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Gender differences in the reactivity of normoglycemic and diabetic rat aorta and the effects of quercetin and 17β-estradiol 

 ABSTRACT 

Background & objectives: Diabetes is a stronger risk factor in the development of 

cardiovascular diseases in the female than the male gender. Diabetes-induced reactive 

oxygen species (ROS) alters the function of endogenous vasoconstrictors for which the 

antioxidant, quercetin, has been shown to restore in diabetic male rats, which has not 

been proven in the female. The female hormone, estradiol (a potent antioxidant), 

combined with quercetin may offer greater protection against diabetes/ROS-induced 

vascular reactivity. Therefore, the influence of gender on the response of 

normoglycemic/diabetic aorta to vasoconstrictors in the presence/absence of 

quercetin/estradiol, including mechanisms underlying any differences in tissue responses 

was examined. 

 

Materials & methods: Isometric tension to cumulative concentrations of phenylephrine 

or angiotensin II were recorded in (age-and-sex-matched) thoracic aorta isolated from 

normoglycemic/streptozotocin-treated Wistar Kyoto rats. The role of ROS, 17β-estradiol, 

antioxidant enzymes, nitric oxide (NO) and prostaglandins (PG) in modulating the 

differences were explored.   

 

Results & Discussion: Endothelium-intact normoglycemic male tissues contracted more 

to PE or Ang II than the female or the diabetic male. The normoglycemic (proestrus or 

diestrus) /diabetic female tissues contracted equally to PE. Ang II caused lesser 

contraction of normoglycemic (proestrus) /diabetic compared to normoglycemic female 

tissues in diestrus state. Endothelial-denudation or blockade of L-NAME/methylene blue 

(MB) pre-treatment reversed these differences, suggesting e-NOS-sGC-cGMP pathway 

regulated the differences. Endothelial-denudation, L-NAME/MB and acetylcholine 

produced lesser effect on the normoglycemic male and diabetic male/female tissues 
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compared to the normoglycemic female, which exhibited higher tissue vasorelaxants 

(NO/PGI2). Therefore, the aorta of healthy female rat exists in a higher eNOS-sGC-

cGMP (basal vasorelaxant) state. This feature was reversed by diabetes, supporting the 

hypothesis that the female vasculature succumbs more to diabetes-induced alterations 

than the male.   

 

Contractile PG levels were higher in normoglycemic male/diabetic female tissues. 

Diabetes promoted relaxant PGI2 synthesis in male/female tissues. This result is 

consistent with observed gender difference in tissue contraction (normoglycemic male 

>female and diabetic female>male). Higher diabetic female synthesis of contractile PGs 

consistently supports the greater negative impact of diabetes in the female.  Enhanced 

diabetic-synthesis of vasodilators (PGI2/EDNO) in male (/female) tissues perhaps 

represents a pathologic feature of short-term diabetes to counter increased diabetic state-

stimulated contraction. These findings have implications for further understanding of the 

gender-related differences in the mechanism of diabetes-induced vascular disease.  

 

The order of tissue oxidative stress and quercetin-induced reduction are  diabetic (male 

>female)>normoglycemic (male >female) tissues, suggesting that quercetin effect is 

partially mediated by its action against oxidative stress. 17β-estradiol and/or quercetin-

induced relaxation was greater in phenylephrine compared to angiotensin II-contracted 

diabetic male/female tissues, suggesting that quercetin/estradiol therapy appears more 

clinically relevant in managing phenylephrine than angiotensin II-mediated vasoreactivity 

during diabetes. L-NAME/MB reversed quercetin effect in normoglycemic male/female 

tissues (with/without endothelium) and male/female diabetic tissues (with but not without 

endothelium). L-NAME+indomethacin reduced quercetin effect in endothelium-intact 
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normoglycemic male and diabetic male/female tissues. Hence, quercetin action is partly 

mediated by endothelium-sensitive (eNO-sGC-cGMP/cyclooxygenase) and-insensitive 

(NO/cGMP) mechanisms, the latter of which appears inactive in male/female diabetic 

tissues. These findings have implication for the potential therapeutic usefulness of 

quercetin in the management of diabetes vascular disease. 
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ABSTRAK 

Latar belakang & objektif: Diabetes adalah faktor risiko dalam perkembangan penyakit 

kardiovaskular serta lebih ketara  pada golongan wanita berbanding dengan  lelaki. 

Spesies oksigen reaktif (ROS) cetusan diabetes mampu mengubah fungsi vasokonstriktor 

endogen antioksidan, quercetin dan  telah terbuktu berkesan  pada  tikus diabetik jantan 

tetapi belum terbukti dalam tikus betina. Hormon wanita, estradiol (antioksidan yang 

poten)  jika berkombinasi dengan quercetin, boleh menawarkan perlindungan yang lebih 

berkesan terhadap kereaktifan vaskular yang diindusikan oleh diabetes/ROS.  Maka, 

kajian ini bertujuan mengukur pengaruh jantina kepada respon aorta 

normoglisemik/diabetes kepada bahan vasokonstriktor dalam kehadiran/ketiadaan 

quercetin dan/atau estradiol. Mekanisme yang mendasari perbezaan dalam tindak balas 

tisu akan turut dikaji. 

    

Bahan-bahan & Kaedah: Tindak balas ketegangan isometrik kepada kepekatan 

terkumpul phenylephrine atau angiotensin II (dengan atau tanpa bahan ) telah direkodkan 

dalam aorta torasik (yang hampir sama umur-dan-seks) yang diasingkan daripada tikus 

Wistar Kyoto normoglisemik/streptozotocin dirawat. Peranan ROS, 17β-estradiol, enzim 

antioksidan, nitrit oksida (NO) dan prostaglandin (PG) yang boleh menyumbang terhadap 

perbezaan  yang diperolehi akan turut diteroka. 

 

Keputusan & Perbincangan: Tisu tikus jantan berendothelium-utuh normoglisemik, 

bertindak dengan  lebih berpotensi daripada PE atau Ang II berbanding tikus betina atau 

jantan  diabetik. Tisu normoglisemik /diabetes betina berkontraksi terhadap  PE dengan 

lebih poten berbanding terhadap Ang II, yang kurang menghasilkan kontraksi pada  aorta 

diabetes haiwan betina berbanding  dengan tikus normoglisemik. Pemusnahan 
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endothelium , pra-rawatan L-NAME atau methylene  blue (MB) melenyapkan perbezaan 

ini dan  seterusnya mencadangkan bahawa laluan eNOS-sGC-cGMP menyumbangkan 

kepada  perbezaan yang dilhat.   Permusnahan endothelium, L-NAME/MB dan 

asetilkolin menghasilkan kesan yang kurang pada tikus jantan normoglisemik dan tisu 

diabetik jantan/betina berbanding dengan tikus betina yang sihat, yang mempamerkan 

vasorelaksan (NO/PGI2) tisu yang lebih tinggi. Maka, aorta tikus betina yang sihat wujud 

dalam keadaan eNOS-SGC cGMP (basal vasorelaksan) yang lebih tinggi. Ciri ini telah 

dibalikkan oleh diabetes dan ini menyokong hipotesis bahawa vaskulatur haiwan betina 

lebih terpengaruh kepada perubahan-teraruh diabetes berbanding haiwan jantan. 

 

Tahap penguncupan PG  lebih tinggi dalam tisu normoglisemik jantan/diabetes betina. 

Diabetes mempromosikan sintesis relaksan PGI2 dalam tisu jantan/betina. Keputusan ini 

adalah selaras dengan cerapan perbezaan gender dalam penguncupan tisu (normoglisemik 

jantan> betina dan betina diabetik> jantan). Sintesis penguncupan PG pada haiwan betina 

adalah lebih tinggi pada diabetik terus menyokong kesan negatif diabetes yang lebih 

ketara di kalangan haiwan betina. Sintesis vasodilator (PGI2/EDNO)  yang 

dipertingkatkan dalam tisu jantan(dan betina) mungkin mewakili ciri patologi diabetes 

jangka pendek untuk menentang peningkatan keadaan penguncupan diabetik dirangsang. 

Penemuan ini mempunyai implikasi untuk memahami dengan lebih lanjut perbezaan 

berkaitan gender dalam pada tisu vaskular akibat penyakit diabetes. 

 

Urutan tekanan tisu  oksidatif dan pengurangan kesan quercetin  adalah seperti berikut:  

tisu   jantan diabetik > betina diabetik > jantan normoglisemik > betina normoglisemik  

dan menyokong cadangan bahawa  sebahagiannya kesan quercetin diperantarakan oleh 

tindakan terhadap tekanan oksidatif. 17β-estradiol dan/atau pengenduran akibat dorongan 
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quercetin  adalah lebih ketara pada phenylephrine berbanding dengan angiotensin II-tisu 

diabetik jantan/betina yang dikuncupkan dengan angiotensin II, mencadangkan bahawa 

penggunaan quercetin/ estradiol mungkin lebih relevan secara klinikal  dalam 

mempengaruhi reaktiviti terhadap phenylephrine berbanding dengan  angiotensin II 

semasa diabetes. L-NAME/MB mebalikkan kesan quercetin dalam tisu jantan/betina 

normoglisemik (dengan atau tanpa endothelium) dan tisu diabetes jantan/betina (dengan 

tetapi tidak tanpa endothelium). L-NAME + Indomethacin mengurangkan kesannya 

dalam tikus jantan normoglisemik berendothelium-utuh dan tisu diabetes  jantan/betina. 

Oleh itu, tindakan quercetin sebahagiannya diperantarakan oleh  mekanisme yang 

endothelium sensitif (eNO-sGC-cGMP/cyclooxygenase) dan tidak sensitif (NO/cGMP), 

di mana kedua-duannya  adalah tidak aktif dalam tisu diabetes jantan/betina. Penemuan 

ini mempunyai implikasi positif untuk  kegunaan quercetin secara terapeutik dalam 

merawat ganguan pada sistem vaskular dalam pesakit penyakit diabetes. 
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CHAPTER 1 

INTRODUCTION 

1.1. Overview 

Cardiovascular diseases (CVD) are the world’s leading causes of premature death and 

permanent morbidity in both men and women (NCEP, 2002). Gender and diabetes are 

primary risk factors in the development of CVD. It has been shown that women on the 

average develop CVD 10 to 15 years later than men, and the female risk may increase 

after menopause due to declining effect of vasoprotective estrogens (Barrett-Conner and 

Bush, 1991).  Under healthy physiological conditions, the vascular endothelium 

maintains blood flow and a balance between endothelium-derived contracting and 

relaxation factors (Pugley and Tabrizchi, 2000).  In both hypertension and diabetes-

induced vascular disease, dysfunction in renin angiotensin system (RAS) (which 

produces angiotensin II (a potent vasoconstrictor)) potentiates the synthesis and 

function of other endogenous vasoconstrictors and reactive oxygen species (ROS) 

(Touyz, 2004; Chu and Leung et al, 2009). Depending on the duration of vascular 

disease, increased ROS synthesis modifies and incapacitates the ability of the 

endothelium to secrete anti-atherosclerotic endothelium-derived relaxing factors 

(EDRF’s) (such as nitric oxide (NO) and prostaglandin I2 (PGI2; prostacyclin) which 

ultimately results in endothelial dysfunction (Bayraktutan, 2002; Browne et al, 2007).  

The mechanism involved in the short-term diabetes (4-12 weeks)-induced endothelial 

dysfunction (including altered vascular contraction) occurs earlier (and is more severe) 

in female than male subjects (Pinna et al, 2001), which suggests a role for gender in the 

pathogenesis of the disease. The mechanism of diabetes-induced endothelial 

dysfunction has been mostly demonstrated and not fully understood in the male gender 

(Ajay et al, 2006a,b; 2005; 2007; Chin et al, 2007) and may differ in the female. To 
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date, experimental studies on the effects of short-term diabetes on female models are 

sparse (Pinna et al, 2001). Since diabetes has been shown to be a stronger risk factor in 

the development of cardiovascular disease in the female gender than in the male 

(Barrett-Conner and Bush, 1991;Pinna et al, 2001), it is reasonable to suggest that more 

marked contractile dysfunction may occur in the vasculature of diabetic females than 

the male. Hence there is a need to investigate the effect of gender on short-term 

diabetes-induced alterations on vasocontractor function. 

 

Furthermore, the endothelium of healthy male rats generates less endothelium-derived 

nitric oxide (EDNO) (Hayashi et al., 1992; Kauser and Rubanyi, 1994) and higher 

levels of oxidative stress factors compared to healthy females (Brandes and Mugge, 

1997; Ide et al., 2002; Sartori-Valinotti et al., 2007). These gender differences are 

abolished by ovariectomy of the female (Barp et al, 2002), suggesting a higher 

protective role of the female endothelium and the female hormone, estradiol (17β-

estradiol). Therefore, understanding the role of endothelium, ROS and estradiol in 

diabetes-induced vascular pathophysiology is important to developing correlations 

between experimental and clinical application.  

  

Increasing evidence supports the use of dietary flavonoids to protect the endothelium 

from diabetes-induced vascular injury (Larson et al, 2010). The anti-oxidant, quercetin 

is ubiquitous in human diet and comprises about 60% of total dietary flavonoid 

consumption (Hertog et al. 1993; Larson et al, 2010). In the laboratory where the 

current study was undertaken, quercetin has been frequently shown to ameliorate 

vascular reactivity in diabetic animal models (Ajay et al, 2006a; 2007). These studies 
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however focused largely on male rats. Considering that the reproductive female has 

been identified as protective from cardiovascular disorders, and that female diabetics 

seem to lose much of this inherent protection (Pinna et al, 2001), there is a need to 

investigate possible gender differences in previously documented roles of ROS in the 

modulation of diabetic vasculopathy in rats. In addition, given that quercetin exerts its 

vasoprotective effects in diabetic male rat through the scavenging of free radicals and 

promotion of anti-oxidant enzyme function (Ajay et al, 2007; Sanchez et al, 2007), there 

is need to investigate if the vasodilator action of quercetin may differentiate between 

male and female tissues and if so, the possible mechanisms underlining any such 

difference in the action of quercetin against contractile dysfunction in the diabetic 

animal.     

 

Furthermore, quercetin is the most potent anti-oxidant flavonoid, and it has been shown 

to preserve vascular endothelial function (Lakhanpal and Rai, 2007; Larson et al, 2010). 

On the other hand, compared to other sex hormones (progestins and androgens), 

estrogens (estriol, estrone, and estradiol) are more anti-oxidative and protective of 

vascular endothelial function (Czubryt et al. 2006). Given their individual 

vasoprotective potentials, a combined therapy of exogenous estradiol (17β-estradiol) 

and quercetin may hold a stronger promise in protecting the diabetic vasculature against 

oxidative stress and its excessive contractile effects. The findings in this study may have 

implications for further understanding of the gender-related differences in CVD events 

and the therapeutic usefulness of quercetin, estradiol or both in managing the outcomes.  
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1.2. Literature review  

1.2.1. Vascular smooth muscle 

The functionality of blood vessels is dependent on the maintenance of the structural 

integrity. The walls of blood vessels consist of three distinct layers of cells, namely, the 

intima, media, and adventitia. The intima consists of monolayer endothelial cells and 

connective tissue. The media layer is composed of elastin, collagen, and vascular 

smooth muscle (VSM) cells. The adventitia which surrounds the intima and the media is 

composed of strong fibrous tissue which maintains vessel structural integrity and shape 

(Pugley and Tabrizchi, 2000).  

 

1.2.1.1. Vasocontraction  

The contraction and relaxation of vascular smooth muscle (VSM) regulates vascular 

tone. Smooth muscle contraction is initiated and sustained by Ca
2+

 release from the 

sarcoplasmic reticulum stores, and from intracellular calcium influx from the 

extracellular space (Khalil and Breemen, 1995). The association of free intracellular 

Ca
2+

 ([Ca
2+

]i) with calmodulin leads to the phosphorylation  and activation of  protein 

kinases (such as myosin light chain (MLC) kinase, Rho kinase, and mitogen activated 

protein kinase (MAPK)) coupled with the inhibition of myosin light chain kinase 

(MLC) phosphatase enzyme which degrades MLC kinase (Somlyo and Somlyo, 2000). 

Phosphorylated myosin cyclically binds to actin filaments resulting in force or the 

shortening of the smooth muscle (Webb, 2003) (Fig. 1.1). Also the interaction of 

vasoconstricting neurotransmitters and hormones with the G-coupled receptors on 

smooth muscle cell surface can initiate series of processes that promote vascular smooth 

muscle contraction. These receptors are activated by various types of guanosine 5-

triphosphate (GTP) binding proteins (G-proteins), which are linked to different ion 
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channels and enzymes that modulate vasoconstriction. For example, activation of the G-

coupled receptors enhances the degradation of plasma membrane phospholipids by 

phospholipase C (PLC), which converts inositol-di-phosphate (IP2) to produce inositol 

triphosphate (IP3) and diacylglycerol (DAG) (a promoter of protein kinase C (PKC) 

activity, release of [Ca
2+

]i and contraction of smooth muscle (Fig. 1.1) (Webb, 2003, 

Orshal and Khalil, 2004). Activation of G-protein coupled receptors also promotes 

vasoconstriction via the inhibition of the activity of adenylate cyclase (which converts 

adenosine triphosphate (ATP) to cyclic adenosine-mono-phosphate (cAMP)), an 

inhibitor of MLCK contractile activation (Fig. 1.1). Further, stimulation of G-protein 

coupled receptors may also initiate contraction by promoting the depolarisation of 

smooth muscle cells leading to the activation of voltage-dependent Ca
2+ 

channels and 

influx of extracellular Ca
2+

 into smooth muscle cells (Webb, 2003) (Fig. 1.1).  

 

1.2.1.2. Vasorelaxation 

On the other hand, the relaxation of smooth muscle occurs following the re-sequestering 

of Ca
2+ 

into the sarcoplasmic reticulum by a plasma membrane Ca
2+

pump (Hathaway et 

al. 1991) (and other Ca
2+

 pumps (Morel et al. 1981; Carafoli, 1991)) (Fig. 1.1). Several 

mechanisms are involved in the removal of [Ca
2+

]i. For example, inhibition of the 

activities of sarcoplasmic reticulum Ca
2+

-Mg
2+-

adenosine 5’-triphosphate (ATP)ase 

activity, plasma membrane receptor-operated  and voltage-operated Ca
2+ 

channels 

reduce the mobilization of [Ca
2+

]i and hence promotion of smooth muscle relaxation 

(Webb, 2003). 
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1.2.2. The endothelium 

1.2.2.1. Physiology of vascular endothelium  

The endothelium is a multifunctional organ comprising of simple monolayer of cells 

separating circulating blood from the vascular smooth muscle. Vascular endothelium 

plays an important role in the regulation of vascular tone, maintenance of blood fluidity 

and homeostasis. To maintain vascular homeostasis, the endothelium synthesizes 

several vasoactive substances, including the vasodilators, NO, PGI2, endothelium-

derived hyperpolarizing factors (EDHF’s) and vasoconstrictors such as angiotensin II 

and endothelin-1 (Bayrantutan, 2002). A healthy endothelium maintains a balance in the 

function of vasodilator, vasoconstrictor, platelet aggregation, leukocyte adhesion and 

vascular smooth muscle growth factors (Cooke, 2000).  

 

1.2.2.2. Pathophysiology of diabetes-induced endothelial dysfunction 

Diabetes mellitus is a metabolic disorder characterized by high blood glucose levels 

resulting from defective insulin secretion and/or resistance to insulin action (Pazdro and 

Burgess, 2010). Diabetes mellitus is a crucial public health concern affecting 

approximately 100 million persons
 
worldwide, and this number is expected to rise to 

300 million by 2025 (Amos et al. 1997). Of the total diabetes population, 5-10% has 

insulin-dependent diabetes mellitus (IDDM, type 1 diabetes) and 90-95% has non–

insulin-dependent diabetes mellitus (NIDDM, type 2). Type 1 or IDDM, which is 

caused by a combination of hereditary and environmental factors, is the most prevalent 

type of diabetes arising from the auto-immune mediated destruction of pancreatic β 

cells which reduce insulin bioavailability (Schwarz et al. 2009). NIDDM or type 2 

diabetes which is characterized by insulin insensitivity coexists with hypertension and 

dyslipedimia (Schwarz et al. 2009). The incidence of type 2 diabetes is growing rapidly 
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due to increasing obesity, sedentary lifestyle patterns and unhealthy dietary habits 

(Fontana, 2009).
 
In humans and experimental animals, both forms of diabetes are 

associated with endothelial dysfunction, which is characterized by the impairment of the 

vital functions of the endothelium, including the anti-inflammatory, anti-proliferative, 

anti-thrombic and vasodilatory properties (De Vriese et al. 2000; Bayrantutan, 2002) 

Further, increased synthesis of cyclooxygenase pathway-dependent vasoconstrictors, 

excessive synthesis or diminished destruction of ROS, and dysregulation in the gene 

encoding endothelial nitric oxide synthase (eNOS) (Zanetti, et al. 2000) have been 

proposed to contribute to the pathogenesis of diabetes endothelial dysfunction. This 

diabetes-induced derangement in vascular homeostasis leads to micro vascular 

(including nephropathy and retinopathy) and macro vascular (such as atherosclerotic 

cardiovascular disease: coronary artery disease, cerebrovascular disease and peripheral 

vascular disease) complications, the principal cause of death and disability in patients 

with diabetes (Cohen, 2005).  
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Figure1.1: Physiological and pathological stimuli involved in the mediation of vascular 

smooth muscle contraction or relaxation. Angiotensin converting enzyme (ACE), 

angiotensin I (Ang I), angiotensin II (Ang II), angiotensin II type I receptor (AT1), 

adenosine triphosphate (ATP), cyclic adenosine 3’,5’-monophosphate (cAMP), cyclic 

guanosine 3’,5’-monophosphate (cGMP), cyclooxygenase (COX), endothelin-

converting enzyme (ECE), endothelium-derived hyperpolarizing factor (EDHF), 

endothelin (ET), endothelin-1 (ET-1), endothelin-1 receptor A (ETA), guanylate cyclase 

(GC), adenlate cyclase (AC), prostaglandin I2 receptor (IP), inositol triphosphate (IP3), 

mitogen-activated protein kinase (MAPK/Akt) pathway, L-arginine (L-Arg), nitric 

oxide (NO), endothelial nitric oxide synthase (eNOS), superoxide anion (•O2
-
), 

phospholipase C (PLC), diacylglycerol (DAG), prostaglandin (PG), prostacyclin (PGI2), 

thromboxane A2 receptors (TP), thromboxane A2 (TXA2), cyclooxygenase (COX), 

channels, intracellular calcium [Ca
2+

]i, myosin light chain kinase (MLCK), myosin light 

chain (MLC). Symbols: (-) (inhibition), ◊ (potassium (K
+
) or Ca

2+
 ion channels). 

Arrows: ↑ (increase), ↓ (decrease) in synthesis, → (activation). 

 

 



 

9 
 

          Gender differences in the reactivity of normoglycemic and diabetic rat aorta and the effects of quercetin and 17β-estradiol 
 

1.2.3. Endogenous vasodilators  

1.2.3.1 Endogenous vasodilator function in normal and diabetic states  

A number of endothelium-derived factors play a vital role in endothelium-dependent 

vascular relaxation including, nitric oxide (NO), vasodilator prostaglandins (PGI2), 

bradykinin and hyperpolarizing factors.  

 

1.2.3.2 Acetylcholine 

The neurotransmitter, acetylcholine (ACh) is produced endogenously at cholinergic 

synapses and neuroeffector junctions in the central and peripheral nervous system. It 

dilates vascular beds by stimulation of muscarinic receptor (M3 subtype) located on the 

endothelial cells of the vessel wall despite poor cholinergic innervations of most arterial 

beds (Caulfield and Birdsall, 1998). Stimulation of the muscarinic receptors causes the 

endothelial cells to release several endothelium-derived factors, the most prominent of 

which is NO, PGI2, and EDHF (Busse and Fleming, 1993). Clinical and animal models 

of diabetes are associated with impaired endothelium-dependent relaxation (i.e. 

endothelial dysfunction) as a result of diabetes-induced ROS-enhanced reduction in the 

synthesis and/or bioavailability of NO and deficiency of anti-oxidant enzymes (such as 

superoxide dismutase) (Gewaltig and Kojda, 2002). In early stage diabetes (4-12 

weeks), endothelium-dependent ACh-induced vasodilation is enhanced, whereas at 

latter stages, vasodilatation is diminished
 
(Pieper, 1999).     
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1.2.3.3. Nitric oxide 

Nitric oxide (NO) is a highly reactive (free radical) gaseous compound which plays a 

critical role in the regulation of vascular tone.  Its discovery as an endothelium-derived 

relaxing factor (Furchgott and Zawadzki, 1980) and subsequent identification as NO 

(Ignarro et al. 1987), elicited enormous research interest.  NO is synthesized from the 

endothelial cells by NO synthases (NOS) conversion of L-arginine to L-citrulline (Fig. 

1.1) in response to physiological stimuli such as ACh, bradykinin, histamine, thrombin, 

ADP, ATP, substance P, oxidative stress and shear stress (Stuehr, 1999). NOS exists in 

three isoforms (neuronal nNOS (NOS I), inducible iNOS (NOS II), and endothelial 

eNOS (NOS III). iNOS which is Ca
2+

 independent is  involved in the long-term 

regulation of vascular tone, whereas eNOS-Ca
2+

 dependent isoform plays a role in the 

short-term regulation of vascular tone (Orshal and Khalil, 2004). Once synthesized from 

the endothelium, the binding of NO to the heme moiety of soluble guanylate cyclase 

(sGC), increases the production of intracellular cyclic 3’-5’-guanosine monophosphate 

(cGMP) (Fig. 1.1). cGMP activates the cGMP-dependent protein kinase (PKG) which 

down regulates key pathways involved in Ca
2+

 homeostasis,  resulting in reduced 

[Ca
2+

]i and sensitivity of contractile proteins to Ca
2+

, thus promoting smooth muscle 

relaxation (Lincoln et al. 2001). Therefore, stimulation of NO counterbalances the direct 

endogenous vasoconstrictor effects of noradrenaline, serotonin, angiotensin II and 

endothelin on the vascular smooth muscle and its inhibition leads to significant 

peripheral vasoconstriction and elevation of blood pressure (Tresham et al. 1991). NO 

may also produce vasorelaxation by hyperpolarizing vascular smooth muscle which 

directly activates Ca
2+-

activated K
+
 channels (Kca) and Na

+
-K

+
 ATPase activity (Cohen 

and Vanhoutte, 1995).   
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Due to its anti-proliferative, anti-platelet aggregation and inhibitory effects on leukocyte 

adhesion, in blood vessels, NO plays an important role in the pathogenesis of diabetes 

(Bayrantutan, 2002). For example, in diabetes the gene encoding for eNOS (the main 

source of NO within the vascular endothelium) is impaired in experimental animals 

(Lund et al. 2000; Zanetti et al. 2000), hyperglycemic endothelial cells (Chakravarthy, 

1998) and in patients with diabetes and hypertension (Endemann and Schiffrin, 2004).   

 

1.2.3.4. Vasodilator prostaglandins  

Prostaglandin (PGI2) is the major vasodilatory PG produced by vascular endothelial 

cells. It is released from arachidonic acid by endothelium based COX-2 enzyme in 

response to shear stress, hypoxia, or to NO agonists (Fitz-Gerald and Patrono, 2001). 

PGI2 induces  relaxation of vascular smooth muscle by activating adenylate cyclase 

leading to increased production of cyclic adenosine monophosphate (cAMP) and hence 

reduction of [Ca
2+

]i and contraction (Fig. 1.1 ) (Cohen and Vanhuette 1995). PGI2 may 

be involved in the pathogenesis of diabetic vascular disease. For example, diminished 

PGI2 release in response to adrenaline has been observed in the aorta of STZ diabetic 

rats (Jeremy et al. 1993) and hence, the blockade of COX enzyme activity has been 

shown to potentiate endothelium-mediated vasodilatation in both hypertensive and 

diabetic rat arteries (Fitz-Gerald and Patrono, 2001). It has also been suggested that the 

diabetic state may cause an imbalance in endothelial production of eNOS and/or COX-

derived PG factors and/or a defect in the eNOS-PG mediated cross-talk, all of which 

tends to make the vessel wall vasoconstrictive (Browne et al. 2007). 
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1.2.3.5. Bradykinin 

The 9 amino acid peptide, bradykinin is synthesized from Kininogens from kallikrein-

kinin system (KKS) located in both plasma and vascular tissues (Babe et al. 1996). 

Bradykinin primarily mediates the synthesis of blood clotting as well as vasodilator 

factors from the vascular endothelium. Bradykinin promotes vasodilatation by 

promoting the synthesis and the release of NO, PGI2, EDHF and adenine nucleotides 

(ADP, ATP) via two of its kinin receptors, (B1 and B2). Stimulation of the same 

receptors also inhibits platelet adhesion and smooth muscle cell proliferation (Linz et al. 

1999). There is growing evidence to suggest bradykinin-renin angiotensin cross talk 

may play a vital role in regulation of blood pressure and endothelial function (Hornig et 

al. 1997). For example, inhibition of angiotensin converting enzyme (ACE) is 

associated with increased levels of bradykinin, angoitensin (1-7), NO and decrease in 

levels of angiotensin II in normotensive and hypertensive blood vessels (Lima et al. 

1997; Gainer et al 1998). Since diabetes promotes the activation of angiotensin II (Chu 

and leung, 2009), the bradykinin-renin angiotensin system may be involved in the 

pathogenesis of the disease. 

 

1.2.3.6. Endothelium-derived hyperpolarizing factor  

The role of endothelium-derived hyperpolarizing factor (EDHF) in modulating vascular 

tone remains unclear. EDHF may originate from cytochrome P450-derived arachidonic 

acid epoxides (Archer et al. 2003, Gauthier et al. 2005) and their contribution to 

endothelium-mediated relaxation is believed to be independent of NOS and COX  and 

may vary with vascular beds (being more pronounced in smaller compared to larger 

arteries) (Feletou and Vanhoutte, 1999; McGuire et al. 2001). EDHF elicits vascular 

relaxation by opening of Ca
2+-

regulated K
+
 channels (BKCa) in the VSM cell 
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membranes which promote the sequestration and mopping up of free [Ca
+2

]i (Feletou & 

Vanhoutte, 1999; Mc. Guire et al 2001). They may also promote vasodilatation via the 

activation of ATP-sensitive K
+
 channels (KATP) and Na

+
, K

+
-ATPase, but  Ca

2+
-

activated K
+
 channels account more for its vasorelaxant effects (Mc. Guire et al 2001). 

EDHF-mediated vasodilatation becomes more pronounced in conditions of endothelial 

dysfunction (where NO bioavailability is impaired), an indication that EDHF may 

compensate for diminished endothelium-dependent vasorelaxation in the diabetic state 

(Taddei et al. 2001). 

 

1.2.4. Endogenous vasoconstrictors  

1.2.4.1. Endogenous vasoconstrictor function in normal and diabetic states 

The diabetic blood vessel is not only characterized by altered vasodilator signaling but 

also by abnormal synthesis and function of endogenous vasoconstrictor factors, such as 

angiotensin II, noradrenaline, vasopressin, and 5-hydroxytryptamine, and contractile 

prostaglandins (De Vriese et al. 2000; Golovchenko et al. 2000). Diabetes-induced 

hyperglycemia coupled with excessive generation of ROS modifies the function of anti-

atherosclerotic EDRFs such as NO. Depending on the duration of the disease, ROS 

ultimately impair vasoconstrictor function (Pieper, 1999). However, the extent to which 

vasoconstrictor function is modified by the diabetic state is inconsistent with some 

studies reporting attenuation (Myers and Messina, 1996; Misurski et al. 2001), 

enhancement (Abebe et al. 1990; Dresner et al. 1997) or unchanged contractile 

responses (Mulhern and Docherty, 1989; Chang and Stevens, 1992). Differences in 

variations in the mobilization of the L-arginine nitric oxide and/or cyclooxygenase 

pathway (Pieper, 1998; Browne et al. 2007) under the various experimental conditions 

(sex, age, and strain of the animal and type of vessels studied, diabetogenic agent 
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employed and duration of diabetes) have been suggested to contribute to these 

discrepancies (Bell and Hye, 1983; Pieper, 1999).   

 

1.2.4.2. Angiotensin II 

The renin-angiotensin system (RAS) is localized in vascular endothelial and smooth 

muscle cells. Angiotensin II (Ang II), the main effector hormone of the renin-

angiotensin system (RAS), is an important mediator of cardiovascular disease including 

hypertension, myocardial infarction, stroke, renal failure, and diabetic vascular 

complications.  Its physiological function is mediated mainly by four receptor subtypes 

AT1 to AT4 (Dzau et al. 2001). Its effects via AT1 receptor include vasoconstriction, 

renal salt retention, and aldosterone and vasopressin release. It induces VSM cell 

contraction via the G-protein-coupled receptor signaling cascade (Fig. 1.1) and may 

augment the same by directly or indirectly potentiating the production and effect of 

other vasoconstrictors. It may also promote vascular remodeling (endothelial growth, 

apoptosis, inflammation, fibrosis and thrombosis) via the same receptor (Palatini, 2001). 

The AT2 receptor stimulation (antagonizes/) blocks the effects of Ang II via AT1 

receptor (Unger, 2000). The function of AT3 receptor is unclear but the AT4 receptor 

may protect vascular integrity by stimulating endothelial release of plasminogen 

activator inhibitor-1 (the principal inhibitor of plasminogen and hence promote 

fibrinolysis (Unger, 2000; Palatini, 2001). In diabetes, Ang II- mediated effects via AT1 

receptor promotes excessive ROS generation, and increases the level and activation of 

other vasoconstrictors, thereby accelerating vascular remodeling of the endothelium 

(Touyz, 2004).  
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1.2.4.3. Endothelin-1  

The peptides, endothelins (ETs), including ET-1, ET-2, and ET-3, are localized in VSM 

and endothelial cells and they possess potent and sustained vasoconstrictor properties 

(Schiffrin, 2001). Ang II and other physiological stimuli (including adrenaline, 

cytokines, free radical, and physical factors such as stretch, hypoxia, and low shear 

stress) stimulate the production and release of ET-1 (the predominant member of the ET 

family) from VSM and endothelial cells (Schiffrin, 2001).  ET-1 contracts VSM cells 

and cardiomyocytes via ETA G-protein-coupled receptor subtype resulting in sustained 

vasoconstriction. ET-1 may also potentiate the vasocontractile response of other 

vasoconstrictors such as norepinephrine (noradrenaline), and contractile prostaglandins. 

Its vascular effects via ETB receptor oppose the effects of ETA receptor. ET-1 is 

proinflammatory and promotes vascular smooth muscle cell growth, suggesting that it 

may be particularly relevant to the pathophysiology of vascular disease in diabetes 

(Creager et al. 2003). In support of this hypothesis, endogenous ET-1 mediated 

vasoconstriction is impaired in animal models of diabetes (Mcauley et al. 2000) and in 

patients with type II diabetes (Nugent et al. 1996). 

 

1.2.4.4. Noradrenaline 

Noradrenaline (NA) or its analogue phenylephrine is a contractile agent of choice in the 

study of endothelial- dependent and -independent vascular relaxation responses. NA 

produces smooth muscle cell contraction by stimulating a1-adrenoceptors, which results 

in the activation of PLC-G-protein-coupled receptor cascade (Fig. 1.1) and the 

promotion of vascular smooth muscle contraction. NA may additionally enhance 

vasoconstriction by depolarizing arterial smooth muscle cells consequently opening the 
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voltage-operated Ca
2+

channels in the plasma membrane of the smooth muscle, leading 

to influx of [Ca
2+

]i and sustained Ca
2+

-dependent contraction (Nelson et al. 1990). 

Impaired vasocontractile response to noradrenaline or phenylephrine has been reported 

in experimental diabetes (Pinna et al. 2001; Sanz et al. 2003).  

 

1.2.4.5. Serotonin (5-hydroxytryptamine) 

Serotonin (5-hydroxytryptamine, 5HT) is a monoamine neurotransmitter primarily 

found in the gastrointestinal tract, platelets and in several parts of the central and 

peripheral nervous systems. Circulating serotonin originates in the gastrointestinal tract, 

where it overflows into blood and taken up by platelets.  Serotonin released from 

activated platelets binds to its receptors on vascular smooth muscle cells and promotes 

G-protein- mediated contraction (Fig. 1.1) (Vanhoutte, 1990). In most blood vessels, 

this platelet (serotonin)-induced vasoconstriction is preventable with 5-HT2-

serotonergic antagonists such as ketanserin and naftidrofuryl (Vanhoutte, 1990).  In 

healthy blood vessels, serotonin induces the endothelial cell synthesis of NO which may 

oppose platelet aggregation and its contractile stimulation (Vanhoutte, 1990). Serotonin 

is involved in the pathogenesis of coronary artery disease (Ichikawa et al. 1989), and 

diabetes- induced neuropathy (Sandrini et al. 1997), retinopathy (Pietraszek et al. 1992) 

and vasculaopathy (Hagen et al, 1985). 
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1.2.4.6. Potassium and calcium ions 

Increase in extracellular potassium chloride (KCl) promotes vascular contraction by 

inhibiting Na
+
, K

+
-ATPase, which promotes Na

+
 entry (into smooth muscle cells), 

membrane depolarization, influx of voltage-dependent Ca
2+

 ions  and hence 

vasoconstriction (Karaki & Weiss, 1988). KCl-induced VSM cell depolarization 

liberates endogenous noradrenaline from vascular sympathetic nerve endings, which 

also augments contractile response (Fouda et al. 1991). Diabetes reduces Ca
2+

 and K
+
-

induced contractions of rat aorta suggesting diminished activity of Ca
2+

 channels and/or 

reduced levels of calmodulin in diabetic tissue (Ozturk, et al. 1994), although this was 

not corroborated by another study (Fulton et al. 1991). 

 

1.2.4.7. Contractile prostaglandins 

Endothelial cells produce contractile prostaglandins (PGs) from phosholipase A2 –

mediated metabolism of arachidonic acid. The enzyme cyclooxygenase (COX) converts 

arachidonic acid into PGG2 and then into PGH2. PGH2 is then metabolized (by specific 

isomerases) into several contractile factors such as PGF2, PGE2, and TXA2 (Fig. 1.1) 

(the most potent of contractile PGs) (Cohen and Vanhoutte, 1995; Feletou et al. 2010).   

Vasoconstrictor PGs endothelium-dependent contractions are mediated by thromboxane 

prostanoid (TP) receptors underlying vascular smooth muscle (Fig. 1.1). In addition, 

stimulation of TP receptors also promotes vascular remodeling (Feletou et al. 2010). 

Diabetes-induced hyperglycemia may promote the activity of COX-derived 

vasoconstrictor
 
prostaglandins. For example, in cultured human

 
aortic endothelial cells, 

hyperglycemic conditions was shown to up-regulate the mRNA expression/protein 

levels of COX-2 (enzyme involved in the synthesis of PGE2 (Muscara et al. 2000) but
 

not COX-1 (the enzyme involved in the synthesis of TXA2) (Wallace et al. 1999). In 
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addition, diabetes induced an increase in levels of endothelium-derived vasoconstrictor 

prostaglandins which in turn augmented Ang II vascular effects (including vascular 

inflammation and thrombosis) in rabbit aorta (Tesfamariam et al. 1990).  Hence, TP 

receptor antagonists may be useful in ameliorating contractile dysfunction, vascular 

inflammation and thrombosis (Feletou et al. 2010).   

 

1.2.4.8. Influence of gender on vascular contraction in normal and diabetic states 

Contractile effects of endogenous vasoconstrictors are regulated by gender. For 

example, it has been shown that VSM cell of males have more AT1 receptors and ACE 

activity compared to those of reproductive females, an explanation for why the pressor 

effects of Ang II is more pronounced in intact male arteries than the female (Xue et al. 

2007). Likewise, vascular contraction in response to catecholamines (nor noradrenaline 

and adrenalin) (Li and Duckles, 1994; Kneale et al. 2000) or to the sympathetic co-

transmitter, neuropeptide Y (Zukowska-Grojec, 1998) is greater in male than the female 

gender. These sex-dependent differences in responses to contractile agonists have been 

associated with direct action of sex hormones (i.e. estradiol, progestins and androgens) 

on steroid receptors in endothelial and smooth muscle cells. For example, Stallone et al. 

1991, and Crews & Khalil, 1999, demonstrated that the gender difference in the 

reactivity of isolated aortic ring to nor noradrenaline or adrenalin is abolished by 

ovarietomy of the female, suggesting a direct role for the female hormone, estradiol 

(17β-estradiol). On the other hand, the same authors found no difference in contraction 

between the castrated and intact male aorta but reported a significant elevation in the 

contraction of ovariectomized (OVX) females compared with intact females (Stallone et 

al. 1991), indicating that gender differences in vascular tone may be more likely related 
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to estrogens than to androgens.  Also, intact females and OVX female animals 

implanted with estradiol exhibited reduced Ca
2+

 entry, [Ca
2+

]i  and vascular contraction 

compared with males or  OVX females without it  (Crews  and Khalil, 1999; Murphy 

and Khalil, 2000). Taken together, these findings suggest that sex differences in 

vascular tone are a direct consequence of the vascular effects of sex hormones. Since 

diabetes disrupts aromatase activity (Kim et al. 2006), the alterations in the function of 

these sex hormones may have further implications for understanding the role of gender 

in regulating vascular injury.  

 

1.2.5. Steroid sex hormones 

Sex hormones (androgens, progestins and estrogens) interact with cytosolic and nuclear 

receptors on vascular endothelial and smooth muscle cells to stimulate a host of 

genomic and non genomic effects that modulate vascular function.  Growing research 

interest in the beneficial role of hormone replacement therapy (HRT) in reducing the 

incidence of cardiovascular disease and risk associated with it, has been the subject of 

many reviews (Gerhard and Ganz, et al. 1995; Palin et al. 2001). 

  

1.2.5.1. Androgens 

Androgen (testosterone, dihydrotestosterone and androstenedione) receptors are 

localized in endothelial and vascular smooth muscle cells in both genders but their 

levels are fourteen-fold higher in males than in females (Czubryt et al. 2006).  The 

effects of androgens on vascular function are contradictory. For example, androgens 

(testosterone) may enhance vascular contraction (by inhibiting endothelium-dependent 

or independent relaxation) (Wynne and Khalil, 2003) as well as relaxation of arteries 

isolated from experimental animals (Costarella et al. 1996). However, the latter may not 
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be physiologically relevant, since it is achieved at supraphysiological concentrations; is 

endothelium-independent and more pronounced with structurally modified analogs 

(Honda et al. 1991).  

 

1.2.5.2. Progestin 

Progestin (progesterone) is produced more in females than males and is sixty-fold 

higher in premenopausal women than in men and post-menopausal women (Czubryt et 

al. 2006). Its effects on vascular reactivity are contradictory, ranging between no effect, 

inhibition or enhancement of relaxation (Thompson and Khalil, 2003). However, in 

laboratory animals, a number of studies support a vasodilatory role for progesterone via 

the promotion of NO and/or PGI2 (Orshal and Khalil, 2004), but compared to estrogens, 

progesterone-induced vasorelaxation is smaller (Crews and Khalil, 1999). Further, 

progesterone may augment (Nickenig et al. 2000) or oppose the cardiovascular effects 

of estrogens (Wassmann et al. 2005)  

 

1.2.5.3. Estrogens 

Estrogens (17β-estradiol, estrone and estriol) are generated in both males and females, 

but are seven-fold higher in premenopausal women than in men and post-menopausal 

women (Czubryt et al. 2006).  Compared to other gonadal sex hormones (progestins and 

androgens), the effects of estrogens on vascular function has been mostly studied owing 

to its beneficial potential in the treatment of cardiovascular complications in 

menopausal women (Gerhard and Ganz, et al. 1995; Palin et al. 2001). The vascular 

effects of estrogens are mediated via two estrogen receptors (ER) (ERa and ERβ) located 

on endothelial and VSM cells. ERβ receptor is predominantly expressed in human VSM 

cells, particularly in women where it mediates direct vascular effects of estrogen. ERa 
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receptor sub type plays an important role in regulating VSM cell differentiation and 

proliferation (Montague et al. 2006). The mechanisms by which estrogens exert their 

cardiovascular protective effects are not completely understood, but suggested 

mechanisms include their ability to modulate endothelial nitric oxide synthase (eNOS) 

expression and synthesis of NO via genomic and non genomic pathways. In the 

genomic pathway, estrogens interact with their receptors leading to a range of (delayed) 

effects involving the activation of MAPK/Akt-eNOS dependent transduction pathway 

(Geraldes et al. 2002) (Fig. 1.1). In the non-genomic (rapid onset) pathway, the binding 

of estrogens to endothelial surface membranes stimulate the phosphorylation of 

MARK/Akt pathway, thereby promoting the eNOS-mediated synthesis of vasorelaxant 

NO.  In addition, estrogens induce direct and rapid non-genomic (endothelium-

independent) effects via the VSM plasmalemmal receptors (Crews and Khalil, 1999; 

Orshal and Khalil, 2004) or estrogen receptors localized in the caveolae of endothelial 

cells (Wakeling et al. 2001).  

 

In addition to stimulating NO synthesis, estrogens up-regulate COX-1 expression and 

promote the production of vasodilator COX products, such as PGI2 (Geary et al. 2000; 

Sherman et al. 2002). The vasodilator effects of estrogens may also derive from direct 

inhibition of contractile COX-products, Ca
2+

 entry into  VSM cells (Murphy and Khalil, 

2000) and Ang II-induced vascular effects (including NADPH oxidase generation of 

•O2
-
, VSM cell proliferation, migration, suppression and inflammation (Miller et al. 

2007)).  Due to the presence of a phenolic ring in their structure (which is absent in 

other sex hormones), estrogens are potent anti-oxidants (Ruiz-Larrea et al. 2000; 

Czubryt et al. 2006). For example, compared to intact female, OVX female rats are 

associated with lower anti-oxidant activity, reduced thiol groups, and increased plasma 

http://ajpcell.physiology.org/content/291/6/C1388.full#R24
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lipoperoxides and vascular free radicals (Strehlow et al. 2003; Florian et al. 2004), all 

which are prevented by estrogen replacement (Hernandez et al. 2000; Strehlow et al. 

2003).  

 

1.2.5.4. Phases of the female reproductive cycle 

Vascular tone may be influenced by hormonal changes occurring during the female 

reproductive cycle. For example, the vaginal epithelium in women and female rats are 

responsive to estrogens (17β-estradiol). Reproductive women and female rats undergo 

predictable phases of successive reproductive cycles (lasting between 21 - 35 days in 

women (Stenchever, 2001) and 4-5 days in rats (Marcondes et al. 2002). In women, the 

reproductive cycle consists of two (follicular and the luteal) phases (Stenchever, 

2001)), and four (proestrus, estrus, metestrus, and diestrus) phases in rats (Marcondes 

et al. 2002). In the beginning of the reproductive cycle, both the plasma levels of 

estradiol and progesterone hormones are low. Estradiol rises in the middle of the 

follicular phase (in women or proestrus rats (Stenchever, 2001) leading to increased 

secretion of pituitary luteinizing hormone (LH) and follicular stimulating hormone 

(FSH) which results in ovulation / fall in estradiol levels. Progesterone levels start to 

rise in the beginning of the post ovulation phase (luteal phase in women (Stenchever, 

2001) or early diestrus rats (Sportnitz et al.  1999), returning to baseline along with 

estradiol in late luteal in women or estrus rats (Stenchever, 2001; Marcondes et al. 

2002). 
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1.2.5.5. Effect of reproductive cycle phases on vascular function in normal and 

diabetic state 

Fluctuations in the plasma levels of female sex hormones during the different phases of 

reproductive cycle may or may not modulate vascular function. For example, aortic 

strips in estradiol rich proestrus rats are more hypo responsive to noradrenaline than 

estradiol deficient dietrus/metestrus rats (Zamorano et al. 1994). On the contrary, 

estradiol-induced vasodilatation of tail and mesenteric arteries of female rats were 

reported to be higher in proestrus compared to non proestrus rats (Kakucs et al. 2001). 

Further, arteries taken from
 
cycling female rats (in either proestrus, estrus, metestrus, 

or
 
diestrus) did not differ significantly in contractile response to either noradrenaline 

(Li et al. 1997) or  to vasocostrictive prostanoids (Sanz et al. 2003) but differed in the 

effect and release of vasopressin (Stone and Crofton, 1989). 
 
These findings

 
suggest 

that hormonal variation during the female reproductive cycle regulate vascular 

reactivity and hence should be taken into account in the assessment of the 

cardiovascular function in the female gender. Diabetes negatively modulates 

hypothalamus-pituitary axis and aromatase activity (Kim et al. 2006) leading to the 

disruption of reproductive cycle in women (Strotmeyer et al. 2003) and rats (Kim et al. 

2006). This in turn may contribute to impairment of vascular function (Kim et al. 

2006). Therefore, understanding the influence of diabetes on vascular function during 

different phases of the reproductive cycle may contribute further to the understanding 

of the mechanism of the disease in the female gender. 
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1.2.6. Reactive radicals 

1.2.6.1. Reactive oxygen and nitrogen radicals 

Under physiologic conditions, reactive oxygen species are formed as intermediates in 

redox processes involving the formation of water from oxygen (Brand, 2010). 

Molecular oxygen (O2) undergoes a one electron reduction (by several different systems 

including NADPH oxidase, xanthine oxidase, cyclooxygenase, mitochondria electron 

transport chain and nitric oxide synthase) to yield superoxide anion (•O2
-
).  •O2

- 
is then 

dismutated to hydrogen peroxide (H2O2) by the enzyme, superoxide dismutase (SOD) 

and to •OH by the Fe
2+

 thioredoxin or to H2O and O2 by catalase/ glutathione peroxidise 

(GPx) (Schafer and Buettner, 2001). When generated in excess, •O2
-
 may interact with 

reactive nitrogen species such as nitric oxide (NO) to produce peroxinitrite (ONOO
-
) 

(Darley-Usmar, et al, 1995). In a normal vasculature, a balance between the rate of 

production and elimination of these pro-oxidants (•O2
-
 , H2O2, •OH, NO, ONOO

-
), is 

tightly regulated by anti-oxidant enzymes (such as SOD, catalase, thioredoxin, GPx), 

anti-oxidant vitamins, and other small molecules (Halliwell, 1999).  Under pathological 

states, disequilibrium between the generation of these pro-oxidant molecules and anti-

oxidant protection occurs resulting in the increased bioavailability of oxidant factors, 

which promotes a state of oxidative stress (a major cause of vascular injury in 

cardiovascular diseases) (Landmesser and Harrison, 2006).  

 

1.2.6.2. The role of hyperglycemia-induced reactive free radicals  

Increased oxidative stress as a result of hyperglycemia-induced oxidation of glucose, 

lipids and proteins is implicated in the onset and late stages of both insulin dependent 

and non-insulin independent diabetes (Etoh et al. 2003).  In human cells and animal 

models of diabetes, both acute and chronic hyperglycemia promotes endothelial 
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dysfunction and hyper production of reactive oxygen species (ROS) (Johansen et al. 

2005). The mechanisms through which diabetes-induced hyperglycemia increases the 

levels of oxygen radicals are not entirely clear but may involve a number of related 

biochemical pathways (including, glucose auto oxidation, activation of polyol (aldose-

reductase)-sorbitol, protein kinase C (PKC) and hexamine pathways and the formation 

of advanced glycation end products, all of which aggravate vascular injury and 

dysregulation in vascular tone (Johansen et al. 2005).   

 

1.2.6.3. Activation of polyol (sorbitol) pathway  

In hyperglycemia, the oxidative metabolism of glucose via the polyol pathway results in 

excessive production of sorbitol and •O2
-
 (Lorenzi, 2007). Increased polyol production 

of •O2
-
 and other ROS, promotes the activation of NADPH oxidase (which accounts for 

most ROS generated in the vessel wall), xanthine oxidase, mitochondrial electron 

transport and NOS systems (Guzik et al. 2002; Aliciguzel et al. 2003).  ROS from these 

free radical systems interact with •NO to generate the highly cytotoxic ONOO
- 
which 

inhibits •NO function, blocks K
+
 channels, promotes lipid peroxidation / •OH-induced 

apoptosis of myocytes, endothelial cells and fibroblasts (Maritim et al. 2003; Zou et al. 

2004). All of these tend to make the vessel wall vasoconstrictive. NADPH oxidase-

enhanced generation of ONOO- may also promote vasoconstriction by inducing a 

deficiency in arginine or tetrahydrobiopterin (BH4) (an important cofactor for the 

synthesis of NO from L-arginine), which uncouples NOS (eNOS and /or iNOS) enzyme 

from preferentially causing it to produce •O2
-
 instead of •NO (Zou et al, 2004). 

Furthermore, in diabetes, NADPH oxidase-generated ROS can augment vasomotor tone 

directly by activating [Ca
2+

]i and/or indirectly promoting it via the activation of the 

renin angiotensin (RAS) signaling cascade (Touyz et al. 2004) (Fig. 1.1). The 
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involvement of polyol pathway in the pathogenesis of diabetes is evidenced in the use 

of aldose reductase (which mediates sorbitol formation) inhibitors such as sorbinil to 

inhibit diabetes-induced lipid peroxidation in STZ-diabetic rats (Obrosova et al. 2002). 

 

1.2.6.4. Depletion of anti-oxidant enzymes  

Utilization of the polyol pathway for glucose metabolism during diabetes enhances •O2
-
 

synthesis at the expense of NADPH (a co-enzyme essential for the regeneration of anti-

oxidant molecules such as, reduced glutathione (GSSG), ascorbate and tocopherol). 

Reductions in the levels of NADPH thus modifies the redox status of cells by 

decreasing NADPH/NADP+ and GSH/GSSG ratios thereby increasing susceptibility to 

intracellular oxidative stress (increased •O2
-
 synthesis, increased inactivation coupled 

with decreased levels of anti-oxidant enzymes) (Michael, 2005). Hence, anti-oxidant 

therapy has been advocated for the management of oxidative stress-induced injury 

during diabetes. For example, diabetes-induced reductions in the levels of cytosolic Cu-

Zn-SOD, extracellular (EC) SOD, and/or  mitochondria Mn-SOD is normalized by 

treatment with exogenous SOD in humans (Atalay and Laaksonen,  2002) and/or with 

catalase in experimental animals (Kurzelewski et al. 2005). Also, the use of aldose 

reductase inhibitors to block the polyol synthesis of sorbitol and hence ROS, has been 

shown to restore reduced glutathione and ascorbate levels in experimental diabetes 

(Obrosova et al. 2002).  
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1.2.6.5. Activation of advanced glycation end products  

 Hyperglycemia-induced autoxidation of proteins generate advanced glycation end 

products (AGEs) which in turn produce •O2
-
 which further quenches the bioavailability 

of NO, accelerates the oxidation of low density lipoproteins (LDL), the synthesis of 

inflammatory cytokines interleukin-1 (IL-1), tumor-necrosis factor-α (TNFα), adhesion 

molecules (VCAMs and ICAMs), as well as endothelial growth factors (Michael, 2005). 

Pharmacologic inhibition of AGEs prevents late structural changes in experimental 

diabetic retinopathy (Hammes et al. 1991). 

 

1.2.6.6. Activation of protein kinase C 

Hyperglycemia promotion of vascular oxidative stress also increases the synthesis and 

activation of the lipid second messenger DAG leading to the membrane translocation 

and activation of PKC (Nishikawa et al. 2000).  Further, PKC quenches NO function by 

augmenting ROS levels and promoting the release of [Ca
2+

]i and hence the  synthesis / 

activation of contractile factors (endothelin, contractile prostaglandins) (Fig. 1.1). Thus, 

the PKC-mediated aggravation of vascular oxidative stress may in turn promote 

endothelial cell growth, smooth muscle cell migration, proliferation and thrombosis 

(Michael, 2005). Several studies have shown that inhibition of PKC prevents early 

changes in the micro vascular beds of diabetic animals (Michael, 2005).  

 

1.2.6.7. Activation of hexamine pathway 

In hyperglycemia, most of the glucose metabolized via the glycolytic pathway leaks out 

as fructose-6 phosphate and is diverted into the hexamine signaling pathway, where the 

enzyme glutamine fructose-6 phosphate aminotransferase (GFAT) converts it to 

glucosamine-6 phosphate and finally to uridine diphosphate (UDP) N-acetyl 
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glucosamine. N-acetyl glucosamine adversely modifies transcription factors (such as 

factor Sp1) resulting in increased expression of transforming growth factor β-1 and 

plasminogen activator inhibitor-1, both of which promote diabetic vascular injury 

(Michael, 2005). 

 

1.2.6.8. Influence of gender on the mechanism of diabetes vascular disease  

The mechanisms involved in diabetes-induced vascular dysfunction has mostly been 

demonstrated in male but poorly studied and understood in the female (Pinna et al. 

2001). In the male, increased oxidant burden (Hayashi et al. 1992; Brandes and Mugge, 

1997; Sartori-Valinotti et al. 2007) and diminished anti-oxidant status  (Faraci and 

Didion, 2004) contribute to the disease process. Since the female gender is said to lose 

its protection against development of cardiovascular disease (Sowers, 1998; Gaba et al. 

1999), the gender gap in tissue content and effects of oxidant stress may be eliminated 

in diabetes.  Further, healthy female subjects owe their protection from diabetes to 

estrogen-induced lowering of oxidant stress (Ruiz-Larrea et al. 2000; Strehlow et al. 

2003; Florian et al. 2004). Since the synthesis, release, and bioactivity of endothelium-

derived vasodilatory factors (NO, PGI2, and EDHF’s) and contracting factors (Ang II, 

ET-1, ROS and TXA2) are regulated more by 17β-estradiol than other sex steroid 

hormones (Orshal and Khalil, 2004), the diabetes-induced modification in estrogen 

signaling may aggravate vascular injury more in the diabetic female than the male. 

Therefore, exploring the extent of this modification in the female, may offer insights 

into the pathogenesis and the mechanism of the disease in this gender. Also, given its 

anti-oxidant and endothelial protective role in cardiovascular disease (Mendelssohn and 

Karas, 1999), the female hormone, estradiol, has a strong promise for ameliorating the 

adverse contractile effects of diabetes-induced ROS in the male gender.  
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1.2.7. Flavonoids 

Flavonoids are a group of plant-based polyphenolic compounds widely distributed in 

plants (vegetables, fruits, seeds, nuts, tea, and red wine) (Pietta, 2000). They constitute a 

large part of human diet with estimated daily intake of 23-500 mg day
-1

 (Hertog, 1993). 

More than 4000 varieties of flavonoids have been identified; each having unique 

structural characteristics that have been linkedd to health benefits (Nijveldt et al. 2001). 

Flavonoids are generally characterized by diphenylpropane skeletal structure consisting 

of fifteen carbon atoms arranged in three rings (C6-C3-C6) with  hydroxylated positions 

at 3, 5, 7, 2’, 3’, 4’, 5’(Fig. 1.2) (Cao et al. 1997).  Based on their hydroxyl and C=C 

contents, flavonoids are divided into sub groups, namely flavonols, flavones, flavanols, 

flavanones, isoflavonoids and anthocyanins (Lakhanpal and Rai, 2007) (Fig. 1.3). 

Compared to other flavonoids, flavonols show a wider range of biological activities and 

are specific in their action (Perez-Vizcaino and Duarte, 2010).  

 

 

 

 

        

 

 

 

 

Figure 1.2: Basic structure of flavonoid (consisting of fifteen carbon atoms arranged in 

three rings) (Cao et al. 1997). 
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Figure 1.3: Structures of flavonoid; flavonol, flavones, flavanone, and flavanol 

(Lakhanpal and Rai, 2007). 

 

In the last decade, flavonoids elicited profound research interest primarily because of 

the discovery of the ‘French paradox’ in which a large part of the French population 

who were associated with high consumption of red wine, exhibited relatively low 

cardiovascular mortality rate (Renaud and  De Lorgeril, 1992). This observation has 

since been supported by animal studies (Hayek et al. 1997; Fuhrman et al. 2000) and 

further epidemiological evidence (Hertog et al. 1993; Geleijnse et al. 1999).  The 

mechanisms behind the cardio protective properties of flavonoids are not fully clear. 

Flavonoids may protect against low density lipoprotein (LDL) oxidation via its 

scavenging of ROS, and decrease platelet promotion of thrombogenesis (Aviram et al. 

2000).  Its vascular effects may additionally derive from their anti-atherogenic actions 

against inflammatory and adhesion factors (Freedman et al. 2001).  
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1.2.7.1. Quercetin  

Qquercetin (3, 3’, 4’, 5, 7-pentahydroxyflavone dehydrate or 2-(3,4-dihyroxyphenyl)-

3,5,7-trihydroxy-4H-1-benzopyran-4-one), (Fig. 1.4) is one of the most widely 

distributed flavonoid (flavonol) in human diet comprising about 60% of total dietary 

flavonoid consumption (Hertog et a1. 1993) (Table 1.1). Dietary levels of >33 mg/day 

has been linked with decreased risk of CVD (Knekt et al. 2002).  

 

Table 1.1: Amount of quercetin in selected foods (USDA database, 2003) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dietary source Quercetin content (mg/100 g) 

Capers 233.0  

Raw onions 22.6  

Cocoa powder 20.1  

Cranberries 14.0  

Lingo berries 7.4  

Apples 4.6  

Raw celery 3.5 

Raw Brocoli 2.8 

Green tea 2.7  
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1.2.7.1. 1. Bioavailability 

The bioavailability of quercetin depends on the food matrix in which it is found, the 

type ingested, its absorption and metabolism. Pure quercetin (un-conjugated aglycone) 

and the form commonly found in food (quercetin glycosides) (Fig. 1.4) are readily 

bioavailable (Moon et al. 2008; Wiczkowski et al. 2008).  

 

 

 

 

 

 

 

 

Figure 1.4: Un-conjugated quercetin aglycone and conjugated quercetin glycoside 

(Larson et al. 2010).  

 

 

Following absorption into small intestine and colon, both forms of quercetin undergo 

glucuronate conjugation with metabolite (isorhamnetin, kaempferol and tamarixetin) 

formation in the intestinal epithelium (Larson et al. 2010).  On absorption, levels of un-

conjugated quercetin can reach up to 10 µM and levels up to 133 µM of conjugated 

derivatives and metabolites (isorhamnetin and kaempferol, tamarixetin) in human and 

animal circulation (Murota et al. 2003).  
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1.2.7.1.2. Cardiovascular effects 

Although the use of antioxidant (flavonoid) therapy has been advocated in the 

management of cardiovascular disease (particularly, diabetes), clinical trials have 

produced conflicting evidence. For example, treatment with quercetin or its metabolites 

(isorhamnetin and kaempferol, tamarixetin) may or may not be useful in the 

management of high blood pressure in hypertensive patients (Johansen, 2005; Larson et 

al. 2010). On the other hand, in several animal models (including, high-sucrose, high-fat 

fed rats, NO deficient rats, Ang II or L-NAME infused rats, Dahls salt sensitive rats and 

in rats made hypertensive by chronic inhibition of NOS), quercetin was shown to 

consistently reduce blood pressure and/or the severity of hypertension (Ajay etal. 2005; 

2006b; Edward et al. 2007; Egert et al. 2009).  In diabetes, studies in the laboratory 

where the current research was conducted (Ajay et al. 2006a; 2007) and others (Roghani 

et al. 2005) have shown that quercetin decreases diabetes-induced hyperglycemia and 

endothelial dysfunction.  The precise mechanism of the beneficial cardiovascular effects 

of quercetin is not fully understood. The literature evidence suggest that quercetin 

influences multiple targets via a combination of known and as yet unidentified 

mechanisms, including the inhibition of angiotensin converting enzyme (ACE), 

inflammatory factors, regulatory enzymes /proteins, such as NAD(P)H and xanthine 

oxidases, phospholipases and lipooxygenases, Ca
2+

-dependent protein kinases (linked to 

smooth muscle contraction) (Perez-Vizcaino and Duarte, 2010; Larson et al. 2010).  

Quercetin-dependence on these mechanisms for its vascular action has been established 

in the male and requires to be investigated in the female.  
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1.2.7.1.3. Other effects 

Other beneficial effects of quercetin has been documented in recent reviews (Lakhanpal 

and Rai, 2007; Perez-Vizcaino and Duarte, 2010; Larson et al. 2010). Quercetin inhibits 

the production and release of histamine and other allergic/inflammatory substances, and 

therefore, might be useful in the treatment of allergies, asthma, hay fever, and hives. Its 

inhibitory effects on both cyclooxygenase and lipooxygenase activities may promote its 

usefulness in treating inflammatory related conditions such as rheumatoid arthritis. 

Quercetin exerts antibacterial activity against all forms of bacteria-induced infections. 

Furthermore, in various animal and cell line studies, quercetin has been shown to inhibit 

the growth of cancer cells (breast, colon, prostate and lung tissues). Additionally, due to 

its potent anti-oxidant and angiogenic properties, quercetin inhibits oxidative stress-

induced damage of DNA and suppression of PKC activity.This anti-oxidative action 

may also protect against oxidative-induced neurodegenerative disorders, such as 

Alzheimer’s and Parkinson’s disease. 

 

1.2.7.1.4. Adverse effects of quercetin 

Quercetin is neither mutagenic nor carcinogenic in vivo (Okamoto et al. 2005). At 

chronic concentrations up to 1,000 mg/day, both the short and long-term consumption 

of quercetin has been associated with few adverse effects, including nausea, headache, 

and tingling of the extremities (Harwood et al. 2007). However, regular consumption of 

foods (grapefruit juice, tea, onions) rich in quercetin may interfere with drug 

metabolizing enzymes, such as CYP3A4 (which is involved in the breakdown of 

commonly prescribed drugs such as, felodipine and digoxin). This interaction may 

enhance levels of these drugs (in circulation) and their potential to cause unwanted side 
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effects. Further, quercetin may also inhibit platelet aggregation, and hence, could 

increase risk of bleeding when taken along with anticoagulants (Vita, 2005).  

 

1.2.7.1.5.   Influence of gender on the quercetin vascular action 

Since several biochemical pathways associated with diabetes-induced hyperglycemia 

(Section 1.2.6) (e.g. glucose autoxidation, polyol pathway, prostanoid synthesis, protein 

glycation) promote vascular injury by enhancing the synthesis of vascular ROS. 

Therefore, ameliorating oxidative stress through treatment with anti-oxidants has been 

proposed as an effective strategy for reducing diabetic vascular complications. For 

example, the laboratory where the current study was conducted (Ajay et al. 2005; 2006 

a,b; 2007), quercetin corrected contractile dysfunction in aortic tissues isolated from 

WKY diabetic/SHR male rats via mechanisms that includes the scavenging ROS, 

enhancement of anti-oxidant capacity and the promotion of EDNO-sGC-cGMP activity. 

Quercetin is therefore a potential therapeutic agent in the management of diabetes 

vasculopathy. Very few studies have demonstrated the beneficial role of quercetin in the 

female diabetic model (Pinna et al. 2001). Compared to the male, female diabetic 

subjects have poorer outcomes following cardiovascular events (Barrett-Connor and 

Bush, 1991).  Diabetic females lose the protective effects of the female hormone, 

estradiol, and hence may be more susceptible to vascular oxidative stress-induced 

damage (Sowers, 1998; Gaba et al. 1999, Pinna et al 2001). Therefore, it is possible that 

female diabetic rats may be more responsive to the vascular effects of flavonoids than 

the male.  
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1.2.7.1.6. Use of quercetin and/or estradiol in the management of diabetes-induced 

vasculopathy 

Quercetin enhances estradiol levels in vivo (Weber et al 1996). For example, in 

ovariectomized women, blood estradiol levels were elevated significantly following 

consumption of estradiol and quercetin rich diet (grapefruit juice) than when estradiol 

was taken alone (Schubert  et al. 1994). Given their exceptional anti-oxidant and 

vascular endothelial protective properties (estradiol (Section 1.2.5.3) and quercetin 

(1.2.7.3), respectively), a combined therapy of quercetin and exogenous estradiol may 

offer stronger promise in ameliorating diabetes-induced vascular oxidative stress, thus 

improving endothelial function. This may possibly offer new therapeutic window for 

the management of the disease outcome in both genders.   

 

1.3. Experimental models 

1.3.1. Choice of animals 

Male and female Wistar Kyoto (WKY) rats were used in this study. WKY rats have 

common genetic background with spontaneously hypertensive (SHR) rats, and hence 

the former is widely employed as control strains for SHR model of essential 

hypertension (Okamoto and Aoki, 1963). The use of WKY rats in the current study was 

to facilitate a future extension of the work to hypertension studies. The choice of age 

20-22 weeks for the animals was to match our current findings with earlier studies 

(Ajay et al. 2003; 2006 a, b; 2007) on the same theme. Also, this age allows for the rats 

to match the age of diabetic rats which had to be made diabetic for at least 8 weeks 

starting from age 12 weeks.  
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1.3.2. Animal model of diabetes 

Streptozotocin (STZ) (2-Deoxy-2-([(methylnitrosoamino) carbonyl] amino)-D-

glucopyranose) is a broad spectrum antibiotic with chemotherapeutic properties 

produced by Streptomyces achromogenes. Its diabetogenic property was first described 

in rodents and subsequently in dogs and monkeys. Since its discovery, it has been 

widely employed as the agent of choice for the induction of diabetes mellitus in animal 

models (Lenzen, 2008).  Administration of STZ to laboratory animals results in 

symptoms similar to human insulin-dependent (Type 1) diabetes or to non-insulin-

dependent (Type II) diabetes at later stages (Weir et al. 1981). Its mechanism of 

diabetes induction is based on the destruction of pancreatic β-cells. Due to its structural 

similarities with glucose, STZ is transported into liver hepatocytes and pancreatic β-

cells (by the insulin-dependent glucose transporter GLUT-2), where it undergoes 

metabolism to yield glucose and methylnitrosourea. Methylnitrosourea adversely 

modifies DNA and other cellular macromolecules resulting in necrosis of β-cells and a 

state of insulin-dependent diabetes (Lenzen, 2008).  STZ is inexpensive and readily 

available. It produces clear and reproducible end-organ effects of insulin deficiency in a 

relatively short time (within 2-4 days). Its draw back includes the liberation of minor 

levels NO and ROS, which do not contribute significantly to its mechanism of action 

(Lenzen, 2008).   
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1.4. Hypothesis 

Gender differences exist in onset and progression of cardiovascular disorders. The 

mechanism involved in the diabetes-induced alteration of aortic contraction has been 

mostly demonstrated and understood in male animal diabetic model (Ajay et al. 2006a; 

2007; Chin et al. 2007) which may differ from the female.  Only few studies in this field 

have focused on the female gender (Pinna et al. 2001). Since diabetes has been shown to 

be a stronger risk factor in the development of cardiovascular disease in the female than 

in the male gender, it is reasonable to suggest that more marked adaptive changes may 

occur in the vasculature of females in the diabetic state. The current study therefore set 

out to investigate if the effect of short-term diabetes on aortic reactivity to endogenous 

vasoconstrictors were gender differentiated. 

 

Diabetes elevates ROS and induces deficiency in anti-oxidant status, both of which are 

gender regulated (Brandes and Mugge, 1997; Ide et al., 2002; Sartori-Valinotti et al. 

2007). ROS and other oxidative stressors may in turn promote abnormal tissue 

reactivity to endogenous vasoconstrictor molecules in a gender dependent manner. The 

current study therefore examined the influence of gender on the specific role of ROS in 

modulating phenylephrine (PE) or angiotensin II (Ang II)-induced tissue contraction in 

healthy and diabetic tissues. Given that quercetin exerts its vasorelaxant action through 

the scavenging of ROS, and considering that gender differences exist in the regulation 

and function of vascular tissue ROS and SOD (a key modulator of vascular ROS), the 

hypothesis is that the vasodilator action of the anti-oxidant quercetin may differentiate 

between male and female tissues. The study therefore, investigated possible gender 

differences and the underlining mechanism of any such difference in the effect of 

quercetin on PE or Ang II-contracted thoracic aortic rings.  These differences may have 
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implications for further understanding of the gender-related differences in 

cardiovascular (diabetes) disease which may be explored for therapeutic intervention.  

 

Further, the female hormone, estradiol is known to reduce the rate of cardiovascular 

events due to its ability to promote endothelial relaxant function and reduce vascular 

ROS. The current study examined the effect of exogenous estradiol or its combined 

administration with quercetin on diabetes-induced vascular oxidative stress and 

contractile outcome. The findings in this study may offer a new therapeutic window in 

the use of estradiol and/or quercetin in the management of diabetic vascular 

complications.  

 

1.5. Objectives of the study 

The study objectives in the current work are to investigate the following (in male versus 

female normoglycemic and diabetic WKY rat aorta): 

1. The effect of gender on aortic tissue response to endogenous vasoconstrictors (PE 

and Ang II). 

2. To investigate the influence of gender on the vascular effect of superoxide anion and 

anti-oxidant enzymes (SOD / CAT) during aortic tissue contraction. 

3. To explore the possible role of gender in regulating the vasodilator effects of the 

anti-oxidant, quercetin and its mechanism of action. 

4. To explore the possible role of 17β-estradiol or its combined therapy with quercetin 

in protecting against ROS-mediated contractile reactivity of normoglycemic and 

diabetic tissues.  
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1.6. Outline of the study 

The hypothesis of this study is that gender differences exist in the vasodilator effect of 

the flavonoid quercetin. Therefore, in vitro studies were performed to assess the 

influence of gender on the contractile effects of PE or Ang II on aortic tissues isolated 

from normoglycemic and diabetic WKY rats in the presence or absence of various 

pharmacological probes. The present study was divided into two parts. In the first part, 

the influence of gender on PE-induced vascular contraction and the gender 

characteristic of quercetin action and/or estradiol in normoglycemic and diabetic tissues 

were assessed. Similarly, in the second part, the influence of gender on Ang II -induced 

contraction of normoglycemic and diabetic aortic tissues and the gender characteristic 

of quercetin and/or estradiol relaxant action was explored. 
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CHAPTER 2 

MATERIALS AND METHODS 

 

2.1. Experimental animal 

All experiments involving animals were reviewed and approved by the University of 

Malaya and the International Medical University Animal Experimentation Ethics 

Committee. Male and female WKY rats were housed in groups of 3- 4  in a plastic cage, 

under standard laboratory room conditions (temperature: 22 ± 2 
o
 C, humidity: 30 - 

40%, 12/12-h light / dark cycle) with  food (pelleted laboratory chow from Gold Coin 

Sdn. Bhd., Malaysia) and tap water available ad libitum. An adaptation period of 2-3 

weeks was allowed before initiation of any of the following experimental protocols.  

 

2.2. Drugs and chemicals 

The following drugs were used: angiotensin II (Ang II), acetylcholine chloride (ACh), 

quercetin (3,3’,4’,5,7-pentahydroxyflavone dehydrate), indomethacin, N
ω
-nitro-l-

arginine methyl ester (L-NAME), methylene blue (MB), 17β-estradiol, phenylephrine-

HCl (PE), superoxide dismutase (SOD), catalase (CAT),  β-nicotinamide adenine 

dinucleotide 2’-phosphate reduced tetrasodium hydrate (NADPH), N,N’ dimethyl-9,9’-

biacridinium dinitrate (lucigenin), diphenylene iodonium (DPI), diethylthiocarbamic 

acid (DETCA), Folin-Ciocalteu reagent, potassium sodium tartarate, disodium hydrogen 

phosphate, ethylene diamine tetraacetic acid (EDTA), riboflavin, L-methionine, Triton 

X-10, nitroblue tetrazolium, potasium hydrogen phosphate, sodium hydrogen 

phosphate, streptozotocin (STZ), phosphate buffered and sodium HEPES salts were 

purchased from Sigma-Aldrich (Co., St. Louis, Mo., USA). Sodium nitroprusside 

(SNP), sodium hydroxide (NaOH), copper II sulphate (CuSO4) and Krebs salts were 
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purchased from BDH Limited (Poole, England), respectively. Ethanol was purchased 

from Fisher Scientific (Malaysia). Dimethyl sulfoxide (DMSO), sodium carbonate 

(Na2CO3) and hydrogen peroxide (H2O2) were purchased from MERCK (Germany). 

Hematoxylin and eosin Y alcohol staining solution were purchased from Richard-Allan 

Scientific (Kalamazoo, M. USA). Bovine serum albumin was purchased from 

Applichem (Germany). All the drugs were dissolved in distilled water with the 

exception of quercetin and 17β-estradiol (both of which were dissolved in DMSO) and 

indomethacin which was dissolved in Na2CO3 solution. Drug concentrations were 

expressed in the final molar concentration present in the organ bath.  

    

2.3. Induction of (Type 1) diabetes mellitus (IDDM)) 

Type 1 diabetes was induced in (12-13 weeks old) male and female WKY rats by a 

single intraperitoneal injection (65 mg/kg of body weight) of STZ dissolved in cold 

normal saline. Plasma glucose levels and weight of the animals were measured 3 days 

following STZ-injection.  These parameters were measured again 8 weeks after STZ 

injection, at sacrifice. Animals were considered diabetic only if their blood glucose 

levels were  17 mmol/l. Blood was collected from the rat tail vein with a 26 gauge 

needle and blood glucose levels ascertained with ACCU-CHEK Advantage-II test strip 

technique (Roche Diagnostics, Germany).  

 

2.4. Collection of blood samples 

At sacrifice, blood samples from normoglycemic or diabetic animals were collected by 

cardiac puncture, and on coagulation, serum was obtained by centrifugation (Allegra X-

15, Beckman, USA) (10,000 rpm for 6 min at 4
o
C) and stored in the refrigerator 

(Thermo Fisher scientific, USA) at -80 
o 
C until analyzed.  
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2.5. Measurement of vascular function 

The effects of quercetin on PE or Ang II contraction in the presence and absence of 

various pharmacological drug probes were examined in thoracic aortic rings isolated 

from age- (20-22 weeks) and sex-matched normoglycemic and diabetic groups. 

 

2.5.1. Preparation of Krebs physiological salt solution  

The Krebs physiological salt solution (KPSS) was prepared by dissolving weighed 

amounts of various salts (listed in Table 2.1) in distilled water. The solution was freshly 

prepared before each experiment. 

 

Table 2.1: Composition of the Krebs physiological salt solution (KPSS) 

 

Salt Concentration (mM) 

NaCl 118.2 

NaHCO3 25.0 

KCl 4.7 

KH2PO4 1.2 

MgSO4.7H2O 1.2 

Glucose 11.7 

CaCl2·2H2O 2.5 

EDTA 0.026 
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2.5.2. Preparation and mounting of aortic ring. 

The vascular function of aortic rings with or without endothelium was assessed using 

methods previously employed in our laboratory (Ajay et al. 2003; 2005; 2006 a,b; 

2007). Following cervical dislocation, the chest cavity of rats (from each experimental 

group) was exposed and the descending thoracic aorta excised. Surrounding fat and 

connective tissue were carefully removed and the aorta was cut into small (3-4 mm) 

transverse rings. In some tissues, the endothelium
 
was removed by gentle rotation of the 

rings on an appropriately-sized forceps. Following this, both the endothelium-intact and 

-denuded tissues were suspended between two L-shaped stainless steel hooks in a 5 ml 

organ bath containing normal KPSS (Table 2.1). The bath solution was maintained at 

37 °C and gassed with a mixture of O2 (95 %) and CO2 (5 %) throughout the study. The 

rings were stretched to a preload tension of 1.0 -1.2 g and allowed to equilibrate for 35-

40 min in KPSS, following which rings were contracted thrice (each for 5 min) with 

isotonic high potassium chloride solution (high K
+
, 80 mM) with each successive 

addition accompanied by a washout.  The integrity of the endothelium was assessed by 

exposing PE (1 μM)-contracted tissues to the endothelium-dependent relaxant, ACh (10 

μM). The tissue was considered endothelium-denuded or endothelium-intact if the 

relaxation to ACh was < 5 % or ≥ 50 % of the peak PE-induced contraction, 

respectively. Some segments of aorta with or without quercetin treatment were either 

snap frozen in liquid nitrogen or were homogenized in chilled Krebs-HEPES (Table 

2.2) or phosphate buffer solution (0.01 M phosphate buffer solution (pH 7.4) 

(containing 0.0027 M, KCl; 0.137 M, NaCl), following which the supernatant fraction 

was separated from cellular debris (using centrifugation (Allegra 64; 6,000 rpm for 5 

min at 4
o 
C)) and stored at -80 

o 
C for subsequent biochemical analysis. 
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2.5.3. Assessment of estrus cycle phases in female rats 

The possibility exists that fluctuations in the levels of the female reproductive hormones 

during the estrus cycle may modulate vascular function (Zamorano et al. 1994; Kakucs 

et al. 2001). Therefore, all female rats were assessed for normal estrus cycling during a 

2 week period and the stage of the estrus cycle on the day of sacrifice was determined 

(by vaginal cytology) (Diao et al. 2008) before vascular function assessment (Section 

2.5.4). Only animals with normal cycles were included in the study. Vaginal smear 

samples were taken from rats using a cotton swab that was dipped with normal saline 

(NaCl 0.9%). Cotton swab was inserted into the vaginal and gently manipulated in a 

clockwise direction to avoid lesion of rat’s vagina tissue. The swab was then smeared 

onto a glass slide, which was left to dry and then fixed with 70% ethanol and stained 

with hematoxylin (H) and eosin (E) stains. The phase of the estrus cycle was determined 

by microscopic (Leica, USA) identification of the morphological characteristics of the 

vaginal cells in the smear (using the objective lenses of magnifications: 10 x, 20 x and 

40 x). The actual estrus phase of each animal remained unknown until the assessment of 

vascular function was complete.  

 

2.5.4. Effect on contractile function 

 This part of the study was undertaken to examine the role of gender and the 

endothelium on the effects of quercetin and / or 17β-estradiol (estradiol) on agonist (PE 

or Ang II)-induced contraction of normoglycemic / diabetic tissues.  
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2.5.4.1. Preparation of quercetin and estradiol stock solution 

Quercetin or estradiol stock solutions (10 mM) were prepared in 5% (v/v) DMSO. The 

final concentration of DMSO in quercetin or estradiol solution was adjusted to < 0.05 % 

(v/v) (concentration devoid of any observable effects on vascular tone (Duarte et al. 

1993, Chen et al. 2009)).  

 

2.5.4.2. Effect of quercetin and/ or estradiol on PE-induced contraction  

Following preparation and mounting of aortic rings (Section 2.5.2), tissues were 

exposed to cumulative concentrations of PE (10
-11

-10
-5 

M) at 4-5 min intervals after 20-

25 min incubation in KPSS. This was preceded by a 25 - 30 min treatment of the tissues 

with DMSO (< 0.05 % (v/v)), quercetin (10
-5 

M) and /or estradiol (10
-7 

M). The use of 

10
-7 

M estradiol concentration was based on the physiological levels of estradiol 

(Gilligan et al. 1994). The choice of 10
-5 

M of quercetin was based on the sub-maximal 

relaxant effect of quercetin on PE-induced contraction observed in previous studies 

(Roghani et al. 2005), including studies in the laboratory where current work was 

undertaken (Ajay et al. 2003; 2005; 2006 a,b; 2007).   

 

2.5.4.3. Effect of quercetin and/or estradiol on angiotensin II-induced contraction  

Following preparation and mounting of aortic rings (Section 2.5.2), endothelium-intact 

and -denuded aortic rings from respective experimental groups were exposed to 

cumulative concentrations of Ang II (10
-11

-10
-5 

M) at 3 min intervals to minimize the 

vulnerability of Ang II to receptor desensitization (Meggs et al. 1985). This was 

preceded by a 20 - 25 min treatment of the tissues with or without DMSO (< 0.05 % 

(v/v), quercetin (10
-5 

M) and / or estradiol (10
-7 

M).    
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2.5.4.4. Mechanism underlining gender difference in agonist-induced contraction 

and the vasodilator action of quercetin  

This part of the work was carried out to characterize the mechanism of quercetin action 

in PE- and Ang II-contracted endothelium-intact (or denuded) aorta from respective 

experimental groups. Following preparation and mounting of aortic rings (Section 

2.5.2), tissues were exposed to various pharmacological probes for 4 - 5 min prior to 

and throughout incubation with quercetin (10
-5 

M) or its vehicle (DMSO (0.05 % (v/v)).  

To assess the role of the NO-cyclic GMP and / or cyclooxygenase pathways, the 

relaxant effects of quercetin on PE or Ang II (10
-11

-10
-5 

M) concentration-response  

curves  were recorded in aortic rings incubated with the sGC inhibitor- MB (10
-5 

M),  

nitric oxide synthase inhibitor- L-NAME  (10
-5 

M), the cyclooxygenase inhibitor- 

indomethacin (10
-5 

M) or L-NAME + indomethacin. To examine the contribution of 

endogenous •O2
-
 and/or H2O2 on the action of quercetin, PE or Ang II responses were 

examined in the presence of 150 U/ml of SOD,  236 U/ml of CAT  or both. These 

concentrations of SOD and CAT have been shown to protect against free radical-

induced endothelial dysfunction (Kurzelewski et al. 2005). 

 

2.5.5. Characterization of the concentration-dependent vasorelaxant action of 

quercetin. 

Following preparation and mounting (Section 2.5.2.), aortic rings from respective 

experimental groups were exposed to PE (10
-6 

M) and at the peak of the sustained 

contraction relaxation responses to cumulative concentrations of quercetin (10
-8

-10
-3 

M) 

or its vehicle (DMSO (< 0.05 % (v/v)) were observed. The effect of ACh (10
-14

-10
-4 

M) 

or SNP (10
-14

-10
-4 

M) on PE (10
-6 

M)-induced contraction in the absence or presence of 
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quercetin (10
-5 

M) (or its vehicle (DMSO (< 0.05 % (v/v)) were also recorded at 4 min 

intervals.  

 

2.5.6. Data presentation and statistical Analysis 

Both the vasocontractile and vasorelaxant responses were recorded as mean ± standard 

error of the mean (S.E.M.) for the number of rats. The contractile responses of aortic 

rings to graded concentrations of PE or Ang II were expressed as percentages of the 

maximum contractile effect of high K
+
 in respective tissues. Relaxation responses to 

cumulative concentrations of quercetin, ACh or SNP were calculated as percentage 

inhibition of PE-induced maximal contraction. The concentration–response curve for 

each experimental condition was plotted and from it were deduced the values of 

maximal agonist-induced response (Emax) and the concentration of the agonist 

(expressed as negative log molar concentration) producing 50% of Emax (pEC50) 

(Prism version 5.0, Graph Pad Software, USA). Statistical evaluation of the data was 

performed using the Student’s t-test for unpaired observations and by two-way analysis 

of variance (ANOVA) for multiple group comparison followed by the Bonferroni post-

hoc test for selected pairs. In all cases ‘p’ value of less than 0.05 was considered 

statistically significant.  
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2.6. Biochemical measurements 

2.6.1. Effect of gender on superoxide anion generation in aorta with or without 

quercetin  

The in vitro (Ajay, 2006 a) and in vivo (Ajay, 2007) vasorelaxant function of the 

flavonoid, quercetin have been shown (in our laboratory) to be modulated by ROS in 

the male rat. In the current study, the possibility that gender influences the in vitro 

generation of superoxide anion (a key oxidant mediating endothelial dysfunction) 

(Richard et al. 2000; Kurzelewski et al. 2005) was explored in endothelium-intact aortic 

rings with or without quercetin (antioxidant) treatment. 
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2.6.1.1 Preparation of Krebs-HEPES buffer for •O2
- 
assay 

The Krebs-HEPES buffer solution was prepared by dissolving weighed amounts of 

various salts (listed in Table 2.2) in distilled water. The solution was freshly prepared 

before each experiment. 

 

Table 2.2: Composition of the Krebs-HEPES buffer solution  

 

Salt Concentration (mM) 

NaCl 99 

NaHCO3 25.0 

KCl 4.7 

KH2PO4 1.0 

MgSO4.7H2O 1.2 

Glucose 11.0 

CaCl2·2H2O 2.5 

Na Hepes 20.0 

 

 

2.6.1.2. Effect of gender on superoxide anion generation in aortic tissue 

supernatant samples 

Following homogenisation and supernatant separation in phosphate buffer solution 

(Section 2.5.2.), generation of •O2
-
 in tissue supernatant fraction was measured with a 

commercially available kit (Sigma-Aldrich). The kit uses a chemiluminescent method to 

measure the oxidation of luminol by xanthine/xanthine oxidase-induced superoxide 

generation. Briefly, test samples (aortic supernatant) (88 µL) were placed in duplicate 
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into appropriately assigned wells of a 96 well micro plate, containing luminol solution 

(5 µL), enhancer solution (5 µL) with or without SOD (1 µL). Reaction was initiated by 

adding xanthine oxidase working solution (2 µL). Luminescence intensity (photon 

emission) was measured within 5 minutes of the start of the reaction. •O2
- 
production 

was expressed as average counts per mg/mL of homogenized tissue sample. 

 

2.6.1.3. Effect of gender on superoxide anion generation in whole aortic tissue 

samples 

Superoxide anion (•O2
-
) was measured in whole tissue samples using lucigenin-

enhanced chemiluminescence technique (Chan et al. 2003) with slight modification.  

Following the preparation and mounting of aortic rings (Section 2.5.2), aortic rings were 

incubated for 45 min at 37 
o
C in a reaction mixture consisting of diethylthiocarbamic 

acid (DETCA) (1 mM) (20 μl) to inhibit SOD, NADPH (0.1 mM) (20 μl) (substrate for 

NADPH oxidase) and either DMSO (< 0.05 % (v/v)  or quercetin (10
-8

-10
-3 

M) or 

diphenylene iodonium (DPI) (5 x 10
-6 

M) (20 μl) (inhibitor of NADPH oxidase).  Krebs-

HEPES buffer (300 μl) (Table 2.2), lucigenin (5 μM), DMSO (< 0.05 % (v/v )) or DPI 

(5 x 10
-6 

M) were placed into separate wells of a 96-well optiplate and mounted into a 

(Top Count) single photon counter to count background photon emission over 15 min. 

A single ring segment of male or female aorta (3 mm) with or without quercetin was 

transferred to each appropriate well, and photon emission was re-counted for 15 min. 

Tissues were dried for 48 hours at 60 
o
C.  •O2

- 
production was expressed as average 

counts per mg of tissue dry weight. 
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2.6.2. Anti-oxidant measurement 

Superoxide dismutase (SOD) and catalase (CAT) are major mediators of vascular 

oxidative stress and endothelial function (Richard et al. 2000; Kurzelewski et al. 2005).  

Since their levels may be gender differentiated (Brandes and Mugge, 1997; Ide et al., 

2002; Kerr et al. 1999), the effect of gender on tissue concentrations of SOD and CAT 

were measured.   

 

2.6.2.1. Superoxide dismutase activity 

SOD activity was determined in aortic tissue homogenates using previously described 

method (Beyer and Fridovich, 1987). SOD quantitation was based on the generation of 

superoxide anion (•O2
-
) by xanthine and xanthine oxidase, which react with nitro blue 

tetrazolium (NBT) to form a Formazan dye. The reaction mixture (containing 50 mM/L 

Potassium phosphate buffer (pH 7.8, 27 mL), 9.9 mM L-Methionine (1.5 mL), 0.025% 

Triton X- 100 (0.75 mL) and 57 μmol NBT (1 mL)) was placed into small glass tubes. 

This was followed by the addition of tissue supernatant samples (20 μL) and Riboflavin 

(10 μL) (4.4 mg/100 ml). A control (blank) glass tube containing 20 μL of buffer was 

run in parallel. The ensuing mixture in respective glass tubes were then illuminated for 

7 min in an aluminum foil-lined box, containing two 20 W florescent tubes maintained 

at 25 °C (turning the color of mixture purple). The increase in absorbance due to 

Formazan formation was read spectrophotometerically at 560 nm. Under the described 

conditions, the increase in absorbance in controls was taken as 100 % and the SOD 

activity was calculated as follows: 
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           % of inhibition  =   Absorbance (blank-sample) 

                                               ________________________         X   100 

                                                     Absorbance of blank  

 

One unit of SOD is defined as the amount of protein that inhibits the rate of NBT 

reduction by 50 %.  

 

SOD activity was normalized to the tissue protein content and expressed as: 

 

SOD specific activity                                 Enzyme unit 

(U/mg protein)                                  =      _______________  

                                                                 Vs x [protein] x T 

                         Where, Vs    = volume of sample (ml) 

                               [Protein] = protein concentration (mg/ml) 

                                           T = illumination time (7 min) 

 

2.6.2.2. Catalase activity 

CAT was measured in aortic tissue homogenates by a previously described method 

(Aebi, 1984). The assay is based on the decomposition of H2O2 by CAT present in the 

samples.  50 mM Potassium phosphate buffer (650 μl) and sample (50 μl) were added to 

a quartz cuvette. The reaction was started by adding 30 mM H2O2 (300 μl). The 

absorbance produced by the decomposition of H2O2 was measured 

spectrophotometrically at 240 nm at 25
o
C for 30 seconds. CAT activity (U/s/mg 

protein) was normalized to the tissue protein content and expressed as: 
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CAT specific activity (U/s/mg protein)   =                          2.3 (-log net OD)  

                                                                                       _______________ 

                                                                                       ΔT X [Protein] 

 

                                                                                     Where, U = Unit of catalase required to consume 1 μmol of 

H2O2 per min/ mg of cellular protein.  

                                                                                     Net OD = optical density (absorbance) of samples minus 

absorbance of blank standard 

                                                   ΔT = time interval (10 s) 

                                  [Protein] = protein concentration (mg/ml) in samples. 

 

2.6.2.3. Normalization of SOD or CAT levels to tissue protein concentration 

The protein content of the tissue homogenates was measured using Bovine serum as a 

standard (Lowry et al. 1951). The assay relies on the reaction of the peptide bonds with 

the copper II sulphate solution (under alkaline conditions) resulting in the reduction of 

copper II ions (Cu
2+

) to copper I (Cu
+
) which reacts with Folin-Ciocalteu 

(Phosphomolybdic / Phosphotungstic acid) reagent to produce a colour change. The 

assay procedure was as follows: A stock solution (1 mg/mL) of Bovine serum albumin 

(BSA) powder was prepared in 1M NaOH solution and diluted serially in duplicates to 

achieve the concentrations (0, 10, 25, 50, 100, 200, 400 and 600 µg/mL), which was 

used to construct a BSA standard curve. Working standards (0.500 µl) and tissue 

supernatant samples (diluted 100 fold in NaOH) (0.500 µl) were placed into separate 

test tubes. Lowry reagent (5 mL) (containing 1% Copper II sulphate) (500 µl), 2% 

sodium potassium tartrate (500 µl) and 2% sodium carbonate Na2CO2 (50 ml) was 

added to each test tube and incubated at 27 
o
C for 15 min. The subsequent addition of 

1N Folin- Ciocalteu's reagent (20 µl) into each test tube, followed by another incubation 

period (27 
o
C, 30 min), produced a colour change which absorbance was measured at 



 

55 
 

          Gender differences in the reactivity of normoglycemic and diabetic rat aorta and the effects of quercetin and 17β-estradiol 
 

725 nm with a UV-spectrophotometer. The concentration of protein (mg/mL) was 

determined by comparing the average net optical density (OD) for each sample to the 

standard curve, which showed strong linearity (R
2
= 0.93). 

 

2.6.3. Tissue levels of prostaglandins and the effect of quercetin 

Contractile (Tesfamariam et al. 1990; De Vriese et al. 2000) and vasodilator (Jeremy et 

al. 1993) prostaglandins (PG) have been implicated in the pathogenesis of diabetic 

vascular disease. In the male rat, the mechanism of quercetin vasorelaxant action may 

be PG mediated (Roghani et al. 2005).  Therefore, the effect of gender and diabetes on 

the levels of PG products (vasoconstrictors: thromboxane (TXA2) (as TXB2; a stable 

metabolite of TXA2); PGE2 and the vasodilator: PGI2 (as 6-keto-PGF1a; a stable 

metabolite)) were measured in endothelium-intact tissues from respective experimental 

groups with or without quercetin treatment (10
-5

 M; 25 min). All assays were performed 

in homogenised tissue supernatant fractions using commercially procured enzyme 

immunoassay (EIA) kits (Cusabio Bioteck. Co. LTD) in accordance with the 

manufacturer’s instructions. Levels of TXB2, PGE2 and PGI2 were analysed as follows: 

 

2.6.3.1. TXA2 (TXB2) concentration   

Portions of working Standards (3.9, 7.80, 15.6, 31.2, 62.5,  and 125.0 pg/ml) (100 μl) or 

tissue supernatant sample  (100 μl) were added in duplicates to appropriate wells of a 96 

well micro titer plate pre-coated with an antibody specific to TXB2. TXB2 specific 

Biotin-conjugated antibody preparation (100 μl) was added to each well and incubated 

for 1 hour at 37 °C. Following incubation, wells were aspirated and washed with wash 

buffer (200 μl) for a total of three washes. Avidin conjugated to Horseradish peroxidase 

(HRP) enzyme (50 μl) was added into each well and incubated for another 1 hour at 
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37°C. This was followed by the addition of 3, 3’, 5, 5’ tetramethyl-benzidine (TMB) 

substrate solution (90 μl) into each well to promote HRP enzyme-substrate reaction 

which produces a blue colour which absorbs spectrophotometrically 450 nm. The 

concentration of TXB2 in the samples (pg/mL per mg of wet tissue weight) was 

determined by subtracting the average blank standard OD from the average OD for each 

working standard or sample. The average concentration of TXB2 was determined by 

comparing the average net OD for each sample to the standard curve (linearity; R
2 

= 

0.99). 

 

2.6.3.2. PGE2 concentration  

Portions of working Standards (0.4, 1.6, 6.3, 25.0, 100.0 pg/ml) or tissue supernatant 

samples (50 μl) were added in duplicates into appropriate wells of a 96 well microtiter 

plate pre-coated with PGE2 specific Goat-anti-rabbit antibody. HRP-conjugate solution 

(50 μl) was added into each well (except for blank wells) and  incubated  for 1 hour at 

37 °C following which each well was aspirated and washed  with wash buffer (200 μl) 

for a total of three washes. Substrate solutions A (50 μl) and B (50 μl) were added into 

each well to promote HRP-substrate reaction.  Sulphuric acid (stop solution) was added 

to terminate (yellow) colour development which absorbs spectrophotometrically at 

wavelength of 452 nm.  The average net OD of PGE2 in the samples was determined by 

subtracting the average blank standard OD from the average OD for each standard and 

sample. PGE2 (pg/mL per mg of wet tissue weight) was determined by comparing the 

average net OD for each sample to the standard curve which showed strong linearity (R
2 

= 0.94). 
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2.6.3.3. PGI2 concentration  

Portions of working Standards (7.8,  15.6,  31.2,  62.5,  125.0, 250.0, 500.0 pg/ml) or 

tissue supernatant sample (100 μl) was added in duplicates to appropriate wells of a 96 

well microtiter plate pre-coated with PGI2 (6-keto-PGF1a)- specific antibody and 

incubated for 2 hours at 37°C. Biotin-antibody solution (100 μl) was added into each 

well and incubated again for 1 hour at 37°C. Each well was aspirated and washed with 

wash buffer (200 μl) for a total of four washes. HRP-avidin working solution (100 μl)  

was introduced to each well and further incubated for another 1 hour at 37°C, at the end 

of which, well aspiration and washing was done for another 4 times. TMB substrate 

(developing) solution (90 μl) was added into each well and incubated again for 30 min 

at 37 °C to promote HRP enzyme-substrate reaction which was terminated by the 

addition of sulphuric acid following formation of yellow colour which absorbs 

spectrophotometrically  at 450 nm.  The average net OD for PGI2 (6-keto-PGF1a) in the 

samples was determined by subtracting the average blank standard OD from the average 

OD for each standard and sample. The average concentration of PGI2 (pg/mL per mg of 

wet tissue weight average) was determined by comparing the average net OD for each 

sample to the standard curve (linearity; R
2 

= 0.97). 

 

  2.6.4. Total serum and tissue concentration of nitric oxide (as nitrite ion) 

It has been suggested that the vascular endothelium of healthy females is more 

vasorelaxant than the male due to the formers higher basal release of endothelium-

dependent NO (EDNO) (Hayashi et al. 1992; Kauser and Rubanyi, 1994). This 

enhanced EDNO release from the female is abolished following the development of 

diabetes (Pinna et al. 2001). Therefore, this part of the study compared the effect of 

gender and diabetes on total levels of  nitric oxide (NO) (nitrite ion; a metabolite of NO) 
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production measured in serum (Section 2.4) and in endothelium-intact aortic tissue 

homogenate (Section 2.5.2) samples using commercially procured EIA kits (Assay 

Design, Stressgen). The assay was performed according to the manufacturer’s 

instructions as follows:  Zero Standard (reaction buffer) (50 μl), working Standards 

(3.13, 6.25, 12.5, 25, 50.0, and 100.0 μM/ml) (50 μl) or samples (50 μl) from each 

experimental group were placed into separate wells of a 96-well optiplate in duplicates. 

Reduced ß-Nicotinamide adenine dinucleotide (NADH) solution (25 μl), and Nitrate 

reductase enzyme solution (25 μl) were each added into wells containing the working 

Standard, zero Standard and samples and allowed to incubate at 37 °C, for 40 min. 

Under physiological conditions, NO is readily oxidized to nitrites and nitrates. During 

the incubation period, nitrate reductase enzyme converts all nitrates in the samples to 

nitrite ion which reacts with Griess reagent I (solution of Sulphanilamide in 2M HCl) 

(50 μl) and with Griess reagent II (solution of N-(1-Naphthyl) ethylenediamine in 2M 

HCl) (50 μl) resulting in colour development that absorbs strongly at 540 nm.  The 

Griess method ability to specifically quantify cytotoxic peroxynitrites (ONOO
-
) 

originally present in tissues is limited, given that ONOO
-
 decomposes rapidly in 

physiological buffers with a half-life of 1 sec (Koppenol et al. 1992; Pfeiffer et al. 

1997).  Therefore, the total concentration of (stable) nitrite ion in each sample (μmol/L 

in serum or μmol/ml per mg of wet tissue weight) was determined by comparing the 

average net OD for each sample to the standard curve which showed strong linearity (R
2 

= 0.99). 
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2.6.5. Serum and aortic tissues concentration of estradiol  

This part of the experiment was assessed to determine the influence of diabetes on 

levels of estradiol and how this may modulate vascular function. Levels of estradiol in 

healthy (normoglycemic) and diabetic groups in diestrus phase of estrus cycle were 

determined in serum and in endothelium-intact tissue homogenate samples. Estradiol 

(17β-estradiol) measurement was performed using commercially procured EIA kits 

(Biocheck Inc. Foster City, CA). The assay was performed according to the 

manufacturer’s instructions as follows: Estradiol antibody (Goat anti-rabbit IgG)-coated 

96 well microtiter plate was incubated at 25 
o 

C for 90 min with estradiol working 

Standards (0.0, 10.0, 30.0, 100.0, 300.0, and 1000.0 (pg/ml) (25 µl), blank controls (25 

µl) or samples (25 µl) (serum or tissue supernatant fraction), Estradiol-HRP conjugate 

reagent (100 µl) and  Rabbit anti-estradiol reagent (50 µl). During the incubation period, 

a fixed amount of HRP-labeled estradiol competes with the endogenous estradiol in the 

working standard, blank control or samples for a fixed number of binding sites on 

estradiol specific antibody. Following incubation, the microtiter wells were rinsed (with 

distilled water) and blotted dry (for a total of 5 washes) to remove unbound Estradiol-

peroxidase conjugate.  TMB (100 µl) reagent was added to each well and incubated for 

another 20 min at 25 
o 

C (resulting in blue colour formation) at the end of which a stop 

solution (1 M HCl) (100 µl) was added to terminate colour development. The colour 

absorbance for each well was read spectrophotometrically at 450 nm as a measure of the 

amount of unlabelled estradiol bound to Estradiol-HRP in the samples or standards. The 

average concentration of estradiol (pg/mL of serum or pg/mL per mg of wet tissue 

weight) was determined by comparing the average net OD for each sample to the 

standard curve for estradiol (linearity; R
2 

= 0.77).  
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2.6.6. Data presentation and statistical Analysis 

For each experimental group, SOD or CAT activity and the concentration of •O2
-
, 

TXA2 (TXB2), PGE2, PGI2 (6-keto-PGF1a), NO (nitrite ion), estradiol in serum or tissue 

were recorded as mean ± standard error of mean (SEM) of 4 or 8 determinations. The 

observed differences among the groups were tested for statistical significance using 

Student’s t-test for unpaired observations and two-way analysis of variance (ANOVA) 

for multiple group comparison followed by the Bonferroni post-hoc test for selected 

pairs. In all cases ‘p’ value of less than 0.05 was considered statistically significant.  
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CHAPTER 3 

RESULTS 

 

3.1. Effect of gender and diabetes on body weight / plasma glucose levels 

The mean ± SEM values for body weight and blood glucose levels in male and female 

normoglycemic /diabetic rats are summarized in Table 3.1. The normoglycemic female 

rats weighed significantly lesser than the normoglycemic male rats. Eight weeks after 

treatment with STZ, male and female diabetic animals attained body weight 

significantly lesser than their respective normoglycemic controls. Diabetic males 

showed a greater loss in body weight than the female (male = 16 % versus female = 9 

%).  Diabetic plasma glucose levels was similar in both genders, but was significantly 

higher than levels seen in age-matched normoglycemic controls. 

 

Table 3.1: Body weight and plasma glucose levels in male and female normoglycemic 

and STZ-induced (8 weeks) diabetic WKY rats.  

 

 

Values represent S.E.M ± mean. Statistics: # p < 0.05, diabetic compared to 

normoglycemic groups; *p < 0.001 female compared to male rats. 

   

 

 

 

 

Groups                   Weight (g) Plasma glucose (mmol/L)        n    

 Males   

Normoglycemic 

Diabetic 

              302.84 ± 6.04    

       254.78 ± 7.69
 #
 

       5.94 ± 0.17                        (34) 

             26.52 ±1.16
 #                                   

(33) 

 Females 

Normoglycemic 

Diabetic 

 

       205.90 ±3.24*  

              188.35 ±  5.33
#
*  

 

               6.60 ± 0.19                         (44) 

             28.17 ± 1.29
#
 
                                  

(32) 
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3. 2. Effect of diabetes on female reproductive (estrus) cycle and serum/aortic 

concentration of estradiol  

 

 

3. 2.1. Effect of diabetes on reproductive (estrus) cycle of female rats  

 

To assess the influence of the estrus cycle on vascular function in normoglycemic and 

diabetic female animals, the phase of the estrus cycle was determined by microscopic 

examination of vaginal smears from normoglycemic / diabetic rats (Section 2.5.3) 

collected on the day of sacrifice.  Microscopic images of stained vaginal smears showing 

cell (type and their distribution) in each phase of the estrus cycle in a normal cycling 

female rat is shown in figure 3.1.  Cells in proestrus phase consisted of mainly nucleated 

epithelial cells. Estrus phase samples were populated with mostly anucleated cornified 

cells. Metestrus phase samples exhibited the same proportion of conified, nucleated 

epithelial, and leukocyte cells, and the diestrus phase consisted of mainly leukocyte cells. 

Diabetes caused a cessation of normal estrus cycle resulting in a permanent metestrus / 

diestrus state (Fig. 3.1).  
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Figure 3.1: Shows (H+E) stained vagina smear images from normal cycling (upper panel) 

(a-l) and diabetic (lower panel) (m-o) female rats in various stages of estrus cycle 

displaying cells (magnified:  X10 (left column), X20 (middle column) and  X40 (right 

column)) in proestrus phase (a-c) (consisting of mainly nucleated epithelial cells (E)); 

estrus phase (d-f) (consisting of anucleated cornified cells (C)); metestrus phase (g-i) 

(howing conified cells (C), nucleated epithelial cells (E), and leukocytes (L)); and diestrus 

phase (j-l or m-o) predominantly exhibiting leukocyte cells (L) and fewer anucleated 

cornified cells. Slides represent vaginal smear samples from 22- 44 animals in each group. 
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3.2.2. Effects of gender and diabetes on serum and aortic tissue levels of estradiol 

 

The effect of short-term diabetes on levels of estradiol (17β-estradiol) (Section 2.6.5) was 

measured in serum and (endothelium-intact) aortic tissue samples from the respective 

groups of rats. Normoglycemic female samples exhibited higher levels of estradiol (aorta = 

1.0 ± 0.0; serum = 0.8 ± 0.2; ng/mL) compared to the male (aorta = 0.3 ± 0.4; serum = 0.4 

± 0.1; ng/mL) (Fig. 3.2). Compared to levels in normoglycemic samples, diabetes 

significantly reduced estradiol levels (by 50 %) in aortic tissue of female (0.5 ± 0.0 ng/mL) 

but failed to alter it in male aorta (0.5 ± 0.2 ng/mL).  Diabetes enhanced serum estradiol 

levels (by about 30 %) in female (1.3 ± 0.2 ng/mL) and male (0.7 ± 0.2 ng/mL) samples 

(Fig. 3.2).  
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Figure 3.2: Levels of estradiol in (endothelium-intact) aortic tissues (upper panel) and 

serum (lower panel) from normoglycemic and diabetic male or female rats. Data 

represent mean ± SEM (n = 6-8 animals in each group). Statistics: 
*
p < 0.05: 

normoglycemic female compared to the male; 
#
p < 0.01, diabetic compared to 

normoglycemic male or female samples.  
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3. 3. Effect of gender on agonist-induced vascular contraction  

 

3.3.1. PE-induced contraction 

Both normoglycemic and diabetic male and female tissues (with or without endothelium) 

produced concentration-dependent contractions to PE (Fig. 3.3).  

 

In the normoglycemic group, the maximal contraction (Emax) to PE (% of high K+-

induced contraction) was greater in endothelium-intact male (179.7 ± 7.1%) compared to 

the estradiol rich female tissues in proestrus phase (144.3 ± 8.6 %) (Fig. 3.3), which 

contracted similarly as estradiol-deficient female tissues in diestrus phase (145.1 ± 9.6 %). 

Endothelial denudation of normoglycemic tissues from both genders produced contractions 

of the same magnitude (male (217.7 ± 7.42 %) versus proestrus (215.1 ± 7.3 %) or diestrus 

(226.9 ± 7.4 %) female tissues). Endothelial denudation abolished or reversed the gender 

difference in the contraction of normoglycemic tissues.  Since there was no difference in 

the effect of estrus cycle on the contraction to PE of endothelium-intact and -denuded 

normoglycemic female tissues (Fig. 3.3), results from proestrus or diestrus normoglycemic 

female tissues were pooled and used as controls for responses in corresponding diabetic 

female tissues which existed in permanent diestrus state (Fig. 3.1).  

 

In the diabetic group, endothelium-intact female tissues contracted significantly more 

(Emax =159.9 ± 4.6 %) (Fig. 3.3) than the equivalent male tissues (Emax = 111.4 ± 5.6 %), 

which contracted lesser than its normoglycemic control (Emax = 179.7 ± 7.1 %). 

Contraction to PE in diabetic female tissues was similar in magnitude to its corresponding 

normoglycemic control (Emax = 145.0 ± 4.3 % (proestrus + diestrus)). Endothelial 

denudation of diabetic tissues enhanced contraction (Emax) more in male tissues (Emax = 

238.4 ± 5.6 %) compared to the female (Emax = 179.8 ± 6.5 %). This intervention 
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eliminated or reversed the observed contractile differences between the following 

categories: normoglycemic versus diabetic male tissues, and between the diabetic male 

versus diabetic female tissues (Fig. 3.3).   
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Figure 3.3: Cumulative phenylephrine (PE) (10
-11

-10
-5 

M) concentration response curves of 

endothelium-intact (+ED) or –denuded (-ED) aortic rings from male/female normoglycemic 

(proestrus/diestrus) (upper panel) or diabetic (lower panel) WKY rats.  Data represent mean 

± SEM (n = 5 -11) in each group. Statistics: *p < 0.01, female compared with corresponding 

male tissues; 
#
p < 0.001, compared with the corresponding male/female normoglycemic 

group, 
ǂ
p < 0.01, compared with endothelium-intact corresponding male/female 

normoglycemic or diabetic group. 
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3.3.2. Ang II-induced contraction 

Both normoglycemic and diabetic male and female tissues (with or without endothelium) 

produced concentration-dependent contractions to Ang II (Fig. 3.4).  

 

In the normoglycemic group, contraction to Ang II was greater in endothelium-intact 

normoglycemic male (Emax = 70.1 ± 3.0 %) compared to proestrus female (Emax = 40.7 ± 

5.2 %) but not the diestrus female tissues (Emax = 128.6 ± 2.9 %) (Fig.3.4). Endothelium 

denudation similarly enhanced contraction in male (Emax = 105.0 ± 9.7
 
%) and proestrus 

female (Emax = 84.1 ± 4.0 %), but did not change it in diestrus female (Emax = 109.0 ± 

11.9 %)
 

tissues. This effectively reversed the difference in normoglycemic tissue 

contraction between the male and the proestrus female, and reduced it between the 

proestrus and diestrus female groups (Fig. 3.4).   

 

Ang II-induced contraction was similar in endothelium-intact diabetic tissues from both 

genders (male Emax = 37.8 ± 5.6 % versus female Emax = 43.9 ± 3.5 %) (Fig. 3.4). Male 

tissue contraction was lesser than contraction seen in the corresponding normoglycemic 

controls, but normoglycemic (proestrus)/diabetic female tissue contracted similarly. 

Endothelial denudation equally enhanced contraction of diabetic male (Emax = 133.0 ± 9.0 

%) and female (Emax = 113.1 ± 4.1 diestrus) tissues, thereby abolishing the contractile 

difference between the normoglycemic versus diabetic tissues from both genders (Fig. 3.4).  

Since diabetes caused a permanent diestrus state in the diabetic female, responses in 

normoglycemic (proestrus) tissues were used as controls for diabetic tissue responses in 

order to reflect estradiol-mediated difference. 
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Figure 3.4: Cumulative angiotensin II (Ang II) (10
-11

-10
-5 

M) concentration response 

curves of endothelium-intact (+ED) or –denuded (-ED) aortic rings from male / 

female normoglycemic (proestrus / diestrus) (upper panel) or diabetic (lower panel) 

WKY rats.  Data represent mean ± SEM (n= 5-10) in each group. Statistics: *p < 

0.001, normoglycemic (proestrus) or diabetic female compared to corresponding 

male; 
#
p < 0.001, compared with the corresponding male/female normoglycemic 

group, 
ǂ
p < 0.01, compared with endothelium-intact corresponding normoglycemic or 

diabetic male/female group. 
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3.3.3. The effect of gender on quercetin vasodilator action 

 

3.3.3.1. Concentration-dependent effects of quercetin (10
-8

-10
-3

M) on PE-induced 

contraction 

 The vasodilator activity of quercetin was tested in pre-contracted male and female aortic 

rings (Section 2.5.5). In both genders, quercetin (10
-8

-10
-3

M) concentration-dependently 

relaxed PE (10
-6 

M) contraction in endothelium-intact and -denuded normoglycemic and 

diabetic tissues (Fig. 3.5). Repeated exposure of tissues to DMSO (up to 0.05 % (v/v)) over 

the experiment time frame (time control) yielded no responses, and hence was removed 

from the graph. 

 

At the maximum concentration tested (10
-3 

M), quercetin induced a higher percentage 

relaxation of PE-induced contraction in endothelium-intact normoglycemic male (Emax = 

70 %) compared to the female (Emax = 32 %). In endothelium-denuded tissues, the 

quercetin-induced relaxation was comparable in both genders (male Emax = 53 % versus 

female Emax = 69 %) (Fig. 3.5 / Table 3.2). 

 

In the diabetic group, the order of relaxation induced by quercetin is:  endothelium-intact 

female (Emax = 85 %) > male (Emax = 66 %) and endothelium-denuded male (Emax =71 

%) > female (Emax = 55 %) tissues (Fig. 3.5 / Table 3.2). 
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 Figure 3.5: Relaxant responses to quercetin (10
-8

-10
-3 

M) in endothelium-intact (+ED) 

or -denuded (-ED) aortic rings from male and female normoglycemic (upper panel) or 

diabetic (lower panel) WKY rats pre-contracted with phenylephrine (1 µM).  Data are 

shown as mean ± SEM (n = 6 - 8). Statistics: 
*
p < 0.01, female compared with the male. 

#
p < 0.01, endothelium-denuded versus -intact tissues. Repeated exposure of tissues to 

DMSO (up to 0.05 % (v/v)) over the experiment time frame (time control) yielded no 

responses, and hence was removed from the graph. 
 

 

 

 

 

-8 -7 -6 -5 -4 -3

0

25

50

75

100

Diabetic male

Log [Quercetin] (M)

%
 R

e
la

x
a
ti
o
n

o
f 
P

E
 c

o
n
tr

a
c
ti
o
n

-8 -7 -6 -5 -4 -3

0

25

50

75

100

Log [Quercetin] (M)

Diabetic female

#

-8 -7 -6 -5 -4 -3

0

25

50

75

100

Normoglycemic male

%
 R

e
la

x
a
ti
o
n

o
f 
P

E
 c

o
n
tr

a
c
ti
o
n

-8 -7 -6 -5 -4 -3

0

25

50

75

100

Normoglycemic female

*

-ED
+ED

#



 

73 
 

          Gender differences in the reactivity of normoglycemic and diabetic rat aorta and the effects of quercetin and 17β-estradiol 
 

Table 3.2: Relaxant responses (Emax and pEC50 values) of quercetin (10
-8

-10
-3

 M) in 

endothelium-intact or -denuded normoglycemic/diabetic male and female WKY aortic 

rings pre-contracted with phenylephrine (10
-6

 M). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               

Experimental  groups 

Male Female 

Emax ±SEM pEC50 ± SEM     Emax ±SEM pEC50 ± SEM 

Normoglycemic 
    

Endothelium-intact 70.0 ± 6.5 4.9 ± 0.3 32.2 ± 3.2
*
 5.0 ± 0.3 

Endothelium-denuded 52.6 ± 5.4 5.1 ± 0.4 69.1 ± 6.0
#
 5.3 ± 0.3

#
 

Diabetic     

Endothelium-intact  66.1 ± 5.8 5.1 ± 0.3  84.7 ± 7.0
‡ 
 5.1 ± 0.3 

Endothelium-denuded 71.1 ± 6.2 5.3 ± 0.4
 
  55.0 ± 4.8

#
 5.4 ± 0.3

#
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3.3.3.2. Effects of sub-maximal concentrations of quercetin and/or 17β-estradiol on 

agonist-induced contraction 

 

Endothelium-dependent and -independent responses to quercetin (10
-5

 M) and/or estradiol 

(17β-estradiol) (10
-7

 M) in aorta contracted with PE (Fig. 3.6a / 3.6b) or Ang II (Fig. 3.7) 

was obtained from normoglycemic and diabetic male/female groups. In tissues from both 

genders, DMSO (upto 0.05 % (v/v) which served as vehicle for quercetin or exogenous 

estradiol treatment) did not alter PE (Table 3.3) or Ang II (Table 3.4) contractions in 

endothelium-intact or –denuded tissues, hence responses to PE or Ang II (without 

DMSO) was used as controls for studies on these tissues. 

 

3.3.3.2.1. PE-induced contraction 

In the normoglycemic group, pre-treatment of tissues with quercetin attenuated the PE 

concentration-response curve in endothelium-intact male but not the female tissues (Fig. 

3.6a / Table 3.3).  Exogenous estradiol alone or its combination with quercetin attenuated 

contraction (Emax and tissue sensitivity (pEC50) in male but neither of these treatments 

had any effect on the contraction in female tissues to PE (Fig. 3.6a / Table 3.3).   

 

In male tissues, endothelium removal did not alter the prodilator effect of quercetin, but it 

enhanced the effects of estradiol or its combination with quercetin. These treatments 

produced relaxation of female tissues which originally were unresponsive to either of 

these treatments in the presence of endothelium (Fig. 3.6b / Table 3.3).   
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In the diabetic group, quercetin-induced effect was marginally greater in endothelium-intact 

female tissues (where quercetin caused 75 % inhibition of contraction (Emax)) compared to 

(51 % in) male. Estradiol significantly enhanced contraction (Emax) in endothelium-intact 

male but had no effect on female tissues (Fig. 3.6a / Table 3.3).  In both genders, estradiol 

significantly reduced quercetin relaxation of endothelium-intact tissues (Fig. 3.6a / Table 

3.3). Pre-treatment of endothelium-denuded tissues with estradiol and/or quercetin produced 

similar vasorelaxant effects in male/ female tissues (Fig. 3.6b / Table 3.3). 
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Figure 3.6a: Contractile responses of endothelium-intact normoglycemic/diabetic male and female tissues to phenylephrine (PE) in the 

presence of vehicle (DMSO < 0.05 % (v/v), 17 β-estradiol (10
-7

 M), quercetin (10
-5

 M) or  17 β-estradiol + quercetin.  Data are shown as 

mean ± SEM (n= 5 -20 in each group).  Statistics: *p < 0.01, female  compared with the male;
 #

p < 0.001 or ǂp < 0.001, compared with 

corresponding male or female normoglycemic or diabetic controls. 
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Figure 3.6b: Contractile responses of endothelium-denuded normoglycemic/diabetic male and female tissues to phenylephrine (PE) in the 

presence of vehicle (DMSO < 0.05 % (v/v)), 17 β-estradiol (10
-7

 M), quercetin (10
-5

 M) or 17 β-estradiol + quercetin.  Data are shown as 

mean ± SEM (n= 4 -9 in each group).Statistics: *p < 0.01, female compared with the male;
 #

p < 0.001, compared with corresponding male 

or female normoglycemic / diabetic controls. 
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Table 3.3: Emax and pEC50 values derived from PE (10
-11

-10
-5

M)-induced contraction of endothelium-intact /-denuded male / female 

normoglycemic /STZ-induced diabetic WKY aorta in absence or presence of vehicle (DMSO < 0.05 % (v/v)), quercetin and/or17 β-estradiol. 

 

 

 

 

 

 

Values represent mean ± SEM (n = 4 -20).  Statistics:  *p< 0.001, female compared to male tissues; 
#
p < 0.01, compared with corresponding 

male/ female normoglycemic or diabetic controls;  ǂp < 0.001, compared with corresponding endothelium-intact tissues. 

Rats Treatment group                Male                                                  Female                                                 

Normoglycemic   Emax ± SEM                                            pEC50 ± SEM  Emax ± SEM                                                    pEC50 ± SEM 

Endothelium-intact  Control (PE) 179.7 ± 7.1 7.4 ± 0.1 145.0 ± 4.3* 7.5 ± 0.1   

  Vehicle 171.8 ± 11.1 7.8 ± 0.2
#
 135.6 ± 5.5* 7.4 ± 0.1

*
 

    Quercetin 117.6 ± 4.6
#
 7.4 ± 0.1 127.7 ± 3.2 7.3 ± 0.1 

    17β-estradiol 134.9 ± 8.8
#
 7.5 ± 0.2 141.1 ± 8.0 7.4 ± 0.2 

    Quercetin+ 17β-estradiol   90.3 ± 4.6
#
 7.1 ± 0.1

#
 119.0 ± 4.5 7.2 ± 0.1 

Endothelium-denuded Control (PE) 217.7 ± 7.4
ǂ
  7.8 ± 0.1

ǂ
 215.1 ± 7.3

ǂ
   8.0 ± 0.1

ǂ
  

 Vehicle 194.5 ± 8.0 8.0 ± 0.1 192.5 ± 7.3  8.0 ± 0.1  

 Quercetin 141.7 ± 4.6
#
 7.8 ± 0.1   153.6 ± 8.2

#
   7.7 ± 0.2

#
 

    17β-estradiol 118.4 ± 8.1
#
 7.8 ± 0.2   123.4 ± 10.5

#
   7.7 ± 0.2

#
 

    Quercetin+ 17β-estradiol   47.8 ± 6.4
#
 7.6 ± 0.4    10.9 ± 2.4

#
   7.9 ± 0.9 
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Table 3.3 (continued): Emax and pEC50 values derived from PE (10
-11

-10
-5

M)-induced contraction of endothelium-intact /-denuded male / 

female normoglycemic /STZ-induced diabetic WKY aorta in presence or absence of vehicle (DMSO < 0.05 % (v/v)), quercetin and/or 17 

β-estradiol. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Values represent mean ± SEM (n = 4-20).  Statistics:  *p < 0.001, female compared to male tissues; 
#
p < 0.01, compared with corresponding 

male/ female normoglycemic or diabetic controls;  ǂp < 0.001, compared with corresponding endothelium-intact tissues. 

Rats Treatment group Male Female 

Diabetic    Emax ± SEM                                            pEC50 ± SEM  Emax ± SEM                                                    pEC50 ± SEM 

Endothelium-intact Control (PE) 111.4 ± 5.6
#
 7.4 ± 0.1 159.9 ± 4.6* 7.6 ± 0.1

#
 

 Vehicle 112.6 ± 5.3 7.4 ± 0.1 152.3 ± 5.6 7.2 ± 0.1 

    Quercetin   54.6 ± 3.0
#
 6.9 ± 0.1

#
   39.8 ± 3.5

#
 6.7 ± 0.2

#
 

    17β-estradiol 153.6 ± 4.5
#
 7.5 ± 0.2  144.6 ± 6.9 7.5 ± 0.1 

    Quercetin+ 17β-estradiol 105.0 ± 7.5
#
 7.1 ± 0.2

#
   98.8 ± 4.4

#
 7.1 ± 0.1

#
 

Endothelium-denuded Phenylephrine 238.4 ± 5.6
ǂ
 7.7 ± 0.1

ǂ
 179.8 ± 6.5 7.7 ± 0.1  

 Vehicle  ND ND ND ND 

 Quercetin 136.1 ± 6.5
#
 7.8 ± 0.1 134.2 ± 5.1

#
 7.7 ± 0.2 

    17β-estradiol 137.3 ± 5.6
#
 7.8 ± 0.1 122.3 ± 9.1

#
 8.2 ± 0.2

#
 

    Quercetin+ 17β-estradiol 111.9 ± 8.9 7.5 ± 0.2
#
 115.9 ± 14.6 7.7 ± 0.4

#
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3.3.3.2.2. Ang II-induced contraction 

In the normoglycemic group, quercetin attenuated contraction in endothelium-intact 

male aorta but not the proestrus female. Exogenous estradiol alone or its combination 

with quercetin had no effect on the contraction of male tissues but it enhanced pEC50 

in the female (Fig. 3.7 / Table 3.4). Endothelial denudation significantly enhanced 

contraction in both male and female groups. It failed to abolish quercetin vasorelaxant 

action in male, but unmasked it in female tissues (Table 3.4). Effect of estradiol and/ 

or quercetin on contraction of endothelium-denuded normoglycemic tissues was not 

determined. 

 

In the diabetic group, quercetin significantly inhibited contraction in tissue from both 

genders with equal magnitude (Fig. 3.7 / Table 3.4). Estradiol had no effect on Emax 

value of both male/female tissues but it enhanced sensitivity (pEC50) to Ang II in male 

tissues. Quercetin relaxation of Ang II contraction was inhibited by estradiol in 

diabetic tissues from both genders (Fig. 3.7 / Table 3.4).  Endothelial denudation 

significantly enhanced contraction but failed to abolish quercetin relaxant effect in 

diabetic tissue from both genders (Table 3.4). Effect of estradiol and/ or quercetin on 

contraction of endothelial denuded diabetic tissues was not determined.  
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Figure 3.7: Contractile responses of endothelium-intact normoglycemic/diabetic male 

and female tissues to angiotensin II (Ang II) in the presence of vehicle (DMSO < 0.05 

% (v/v %)), 17 β-estradiol (10
-7

 M), quercetin (10
-5

 M) or 17 β-estradiol + quercetin. 

Data are shown as mean ± SEM.  Statistics: *p < 0.01, female  compared with the 

male;
 #

p < 0.001 or ǂp < 0.01,  compared with corresponding male / female 

normoglycemic or diabetic controls.
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Table 3.4: Emax and pEC50 values derived from Ang II (10
-11

-10
-5

M)-induced contraction of endothelium-intact /-denuded  male / female 

normoglycemic /STZ-induced diabetic WKY aorta in absence or presence of quercetin and/or17 β-estradiol. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Values represent mean ± SEM (n = 4-7).  Statistics:  *p < 0.001, female compared to male tissues; 
#
p < 0.01, compared with corresponding 

male/ female controls;  ǂp < 0.001, compared with corresponding endothelium-intact tissues. 

 

Rats Treatment group                     Male            Female  

Normoglycemic   Emax ± SEM                                            pEC50 ± SEM    Emax ± SEM                                                    pEC50 ± SEM 

Endothelium-intact Control (Ang II)    70.1 ± 3. 0
 

7.9 ± 0.1 40.7 ± 5.2
*
 8.0 ± 0.2 

 

    Vehicle   55.4 ± 6. 0
 

7.9 ± 0.1 48.3 ± 14.8 7.7± 0.6 
 

    Quercetin 35.2 ± 3.8
#
 7.4 ± 0.4

#
 47.3 ± 9.6 7.9 ± 0.4   

    17β-estradiol 56.0 ± 3.7 8.0 ± 0.5 44.5 ± 6.0 8.4 ± 0.4
 #
 

    Quercetin+ 17β-estradiol 50.0 ± 3.4 8.0 ± 0.3      43.1 ± 4.4  8.0 ± 0.9
 #

  

Endothelium-denuded Control (Ang II)  105.0 ± 9.7
 ǂ 

8.2 ± 0.2
ǂ 

  84.1 ± 4.0
 ǂ 

8.1 ± 0.1
 

    Vehicle  ND ND ND ND 

    Quercetin 53.2 ± 9.7
#
 8.0 ± 0.3   53.0 ± 7.8

#
 8.0 ± 0.2   

    17β-estradiol ND ND ND ND 

    Quercetin+ 17β-estradiol ND ND     ND    ND 
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Table 3.4 (continued): Emax and pEC50 values derived from Ang II (10
-11

-10
-5

M)-induced contraction of endothelium-intact /-denuded 

male / female normoglycemic / STZ-induced diabetic WKY aorta in absence or presence of quercetin and/or17 β-estradiol. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Statistics:  *p < 0.001, female compared to male tissues; 
#
p < 0.01, compared with corresponding male/ female controls;  ǂp < 0.001, 

compared with corresponding endothelium-intact tissues. 

Rats Treatment group                     Male            Female  

Diabetic   Emax ± SEM                                            pEC50 ± SEM    Emax ± SEM                                                    pEC50 ± SEM 

Endothelium-intact Control (Ang II)  37.8 ± 5.6
#
 7.5 ± 0.6

#
 43.9 ± 3.5 8.1 ± 0.2* 

   Vehicle 35.4 ± 6.5 7.6 ± 0.4 41.7 ± 5.3 8.1 ± 0.3* 

   Quercetin 15.5 ± 1.9
#
 7.8 ± 0.3

#
 19.5 ± 1.6

#
 8.0 ± 3.0 

   17β-estradiol 37.8 ± 6.7 8.4 ± 0.5
#
 45.4 ± 7.7 8.0 ± 0.2* 

   Quercetin+ 17β-estradiol 43.9 ± 7.8 8.4 ± 0.5 40.7 ± 10.0 8.1 ± 0.1 

Endothelium-denuded Control (Ang II)  133.0 ± 9.0
ǂ 

8.3 ± 0.2
ǂ
 113.1 ± 4.1

ǂ 
8.3 ± 0.1

 

 Vehicle  ND ND ND ND 

 Quercetin 63.4 ± 6.6
#
 8.3 ± 0.3      65.8 ± 8.5

#
    8.1 ± 2.2 

    17β-estradiol ND ND ND  ND 

    Quercetin+ 17β-estradiol ND ND    ND     ND 
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3.4. Mechanism underlining gender differences in agonist-induced vasoconstriction 

and the vascular action of quercetin and/or 17β-estradiol. 

 

3.4.1. Effect of ROS and antioxidant enzyme level   

The hypothesis that levels of ROS (•O2-: a major modulator of the bioavailability of 

other endothelial-derived oxidants) and antioxidants enzymes (SOD and CAT) may be 

gender differentiated, and hence, may regulate normoglycemic / diabetic tissue 

contraction or the vasodilator action of quercetin was tested.   

 

3.4.1.1. Effect of diabetes on superoxide anion levels 

Superoxide anion (•O2
-
)
 
levels was

 
significantly higher in normoglycemic male aorta 

(homogenized tissue fraction (105.4 ± 14.4 mg/mL) (Fig. 3.8) or whole tissue (106.9 ± 

9.0 mg/mL)) (Fig. 3.9) compared to the female (homogenized tissue fraction (59.3 ± 

20.7 mg/mL) or whole tissue (76.0 ± 4.8 mg/mL) sample. Diabetes significantly 

elevated •O2
- 
content in male (homogenized tissue fraction (201.8 ± 45.7 mg/mL) (Fig. 

3.8) or whole tissue (134.7 ± 39.4 mg/mL) Fig. 3.9) and female (homogenized tissue 

fraction (155.8 ± 45.7 mg/mL) or whole tissue (133.7 ± 23.1 mg/mL) samples (Fig. 3.8- 

3.9). Diabetes-induced enhancement of •O2
- 
content was significantly higher in female 

(homogenized fraction = 164 % and whole tissue = 76 %) samples compared to the 

male (homogenized fraction = 92 % and whole tissue = 26 %). 
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Figure 3.8: Superoxide anion concentration in homogenized aortic tissue supernatant 

samples from normoglycemic/diabetic male and female animals. Data are shown as 

mean ± SEM (n = 6 - 8 in each group). Statistics: 
#
p < 0.001, diabetic compared with 

normoglycemic tissues; 
*
p < 0.01, female compared with male. 
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3.4.1.1.1. Concentration-dependent inhibitory effects of quercetin on superoxide 

anion levels 

Quercetin reduced •O2
- 

generation in a concentration-dependent manner in male 

(normoglycemic/diabetic) and female (diabetic) aorta (Fig. 3.9). In normoglycemic 

tissues, quercetin caused a much higher percentage lowering of •O2
- 
generation in male 

than female tissues with significant difference between male and female tissues for all 

except the lowest concentration (10
-8

 M) (which significantly elevated •O2
- 

in the 

female). 

 

Quercetin inhibition of •O2
- 
levels was comparable in diabetic tissues from both genders 

(Fig. 3.9). At the highest concentration tested (10
-4

 M), the order (%) of quercetin 

inhibition of 
.
O2

- 
in aortic tissues is: diabetic male (98 %) > diabetic female (96 %) > 

normoglycemic male (94 %) > normoglycemic female (52 %). The % reduction of •O2
- 

generation by the NADPH oxidase inhibitor, DPI, was significantly greater in diabetic 

compared to normoglycemic tissues (Fig. 3.9). The order of DPI-induced lowering of 

•O2
- 

production is: diabetic male (98 %) > diabetic female (95 %) > normoglycemic 

male (81 %) > normoglycemic female (49 %). 
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Figure 3.9: Levels of superoxide anion generated by endothelium-intact (+ED) 

normoglycemic (upper row) and diabetic (lower row) male/ female aortic tissue samples 

in the absence (vehicle, DMSO < 0.05 % (v/v)) or presence of quercetin (10
-8

 – 10
-4

 M) 

or DPI (NADPH oxidase inhibitor) (5 x 10
-6

 M), measured using lucigenin-enhanced 

chemiluminescence. Data are shown as mean ± SEM (n = 4 - 9). Statistics: 
#
p < 0.01, 

compared with corresponding male or female control (vehicle-treated) tissues; 
*
p < 

0.05, male compared with the female.  
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3.4.1.2. Effect of gender and diabetes on antioxidant enzyme levels  

In the normoglycemic group, tissue SOD activity was lower in male (2.1 ± 0.2 U/mg) 

compared to the female (2.9 ± 0.1 U/mg) (Fig. 3.10), but CAT activity were similar in 

male (19.2 ± 0.7 U/s/mg) and female (19.5 ± 0.4 U/s/mg) tissues (Fig. 3.10).  

 

Diabetes significantly reduced SOD activity more in female tissues (1.4 ± 0.1 U/mg) 

(52 % reduction) than the male (1.6 ± 0.2 U/mg) (24 % reduction). CAT activity was 

also reduced in tissues from both genders (female (14.9 ± 0.7 U/s/mg) (24 % reduction) 

versus male (15.3 ± 1.2 U/s/mg) (20 % reduction)) (Fig. 3.10).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                                                                                                                                                                       

89 

 
Gender differences in the reactivity of normoglycemic and diabetic rat aorta and the effects of quercetin  and 17β-estradiol 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10: Superoxide dismutase (SOD) (upper row) and catalase (CAT) (lower 

row) activity in aortic tissue homogenate samples from normoglycemic/diabetic male 

and female rats. Data are shown as mean ± SEM (n= 6 - 8 in each group). Statistic: 
#
p 

< 0.05, diabetic compared with normoglycemic tissues; 
*
p < 0.001, female compared 

with male. 
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3.4.1.3. Effect of the inhibition of ROS on agonist-induced contraction 

The direct role of reactive oxygen species (ROS) (•O2
- 

and/or H2O2) in modulating 

gender differences in PE or Ang II–induced contraction and quercetin action was 

measured. Endothelium-intact male and female tissues from respective groups were 

incubated with SOD and/or CAT, following which concentration responses to PE or 

Ang II (10
-11

-10
-5 

M) were assessed (Section 2.5.4.4). 

 

3.4.1.3.1. PE-induced contraction 

In normoglycemic male, PE contraction was significantly reduced in the presence of 

SOD and/or CAT, in contrast to the female, where only CAT treatment attenuated 

contraction at the highest dose tested (Table 3.5). In the male, quercetin attenuation of 

PE contraction was significantly enhanced with SOD or SOD + CAT but not CAT 

treatment.  In the female, SOD, CAT or both unmasked a quercetin relaxant effect 

(Table 3.5).   

 

In diabetic male, SOD and/or CAT enhanced contraction in contrast to their effects in 

corresponding normoglycemic control. In the diabetic female, PE-induced contraction 

was reduced with SOD + CAT but was unchanged with SOD or CAT treatment. In 

diabetic tissues from both genders, SOD and/or CAT treatment significantly reduced 

quercetin relaxant effect on PE contraction (Table 3.5). 
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Table 3.5: Emax and pEC50 values derived from phenylephrine (10
-11

-10
-5

M)-induced contraction of endothelium-intact  male / female 

normoglycemic /STZ-induced diabetic WKY aorta in absence or presence of quercetin, SOD, CAT, SOD + quercetin, CAT + quercetin or  

SOD + CAT + quercetin. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Values represent mean ± SEM (n = 6 -20).  Statistics: *p < 0.001, female compared to male tissues; 
#
p < 0.001,   compared with 

corresponding   male/ female control group. 

 

Rats Treatment group                  Male  Female                                    

 Normoglycemic Emax ± SEM                                              pEC50 ± SEM    Emax ± SEM                                              pEC50  ± SEM  

Endothelium  intact Control (PE)   179.7 ± 7.1 7.4 ± 0.1 145.0 ± 4.3* 7.5 ± 0.1    

 Quercetin   117.6 ± 4.6
#
 7.4 ± 0.1 127.7 ± 3.2 7.3 ± 0.1  

 SOD 114.5 ± 5.6
# 

7.6 ± 0.1 121.7 ± 7.9 7.2 ± 0.1
*
  

 SOD +  Quercetin 84.4 ± 6.9
# 

7.2 ± 0.2
#
 77.1 ± 8.7

#
 7.1 ± 0.2  

 CAT 129.0 ± 4.7
# 

7.6 ± 0.1 117.5 ± 7.7
#
 7.5 ± 0.1  

 CAT+  Quercetin 106.2 ± 7.7 7.4 ± 0.2 82.4 ± 7.1
#
 7.0 ± 0.1

#
  

 SOD + CAT 121.4 ± 12.5
#
 7.2 ± 0.2 123.1 ± 5.3

 
7.2 ± 0.1  

 SOD + CAT+ Quercetin   92.5 ± 5.5 
#
 7.2 ± 0.1 70.5 ± 11.0

#
 7.4 ± 0.3  
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Table 3.5 (continued): Emax and pEC50 values derived from phenylephrine (PE) (10
-11

-10
-5

M)-induced contraction of endothelium-intact  

male / female normoglycemic / STZ-induced diabetic WKY  in absence or presence of quercetin, SOD, CAT, SOD + quercetin, CAT + 

quercetin or  SOD + CAT + quercetin. 
 

 

 

 

 

 

 

 

 

 

 

 

Values represent mean ± SEM (n = 6 - 20).  Statistics: *p < 0.001, female compared to male tissues; 
#
p < 0.001,   compared with 

corresponding   male/ female control group. 

Rats Treatment group                  Male  Female                                     

 Diabetic Emax ± SEM                                              pEC50 ± SEM    Emax ± SEM                                              pEC50  ± SEM   

Endothelium  intact Control (PE) 112.6 ± 5.3 7.4 ± 0.1 159.9 ± 4.6*    7.6 ± 0.1 

 Quercetin 54.6 ± 3.0
#
 6.9 ± 0.1

#
 39.8 ± 3.4

#
 7.2 ± 0.2

#
 

 SOD 154.0 ± 3.6
# 

7.6 ± 0.1 137.7± 2.9 7.4 ± 0.1 

 SOD +  Quercetin 104.0 ± 7.9
# 

7.2 ± 0.1
#
 94.7 ± 5.8

#
 7.1 ± 0.2

#
 

 CAT 154.0 ± 4.6
# 

7.6 ± 0.1 142.5 ± 5.2 7.6 ± 0.1 

 CAT+  Quercetin 108.6 ± 6.7
#
 7.3 ± 0.2

#
 94.5 ± 3.5

#
 7.2 ± 0.1

#
 

 SOD + CAT 144.5 ± 6.6
#
 7.5 ± 0.1 118.1 ± 2.7

# 
7.3 ± 0.1

#
 

 SOD + CAT+  Quercetin 109.4± 8.4
#
  7.3 ± 0.2 90.3 ± 4.1

#
 7.1 ± 0.1 
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3.4.1.3.2. Ang II-induced contraction 

In normoglycemic male tissue, Ang II contraction was unchanged by SOD or CAT 

(SOD + CAT: not determined), in contrast to female tissues, where either of these 

treatments augmented contraction (Emax) (Table 3.6).  In male tissues, quercetin 

relaxant effect (Emax) was unchanged with SOD or CAT treatment. In the female 

tissues, where SOD or CAT enhanced contraction, quercetin relaxant effect was 

unmasked compared to its lack of effect in untreated tissues (Table 3.6). 

 

In the diabetic group, Ang II contraction was augmented by CAT (Emax / pEC50) or 

SOD (pEC50) in male tissues (SOD + CAT: not determined) (Table3.6). SOD or CAT 

treatment did not alter female tissue response to Ang II.  In male tissues, quercetin 

relaxation of Ang II contraction was unchanged by SOD, but CAT significantly 

inhibited it in diabetic female tissues. SOD enhanced quercetin relaxant action (Emax) 

but CAT attenuated it. 
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Table 3.6: Emax and pEC50 values derived from Ang II (10
-11

-10
-5

M)-induced contraction of endothelium-intact  male / female 

normoglycemic /STZ-induced diabetic WKY aorta in absence or presence of quercetin, SOD, CAT, SOD + quercetin, CAT + 

quercetin or  SOD + CAT + quercetin. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Values represent mean ± SEM (n = 6- 10).  Statistics:  *p < 0.001, female compared to male tissues; 
#
p < 0.05,   compared with corresponding   male/ female control 

group. 

Rats Treatment group                  Male  Female                                    

  Emax ± SEM                                              pEC50 ± SEM   Emax ± SEM                                              pEC50  ± SEM  

 Normoglycemic      

Endothelium  intact Control (Ang II) 70.1 ± 3.0 7.9 ± 0.1 40.7 ± 5.2
*
 8.0 ± 0.2  

 Quercetin 35.2 ± 3.8
#
 7.4 ± 0.2

#
 47.3 ± 9.6 7.9 ± 0.4    

 SOD 67.3 ± 13.0 
 

8.0 ± 0.3 66.0 ± 7.4
#
 8.0 ± 0.4  

 SOD +  Quercetin 23.4 ± 4.0
# 

8.0 ± 0.3 36.5 ± 7.2
#
 8.0 ± 0.4  

 CAT 61.1 ± 8.2
 

8.0 ± 0.3 77.7 ± 6.2
#
 8.2 ± 0.2  

 CAT+  Quercetin 26.8 ± 9.6
# 

8.6 ± 0.9
#
 41.1 ± 6.0

#
 8.2 ± 0.3  

 Diabetic     

Endothelium  intact Control (Ang II) 37.8 ± 5.6 7.5 ± 0.6 43.9 ± 3.5 8.1 ± 0.2
*
 

 Quercetin 15.5 ± 1.9
#
 7.8 ± 0.3

#
 19.5 ± 1.6

#
 8.0 ± 0.3 

 SOD 44.2 ± 10.5
 

8.0 ± 0.6
#
 37.2 ± 9.1 8.1 ± 0.1 

 SOD +  Quercetin 22.1± 2.5
# 

7.9 ± 0.4 4.7 ± 1.8
#*

 9.4 ± 0.2
#
 

 CAT 75.8 ± 5.4
# 

7.8 ± 0.2
#
 45.9 ± 4.2

*
 8.2 ± 0.5

*
 

 CAT+  Quercetin 49.1 ± 5.0
#
 7.8 ± 0.3 39.6 ± 7.5 8.0 ± 0.3 
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3.4.2. Effect of nitric oxide pathway  

3.4.2.1. PE-induced contraction 

 

Both male and female endothelium-intact/-denuded normoglycemic and diabetic aorta 

showed concentration-dependent contractions to PE in the presence of L-NAME or MB 

(Fig. 3.11).  

 

In the normoglycemic group, L-NAME or MB treatment significantly enhanced 

contraction in male (pEC50) and female (Emax / pEC50) tissues. This was more so in 

endothelium-intact female, where L-NAME or MB enhanced contraction by 22 % or 30 

% compared to the male (L-NAME = 4 %; MB = <0 %) (Fig. 3.11 / Table 3.7).  

Inhibition of eNOS or sGC activity with L-NAME or MB respectively, significantly 

reduced quercetin action in male tissues, with quercetin causing approximately 18 % or 

3 % reduction of contraction (Emax) in L-NAME or MB-treated tissues as against 34 % 

in the untreated tissues (Table 3.7).  In the female, % quercetin-induced effect in L-

NAME (15 %) or MB (19 %)-treated tissues was comparable with its effect (13 % 

reduction of contraction) in untreated female controls (Fig. 3.11 / Table 3.7). In 

endothelium-denuded tissues from both genders, MB treatment attenuated contraction, 

while L-NAME did not alter it (Fig. 3.11/ Table 3.7). Quercetin relaxant action was 

abolished by L-NAME or MB in endothelium-denuded tissues from both genders 

(Table 3.7).   

 

In the diabetic group, L-NAME or MB significantly enhanced contraction more in 

endothelium-intact male tissues (L-NAME = 39 %; MB = 31 %) compared to the 

female (L-NAME = 11 %; MB = <0 %) (Fig. 3.11 / Table 3.7). In effect, pre-treatment 

of endothelium-intact tissues with either L-NAME or MB abolished the observed 
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gender differences in contraction between normoglycemic male versus the female / the 

diabetic male, and between diabetic male versus the female.  L-NAME or MB 

significantly reduced quercetin action in diabetic tissues from both genders. In the 

diabetic male, quercetin caused a 5 % or 1 % reduction of contraction (Emax) in L-

NAME or MB-treated tissues as against 51 % in the untreated male tissues. In the 

diabetic female, quercetin produced a 17 % or 4 % reduction of contraction in L-NAME 

or MB-treated tissues as against 75 % in the untreated female tissues  (Fig. 3.11 / Table 

3.7).  Further, in endothelium-denuded tissues from both genders, MB (L-NAME = not 

determined) significantly attenuated PE-induced contraction but failed to alter quercetin 

relaxant effect in these tissues (Table 3.7).   
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Figure 3.11: Contractile responses of endothelium-intact normoglycemic (upper panel) 

and diabetic (lower panel) male / female tissues to phenylephrine (PE) in control, with 

quercetin (10
-5 

M), methylene blue (10
-5 

M) (MB), MB + quercetin,  L-NAME (10
-5 

M ) 

or L-NAME + quercetin. Data are shown as mean ± SEM (n = 6 - 20). Statistics: 
*
p < 

0.01, female compared with the male;
 #

p < 0.001 or 
‡
p < 0.01, compared with 

corresponding male or female normoglycemic or diabetic controls. 
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Table 3.7: Emax and pEC50 values derived from phenylephrine (10
-11

-10
-5

 M) concentration-response curves of endothelium-intact or -denuded 

normoglycemic/ diabetic male and female WKY aortic rings in  the absence or presence of MB, L-NAME ,  MB + quercetin or L-NAME + 

quercetin. 

 

 

Values represent mean ± SEM (n = 6-20).  Statistics:  *p < 0.001, female compared to male tissues; 
#
p < 0.01, compared with corresponding male/ 

female controls. ND = not determined. 

Rats Treatment group                Male                                                  Female                                                 

Normoglycemic    Emax ± SEM                                            pEC50 ± SEM  Emax ± SEM                                            pEC50 ± SEM 

Endothelium-intact Control (PE) 179.7 ± 7.1 7.4 ± 0.1   145.0 ± 4.3* 7.5 ± 0.1   

 Quercetin 117.6 ± 4.6
#
 7.4 ± 0.1 127.7 ± 3.2 7.3 ± 0.1 

 MB 159.7 ± 5.7 8.0 ± 0.1
#
 187.0 ± 4.1

#* 
8.1 ± 0.1

#
 

 MB +  quercetin  154.5 ± 4.1 7.6 ± 0.1
#
 150.6 ± 7.0

#
 7.7 ± 0.1

#
 

 L-NAME 187.3 ± 6.2 8.0 ± 0.1
#
 175.3 ± 6.4

# 
8.0 ± 0.1

#
 

 L-NAME + quercetin 154.2 ± 4.7
#
 7.8 ± 0.1 147.9 ± 4.7

#
 8.0 ± 0.1 

Endothelium-denuded Control (PE) 217.7 ± 7.4   7.8 ± 0.1 215.1 ± 7.3 8.0 ± 0.1 

 Quercetin 141.7 ± 4.6
#
 7.8 ± 0.1 153.6 ± 8.2

#
 7.7 ± 0.2

#
 

 MB 108.5 ±19.2
#
 7.9 ± 0.5 166.4 ± 10.2

#*
 7.7 ± 0.2

#
 

 MB+ quercetin 193.6 ± 2.54 7.9 ± 0.1 189.0 ± 11.7 8.3 ± 0.2 

 L-NAME 195.0 ± 10.1 7.9 ± 0.2 207.5 ± 12.1 8.1 ± 0.2 

 L-NAME + quercetin  216.4 ±11.4 7.9 ± 0.2 202.0 ± 7.2 8.0 ± 0.1 
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Table 3.7 (continued): Emax and pEC50 values derived from concentration-response curves of endothelium-intact  or -denuded  

normoglycemic/ STZ-induced diabetic male / female WKY  aortic rings to phenylephrine (10
-11

-10
-5

 M) in  the absence or presence of MB, 

L-NAME ,  MB + quercetin or L-NAME + quercetin. 

 

Values represent mean ± SEM (n = 6-20).  Statistics:  *p < 0.001, female compared to male tissues; 
#
p < 0.01, compared with 

corresponding male/ female normoglycemic or diabetic controls. ND = not determined.

Rats Treatment group                Male                                                  Female                                                 

Diabetic  Emax ± SEM                                            pEC50 ± SEM  Emax ± SEM                                                    pEC50 ± SEM 

Endothelium-intact Control (PE) 112.6 ± 5.3 7.4 ± 0.1 159.9 ± 4.6* 7.6 ± 0.1 

 Quercetin   54.6 ± 3.0
#
 6.9 ± 0.1

#
  39.8 ± 3.4

#
 7.1 ± 0.2

#
 

 MB 147.0 ± 3.3
#
 7.6 ± 0.1 152.1 ± 5.8 7.7 ± 0.1 

 MB +  quercetin  138.3 ± 6.7 7.5 ± 0.1 146.1 ± 6.0 7.5 ± 0.1 

 L-NAME 156.7 ± 4.0
#
 7.7 ± 0.1

#
 176.8 ± 6.0 7.8 ± 0.1

#
 

 L-NAME + quercetin 147.9 ± 7.8 7.4 ± 0.1
#
 146.9 ± 6.4

#
 7.8 ± 0.1 

Endothelium-denuded Control (PE) 238.4 ± 5.6
 

7.7 ± 0.1 179.8 ± 6.5 7.7 ± 0.1 

 Quercetin 136.1 ± 6.5
#
 7.5 ± 0.1 134.2 ± 5.1

#
 7.7 ± 0.2 

    MB 149.3 ± 4.8
#
 7.8 ± 0.1 120.1 ± 7.9

#
* 7.6 ± 0.2 

    MB+ quercetin 147.3± 4.4 7.8 ± 0.1 107.5 ± 9.3 7.6 ± 0.2 

 L-NAME ND ND ND ND 

 L-NAME + quercetin  ND ND ND ND 
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3.4.2.1.1. The effect of ACh on PE-induced contraction  

Both male and female endothelium-intact normoglycemic and diabetic aorta pre-

contracted with PE showed concentration-dependent relaxation to ACh (Fig. 3.12).   

 

 In the normoglycemic group, ACh induced a higher % relaxation (Emax) in 

normoglycemic female (88.0 ± 5.5 %) compared to the male tissues (60.0 ± 3.9 %) with 

no significant change to pEC50 (female = 7.7 ± 0.3 versus male = 7.7 ± 0.2) (Fig.3.12). 

Quercetin pre-treatment did not alter response (Emax) of female (102.4 ± 3.6 %) or 

male (74.3 ± 4.2 %) tissues to ACh, but it enhanced pEC50 values in both (male = 8.2 ± 

0.3; female = 8.3 ± 0.2) tissues (Fig. 3.12). 

 

In the diabetic group, responses to ACh was marginally more in diabetic female (Emax 

= 100.7 ± 4.6 %; pEC50 = 8.1 ± 0.2) compared to the male tissues (Emax = 82.3 ± 5.5 %; 

pEC50 = 7.9 ± 0.3) (Fig. 3.12). In the presence of ACh, quercetin did not alter Emax 

value in male (82.9 ± 2.1 %) or female (78.6 ± 4.2 %) tissues, but it significantly 

enhanced the pEC50 of male (8.9 ± 0.1), but not the female tissues (7.9 ± 0.3) (Fig. 

3.12).   
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Figure 3.12: Cumulative acetylcholine (ACh) (10
-14

-
 
10

-4 
M) concentration response 

curves of aortic rings from male (left column) and female (right column) 

normoglycemic (upper row) /diabetic (lower row) WKY rats pre-contracted with 

phenylephrine (PE) in the presence of quercetin (10
-5

 M) or its vehicle (DMSO< 0.05 % 

(v/v)).  Data are shown as mean ± SEM (n = 5 - 9).  Statistics: 
#
p < 0.05, compared with 

the corresponding male or female vehicle-treated controls. Repeated exposure of tissues 

to DMSO (up to 0.05 % (v/v)) over the experiment time frame (time control) yielded no 

responses, and hence was removed from the graph. 
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3.4.2.1.2. The effect of SNP on PE-induced contraction  

Both male and female endothelium-intact normoglycemic and diabetic aorta pre-

contracted with PE showed concentration-dependent relaxation to SNP (Fig. 3.13).  

 

In both genders, normoglycemic tissues relaxed (Emax) similarly to the exogenous NO 

releasing compound, SNP (male =104.1 ± 1.2 % and female =114.4 ± 9.7 %), but tissue 

sensitivity (pEC50) to SNP was greater in male (10.6 ± 0.1) compared to female tissues 

(9.7 ± 0.5) (Fig. 3.13). Quercetin failed to alter Emax value of SNP-treated male (100.4 

± 1.5 %) or female (114.9 ± 8.7 %) tissues, but it reduced the pEC50 in male (10.3 ± 0.1) 

but not the female (pEC50 = 9.6 ± 0.4) tissues (Fig. 3.13). 

 

In the diabetic tissues from both genders, relaxant response (Emax) to SNP, was also 

comparable (male = 108.9 ± 3.8 % versus female = 114.0 ± 4.0 %), with male exhibiting 

greater pEC50 (10.1 ± 0.3) compared to female (9.3 ± 0.2) tissues (Fig. 3.13).  In both 

genders, quercetin equally failed to alter SNP-induced Emax of diabetic (male = 103.6 ± 

2.6 %; female = 122.0 ± 8.2 %) tissues. However, diabetes increased the pEC50 value in 

quercetin + SNP-treated female (10.2 ± 0.7) but not male (10.0 ± 0.2) tissues (Fig. 

3.13). 
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Figure 3.13: Cumulative sodium nitroprusside (SNP) (10
-14

-
 
10

-4 
M) concentration 

response curves of aortic rings from male (left column) and female (right column) 

normoglycemic (upper row) /diabetic (lower row) WKY rats pre-contracted with 

phenylephrine (PE) in the presence of quercetin (10
-5

 M) or its vehicle (DMSO) (< 0.05 

% (v/v)).  Data are shown as mean ± SEM (n = 5 - 8).  Statistics: 
#
p < 0.05, compared 

with the corresponding male or female vehicle-treated controls.  Repeated exposure of 

tissues to DMSO (up to 0.05 % (v/v)) over the experiment time frame (time control) 

yielded no responses, and hence was removed from the graph. 
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3.4.2.1.3. Nitric oxide (nitrite ion) levels  

Serum nitrite levels was significantly higher in normoglycemic female serum (283.0 ± 

43.0 μMol/L) compared to the male (167.9 ± 4.8 μMol/L), but aortic tissue nitrite levels 

were similar in both genders (female: 5.6 ± 1.1 versus male: 4.7 ± 0.7 μMol/L/mg) (Fig. 

3.14).  

 

 

Diabetes significantly elevated nitrite levels more in serum samples from male (381.8 ± 

37.4 μMol/L; 127 % increase) compared to the female (576.4 ± 14.5 μMol/L; 104 % 

increase). Diabetes significantly enhanced nitrite concentration in female diabetic aorta 

(21.5 ± 0.7 (284 % increase) μMol/L/mg) but did not significantly alter it in the male 

(3.9 ± 0.6) (< 1 % reduction) μMol/L/mg)) (Fig. 3.14).  
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Figure 3.14. Nitrite concentration in serum (upper row) or aortic tissue (lower row) 

from normoglycemic/diabetic male and female animals. Data are shown as mean ± 

SEM (n= 6 - 7 in each group). Statistics: 
#
p < 0.001, diabetic compared with 

normoglycemic tissues; 
*
p < 0.001, female compared with male. 
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3.4.2.2. Ang II-induced contraction 

Both male and female endothelium-intact /-denuded normoglycemic and diabetic aorta 

showed concentration-dependent contractions to Ang II in the presence of L-NAME or 

MB (Fig. 3.15 / Table 3.8).  

 

In the normoglycemic group, L-NAME or MB-enhanced contraction in tissues from 

both genders with L-NAME or MB producing (143 % or 145 %) greater increase in 

Emax  value in female compared to male (L-NAME = 31 %; MB = 29 %) tissues. These 

interventions abolished the difference in contraction between the normoglycemic male 

versus the female (Fig. 3.15 / Table 3.8). L-NAME or MB pre-treatment significantly 

reduced quercetin action in endothelium-intact male tissues with quercetin causing 

approximately 4 % or 11 % reduction of contraction (Emax) in L-NAME or MB-treated 

tissues as against 50 % in the untreated tissues (Table 3.8).  In female tissues, where 

quercetin originally exerted no effect, quercetin caused a 31 % or 26 % relaxation of 

contraction (Emax) in L-NAME or MB-treated tissues (Table 3.8).  In endothelium-

denuded tissues from both genders, Ang II-induced contraction in MB (L-NAME = not 

determined)-treated tissues was similar to responses in respective untreated controls. 

MB significantly attenuated quercetin relaxant action (Table 3.8). 

 

In the diabetic group, L-NAME or MB treatment of endothelium-intact tissues resulted 

in greater % contraction (Emax) in male (L-NAME =163 %; MB = 146 %) compared to 

the female (L-NAME =125 %; MB = 93 %). In effect, either of the treatments abolished 

the contractile difference between the normoglycemic versus diabetic tissues (Table 

3.8). Pre-treatment with L-NAME or MB reduced quercetin relaxant action significantly 

more in male (by 18 % or 15 % versus 58 % induced effect in control tissues) compared 
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to (46 % or 36 % versus 55 % induced effect in untreated) female tissues (Fig. 3.15 / 

Table 3.8). In endothelium-denuded tissues from both genders, MB pre-treatment 

similarly attenuated contraction. MB treatment did not alter quercetin action in 

endothelial-denuded diabetic aorta from both genders (Table 3.8).  
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Figure 3.15: Contractile responses of endothelium-intact normoglycemic (upper panel) 

and diabetic (lower panel) male / female tissues to angiotensin II in control (Ang II), 

with Quercetin (10
-5 

M), methylene blue (10
-5 

M) (MB), MB + quercetin, L-NAME (10
-

5 
M) or L-NAME + quercetin.  Data are shown as mean ± SEM (n = 5 – 10 in each 

group). Statistics: 
*
p < 0.01, female compared with the male;

 #
p < 0.001 or ǂp < 0.001, 

compared with corresponding male or female normoglycemic or diabetic controls. 
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Table 3.8: Emax and pEC50 values derived from concentration-response curves of endothelium-intact or -denuded normoglycemic/STZ-

induced diabetic male and female WKY  aortic rings to Ang II (10
-11

-10
-5

 M) in  the absence or presence of  MB, L-NAME ,  MB 

+quercetin or L-NAME + quercetin. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Values represent mean ± SEM (n = 5-10).  Statistics:  *p < 0.001, female compared to male tissues; 
#
p < 0.01, compared with 

corresponding male/ female controls. ND = not determined.

Rats Treatment group Male Female 

Normoglycemic   Emax ± SEM                                            pEC50 ± SEM  Emax ± SEM                                                    pEC50 ± SEM 

Endothelium-intact  Control (Ang II) 70.1 ± 3. 0
 

7.9 ± 0.1 40.7 ± 5.2
*
 8.0 ± 0.2 

 

 Quercetin 35.2 ± 3.8
#
 7.4 ± 0.4

#
 47.3 ± 9.6 7.9 ± 0.4

*
   

 MB 89.6 ± 5.1 8.2 ± 0.1
#
 99.7 ± 4.5

# 
8.4± 0.1

#
 

 MB +  quercetin  79.9 ± 4.5 8.2 ± 0.1 68.9 ± 5.4
#
 8.2 ± 0.2 

 L-NAME  91.9 ± 5.1 8.2 ± 0.1
#
 98.7 ± 7.8

# 
8.2± 0.2 

 L-NAME + quercetin 88.3 ± 5.1 8.2 ± 0.1 68.0 ± 4.0
#
 8.1 ± 0.1 

Endothelium-denuded Control (Ang II) 105.0 ± 9.7
 

8.2 ± 0.2
 

84.1 ± 4.0
 

8.1 ± 0.1
 

 Quercetin      53.2 ± 9.7
#
 8.0 ± 0.3 53.0 ± 7.8

#
 8.0 ± 0.2   

 MB   100.3 ± 9.5 8.2 ± 0.3 84.2 ± 8.4 7.8 ± 0.2
#
 

 MB+ quercetin     88.2 ± 10.4 7.9 ± 0.1
#
 86.3 ± 11.7 8.3 ± 0.2

#
 

 L-NAME   ND ND ND ND 

 L-NAME + quercetin    ND ND ND ND 
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Table 3.8 (continued): Emax and pEC50 values derived from concentration-response curves of endothelium-intact or -denuded  

normoglycemic/STZ-induced diabetic male and female WKY  aortic rings to Ang II (10
-11

-10
-5

 M) in  the absence or presence of  MB, L-

NAME,  MB + quercetin or L-NAME + quercetin. 

 

Values represent mean ± SEM (n = 5 -10).  Statistics:  *p < 0.001, female compared to male tissues; 
#
p < 0.01, compared with 

corresponding male/ female controls. ND = not determined. 

Rats Treatment group                Male                                                    Female                                                 

Diabetic   Emax ± SEM                                            pEC50 ± SEM  Emax ± SEM                                                    pEC50 ± SEM 

Endothelium-intact Control (Ang II) 37.8 ± 5.6
 

7.5 ± 0.6 43.9 ± 3.5 8.1 ± 0.2* 

 Quercetin 15.5 ± 1.9
#
 7.8 ± 0.3

#
 19.5 ± 1.6

#
 8.0 ± 3.0 

 MB 93.0 ± 6.7
#
    8.3 ± 0.2

#
 85.3 ± 15.0

#
 8.1 ± 0.4 

 MB +  quercetin  76.1 ± 6.4    8.2 ± 0.2 46.8 ± 9.9
#
 7.9 ± 0.3

#
 

 L-NAME 100.0 ± 5.6
#
    8.2 ± 0.1

#
 99.0 ± 6.4

#
 8.5 ± 0.2

#
 

 L-NAME + quercetin 82.0 ± 5.2    8.1± 0.4 63.0 ± 4.3
#
 8.4 ± 0.2 

Endothelium-denuded Control (Ang II) 133.0 ± 9.0
 

8.3 ± 0.2 113.1 ± 4.1
 

8.3 ± 0.1
 

 Quercetin 63.4 ± 6.6
#
 8.3 ± 0.3 65.8 ± 8.5

#
 8.1 ± 2.2 

 MB 46.7 ± 12.2
#
 8.6 ± 0.1

#
    65.9 ± 7.5

#
 8.3 ± 0.3

*
 

 MB+ quercetin 25.6 ± 5.2
#
 8.2 ± 0.2

#
    65.1 ± 11.7 8.1 ± 0.4 

 L-NAME ND ND ND ND 

 L-NAME + quercetin ND ND ND ND 
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3.4.3. Effect of cyclooxygenase and/or eNO pathways 

 

3.4.3.1. PE-induced contraction 

In the normoglycemic group, contractile response (Emax) to PE in endothelium-intact 

tissues was significantly reduced by indomethacin in both genders (Table 3.9).  L-

NAME significantly attenuated or reversed the relaxant action of indomethacin in 

tissues from both genders (Table 3.9). In the male, quercetin attenuated contraction with 

or without indomethacin, with a magnitude similar to indomethacin treatment alone.  In 

the female tissues, quercetin attenuated contraction with but not without indomethacin 

(Table 3.9). In quercetin treated tissues from genders, L-NAME + indomethacin 

intervention, significantly shifted the PE response curve leftwards effectively 

attenuating quercetin relaxant effect (Table 3.9).  

 

 In the diabetic group, contractile response to PE was significantly enhanced (Emax) by 

indomethacin treatment in endothelium-intact male in contrast to the female, where, 

indomethacin reduced contraction (Table 3.9).  L-NAME significantly reversed the 

relaxant action of indomethacin in female but failed to alter its contractile effects in 

male tissues (Table 3.9). In both genders, quercetin effect was significantly reduced 

with indomethacin or indomethacin + L-NAME pre-treatment (Table 3.9). 
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Table 3.9: Emax and pEC50 values derived from concentration-response curves of endothelium-intact normoglycemic/STZ-induced 

diabetic male and female WKY aortic rings to phenylephrine (PE) (10
-11

-10
-5

 M) in absence or presence of indomethacin and/or L-NAME, 

indomethacin and/or SOD with or without quercetin treatment. 

 

Values represent mean ± SEM (n = 6-20).  Statistics: *p < 0.001, female compared to male tissues; 
#
p < 0.001,   compared with 

corresponding   male/ female control group. 

 

Rats Treatment group                Male                                             Female  

Endothelium-intact    Emax ± SEM                                            pEC50 ± SEM  Emax ± SEM                                            pEC50 ± SEM 

Normoglycemic  Control (PE) 179.7 ± 7.1 7.4 ± 0.1       145.0 ± 4.3* 7.5 ± 0.1   

 Quercetin 117.6 ± 4.6
#
 7.4 ± 0.1      127.7 ± 3.2 7.3 ± 0.1 

 Indomethacin 122.2 ± 7.8
#
 7.4 ± 0.2 109.2 ± 5.2

#
   7.6 ± 0.1

#
 

 Indomethacin+ quercetin 117.8 ± 7.2 7.1 ± 0.2
#
 101.9 ± 5.6   7.4 ± 0.2 

 L-NAME 187.3 ± 6.2 8.0 ± 0.1
#
       175.3 ± 6.4

# 
8.0 ± 0.1

#
 

 L-NAME + quercetin 154.2 ± 4.7
#
 7.8 ± 0.1       147.9 ± 4.7

#
 8.0 ± 0.1 

 L-NAME + indomethacin 173.0 ± 4.0 7.8 ± 0.1  178.1 ± 4.5 7.7 ± 0.1
#
 

 L-NAME+ indomethacin + quercetin 147.4 ± 3.0
#
 7.6 ± 0.1         152.0 ± 3.7

#
 7.6 ± 0.1 

 SOD 114.5 ± 5.6
# 

7.6 ± 0.1 121.7 ± 7.9 7.2 ± 0.1
*
 

 SOD +  quercetin 84.4 ± 6.9
# 

7.2 ± 0.2
#
   77.1 ± 8.7

#
 7.1 ± 0.2 

 SOD + indomethacin  159.4 ± 6.3
#
 7.4 ± 0.1        128.3 ± 8.7* 7.7 ± 0.2

#*
 

 SOD + indomethacin + quercetin      141.3 ± 6.8 7.3 ± 0.2 69.1 ± 6.8
#
 7.2 ± 0.3

#
 



                                                                                                                                                                                                                                                                       

113 

 
Gender differences in the reactivity of normoglycemic and diabetic rat aorta and the effects of quercetin  and 17β-estradiol 
 

 

 

Table 3.9 (continued): Emax and pEC50 values derived from concentration-response curves of endothelium-intact normoglycemic /STZ-

induced diabetic male and female WKY aortic rings to PE (10
-11

-10
-5

 M) in absence or presence of indomethacin and/or L-NAME, 

indomethacin and/or SOD with or without quercetin treatment. 

 

 

Values represent mean ± SEM (n = 6-20).  Statistics: *p < 0.001, female compared to male tissues; 
#
p < 0.001,   compared with 

corresponding   male/ female control group. 

Rats Treatment group                Male                                                       Female  

Endothelium-intact   Emax ± SEM                                            pEC50 ± SEM  Emax ± SEM                                            pEC50 ± SEM 

Diabetic  Control (PE) 112.6 ± 5.3  7.4 ± 0.1 159.9 ± 4.6*             7.6 ± 0.1 

 Quercetin    54.6 ± 3.0
#
    6.9 ± 0.1

#
   39.8 ± 3.4

#
             7.2 ± 0.2

#*
 

 Indomethacin 159.4 ± 6.3
#
 7.5 ± 0.1     113.7 ± 5.9

#
*             7.3 ± 0.1

#
 

 Indomethacin+ quercetin       102.2 ± 7.6
#
 7.3 ± 0.2   85.0 ± 5.9

#
              7.1 ± 0.2 

 L-NAME    156.7 ± 4.0
#
     7.7 ± 0.1

#
 176.8 ± 6.0          7.8 ± 0.1

#
 

 L-NAME  + quercetin  147.9 ± 7.8    7.4 ± 0.1
#
 146.9 ± 6.4

#
          7.8 ± 0.1* 

 L-NAME + indomethacin      149.2 ± 3.8  7.6 ± 0.1   182.5 ± 4.9          7.6 ± 0.1 

 L-NAME+ indomethacin + quercetin        141.4 ± 4.6   7.3 ± 0.1
#
   138.7 ± 6.2

#
          7.6 ± 0.1 

 SOD 154.0 ± 3.6
# 

7.6 ± 0.1           137.7 ± 2.9             7.4 ± 0.1 

 SOD +  quercetin 104.0 ± 7.9
# 

7.2 ± 0.1
#
              94.7 ± 5.8

#
      7.1 ± 0.2

#
 

 SOD + indomethacin  150.2 ± 6.7   7.6 ± 0.1       108.6 ± 8.9
#
*               7.4 ± 0.2 

   SOD + indomethacin + quercetin   92.1 ± 9.0
#
     7.0 ± 0.2

#
     73.5 ± 4.3

#
               7.0 ± 0.1

#
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3.4.3.1.1. Effect of gender and quercetin on synthesis of cyclooxygenase products  

The contribution of prostaglandins (PG) (TXA2, PGE2 and PGI2) in modulating 

observed gender-dependent contractile responses and the action of quercetin on these 

endothelium-intact tissues were explored by measuring the levels of prostaglandins in 

endothelium-intact tissues from normoglycemic / diabetic rats  treated with or without 

quercetin (Section 2.6.3). 

  

In the normoglycemic group, male tissues exhibited higher levels of TXA2 (TXB2) (11.4 

± 1.6 pg/mL/mg) and PGE2 (1.8 ± 0.2 pg/mL/mg) compared to the corresponding female 

tissues (TXB2 = 5.7 ± 1.5; PGE2 =1.3 ± 0.1 pg/mL/mg) (Fig. 3.16).  Female tissues 

exhibited higher PGI2 (6-keto-PGF1a) (0.9 ± 0.1 pg/mL/mg) content compared to the 

male (0.3 ± 0.1 pg/mL/mg) (Fig. 3.16).  

 

Acute pre-treatment with quercetin (10
-5

 M, 25 min) significantly reduced TXB2 (male: 

= 5.4 ± 1.1 versus female: = 1.1± 0.2 pg/mL/mg) but did not alter PGE2 levels in tissues 

from both genders (male: PGE2 = 1.6 ± 0.3 versus female: PGE2 =1.3 ± 0.7) (Fig. 3.16). 

The % reductions of TXB2 was higher in female (80 %) compared to male (53 %) 

tissues. Quercetin enhanced PGI2 levels in tissues from both genders (male: 0.8 ± 0.2 

pg/mL/mg) (female: 1.2 ± 0.2 pg/mL/mg) (Fig. 3.16). This enhancement was more in 

male (175 %) compared to female (31 %) tissues. 

 

In the diabetic group, tissue concentrations of TXA2 (2.0 ± 0.3 pg/mL/mg) and PGE2 

(0.9 ± 0.1 pg/mL/mg) were significantly reduced in male compared to its 

normoglycemic control. In contrast, diabetes enhanced TXA2 (16.3 ± 6.7 pg/mL/mg) but 

not PGE2 (1.5 ± 0.0 pg/mL/mg) content in the female in comparison to the female 



                                                                                                                                                                                                                                                                       

115 

 
Gender differences in the reactivity of normoglycemic and diabetic rat aorta and the effects of quercetin  and 17β-estradiol 
 

normoglycemic tissues. The levels of both prostanoids were significantly elevated in the 

female compared to the male tissues (Fig. 3.16). Diabetes induced an increase in PGI2 

levels in tissue from both genders (male = 0.6 ± 0.1 pg/mL/mg versus female = 1.5 ± 

0.2 pg/mL/mg) and this was higher (100 %) in diabetic male compared to female (67 %) 

tissues (Fig. 3.16).   

 

Quercetin reduced TXB2 (male = 0.5 ± 0.1 versus female = 3.2 ± 0.7 pg/mL/mg) but not 

PGE2 levels (male: =1.0 ± 0.3 versus female: 1.4 ± 0.0 pg/mL/mg) (Fig. 3.16) in tissue 

from both genders. It significantly reduced PGI2 levels in diabetic tissues from both 

genders (male = 0.4 ± 0.0 and female = 0.6 ± 0.1 pg/mL/mg). This reduction of PGI2 

levels was significantly more in diabetic female (60 % reduction) compared to the male 

(33 % reduction) tissues (Fig. 3.16). 
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Figure 3.16: Levels of thromboxane (TXB2) (upper row), prostaglandin E2 (PGE2) 

(middle row) and prostaglandin I2 (PGI2; prostacyclin) (lower row), in aortic tissue from 

normoglycemic and diabetic male/female animals. Data are shown as mean ± SEM (n= 

5-7 in each group). Statistic: 
#
p < 0.001 or 

+
p < 0.001, compared with respective male or 

female control; 
*
p< 0.01, female compared with male. 
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3.4.3.1.2. Effect of indomethacin and/or SOD on PE-induced contraction 

The effect of •O2
-
 interaction with the cyclooxygenase pathway on PE-induced 

contraction of endothelium-intact normoglycemic / diabetic male and female aorta in 

the presence or absence of quercetin was investigated.  

 

In normoglycemic male aorta, SOD or indomethacin (but not indomethacin + SOD) 

significantly relaxed contraction (Emax). In these tissues, quercetin relaxant effect was 

enhanced by SOD, while its combination with indomethacin + SOD produced lesser 

relaxation compared to quercetin treatment alone (Table 3.9). In the female, 

indomethacin attenuated contraction but not SOD, quercetin or indomethacin + SOD 

treatments. Quercetin combined with SOD or indomethacin + SOD to inhibit 

contraction (Table 3.9). 

 

In diabetic male tissues, contractile response (Emax) to PE was significantly enhanced 

by SOD, indomethacin or
 
indomethacin + SOD in contrast to responses produced by 

these treatments in corresponding normoglycemic tissues. Quercetin in combination 

with SOD or indomethacin + SOD significantly attenuated the contractile effects of 

SOD or indomethacin + SOD (Table 3.9). In the female tissues, PE-induced contraction 

(Emax) was significantly reduced by indomethacin or indomethacin + SOD (but not 

with SOD) treatment. Quercetin significantly relaxed contraction in SOD- or 

indomethacin + SOD –treated tissues, although this was lesser than relaxation produced 

by quercetin treatment alone (Table 3.9). 
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3.4.3.2. Ang II-induced contraction 

In normoglycemic tissues, Ang II contraction (Emax) in endothelium-intact male tissues 

was significantly attenuated by indomethacin, which failed to alter it in the female 

tissues (Table 3.10).  L-NAME significantly attenuated or reversed the relaxant action 

of indomethacin in the male but did not significantly alter its effect in female tissues 

(Table 3.10). In the male tissues, quercetin relaxant effect was unchanged with 

indomethacin treatment (Table 3.10). In female tissues, indomethacin had no effect on 

quercetin action.  Quercetin relaxant effect was present in L-NAME + indomethacin-

treated male and also in female tissues, where quercetin action was originally absent 

(Table 3.10). 

 

In the diabetic group, indomethacin enhanced contraction in male (Emax) tissues, but 

elicited minimal effect in female tissues (Table 3.10).  L-NAME enhanced the 

contractile effects of indomethacin in diabetic tissues from both genders (Table 3.10). 

Quercetin relaxation of male diabetic tissues was significantly inhibited by 

indomethacin, but this was not the case with female tissues, where it was marginally 

enhanced (Table 3.10).  Indomethacin + L-NAME induced reduction of quercetin effect 

was significantly more in diabetic male than female aorta (Table 3.10). 
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Table 3.10: Emax and pEC50 values derived from concentration-response curves of endothelium-intact normoglycemic /STZ-induced 

diabetic male and female WKY aortic rings to Ang II (10
-11

-10
-5

 M) in presence or absence of indomethacin and/or L-NAME with or 
without quercetin treatment. 

 

 
 

 

 

Values represent mean ± SEM (n = 6- 10).  Statistics: *p < 0.001, female compared to male tissues; 
#
p < 0.001,   compared with 

corresponding   male/ female control group. 
 

Rats Treatment group                Male                                                            Female  

Endothelium-intact    Emax ± SEM                                            pEC50 ± SEM  Emax ± SEM                                            pEC50 ± SEM 

Normoglycemic   Control (Ang II)   70.1 ± 3. 0
 

7.9 ± 0.1    40.7 ± 5.2*    8.0 ± 0.2 
 

 Quercetin   35.2 ± 3.8
#
 7.4 ± 0.4

#
    47.3 ± 9.6    7.9 ± 0.4*   

 L-NAME    91.9 ± 5.1 8.2 ± 0.1
#
    98.7 ± 7.8

# 
   8.2 ± 0.2 

 L-NAME + quercetin   88.3 ± 5.1 8.2 ± 0.1    68.0 ± 4.0
#
    8.1 ± 0.1 

 Indomethacin     26.6 ± 2.8
#
 8.0 ± 0.1      55.7 ± 5.5    8.3 ± 0.4

#
 

 Indomethacin + quercetin     26.8 ± 3.8 8.0 ± 0.4      52.5 ± 6.0    8.0 ± 0.1 

 L-NAME + indomethacin   102.6 ± 3.3 8.2 ± 0.1      69.0 ± 6.2* 8.3 ± 0.3 

 L-NAME+ indomethacin + 

quercetin 

    43.7 ± 3.4
#
 8.0 ± 0.6      30.4 ± 3.5

#
 8.0 ± 0.3

#
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Table 3.10 (continued) : Emax and pEC50 values derived from concentration-response curves of endothelium-intact male and female 

WKY  aortic rings to Ang II (10
-11

-10
-5

 M) in presence or absence of indomethacin and/or  L-NAME with or without quercetin treatment.  

 

 

 

 

 

Values represent mean ± SEM (n = 6-10).  Statistics: *p < 0.001, female compared to male tissues; 
#
p < 0.001,   compared with 

corresponding   male/ female control group. 

Rats Treatment group                Male                                                            Female  

Endothelium-intact    Emax ± SEM                                            pEC50 ± SEM  Emax ± SEM                                            pEC50 ± SEM 

Diabetic Control (Ang II) 37.8 ± 5.6 7.5 ± 0.6    43.9 ± 3.5    8.1 ± 0.2* 

    Quercetin 15.5 ± 1.9
#
   7.8 ± 0.3

#
 19.5 ± 1.6

#
 8.0 ± 3.0 

 L-NAME 100.0 ± 5.6
#
     8.2 ± 0.1

#
 99.0 ± 6.4

#
 8.5 ± 0.2

#
* 

 L-NAME + quercetin 82.0 ± 5.2     8.1± 0.4 63.0 ± 4.3
#
 8.4 ± 0.2* 

 Indomethacin   60.2 ± 5.9
#
  8.0 ± 0.9

#
       51.7 ± 5.1 7.8.4 ± 0.3*

#
 

 Indomethacin + quercetin   52.1 ± 5.2  8.0 ± 0.4      12.1 ± 2.6
#
* 7.8.0 ± 0.9

#
 

 L-NAME + indomethacin   93.4 ± 3.9  8.4 ± 0.1        97.4 ± 6.3    8.3 ± 0.2 

 L-NAME+ indomethacin + 

quercetin 

  72.8 ± 5.5  8.2 ± 0.4      53.6 ± 7.0
#
    8.0 ± 0.3

#
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CHAPTER 4 

 

DISCUSSION 

 

 

This study explored possible gender differences in agonist (phenylephrine (PE) or 

angiotensin II (Ang II))-contracted rat aorta, and in the effects of the antioxidant 

flavonoid-quercetin and/or 17β-estradiol (estradiol) on contractile function. The roles of 

oxidative stress, nitric oxide-cGMP and / or cyclooxygenase pathway in regulating the 

observed gender differences were also examined. Our data provide evidence to suggest 

that normoglycemic and diabetic aortic tissue contraction to PE or Ang II, and the 

vasorelaxant function of quercetin or estradiol is influenced by gender-dependent, 

endothelium-mediated factors and the diabetic state. 

 

4.1. Influence of gender and the endothelium on agonist-induced contraction  

Eight weeks following STZ -induced diabetes, the endothelium-intact normoglycemic 

male tissues contracted more (to PE or Ang II) compared to the normoglycemic female 

aorta or the diabetic male. The normoglycemic and diabetic female contracted equally 

to PE regardless of estrus cycle phase. Ang II induced lesser response in 

normoglycemic (proestrus)/diabetic female compared to corresponding normoglycemic 

tissues in diestrus phase (Fig. 3.3 / 3.4).  This result is consistent with earlier studies 

(Tostes et al. 2000; Wangensteen et al. 2004; Robert et al. 2005), which show that 

normoglycemic male tissues respond significantly more to agonist-induced 

vasoconstriction than the female. It also supports previous studies (Pinna et al. 2001) 

showing that the female blood vessel may become more reactive following the 

development of diabetes.  Removal of the endothelium (Fig. 3.3 / 3.4) or pre-treatment 

with L-NAME or MB (Fig. 3.11 / 3.15) abolished the gender differences in (PE or Ang 

II) contraction between the normoglycemic male versus the diabetic male / 
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normoglycemic female, and between the diabetic male versus the diabetic female aorta. 

Taken together, these results suggest that gender-related, endothelium-dependent factors 

mediated the observed tissue differences in contraction. 

 

In figure 3.3 & 3.4, the diabetes-induced attenuation of contraction in male (PE or Ang 

II-contracted) and female (Ang II- contracted) tissues, supports previous observations 

(Myers and Messina, 1996; Misurski et al. 2001), including studies from our laboratory 

(Chin et al. 2007), showing that vascular hypo reactivity to endogenous vasoconstrictors 

exist in (short-term) diabetes. This outcome perhaps represents an early attempt by the 

diabetic tissue endothelium to counter the increased contractility subsequently seen in 

this condition (Myers and Messina, 1996; Misurski et al. 2001). Furthermore, 

endothelium removal resulted in a greater percentage increase in Emax of 

normoglycemic female (PE = 49 %; Ang II = 107 %) compared to male (PE = 21 %; 

Ang II = 50 %) tissues (Table 3.3 / 3.4), indicating that the endothelium of healthy 

(normoglycemic) female is in a higher vasorelaxant state compared to the male in 

agreement with previous studies (Hayashi et al. 1992; Kauser and Rubanyi, 1994). This 

female ‘advantage’ was evidently diminished in female diabetic tissues, where removal 

of the endothelium resulted in lesser % contraction (PE = 12.5 %; Ang II = 158 %) 

compared to contraction in equivalent male tissues (PE =114 %; Ang II = 250 %) (Table 

3.3/3.4). This reduced contractile response in endothelium-denuded diabetic female 

tissues perhaps supports the hypothesis that female vascular endothelium succumb more 

to diabetes-induced damage compared to the male (Pinna et al. 2001).  
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4.1.1. The role of estrus cycle on agonist-induced contraction of female aorta 

The development of diabetes caused a cessation of the normal reproductive (estrus) 

cycle in the female rats resulting in a permanent diestrus state and reduced levels of  

estradiol in line with earlier finding (Kim et al. 2006) (Fig. 3.1).  However, this negative 

effect of diabetes on female estrus cycle did not alter PE-induced contraction in 

agreement with earlier studies (Li et al. 1997; Sanz et al. 2003). On the other hand, 

endothelium-intact normoglycemic female tissues in diestrus phase produced greater 

reactivity to Ang II in comparison with corresponding proestrus tissues (Fig. 3.4). This 

suggests that estradiol-deficiency (a feature of tissues in diestrus phase (Walmer et al. 

1992)) augments female vascular reactivity to Ang II as has been demonstrated (Xue et 

al. 2007).  The attenuated response of diestrus diabetic tissues to Ang II stimulation was 

perhaps a consequence of the opposing effects of diabetic (endothelium)-activation of 

vasodilator factors (Table 3.5 / 3.6 & fig. 3.16)- a pathophysiological mechanism to 

compensate for increased tissue contraction associated with this condition (Myers and 

Messina, 1996; Misurski et al. 2001). 

 

4.2. The influence of quercetin and/or estradiol on tissue contraction 

4.2.1. The effect of quercetin on tissue contraction 

PE (Bleeke et al. 2004; Tsai and Jiangi, 2010) and Ang II (Touyz, 2004; Chu and Leung 

et al. 2009) are well known triggers for increased vascular oxidative stress. On the other 

hand, the vasoprotective effects of antioxidant flavonoids are greater in the presence of 

oxidative stress (Nascimento et al. 2003, Lopez-Lopez et al. 2004). It is therefore no 

surprise that quercetin (10
-8

-10
-3 

M or 10
-5 

M) vasodilator action was predominant in 

PE- or Ang II- treated tissues (normoglycemic /diabetic male and the diabetic female) 

(Fig. 3.6 a, b / 3.7 / Table 3.3 / 3.4), where oxidative stress (Fig. 3.8-3.9) was higher 
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compared to its lesser effect in endothelium-intact female tissues with reduced oxidative 

stress). Taken together, in PE-contracted tissues, these results confirm earlier studies 

(Duarte et al. 1993; Roghani et al. 2005) including those from our laboratory (Ajay, 

2003; 2006 a,b; 2007), which show that quercetin exerts its vasorelaxant action via 

endothelium-dependent and -independent mechanisms in male rats. The current data 

also supports earlier findings in male rats (Ajay et al. 2007; Sanchez et al. 2007) 

showing that the endothelium-mediated mechanism for quercetin action is partly 

regulated by the presence of oxidative factors. It goes further to propose for the first 

time, that the same factors influence quercetin action in female rat aorta. Furthermore, 

compared to diabetic female aorta (with lesser estradiol levels (Fig. 3.2), the absence of 

quercetin vasorelaxant action in endothelium-intact normoglycemic female tissues may 

probably be the result of (physiological) endothelium-mediated suppressive effects of 

(the female hormone) estradiol against oxidative stress (Strehlow et al. 2003; Florian et 

al. 2004). This led to the investigation of the direct role of estradiol and / or quercetin on 

vascular contraction. 

 

4.2.2. The effect of estradiol on tissue contraction 

The effect of exogenous estradiol on vascular responses to contractile agonists is 

controversial.  Attenuation (Thomas et al. 1995), enhancement (Miller and Vanhoutte, 

1990) or no effect (Nadarali et al. 2001; Tep-Areenan et al. 2003) have all been 

reported. In the current study, estradiol attenuated PE contraction or marginally reduced 

it in Ang II contracted endothelium-intact normoglycemic male aorta compared to its 

lack of effect in female tissues (Fig. 3.6a / 3.7) in agreement with earlier findings 

(Thomas et al. 1995; Nadarali et al. 2001; Tep-Areenan et al. 2003). In the current 

study, these results suggest that the lower contraction of normoglycemic endothelium-
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intact female compared to the male aorta was partly attributable to estradiol hormone-

modulated relaxation and inhibition of oxidant stress (Fig. 3.2) (Binko and Majewski, 

1998; Tep-Areenan et al. 2003). This reasoning is supported by the observation that 

normoglycemic female tissues exhibited greater response to estradiol (in PE-contracted 

tissues) following exposure to conditions (endothelial denudation (Table 3.3 / 3.4) 

which promotes oxidative stress (Brandes and Mugge, 1997).  

 

In endothelium-intact diabetic male tissues (contracted with PE or Ang II), estradiol 

tended to enhance contraction rather than relax it (Miller and Vanhoutte, 1990), while 

eliciting no apparent effect on female tissues (Fig. 3.6a / 3.7). These data suggest that 

estradiol relaxant action is reversed during early-stage diabetes (at least in the male) in 

line with previous findings (Maggi et al. 2003). It also supports the view that estradiol 

protective (vasorelaxant) function wanes once cardiovascular disease develops (Barrett-

Corner et al. 1991; Bolego et al. 1999).  In the female, the apparent lack of estradiol 

effect in (PE or Ang II-contracted) endothelium-intact normoglycemic / diabetic  tissues 

may be reflective of a number of reasons: 1) the normoglycemic female tissues were 

already fully primed with estradiol  (Fig. 3.2) and hence, were insensitive to the 

physiological concentration (10
-7 

M) of estradiol tested; 2) the vasorelaxant action of 

estradiol may have been masked by the diabetic state reduction in estradiol levels (Fig. 

3.2) and synthesis of vasoconstrictor prostaglandins (Fig. 3.16); 3) It is also possible 

that the effects of estradiol against diabetic tissue contraction only become more 

observable in the female tissues in latter stages of the disease when endothelial function 

deteriorates even more as evidenced in figure 3.6b and Table 3.3 / 3.4. These are 

interesting speculations warranting further studies.  
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Furthermore, estradiol is known to exert vascular action via genomic and non genomic 

mechanisms (Orshal and Khalil, 2004). The classic genomic pathway (producing 

(delayed) chronic vascular effects of estradiol) requires receptor–specific transcription 

and protein synthesis, while in the non genomic (rapid onset) pathway; estradiol 

promotes vasodilatation by directly regulating Ca
2+

 entry mechanisms. Since ≥ 1 hour 

(vascular tissue exposure to estradiol) is required to trigger genomic effects (Binko and 

Majeswski, 1998) and 5-25 min for non genomic events (Teoh et al. 2000)), the 20-25 

min exposure period employed in the present study probably support a non genomic 

mechanism for the vasodilator effect of estradiol in normoglycemic (with or without 

endothelium) / diabetic male tissues (without endothelium), and endothelium-denuded 

normoglycemic / diabetic female tissues. 

 

4.2.3. The effect of estradiol on quercetin vasodilator action 

Quercetin is thought to enhance estradiol levels in vivo (Schubert et al. 1994; Weber et 

al 1996). Since estradiol and quercetin are potent antioxidants (Strehlow et al. 2003; 

Florian et al. 2004), it could be predicted that estradiol would promote and/or augment 

quercetin vasorelaxant action. In agreement, this was the case in PE-contracted 

endothelium-intact/-denuded male and endothelium-denuded normoglycemic female 

tissues (Fig. 3.6a / b). However, although quercetin + estradiol- induced relaxation was 

present in PE-contracted endothelium-intact diabetic tissues from both genders, it was 

lesser in magnitude compared to relaxation caused by quercetin alone treatment (Fig. 

3.6a / b).  This is contrary to current study hypothesis and may be related to the negative 

effects of diabetes on estradiol signaling in tissues from both genders (Fig. 3.6a), which 

probably caused a reduction in the anticipated synergy in quercetin + estradiol-induced 

vasorelaxation. Equally, in Ang II-contracted male / female normoglycemic / diabetic 
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tissues, estradiol tended to oppose rather than enhance quercetin effect (Fig.  3.7 ). 

Taken together, these data indicate that in early-stages of diabetes, a combined 

administration of quercetin + estradiol (17β-estradiol) may not offer greater protection 

than quercetin alone treatment against diabetic tissue reactivity (to PE or Ang II), where 

this combination  appears to have no added clinical benefit.   

 

4.3. Mechanisms underlining gender differences in normoglycemic / diabetic tissue 

contraction and quercetin action  

 4.3.1. Role of oxidative stress  

In healthy and diseased conditions, endothelial cells release •O2
-
 and H2O2 both of 

which modulate vascular reactivity differently (Jakus, 2000; Chin et al., 2007). On the 

other hand, the vascular action of quercetin (Cogolludo et al., 2007) and SOD (Jakus, 

2000) against •O2
-
 produces H2O2, a potent vasodilator (Fujimoto et al., 2001). We 

therefore explored the specific role of •O2
-
 and / or H2O2 in regulating the observed 

gender-different responses to PE or Ang II in the absence or presence of quercetin.   

 

In line with previous studies (Brandes and Mugge, 1997; Kerr et al. 1999), our data 

show that healthy (normoglycemic (endothelium-intact)) male aorta exists in a state of 

greater oxidative stress (increased •O2
- 

/ reduced SOD/CAT activity) compared to 

female aorta (with reduced •O2
-
 / higher SOD/CAT concentrations) (Fig. 3.8 - 3.9). 

Consequently, blockade of
 
•O2

- 
(with SOD), H2O2 (with CAT) or both (with SOD + 

CAT) significantly inhibited PE (but not Ang II) contraction in male tissues (Table 3.5 / 

3.6). In contrast, in female tissues, blockade of •O2
-
 (but not H2O2) failed to alter PE 

contraction, but removal of both factors significantly enhanced Ang II response.  
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These results suggest that the higher normoglycemic male tissue contraction (to PE) 

was promoted by enhanced synthesis of •O2
-
 / H2O2 compared to the female tissues, 

where both factors was minimal and exerted negligible effect on contraction. In 

contrast, although, these ROS factors (•O2
-
 and/or H2O2) were minimally present in 

normoglycemic female tissues, they appear to promote vasorelaxation (Table 3.5 / 3.6). 

In summary, these results support a role for •O2
- 

and/or H2O2 in modulating vascular 

contraction in male (Ongil et al. 2001; Hilgers and Stumpf, 2002; Chin et al. 2007) and 

female rat aorta under physiological conditions. 

 

Quercetin concentration-dependent reduction in •O2
-
 levels was greater in 

normoglycemic male compared to female with lesser oxdant (•O2
-
) burden. Also, 

quercetin vasodilator action was greater in the endothelium-intact normoglycemic male 

than female tissues (contracted with PE or Ang II), suggesting that the vasodilator 

action of the antioxidant quercetin appears to be more active in tissues (normoglycemic 

male) with increased endothelial-derived oxidative stress but not the female (Fig. 3.8 -

3.10 & Table 3.5 / 3.6).
 
 However, quercetin induced enhancement in female tissue •O2

-
 

at low concentration (10
-8

 M) probably supports the observation that antioxidants may 

be pro-oxidants in healthy tissues at certain conditions (Chen et al. 2007; 2008). 

Further,  quercetin combined with blockers (17 β-estradiol (Table 3.3 / 3.4), SOD and/or 

CAT (Table 3.5 / 3.6)) of •O2
-
 and/or H2O2 to further relax (PE or Ang II) contraction in 

normoglycemic male, further supporting the notion that quercetin exerts its relaxant 

effect in the male rat aorta by removing these oxidant factors. Since quercetin 

antioxidative action yields the vasodilator H2O2 (Congolludo et al. 2007; Khoo et al. 

2010), it was not surprising that pre-treatment of male tissues with SOD or SOD + CAT 

enhanced quercetin effect in these tissues more than CAT.  In the normoglycemic 
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female, pre-treatment with anti-oxidants (17β-estradiol, SOD / CAT) alone had no 

effect on contraction, but combined with quercetin, they unmasked a quercetin relaxant 

effect (Table 3.5 / 3.6). We propose that the presence of ROS (•O2
- 

/ H2O2) factors 

significantly inhibited quercetin vasorelaxant action in PE-treated female, but enhanced 

it in male tissues. In Ang II –treated tissues from both genders, removal of •O2
- 
and/or 

H2O2 (which tended to promote vasoconstriction) enhanced quercetin effect in male and 

unmasked it in the female. These data are in agreement with the current study 

hypothesis suggesting that the vascular action of quercetin may select between male and 

female tissues partly in response to gender-related differences in the bioavailability and 

vascular function of ROS.  

 

Compared to levels seen in normoglycemic controls, oxidative stress (increased •O2
-
 

versus lesser SOD/CAT activity) was significantly higher in diabetic tissues from both 

genders (Fig. 3.8-3.9). •O2
-
/H2O2 appear to have promoted vasorelaxation in the diabetic 

male but contraction in the female (Table 3.5). The failure of •O2
-
 to

 
enhance diabetic 

male tissue contraction is surprising. It is probably a (gender specific) pathophysiologic 

feature of early-stage diabetes in the male.  In the current study, the data support a 

stronger role for •O2
- 

and/or H2O2 in modulating vascular tone in male compared to 

female aorta during early-stage diabetes. These results are in agreement with several 

studies (Tsuneo and Katsuo, 2002; Shastri et al. 2002; Chin et al. 2007), showing that 

ROS factors regulate vascular tone under pathological conditions (i.e. diabetes).  

 

In keeping with its selectivity for oxidative stress (Lopez-Lopez et al. 2004; Sanchez et 

al. 2007), quercetin action was understandably more profound in diabetic than 

normoglycemic tissues contracted with PE (Table 3.3, / 3.5) or Ang II (Table 3.4 / 3.6). 
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Therefore, in endothelium-intact diabetic tissues from both genders, the blockade of 

(vasorelaxant) •O2 with antioxidants (17β-estradiol, SOD and/or CAT (Table 3.3-3.6) 

accordingly reduced quercetin vasodilator effect or augmented it in SOD (H2O2) - 

treated diabetic  male and female tissues. These results confirm an earlier finding in 

(normoglycemic (Ajay et al. 2003; 2006a) / diabetic (Ajay et al. 2006 a, b; 2007; 

Sanchez et al. 2007)) male aorta, and supports the current hypothesis that the relaxant 

effect of quercetin is partly mediated by oxidative stress factors.   Additionally, the 

finding (Fig 3.9) that, the NADPH oxidase inhibitor, DPI, significantly reduced •O2
- 

generation to very low levels in both endothelium-intact normoglycemic / diabetic 

tissues from both genders, implies that NADPH oxidase enzyme is a key source of •O2
- 

inhibited or neutralized by quercetin in these tissues as has been demonstrated (Sanchez 

et al. 2007; Romero et al. 2009). 

 

4.3.2. Role of nitric oxide-cGMP pathway 

Pre-treatment of tissues with L-NAME or MB abolished or reversed the contractile 

difference between the endothelium-intact normoglycemic male versus female tissues 

contracted with PE (Fig. 3.11) or Ang II (Fig. 3.15).  In other words, the observed 

differences in agonist-induced normoglycemic tissue contraction were eNO-sGC-cGMP 

mediated. Since the inhibition of eNO or sGC (with L-NAME or MB) resulted in 

greater female than male tissue contraction to PE (Table 3.7) or Ang II (Table 3.8), 

endothelium-based eNO- sGC-cGMP function is greater in the aorta of healthy 

(normoglycemic) female than male rats. This is in agreement with earlier studies by 

Hayashi et al. (1992) and Kauser & Rubanyi (1994), demonstrating that endothelium of 

female rat produces a higher basal vasorelaxation compared to the male. Consistent with 

this finding, in figure 3.12, normoglycemic female aorta exhibited higher percentage 



                                                                                                                                                                                                                                                                       

131 

 
Gender differences in the reactivity of normoglycemic and diabetic rat aorta and the effects of quercetin  and 17β-estradiol 
 

relaxation (than the male) to the endothelium-dependent vasodilator (ACh).  This was 

not the case with the responses to the endothelium-independent NO donor (SNP) (Fig. 

3.13), where male and female tissue responses were similar. Equally, in figure 3.14, 

normoglycemic female tissues exhibited higher nitrite ion content (a biomarker of NO 

function) than the male. In the male, higher tissue oxidative stress was probably 

responsible for diminished ACh-induced relaxation or nitrite levels
 
in agreement with 

findings by Brandes and Mugge (1997) and Kerr et al. (1999).  Taken together, these 

results suggest that the endothelium of the female rat exists in a higher basal (eNO-

cGMP-induced) vasorelaxant state compared to the male. This higher activation of 

eNO-cGMP pathway in normoglycemic female likely accounts for why its tissues were 

more hypo responsive to vasoconstrictor stimulation (Fig 3.3 / 3.4) compared to the 

hyper reactive male tissues, where eNO-cGMP function was lesser. 

 

In normoglycemic male tissues, inhibition of EDNO (with L-NAME) or sGC-cGMP 

(with MB) in endothelium-intact normoglycemic tissues attenuated quercetin action in 

PE (Fig. 3.11) or Ang II (Fig. 3.15)-contracted male tissues, suggesting that eNO-sGC-

cGMP pathway mediates the quercetin relaxant effects in normoglycemic  male aorta in 

line with previous findings (Ajay et al. 2003; Rogahni 2005). In the female, we suggest 

quercetin effect was reduced or masked given the higher activation of this pathway in 

female tissues. Further, since the concentration of L-NAME (10 µM) or MB (10 µM) 

used in this study was sufficient to block all the effects of endothelium and non-

endothelium generated NO, the presence of quercetin action in these tissues was 

probably in response to enhanced ROS (•O2
-
) generation seen in these conditions (Brend 

et al. 1989; Sekiguchi et al. 2004).  These data therefore support the consistent 
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observation that quercetin action is selective of tissues undergoing oxidant stress (Ajay 

et al. 2007; Sanchez et al. 2007).   

 

In figures 3.12 / 3.13, quercetin enhanced the % (endothelium-dependent) relaxation to 

ACh more in the male compared to female tissues, but did not alter the (endothelium-

independent) SNP response which was similar in both genders. Since quercetin 

promotes endothelial relaxant function more in conditions of oxidative stress, the lack 

of (profound) quercetin enhancement of ACh (or SNP)-relaxation in male tissues was 

probably because ACh or SNP provided full NO-facilitated relaxation which reduced or 

masked quercetin effect.  Taken together, in normoglycemic male aorta, quercetin 

action was perhaps largely mediated by the blockade of oxidant factors (deleterious to 

EDNO) which appear to play a minimal role in the female tissues, where estrogen-

induced reduction of •O2
-
 probably resulted in a lesser quercetin effect. In this regard, 

direct measurement of the effect of quercetin on NO, sGC and/or cGMP in the presence 

or absence of •O2
-
, would be useful in a future study to further clarify these 

speculations. 

 

In endothelium-denuded normoglycemic tissues, the current data further reveal that 

quercetin relaxant effect was completely abolished by L-NAME or MB in tissues from 

both genders (Table 3.7 / 3.8). These results suggest the existence of an endothelium-

independent, L-NAME (or MB) - sensitive NO (Joly et al. 1994) or non-NO (Das et al. 

1999) mechanism through which quercetin exerts its effect in both male and female 

endothelium-denuded tissues.  
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Short-term diabetes may result in reduced vascular contraction (Myers and Messina, 

1996; Misurski et al. 2001) as observed in the diabetic male tissues contracted with PE 

(Fig. 3.3 / Table 3.3) or Ang II (Fig. 3.4 / Table 3.4). Diabetes may equally produce no 

change in contraction (Mulhern and Docherty, 1989; Chang and Stevens, 1992) as 

observed in the diabetic female tissues contracted with PE (Fig. 3.3 / Table 3.3) or Ang 

II (Fig 3.4/Table 3.4). These  inconsistencies in the reactivity of diabetic tissue is 

explained  partly by alterations in eNO-cGMP transduction pathway (Pieper, 1998; 

Browne et al. 2007) which appear to be attenuated more in diabetic female than male 

tissues (Table 3.7 / 3.8). Despite high NO release in the diabetic female aorta (Fig. 

3.14), L-NAME or MB pre-treatment failed to produce much higher contraction to PE 

or Ang II (Fig. 3.11 / 3.15) in contrast to male tissues, where any of these treatments 

profoundly enhanced contractions (Table 3.7 / 3.8). These data support a greater 

attenuation of eNO or cGMP component of the eNO-cGMP relaxant cascade in diabetic 

female than male aorta. Impairment in vascular (eNO-cGMP) smooth muscle function 

is part of the pathophysiological mechanism of diabetes (Suzuki et al. 2001). This result 

is supportive of the view that diabetes-induced impairment in the function of vascular 

eNO-cGMP pathway may be more severe in the female than male gender (Bolego et al. 

1999; Pinna et al. 2001).  

 

Furthermore, nitrite ion content was significantly enhanced in diabetic tissues from both 

genders (more in female than male) (Fig. 3.14), suggesting that, during the early stages 

of diabetes, the endothelium promotes the synthesis of NO to compensate for increased 

diabetic tissue contractile stimulation (Myers and Messina, 1996; Misurski et al. 2001; 

Chin et al. 2007). This enhanced endothelium-release of NO accounts for the lesser 

diabetic male contraction (to PE / Ang II) (Fig. 3.3 / 3.4).  Although this compensatory 
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synthesis of EDNO (Fig. 3.14) seems to occur more in diabetic female than male aorta, 

its effect in attenuating contraction appears less apparent in PE/Ang II-contracted 

female compared to the male tissues (Fig. 3.3). This discrepancy probably suggests that 

in addition to EDNO, other endothelium-based factors (such as cyclooxygenase) 

mediated the observed difference in diabetic tissue contraction.   

 

In endothelium-intact diabetic tissues from both genders, quercetin relaxant action is 

mediated by EDNO-sGC-cGMP pathway, since the inhibition of this pathway (with L-

NAME / MB) significantly attenuated quercetin action in PE- or Ang II-contracted 

tissues from both genders (Fig.  3.11 / 3.15).  This result confirms an earlier study in our 

laboratory (Ajay et al. 2003; 2006 a, b; 2007), showing that EDNO-sGC-cGMP 

pathway mediates quercetin vasodilator action in diabetic male tissues. In the female, 

the current data describes for the first time, the existence of the same pathway in the 

diabetic female, which was not observed in corresponding normoglycemic control 

tissues. Furthermore, since the diabetic state promoted the synthesis of vasodilator 

factors (EDNO / PGI2) (Fig. 3.14 / 3.16), it is understandable that ACh or SNP pre-

treatment elicited no effect on quercetin action in diabetic tissues, given that these 

tissues were fully saturated with vasodilator factors which probably masked quercetin 

effect. It is also plausible that the diabetes-induced alterations in eNOS-cGMP cascade 

(Table 3.7 / 3.8) may have desensitized diabetic tissues to quercetin + ACh effect 

(Romero et al. 2009).  
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In endothelium-denuded diabetic tissues, the inhibition of EDNO (with L-NAME) or 

sGC-cGMP (with MB) failed to inhibit quercetin action in contrast to its effect in 

endothelium-denuded normoglycemic tissues. Since NO-sGC-cGMP pathway mediates 

quercetin vasodilator effect in normoglycemic tissues (Joly et al. 1994), the diabetic-

induced attenuation of the function NO-sGC-cGMP pathway in diabetic aorta from both 

genders desensitized these tissues to quercetin effect, hence the failure of MB to block 

quercetin effects. Therefore, quercetin effect in these tissues is independent of NO-sGC-

cGMP pathway. In these tissues, quercetin effect may have been in response to ROS 

occasioned by endothelial injury (endothelial removal) (Brandes and Mugge, 1997).  

 

4.3.3. Role of cyclooxygenase and EDNO pathways  

Inhibition of prostaglandin (PG) synthesis with indomethacin attenuated PE (Table 3.9) 

or Ang II (Table 3.10) contraction more in endothelium-intact normoglycemic male 

than female tissues, suggesting that contractile COX product(s) played a greater role in 

normoglycemic male than female tissue contraction. This interpretation is supported by 

the observation that treatment with L-NAME reversed the indomethacin-induced 

relaxation in these tissues, indicating that indomethacin inhibited the contractile COX 

product opposing EDNO release in these tissues (Table 3.9 / 3.10). In support of this 

view, tissue levels of TXA2 (the main endothelium-derived vasoconstrictor released in 

response to COX-I activity (Rolland et al. 1984; Muscara et al. 2000) and PGE2 (a 

disease-induced vasoconstrictor product of COX-II activation (Wallace et al. 1999; 

Yamamoto et al. 1993)) were higher in endothelium-intact aorta of normoglycemic male 

compared to the female.  Taken together, enhanced synthesis of contractile factors (•O2
-
 

, TXB2 / PGE2) and/or lower synthesis of vasodilator factors (EDNO or PGI2) is the 

basis for greater PE contraction of normoglycemic male aorta than the female. 
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Consequently, the blockade of PG products and EDNO (with L-NAME + 

indomethacin) effectively removed the gender difference in normoglycemic tissue 

contraction. These data further support the consistent observation (Fig. 3.11 / 3.12/ 3.14 

/ 3.15) that the female aorta exists in a higher state of basal endothelium-mediated 

vasorelaxation compared to the male.  

 

The mechanisms involved in the endothelium-mediated relaxant effects of flavonoids 

have been shown to be concentration dependent.  At concentrations > 30 µM (Chan et 

al. 2000), flavonoids tend to promote endothelium (eNO-cGMP-cyclooxygenase)-

dependent vasodilation through the inhibition of contractile proteins such as protein 

kinase C (Duarte et al. 1993), cAMP-phosphodiesterase (Beretz et al. 1980),  and Ca
2+

 

release from intracellular compartments (Chan et al. 2000).   Therefore, at the 

concentration (10 µM) used in the current study, the L-NAME + indomethacin-induced 

inhibition of quercetin action in normoglycemic tissues (Table 3.9 / 3.10), suggests 

quercetin action is mediated in these tissues by eNO-cGMP-cyclooxygenase cross talk 

in aorta of male rats, consistent with earlier studies in our laboratory (Ajay et al. 2003; 

2006 a). In the female, the apparent lack of quercetin action observed in untreated 

tissues may be attributed to the inhibitory effects of the cyclooxygenase (contractile PG) 

component of this eNO-cGMP-cyclooxygenase pathway (Table 3.9 / 3.10).  

 

In the diabetic group, indomethacin pre-treatment enhanced PE (Table 3.9) or Ang II 

(Table 3.10) contraction in male, but reduced it in female tissues contracted with PE, 

but not Ang II. These results indicate that diabetes promoted a PG-mediated 

vasodilation in the male but contraction in the female. This is corroborated by the 

reduced synthesis of contractile PGs (TXA2 / PGE2) in diabetic male compared to 
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enhancement of the same in diabetic female tissues. Given the higher synthesis of 

vasodilator factors (EDNO and PGI2) (Fig. 3.14 / 3.16) in the diabetic female, it is no 

surprise that the anticipated contractile synergy between increased levels of contractile 

PGs (TXB2 / PGE2) and PE or Ang II treatment was masked or suppressed.   

 

Furthermore, the speculation was that the NO-sGC-cGMP relaxant cascade was down 

regulated by diabetes in female compared to male tissues. In agreement, the reactivity of 

diabetic female aorta to L-NAME was enhanced with indomethacin (figures 3.11 and 

3.15), suggesting that diabetes exerted a greater negative effect on the female sGC-

cGMP component of this pathway compared to NO. Defects in NO-sGC-cGPM signal 

transduction pathway during endothelial dysfunction has been demonstrated in 

hypertension (Morawietz et al. 2001) and may also exist in diabetes (Suzuki et al. 

2001). Furthermore, consistent with earlier observations, increased synthesis of diabetic 

endothelium-derived vasodilator factors (EDNO (Fig. 3.14), PGI2 (3.16)) are probably 

part of the pathophysiological response (in diabetic aorta of male and female WKY rats) 

to oppose excessive contractile stimulation (Browne et al. 2007; Csanyi et al. 2007)    

 

In diabetic tissues, indomethacin reduced quercetin relaxation of male tissues contracted 

with PE or Ang II, and female tissues contracted with PE but not Ang II (Table 3.9 / 

3.10), suggesting that indomethacin attenuation of PGI2 activity in these tissues reduced 

quercetin vasodilator function. Consequently, in these tissues, L-NAME + indomethacin 

pre-treatment almost entirely abolished quercetin effect, indicating (as in 

normoglycemic male / female WKY rat aorta) that it’s vascular effect in male / female 

diabetic tissues is mediated by NO-cGMP-cyclooxygenase coupled cross talk. This 

finding confirms an earlier observation in the male in which Roghani et al. (2005) 
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reported a quercetin induced vasodilatory effects that was NO-cGMP-cyclooxygenase 

mediated. The data also demonstrates for the first time, the existence of this mechanism 

for quercetin action in the diabetic female WKY rats. 

 

 

4.3.4. Role of cyclooxygenase and •O2
-
 pathways 

The metabolism of arachidonic acid by cyclooxygenases in the absence of 

lipooxygenase activity may be influenced by •O2
-
 (Oltman et al. 2003). In Table 3.9, it 

is interesting that treatment with indomethacin inhibited PE-induced contraction  and 

reversed the relaxant action of SOD in male tissues but had minimal or no effect on any 

of these responses in the female (Ang II was not determined).  Since normoglycemic 

male tissues produced more contractile factors (•O2
-
, TXA2, PGE2 (Fig. 3.8, 3.9 / 3.16)) 

than the female, the lack of SOD or SOD + indomethacin effect in the female (Table 

3.9) is understandable, given that •O2
-
, TXA2 &  PGE2 were minimally present for SOD / 

indomethacin to act upon in the female.  Also, since SOD dismutation of •O2
-
 results in 

the vasodilator, H2O2 (Khoo et al. 2010), it is also possible that indomethacin reversed 

SOD-mediated (via H2O2-PG) vasodilatation in normoglycemic male tissues. These 

results are in agreement with evidences suggesting that •O2
-
 regulates vascular tone in 

healthy animals via a PG-mediated mechanism. (Tsuneo and Katsuo, 2002; Shastri et al. 

2002; Chin et al. 2007). In the current study, we suggest that H2O2-PG mediated 

vasorelaxation appears more active in normoglycemic male than female WKY aorta. 
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Indomethacin pre-treatment significantly reduced SOD + quercetin, but not quercetin 

effects in normoglycemic male. This is in contrast to female tissues, where 

indomethacin unmasked a quercetin (but did not alter SOD + quercetin) relaxant effect 

(Table 3.9). In male tissues, it could be argued that indomethacin blocked the synthesis 

of contractile COX-product which reduced the generation of 
.
O2

- 
resulting in the 

unchanged / diminished effects of quercetin or quercetin + SOD, respectively.  In the 

female, where 
.
O2

- 
is minimally present, indomethacin removed a contractile PG-

product opposing quercetin relaxant action. In tissues from both genders, it is also 

possible that H2O2 produced by SOD and quercetin-induced removal of 
.
O2

-
 exerted a 

relaxant effect via a PG-mediated mechanism (Thengchaisri et al. 2003) that is 

indomethacin-sensitive or –insensitive in male or female tissue, respectively. These are 

interesting speculations needing further studies. 

 

SOD and/or indomethacin similarly enhanced PE contractions in diabetic male tissues, 

in contrast to the female, where these treatments tended to cause relaxation (Table 3.9). 

This result implies that diabetes activated vasodilator factors (•O2
- 
and/or PGI2) in the 

male tissues in contrast to the female, where it promoted contractile factors (TXB2 / 

PGE2). This data is consistent with literature evidences suggesting that •O2
-
 mediates 

vascular tone in early-stage diabetes via a PG-mediated mechanism in rats 

(Thengchaisri et al. 2003; Chin et al. 2007). Furthermore, as earlier deduced (Table 3.5 / 

3.6) and consistent with current data (Table 3.9), •O2
-
 (or its dismutated product, H2O2) 

and PGI2 (Fig. 3.16) are factors generated in the endothelium of diabetic rats to 

compensate for diminished NO-sGC-cGMP or oppose the increased contractile 

stimulation in the diabetic state (Csanyi et al. 2007; Chin et al. 2007).  

 



                                                                                                                                                                                                                                                                       

140 

 
Gender differences in the reactivity of normoglycemic and diabetic rat aorta and the effects of quercetin  and 17β-estradiol 
 

In diabetic tissues of the male rat, quercetin relaxant action was significantly reduced by 

the removal of •O2
- 
(with SOD), vasodilator PG (with indomethacin) or both (with SOD 

+ indomethacin) (Table 3.9). This is expected, given that these vasodilator factors (•O2
-
 

/ PGI2) were activated in these tissues. Similarly in diabetic female tissues, where 

vasorelaxant (EDNO (Fig. 3.12) / PGI2 (3.16)) factors were also activated, removal of 

contractile factors (TXA2 / PGE2 (Fig. 3.16)) expectedly reduced, but failed to abolish 

quercetin effect. These results confirm the finding that quercetin vasodilator effect is 

greater in diabetic tissues with higher ROS synthesis. The current data supports a 

quercetin vasorelaxant action that is largely mediated in male and female diabetic 

tissues by a •O2
-
-H2O2-PG signal transduction mechanism, the blockade of which (with 

SOD + indomethacin) reduces its action in these tissues, regardless of gender.  

 

4.4. Future areas of investigations 

The present study has established, to a large extent, the mechanistic basis of the gender 

differences in contractile responses (to PE or Ang II) between normoglycemic and 

diabetic aorta.  However, the possibility exists for other contributing mechanisms. For 

instance, at the age diabetes studied, the α1-adrenoceptors was probably altered by 

diabetes in male but not female animals, whereas Ang II receptor could have been down 

regulated in aorta from both genders. It is possible that several other endothelium-

derived hyperpolarisation factors (EDHF) contributed to the observed contractile 

differences in normoglycemic or diabetic aorta (Browne et al. 2007; Csanyi et al. 2007).  

Future studies are therefore, required to address this issue. •O2
- 

(which is normally 

vasoconstrictive) appears to be vasorelaxant in early-stage diabetic (male) tissues. 

Further work is required to confirm this novel finding. The hyperglycemia state is a 

major contributor to the vascular pathophysiology in diabetes. The levels of 
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hyperglycemia achieved in this study, although similar to levels in other studies (Pinna 

et al. 2001; Sanz et al. 2003), were uncontrolled. Therefore the possibility exists that 

controlled (e.g. with insulin) levels of hyperglycemia could yield different patterns of 

data, which is worth exploring for its clinical relevance. There is a need to repeat the 

current investigation in resistance vessels for correlation with the micro vascular 

angiopathy of clinical diabetes. Furthermore, the mechanisms involved in quercetin 

action in both endothelium-intact and -denuded tissues needs to be investigated further 

to include the influence of quercetin on estrogen receptors during contractile 

stimulation, the expression of genes that modulate oxidant, antioxidant and 

cyclooxygenase proteins. These are just some of the potential areas for further 

exploration which we hope to pursue in the near future. 
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CHAPTER 5 

 

SUMMARY AND CONCLUSION 

 

The present study was designed to explore possible gender differences in agonist 

(phenylephrine (PE) or angiotensin II (Ang II))-contracted normoglycemic /diabetic rat 

aorta, and the effects of the antioxidant flavonoid-quercetin and/or 17β-estradiol 

(estradiol) on contractile outcome. The mechanisms underlining any observed gender 

differences were subsequently evaluated. The following are the major summaries of the 

findings in this study: 

 

SUMMARY 

1. There are gender differences in PE or Ang II-induced contraction of normoglycemic 

and diabetic aorta from WKY rats. Endothelium-intact normoglycemic male tissues 

contract more (to PE or Ang II) than the normoglycemic female or the diabetic male. 

The normoglycemic /diabetic female tissues contracted equally to PE regardless of 

phases of estrus cycle. Ang II caused lesser contraction of normoglycemic (proestrus) 

/diabetic compared to normoglycemic female tissues in diestrus state. 

  

2. These differences in tissue contraction were reversed or abolished by the removal of 

the endothelium or by the development of diabetes-induced endothelial defects, 

suggesting that the differences are endothelium mediated and reflect the 

pathophysiology of the diabetic state in this study. 

 

3. The lower female normoglycemic tissue contraction is attributed to higher female 

tissue synthesis and content of vasodilator factors, including estradiol, EDNO and PGI2, 

coupled with  reduced oxidative stress (decreased •O2
-
 synthesis and increased 

antioxidant (SOD/CAT) status). The higher normoglycemic male tissue contraction is 
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attributable to an increase in contractile factors (enhanced synthesis of oxidative stress 

factors (•O2
-
, TXA2, and PGE2 levels) coupled with reduced antioxidant (SOD/CAT) 

status).  

 

4. Compared to normoglycemic controls, the lower diabetic male tissue contraction (to 

PE) is attributable to reduction in contractile PGs (TXA2 and PGE2) and/or the 

enhancement of vasodilator factors (NO, PGI2 & •O2
-
). The greater reactivity of diabetic 

female tissues (to PE) is attributable to enhanced tissue synthesis/activation of 

contractile PGs (TXA2 and PGE2), which appears to counteract the effect of diabetic 

tissue release of vasodilator factors (NO and/or PGI2).   

 

5. In the diabetic female rat, enhancement of contractile PGs (TXA2 and PGE2), 

attenuation of the cGMP component of the NO-cGMP relaxant cascade are observed 

pathological features of early-stage diabetes. This observation is in strong agreement 

with the well-documented reversal of the female cardiovascular protective effect once 

cardiovascular disease (e.g. diabetes) develops.   

 

6. Contraction of aorta from male/female diabetic WKY rats is associated with endothelial 

promotion of the synthesis / activation of vasoconstrictor antagonists (such as EDNO 

and/or PGI2). Compared to the male, diabetic female tissues produced higher levels of 

•O2
- 
/(H2O2) which appears to have contributed to the greater female tissue contraction 

but 
 
appears to be a vasorelaxant in diabetic male tissues in early-stage diabetes. 

Enhanced diabetic synthesis of vasorelaxant factors (EDNO and/or PGI2) are probably 

part of the pathophysiological mechanism in diabetic tissues to compensate for the 

increased tissue contraction associated with this condition. 

 



 

   144  

 
                   Gender differences in the reactivity of normoglycemic and diabetic rat aorta and the effects of quercetin and 17β-estradiol  

 

7. The vasorelaxant action of quercetin is tissue-selective, and is more prominent in 

oxidatively stressed tissues (i.e. normoglycemic / diabetic male (with or without 

endothelium) and diabetic female (with or without endothelium) compared to tissues 

with minimal stress (i.e. normoglycemic female (without than with endothelium)). 

These results support the hypothesis that quercetin vasorelaxant action is partly 

mediated by its action against oxidative stress in aorta of male / female WKY rats. 

 

8. In addition to anti-oxidative stress mechanisms, quercetin vascular protective effect is 

mediated by endothelium-dependent (eNO-sGC-cGMP and/or cyclooxygenase) and -

independent (NO or cGMP) mechanisms. The former mechanism appears to be partly 

mediated by the •O2
-
/H2O2-cyclooxygenase signal transduction pathway and is more 

predominant in male than female normoglycemic / diabetic WKY rat aorta. The latter 

mechanism is more prominent in normoglycemic than diabetic tissues from both 

genders. The current result in normoglycemic / diabetic female rat is the first of its kind 

to describe the vasodilator activity and mechanism of quercetin action in this gender. 
 

 

9. Given that estradiol and/ or quercetin intervention reduced contraction in PE (but not 

Ang II)-contracted diabetic tissue from both genders, the combination of quercetin / 

estradiol may be more clinically relevant in managing PE than Ang II-induced 

reactivity. This may be particularly so, in the latter stages of diabetes disease when 

endothelial function deteriorates even more. 
 

 

     In conclusion, the present study suggests that: 1) gender differences exist in PE or Ang 

II-induced contraction of normoglycemic and diabetic aorta from WKY rats, 2) the 

aorta of the normoglycemic female WKY rats exists in a higher state of basal 

vasorelaxation and this female ‘advantage’ is attenuated by the development of diabetes, 
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3) the vascular protective action of the antioxidant quercetin is tissue- specific being 

more profound in tissues with higher oxidative stress factors, 4) in addition to oxidative 

stress, quercetin vasodilator action in normoglycemic /diabetic male / female aortic 

tissues are mediated by endothelium-dependent (eNO-sGC-cGMP and/or 

cyclooxygenase) and -independent (NO or cGMP) mechanisms, the latter of which is 

more prominent in normoglycemic than diabetic tissues from both genders, 5). 

Pharmacological intervention with the antioxidant flavonoid, quercetin, with or without 

estradiol may have clinical relevance in managing aortic tissue pathophysiology related 

to α1-adrenoceptor stimulation (by PE) than those related to Ang II stimulation. The 

current findings have implications for further understanding of the gender-related 

differences in the mechanism of diabetes-induced vascular disease and the potential 

therapeutic usefulness of quercetin, estradiol or both in managing this major 

pathophysiology of a global disease-diabetes mellitus.  
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