in Figure 4.6. The 

presence of more than one band indicated that more than one protein were eluted out 

even after purification on Ni
2+

-NTA-agarose (Lanes E1 and E2) was performed. In fact, 

when compared to the purification of insoluble protein under denaturing conditions, it is 

more likely for Ni
2+

-NTA-agarose purification of soluble protein under native 

conditions to exhibit copurify associated proteins. These copurify associated proteins 

such as enzyme subunits and binding proteins presented in expressing cells, were added 

to the lysate before purification, or added to the Ni
2+

-NTA matrix after the 6xHig-

tagged protein was bound (Le Grice & GrÜNinger-Leitch, 1990; Flachmann & 

Kuhlbrandt, 1996; Qiagen, 2003). However, through western blot, the identity of our 

protein was confirmed to be the His-tagged soluble DEN-2 NS2B-NS3 protease, since 

the His-tagged protein will bind to the monoclonal anti-human adiponectin antibody 

used in western blot (Figure 4.7B). A previous study (Leung et al., 2001) reported that 

the size of the soluble DEN-2 NS2B-NS3 protease was around 32 kDa and only a single 

protein band was observed after purification on Ni
2+

-NTA-agarose column. In this study, 

we report the expression of soluble DEN-2 NS2B-NS3 protease (CF40.gly(T).NS3pro) 

with a molecular mass of about 38 kDa (Figure 4.6 and 4.7). The additional amino acids 

in this protease might be due to the additional nucleotides which were included in the 

design of the primers. 
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Figure 4.5 1% agarose gel electrophoresis profiles for 4 different trials (Trial 1 - 4) 

of LB agar cultures after transformations. 6 colonies picked from each set for LB 

medium cultures, followed by plasmids extraction and double digestion with BamHI 

and HindIII. Colony number 4 from Trial 4 (ticked) was the only culture with desired 

gene length of about 750 bp.  

 

  

Trial 1 Trial 2 

Trial 3 Trial 4 
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Figure 4.6 SDS-PAGE profile of “Uninduced Protein” (U), “Induced Protein” (I), 

“Total Protein” (T), “Non-Binding Protein” towards Ni
2+

-NTA-agarose column (N), 

“Wash-First” (W1), “Wash-Last” (WL), protein molecular mass markers (M), first 1 ml 

of eluted elution buffer (E1) and followed by second ml (E2).  
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Figure 4.7 SDS-PAGE and Western blot profile. A: SDS-PAGE gel profile of Ni
2+

-

NTA-agarose purified CF40.gly(T).NS3pro. B: Western blot membrane profile of Ni
2+

-

NTA-agarose purified CF40.gly(T).NS3pro. Purple band indicates the binding of His-

tagged CF40.gly(T).NS3pro, and it was observed at ~38 kDa. 
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Further purification using a Ni
2+

-NTA-agarose column was also carried out with 

large amount of wash buffer (500 mL) in order to obtain pure CF40.gly(T).NS3pro 

(Figure 4.8). 

 

For further verification, the translated amino acids sequence based on the 

nucleotide sequencing result of our rDNA had validated that there are more than 

231/241 (95.9%) identity and 240/241 (99.6%) similarity (amino acids not identical but 

with similar physical properties) between our cloned protease and DEN-2 NS2B-NS3 

protease from other strains of DEN-2 reported in NCBI (NCBI) through protein Blast 

(Altschul et al., 1997) (Figure 4.9). Moreover, as shown in Figure 4.9, all the catalytic 

triad residues – His51, Asp75 and Ser135, and the suggested key residue found in the 

allosteric site – Lys74 (located in the NS3 serine protease domain) were aligned 

perfectly between our cloned protease and the DEN-2 NS2B-NS3 protease from the 

other strains. This shows that our protease is capable of representing the DEN-2 NS2B-

NS3 protease generically for the development of non-specific protease inhibitor towards 

all the strains of DEN-2. 
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Figure 4.8 First elution (E1) to sixth elution (E6) of subsequent Ni
2+

-NTA-agarose 

purification using large amount of wash buffer (500 mL) before elution. 
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Figure 4.9 Sequence alignment of the protease cloned in this study and DEN-2 NS2B-NS3 protease from various strains of reported DEN-2. The 

grey histogram represents the level of convergence between two amino acids. Amino acids that were identical in both sequences will have a full grey 

bar and an asterisk symbol (*) on top of the specific amino acids, followed by colon symbol (:) for high similarity, period symbol (.) for low similarity 

and blank ( ) for non-convergence. Catalytic triad residues are highlighted in red-outlined boxes and NS3 Lys74 residues are highlighted in a blue-

outlined box. 
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4.2.2 Protease Quantification, Protease Activity and Inhibition Assay 

BSA standard curve was obtained from Bradford Protein Assay (Figure 4.10). 

The formula for the standard curve is y = 0.445x, which means “Absorbance” = 0.445 x 

“Concentration”. Thus, “Concentration” = “Absorbance”/0.445. An example of the 

calculation for the concentration of our protease is shown as below: 

 

Absorbance at 595 nm for E1 = 1.020 OD 

Absorbance at 595 nm for blank (Quick Start Bradford Dye Reagent only)  = 0.341 OD 

 

Concentration of E1 = (1.020 – 0.341)/0.445 

   = 1.526 mg/mL 

 

Our protease is about 38 kDa, thus about 38,000 g/mol. 

 

Concentration of E1 ≈  1.526 mg/mL 

     38,000 g/mol 

≈  1.526 mg/mL 

   38,000 mg/mmol 

 

≈ 0.00004016 mol/L 

≈ 40.16 µM 

 

Based on the dilution equation, C1V1    = C2V2 

              C1    = C2V2 

       V1 

 

 

Thus, the concentration of 10 µL of E1 in 200 µL Tris-HCl Buffer (Table 4.1:RMK27) 

≈ 40.16 µM x 10 µL 

    200 µL 

 

≈ 2.01 µM 
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Figure 4.10 Standard curve for BSA concentration against absorbance. 

 

Figure 4.11 shows the optimization of emission and excitation wavelengths for 

AMC’s fluorescence intensity. These parameters were then applied in the protease 

activity and inhibition assays for the detection of fluorescence intensity of AMC 

released through substrate cleavage. Based on the methods described in section 4.1.1.9, 

AMC standard curve (Figure 4.12) was obtained. The formula for the AMC standard 

curve is y = 1420.7x, which means “Fluorescence Intensity of AMC” = 1420.7 x 

“Concentration of AMC”. Thus, “Concentration of AMC” = “Fluorescence Intensity of 

AMC”/1420.7. The enzyme-catalyzed reaction velocity, which is equivalent to the rate 

of AMC released (µM/min), for protease activity and substrate optimization assays 

(Figures 4.13 and 4.14) as well as inhibition assays (Figure 4.15 - 4.20) was calculated 

following the example shown below: 
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Fluorescence intensity of 1.0 µM of dengue protease CF40.gly(T).NS3pro with 100 µM 

of fluorogenic peptide substrate (Boc-Gly-Arg-Arg-AMC) buffered at pH 8.5 by 200 

mM Tris-HCl after 30 minutes  

= 12857 RFU (Relative Fluorescence Units) 

 

Fluorescence intensity of 100 µM fluorogenic peptide substrate (Boc-Gly-Arg-Arg-

AMC) buffered at pH 8.5 by 200 mM Tris-HCl after 30 minutes 

= 4055 RFU 

 

Concentration of AMC released  = (12857 – 4055) µM 

     1420.7     

 

= 6.196 µM 

 

Reaction velocity (Rate of AMC released) = 6.196 µM 

          30 min 

 

= 0.2065 µM/min 
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Figure 4.11 Optimization of AMC’s fluorescence intensity. A: AMC’s fluorescence 

intensity was optimum at 440 nm for emission scan. B: AMC’s fluorescence intensity 

was optimum at 350 nm for excitation scan. 

A 
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Figure 4.12 Standard curve for AMC concentration against absorbance.  
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Figure 4.13 Protease activity optimization assay with 100 µM of fluorogenic peptide 

substrate (Boc-Gly-Arg-Arg-AMC) buffered at pH 8.5 by 200 mM Tris-HCl. 
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Figure 4.14 Fluorogenic peptide substrate optimization assay with 2 µM of dengue 

protease CF40.gly(T).NS3pro buffered at pH 8.5 by 200 mM Tris-HCl. 

 

Figures 4.13 and 4.14 show the optimization of protease and substrate 

concentrations. By using the nonlinear regression Michaelis-Menten equation in 

GraphPad Prism 5.0 software, the maximum enzyme-catalyzed reaction velocity 

without inhibitor, Vmax, of both protease and substrate were calculated as 0.53 ± 0.04 

µM/min and 0.33 ± 0.01 µM/min, respectively, while the Michaelis-Menten constant, 

Km, values for both were 2.0 ± 0.4 µM and 99 ± 4 µM, respectively (Table 4.4). As a 

result, based on the Km values, 2 µM of dengue protease CF40.gly(T).NS3pro along 

with 20, 40, 60, 80 and 100 µM of fluorogenic peptide substrate (Boc-Gly-Arg-Arg-

AMC) were chosen as optimum concentrations for subsequent inhibition assays. 
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The best-fit values of shared parameters for different concentrations of 

pinostrobin (standard), compounds 1, 2, 3 and 4, fitted using a nonlinear regression 

mixed model inhibition equation in GraphPad Prism 5.0 software, are shown in Tables 

4.5 - 4.9 together with Lineweaver-Burk plots illustrating the type of protease inhibition 

(Figure 4.15 - 4.19). The value of alpha is a measure of the degree to which the binding 

of the inhibitor changes the affinity of the enzyme for its substrate. Its value should 

always be greater than zero. When alpha = 1, the inhibitor does not alter binding of 

substrate to the enzyme and the mixed-model is identical to noncompetitive inhibition. 

When alpha is very large, binding of the inhibitor prevents binding of the substrate and 

the mixed-model becomes identical to competitive inhibition. When alpha is very small 

(but greater than zero), binding of the inhibitor enhances substrate binding to the 

enzyme and the mixed model becomes nearly identical to an uncompetitive model 

(Copeland, 2002b; Motulsky & Christopoulos, 2004). 

 

A review of the literature yielded no bioassay data for compounds 1, 2 and 3 

while compound 4 had been reported to be active as an inhibitor in various bioassays in 

PubChem    database   (http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?sid= 

112156252&viewopt=PubChem) (PubChem, 2005), including flavivirus genomic 

capping enzyme inhibition assay for DEN-2 (Geiss et al., 2009). The Ki exp values for all 

the tested compounds in this study are shown in Figure 4.20 and Table 4.10. 

Compounds 1, 2 and 4 showed better inhibition activities with significantly lower Ki exp 

values compared to that of the standard pinostrobin, while compound 3 showed no 

significant difference (Figure 4.20). For most of the compounds, including pinostrobin, 

the Ki exp obtained correlated well with the docking results, except for compound 3. The 

poor correlation in the case of compound 3 might be due to the lack of hydrogen bond 

interaction towards any of the protease’s amino acid residues (as shown in Table 2). 

mk:@MSITStore:C:/Program%20Files/GraphPad/Prism%205/prism5.chm::/reg_noncompetitive_inhibition.htm
mk:@MSITStore:C:/Program%20Files/GraphPad/Prism%205/prism5.chm::/reg_competitive_inhibition.htm
mk:@MSITStore:C:/Program%20Files/GraphPad/Prism%205/prism5.chm::/reg_uncompetitive_inhibition.htm
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This lack of a hydrogen bond interaction is mainly caused by the absence of a 

hydrophilic side chain in compound 3 as compared to the other compounds (Figure 1). 

The physiochemical properties of compound 3 may also lead to an overestimation by 

AutoDock 4.2 software in generating the estimated Ki dock value (Table 3), where the 

algorithm in AutoDock takes into account both electronic and solvation properties of 

compounds (Morris et al., 1998). 

 

From the kinetic analysis using the GraphPad Prism 5.0 software and 

Lineweaver-Burk plots, all of the test compounds were also shown to be non-

competitive inhibitors. This further supports our proposal that the structure of the 

allosteric binding site for non-competitive inhibition of dengue virus should resemble 

that of DH-1. Consequently, DH-1 is suggested to be suitable to be used for allosteric 

binding studies and virtual screening for non-competitive inhibitors. In this study, 

compound 1 proved to be the most potent inhibitor among all the tested compounds, 

with a computational Ki dock value of 45 µM and an in vitro Ki exp of 69 ± 9 µM. This 

compound could then be used as a lead for ligand-based drug design of anti-dengue 

agents. 
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Table 4.4 : Best-fit values for Vmax and Km for protease activity and substrate 

optimization assays using nonlinear regression Michaelis-Menten equation in GraphPad 

Prism 5.0 software. 

Optimization Protease Substrate 

Best-fit values     

Vmax (µM/min) 0.53 0.33 

Km (µM) 2.0 99 

Std. Error     

Vmax (µM/min) 0.04 0.01 

Km (µM) 0.4 4 
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Table 4.5 : Best-fit values of shared parameters, Vmax, Alpha, Ki exp and Km for 

standard pinostrobin with different concentrations, I, fitted using nonlinear regression 

mixed model inhibition method in GraphPad Prism 5.0 software. 

Concentrations (µM) 1480 740 370 185 92.5 0 

       Mixed model inhibition 

      Best-fit values 

      Vmax (µM/min) 0.32 0.32 0.32 0.32 0.32 0.32 

I (µM) = 1480 = 740 = 370 = 185 = 92.5 = 0 

Alpha 1.1 1.1 1.1 1.1 1.1 1.1 

Ki exp (µM) 415 415 415 415 415 415 

Km (µM) 100 100 100 100 100 100 

       Std. Error 

      Vmax (µM/min) 0.03 0.03 0.03 0.03 0.03 0.03 

Alpha 0.6 0.6 0.6 0.6 0.6 0.6 

Ki exp (µM) 85 85 85 85 85 85 

Km (µM) 14 14 14 14 14 14 

Vmax = maximum enzyme velocity without inhibitor. 

Km = Michaelis-Menten constant. 

Alpha = 1, mixed-model = noncompetitive inhibition. 

Alpha very large, mixed-model = competitive inhibition. 

Alpha very small but > 0, mixed-model = uncompetitive inhibition. 

Ki exp = inhibition constant calculated from in vitro experiment. 
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Lineweaver-Burk Plot for R-Pinostrobin
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Figure 4.15 Protease inhibition assay with pinostrobin as inhibitor. All lines intercept 

at the same point at X-axis with negative value indicates that the reaction kinetics 

involves non-competitive inhibition. 
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Table 4.6 : Best-fit values of shared parameters, Vmax, Alpha, Ki exp and Km for 

compound 1 with different concentrations, I, fitted using nonlinear regression mixed 

model inhibition method in GraphPad Prism 5.0 software. 

Concentrations (µM) 1380 689 345 172 86.1 0 

Mixed model inhibition 

      Best-fit values 

      Vmax (µM/min) 0.31 0.31 0.31 0.31 0.31 0.31 

I (µM) = 1380 = 689 = 345 = 172 = 86.1 = 0 

Alpha 1.2 1.2 1.2 1.2 1.2 1.2 

Ki exp (µM) 69 69 69 69 69 69 

Km (µM) 86 86 86 86 86 86 

       Std. Error 

      Vmax (µM/min) 0.02 0.02 0.02 0.02 0.02 0.02 

Alpha 0.3 0.3 0.3 0.3 0.3 0.3 

Ki exp (µM) 9 9 9 9 9 9 

Km (µM) 8 8 8 8 8 8 

Vmax = maximum enzyme velocity without inhibitor. 

Km = Michaelis-Menten constant. 

Alpha = 1, mixed-model = noncompetitive inhibition. 

Alpha very large, mixed-model = competitive inhibition. 

Alpha very small but > 0, mixed-model = uncompetitive inhibition. 

Ki exp = inhibition constant calculated from in vitro experiment. 
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Lineweaver-Burk Plot for Compound 1
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Figure 4.16 Protease inhibition assay with compound 1 as inhibitor. All lines 

intercept at the same point at X-axis with negative value indicates that the reaction 

kinetics involves non-competitive inhibition. 

 

 

 

 

 

 

 

 

 

 

 

 

Inhibitor  

Concentrations (µM) 



 

121 

 

Table 4.7 : Best-fit values of shared parameters, Vmax, Alpha, Ki exp and Km for 

compound 2 with different concentrations, I, fitted using nonlinear regression mixed 

model inhibition method in GraphPad Prism 5.0 software. 

Concentrations (µM) 1350 677 339 169 84.6 0 

Mixed model inhibition 

      Best-fit values 

      Vmax (µM/min) 0.32 0.32 0.32 0.32 0.32 0.32 

I (µM) = 1350 = 677 = 339 = 169 = 84.6 = 0 

Alpha 1.7 1.7 1.7 1.7 1.7 1.7 

Ki exp (µM) 121 121 121 121 121 121 

Km (µM) 94 94 94 94 94 94 

       Std. Error 

      Vmax (µM/min) 0.02 0.02 0.02 0.02 0.02 0.02 

Alpha 0.6 0.6 0.6 0.6 0.6 0.6 

Ki exp (µM) 14 14 14 14 14 14 

Km (µM) 9 9 9 9 9 9 

Vmax = maximum enzyme velocity without inhibitor. 

Km = Michaelis-Menten constant. 

Alpha = 1, mixed-model = noncompetitive inhibition. 

Alpha very large, mixed-model = competitive inhibition. 

Alpha very small but > 0, mixed-model = uncompetitive inhibition. 

Ki exp = inhibition constant calculated from in vitro experiment. 
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Lineweaver-Burk Plot for Compound 2
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Figure 4.17 Protease inhibition assay with compound 2 as inhibitor. All lines 

intercept at the same point at X-axis with negative value indicates that the reaction 

kinetics involves non-competitive inhibition. 
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Table 4.8 : Best-fit values of shared parameters, Vmax, Alpha, Ki exp and Km for 

compound 3 with different concentrations, I, fitted using nonlinear regression mixed 

model inhibition method in GraphPad Prism 5.0 software. 

Concentrations (µM) 1270 636 318 159 79.5 0 

Mixed model inhibition 

      Best-fit values 

      Vmax (µM/min) 0.30 0.30 0.30 0.30 0.30 0.30 

I (µM) = 1270 = 636 = 318 = 159 = 79.5 = 0 

Alpha 0.9 0.9 0.9 0.9 0.9 0.9 

Ki exp (µM) 510 510 510 510 510 510 

Km (µM) 93 93 93 93 93 93 

       Std. Error 

      Vmax (µM/min) 0.03 0.03 0.03 0.03 0.03 0.03 

Alpha 0.5 0.5 0.5 0.5 0.5 0.5 

Ki exp (µM) 120 120 120 120 120 120 

Km (µM) 14 14 14 14 14 14 

Vmax = maximum enzyme velocity without inhibitor. 

Km = Michaelis-Menten constant. 

Alpha = 1, mixed-model = noncompetitive inhibition. 

Alpha very large, mixed-model = competitive inhibition. 

Alpha very small but > 0, mixed-model = uncompetitive inhibition. 

Ki exp = inhibition constant calculated from in vitro experiment. 
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Lineweaver-Burk Plot for Compound 3
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Figure 4.18 Protease inhibition assay with compound 3 as inhibitor. All lines 

intercept at the same point at X-axis with negative value indicates that the reaction 

kinetics involves non-competitive inhibition. 
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Table 4.9 : Best-fit values of shared parameters, Vmax, Alpha, Ki exp and Km for 

compound 4 with different concentrations, I, fitted using nonlinear regression mixed 

model inhibition method in GraphPad Prism 5.0 software. 

Concentrations (µM) 1420 709 354 177 88.6 0 

Mixed model inhibition 

      Best-fit values 

      Vmax 0.34 0.34 0.34 0.34 0.34 0.34 

I = 1420 = 709 = 354 = 177 = 88.6 = 0 

Alpha 1.1 1.1 1.1 1.1 1.1 1.1 

Ki exp 186 186 186 186 186 186 

Km 98 98 98 98 98 98 

       Std. Error 

      Vmax 0.03 0.03 0.03 0.03 0.03 0.03 

Alpha 0.5 0.5 0.5 0.5 0.5 0.5 

Ki exp 38 38 38 38 38 38 

Km 15 15 15 15 15 15 

Vmax = maximum enzyme velocity without inhibitor. 

Km = Michaelis-Menten constant. 

Alpha = 1, mixed-model = noncompetitive inhibition. 

Alpha very large, mixed-model = competitive inhibition. 

Alpha very small but > 0, mixed-model = uncompetitive inhibition. 

Ki exp = inhibition constant calculated from in vitro experiment. 
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Lineweaver-Burk Plot for Compound 4

-0.02 0.02 0.04 0.06

-50

50

100

150

200

250

1420

709

354

177

88.6

0

1/[S] (M-1)

1
/V

 (
m

in
/

M
)

 

Figure 4.19 Protease inhibition assay with compound 4 as inhibitor. All lines 

intercept at the same point at X-axis with negative value indicates that the reaction 

kinetics involves non-competitive inhibition. 
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Figure 4.20 Unpaired t-tests for Ki exp values of compounds 1 - 4 compared with Ki exp 

value of standard pinostrobin. * indicates significant different with p value < 0.05. 
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Table 4.10 : NumCl, ∆Gdock and Ki dock values of the best binding conformations of the 

small compounds from virtual screening towards DEN-2 NS2B-NS3 proteases, 

homology model DH-1 compared to the Ki exp values obtained from protease bioassay in 

this study. 

Compound Compound Identity NumCl 

∆Gdock 

(kcal 

mol
-1

) 

Ki dock 

(µM) 

Ki exp (µM)  

in this study 

1 2-phenyl-6-(1H-1,2,3,4-tetraazol-5-yl)-

4H-chromen-4-one  

12/20 -6.17 45 69 ± 9 * 

2 2-[4-(dimethylamino)phenyl]-5,7- 

dimethyl-3,4-dihydro-2H-1- 

benzopyran-4-one 

13/20 -5.77 86 121 ± 14 * 

3 6-phenyl-6a,12a-dihydro-6H,7H- 

chromeno[4,3-b]chromene 

15/20 -5.33 175 510 ± 120 

4 2-(2,3-dihydro-1,4-benzodioxin-6-yl)- 

3,4-dihydro-2H-1-benzopyran-4-one   

11/20 -5.29 187 186 ± 38 * 

Standard R-pinostrobin pinostrobin 

  6/20 -4.89 358 415 ± 85 

NumCl = the number of conformations with RMSD < 2.0.  

∆Gdock = free energy of binding estimated from AutoDock 4.2 software. 

Ki dock = inhibition constant derived from ∆Gdock. 

* indicates significant different (p value < 0.05) of unpaired t-tests for Ki exp values of compounds 1 - 4 

compared with Ki exp value of standard pinostrobin. 

∆Gdock and Ki dock values for R-pinostrobin are slightly different from the values in Table 3.1 due to rerun 

of docking in virtual screening using different parameters. 
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4.2.3 SAR Study 

From the in vitro result, compound 1, which is a flavone showed the best DEN-2 

NS2B-NS3 protease inhibition activity. It also contains a side chain with hydrogen bond 

acceptor and donor properties at position 6 of the structure that is lacking in the other 

compounds (Figure 3.21, p. 70; Figure 4.26). This side chain might play an important 

role in providing hydrogen bonding interactions for binding in the binding site (Figure 

4.21). Conversely, R-pinostrobin (Figure 2.6, p.21) which has a side chain (methoxyl 

group) at position 5 which acts as a hydrogen acceptor, and a side chain (hydroxyl 

group) at position 7 with hydrogen bond donor property, showed weaker protease 

inhibition, and therefore implies that these substitutions are less important (Figure 4.25). 

 

On the other hand, compounds 2 and 4 showed better protease inhibition activity 

than the standard. This might be due to the side chain at position 2 for compounds 2 and 

4 having hydrogen bond donor and acceptor properties, respectively, as opposed to the 

standard. 

 

Furthermore, based on docking results, amino acid residues Glu88, Gly124 and 

Ala167 located inside the binding pocket, play important role in forming hydrogen bond 

interactions as hydrogen bond acceptor (Glu88) and hydrogen bond donor (Gly124 and 

Ala167) (Figures 4.21 - 4.25). Thus, a side chain containing electronegative atom(s) 

such as nitrogen, oxygen or fluorine is necessary as hydrogen bond acceptor as well as -

NH or -OH group as hydrogen bond donor. This side chain should be located either at 

position 2 or 6 of the structure.  
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From Figures 4.21 and 4.22, it is highlighted that the benzopyrone ring structure 

of the inhibitor is necessary for the formation of pi-cation interaction with the 

ammonium group of the residue Lys74. For compound 3, pi-cation and pi-sigma 

interactions could be observed between the two benzyl rings of the inhibitor with Lys74 

and Ile122, respectively (Figure 4.23). However, this structure is not recommended as 

the in vitro result demonstrated low inhibition activity. As mentioned in section 4.2.2, 

this might due to the lack of hydrogen bond interactions with any of the residues Glu88, 

Glu124 or Ala167 in the other end of the binding site, which could be necessary in 

establishing binding stability in the binding pocket.  

 

Figures 4.21 – 4.25 also highlights an important region (at the left side of the 

binding site) which is hydrophobic. It can be seen that hydrophobic side chain (ring) of 

the inhibitors fit comfortably into this hydrophobic pocket. In addition, it was postulated 

that the hydrophobic side chain of the residues is also necessary for fitting the structure 

towards the proper position for the mentioned pi-cation and hydrogen bonding 

interactions.  

 

In addition to the interactions between the inhibitors and the binding site of the 

protease discussed above, shape complementarity seemed to also play its role in 

ensuring a stable binding complex in this study. Three dimensional inspection of the 

docking results highlighted compound 1 to be maximizing the spacial accomodation of 

the binding site. 
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Figure 4.21 Interactions between compound 1 and the allosteric binding pocket. Pi-

cation interaction (orange) and hydrogen bonding interactions (green) were observed. 

 

 

Figure 4.22 Interactions between compound 2 and the allosteric binding pocket. Pi-

cation interaction (orange) and hydrogen bonding interactions (green) were observed. 
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Figure 4.23 Interactions between compound 3 and the allosteric binding pocket. Pi-

cation and pi-sigma interactions (orange) were observed. 

 

 

Figure 4.24 Interactions between compound 4 and the allosteric binding pocket. 

Hydrogen bonding interactions (green) were observed. 
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Figure 4.25 Interactions between R-pinostrobin (standard) and the allosteric binding 

pocket. Pi-cation interaction (orange) and hydrogen bonding interactions (green) were 

observed. 

 

Hence, a potential lead structure for DEN-2 NS2B-NS3 protease inhibitor could 

have properties as shown in Figure 4.26. 
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Figure 4.26 Suggested potential lead structure towards the design of DEN-2 NS2B-

NS3 protease inhibitor. The important features are benzopyrone ring structure (coloured 

in red) and side chains with the specific functional groups at positions 2 and 6 (coloured 

in blue). 
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5.1 Overall Conclusion 

Based on chalcone, flavanone, and flavone scaffolds, virtual screening of 

compounds from the online ZINC database was performed in search of potential non-

competitive inhibitors against DEN-2 NS2B-NS3 protease. A total of 34 small 

compounds were identified to have higher binding affinities compared to the standard 

ligand used in this study. However, only 4 of these small compounds were available for 

purchase. Modeling analysis suggests that the compounds form hydrogen bonding 

interactions with the amino acid residues Glu88, Gly124 and Asn167, as well as pi-

cation interactions with Lys74. The role of these amino acid residues (Lys74, Glu88, 

Gly124 and Asn167) is worthy of further study. 

 

Soluble DEN-2 NS2B-NS3 protease gene was successfully cloned and the 

corresponding protease could be expressed, even though with higher molecular mass. 

The results from in vitro inhibition assays supported the in silico results obtained. 

Compound 1 was found to be the best inhibitor of DEN-2. 

 

It is proposed that for non-competitive inhibition studies on DEN-2 protease, an 

appropriate model should exhibit a conformation of the allosteric binding site that 

resembles the homology model, DH-1, built in this study. DH-1 could also be used for 

further virtual screening studies involving a larger database of compounds and for drug 

design studies of non-competitive inhibitors against DEN-2 NS2B-NS3 protease. 

 

From this study, compound 1, 2 and 4 showed better inhibition against DEN-2 

proteolytic activity compared to the pinostrobin (standard). Compound 1 exhibited the 

best inhibition activity with in vitro Ki exp of 69 ± 9 µM. There were no previous reports 

on these non-competitve inhibition activities against DEN-2 NS2B-NS3 protease. On 
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the other hand, most reports described the competitive inhibition activities of 

compounds, even with lower Ki exp values, which indicate better protease activity 

inhibition. However, these competitive inhibitors could be displaced when higher 

concentrations of the substrates are available. Hence, logically, a higher concentration 

of inhibitor will be needed to compete with the substrate for binding to active site. 

Consequently, this may lead to these competitive inhibitors reaching the toxic 

concentrations and becoming harmful to human. In view of this, compound 1 is 

currently the best non-competitive inhibitor to be reported.  

 

We also suggested a potential lead structure or pharmacophore for non-

competitive inhibitor against DEN-2 NS2B-NS3 protease based on SAR study. 

 

In conclusion, the rational discovery method described here has potential for use 

in the discovery of lead compounds for the treatment of dengue, as well as other disease 

targets. 

 

5.2 Future Studies 

The potential lead structure or pharmacophore (Figure 4.26) could be used in 

future anti-dengue drug design, starting by synthesizing new compounds with the 

suggested features for in vitro assay verification. With a larger number of different types 

of compounds, DH-1 could also be used to perform virtual screening to obtain novel 

non-competitive inhibitors against DEN-2 NS2B-NS3 protease. Crystallization trials 

involving compound 1 could be carried out to enable a more accurate assessment of the 

binding mechanism of the non-competitive inhibitors found in this study and to assist in 

further work on the design and development of anti-dengue agents using small 

compounds. Furthermore, compounds 1, 2 and 4 could also be used in further in vivo 
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studies such as cell bioassay to verify their inhibition activities as well as toxicity at the 

cellular level.  

 

5.3 Limitations of Study 

One of the limitations of this study is that, the DEN-2 NS2B-NS3 protease 

model used for virtual screening is a homology model instead of actual crystal structure. 

An actual crystal structure of DEN-2 NS2B-NS3 protease might behave differently and 

might not even fold into the same conformation as that of the homology model. 

However, since the actual crystal structure of DEN-2 NS2B-NS3 protease complexed 

with non-competitive inhibitor has yet available, the homology model, DH-1 is 

currently the best model for non-competitive inhibition study. 

 

Futuremore, the ∆Gdock calculated by AutoDock software cannot be used directly 

to represent the actual binding energy of a compound. This is mainly because the 

AutoDock software uses implicit water environment, with only parameters optimized 

for water environment, rather than uses explicit water environment where actual water 

molecules will be included for calculation. However, the latter method might be more 

accurate, it consumes a lot of time and computer power. Moreover, AutoDock software 

uses semiempirical force field for energy calculation instead of quantum mechanic force 

field with more accuracy. Nevertheless, the latter method also time and computer power 

consuming. As virtual screening consists of a very large number of compounds, using 

calculation with explicit water environment and quantum mechanic force field would be 

irrational. Thus, AutoDock software with faster calculating time was used in spite of it 

is less accurate. 
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Besides, not all the compounds identified in virtual screening were available for 

purchase. SAR study might be less accurate with in vitro result involving just a few 

compounds. Moreover, the purchasable compounds were expensive in cost. 

 

Lastly, synthesis of the potential compounds resulted from virtual screening was 

unable to be performed due to insufficient time. 
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Bash 4.1 software scripts for high-throughput analysis of virtual screening results: 

##Script for splitting dlg cluster into separated pdb files for the ease 

of analysis: 

 

for d in *2FOM;  

 

do echo $d;  

 

cd $d;  

 

csplit -k -s -n 3 -f "$d"- "$d".dlg '%^MODEL%' '/^MODEL/' '{*}';  

 

for z in $d-*;  

 

do echo $z;  

 

filename="$z".pdb;  

 

echo $filename;  

 

mv $z $filename;  

 

done;   

 

cd ..;  

 

done; 

 

 

 

 

##Script for extracting all the necessary data for ranking according to 

the lowest mean energy of binding: 

 

echo "Group | Compound | Runs | Rank | NumCl | BEnergy | BEmean | Ki | 

Atoms | Torsions" > newsummary.txt;  

 

for d in *;  

 

do echo $d;  

 

cd $d;  

 

cd 2FOM;  

 

for z in *-2FOM;  

 

do echo $z;  

 

cd $z;  

 

co=0;   

 

count=1;  

 

for f in *-???.pdb;  

 

do echo $f;  

 

echo $count;  

 

n=$(grep Number $f);  

 

cn=${n//[!0-9]/};  

 

if [ $cn -gt $co ] && [ $count -le 10 ];  
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then co=$cn;  

 

cf=$f;  

 

echo $co;  

 

echo $cf;  

 

else echo $co;  

 

echo $cf;  

 

fi;  

 

let count++;  

 

done;  

 

echo $co;  

 

echo $cf;  

 

cr=$(grep "Cluster Rank" $cf);  

 

r=${cr//[!0-9]/};  

 

echo $r;  

 

s=$(grep "Estimated Free" $cf);  

 

l=${s#*=};  

 

v=${l% *};  

 

e=${v//[!0-9.-]/};  

 

echo $e;  

 

runs=$(grep "ga_run" $z.dlg);  

 

runs=${runs//[!0-9]/};  

 

dc=$(grep "distinct" $z.dlg);  

 

dc=${dc%, *};  

 

dc=${dc//[!0-9]/};  

 

grep -- "$e |" $z.dlg > etemp.txt;  

 

emin=$(grep -w "$r |    " etemp.txt);   

 

emin=${emin%$co *};  

 

emin=${emin%| *};  

 

emin=$(Connelly et al., *|);  

 

emin=$(Connelly et al., *|);  

 

emin=$(Connelly et al., *|);  

 

emin=$(echo $emin | tr " " "\n" | awk NR==1);  

 

ki=$(grep "Ki" $cf);  
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ki=${ki#*=};  

 

ki=${ki% *};  

 

ki=${ki% *};  

 

ki=${ki% *};  

 

ki=${ki% *};  

 

ki=${ki% *};  

 

ki=${ki% *};  

 

atms=$(grep "Total number of atoms" $z.dlg);  

 

atms=${atms//[!0-9]/};  

 

tors=$(grep "Rotatable Bonds" $z.dlg);  

 

tors=${tors//[!0-9]/}; group=$(echo $d | sed 's/-d//g');  

 

name=$(echo $z | sed 's/-dock//g'); echo $group "|" $name "|" $runs 

"|" $r "|" $co "|" $e "|" $emin "|" $ki "|" $atms "|" 

$tors >> ../../../newsummary.txt; 

 

cd ..;  

 

done;  

 

cd ../..;  

 

done; 

  

echo "Group | Compound | Runs | Rank | NumCl | BEnergy | BEmean | Ki | 

Atoms | Torsions" > newsummary.sort; 

 

cat newsummary.txt | sort –k7n -t"|" >> newsummary.sort; 

 

 

 

 

##Script for extracting the group, name, NumCl, ∆G, rank and coordinates 

of the conformation with largest NumCl along with the macromolecule 

coordinates as preparation file for running Ligplot: 

 

for d in *;  

 

do echo $d;  

 

cd $d;  

 

cd 2FOM;  

 

for z in *-2FOM;  

 

do echo $z;  

 

cd $z;  

 

rm *lelc.pdbqt;  

 

co=0;  

 

for f in *-???.pdb;  

 

do echo $f; 
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n=$(grep Number $f);  

 

cn=${n//[!0-9]/};  

 

if [ $cn -gt $co ];  

 

then co=$cn;  

 

cf=$f;  

 

echo $co;  

 

echo $cf;  

 

else echo $co;  

 

echo $cf;  

 

fi;  

 

done;  

 

echo $co;  

 

echo $cf;  

 

cr=$(grep "Cluster Rank" $cf);  

 

r=${cr//[!0-9]/};  

 

echo $r;  

 

s=$(grep "Estimated Free" $cf);  

 

l=${s#*=};  

 

v=${l% *};  

 

e=${v//[!0-9.-]/};  

 

echo $e;  

 

group=$(echo $d | sed 's/-d//g');  

 

name=$(echo $z | sed 's/-dock//g');  

 

grep ATOM "$cf" > "$name"_"$r"_"$e"_"$co"_hetatmlelc.pdb;  

 

grep TER "$cf" >> "$name"_"$r"_"$e"_"$co"_hetatmlelc.pdb;  

 

sed -i 's/ATOM  /HETATM/g' "$name"_"$r"_"$e"_"$co"_hetatmlelc.pdb;  

 

sed -i 's/<1> d    /NEW D 180/g' 

"$name"_"$r"_"$e"_"$co"_hetatmlelc.pdb;  

 

cp "$z".pdbqt "$group"_"$name"_"$r"_"$e"_"$co"_lelc.pdbqt; 

 

grep HETATM "$name"_"$r"_"$e"_"$co"_hetatmlelc.pdb >> 

"$group"_"$name"_"$r"_"$e"_"$co"_lelc.pdbqt; 

 

grep TER "$name"_"$r"_"$e"_"$co"_hetatmlelc.pdb >> 

"$group"_"$name"_"$r"_"$e"_"$co"_lelc.pdbqt; 

 

cd ..;  

 

done;  
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cd ../..;  

 

done; 

 

 

 

 

##Script for copying all the Ligplot preparation files into a another new 

directory “newlelc” for the ease of access: 

 

mkdir newlelc;  

 

for d in *;  

 

do echo $d;  

 

cd $d;  

 

cd 2FOM;  

 

for f in *-2FOM;  

 

do echo $f;  

 

cd ../../newlelc;  

 

mkdir $f;  

 

cd ../$d/2FOM;  

 

cd $f;  

 

for z in *_lelc.pdbqt;  

 

do cp $z ../../../newlelc/$f;  

 

done;  

 

cd ..;  

 

done;  

 

cd ../..;  

 

done; 

 

 

 

 

##Script for running sequential Ligplot for all the compounds in newlelc 

directory: 

 

cd newlelc;  

 

for d in *2fom-dock;  

 

do echo $d;  

 

cd $d;  

 

ligplot *.pdbqt NEW 180 NEW 180 D;  

 

cd ..;  

 

done;  
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cd ..; 

 

 

 

 

##Script for extracting hydrogen bonding interactions data from Ligplot 

result: 

 

echo Chain "|" ResName "|" ResID "|" Atom "|" FullID "|" A-D Distance > 

hb-acceptor.txt;  

 

echo Chain "|" ResName "|" ResID "|" Atom "|" FullID "|" D-A Distance > 

hb-donor.txt;  

 

cd newlelc;  

 

for f in *;  

 

do echo $f;  

 

cd $f;  

 

n=$(grep -c "NEW" ligplot.hhb);  

 

 for d in $(seq 1 $n);  

 

 do grep "NEW" ligplot.hhb | awk NR==$d > lighhb$d.log;  

 

 done;  

 

  for b in lighhb*;  

   

  do echo $b;  

 

  s=$(grep "NEW" $b);  

 

  res1=$(echo $s | tr " " "\n"| awk NR==1);  

 

  id1=$(echo $s | tr " " "\n"| awk NR==3);  

 

  atm1=$(echo $s | tr " " "\n"| awk NR==4);  

 

  ch1=$(echo $s | tr " " "\n"| awk NR==2);  

 

  res2=$(echo $s | tr " " "\n"| awk NR==5);  

 

  id2=$(echo $s | tr " " "\n"| awk NR==7);  

 

  atm2=$(echo $s | tr " " "\n"| awk NR==8);  

 

  ch2=$(echo $s | tr " " "\n"| awk NR==6);  

 

  dis=$(echo $s | tr " " "\n" | awk NR==9);  

 

  s=${s%% *};  

 

  echo $s;  

 

   if [ $s == NEW ];  

 

then acp=$(echo $ch2 "|" $res2 "|" $id2 "|" $atm2 "|" $ch2-

$res2-$id2-$atm2 "|" $dis);  

 

echo $acp >> ../../hb-acceptor.txt; else don=$(echo $ch1 "|" 

$res1 "|" $id1 "|" $atm1 "|" $ch1-$res1-$id1-$atm1 "|" $dis);  

 

echo $don >> ../../hb-donor.txt;  
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fi;  

 

done;  

 

 cd ..;  

 

 done;  

 

cd ..;  

 

cat hb-acceptor.txt | sort -k3n -t"|" > hb-acceptor.presort;  

 

echo Chain "|" ResName "|" ResID "|" Atom "|" FullID "|" A-D Distance > 

hb-acceptor.sort;  

 

grep ^A hb-acceptor.presort >> hb-acceptor.sort; grep ^B hb-

acceptor.presort >> hb-acceptor.sort;  

 

cat hb-donor.txt | sort -k3n -t"|" > hb-donor.presort; echo Chain "|" 

ResName "|" ResID "|" Atom "|" FullID "|" A-D Distance > hb-donor.sort;  

 

grep ^A hb-donor.presort >> hb-donor.sort; grep ^B hb-donor.presort >> hb-

donor.sort; 

 

 

 

 

##Script for extracting hydrophobic interactions data from Ligplot result: 

 

echo Chain "|" ResName "|" ResID "|" Atom "|" FullID "|" Distance > 

phobic.txt; 

 

cd new1st;  

 

for f in *;  

 

do echo $f;  

 

cd $f;  

 

n=$(grep -c "NEW" ligplot.nnb);  

 

 for d in $(seq 1 $n);  

 

do grep "NEW" ligplot.nnb | awk NR==$d > lignnb$d.log;  

 

done;  

 

 for b in lignnb*;  

 

 do echo $b; s=$(grep "NEW" $b);  

 

 res=$(echo $s | tr " " "\n"| awk NR==5);  

 

 id=$(echo $s | tr " " "\n"| awk NR==7);  

 

 atm=$(echo $s | tr " " "\n"| awk NR==8);  

 

 ch=$(echo $s | tr " " "\n"| awk NR==6);  

  

 dis=$(echo $s | tr " " "\n" | awk NR==9);  

 

echo $ch "|" $res "|" $id "|" $atm "|" $ch-$res-$id-$atm "|" 

$dis >> ../../phobic.txt;  

 

done;  
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 cd ..;  

 

 done; 

cd ..;  

 

cat phobic.txt | sort -k3n -t"|" > phobic.presort;  

 

echo Chain "|" ResName "|" ResID "|" Atom "|" FullID "|" A-D Distance > 

phobic.sort;  

 

grep ^A phobic.presort >> phobic.sort; grep ^B phobic.presort >> 

phobic.sort; 

 

 

 

 

##Script for hydrogen bond acceptor interactions analysis: 

 

file="acceptor-analysis.txt";  

 

echo ResFullID "|" ResFreq "|" Atom "|" AtomFeq > $file;  

 

x=hb-acceptor.sort;  

 

c=$(grep -c "|" $x);  

 

molo= ;  

 

t=1;  

 

atmo= ;  

 

a=1;  

 

for n in $(seq 2 $c);  

 

do ch=$(cat $x | awk NR==$n | tr " " "\n" | awk NR==1);  

 

res=$(cat $x | awk NR==$n | tr " " "\n" | awk NR==3);  

 

id=$(cat $x | awk NR==$n | tr " " "\n" | awk NR==5);  

 

atm=$(cat $x | awk NR==$n | tr " " "\n" | awk NR==7);  

 

moln=$ch-$res-$id;  

 

if [[ "$moln" == "$molo" || "$molo" == "" ]] && [[ "$atmo" == "$atm" 

|| "$atmo" == "" ]];  

 

then molo=$moln;  

 

atmo=$atm;  

 

echo $molo $t $atmo $a;  

 

let t++ a++;  

 

elif [ "$moln" == "$molo" ] && [ "$atmo" != "$atm" ];  

 

then tn=$(($t-1));  

 

an=$(($a-1));  

 

echo $molo $tn $atmo $an;  

 

echo $molo "|" $tn "|" $atmo "|" $an >> $file;  
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a=1;  

 

atmo=$atm;  

 

echo $molo $t $atmo $a;  

 

let t++ a++;   

 

else tn=$(($t-1));  

 

an=$(($a-1));  

 

echo $molo $tn $atmo $an;  

 

echo $molo "|" $tn "|" $atmo "|" $an >> $file;  

 

t=1;  

 

a=1;  

 

molo=$moln;  

 

atmo=$atm;  

 

echo $molo $t $atmo $a;  

 

let t++ a++;  

 

fi;  

 

done;  

 

tn=$(($t-1));  

 

an=$(($a-1));  

 

echo $molo $tn $atmo $an;  

 

echo $molo "|" $tn "|" $atmo "|" $an >> $file;  

 

cat $file | sort -k3 -t"|" > atm-acceptor-analysis.sort; 

 

 

 

 

##Script for hydrogen bond donor interactions analysis: 

 

file="donor-analysis.txt";  

 

echo ResFullID "|" ResFreq "|" Atom "|" AtomFeq > $file;  

 

x=hb-donor.sort;  

 

c=$(grep -c "|" $x);  

 

molo= ;  

 

t=1;  

 

atmo= ;  

 

a=1;  

 

for n in $(seq 2 $c);  

 

do ch=$(cat $x | awk NR==$n | tr " " "\n" | awk NR==1);  



 

171 

 

 

res=$(cat $x | awk NR==$n | tr " " "\n" | awk NR==3);  

 

id=$(cat $x | awk NR==$n | tr " " "\n" | awk NR==5);  

 

atm=$(cat $x | awk NR==$n | tr " " "\n" | awk NR==7);  

 

moln=$ch-$res-$id;  

 

if [[ "$moln" == "$molo" || "$molo" == "" ]] && [[ "$atmo" == "$atm" 

|| "$atmo" == "" ]];  

 

then molo=$moln;  

 

atmo=$atm;  

 

echo $molo $t $atmo $a;  

 

let t++ a++;  

 

elif [ "$moln" == "$molo" ] && [ "$atmo" != "$atm" ];  

 

then tn=$(($t-1));  

 

an=$(($a-1));  

 

echo $molo $tn $atmo $an;  

 

echo $molo "|" $tn "|" $atmo "|" $an >> $file;  

 

a=1;  

 

atmo=$atm;  

 

echo $molo $t $atmo $a;  

 

let t++ a++;   

 

else tn=$(($t-1));  

 

an=$(($a-1));  

 

echo $molo $tn $atmo $an;  

 

echo $molo "|" $tn "|" $atmo "|" $an >> $file;  

 

t=1;  

 

a=1;  

 

molo=$moln;  

 

atmo=$atm;  

 

echo $molo $t $atmo $a;  

 

let t++ a++;  

 

fi;  

 

done;  

 

tn=$(($t-1));  

 

an=$(($a-1));  

 

echo $molo $tn $atmo $an;  
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echo $molo "|" $tn "|" $atmo "|" $an >> $file;  

 

cat $file | sort -k3 -t"|" > atm-donor-analysis.sort; 

 

 

 

 

##Script for hydrophobic interactions analysis: 

 

file="phobic-analysis.txt";  

 

echo ResFullID "|" ResFreq "|" Atom "|" AtomFeq > $file;  

 

x=phobic.sort;  

 

c=$(grep -c "|" $x);  

 

molo= ;  

 

t=1;  

 

atmo= ;  

 

a=1;  

 

for n in $(seq 2 $c);  

 

do ch=$(cat $x | awk NR==$n | tr " " "\n" | awk NR==1);  

 

res=$(cat $x | awk NR==$n | tr " " "\n" | awk NR==3);  

 

id=$(cat $x | awk NR==$n | tr " " "\n" | awk NR==5);  

 

atm=$(cat $x | awk NR==$n | tr " " "\n" | awk NR==7);  

 

moln=$ch-$res-$id;  

 

if [[ "$moln" == "$molo" || "$molo" == "" ]] && [[ "$atmo" == "$atm" 

|| "$atmo" == "" ]];  

 

then molo=$moln;  

 

atmo=$atm;  

 

echo $molo $t $atmo $a;  

 

let t++ a++;  

 

elif [ "$moln" == "$molo" ] && [ "$atmo" != "$atm" ];  

 

then tn=$(($t-1));  

 

an=$(($a-1));  

 

echo $molo $tn $atmo $an;  

 

echo $molo "|" $tn "|" $atmo "|" $an >> $file;  

 

a=1;  

 

atmo=$atm;  

 

echo $molo $t $atmo $a;  

 

let t++ a++;   
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else tn=$(($t-1));  

 

an=$(($a-1));  

 

echo $molo $tn $atmo $an;  

 

echo $molo "|" $tn "|" $atmo "|" $an >> $file;  

 

t=1;  

 

a=1;  

 

molo=$moln;  

 

atmo=$atm;  

 

echo $molo $t $atmo $a;  

 

let t++ a++;  

 

fi;  

 

done;  

 

tn=$(($t-1));  

 

an=$(($a-1));  

 

echo $molo $tn $atmo $an;  

 

echo $molo "|" $tn "|" $atmo "|" $an >> $file;  

 

cat $file | sort -k3 -t"|" > atm-phobic-analysis.sort; 

 

 

 

 

##Script for generating interaction frequency for hydrogen bond acceptor 

interactions: 

 

file="freq-hba.txt";  

 

echo -n "ResFullID | ResFreq " > $file;  

 

x=atm-acceptor-analysis.sort;  

 

c=$(grep -c "|" $x);  

 

for n in $(seq 2 $c);  

 

do atm=$(cat $x | awk NR==$n | tr " " "\n" | awk NR==5);  

 

echo $atm;  

 

num=$(cat $file | awk NR==1 | tr " " "\n" | awk 'END { print NR }');  

 

numo=1;  

 

a=0;  

 

while [ $numo -le $num ];  

 

do echo $numo;  

 

temp=$(cat $file | awk NR==1 | tr " " "\n" | awk NR==$numo);  

 

echo $temp;  
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if [ "$atm" != "$temp" ];  

 

then let a++;  

 

elif [ "$atm" == "$temp" ];  

 

then let a=a+100;  

 

fi;  

 

let numo=numo+2;  

 

done;  

 

if [ $a -lt 100 ];  

 

then echo yeah;  

 

echo -n "| $atm "  >> $file;  

 

fi;  

 

done; 

 

file="freq-hba.txt";  

 

x=acceptor-analysis.txt;  

 

c=$(grep -c "|" $x);  

 

resx=;  

 

for n in $(seq 2 $c);  

 

do res=$(cat $x | awk NR==$n | tr " " "\n" | awk NR==1);  

 

atm=$(cat $x | awk NR==$n | tr " " "\n" | awk NR==5);  

 

echo $atm $res;  

 

if [ "$res" != "$resx" ];  

 

then resx=$res;  

 

echo $resx;  

 

echo -ne "\n$resx | xxx " >> $file;  

 

num=$(cat $file | awk NR==1 | tr " " "\n" | awk 'END { print NR }');  

 

numo=5;  

 

while [ $numo -le $num ];  

 

do atmx=$(cat $file | awk NR==1 | tr " " "\n" | awk NR==$numo);  

 

check=$(cat $x | grep $resx | grep -w $atmx);  

 

if [ "$check" == "" ];  

 

then freq=0;  

 

else freq=$(cat $x | grep $resx | grep -w $atmx | tr " " "\n" | awk 

NR==7); 

 

fi;  
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echo -n "| $freq " >> $file;  

 

let numo=numo+2;  

 

done;  

 

line=$(grep -c "|" $file);  

 

numx=$(cat $file | awk NR==$line | tr " " "\n" | awk 'END { print 

NR }');  

 

numy=5; tfreq=0;  

 

while [ $numy -le $numx ];  

 

do atmfreq=$(cat $file | awk NR==$line | tr " " "\n" | awk 

NR==$numy);  

 

echo $atmfreq;  

 

let tfreq=tfreq+atmfreq;  

 

echo $tfreq;  

 

let numy=numy+2;  

 

done;  

 

echo $tfreq;  

 

sed -i s/xxx/"$tfreq"/g $file;  

 

else echo "done already";  

 

fi;  

 

done; 

 

grep ^R freq-hba.txt > freq-hba.sort;  

 

grep ^A freq-hba.txt >> freq-hba.sort;  

 

grep ^B freq-hba.txt >> freq-hba.sort; 

 

 

 

 

##Script for generating interaction frequency for hydrogen bond donor 

interactions: 

 

file="freq-hbd.txt";  

 

echo -n "ResFullID | ResFreq " > $file;  

 

x=atm-donor-analysis.sort;  

 

c=$(grep -c "|" $x);  

 

for n in $(seq 2 $c);  

 

do atm=$(cat $x | awk NR==$n | tr " " "\n" | awk NR==5);  

 

echo $atm;  

 

num=$(cat $file | awk NR==1 | tr " " "\n" | awk 'END { print NR }');  

 



 

176 

 

numo=1;  

 

a=0;  

 

while [ $numo -le $num ];  

 

do echo $numo;  

 

temp=$(cat $file | awk NR==1 | tr " " "\n" | awk NR==$numo);  

 

echo $temp;  

 

if [ "$atm" != "$temp" ];  

 

then let a++;  

 

elif [ "$atm" == "$temp" ];  

 

then let a=a+100;  

 

fi;  

 

let numo=numo+2;  

 

done;  

 

if [ $a -lt 100 ];  

 

then echo yeah;  

 

echo -n "| $atm "  >> $file;  

 

fi;  

 

done; 

 

file="freq-hbd.txt";  

 

x=donor-analysis.txt;  

 

c=$(grep -c "|" $x);  

 

resx=;  

 

for n in $(seq 2 $c);  

 

do res=$(cat $x | awk NR==$n | tr " " "\n" | awk NR==1);  

 

atm=$(cat $x | awk NR==$n | tr " " "\n" | awk NR==5);  

 

echo $atm $res;  

 

if [ "$res" != "$resx" ];  

 

then resx=$res;  

 

echo $resx;  

 

echo -ne "\n$resx | xxx " >> $file;  

 

num=$(cat $file | awk NR==1 | tr " " "\n" | awk 'END { print NR }');  

 

numo=5;  

 

while [ $numo -le $num ];  

 

do atmx=$(cat $file | awk NR==1 | tr " " "\n" | awk NR==$numo);  
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check=$(cat $x | grep $resx | grep -w $atmx);  

 

if [ "$check" == "" ]; then freq=0;  

 

else freq=$(cat $x | grep $resx | grep -w $atmx | tr " " "\n" | awk 

NR==7); 

 

fi;  

 

echo -n "| $freq " >> $file;  

 

let numo=numo+2;  

 

done;  

 

line=$(grep -c "|" $file);  

 

numx=$(cat $file | awk NR==$line | tr " " "\n" | awk 'END { print 

NR }'); 

 

numy=5;  

 

tfreq=0;  

 

while [ $numy -le $numx ];  

 

do atmfreq=$(cat $file | awk NR==$line | tr " " "\n" | awk 

NR==$numy);  

 

echo $atmfreq;  

 

let tfreq=tfreq+atmfreq;  

 

echo $tfreq;  

 

let numy=numy+2;  

 

done;  

 

echo $tfreq;  

 

sed -i s/xxx/"$tfreq"/g $file;  

 

else echo "done already";  

 

fi;  

 

done; 

 

grep ^R freq-hbd.txt > freq-hbd.sort;  

 

grep ^A freq-hbd.txt >> freq-hbd.sort;  

 

grep ^B freq-hbd.txt >> freq-hbd.sort; 

 

 

 

 

##Script for generating interaction frequency for hydrophobic interactions: 

 

file="freq-phobic.txt";  

 

echo -n "ResFullID | ResFreq " > $file;  

 

x=atm-phobic-analysis.sort;  
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c=$(grep -c "|" $x);  

 

for n in $(seq 2 $c);  

 

do atm=$(cat $x | awk NR==$n | tr " " "\n" | awk NR==5);  

 

echo $atm;  

 

num=$(cat $file | awk NR==1 | tr " " "\n" | awk 'END { print NR }');  

 

numo=1;  

 

a=0;  

 

while [ $numo -le $num ];  

 

do echo $numo;  

 

temp=$(cat $file | awk NR==1 | tr " " "\n" | awk NR==$numo);  

 

echo $temp;  

 

if [ "$atm" != "$temp" ]; then let a++; elif [ "$atm" == "$temp" ];  

 

then let a=a+100;  

 

fi;  

 

let numo=numo+2;  

 

done;  

 

if [ $a -lt 100 ];  

 

then echo yeah; echo -n "| $atm "  >> $file;  

 

fi;  

 

done; 

 

file="freq-phobic.txt";  

 

x=phobic-analysis.txt;  

 

c=$(grep -c "|" $x);  

 

resx=;  

 

for n in $(seq 2 $c);  

 

do res=$(cat $x | awk NR==$n | tr " " "\n" | awk NR==1);  

 

atm=$(cat $x | awk NR==$n | tr " " "\n" | awk NR==5);  

 

echo $atm $res;  

 

if [ "$res" != "$resx" ];  

 

then resx=$res;  

 

echo $resx;  

 

echo -ne "\n$resx | xxx " >> $file;  

 

num=$(cat $file | awk NR==1 | tr " " "\n" | awk 'END { print NR }');  

 

numo=5;  
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while [ $numo -le $num ];  

 

do atmx=$(cat $file | awk NR==1 | tr " " "\n" | awk NR==$numo);  

 

check=$(cat $x | grep $resx | grep -w $atmx);  

 

if [ "$check" == "" ];  

 

then freq=0;  

 

else freq=$(cat $x | grep $resx | grep -w $atmx | tr " " "\n" | 

awk NR==7); 

 

fi;  

 

echo -n "| $freq " >> $file;  

 

let numo=numo+2;  

 

done;  

 

line=$(grep -c "|" $file);  

 

numx=$(cat $file | awk NR==$line | tr " " "\n" | awk 'END { print 

NR }');  

 

numy=5;  

 

tfreq=0;  

 

while [ $numy -le $numx ];  

 

do atmfreq=$(cat $file | awk NR==$line | tr " " "\n" | awk 

NR==$numy);  

 

echo $atmfreq;  

 

let tfreq=tfreq+atmfreq;  

 

echo $tfreq;  

 

let numy=numy+2;  

 

done;  

 

echo $tfreq;  

 

sed -i s/xxx/"$tfreq"/g $file;  

 

else echo "done already";  

 

fi;  

 

done; 

 

grep ^R freq-phobic.txt > freq-phobic.sort;  

 

grep ^A freq-phobic.txt >> freq-phobic.sort;  

 

grep ^B freq-phobic.txt >> freq-phobic.sort; 

 

 

 

 

 

 



 

180 

 

An example of clustering histogram from docking result of S-pinostrobin docked 

towards 2FOM by AutoDock 4.2 software. All conformations were chosen for further 

analysis. 

________________________________________________________________________________ 

     |           |     |           |     |                                     

Clus | Lowest    | Run | Mean      | Num | Histogram                           

-ter | Binding   |     | Binding   | in  |                                     

Rank | Energy    |     | Energy    | Clus|    5    10   15   20   25   30   35 

_____|___________|_____|___________|_____|____:____|____:____|____:____|____:___ 

   1 |     -7.60 |  91 |     -7.58 |  63 

|############################################################### 

   2 |     -7.32 | 100 |     -7.28 |  12 |############ 

   3 |     -7.18 |  28 |     -7.18 |   1 |# 

   4 |     -6.50 |  63 |     -6.49 |   6 |###### 

   5 |     -6.42 |  24 |     -6.39 |   7 |####### 

   6 |     -6.41 |  58 |     -6.34 |   2 |## 

   7 |     -6.28 |   1 |     -6.26 |   2 |## 

   8 |     -6.20 |  42 |     -6.20 |   1 |# 

   9 |     -6.07 |  95 |     -6.07 |   1 |# 

  10 |     -5.95 |  15 |     -5.91 |   2 |## 

  11 |     -5.86 |  61 |     -5.86 |   1 |# 

  12 |     -5.76 |  62 |     -5.76 |   1 |# 

  13 |     -5.76 |  40 |     -5.76 |   1 |# 

_____|___________|_____|___________|_____|______________________________________ 
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An example of the calculation of estimated free energy of binding from docking result 

(towards 2FOM) for one of the S-pinostrobin’s conformation. Its atomic coordinates are 

coloured in blue. 

 

 

MODEL       91 

USER    Run = 91 

USER    Cluster Rank = 1 

USER    Number of conformations in this cluster = 63 

USER   

USER    RMSD from reference structure       = 8.698 A 

USER   

USER    Estimated Free Energy of Binding    = -7.60 kcal/mol  [=(1)+(2)+(3)-(4)] 

USER    Estimated Inhibition Constant, Ki   = 2.70 uM (micromolar) [Temperature = 298.15 

K] 

USER     

USER    (1) Final Intermolecular Energy     = -8.48 kcal/mol 

USER        vdW + Hbond + desolv Energy     = -8.40 kcal/mol 

USER        Electrostatic Energy            = -0.08 kcal/mol 

USER    (2) Final Total Internal Energy     = -0.30 kcal/mol 

USER    (3) Torsional Free Energy           = +0.89 kcal/mol 

USER    (4) Unbound System's Energy         = -0.28 kcal/mol 

USER     

USER     

USER   

USER    DPF = spinos_2fom-dock.dpf 

USER    NEWDPF move spinos.pdbqt 

USER    NEWDPF about -1.782400 -6.455800 -0.583200 

USER    NEWDPF tran0 -5.059249 -13.273567 6.082521 

USER    NEWDPF axisangle0 0.125805 0.295535 -0.947012 110.017891 

USER    NEWDPF quaternion0 0.103065 0.242115 -0.775832 0.573449 

USER    NEWDPF dihe0 -121.94 173.96 -74.96  

USER   

USER                              x       y       z    vdW   Elec        q     RMS  

ATOM      1  C7_ <1> d          -3.983 -13.265   4.869 -0.36 -0.04    +0.169  8.698 

ATOM      2  C8_ <1> d          -3.348 -14.177   5.952 -0.47 -0.02    +0.121  8.698 

ATOM      3  C9_ <1> d          -3.647 -13.583   7.307 -0.40 -0.02    +0.167  8.698 

ATOM      4  C10 <1> d          -5.004 -13.053   7.546 -0.43 -0.01    +0.076  8.698 

ATOM      5  C11 <1> d          -5.805 -12.804   6.413 -0.35 -0.02    +0.089  8.698 

ATOM      6  O12 <1> d          -5.337 -13.053   5.158 -0.17 +0.08    -0.340  8.698 

ATOM      7  O13 <1> d          -2.708 -13.280   8.044 -0.28 +0.05    -0.292  8.698 

ATOM      8  C14 <1> d          -5.529 -12.801   8.831 -0.46 -0.02    +0.085  8.698 

ATOM      9  C15 <1> d          -6.834 -12.291   8.964 -0.48 -0.03    +0.074  8.698 

ATOM     10  C16 <1> d          -7.634 -12.042   7.835 -0.43 -0.02    +0.073  8.698 

ATOM     11  C17 <1> d          -7.112 -12.310   6.559 -0.34 -0.02    +0.074  8.698 

ATOM     12  C5_ <1> d          -3.831 -13.868   3.489 -0.38 +0.01    -0.029  8.698 

ATOM     13  C4_ <1> d          -4.206 -13.129   2.350 -0.24 -0.00    +0.010  8.698 

ATOM     14  C3_ <1> d          -4.036 -13.667   1.064 -0.25 -0.00    +0.001  8.698 

ATOM     15  C1_ <1> d          -3.480 -14.945   0.903 -0.41 -0.00    +0.000  8.698 

ATOM     16  C2_ <1> d          -3.088 -15.683   2.032 -0.53 -0.00    +0.001  8.698 

ATOM     17  C6_ <1> d          -3.257 -15.144   3.318 -0.58 -0.00    +0.010  8.698 

ATOM     18  O18 <1> d          -4.855 -13.053   9.982 -0.60 +0.13    -0.360  8.698 

ATOM     19 _H19 <1> d          -5.218 -13.551  10.689 -0.24 -0.17    +0.217  8.698 

ATOM     20  O20 <1> d          -8.903 -11.557   7.907 -0.56 +0.05    -0.356  8.698 

ATOM     21  C21 <1> d          -9.710 -11.181   6.832 -0.44 -0.04    +0.210  8.698 

TER 

ENDMDL 
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An example of graphical result generated by Ligplot 4.5.3 software. It illustrates the 

hydrogen bond and hydrophobic interactions between the S-pinostrobin’s conformation 

and amino acid residues of 2FOM. New 180(D) is the temporary code name for ligand 

S-pinostrobin. 
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The text version of hydrogen bond and hydrophobic interactions between the S-

pinostrobin’s conformation and amino acid residues of 2FOM. New 180(D) is the 

temporary code name for ligand S-pinostrobin. 

 

Hydrogen Bond Interactions: 

 

Donor                Acceptor       Distance 

ASN B  152   ND2     NEW D  180   O20    3.14 

NEW D  180   O18     LEU B  149   O      2.72 

 

Hydrophobic Interactions: 

 

Atom 1               Atom 2         Distance 

NEW D  180   C21     ILE B  165   C      3.71 

NEW D  180   C17     ILE B  165   C      3.63 

NEW D  180   C16     ILE B  165   C      3.87 

NEW D  180   C16     ILE B  165   CA     3.81 

NEW D  180   C21     ALA B  164   CB     3.84 

NEW D  180   C16     ALA B  164   C      3.77 

NEW D  180   C15     ASN B  152   CB     3.74 

NEW D  180   C9_     LEU B  149   CG     3.65 

NEW D  180   C9_     GLY B  148   C      3.56 

NEW D  180   C8_     GLY B  148   C      3.80 

NEW D  180   C10     GLY B  148   CA     3.62 

NEW D  180   C9_     GLY B  148   CA     3.29 

NEW D  180   C8_     GLY B  148   CA     3.14 

NEW D  180   C6_     VAL B  147   C      3.86 

NEW D  180   C2_     GLU B   86   C      3.85 

NEW D  180   C6_     LEU B   85   CB     3.69 

NEW D  180   C2_     LEU B   85   CB     3.79 

NEW D  180   C2_     LEU B   85   C      3.32 

NEW D  180   C1_     LEU B   85   C      3.78 

NEW D  180   C9_     TRP B   83   CZ2    3.69 

NEW D  180   C8_     TRP B   83   CZ2    3.62 

NEW D  180   C14     LEU B   76   CD2    3.40 

NEW D  180   C10     LEU B   76   CD2    3.50 

NEW D  180   C9_     LEU B   76   CD2    3.56 

NEW D  180   C10     LEU B   76   CD1    3.90 

 

 

 

 

 

 


