Unlimited Pages and Expanded Features

Click Here to upgra

Dasar Stem for disease (DSK) is a common disease that affects the Malaysian oil palm. The disease devastates thousands of hectares of oil palm plantings in Southeast Asia every year. It is caused by the fungus *Ganoderma boninense*, which infects the oil palm trees, causing loss of yield and finally killing the trees. In the present study, gene expression and proteomic investigations were carried out on the root tissues of the oil palm infected with G. *boninense.* While the gene expression data obtained from this study may be used in future work on the development of resistant or tolerant oil palm varieties against this fatal infection, the proteomics data can be used to develop protein biomarkers that may be used for the early detection of the fungal infection. Three different plant genes related to response to fungal infection, comprising those that express polygalacturonase-inhibiting protein (PGIP), lipid transfer protein (LTP) and pathogen related protein 10 (PR10), were identified in the oil palm, based on conserved sequences of the same genes of other monocots. The three identified gene sequences demonstrated high similarities with their counterparts from the other monocots and up to 100% identity with those of rice. When expression of the genes was studied in the oil palm roots, the highest levels of expression for all three genes were detected in uninfected palms for all the three genes. The levels of expression of the genes significantly decreased subsequent to an infection with G. boninense for all treatment timeframes studied (2, 4, 6 and 8 weeks post infection). Collectively, the gene expression investigation that was performed in this study demonstrated the coordinated down-regulated expression of defence related genes PGIP, LTP and PR10 in the oil palm roots during the early stages of infection with G. boninense. This differential expression may provide some indication as to how the fungus actively suppresses the host response and/or escape being recognized by the host system allowing

Click Here to upgrade to Unlimited Pages and Expanded Features

PDF Complete. fection. In an attempt to identify proteins that may be used

detection of G. boninense infection of the oil palm, a

proteomics study was performed on proteins extracted from the infected and non-infected root tissues of the oil palm plant. The study allowed for the investigation of the global response of the oil palm genome to the pathogen during the early stages of infection. When profiled by 2-dimensional gel electrophoresis, 61 protein spots were initially detected to be differentially expressed between the uninfected control and infected root tissues. Among the differentially expressed proteins, 22 spots that showed highest differential expression were chosen for identification. This included 13 proteins that were significantly downregulated and 9 that were significantly up-regulated subsequent to the G. boninense inoculation. Analysis by mass spectrometry and database search generated 21 protein hits, with 11 of them considered putatively identified on the basis of MASCOT scores of more than 55. However, among these 11 proteins, two were of unknown functions, while the remainder included enolase, fructokinase, caffeoyl-CoA O-methyltransferase, caffeic acid O-methyltransferase, aminopeptidase, enoyl-acyl carrier protein reductase, pyridoxal 5phosphate (PLP)-dependent enzyme, malate dehydrogenase and ATP synthase. While the altered expression of these proteins may have some physiological relevance to the plant, such as the need to change its metabolism or being involved in its defence mechanism, these proteins may also be exploited for their potential use as biomarkers for oil palm root The analysis of activation and synthesis of infection/stress related proteins infection. identified can potentially generate a set of biomarkers to discriminate between different defence-related strategies, as diagnostic tools and in the prognosis monitoring of basal stem rot infection.

Unlimited Pages and Expanded Features

Click Here to upgrade

Penyakit Basal Stem Rot (BSR) adalah penyakit biasa yang menjangkiti pokok kelapa sawit di Malaysia. Setiap tahun, penyakit ini telah dilaporkan mengakibatkan kerugian pada beribu-ribu hektar ladang kelapa sawit di Asia Tenggara. Penyakit ini berpunca daripada sejenis kulat, *Ganoderma boninense* yang menjangkiti kelapa sawit, mengakibatkan hasil kelapa sawit berkurangan dan akhirnya membunuh pokok tersebut. Di dalam kajian ini, penyiasatan berkaitan ekspresi gen dan proteomik telah dijalankan pada tisu akar kelapa sawit yang telah dijangkiti oleh *G. boninense*. Maklumat ekspresi gen yang diperolehi daripada kajian ini boleh digunakan untuk kajian-kajian akan datang bagi menghasilkan variati kelapa sawit yang mempunyai daya tahan terhadap penyakit ini. Manakala maklumat proteomik boleh digunakan dalam kajian-kajian akan datang bagi mengenalpasti protein bio-penanda untuk pengesanan awal jangkitan kulat.

Tiga gen tumbuhan yang berhubung kait dengan tindak balas terhadap jangkitan kulat, iaitu gen yang mengekspres protein penghalang polygalacturonase (PGIP), protein pemindahan lipid (PLT) dan protein 10 berkaitan patogen (PR10) dikenalpasti di dalam sistem pokok kelapa sawit, berdasarkan jujukan serupa daripada gen yang sama yang terdapat pada tumbuhan monokot yang lain. Ketiga-tiga gen ini menunjukkan persamaan yang tinggi dengan gen dari tumbuhan monokot yang berkait rapat dengan kelapa sawit dan juga menunjukkan 100% identiti dengan beras. Apabila ekspresi gen ini dikaji pada akar kelapa sawit, ketiga-tiga gen menunjukkan kadar ekspresi yang tinggi pada pokok kelapa sawit yang tidak dijangkiti. Manakala, kadar ekspresi gen didapati berkurangan secara signifikan apabila dijangkiti oleh *G. boninense* untuk semua sampel tanpa mengira tempoh jangkitan (2, 4, 6 atau 8 minggu selepas jangkitan). Secara keseluruhannya, siasatan

Click Here to upgrade to Unlimited Pages and Expanded Features

PDF Complete. i dalam kajian ini menunjukkan ekspresi gen yang berkaitan

PGIP, LTP dan PR10, menurun secara koordinasi semasa

peringkat awal jangkitan G. boninense pada akar pokok kelapa sawit. Perbezaan ekspresi ini berkemungkinan memberi pentunjuk tentang bagaimana kulat menghalang tindak balas hos dan/atau terlepas daripada dikenalpasti oleh sistem pertahanan hos sekaligus membolehkan jangkitan berlaku. Di dalam usaha untuk mengenalpasti protein yang boleh digunakan sebagai biopenanda untuk pengesanan awal jangkitan G. boninense pada kelapa sawit, kajian proteomik telah dijalankan pada protein yang diekstrak daripada tisu akar pokok kelapa sawit yang telah dijangkiti dan yang tidak dijangkiti. Kajian ini membolehkan siasatan tentang tindak balas umum genom kelapa sawit pada patogen semasa peringkat awal jangkitan. Apabila pemprofilan dilakukan menggunakan elektroforesis gel 2 dimensi, 61 bintik protein yang dikenalpasti daripada tisu akar yang dijangkiti dan tisu akar kawalan yang tidak dijangkiti telah menunjukkan ekspresi yang berbeza pada peringkat awal. Daripada protein-protein yang telah diekspresikan itu, 22 bintik protein yang menunjukkan ekspresi protein yang tertinggi telah dipilih untuk tujuan identifikasi. Ini termasuk 13 protein yang menunjukkan penurunan dan peningkatan yang signifikan berikutan inokulasi G. boninense. Analisa menggunakan spektrometri jisim dan carian pangkalan data menjana 21 hasil carian, 11 daripadanya telah diambilkira sebagai wujud berdasarkan skor MASKOT yang melebihi 55. Bagaimanapun, daripada 11 protein ini, 2 daripadanya tidak dapat dikenalpasti fungsinya manakala yang selebihnya merupakan enolase, fruktokinase, kafeoil-CoA O-metiltransferase, asik kafeik O-metiltransferase, aminopeptidase, protein enoil-asil reductase, piridoksil 5-fosfat (PLP)-enzim dependen, pembawa malat dehidrogenase dan ATP sintase. Sementara perubahan ekspresi protein-protein tersebut mungkin mengakibatkan kesan fisiologi pada tumbuhan, seperti keperluan untuk mengubah

mited Pages and Expanded Features

PDF Complete. ibatan di dalam mekanisme pertahanan, protein-protein ini

bagi potensi penggunaannya sebagai bio-penanda untuk

jangkitan akar pokok kelapa sawit. Analisa aktivasi dan sintesis protein yang berkaitan jangkitan/stres yang dikenalpasti boleh menjana suatu set bio-penanda untuk membezakan strategi yang berkaitan pertahanan, sebagai alat diagnostik dan semasa prognosis pengawasan jangkitan BSR.

Click Here to upgra

Your complimentary use period has ended. Thank you for using PDF Complete.

ment

Unlimited Pages and Expanded Features

In the name of ALLAH, the wost Gracious and the Most Merciful

Prayers and peace be upon His kind Messenger Mohammad Bin Abdullah, his family members, all his companions and true followers until the Day of Judgment.

Alhamdulillah, all praises to ALLAH for the strengths and His blessing in completing this thesis.

Foremost, I would like to express my sincere gratitude to my supervisor Prof. Dr. Rofina Yasmin Binti Othman for the continuous support of my PhD study and research, for her patience, motivation, enthusiasm, and immense knowledge. Her guidance helped me in all the time of research and writing of this thesis. I could not have imagined having a better advisor and mentor for my PhD study. It has been an honor to be her PhD student.

I gratefully acknowledge my second supervisor Prof. Dr. Onn Bin Haji Hashim for his advice, supervision, and crucial contribution, which made him a backbone of this research and so to this thesis. His involvement with his originality has triggered and nourished my intellectual maturity that I will benefit from, for a long time to come.

My sincere thanks also goes to Dr. Yusmin Mohd Yusuf, for her continues help and supports during this long journey. I especially thank her for her encouragement and her accurate comments which were of critical importance, during this work. Our cooperation was truly an inspiring experience.

I also would like to dedicate this work to my labmates, Wei wei, Pei see, Puan Marina, Puan Maria , Dr Teh ,Dr Syarifa , Su yen ,Yee song, Kim hain, Dr. Sew Hwa.

use period has ended. Thank you for using

Your complimentary

inited Pages and Expanded Feature

PDF Complete.research Sdn Bhd (grant no. 55-02-03-1038) for funding thisreaturesples. Not to forget to thank the University of Malaya for

providing me the IPPP grant No.PSP424-2010A which supported this project.

Last but not least, my deepest gratitude goes to my beloved parents; Mr. Rabee Jameel Al-Obaidi and and Mrs.Hayfaa Abdulmunim Al-Obaidi and also to my wife, brother and my sisters for their endless love, prayers and encouragement, (Eda, Gaith, Salwa and Roaa) I love you so much. To those who indirectly contributed in this research, your kindness means a lot to me. Thank you very much.

Wasslamualikum

Jameel Rabee Al-Obaidi

Click Here to upgrade to Unlimited Pages and Expanded Features

			Page
Absti	ract		i
Absti	rak		iii
ACK	NOWL	EDGEM ENTS	V
CON	TENTS		vii
ABB	REVIA	ΓΙΟΝ	XV
LIST	OF FI	GURES	xviii
LIST	OF TA	BLES	xxii
CHA	PTER 1	I-INTRODUCTION	
1.1	Oil pa	alm	1
	1.1.1	Taxonomy	1
	1.1.2	Botanical description	1
	1.1.3	Flowers	2
	1.1.4	Pollination	2
	1.1.5	Fruit	2
	1.1.6	History	3
	1.1.7	Plantations around the world	5
	1.1.8	Ecology and geographical distribution	7

Complete	Your complimentary use period has ended. Thank you for using PDF Complete. avout .	65
Click Here to upgrade to Unlimited Pages and Ex	panded Features	66
	2.2.8 PCR of targeted genes	66
	2.2.8.1 Primer design	66
	2.2.8.2 PCR reaction	67
	2.2.9 PCR purification	68
	2.2.10 Gene cloning	70
	2.2.10.1 Preparation of LB/Ampicilin/IPTG/X-Gal Agar Plates	70
	2.2.10.2 Preparation of Competent Cells	70
	2.2.10.3 Ligation	72
	2.2.10.4 Transformation	72
	2.2.10.5 Colony PCR	73
	2.2.10.6 Plasmid extraction	75
	2.2.10.7 Digestion of plasmids with <i>Eco</i> RI	76
	2.2.11 Sequencing	
	2.2.12 RNA extraction	77
	2.2.12.1 RNA analysis	78
	2.2.12.2 DNase treatment	78
	2.2.13 Agarose gel electrophoresis	79
	2.2.14 cDNA synthesis	79
	2.2.15 Real -Time PCR	80

≥ PDF Complete	Your complimentary use period has ended. Thank you for using		
Click Here to upgrade to	PDF Complete.		80
Unlimited Pages and Ex	panded Features	R condition	81
	2.2.16 Protein extracti	on	82
	2.2.16.1 TCA method		82
	2.2.16.2 Sucrose metho	d	83
	2.2.16.3 Phenol/Ammo	nium acetate in methanol extraction method	83
	2.2.17 Screening and s	election of suitable method of protein isolation	84
	2.2.17.1 Preparation of	f 12% SDS-PAGE gel (PROTEAN System)	84
	2.2.17.2 Determination	of protein concentration (Bradford Assay)	87
2.2.18 2-Dimensional electrophoresis (2-DE)		87	
	2.2.18.1 First dimensio	n electrophoresis	88
	a) Rehydration of immo	biline dry strip. In the rehydration	88
	step, the immobiline dry	vstrip	
	b) Isoelectrical focusing		89
	2.2.18.2 Second dimens	sion electrophoresis	90
	a) Preparation of 12.5%	SDS –PAGE Gel	90
	b) Equilibration of IPG sta	rip	91
	c) Gel electrophoresis		91
	2.2.18.3 Staining		92
	1) Coomassie Blue stair	ling	92
	2) Silver staining		92

and Ex	panded Features	93
	2.2.18.6 MALDI-TOF MS and database query	94
CHAI	PTER 3 - RESULTS	
3.1	DNA isolation and PCR amplification of targeted gene sequences	95
3.2	Comparison of the candidate genes with other monocots genes	98
3.3	Relative quantitative analyses of PGIP, LTP and PR10	102
	genes in oil palm	
3.4	Assessment of the integrity of RNA	104
3.5	DNase treatment	106
3.6	cDNA construction	108
3.7	Expression of PGIP, LTP and PR10 genes in G. boninense	109
	infected and uninfected oil palm	
3.7.1	Time point sampling of <i>G. boninense</i> infected and uninfected	109
	oil palm	
3.7.2	Quantitative PCR analysis	109
3.8	Proteomics investigation	121
3.8.1	Determination of protein concentration (Bradford Assay)	122
3.8.2	Comparison of protein extraction methods using SDS PAGE	125
3.9	2-Dimensional gel electrophoresis	126
3.9.1	Optimization of 2-DE gel electrophoresis	126

93

PDF Complete	Your complimentary use period has ended. Thank you for using PDF Complete.	ment of the 2-DE profiles	129
Click Here to upgrade to Unlimited Pages and Ex		protein profiles of control and	131
	infected oil palm root	-	
3.9.4	Image analysis of 2-D	E oil palm root protein profiles	137
of control and infected sample			
3.9.5	3.9.5 Analysis by tandem mass spectrometry		
CHAI	PTER 4 - DISCUSSION	J	
4.1	4.1 Studies on <i>Ganoderma</i> interaction with oil palm		
4.2	4.2 RNA extraction and cDNA synthesis		147
4.3	Understanding the response profile of defense related		149
	genes in oil palm		
4.4	4.4 Proposed mode of pathogenesis		156
4.5	4.5 Proteomics Investigation of <i>Ganoderma</i> infection in the		157
	roots of oil palm		
4.6	Conclusion		166
REFE	REFERENCES		168
APPE	NDICES		
Арре	Appendix A: List of chemicals and brands		
Арре	Appendix B: List of instrument, consumables, software and		215
their respective source, stock solutions/reagents			
	Appendix B1: List of	instrument, consumables,	215

Pages and Expanded Features stock solutions/reagents	217
Appendix C: Sterilizations of materials	218
Appendix D: Information of PGIP genes from gene bank	219
Appendix E: Information of LTP genes from gene bank	227
Appendix F: Information of PR10 genes from gene bank	234
Appendix G: Reagents for 12.5 SDS-PAGE Gel	240
(SDS PAGE Bio-Rad system) and 12.5 (ETTAN Dalt Six System)	
Appendix H: 1st Dimension electrophoresis	242
Appendix I: Reagents for 2 nd Dimension electrophoresis	243
Appendix J: Gel assembly	244
Appendix K: Staining	245
Appendix K1: Coomassie Staining solutions	245
Appendix K2: Reagents for silver staining	245
Appendix L: Purity and concentration of RNA and	247
cDNA from oil palm roots	
Appendix L1: Purity and concentration of	247
RNA from oil palm roots	
Appendix L2: Purity and concentration of constructed	248
cDNA from oil palm roots	
Appendix L3: Purity and concentration of RNA from oil palm	250

Your com use period of Complete	<i>plimentary</i> <i>has ended.</i> <i>bu for using</i> <i>Complete.</i> r different incubation (precepation time)		
Unlimited Pages and Expanded Feature	ures ts	251	
Appendix N: Statistical analysis			
Appendix O: Percentage volume of contribution of oil palm root protein			
Appendix P: Full sequence			
Appendix P1: EgP	PGIP	259	

Appendix P2: EgLT	P 25	59
Appendix P3: EgPR	10 25	59

Appendix Q: Publication and Proceeding	260

ONS

Click Here to upgrade to Unlimited Pages and Expanded Features 1.7

Т

mot unnension

2-DE	two-dimensional electrophoresis
ACN	acetonitrile
APS	ammonium persulphate
ATP	adenosine triphosphate
BLAST	basic local alignment search tools
BSA	bovine serum albumin
BSR	basal stem rot disease
CCoAOMT	caffeoyl-CoA O-methyltransferase
cDNA	complementary deoxribonucleic acid
CHAPS	3-[(3-Cholamidopropyl)dimethylammonio]-1-propanesulfonate
COMT	caffeic acid O-methyltransferase
CTAB	cetyltrimethylammonium bromide
CWDE	cell wall degrading enzymes
DEPC	diethyl pyrocarbonate
DNA	deoxribonucleic acid
dNTP	deoxyribonucleotide triphosphate
DTT	dithiothreitol
EB	elution buffer
EDTA	ethylenediaminetetraacetic acid
ENR	enoyl-acyl carrier protein reductase
EtBr	ethidium bromide
IDD	iodo acetamide
IEF	isoelectric focusing

Your complimentary use period has ended. Thank you for using PDF Complete. ized pH gradient

k Here to upg imited Pages	and Expanded Featur	es cid
	LTP	lipid transfer protein
	MALDI-TOF	matrix assisted laser desorption ionization - time of flight
	MDH	malate dehyrogenase
	MPOB	Malaysian Palm Oil Board
	mRNA	messenger ribonucleic acid
	MS	mass spectrometry
	NaoAC	sodium acetate
	NIFOR	Nigerian Institute for Oil Palm Research
	PCR	polymerase chain reaction
	PE	buffer from Qiagen
	PG	polygalacturonase
	PGIP	polygalacturonase-inhibiting protein
	pI	isoelectric point
	PBI	Phosphorus Buffer Index
	PLP	pyridoxal 5- phosphate
	PR10	pathogen related protein-10
	PVPP	polyvinylpolypyrrolidone
	Q-PCR	quantitative- polymerase chain reaction
	RFLP	restriction fragment length polymorphism
	RNA	ribonucleic acid
	RT-PCR	reverse transcription- polymerase chain reaction
	sdH ₂ O	sterile distilled water
	SDS	sodium dodecyl sulphate
	SDS-PAGE	sodium dodecyl sulphate-polyacrylamide gel electrophoresis

Complete <i>Dur Complete use period has ended.</i> <i>Thank you for using</i> <i>PDF Complete.</i> ethylenediaminetetraacetic a	acid
Click Here to upgrade to Unlimited Pages and Expanded Features ylenediaminetetraacetic acid	
TEM transmission electron microscopy	
TEMED N,N,N',N' ótetramethyl-ethylenediami	ine
UV ultraviolet	

Complete

T

Click Here to upg	rade to	IXE3	
Unlimited Pages	and Expanded Figure	Features	Page
	Figure 1.1	Oil palm tree (A) and fruits (B)	3
	Figure 1.2	Expansion of oil palm plantations in Malaysia from (1970-2008).	13
	Figure 1.3	Map showing the extent of oil palm cultivation in 43 oil palm producing countries in 2006 (FAO 2007).	13
	Figure 1.4	Dissected mature nut of oil palm (E. guineensis Jacq.)	16
	Figure 1.5	World palm oil Production 2010 (Metric ton), USDA, Foreign Agriculture Service 2009.	17
	Figure 1.6	Palms afflicted by BSR.	22
	Figure 1.7	Ganoderma boninense mushrooms at base of infected oil palm	22
	Figure 1.8	Chemical structure of lignin.	24
	Figure 1.9	Scheme showing how the integration of results from different technological levels of functional genomics leads to construction of a virtual plant.	28
	Figure 1.10	Model depicting the role of oligosaccharide and <i>PGIPs</i> in the induction of plant defense response.	37
	Figure 1.11	The Mechanism of Pathogen Related Protein PRs during Plant Defense responses.	44
	Figure 1.12	Plantópathogen interactions and perceptions into proteomic studies of the proteins involved in these processes.	59
	Figure 2.1	The flowchart of the research.	63
	Figure 3.1	Agarose gel analysis of DNA from roots of oil palm (<i>Elaeis guineensis</i> , <i>Dura x Pisifera</i> seedlings).	96
	Figure 3.2	Agarose gel of PCR colony product fragments.	97

Figure 3.3 Sequence organization and variability of the query represent **100** *EgPGIP*.

Unlimited Pages and Expanded Features

- Figure 3.5 Sequence organization and variability of the query represented 102 *EgPR10*.
- Figure 3.6 Visualization of RNA extracted from control and infected roots of 105 oil palm.
- Figure 3.7 Ethidium bromide-stained 1.0% (w/v) agarose gel after DNase 107 treatment.
- **Figure 3.8** Ethidium bromide-stained 1.0% (w/v) agarose gel of PCR (real 110 time condition) products. (PGIP).
- **Figure 3.9** Dissociation curve for target gene *EgPGIP* and endogenous 111 control β -actin.
- Figure 3.10 Amplification plot for the Real Time-PCR reaction. (PGIP). 112
- **Figure 3.11** RT-PCR analysis of *PGIP* gene expression in oil palm inoculated **114** with *G. boninense*.
- Figure 3.12 Ethidium bromide-stained 1.0% (w/v) agarose gel of PCR (real 115 time condition) products.(LTP)
- Figure 3.13 Ethidium bromide-stained 1.0% (w/v) agarose gel of PCR (real 115 time condition) products. (PR10).
- **Figure 3.14** Dissociation curve for target gene *EgLTP* and endogenous control **116** β -actin.
- **Figure 3.15** Dissociation curve for target gene *EgPR10* and endogenous **117** control β -actin.
- Figure 3.16 Amplification plot for the Real Time-PCR reaction. (LTP). 118
- Figure 3.17 Amplification plot for the Real Time-PCR reaction. (PR10). 119
- **Figure 3.18** RT-PCR analysis of *LTP* gene expression in oil palm inoculated **120** with *G. boninense*.
- **Figure 3.19** RT-PCR analysis of *PR10* gene expression in oil palm inoculated **121** with *G. boninense*.
- Figure 3.20 A typical standard curve, which was constructed based on a 123 standard solution of BSA.

Julimited Pages and Expanded Features

- root tissue performed using IPG strip with pH 3-10.
- Figure 3.23 A representative silver stained 2-DE protein profile of oil palm 128 root tissue performed using IPG strip with pH 4-7.
- Figure 3.24 Spot matching analysis of silver stained 2-DE SDS-PAGE gels 130 that were generated from control and infected root samples at 2, 4, 6 and 8 weeks.
- Figure 3.25 Typical 2-DE profiles of control and infected oil palm root 132 proteins.

Figure 3.26	Analysis of oil palm root protein sample.	133-
		136

- **Figure 3.27** Typical 2-DE profile for control oil palm root proteins harvested **138** at 2 weeks.
- Figure 3.28Changes in level of oil palm proteins expression at different time139-in response to G. boninense infection.144
- Figure 4.1One of the current views of lignin biosynthetic pathway.161
- Figure 4.2The enoyl-acyl carrier protein reductase (ENR) reaction.163

LES

Click Here to upgrade to Unlimited Pages and Expanded Features

Page

Table 2.1	Recipe for 100ml of RF1 solution	71
Table 2.2	Recipe for 100 ml of RF2 Solution	71
Table 2.3	Recipe for Ligation	72
Table 2.4	Sequence of primer for colony PCR	74
Table 2.5	Recipe for colony PCR	74
Table 2.6	Amplification program for temperature gradient PCR	74
Table 2.7	Recipe for Solution I (stored at 4°C)	76
Table 2.8	Recipe for Solution II (freshly prepared)	76
Table 2.9	Recipe for Solution III (stored at 4°C)	76
Table 2.10	Recipe for EcoRI plasmids digestion	77
Table 2.11	RT-PCR mixture contents	80
Table 2.12	Primers used for RT-PCR analyses of <i>PGIP</i> , <i>LTP</i> and <i>PR10</i> putative genes in oil palm.	81
Table 3.1	Comparison of the oil palm <i>EgPGIP</i> gene with other monocots	98
Table 3.2	Comparison of the oil palm <i>EgLTP</i> gene with other monocots	98
Table 3.3	Comparison of the oil palm <i>EgPR10</i> gene with other monocots	99
Table 3.4	Purity and concentration of RNA from oil palm roots	103
Table 3.5	Purity and concentrations of cDNA from oil palm roots	108
Table 3.6	Protein concentration using different methods of protein extraction protocols.	124
Table 3.7	Reproducibility assessment of triplicate of 2-DE gels from scatter plot analysis.	129
Table 3.8	Identification of differentially expressed proteins in oil palm (<i>Elaeis guineensis</i>) during infection with <i>G. boninense</i> .	146

Click Here to upgrade to Unlimited Pages and Expanded Features