Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-Chloro-N-(pyrazin-2-yl)aniline

Wan Ainna Mardhiah Wan Saffiee, Azila Idris, Zaharah Aivub, Zanariah Abdullah and Seik Weng Ng*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 4 December 2008; accepted 5 December 2008

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.037; wR factor = 0.128; data-to-parameter ratio = 15.8.

In the title compound, C₁₀H₈ClN₃, the dihedral angle between the aromatic rings is 43.0 (1)° and the bridging C-N-C angle is 128.19 (16)°. The amino N atom of one molecule forms a hydrogen bond to the 1-N atom of an adjacent pyrazinyl ring, generating an inversion dimer.

Related literature

For the two polymorphs of N-(pyrazin-2-yl)aniline, see: Wan Saffiee et al. (2008a); Abdullah & Ng (2008). For N-(pyrazin-2yl)-4-toluidine; see: Wan Saffiee et al. (2008b).

Experimental

Crystal data

C10H8ClN3 $M_r = 205.64$ Monoclinic, $P2_1/c$ a = 12.1257 (3) Å b = 3.7944 (1) Å c = 19.7242 (5) Å $\beta = 91.370 \ (2)^{\circ}$

V = 907.25 (4) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.38 \text{ mm}^{-1}$ T = 100 (2) K $0.25 \times 0.05 \times 0.01 \ \mathrm{mm}$ Data collection

```
Bruker SMART APEX
  diffractometer
Absorption correction: multi-scan
  (SADABS; Sheldrick, 1996)
  T_{\min} = 0.912, T_{\max} = 0.996
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.037$	Н
$wR(F^2) = 0.128$	
S = 1.14	:
2073 reflections	$\Delta \mu$
131 parameters	$\Delta \mu$
1 restraint	

7922 measured reflections 2073 independent reflections 1633 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.033$

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 0.39 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.28 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1 \cdots N2^i$	0.88 (1)	2.15 (1)	3.023 (2)	171 (2)

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

We thank the University of Malaya for supporting this study (FS205/2008 A).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2340).

References

Abdullah, Z. & Ng, S. W. (2008). Acta Cryst. E64, o2106.

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Wan Saffiee, W. A. M., Idris, A., Abdullah, Z., Aiyub, Z. & Ng, S. W. (2008a). Acta Crvst. E64. o2105.

Wan Saffiee, W. A. M., Idris, A., Aiyub, Z., Abdullah, Z. & Ng, S. W. (2008b). Acta Cryst E64 o2440.

Westrip, S. P. (2009). publCIF. In preparation.

supplementary materials

Acta Cryst. (2009). E65, o113 [doi:10.1107/S1600536808041172]

4-Chloro-N-(pyrazin-2-yl)aniline

W. A. M. Wan Saffiee, A. Idris, Z. Aiyub, Z. Abdullah and S. W. Ng

Comment

(type here to add)

Experimental

2-Chloropyrazine (1.15 g, 10 mmol) and 4-chloroaniline (1.28 g, 10 mmol) were mixed with ethanol (2 ml) and the mixture heated at 423–433 K for 3 h. The product was dissolved in water and the solution extracted with ether. The ether phase was dried over sodium sulfate; the evaporation of the solvent gave well shaped crystals along with some unidentified brown material.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to $1.2U_{eq}(C)$.

The amino H-atom was located in a difference Fourier map, and was refined with a distance restraint of N–H 0.88±0.01 Å; its temperature factor was freely refined.

Figures

Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of hydrogen-bonded dimeric structure of $C_{10}H_8CIN_3$ at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius. Hydrogen bonds are shown as red dashed lines.

4-Chloro-N-(pyrazin-2-yl)aniline

$F_{000} = 424$
$D_{\rm x} = 1.506 {\rm Mg m}^{-3}$
Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Cell parameters from 2160 reflections
$\theta = 2.6 - 28.1^{\circ}$
$\mu = 0.38 \text{ mm}^{-1}$
T = 100 (2) K

 $\beta = 91.370 (2)^{\circ}$ $V = 907.25 (4) \text{ Å}^3$ Z = 4

Data collection

Bruker SMART APEX diffractometer	2073 independent reflections
Radiation source: fine-focus sealed tube	1633 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.033$
T = 100(2) K	$\theta_{\text{max}} = 27.5^{\circ}$
ω scans	$\theta_{\min} = 1.7^{\circ}$
Absorption correction: Multi-scan (SADABS; Sheldrick, 1996)	$h = -15 \rightarrow 15$
$T_{\min} = 0.912, \ T_{\max} = 0.996$	$k = -4 \rightarrow 4$
7922 measured reflections	$l = -25 \rightarrow 24$

Plate, yellow

 $0.25\times0.05\times0.01~mm$

Refinement

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w = 1/[\sigma^2(F_o^2) + (0.0761P)^2 + 0.0551P]$ where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{max} = 0.39 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{min} = -0.28 \text{ e } \text{\AA}^{-3}$
Extinction correction: none

methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cl1	1.04801 (4)	-0.07942 (15)	0.36089 (3)	0.0269 (2)
N1	0.59098 (13)	0.2944 (5)	0.43167 (8)	0.0173 (4)
H1	0.5832 (19)	0.359 (6)	0.4742 (6)	0.019 (6)*
N2	0.40848 (13)	0.4535 (5)	0.42294 (8)	0.0152 (4)
N3	0.39085 (14)	0.1755 (5)	0.29204 (8)	0.0182 (4)
C1	0.69716 (16)	0.1986 (5)	0.41131 (10)	0.0147 (4)
C2	0.76584 (16)	0.0278 (5)	0.45861 (10)	0.0165 (4)
H2	0.7381	-0.0315	0.5018	0.020*
C3	0.87334 (16)	-0.0565 (5)	0.44384 (10)	0.0181 (4)
Н3	0.9196	-0.1710	0.4766	0.022*
C4	0.91273 (16)	0.0283 (5)	0.38059 (11)	0.0173 (4)
C5	0.84635 (16)	0.1980 (5)	0.33265 (10)	0.0176 (4)

supplementary materials

Н5	0.8745	0.2545	0.2894	0.021*
C6	0.73893 (16)	0.2849 (5)	0.34796 (10)	0.0155 (4)
Н6	0.6935	0.4033	0.3154	0.019*
C7	0.49564 (16)	0.3053 (5)	0.39334 (9)	0.0141 (4)
C8	0.48498 (16)	0.1632 (5)	0.32725 (10)	0.0159 (4)
H8	0.5473	0.0556	0.3075	0.019*
C9	0.30456 (17)	0.3280 (6)	0.32195 (10)	0.0185 (4)
Н9	0.2360	0.3451	0.2979	0.022*
C10	0.31373 (16)	0.4595 (5)	0.38676 (10)	0.0168 (4)
H10	0.2503	0.5588	0.4067	0.020*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0139 (3)	0.0324 (3)	0.0346 (3)	0.0038 (2)	0.0035 (2)	-0.0016 (2)
N1	0.0157 (8)	0.0266 (9)	0.0096 (8)	0.0025 (7)	0.0006 (6)	-0.0028 (7)
N2	0.0154 (8)	0.0179 (8)	0.0124 (8)	0.0017 (6)	0.0004 (6)	0.0011 (6)
N3	0.0190 (9)	0.0222 (9)	0.0134 (8)	-0.0051 (7)	-0.0009 (6)	0.0010 (7)
C1	0.0134 (9)	0.0158 (9)	0.0148 (9)	-0.0009 (7)	-0.0007 (7)	-0.0024 (7)
C2	0.0194 (10)	0.0181 (10)	0.0121 (9)	-0.0008 (8)	-0.0014 (7)	0.0000 (7)
C3	0.0180 (10)	0.0168 (10)	0.0192 (10)	0.0019 (8)	-0.0039 (8)	0.0009 (8)
C4	0.0121 (9)	0.0178 (10)	0.0219 (10)	-0.0001 (7)	0.0004 (7)	-0.0040 (8)
C5	0.0177 (10)	0.0203 (10)	0.0148 (9)	-0.0034 (8)	0.0028 (7)	-0.0018 (8)
C6	0.0155 (9)	0.0166 (9)	0.0142 (9)	-0.0008 (7)	-0.0017 (7)	0.0005 (7)
C7	0.0143 (9)	0.0154 (9)	0.0125 (9)	-0.0014 (7)	0.0003 (7)	0.0020 (7)
C8	0.0164 (10)	0.0186 (10)	0.0129 (9)	-0.0012 (8)	0.0024 (7)	-0.0008 (8)
C9	0.0154 (10)	0.0236 (10)	0.0163 (10)	-0.0025 (8)	-0.0018 (7)	0.0045 (8)
C10	0.0145 (9)	0.0192 (10)	0.0167 (10)	0.0008 (8)	0.0013 (7)	0.0026 (8)

Geometric parameters (Å, °)

1.743 (2)	C3—C4	1.385 (3)
1.367 (2)	С3—Н3	0.9500
1.406 (2)	C4—C5	1.386 (3)
0.881 (10)	C5—C6	1.384 (3)
1.338 (2)	С5—Н5	0.9500
1.343 (2)	С6—Н6	0.9500
1.323 (3)	С7—С8	1.414 (3)
1.344 (3)	С8—Н8	0.9500
1.395 (3)	C9—C10	1.374 (3)
1.398 (3)	С9—Н9	0.9500
1.380 (3)	C10—H10	0.9500
0.9500		
128.19 (16)	С6—С5—Н5	120.1
114.2 (15)	С4—С5—Н5	120.1
117.6 (15)	C5—C6—C1	120.14 (18)
116.74 (16)	С5—С6—Н6	119.9
117.11 (17)	С1—С6—Н6	119.9
	1.743 (2) 1.367 (2) 1.406 (2) 0.881 (10) 1.338 (2) 1.343 (2) 1.343 (2) 1.323 (3) 1.344 (3) 1.395 (3) 1.398 (3) 1.380 (3) 0.9500 128.19 (16) 114.2 (15) 117.6 (15) 116.74 (16) 117.11 (17)	1.743 (2) $C3-C4$ 1.367 (2) $C3-H3$ 1.406 (2) $C4-C5$ 0.881 (10) $C5-C6$ 1.338 (2) $C5-H5$ 1.343 (2) $C6-H6$ 1.323 (3) $C7-C8$ 1.344 (3) $C8-H8$ 1.395 (3) $C9-C10$ 1.398 (3) $C9-H9$ 1.380 (3) $C10-H10$ 0.9500 $C4-C5-H5$ 114.2 (15) $C4-C5-H5$ 117.6 (15) $C5-C6-C1$ 116.74 (16) $C5-C6-H6$ 117.11 (17) $C1-C6-H6$

supplementary materials

C2—C1—C6	118.89 (18)	N2	115.87 (17)
C2—C1—N1	117.73 (17)	N2—C7—C8	120.33 (17)
C6—C1—N1	123.26 (17)	N1—C7—C8	123.78 (18)
C3—C2—C1	121.21 (18)	N3—C8—C7	121.97 (18)
С3—С2—Н2	119.4	N3—C8—H8	119.0
C1—C2—H2	119.4	С7—С8—Н8	119.0
C2—C3—C4	118.96 (18)	N3—C9—C10	121.19 (19)
С2—С3—Н3	120.5	N3—C9—H9	119.4
С4—С3—Н3	120.5	С10—С9—Н9	119.4
C3—C4—C5	121.05 (18)	N2-C10-C9	122.63 (18)
C3—C4—Cl1	119.53 (16)	N2-C10-H10	118.7
C5—C4—Cl1	119.42 (16)	С9—С10—Н10	118.7
C6—C5—C4	119.75 (19)		
C7—N1—C1—C2	-146.4 (2)	N1—C1—C6—C5	176.58 (18)
C7—N1—C1—C6	37.6 (3)	C10—N2—C7—N1	-178.56 (17)
C6—C1—C2—C3	-0.1 (3)	C10—N2—C7—C8	-0.4 (3)
N1—C1—C2—C3	-176.21 (19)	C1—N1—C7—N2	-171.00 (19)
C1—C2—C3—C4	-0.5 (3)	C1—N1—C7—C8	10.9 (3)
C2—C3—C4—C5	0.6 (3)	C9—N3—C8—C7	-0.4 (3)
C2—C3—C4—Cl1	-179.50 (16)	N2-C7-C8-N3	1.2 (3)
C3—C4—C5—C6	0.0 (3)	N1—C7—C8—N3	179.22 (19)
Cl1—C4—C5—C6	-179.91 (15)	C8—N3—C9—C10	-1.1 (3)
C4—C5—C6—C1	-0.6 (3)	C7—N2—C10—C9	-1.1 (3)
C2-C1-C6-C5	0.7 (3)	N3—C9—C10—N2	1.9 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!\!- \!$
N1—H1···N2 ⁱ	0.88 (1)	2.15 (1)	3.023 (2)	171 (2)
Symmetry codes: (i) $-x+1, -y+1, -z+1$.				

Fig. 1