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CHAPTER 3 

THE METHOD OF DEA, DDF AND MLPI 

 

3.1 Introduction 

As has been discussed in the literature review chapter, in any organization, technical 

efficiency can be determined in order to measure the performance. Technical efficiency 

focuses on the ability to increase the output while keeping the input constant or the 

ability to reduce the input while keeping the output constant. When incorporating 

undesirable output, such as pollutants, the measurement is essentially on eco-efficiency. 

The concept of eco-efficiency can be classified as a measurement of efficiency with the 

integration of environmental pollution that is regarded as undesirable output together 

with desirable output. Eco-efficiency can also be interpreted as the efficiency 

measurement of the economic efficiency that produces desirable output, and ecological 

efficiency which produces undesirable output. The techniques to measure these two 

efficiencies will be presented in detail in this chapter. 

 

Data Envelopment Analysis (DEA), which can be considered as a popular technique, 

has been chosen in this study to measure the technical efficiency. Another approach that 

has gained popularity, called the Directional Distance Function (DDF) approach, is also 

employed in this study to evaluate the eco-efficiency. The underlying characteristics of 

these methods are described further in order to highlight their strengths and weaknesses. 

 

DEA is a well-known technique that has been utilized for efficiency measurement. This 

technique is able to figure out the efficiency score of organizations and estimate the 

input that needs to be reduced or output that needs to be increased in relation to the 

efficiency score. Nevertheless this conventional DEA model accounts for only two 
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categories of variable which are the input and the desirable output variables. When 

undesirable output is present, the DEA model is no longer applicable. Therefore, 

another approach that of DDF which treats the separation of undesirable output in the 

model is employed in this study. To complete the analysis, it would be an advantage to 

extend the understanding of the productivity change over the years through the 

Malmquist Luanberger (ML) productivity index which is calculated by the DDF model. 

Efficiency and productivity measurement are widely used and can be put to work 

together to complement each other.   

 

The remainder of this chapter is organized in the following manner. This chapter will 

start with a brief overview on the production possibility set in Section 3.2. Next, Section 

3.3 discusses the DEA model. It includes the earlier fractional program of DEA as well 

as the input and output orientations for variable return to scale (VRS) and constant 

return to scale (CRS) models in DEA. In addition, the slack-based measure approach as 

a fundamental of non-radial approach is briefly introduced. Further, Section 3.4 

explains the model when it incorporates desirable and undesirable outputs. The core of 

this chapter provides the inclusion of undesirable output in the efficiency measurement 

with the DDF model in Section 3.5 which is within the DEA framework. In addition, 

this chapter also discusses the Malmquist Luenberger productivity index (MLPI) in 

Section 3.6 in order to study the productivity change over the study period. Section 3.7 

summarizes the chapter.      

 

3.2    Production Possibility Set (PPS) 

In the production system, the inputs and outputs are two things that are very 

interrelated. Inputs can be considered as goods that are used in production, while 

outputs are goods that are produced. For example, in the paper and pulp industry, wood 
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fibre, energy as well as labour are needed as inputs to produce the outputs including net 

pulp output, newsprint and paperboards. To achieve the optimal production, the amount 

of inputs should be estimated appropriately so that the outputs can be produced 

efficiently. To relate between inputs and outputs, the production function has been 

employed. The production function is the relationship between the inputs and outputs 

given some technology.  

 

If the combination of inputs and outputs is technically feasible, it can be represented as 

a ‘production possibility set’ (PPS). Figure 3.1 below describes the production 

possibility set.       

 

 

Figure 3.1: Production Possibility Set 

Source: Thanassoulis (2001) 

 

The boundary that connects the points is called the production possibility frontier or 

efficient frontier. Any point within the set is feasible. For example, point B is feasible 

but not efficient enough. While point A is not possible at all since the point lies outside 

the boundary of PPS. Point C is efficient since the point lies on the efficient frontier. 

Hence, only the points that lie on the efficient frontier only can be ascertained as 

efficient. The PPS will be represented on the production technology (S) as:  
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S = {(x, y) ∶ x can produce y}                  (3.1)                                    

In the expression, y represents an output vector and x represents an input vector. So, the 

above definition simply defines the production possibilities as the set of input-output 

vectors that are attainable given the production technology S. Following Shephard 

(1970), the input possibility set L(y) for each y can be defined as below: 

𝐿(𝑦) = {𝑥 ∶ (𝑥, 𝑦) ∈ 𝑆}             (3.2) 

While for the output possibility set D(x) for each x as below: 

𝐷(𝑥) = {𝑦 ∶ (𝑥, 𝑦) ∈ 𝑆}                                 (3.3) 

 

3.3    Data Envelopment Analysis (DEA) 

DEA is a linear programming technique for measuring the relative efficiency of a set of 

decision making units (DMUs) or units of assessment in their use of multiple inputs to 

produce multiple outputs. DEA identifies a subset of efficient ‘best practice’ DMUs, 

and, for the remaining DMUs, their efficiency level is derived by comparison to a 

frontier constructed from the ‘best practice’ DMUs. Each of the DMU is analysed 

separately to examine whether the DMU under consideration could improve its 

performance by increasing its output and decreasing its input. The best performing 

DMU is assigned an efficiency score of 100 percent while the performance of other 

DMUs may vary between 0 and 100 percent relative to the best performance 

(Thanassoulis, 2001).  

 

Beyond the efficiency measure, DEA also provides other sources of managerial 

information relating to the performance of the DMUs. DEA identifies the efficient peers 

for each inefficient DMU. Therefore, DEA can be viewed as a benchmarking technique, 

as it allows decision makers to locate and understand the nature of the inefficiencies of 

a DMU by comparing it with a selected set of efficient DMUs with a similar profile. 
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This technique, originated from the seminal work by Charnes et al. (1978) and has been 

developed in the Operation Research/Management Science field, which uses 

mathematical programming techniques and models to solve the problem. 

 

3.3.1 DEA Fractional Program  

To begin this model, some notations have been made. Let 𝑥 ∈ 𝑅+
𝐼  represent an input 

vector and 𝑦 ∈ 𝑅+
𝐽
 represent an output vector while subscripts i and j represent 

particular inputs and outputs. Thus xi represents the ith input, and yj represents the jth 

output of a DMU. Then, let the total number of inputs and outputs be represented by I 

and J with I and J > 0. In DEA, multiple inputs and outputs are linearly aggregated 

using weights. The optimal weights may vary from one DMU to another DMU. 

Therefore, in the equation below, ai is the weight assigned to input xi and bj is the 

weight assigned to output yj during the aggregation.   

Efficiency = 
Output

Input
 = 

∑ 𝑏𝑗

𝐽

𝑗=1
 𝑦𝑗

∑ 𝑎𝑖𝑗

𝐼

𝑖=1
𝑥𝑖

                  (3.4) 

Then the ratio concept above was transformed into a linear programming model. 

Assume there are N DMUs, which have to be compared for the efficiency. Let m be one 

of the DMUs to maximize the efficiency. The following equation gives the ratio form of 

the basic DEA model, with an output orientation (Ramanathan, 2003). 

Max =
∑ 𝑏𝑗𝑚

𝐽

𝑗=1
 𝑦𝑗𝑚

∑ 𝑎𝑖𝑚𝑗

𝐼

𝑖=1
𝑥𝑖𝑚

  

Subject to  

0 ≤
∑ 𝑏𝑗𝑚

𝐽

𝑗=1
 𝑦𝑗𝑛

∑ 𝑎𝑖𝑚𝑗

𝐼

𝑖=1
𝑥𝑖𝑛

≤ 1 ; 𝑛 = 1,2, … , N  

𝑏𝑗𝑚, 𝑎𝑖𝑚 ≥0 ; 𝑖 = 1,2, … , I ;   𝑗 = 1,2, … , J                (3.5) 

 

Where 

bjm = weight of jth output 
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yjm = jth output of the mth DMU 

aim = weight of ith input 

xim = ith input of the mth DMU 

yjn = jth output of the nth DMU   

xin = ith input of the nth DMU 

 

The above mathematical program, which is considered as a fractional program, when 

solved, will give the values of weights ai and bj, which will maximize the efficiency of 

DMU m.  

 

3.3.2 Fractional Program to Linear Program 

Mathematical programs can be transformed to linear programs, which are a simpler 

formulation than fractional programs. The simplest way to convert fractional programs 

to linear programs is to normalize either the numerator or the denominator of the 

fractional programming objective function. The weighted sum of inputs is unity (equal 

to 1) in the linear programming constraint. Since the weighted sum of outputs that has 

to be maximized is the objective function, this formulation is considered as the output 

maximization DEA program. On the other hand, if the weighted sum of outputs is unity, 

the formulation is considered as the input minimization DEA program (Ramanathan, 

2003). The above fractional program when transformed to the linear program is as the 

follows.  

Max  ∑ 𝑏𝑗𝑚

𝐽

𝑗=1
𝑦𝑗𝑚 

Subject to    

∑ 𝑎𝑖𝑚𝑥𝑖𝑚

I

i=1
= 1 

∑ 𝑏𝑗𝑚

𝐽

𝑗=1
𝑦𝑗𝑛 − ∑ 𝑎𝑖𝑚𝑗

𝐼

𝑖=1
𝑥𝑖𝑛 ≤ 0 ; n = 1,2, … , N                              

𝑏𝑗𝑚, 𝑎𝑖𝑚 ≥0 ;  𝑖 = 1,2, … , I ;   𝑗 = 1,2, … , J       (3.6) 
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3.3.3 CCR and BCC Models 

There are two classical DEA models, CCR (Charnes, Cooper, & Rhodes, 1978) and 

BCC (Banker, Charnes, & Cooper, 1984). Both models can be orientated in two 

different ways, which are output maximization or input minimization. For input 

orientation, the assessment is on the movement of input level towards the frontier 

through proportional reduction while the output level remains unchanged. The objective 

of the input orientated model is to minimize inputs while producing at least the given 

output levels. This input orientation is contrary to output orientation where the 

movement of output level towards the efficiency frontier through the proportional 

increase while input level remains unchanged. The objective of the output orientated 

model is to maximize outputs while using not more than the observed amount of any 

input (Charnes et al., 1994). The choice between an input and an output orientation can 

be based upon the consideration of which factors are more easily controlled by the 

DMU. For instance, if producers are required to meet market demand, and can freely 

adjust input usage, then an input orientation model is appropriate (Ramanathan, 2003).   

 

The CCR model is referred to as the constant return to scale (CRS) model while the 

BCC is referred to as the variable return to scale (VRS) model. Banker et al. (1984) 

extended the CRS model by relaxing the assumption of CRS to VRS. The VRS model 

differs from the CRS model in that it envelops the data more closely, thereby producing 

technical efficiency estimates greater than or equal to those from the CRS model (VRS 

≥ CRS).  

 

To differentiate between CRS and VRS, the CRS model estimates the gross efficiency 

of a DMU while the VRS model takes into account the variation of efficiency with 

respect to the scale of operation, and hence, measures pure technical efficiency. The 
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CRS and VRS frontier can be illustrated in Figure 3.2. From Figure 3.2, only DMU A is 

considered as 100 percent efficient through CRS model while all the DMUs are 

assigned 100 percent efficient through VRS model. Thus, this illustration exhibits that 

DMU A, B, and C through VRS model are purely efficient due to their scales of 

operation. 

 

 

Figure 3.2: CRS and VRS technology frontier 

Source: Thanassoulis (2001) 

 

With regards to the choice of CRS or VRS model, Dyson et al. (2001) recommended 

running the return to scale test in which the data should be tested separately for scale 

effect. The VRS model is appropriate only when scale effects can be demonstrated.      

 

For the CCR model, a formal definition of the PPS to this model can be made by four 

postulations as below (Thanassoulis, 2001):  

 

Postulate 1: Strong free disposability of input and output 

If (𝑥′, 𝑦′) ∈ 𝑆 and 𝑥 ≥ 𝑥′, then (𝑥, 𝑦′) ∈ 𝑆 where 𝑥 ≥ 𝑥′ means that at least one 

element of 𝑥 is greater than the corresponding element 𝑥′. If (𝑥′, 𝑦′) ∈ 𝑆 and 𝑦 ≤
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𝑦′, then (𝑥′, 𝑦) ∈ 𝑆 where 𝑦 ≤ 𝑦′means that at least one element of 𝑦 is less than 

the corresponding element 𝑦′. 

This can informally be referred to as a phenomenon of inefficient production.  

Postulate 2: No output can be produced without some input 

 (𝑥′, 0) ∈ 𝑆; but if 𝑦′ ≥ 0 then (0, 𝑦′) ∉ 𝑆.  

Postulate 3: Constant return to scale 

If (𝑥′, 𝑦′) ∈ 𝑆 then for each positive real value λ > 0,  thus (λ𝑥′, λ𝑦′) ∈ 𝑆.  

Postulate 4: Minimum extrapolation 

All observed DMUs {(𝑥𝑛, 𝑦𝑛) ∶ 𝑛 = 1, 2…N} ∈ 𝑆 and S is the smallest closed 

and bounded set satisfying postulate 1 – 3.  

 

Following Färe, Grosskopf and Lovell (1994a) the connection between DEA efficiency 

measurement and the representation of the production technology (S) is given by:   

𝑆 = {(𝑥, 𝑦): ∑ 𝑧𝑛𝑥𝑖𝑛

𝑁

𝑛=1

≤ 𝑥𝑖  , 𝑖 = 1,2, … , 𝐼; 

∑ 𝑧𝑛𝑦𝑗𝑛

𝑁

𝑛=1

≥ 𝑦𝑗  , 𝑗 = 1,2, … , 𝐽; 

𝑧𝑛 ≥ 0 ;   𝑛 = 1,2, … ,𝑁}       (3.7) 

 

where zn are the intensity variables or weights assigned to each observation of 𝑛 =

1,2, … ,𝑁  in constructing the production possibility frontier for input x and output y.   

  

Tables 3.1 and 3.2 represent the four different DEA models in CCR and BCC. These 

four models are output maximizing and input minimizing for primal model and dual 

model. The primal model is also referred to as the multiplier formulation while the dual 

model is referred to as the envelopment formulation of the DEA model. In the primal 

model, ai and bj are the weights for the input and output, respectively, and treated as 
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variables in the model. The input and output weights at the optimal solution can be used 

to indicate the relative importance of the inputs and outputs in determining the 

efficiency level of the DMU. The BCC model differs from the basic CCR model while 

assessing efficiency because BCC includes the convexity constraint ∑ 𝑧𝑛
𝑁
𝑛=1 = 1 in the 

dual formulation.                                                                

Table 3.1: CCR models with input and output orientation 

Input Orientation 

Primal Model Dual Model 

Max ∑ 𝑏𝑗𝑚

𝐽

𝑗=1
𝑦𝑗𝑚 

Subject to 

∑𝑎𝑖𝑚

𝐼

𝑖=1

𝑥𝑖𝑚 = 1 

∑𝑏𝑗𝑚

𝐽

𝑗=1

𝑦𝑗𝑛 − ∑𝑎𝑖𝑚

𝐼

𝑖=1

𝑥𝑖𝑛 ≤ 0 ; 𝑛 = 1,2, … ,𝑁 

𝑏𝑗𝑚, 𝑎𝑖𝑚 ≥0 ;  𝑖 = 1,2, … , 𝐼 ;  𝑗 = 1,2, … , 𝐽         (3.8) 

Min  𝜃𝑚  

Subject to 

∑ 𝑧𝑛𝑥𝑖𝑛

𝑁

𝑛=1

≤ 𝜃𝑚𝑥𝑖𝑚 ; 𝑖 = 1,2, … , 𝐼 

∑ 𝑧𝑛𝑦𝑗𝑛

𝑁

𝑛=1

≥ 𝑦𝑗𝑚;  𝑗 = 1,2, … , 𝐽 

𝑧n ≥0 ;  𝑛 = 1,2, … ,𝑁 

𝜃𝑚 unrestricted (free)                  (3.9) 

Output Orientation 

Primal Model Dual Model 

Min ∑𝑎′𝑖𝑚

𝐼

𝑖=1

𝑥𝑖𝑚 

Subject to 

∑𝑏′𝑗𝑚

𝐽

𝑗=1

𝑦𝑗𝑚 = 1 

∑𝑏′𝑗𝑚

𝐽

𝑗=1

𝑦𝑗𝑛 − ∑𝑎′𝑖𝑚

𝐼

𝑖=1

𝑥𝑖𝑛 ≤ 0 ; 𝑛 = 1,2, … ,𝑁 

𝑏′𝑗𝑚, 𝑎′𝑖𝑚 ≥0 ;  𝑖 = 1,2, … , 𝐼 ;  𝑗 = 1,2, … , 𝐽     (3.10) 

Max  ∅𝑚  

Subject to 

∑ 𝑧𝑛𝑥𝑖𝑛

𝑁

𝑛=1

≤ 𝑥𝑖𝑚 ; 𝑖 = 1,2, … , 𝐼 

∑ 𝑧nyjn

𝑁

𝑛=1

≥ ∅myjm ;  𝑗 = 1,2, … , 𝐽 

𝑧n ≥0 ;  𝑛 = 1,2, … ,𝑁 

∅𝑚 unrestricted (free)               (3.11) 

 

Table 3.2: BCC models with input and output orientation 

Input Orientation 

Primal Model Dual Model 

Max ∑𝑏𝑗𝑚

𝐽

𝑗=1

𝑦𝑗𝑚 − 𝜌𝑚 

Subject to 

∑𝑎𝑖𝑚

𝐼

𝑖=1

𝑥𝑖𝑚 = 1 

Min  𝜃𝑚  

Subject to 

∑ 𝑧𝑛𝑥𝑖𝑛

𝑁

𝑛=1

≤ 𝜃𝑚𝑥𝑖𝑚 ; 𝑖 = 1,2, … , 𝐼 

∑ 𝑧𝑛𝑦𝑗𝑛

𝑁

𝑛=1

≥ 𝑦𝑗𝑚 ;  𝑗 = 1,2, … , 𝐽 
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∑𝑏𝑗𝑚

𝐽

𝑗=1

𝑦𝑗𝑛 − ∑𝑎𝑖𝑚

𝐼

𝑖=1

𝑥𝑖𝑛 − 𝜌𝑚 ≤ 0 ; 𝑛 = 1,2, … ,𝑁 

𝑏𝑗𝑚, 𝑎𝑖𝑚 ≥0 ;  𝑖 = 1,2, … , 𝐼 ;   𝑗 = 1,2, … , 𝐽      (3.12) 

∑ 𝑧𝑛

𝑁

𝑛=1

= 1 

𝑧𝑛 ≥0 ;  𝑛 = 1,2, … ,𝑁 

𝜃𝑚 unrestricted (free)      (3.13) 

Output Orientation 

Primal Model Dual Model 

Min ∑𝑎′𝑖𝑚

𝐼

𝑖=1

𝑥𝑖𝑚 − 𝜌𝑚 

Subject to 

∑𝑏′𝑗𝑚

𝐽

𝑗=1

𝑦𝑗𝑚 = 1 

∑𝑏′𝑗𝑚

𝐽

𝑗=1

𝑦𝑗𝑛 − ∑𝑎′𝑖𝑚

𝐼

𝑖=1

𝑥𝑖𝑛 − 𝜌𝑚 ≤ 0 ; 𝑛 = 1,2, , 𝑁 

𝑏′𝑗𝑚, 𝑎′𝑖𝑚 ≥0 ;  𝑖 = 1,2, … , 𝐼 ;   𝑗 = 1,2, … , 𝐽    (3.14) 

 

Max  ∅𝑚  

Subject to 

∑ 𝑧𝑛𝑥𝑖𝑛

𝑁

𝑛=1

≤ 𝑥𝑖𝑚 ; 𝑖 = 1,2, … , 𝐼 

∑ 𝑧𝑛𝑦𝑗𝑛

𝑁

𝑛=1

≥ ∅𝑚𝑦𝑗𝑚 ; 𝑗 = 1,2, … , 𝐽 

∑ 𝑧𝑛

𝑁

𝑛=1

= 1 

𝑧n ≥0 ;  𝑛 = 1,2, … ,𝑁 

∅𝑚 unrestricted (free)               (3.15) 

 (The term 𝜌m in primal model was interpreted by BCC as an indicator of returns to 

scale)                         

The dual model that involves 𝜃 and ∅ measure the efficiency of a DMU in terms of the 

radial contraction factor with contraction to its input levels or expansion to its output 

levels under efficient operation. The model that involves 𝜃 aims to produce the 

observed outputs with minimum inputs. That is the reason why inputs are multiplied by 

efficiency, according to its constraint rules. Because of this characteristic, this model is 

classified as an input oriented envelopment model. Another model that involves ∅ is 

aimed to maximize output production, subject to a given resource level. Therefore, this 

model is classified as an output oriented envelopment model. Each model is in the form 

of a pair of dual linear programs. This means that the dual of the output maximizing 

multiplier model is the input oriented envelopment model. Similarly the dual of the 

input minimizing multiplier model is the output oriented envelopment model 

(Ramanathan, 2003). The difference between multiplier and envelopment in DEA 

model is that the multiplier version is utilized when the input and output are emphasized 

in an application since the solution for the multiplier model will provide weights of 
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input and outputs. While the envelopment version is used when the relations among the 

DMUs are emphasized since the solution will provide weights of DMUs.  

 

In this study, the production process of the manufacturing sector is assumed to exhibit a 

Constant Return to Scale (CRS). This study will look at the overall technical efficiency 

measurement rather than pure technical efficiency and scale efficiency. The CRS 

assumption will also be utilized for the entire analysis in this study in order to compare 

the general performance among the states. Furthermore, the CRS model is assumed 

because the efficiency measure is obtained without controlling the scale size of the 

DMU. In other words, by using the CRS assumption, the scale size of the DMU does 

not impact on the efficiency score of the DMU (Thanassoulis, 2001).  In addition, this 

study will also observe the productivity growth through the Malmquist Lunberger 

productivity index, which will be discussed later. According to Grifell-Tatjé and Lovell 

(1995), the CRS technology must however be imposed to get a more accurate 

calculation of the Malmquist index. Following these arguments, CRS is plausible to be 

used in this study.  

 

The mathematical formulation, which is used in this study in order to measure the 

technical efficiency is the output oriented CRS model (3.11) in Table 3.1. The DEA 

output oriented envelopment model (3.11) seeks a set of z values, which maximize the 

∅𝑚 and identifies a point within the production possibilities set whereby output levels 

of DMU m can be increased to the highest possible while inputs remain at the current 

level. The efficiency scores of DMUs in this model are bounded between zero and one. 

The best performing DMUs are assigned an efficiency score of one while the 

performances of other DMUs that score less than one are considered inefficient.  
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To describe the efficient frontier by using the output oriented DEA approach, Figure 3.3 

exhibits five DMUs, which are A, B, C, D and E. Assume that all DMUs use a similar 

quantity of a single input (x) level and two different quantity of output (y1, y2) levels. 

The output oriented DEA identifies A, B, C and D as the best practice units whereby 

this line is also known as the efficient frontier. DMU E lies below the efficient frontier, 

thus DMU E is regarded inefficient. Point E’ is the benchmarking standard for DMU E. 

The efficiency score for DMU E can be computed by 0E/0E’, which is the ratio of 

radial distances. This implies that DMU E can improve its efficiency by as much as 

EE’/0E’ to hit the target E’.     

 

 

 

 

 

 

Figure 3.3: The efficiency frontier for output oriented DEA model 

Source: Thanassoulis (2001) 

 

Note that this conventional DEA model accounts for only two categories of variable, 

which are the input and the desirable output variables. When undesirable outputs are 

present, the model of DEA is no longer applicable. For instance, in Figure 3.3, DMU E 

is inefficient and its efficiency can be evaluated by referring to the frontier lines on 

DMU E’. This evaluation implies that DMU E needs to increase both y1 and y2 in order 

to improve the efficiency. If y1 axis is substituted by undesirable output (u), then the 

concept of undesirable output is erroneous using the model of DEA. This is because the 

concept of desirable output contradicts with the undesirable output. The desirable output 

y2 

y1 

E 

A 

0 

D 

C 

B E’ 
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needs to be increased while the undesirable output needs to be decreased. Therefore, 

another approach that treats the separation of desirable and undesirable outputs will be 

discussed further in Sections 3.4 and 3.5 to overcome the erroneous of undesirable 

output concept in the output oriented DEA model.  

 

3.3.4 A slack-based measure in DEA  

Before continuing with the model incorporating the desirable and undesirable outputs, 

let us understand another model in the DEA approach, which is the slack-based 

measure. In the previous section, the DEA model, specifically the CRS model is a radial 

efficiency measure because the CRS model optimizes the inputs and outputs of the 

DMU at a certain proportion. The optimal objective value for the CRS model is called 

the ratio (or radial) efficiency. The optimal solution obtained will disclose the existence, 

if any, of excesses in inputs and shortfalls in outputs which are known as slacks (Tone, 

2001). However, using the radial measure fails to take into account the non-zero input 

and output slacks in the efficiency measurement. On the other hand, the non-radial 

measures (i.e. slack-based measure) take into consideration the input and output slacks.  

 

The slack-based measure model introduced by Tone (2001) is defined as follows: 

 

Min
1 −

1
𝐼
∑

𝑠𝑖

𝑥𝑖𝑚

𝐼
𝑖=1

1 +
1
𝐽
∑

𝑠𝑗
𝑦𝑗𝑚

𝐽
𝑗=1

 

Subject to 

∑ 𝑧𝑛𝑥𝑖𝑛

𝑁

𝑛=1

+ 𝑠𝑖 = 𝑥𝑖𝑚 ;   𝑖 = 1,2, … , 𝐼 

∑ 𝑧𝑛𝑦𝑗𝑛

𝑁

𝑛=1

− 𝑠𝑗 = 𝑦𝑗𝑚 ;   𝑗 = 1,2, … , 𝐽 

𝑧𝑛, 𝑠𝑖, 𝑠𝑗 ≥ 0 ;   𝑛 = 1,2, … ,𝑁               (3.16)    
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Where 𝑠𝑖 is the slack value of the ith input, and 𝑠𝑗 is the slack value of the jth output. The 

slack 𝑠𝑖 and 𝑠𝑗 indicate the input excess and the output shortfall, respectively. The 

objective function in model (3.16) satisfies the properties of unit invariant and 

monotone whereby the measure should be invariant with respect to the unit of data and 

should be monotone decreasing in each slack in input and output, respectively. 

 

Figure 3.4 illustrates the SBM model with a simple example using single input and 

single output. Using the CRS assumption, it can be seen that DMU B is inefficient. The 

efficiency score for DMU B based on output orientation can be computed by 3/6.67 

which is the ratio of the radial distance with the score of 44.9 percent. The efficiency 

score for DMU B based on input orientation can be computed by 2.25/5, which is the 

ratio of the radial distance with the score of 45 percent. The non-radial model yields the 

same frontier as the CRS model, but may yield a different efficiency score. Using the 

slack-based measure model, DMU B may be projected to any point on the frontier 

between B’ and B”.      

 

 

  

 

 

 

 

Figure 3.4: Illustration of the SBM model  

       Source: Fried et al. (2008) 
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3.4 Model incorporating the desirable and undesirable outputs 

To continue with the model incorporating the desirable and undesirable outputs, 

additional notations have been added to expression (3.1). The notations used in the 

following are similar to the ones used in previous DEA models as to avoid confusion in 

the model development. Let 
IRx   represents an input vector, 

JRy   represents a 

desirable output vector while 
KRu   represents an undesirable output vector. Thus, the 

above definition simply defines the “environmental output set” for production 

technology (T) as: 

T = {(x, y, u) ∶ x can produce (y, u)}                                     (3.17) 

To specify and model the production technology when desirable and undesirable 

outputs are jointly produced, Färe et al.’s (2005) assumptions that have been denoted in 

the form of postulates as below have been followed:   

 

Postulate 1: Inputs are strongly disposable 

If  𝑥′ ≥ 𝑥 then 𝑃(𝑥′)
 


 
𝑃(𝑥) 

This equation implies that if inputs are increased (or not reduced), then the 

outputs set will not shrink. In other words, inputs are not congesting outputs.  

Postulate 2: Desirable and undesirable outputs are null-jointness 

If (𝑦, 𝑢) ∈ 𝑃(𝑥) and u = 0 then y = 0 

This equation implies that if desirable and undesirable outputs are null-joint, 

then if no undesirable outputs are produced, it is not possible to produce any 

desirable outputs, or conversely, if desirable outputs are produced then some 

undesirable byproducts must also be produced.  

Postulate 3: Desirable and undesirable outputs are weakly disposable 

If (𝑦, 𝑢) ∈ 𝑃(𝑥) and 0 ≤ 𝜃 ≤ 1 then (𝜃𝑦, 𝜃𝑢) ∈ 𝑃(𝑥) 
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This equation implies that both desirable and undesirable outputs are weakly 

disposable whereby any proportional contraction of desirable and undesirable 

outputs together is feasible, i.e. for given inputs x, reductions in undesirable 

outputs are always possible if desirable outputs are reduced in proportion. The 

idea is that, it is costly to reduce undesirable outputs, since to do so at the margin 

one must also reduce desirable outputs in order to guarantee that the new output 

vector (y, u) is feasible. Weak disposability is complemented by the assumption 

that desirable outputs by themselves are strongly disposable, which is defined as 

below. 

Postulate 4: Desirable outputs are strongly disposable 

If (𝑦, 𝑢) ∈ 𝑃(𝑥) then for 𝑦′ ≤ 𝑦,  (𝑦′, 𝑢) ∈ 𝑃(𝑥) 

This equation implies that the desirable outputs are freely disposable, but are not 

a maintained condition for the undesirable outputs. In other words, the desirable 

outputs can be reduced without cutting down the undesirable outputs, which 

means that some of the desirable outputs can always be ‘freely’ disposed without 

any cost.     

 

To satisfy the properties of null jointness and weak disposability in the postulate above, 

it can be represented by the technology. The technology constructed that joins both 

desirable and undesirable outputs can be called an environmental DEA technology 

because the set is formulated in the DEA framework (Färe & Grosskopf, 2004). Assume 

that there are Nn ,...,2,1 DMUs and for DMUn the observed data on the vectors of 

inputs, desirable outputs and undesirable outputs are xn = (x1n, x2n,…,xIn), yn = (y1n, 

y2n,…,yJn) and un = (u1n, u2n,…,uKn), respectively. The environmental DEA technology 

exhibiting CRS can be depicted as below: 
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𝑇 = {(𝑥, 𝑦, 𝑢): ∑ 𝑧𝑛𝑥𝑖𝑛

𝑁

𝑛=1

≤ 𝑥𝑖  , 𝑖 = 1,2, … , 𝐼; 

∑ 𝑧𝑛𝑦𝑗𝑛

𝑁

𝑛=1

≥ 𝑦𝑗  , 𝑗 = 1,2, … , 𝐽; 

∑ 𝑧𝑛𝑢𝑘𝑛

𝑁

𝑛=1

= 𝑢𝑘  , 𝑘 = 1,2, … , 𝐾; 

𝑧𝑛 ≥ 0 ;   𝑛 = 1,2, … ,𝑁}                (3.18)                          

 

In equation (3.18), the inequality constraint on input (x) and desirable output (y) have 

been imposed with free disposability. As for equality constraint on undesirable output 

(u), it has been imposed by weak disposability, i.e., both desirable and undesirable 

outputs can be scaled down together.   

 

To explain equation (3.18) further, Figure 3.5 illustrates the production possibilities set 

constructed for a technology T while assuming that all DMUs use a similar quantity of a 

single input (x) to produce a dissimilar quantity of a single desirable (y) and a single 

undesirable (u) output. The production possibility set of weak disposability (PW(x)) is 

bounded by the 0ABCD0 while the production possibility set of strong disposability 

(PS(x)) is bounded by the 0EBCD0. PW(x) satisfies weak disposability of outputs since 

any element (y, u) in PW(x) can be proportionally contracted (scaled toward the origin) 

and still remain in the set. On the other hand, PW(x) does not satisfy strong disposability 

since a point like E represents an output vector smaller than the output vector B (which 

belongs to PS(x)), yet E does not belong to PW(x). Therefore, if a technology satisfies 

strong disposability, it also satisfies weak disposability. But, if a technology satisfies 

weak disposability, it would not necessarily satisfy strong disposability (Färe & 

Grosskopf, 2004).  
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Both weak and strong disposability are assumed with respect to the disposal of 

undesirable output. It is also assumed that under weak disposability of undesirable 

output firms face environmental regulation and operate under regulated technology. 

Strong disposability of undesirable output, on the other hand, implies that disposal of 

undesirable is cost free and firms operate under unregulated technology. 

 

In addition, Figure 3.5 also exhibits that for the PW(x) technology, if u = 0 then the only 

feasible production of good output is y = 0. This technology illustrates the null-jointness 

concept in postulate 2 above where desirable and undesirable outputs are null-jointness.  

 

 

Figure 3.5: A graphical representation for environmental production function 

Source: Färe and Grosskopf (2004) 

 

3.5   Directional Distance Function (DDF)  

In the conventional DEA model, efficiency is measured by maximizing the production 

(desirable) of outputs with a restricted amount of inputs. However, when there is joint 

production of the desirable and undesirable outputs, the efficiency measurement is best 

defined by increasing desirable outputs and simultaneously decreasing undesirable 
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outputs (Färe et al., 1989). To handle this situation, the Directional Distance Function 

(DDF) approach was introduced by Chung et al. (1997) to measure eco-efficiency. 

 

The DDF idea is to expand desirable outputs and reduce inputs and/or undesirable 

outputs simultaneously based on a given direction vector (Chung et al., 1997). This 

approach is based on Luenberger’s shortage function (1992) to obtain a technical 

efficiency measurement from the potential of increasing outputs and simultaneously 

reducing inputs. The purpose of this approach is to provide measures of performance 

that directly account for the reductions in undesirable outputs. This approach can split 

the output variables by increasing the desirable output and decreasing the undesirable 

output simultaneously. 

 

The DDF approach is more appropriate than the conventional DEA approach when 

desirable and undesirable outputs are jointly produced. The DEA approach measures the 

output-oriented efficiency based on the assumption of strong disposability. Strong 

disposability allows any output to be produced without any cost. This assumption is 

improper for the technologies when undesirable outputs such as carbon dioxide (CO2) 

emissions are disposed of simultaneously with marketed outputs. The CO2 emissions 

cannot be disposed freely and some cost of abatement is required depending on the 

regulation. To express this situation, the DDF approach assumes weak disposability for 

the undesirable outputs. The weak disposability assumption implies that the disposal of 

undesirable outputs is costly, and therefore, the undesirable outputs can only be reduced 

when desirable outputs are reduced simultaneously (Färe & Grosskopf, 2005).   

                                                                               

To measure the inefficient of DMU, the Directional Distance Function (DDF) has been 

employed. The DDF model on the technology T can be defined as below: 
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},(:{),;,,( TgugyMaxgguyxD uyuyT  


               (3.19) 

The distance function on the technology T (
TD


) above tries to look for the extension of 

desirable output in the gy direction and the reduction of undesirable output in the gu 

direction. In other words, proportion β seeks to increase the desirable output and reduce 

the undesirable output simultaneously. For example, if β is equivalent to 10%, all 

desirable outputs will be expanded by 10% while concurrently all undesirable outputs 

will be contracted by 10% as well. This measurement expands desirable output and 

reduces undesirable output given by the direction vector of g . 

 

Figure 3.6: The efficiency frontier for DDF model 

Source: Domazlicky and Weber (2004) 

 

Referring to Figure 3.6, the efficient frontier is represented by the line 0, A, B, C and D. 

There are four DMUs under observation. The set of four DMUs (y, u) are A = (3, 1), B 

= (5, 3), C = (4, 5) and E = (3, 3). DMU A, B, and C are all on the efficient frontier of 

T, thus it can be categorized as efficient DMUs. However, DMU E is below the 

efficient frontier thus it can be categorized as inefficient DMU. DMU E is evaluated 

relative to the point F on the frontier line. Using DDF model for DMU E, g = (y, -u) = 
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(3,-3) and ),;,,( uyT gguyxD


EF/EG = 0.33, a value which implies that if DMU E 

adopted the best practice methods of production (in this case a linear combination of 

DMU A and B production methods) the desirable output will be expended by 0.33 

while concurrently the undesirable output will be contracted by 0.33 as well, giving 

equal emphasis to the expansion of desirable output and the reduction of undesirable 

output. Therefore, in Figure 3.6, the directional output distance function will expand the 

output bundle (y, u) at E, along the g direction until it hits the production boundary of 

uy gugy   ,  at F. To explain the freely disposable for undesirable outputs, consider 

Figure 3.6 again. As shown above, the set T is bounded by 0HBCD0 for strong 

disposability and only DMU B and C are the best practice on the frontier. To evaluate 

the DMU E, using the same direction vector, g = (3, -3) it could operate at point I with 

),;,,( uyT gguyxD


EI/EG = 0.66. 

 

The DDF uses linear programming to compute eco-efficiency of the DMU m under 

CRS and weak disposability of undesirable outputs assumptions is formulated as below 

(see Chung et al., 1997): 

Max𝛽𝑚 
Subject to 

∑ 𝑧𝑛𝑥𝑖𝑛

𝑁

𝑛=1

≤ 𝑥𝑖𝑚 ;   𝑖 = 1,2, … , 𝐼 

∑ 𝑧𝑛𝑦𝑗𝑛

𝑁

𝑛=1

≥ 𝑦𝑗𝑚(1 + 𝛽𝑚) ;   𝑗 = 1,2, … , 𝐽 

∑ 𝑧𝑛𝑢𝑘𝑛

𝑁

𝑛=1

= 𝑢𝑘𝑚(1 − 𝛽𝑚) ;   𝑘 = 1,2, … , 𝐾 

𝑧𝑛 ≥ 0 ;   𝑛 = 1,2, … ,𝑁                                                          (3.20) 

 

Where  

zn = intensity variables 

xin = ith input of the nth DMU 
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xim = ith input of the mth DMU 

yjn = jth desirable output of the nth DMU 

yjm = jth desirable output of the mth DMU 

ukn = kth undesirable output of the nth DMU 

ukm = kth undesirable output of the mth DMU 

 

Where 0 ≤ 𝛽𝑚 ≤ 1 is the inefficiency score of the DMU m. The direction vector of g  

is taken as (y, –u) along which the desirable outputs to be extended and the undesirable 

outputs contracted. A score of zero indicates an efficient DMU while any positive 

values denote inefficiency. 

 

Since 𝛽𝑚 is the inefficiency scores, to obtain the eco-efficiency score using DDF model 

(𝜕𝑚), is formulated as follows: 

 𝜕𝑚 = 1 − 𝛽𝑚                                                                                         (3.21)  

Note that 𝛽𝑚 is between 0 and 1, thus, 𝜕𝑚 also falls into 0 and 1 closed interval. 

 

The DDF model has been employed in this study because it is simple, intuitive and can 

be easily put into practice. In fact, many published papers have used this approach 

(Refer Appendix A for examples of articles that used DDF in their studies). 

Furthermore, the DDF is flexible as it allows for the evaluation of efficiency using a 

single direction vector from the observed points. 

 

Nevertheless, with the conventional DDF approach as explained in this section, it can 

be seen that this approach has its drawbacks. There are no standard techniques on how 

to determine the direction vector in the modelling. The direction to expand desirable 

output and reduce undesirable output is made subjectively, in other words, user 
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specified. This arbitrary direction (g = (y,-u)) may be inappropriate for every output 

bundle (Bian, 2008). In addition, the DDF model leaves out for the non-zero input and 

output slacks in the efficiency measurement and thus fails to account for the non-radial 

excesses in input and shortfalls in output (Jahanshahloo et al., 2012). Therefore, some 

modifications on the original DDF model need to be considered to ensure accuracy in 

the eco-efficiency score. 

 

3.6 Malmquist Luenberger Productivity Index (MLPI)  

The measures of efficiency of DMU provided in the DEA and DDF models only present 

the efficiency of static performance. Concentrating only on static efficiency estimates 

provides an incomplete view of DMU performance over time. For this reason, the 

Malmquist Productivity Index will be utilized to measure the movement of DMUs with 

regards to technical changes and efficiency changes. The measurement of technical 

change determines the shift of the efficient frontier. On the other hand, the measurement 

of efficiency change determines the change in output efficiency between the two 

periods, i.e. it measures how far an observation is from the frontier of technology (Färe 

et al., 2001). The Malmquist Productivity Index has been utilized tremendously by the 

researchers due to its ability to provide an explanation of productivity growth. 

 

An alternative measure of productivity change is the Malmquist Luenberger 

Productivity Index (MLPI), which measures the environmental sensitivity of 

productivity growth. Malmquist Luenberger (ML) is different from the Malmquist 

Index since this measure is constructed from the directional technology distance 

functions, which simultaneously adjust desirable and undesirable outputs in a direction 

chosen by the decision maker (Fried et al., 2008). The ML index changes the desirable 

outputs and undesirable outputs proportionally because it chooses the direction to be g = 
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(yt, -ut), i.e. increases desirable outputs and decreases undesirable outputs. As a similar 

concept to the DDF approach, ML also seeks to increase the desirable outputs while 

simultaneously decreasing undesirable outputs (Chung et al., 1997).   

 

Following model (3.20), the DDF, given g = (𝑔𝑦, −𝑔𝑢) as a direction vector with 

respect to technology t is defined as below: 

�⃗⃗� 𝑜
𝑡(𝑥𝑡 , 𝑦𝑡, 𝑢𝑡; 𝑔𝑦, −𝑔𝑢) = 𝑠𝑢𝑝{𝛽: (𝑦𝑡 +  𝛽𝑔𝑦, 𝑢

𝑡 − 𝛽𝑔𝑢) 𝜖 𝑃
𝑡(𝑥𝑡)}               (3.22) 

 

Using DDF model, the MLPI is defined with the technology of period t as the reference 

technology; where 𝑔𝑦
∗= 𝑦𝑡 and −𝑔𝑢

∗  = −𝑢𝑡. 

 

The ML index defined by Chung et al., (1997) using DDF can be formulated as below:   

𝑀𝐿𝑡
𝑡+1 = 

[
(1+�⃗⃗� 𝑜

𝑡+1(𝑥𝑡,𝑦𝑡,𝑢𝑡;𝑦𝑡,−𝑢𝑡))

(1+�⃗⃗� 𝑜
𝑡+1(𝑥𝑡+1,𝑦𝑡+1,𝑢𝑡+1;𝑦𝑡+1,−𝑢𝑡+1))

 
(1+�⃗⃗� 𝑜

𝑡(𝑥𝑡,𝑦𝑡,𝑢𝑡;𝑦𝑡,−𝑢𝑡))

(1+�⃗⃗� 𝑜
𝑡(𝑥𝑡+1,𝑦𝑡+1,𝑢𝑡+1;𝑦𝑡+1,−𝑢𝑡+1))

]

1

2
            (3.23) 

 

Where ‘o’ indicates that output-oriented approach is used. (𝑥𝑡 , 𝑦𝑡, 𝑢𝑡) is a production 

point where desirable and undesirable outputs (𝑦𝑡, −𝑢𝑡) are produced using input (𝑥𝑡) 

in period t. Similarly, (𝑥𝑡+1, 𝑦𝑡+1, 𝑢𝑡+1)  denotes that with the use of input (𝑥𝑡+1), one 

can produce desirable output (𝑦𝑡+1) and undesirable output (𝑢𝑡+1) at the period t+1. 

This concept is illustrated in Figure 3.7. 
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Figure 3.7: Malmquist Luenberger productivity indicator 

Source: Chambers, Färe and Grosskopf (1996)  

 

The notation  �⃗⃗� 𝑜
𝑡(𝑥𝑡+1, 𝑦𝑡+1, 𝑢1+𝑡) represents the distance from the period t+1 

observation to the period t technology. If the value of 𝑀𝐿𝑡
𝑡+1 is greater than one, it 

indicates a positive Total Factor Productivity (TFP) change between period t and t+1, 

while if the value is less than one, it indicates a TFP decline. The value of 𝑀𝐿𝑡
𝑡+1 = 1 

indicates that there have been no changes in inputs and outputs over two time periods. 

Equation (3.23) can be further decomposed into two measured components of 

productivity change, which are eco-efficiency change (MLEFFC) and technical change 

(MLTC). MLEFFC represents a movement towards the best practice frontier while 

MLTC represents a shift in technology between t and t+1.       

 

𝑀𝐿𝐸𝐹𝐹𝐶𝑡
𝑡+1 = [

(1+�⃗⃗� 𝑜
𝑡(𝑥𝑡,𝑦𝑡,𝑢𝑡;𝑦𝑡,−𝑢𝑡))

(1+�⃗⃗� 𝑜
𝑡+1(𝑥𝑡+1,𝑦𝑡+1,𝑢𝑡+1;𝑦𝑡+1,−𝑢𝑡+1))

]                             (3.24) 
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𝑀𝐿𝑇𝐶𝑡
𝑡+1 = 

[
(1+�⃗⃗� 𝑜

𝑡+1(𝑥𝑡,𝑦𝑡,𝑢𝑡;𝑦𝑡,−𝑢𝑡))

(1+�⃗⃗� 𝑜
𝑡(𝑥𝑡,𝑦𝑡,𝑢𝑡;𝑦𝑡,−𝑢𝑡))

 
(1+�⃗⃗� 𝑜

𝑡+1(𝑥𝑡+1,𝑦𝑡+1,𝑢𝑡+1;𝑦𝑡+1,−𝑢𝑡+1))

(1+𝑆�⃗⃗� 𝑜
𝑡(𝑥𝑡+1,𝑦𝑡+1,𝑢𝑡+1;𝑦𝑡+1,−𝑢𝑡+1))

]

1

2
                            (3.25) 

 

For each observation, four distance functions must be calculated in order to measure the 

MLPI. Two distance functions use observation and technology for time period t and t+1 

i.e. �⃗⃗� 𝑜
𝑡(𝑥𝑡, 𝑦𝑡, 𝑢𝑡; 𝑦𝑡, −𝑢𝑡) and �⃗⃗� 𝑜

𝑡+1(𝑥𝑡+1, 𝑦𝑡+1, 𝑢𝑡+1; 𝑦𝑡+1, −𝑢𝑡+1), while another two 

use the mixed period of t and t+1, i.e. �⃗⃗� 𝑜
𝑡(𝑥𝑡+1, 𝑦𝑡+1, 𝑢𝑡+1; 𝑦𝑡+1, −𝑢𝑡+1) and 

�⃗⃗� 𝑜
𝑡+1(𝑥𝑡, 𝑦𝑡, 𝑢𝑡; 𝑦𝑡, −𝑢𝑡). Using the DDF approach in model (3.20), the solution of the 

four distance functions can be solved as follows: 

�⃗⃗� 𝑜
𝑡(𝑥𝑡, 𝑦𝑡, 𝑢𝑡; 𝑦𝑡, −𝑢𝑡) = Max𝛽𝑚

𝑡
 

Subject to  

∑ 𝑧𝑛
𝑡 𝑥𝑖𝑛

𝑡
𝑁

𝑛=1
≤ 𝑥𝑖𝑚

𝑡  ;   𝑖 = 1,2, … , 𝐼 

∑ 𝑧𝑛
𝑡 𝑦

𝑗𝑛
𝑡

𝑁

𝑛=1

≥ 𝑦
𝑗𝑚
𝑡 (1 + 𝛽𝑚)  ;   𝑗 = 1,2, … , 𝐽 

∑ 𝑧𝑛
𝑡 𝑢𝑘𝑛

𝑡

𝑁

𝑛=1

= 𝑢𝑘𝑚
𝑡 (1 + 𝛽𝑚) ;   𝑘 = 1,2, … , 𝐾 

𝑧𝑛
𝑡 ≥ 0 ;   𝑛 = 1,2, … ,𝑁                     (3.26) 

                    

�⃗⃗� 𝑜
𝑡+1(𝑥𝑡+1, 𝑦𝑡+1, 𝑢𝑡+1; 𝑦𝑡+1, −𝑢𝑡+1) = Max 𝛽𝑚

𝑡+1   
Subject to  

∑ 𝑧𝑛
t+1𝑥𝑖𝑛

t+1
𝑁

𝑛=1
≤ 𝑥𝑖𝑚

t+1 ;   𝑖 = 1,2, … , 𝐼 

∑ 𝑧𝑛
t+1𝑦

𝑗𝑛
t+1

𝑁

𝑛=1

≥ 𝑦
𝑗𝑚
t+1(1 + 𝛽𝑚)  ;   𝑗 = 1,2, … , 𝐽 

∑ 𝑧𝑛
t+1𝑢𝑘𝑛

t+1

𝑁

𝑛=1

= 𝑢𝑘𝑚
t+1(1 + 𝛽𝑚) ;   𝑘 = 1,2, … , 𝐾 

𝑧𝑛
t+1 ≥ 0 ;   𝑛 = 1,2, … ,𝑁                   (3.27) 
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𝑡(𝑥𝑡+1, 𝑦𝑡+1, 𝑢𝑡+1; 𝑦𝑡+1, −𝑢𝑡+1) = Max 𝛽𝑚

𝑡+1  
Subject to  

∑ 𝑧𝑛
t 𝑥𝑖𝑛

t
𝑁

𝑛=1
≤ 𝑥𝑖𝑚

t+1 ;   𝑖 = 1,2, … , 𝐼 

∑ 𝑧𝑛
t 𝑦

𝑗𝑛
t

𝑁

𝑛=1

≥ 𝑦
𝑗𝑚
t+1(1 + 𝛽𝑚)  ;   𝑗 = 1,2, … , 𝐽 

∑ 𝑧𝑛
t 𝑢𝑘𝑛

t

𝑁

𝑛=1

= 𝑢𝑘𝑚
t+1(1 + 𝛽𝑚) ;   𝑘 = 1,2, … , 𝐾 

𝑧𝑛
t , ≥ 0 ;   𝑛 = 1,2, … , 𝑁                    (3.28) 

 

�⃗⃗� 𝑜
𝑡+1(𝑥𝑡, 𝑦𝑡, 𝑢𝑡; 𝑦𝑡, −𝑢𝑡) = Max 𝛽𝑚

𝑡  
Subject to  

∑ 𝑧𝑛
t+1𝑥𝑖𝑛

t+1
𝑁

𝑛=1
≤ 𝑥𝑖𝑚

t  ;   𝑖 = 1,2, … , 𝐼 

∑ 𝑧𝑛
t+1𝑦

𝑗𝑛
t+1

𝑁

𝑛=1

≥ 𝑦
𝑗𝑚
t (1 + 𝛽𝑚)  ;   𝑗 = 1,2, … , 𝐽 

∑ 𝑧𝑛
t+1𝑢𝑘𝑛

t+1

𝑁

𝑛=1

= 𝑢𝑘𝑚
t (1 + 𝛽𝑚);   𝑘 = 1,2, … , 𝐾 

𝑧𝑛
t+1 ≥ 0 ;   𝑛 = 1,2, … ,𝑁                  (3.29) 

 

It should be noted that the above four linear programming problems must be solved for 

each firm in the sample and for each period, adding to the number of linear 

programming problems. 

 

In the MLPI, the issue of infeasibility has also been discussed by other researchers (Färe 

et al., 2001; Jeon & Sickles; 2004; Oh, 2010). The infeasibility solution may occur for 

MLPI when utilizing the DDF approach for two distance functions of mixed period, i.e. 

t and t+1. According to Färe et al. (2001), the production possibilities frontier 

constructed from observations in period t may not contain an observation from period 

t+1 (and vice versa). This happens because a set of inputs and outputs is outside the 

production set and the movement along the direction vector g does not intersect the 

production frontier. Figure 3.8 illustrates the potential for an infeasible problem with 

mixed period in MLPI. For instance, recall distance function model (3.28), i.e. 
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𝑡(𝑥𝑡+1, 𝑦𝑡+1, 𝑢𝑡+1; 𝑦𝑡+1, −𝑢𝑡+1). This model denotes the distance function under the 

frontier at t using t+1 data. As illustrated in Figure 3.8, the frontier of Tt is bounded by 

0ABC while the frontier of Tt+1 is bounded by 0EFG. It is expected that the t+1 data at 

point H would be outside the frontier of the previous year (t). Thus, the mix period 

distance function in model (3.28) cannot be calculated since the movement along the 

direction vector g does not intersect the production frontier. This will happen if the data 

at t+1 is located outside the current frontier (Jeon & Sickles, 2004).  

 

 

Figure 3.8: Infeasible problem with mix period in MLPI 

Source: Oh (2010) 

 

To overcome the infeasibility problem stated above, Färe et al. (2001) used multiple 

year windows of data as the reference technology. Jeon and Sickles (2004) on the other 

hand used the index number approach to determine estimates of productivity growth 

and its decomposition while Oh (2010) employed the concepts of the global Malmquist 
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productivity growth index of Pastor and Lovell (2005) with the DDF of Luenberger 

(1992). 

 

3.7 Conclusion  

In general, this chapter provides the theoretical foundations of a comprehensive 

efficiency model that integrates the indicators for environmental as well as industrial 

activities. The DEA approach has been introduced first as a fundamental technique to 

measure the technical efficiency without the incorporation of undesirable output. A 

basic DEA model with both CRS and VRS technologies, as well as its orientation 

(output-oriented or input-oriented) has been explained. In addition, the slack-based 

measure approach as a fundamental of non-radial approach is briefly introduced. 

Nevertheless, the conventional DEA model accounts for only two categories of 

variable, which are input and desirable output variables. When undesirable outputs are 

present, the DEA model is no longer applicable. Therefore the DDF approach is 

discussed next to handle the situation when desirable and undesirable outputs are 

produced simultaneously. As noted in the previous section, the efficiency measurement 

provided in the DEA and DDF models only present the efficiency of static performance. 

For this reason, the MLPI has been discussed to measure the movement of DMUs with 

regards to technical changes and efficiency changes.  

 

It can be seen that the DDF model is an appropriate efficiency measurement approach 

for the manufacturing sector, as industrial activities release pollutant. This model allows 

one to expand the desirable outputs while simultaneously contract the undesirable 

outputs. However, as has been discussed in the literature, there are some drawbacks in 

using this model as there are no standard techniques on how to determine the direction 

vector in the modelling. In addition, the DDF model leaves out for the non-zero input 
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and output slacks from the efficiency measurement and thus, fails to account for the 

non-radial excesses and shortfalls. Therefore, some modifications to the original DDF 

approach need to be implemented to ensure that an accurate eco-efficiency score can be 

obtained. The modification on the DDF model will be discussed further in the next 

chapter as a new development of eco-efficiency measures. 

 


