Tugasan Copt-1 (Cognitive performances test-1)

Answer all the questions

PART A. OBJECTIVE QUESTIONS

- 1. Which of the following provides the best evidence that matter consists of tiny particles that move randomly?
 - (A) Electrical conductivity of metals
 - **(B)** Air can be compressed easily
 - (C) A tiny oil droplet forms a thin layer when it is placed on water
 - **(D)** If a bottle of ammonia is opened, the pungent smell of the gas is quickly detected in the whole laboratory
- 2. Which of the following subatomic particles are **not** found in a hydrogen atom,
 - (A) Electron
 - (B) Proton
 - (C) Neutron
 - (D) Nucleus
- 3. Which of the following has the same number of particles as 1 mole of Oxygen gas?

[Relative atomic mass: C, 12; O,16; Na,23: K,39]

- (A) 24 dm³ of Carbon
- (B) 39 g of Potassium
- (C) 0.5 mole of Sodium Carbonate
- (D) $2 \times 6.02 \times 10^{23}$ mole of Sodium
- 4. The number of molecules in one mole of a gas is x. What are the number molecules in 8 g of Oxygen gas?

[Relative atomic mass: O, 16]

- (A) 8x
- **(B)** 0.25x
- **(C)** *x*
- **(D)** 0.5x
- 5. How many water molecules are contained in 4.5 g of water? [Relative atomic mass: H, I; O,16]
 - **(A)** 6×10^{23}
 - **(B)** 4×10^{23}
 - (C) $0.25 \times 6 \times 10^{23}$
 - **(D)** $1.5 \times 6 \times 10^{23}$

- 6. Which of the following ions are cations?
 - I Sulphate ions
 - II Calcium ions
 - III Magnesium ions
 - IV Phosphate ions
 - (A) I and II only
 - (B) II and III only
 - (C) III and IV only
 - **(D)** I, II and III only
- 7. Ammonium phosphate is commonly used as a chemical fertiliser. What is the chemical formula of Ammonium Phosphate?
 - (A) NH_3PO_4
 - **(B)** $(NH_4)_2PO_4$
 - (C) $NH_4(PO_4)_3$
 - **(D)** $(NH_4)_3PO_4$
- 8. The Figure 1 below shows dry hydrogen gas is passed over a powdered oxide of *X*.

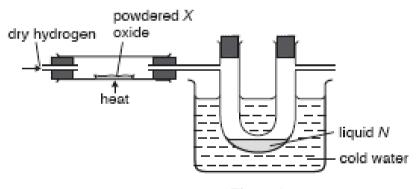


Figure 1

A liquid *N* is collected. The liquid *N* would

- (A) Neutralise sodium hydroxide
- (B) Turn white anhydrous Copper(II) Sulphate blue
- (C) Has pH value greater than 7
- (**D**) Be a blue liquid
- 9. The figure also shows the set-up of the apparatus to determine the empirical formula of an oxide of a metal X. Which could be X?
 - (A) Zinc Oxide
 - (B) Magnesium Oxide
 - (C) Copper(II) Oxide

(D) Aluminium Oxide

10.

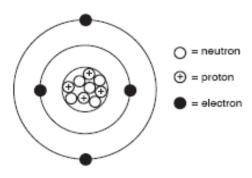


Figure 2

The Figure 2 shows the structure of an atom. Which statement is correct about this atom?

- (A) Its nucleon number is 13
- (B) Its proton number is 8
- (C) It has 4 valence electrons
- (D) The electron arrangement of the atom is 2.2

11. Which set of subatomic particles contributes mainly to the mass of an atom

- (A) Neutron and electron
- (B) Proton and electron
- (C) Proton and neutron
- (D) Electron only

12. What is the number of protons, neutrons and electrons of a sulphur atom, ${}_{32}^{16}$ S?

	Number of protons	Number of neutrons	Number of electrons
(A)	16	16	16
(B)	16	16	32
(C)	32	16	16
(D)	16	32	16

13. The subatomic particles that are present in an atom are

- I electron
- II neutron
- III proton
- IV photon
- (A) I and II only
- (B) I and III only
- (C) II, III and IV only
- (D) I, II and III only

14. What is the mass of one mole of chlorine molecules?

[Relative atomic mass: CI, 35.5]

- (A) 35.5 g
- (B) 71.0 g
- (C) $6 \times 10^{23} \text{ g}$

- (D) 24 g
- 15. The molecular mass of a molecule is defined as the
 - (A) Total mass of each particle in the molecule
 - (B) The number of atoms found in the molecule
 - (C) The average mass of each particle in the molecule
 - (D) Total number of molecules present in 1g of the substances
- 16. A compound has a formula $X_3(PO_4)_2$. It has a relative formula mass of 310. What is the relative atomic mass of X?

[Relative atomic mass: O, 16; P;31]

- (A) 40
- (B) 80
- (C) 120
- (D) 159
- 17. A hydrocarbon compound contains 86% carbon and 14% hydrocarbon by mass. What is the empirical formula for this compound?

[Relative atomic mass: C, 12; H,1]

- (A) CH
- (B) CH₂
- (C) CH₃
- (D) CH₄
- 18. 3.2 g of a compound of metal P contains 0.96 of element Q. What is the empirical formula of the compound of metal P? [Relative atomic mass; Q,16; P,56]
 - $A P_2Q_3$
 - $B P_3Q_2$
 - $C PQ_2$
 - D P₃Q
- 19. Which one of the following statements is true about the isotopes of elements?
 - (A) They have different proton numbers
 - (B) They have the same nucleon number
 - (C) They have similar chemical properties
 - (D) They have the same percentage of abundance in nature
- 20. Which of the following are isotopes of the same element?

Elements	R	S	T	U	V
Protons	6	7	35	17	35
Nucleon	14	14	79	35	81
Number					

- A. R and S
- B. T and U
- C. U and V
- D. T and V

21. Which of the following shows the incorrect number of particles?

	Substances	Number of particles
(A)	0.5 moles PbBr ₂	$1.8 \times 10^{24} \text{ ions}$
(B)	0.5 moles Br ₂	$3.0 \times 10^{23} \text{ ions}$
(C)	0.5 moles Ag	$3.0 \times 10^{23} \text{ ions}$
(D)	0.5 moles CO ₂	$1.8 \times 10^{24} \text{ ions}$

22. During the heating of potassium nitrate, the following reaction is obtained:

 $2KNO_3 \rightarrow 2KNO_2 + O_2$

Calculate the volume of oxygen collected at room conditions when $5.05g\ KNO_3$ is heated strongly

[K=39, N=14, O=16, 1 mole gas at room conditions=24 dm³]

- (A) 2400 cm^3
- (B) 2100 cm^3
- (C) 1200 cm^3
- (D) 600 cm^3
- 23. The empirical formula shows the
 - (A) Actual number of atoms
 - (B) Actual ratio of the elements combined in a compound
 - (C) Simplest ratio of the elements combined in a compound
 - (D) How each atom is attached in a molecule of the compound
- 24. Which of the following compounds has the similar empirical formula as ethene, C_2H_4 ?
 - (A) C_6H_{12}
 - (B) C_6H_6
 - (C) CH₄
 - (D) C_5H_{12}
- 25. The empirical formula of a liquid compound is known as C₂H₄O. What other information is needed to work out its molecular formula?
 - (A) The percentage composition of the compound
 - (B) The relative molecular mass of the compound
 - (C) The volume of the compound
 - (D) The boiling point of the compound
- 26. A chemical formula shows
 - I The number of atoms in it
 - II The symbols of the elements in it.
 - III The type of elements in it
 - IV The mass of each atom
 - (A) I and II only
 - (B) II and III only
 - (C) I, II and III only
 - (D) I, II, III and IV

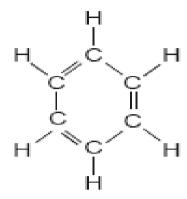
- 27. Ammonium phosphate is commonly used as a chemical fertiliser. What is the chemical formula of ammonia phosphate?
 - (A) NH₃PO₄
 - (B) $(NH_4)_2PO_4$
 - (C) $NH_4(PO_4)_3$
 - (D) $(NH_4)_3PO_4$
- 28. A compound has composition by mass: Na, 36.50%; S, 25.40%; O, 38.10%. Relative molecular mass of this compound is 126. Find the molecular formula of this compound. [R.A.M.: Na=23, S=32, O=16]
 - (A) $Na_2S_2O_8$
 - (B) Na₂S₂O₃
 - (C) Na₂SO₃
 - (D) Na₂SO₄
- 29. Table 2 shows the electron configurations of five elements V, W, X, Y and Z.

Elements	Electron configurations
V	2.8
W	2.8.1
X	2.8.2
Y	2.8.4
Z	2.8.7

Table 2

In which of the following pairs will the elements react with each other to form a covalent compound?

- A W and Z
- B X and Y
- C V and W
- D Y and Z
- Table 1 shows the proton number of four elements W, X, Y and Z. Which of the following pairs of ions have the same electron arrangement?


Elements	W	X	Y	Z
Proton number	8	9	11	13

Table

- $\begin{array}{ccc} A & W^{2-} \ and \ X^{-} \\ B & W^{2+} \ and \ X^{2-} \end{array}$
- $C Y^{-}$ and Z^{3-}
- $D X^{+}$ and Y^{2+}

PART B. STRUCTURE QUESTIONS

1. The figure below shows the structural formula of an organic compound, *Z*, which contains carbon and hydrogen.

υ	um oxide.						
(i) State	what the c	hemist wo	uld see in	n this react	ion.		
••••••		•••••		•••••	••••••		[1 ma
(ii) Writ	e an equati	ion, includ	ing state	symbols, f	or the reacti	on.	
							[2 ma
				-	oxide. Some alue for the		_
		J					
		xide is a s	olid with	a melting	point of 28	352 □C. H	
		xide is a s	olid with	a melting	point of 28	352 □C. H	
		xide is a s	olid with	a melting	point of 28	352 □C. H	
		xide is a s	olid with	a melting	point of 28	352 □C. H	
		xide is a s	olid with	a melting	point of 28	352 □C. H	
(b) In a	structure a	xide is a sand bonding	olid with	a melting pass mel	point of 28 point is so h	352 [□] C. Figh.	Explain
(b) In a	structure a	xide is a sand bonding	olid with ag, why it the studer d. [Ar Magnet 1981]	a melting pass mel	point of 28 point is so his	352 [□] C. Figh.	Explain

(ii) Calculate the minimum needed	um volume of 2.00 mc	ol dm ³ Hydrochloric Acid
	h this amount of Magnes	sium.
(iii) Calculate the volume of temperature and pressu		[2 mark] roduced at room molecules occupies 24.0
dm ³ at r.t.p.]		
(c) The student repeated bo	th experiments with Calo	[1 mark]
(i) What difference would y	you expect in reactivity?	
		[1 mark]
(ii) Explain your answer to	(i)	
		[1 mark
substance	Chemical formula	Relative molecular mass
Hydrogen		
Aluminium Hydoxide		
Sodium Oxide		
	Pb(NO ₃) ₂	

Table 1

3.

(a) Fill in the space in Table 1
[4 <i>mark</i>]
(b)How many molecules are found in (i) 4g of Hydrogen
[2 mark]
(ii) 5.6 dm ³ hydrogen at s.t.p?
[2 mark]
(Relative atomic mass : H, 1; A1, 27; 0, 16; Na, 23; Pb, 207; N,14) Avogadro number; $6x10^{23}$; 1 mol of gas occupies 22.4 dm ³ at s.t.p.)
(c) Calculate the mass of Aluminium Hydroxide that contains the same number of molecules in 4g of Hydrogen.
[3 mark]
(d) Write a balanced chemical equation for the solubility of Sodium Oxide in water to produce Sodium Hydroxide.
[2 <i>mark</i>]

(e) Pb(NO ₃) ₂ compound decomposes when heated as shown in the fol equation.	llowing
$2Pb(NO_3)_2 \rightarrow 2PbO + 4NO_2 + O_2$	
If 6.62 g of the compound is heated. Calculate the (i) mass of PbO.	
	 [2 mark]
(ii) volume of Oxygen at s.t.p. that is produced (1 mol of gas of 22.4dm ³ at s.t.p)	occupy
	••••••
	[3 <i>mark</i>]

SCORE			
PART A:	x 2 =		
PART B:	x 1 =		
TOTAL:			