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CHAPTER 4 

THE DEVELOPMENT OF THE DSDF APPROACH AND 

DATA COLLECTION 

 

4.1 Introduction 

As has been discussed in the previous chapter, Directional Distance Function (DDF) is a 

recognized technique for measuring efficiency while incorporating undesirable output. 

This approach allows for desirable output to be expanded while undesirable output is 

contracted simultaneously. Despite gaining popularity because of the incorporation of 

undesirable output, this approach also has drawbacks. The drawbacks of the DDF 

approach are that the direction vector to the production boundary is fixed arbitrarily and 

this model does not take into account non-zero slacks in the efficiency measurement. 

Therefore, the major section in this chapter is about the extension of the previous 

framework of the DDF technique to introduce a new slacks-based measure of efficiency 

called the Directional Slack-based Distance Function (DSDF) model. This new 

approach may determine the optimal direction to the frontier for each unit of analysis 

and provides dissimilar expansion and contraction factors to achieve a more reasonable 

efficiency score. In addition, the use of the new approach may also establish target 

values for the reduction/expansion of output in order for the inefficient DMUs to 

achieve full eco-efficiency.  

 

In efficiency measurement, the ability to distinguish the top performance is important in 

order to understand the quality of their performance. The useful application of a super-

efficiency model was implemented due to the failure of standard DSDF model to rank 
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the efficient set of the DMUs attaining an efficiency score of unity in this study. This 

super-efficiency score can distinguish between efficient observations.  

 

To complete the analysis, it would be an advantage to extend the understanding of the 

productivity change over the years through the Malmquist Luenberger Productivity 

Index (MLPI). The computed index, which quantifies the productivity change can be 

decomposed into the measurement of eco-efficiency change and technological change 

between a fixed based year (t) and a target year (t+1). Efficiency and productivity 

measurement are widely used and can be put to work together, as to complement each 

other. In this study, the DEA, DDF and DSDF models may present the results of the 

efficiency measurement in a particular year, in other words, static performance while 

the Malmquist Lunberger index measures the performance over time.   

 

The remainder of this chapter is organized in the following manner. This chapter will 

start with the extension from the previous framework of efficiency analysis to introduce 

a new slacks-based measure of efficiency called the Directional Slack-based Distance 

Function (DSDF) approach in Section 4.2. To overcome the problem with fully efficient 

using the DSDF approach, the super-efficiency model is suggested and investigated in 

Section 4.3. Further, this chapter also discusses the Malmquist Luenberger productivity 

index (MLPI) in Section 4.4 in order to study the productivity change for the study 

period of 2001 to 2010. Section 4.5 verifies the variable selections followed by data 

source. Section 4.6 summarizes the chapter.      

 

4.2 Directional Slack-based Distance Function (DSDF) 

Based on the original Slack-Based Measure (SBM) model proposed by Tone (2001), 

Färe and Grosskopf (2010a; 2010b) develop the efficiency measurement with an 
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additive structure of input and output slacks through addition and subtraction from their 

respective inequality as follows:  

 

Max α𝑚 = 𝛾𝑥1 + …+ 𝛾𝑥𝐼 + ⋯+ 𝛾𝑦1 + ⋯+ 𝛾𝑦𝐽 

Subject to  

∑ 𝑧𝑛𝑥𝑖𝑛

𝑁

𝑛=1

≤ 𝑥𝑖𝑚 − 𝛾𝑥𝑖 . 1;   𝑖 = 1,2, … , 𝐼 

∑ 𝑧𝑛𝑦𝑗𝑛

𝑁

𝑛=1

≥ 𝑦𝑗𝑚 + 𝛾𝑦𝑗 . 1  ;   𝑗 = 1,2, … , 𝐽 

𝑧𝑛, 𝛾𝑥𝑖 , 𝛾𝑦𝑗 ≥ 0 ;   𝑛 = 1,2, … , 𝑁                                                    (4.1) 

 

Where  

zn = intensity variables 

xin = ith input of the nth DMU 

xim = ith input of the mth DMU 

yjn = jth desirable output of the nth DMU 

yjm = jth desirable output of the mth DMU 

𝛾𝑥𝑖 . 1 = number of units of each type of input that can be decreased for mth DMU 

𝛾𝑦𝑗 . 1 = number of units of each type of output that can be increased for mth DMU 

 

The vectors 𝛾𝑥𝑖  and 𝛾𝑦𝑗 indicate that the input and output can be decreased and 

increased, respectively, and are called slacks. The results of 𝛾𝑥𝑖  and 𝛾𝑦𝑗 are independent 

of the unit of measurement, and therefore, they may be summed in objective function. 

In this development, Färe and Grosskopf demonstrate a Slack Based Measure (SBM) of 

efficiency based on the Directional Distance Function (DDF) model incorporating input 

and desirable output variables.  

 

Based on the works of Färe and Grosskopf (2010a; 2010b), a new slack-based measure 

of efficiency called the Directional Slack-based Distance Function (DSDF) approach is 
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developed. This new development incorporates the undesirable outputs in order to 

measure an appropriate direction for each inefficient DMU to attain full efficiency.  

 

There are three aspects that are worth emphasizing in this new development. First, the 

original DDF model (formulation (3.20) in previous chapter) is modified so that each 

output bundle can have a different scale direction to the production boundary. The 

objective function of the DDF model (3.20), which is the single contraction/expansion 

factor, 𝛽𝑚 has been replaced with the summation of 𝛾𝑦𝑗, the slack for desirable output, 

i.e. the expansion factor for desirable output, and 𝛾𝑢𝑘, the slack for undesirable output, 

i.e. the contraction factor for undesirable output in the DSDF approach, in formulation 

(4.2) below. This linear program is based on the slacks-based measure of efficiency. 

DMU m is efficient if and only if the optimal objective for model (4.2) is zero. Note that 

model (4.2) is unit invariant, which means that its optimal value does not depend on the 

units of measurement in desirable and undesirable output variables. Model (4.2) 

computes the efficiency score based on the desirable and undesirable output slacks. 

With these slack results, directions for improvement are easily obtained for each 

desirable and undesirable outputs measure. The DSDF model formulation for DMU m, 

which has been adopted from Färe and Grosskopf (2010a; 2010b) is as follows: 

Max σ𝑚 = ∑𝛾𝑦𝑗 

𝐽

𝑗=1

+ ∑ 𝛾𝑢𝑘 

𝐾

𝑘=1

  

Subject to  

∑ 𝑧𝑛𝑥𝑖𝑛

𝑁

𝑛=1

≤ 𝑥𝑖𝑚 ;   𝑖 = 1,2, … , 𝐼 

∑ 𝑧𝑛𝑦𝑗𝑛

𝑁

𝑛=1

≥ 𝑦𝑗𝑚 + 𝛾𝑦𝑗 . 1  ;   𝑗 = 1,2, … , 𝐽 

∑ 𝑧𝑛𝑢𝑘𝑛

𝑁

𝑛=1

= 𝑢𝑘𝑚 − 𝛾𝑢𝑘 . 1 ;   𝑘 = 1,2, … , 𝐾 

𝑧𝑛, 𝛾𝑦𝑗 , 𝛾𝑢𝑘 ≥ 0 ;   𝑛 = 1,2, … ,𝑁                                                     (4.2) 

 



91 

Note that in equation (4.1), the slack variables only involve input and desirable output. 

As for equation (4.2), the undesirable output is incorporated. For this equation, the slack 

for input is removed implying that input slack has not been computed. The slacks are 

only computed for desirable and undesirable outputs where the slack for the desirable 

output is allowed to be expanded and the undesirable output contracted.  

 

It can be verified that 0 < 𝜎𝑚 ≤ 1 and also satisfies the properties of units invariance 

and monotone as has been validated by Tone (2001) in the original slack based measure 

model for efficiency measurement. Färe and Grosskopf (2010a) also confirmed these 

two properties in their model on slack based measure with directional distance function 

approach. The two properties are as follows: 

(P1) Units invariant: the measure should be invariant with respect to the units of 

data.  

(P2) Monotone: the measure should be monotone decreasing in each slack in 

desirable and undesirable outputs. 

     

The slack variables 𝛾𝑦𝑗  and 𝛾𝑢𝑘  are used to identify and estimate the causes of 

inefficiency. Since σ𝑚 is the inefficiency score, to obtain the eco-efficiency score from 

model (4.2), it can be calculated as follows: 

𝜑𝑚 = 1 − σ𝑚            (4.3) 

Note that σ𝑚 is between 0 and 1, thus, the eco-efficiency score with DSDF approach 

(𝜑𝑚) will also fall into the 0 and 1 closed interval. 

 

In order to make the resulting model unit-invariant, a possible alternative that has been 

used in this study is normalizing the data (See for example Xu et al., 2012 who used the 

data normalization method to get a unit invariant result in their study). The difficulty of 
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very large scale variables can occur for all mathematical models, in which many studies 

leverage different variables to the same level, or normalize them. In this study, the data 

set has been normalized by dividing them by the maximum value of each data set. This 

normalization procedure is applied so that a meaningful efficiency or inefficiency 

measure could be constructed.    

 

Second, the optimal solution to equation (4.2) is used to derive the direction vector to 

the production boundary. When ∑ 𝛾𝑦𝑗 
𝐽
𝑗=1 + ∑ 𝛾𝑢𝑘 

𝐾
𝑘=1 > 0, the scale direction for the 

desirable output j and undesirable output k for the DMU assessed can be obtained by the 

following equation:                  

𝑆𝐷𝑗  = 
𝛾𝑦𝑗

∗

∑ 𝛾𝑦𝑗 
𝐽
𝑗=1 +∑ 𝛾𝑢𝑘 

𝐾
𝑘=1

  

and 

 𝑆𝐷𝑘 = 
𝛾𝑢𝑘

∗

∑ 𝛾𝑦𝑗 
𝐽
𝑗=1

+∑ 𝛾𝑢𝑘 
𝐾
𝑘=1

                                                                             (4.4) 

Where 𝑆𝐷𝑗 = scale direction for desirable output j and 𝑆𝐷𝑘  = scale direction for 

undesirable output k.  

 

If 𝛾𝑦𝑗
∗

 
and 𝛾𝑢𝑘

∗  are equal to 0, it denotes that the particular DMU is located on the 

efficient frontier, then the direction vectors SDj and SDk can be chosen arbitrarily.  

 

Equation (4.4) explains that each slack of the desirable and undesirable outputs from 

model (4.2) is divided by the additive structure of the desirable and undesirable output 

slacks on the denominator which can provide dissimilar direction for each desirable and 

undesirable output. This dissimilar direction may overcome the drawback of DDF 

model where the direction is fixed arbitrarily. The total of scale direction 𝑆𝐷𝑗  and 𝑆𝐷𝑘  

must also be equal to 1 (𝑆𝐷𝑗 + 𝑆𝐷𝑘 = 1) which ensures compactness so that an 
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appropriate scale direction for each desirable and undesirable output variables can be 

obtained. The minimum and maximum direction for SDj and SDk is between 0 and 1 

(0 ≤ 𝑆𝐷𝑗 ,  𝑆𝐷𝑘 ≤ 1).   

 

Third, from the scale directions obtained, the target value for each DMU can be 

measured. The DSDF approach can also be utilized for target setting to determine the 

target value for inefficient DMUs in order to obtain full eco-efficiency. The target value 

is measured by the summation of multiplication of the intensity variable (zn) from 

formulation (4.2) with the actual value of desirable (yjn) and undesirable (ukn) outputs 

for each DMU, as below: 

∑ 𝑧𝑛𝑦𝑗𝑛

𝑁

𝑛=1

 

 

and 

 

∑ 𝑧𝑛𝑢𝑘𝑛

𝑁

𝑛=1

 

                                                                                                         (4.5) 

 

The target value will be similar to the actual value if the DMU m obtains a zero value 

for the objective function in model (4.2). In other words, the DMU m is 100 percent 

fully efficient.   

 

To demonstrate the DSDF model, a numerical example has been used by using single 

desirable and undesirable outputs while consuming the same set of inputs. Table 4.1 

presents the numerical example for five DMUs with single desirable (𝑦) and 

undesirable (𝑢) output. For this example, the VRS model is used as the convexity 

condition under VRS model may illustrate a clearer picture of DSDF model. Under the 
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VRS model, it is clear that DMUs A, B and C are efficient while the other two DMUs 

(D and E) are clearly inefficient (see Figure 4.1).  

 

Employing the DDF model (equation (3.20)) with the direction vector (gy, -gu) = (y,-u), 

DMU D is projected onto the efficient frontier at D’ = (2, 1) and DMU E is projected 

onto the efficient frontier at E’ = (3.3, 3.1). For DMUs D and E, the efficiency score 

associated with the direction vector of (y,-u) are 0.67 percent and 0.64 percent, 

respectively.  

 

Employing the DSDF model (equation (4.2)), DMU D and E are projected onto D” = 

(2.5, 1.5) and E” = (3, 2), respectively. An appropriate scale direction for DMU D and E 

computed from equation (4.4) is (1, 0) and (0.19, -0.81), respectively. The efficiency 

scores with the respective direction vector for D and E are 0.63 percent and 0.36 

percent, respectively. Table 4.1 presents information on the numerical example using 

DDF and DSDF approaches for single desirable and undesirable outputs.    

  

Table 4.1: Numerical example of DDF and DSDF 

DMU y  u  
DDF  DSDF  

1 − 𝛽𝑚 y u 1 − σ𝑚 y u 

A 2 1 1 - - 1 - - 

B 3 2 1 - - 1 - - 

C 4 5 1 - - 1 - - 

D 1 1.5 0.67 2 1 0.63 2.5 1.5 

E 2.5 4.6 0.64 3.3 3.1 0.36 3 2 
* Note that (y,u) for DDF column is projection onto D’ and E’ while DSDF column is projection onto D” 

and E”.  

  

Figure 4.1 demonstrates how the DSDF approach measures the direction for inefficient 

DMUs to achieve the efficiency frontier. The DSDF model expands and contracts the 

desirable and undesirable outputs by a different proportion and this model also 

determines the optimal direction to the frontier for each of the inefficient DMUs. The 
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direction in this approach is determined by the additive slack of the desirable and 

undesirable output.  

 

It can be seen that by using the DSDF model, the scale direction for DMU D is (1,0) 

implying that DMU D needs to increase the desirable (y) output but not to decrease the 

undesirable (u) output to achieve a frontier at D”. While the scale direction for DMU E 

is (0.19, -0.81) implying that  DMU E needs to increase desirable (y) output by the scale 

of 0.19 and decrease the undesirable (u) output by the scale of 0.81 simultaneously in 

order to achieve a frontier at E”. These scales are given by the assumption from 

equation (4.4). Next, equation (4.5) is used to get the projection of DMU D” at (2.5, 

1.5) and E” at (3, 2) in order to obtain full eco-efficiency of these two DMUs. For 

instance, DMU D needs to increase desirable (y) output from 1 to 2.5 while undesirable 

(u) output remains the same at 1.5. On the other hand, DMU E needs to increase 

desirable (y) output from 2.5 to 3 and decrease undesirable (u) output from 4.6 to 2.    

 

 

 

 

 

 

 

Figure 4.1: DDF and DSDF direction vector 

 

To compare between the DDF and DSDF approaches, some methodological reasons can 

be taken into consideration for the differences between these two approaches. The 

original concept of the efficiency score in the DDF approach is determined by the 
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method of ratio. The ratio of EF/EG can be found in Figure 3.6. Giving the expansion of 

desirable output and reduction of undesirable output simultaneously with an arbitrary 

direction (g = (y, -u)) may provide an inappropriate direction for each output variable. 

This is the drawback of using the DDF approach as there are no standard techniques 

concerning how to determine the direction vector. This is because a different direction 

vector may provide a different efficiency score (Bian, 2008).  

 

The new model with a Directional Slack-based Distance Function (DSDF) can 

determine an appropriate direction while obtaining a more reasonable eco-efficiency 

score employing the slacks-based measure. The efficiency score in this model is 

different from the original concept of the DDF model whereby it is determined by the 

additive slack of the desirable and undesirable outputs. The additive slack of the 

direction that is under non-radial measure is more appropriate because the DMUs can 

expand and contract the desirable and undesirable outputs by the different proportions 

given by the assumption. The proposed method will be particularly useful when the 

DMU want to identify the amount of undesirable output that needs to be reduced to 

attain full efficiency and provides a reasonable direction for the decision makers to 

achieve a higher target in their productivity. 

 

4.3  Super DSDF Eco-efficiency (SDEE) 

Referring back to eco-efficiency measurement with the DSDF approach, which was 

proposed in the previous section, a problem may occur when most of the DMUs are 

fully efficient or achieve a score of 1. The discrimination power among DMUs becomes 

problematic when the analysis has a small sample size (Chen et al., 2012). In this 

section, the DSDF approach with a super-efficiency model to rank the extreme DSDF 

score of 1 is extended. Unlike the conventional measures of super-efficiency, which is 
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only applicable for standard input and desirable output factors using the DEA model, 

the super-efficiency model in this study will deal with both desirable and undesirable 

output factors directly as well as input factor. As far as the author is concerned, Chen et 

al. (2012) was the first to make an attempt to introduce the super-efficiency model with 

the incorporation of undesirable output directly. Chen et al. handled the situation when 

input and output generate both the desirable and undesirable factors.  

 

The development of Super DSDF Eco-efficiency (SDEE) model in this section will 

follow the super-efficiency measurement proposed by Du et al. (2010), since Du et al. 

applied the technique of slack-based measure in their super-efficiency model. The 

model proposed by them is as follows:  

Min ∑𝑡𝑖𝑚
−

𝐼

𝑖=1

+ ∑𝑡𝑗𝑚
+

𝐽

𝑗=1

  

Subject to  

∑ 𝑧𝑛𝑥𝑖𝑛

𝑁

𝑛=1,𝑛≠𝑚

≤ 𝑥𝑖𝑚 + 𝑡𝑖𝑚
−  ;   𝑖 = 1,2, … , 𝐼 

∑ 𝑧𝑛𝑦𝑗𝑛

𝑁

𝑛=1,𝑛≠𝑚

≥ 𝑦𝑗𝑚 − 𝑡𝑗𝑚
+   ;   𝑗 = 1,2, … , 𝐽 

𝑧𝑛, 𝑡𝑖𝑚
−  , 𝑡𝑗𝑚

+ ≥ 0 ;   𝑛 = 1,2, … ,𝑁                                    (4.6) 

 

Where 𝑡𝑖𝑚
−  = input slack needs to be increased and 𝑡𝑗𝑚

+  = output slack needs to be 

decreased. The ‘–’ has been assigned to the input slack vector and ‘+’ has been assigned 

to the output slack vector.   

 

Figure 4.2 below illustrates the 2-dimensional super-efficient frontier concerning 

desirable and undesirable outputs. For this illustration, the VRS model is employed as 

the convexity condition under the VRS model may illustrate a clearer picture of super-

efficiency. Suppose that three efficient DMUs, namely A, B and C are composed of the 

original efficient frontier under the VRS model. Now, the DMU B is under evaluation 
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and thus excluded from the efficient frontier. Then, the resulting efficient frontier AC is 

defined as the super-efficient frontier for DMU B. Using the super-efficiency technique, 

DMU B will increase or/and decrease undesirable output (y) and desirable output (u), 

respectively, to reach the frontier AC.      

 

Figure 4.2: Super-efficiency frontier 

Source: Johnson and McGinnis (2009) 

Recall the DSDF model (4.2) proposed in previous section to compute eco-efficiency. 

Suppose DMU m is efficient. To obtain the super-efficiency (SE) of DMU m, the 

transformation to Super DSDF Eco-efficiency (SDEE) model for DMU m is as follows: 

Min 𝑚𝑆𝐸 =∑𝛿𝑦𝑗 

𝐽

𝑗=1

+ ∑ 𝛿𝑢𝑘 

𝐾

𝑘=1

  

Subject to  

∑ 𝑧𝑛𝑥𝑖𝑛

𝑁

𝑛=1,𝑛≠𝑚

≤ 𝑥𝑖𝑚  ;   𝑖 = 1,2, … , 𝐼 

∑ 𝑧𝑛𝑦𝑗𝑛

𝑁

𝑛=1,𝑛≠𝑚

≥ 𝑦𝑗𝑚 − 𝛿𝑦𝑗 . 1  ;   𝑗 = 1,2, … , 𝐽 

∑ 𝑧𝑛𝑢𝑘𝑛

𝑁

𝑛=1,𝑛≠𝑚

≤ 𝑢𝑘𝑚 + 𝛿𝑢𝑘 . 1 ;   𝑘 = 1,2, … , 𝐾 

𝑧𝑛, 𝛿𝑦𝑗 , 𝛿𝑢𝑘 ≥ 0 ;   𝑛 = 1,2, … ,𝑁                                                    

(4.7) 

 

In model (4.7), 𝛿𝑦𝑗  and 𝛿𝑢𝑘  are desirable and undesirable output slacks for this 

minimization objective function, respectively.  
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In model (4.7), three modifications have been made from the previous model (4.2). 

First, for each DMU being evaluated, the objective of the above model is to minimize 

the unit of slack for desirable and undesirable outputs. The objective also needs to be 

transformed from maximization to minimization so that the resulting model is bounded. 

Second, the DMU under evaluation (m) needs to be removed from the reference set, as 

illustrated in Figure 4.2. Third, the desirable output (𝛿𝑦𝑗 ) and undesirable output (𝛿𝑢𝑘 ) 

slacks allows the desirable output j of DMU m to decrease by 𝛿𝑦𝑗  and allows the 

undesirable output k of DMU m to increase by 𝛿𝑢𝑘 .  

 

The constraints for input, desirable and undesirable outputs should be modified because 

the undesirable output need to be increased while the desirable output need to be 

decreased for DMU m to reach the frontier constructed by the remaining efficient 

DMUs. Model (4.7) for super-efficiency is only applied to the efficient DMUs so that 

they can be distinguished among them through the score obtained in order to rank their 

performance. Then, to obtain the super-efficiency score for DSDF (αSE) is formulated as 

1 + 𝑚𝑆𝐸. Note that αSE is greater than 1 to exhibit the super-efficiency score for DMU 

m. As for the inefficient DMUs, the eco-efficiency measurements have been assessed 

using model (4.3).    

 

To demonstrate the SDEE model (4.7), a numerical example has been used by using 

single desirable and undesirable outputs while consuming the same set of input. Table 

4.2 presents the numerical example for six DMUs with single desirable (y) and 

undesirable (u) outputs. For this example, the VRS model is employed as the convexity 

condition under the VRS model may illustrate a clearer picture of super-efficiency. 

Using model (4.2) with the additional convexity constraint of intensity variable 
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(∑  𝑧𝑛
𝑁
𝑛=1 = 1) for the VRS model, DMU A, E and F exhibit eco-inefficiency with 

reported scores (1 − σ𝑚)  in the fourth column while the rest are efficient.  

 

To measure the super-efficiency (αSE) for DMU B, C and D, model (4.7) (𝑚𝑆𝐸) with the 

additional constraint of the intensity variable (∑  𝑧𝑛
𝑁
𝑛=1 = 1) has been applied. From the 

results reported in the sixth column, the super-efficiency score (αSE) is obtained by 1 +

𝑚𝑆𝐸. It can be seen in the sixth column that DMU B obtains the highest score with 

1.286, followed by DMU C and DMU D with 1.238 and 1.143, respectively. Now, 

based on these results, their performances can be ranked in the seventh column as first, 

second and third for DMU B, C and D, respectively. The slack value for desirable (𝛿𝑦𝑗 ) 

and undesirable (𝛿𝑢𝑘 ) outputs reported in the eighth and the ninth column can be 

clearly illustrated in Figure 4.3. 

  

Given that this example consumes the same set of input, the input slack is not 

computed. From Table 4.2, it can be found that undesirable output slack (𝛿𝑢𝑘 ) value for 

DMU B is 2 implying that DMU B can increase undesirable output (u) value from 1 to 

3. While the desirable output slack (𝛿𝑦𝑗 ) value for DMU C and D are 1.667 and 1 

implying that DMU C and D can decrease the desirable (y) output value from 6 and 7 to 

4.33 and 6, respectively. Thus, from the slack value gauged, DMU B, C and D are 

projected onto B’ = (3,3), C’ = (4.33, 3) and D’ = (6,7), respectively, in Figure 4.3. The 

original frontier of eco-efficiency as well as the frontier of super-efficiency for each 

efficient DMUs (B, C and D) are also illustrated in Figure 4.3, i.e. frontier CD, BD and 

BC are defined for super-efficiency DMU B, C and D, respectively.    
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Table 4.2: Numerical example of super-efficiency 

DMU y u 1 − σ𝑚 𝑚𝑆𝐸 αSE Rank 𝛿𝑦𝑗  𝛿𝑢𝑘  

A 2 2 0.64   5   

B 3 1 1.00 0.286 1.286 1 0 2 

C 6 3 1.00 0.238 1.238 2 1.667 0 

D 7 7 1.00 0.143 1.143 3 1 0 

E 4 6 0.29   6   

F 3 2 0.79   4   

 

 

 

 

 

 

 

a) Eco-efficiency frontier for DMU B,C,D       b) Frontier CD for super-efficiency DMU B  

 

 

 

 

 

 

 

 c) Frontier BD for super-efficiency DMU C   d) Frontier BC for super-efficiency DMU D 

Figure 4.3: Eco-efficiency frontier and super-efficiency frontier for DMU B, C and D  

Source: Johnson and McGinnis (2009) 

 

To generalize the model, equation (4.7) above can also include undesirable input as 

follows:  
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Min 𝑚𝑆𝐸 =∑ 𝛿𝑣𝑓 

𝐹

𝑓=1

+ ∑𝛿𝑥𝑖 

𝐼

𝑖=1

+ ∑𝛿𝑦𝑗 

𝐽

𝑗=1

+ ∑ 𝛿𝑢𝑘 

𝐾

𝑘=1

  

Subject to  

∑ 𝑧𝑛𝑣𝑓𝑛

𝑁

𝑛=1,𝑛≠𝑚

≥ 𝑣𝑓𝑚  − 𝛿𝑣𝑓 . 1;   𝑓 = 1,2, … , 𝐹 

∑ 𝑧𝑛𝑥𝑖𝑛

𝑁

𝑛=1,𝑛≠𝑚

≤ 𝑥𝑖𝑚 + 𝛿𝑥𝑖 . 1 ;   𝑖 = 1,2, … , 𝐼 

∑ 𝑧𝑛𝑦𝑗𝑛

𝑁

𝑛=1,𝑛≠𝑚

≥ 𝑦𝑗𝑚 − 𝛿𝑦𝑗 . 1  ;   𝑗 = 1,2, … , 𝐽 

∑ 𝑧𝑛𝑢𝑘𝑛

𝑁

𝑛=1,𝑛≠𝑚

≤ 𝑢𝑘𝑚 + 𝛿𝑢𝑘 . 1 ;   𝑘 = 1,2, … , 𝐾 

𝑧𝑛, 𝛿𝑣𝑓 , 𝛿𝑥𝑖 , 𝛿𝑦𝑗 , 𝛿𝑢𝑘 ≥ 0 ;   𝑛 = 1,2, … ,𝑁                                     (4.8) 

 

In model (4.8), one more constraint has been added to undesirable input (v). In this 

model, desirable input (𝛿𝑥𝑖 ) and undesirable output (𝛿𝑢𝑘 ) slacks allow the desirable 

input i and undesirable output k of DMU m to increase by 𝛿𝑥𝑖  and 𝛿𝑢𝑘 , respectively. 

While undesirable input (𝛿𝑣𝑓 ) and desirable output (𝛿𝑦𝑗 ) slacks allow the undesirable 

input f and desirable output j of DMU m to decrease by 𝛿𝑣𝑓  and 𝛿𝑦𝑗 , respectively. The 

undesirable input and desirable output are decreased while desirable input and 

undesirable output are increased so that the DMU being evaluated can be projected 

optimally close to the frontier constructed by the remaining DMUs. Examples of 

undesirable input are fines in the case of library systems, time duration to reconnect the 

electricity supply failure and the amount of waste to be treated in the waste treatment 

process (Seiford & Zhu, 2002).   

 

It has been noted that under certain conditions the standard super-efficiency model may 

not be solved and is said to have an infeasible solution especially when the super-

efficiency model is under VRS condition (Du et al., 2010; Johnson & McGinnis, 2009; 

Lee et al., 2011; Lovell & Rouse, 2003; Seiford & Zhu, 1999). Even though this study 

utilizes the CRS assumption, in which infeasibility does not appear, it would be better to 
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understand the issue of the infeasibility problem in super-efficiency. The infeasibility 

problem under the VRS condition is illustrated in Figure 4.4 below. The frontier used to 

measure the super-efficiency of DMU C only uses DMU A and B to construct the 

frontier. From the illustration, it can be seen that DMU C may appear infeasible solution 

to reach frontier AB.   

 

Figure 4.4: Infeasibility problem in super-efficiency model 

To better understand the cause of an infeasible result for a DEA model, the linear 

programming can be examined. Looking at model (4.7), there are three types of 

constraints those related to the input, to the desirable output and to the undesirable 

output. By taking undesirable output constraint as an example, the equation is as below: 

  

∑ 𝑧𝑛𝑢𝑘𝑛

𝑁

𝑛=1,𝑛≠𝑚

≤ 𝑢𝑘𝑚 

                                                                      (4.9) 

 

From this equation, if 𝑢𝑘𝑛 ≤ 𝑢𝑘𝑚 for all undesirable outputs for a given n then a 

solution to the super-efficiency model can always be found. But, if 𝑢𝑘𝑚 is less than all 

𝑢𝑘𝑛 values for any of the undesirable outputs in the reference set, the constraint 

associated with that undesirable output cannot be satisfied and the problem is infeasible. 
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Nevertheless, using the Super DSDF Eco-efficiency (SDEE) with the modification in 

model (4.7), the efficiency scores are always satisfiable and thus infeasibility is not 

possible using both models CRS or VRS. Adopted from Du et al. (2010), the following 

theorem indicating that the super DSDF eco-efficiency is also feasible. 

 

Theorem 1. Slacks-based super-efficiency models are always feasible under the 

constant return to scale as well as variable return to scale assumption. 

 

Proof. Du et al. (2010) show that slack-based super-efficiency model is feasible 

whereby referring to their model (4.6) for any positive set of 𝑧𝑛, n = 1,2,…,N,  n ≠ m, 

they define:  

 𝑡𝑖𝑚
− = max {𝑥𝑖𝑚, ∑ 𝑧𝑛𝑥𝑖𝑛

𝑛
𝑛=1,𝑛≠𝑚 } – 𝑥𝑖𝑚  ≥  0 for all i = 1, 2,…, I.    (4.10) 

  𝑡𝑗𝑚
+  = 𝑦𝑗𝑚  – min {𝑦𝑗𝑚, ∑ 𝑧𝑛𝑦𝑗𝑛

𝑛
𝑛=1,𝑛≠𝑚 } ≥ 0 for all j = 1, 2, …, J.     (4.11) 

They then have:  

 𝑥𝑖𝑚 + 𝑡𝑖𝑚
−  = max {𝑥𝑖𝑚, ∑ 𝑧𝑛𝑥𝑖𝑛

𝑛
𝑛=1,𝑛≠𝑚 } ≥  ∑ 𝑧𝑛𝑥𝑖𝑛

𝑛
𝑛=1,𝑛≠𝑚      (4.12) 

 𝑦𝑗𝑚 − 𝑡𝑗𝑚
+ = min {𝑦𝑗𝑚, ∑ 𝑧𝑛𝑦𝑗𝑛

𝑛
𝑛=1,𝑛≠𝑚 }  ≤  ∑ 𝑧𝑛𝑦𝑗𝑛

𝑛
𝑛=1,𝑛≠𝑚      (4.13) 

 

In model (4.7), the input (x), desirable (y) and undesirable (u) output constraints are also 

feasible. For any positive set of  𝑧𝑛, n = 1,2,…,N, n ≠ m, it can be defined as follow:  

 𝛿𝑥𝑖 = max {𝑥𝑖𝑚, ∑ 𝑧𝑛𝑥𝑖𝑛
𝑁
𝑛=1,𝑛≠𝑚 } – 𝑥𝑖𝑚 ≥ 0 for all i = 1, 2, …, I    (4.14) 

 𝛿𝑦𝑗 = 𝑦𝑗𝑚 – min {𝑦𝑗𝑚, ∑ 𝑧𝑛𝑦𝑗𝑛
𝑁
𝑛=1,𝑛≠𝑚 } ≥ 0 for all j = 1, 2, …, J    (4.15) 

 𝛿𝑢𝑘 = max {𝑢𝑘𝑚, ∑ 𝑧𝑛𝑢𝑘𝑛
𝑁
𝑛=1,𝑛≠𝑚 } – 𝑢𝑘𝑚 ≥ 0 for all k = 1, 2, …, K    (4.16) 

We then have:  

 𝑥𝑖𝑚 + 𝛿𝑥𝑖 = max {𝑥𝑖𝑚, ∑ 𝑧𝑛𝑥𝑖𝑛
𝑁
𝑛=1,𝑛≠𝑚 } ≥ 𝑥𝑖𝑚, ∑ 𝑧𝑛𝑥𝑖𝑛

𝑁
𝑛=1,𝑛≠𝑚    (4.17) 

 𝑦𝑗𝑚 − 𝛿𝑦𝑗 = min {𝑦𝑗𝑚, ∑ 𝑧𝑛𝑦𝑗𝑛
𝑁
𝑛=1,𝑛≠𝑚 } ≤ 𝑦𝑗𝑚, ∑ 𝑧𝑛𝑦𝑗𝑛

𝑁
𝑛=1,𝑛≠𝑚     (4.18) 

 𝑢𝑘𝑚 + 𝛿𝑢𝑘 = max {𝑢𝑘𝑚, ∑ 𝑧𝑛𝑢𝑘𝑛
𝑁
𝑛=1,𝑛≠𝑚 } ≥ 𝑢𝑘𝑚, ∑ 𝑧𝑛𝑢𝑘𝑛

𝑁
𝑛=1,𝑛≠𝑚     (4.19) 
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When applying super-efficiency, the value for efficiency score will be greater than 

unity. The ranking of DMUs is based on the super-efficiency scores obtained. After 

computing the super-efficiency, the performance of all extremely efficient DMUs is 

now able to be distinguished. The highest of super-efficiency will be ranked first and 

the lowest super-efficiency will be ranked last among efficient DMUs. Apart from the 

ability to differentiate the performance of efficient DMUs, this approach may also assist 

the decision maker at the management level to undertake further analysis on resource 

allocation (Chen et al., 2012).    

 

4.4 Malmquist Luenberger Productivity Index (MLPI)    

As noted in the introduction to this chapter, the measures of efficiency of DMU 

provided in the DEA, DDF and DSDF models only present the efficiency of static 

performance. However, only concentrating on static efficiency estimates provides an 

incomplete view of DMUs performance over time. For this reason, the Malmquist 

Luenberger Index will be utilized to measure the movement of DMUs with regards to 

technological changes and eco-efficiency changes.  

 

The ML index defined by Chung, et al. (1997) using DSDF model can be formulated as 

below   

𝑀𝐿𝑡
𝑡+1 =

[
(1+𝐷𝑆⃗⃗⃗⃗  ⃗𝑜

𝑡+1(𝑥𝑡,𝑦𝑡,𝑢𝑡;𝑦𝑡,−𝑢𝑡))

(1+𝐷𝑆⃗⃗⃗⃗  ⃗𝑜
𝑡+1(𝑥𝑡+1,𝑦𝑡+1,𝑢𝑡+1;𝑦𝑡+1,−𝑢𝑡+1))

 
(1+𝐷𝑆⃗⃗⃗⃗  ⃗𝑜

𝑡(𝑥𝑡,𝑦𝑡,𝑢𝑡;𝑦𝑡,−𝑢𝑡))

(1+𝐷𝑆⃗⃗⃗⃗  ⃗𝑜
𝑡(𝑥𝑡+1,𝑦𝑡+1,𝑢𝑡+1;𝑦𝑡+1,−𝑢𝑡+1))

]

1

2
        (4.20) 

 

Equation (4.20) can be further decomposed into two measured components of 

productivity change, which are eco-efficiency change (MLEFFC) and technological 
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change (MLTC). MLEFFC represents a movement towards the best practice frontier 

while MLTC represents a shift in technology between t and t+1.       

𝑀𝐿𝐸𝐹𝐹𝐶𝑡
𝑡+1 = [

(1+𝐷𝑆⃗⃗⃗⃗  ⃗𝑜
𝑡(𝑥𝑡,𝑦𝑡,𝑢𝑡;𝑦𝑡,−𝑢𝑡))

(1+𝐷𝑆⃗⃗⃗⃗  ⃗𝑜
𝑡+1(𝑥𝑡+1,𝑦𝑡+1,𝑢𝑡+1;𝑦𝑡+1,−𝑢𝑡+1))

]                  (4.21) 

𝑀𝐿𝑇𝐶𝑡
𝑡+1 = 

[
(1+𝐷𝑆⃗⃗⃗⃗  ⃗𝑜

𝑡+1(𝑥𝑡,𝑦𝑡,𝑢𝑡;𝑦𝑡,−𝑢𝑡))

(1+𝐷𝑆⃗⃗⃗⃗  ⃗𝑜
𝑡(𝑥𝑡,𝑦𝑡,𝑢𝑡;𝑦𝑡,−𝑢𝑡))

 
(1+𝐷𝑆⃗⃗⃗⃗  ⃗𝑜

𝑡+1(𝑥𝑡+1,𝑦𝑡+1,𝑢𝑡+1;𝑦𝑡+1,−𝑢𝑡+1))

(1+𝑆𝐷⃗⃗⃗⃗  ⃗𝑜
𝑡(𝑥𝑡+1,𝑦𝑡+1,𝑢𝑡+1;𝑦𝑡+1,−𝑢𝑡+1))

]

1

2
           (4.22) 

 

For each observation, four distance functions must be calculated in order to measure the 

ML productivity index. Two distance functions use observation and technology for time 

period t and t+1 i.e. 𝐷𝑆⃗⃗⃗⃗  ⃗
𝑜
𝑡(𝑥𝑡, 𝑦𝑡, 𝑢𝑡; 𝑦𝑡, −𝑢𝑡) and 𝐷𝑆⃗⃗⃗⃗  ⃗

𝑜
𝑡+1(𝑥𝑡+1, 𝑦𝑡+1, 𝑢𝑡+1; 𝑦𝑡+1, −𝑢𝑡+1), 

while another two use the mixed period of t and t+1, i.e. 

𝐷𝑆⃗⃗⃗⃗  ⃗
𝑜
𝑡(𝑥𝑡+1, 𝑦𝑡+1, 𝑢𝑡+1; 𝑦𝑡+1, −𝑢𝑡+1) and 𝐷𝑆⃗⃗⃗⃗  ⃗

𝑜
𝑡+1(𝑥𝑡, 𝑦𝑡, 𝑢𝑡; 𝑦𝑡, −𝑢𝑡). 

𝐷𝑆⃗⃗⃗⃗  ⃗
𝑜
𝑡(𝑥𝑡+1, 𝑦𝑡+1, 𝑢𝑡+1; 𝑦𝑡+1, −𝑢𝑡+1) compares (𝑦𝑡+1, 𝑢𝑡+1) with the production frontier 

at time t while 𝐷𝑆⃗⃗⃗⃗  ⃗
𝑜
𝑡+1(𝑥𝑡, 𝑦𝑡, 𝑢𝑡; 𝑦𝑡, −𝑢𝑡) compares (𝑦𝑡, 𝑢𝑡) with the production frontier 

at time t+1. Using the DSDF approach in model (4.2), the solution of the four distance 

functions can be solved as follows: 

𝐷𝑆⃗⃗⃗⃗  ⃗
𝑜
𝑡(𝑥𝑡, 𝑦𝑡, 𝑢𝑡; 𝑦𝑡, −𝑢𝑡) = Max ∑𝛾𝑦𝑗

𝑡

𝐽

𝑗=1

+ ∑ 𝛾𝑢𝑘
𝑡

𝐾

𝑘=1

  

Subject to  

∑ 𝑧𝑛
𝑡 𝑥𝑖𝑛

𝑡
𝑁

𝑛=1
≤ 𝑥𝑖𝑚

𝑡  ;   𝑖 = 1,2, … , 𝐼 

∑ 𝑧𝑛
𝑡 𝑦

𝑗𝑛
𝑡

𝑁

𝑛=1

≥ 𝑦
𝑗𝑚
𝑡 + 𝛾𝑦𝑗

𝑡

 
. 1  ;   𝑗 = 1,2, … , 𝐽 

∑ 𝑧𝑛
𝑡 𝑢𝑘𝑛

𝑡

𝑁

𝑛=1

= 𝑢𝑘𝑚
𝑡 − 𝛾𝑢𝑘

𝑡 . 1 ;   𝑘 = 1,2, … , 𝐾 

𝑧𝑛
𝑡 , 𝛾𝑦𝑗

𝑡 , 𝛾𝑢𝑘
𝑡 ≥ 0 ;   𝑛 = 1,2, … ,𝑁            (4.23) 
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𝐷𝑆⃗⃗⃗⃗  ⃗
𝑜
𝑡+1(𝑥𝑡+1, 𝑦𝑡+1, 𝑢𝑡+1; 𝑦𝑡+1, −𝑢𝑡+1) = Max ∑𝛾𝑦𝑗

t+1

𝐽

𝑗=1

+ ∑ 𝛾𝑢𝑘
t+1

𝐾

𝑘=1

  

Subject to  

∑ 𝑧𝑛
t+1𝑥𝑖𝑛

t+1
𝑁

𝑛=1
≤ 𝑥𝑖𝑚

t+1 ;   𝑖 = 1,2, … , 𝐼 

∑ 𝑧𝑛
t+1𝑦

𝑗𝑛
t+1

𝑁

𝑛=1

≥ 𝑦
𝑗𝑚
t+1 + 𝛾𝑦𝑗

t+1

 
. 1  ;   𝑗 = 1,2, … , 𝐽 

∑ 𝑧𝑛
t+1𝑢𝑘𝑛

t+1

𝑁

𝑛=1

= 𝑢𝑘𝑚
t+1 − 𝛾𝑢𝑘

t+1. 1 ;   𝑘 = 1,2, … , 𝐾 

𝑧𝑛
t+1, 𝛾𝑦𝑗

t+1, 𝛾𝑢𝑘
t+1 ≥ 0 ;   𝑛 = 1,2, … ,𝑁        (4.24) 

 

𝐷𝑆⃗⃗⃗⃗  ⃗
𝑜
𝑡(𝑥𝑡+1, 𝑦𝑡+1, 𝑢𝑡+1; 𝑦𝑡+1, −𝑢𝑡+1) = Max ∑𝛾𝑦𝑗

t+1

𝐽

𝑗=1

+ ∑ 𝛾𝑢𝑘
t+1

𝐾

𝑘=1

  

Subject to  

∑ 𝑧𝑛
t 𝑥𝑖𝑛

t
𝑁

𝑛=1
≤ 𝑥𝑖𝑚

t+1 ;   𝑖 = 1,2, … , 𝐼 

∑ 𝑧𝑛
t 𝑦

𝑗𝑛
t

𝑁

𝑛=1

≥ 𝑦
𝑗𝑚
t+1 + 𝛾𝑦𝑗

t+1

 
. 1  ;   𝑗 = 1,2, … , 𝐽 

∑ 𝑧𝑛
t 𝑢𝑘𝑛

t

𝑁

𝑛=1

= 𝑢𝑘𝑚
t+1 − 𝛾𝑢𝑘

t+1. 1 ;   𝑘 = 1,2, … , 𝐾 

𝑧𝑛
t , 𝛾𝑦𝑗

t+1, 𝛾𝑢𝑘
t+1 ≥ 0 ;   𝑛 = 1,2, … ,𝑁        (4.25) 

 

𝐷𝑆⃗⃗⃗⃗  ⃗
𝑜
𝑡+1(𝑥𝑡, 𝑦𝑡, 𝑢𝑡; 𝑦𝑡, −𝑢𝑡) = Max∑𝛾𝑦𝑗

t

𝐽

𝑗=1

+ ∑ 𝛾𝑢𝑘
t

𝐾

𝑘=1

  

Subject to  

∑ 𝑧𝑛
t+1𝑥𝑖𝑛

t+1
𝑁

𝑛=1
≤ 𝑥𝑖𝑚

t  ;   𝑖 = 1,2, … , 𝐼 

∑ 𝑧𝑛
t+1𝑦

𝑗𝑛
t+1

𝑁

𝑛=1

≥ 𝑦
𝑗𝑚
t + 𝛾𝑦𝑗

t

 
. 1  ;   𝑗 = 1,2, … , 𝐽 

∑ 𝑧𝑛
t+1𝑢𝑘𝑛

t+1

𝑁

𝑛=1

= 𝑢𝑘𝑚
t − 𝛾𝑢𝑘

t . 1 ;   𝑘 = 1,2, … , 𝐾 

𝑧𝑛
t+1, 𝛾𝑦𝑗

t , 𝛾𝑢𝑘
t ≥ 0 ;   𝑛 = 1,2, … ,𝑁        (4.26) 

 

In the Malmquist Lunberger Productivity Index (MLPI), the issue of infeasible solution 

has been discussed by other researchers (Färe et al., 2001; Jeon & Sickles, 2004; Oh, 

2010). (Refer to previous chapter on the discussion of infeasibility problem for mixed 
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period in MLPI). The infeasibility solution may also occur for MLPI when calculated 

by the DSDF model for two distance functions of mixed period, i.e. t and t+1.  

 

To overcome the infeasibility problem for a mixed period in the DSDF approach, two 

stage analyses with multiple year “window” of data, as has been suggested by Färe et al. 

(2001), is employed to form a frontier of reference technology.  

 

In the first stage, four distance functions are calculated using the new model of DSDF, 

i.e. equation (4.23), (4.24), (4.25) and (4.26). For mixed period calculation, which is 

equation (4.25) and (4.26), three-year data are used to construct the reference 

technology. According to Färe et al. (2001), all of the production frontiers that are 

calculated are derived using observations from that year and the previous two years. In 

other words, the reference technology for time period t would be constructed from data 

in t, t – 1 and t – 2 and period t + 1 would be constructed from data in t, t + 1 and t – 1. 

For instance, the reference technology for time period 2003 would be constructed from 

data between 2001 and 2003 and period 2004 would be constructed from data between 

2002 and 2004. Figure 4.5 below illustrates the reference frontier using a three-year 

window of data.       

 

Figure 4.5: Reference frontier using a three-year window of data 
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As illustrated in Figure 4.5, the frontier of t is bounded by 0ABC, the frontier of t - 1 is 

bounded by 0FG and the frontier of t + 1 is bounded by 0IJ. To observe DMU D from 

period t, a three-year window of data is used to form the production frontier, i.e. t, t - 1 

and t+1. Hence, the frontier for the three-year window of data is bounded by 0IJFBC. 

Using 0IJFBC frontier, the solution for DMU D for model 𝐷𝑆⃗⃗⃗⃗  ⃗
𝑜
𝑡+1(𝑥𝑡, 𝑦𝑡, 𝑢𝑡; 𝑦𝑡, −𝑢𝑡) is 

now feasible and can be measured.  

 

However, the solution using a multiple year “window” of data as the reference 

technology simply reduces the number of infeasible solutions. There are some 

circumstances where the infeasible solution still exists, especially when the DMU 

observed is beyond the reference technology i.e. 𝐷𝑆⃗⃗⃗⃗  ⃗
𝑜
𝑡(𝑥𝑡+1, 𝑦𝑡+1, 𝑢𝑡+1; 𝑦𝑡+1, −𝑢𝑡+1). 

To solve the infeasible problem, second stage analysis will be calculated using the 

concept of super-efficiency measurement (refer back the discussion on super-efficiency 

in this chapter). Using super-efficiency frontier, the infeasible DMU will increase the 

undesirable output and decrease the desirable output to reach the production frontier.  

This second stage analysis is only applied to the infeasible solution that occurs during 

the first stage analysis. Four distance functions are re-calculated using the Super DSDF 

Eco-efficiency (SDEE) model. The four distance functions that need to be re-calculated 

are as follows:  

𝐷𝑆⃗⃗⃗⃗  ⃗
𝑜
𝑡(𝑥𝑡, 𝑦𝑡, 𝑢𝑡; 𝑦𝑡, −𝑢𝑡) = Min ∑𝛾𝑦𝑗

𝑡

𝐽

𝑗=1

+ ∑ 𝛾𝑢𝑘
𝑡

𝐾

𝑘=1

  

Subject to  

∑ 𝑧𝑛
𝑡 𝑥𝑖𝑛

𝑡
𝑁

𝑛=1
≤ 𝑥𝑖𝑚

𝑡  ;   𝑖 = 1,2, … , 𝐼 

∑ 𝑧𝑛
𝑡 𝑦

𝑗𝑛
𝑡

𝑁

𝑛=1

≥ 𝑦
𝑗𝑚
𝑡 − 𝛾𝑦𝑗

𝑡

 
. 1  ;   𝑗 = 1,2, … , 𝐽 

∑ 𝑧𝑛
𝑡 𝑢𝑘𝑛

𝑡

𝑁

𝑛=1

≤ 𝑢𝑘𝑚
𝑡 + 𝛾𝑢𝑘

𝑡 . 1 ;   𝑘 = 1,2, … , 𝐾 

𝑧𝑛
𝑡 , 𝛾𝑦𝑗

𝑡 , 𝛾𝑢𝑘
𝑡 ≥ 0 ;   𝑛 = 1,2, … ,𝑁            (4.27) 
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𝐷𝑆⃗⃗⃗⃗  ⃗
𝑜
𝑡+1(𝑥𝑡+1, 𝑦𝑡+1, 𝑢𝑡+1; 𝑦𝑡+1, −𝑢𝑡+1) = Min ∑𝛾𝑦𝑗

t+1

𝐽

𝑗=1

+ ∑ 𝛾𝑢𝑘
t+1

𝐾

𝑘=1

  

Subject to  

∑ 𝑧𝑛
t+1𝑥𝑖𝑛

t+1
𝑁

𝑛=1
≤ 𝑥𝑖𝑚

t+1 ;   𝑖 = 1,2, … , 𝐼 

∑ 𝑧𝑛
t+1𝑦

𝑗𝑛
t+1

𝑁

𝑛=1

≥ 𝑦
𝑗𝑚
t+1 − 𝛾𝑦𝑗

t+1

 
. 1  ;   𝑗 = 1,2, … , 𝐽 

∑ 𝑧𝑛
t+1𝑢𝑘𝑛

t+1

𝑁

𝑛=1

≤ 𝑢𝑘𝑚
t+1 + 𝛾𝑢𝑘

t+1. 1 ;   𝑘 = 1,2, … , 𝐾 

𝑧𝑛
t+1, 𝛾𝑦𝑗

t+1, 𝛾𝑢𝑘
t+1 ≥ 0 ;   𝑛 = 1,2, … ,𝑁        (4.28) 

 

𝐷𝑆⃗⃗⃗⃗  ⃗
𝑜
𝑡(𝑥𝑡+1, 𝑦𝑡+1, 𝑢𝑡+1; 𝑦𝑡+1, −𝑢𝑡+1) = Min ∑𝛾𝑦𝑗

t+1

𝐽

𝑗=1

+ ∑ 𝛾𝑢𝑘
t+1

𝐾

𝑘=1

  

Subject to  

∑ 𝑧𝑛
t 𝑥𝑖𝑛

t
𝑁

𝑛=1
≤ 𝑥𝑖𝑚

t+1 ;   𝑖 = 1,2, … , 𝐼 

∑ 𝑧𝑛
t 𝑦

𝑗𝑛
t

𝑁

𝑛=1

≥ 𝑦
𝑗𝑚
t+1 − 𝛾𝑦𝑗

t+1

 
. 1  ;   𝑗 = 1,2, … , 𝐽 

∑ 𝑧𝑛
t 𝑢𝑘𝑛

t

𝑁

𝑛=1

≤ 𝑢𝑘𝑚
t+1 + 𝛾𝑢𝑘

t+1. 1 ;   𝑘 = 1,2, … , 𝐾 

𝑧𝑛
t , 𝛾𝑦𝑗

t+1, 𝛾𝑢𝑘
t+1 ≥ 0 ;   𝑛 = 1,2, … ,𝑁        (4.29) 

 

𝐷𝑆⃗⃗⃗⃗  ⃗
𝑜
𝑡+1(𝑥𝑡, 𝑦𝑡, 𝑢𝑡; 𝑦𝑡, −𝑢𝑡) = Min∑𝛾𝑦𝑗

t

𝐽

𝑗=1

+ ∑ 𝛾𝑢𝑘
t

𝐾

𝑘=1

  

Subject to  

∑ 𝑧𝑛
t+1𝑥𝑖𝑛

t+1
𝑁

𝑛=1
≤ 𝑥𝑖𝑚

t  ;   𝑖 = 1,2, … , 𝐼 

∑ 𝑧𝑛
t+1𝑦

𝑗𝑛
t+1

𝑁

𝑛=1

≥ 𝑦
𝑗𝑚
t − 𝛾𝑦𝑗

t

 
. 1  ;   𝑗 = 1,2, … , 𝐽 

∑ 𝑧𝑛
t+1𝑢𝑘𝑛

t+1

𝑁

𝑛=1

≤ 𝑢𝑘𝑚
t + 𝛾𝑢𝑘

t . 1 ;   𝑘 = 1,2, … , 𝐾 

𝑧𝑛
t+1, 𝛾𝑦𝑗

t , 𝛾𝑢𝑘
t ≥ 0 ;   𝑛 = 1,2, … ,𝑁                 

(4.30) 
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4.5 Specification on Variables Selection 

It is important that an efficiency measurement must be accurate and its measures rely on 

the accuracy of variables. This section will provide the discussion on the important 

variables in the analysis activities, which are the unit of assessment, inputs as well as 

outputs.  

 

4.5.1 Determination of Decision Making Unit (DMU) 

The manufacturing industry has been chosen as a context of the study since this sector 

is the second largest contributor to the Gross Domestic Product (GDP) of Malaysia, and 

also one of the main contributors to environmental pollution (Department of Statistics 

Malaysia, 2008). According to the Department of Statistics, Malaysia, the definition of 

manufacturing follows the “Malaysia Standard Industrial Classification (MSIC) 2000” 

which can be defined as the physical or chemical transformation of materials or 

components into new products, whether the work is performed by power-driven 

machines or by hand, whether it is done in a factory or in the worker’s home, and 

whether the products are sold at wholesale or retail.  

 

The unit of assessment for this study will consider 15 regions throughout Malaysia 

known as states (including the Federal Territories of Kuala Lumpur and Labuan). The 

list of DMUs is shown in the table below:  

Table 4.3: Lists of DMUs 

 No Name of States  No Name of States 

  1 Johor   9 Perlis 

  2 Kedah  10 Selangor 

  3 Kelantan  11 Terengganu 

  4 Melaka  12 Sabah  

  5 Negeri Sembilan  13 Sarawak 

  6 Pahang  14 Kuala Lumpur 

  7 Pulau Pinang  15 Labuan 

  8 Perak   
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The 15 DMUs listed in Table 4.3 above have been categorized by industrial grouping of 

the state as in Table 4.4, i.e. Free Industrial Zone (FIZ) and Non-Free Industrial Zone 

(N-FIZ). The states that fall under the two categories are provided in Table 4.4 below. 

 

Table 4.4: Categories of FIZ and N-FIZ states 

FIZ N-FIZ 

1. Johor 1.   Kedah 

2. Melaka 2.   Kelantan 

3. Pulau Pinang 3.   Negeri Sembilan 

4. Perak 4.   Pahang 

5. Selangor 5.   Perlis 

 6.   Terengganu 

 7.   Sabah  

 8.   Sarawak 

 9.   Kuala Lumpur 

 10. Labuan 

 

Under the provision of Section 3(1) of the Free Zones Act 1990, the Minister of Finance 

declared a Free Industrial Zone (FIZ) (which replaced the original FTZs (Free Trade 

Zone)) area, which was mainly designed to promote entrepot trading, and were 

especially established for manufacturing companies that produce or assemble products 

that are mainly for export. A Free Industrial Zone comprises a free commercial zone for 

commercial activities, which include trading (except retail trading), breaking bulk, 

grading, repacking, relabeling as well as transit for manufacturing activities.  

 

The FIZ are special areas where the normal trade regulations do not apply. In other 

words, a free zone is referred to as a special area in which foreign or domestic 

companies may manufacture or assemble goods for export without being subjected to 

the normal custom duties on imported raw materials or exported products. Furthermore, 

the FIZ companies are also exempted from the payment of sales tax, excise duty and 

service tax.  
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4.5.2 Determination of Input and Output Variables 

For this purpose, suggestions made by Golany and Roll (1989) that the ratio should be 

between two and three times the number of DMUs in relation to the total number of 

inputs and outputs need to be considered. These suggestions are further strengthened by 

Dyson et al. (2001) whereby they describe the rule of thumb to achieve a reasonable 

level of discrimination is that the number of unit DMUs should be at least 2(m x s) 

where m and s are the product of the number of inputs and the number of outputs.  

 

The selection of the initial list of variables considers a few criteria including taking the 

advice of the experts, looking at previous use in the literature and the evaluation of data 

availability. Having made the preliminary considerations, the initial list of input 

variables are number of establishment, intermediate input, total employment, salaries 

and wages paid as well as value of assets. However, from the entire list above, only two 

variables will be taken into account in this study for a parsimonious model.   

 

The inputs are operating expenditure (opex) and capital. Operating expenditure covers 

all costs involved in the production process of the manufacturing sector including 

material, salaries and wages as well as electricity. Value of assets has been used as the 

proxy to the capital. Assets cover all goods, new or used, tangible or intangible, which 

have normal economic life span of more than one year (e.g. land, building, machinery 

and equipment, including transport equipment). The value reported is as at the end of 

the reference year and is according to the books of accounts of the reporting unit. It 

includes additions during the year and excludes assets disposed off during the year. It is 

net of depreciation.  
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All the above items are the main factors in production activities. Based on the previous 

studies on efficiency and productivity, it is typical to use operating expenditure and 

capital as inputs (Boyd et al., 2002; Ball et al., 2004; Färe et al., 2006; Managi 2006; 

Telle & Larsson 2007; Watanabe & Tanaka 2007).   

 

In this study, two outputs were employed, one desirable and the other undesirable. A 

single desirable output is sales in the manufacturing industry while undesirable output is 

carbon dioxide (CO2) emissions. Sales of manufactured products refer to the revenue 

from sales of products during the reference year irrespective of when the products are 

produced. Sales have been decided in this study to represent the desirable output even 

though previous literature mostly uses value added as their desirable output. Sales are 

more appropriate to be an indicator of the behaviour of real revenue in production 

(Nagar & Rajan, 2001). As for undesirable output, it has been determined that among 

the industrial sources of air pollution, CO2 is the main by-product of industrial activities 

as the combustion of fossil fuels in the manufacturing process produces CO2 (Lahiji & 

Rahim, 2011; Oggioni et al., 2011; Wu et al., 2010). Therefore, CO2 emission has been 

included as an undesirable output in this analysis. The list of the input and output 

variables on the previous eco-efficiency studies are summarized in a table format in the 

Appendix A.  

 

Even though the manufacturing sector also releases water pollution during the 

production activities, only the element of air pollution is taken into consideration in this 

study. The element of air pollution is more preferable than water pollution because of 

the difficulty in getting the data. Furthermore, fuel combustion in production activities 

is the largest contributor to air pollutant emissions. In addition, the analysis also needs 
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to consider the limitation in terms of input and output variables so that the efficiency 

results are presented with a reasonable level of discrimination (Meng et al., 2008).   

 

Studies on the manufacturing sector, especially for efficiency measurement should 

incorporate the emission of pollutants (undesirable output) in the analysis because not 

only desired outputs are produced but the factors that can contribute to poor 

environmental performance are also produced simultaneously. Among the elements that 

have been frequently used by previous studies as an undesirable output is CO2 (Aiken & 

Pasurka, 2003; Arocena & Waddams Price, 2002; Färe et al., 1989; Färe et al., 2007; 

Korhonen & Luptacik, 2004; Lu & Lo, 2007; Sarkis & Talluri, 2004).  

 

The table below provides a summary of the information on the input and output sets that 

will be employed in this technical efficiency and eco-efficiency measurement study.  

 

Table 4.5: List of variables 

Variables Name of variables Unit measurement Symbol 

Input Operating cost 

Capital 

 

RM ‘000 

RM ‘000 

x1 

x2 

Desirable output  Sales 

 

RM ‘000 y 

 

Undesirable output Carbon dioxide (CO2)  

 

‘000 tonne u  

 

4.5.3 Data Source   

Having determined the list of variables, the next step is to collect the relevant data 

accurately. It is important that the data used in the efficiency measurement must be 

accurate. Hence, the data must be collected from the right sources and proper data 

collection procedures must be observed to ensure accuracy. 
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All the data for this study were obtained from the Department of Statistics, Malaysia. 

The data for CO2 emissions are calculated based on fuel combustion. Since 

manufacturing sector has been chosen as a context of the study, therefore, all the data 

on fuel combustion in the manufacturing sector in each state has been collected as no 

state level data are available for the amount of CO2 released. Fuel combustion, such as 

diesel oil, petrol (gasoline), fuel oil, and natural gas of the manufacturing sector, by 

each state, was used to calculate the carbon dioxide (CO2) emissions. The calculations, 

guided by the 2006 Intergovernmental Panel on Climate Change (IPCC) guidelines for 

National Greenhouse Gas Inventories (Eggleston et al. 2006) are based on the total 

amount of fuels combusted and the averaged carbon content of the fuels. The IPCC 

methodology breaks the calculations of carbon dioxide emissions from fuel combustion 

into six steps – estimating apparent fuel consumption in original units, converting to a 

common energy unit, multiplying by emission factors to compute the carbon content, 

computing carbon stored, correcting for carbon unoxidised, and converting carbon 

oxidized to CO2 emissions. A detail explanation of these six-step calculations is shown 

in Appendix B (See for example, Kumar Mandal & Madheswaran, 2010; Léonardi & 

Baumgartner, 2004; Worrell et al., 2001; for estimating the CO2 emissions based on 

IPCC guidelines). During the collection and comparison of the data, visits were made to 

the Department of Statistics, Malaysia (DOSM) to access the data which are regarded as 

confidential.  

 

Another important aspect to be considered in selecting the DMUs is the availability and 

accuracy of the data to be used in the evaluation. Once the inputs and outputs have been 

defined for DEA assessment, data on those inputs and outputs must be obtained for all 

DMUs. Besides data availability, their accuracy is equally important. If any data are 

found to be unreliable, an alternative assessment should be carried out. In addition to 
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the availability of the data, it is equally important that these data are taken at a 

reasonable time period.  

 

Table 4.6: Descriptive statistics of the data set for 15 states from 2001 to 2010 

Year Variables 

Operating 

Expenditure 

RM ‘000 

Capital 

RM ‘000 

Sales 

RM ‘000 

CO2  

‘000 tonne 

2001 Maximum 98489050 41149188 110187793 2540 

 Minimum 637460 583111 737774 47 

 Average 23079057 10673011 25584108 659 

 Std Deviation 28914976 10716434 32076695 699 

2002 Maximum 115541800 44537183 129504347 2357 

 Minimum 716557 371312 861500 44 

 Average 26551919 11799909 29482419 748 

 Std Deviation 32855414 11568096 36426981 700 

2003 Maximum 118941263 42631375 132679760 2559 

 Minimum 771652 370694 921300 50 

 Average 29875819 12239790 33181105 807 

 Std Deviation 35394667 11184926 38968967 764 

2004 Maximum 138557816 43296887 154010151 2661 

 Minimum 797744 451252 948865 62 

 Average 34743776 12322515 38520113 905 

 Std Deviation 40174995 11567755 43892852 800 

2005 Maximum 151595030 47056890 164155467 3183 

 Minimum 706187 496388 1013014 78 

 Average 38513291 12727631 42410008 931 

 Std Deviation 43760150 12161660 46977265 879 

2006 Maximum 159953895 48612138 171588785 2611 

 Minimum 780788 462608 911110 63 

 Average 41588413 12892192 45781038 816 

 Std Deviation 46232247 12369785 49106817 713 

2007 Maximum 158596681 43609154 171450677 2409 

 Minimum 844913 470876 957685 34 

 Average 43192341 12175438 47723233 737 

 Std Deviation 49690438 11562161 53253651 652 

2008 Maximum 184802175 55178878 201259643 2778 

 Minimum 1004197 378155 1124429 34 

 Average 47367807 13433957 52330804 792 

 Std Deviation 52272212 14151672 56266812 720 

2009 Maximum 174940811 51688873 187570618 2194 

 Minimum 986175 425813 1050261 30 

 Average 42755212 13057985 47003084 653 

 Std Deviation 48195752 13274629 51469812 617 

2010 Maximum 200822159 54891748 216552412 2032 

 Minimum 1126528 429870 1142301 32 

 Average 48005092 14027064 53333030 656 

 Std Deviation 53763752 14161096 57790205 583 
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For the purpose of this study, the time frame of data has been set for a ten year period 

from 2001 until 2010. The pattern of observation for all input and output factors are best 

studied over a longer period because it may give an idea about important changes 

occurring within them. On the other hand, a short observation period may generate an 

incomplete picture of the DMU activities. Table 4.6 provides the descriptive statistics 

summary of the data set employed in this study.   

 

Data for operating expenditure, capital and sales shown in Table 4.6 are presented in the 

real value expressed in monetary term (that is, in units of Malaysian currency – RM). 

These values have been adjusted from a nominal value to remove the effects of general 

price level changes between 2001 and 2010. When considering time series analysis, real 

values are important to be adjusted for the inflation since the measurement of 

purchasing power of any price changes over time. According to the Department of 

Statistics, Malaysia, these real values have been adjusted based on the Producer Price 

Index (PPI). Index in PPI is measured based on the movement that simplifies it in 

numerical values. The index is set to 100 and then movements are measured through a 

base period. For PPI, the base period is set at 2005.          

 

To validate the input and output variables, the Pearson’s coefficient of correlation is 

constructed. Table 4.7 presents the results of the Pearson correlation analysis. The table 

exhibits the relationship between all possible pairs of variables included in this analysis.  

 

In general, all the correlation coefficients reveal meaningful correlations within pairs of 

variables. For instance, the correlation between operating expenditure and sales is 0.989 

in 2001, implying a high score denoting a strong relationship. Most of the correlation 

values are high, at more than 0.7. The sales, which are desirable output variables, show 
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relatively high correlation with the input variable of operating expenditure between 

2001 and 2007 with more than 0.97. From 2008 up to 2010, the sales show highly 

correlated with the input variable of capital with a score of 0.968, 0.969 and 0.965, 

respectively. In all cases, the correlation is significant at the 0.05 level. All the 

correlation coefficient values are greater than 0.8 except for the capital and carbon 

dioxide in 2003, which is only 0.787. Therefore, the relation can be interpreted as 

excellent relationships. The significant correlation between the input and output 

variables shows that the DEA model developed does capture the important factors that 

influence efficiency, hence, producing reliable results. 

 

Table 4.7: Results of correlation analysis from 2001 to 2010 

Year Variables 
Operating 

expenditure  
Capital Sales 

Carbon 

Dioxide 

2001 Operating expenditure 1 0.930 0.989 0.945 

 Capital  1 0.932 0.946 

 Sales   1 0.942 

 Carbon Dioxide    1 

2002 Operating expenditure 1 0.928 0.984 0.942 

 Capital  1 0.932 0.870 

 Sales   1 0.937 

 Carbon Dioxide    1 

2003 Operating expenditure 1 0.864 0.984 0.950 

 Capital  1 0.877 0.787 

 Sales   1 0.948 

 Carbon Dioxide    1 

2004 Operating expenditure 1 0.875 0.981 0.932 

 Capital  1 0.891 0.801 

 Sales   1 0.938 

 Carbon Dioxide    1 

2005 Operating expenditure 1 0.903 0.980 0.892 

 Capital  1 0.916 0.926 

 Sales   1 0.913 

 Carbon Dioxide    1 

2006 Operating expenditure 1 0.893 0.990 0.949 

 Capital  1 0.909 0.889 

 Sales   1 0.954 

 Carbon Dioxide    1 

2007 Operating expenditure 1 0.892 0.971 0.875 

 Capital  1 0.911 0.964 

 Sales   1 0.892 

 Carbon Dioxide    1 
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2008 Operating expenditure 1 0.957 0.985 0.879 

 Capital  1 0.968 0.963 

 Sales   1 0.904 

 Carbon Dioxide    1 

2009 Operating expenditure 1 0.966 0.987 0.865 

 Capital  1 0. 969 0.935 

 Sales   1 0.879 

 Carbon Dioxide    1 

2010 Operating expenditure 1 0.952 0.985 0.819 

 Capital  1 0.965 0.912 

 Sales   1 0.830 

 Carbon Dioxide    1 

 

4.6 Conclusion 

Based on the work of the slack-based measure model by Färe and Grosskopf (2010a; 

2010b), a DSDF approach was developed in this chapter that incorporates the 

undesirable output in order to measure an appropriate direction for each inefficient 

DMU to attain full eco-efficiency. This new approach determines the optimal direction 

to the frontier for each unit of analysis and provides dissimilar expansion and 

contraction factors en route to achieving a more accurate efficiency score. 

 

To provide better discrimination between the DMUs, a super-efficiency with DSDF was 

inverted to rank the extreme DSDF score of one (fully efficient units). Using the super-

efficiency approach, the performance of all extreme DMUs can be distinguished. 

Finally, to complete the analysis, the MLPI was used to measure the productivity 

performance over the period of time. To overcome the infeasibility problem for a mixed 

period in DSDF approach, two stage analyses with a multiple year “window” of data is 

employed to form a frontier of reference technology. With the MLPI, the efficiency for 

each state can be identified whether improved/deteriorated over time.   

 

The following chapter will outline the employment of these techniques to examine the 

technical efficiency, eco-efficiency as well as the productivity change of the Malaysian 
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manufacturing sector during the study period. This process involves running the data on 

the General Algebraic Modeling System (GAMS) software and obtaining the computed 

indices. The results will be further explored and presented in the next chapter.  


