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ABSTRACT 

 

Micropropagation has been widely used to produce better crops at a rapid rate. Plant 

growth regulators are used to increase shoot proliferation, with benzylaminopurine 

(BAP) being the most commonly used cytokinin. However, various studies have 

shown that BAP concentration affects the frequency of abnormality in banana 

micropropagation. For this study, the effects of BAP concentrations on in vitro 

cultures of Musa acuminata cv. “Berangan” were investigated and it was found that 

on Murashige and Skoog (MS) media supplemented with concentrations of 9mgL
-1

 

and 12mgL
-1

 BAP, cultures took a longer time to regenerate as compared to 

concentrations of 3mgL
-1

 and 6mgL
-1

.  Abnormalities such as having abnormal shoot 

clusters and remaining in an undifferentiated callus state were also observed on 

cultures of the higher BAP concentrations. 

 Dwarf SCAR markers developed by Damasco et al. (1996) were used to 

analyze the genomic changes of the in vitro cultures via polymerase chain reaction. A 

single band of about 1.6kb present only on normal plants and absent in dwarfs would 

have been expected. However, instead of the predicted 1.6kb single band, two bands 

of 662bp and 438bp in length were observed regardless of the morphology of the 

regenerants produced (normal or stunted). A BLAST analysis of the 662bp sequence 

did not reveal any homologous fragment but the 438bp sequence was found to be 

homologous to fragments of the Musa acuminata clone BAC MA4-3F3.  

 Initially found to be hypothetical proteins, a further BLAST analysis using the 

banana genome revealed that these proteins would presumably be present in 

chromosome 6 and identified as the ubiquitin-fold modifier 1. 
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ABSTRAK 

 

Teknik kultur tisu telah digunakan secara meluas untuk menghasilkan anak pokok 

yang berkualiti dalam masa yang singkat. Untuk meningkatkan pertumbuhan tunas, 

hormon telah digunakan dan BAP merupakan hormon yang paling kerap digunakan. 

Bagaimanapun, kepekatan BAP boleh meningkatkan kebarangkalian penghasilan 

anak pokok pisang yang tidak normal. Kesan kepekatan BAP ke atas teknik kultur tisu 

pisang Berangan telah diuji bagi kajian ini. Didapati bahawa kultur pisang yang 

dicambahkan pada media Murashige dan Skoog (MS) dengan kepekatan BAP 9mgL
-1

 

dan 12mgL
-1

 mengambil masa lebih lama untuk bercambah berbanding dengan kultur 

pisang yang dicambahkan pada media kultur 3mgL
-1

 dan 6mgL
-1

. Tunas yang tidak 

normal serta kultur yang terbantut turut diperhatikan pada kultur yang mengandungi 

kepekatan hormon BAP yang tinggi. 

 Penanda molekul SCAR bagi pisang kerdil yang telah digunakan oleh 

Damasco dan rakan-rakan (1996) turut digunakan bagi menganalisa perubahan 

genomik dalam kajian ini. Satu jalur bersaiz 1.6kb diramalkan pada kultur yang 

normal dan tidak akan kelihatan pada kultur kerdil. Walaubagaimanapun, dua jalur 

bersaiz 662bp dan 438bp telah terhasil dan jalur-jalur tersebut muncul tanpa mengira 

keadaan kultur tisu (normal dan tidak normal).  

Kajian BLAST mendapati bahawa jalur bersaiz 662bp tidak menunjukkan 

persamaan pada sebarang jujukan DNA tetapi jalur bersaiz 438bp didapati 

mempunyai persamaan dengan jujukan klon Musa acuminata BAC MA4-3F3.Pada 

mulanya jalur tersebut hanya dikenali sebagai protein yang belum dikenalpasti. Akan 

tetapi kajian BLAST yang dilakukan pada genom pisang mendapati bahawa jujukan 
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438bp tersebut berkemungkinan berada pada kromosom 6 dan adalah pengubahsuai 

lipatan ubiquitin 1. 
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1.0  INTRODUCTION 

 

1.1 Introduction 

Bananas are herbaceous plants with tall and fairly sturdy pseudostems. These 

pseudostems would produce inflorescence which would eventually develop into 

banana fruits. Bananas can be found growing in more than 100 countries in the 

tropical and sub-tropical regions; having a wide range of varieties including both 

cooking and dessert types (Escalant and Panis, 2002). Sterility and polyploidy affect 

breeding technology development, thus tissue culture and molecular biology 

techniques are the way to go (Escalant et al., 1994). 

DNA segments characterizing genomic level differences that may not 

correlate with phenotypic traits are molecular markers. These markers are stable and 

detectable in tissues irrespective of growth, differentiation, development, or defense 

status of the cell and are unaffected by the environment, pleiotropic and epistatic 

effects (Agarwal et al., 2008). They can be made up of biochemical constituents such 

as secondary metabolites and macro molecules like proteins and DNA (Jonah et al., 

2011).  

In bananas, dwarfism occurs in high frequencies and is only able to be 

detected in the late stages of development (Ramage et al., 2004). Some of the ways to 

overcome dwarfism are using lower concentrations of cytokinin BA, choosing 

auxiliary shoot over adventitious shoots for multiplication, and limiting the number of 

multiplication cycles from explants (Ramage et al., 2004). Although the incidences of 

dwarfism have been reduced, the problem was never eliminated. Implementing early 

identification is difficult as it is only effective at 7 weeks post-deflasking; when the 

plants reached 18-20cm in height and are ready for field transplantation.  These are 
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only effective if the plants were uniformly grown under vigorous conditions (Ramage 

et al., 2004). 

Damasco et al. (1996) have used 66 arbitrary RAPD markers to detect dwarf 

banana off-types in “Cavendish”. In their preliminary examinations, they discovered 

that 19 of the 66 markers revealed polymorphism between the normal and dwarf 

plants – a single band was present in the normal but not in the dwarf plants 

(Suprasanna et al., 2008). The RAPD marker producing the single polymorphic band, 

1.6kb in size, was identified and upon further investigation revealed partial homology 

with known chloroplast DNA sequences from approximately 6 plant species (Ramage 

et al., 2004).  

The OPJ-04 marker was then regarded as a SCAR marker (Sequence 

Characterized Amplified Region), able to detect dwarf off-types via PCR (Suprasanna 

et al., 2008). The SCAR marker in itself has a drawback as it could only amplify the 

product from normal DNA and not dwarf off-types. An additional positive internal 

PCR control, the 18S rRNA gene of Musa acuminata (GeneBank Accession No. 

U42083.1), amplifying both normal and dwarf off-types is required to avoid false 

positives (Ramage et al., 2004). 
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1.2 OBJECTIVES 

Somaclonal variations during micropropagation, especially dwarf off-types are 

difficult to identify at an early stage. This research, if applicable, would successfully 

serve: 

i. To determine whether an established SCAR marker can be applied to detect the 

dwarf trait in Musa acuminata cv. “Berangan” 

ii. To apply the SCAR markers to detect and identify micropropaged off-types of 

Musa acuminata cv. “Berangan” culture 
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CHAPTER 2 
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2.0  LITERATURE REVIEW 

 

2.1 Bananas 

Musa paradisiaca Linn. was the first scientifically published term given to 

bananas by Karl Linnaeus in his book “Species Plantarum” in 1753 (Valmayor et al., 

2000). Bananas are herbaceous plants with tall and fairly sturdy pseudostems. These 

pseudostems would produce inflorescence which would eventually develop into 

banana fruits. Bananas can be found growing in more than 100 countries in the 

tropical and sub-tropical regions; having a wide range of varieties including both 

cooking and dessert types (Escalant and Panis, 2002).  

Bananas are monoecious plants with male flowers at the tip of their 

inflorescence and female flowers at the back. The fruit is a product of parthenocarpy 

and characterized as berry with a leathery outer peel containing much collenchyma 

(Daniells et al., 2001). Banana fruits are formed in layers called combs or hands, 

consisting of 10-20 bananas with 6-15 combs per stalk; weighing up to 40-50 

kilograms per stalk (Arvanitoyannis et al., 2008). Unripened bananas and plantain 

fruits have high starch and low sugar levels with high amounts of bitter-tasting latex. 

As the fruit ripens, the starch is converted to sugar, eventually containing up to 25% 

of total sugars, and the latex decomposed. Bananas are harvested unripe and green as 

they ripen quickly; ehtylene produced by ripe fruits also encourages the ripening of 

the greener fruits (Arvanitoyannis et al., 2008). 
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2.2 The genus Musa and its classification 

The genus Musa has been classified into four sections, with which includes 

seeded (wild) and non-seeded or parthenocarpic edible types (Ortiz, 1997). Callimusa 

and Australimusa contain species with chromosome number of 2n=2x=20 while 

species in the Eumusa and Rhodochlamys have a basic chromosome number of n=11 

(Arvanitoyannis et al., 2008). Bananas and plantains belong to the Eumusa section of 

the genus Musa, family Musaceae, and order Zingiberales (Gill, 1988). The Eumusa is 

the most widely spread in the world and is found throughout South East Asia. 

Simmonds and Shepherd in 1955 have proposed genomic groups to classify the edible 

clones: AA, BB, AAA, AAB, ABB, AAAA, and ABBB (Arvanitoyannis et al., 2008). 

A majority of cultivars are a derivation of Musa acuminata (AA) and Musa 

balbisiana (BB), with Musa acuminata being the most widespread among the Eumusa 

species (Osuji et al., 1997; Arvanitoyannis et al., 2008).   

  

2.3 Banana classification in Southeast Asia 

Triploid (AAA) banana cultivars originated from diploids, from crosses 

between edible diploids and wild M. acuminata subspecies (Arvanitoyannis et al., 

2008). The triploid cultivars have replaced the original diploids (AA) in most part of 

Southeast Asia. Via natural hybridization of diploid and triploid M. acuminata 

cultivars with M. balbisiana, native to areas like India, Myanmar, Thailand, and the 

Philippines, hybrid progenies of (AB), (AAB), and (ABB) were formed (Daniells & 

Smith, 1991). Asia, being the center of Musa diversity has a variety of local cultivars 

possessing characteristics that goes beyond the normal specifications used to 

differentiate bananas from plantains (Valmayor et al., 2000). Besides that, the same 

cultivars could be known by different names in different countries. 
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Since bananas are made up of two natural species and a hybrid complex, a 

three tier system based on species, genome group, and cultivar has been developed to 

classify and identify cultivars synonymous to the region. The expression of 15 

characters such as pseudostem color, ovules, bract apex, and assigning scores for 

these characteristics according to wild acuminata or balbisiana, identification of 

species and genomic groups were possible. Once this has been achieved, highly 

discriminating descriptors such as on plant stature, pseudostem and leaf 

characteristics, and so forth were referred to “Descriptors for Banana (Musa spp.) and 

Musa Germplasm Information System (MGIS)” published by INIBAP/IPGRI and 

CIRAD to further ascertain the banana varieties  (Valmayor et al., 2000). 

 

2.4 Status of banana industry in Malaysia 

In the Third National Agricultural Policy (1998-2010), bananas have been 

selected as one of fifteen fruit types for prioritized commercial cultivation (Nik Mohd. 

Masdek, 2002). From 1992-2001, banana acreage has stabilized to about 31,000 

hectares, about 10-12% of total fruit acreage in Malaysia. Major producers are Johor, 

Pahang, and Sarawak consisting mostly smallholders - grown as mono-crop, and 

mixed or inter-cropped with perennial industrial crops (Mokhtarud-din and William, 

2011).  

About half of the 31,000 hectares were of Berangan and Cavendish cultivars 

for local consumption and exportation while the other cultivars such as the Mas, 

Rastali, Nangka, Raja, Awak, Abu, and Tanduk were mainly cultivated for the 

domestic market (Nik Mohd. Masdek, 2002). Dessert cultivars include the Berangan, 

Mas, Cavendish, and Rastali while Nangka, Raja, Lang, Relong, Tanduk, Nipah, and 

Awak are examples of cooking bananas. Banana production in 2009 was 279,762 
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metric ton with an average yield of 10.2 metric ton per hectare (Mokhtarud-din and 

William, 2011).  

In this study, the Berangan cultivar was used. The Berangan has fruit bunches 

weighing about 12-22 kilograms, with about 8-12 hands and each hand bearing about 

12-20 fruits or fingers (Perak Agricultural Department, 2010). Musa acuminata cv. 

“Berangan” is generally a tall variant. Support brackets made out of wood or bamboo 

needed to be used in order to prevent the plant from falling over and to prevent the 

pseudostem from breakage due to the weight of the fruit bunches (Perak Agricultural 

Department, 2010). Hence, a shorter variant of the plant would be more cost-efficient 

and offer an easier way of retrieving the fruit bunches. 

 

2.5 Banana micropropagation and plant growth regulators 

Tissue culture techniques range from recombinant DNA methods, genome 

characterization, gene transfer techniques, aseptic growth of cells, tissues, organs, and 

in vitro regeneration of plants (Brown and Thorpe, 1995). In bananas, propagation 

was always done via vegetative means due to its reputation of being the most 

conspicuously sterile crop of the world (Khatri et al., 1997). Conventional 

propagation methods were initially used but due to it being laborious, time consuming, 

and having a low multiplication rate (4-5 plants per year from a single sucker), a more 

modern approach were developed for rapid propagation (Khatri et al., 1997). 

Micropropagation produces plantlets that establish faster, healthier, stronger, with 

shorter production cycles and produces higher yields than conventionally produced 

plantlets - making banana the most intensely micropropagated crop (Darvari et al., 

2010). 
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Plant hormones or growth regulators are small, diverse, non-protein molecules 

that control aspects of plant growth and development (Hay et al., 2004). There are 

five classes of plant growth regulators: auxins, cytokinins, gibberellins, abscisic acid, 

and ethylene (Slater et al., 2008). Auxins promote cell division and cell growth and 

includes indole-3-acetic acid (IAA) and 2,4-Dichlorophenoxyacetic acid (2,4-D). 

Cytokinins promote cell division in plants and comprise of zeatin, N
6
-(2-

isopentyl)adenine (2iP), and 6-benzylaminopurine (BAP). However, zeatin and 2iP 

are not commonly used as they are not cost-efficient and are fairly unstable (Slater et 

al., 2008). GA3 is the most common gibberellin, involved in regulating cell elongation 

while abscisic acid (ABA) inhibits cell division and is usually used to promote 

somatic embryogenesis. Finally, ethylene is a naturally occurring gas associated with 

fruit ripening and is not typically used in plant tissue culture (Slater et al., 2008). 

Cytokinins are normally used for banana micropropagation. Shoot proliferation rates 

are affected by cytokinin types, its concentration and the type of banana cultivars. 

Benzylaminopurine (BAP) is the most commonly used cytokinin (Shirani et al., 2009).  

In 2007, Venkatachalam et al. micropropagated dessert banana cv. 

“Nanjanagudu Rasabale” (AAB) and tested various concentrations of BA or kinetin 

(0-10mgL
-1

) in M2 media. After three subcultures, morphological observations were 

recorded and the shoots were taken for molecular analyses. They found that the 

number of shoot buds increase with increasing BAP concentration up to 5mgL
-1

. 

However, at higher concentrations, shoot development was suppressed. At BAP 

concentrations of 6-10mgL
-1

, the numbers and lengths of shoot buds occurred and 

exudation of phenolics were observed. A BAP concentration of 5mgL
-1

 was 

considered optimum for shoot multiplication. However, ISSR and RAPD analyses 

revealed that in banana cv. “Nanjanagudu Rasabale” (AAB), high concentrations of 
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plant growth regulators did not induce somaclonal variations (Venkatachalam et al., 

2007). 

A study done by Shirani et al. (2009) on micropropagated banana cultivars 

“Berangan Intan” (AAA), “Berangan” (AAA), “Rastali” (AAB), and plantain 

cultivars “Baka Baling” (AAB) and “Nangka” (AAB), has shown that although the 

number of shoots increased with increasing BAP concentrations, it also caused a 

higher abnormality index; shoot regeneration was also decreased. At 7.5mgL
-1

 of 

BAP treatment, Bairu et al. (2006) noticed a variation rate of 72% at the 10th 

multiplication cycle; indicating that somaclonal variation increased with an increase 

in multiplication cycle and BAP concentration. 

 

2.6 Somaclonal variation in bananas 

As a highly economically important crop, tissue culture would be able to 

increase production exponentially. Shoot tips were often used for in vitro culture of 

bananas which sometimes resulted in genetic defects known as somaclonal variants 

(Bairu et al., 2006). In 1981, Larkin and Scowcroft defined somaclonal variation as 

variation originating in cell and tissue cultures. A universally accepted term, it can 

also be known as protoclonal, gametoclonal, and mericlonal variation have been used 

to describe variants from protoplast, anther, and meristem cultures (Bairu et al., 2011). 

There are many factors contributing to somaclonal variations such as culture medium 

composition, rate of multiplication, primary explant origin, formation of adventitious 

shoots, increased culture duration, and certain banana genotypes (Bairu et al., 2006).  

Detection of variations in micropropagated bananas are laborious, time 

consuming, and expensive as it is done visually and is only possible 3-4 months after 

field establishment. Although early detection is probable, it is also laborious as it 
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requires individual inspection and an optimal and uniform growth condition for all 

plants (Bairu et al., 2006). Damasco et al. have tried using GA3 to detect dwarf off-

types; however, 5-10% misclassification still occurred even under the most stringent 

screenings (Bairu et al., 2006). Thus the need for efficient and reliable methods of 

detection is critical and a molecular alternative could prove useful. 

 

2.7 Dwarfism in bananas 

Dwarfism occurs in high frequency in bananas and can only be detected in 

later stages of development (Ramage et al., 2004). Alternative cultural management 

practices to overcome dwarfism were proposed such as using lower concentrations of 

cytokinin BAP, selection of auxiliary shoots over adventitious shoots for 

multiplication, and limiting the number of multiplication cycles from any explants 

(Ramage et al., 2004). These have reduced the occurrence of dwarfism but the 

problem was never eliminated. Early identification is difficult and effective at 7 

weeks post-deflasking when the plants reach 18-20cm in height and ready for field 

implantation. However, this is only effective if the plants were grown under uniform 

vigorous growing conditions (Ramage et al., 2004). 

In 1996, Damasco et al. used 66 arbitrary RAPD markers to detect dwarf 

banana off-types. In the early screening, they discovered that 19 of the markers 

revealed polymorphism between normal and dwarf plants with the presence of a 

single band in the normal, but not in the dwarf types (Suprasanna et al., 2008). A 

single polymorphic 1.6kb RAPD marker was identified and further investigation 

revealed partial homology with known chloroplast DNA sequences from at least six 

plant species (Ramage et al., 2004).  
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This marker (OPJ-04) was consequently characterized into a SCAR marker 

(Sequence Characterized Amplified Region) to be used as a PCR based detection 

system for dwarf off-types (Suprasanna et al., 2008). However, the SCAR marker by 

itself has a limitation as it only amplifies the product from the DNA of normal and not 

dwarf off-types. The inclusion of a positive internal PCR control (18S rRNA gene of 

Musa acuminata; GeneBank Accession No. U42083.1) amplifying regions of both 

normal and dwarf off-type is required (Ramage et al., 2004). 

 

2.8 Molecular markers 

Markers can be defined as any trait of an organism that can be identified and 

followed in a mapping population and these can be associated with economically 

important traits under the control of polygenes (Bhat et al., 2010). Genetic markers 

are categorized into three broad classes: visually assessable traits (morphological and 

agronomic traits), based on gene products (biochemical markers), and those that rely 

on DNA assays (molecular markers) (Semagn et al., 2006). Morphological markers 

can be detected visually or a difference in physical or chemical properties of the 

macromolecules (Bhat et al., 2010).  

Genetic markers can be further characterized into two types: morphological 

markers and non-morphological markers. Morphological markers are traits that can be 

visualized with the naked eye. These include plant height, disease response, fruits or 

seeds, and so forth. Although morphological markers are easily distinguished, effects 

of linked minor genes are often overlooked (Bhat et al., 2010). Morphological 

characteristics vary with environmental situations and plants would need to grow to 

full maturity to accurately identify their discriminating traits (Jonah et al., 2011). 
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Non-morphological markers are also known as molecular markers. Breeding 

programs have often relied on phenotypic or morphological traits. With the rise of 

new molecular techniques, molecular markers were introduced within the last two 

decades and have become an important tool in genetic crop improvement (Bhat et al., 

2010). Molecular markers are DNA segments that represent differences at a genomic 

level and may not correlate with the phenotypic traits. However, they are stable and 

detectable in tissues regardless of growth, differentiation, development, or defense 

status of the cell and are not affected by the environment, pleiotropic and epistatic 

effects (Agarwal et al., 2008). Molecular markers can consist of biochemical 

constituents such as secondary metabolites and macromolecules like proteins and 

DNA (Jonah et al., 2011).  

Protein based markers are some examples of biochemical markers. Proteins 

are primary products of structural genes, thus a change in the coding base sequence 

will result in changes to the primary structure of proteins. The earliest protein based 

markers to be used was isozyme which is an enzyme exhibiting the same catalytic 

activity but differ in charge and electrophoretic mobility (Bhat et al., 2010). Plant 

extracts are subjected to electrophoresis using starch or polyacrylamide gels, and the 

enzymes of interest are detected by treating the gels with specific activity stains. 

Inconsistencies among the bending patterns between individual samples were then 

able to be acknowledged and sorted out (Bhat et al., 2010). 

Genes are organized in a linear order on chromosomes and if they are linked 

together, a combination of genes can be inherited in a group. Individual genes 

flanking within a defined close interval are known as molecular DNA markers. 

Identifiable DNA sequences found at specific locations of the genome and are 

associated with the inheritance of a trait or linked gene can be defined as molecular 
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DNA markers (Jonah et al., 2011). Plant DNA markers were first developed in 1985-

86 by researchers at native plants incorporated, U.S.A. and Cornell University Ithaca, 

U.S.A. DNA markers are identifiable sequences found at specific locations on the 

chromosomes and passed on via inheritance; they should not be considered as normal 

genes as they typically do not have any biological effect (Bhat et al., 2010). A good 

DNA marker should be highly polymorphic, codominantly inherited and expressed, 

selectively neutral, easily accessible and assayable, follows Mendelian inheritance, 

reproducible, allows easy exchange of data between laboratories, genetically linked to 

a particular trait, and is not affected by pleiotropism and epistatic interactions (Bhat et 

al., 2010; Jonah et al., 2011). 

However, it is rather impossible to acquire a genetic marker possessing all the 

aforementioned traits and thus a marker system can be identified by fulfilling a few of 

those characteristics (Jonah et al., 2011). 

 

2.8.1 Non-PCR based genetic markers 

Restriction Fragment Length Polymorphism (RFLP) was first developed in the 

early 1980s by Botstein et al. (Jonah et al., 2011; Bhat et al., 2010). The technique is 

based on southern blotting hybridization technique. A chemically labeled DNA probe 

hybridizing to a southern blot of DNA digested by restriction endonucleases would 

detect polymorphisms, resulting in differential DNA fragment profile (Agarwal et al., 

2008). It is these variations that are called Restriction Fragment Length 

Polymorphism.  DNA digested by restriction enzymes would produce differing 

fragment sizes. These fragments would have a higher mobility when electrophoresed 

on a gel and these fragments are then transferred onto nitrocellulose membranes 

making the DNA permanently immobilized. Chromosomal DNA fragments prepared 
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as probes would then be labeled and these probes would hybridize to complementary 

DNA bands on the membranes; the bands would finally be visualized via 

autoradiography (Bhat et al., 2010).  

RFLP markers are highly polymorphic, codominantly inherited, highly 

reproducible, and are considered superior because of its high heritability and locus 

specificity in the plant genome (Agarwal et al., 2008). However, this technique does 

have its share of limitations. RFLP requires high quantity and quality DNA, results 

depend on the development of specific probe libraries for the species, time consuming, 

usually requiring radioactively labeled probes, and this technique is not able to be 

automated (Semagn et al., 2006). It is with these limitations that a new, less 

technically complex methods such as the PCR-based techniques was realized. 

 

2.8.2 PCR-based genetic markers 

The discovery of polymerase chain reaction (PCR) by Mullis et al. in 1985 has 

provided a technological breakthrough that enabled the development of various PCR-

based techniques genetic marker techniques. PCR involves two oligonucleotide 

primers flanking the DNA fragment of interest, and through a series of repeated 

cycles of heat denaturation of the DNA, primer annealing to their complimentary 

sequences, and the extension of the annealed primers via thermophilic DNA 

polymerase, that fragment could then be continually synthesized and thus amplified 

exponentially (Jonah et al., 2011). 

PCR-based genetic markers consist of Random Amplified Polymorphic DNA 

(RAPD), Simple Sequence Repeats (SSRs), Inter Simple Sequence Repeat (ISSR), 

Sequence Characterized Amplified Regions (SCAR), and Amplified Restriction 

Fragment Length Polymorphism (AFLP). 
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2.8.2.1 Random Amplified Polymorphic DNA (RAPD) 

RAPD was developed by William et al. in 1990 (Bhal et al., 2010). A single 

arbitrary nucleotide primer sequence of mostly ten bases long, called a decamer, is 

used for amplification. These amplified DNA fragments are randomly selected thus 

providing random samples of DNA markers (Jonah et al., 2011; Bhat et al., 2010). 

This technique does not require any prior knowledge of the analyzed genome and thus 

can be used across species using universal primers. However, profiling is dependent 

on the reaction conditions and it may vary within different laboratories; since several 

distinct loci are amplified by each primer, heterozygous and homozygous individuals 

are indistinguishable (Agarwal et al., 2008). Moreover, RAPD polymorphisms are 

inherited as dominant or recessive - causing a loss of information relative to markers 

showing co-dominance, and since the primers are short, a mismatch of a single 

nucleotide can prevent annealing thus losing a band (Jonah et al., 2011).  

Despite its limitations, RAPD analyses do not require technically complex or 

laborious methods such as blotting or hybridization, radioactive assays and species 

specific probe libraries. The small amount of DNA used also makes it possible for 

populations that are inaccessible via RFLP. Additionally, RAPD analyses are fast and 

efficient (Jonah et al., 2011). 

 

2.8.2.2 Simple Sequence Repeats (SSR) 

Simple Sequence Repeats (SSR) is also known as short tandem repeats or 

microsatellites (Jonah et al., 2011). These microsatellites are present in all eukaryotic 

genomes, making them ideal DNA markers for genetic mapping and population 

studies (Bhat et al., 2010). Variations in the number of tandem repeat units are largely 

due to strand slippage during DNA replication where these repeats allow matching via 
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excision or addition of repeats. Since slippage in replication is possibly due to point 

mutations, microsatellite loci are hypervariable and thus able to show extensive inter-

individual length polymorphisms during PCR analyses of exclusive loci using specific 

primer sets (Agarwal et al., 2008). 

SSR primers are developed by cloning random DNA segments from the target 

species. These are then inserted into a cloning vector for replication. The colonies are 

developed, screened, and the DNA is sequenced and PCR primers are constructed 

from sequences flanking regions determining a specific locus. Microsatellite repeats 

must be predicted and randomly isolated primers may not display polymorphism 

(Semagn et al., 2006). Choosing the best candidate markers and optimizing its 

conditions is a way to obtain a balance of high specificity and high intensity of the 

amplified products. 

With that in mind, it can be seen that it is costly to produce such primers as a 

lot of rather complex and laborious methods have to be employed. However, these 

markers are both dominant fingerprinting markers and codominant sequence tagged 

microsatellites (STMs) makers. These markers are also highly reproducible and 

polymorphic (Jonah et al., 2011; Bhat et al., 2010). 

 

2.8.2.3 Inter Simple Sequence Repeats (ISSR) 

Inter Simple Sequence Repeats (ISSRs) are semi arbitrary markers amplified 

by PCR in the presence of a complementing primer to a target microsatellite (Bhat et 

al., 2010). The primers used in ISSR are microsatellites targeting multiple genomic 

loci amplifying inter simple sequence repeats of different sizes. These primers can be 

either anchored or unanchored at the 3' or 5' end with 1 to 4 degenerate based 

extended into the flanking sequences (Semagn et al., 2006).  
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Unanchored primers are called microsatellite-primed PCR, or MP-PCR (Bhat 

et al., 2010). ISSR amplifications do not require genome sequence information - 

multilocus and highly polymorphic patterns would arise. Each of those bands would 

match up to a DNA sequence delimited by two inverted microsatellites (Bhat et al., 

2010). ISSRs are fast and easy but its reproducibility, dominant inheritance, and 

homology of co-migrating amplified products limits its use (Semagn et al., 2006). 

 

2.8.2.4 Amplified Restriction Fragment Length Polymorphism (AFLP) 

AFLP is capable of “genome representation” which is a simultaneous 

screening of DNA regions distributed at random throughout the genome (Semagn et 

al., 2006). AFLP involves three steps: DNA is first subjected to restriction enzymes 

and oligonucleotide adapters are ligated to them; sites of restriction fragments are 

selectively amplified; and finally the fragments are analyzed via gel electrophoresis. 

A rare restriction endonuclease such as EcoRI or Pst-I is normally used as those 

enzymes reduce the number of DNA fragments to be amplified, while a common 

endonuclease would be used to generate small DNA fragments to be used as 

amplification primers (Bhat et al., 2010). At first the DNA fragment is amplified by 

the adapter ligated smaller fragments, and then these amplified products are later used 

as a template for the subsequent PCR amplification. The products were then analyzed 

via gel electrophoresis and visualized by silver staining; radioactive probes or 

fluorescent dyes can also be used (Bhat et al., 2010). In this manner, AFLP somewhat 

combines techniques of RFLP with the use of restriction enzymes and RAPD via PCR 

amplification (Jonah et al., 2011). 

Prior knowledge of DNA sequence isn't necessary as this technique would 

produce fingerprints of any DNA irrespective of its source (Agarwal et al., 2008). 
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AFLP is a sensitive technique and with the addition of fluorescent probes, it can also 

be automated. The advantages of AFLP are: polymorphism can be easily generated in 

huge amounts, no sequence information is required, and PCR is fast and with a high 

multiplex ratio (Jonah et al., 2011).  

 

2.8.2.5 Sequence Characterized Amplified Regions (SCAR) 

SCAR markers are PCR-based markers that characterize genomic DNA 

fragments at defined loci that are determined using a sequence specific primer (Jonah 

et al., 2011; Agarwal et al., 2008). SCAR markers arise from RAPD analyses 

whereby an arbitrary marker is later defined as being able to identify a certain trait. 

The RAPD marker associated terminals are sequenced and long primers are designed 

for the specific locus. Amplification is followed by gel electrophoresis for locus 

specific band detection (Bhat et al., 2010). 

Polymorphism is identified either with a presence or absence of the amplified 

band, or it could appear as length polymorphisms convert dominant arbitrary primed 

marker loci into codominant SCAR marker (Agarwal et al., 2008). SCAR markers 

can be used as physical maps in the genome or as genetic markers. The use of 

codominant SCAR markers would provide information for genetic mapping than 

dominant arbitrary-primed markers as these SCAR markers can be used to screen 

genomic libraries for physical mapping, to define locus specificity, and as a 

comparative mapping for homology studies among related plants species (Agarwal et 

al., 2008). 
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3.0  MATERIALS AND METHODS 

 

3.1  Micropropagation of banana cultures 

3.1.1  Plant starter cultures 

Banana starter cultures, Musa acuminata cv. Berangan (AAA), were obtained 

from the Plant Biotechnology Incubator Unit (PBIU), Center for Research in 

Biotechnology for Agriculture (CEBAR), University of Malaya. Shoot meristems 

were excised and transferred onto Murashige and Skoog (MS) media (1962), 

containing 30gL
-1

 sucrose and 2gL
-1

 gelrite supplemented with benzylaminopurine 

(BAP) at 3mgL
-1

. The media pH was adjusted to 5.7 and autoclaved at 14.5psi, 120°C 

for 20 minutes. The cultures were maintained twice; 2 weeks interval each at 26°C 

under a 24-hour photoperiod. 

 

3.1.2 Maintenance on concentration gradient of benzylaminopurine (BAP). 

The micropropagated cultures were excised and transferred onto Murashige 

and Skoog (MS) media (1962), containing 30gL
-1

 sucrose and 2gL
-1

 gelrite 

supplemented with benzylaminopurine (BAP) at concentration gradients of 3, 6, 9, 

and 12mgL
-1

. Shoots were also grown on MS media with no BAP (0mgL
-1

) as a 

control. Media pH was adjusted to 5.7 before being autoclaved at 14.5psi, 120°C for 

20 minutes. The cultures were incubated at 26°C under a 24-hour photoperiod. A total 

of 120 micropropagated cultures were grown, in triplicates of 10 explants per 

concentration. Morphological observations in regenerated shoots were recorded and 

the lengths of time required for regeneration were noted. 
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3.2 Molecular approach 

3.2.1 Genomic DNA extraction 

After being maintained for three subcultures at 2 weeks interval each 

subculture, shoots and young leaf samples were collected and stored at -80°C until 

further use. Total genomic DNA extraction was done according to a modified CTAB 

method as describes by Doyle and Doyle (1990). About 100-200mg of the plant 

samples were macerated using mortar and pestle in addition with liquid nitrogen into 

a fine powder. The powder was then transferred into microfuge tubes with 500µL of 

pre-warmed CTAB buffer (2% (w/v) hexadecyltrimethylammonium bromide, 1.4mM 

NaCl, 100mM Tris (pH 8.0), 20mM EDTA, and 1% (w/v) PVP) and incubated at 

65°C for about an hour. 1% (v/v) of β-Mercaptoethanol (Sigma-Aldrich, Germany) 

was added into the mixture and the tubes were mixed every 10-15 minutes.  

The microfuge tubes were then centrifuged at 13,000rpm for 5 minutes to spin 

down cell debris. After centrifugation, 250µL of chloroform:isoamyl alcohol (24:1; 

Merck, Germany:Amresco, Ohio) were added into the tubes and were mixed by 

inversion. The tubes were then spun at 13,000rpm for 1 minute. The upper layers of 

the supernatants were transferred into clean microfuge tubes. Into the tubes, 50µL of 

7.5M ammonium acetate were added, followed by 500µL of ice cold absolute ethanol.  

The tubes were inverted to mix the solution and precipitate the DNA. After 

precipitation, the tubes were centrifuged at 13,000rpm for 1 minute to form a pellet. 

The supernatant was removed and the DNA pellets were washed with two changes of 

ice cold 70% ethanol. DNA pellets were allowed to dry for about 15 minutes; the 

pellets resuspended in 50µL of TE buffer (10mM Tris-HCl, 0.1mM EDTA), and 2µL 

of RNase A (10µg/mL; Amresco, Ohio) was added.  After resuspension, DNA was 

kept at -20°C until further use. 
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Some of the DNA extractions were also carried out using DNeasy Plant Mini 

Kit (QIAGEN, Germany) as a means of comparison. The extraction was done 

according to the supplied manual. 

 

3.2.2 DNA quality and quantity confirmation 

Extracted DNA was diluted to 100X by mixing 990µL of TE buffer and 10µL 

of the DNA suspension. The mixtures were inserted into cuvettes (Eppendorf, 

Germany) and measured with a biophotometer (Eppendorf, Germany). DNA purity 

was determined by the ratio of wavelength absorbances at 260nm/280nm (OD260/280). 

A ratio between 1.8 and 2.0 denotes pure DNA. A manual calculation can also be 

done by using the following equation to confirm the quantity of the DNA: 

DNA concentration (
μg

mL
) =

OD260×50
μg
mL

×Dilution factor

1000
 

 

3.2.3 SCAR investigation in a multiplex PCR 

Dwarf specific primers were synthesized based on Damasco et al., (1996) and 

as highlighted by Ramage et al. (2004), and Suprasanna et al. (2008). The primers 

were: Dw1 (5' CTG TGG TTG CAT TCT CAT AC 3') and Dw2 (5' GTG AAT CAT 

ACT CGC GAA CC 3'). The SCAR primers were used together with two primers 

amplifying a 500bp region of the 18S rRNA gene of Musa acuminata (GeneBank 

Accession No. U42083.1) in a multiplex PCR. This is to ensure that the absence of a 

band was a result of the dwarf condition and not from a failure in the PCR (Ramage et 

al., 2004). 

DNA amplifications were executed in volumes of 20µL with 1X PCR buffer 

(10mM Tris-HCl, 4.5mM MgCl2, 50mM KCl, pH 8.3), 0.25mM dNTPs, 500nM of 

Dw1/Dw2 SCAR primers, 125nM 18S rRNA primers, and 3 units of Taq DNA 
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polymerase. The PCR reactions were performed with an initial denaturation of 94°C 

for 3 minutes, followed by 30 cycles of each of the following: denaturation at 95°C 

for 30 seconds, annealing at 55°C for 30 seconds, extension at 72°C for 2 minutes, 

and a final extension at 72°C for 3 minutes.  

 

3.2.4 Agarose gel electrophoresis 

PCR products were separated by gel electrophoresis on a 1.5% (w/v) agarose 

gels (0.6g agarose; Amresco, Ohio in 30mL 1X TBE buffer; 89mM Tris base, 89mM 

boric acid, and 2mM EDTA pH8.0). 1µL of ethidium bromide (10mg/mL) was added 

into the melted gels before being poured into the gel casting apparatus and left to 

solidify.  

Solidified gels were placed in an electrophoresis chamber filled with sufficient 

volumes of 1X TBE to cover the entire surface of the gel. Samples were mixed with 

6X loading buffer (Fermentas, U.S.A.) before being loaded into the gel wells. 

Electrophoresis was done at 75 volts for about 30 minutes or until the dye has almost 

reached the end of the gel. A gel documentation system, (Geldoc AlphaImager 

TM2200; Alpha Innotech, U.S.A.) was used to analyze the gel under UV illumination.  
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4.0  RESULTS 

 

4.1  Micropropagation of banana cultures 

4.1.1  Maintenance and propagation of plant samples 

Excised shoot meristems from the starter cultures grew within 5 days of sub-

culture (Figure 1). By 14 days, the cultures grew multiple shoots (Figure 2) and these 

shoots were further excised and re-cultured again before being subjected to 

concentration gradients of benzylaminopurine (BAP). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: 5-day old plant culture. 

Figure 2: 14-day old plant culture. 
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4.1.2  Effects of benzylaminopurine (BAP) on shoot cultures 

Shoot meristems maintained for 2 weeks were excised and grown on MS 

media supplemented with a concentration gradient of benzylaminopurine (BAP): 3, 6, 

9, and 12mgL
-1

. The shoot meristems were also grown on MS media with no BAP 

(0mgL
-1

) as a control. However, explants grown on 0mgL
-1

 did not regenerate and 

thus 3mgL
-1

 BAP was used as the controlled condition. After three subcultures at two 

week intervals for each subculture, shoots and roots started to regenerate from the 

shoot meristems of the source cultures (Table 1). 

 

Table 1: Percentage of regenerated explants based on their morphologies. 

Concentration of BAP (mgL
-1

) 

Morphology of regenerants (%) 

Normal Stunted 

3 100.0 0 

6 100.0 0 

9 93.3 6.7 

12 60.0 40.0 

 

Explants grown on 3mgL
-1

 BAP took 5 days to regenerate shoots; as do the 

explants on 6mgL
-1

 BAP. At 9mgL
-1

 of BAP, the explants took an average of 7-10 

days to regenerate and produce shoots. On 12mgL
-1

 BAP, regeneration was the 

longest at about 14-21 days. Cultures grown on BAP concentrations of 3 and 6mgL
-1

 

did not show any signs of morphological abnormalities. As compared with the 

cultures with the higher BAP concentrations, these cultures grew at a much faster rate. 

However, cultures grown on 9 and 12mgL
-1

 BAP required a much longer time for 

regeneration than the ones with lower concentrations.  
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Cultures grown on 9mgL
-1

 BAP started to show some signs of stress such as 

browning of the leaves and stems, hyperhydricity, and having abnormal serrated 

leaves. On 12mgL
-1

 BAP, cultures took a much longer time to regenerate. More 

cultures did not completely regenerate and remained stunted, having abnormal shoot 

clusters and remained in an undifferentiated callus state. For this study, the abnormal 

shoot clusters and undifferentiated calli are considered stunted. Normal regenerants 

are plantlets with elongated, healthy leaves and roots (Figure 3). 

 

 

Figure 3: Morphologies of the micropropagated cultures; A and B: normal regenerants, C: abnormal 

shoot clusters, and D: undifferentiated callus. 

 

After 2 months of culture, explants subjected to 3 and 6mgL
-1

 of BAP, 

produced only normal regenerants (Figure 4). As the BAP concentration increased to 

9mgL
-1

, stunted regenerants began to emerge and increases as it reached 12mgL
-1

. 

      A    B   C   D 
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Figure 4: Number of regenerants in media of varying concentrations of BAP after 2 months of culture. 

 

4.2  Molecular genetic studies 

4.2.1 Genomic DNA extraction  

4.2.1.1 A comparison between conventional extraction method and a commercial 

 extraction kit 

To compare the efficacy of banana DNA extraction between the conventional 

CTAB method and commercial extraction kit (DNeasy Plant Mini Kit, Qiagen, 

Germany), 5 samples were used. The results of the comparison are tabulated in Table 

2. From the results, the CTAB method produced samples with purity range of 1.19-

1.81. It can be seen that the CTAB method gave a higher purity score as compared to 

the samples extracted using the kit, which gave a purity range of 0.80-1.24. DNA 

concentrations were also higher by using the CTAB method than that of the kit. By 

using CTAB, the concentrations were between 3.43-8.93µgmL
-1

. A concentration 

range of 0.5-3.23µgmL
-1

 was observed from using the kit. Oh et al. (2007) have stated 

that modifications were made during DNA extractions of “Cachaco”, “Figue Rose”, 
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“Prata”, and “Cavendish” banana genome using this kit. As per that, the kit was not 

necessarily suitable to be used straight out of the box for banana DNA extraction. 

 

Table 2: A comparison of DNA extraction between CTAB and DNeasy Plant Mini Kit. 

DNA Extraction Method Purity (OD260/280) Concentration (µgmL
-1

) 

CTAB 

1.72 8.80 

1.63 3.90 

1.19 5.73 

1.81 8.93 

1.52 3.43 

DNeasy Plant Mini Kit 

0.80 0.50 

1.02 1.60 

1.24 3.23 

0.99 1.20 

1.14 2.13 
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4.2.2.2 Total genomic DNA extraction of micropropagated samples 

Results of DNA purity and concentrations were tabulated and presented in 

Table 3. Although an OD260/280 of between 1.80 to 2.00 has been widely accepted as 

pure, Ramage et al., (2004) have demonstrated that by using a crude treatment to 

extract genomic DNA (Alkaline leaf treatment), their SCAR PCR analyses were able 

to produce results.  The only discerning concern was that the plant material must be of 

young actively growing tissue. In alkaline leaf treatment, the young banana tissues 

were placed on ice in a tube containing sodium hydroxide supplemented with β-

mercaptoethanol, incubated at 94°C and placed on ice again. The mixture was 

neutralized with hydrochloric acid and Tris-HCl. Finally, the banana tissues were 

incubated at 94°C, placed on ice and macerated with a pipette tip in potassium 

hydrochloride. Meenakshi et al. (2011) have also stated that SCAR markers are less 

sensitive to reaction conditions, thus the purity would not have been a concern.
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Table 3: DNA purity and concentration of all the extracted plant materials. 

 

3mgL
-1

 6mgL
-1

 9mgL
-1

 12mgL
-1

 

Purity 

(OD260/280) 

Concentration 

(µgmL
-1

) 

Purity 

(OD260/280) 

Concentration 

(µgmL
-1

) 

Purity 

(OD260/280) 

Concentration 

(µgmL
-1

) 

Purity 

(OD260/280) 

Concentration 

(µgmL
-1

) 

1 1.40 1.33 1.98 2.83 1.28 6.63 1.03 3.50 

2 1.91 2.50 1.11 7.80 1.52 0.57 0.80 0.50 

3 1.42 1.40 2.06 5.07 1.63 0.63 1.02 1.60 

4 1.33 3.50 2.18 3.70 1.34 4.97 1.08 1.83 

5 1.27 0.37 1.51 1.77 2.10 2.60 0.99 1.20 

6 1.22 0.20 1.30 4.40 1.24 8.57 1.72 8.80 

7 1.83 3.40 2.08 4.23 1.16 3.97 1.14 2.13 

8 1.12 1.80 2.09 4.63 1.70 5.00 1.74 4.87 

9 1.90 2.60 1.69 1.57 1.18 11.67 1.63 3.90 

10 1.80 2.63 1.94 1.87 1.68 2.97 1.19 5.73 

11 1.61 1.33 1.26 1.77 1.82 4.30 1.60 2.50 
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Table 3, continued. 

 

3mgL
-1

 6mgL
-1

 9mgL
-1

 12mgL
-1

 

Purity 

(OD260/280) 

Concentration 

(µgmL
-1

) 

Purity 

(OD260/280) 

Concentration 

(µgmL
-1

) 

Purity 

(OD260/280) 

Concentration 

(µgmL
-1

) 

Purity 

(OD260/280) 

Concentration 

(µgmL
-1

) 

12 1.77 1.70 1.37 2.10 2.91 2.20 1.31 5.20 

13 1.31 1.57 2.19 6.45 1.83 2.33 1.18 2.13 

14 1.15 1.33 2.11 5.10 1.81 3.07 1.81 8.93 

15 1.62 2.77 2.07 4.95 2.00 4.00 1.04 2.93 

16 1.30 1.33 2.20 1.70 1.49 3.10 1.73 5.83 

17 1.45 0.97 1.92 2.80 1.49 1.23 1.52 3.43 

18 1.26 0.70 2.22 4.20 2.44 2.13 1.24 3.23 

19 1.92 3.10 2.07 3.75 2.18 3.73 1.78 8.23 

20 1.84 3.30 1.92 1.00 2.26 2.90 1.44 3.37 

21 1.86 2.60 1.18 3.50 1.82 11.73 1.30 2.27 

22 1.82 2.70 1.29 3.80 1.38 12.77 1.16 2.22 
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Table 3, continued. 

 

3mgL
-1

 6mgL
-1

 9mgL
-1

 12mgL
-1

 

Purity 

(OD260/280) 

Concentration 

(µgmL
-1

) 

Purity 

(OD260/280) 

Concentration 

(µgmL
-1

) 

Purity 

(OD260/280) 

Concentration 

(µgmL
-1

) 

Purity 

(OD260/280) 

Concentration 

(µgmL
-1

) 

23 1.64 1.30 1.95 1.30 3.60 0.90 1.22 5.56 

24 1.79 1.70 2.20 9.40 1.98 8.07 1.64 2.50 

25 1.78 2.25 1.32 10.80 1.31 4.63 1.81 9.00 

26 1.72 1.15 2.39 4.70 3.18 2.83 1.21 2.20 

27 2.07 4.20 1.19 4.00 0.86 12.90 1.54 3.40 

28 2.09 4.55 2.17 3.70 2.00 0.80 1.86 0.60 

29 1.99 1.85 2.02 2.85 2.04 7.80 2.12 2.60 

30 1.95 2.75 1.48 1.67 2.16 4.00 1.92 3.10 
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4.2.3 Evaluation of dwarf SCAR markers in a multiplex PCR 

To test the integrity of the extracted DNA, a PCR with the 18S rRNA internal 

control was run using samples randomly chosen from the 3mgL
-1

, 6mgL
-1

, 9mgL
-1

, 

and 12mgL
-1

 BAP concentrations. A distinct band of about 500bp in size was detected 

(Figure 5). 

 

 

 

 

 

 

 

Preliminary multiplex PCR using the protocols established by Ramage et al. 

(2004), yielded multiple unspecific bands (Figure 6). The multiplex PCR was done 

using DNA samples with the best purity from each of the differing BAP concentration 

samples. Further optimization by increasing the annealing temperature to 56°C 

revealed no visible bands other than the positive internal control 18S rRNA at 500bp 

(Figure 7).  

 

 

 

 

 

  M   1    2    3    4    5    6    7    8    9   10  11  12  13   14  15  16 

Figure 5: A gel visualization of the PCR using the 18S rRNA primers of the random samples. Lanes 

from left to right: M, 100bp DNA ladder, 1, negative control, 2-5, 3mgL
-1

 samples, 6-9, 6mgL
-1

 

samples, 10-13, 9mgL
-1

 samples, and 14-16, 12mgL
-1

 samples. 

500bp 

100bp 

800bp 
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To further support the notion that DNA purity did not influence the results, a 

multiplex PCR and SCAR marker PCR were done retaining 56°C as the annealing 

temperature but increasing the annealing time for 35 seconds. Samples used were of 

Figure 6: A gel visualization of the preliminary results of the multiplex PCR using the SCAR 

markers and the positive internal 18S rRNA control. The lanes from left to right: M, 100bp DNA 

ladder, 1, negative control, 2,  3mgL
-1

 BAP sample, 3, 6mgL
-1

 BAP sample, 4, 9mgL
-1

 BAP 

sample, and 5, 12mgL
-1

 BAP sample. 

    M     1      2      3      4      5 

500bp 

    M      1       2       3       4       5 

500bp 

Figure 7: A gel visualization of the second optimization of the multiplex PCR of the SCAR 

marker and the positive internal 18S rRNA control. The lanes from left to right: M, 100bp DNA 

ladder, 1, negative control, 2, 3mgL
-1

 BAP sample, 3, 6mgL
-1

 BAP sample, 4, 9mgL
-1

 BAP 

sample, and 5, 12mgL
-1

 BAP sample. 
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the 3mgL
-1

 cultures with high and low purities. From the gel visualization, only the 

18S rRNA control bands at 500bp were visible (Figure 8). 

 

 

 

 

 

 

 

 

 

 

 

A gradient PCR with only the SCAR markers was then optimized to detect for 

any mistakes in the synthesized primers. DNA sample with the best purity from the 

3mgL
-1

 BAP concentration was used. A distinct band of about 500bp in size was 

present (Figure 9). 

Since a single distinct band was present with the SCAR marker primers, 

another multiplex PCR was done with 53°C as the annealing temperature. A DNA 

sample for each of the differing BAP concentrations were used in this multiplex PCR. 

However, the results were unsatisfactory and again, multiple bands were present 

(Figure 10). 

 

 

 

    M     1     2      3     4      5       6      7     8     9 

500bp 

Figure 8: A gel visualization of the multiplex PCR with the SCAR and 18S rRNA positive 

internal control (Lanes 2-5) and of the SCAR marker only PCR (Lanes 6-9). The lanes from 

left to right, M, 100bp DNA ladder, 1, negative control, 2, 3mgL
-1

 BAP sample (high purity), 

3, 3mgL
-1

 BAP sample (low purity), 4, 3mgL
-1

 BAP sample (high purity), 5, 3mgL
-1

 BAP 

sample (low purity), 6, 3mgL
-1

 BAP sample (high purity), 7, 3mgL
-1

 BAP sample (low 

purity), 8, 3mgL
-1

 BAP sample (high purity), and 9, 3mgL
-1

 BAP sample (low purity). 
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Samples from each BAP concentration gradient with varying DNA purities 

were subject to a SCAR marker primer only PCR with an annealing temperature of 

53°C. Bands of about 500bp and 700bp were visible during visualization (Figure 11). 

 

 

 

    M      1      2      3      4      5       6 

Figure 9: A gel visualization of the gradient PCR of the SCAR marker primers. Annealing 

temperatures from left to right: M, 100bp DNA ladder, 1, negative control, 2, 50°C, 3, 51°C, 4, 

52°C, 5, 53°C, and 6, 54°C. 

Figure 10: A gel visualization of the multiplex PCR of the SCAR markers and 18S rRNA internal 

control primers. From left to right: M, 100bp DNA ladder, 1, negative control, 2, 3mgL
-1

 BAP 

sample, 3, 6mgL
-1

 BAP sample, 4, 9mgL
-1

 BAP sample, and 5, 12mgL
-1

 BAP sample. 

   M      1       2      3      4       5 

500bp 

100bp 

1000bp 

500bp 

100bp 

1000bp 
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All of the DNA samples were then subjected to a PCR of only the SCAR 

marker primers. The 18S rRNA primers were used as a positive control to the PCR 

runs. The gels were visualized under UV and presented in Figures 12-29, along with 

their diagrammatic representations. 

 

 

 

 

 

 

 

   M   1    2     3    4    5    6    7    8    9   10  11  12  13   14  15  16 

Figure 12: Gel 1 - A gel visualization of the SCAR marker PCR on 14 DNA samples of 3mgL
-1

 BAP 

concentration. Lanes from left to right: M, 100bp DNA ladder, 1, negative control, 2, positive control 

(18S rRNA), and 3-16, 3mgL
-1

 BAP culture DNA samples. The white arrows indicate the presence of 

a band. 

500bp 
700bp 

1000bp 

 M    1    2     3    4    5    6     7    8     9   10  11  12  13   14  15  16 

500bp 
700bp 

1000bp 

Figure 11: A gel visualization of the SCAR marker primer PCR from samples of each BAP 

concentration with varying purities. Lanes from left to right: M, 100bp DNA ladder, 1, negative control, 

2-4, 12mgL-1 BAP samples (high purity, low purity, high purity), 4-7, 9mgL-1 BAP samples (high 

purity, low purity, high purity), 8-11, 6mgL-1 BAP samples (high purity, low purity, high purity, low 

purity), and 12-16, 3mgL-1 BAP samples (high purity, low purity, high purity, low purity, high purity). 
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Figure 13: Diagrammatic representation of Gel 1. 

 

These 14 samples were regenerants grown on 3mgL
-1

 BAP media; each 

having normal morphology. Only lanes number 5 and 10 produced single bands while 

lanes 14 and 15 produced 2 bands (Table 4).  

 

Table 4: Correlation between number of bands present and morphologies of regenerants in Gel 1. N 

represents normal morphology and the numbers represent bands present. 

 

 

Lane 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Morphology N N N N N N N N N N N N N N 

No. of band - - 1 - - - - 1 - - - 2 2 - 

 

 

 

 

 

 

 

Figure 14: Gel 2 - A gel visualization of the SCAR marker PCR on the subsequent 14 DNA samples 

of 3mgL
-1

 BAP concentration. Lanes from left to right: M, 100bp DNA ladder, 1, negative control, 2, 

positive control (18S rRNA), and 3-16, 3mgL
-1

 BAP culture DNA samples. The white arrows 

indicate the presence of a band. 

   M    1    2     3    4    5    6     7    8    9   10   11  12  13  14   15   16 

1000bp 

500bp 
700bp 

1000bp 

500bp 
700bp 
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Figure 15: Diagrammatic representation of Gel 2. 

 

As with the samples of Gel 1, these following 14 samples were also normal in 

morphology and grown on 3mgL
-1

 BAP media. Lane numbers 3, 5, 6, 9, and 11 all 

produced 2 bands from the PCR analysis (Table 5). 

 

Table 5: Correlation between number of bands present and morphologies of regenerants in Gel 2. N 

represents normal morphology and the numbers represent bands present. 

 

 

Lane 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Morphology N N N N N N N N N N N N N N 

No. of band 2 - 2 2 - - 2 - 2 - - - - - 

 

 

 

 

 

 

   M   1     2    3    4    5    6     7    8    9   10   11  12  13  14   15   16 

Figure 16: Gel 3 - A gel visualization of the SCAR marker PCR on 14 DNA samples of 6mgL
-1

 BAP 

concentration. Lanes from left to right: M, 100bp DNA ladder, 1, negative control, 2, positive control 

(18S rRNA), and 3-16, 6mgL
-1

 BAP culture DNA samples. The white arrows indicate the presence of a 

band. 

500bp 
700bp 

1000bp 

1000bp 

500bp 
700bp 



43 
 

In gel 3, the 14 samples were grown on 6mgL
-1

 media. All of them were of 

normal morphology. Lanes 5 and 11 were the only samples producing 2 bands (Table 

6). 

 

Table 6: Correlation between number of bands present and morphologies of regenerants in Gel 3. N 

represents normal morphology and the numbers represent bands present. 

 

 

Lane 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Morphology N N N N N N N N N N N N N N 

No. of band - - 2 - - - - - 2 - - - - - 

 

 

 

 

 

 

 

Figure 18: Gel 4 - A gel visualization of the SCAR marker PCR on the subsequent 14 DNA 

samples of 6mgL
-1

 BAP concentration. Lanes from left to right: M, 100bp DNA ladder, 1, negative 

control, 2, positive control (18S rRNA), and 3-16, 6mgL
-1

 BAP culture DNA samples. The white 

arrows indicate the presence of a band. 

   M   1     2    3    4    5    6     7    8    9   10   11  12  13  14   15   16 

500bp 
700bp 

1000bp 

Figure 17: Diagrammatic representation of Gel 3. 

1000bp 

500bp 
700bp 
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For the next 14 samples of the 6mgL
-1

 BAP regenerants, all were of normal 

morphology and only lanes 15 and 16 produced bands: lane 15 with 2 bands and lane 

16 with 1 band (Table 7).  

 

Table 7: Correlation between number of bands present and morphologies of regenerants in Gel 4. N 

represents normal morphology and the numbers represent bands present. 

 

 

Lane 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Morphology N N N N N N N N N N N N N N 

No. of band - - - - - - - - - - - - 2 1 

 

 

 

 

 

 

 

 

   M    1    2     3    4    5     6    7    8    9   10   11  12  13   14  15   16 

Figure 20: Gel 5 - A gel visualization of the SCAR marker PCR on 14 DNA samples of 9mgL
-1

 

BAP concentration. Lanes from left to right: M, 100bp DNA ladder, 1, negative control, 2, 

positive control (18S rRNA), and 3-16, 9mgL
-1

 BAP culture DNA samples. The white arrows 

indicate the presence of a band. 

500bp 
700bp 

1000bp 

1000bp 

500bp 
700bp 

Figure 19: Diagrammatic representation of Gel 4. 
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For regenerants grown on 9mgL
-1

 BAP media, only lane 8 was with stunted 

while the rest of the samples were normal. However, only lanes 4 and 15 (normal 

morhphology) produced a single band while lane 6 (normal morphology) produced 2 

bands (Table 8). 

 

Table 8: Correlation between number of bands present and morphologies of regenerants in Gel 5. N 

represents normal morphology, S represents stunted morphology, and the numbers represent bands 

present. 

 

 

Lane 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Morphology N N N N N S N N N N N N N N 

No. of band - 1 - 2 - - - - - - - - 1 - 

 

 

 

 

 

 

 

 

   M    1    2     3    4    5    6    7    8    9   10   11  12  13  14   15   16 

Figure 22: Gel 6 - A gel visualization of the SCAR marker PCR on the subsequent 14 DNA 

samples of 9mgL
-1

 BAP concentration. Lanes from left to right: M, 100bp DNA ladder, 1, 

negative control, 2, positive control (18S rRNA), and 3-16, 9mgL
-1

 BAP culture DNA samples. 

The white arrows indicate the presence of a band. 

500bp 
700bp 

Figure 21: Diagrammatic representation of Gel 5. 

1000bp 

500bp 
700bp 
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The following 14 samples of the 9mgL
-1

 BAP concentration were normal in 

morphology except lane 16 that was stunted. Only lane 16 produced 2 bands (Table 

9). 

 

Table 9: Correlation between number of bands present and morphologies of regenerants in Gel 6. N 

represents normal morphology, S represents stunted morphology, and the numbers represent bands 

present. 

 

 

Lane 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Morphology N N N N N N N N N N N N N S 

No. of band - - - - - - - - - - - - - 2 

 

 

 

 

 

 

 

   M   1    2     3    4    5    6    7     8    9   10  11  12  13  14   15   16 

Figure 24: Gel 7 - A gel visualization of the SCAR marker PCR on 14 DNA samples of 12mgL
-1

 

BAP concentration. Lanes from left to right: M, 100bp DNA ladder, 1, negative control, 2, positive 

control (18S rRNA), and 3-16, 12mgL
-1

 BAP culture DNA samples. The white arrows indicate the 

presence of a band. 

500bp 
700bp 

Figure 23: Diagrammatic representation of Gel 6. 

1000bp 

500bp 
700bp 
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In gel 7, the samples were regenerants grown on 12mgL
-1

 BAP media. Lanes 

3, 4, 5, 9, 10, and 12 were normal in morphology. The remaining lanes, 6, 7, 8, 11, 13, 

14, 15, and 16 were stunted. Lanes 5 (normal) and 6 (stunted) produced 1 band each 

(Table 10). 

 

 

 

 

 

Table 10: Correlation between number of bands present and morphologies of regenerants in Gel 7. N 

represents normal morphology, S represents stunted morphology, and the numbers represent bands 

present. 

 

 

Lane 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Morphology N N N S S S N N S N S S S S 

No. of band - - 1 - - - - - - - 1 - - - 

 

 

 

 

 

 

 

   M    1    2     3    4    5    6     7    8    9   10  11  12   13  14   15   16 

Figure 26: Gel 8 - A gel visualization of the SCAR marker PCR on the subsequent 14 DNA 

samples of 12mgL
-1

 BAP concentration. Lanes from left to right: M, 100bp DNA ladder, 1, 

negative control, 2, positive control (18S rRNA), and 3-16, 12mgL
-1

 BAP culture DNA samples. 

The white arrows indicate the presence of a band. 

500bp 
700bp 

1000bp 

Figure 25: Diagrammatic representation of Gel 7. 

1000bp 

500bp 
700bp 
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For the following 14 DNA samples of the 12mgL
-1

 concentration, lanes 3, 4, 

5, 9, 10, 11, 12, 13, 15, and 16 were of normal morphology while lanes 6, 7, 8, and 14 

were stunted. However, only lane 14 (stunted) produced 2 bands (Table 11). 

Table 11: Correlation between number of bands present and morphologies of regenerants in Gel 8. N 

represents normal morphology, S represents stunted morphology, and the numbers represent bands 

present. 

 

 

Lane 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Morphology N N N S S S N N N N N S N N 

No. of band - - - - - - - - - - - 2 - - 

 

 

 

 

 

 

 

  M    1    2     3    4    5    6     7    8    9   

Figure 28: Gel 9 - A gel visualization of the SCAR marker PCR on the remaining 2 DNA samples 

for each of 3, 6, 9, and 12mgL
-1

 BAP concentrations. Lanes from left to right: M, 100bp DNA ladder, 

1, negative control, 2-3, 3mgL
-1

, 4-5, 6mgL
-1

, 6-7, 9mgL
-1

, and 8-9, 12mgL
-1

 BAP culture DNA 

samples. 

500bp 
700bp 

1000bp 

Figure 27: Diagrammatic representation of Gel 8. 

1000bp 

500bp 
700bp 
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The final remaining 2 DNA samples of each 3, 6, 9, and 12mgL
-1

 BAP were 

normal in morphology but none of them produced any bands with the SCAR marker 

(Table 12). 

 

Table 12: Correlation between number of bands present and morphologies of regenerants in Gel 9. N 

represents normal morphology, and the numbers represent bands present. 

 

 

Lane 

2 3 4 5 6 7 8 9 

Morphology N N N N N N N N 

No. of band - - - - - - - - 

 

The presence and absence of bands in the electrophoresis is summarized and 

correlated with the morphologies of the samples. They are presented in Table 13. It 

can be seen from the summary that the presence of a band is random and irrespective 

of the regenerants' morphology (i.e.: normal or stunted). However, out of the 120 

regenerants, 6 of them exhibited one band of about 700bp in size, and 13 showed two 

bands of about 700bp and 500bp in size (Figure 29).  

In contrast to the longer bands, the shorter bands observed were rather faint in 

some samples. The DNA samples obtained from regenerants grown on 3mgL
-1

 BAP 

produced 2 samples with 1 single band and 7 samples with 2 bands out of the 30 DNA 

extracted (Table 4). For regenerants grown on 6mgL
-1

 BAP, 1 sample gave a single 

band while 3 samples gave 2 bands out of 30. 2 samples were observed to produce 1 

single band, and 2 samples also produced 2 band from DNA extracted from the  

9mgL
-1

 BAP plant cultures. Finally, in regenerants grown on 12mgL
-1

 BAP, 2 

samples produced 1 single band, and 1 sample gave 2 bands. 
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These bands were excised from the agarose gel after electrophoresis and then 

purified. The excised bands were obtained from both the 3mgL
-1

 and 12mgL
-1

 BAP 

concentration samples, to verify any differences or similarities between the bands. 

They were chosen from these two concentrations as the morphology of the 

regenerants produced was starkly contrasting (i.e.: normal and stunted regenerants). 

The purified DNA samples were then sent for sequencing. 

 

Table 13: Presence of bands from SCAR PCR of the extracted DNA from regenerants cultured on 

different concentrations of BAP. 

Concentration of BAP (mgL
-1

) 

No. of bands observed according to their 

estimated sizes 

500bp 500 and 700bp 

3 2 7 

6 1 3 

9 2 2 

12 2 1 

 

Figure 29: A gel visualization of the bands purified after gel electrophoresis. Lanes from left 

to right: M, 100bp DNA ladder, 1, the ≈700bp sized band, and 2, the ≈500bp sized band. 

    M     1      2 

500bp 
700bp 

100bp 
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The sequenced results were aligned among the fragments from each 

concentration using National Center for Biotechnology Information's (NCBI) Basic 

Local Alignment Search Tool (BLAST) webpage 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web&PAGE_TYPE=BlastHome). The 

alignment scores for both of the fragments were 95-99% aligned which meant that 

both fragments from the 3mgL
-1

 and 12mgL
-1

 BAP concentrations were identical. The 

longer fragment is about 662bp in length. The full sequence of the band is as follows:  

AAAAAATATTACTCGCCTACTTGACTTGAAAGTGGAGTTCAGACCT

ATGTCTTTGATTCTGACGTTACTACTAGTGCTAGGTTTACAAGATAGGATA

GAATTTCTTTGTTGATAGCCTCATTCTGAGTTTCGAGTTAAGGATTGGATG

AAGGAGAGGCAGACCAAGGGATAGGATATTAAGACGAAAAAGCCAGGA

ATGGTAGTTTTGTAGTTGGGGGTAGAAGGCTCACTTATGTGTTTAGGTCAC

AACTGCTTTTGAGGTTCATTCTTCGGCTTATTATTCTTAGCCTTACCCCTAT

ATAAGTAAGAGTCCCCCTCTTATCCTTCCACTAGCGTATTTCTTCTTTAATG

GTAAGTCCTTGCATTCCTACTTTATTGTTTGAAGTCTTTAGTTGCGTCTTCT

CATTCTTTAGGGCTTACTCGCTTGGTTCTTGTGCTACTGAGTTCGATCTTTT

GTATTAGATTAGATTNAGATTAGGNAGTCGCTTGGGGAGCACTANGTATC

ATTTATTGTACCTTCCGNGTGTCGAGTCTAGGGGTTCTATGTTCCAGTGGG

AAAGGTCCCTGCCTGCTTCGCTCCTNGTTCGCCTATTGGGTAAATCATTCA

ATTTCTTGCNTTGGTTGAGTTTGGNGGTTCNGCGGAGTTATTGATTTCAAC

AAAA. 

The shorter fragment is about 438bp in length with a full sequence is as 

follows:  

CCGGACGGCTACCCCGCCATGACGCATCAGTTCATCAACAATTACT

ACTTGTTTATCATGGTCATCCCAAAAGTCAAACAAGTACATGCACAGGAA
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TTGACATGTCGGTGCTTCGAGAATAACTATCATGTTCAACTGATGACCACA

AGAAAAATATCCTTGCATTTGGAGTTTTGACATATAGAACAGGTGCAATG

AATATTCACTTGCATTCTCGATTGAACAAACAGGGTAACAGTTAAATTTAT

TAGGATCATGTAAAATGTGATAATCGATGTTATTTATCTTATCATGCGAGG

TAGAATAACAAGTTCAGAGAGAAAGCTAATAAACATAATGGCAAACATA

AAACCCAATAGCTCTGGATATGGTAGTACTAAACATCCAATAAGCTTCCT

CCAACTCTGTCACGAGGTATGAGAATGCAACCACAGAANN. 

The sequenced products were then analyzed again using the BLAST-N 

program; in order to detect for nucleotide sequence alignment within their database.  

The 662bp sequence did not reveal any homologous products but a fragment of the 

438bp sequence revealed some homology with a 124,825bp Musa acuminata clone 

BAC MA4-3F3 sequence (GeneBank Accession No. AC226038.1) with an E value of 

0.17. An Expect (E) value closest to 0 was identified as the most significant match.  

 

 

Figure 30: Alignment score of the 438bp sequence with other gene bank sequences in the NCBI 

database. The arrow shows the region of similarity closest to Musa acuminata clone BAC MA4-3F3. 
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Figure 31: Significant alignment ratios homologous to the 438bp sequence. Musa acuminata clone 

BAC MA4-3F3 being the most significant out of the three. 

 

Checks with the protein database did not reveal any homology to significant 

proteins. However, three hypothetical Musa acuminata proteins were detected when 

the 438bp sequence was aligned with the BAC MA4-3F3 sequence. These proteins 

were located within the 75,781-76,260bp region of the sequence.  
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Figure 32: Alignment score of the 438bp sequence with the Musa acuminata clone BAC MA4-3F3 

sequence in the NCBI database. The areas highlighted in green and accentuated by the red arrows 

denote the hypothetical proteins.  

 

 

Figure 33: The three hypothetical proteins detected in the sequence. 
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Further analysis of the 438bp sequence by “blasting” the fragment to the 

banana genome provided by CIRAD at http://banana-genome.cirad.fr/blast.html; 

selecting the “blastn” program and “pseudochromosome” database revealed that the 

fragment would have been present in chromosome 6. The possible position of the 

fragment would be between the 4,853,352-4,853,752bp positions of chromosome 6 of 

the banana genome. 

 

 

 

 

Figure 34: Possible location of the 438bp fragment in the banana genome. 

Figure 35: The possible position of the fragment, between the 4,853,352-4,853,752bp positions of 

chromosome 6 of the banana genome. 
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Viewing the results on gbrowse, the fragment was later identified as the 

ubiquitin-fold modifier 1. 

Figure 36: The fragment identified as "ubiquitin-fold modified 1". 
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5.0 DISCUSSION 

 

5.1 The effects of benzylaminopurine (BAP) during micropropagation 

For propagation of plant samples in this study, MS media containing 3mgL
-1

 

were used. Shoot meristems did not propagate on hormone-free media. This 

formulation was also used in other works (Bairu et al., 2006; Buah et al., 2010). This 

shows the importance of plant growth regulators in promoting shoot growth. 

In this study, varying concentrations of BAP during micropropagation have 

shown to produce variations in morphology of the regenerants. Bairu et al. (2006) 

stated that plant growth regulators could indirectly increase multiplication rate, thus 

inducing adventitious shoots. In their study, at 7.5mgL
-1

 of BAP, a high variation rate 

was observed, possibly due to increased adventitious shoot proliferation. Bairu et al. 

(2006) have also stated that according to Pierik's study in 1987, the chance of 

mutation was increased if adventitious shoot formation occurred due to the use of 

growth regulators. According to Israeli et al. in 1995, somaclonal variation happened 

when a high rate of proliferation was accomplished. 

It was also observed in this study that the regeneration efficiency in terms of 

regeneration duration and number of shoots decreased in cultures of 12mgL
-1

 BAP as 

compared to the other concentrations investigated. This result concurs with Sheidai et 

al. (2008) who observed that at high concentrations of BAP, the number of 

proliferated shoots was significantly reduced. 

The percentage of stunted regenerants was increased with higher BAP 

concentrations (Table 1). From the experiments conducted, on media containing 

9mgL
-1

 BAP, stunted regenerants were initially observed.  However, at 12mgL
-1

 BAP, 

the percentage of abnormality increased 6 times more than the former. Shirani et al. 
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(2009) observed a high rate of abnormal shoot production in banana cultivars 

“Berangan Intan”, “Berangan”, “Rastali”, “Baka Baling”, and “Nangka” when BAP 

concentration was at 44.4µM (10mgL
-1

). They have also stated that higher levels of 

BAP, 22.2-44.4µM (5-10mgL
-1

), increased the exudation of phenolic compounds, 

causing morphological aberrations. The results of this study are consistent with 

observations by Shirani et al. (2009). According to George and Sherington (1984), 

BAP has a mutagenic effect when used as a plant regulator in tissue culture media. 

Furthermore Buah et al. (2010) reported that BAP could easily induce shoots as it is 

not easily broken down and thus persists in the medium. They also reported that BAP 

would be readily absorbed by plant tissues as free, ionized forms in the medium.  

According to the findings of Teisson and Cote in 1985 and Okole and Schultz 

in 1996, an increased exposure to high levels of cytokinin could lead to vitrification 

and poor shoot formation in three Musa cultivars (Buah et al., 2010). A study done by 

Kalimutha et al. in 2007 have shown that high concentrations of cytokinins led to 

profuse callusing and reduced shoot multiplication (Buah et al., 2010). In this study, 

the most prevalent abnormality was abnormal shoot clusters on media containing 

9mgL
-1

 BAP.  But at 12mgL
-1

 BAP, undifferentiated callus with no shoot formation 

was observed. This showed that at high concentrations, BAP severely affects shoots 

elongation. 

The explant source used could also contribute to the increase in phenotypic 

variations. Explant sources with highly differentiated tissues such as roots, leaves, and 

stems typically produce more variations as compared to explants with pre-existing 

meristems such as axillary buds and shoot tips (Sahijram et al., 2003). However, 

according to Schukin et al. in 1997, somaclonal variation was higher in shoot-tip 

derived cultures of “Grand Naine” and this was further confirmed by Sahijram et al., 



60 
 

(2003). Hence the contributing factor to increased variations in this study was 

possibly due to the use of shoot meristems in this study 

Although it is uncertain whether the stunted regenerants would become dwarfs 

in the field, it is clear from this experiment that high concentrations of BAP affect 

growth of banana cultures during micropropagation. 

 

5.2 Molecular analysis of somaclonal variants 

Phenotypic or somaclonal are variations that occurred in regenerants from 

plant tissue culture. This aberration could induce a variety of physiological changes. 

These changes could either be beneficial or detrimental to the plant. While easily 

observed under micropropagation, variants can arise naturally in plant somatic and 

reproductive tissues (Oh et al., 2007). Dwarfism has been the most common variant in 

banana tissue culture. Although typically an undesirable trait, it could prove useful for 

banana cultivars such as the “Berangan” which are typically tall in stature.  

For this study, varying concentrations of BAP were used to create somaclonal 

variations in Musa acuminata cv. “Berangan” via micropropagation. Dwarf SCAR 

markers developed by Damasco et al. in 1997 were used to analyze the genomic 

changes. These markers used by Ramage et al. (2004) were used in this study. 

Molecular markers were used in this study as it is able to identify a DNA fragment or 

sequence that is associated to a specific part of a genome and a comparison can be 

easily made by the presence of absence of a DNA band (Bairu et al., 2011).  

According to Ramage et al. (2004), the expected results would be a 500bp 

band for the positive internal control 18S rRNA and a band of about 1,500bp for the 

SCAR marker, present only on normal plants and absent in dwarfs. From these 

results, instead of a single band of about 1.6kb as predicted by Ramage et al., two 
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distinct band sizes were observed. The two bands present were of a longer, 662bp 

length and a shorter band, 438bp in length. In addition to that, it can be seen that the 

morphology of the regenerants (i.e.: normal or stunted) did not affect the number of 

bands present. Furthermore, out of the 120 regenerants, only 6 exhibited the 662bp 

band while 13 exhibited both the 662bp and 438bp bands. These fragment bands of 

the two different sizes were further isolated and sequenced and the 2 bands obtained 

from regenerants grown on both the 3mgL
-1

 and 12mgL
-1

 BAP were homologous with 

each other. 

From the BLAST-N analysis, the 662bp band did not reveal any homology but 

the 438bp sequence was closely homologous to a fragment of the Musa acuminata 

clone BAC MA4-3F3. Upon further analysis of the fragment, it was discovered that 

the 438bp sequence was aligned with fragments of three hypothetical proteins of 

Musa acuminata. This suggested that the SCAR markers may have exposed some 

conservation between the three cultivars of Musa spp. (Cavendish, Berangan, and 

Musa acuminata). This would also explain the differences in band sizes between the 

“Cavendish”, as demonstrated by Ramage et al. (2004) and in “Berangan” cultivars. 

A BLAST-N analysis of the fragment with the banana genome using the 

“pseudochromosome” database revealed that these hypothetical proteins would 

presumably be present in chromosome 6, between the 4,853,352-4,853,752bp 

positions. The fragment was then identified as the ubiquitin-fold modifier 1. Ubiquitin 

was first found in the mid-1970s and since then, small proteins related to ubiquitin 

(ubiquitin-like proteins or Ubls) were defined and more are being added. Ubls may 

not possess the same high sequence similarities but they all have the three-

dimensional structure of ubiquitin or the β-grasp fold (Kerscher et al., 2006). 

Ubiquitins and ubiqutin-like modifiers are involved in post-translational modifications 
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of proteins (Welchman et al., 2005; Park et al., 2011).  Besides that, they are also 

involved in DNA repair, transcription, signal transduction, endocytosis, and sorting 

(Welchman et al., 2005). 

Protein degradations are regulated by the ubiquitin system. Ubiquitin, a highly 

conserved 76-amino acid protein, marks and modifies target proteins for degradation 

by the 26S proteasome. It is via this pathway cell division, metabolism, immune 

response, and apoptosis is regulated (Gray and Estelle, 2000).   Glycine is located at 

the C-terminal of the Ubl and the carboxyl group of this glycine forms the attachment 

site to substrates. The most common target sites are lysine side chains, forming an 

amide or isopeptide bond between the Ubl and substrate (Kerscher et al., 2006). In 

plants, ubiquitin-based post-translational modifications such as sumoylation (with 

SUMO: small ubiquitin-like modifier) and neddylation (involving NEDD8: neuronal-

precursor-cell-expressed developmentally downregulated protein-8) are present 

(Welchman et al., 2005; Park et al., 2011).  

ATP-dependent, ubiquitin-activating enzyme-1 (E1) activates ubiquitin and it 

is then transferred to a ubiquitin-conjugatin enzyme (E2). With the help of the 

ubiquitin-protein ligase (E3), this ubiquitin-enzyme complex attaches to a specific 

target protein through the -amino group of a lysine residue. This E2 and E3 enzyme-

ubiquitin chain can also include an accessory factor (E4); able to attach to four 

sequentially attached ubiquitins allowing the ubiquitylated target protein be 

recognized and degraded by the 26S proteasome. Ubiquitins can also be removed by 

deubiquitylating enzymes (Welchman et al., 2005).  

Ubiquitin and Ubls offer a wider and more chemically varied surface as 

compared to small molecule modifiers like the phosphoryl or methyl groups and 

hence they are more flexible in altering protein conformation or protein-protein 
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interactions (Schwartz and Hochstrasser, 2003). Various proteins can be created just 

by tagging them with ubiquitin or Ubls, and these can be identified by downstream 

protein receptors and interactors used to control regulatory pathways in the cell 

(Welchman et al., 2005). Moreover, modifications of the Ubl-encoding genes via 

duplication and diversification could give rise to many molecules with new functions 

that could play a role in distinct cell regulatory mechanisms (Schwartz and 

Hochstrasser, 2003). 

Studies with Arabidopsis thaliana have shown that the ubiquitin proteolytic 

system is pivotal in the auxin-response pathway (Gray and Estelle, 2000). Aux/IAA 

proteins are ubiquitylated by the SCF (Skp1p, Cdc53p/cullin, and F-box protein) 

ubiquitin ligase using the TIR1 F-box protein as the substrate receptor. The TIR1 then 

binds to the Aux/IAA proteins and polyubiquitylated by SCF
TIR1

 which will then be 

degraded by the proteasome (Kerscher et al., 2006).  

In Arabidopsis, seven HECT-E3s (large proteins containing ubiquitin-binding 

and E2-binding sites) named UPL1-UPL7 (ubiquitin protein ligase) were found; all 

having shown E3 ligase activities. A study done in 2003 by Downes et al. and Refy et 

al. have shown that the upl3 and kaks (KAKTUS) mutants of Arabidopsis developed 

branched trichomes and the upl3 mutants developed longer hypocotyls than the wild 

type plants when grown on gibberellic acid-3 (GA3) containing media (Park et al., 

2011). Moreover, these upl3 plants were hypersensitive to gibberellic acid (GA).  

Ubiquitin-fold modifier 1 (UFM1) is synthesized as a precursor that is 

processed by the UFSP2 protease, exposing the functional C-terimnal Glycine. 

Studies with mammalian cells have found that a limited number of UFM1 substrates, 

the only valid one being the endoplasmic reticulum-resident protein UFBP1, is 

modified at one or more Lysine residues by isopeptide linkages (Vierstra, 2012). 
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Ufymylation pathways which include the UFBP1 target can be found encoded in other 

metazoans and in plants like Arabidopsis but they were absent in yeast or 

Schizosaccharomyces pombe - signifying a probable unique role for UFM1 in 

multicellular organisms (Vierstra, 2012). A study by Tatsumi et al. and in Lemaire et 

al. in 2011 have shown that Uba5
-/-

 mice are embryonic lethal, caused by defective 

erythroid development and cultured human cells silenced for Ufm1 and Ufl1 showed 

accelerated apoptosis due to heightened endoplasmic reticulum stress (Vierstra, 2012). 

However, the functions of the UFM1 pathway in plants are relatively unknown. 

Point mutations, gene duplication, chromosomal rearrangements, chromosome 

number changes, transposable element movement, and changes in DNA methylation 

through small interfering RNA are the possible reasons for giving rise to somaclonal 

variants (Oh et al., 2007). Interestingly, almost half of the Musa acuminata genomic 

sequence is composed of transposable elements - long terminal repeat 

retrotransposons accounting for the largest part (D'Hont et al., 2012). Alteration in 

DNA methylation might be due to de novo formation and/or activation of enzymes 

catalyzing methylation reactions, decrease in formation and/or inhibition of enzymes 

catalyzing methylation reactions or concentration changes of substances or co-factors 

participating in the methylation reactions (Sahijram et al., 2003). 

As stated earlier, somaclonal variation is not unique to in vitro propagation but 

could also arise as a trigger to genomic shocks or plasticity after the plant has 

exhausted its physiological responses to environmental stress; the genomic shock 

response may incur genomic reorganization in which it is limited to a sub-fraction of 

the genome (Oh et al., 2007). 

Regulatory elements embedded in the non-coding regions of the genome 

control gene expressions (Reineke et al., 2011). Nevertheless, identifying the 
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embedded putative gene expression regulators in conserved non-coding sequences 

(CNSs) is a challenge as universal highly conserved motifs are limited and it is an 

even greater challenge in plants as their genomes are more diverse due to duplication 

events, polyploidy, increased recombination, transposable elements, and gene 

silencing (Rineke et al., 2011). 

D'Hont et al. (2012) have noted that whole-genome duplications (WGD) play 

an important role in angiosperm genome evolution. They stated that 65.4% of genes 

included in the Musa α/β ancestral blocks are singletons and 10% are retained in four 

copies - in line with the loss of most gene-duplicated copies after WGD. Genes 

involved in transcription regulation (transcription factor activity), signal transduction 

(small GTPase-mediated signal transduction and protein kinase), and translational 

elongation were retained - suggesting that genes involved in multi-proteic complexes 

or regulatory genes are dosage sensitive and are more prone to be co-retained or co-

lost after WGD (D'Hont et al., 2012). 

Inada et al. (2003) stated that DNA coding regions for proteins are predicted 

to exhibit sequence conservation between related species due to the functional 

constraints of the protein structure. These conserved non-coding DNA regions are 

described as “phylogenetic footprints”. Inada et al. (2003) went on citing works by 

Kaplinsky et al. in 2002, that CNSs represented DNA sequences that were conserved 

during selection while the surrounding non-conserved sequences undergo 

randomization via mutation. According D'Hont et al. (2012), genes associated with 

deeply conserved CNSs are retained as duplicates at a higher frequency than genes 

with less deeply conserved CNSs. A comparison of Musa, rice, sorghum, 

Brachypodium, date palm, and Arabidopsis proteomes have uncovered 7,674 common 

gene clusters suggesting ancestral gene families (D'Hont et al., 2012).  
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Representational difference analysis (RDA) technology, with its ability to scan 

about 5x10
8
 base pairs of DNA in each sub-fraction - greater than other differentiation 

techniques like RAPDs or AFLPs, can be applied to detect genomic losses, 

rearrangements, amplifications, point mutations, and pathogenic organisms between 

two genomes (Oh et al., 2007).   The DNA regions obtained in this study could be 

considered unique regions as it appears to be conserved among three banana genomes.  

 

5.3 Developing future investigations 

To successfully investigate the morphological variations among regenerants 

grown on varying concentrations of BAP, the study could be extended to include 

greenhouse trials as to truly identify their phenotypic characteristics. In vitro aberrants 

could revert to normal in a greenhouse environment (i.e.: transient or permanent). The 

mature plants could then be reassessed and characterized based on their stable 

phenotype. After a more distinct abnormality was reached, fluorescence in situ 

hybridization (FISH) can be done to locate the aberrant trait. RAPD markers could be 

used to detect polymorphisms, which would subsequently be used as a probe to detect 

the sequence on a chromosome. 

The choice of explants used could also be a co-factor to somaclonal variations. 

The effects of explants source on somaclonal variations could be further investigated. 

Different explant sources could be used to further correlate the emergence of 

variations caused other than the use of high concentrations of BAP.  More studies on 

“Berangan” cultures must be done to effectively reach a conclusion as most studies 

were done on somatic embryogenesis and not micropropagation. 

The SCAR markers used in this study were specific for “Cavendish” banana 

cultivars. A specific SCAR marker for “Berangan” could be designed to investigate 
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the variations induced. Representational difference analysis (RDA) technology could 

be used to detect genomic changes within the variants. When further investigated, 

these changes could be further identified and developed into DNA markers for 

diagnosis in banana. The markers can be cloned, sequenced, and mapped to specific 

locations in the chromosome. Quantitative traits loci (QTL) can be used to identify 

traits such as yield and disease resistance. Furthermore, closely linked markers 

flanking both sides of the genes could be identified and used as a starting point for 

gene isolation using the map-based cloning approach; selection criteria based on these 

markers can be used in breeding programs to monitor the transfer of genes, referred to 

as marker-assisted selection (MAS) (Escalant and Panis, 2002). 

The discovery of the hypothetical proteins which was later presumably the 

ubiquitin-fold modifier 1 on chromosome 6 of the banana genome could be further 

investigated to identify its significance. These proteins could be important in 

determining the morphologies of the regenerants. Moreover, if the roles of these 

proteins are identified, they could possibly be involved in other complex functions as 

they were seen to be conserved among the three cultivars of bananas (Musa, 

“Cavendish”, and “Berangan”). Furthermore, candidate gene mapping could be done 

as the region of the Ubl has been identified on chromosome 6, thus quantitative trait 

loci (QTL) or genome-wide association study (GWAS) can be done on that region to 

detect specific mutations or single-nucleotide polymorphisms (SNPs) that could 

impact the phenotypic characteristics of the cultures. 
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6.0 CONCLUSION 

 

High concentrations of BAP have been shown to increase the probability of 

somaclonal variation. In this study, BAP concentrations of 9-12mgL
-1

 induced 

morphological aberrations in the micropropagated cultures of Musa acuminata cv. 

“Berangan”. At lower concentrations, the micropropagated cultures exhibited fewer 

variations which were in accordance to the findings of Bairu et al. (2006) and Shirani 

et al. (2009).  

The dwarf SCAR markers for “Cavendish” used in this study, although did not 

successfully ascertain specific dwarf variants in “Berangan”, did provide an indication 

that among the three cultivars of bananas (“Cavendish”, “Berangan”, and Musa 

acuminata), existed conserved regions. However, as with most plant biotechnology 

experiments, the in vitro cultures would have to be transplanted to a greenhouse 

environment to ascertain the true phenotypic traits (e.g.: normal or abnormal) of the 

mature plant. A reassessment of the SCAR markers then would provide a more 

conclusive outcome.  

RDA analysis could be used to identify the hypothetical proteins that may be 

involved in epigenetic differences. Moreover, the downstream region of the BAC 

MA4-3F3 sequence could be further analyzed to locate conserved regulatory elements. 

As the hypothetical protein discovered is presumably an Ubl, further investigations 

are needed to obtain a clearer picture of its functions as it is still unknown in plants. It 

will be interesting to identify and rectify whether these proteins are responsible for 

altering the phenotypic characteristics of in vitro cultured Musa acuminata and plants 

in general under duress or as a means of adaptation. 
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