Chemical Composition and Nutrient Digestibility of Super Worm Meal in Red Tilapia Juvenile

M. D. Abd Rahman Jabir*, S. A. Razak and S. Vikineswary

1Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Corresponding author: abdrahamjabir@gmail.com

ARTICLE HISTORY
Received: October 20, 2011
Revised: December 07, 2011
Accepted: January 15, 2012

ABSTRACT
The chemical composition and nutrient digestibility of super worm (Zophobas morio) meal were determined for fish feed formulations. Experiments were conducted to compare super worm meal (SWM) with fish meal (FM) as main protein sources for fish diets. Super worm had lower protein content (42.83%) compared to fish meal (52.64%). SWM contained high percentage (40.01%) of lipids along with quality protein and this made it a suitable replacement for FM. SWM contained seventeen amino acids including the essential amino acids. All eight essential amino acids present were similar in values except for methionine which showed a large difference with 5.75 (mg/g crude protein) and 21.17 (mg/g crude protein) for SWM and FM respectively. SWM contained higher percentage of arginine and glutamic acid while the rest of the essential amino acids were lower than those present in FM. The fatty acid profile of SWM also showed a good polyunsaturated to saturated fatty acid ratio (0.87). Apparent digestibility coefficients (ADC) of protein in SWM diet was lowest (50.53±6.08%) and significantly different (P<0.05) from that of FM diet (77.48±0.53%). Lipid digestibility of SWM based diet was significantly lower (69.76±3.72%) than that of FM value (91.51±0.21%). However, SWM-based diets fulfilled the requirements of fish recommended by FAO.

INTRODUCTION
Total dependence of the fish feed industry on fish meal (FM) has escalated the cost of nutritionally balanced aqua feeds. This necessitates the replacement of FM with an alternative nutrient such as the super worm meal (SWM) to reduce the cost of fish feed. Therefore, the dietary replacement of FM in fish feeds with the alternative protein sources is considered. FM is often scarce and expensive due to its use in poultry feeds and uncertain supply during the whole year (Gumus et al., 2009). The relatively low production of FM and with increasing demand from feed manufacturing industry often lead to an increase in the production cost (El-Sayed, 2004).

Since various animal protein sources lack the full essential amino acid (EAA) profile and plant proteins contain a variety of anti nutritional factors. Therefore, insect meal may substitute the FM in fish diets. The super worm (Zophobas morio) meal has a high potential in substituting FM which is uncertain in terms of supply and increase in production cost. Now-a-days, researchers are making attempts to use unconventional locally available sources of proteins rather than depending too much on fish meal (Lenka et al., 2010). Ng et al. (2001) conducted a research on meal worm (Tenebrio molitor), a type of insect similar to super worm and found that the diet with meal worm inclusion was palatable to African catfish. This insect is worldwide in its distribution and can also be found locally in Malaysia as it has adapted well with the local tropical climate (Ghaly and Alkoaik, 2009). Recently, some other insects have also been identified as alternative protein source to FM (Adesulu and Mustapha, 2000). Therefore, Z. morio should be evaluated nutritionally to replace FM in fish diets for economical fish production. Few studies have evaluated insect meals to replace FM in fish diets (Fasakin et al., 2003; Ajani et al., 2004). Finke (2002) reported the nutrient composition of commercially raised insects for animal feedings.

Determination of digestibility of feedstuff is necessary to evaluate their potential for fish growth (Koprucu and Ozdemir, 2005). However, their digestibility is dependent upon its chemical composition and the digestive capability of the species to which it is
fed. The present study was conducted to evaluate the apparent digestibility coefficients of dry matter, crude protein and crude lipid of SWM compared with FM.

MATERIALS AND METHODS

The experiment was conducted at the Freshwater Aquarium, Institute of Biological Sciences, Faculty of Science, University of Malaya, Malaysia. Red tilapia, *Oreochromis spp.*, juveniles weighing 6.01±0.04g were obtained from the Freshwater Hatchery Center, Bukit Tinggi, Malaysia. The feeding trial was conducted over a period of 56 days. One week prior to the experiment, 150 fish were acclimatized to the laboratory conditions and fed with commercial diet. At start of the experiment, 10 fish initially proceed to proximate carcass analysis. For each treatment, three replicates were used and in each replicate 10 juveniles were stocked. After each biweekly weighing, ratio sizes were adjusted according to their body weights for the next period of feeding. At the end of the experiment, the fish were measured for growth performance and proximate analysis of their carcass.

Fish were hand-fed, twice a day (0900 and 1700 hour) at 5% of their body weight. Water quality parameters including dissolved oxygen, pH, nitrate and ammonia were monitored biweekly to ensure their optimum levels for appropriate growth of Tilapia.

Diet ingredients were comprised about 36% crude protein using the WinFeed version 2.8 software in which to satisfy the nutrient requirement of Nile tilapia (NRC, 2011). Each test diet contained 70% of reference diet and 30% of test ingredient (Cho et al., 1982). Two test diets were formulated using FM as a reference on the test diet, SWM based diet. These two diets used for ADC study were formulated to fulfill the 30% replacement portion each. Chromic oxide (Cr$_2$O$_3$) was used as an inert marker for this study at a concentration of 0.5% in each prepared diet. The resulting mixture was pelleted using the mini pelleting plant machine (KCM-Y123M-4) before drying in the oven at 70°C for 24 hours. The composition of ingredients of reference and test diets is shown in Table 1.

| Table 1: Proximate composition of reference and test diets (g/kg) for the digestibility study |
|---------------------------------|-----------------|-----------------|
| **Ingredients** | **Reference diet** | **Test diet** |
| Dry matter (%) | 93.71 | 94.33 |
| Crude protein (%) | 37.45 | 36.53 |
| Crude lipid (%) | 3.96 | 12.15 |
| Crude fiber (%) | 3.55 | 5.21 |
| Ash (%) | 12.72 | 8.00 |

The vitamin premix supplied the following per kg diet: Vitamin A, 5000 IU; Vitamin D$_3$, 1000 IU; Vitamin E, 7500 mg; Vitamin K$_2$, 2000 mg; Vitamin B$_6$, 10000 mg; Vitamin B$_3$, 30000 mg; Vitamin B$_2$, 20000 mg; Vitamin B$_1$, 100 mg; Vitamin D, 60000 mg; Niacin, 20000 mg; Folic Acid, 500 mg; Biolit, 0.235 mg; The mineral premix supplied the following per kg diet: Selenium, 0.2 g; Iron, 80 g; Manganese 500 g; Zinc, 80 g; Copper, 15 g; Potassium Chloride, 4 g; Magnesium Oxide, 0.6 g; Sodium Bicarbonate, 1.5 g; Iodine, 1.0 g; Cobalt, 0.25 g.

Diet ingredients were analyzed in triplicate for proximate composition (AOAC, 2002) and chromic oxide was determined using the method mentioned by Furukawa and Suzuki (1982). The amino acids were determined by comparison of peak retention times to known standards. Data thus obtained were subjected to one-way ANOVA using SPSS version 12.0. Differences between the means were compared using Duncan’s post hoc test at 5% probability level.

RESULTS

The HPLC analysis demonstrated a better amino acid profile in FM as compared to super worm meal (SWM). All seventeen amino acids were obtained except tryptophan that considered destroyed during the acid hydrolysis process (Fig. 1 and 2). All eight essential amino acids present had similar values except methionine which showed a large difference with 5.75 and 21.17 (mg/g) for SWM and FM, respectively. SWM contained higher percentage of arginine and glutamic acid while the rest of the essential amino acids were lower than those present in FM (Table 2). All the values were significantly different (P<0.05) from each other but not with histidine. The total amino acids were 578.53 and 526.99 mg/g crude protein in FM and SWM respectively, which was less than the 864.2 mg/g crude protein in chicken egg that is considered as a main protein source in the human diet. The total amount of the EAAs found in SWM and FM was 199.20 and 288.40 mg/g crude protein respectively, which were higher values recommended by FAO/WHO (1991), (113 g protein for adults).

| Table 2: Amino acid composition of SWM and FM (mg/g crude protein) |
|-----------------|-----------------|-----------------|
| **Amino acid** | **SWM** | **FM** | **Chicken Egg** |
| Aspartic acid | 70.08±0.25 | 111.69±0.25 | 89.2 |
| Glutamic acid | 125.53±3.70 | 181.76±4.75 | 121.3 |
| Serine | 5.14±0.71 | 31.13±1.12 | 67.2 |
| Glycine | 24.55±0.53 | 43.42±1.62 | 30.2 |
| Histidine* | 13.86±0.25 | 14.74±0.44 | 20.9 |
| Arginine* | 21.91±0.02 | 11.09±0.49 | 57.0 |
| Threonine* | 21.23±0.26 | 26.99±0.58 | 44.7 |
| Alanine | 37.88±0.32 | 45.91±1.51 | 50.3 |
| Proline | 25.71±0.21 | 28.24±0.69 | N1 |
| Tyrosine | 37.05±0.13 | 23.47±0.22 | 38.1 |
| Valine* | 29.37±0.17 | 34.42±0.06 | 54.2 |
| Methionine* | 5.75±0.02 | 21.17±0.54 | 28.1 |
| Cystine | 0.86±0.11 | 2.50±0.31 | 19.0 |
| Isoleucine* | 21.41±0.04 | 20.19±0.54 | 48.8 |
| Leucine* | 30.21±0.04 | 47.71±1.24 | 81.1 |
| Phenylalanine* | 21.99±0.95 | 33.93±0.46 | 48.2 |
| Lysine* | 34.25±0.15 | 69.74±1.44 | 65.9 |

| Total AA | 526.99 | 578.53 | 864.2 |
| Total EAA | 199.20 | 288.44 | 488.9 |

* Essential amino acids; * Values are mean of two replicates ± SEM. Means on the row with the different superscripts are significantly different (P<0.05); essential amino acid requirements of Nile tilapia (%) according to NRC (1993): tryptophan 1.00; lysine 5.12; histidine 1.72; arginine 4.20; threonine 3.75; valine 2.80; methionine 2.68; isoleucine 3.11; leucine 3.39; phenylalanine 4.85; tyrosine 3.75.
The nutritive value of protein of any ingredients dependend substantially on the protein capacity to fulfill the needs of organisms with respect to essential amino acids. Li et al. (2008) reported on the importance of amino acids in fish nutrition that are necessary for the development of a balanced aqua feed. Lysine, methionine and cystine are the essential amino acids that made Z. morio a superior alternative protein source particularly for tilapia (Santiago and Lovell, 1988). Generally, the levels of amino acids and fatty acids of SWM demonstrated here were slightly lower than FM. This was probably due to the loss of nutrients during the drying process. For sulphur-containing amino acids, dietary methionine in Z. morio was lower (5.75 mg/g) compared with fish meal (21.17 mg/g). Non essential amino acid could be synthesized from cystine conversion (NRC, 2011). Their main functions were as a source of energy and also for fish bioenergetics and physiology (Trushenski et al., 2001). Thus, for fish diets of Z. morio likely could contribute or spare the synthesis of low level methionine. Arginine content (21.91 mg/g) in SWM was higher and this EAA was lower (5.75 mg/g) compared with fish meal (21.17 mg/g). Non essential amino acid could be synthesized from the essential amino acid precursor. Methionine could be synthesized from cystine conversion (NRC, 2011).

SWM sample had 26.93% of saturated fatty acids, 49.65% of monounsaturated fatty acids and 43.42% of polyunsaturated fatty acids (PUFA) (Table 3). Moreover, SWM contained PUFA, mostly linoleic acid (C18:2n-6, 23.42%) which was higher than PUFA of FM. The ADC of crude protein differed significantly (P<0.05) between FM and SWM-based diets (Table 4). Generally, FM-based diet was highly digested by fish as compared to SWM-based diet with ADC of dry matter and crude lipid each showing similar trends with FM-based diet having the higher value and followed by SWM-based diet (Table 4).

DISCUSSION

The result showed that SWM had slightly higher crude protein of 42.83%. This value was higher compared to Finke and Winn (2004) who obtained a result of 19.01%. But, Jabir et al. (2012) also made a nutrient analysis on super worms and reported that it had 47.43% crude protein and 40.01% crude lipid. This disparity is attributed to factors such as source, stage of harvesting, methods of processing and drying (Ojewola et al., 2005). Crude lipid of SWM obviously was higher (40.01%) compared to other ingredients. This is because of the feed consumed by the super worm during its growth. SWM had an outer exoskeleton made up of chitin and chitin was proven scientifically as a toxin binder (Khajarern et al., 2003). In this study, whether the ash content of SWM (3.54%) is related to the presence of chitin still need further study. Finke (2007) found that the average chitin in super worm was estimated to be 49.8 mg/kg on dry matter basis. In fact, Shiau and Yu (1999) carried out the experiment to study the effects of chitin on growth and nutrient digestibility in tilapia and found that lower body weight of fish were recorded after being fed with this chitin-based diet. Powell and Rowley (2006) has found that supplementation of pure chitin did not affect the survival and immune reactivity of adult shore crab (*Carcinus maenus*). The findings of chitin’s effect on aquatic organism varied.

Thus, the nutritive value of protein of any ingredients dependend substantially on the protein capacity to fulfill the needs of organisms with respect to essential amino acids. Li et al. (2008) reported on the importance of amino acids in fish nutrition that are necessary for the development of a balanced aqua feed. Lysine, methionine and cystine are the essential amino acids that made Z. morio a superior alternative protein source particularly for tilapia (Santiago and Lovell, 1988). Generally, the levels of amino acids and fatty acids of SWM demonstrated here were slightly lower than FM. This was probably due to the loss of nutrients during the drying process. For sulphur-containing amino acids, dietary methionine in Z. morio was lower (5.75 mg/g) compared with fish meal (21.17 mg/g). Non essential amino acid could be synthesized from the essential amino acid precursor. Methionine could be synthesized from cystine conversion (NRC, 2011). Thus, for fish diets of Z. morio likely could contribute or spare the synthesis of low level methionine. Arginine content (21.91 mg/g) in SWM was higher and this EAA is highly required due to its function in stimulating growth and its health-promoting effect to the fish. Buentello and Gatlin (2001) reported the dependent of catfish to the dietary arginine in its resistance towards *Edwardsiella ictaluri*.

Fatty acids play an important role in finfish nutrition. Their main functions were as a source of energy and also for fish bioenergetics and physiology (Trushenski et al., 2006). Data from the recent result of SWM showed that PUFA / SFA ratio in the lipids of SWM was higher (0.87). Recent report made by Nandeesh et al. (2000) revealed pupa oil to be rich in short chain unsaturated...
fatty acids and is an excellent energy source in diet of common carp. Fatty acid methyl ester (FAME) profile in Table 3 was similarly parallel with that reported by Pereira et al. (2003). Palmitic acid and myristic acid present in SWM and FM were scientifically proven to elevate low density lipoprotein (LDL) cholesterol (Connor and Connor, 2007). Ratio of polyunsaturated to saturated fatty acid (PUFA / SFA) has been widely used to determine the cholesterol lowering potential of food. Also, the ratio of n-3 to n-6 fatty acids has also been proposed as an indicator of fish health status (Sargent et al., 1999). The present result of PUFA / SFA ratio (0.87) was associated with the desirable level of cholesterol suggested by Akinnawo and Ketiku (2000). SWM contained high lipid that can be used to replace the fish oil as well. In this study, linoleic acid (C18:2n-6) of SWM was higher in value (23.42%) than FM. This finding is meant to be essential to fish, which lack the ability to synthesize this biological compound to meet biological demands of fish (Tocher, 2003). In fact, other long chain PUFA such as arachidonic acid (C20:0), constituted 1.12% in SWM and emerged as a required dietary for eicosanoids precursor (Sargent et al., 2002).

SWM digestibility of dry matter, protein and lipid were significantly lower than FM digestibility for juvenile red tilapia. Results in Table 4 also indicated that FM was highly digestible with an apparent protein digestibility of 77.48%. The apparent digestibility of dry matter was also lower than the value of 84-89% reported by Eusebio et al. (2004). The ADC of dry matter may be affected by the type of raw material used. The ADC crude protein was less than reported by Kopruçu and Ozdemir (2005) who observed the digestibility for crude protein of fish meal for tilapia was 90.5%. The significantly low ADC crude protein of SWM may be mainly attributed to its low protein content and poor amino acid profile as shown in Table 2. However, Pike et al. (1990) suggested that digestibility of FM may be improved by applying low temperature in the drying process. Cheng and Hardy (2002) suggested to the fish feed formulators to be wise in utilizing specific source rather than simply buying ingredients such as FM and SWM because ADC crude protein varied widely from the source obtained. In addition, the high ADC crude protein registered confirmed the Nile tilapia’s ability of digesting animal protein well.

Kopruçu and Ozdemir (2005) reported the ADC lipid range for tilapia was 72-90% for corn gluten, soy bean meal, rapeseed meal, sunflower seed meal, sorghum, barley and wheat bran. The ADC of lipid (69.76%) for SWM in this study was lower than reported by Kopruçu and Ozdemir (2005).

Conclusion: The results of this study showed that the nutrient content and digestibility of SWM need to be slightly improved in order to be a good alternative feed for red tilapia. This alternative protein source can become a viable choice to guarantee it to be of the same quality as in FM-based fish diet. This result can be used to aid in the formulation of cost effective diets for red tilapia using SWM for partial or complete replacement of FM.

Acknowledgement: The author would like to thank the University of Malaya for providing financial support through grants (PS270/2010A) and (UMRG: RG130/10AFR). Also, thanks the Freshwater Fisheries Research Center staffs for their technical assistance.

REFERENCES

