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    CHAPTER ONE 

 

INTRODUCTION 

 

1.1 Significance of petroleum hydrocarbons 

 

Modern industrial society is built and ruled by petroleum hydrocarbons. Petroleum is 

essential to the current global networked economy, without it, our economic order 

would cease to function, bringing disaster to many populations. Yet the blessings of 

hydrocarbons are mixed, there is a growing awareness that imperfect petroleum 

technologies are changing ecosystems in ways that decrease the ability of these systems 

to support human populations. For the purposes of this thesis, environmental pollution 

is taken to mean the introduction of chemical compounds that significantly disrupt the 

equilibrium of an existing well-defined ecosystem. The unintended release of 

hydrocarbons into the environment can negatively impact human and animal health, and 

change the characteristics of soils impacting the plant populations they can support (Yu, 

2006). Soil hydrocarbons of diesel origin can become embedded in the matrix of soil 

particles (Belluck et al., 2006). To appreciate the magnitude of unintended hydrocarbon 

release let us look at some global statistics. In 2003, the world consumption of 

petroleum was over 63.5 million barrels per day (Jain et al., 2011). The Energy 

Information Administration (EIA) projects in United States reported that, the world 

utilization of oil was 98 million barrels per day in 2006. The EIA estimate is that in 

2030, the use of oil will reach to 118 million barrels/day (EIA, 2006). One liter of 

petroleum is enough to render one million gallons of freshwater problematic (Abioye et 

al., 2010). Sonawdekar (2012) reported that the amount of natural crude oil spill was 

estimated to be 600,000 metric tons per year with a range of uncertainty of 200,000 

metric tons per year. There have been many reports on oil spills worldwide.  
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For instance, there was a crude oil spill of 0.04 mega tonnes into Prince William 

Sound, Alaska in 1989. In 2002, the Prestige oil spill occurred 209 km offshore and 

affected 1,900 km of shoreline in northern and northwestern Spain and western France, 

dumping 63,000 tonnes of fuel oil (Fernández-Álvarez et al., 2006). As the use of 

petroleum hydrocarbon products has increased, environmental pollution related to 

petroleum sources is becoming one of the main causes of soil and water pollution 

(Abioye et al., 2010). Some developing countries like Iran, which is the first oil-rich 

country in Middle East region, started oil operations with current production capacities 

of over 4 million barrels/day of crude oil and 80,000 m
3
/day of diesel fuel. There is up 

to 1.5×10
6
 m

3 
of soil contaminated around the Tehran refinery due to discharge of crude 

oil into the environment (Kebria et al., 2009). The rapid transition from an agricultural 

economy to an industrial economy in some developing countries like Malaysia makes it 

probable that hydrocarbon environmental pollution is a significant issue. However, 

there is no statistically significant data on potential soil and water contamination in 

Malaysia. Much work remains to identify potential contamination sites and to suggest 

remediation measures (Heng Keng et al., 2009). 

 Polycyclic aromatic hydrocarbon (PAHs) as a most important source of energy for 

daily life and the high industrial usage are commonly found as an organic pollutant in 

the environment (Collins, 2007). Among different kinds of petroleum sources, diesel is 

one of the important sources of environmental contaminant. Diesel oil hydrocarbons are 

derived from crude oil refining (Mälkönen, 1995), and diesel is a complex saturated 

aromatic and aliphatic hydrocarbon (Eriksson et al., 2001; Zanaroli et al., 2010). The 

presence of a huge number of commercial trucks, private automobiles, ships and boats, 

locomotives, industrial engines (Roy, 1997), tractors and heavy vehicles has resulted in 

an increase in the use of diesel fuel. For instance, in UK, there are estimated to be 120 

thousand contaminated petrol station sites with an associated remediation cost of two 
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billion dollar (Collins, 2007) , or in the US petroleum industry spent about one billion 

dollars in 2001 on remediation (Collins, 2007). It has been estimated that in 2040 

contaminated site treatment may cost approximately two trillion dollars (Yu, 2006).  

 

1.2 Risk of spills for the environment and human health 

 

Effects of crude oil pollution in environment will change from one source to another 

because of crude oil and its derivatives or mixture of organic compounds. It can be 

different in combination of different sources (Onwurah et al., 2007). Therefore, the 

potential of remediation techniques will depend on the area where the spill has accrued. 

Oil spills in the water environment may affect microorganisms physically or by direct 

toxicity (Onwurah et al., 2007). PAHs are toxic to aquatic organisms because when it is 

exposed to solar UV radiation, it can produce O2 via photosensitization, whereby toxic 

materials are released (Onwurah et al., 2007). There are so many individual constituents 

of petroleum hydrocarbons, that it is difficult to determine the effect of each constituent 

within the context of a hydrocarbon mixture. However, aromatic compounds tend to be 

more toxic than aliphatic compounds. 

Crude oil, as a result of PAHs content, interrupts the survival, reproduction, 

development and growth of organisms. This may increase risk of mortality from 

infectious diseases (Onwurah et al., 2007). Soil pollution with petroleum spills has 

resulted in great negative effects on food cycle. For instance, a high concentration of oil 

pollution that happened on the soil between 1978 and 1979 in Nigeria, affected farm-

lands used to grow some of the crops such as cassava, maize, rice and plantain 

(Onwurah et al., 2007). 

 Crude oil can affect soil chemistry, germination and growth of plants and fertility 

but the effects depend on the type of oil spilled (Gavrilescu, 2010; Onwurah et al., 

2007). Petroleum and its derivatives in contaminated land can affect some soil 
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parameters such as the cation exchange capacity and organic matter properties. It is an 

unimaginable possibility to say that there is a connection between both environmental 

and human health (Onwurah et al., 2007). Toxic materials in oil may effects on human 

health via inhibition of nerve synapse function, protein synthesis, damage to plasma 

membrane and infraction in membrane transport system (Afuwale and Modi, 2012; 

Onwurah et al., 2007). Light oils contain a high ratio of saturated hydrocarbons; hence, 

these can be more hazardous than heavy oils (Kauppi et al., 2011). A list was compiled 

in 1999 on prioritized chemicals based on the frequency of their occurrence at National 

Priorities List (NPL) sites and their risk towards environment and human health. On this 

list, PAHs were collectively ranked ninth, and benzo (a) pyrene was ranked eighth 

(Olson et al., 2003). A number of PAHs have been determined to be probable human 

carcinogens. Benzene is also of concern because it has been determined to be a known 

human carcinogen (EPA, 2006). Chronic effects of naphthalene are changes in the 

nervous system, liver, kidneys, blood and heart, due to their relative insolubility and 

potential for different chronic effects, like carcinogenicity (Roy, 1997). The Association 

for Environmental Health and Sciences TPH Working Group also examined toxicity 

studies for various petroleum hydrocarbon constituents and also developed reference 

doses and reference concentrations for various hydrocarbon ranges. Some of the 

hydrocarbon compounds which have been identified as probable human carcinogens 

such as Benzene, Indeno [1,2,3-c,d ]pyrene, Dibenz [a,h] anthracene, Benzo [a] pyrene, 

Benzo [b] fluoranthene and  Benzo [k] fluoranthene (Julia, 2008). 

Carcinogenic impacts have been associated with some compounds found in diesel 

fuels (Roy, 1997). Diesel causes eye and skin irritation in humans, but otherwise its 

effects on humans are considered to be poorly investigated (Muzyka et al., 2002). 

Diesel is considered to be harmful and possibly carcinogenic to humans 

(Työterveyslaitos, 2011), and it contains PAHs that create a risk for human health 
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because of their carcinogenic and mutagenic properties (Bamforth and Singleton, 2005; 

Grant et al., 2007). 

 

1.3 Environmental biotechnology to diesel fuel clean up 

 

 

Environmental biotechnology refers to biotechnology used to remediate 

contaminated environments. It is a scientific technique that uses living organisms to 

improve or modify contaminated environment (Onwurah et al., 2007). Therefore, some 

researchers have briefly described research and strategies for cleaning up oil spills 

(remediation). Remediation itself is an activity with negative impact on environment 

and using native materials. This may lead to contradictions between different national 

environmental quality objectives. According to the United State Environmental 

Protection Agency 16, polycyclic aromatic hydrocarbons have been reported as 

carcinogenic and mutagenic compounds (Mancera-López et al., 2008). 

A diversity of bioremediation techniques has been developed to increase the 

biodegradation rate of contaminated sites (Jingchun et al., 2009). Bioaugmentation 

(application of specifically selected bacteria to contaminated soil) has been well studied 

before and demonstrated to be useful method in bioremediation of contaminated soil 

(Jingchun et al., 2009). Some studies have reported various bacteria and fungi species 

with the capacity of mineralization of organic compounds to degrade PAHs (Mancera-

López et al., 2008). More than 200 species of bacteria, yeasts, and fungi have been 

identified, which are capable of degrading hydrocarbons. In order of importance, these 

are as follows: (1) heterotrophic bacteria, (2) fungi, (3) aerobic bacteria, (4) 

actinomycete, (5) phototrophic microbes, and (6) oligotrophic bacteria. Bacteria 

namely, Burkholderia spp., Bacillus spp.,  Pesodomunas spp.,  Yokenella spp.,  

Moraxella spp.,  Acinetobacter spp., Stenotrophomonas spp., Streptococcus spp. 

and Mycobacterium (Afuwale and Modi, 2012; Anene and Chika, 2011; Das and 
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Chandran, 2011), isolated from petroleum contaminated soil have shown the most 

active factors in petroleum degradation. They serve as initial hydrocarbons degrade 

(Das and Chandran, 2011). Other organisms such as fungi (Phanerochaete 

chrysosporium, Pleurotus ostreatus and Trametes versicolor) are also capable of 

degrading the hydrocarbon compounds from the engine oil (Mollea et al., 2005). You-

Qing et al., (2008) reported that Cladosporium strongly biodegraded diesel oil with a 

degradation ratio of 34% after 5 days treatment. The tendency of hydrocarbons to 

microbial degradation can be in order: linear alkanes, branched alkanes, small 

aromatics and cyclic alkanes, respectively (Das and Chandran, 2011). Some mixtures 

may not be degraded at all, such as the high molecular weight of polycyclic aromatic 

hydrocarbons (Atlas and Bragg, 2009; Moneke and Nwangwu, 2011).  

Remediation of contaminated sites can be achieved through physical and chemical 

techniques such as disposal in landfill, incineration, use of chemical oxidants and 

biological processes (Ayotamuno et al., 2009). Compared to physico-chemical methods, 

biological processes are thought to be of low environmental risk and low cost but in 

some cases, longer time is required (Jingchun et al., 2009). Many studies have proved 

the positive effects of biostimulation in the restoration of total petroleum hydrocarbon 

contaminated sites (Abioye et al., 2012a; Adesodun and  Mbagwu, 2008; Ayotamuno et 

al., 2009; Hamdi et al., 2007; Kogbara, 2008;  Molina-Barahona et al., 2004; Sasek et 

al., 2003). Biostimulation is a form of bioremediation, which uses an electron acceptor 

to motivate capable bacteria to degrade environmental pollutants. Biostimulation causes 

a rapid discharge of major hydrocarbons from environment. It is a cost effective 

treatment over large areas and it is easy to maintain (Bento et al., 2005; Margesin and 

Schinner, 2001; Salinas-Martínez et al., 2008). Successful biostimulation has caused 

degradation of polychlorinated ethylene, petroleum, and reduced uranium and other 

heavy metals from environment (Miller, 2010). In biostimulation, the addition of 
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nutrients (nitrogen, carbon, phosphorus and others), oxygen, or other amendments 

stimulates the activity of naturally-occurring microbes to enhance bioremediation and 

contaminant desorption from subsurface materials (Salinas-Martínez et al., 2008; Van 

Deuren et al., 1997). There will be more discussion in the literature review (chapter 2) 

to evaluate different biological methods.  

Numerous factors affecting hydrocarbon biodegradation have been reported 

(Boopathy, 2000; Das and Chandran, 2011; Khan et al., 2004; Koenigsberg et al., 

2005). One of the primary factors that affect the activity of bacteria is accessibility of 

organic materials to serve as energy source (Boopathy, 2000). Some of the major 

factors affecting the remediation processes are solubility of contaminants, lack of 

nutrients in environment, microbial interaction, type of contaminants, physico-chemical 

bioavailability of pollutants, oxygen diffusion and solubility of organic compounds 

(Boopathy, 2000). The success of each degradation process depends on substrate 

(physicochemical characteristics, molecular structure, and concentration), enzyme 

activities, biomass concentration and population diversity of microbial and a range of 

environmental factors such as availability of electron acceptors, pH, moisture content, 

temperature and carbon as energy source (Boopathy, 2000). Numerous factors may 

limit the rate of degradation. One of important factor is lack of nutrients such as N and 

P which can affect this process (Abioye et al., 2009). Therefore, the addition of N as 

organic or inorganic N illustrated an effective method to improve the rate of 

remediation process (Aspray et al., 2008; Jørgensen et al., 2000; Margesin et al., 2000; 

Riffaldi et al.,  2006; Walworth et al., 2007). Alternatively, amendment with fertilizer as 

a supplement to remediate, when applied at high concentrations may lead to ground 

water pollution, prevent microbial activity and increase the salt concentration of ground 

water (Aspray et al., 2008; Bento et al., 2005; Walworth et al., 2007).  
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1.4 Problem statement  

 

In today’s industrial world, petroleum hydrocarbon is a main compound of our 

modern life and it is an important source of energy. Fuels derived from crude oil supply 

more than half of the world’s energy (EIA, 2012). There is a rapid rise in petroleum 

consumption and as a result, annually huge amounts of hydrocarbons are discharging 

into the environment, either accidentally or deliberately. However, many small spills 

happen during crude oil recovery, transport, and refining (Bolliger, 2000). The leakage 

of petroleum hydrocarbons from vehicles onto the road and washing of oil into the 

coastal environment is becomes a significant source of oil pollution. Diesel, kerosene 

and Gasoline are used as fuel for cars, ships, trucks and tractors. Although most of the 

world's nations produce at least minor amounts of oil, the primary areas of oil 

production are in the Persian Gulf, North and West Africa, the North Sea, and the Gulf 

of Mexico (Bolliger, 2000). As long as oil is stored, used and transport, there is a 

potential threat of oil spillage in environment. Oil spillage has been a common problem 

in shell companies, nations and our environment. During the rapid industrial world, 

there are many industrial sites in Malaysia which are ability to be contaminated sites 

and it is going to be significant issues in Malaysia. The United States Environmental 

Protection Agency reported, there are more than one million underground storage tank 

sites in the world (EPA, 1995). There are 119,000 confirmed instances of release of 

petroleum bulk fuels to the groundwater or soil at these underground storage tank sites 

(EPA, 1995). These releases are significant since the potential hazard of a leaking 

underground storage tank is that the petroleum or hazardous waste can contaminate the 

groundwater supplies that serve as drinking water sources for half of all the Americans.  

According to the National Research Council (NRC), about 1.3 million tonnes of 

petroleum are released into the sea annually. United States International Trade 

Commission (USITC) reported that the global remediation services in 1996 increased 
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from 25.7 billion US dollar to 29.9 billion US dollar in 2002 (Koplan, 2004). Table 1.1 

shows the annual number of oil spills in the world. Remediation of polluted sites by 

petroleum hydrocarbons started about 20 years ago, but still there are many 

contaminated sites which need to be decontaminated.  

 

                       Table 1.1 Annual number of oil spills 

Year < 700 tonnes oil spills > 700 tonnes oil spills 

2000 21 4 

2001 17 3 

2002 13 3 

2003 17 4 

2004 17 5 

2005 22 3 

2006 13 5 

2007 13 4 

2008 8 1 

2009 7 1 

2000s Total  149 33 

Average for decade 14.9 3.3 

2010 4 4 

2011 4 1 

2010s Total  8 5 

Average  4 2.5 

                   (ITOPF, 2011) 

  

Until recently, this type of pollution received very little attention in Malaysia. The 

awareness of this issue is increasing polluted sites in Malaysia and therefore leading to 

remediation a large number of sites in the near future.   
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 Among those petroleum products, diesel-oil, or fuel oil contaminated soils are more 

difficult to treat compared to more volatile petroleum products (Chien et al., 2010). We 

will be particularly concerned with diesel oil, which is a complex mixture of aliphatic 

and polycyclic aromatic hydrocarbons (PAHs) (Yu, 2006). For most part, diesel 

comprises of aliphatic hydrocarbons, but it also contains polycyclic aromatic 

hydrocarbons such as naphthalene, fluorene and phenanthrene. Aromatics consist of a 

number of rings with a range of one to five (Roy, 1997). Aromatics with more than two 

rings are mentioned as polyaromatic hydrocarbons (Roy, 1997). Oil pollution will affect 

soil fertility, food cycle, ground water, marine life, ecosystem and human health. 

Therefore, after having a full-fledged case study of oil spills, we are able to come up 

with a suitable solution to remediation of pollution. Conventional remediation 

technologies are time consuming expensive and environmentally divesting.  

The traditional treatment, physical and chemical methods may not remove and 

degrade the oil thoroughly. Hence, it is unavoidable to use an environmentally friendly 

technology and low cost method to remediate polluted soils, specifically in developing 

countries. Biological methods can be most effective in the removal of oil contamination 

from soil, where physical or chemical methods are not effective. Phytoremediation and 

bioremediation are suggested as effective methods. In this way, it will be possible to 

stimulated aerobe/anaerobic biodegradation as a remediation technique for diesel 

removal in soil. Since, nutrient availability especially nitrogen is the most limiting 

factor in biodegradation process, it is necessary to apply suitable source of nutrient to 

both microbes and plants to carry out the decomposition of the oily waste. In this study, 

organic wastes [used tea leaf (TL), soybean cake (SC) and potato skin (PS)], which are 

cheap, available and easy to find, were used as supplements, replace to inorganic 

fertilizers that are expensive and currently used for agriculture purpose, to enhanced 

biodegradation of diesel fuel contaminated soil.  
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1.5 Aim and Objectives 

 

The seriousness of diesel fuel pollution in our environment and the possibility of 

bioremediation and phytoremediation to remediate various types of oil pollution are the 

driving force behind this study. The aim of this research is to explore the feasibility of 

using organic wastes (biowastes) to remedy soil, which has been contaminated by diesel 

fuel. A series of microcosm studies were conducted in a greenhouse and field conditions 

to compare the potential of different organic waste amendments and the importance of 

oil-degrading microorganisms in the bioremediation process. In addition, the potential 

of two different local plants are evaluated on restoration of diesel fuel contaminated soil 

in phytoremediation process. To achieve this research aim, the following objectives are 

identified: 

1. To evaluate the potential of different organic wastes (tea leaf, soy cake and 

potato skin) in enhancing biodegradation of diesel fuel in contaminated soil at 

four different oil concentrations under, laboratory and natural conditions. 

2. To isolate and screen potential microorganisms for diesel fuel degradation from 

contaminated and uncontaminated soil and monitoring the biodegradation 

process using stable isotope carbon (
13

C). 

3. To comes out soil toxicity test after biostimulation of oil-polluted soil using seed 

germination test and determine the rate of biodegradation of diesel oil in 

contaminated soil and to calculate the half-life, using kinetic model. 

4. To compare the performance of Dracaena reflexa and Podocarpus polystachyus 

plant species in biodegradation of diesel fuel contaminated soil. 

5. To determine the uptake rate of heavy metals (Zn and Pb) in diesel fuel 

contaminated soil by Dracaena reflexa and Podocarpus polystachyus plants. 
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1.6 Research plan 

 

The study includes two parts. The first part focus of on bioremediation of diesel 

fuel from artificially contaminated soil by amendment with three different organic 

wastes using greenhouse microcosms and natural condition. The second part 

explored the potential of biowastes to restoration of diesel fuel contaminated soil in 

phytoremediation process in greenhouse microcosms and natural condition. 
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CHAPTER TWO 

 

LITERATURE REVIEW 

 

2.1 Overview of Petroleum Hydrocarbons  

A basic knowledge of petroleum chemistry and its properties is necessary for 

selecting and applying a successful remediation method for petroleum contaminated 

soil. In this chapter, the properties of TPH and diesel fuel and their behavior are 

described. Finally, different methods of remediation will be discussed.   

2.1.1 Structure and chemistry of PAHs 

Petroleum is a natural product, containing a complex mixture of various 

hydrocarbons, made by the decomposition of plant remains from the carboniferous 

period under high pressure and temperature (Van Hamme, 2003). The components of 

crude oil are named petroleum hydrocarbons. Petroleum and its derivatives are organic 

material with mixtures of liquid, solid, and gaseous hydrocarbons (Brandt, 2006). 

Petroleum is processed in refineries into a number of products, such as industrial fuel 

oils, gasoline, kerosene and diesel fuel. All types of petroleum hydrocarbons contain 

small amounts of different metals such as S, N, Fe, O2, Va, Ni and Cu (Abdel-Aal, 

2003). However, the major ingredients of PHC are two elements; hydrogen and carbon 

with a range of (11-15%) and (82 - 87%), respectively (Regine, 2003). It also contains 

oxygen (0 to 0.5%), sulfur (0 to 8%), and nitrogen (0 to 1%) as important minor 

components. Each type of crude oil has its individual chemical composition depending 

on its location and origin (Regine, 2003). Petroleum crude oils are the mineral source 

for many refinery products such as petroleum gas, gasoline, kerosene, fuel oils, 

lubricating oils, coke, and asphalt (Brandt, 2006). More than 80% of the hydrocarbon 

components of all types of petroleum products can be arranged as paraffin, asphalt or 

mixed base (Okoh, 2006). Contents of S, O and N are often higher in comparison with 

paraffin based crudes, which contain no asphaltic materials (Okoh, 2006). Petroleum 
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hydrocarbon structural configurations can be divided into two big groups; namely, 

aliphatics (fatty) and aromatics (fragrant) (Figure 2.1). The aliphatics are divided into 

four groups; namely, acetylenes, paraffins, olefins (with straight or branched chains) 

and naphthenes (saturated hydrocarbons with one or more rings cycloalkanes) (Figure 

2.1).  

 

 

Figure 2.1 Petroleum hydrocarbon structural relationships (Regine, 2003), (modified). 

 

 

The number of carbon rings in aromatics is one to six which demonstrates high 

chemical permanence due to double bonds (Brandt, 2006). The aromatic group is 

divided into monoaromatics (one ring such as benzene, toluene, ethylbenzene and 

xylene, collectively known as BTEX), diaromatics (benzene rings) and polyaromatic 

hydrocarbons (compacted aromatic ring structures with more than 2 benzene rings) 

(Brandt, 2006). 

 In addition, oil is also characterized by other components. Resins and asphaltenes 

can consist of a large fraction of heavy fuel oils and crude oils, making those oils very 

dense and sticky. Refined oils may also have some additives, such as gelling inhibitors,  
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which are added to diesel fuels (Helton, 2000). Some additives could be of special 

concern, because they are toxic themselves and significantly change the behavior of the 

oil products. Chemical structures of various categories of hydrocarbons are shown in 

Table 2.1. 

 

 Table 2.1 Chemical Structures of Various Categories of Hydrocarbons 

Category 

 

Description  Example Chemical 

Structure 

Aliphatics  

Alkenes  

 

Carbon chain with single 

bond between carbon 

atoms  

 

n-Butane 

 

Alkynes  

 

Carbon chains with at least 

one carbon-carbon triple 

bond (not commonly found 

in petroleum hydrocarbons)  

 

cis-2-Heptene 

 

Cycloalkanes  Single-bonded carbon ring 

structure  

Cyclohexane  

Aromatics  

Monoaromatics  Primary structure is the 

benzene ring made up of 

six carbon atoms with 

alternating single and 

double bonds  

Benzene  

 

PAHs A compound having two or 

more benzene rings fused 

together  

Naphthalene 
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Source: (Amanda, 2006)  

The biodegradability of these particular components is a reflection of their physical 

state, chemical structure and toxicity (Koleva and Tasheva, 2012). For instance, the 

most biodegradable petroleum hydrocarbons are n-alkanes as a structural group, while 

C5 – C10 homologues have been shown to be inhibitory to the majority of hydrocarbon 

degraders (Okoh, 2006).   

Another property of petroleum hydrocarbons is having a large number of isomers 

(same formula with different arrangement of elements). In general, with an increasing 

number of carbons, the number of isomers will also be increased rapidly. For example, 

an alkane with six carbon atoms has five isomers. An increase in the number of carbons 

to 10 can leads to an increase of the number of possible isomers to 75 (Jim et al., 2005). 

 

2.1.2 Diesel fuel toxicity and its composition 

 

The name 'Diesel' was derived from the name of the inventor of the diesel engine and 

the fuel that runs diesel engines as diesel. Petroleum diesel is a complex combination of 

thousands of individual compounds, with the carbon numbers between 8 and 22 (2000 

to 4000 hydrocarbons) which are generated by the distillation of crude oil, ranging 

approximately from C10H20 to C22H28 (EGM, 2011). Diesel oil is of low molecular 

weight syntheses that are more toxic than long chained hydrocarbons (Kauppi, 2011). 

The main composition of diesel oil is 75% saturated hydrocarbons from the paraffin 

family, and 25% aromatic hydrocarbons such as naphthalene and alkyl benzene (EGM, 

2011). The more obvious smell of diesel is due to the presence of aromatic 

hydrocarbons. The boiling point of diesel is in the range of approximately 180 - 360 °C 

(360 ‐ 680 °F), with a density of about 0.832 kg/l. Table 2.2. Illustrates the carbon chain 

lengths that affect in the boiling point.  
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      Table 2.2 Relations between carbon numbers and boiling point ranges  

 

Fuel or oil                         Carbon number range             Boiling point range                                                              

                                                                                                      (°C) 

     Petroleum                               C4 – C12                                   40 – 200 

     Jet fuel                                    C5 – C14                                 150 – 275 

     Kerosene                                 C6 – C16                                 150 – 300 

     Diesel                                      C8 – C12                                1200 – 325 

     Motor oil                                C18 – C34                                325 – 600 

  Source: (Collins, 2007) 

 

The color of diesel fuels varies from colorless to brown with medium volatility and 

solubility (at 20 °C is about 5 mg L
-1

) (Table 2.3) (Bacha et al., 2007, Kauppi, 2011).  

 

Table 2.3 Selected diesel fuel hydrocarbons and some of their chemical properties  

 

  Compound         Chemical         Group           Density          log Kow                    Water               B            F 

                               formula                                 20°C,                                                 solubility         °C          °C 
                                                                               g/cm3                                     mg/L 

 
Naphthalene             C10H8         Aromatic           1.175             3.37                 31              218         80 

n-Butylcyclohexane C10H20        Naphthene       0.7992            5.46               -                   181        -75 

n-Decane                  C10H22        n-Paraffin        0.7301            6.25            0.052              174        -30 

Anthracene               C14H10        Aromatic          1.251             8.00                8                 341        215 

n-Pentadecane          C15H32        n-Paraffin         0.7684           8.63                -                  271        10 

Eicosane                   C20H42        n-Paraffin         0.7843           11.27           3E -07           344        36 

 
   B = boiling point, F = Freezing point   (Bacha et al., 2007; Kauppi, 2011)       
 

 

 

 

Therefore, diesel fuel has been considered as a priority pollutant that exerts bio-

hazardous effects on both human and other living organisms in the environment (Kebria 
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et al., 2009). Diesel hydrocarbon contamination as a result of leakage during 

transportation, storage, manufacturing, from tanker or storage tank accidents and 

pipelines may cause considerable damage not only in water intake but also in terrestrial 

environments. Therefore, diesel hydrocarbon contamination which is a dangerous threat 

worldwide needs restoration and decontamination. The result of contamination could be 

increased, especially due to the mobility of oil hydrocarbons which when absorbed into 

groundwater could pose even a greater threat (UNEPA, 2011).  

   

2.2 Weathering Processes of petroleum sources 

 

When oil is transmitted into the environment, wide varieties of biological processes 

both chemical and physical begin to transform the discharged oil. In general, these 

changes are referred to as weathering (Jim, et al., 2005). Realizing the weathering 

process is important in understanding of oil samples. The weathering process can affect 

the toxicity and composition of the hydrocarbons (Battelle, 2007). The main weathering 

processes are biodegradation, dissolution, volatilization, evaporation, and dispersion 

(EPA, 1999a, 1999b). Although rates of weathering depend on the nature of the 

environment, there is also great dependence on the chemical and physical properties of 

the hydrocarbons (Amanda, 2006). Those compounds with lower boiling points will be 

more volatile, such as gasoline and diesel. The aliphatics are more volatile than 

aromatic compounds, and volatility decreases with the increase in molecular weight 

(Amanda, 2006). The consequence of hydrocarbon weathering processes is that the 

more degradable, soluble and volatile will disappear most rapidly (Amanda, 2006). In 

contrast, larger PAHs and higher molecular weight will persist in the environment for a 

long time (Wick et al., 2011).  

For example, aliphatics tend to be more volatile. While aromatics tend to be more 

water soluble than aliphatics. However, when a fuel mixture is released into the 
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environment, the main water contaminants are likely to be aromatics while aliphatics 

will be the main air contaminants. In general, volatility and solubility of all compounds 

will decrease with an increase in molecular weight. Therefore, the more volatile and 

water soluble substance compounds which have the lowest molecular weight are lost 

most rapidly from polluted soil  (Jim et al., 2005). The rates of weathering or 

volatilization of individual organic compounds are related by this fact that the fuels are 

mixtures (ECHC, 2012). For instance, the solubility of pure benzene in water is about 

1800 mg L
-1

. The volatility and solubility of single compounds in petroleum 

hydrocarbon mixtures are convenient to the volatility or solubility of the compound in 

its pure condition and its concentration in the mixture. Volatility and solubility of a 

compound will decrease when the compound is a mixture (EPA, 2000). As indicated 

above, alkanes tend to be more volatile than aromatics. The trend in volatility by 

compound class as follow; alkenes = alkanes > aromatics = cycloalkanes (Jim et al., 

2005). Considering dissolution and volatilization trends together, one can predict the 

composition of fuel mixtures after release into the environment. Where volatilization is 

the dominant process, the loss of lower molecular weight alkanes will be the most 

significant change in the product. In situations where dissolution overcomes the 

weathering process, the aromatics will be depleted with benzene and removed most 

rapidly. 

A third process that is usually operative when petroleum mixtures are released into 

the environment is biodegradation. It has been widely indicated that almost all types of 

soils and sediments have populations of bacteria and other organisms that are capable of 

degrading petroleum hydrocarbons. Degradation occurs in both the absence and 

presence of oxygen. Two important key factors that indicate degradation rates are 

molecular structure and oxygen supply. Generally, degradation is more rapid under 

aerobic conditions. Trends in degradation rates according to structure are: 1) n-alkanes, 
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especially in the C10 - C25 range degrade rapidly, 2) isoalkanes degrade slowly,             

3) alkenes degrade more slowly than alkanes, 4) Benzene, toluene, ethylbenzene and 

xylenes (BTEXs) are metabolized when present in concentrations which are not toxic to 

the microorganisms, 5) Polycyclic aromatic hydrocarbons (PAHs) degrade more slowly 

than monoaromatics, and (6) degradation of higher molecular weight cycloalkanes may 

be very slow. At the initial stages of degradation, the n-alkanes are degrading 

selectively. Over time (weeks or months), they are completely biodegraded. The 

compounds most easily recognizable in the remaining diesel fuel mixture at this point 

are the isoprenoids, which include pristane (C19) and phytane (C20). These compounds 

are alkanes with highly branched structures. These branched structures greatly reduce 

the rate at which biodegradation occurs. 

 

 2.3 Biodegradation of pollution contaminated sites  

 

Due to exploration activities of petroleum hydrocarbon a wide range of pollution 

takes place in the environment that could result in serious problems for the abiotic and 

biotic components of the ecosystem (Okoh, 2006). The capability and interaction of 

animals, plants, and organisms are identified as limiting degradation factors. Most 

hydrocarbons are insoluble in water, and generally immovable, so their bioavailability 

is limited in the degradation process (Jim et al., 2005). Biodegradation is defined as the 

breakdown of organic compounds by Actinomycetes, fungi and bacteria. 

Microorganisms are provided with metabolic systems to use petroleum as a source of 

energy and Carbon (Van Hamme et al., 2003). The growth of microorganisms on 

hydrocarbons depends on the emulsification of the unsolved carbon source in the 

culture medium (Chrzanowski et al., 2006). The ability of microbes to break down the 

organic hydrocarbon structure depends on the capacity of microorganisms to degrade 

organic compounds (Mancera-López et al., 2008). These processes lead to 
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microorganisms growing properly and metabolizing petroleum. Since n-alkanes are 

completely biodegraded, at the beginning stage of degradation, they are degraded over a 

period of time (Van Hamme et al., 2003). Pelletier et al., (2004) reported over 90% of 

n-alkanes degrades in the first six months and most light aromatics (2–3 rings) 

disappeared during the first year of observation. Pristane (C19) and phytane (C20) are the 

most easily recognizable compounds in the remaining diesel fuel mixture at this point, 

which are isoprenoids. The attendant negative outcomes of the physicochemical 

approach are currently receiving greater attention for the exploitation of the biological 

alternatives (Okoh, 2006). 

 

2.3.1 Biodegradation of organic compounds by bacteria 

 

Degradation refers to the influence of microorganisms that leads to the breakdown of 

organic compounds, which are recognized as efficient, economical, and 

environmentally sound treatment (Jain et al., 2011). In recent years the oil industry has 

shown considerable interest in the use of microorganisms, especially for controlling and 

dispersing oil spills using surfactants, bioremediation and oil recovery. The term 

"hydrocarbonoclastic" has been use to describe hydrocarbon-utilizing microorganisms. 

This specifically relates to microbes, that are capable of degrading hydrocarbons, and 

all of which share some of the following characteristics (Jim et al., 2005): 

i. They are able to extensively degrade partially or fully petroleum based compounds. 

ii. They have a capable and efficient hydrocarbon uptake system. 

iii. They have receptor sites for binding hydrocarbons. 

iv. They are capable of producing surfactants. 

v. They are well adapted to the environment, genetically stable with rapid reproduction 

rates. 

vi. They have been selected for their environment. 
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vii. They must not be pathogenic or produce toxic metabolic products. 

Viii. They must have group-specific oxygenases to introduce molecular oxygen into the 

hydrocarbon and, with relatively few reactions, generate intermediates that 

subsequently enter common energy-yielding catabolic pathways.  

The oil industries, such as transport and oil extraction, seem a threat to the 

environment because they can cause a huge penetration of petroleum hydrocarbons into 

the environment (Abioye et al., 2012a; Jim et al., 2005). Due to this reason, there is an 

interest in finding the best way to degrade petroleum hydrocarbons from the 

ecosystems. Generally, microorganisms that have the capability to transform organic 

chemicals or remove them are used for bioremediation of ecosystems that have been 

polluted by petroleum oil or its fractional compositions (Abioye et al., 2012a; Yanyan et 

al., 2009). Many studies have used microorganisms and microbial strain to remediate 

polluted sites (Cunningham et al., 2000;  Obuekwe et al., 2009). Some isolated bacteria 

are effective in degrading diesel oil (Rhodococcus sp. and Acinetobactersp.) (Gallego et 

al., 2001), heavy oil (Pseudomonas sp.) (Setti et al., 1999) and crude oil (Candida sp. 

and Rhodococcus sp.) (Palittapongarnpim et al., 1998). The list of different genera of 

microorganisms with capabilities to degrade hydrocarbons is shown in Table 2.4. 
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Table 2.4 Microorganisms reported to utilize petroleum fractions for growth 
 

 

    Yeast                                     Fungi                                       Bacteria 

 

Candida Absidia Acinetobacter 

Debaryom yces Aspergillus Actinomyces 

Endom yces Cladosporium Bacillus 

Mycotorula Gliocladium Micrococcus 

Rhodotorula Penicillium Mycobacterium 

Saccharomyces Rhizopus Nocardia 

Torulopsis Scolecobasidium Pseudomonas 

Trichosporon Trichoderma Streptomyces 

Hansenula Syncephalastra Alkaligenes 

Pichia Mucor Actinomyces 

 Colletotrichum Endomyces 

 Botrytis  

                                                                   

                                                                   

                                                    

Many hydrocarbons are naturally occurring complex mixtures of organic compounds 

which are processed by biosynthesis, so it is not surprising that microorganisms have 

the ability to utilize these compounds. The effects of natural selection mean that for 

every compound there is at least one microorganism able to at least partially degrade it, 

if the environmental conditions are favorable. The microorganisms degrade oil and 

produce intermediate products such as alcohols, phenols, esters, aldehydes, ketones and 

fatty acids. These in turn are converted into CO2, water and microbial biomass. This 

process results in complete mineralization of the pollutant and is clearly the ultimate 

goal of any bioremediation process. Normal populations of hydrocarbon utilizing 

microorganisms account for 0.1% of the population but may reach 100% under 

selective pressure after a spill or prolonged chronic discharges, returning to original 

levels after the pollutant is removed (Abioye et al., 2012a).  
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2.4 Mechanism of petroleum hydrocarbon degradation 

 

There are a number of mechanisms known for degradation of organic compounds. 

During degradation, bacteria are selected for their ability to degrade and this involves 

several mechanisms to degrade these molecules (Das and Chandran, 2011). The bacteria 

have to be an electron acceptor for degradation of organic molecules. The mechanism is 

based on two processes: (i) growth and (ii) cometabolism (Fritsche and Hofrichter, 

2005). In the growth part, bacteria uses organic carbon as a source of energy and carbon 

(mineralization of organic pollutants) (Angelidaki and Sanders, 2004). Co-metabolism 

is the metabolism of an organic compound in the presence of a growth substrate that is 

used as the primary carbon and energy source (Fritsche and Hofrichter, 2005). 

The degradation mechanism of the hydrocarbon enzyme system can be used in the 

biodegradation process. Other mechanisms are (1) attachment of microbial cells to the 

substrates and (2) production of biosurfactants (Das and Chandran, 2011). Some 

enzymes, for example dioxygenases, monooxygenases and hydroxylases, play an 

important role in the microbial degradation of oil. Enormous number of bacteria and 

fungi has the ability to degrade organic pollutants. However, although many bacteria 

have the ability to degrade the organic pollutants, a single bacterial species does not 

have the enzymatic capability to metabolize all of the organic compounds in a 

contaminated soil (Fritsche and Hofrichter, 2005). A mixed microbial community has 

more powerful biodegradative potential compared to a single species, because the 

genetic information of more than one organism is necessary to degrade the complex 

mixtures of organic compounds present in polluted areas (Fritsche and Hofrichter, 

2005). In summary, the essential specifications of aerobic microorganisms degrading 

organic pollutants are as follow (Figure 2.2),  
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● Metabolic processes for optimizing the contact between the organic pollutants and the 

microbial cells must be efficient. The chemicals must be accessible to the organisms 

carrying out biodegrading activities (Fritsche and Hofrichter, 2005). 

●Next, the degradation path transforms the organic pollutants systematically into 

intermediates of the central mediator metabolism (Fritsche and Hofrichter, 2005). 

●The initial intracellular attack on organic pollutants is an oxidative process; the 

activation and incorporation of oxygen is the enzymatic key reaction catalyzed by 

oxygenases and peroxidases (Fritsche and Hofrichter, 2005). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Main principle of aerobic degradation of hydrocarbons by microorganisms 

(Das and Chandran, 2011).  
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2.4.1 Degradation of hydrocarbon fractions 

 

Microorganisms easily utilize gaseous hydrocarbons. Dry gases are dominated by 

methane relative to the higher homologs with a dryness coefficient [C1/Σ (C1 – C5)] of  

> 95%, while wet gases are rich in C2
+
 components with a dryness coefficient of < 90% 

(Pallasser, 2000). Whiticar (1994) indicated that microorganisms can metabolize 

methane, and methanotrophs have been identified in heavily degraded oil reservoirs. 

Biodegraded gases are usually compositionally dry with very few exceptions.  

The C6-15-n-alkane groups are among the most rapidly biodegraded components of 

oil, although they are also susceptible to removal by extensive water washing. Benzene 

or toluene is less affected by biodegradation than n-heptane, 3-methylhexane, cyclohe 

xaneand methylcyclohexane (Masterson et al., 2001). Cyclic and branched-chain 

alkanes are more stable to biodegradation than linear alkanes (Rojo, 2009). There is a 

tendency of reduced capability to biodegradation with greater alkyl replacement for 

alkylcyclohexanes, isoalkanes, alkycyclopentanes and alkylbenzenes (George et al., 

2002). The location of methylation has a strong effect on susceptibility to 

biodegradation. Of the branched alkanes, 2-methylalkanes are more susceptible to 

degradation than 4- methylalkanes, which in turn are more susceptible than 3-

methylalkanes (George et al., 2002). Adjacent methyl group will reduce the 

susceptibility of an isomer to biodegradation for example, 1,1-dimethylcyclopentane 

and 1,1-dimethylcyclohexane are the most resistant to the alkylcyclohexanes and 

alkylcyclopentanes; 1,2,3-trimethylbenzene and 1,2,3,4-tetramethylbenzene are more 

resistant to biodegradation than other C3- and C4-alkylbenzenes (George et al., 2002).  

Molecular parameters such as 3-methylpentane/nhexane, 1,1-dimethylcyclopentane/n-

heptane, and 3-methylpentane/2-methylpentane thus increase with increasing degree of 

biodegradation. 
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2.4.2 Biodegradation of Aromatic compounds 

 

Polycyclic aromatic hydrocarbons (PAHs) which consist of two or more benzene 

rings are typically more resistant than aliphatic hydrocarbons. Aromatic compounds 

have a different base on the distillation sites and petroleum refinery. The most important 

aromatic petroleum hydrocarbons are toluene, benzene, xylene, ethyl benzene, and 

xylene. Benzene and its properties are important because all aromatic hydrocarbons are 

derivatives of benzene. Benzene has three double bonds with a six membered ring and it 

is flat (C6 H6). It is unsaturated structurally; similar to the cyclic alkenes. However, it is 

stable and does not participate in reactions that are specific of alkenes. The main 

differences between aromatic and aliphatic hydrocarbons are providing a useful method 

for classifying these compounds. For example, the anaerobic degradation process of 

aromatic hydrocarbons is slow and uncommon compared to aerobic biodegradation 

(Chakraborty and Coates, 2004; Foght, 2002). In addition, degradation of aliphatic 

hydrocarbons in aerobic conditions needs oxygen as a terminal electron acceptor. 

Essentially, aromatic hydrocarbons can support the growth of bacteria when they are 

present as the sole source of carbon and energy (Boonchan et al., 2000; Field and 

Alvarez, 2007). Therefore, aromatic hydrocarbons are not as easy to biodegrade 

compared to branched alkanes which are slightly more readily degradable than the 

alicyclic hydrocarbons (Cao et al., 2009). A large number of different bacteria and fungi 

have the ability to metabolize PAH. Degradation of PAH by fungal occurs in two 

different ways. White rot fungi produce unspecific extracellular ligninolytic enzymes, 

laccases and peroxidases that initiate a free radical attack by a single electron transfer, 

leading to the formation of quinines (Pizzul, 2006).  

In general, the first step in the aerobic bacterial biodegradation is the hydroxylation 

of an aromatic ring via a dioxygenase, with the formation of a cis-dihydrodiol (Pizzul, 

2006). Polycyclic aromatic hydrocarbons may degrade in the rhizosphere of some plants 
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and direct plant uptake of pyrene and phenanthrene has been observed (Pizzul, 2006). 

However, the reason for the degradation of polycyclic aromatic hydrocarbons in the 

presence of plants is the enhancement of the activity of polycyclic aromatic 

hydrocarbons degrading microorganism near the roots, where they find an environment 

rich in nutrients and root exudates (Pizzul, 2006). 

 

2.4.3 Biodegradation of Benzene 

 

Pure benzene (C6 H6) is a clear colorless liquid with a boiling point of 80 
0
C and 

melting point of 5.5 
0
C (Khan et al., 2004). Benzene is released to water and soils by 

both natural and industrial sources such as via gasoline leaks from underground storage 

tanks, hazardous industrial waste sites discharges, and land disposal of benzene 

containing wastes. In 2004 about 11 metrics of benzene were released to soils from 

more than 900 processing facilities and domestic manufacturing concerns (PHSA, 

2007). Benzene is moderately soluble in water, with a solubility of 1,780 mg L
-1

 at 25 

°C. Benzene can transfer to surface water through runoff, to the atmosphere through 

volatilization and to groundwater because of leaching. Benzene also can accumulate in 

fruits of plants and leaves. Degradation of benzene by microbe is important for the 

control of migration of dissolved benzene in the subsurface (Figure 2.3) (Mancini et al., 

2003). 
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Figure 2.3 Initial steps of bacterial biodegradation pathways for benzene substrates 

(Boyd and Bugg, 2006). 

 

The successful biodegradation of benzene depends on the abiotic factors and 

enzymatic capacities of microorganisms. These factors will be effective at suitable 

growth temperature condition of greater than 15 
0
C and the available supplies of fixed 

forms of phosphorus, molecular oxygen and nitrogen. The benzene ring is the most 

widely broadcast unit of chemical structure in nature; hence, microorganisms have the 

ability of degrading aromatic compounds. The benzene ring can be degraded in soil 

under both anaerobic and aerobic conditions. There are two divergent pathway 

mechanisms for the biodegradation of benzene. In both methods, the result of the 

mechanism is the production of catechol which is further catabolized by ortho- and 

meta- cleavage. Anaerobic degradation of benzene has been reported in soil, water and 

column studies.  Recently, isolates capable of anaerobic benzene degradation have been 

reviewed (Chakraborty and Coates, 2004; Coates et al., 2002; Kasai et al., 2006) and 

demonstrated that two Azoarcus strains (DN11 and AN9) and two Dechloromonas 

strains (RCB and JJ) have the capability to degrade benzene in anaerobic conditions 

(Weelink et al., 2010). Coates and Achenbach (2004) found that benzene could be 
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degraded completely within five days. Due to the stability of benzene, anaerobic 

degradation of benzene is more difficult. The mechanisms of activation and further 

degradation of benzene are still unknown (Weelink et al., 2010). The initial steps of 

benzene degradation are carboxylation, methylation, hydroxylation, and subsequent 

transformation to the central aromatic intermediate benzoyl-CoA (Figure 2.4), which is 

further degraded to CO2 (Weelink et al., 2010). 

 

Figure 2.4 Possible mechanisms of benzene degradation under anaerobic conditions     

a) benzene hydroxylation, b) benzene methylation, c) benzene carboxlation (Weelink et 

al., 2010).  
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There are many aerobic metabolic pathways for the degradation of benzene (Jindrová  

et al.,  2002). Aerobic degradation of benzene usually  starts  by  progressive  oxidation  

of the  alkyl  side  chain  of the  aromatic  ring to  produce  carboxylic acids,  or ring  

oxidation  which  produces substituted  pyrocatechols (Jindrová et al., 2002). 

Carboxylic  acids  and  pyrocatechols are  then  transformed  to substrates  of the  citrate  

cycle  through cleavage of the aromatic ring  (Jindrová et al., 2002). In aerobic 

pathways, catechol and protocatechuate are produced as central intermediates, and these 

compounds are then substrates for ring-cleaving dioxygenases in the central pathways 

(George et al., 2011). These transformations are mainly based on reactions that are 

catalysed by oxygenases (Figure 2.5) (George et al., 2011). 

 

 Figure 2.5 Possible mechanisms of benzene degradation under aerobic conditions 

(George, et al., 2011). 
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2.4.4 Biodegradation of n-alkane 

 

Aliphatic hydrocarbons are more biodegradable than PAHs, due to their being less 

toxic and higher bioavailability. The n-alkanes (C6 - C15) are among the most rapidly 

biodegraded components of oil, although they are also susceptible to removal by 

extensive water washing. A number of microbial degradation of alkane has been 

reported (Baek et al., 2006; Colombo et al., 1996; Hidayat and Tachibbana, 2012; Sonia 

et al., 2002).  

Margesin and Schinner (2001) identified Rhodococcus fascians as a one of the 

hydrocarbon degradation bacteria which are able to produced bioemulsifiers when 

grown with n-alkanes as the sole carbon source. Bacteria can uptake and transport 

soluble alkanes that are dissolved in the liquid phase (Ahmed, 2004). Indeed, bacteria 

could only utilize solubilized hydrocarbons. There is a different mechanism for 

biodegradation of aliphatics. Ron and Rosenberg (2002) reported that microbial 

degradation of aliphatic and aromatic compounds depends on the microorganisms 

which grow in oil polluted sites and have an important role in the biological treatment 

of the contamination. One of the limiting factors in this process, especially at low 

temperature is the bioavailability of many fractions of the oil (Ahmed, 2004). These 

surface-active materials increase the surface area of hydrophobic substrates and increase 

their bioavailability, thereby enhancing the growth of bacteria and the rate of 

bioremediation (Ahmed, 2004). The first sign of biodegradation is usually, n-alkane in 

the C10 to C13 range, which probably reflects an optimal carbon number with increasing 

enthalpy of reaction and decreasing water solubility as the alkane carbon number 

increases. Aromatic hydrocarbons are typically more resistant than aliphatic 

hydrocarbons. In general, branched-chain alkanes and cyclics are more persist out to 

biodegradation than linear alkanes.   
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Adjacent methyl group will reduce the susceptibility of an isomer to biodegradation, 

for example, 1,1-dimethylcyclopentane and 1,1-dimethylcyclohexane are the most 

resistant of the alkylcyclohexanes and alkylcyclopentanes; 1,2,3-trimethylbenzene and 

1,2,3,4- tetramethylbenzene are more resistant to biodegradation than other C3- and C4- 

alkylbenzenes (George  et al., 2002). 

One of the alkane degradation pathways, which is most widely accepted, as the first 

step, is the incorporation of an oxygen atom into the alkane by monooxygenases as 

described in Figure 2.6 (Ahmed, 2004). The resulting product is an alcohol that is 

converted by the following alcohol dehydrogenase into an aldehyde and to an alkanoic 

acid that is finally channeled into the oxidation pathway (Ahmed, 2004). 
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Figure 2.6 Basic metabolism of n-alkanes degradation (Ahmed, 2004). 
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2.5 Factors affecting biodegradation 

 

Numerous parameters influence the biodegradation process of hydrocarbons. Some 

environmental conditions such as pH, temperature, oxygen, nutrients, and soil moisture 

can influence biodegradation results (Gavrilescu, 2010; MSMG and MSMD, 2012). In 

addition, microbial population and availability of pollutants to the microbial population 

play a role in the degradation process. Air availability, pH, nutrient levels, and moisture 

contents are initial controlling factors (Boopathy, 2000; Chaillan et al., 2006). 

Generally, the greatest degradation happens in a range of pH of 6.5-7.5 and temperature 

of (20 - 30 
0
C) (depends on the microbial species).  Microbial growth and activity are 

readily affected by pH, temperature, and moisture (Harekrushna and Kumar, 2012). The 

efficiency of the biodegradation process depends on the provision of optimal conditions 

to improve the degradation process (Figure 2.7) 

 

 

Figure 2.7 Factors affecting biodegradation process. 

 

Some factors influencing the biodegradation process are described in the following 

sections. 
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2.5.1 Oxygen 

 The amount of oxygen determines whether the system is anaerobic or aerobic. In 

some cases, it is possible to introduce hydrogen peroxide or magnesium peroxide for 

increasing the amount of oxygen in the soil. A primary step in the catabolism of 

hydrocarbons by bacteria and fungi involves the oxidation of the substrate by oxygenase 

for which molecular oxygen is required. Aerobic conditions are necessary for this path 

of microbial oxidation of hydrocarbons in the contaminated areas. The availability of 

oxygen in the soil is dependent on the rate of microbial oxygen consumption, the 

presence of utilizable substrate and the type of soil (Bossert and Bartha, 1984). Aerobic 

bacteria are recognized as able to rapidly degrade hydrocarbons because of their 

degradative abilities in the presence of oxygen such as Pseudomonas, Mycobacterium, 

Sphingomonas and Rhodococcus (Juwarkar et al., 2010). These microbes have often 

been reported to degrade pesticides and hydrocarbons, both alkanes and polyaromatic 

compounds (MSMG and MSMD, 2012). The bacteria in the aerobic experiment were 

able to degrade 20 - 25% of the organic material and 90 - 95% of the alkanes (Van, 

2011). In the 50-day anaerobic experiment, 15 - 18% of the organic material and only 

20 - 25% of the alkenes were degraded (Van, 2011). Delivering air or oxygen to 

contaminated soils may be difficult for a number of reasons: the soil porosity may not 

be favorable and therefore mass transfer from the gas phase to the aqueous phase will 

be limited. Also relatively low solubility of oxygen in water is a primary limiting factor 

(Jim et al., 2005). Most contaminated soil may contain large populations of the 

appropriate microorganisms but can remain contaminated for decades or longer because 

of conditions that do not favor rapid biodegradation of complex pollutants. The 

complete oxidation of aromatic compounds and hydrocarbons to carbon dioxide is 

difficult in the absence of molecular oxygen due to the great stability of C – H and C – 

C bonds.  
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Although anaerobic microorganisms have the potential to metabolize organic 

contaminants, and do so in many field situations, oxygen often an integral part in the 

oxidation of many organic pollutants, including hydrocarbons, because molecular 

oxygen is required to oxidize the carbon moiety. 

 

2.5.2 Soil properties 

 

 Physicochemical properties of soil are another important factor in increasing the 

speed of the degradation process. Some materials such as organic carbon can be applied 

in the reclamation of soil structure in order to improve delivery of air, water and 

nutrients. In environments, evaporation of volatile organic compound (VOCs) was 

observed from all soil types, especially at the freshly polluted site. Then, the decrease in 

concentration of oil will be as a result of microbial degradation than volatilization. 

Binding of soil particles has important role in biodegradation rate, but cannot be 

measured (Kauppi, 2011). 

 

2.5.3 Nutrient availability 

 

 The nutrient status has direct impact on biodegradation and microbial activity (Jain 

et al., 2011). Nutrient serves as the sole source of electron donor, carbon and energy. 

Basically, fungus and bacteria need nutrient, vitamin and amino acid for growing. 

Nitrogen and phosphorus, and in some cases iron, are important elements needed for 

cellular metabolism which could become a limiting factor and thus affect the 

biodegradation processes (Das and Chandran, 2011). Atlas and Bragg (2009) reported 

that availability of nutrients, especially N and P in the degradation process of a spill 

occurred in freshwater and marine. Therefore, addition of nutrients has been done in 

reclamation and enhancement of biodegradation (Zhu et al.,  2004). On the other hand,  
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many authors have reported the negative impact of high N-P-K levels of fertilizers on 

biodegradation of organic pollutants, especially on aromatic compounds (Okoh, 2006). 

Use of organic fertilizers, composts, poultry manure, banana skins, melon shell, wood 

chips, rice husk mixtures, soy cake, sewage sludge mushroom and animal droppings in 

the degradation process was studied by earlier researchers (Abioye et al., 2009; 

Adesodun and Mbagwu, 2008; Dadrasnia and Agamuthu, 2011; Hickman and Reid, 

2008; Ijah and  Antai, 2003a; Park et al., 2001). Bento et al. (2005) reported addition of 

N and P increased the degradation rate from 16% to more than 90 % in contaminated 

soil. 

Abioye et al. (2009) indicated that melon shells as a source of nutrients has the 

ability to degrade crude oil contaminated soil 30% higher than unamended polluted soil 

in the same period. It is observed that the addition of spent mushroom compost (SMC) 

to the contaminated medium reduced the toxicity, added enzymes, microorganisms, and 

nutrients for the microorganisms involved in degradation of PAHs (Lau et al., 2003). 

Addition of a carbon source as a nutrient in contaminated soil is known to enhance the 

rate of pollutant degradation by stimulating the growth of microorganisms responsible 

for biodegradation of the pollutant. It has been suggested that the addition of carbon in 

the form of pyruvate stimulates the microbial growth and enhances the rate of PAH 

degradation (Lee et al., 2003; Pandey and Fulekar, 2012). Depending on the nature of 

the impacted environment, some of these nutrients could become limiting, hence, the 

addition of nutrients is necessary to enhance the biodegradation of oil pollutants (Kim et 

al., 2005; Okoh, 2006). Frederic et al., (2005), observed that addition of commercial 

fertilizers containing N and P to hydrocarbon contaminated soil increased the microbial 

population, he also reported a 77 – 95% loss of total alkanes, and 80% loss of PAHs in 

hydrocarbons contaminated soil within a period of 180 days. In another the study he 

used poultry manure (PM) for the enhancement of biodegradation of a substance (Okoh, 
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2006). However, excessive nutrient concentrations can prevent the biodegradation 

activity (Okoh, 2006). Many authors have reported the negative effects of high 

concentration of N-P and K levels on the biodegradation of hydrocarbons (Chaîneau et 

al., 2005), and more especially on the aromatics. 

 

 2.5.4 Moisture  

 

Available water is necessary for the living microorganisms which can affect the 

microbial activity and growth. So irrigation is needed to achieve the optimal moisture 

level (Harekrushna and Kumar, 2012). The water holding capacity (WHC) 

recommended bioremediation process may range from 25% – 28% (Pandey and 

Fulekar, 2012). However, increasing soil moisture has been found to positively affect 

the removal of polycyclic aromatic hydrocarbon from soil. Gong et al., (2005) 

demonstrated the significant effect of moisture on sunflower extraction of PAH from a 

manufactured gas plant (MGP) soil. Previous works illustrated the greatly effect of 

moisture on the reduced organic adsorption capacities (Thibaud et al., 1993). 

 

2.5.5 Temperature  

 

Temperature can affect biodegradation due to change in metabolic activity of 

microbes (Eriksson et al., 2001). This factor has an important role in the diversity of the 

microbial flora, its physiology, and microbial metabolism. Temperature can affect the 

rate of biodegradation as well as the chemical and physical properties of oil (Margesin 

and  Schinner, 2001). Generally, microbial activity will reduce at low temperatures 

(Baraniecki et al., 2002; Delille, 2000; Eckford et al., 2002; Gibb et al., 2001). Also, the 

bioavailability of some substances, such as polyaromatic hydrocarbons and aliphatics, is 

dependent on the temperature. Diffusion rates of organic compounds are increased by 

rising temperature (Northcott and Jones, 2000). Thus, higher molecular reaction rates 
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due to smaller boundary layers are expected at elevated temperatures (Pelletier et al., 

2004). Although hydrocarbon biodegradation can happen over a wide range of 

temperatures, the rate of biodegradation will reduce with decreasing temperatures 

(Okoh, 2006). The highest range of degradation in soil environment happens between 

30 - 40
o
C and 20-30

 o
C in water environment (Das and Chandran, 2011). Although, 

many microorganisms in cold climates can survive and grow at temperatures below 5 

0
C, but it is essential that contaminated sites be at the optimum temperature for 

bioremediation to progress successfully. In addition, the solubility and bioavailability of 

a contaminant will increase as temperature increases, and oxygen solubility will be 

reduced (Margesin and Schinner, 1999). For example, a selection of Rhodococcus 

species that were isolated from an Antarctic soil was able to successfully degrade a 

number of n-alkane at –2 
o
C but was severely inhibited at a higher temperature (Bej et 

al., 2001). In addition, the PAHs naphthalene and phenanthrene were successfully 

degraded from crude oil in seawater at temperatures as low as 0 
o
C (Bamforth and 

Singleton, 2005).  

Coulon et al., (2005) found that a high percentage of alkane degradation (77 - 95%) 

occurred at 10 
0
C. Low temperatures retard the rate of volatilization of low-molecular-

weight hydrocarbons, some of which are toxic to microorganisms (Namkoong et al., 

2002). Atlas et al., (1981) reported the highest rate of crude oil degradation with mixed 

microbial culture in sandy soil that occurred at 3 
0
C with 48% compared with 21% at 22 

0
C in the same condition. Temperature is often not the major limiting factor for 

hydrocarbon degradation in the environment especially in tropical climate, except that it 

relates to other factors such as the physical state of the oil or whether water is available 

for microbial growth (Atlas, 1981).  
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2.5.6 Acidity or Alkalinity 

 

pH is important to achieve optimal degradation conditions. Soil pH also affects the 

activity of enzymes due to the pH sensitivity of amino acid groups, which is essential 

for binding and catalysis (Dick et al., 2000). If the soil is too acidic it is possible to 

increase pH by adding lime (Harekrushna and Kumar, 2012). High pH, as can be 

observed in some soils, would have a negative influence on the ability of microbial 

populations to degrade hydrocarbon (Lakshmi and Velan, 2011). Most fungi can 

tolerate slightly acidic conditions but heterotrophic bacteria live in pH 7.0. Brajesh et al. 

(2003) observed a low degradation rate in the two acidic soils, with half-lives of 224 

and 58 days at pH 4.7 and 5.7, respectively. Kastner et al. (1998) reported that the 

changes of the pH from 5.2 to 7.0 enabled PAHs degradation. Verstraete et al., (1976) 

reported a high rate of degradation in a range of pH 4.5 to 7.4, but when pH was further 

raised to 8.5, the rate of biodegradation was decreased significantly. Stapleton et al. 

(1998) indicate a high rate of the biodegradation of aromatic compounds in acidic 

environments. In addition, Dibble and Bartha (1979) reported an optimal range of pH 

(5.0 to 7.8) for the mineralization of oily sludge in soil.  

 

2.5.7 Bioavailability of hydrocarbon  

 

Bioavailability has been defined as the accessibility of a chemical for assimilation 

and possible toxicity (Puglisi et al., 2007). Bioavailability or bioaccessibility has also 

been defined as the level to which a substance is free to move on to or into an organism 

and it is known that bioavailability differs between species and organisms. The 

bioavailability of organic contaminants is the main factor determining their fate, 

ecological risk, toxicity, and losses in the environment (Oleszczuk, 2009). It provides 

information on the actual risk relating to the presence of the contaminants. Two main 
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 factors that determine the amount of a chemical that is bioavailable are the rate of 

transfer of the compound from the soil to the living cell and the rate of uptake and 

metabolism (Semple et al., 2003). The bioavailability of a chemical is determined by the 

rate of mass transfer relative to the intrinsic activity of the soil biota (Semple et al., 

2003). Bioavailability controls biodegradation because microbial cells must consume 

energy to induce catabolic gene systems used in biodegradation (Madsen, 2002). There 

are a number of approaches to determine bioavailability according to the solid or liquid 

phase of the contamination media. One of main key that affects microbial degradation is 

the hydrophobicity of diesel oil, which limits its transfer to the cell surfaces of 

microorganisms (Lee et al., 2006; Schein et al., 2009). This limitation may be overcome 

either by growing surfactant producing microorganisms or by an addition of surface-

active agents. This indicates there is an increase in the bioavailability of diesel oil to 

microorganisms. Several constraints can limit the bioavailability of organic compounds 

in the environment. These are low aqueous solubility, sorption, micropore exclusion, 

and content of organic carbon (Froehner et al., 2012; Huesemann et al., 2004). Puglisi et 

al. (2007) reported that phenanthrene degradation is usually lower in soils with high 

organic matter due to higher adsorption and lower diffusion to the water phase, while in 

soils with low levels of organic matter, variations in biodegradation may  instead, be 

related to the amount of clay in the soils. The rate of transfer is determined by the 

equilibrium and actual concentration in the bulk phase and aqueous phase. This is 

central to the concept of bioavailability as it relates to biodegradation. 

 

2.5.8 Chemical properties of hydrocarbon  

 

When the suitability of a cleanup approach is to be evaluated, the biodegradability 

and composition of the petroleum hydrocarbon pollutant is the most important 

consideration (Okoh, 2006). Compositional heterogeneity among different crude oils 
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and refined products influenced the overall rate of biodegradation of both the oil and its 

component fractions (Meredith et al., 2000; Okoh, 2006). Biodegradability is essentially 

impacted by the composition of the oil pollutant (Jain et al., 2011). For example, 

kerosene can be completely degraded, under suitable conditions (Okoh, 2006), but in 

the case of heavy asphaltic-naphthenic crude oils, only a maximum of about 11% is 

biodegradable even under suitable conditions (Okoh, 2006). Okoh et al., (2003) 

indicated that between 8 and 30% of the crude oil was degraded in polluted soil by 

mixing bacterial consortium for 15 days. He also noted that heavier crude oils are more 

generally complicated to biodegrade than lighter ones, just as heavier crude oils could 

be suitable for inducing increased selection pressure for the isolation of petroleum 

hydrocarbon degraders with enhanced efficiency (Okoh, 2006). Fedorak and Westlake 

(1981) also reported a high rapid attack of aromatic hydrocarbons during the 

degradation of crude oil by microbial populations from a fresh site.  

 

2.5.9 Concentration of Petroleum hydrocarbon 

 

Concentration of petroleum hydrocarbon determines to a greater extent the rate of 

breakdown of the hydrocarbons from the environment (Abioye et al., 2012a). 

Concentration of hydrocarbon has an important role in its biodegradability and level of 

toxicity for the degrading by organisms. High concentration of hydrocarbon can be 

affecting the activity of microorganisms. Concentrations of 1 to 100 μg/ml of water or 1 

to 100 μg/g of soil or sediment are not generally considered to be toxic to common 

heterotrophic bacteria and fungi. Ijah and Antai, (2003b) indicated a high rate of 

degradation of hydrocarbons in soil contaminated with low concentration (10% and 

20%) compared to those contaminated with the high concentration (30 and 40%) of  

crude oil within a period of one year. Rahman et al., (2002) reported that with the 

increase of concentration oil from 1 to 10%, biodegradation is decreased from 78% to 
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52%. Indeed, high concentrations of hydrocarbons can be associated with increased 

amount of heavy oil in polluted sites which lead to inhibition of biodegradation through 

limitation in nutrients. Table 2.5 shows the major factors that affect the biodegradation 

process. 

 

Table 2.5 Factors affecting the biodegradation process. 

 
Parameters                    Condition required                   Optimum value for 

                                                                                  oil degradation 

 
Temperature (

0
C)                14 - 45                                         20 - 30 

Nutrient content           N and P for microbial growth       C: N: P = 100: 1: 1 

Oxygen content                  Minimum 10%                              10 - 40% 

Soil pH                                5.5 – 8.5                                        6.5 - 8 

Soil moisture                        25 – 28%                                     30 - 90% 

Type of soil                                –                                      Silt or low clay  

 

Source (Gavrilescu, 2010). 

 

 

2.6 Remediation techniques 

 

Contamination poses serious environmental risks, including surface and groundwater 

contamination, and risks to human health and safety (Balasubramaniam et al., 2007). 

Thus, the remediation of contaminated soil is an essential practice (Amro, 2004). 

Traditional technologies such as chemical and physical treatments are not very effective 

and often expensive. In addition, microbial-based remediation has become more popular 

in recent decades (Hamby, 1996). 

These recent systems are based on the stimulation of aerobic bacteria populations to 

degrade contaminants, which is done by increasing oxygen flux and adding nutrients to 



 

45 

 

the contaminated zone. All remediation techniques are used to remove pollutants either 

in-situ (in place) or ex situ (other sites for treatment). Table 2.6 shows different 

treatment methods which have been employed for the remediation of soils (Hamby, 

1996). According to the Office of Technology Assessment, conventional methods 

typically recover no more than 15% of the oil after a major oil spill (Zahed et al., 2006). 

Abioye et al., (2010) estimated that bioremediation was able to remove 92 % of 

lubricating oil from contaminated soil in three months. Most remediation technologies 

are site specific and the selection of appropriate technologies is often a difficult, but 

extremely important step in the successful remediation of a contaminated site (Khan et 

al., 2004). Therefore, the successful treatment of a contaminated site depends on proper 

selection, design, and adjustment of the remediation technology’s operations based on 

the properties of the contaminants and soils, and on the performance of the system 

(Khan et al., 2004). 
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Table 2.6 Treatment techniques used for soil remediation 

 
Techniques                                                               References 

 
  Physical treatments  

- Capping                                              (Melanie, 2005; Sun et al., 2010) 

- Electro kinetics                                           (Vane and Zang, 1997) 

- Soil washing                       (Conte et al., 2005; López-Vizcaíno et al., 2012) 

- Stabilization                                           (Fleri and Whetstone, 2007) 

  Chemical treatments 

- Oxidation                                   (Ferguson et al., 2004; Lemaire et al.,2011) 

- Chemical immobilization                                      (Saad, 2009)   

- Photo degradation                              (Jia and Chu, 2009; Villa et al,, 2010) 

- Peroxide remediation                                          (Qi et al., 2004) 

  Biological treatment 

- Bioremediation                                         (Dadrasnia and Agamuthu, 2013; 

                                                                    Zouboulis and Moussas, 2011)                            

- Phytoremediation                     (Agamuthu et al., 2010; Peng et al., 2009) 

 
 

 

 

Some of the different techniques used in remediating contaminated soil are discussed 

below. 

 

 

 

 

 



 

47 

 

2.6.1 Current clean up techniques 

 

Physical treatment techniques in remediation of contaminated sites are those 

methods which do not change the physico-chemical properties of soil, including soil 

washing, extraction, capping or incineration and chemical treatment techniques such as 

oxidation, steam extraction, stabilization and chemical extraction (Riser-Roberts, 1998). 

Table 2.7 describes some limitations and benefits of chemical and physical treatment 

methods.  

 

  Table 2.7 Chemical and physical techniques for oil removal 

Methods Benefits Limitations 

 

 

 

Mechanical 

separation 

 

- Significant volume               

 reduction 

- Can be applied in 

municipal waste 

management 

- It is not effective for some 

soil      types 

- Must be cleaned up using    

          another method for 

separated        part of 

contaminated soil 

 

Soil washing 

-  Fast cleaning method 

- High efficiency and 

effective 

- High costs of construction  

- Necessity for transportation 

of the cleaned up soil 

 

 

Soil flushing 

- Applied in-situ 

- Lack of solid wastes 

- Incomplete removal of 

contaminants 

 

Electroremediation 

- Only method for in-situ 

removal 

- It is applicable to different 

metals 

- Any dissimilarity of the soil 

body decreases the 

effectiveness of the method 

Extraction and 

storage 

- Short time of excavation 

- Applied in the case of 

emergency 

 - Not applicable in the case 

of locala and small polluted 

sites 

 

   (Dermont et al., 2008; Pavel and Gavrilescu 2008) 
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Physical and Chemical treatments are still used as routine methods in many countries 

like, U.K. (Lessard and Demarco, 2000). On the other hand, in some countries, for 

example, there is a limitation to the use of these methods especially in the Unites States 

due to long-term environmental effects (USEPA,1999a,b). Some common 

physicochemical methods for remediation of soil are discussed below: 

 

i) Soil washing with solvents and water 

This ex-situ method uses liquids such as water and some solvents in mechanical 

processes to clean the polluted soils. Solvents are selected based on their ability to 

solubilized contaminants, and on their health and environmental effects (Khan et al., 

2004). There are different soil washing process as, according to the texture of soil and 

size of soil particles (silt, sand and clay). Since hydrocarbon contaminants have a 

tendency for sorption and bind to smaller soil particles, such as clay and silt, separating 

the smaller soil particles from the larger ones reduces the volume of contamination 

(Khan et al., 2004; Kin, 2008). This technology can be used to clean and recover a large 

amount of organic pollutants from soil. In Europe, this method is used, extensively, but 

it has limited use in the United States. The estimated average cost of using this 

technique is about 170 US dollars per ton, depending on the oil concentration and site 

conditions. Important notes which are related to soil washing are as follow, 

 Mixed waste contamination  need  a combination of solvents 

 In the case of clay soil remediation by washing is very difficult 

 Soil washing is more affective for soils which do not have silt or clay particles 

 Contaminated soils with a high amount of organic matters and humic acids 

require pre-treatment 

 High costs of making use of the cleaning method and installation. 
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ii) Soil vapor extraction 

 

The soil vapor extraction (SVE) method known as vacuum extraction or soil venting, 

is an accepted and cost effective technology for remediating unsaturated contaminated  

soils (Khan et al., 2004). Other names for SVE include “soil venting”, “soil vacuum 

extraction”, “vacuum extraction”, “subsurface venting”, “soil gas vapor extraction”, “in 

situ venting”, “enhanced volatilization”, and “vapor extraction” (Kim et al., 2002). 

Vacuums are applied through the wells near the source of contamination to evaporate 

the volatile constituents of the contaminated mass which are subsequently withdrawn 

through an extraction well (Figure 2.8) (Khan et al., 2004). Then, the extracted vapors 

are treated before being released into the atmosphere (USEPA, 1995). Some fuels like 

diesel fuel and heating oil are not rapidly removed by this method. Important notes 

which are related to the SVE method are as follows: 

   SVE can treat large volumes of soil at reasonable costs (Khan et al., 2004). 

 Since, this method is in-situ technology and the site problem is minimal. 

 SVE is generally not appropriate for sites with a groundwater table located less. 

than 0.9 m below the land surface (Khan et al., 2004). 

 This technique needs only a short time for treatment (USEPA, 1995). 

 Of in high concentration it is difficult to achieve the reduction of pollutants.  

 

Figure 2.8 Schematic diagram of soil vapor extraction system (Kim et al., 2002). 
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iii) Solidification/stabilization 

Stabilization/solidification is one of the physico-chemical remediation technologies 

that produced physical changes and relies on the reaction between the soil or waste and 

a reagent in order to reduce the mobility of the expected contaminants. This method as 

used in both the physical and chemical processes to reduce potentially adverse impacts 

on the environment resulting from the disposal of hazardous and mixed wastes (EPA, 

1999b). The stabilization technique is used to chemically reduce the soluble in 

hazardous wastes by converting the contaminants to reduced solubility (Silva et al., 

2007). Solidification can be accomplished by a chemical reaction between the waste 

and solidifying reagents or by mechanical processes (EPA, 1999b). 

 

2.6.2 Biological technology/ Bioremediation 

 

 Biological methods are those techniques which depend on the microbial activity to 

break down and mineralize of contaminates to less to toxic form (Sayara, 2010). 

Bioremediation describes the process of contaminant degradation in the environment by 

biological methods using the metabolic potential of microorganisms to degrade a wide 

variety of organic compounds (Kumar et al., 2011). Remediation of petroleum-

contaminated systems can be obtained by either biological or physicochemical methods. 

However, the negative consequences of the physicochemical approach are currently 

directing greater attention to the exploitation of the biological alternatives (Okoh, 

2006). The main advantage of bioremediation is its reduced cost compared to 

conventional techniques. Besides cost effectiveness, it is a permanent solution which 

may lead to complete mineralization of the pollutants. Bioremediation has been used for 

the degradation of chemicals in soils, groundwater, wastewater, sludge, industrial 

wastewater systems, and gases (Okoh and Trejo-Hernandez, 2006). For bioremediation 

to be effective, microorganisms must attack the pollutants and convert them to harmless 
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products (Sharma, 2012). Potential advantages of bioremediation compared to other 

treatment methods include destruction rather than transfer of the contaminants to 

another medium; minimal exposure of the on-site workers to the contaminants; 

longtime protection of public health; and possible reduction in the duration of the 

remedial process (Okoh and Trejo-Hernandez, 2006).  

These advantages of the bioremediation systems over the other technologies have 

been summarized (Leavin and Gealt 1993). Furthermore, it is a non-invasive technique, 

leaving the ecosystem intact (Perelo, 2010). Bioremediation can deal with lower 

concentration of contaminants where the cleanup by physical or chemical methods 

would not be feasible. Besides cost effectiveness, it is a permanent solution, which may 

lead to complete mineralization of the pollutants (Perelo, 2010). Bioremediation can 

deal with lower concentration of contaminants where the cleanup by physical or 

chemical methods would not be feasible (Perelo, 2010). In general, biological 

treatments are considered as cost effective, attractive and environment friendly (Hamdi 

et al.,  2007; Sayara, 2010).  

For bioremediation to be successful, the bioremediation methods depend on having 

the right microbes in the right place with the right environmental factors for degradation 

to occur (Boopathy, 2000). The right microbes are fungi or bacteria, which have the 

physiological and metabolic capabilities to degrade the pollutants (Boopathy, 2000). 

Although bioremediation is being engineered into a novel technology, microorganisms 

have been used routinely for the treatment and transformation of waste products for at 

least 100 years (Juwarkar et al., 2010). 

There are three classifications of bioremediation according to Leung, (2004): 

Biotransformation - the alteration of contaminant molecules into less or nonhazardous 

Molecules (Leung, 2004). 

Biodegradation - the breakdown of organic substances into smaller organic or inorganic 
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Molecules (Leung, 2004). 

Mineralization - the complete biodegradation of organic materials into inorganic 

constituents such as CO2 or H2O (Leung, 2004). 

There are three general approaches to cleaning up contaminated soils :(i) Soil can be 

excavated from the ground and be either treated or disposed off (Ex-situ treatment), (ii) 

Soil can be left in the ground and treated in place (in-situ treatment), or (iii) soil can be 

left in the ground and contained to prevent the contamination from becoming more 

widespread and reaching plants, animals, or humans (containment and intrinsic 

remediation) (Jim et al., 2005). 

Bioremediation has many advantages which include: 

  This technique can performed in-situ, so there is no transport cost and no soil 

destroyed. 

 This method is a natural process and environmentally friendly. 

   It can be coupled with other physical or chemical treatment methods 

(Boopathy, 2000). 

  This method needs less manual supervision. 

  Bioremediation needs low capital expenditure compared to other techniques in 

removing hazardous waste. 

 By applying this technique, toxic compounds are removed or destroyed and not 

just merely separated.  

Bioremediation has also some disadvantages such as: 

 Bioremediation is limited to those compounds that are biodegradable 

(Harekrushna and Kumar, 2012), Some of compounds with toxic chemicals  

such as, radionuclides and heavy metals are not biodegraded by using this 

method  (Boopathy, 2000). 

 Soil must have high penetrance, for in-situ bioremediation method.  
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 The bioremediation method is slow and takes time compared to other treatment 

options such as incineration and excavation. 

 This method can be used in all contaminated sites, because some of microbes are 

sensitive to contaminants. 

 Bioremediation cannot be done in some contaminated sites due to the site 

conditions.  

 

Before starting to use bioremediation techniques, some of the following questions need 

to be understood:  

Does biodegradation occur in the site naturally? Are the contaminated compounds 

biodegradable? Are environmental and geographic conditions suitable for 

biodegradation? These questions can be answered by doing site characterization and by 

treatability studies (Boopathy, 2000). 

These days several bioremediation techniques have been applied, which can be carried 

out either out of or on the sites (Sayara, 2010).  

 

i. In situ bioremediation  

In situ bioremediation is the use of microorganisms to degrade contaminants in 

original site with the goal of obtaining harmless chemicals as end products (Jim et al., 

2005). In-situ bioremediation refers to the application of biological treatment processes 

in situ, without the excavation of contaminated soils (Chien et al., 2010). Most often in 

situ bioremediation is applied to the degradation of contaminants in saturated zones. 

This technology has been developed as a more effective alternative and less costly 

compared with the methods used to clean up aquifers and soils contaminated with 

chlorinated solvents, fuel hydrocarbons, toxic metals, explosives and nitrates. In-situ 

bioremediation technology is highly dependent upon external conditions, which are the  
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key to determining whether bioremediation can be performed in situ. The conditions of 

greatest importance are the physicochemical and chemical conditions that exist in the 

contaminated soil. These conditions include dissolved oxygen for aerobic processes, 

moisture content, pH, nutrient availability, especially with regard to nitrogen and 

phosphorus, temperature, soil composition and concentration of contaminants (Jim et 

al., 2005). These techniques are generally the most desirable options due to a lower cost 

and fewer disturbances since they provide the treatment original site by avoiding 

excavation and transport of contaminants (Prasad et al., 2012; Vidali, 2001). 

In-situ bioremediation treatments are limited by the depth of the soil that can be 

effectively treated (Laura and Carmen, 2009). In many soils effective oxygen diffusion 

for desirable rates of bioremediation extend to a depth of only a few centimeters, about 

30 cm into the soil, although depths of 60 cm and greater have been effectively treated 

in some cases (Vidali, 2001). Accelerated in-situ bioremediation is where substrate or 

nutrients are added to an aquifer to stimulate the growth of a target consortium of 

bacteria (PNNL, 2012). Accelerated in situ bioremediation is used where it is desired to 

increase the rate of contaminant biotransformation, which may be limited by a lack of 

required electron donor, nutrients or electron acceptor (PNNL, 2012). 

Some in- situ treatment methods include: 

 

ii. Bioventing 

This method can remove and/or remediate contaminated soil under aerobic 

conditions by providing oxygen to microorganisms in soil, injecting air directly into the 

residual contamination (Shukla et al., 2010). The bioventing system consists of a blower 

and a well, which introduce air into soil through the well. This process is similar to soil 

vapor vacuum extraction, in contrast to soil vapor vacuum extraction, bioventing has a 

potential remediation method (Cauwenberghe and Rooste, 1998), because it uses low 
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 airflow rates to provide only enough oxygen to keep up microbial activity (Shukla et 

al., 2010). Bioventing systems promote biodegradation of constituents and minimize 

volatilization (Sayara, 2010).  

 

iii. Biosparging/air sparging 

Air sparging is an in-situ technology in which air is introduced into a saturated   and 

contaminated zone (Hidayat and Tachibbana, 2012). Injected air traverses horizontally 

and vertically in channels through the soil column, creating an underground stripper that 

removes contaminants by volatilization (EPA, 2001). Air sparging promotes the growth 

of aerobic bacteria in a contaminated zone and it may oxidize reduced chemical species 

(Nadim et al., 2000). Air sparging has been shown to be effective in removing several 

types of contaminants such as the lighter petroleum compounds (C3 – C10) and 

chlorinated solvents (Marley et al., 1992; Reddy et al., 1995). Air sparging can also be 

explained as a method of site remediation that introduces air (or other gases) into a 

saturated zone contaminated with volatile organic compounds (VOCs). In addition to 

volatilization of VOCs, air sparging promotes the growth of aerobic bacteria in 

saturated zones and may oxidize reduced chemical species (Figure 2.9) (Nadim et al., 

2000). Some advantages and disadvantages of air sparging are listed below (Miller, 

1996). 

 This method can be used to clean contamination below the water table or in the 

capillary fringe which is in contrast to soil vapor extraction techniques. 

   Because of the low operation and maintenance costs of this technology, it may 

be “particularly effective when large quantities of groundwater must be treated  

(Miller, 1996). 

 This technique cannot be used  in confined aquifers 
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 This method requires detailed pilot testing and monitoring to ensure vapor 

control and limited migration (EPA, 2011). 

 

 

Figure 2.9 Air sparging and soil vapor extraction system. 

 

 

 

 

iv. Ex situ bioremediation 

This process requires excavation of contaminated soil or pumping of groundwater to 

facilitate microbial degradation (Kumar et al., 2011). This technique involves the 

removal of contaminated soil from the ground. 

 

v. Bioreactor 

Reactors are one of the important types of ex-situ techniques used to biodegraded 

water and soil contaminant sites. The bioreactor has become one of the best options for 

the bioremediation of soils polluted by recalcitrant pollutants under controlled 

environmental conditions (Robles-González et al., 2008). Bioremediation in reactors 
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involves the processing of contaminated solid material (soil, sediment, sludge) or water 

through an engineered containment system (Vidali, 2001). A slurry bioreactor may be 

defined as a containment vessel and apparatus used to create a three-phase (solid, liquid, 

and gas) mixing condition to increase the bioremediation rate of soil bound and water-

soluble pollutants as a water slurry of the contaminated soil and biomass (usually 

indigenous microorganisms) is capable of degrading target contaminants (Vidali, 2001). 

Some limitation of this method is the high operation cost and the soil needs to be 

excavated. Use of bioreactors in remediation of contaminated soil is reported by many 

researchers (Leung, 2004; Rehmann et al., 2008; Sharma, 2012). 

 

vi. Land farming 

In land farming, contaminated soil is periodically tilled to improve aeration and to 

promote soil homogeneity for indigenous biodegradative microorganisms for biological 

degradation (Gan et al., 2009). Since land farming has the potential to reduce 

monitoring and maintenance costs, as well as cleanup liabilities, it has received much 

attention as a disposal alternative (Kumar et al., 2011).  

 

vii. Composting and addition of composting materials 

A process typically used to degrade solid waste materials, has also recently been 

studied as a remediation technology for PAH contaminated soils (Gan et al., 2009). This 

technique involves combining contaminated soil with nonhazardous organic amendants 

such as agricultural wastes or manure (Kumar et al., 2011). Composting bioremediation 

strategy is an aerobic process, based on mixing components of composting with the 

contaminated soil, as the compost matures the pollutants are degraded by the active 

microflora within the mixture (Semple et al., 2001). Many are based on the application 

of manure from cows, pigs or chickens (Adesodun and Mbagwu, 2008; Adriana et al.,, 

2007; Atagana et al., 2003; Ijah and Ndana, 2003; Sasek et al., 2003). Adriana et al., 
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(2007) has reported 63% TPH removal in soil contaminated with petroleum 

hydrocarbon and amended with raw coffee beans. Sewage sludge is abundant globally, 

and it has been successfully used as an amendment in bioremediation (Hur and Park, 

2003). Virtually, any putrescible material available, such as vegetable (Atagana et al., 

2003), spent mushroom compost (SMC) (Eggen, 1999; Lau et al., 2003) and even 

garden waste (Guerin 2001; Michel et al., 2001) can be used. The use of composting 

approaches for bioremediation of organic pollutants generally, (Semple et al., 2003) and 

specifically the use of composting to treat PAHs (Antizar-Ladislao et al., 2004) have 

been reviewed. Composting is an efficient method that relies on added matrix material 

and on mixing/aeration, but not on addition of microbial inoculums (Jørgensen et al., 

2000). 70% mineral oil biodegradation was recorded by Jørgensen et al., (2000), when 

bark chips were used as a bulking agent for composting lubricating oil-contaminated oil 

in a field scale study for a period of five months. Abioye et al., (2009) recorded 75% 

loss of oil in soil contaminated with crude oil and composted with melon shells for a 

period of 28 days. Organic wastes like tea leaves, potato skin and soy cake,  in earlier 

studies were found to enhance the biodegradation of diesel oil up to 80% loss of oil 

within the period of  3 months  (Dadrasnia and Agamuthu, 2010). Composting has been 

indicated to be effective in biodegradation of PAHs at both laboratory and field scales 

using different types of compost bulking agents such as spent mushroom  (Lau et al., 

2003) soot waste, green wastes (Antizar-Ladislao et al., 2005) maple leaves and alfalfa 

(Haderlein et al., 2006). Haderlein et al., (2006) studied the effects of composting to soil 

by the addition of maple leaves and alfalfa during the mineralization of pyrene and 

benzopyrene and reported that neither composting nor the addition of compost had any 

effect on benzopyrene mineralization. In contrast, the pyrene mineralization rate 

increased dramatically with the amount of time that the soil had been composted (more 

than 60% mineralization after 20 days). Antizar-Ladislao et al., (2005) used in-vessel 
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composting technology for the remediation of coal tar contaminated soil and optimized 

the soil composting temperature at 38 
0
C for the most effective degradation. In a related 

study, solid culture with a small amount of low-quality raw coffee beans was used for 

total petroleum hydrocarbon removal from a weathered and polluted soil (Adriana et al., 

2007). 

Amendment of soil contaminated by heavy mineral oil using sawdust, hay and 

compost was reported by Lee et al., (2008) that after 105 days of experiment the heavy 

mineral oil was reduced between 18 - 40% from the initial level of contamination of 

7490 mg hydrocarbon kg
-1

, whereas the level of hydrocarbon reduction in non-amended 

soil was just 9%. The author also observed significantly higher microbial activities in 

compost amended contaminated soil. Corn and sugar cane residues were reported to 

stimulate the biodegradation of diesel oil in diesel-contaminated soil by 67% (Molina-

Barahona et al., 2004). Ijah et al., (2008) also observed that increase in biodegradation 

of crude oil in crude oil contaminated soil amended with chicken droppings. They 

reported 75% of crude oil degradation in soil amended with chicken droppings while 

only 56.3% degradation was recorded in unamended polluted soil in the 10 weeks of the 

experiment.  

 

viii. Biopiling 

Biopiles are a hybrid of land farming and composting. This system includes biocells, 

bioheaps, biomounds and compost cells (Khan et al., 2004). This treatment involves the 

piling of petroleum-contaminated soils into piles or heaps and then simulating aerobic 

microbial activity by aeration and the addition of minerals, nutrients, and moisture 

(Khan et al., 2004). This method is effective in a wide range of organic pollutants and 

the treatment time of this technique is short (6 month to 2 years). The costs of this 

method depend on the type of contaminant and whether the treatment is pre or post. 
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 Estimated the rang of cost is from 130 - 260 US dollars per cubic yard (FRTR, 1991). 

Strategies of bioremediation consist of, monitored natural recovery, biostimulation, 

bioaugmentation and phytoremediation. These strategies can be applied in the 

combination of biostimulation and phytoremediation. Table 2.8 shows a summary of 

benefits and limitations of in-situ and ex situ on bioremediation. 

 

 

Table 2.8 Summary of advantages and disadvantages of in-situ and ex-situ 

bioremediation processes. 

 

Technology 

 

         Examples 

 

        Benefits Limitations 

         

 

   In-situ 

 

 

 

 

Biosparging 

Bioventing 

Bioaugmentation 

 
Most cost efficient 
 
Treats soil and water 
 
Relatively passive 
 
Natural attenuation 
Processes 
 
Noninvasive 

 

Extended treatment time 

 

Monitoring difficulties 

 

Environmental 

constraints 

      

 

   Ex situ 

 

 

 

Land farming 

Composting 

Biopiling 

 

Cost efficient 

Low cost 

Can be done on site 

 

Mass transfer problem 

Need to control abiotic 

loss 

Bioavailability 

limitation 

Space requirements 

Source (Vidali, 2001) 
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2.6.3 Bioremediation strategies  

 

i. Monitored natural recovery 
 

 

Monitored natural recovery (MNR) is increasingly recognized by the US 

Environmental Protection Agency (USEPA) as an option for managing or remediating 

contaminated sediment sites (Magar and Wenning, 2006). NMR is the only 

bioremediation strategy applied in sediment management currently (Perelo, 2010). This 

technique includes leaving contaminated sediments in polluted sit and allowing ongoing 

natural processes such as biological and chemical transformation and aquatic 

sedimentation to immobilize or degrade the contaminant in-situ, thus reducing its 

bioavailability (Perelo, 2010). NMR is most effective for low risk sites with a low level 

of contamination and compared to other techniques this technique is least expensive 

response action but requires long term monitoring (Perelo, 2010). 

 

ii. Biostimulation approach 

This process involves the introduction of nutrients such as organic wastes, fertilizers 

and organic substances to stimulate the growth of the indigenous species to degrade 

pollutants. Nutrients need to be added because the input of large quantities of carbon 

sources tends to result in a rapid depletion of the available pools of major inorganic 

nutrients such as N and P. Levels of N and P added to stimulate biodegradation at  

contaminated sites are often estimated from C/N ratios (Lee et al., 2007). 

Biostimulation aims at enhancing the activities of indigenous microorganisms that are 

capable of degrading pollutant from soil environment. It is often applied to 

bioremediation of oil-contaminated soil. In other cases, it is intentional stimulation of 

resident xenobiotic-degrading bacteria by using electron acceptors, water, nutrients, or 

electron donors (Widada et al.,  2002). Combinations of inorganic nutrients are often 

more effective than single nutrients (Sutherland, 1992). 
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Nitrogen is the most commonly used nutrient in a bioremediation project (Liebeg 

and Cutright, 1999). It is used primarily to support biosynthesis (NH4 
+
 and NO3 

-
) or 

as an alternative electron acceptor to oxygen (NO3
 -

)
.
 Activated sludge has been 

suggested to be a useful source of N for PAH biodegradation in soils (Juteau et al., 

2003). Dried blood acts as a slow release agent of nitrogen (Straube et al., 2003), so 

does a range of natural materials such as peat, compost and manure (Moore and Chiu, 

2001). 

 

iii. Bioaugmentation approach 

This process involves the introduction of enzymes into contaminated soil to stimulate 

degradation of organic pollutants in contaminated zones (Sayara, 2010). It was 

described by Alexander, (2000) as the inoculation of contaminated soil or water with 

specific strains or consortia of microorganisms to improve the biodegradation capacity 

of the system for a specific pollutant organic compound. Bioaugmentation strategies 

may prove successful especially in the remediation of man-made contaminants, where 

specialized bacteria with the appropriate catabolic pathways may not be present in the 

contaminated habitat  (Perelo, 2010). Biostimulation aims at enhancing the activities of 

indigenous microorganisms that are capable of degrading pollutants from the soil 

environment. It is often applied to the bioremediation of oil-contaminated soil (Das and 

Chandran, 2011; Kanissery and Sims, 2011). Combinations of inorganic nutrients often 

are more effective than single nutrients.  

Bioaugmentation is a promising and low-cost bioremediation method in which an 

effective bacterial isolate(s) or microbial consortium capable of degrading xenobiotics 

is administered to contaminated sites (Ueno et al., 2007). However, the soil 

environment is very complicated and the degrading ability of exogenously added 

microorganisms tends to be affected by the physicochemical and biological features of  
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the soil environment (Ueno et al., 2007). There are three bioaugmentation processes:  

First, is to increase the genetic diversity by inoculation of allochthonous 

microorganisms (Jim et al., 2005), which will lead to an increase in the catabolic 

potential, whereby the rate of removal of the contaminant(s) by biodegradation will also 

increase (Dejonghe et al., 2001).  

Second, is to take samples from the site and use them as initial inoculates for serial 

enrichments with the contaminant (s) in question as the sole source of carbon. These 

inoculums are then returned to the site in large numbers in order to increase the rate of 

biodegradation. Thirdly, the approach involves the addition of uncharacterized consortia 

present in materials such as sewage sludge, garden waste and compost (Jim et al., 

2005). According to previous researches, bioaugmentation technology has mostly been 

used for the biodegradation of pure compounds (Mancera-López et al., 2008). The 

mineralization of high concentrations of organic pollutants has been reported when 

consecutive inoculations were tested (Schwartz and Scow, 2001). Most 

bioaugmentation studies have been carried out using filamentous fungi inoculated into 

model soil systems and using contaminants of low molecular weight PAHs with up to 

four rings. The interest in these microorganisms is their ability to synthesize relatively 

unspecific enzymes involved in cellulose and lignin decay that can degrade high 

molecular weight, complex and more recalcitrant toxic compounds, including aromatic 

structures (Pe´rez et al., 2002).  

Bento et al. (2005) reported a 72.7% light TPH fraction and a 75.2% heavy TPH 

fraction degradation in diesel contaminated soil bioaugmented with bacterial 

consortium of Bacillus cereus, Bacillus sphaericus, Bacillus fusiformis, Bacillus 

pumilus Acinetobacter junii and Pseudomonas sp. Ying et al. (2010) augmented a PAH-

contaminated soil with Paracoccus sp. strain HPD-2 and observed a 23% decrease in 

total PAH concentrations after 28 days, with a decline in average concentration from 
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9942 to 7638 μg kg
-1

 dry soil. They discovered that the percentage degradation of 3-, 4- 

and 5(+6) -ring PAHs was 35.1%, 20.7% and 24.3%, respectively (Ying et al., 2010). 

Bagherzadeh et al., (2008) evaluated the efficiency of pollutant removal by selected 

microorganisms and reported thus:  Five mixed cultures and three single bacteria 

strains, Pseudomonas sp., Arthrobacter sp. and Mycobacterium sp. were isolated from 

hydrocarbon-contaminated soils by enrichment on either crude oil or individual 

hydrocarbons, as the sole carbon source. The strains were selected based on their ability 

to grow in medium containing crude oil, used engine oil or both. Their ability to 

degrade hydrocarbon contamination in the environment was investigated using soil 

samples contaminated with used engine oil. Table 2.9 shows selected literature on 

bioremediation technique.  
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Table 2.9  Literature on bioremediation techniques for treating contamination. 

 
 

      Type of Contaminate                           Bioremediation techniques                          Description                                                References                 

 
               

   

            Diesel fuel                                      Biostimulation                         Release fertilizer 0, 250, 500, 750 mg N Kg 
-1

           (Komilis et al., 2010) 

                                                                                                      The composition of NPK inorganic fertilizer (18: 8: 17)       (Silva-Castro et al., 2012)     

      

 

           Petroleum hydrocarbons                 Bioventing                                      Oxygen/air is added to soil vapor phase                         (FRTR, 2005)             

                                                                                                                                       to stimulate aerobic condition 

           

           Organic contaminants                     Biosparging                         oxygen/air is added below groundwater surface   (Doelman and Breedveld, 1999)   

             

           Arabian light crude oil                   Biostimulation with inoculations                       Slow release fertilizer                               (Oh et al., 2001)  

                                                                                                                                                   C: N: P (100:10:3)                                                                                              

       

           Crude oil                                        Natural attenuation and biostimulation               Add fertilizer N-P-K                            (Chaîneau et al., 2005) 

                                                                                                                                         (850-85-240 μg/g respectively) 

 

      

       Some organic and                                Solidification                                               Physically bounding or enclosing                     (FRTR, 2005)  

       inorganic pollutants                                                                                                contaminants within stabilized mass                                                                                                                                                                                                                                                
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Table 2.9 Cont’d 

 
 

      Type of Contaminate                           Bioremediation techniques                       Description                                                References                 

 
              

       Petroleum hydrocarbons                        Biostimulation                                   Wood chips 1:1 (v/v)                                       (Brandt, 2006)     

                                                                                                                                 mixed wood chips and 

                                                                                                                                 sewage sludge 4:1 (v/v) 

 

 

         Diesel fuel                                    Natural attenuation, biostimulation               250 mg/kg (NH4)2SO4            

                                                                     and bioaugmentation                              100  mg/kg K2HPO4                                                  ( Bento et al., 2005)                

                                                                                                                                    40 ml of 2.6 X 10
8
 cells ml

-1
  

                                                                                                                                    of a bacterial consortium 

 

        Lubricating oil                                       Biostimulation                        Banana skin, spent mushroom compost                  (Abioye et al., 2012b) 

                                                                                                                               brewery spent grain 10% (w/w)        

                                      

                                                                                                                                                                                            

           Creosote                                              Bioagumentation                 Organisms (Photobacterium phosphoreum)       (Fritsche and Hofrichter, 2005)  

 

 

           Diesel fuel                                          Biostimulation                                 Add fertilizer N-P-K                                      (Mariano et al., 2007)                                                                                                                                                                    

                                                                                                                           C: N: P (100:15:1)                                       
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2.6.4 Cost of bioremediation 

 

Costs data for remediation sites are limited. This section summarizes the available 

data on bioremediation projects including in-situ and ex-situ of soil remediation (Table 

2.10). In average the cost of enhanced remediation is range from 30 US dollar to 100 US 

dollar per cubic meter of soil. Many factors can affect the cost such as soil type, quantity 

and types of contaminant and amendments used (FRTR, 2012). 

 In-situ bioremediation techniques often costs less compare to other remedial options.  

 

Table 2.10 Data cost for bioremediation projects 

Site name Contaminants Volume 

treated (cy) 

Technology 

cost ($) 

Comments 

Hill AFB, US PHC 1,667 551,000 

 

Direct injection 

of air (In -situ 

bioremediation) 

Superfund 

Site, US 

PAHs 10,500 2,550,000 

 

Slurry-phase 

bioreactor 

system(ex-situ 

bioremediation) 

Bonneville, 

US 

BTEX, PHC 5,000 863,000 Early 

bioventing 

application; 

combined with 

SVE 

Texas Gulf 

Coast Site 

cVOCs NR 630,000 

 

Recirculation 

with addition of 

methanol; 

anaerobic; 

intended as 

a precursor to 

monitored 

natural 

attenuation 

NR           Not reported 

PAHs       Polycyclic Aromatic Hydrocarbons 

cVOCs     Chlorinated Volatile Organic Compound 

cy            Cubic yards 

SVE         Soil Vapor Extraction 

BTEX      Benzene, Toluene, Ethylbenzene 
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2.6.5 Phytoremediation (Phytotechnology) 

 

Phytoremediation, a green technology, is quite a novel technique which uses plants to 

remediate contaminated sites such as soil, sediment, surface and groundwater (Kim, et 

al., 2005). Phytoremediation is relatively easy to implement and is cost-effective at 

minimal maintenance overheads, and as long as the impacted site can support plant 

growth, a remediation scheme can be used anywhere (Couto et al., 2012). 

Phytoremediation appears effective, inexpensive and attractive because in contrast to 

most other remediation technologies, it is not invasive and, in principle, delivers intact 

and biologically active soil (Wenzel, 2008).  

Phytoremediation has a good image and is often, more cost effective than other 

techniques (Trapp and Karlson, 2001). Phytotechnology can be used to remediate heavy 

metals, radioactive materials, and petroleum hydrocarbon. It might be because this 

method is very slow and takes time (some time more than 10 years), which makes it 

difficult to evaluate in the early state. Some basic information on the potential 

application of phytoremediation is as follows, 

i. Common and scientific name of plants 

ii. Field or laboratory experiment 

iii. Morphology and growth form of plant  

iv. Evaluated potential of plant survival in high concentrations of hydrocarbon 

v. Mechanism of phytoremediation 

vi. Types of microorganism which are associated with the plants 

vii. Age of plants at first exposure  

viii. Availability of requirements for phytoremediation 

ix. Contaminated storage sites of plants ( i.e. root, steam, leaf or no storage)  

x. Cultural information of plants and growth duration 
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Phytoremediation is not applicable for all phytotoxicity chemicals and where 

contaminants are in high concentrations or for specific chemicals (Andersen, 2006). 

Furthermore, phytoremediation is limited to contamination within the depth of the 

rhizosphere or the depth of influence from evapotranspiration, depending on the most 

important removal mechanisms in the specific phytoremediation application (Andersen, 

2006). Microbe-assisted phytoremediation, including rhizoremediation, appears to be 

particularly effective for removal and/or degradation of organic contaminants from 

impacted soils particularly when used in conjunction with appropriate agronomic 

techniques (Gerhardt et al., 2009). Major drawbacks of phytoremediation include the 

fact that the detoxification of organic pollutants is often slow and if decomposition is 

not complete, toxic compounds may accumulate in plant tissue and be released into the 

environment or enter food chains (Perelo, 2010). Some major advantages and 

disadvantages of phytoremediation are shown in Table 2.11. 
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Table 2.11 Advantages and disadvantages of phytoremediation technology 
 

 
         Advantages                                        Disadvantages  

 
 

    Environmentally friendly                 Climate dependant 

 

    Many mechanisms for removal         Effectiveness depends on the nature of chemicals  

                                                                     

    Relatively low cost                            Results are variable               

 

    Easily maintained and                       Limited to sites with lower contaminant         
     implemented                                       concentrations 

  

    Faster than natural attenuation            Influenced by soil and climatic conditions  

                                                                  of the site 

 

     High public acceptance                        Effective depth limited by plant roots  
                                  

     Fewer air and water emissions             Effects on food web might be unknown  

          

    Several mechanisms for removal          Slower than mechanical treatments 

  

     Potential to reduce gas emission          Longer time to remediate       

 

     Reduce dust emission                           Phytotoxicity limitations  

           

 
 

 

 

Coupling of phytoremediation of contaminated soil with soil amendments such as 

organic matter, compost, phosphate, fertilizers, Fe, Mn oxyhydroxides and clay minerals 

usually reduce the mobility of contaminants in soil.   
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2.6.6 Costs of phytoremediation 

 

An estimate indicates that the general cost of phytoremediation for one hectare with a 

depth of 15 cm is about 2,500 to 15,000 US dollars which is based on the cost of 17 to 

100 US dollars for each cubic meter. A recent estimate put the cost at approximately 

300 US dollars per m
3
 per year to phytoremediate a site contaminated with oil and 

organic compounds using deep-rooted plants and trees (Frick et al., 1999). There are 

various ways to reduce the cost of phytoremediation, for example, during the in-situ 

phytoremediation process, plants using solar energy as a source of energy helps to 

reduce the cost of phytoremediation. Maintaining a site for 10 years will help to spread 

the cost over a longer period.  

 

2.6.7 Methods of phytoremediation application 

I. In-situ phytoremediation 

II. In-vivo phytoremediation 

III. In- vitro phytoremediation 

 

I. In-situ phytoremediation 

In situ phytoremediation involves placement of live plants in contaminated surface 

water, soil or sediment, or in soil or sediment that is in contact with contaminated 

ground water for the purpose of remediation. In this approach, the contaminated 

material is not removed prior to phytoremediation (Adadzi, 2010; Sun et al., 2011). If 

the phyto-mechanism consists of only uptake and accumulation as opposed to 

transformation of a contaminant, the plants may be harvested and removed from the site 

after remediation for disposal or recovery of the contaminants (Adadzi, 2010; 

Auxiliadora and Fereres, 2003). A requirement of the in-situ approach is that the 

contaminant must be physically accessible to the roots. 
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II.  In-vivo phytoremediation 

For sites where the contaminants are not accessible to the plants, such as the  

contaminants in deep aquifers, an alternate method of applying phytoremediation is 

possible (Adadzi, 2010). In this approach, the contaminant is extracted using mechanical 

means, then it is transferred to a temporary treatment area where it can be exposed to 

plants selected for optimal phytoremediation (Adadzi, 2010). After treatment, the 

cleansed water or soil can be returned to its original location and the plants may be 

harvested for disposal if necessary (Adadzi, 2010). Generally, this approach is more 

expensive than the in-situ phytoremediation. 

 

III.  In-vitro phytoremediation 

This method is usually via components of live plants, like extracted enzymes. In 

theory, this approach could be applied in situ under some situations, e.g. applying plant 

extracts to a contaminated pond or wetland, or through use of an enzyme impregnated 

porous barrier in a contaminated ground water plume (Adadzi, 2010). Theoretically, this 

approach is the most expensive method of phytoremediation because of the costs of 

preparing/extracting the plant enzymes; however, in some plants, such as tarragon, 

(Artemisia dracunculas var satiya), exudates are released under stress that could result 

in reduced production costs (Adadzi, 2010; Susarla et al., 2002). 

 

2.6.8 Mechanisms of phytoremediation  

 

There are various mechanisms by which plants may remediate contaminated sites 

(Adadzi, 2010).  Plants act as solar-driven pumping and filtering systems as they take up 

contaminants (mainly water soluble) through their roots and transport/translocate  them 

through various plant tissues where they can be sequestered, volatilized or metabolized 

(Fulekar, 2010). Plants utilize different types of mechanisms for dealing with 
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environmental pollutants in soil. The mechanisms of phytoremediation include 

biophysical and biochemical processes like adsorption, transport and translocation, as 

well as transformation and mineralization by plant enzymes (Figure 2.10) (Pilon-Smits, 

2005). Plants have been shown to be able to degrade halogenated compounds like 

trichloroethylene (TCE) by oxidative degradation pathways, including plant specific 

dehalogenases (Perelo, 2010). Dehalogenase activity was observed to be maintained 

after the plants were dead. Enzymes can become bound to the organic matrix of the 

sediment as where plants die, they decay and are buried in the sediment, thus 

contributing to the dehalogenase activity observed in organic-rich sediments (Perelo, 

2010). A variety of contaminant-degrading enzymes can be found in plants. These 

include peroxidases, dioxygenases, P450 monooxygenases, laccases, phosphatases, 

dehalogenases, nitrilases, and nitroreductases (Pilon-Smits, 2005). Phytoremediation is 

based upon the basic physiological mechanisms taking place in higher plants and 

associated microorganisms, such as transpiration, photosynthesis, metabolism, and 

mineral nutrition (Marmiroli et al., 2006). 
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Figure 2.10 Scheme of different mechanisms of contaminant removal by plants: 

Pollutants in soil and groundwater can be taken up inside plant tissues (phytoextraction) 

or adsorbed to the roots (rhizofiltration); pollutants inside plant tissues can be 

transformed by plant enzymes (phytotransformation) or can be volatilized into the 

atmosphere (phytovolatilization); pollutants in soil can be degraded by microbes in the 

root zone (rhizosphere bioremediation) or incorporated in soil material 

(phytostabilization) (Yousaf, 2011). 

 

 

Plants grow their roots in soils, sediments and water, and roots can take up organic 

compounds and inorganic substances; roots can stabilize and bind substances on their 

external surfaces when they interact with microorganisms in the rhizosphere (Marmiroli 

et al., 2006). Uptaken substances may be transported, stored, converted, or accumulated 

in the different cells and tissues of the plant (Marmiroli et al., 2006). Finally, aerial parts 

of the plant may exchange gases with the atmosphere allowing uptake or release of 

molecules (Marmiroli et al., 2006). Plants often use pathways and enzymes similar to 

those of mammals, which lead to a breakdown of the oil compounds (Figure 2.11) (Van 

Aken, 2008). 
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Figure 2.11 hypothetical pathways representing the metabolism of trichoroethylene 

(TCE) in plant tissues. 

 

i. Phytoaccumulation/ Phytoextraction 

Phytoextraction involves the removal and subsequent storage of contaminants by the 

plant and is often applied to the exclusion and storage of metals that may undergo 

speciation in plants, but cannot be metabolized (Fulekar, 2010). It can also be explained 

to mean the ability of plants to take up contaminants into the roots and translocate them 

into the aboveground shoots or leaves (Figure 2.12). Once a chemical is taken up, the 

plant may store the chemical and/or its by-products in the plant biomass via lignification 

(covalent bonding of the chemical or its by-products into the lignin of the plant), 

sequester it into the cell vacuoles of aboveground tissues (as opposed to in root cells as 

part of phytosequestration, see Section (Yousaf, 2011). Sorption properties and 

solubility of organic compounds are major factors that affect the rate of uptake of 

organic compounds by plants. One characteristic that has been shown to correlate to 

uptake into a plant is log Kow (octanol-water partition coefficient) (Yousaf, 2011). 

Specifically, organic chemicals having log Kow values between 1 and 3.5 have been  
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shown to enter into plants (Yousaf, 2011). Plant roots contain an organic membrane 

with a lipid bilayer which makes it partially hydrophobic (Figure 2.12). Therefore, 

hydrophobic chemicals with log Kow more than 3.5 are not sufficiently soluble in the 

transpiration stream or are bound so strongly to the surface of the roots that they could 

not be easily translocated into the plant xylem (Yousaf, 2011). On the other hand, 

chemicals with low log Kow are not sorbet by roots, due to their high polarity. 

 

Figure 2.12 Phytoextraction mechanisms. 

 

 

ii. Phytodegradation/ Phytotransformation 

Phytodegradation can be explained as a series of processes that plants utilize to 

metabolize the contaminants (metabolism within plant). Components of this mechanism 

are often utilized by plants exposed to herbicides and thus have been researched 

extensively (Abhilash et al., 2009). Specifically, phytodegradation, also called 

“phytotransformation,” refers to the uptake of contaminants with the subsequent 

breakdown, mineralization, or metabolization by the plant itself through various internal 
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enzymatic reactions and metabolic processes (Figure 2.13) (Yousaf, 2011).                       

In the phytodegradation mechanism, plant enzymes are the main key in degradating 

contaminants such as metals, herbicides, and chlorinated solvents from soil, sediment 

and groundwater.  For accruing phytodegradation, the compounds must be taken up by 

plants. One study identified 70 organic chemicals which could be taken up and 

accumulated by trees and plants (Feroz et al., 2012). However, phytodegradation can be 

limited by root depth. Generally, contaminant degradation due to enzymes produced by 

a plant can occur in an environment free of microorganisms (for example, an 

environment in which the microorganisms have been killed by high contaminant levels) 

(Feroz et al., 2012). Plants are able to grow in sterile soil and also in soil that has 

concentration levels that are toxic to microorganisms (Feroz et al., 2012). Thus, 

phytodegradation potentially could occur in soils where biodegradation cannot (Feroz, et 

al., 2012).  

 

 

 

 

 

 

 

 

 

Figure 2.13 Phytodegradation mechanisms. A: enzymatic activity of plant,                     

B: photosynthetic oxidation (Yousaf, 2011). 
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iii. Phytostabilization  

Phytostabilization is the use of plants to immobilize or make insoluble pollutants in 

contaminated sites by roots or within the root zone (rhizosphere). This mechanism 

prevents immigration into ground water and reduces the mobility of contaminants. 

However, hydraulic control to prevent leachate migration can be achieved because of 

the large quantity of water transpired by plants. At a high level of concentration toxic 

effects may prevent plants from growing. Therefore, plants should be able to tolerate 

high levels of contaminants, have high production of root biomass with the ability to 

immobilize contaminants, and the ability to hold contaminants in the roots (Figure 

2.14). 

 

Figure 2.14 Phytostabilization mechanisms. 

 

 

 



 

79 

 

iv.  Rhizodegradation 

Rhizodegradation can be described as the transformation of contaminants by resident 

microbes in the plant rhizosphere (i.e., the microbe-rich zone in intimate contact with 

the root vascular system) (Abhilash, et al., 2009). The presence of plants on 

contaminated sites can drastically affect soil redox conditions and organic content (often 

through the secretion of organic acids from roots),  as well as soil moisture  (Abhilash, 

et al., 2009; Fulekar, 2010). Rhizodegradation is also referred to as microbe-assisted 

phytoremediation or rhizoremediation (Wenzel, 2008). Rhizoremediation is emerging as 

one of the most effective means by which plants can enhance the remediation of organic 

contaminants, particularly large recalcitrant compounds. 

Complex interactions involving roots, root exudates, rhizosphere soil and microbes 

do result in degradation of organic contaminants to non-toxic or less-toxic compounds.  

 As much as 40% of a plant’s photosynthate can be deposited in the soil as sugars, 

organic acids, and larger organic compounds (Kumar et al., 2006). These compounds 

are commonly used as carbon and energy sources by soil microbes (Chaudhry et al., 

2005; Singer et al., 2004). Plant roots can also release degradative enzymes into the 

rhizosphere. The relationship between the plant root enzymatic and microbial 

interactions in degrading organic contaminants is shown in Figure 2.15 as described by 

Rao et al., (2010). Apart from the direct release of degradative enzymes, plants are able 

to stimulate the activities of microbial degrader organisms/communities (Wenzel, 2008). 
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Figure 2.15 Schematic representations of the enzymatic and microbial activities 

responsible for the enhanced remediation in rhizospheric zone (Rao et al., 2010). Plant–

degrader interactions that are thought to be most relevant for the success of 

rhizodegradation are shown in Figure 2.16 by (Wenzel, 2008). This is important, 

especially where microorganisms cannot utilize the pollutant as a sole carbon source, for 

instance, in the aerobic degradation of trichloroethylene (Wenzel, 2008).   

 

 

 

 

 

 

Figure 2.16 Plant-degrader interactions potentially involved in rhizodegradation (solid 

line arrows indicate positive, dashed line arrows indicate negative influence on the 

tested targeted process or component) (Wenzel, 2008). 

 

 

v.    Phytovolatilization 

Phytovolatilization is one of the main mechanisms which can accrue in the 

phytoremediation process. Phytovolatilization is the uptake and transpiration of a 

contaminant by a plant, by the release of the contaminant or a modified form of the 
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contaminant into the atmosphere from the plant through contaminant uptake, plant 

metabolism, and plant transpiration (Feroz et al., 2012). In the phytovolatilization 

process metabolic chemical compounds are released into the atmosphere through plant 

transpiration (Yousaf, 2011). Table 2.14 indicates a summary of the various 

phytoremediation processes (EPA, 2000). 
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Table 2.12 Phytoremediation overview 

 
    

        Mechanisms                    Media                      Contaminants                      Plant used                          Results                                   References           

 
 

    Phytodegradation          Soil, Sediment,       Organic compounds,               Algae, stonewort,        Contaminant destruction           White et al., (2006) 

                                           Groundwater          chlorinated solvents                hybrid poplar,  

                                                                           phenols, herbicides,                bald, cypress,      

                                                                                                                           black willow,   

 

    Rhizodegradation               Soil                  Crude petroleum oil                  Vicia faba                     47% of total petroleum                 Diab, (2008)       

                                                                                                                                                                hydrocarbon was degraded    

 

 

    Phytoextraction                Soil                    Aged PAHs from                     Rye grass                       PAHs removal in 12 months 

                                                                        manufacturing.                                                               Sweet clover  was higher  

                                                                                                                                                                in the presence of                       Parrish et al., 2004 

                                                                                                                                                                 plants, 9% to 24% compared  

                                                                                                                                                                 to 5% without plant.  

 

 

    Rhizodegradation            Soil                   Petroleum hydrocarbons             Carex exigua,             70% loss of total petroleum  

                                                                                                                        Panicum virgatum,       hydrocarbons was recorded          Euliss et al., (2008) 

                                                                                                                                                             after one year growth of these  

                                                                                                                                                             plants  in contaminated soil. 

                                    

     Phytovolatilization        Groundwater, soil,       Chlorinated solvents       Poplars, alfalfa,         Contaminant extraction from      Singh and Lin (2009)                                                                                                                                                                  

                                               Sediment                                                            black locust              media and release and release to air                                           
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2.6.9 Influence of Environmental Factors on Phytoremediation 
 

 

A number of environmental factors affect the phytoremediation process. Water content 

in soil and wetlands affects plant/microbial growth and the availability of oxygen required 

for aerobic respiration (Frick et al., 1999). Some other factors such as, type of soil, age and 

type of plants, nutrients, toxicity of contaminates, water and oxygen availability, chemical 

properties of soil  (pH, CEC), depth of contamination which is important in terms of where 

contaminants can be treated in the rhizosphere or by plant uptake  are important 

considerations (Kamath et al., 2004). The inorganic mineral nutrients that are most often 

reported to limit the breakdown of petroleum hydrocarbons in soil are nitrogen and 

phosphorus (Gaskin, 2010). In some cases, petroleum hydrocarbons are not readily 

desorbed, and are therefore not available for phytoremediation (Gaskin, 2010). 

 

2.6.10 Interaction between plants and microorganisms 

 

The efficiency of phytoremediation depends mostly on the establishment of robust plant-

microbe interactions; however, little is known about how these interactions are influenced 

by petroleum pollution (Nie et al., 2011). Indeed, interaction between bacteria and plant 

will affect plant growth either directly or indirectly. Plants, through their ‘rhizosphere’, 

could support the hydrocarbon-degrading microbes that assist in phytoremediation in the 

root zone (Nie et al., 2011). For example, root activities in alfalfa and perennial ryegrass 

increase the number of rhizobacteria capable of petroleum degradation in the soil (Nie et 

al., 2011). Then microbes can enhance soil nutrient availability to the plants. Petroleum 

hydrocarbon is identified as harmful not only for plant growth but also to the microbe’s 

community. In order to better understand the interactions of                                          
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petroleum hydrocarbons on microbe-plant there is a need to improve the feasibility and 

sustainability of phytoremediation. 

 

2.6.11 Plant Selection Criteria 

 

Plant selection is probably one of the most important factors determining the success or 

failure of the phytotechnology project (Team, 2001). After evaluating the conditions for 

plant growth at sites, the next stage is to choose the plant which can survive under the site 

conditions. A basic knowledge about the literature of plants can help to design a 

phytodegradation project. Some typical information which is needed about plants is the 

specific and common names, growth habit, tolerance of plants in various conditions such as 

temperature, diseases and moisture. Native plants and crops can be evaluated as options to 

choose from the phytodegradation process due to their being suitable for the climatic 

conditions of the region. Therefore, plants should be native to the area in which they are 

used and they should be tolerant to weather and soil conditions (Reynoso-Cuevas  et al., 

2008). As cost is an important factor, plants that require little attention are preferable 

(Reynoso-Cuevas, et al., 2008). Several types of plants have been identified for their 

potential for use in the phytoremediation process. A comprehensive list of plants that has 

proved positive in phytoremediation of organic compounds is listed in Table 2.13. The 

most common plants are leguminous and grasses that have shown their potential in 

phytoremediation (Agamuthu, et al., 2010). Grasses are a suitable option to apply in 

phytoremediation due to the high root surface area (per m
3
 of soil) which may penetrate 

into the soil (depth of up to 3 meter). Leguminous plants also have more advantages 

compared with non-leguminous, because of their ability of them to fix N compared with 

other plants for limited supplies of available soil nitrogen at oil-contaminated sites (Frick, 
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et al., 1999). Some characteristics of plants which make their suitable for remediation of 

hydrocarbon compounds are as follow: 

 Plants high in phytotoxicity. 

 Plants able to adapt to different climatic conditions and are able to be destroyed 

after remediation. 

 Plants have with the ability to transfer a high rate of oxygen to steam, root and leaf. 

 Plants able to accumulate and absorb toxic substance (Muratova, 2003). 
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Table  2.13  Plants used for phytoremediation of petroleum hydrocarbon 
 
 

           Plant species                                                                            References 
 

carrot (Daucus carota)                                                   (Wild and Jones, 1992) 

side oats grama (Bouteloua curtipendula)
 
                           (Aprill and Sims, 1990) 

canada wild-rye (Elymus canadensis)                                  (Aprill and Sims, 1990)  

soybean (Glycine max)
 
                                              (Dominguez-Rosado and Pichtel, 2005) 

alfalfa (Medicago sativa L.)                                                (Muratova et al., 2003) 

perennial ryegrass (Lolium perenne L.)                               (Merini et al., 2009)                 

Indiangrass (Sorghastrum nutans)
 
                                      (Aprill  and Sims, 1990) 

winter rye (Secale cereale L.)                                            (Aprill and Sims, 1990)     

sorghum (Sorghum bicolor)                                       (Dominguez-Rosado and Pichtel, 2005)  

annual ryegrass (Lolium multiflorum)                                 (Sung et al., 2003) 

switchgrass (Panicum virgatum)
 
                                        (Aprill and Sims, 1990)                      

poplar trees (Populus deltoides x nigra)                              (Jordahl et al., 1997)                           

Agropyron desertorum                                                       (Sharifi et al., 2007)  

 Rice (Oryza sativa L. Cv.)
                                                                            

(Nwaogu et al., 2012)                       
        

Linum usitatissimum                                                          (Sharifi et al., 2007) 

Tall fescue (Festuca arundinacea) 
           

                             (Sharifi et al., 2007) 

Thuja orientalis 
                                                               

                 (Harekrushna and Kumar, 2012) 

Western wheatgrass (Agropyron smithii)
                                             

(Aprill and Sims, 1990)           

Catalpa ovate 
                                                 

                               (Harekrushna and Kumar, 2012)    

  
Pinus densiflora

             
                                                   (Harekrushna and Kumar, 2012)             

   
lettuce (Latuca sativa)

                                                                 
              (Banks et al., 2003)           

blue grama (Bouteloua gracilis)
 
                                         (Aprill and Sims, 1990)           

Spinach ( Spinacia oleracea L. cv.)
                                                    

 
   

(Nwaogu et al., 2012)                       
 

Sunflower (Helianthus annu us. L.)                                   (Nwaogu et al., 2012)   

Red clover (Trifolium pretense L.)
         

                               (Nwaogu et al., 2012)                        
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2.6.12 Plant species used in this study 
 

 

This study was conducted to select two local plants to remediate diesel fuel in soil. The 

plants used are described as follow; 

 

i. Dracaena reflexa 

 

Dracaena reflexa, commonly called Reflexed Dracaena, Malaysian dracaena, Song of 

Jamaica, Song of India or Pleomele are spices of from Dracaena. This plant (Plate 2.1) can 

be grown as a small bush. It is a plant with dark green colored leaves with a high drought 

tolerance which can be grown in part shade. It grows in most tropical and sub tropical 

regions of Asia and Central America (Gilman, 1999). This plant is easy to grow as it is 

tolerant to different weather conditions and is also easy to propagate by stem cuttings. 

Dracaena shows a high ability to remove heavy metals like zinc, copper and chromium 

(Tan et al., 2007). The Dracaena is one of the plants used in the NASA Clean air 

study which has shown to help remove formaldehyde. 

Plate 2.1 Dracaena reflexa. 



 

88 

 

Margon, (2011) indicated that Dracaena is helps to filter the air in pollutants. Saiyood et al., 

(2010) reported that Dracaena fragrans and Dracaena sanderian as tropical and evergreen 

plants with fibrous root systems that have the ability to uptake 50% of the bisphenol A 

(BPA). 

 

ii. Podocarpus polystachyus 

Podocarpus polystachyus is a number of the Podocarpus family with the local name of 

Sea teak.  The sea teak is a conifer. This plant is an evergreen shrub or tree that can reach 

up to a 20 meter hight (Plate 2.2). P. polystachyus is cultivated in Malaysia, Thailand, 

Singapore and Western New Guinea. Maranho et al. (2006) has indicated that there is a 

large variability of leaf anatomy related to pollution and petroleum pollution can affect the 

leaf structure of Podocarpus. In the following study, Maranho et al. (2009) investigated 

effects of the pollution by petroleum on the tracheids along the stem of Podocarpus 

lambertii and reported that there is a clear reduction in the length, diameter and cell wall 

width of the tracheids.  

Plate 2.2. Podocarpus polystachyus. 
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According to Burkill (1993), the timber is small but it is still used for building houses, carts 

and for various other uses. Indeed, the Malay name for the tree is Jati Laut (translating to 

Sea teak) as well as Setada or Sentada . Burkill notes that medicinal uses possibly ascribed 

to it include the use of the leaves as an alternative to treat rheumatism and painful joints.  

 

2.7 Biodegradation Kinetics 

 

Many scientists have studied the biodegradation kinetics of organic pollutants. Basically, 

modeling the bioremediation of contaminated soils can be extremely complicated (Cutright, 

1995).  Instead, the primary metabolic function, whether bacterial or fungal in nature, is to 

grow and sustain more of the microorganisms (Maletić et al., 2009). Therefore, the 

formulation of a kinetic model must start with the active biomass and factors, such as 

supplemental nutrients and oxygen source that are necessary for subsequent biomass 

growth (Maletić et al., 2009; Medjor  et al.,  2012; Pala et al., 2006). Studies of the kinetics 

of the bioremediation process proceed in two directions: (1) the first is concerned with the 

factors influencing the amount of transformed compounds with time and (2) the other 

approach seeks the types of curves describing the transformation and determines which of 

them fits the degradation of the given compounds by the microbiological culture in the 

laboratory microcosm and sometimes in the field (Maletić, et al., 2009). Figure 2.17 shows 

a schematic image of kinetics of biodegradation. 
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Figure 2.17 Kinetics of Biodegradation 

 

The existing kinetic measurement technique was developed in recent years (Eliosov et 

al., 2000). A literature survey shows that studies of biodegradation kinetics in the natural 

environment are often empiric, reflecting only a basic level of knowledge about the 

microbiological population and its activity in a given environment (Maletić, et al., 2009). 

One such kinetic model which is used in this study to estimate the biodegradation rate is as 

follows: 

y = ae 
-kt

    (Yeung et al., 1997)                                               (Eq 2.1) 

where; 

y = residual hydrocarbon content in soil (g kg
-1

) 

a = initial hydrocarbon content in soil (g kg
-1

),  

k = biodegradation rate constant (d
-1

) and  

t= is time (day) 
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The half-life was the time after which half of the original amount of substance present had 

been chemically transformed (Fritsche and Hofrichter, 2005), Half-life was then calculated 

from the model of Yeung et al., (1997) as 

Half life = ln (2)/k                                                               (Eq 2.2) 

 This model was based on the assumption that the degradation rate of hydrocarbons 

positively correlated with the hydrocarbon pool size in soil (Yeung et al., 1997). Another 

kinetic model often used to determine the rate of biodegradation of contaminants from soil 

is; 

 

dC   = k Cn                                                                            (Eq 2.3) 

dt 

 

where C is the concentration of the substrate, t is time, k is the rate constant of the 

compound degradation and n is a fitting parameter (mostly taken to be unity) (Rončević et 

al., 2005). Using this model, one can fit the curve of substrate removal by varying n and k 

until a satisfactory fit is obtained (Rončević et al., 2005). It is evident from the equation 

that the rate is proportional to the exponent of substrate concentration (Rončević et al., 

2005). Researchers involved in kinetic studies do not always report whether the model they 

used was based on theory or experimental and whether the constants in the equation have a 

physical meaning or if they just serve as fitting parameters (Rončević, et al., 2005).  

Various investigators obtained different values for the rate constant of substrate 

degradation: for n-alkanes, 0.14 to 0.61 day
-1

 (Holder et al.,1999); for crude oil, 0.0051 to 

0.0074 day
-1

 (Seabra et al., 1999); and for PAHs, 0.01 to 0.14 day
-1

 (Hinga, 2003; Holder, 

et al., 1999; Winningham et al., 1999). Chein et al., (2010) reported the highest first order 

kinetics TPH decay rate and removal ratio in soil amended with microbial inoculate at  
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0.015/day and 85%, respectively. Selection of a suitable kinetic model and rate constants 

are necessary for accurate predictions of the concentrations of hydrocarbons with time in 

soil after a spill (Rončević, et al., 2005). Kinetic constants are important design parameters 

to determine the degradation of a substrate in biological treatment systems. The rate of 

hydrocarbon degradation depends on various factors. Remediation time can be roughly 

determined from the degradation step of hydrocarbons in the contaminated soil samples 

(Maletić, et al., 2009). Some experimental studies have shown that biodegradation kinetics 

can be approximated with first order kinetics (Abioye et al., 2010; Collina et al., 2005; 

Namkoong, et al., 2002; Rončević, et al., 2005).  

 First order kinetics such as the well known Michaelis–Menten kinetic model is the most 

often used equation for representation of the degradation kinetics (Abioye et al., 2012b; 

Hohener et al., 2003; Pala et al., 2006). Few works have been dedicated to investigate the 

kinetics of soil bioremediation (Abbassi and Shquirat, 2008). Information on kinetics is 

extremely important because it characterizes the concentration of the chemical remaining at 

any time and permits prediction of the levels likely to be present at some future time 

(Abbassi and Shquirat, 2008). First-order kinetics is commonly used to describe 

biodegradation in environmental fate models because mathematically the expression can be 

incorporated easily into the models (Abbassi and Shquirat, 2008). Hwang et al., (2001) 

reported that the average first order kinetic rate constant of diesel oil was 0.099 per day, 

during the biodegradation of diesel contaminated soils by using composts. Antizar- 

Ladislao et al., (2005) investigated the biodegradation of 16 polycyclic aromatic 

hydrocarbons using laboratory conditions at different temperatures. They found the results 

of the first order kinetic suitable to describe bioremediation process which ranged between 

0.009 day
-1

 at 70 °C and 0.013 day
-1

 at 38°C. Li et al., (2006) used a Luong model to 
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estimate bioreaction kinetics and found a maximum growth rate of μmax = 0.34 h
-1

 and 

saturation concentration Ks = 0.041 mM/l. 

 

2.8 Stable isotopes: A tool to monitor biodegradation process 

 

 Compound specific isotope analysis (CSIA) is an analytical method that measures the 

ratios of naturally occurring stable isotopic ratios in environmental samples (EMD, 2011). 

CSIA is a new approach in environmental investigation settings. Measuring hydrogen, 

oxygen, nitrogen and carbon isotopes can be useful to get relevant information about 

environmental remediation such as, the extent of degradation or potential of contaminated 

sources.  Complex compounds are reduced to simple molecules prior to measurement; for 

example, organic compounds are combusted to CO2, SO2, H2 and N2 gaseous (Table 2.14). 

Since the isotopic ratio in the compound is a function of the starting material and the 

manufacturing process as well as the degradation of that compound after it was made, 

CSIA has applications in environmental forensics, biodegradation, and abiotic degradation 

(EMD, 2011). 

            Table 2.14    Stable isotope fraction ratios 

Atom Analyzed gas Ratio 

Hydrogen  H2 
2 

H/ 
1
H 

Chlorine  Cl2 
37 

Cl/ 
35

Cl 

Carbon CO2 
13 

C/ 
12 

C 

Oxygen CO 
17 

O/ 
18

O 

Sulfur SO2/H2S 
34 

S/ 
32

S
 

Nitrogen N2 
15 

N/ 
14

N 
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Isotopic analysis is used in petroleum exploration and geology. All contaminants made of 

various elements (multiple) and atoms change in isotopic ratios which lead to breaking of 

bounds between atoms. During the biodegradation of a compound, the chemical process in 

both biological and abiotic reactions causes change in the isotopic ratios in compounds and 

CSIA is used to measure these changes. CSIA can be used to gain information, make 

decisions about monitoring, and remedy selection. It can also answer to some questions 

such as the ones given 

- Has the remediation process occurred? 

-  Has biological degradation occurred? 

- Is there evidence of a slow rate of degradation? ( i.e. accumulation ) 

- Is monitored natural attenuation feasible?  

 

A number of instruments such as the gas chromatograph (GC) and an isotope ratio mass 

spectrometer (IRMS) are used in laboratory method to measure CSIA. Stable isotope 

analyses were performed using SERCON GEO 20–20 Continuous Flow Isotope Ratio Mass 

Spectrometer (CF–IRMS). The continuous flow mass spectrometry offers on–line sample 

preparation, smaller sample size, faster and simpler analysis and is cost effective compared 

with the Dual Inlet Isotope Ratio Mass Spectrometer (DI–IRMS). CF–IRMS can be also 

interfaced with other preparation techniques, including elemental analyzer (EA), the gas 

chromatography (GC) and recently, the liquid chromatography (LC) (Figure 2.18). 
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Figure 2.18 Schematic diagram of an elemental analyser (EA) in series with IRMS for the 

analysis of carbon isotope ratios (SERCON, 2007). 

 

 

Thus, this method is a very sensitive technique and also since the differences between 

isotopic ratios are so small, it is more convenient to report them as “per mil” (parts per 

thousand, or ‰) (EMD, 2011).   

The value of ratios is calculated by following this equation (Reinnicke  et al.,  2012).  

  

                       δ 
13

C = (
13

C/
12

CSample - 
13

C/
12

CStandard )                                 (Eq 2.4) 

                     
                                           13

C/
12

CStandard 
 

 

The natural abundance of stable isotopes of essential elements involved in the 

biodegradation processes (carbon and oxygen) may be used to monitor (1) the occurrence 

of in-situ biodegradation, (2) the pathways of degradation, and (3) the rates and extent of 

biodegradation (Aggarwal et al., 1997). Indeed, one of the primary challenges to determine 

the efficacy of the bioremediation process as an option to remediate contaminated sites is 
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monitoring its progress in the subsurface (Conrad and Depaolo, 2004). The primary product 

during the degradation of organic compounds is CO2. Increased CO2 concentrations can 

indicate that the degradation is accruing. However, hydrocarbon compounds are generally 

relatively depleted in 
13

C (low δ
13

C values) relative to most other sources of C (Conrad and 

Depaolo, 2004). Therefore, microbial metabolism of compounds from hydrocarbon tends to 

produce soil gas CO2 with low δ
 13

C values where significant degradation of hydrocarbons 

is occurs (Conrad and Depaolo, 2004). Monitoring of in situ biotransformation using stable 

isotopes may be achieved by the analysis of isotopic compositions of the products of 

degradation or the residual fractions of the contaminant or electron acceptors (Aggarwal et 

al., 1997). Stable isotope carbon ratio (
13

C/
12

C) measurements have been successfully 

demonstrated as a useful technique for monitoring biodegradation pathway of PAHs in 

several studies (Hunkeler et al., 2001; Kuder et al., 2004; Wang et al., 2005). For example, 

13
C measurements of chlorinated ethenes and gasoline additives including BETX and 

MTBE were widely used to identify the gasoline pollution in groundwater (Peng  et al.,  

2004). Recently, CSIA was applied for identifying individual compounds in the 

bioremediation process. It was also used to distinguish anaerobic and aerobic degradation 

of chlorinated ethane in situ biodegradation (in field applications) (Chu et al., 2004). 

Additionally, studies have been done on the application of isotope fractionation in 

anaerobic processes occurring in situ degradation (Sherwood Lollar et al., 1999; Song et al., 

2002; Vieth et al., 2003). Enrichment of 
13

C during the biodegradation of n-alkane has been 

demonstrated by (Stahl, 1980) for short chain (C1 – C3) and long chain (C3 – C6) by 

(Lebedew et al., 1969). 
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2. 9 Heavy metals and PAHs as mixed contaminations 

 

Heavy metals (HMs) are often co-contaminants with organic pollutants such as xylene, 

benzene, toluene, PAH and ethylbenzene in soil and sediments. USEPA (1999a) reported 

that more than 40% of the national priority list sites are co contaminated with both PAHs 

and heavy metals. Heavy metals and polycyclic aromatic hydrocarbon are environmental 

concerns and must be removed to acceptable levels (Reddy et al., 2011). Although 

combustion of carbonaceous material is a major source of PAHs, other anthropogenic-

related processes, such as gasworks, motor vehicle emissions and smelting, have added 

toxic heavy metals such as cadmium (Cd), zinc ( Zn), Arsenic (As) and lead (Pb) along 

with PAHs (Thavamani et al., 2012 ). Food chain contamination is one of the important 

pathways for the entry of these toxic pollutants into the human body. Consequently, PAHs 

have often been found to co-exist with heavy metals due to similar pollution sources. 

Metals- PAHs association was found in industrial places and also in agricultural soils where 

a strong correlation between PAHs and metals was observed. Chemical and physical 

methods as well as a combination of them have been used to remediate co-contamination 

soils. However, information regarding the mechanisms, translocation, combined uptake and 

accumulation of HMs and PAHs present in soil, sediment and wastewater contamination is 

still under study (Figure 2.19)  
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Figure 2.19 Uptake mechanisms on phytoremediation of HMs (Tangahu et al., 2011). 

 

 

 

 

Theoretically, the ability of plants to accumulate and decrease in the soil metals 

concentration as an operation of metal uptake plays an important role in accessing 

regulatory acceptance (Wuana and Okieimen 2011). The metal removal can be descripting 

by the determination of metal concentration in plant tissues. 

This approach may be follow up by a number of factors working together during the 

decontamination of metals. Amount of metal extracted and bioaccumulation factor (BCF) 

can be used to evaluate the plant’s phytoextraction efficiency and calculated according to 

equation (Ashraf et al., 2012); 

                               

                       BCF =       Metal concentration in plant shoot                     (Eq 2.5) 

                     
                                

Metal concentration in soil 

                                                                

Cluis (2004) reported that the BCF for hyperaccumulators is more than 1, and in some 

cases can be increase up to 100. Metal responsive transcription factor is playing an 
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important role in tolerance of heavy metal stress by plants for transport, HM uptake and 

detoxification. The transfer capability of heavy metals from soil to the shoots part of 

vegetables was generally described using the translocation factor (TF) (Li et al., 2010), 

 

         TF   =      Metal concentration in edible part of plant               (Eq 2.6) 

                                            Metal concentration in root of plant 

 

This study evaluates the effect of adding organic wastes as an amendment to different 

concentration of diesel fuel-contaminated soil on nutrient availability, rate of 

biodegradation and some physicochemical properties of soil. Many researchers have 

reported using fertilizers and composts to remediate contaminated soil. In addition, no work 

has been done on diesel fuel-contaminated soil using organic wastes in tropical regions.    
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CHAPTER THREE 

METHODS AND MATERIALS 

 

Biological treatments (Bioremediation and Phytoremediation) were chosen in order to 

evaluate impacts of organic wastes to increase the microorganism’s activity on oil 

degradation and achieve a suitable option to enhance the diesel-contaminated soil. This 

study was done in two different environmental situations (laboratory and natural condition) 

to compare the results of biodegradation process. 

 

3.1 Collection of soil, diesel fuel, organic wastes and plant materials 

 

The soil used in this study, (silty loam), was obtained from the garden section of Asia-

Europe Institute, University of Malaya, Kuala Lumpur (3
o
07  َ   28.82  َ   N , 101

o
 39  َ   

33.86  َ   F). It was transported to the laboratory and air dried in laboratory conditions at 

room temperature for a period of one week and then sieved through a 2-mm mesh sieve. 

The diesel fuel used in this experiment was purchased from a petrol station in Petaling Jaya 

(shell diesel), Malaysia and its profile was analyzed using gas chromatography mass 

spectrometry. Organic wastes used in this study were collected from different locations; 

used tea leaf (TL) and potato skin (PS) were collected from the institute of graduate 

student’s canteen building (IGS), University of Malaya, while the soybean cake (SC) was 

made in the laboratory. Organic wastes were selected based on their availability and supply 

in Malaysia. The Dracaena reflexa and Podocarpus polystachyus plants (eight - month old) 

were purchased from a greenhouse in Sungai buloh, Selangor, Malaysia. These two plants 

were selected based on the following factors: high drought tolerance, economic and non-

edible plants that are native in Malaysia, tropical and subtropical regions.   
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3.1.1 Organic wastes used in this study 

 
 

Three organic wastes (used tea leaf, soy cake and potato skin) were used in this study for 

amendment of soil contaminated with diesel fuel. These wastes contain appreciable 

quantities of nutrients that soil microorganisms can use for multiplication in the 

contaminated soil. The use of such wastes, besides providing alternative substrates, help to 

solve environmental problems which are caused by their disposal.  

 

i) Spent Tea leaf 

 
 

Spent tea leaf (Camellia sinensis L.) is the residue which is left after preparing tea (Plate 

3.1). Nutritional and chemical composition of TL is shown in Table 3.1.  

 

Table 3.1 Dry matter and chemical composition of used tea leaf. 

 

              Nutrients (%)                                          Spent tea 

 

             Dry matter                                                      - 

             Crude protein                                                25 

             Ether extracts                                                3.53 

             Crude fiber                                                    8.6       

             Nitrogen free extracts                                     57 

             Total Ash                                                      5.87 

             Calcium                                                         1.5 

             Phosphorus                                                  0.53 

    (Konwar and Das, 2011) 
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Plate 3.1 Tea leaf used in this study. 

 

 

ii) Soybean cake (SC) 

 

After milk is extracted from soybeans (Glycine max), a soy cake is left behind which is 

called nourishing waste. Soy has been grown for three millennia in Asia and, more recently, 

has been successfully cultivated around the world. Soybean cake is a product of home 

industry. It contains high crude fiber and nutrients. For instance, 500,000t soybean cake is 

equivalent to 30000t of N, 2000t of P2O5 and 12000t of K2O (Krauss, 2000). Organic 

residue like soybean cake (SB) and powdered rice husk (PR) with higher pH could be 

combined with industrial wastes to enhance flammable biogas production. Physico-

chemical properties and a picture of soybean cake are shown in Table 3.2 and Plate 3.2, 

respectively. Wankhade and Thakre (2012) indicated that the low yield of flammable 

biogas from carbonated soft drink sludge could be enhanced significantly when blended 

with either soybean cake waste or pigging waste. 
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             Table 3.2     Physico-chemical composition of soybean cake  

 

                   Parameters                                             soybean cake  

 

              Crude nitrogen   (%)                                         2.66  

               Moisture    (%)                                                 62.5  

              Crude Protein (%)                                            16.65  

              Carbohydrate   (%)                                           5.95  

               Energy (kcalg 
-1

)                                              4.05    

                Fat content   (%)                                            13.05  

                Ash     (%)                                                      0.45                                        

                      

  (Uzodinma et al.,  2008) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Plate 3.2   Soy cake used for study. 

 

 

 



 

104 

 

iii) Potato skin (peel) 

 

 

The problem of industrial potato waste (IPW) management is a great concern in some 

developed countries. Therefore, an environmentally friendly solution is under investigation. 

The major wastes of potato industries is potato peel waste (PPW) and potato starch waste 

(PSW). The potato peel is a waste of the potato processing plants. While consumption of 

potatoes has decreased, processed products such as French fries, puree and chips have been 

growing in popularity (Arapoglou et al., 2009). The waste produced is 90 kg per tonne of 

influent potatoes which is made up of 50 kg of potato skin, 30 kg of starch and 10 kg of 

inert substances (Arapoglou et al., 2009). PPW contains cellulose, fragmental sugars, starch 

and hemicelluloses. As Table 3.3 shows, PPW has a low fermentable reducing sugar (0.6 

%) and high starch content (52 % d.w.) Plate 3.3 shows the picture of PPW used for the 

studies. 

  

                    Table 3.3 Chemical composition of potato peel wastes 

 

                         Parameters                                              % dry weight  

 

                 Nitrogen    % D. M.                                                1.3  

                 Moisture    %                                                        85.06  

                 Protein     % D. M.                                                    8  

                 Total carbohydrate    % D. M.                                58.7  

                 Total soluble sugar     % D. M.                                 1    

                 Reducing sugar       % D. M.                                   0.6           

                 Fat          % D. M.                                                  2.6  

                 Ash         % D. M.                                                  6.34      

                 Starch     % D. M.                                                 52.14           

                  

            (Arapoglou et al., 2009). 
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Okeke and Frankenberger (2005) reported that PPW in combination with starch is effective 

for amylolytic bacteria during the bioreduction of CLO4
-
 (perchlorate). The rate of 

reduction was over 90% when using PPW (2% w/v) over a period of 4 days. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Plate 3.3   Potato skin used for study.    

 

 

                        

3.2 Physicochemical analysis of soil and organic wastes 

 

 

Physicochemical properties of soil and organic wastes employed were determined using 

standard methods. The measurement of soil was done through the hydrometric method. The 

nitrogen content (of soil used for bioremediation and organic wastes) was done using the 

Kjeldahl method and the organic carbon was determined using the Furnace method. 

Phosphorous, was determinated by adopting the American Society for Testing and Material 

method (ASTM D 5198, Standard Practice for Nitric Acid Digestion of Solid Waste). 

HANNAHI 8424 model of pH meter was used to determine the pH on the scale 1:2.5 (w/v) 

soil/distilled water after 30 min equilibrium. All the treatments were set up in triplicates. 
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3.2.1 Diesel fuel characteristics 

 

Characterization of aromatic and aliphatic fractions of the diesel fuel used in this study 

was determinated according to USEPA 5035 method. Briefly, gas chromatography coupled 

with mass spectrometry (QP2010- SHIMADZU), with helium carrier gas (1.79 ml min
−1

) 

was used at oven temperature at 50 
◦
C for 1 min, and then increased to 250 

◦
C.  

 

3.3 Biostimulation methodology under laboratory condition 

3.3.1   Experimental set- up 

 

The concentration range of oil used as a treatment is within 5-40 % as used by earlier 

researchers (Ijah and Antai, 2003b; Margesin and Schinner, 1999). 1500 g of fresh soil was 

filled into clean dry plastic containers, labeled A to E (with volume 3000 cm
3
), and 

contaminated with 5 % (w/w) diesel fuel (50,000 mg kg
-1

) (Appendix B). The samples were 

mixed daily to provide sufficient aeration. They were also moistened by the addition of 

water every other day to adjust the water holding capacity at 60% throughout the 

experimental period. The soil bags were incubated at room temperature (30 ± 2
o
C). The 

control (vessel D) with only soil and diesel fuel and an additional control treatment (E) 

were autoclaved twice (within the same day at 121
◦
C and 15 psi for 1 h) and then 0.5% 

(w/w) sodium azide was added (as a prisoner) to determine the non-biological loss of diesel 

fuel from the soil.  

3.3.2 Sampling and analysis 

The contaminated soil samples were studied at every two-week intervals up to 126 days 

for chemical and microbiological analyses. Composite samples were taken by mixing five 

grams of soil collected from five different areas of the microcosm and mixing them well. 

The following parameters were determined. 
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i. Measurement of residual total petroleum hydrocarbon in soil 

 

 

The extent of diesel fuel biodegradation in the soil was determined by accelerating 

(Richter, 2000) solvent extraction in two replicates of samples formed by suspending 10 g 

of soil in 20 ml of acetone: n-hexane (1:1 v/v) as a solvent in a 250 ml capacity flask (EPA 

method 9071). After shaking for 1 hour on an orbital shaker (Model N-Biotek), the solvent- 

oil mixture was filtered using Whatman number 4 filter paper, and collected in a beaker of 

known weight and the solvent was completely evaporated under vacuum (70 ºC water bath 

on rotary evaporation) using rotary evaporator (Model Eyela, N-1100) to approximately 2 

ml. The new weight of the beaker consisting of residual oil was recorded. The percentage 

of degradation of diesel fuel was calculated using the following formula (Ijah and Ukpe, 

1992); 

  % biodegradation = [(TPH control- TPH treatment)/ TPH control] ×100          (Eq 3.1) 

 where TPH is total petroleum hydrocarbon.   

ii.  PAHs extraction by hydroxypropyl[b]cyclodextrin (Bioavailability)  

 

The method used hydroxypropyl[b]cyclodextrin (HPCD) to extract the oil from 

contaminated soils (Oleszczuk, 2009). 5 g of soil samples were filled into Teflon centrifuge 

tubes and 100 ml of a 50-mM aqueous solution of HPCD was added to it. After shaking the 

tubes for 20 hours (using orbital shaker, Model N-Biotek-101), the samples were 

centrifuged for 30 min. The supernatant was discarded, and the residue was shaken with 50 

ml deionized water and centrifuged again; the supernatant then was discarded. The PAHs 

content in the residue was determined after extraction with acetone/hexane in accordance 

with the method described above (3.5.2.i). The difference between the total PAH content 
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(as determined in the dichloromethane) and the residue (after extraction with HPCD) was 

determined as a HPCD or bioaccessible fraction of PAH (Oleszczuk, 2009).  

 

iii. Measurement of dehydrogenase activity 

 

The soil microbial activity was estimated by Dehydrogenase assay. Dehydrogenase 

activity was determined by monitoring the rate of reduction of 2,3,5-triphenyltetrazolium 

chloride (INT) as a substrate. One gram moist soil samples were filled in test tubes, mixed 

with 1.5 mL of 1 M Tris buffer (pH 7.0), and  2 mL of INT solution. Then the test tubes 

were sealed with screw caps and incubated for 2 h at 40 
O
C. After incubation, the 

developed iodonitrotetrazolium formazan (INTF) was extracted with a mixture of N, N-

dimethylformamide and ethanol in volume ratio of 1:1 and measured at 464 nm using a DR 

/4000 spectrophotometer. The calibration curve was made with iodonitrotetrazolium 

chloride (INF) in four concentrations (0, 100, 200 and 500 μg INF).  

 

iv. Soil respiration 

The total carbon dioxide (CO2) respired from each of the treatments was determined by 

sampling the headspace of sealed Wheaton bottles containing sample of soil, oil and the 

organic supplement. Air  samples (1ml) were collected from each bottle at 7, 14, 21, 28, 35 

and 42 days, and analyzed using gas chromatography (GC-8A, Shimadzu brand) (Plate 3.4) 

with a thermal conductivity detector (Miles and Doucette, 2001). The temperatures used for 

the GC function were detector 110 
0
C, injector 110 

0
C and column at 130 

0
C.  
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Plate 3.4 Gas chromatography. 

 

 

Plate 3.4 Gas Chromatography. 

v. Isolation and identification of bacterial diesel degraders 

Three replicate samples from each oil polluted soil were withdrawn every two weeks for 

the enumeration of both heterotrophic and hydrocarbon utilizing bacteria. In order to isolate 

and enumerate both heterotrophic and hydrocarbon utilizing bacteria, the bacteria 

enrichment process used a mineral salt medium (MSM) (Vincent et al., 2011). 0.1 ml of 

serially diluted (1×10
-1

 to 1×10
-7

) culture solution from one gram hydrocarbon polluted soil 

samples were plated on nutrient agar medium (Oxide) for isolation of aerobic and 

heterotrophic bacteria. 50 μg/ml fungazol was used to suppress the growth of fungi. Plates 

were incubated at 30
o
C for 24 h after which the colonies were counted. Diesel fuel utilizing 

bacteria (DUB) in the soil samples were enumerated using oil agar (OA) (Zajic and 

Supplisson, 1972) ; ( 1.8 g K2HPO4, 1.2 g KH2PO4, 4.0 g NH4Cl,  0.2 g MgSo4.7H2O, 0.1 g 

NaCl, 0.01 g FeSO4.7H2O, 20 g agar, 2 ml diesel fuel, 1000 ml distilled water). The oil  
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agar plates were incubated for five days at 32
 o

C before counting the colonies. Bacterial 

colonies were randomly picked and pure cultures were obtained by repeated sub-culturing 

on nutrient agar in order to isolate fungal used potato dextrose agar (Difco). The bacterial 

isolates were characterized based on culture parameters, microscopic techniques (gram 

straining reaction) and biochemical tests using the Biolog
® 

Microstation system method 

(Biolog Inc., CA, USA) for  identification (Plate 3.5) (Ruan et al., 2005). Organisms 

isolated for identification were previously re-subcultured two times to ensure that pure 

strains were obtained. This was eventually followed by the final identification of the 

organisms using IF-A (inoculation fluid) under Biolog protocol. Ecoplate contains 31 

carbon sources with 96 wells to supply carbon and protein for metabolism. The 

transmittances were adjusted to 95-98% and incubated for 18- 24 hours at 30 
o
C. Then 

Machine reading (Microplate reader) was used to identify the genus and species of samples. 

 

Plate 3.5 Biolog microstation machine. 
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vi. Measurement of pH value 

 

The pH value of soil was measured in 1:2.5 (w/v) ratios. Ten grams of air-dried soil in 

25 ml distilled water was mixed and shaken for 5 minutes, and then allowed to settle for 30 

minuets to one hour. After shaking the suspended soil again, pH was measured using 

standard pH meter (Mettler Toledo AG- Switzerland). 

 

vii.    Seed germination toxicity test 

 

The germination test was conducted over a 7-day test period. Seeds of lettuce were 

obtained commercially. For each soil sample, 100 g of thoroughly mixed remediated soil 

was placed in Petri dish bottoms. Ten viable seeds of lettuce (Lactuca sativa L.) were 

placed evenly throughout each Petri dish and covered with 15 g of dry sand. Four replicates 

of the samples were prepared. The moisture content of the soil was maintained at 80% 

water holding capacity. The Petri dishes were placed in a room with 16 hours light and 8 

hours darkness for 7 days. At the end of 7 days, the number of seedlings that emerged from 

the surface of the sand was counted and recorded (Banks and Schultz, 2005). Germination 

index of lettuce seed on the remediated soil was calculated (appendix C) using the formula 

of (Millioli et al., 2009). 

viii. Gas Chromatography analysis of residual degraded diesel fuel  

Analysis of the residual hydrocarbon in the soil was determined using Gas 

Chromatography (2010 A) coupled to a trace MS detector (QP2010 Plus). Each extract was 

transferred to a 2 ml vial and loaded into GC/MS. Helium carrier gas flow was at 1.27 ml 

min 
-1

. The column oven was initially held at 100 °C for 2 min, increased to  200 °C at a 



 

112 

 

rate of 10 °C min 
-1

, then to 250 °C at 20 °C min 
-1

 (held for 5 min) (Padayachee and  Lin, 

2011). The major hydrocarbon fractions were identified on the basis of their retention time 

and by comparing them to those of analytical standards. 

 

ix. Biodegradation efficiency calculation 

The carbon dioxide analyses were used to estimate the total amount of hydrocarbons 

mineralized during biodegradation experiments (Mariano et al., 2007). According to the 

Norm L6.350, 50% of the biodegraded carbon is converted to CO2 and the other 50% is 

added to the soil as humus and biomass, and the total biodegraded carbon (Morais and 

Tornisielo, 2009), and biodegradation efficiency (BE), based on the decrease in the total 

concentration of hydrocarbons, were calculated using the following equations: 

 

Total biodegraded carbon = 2 × CO2 produced  

 

 

BE (%) =     Total biodegraded carbon    × 100                             (Eq 3.3)  

                Initial soil organic carbon content 

 

 

The initial soil organic carbon content for each treatment was determined through the 

carbon mass balance (Morais and Tornisielo, 2009).  

 

x. kinetics of diesel removal and Half- Life 

First- order kinetics model is used to express the rate of biodegradation in all of the 

treatments by the following equation (Chu and Chan, 2003):  

        Ct = Ci exp (- k t)                                          (Eq 3.4) 

Where Ct (mg/g), is the diesel fuel concentration in soil at instant t, Ci (mg/g) is the initial 

concentration of soil, k is the rate constants of the first order expressed in (day 
-1

), and t is 
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the time (day). The model estimated the biodegradation rate and half- life of hydrocarbons 

in soil relative to treatments applied.   

Half life = ln 2/k                     (Eq 3.5) 

To indicate the proportion of the variation explained by the model, the coefficient of 

multiple determinations (R
2
) was calculated;  

  R
2
 = 1 – RSS / CTSS                (Eq 3.6) 

 where RSS was the residual sum of squares, and CTSS was the corrected total sum of 

squares (Bailey and McGill, 2001).   

 

xi. Measurement of stable isotope carbon (δ 
13

C) 

Stable isotope analyses were performed using SERCON GEO 20–20 Continuous Flow 

Isotope Ratio Mass Spectrometer (CF–IRMS). The continuous flow mass spectrometry 

offers on–line sample preparation, smaller sample size, faster and simpler analysis and is 

cost effective compared to Dual Inlet Isotope Ratio Mass Spectrometer (DI–IRMS). CF–

IRMS was interfaced with an elemental analyzer (EA) and gas chromatography (GC). 

Sample materials containing carbon were loaded into tin capsules and dropped into a 

furnace at 1000 
o
C in an atmosphere of oxygen. The tin ignited and burned exothermically, 

and the temperature rose to about 1800 
o
C, oxidising the sample. Complete combustion was 

ensured by passing the combustion products through a bed of chromium oxide at 1000 
o
C, 

using a helium carrier gas. A 15 cm layer of copper oxide followed by a layer of silver 

wool completed the combustion and removed any sulphur. The gas stream passed into a gas 

chromatograph where components of interest were separated and then bled into a mass 

spectrometer where the isotope species were ionised and then separated in a magnetic field 

(Plate 3.6). These isotopic species were detected separately and from their ratios, the level 

of 
13

C calculated. δ values of carbon were calculated as follows: 
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δ (
13

C) (‰) = [ Rsample/Rstandard – 1] × 1000            (Eq 3.7) 

where Rsample and Rstandard represent 
13

C/
12

C ratios of the sample and the international 

standard.  

 

 

 

 

 

 

 

 

 

Plate 3.6   Isotope Ratio Mass Spectrometer (IRMS). 

 

3.4 Biostimulation methodology under natural condition 

 

Top soil (0-20 cm) was obtained from the garden section of Asia-Europe Institute, 

University of Malaya, Kuala Lumpur was air-dried and passed through a 2 mm sieve to 

remove root materials and stones. Then soil samples (1.5 kg) were artificially polluted with 

5%, 10%, 15% and 20% (w/w) diesel fuel and thoroughly mixed. Each of the oil 

contaminated soil samples were amended with (10% w/w) different organic wastes. Two 

different control treatments were set up; one control was oil contaminated soil without 

organic wastes amendment while the second control did not contain organic wastes but the 

soil was autoclaved in order to determine the oil loss due to the abiotic factor. All samples 

IRMS 
WES 

EA 
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were packed into Polythene plastic bags and set up at the experimentation site, exposed to 

sunlight and rainfall for a period of one year.  

3.4.1 Sampling 

Replicate samples were withdrawn from each treatment every two months throughout 

the one-year period of the experiment for the analysis of TPH loss, enumeration of total 

bacteria and DUB as described in the methods (3.5.2).  

 

 3.5 Phytoremediation methodology used in this study 

 

3.5.1 Physicochemical analysis of soil, diesel fuel and organic wastes 

 

 

Physicochemical properties of soil and organic wastes employed were determined using 

standard methods. N content was done with the Kjeldahl method and organic carbon was 

determined using the Furnace method. P, K, Al, Zn, Pb and Cd were determinated using 

United Environmental Protection Agency method (USEPA 3050 B, 6010B). HANNAHI 

8424 model of pH meter was used to determine the pH on the scale 1:2.5 (w/v) soil/distilled 

water after 30 min equilibrium. All the treatments were set up in triplicates. 

 

3.5.2 Experiment set-up under laboratory and natural conditions 

 

In order to select the range of oil concentration to be used in the phytoremediation 

experiments, different oil concentrations were evaluated for both plants (Dracaena reflexa, 

Podocarpus polystachyus) to find out at which concentration of diesel fuel, the plants could 

survive and grow (Appendix D). Control treatment consisting of bags of the plant without 

diesel fuel or organic wastes was also set up. Additional control treatment comprising of 

autoclaved soil containing 0.5% (w/w) NaN3 was also set up to determine non-biological 

loss of diesel fuel from the soil. All the treatments were set up in triplicate at room 
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temperature (30 ± 2 
o
C). The plants were moderately watered every three days with tap 

water to prevent leaching from the plastic bags. The same experimental set up was done for 

field experiment, exposed to sunlight and rainfall for a period of nine months. The 

appearance of the plants in response to the oil in soil was monitored to determine if there is 

phytotoxicity of the oil to the plants. The design of the experiment (randomized complete 

block design) is shown in appendix E. The study at 5 % concentration was monitored for a 

period of five months in laboratory condition; the reason being that plants could not survive 

under laboratory conditions because both plants require sunlight to survive. The 

methodology used for soil preparation and sample analysis was the same for both plants 

(refer to section 3.7.2). 

 

3.5.3 Sampling and analysis 

 

 

Soil samples were taken within the rhizosphere zone (1 cm) of plants from each plastic 

bag every thirty days for analysis of different parameters such as plant biomass, pH, TPH, 

DUB and AHB counts (see section 3.5.2).  

i. Plant biomass 

At the  completion  of the experiment (270 days) plants were uprooted and washed with 

deionized H2O and the plants were dried at 75 
o
C for 48  hours and weighed (Parrish et al., 

2004; Saadati et al., 2012). The plant tissue was extracted in a ratio of 1:1 hexane/acetone 

in a Soxhlet extractor for ten hours to determine if the roots had absorbed the hydrocarbon 

from the soil. The extracts were analyzed for hydrocarbons using the gas chromatography 

with a mass-selective detector (GC/MSD) QP2010A in scan mode. Helium was used as the 

carrier gas. The GC was equipped with cross-linked 5% phenyl methyl siloxane capillary 
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column. The temperature was set at 40 
◦
C and raised by 10 

◦
C/min until 300 

◦
C, which was 

maintained for 8 min. 

3.6   Phytoremediation of heavy metals in diesel fuel contaminated soil 

3.6.1 Selection of heavy metals concentration 

 

It was considered that the quantity of heavy metals which is added artificially would 

affect plant growth because plants should be able to survive and tolerate oil and metals. So, 

the impact of five heavy metals (Cd, Zn, Cu, Mn and Pb) with different concentrations on 

microbial population was evaluated to select two heavy metals. According to the critical 

level of heavy metals pollution in Malaysia’s soil (Ibarahim, 2009) it was decided to use Cd 

(10, 20 and 30 mg kg 
-1

), Zn (40, 80 and 120 mg kg 
-1 

), Cu ( 25, 50 and 75 mg kg 
-1

), Mn 

(75, 150 and 225 mg kg
-1

) and Pb ( 30, 60 and 90 mg kg
-1

 ). In the experiment, MSM was 

used as a media. A bio-agent (isolated from diesel contaminated soil) was added to the 

nutrient broth and kept in an incubator for 24 hours at 30 
o
C. One milliliter of bio-agent and 

microelements were placed into test tube with 10 ml MSM and 0.5 ml oil. The contents of 

test tubes were analyzed after 2, 4 and 6 days, by taking 1 ml of the solution for analysis. 

Several dilutions were prepared and incubated at 30 
o
C in nutrient agar, and colony forming 

units (CFUs) were counted after 24 hours (Zukauskaite et al., 2008). Based on preliminary 

trials, it was decided to use two microelements which have a major impact on the growth of 

microorganisms, namely Zn (80 mg kg
-1

) and Pb (60 mg kg
-1

). 

 

3.6.2 Preparation of co-contaminated soil 

 

Garden soil was taken from a farm in Subang Jaya, Selangor, Malaysia. After being 

transferred to the laboratory, the soil was air-dried and its chemical and physical 

characteristics were defined through standard methods (Appendix F). 2 kg of soil was 
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placed into plastic bags and the desired concentration of Zn (80 mg kg 
-1

) and Pb (60 mg kg 

-1
) in was provided by dissolving zinc-chloride (ZnCl2) and lead-chloride (PbCl2) in 200 ml 

of distilled water, sprayed layer by layer, and was completely mixed. Then, with the 

purpose of creating a balance between the different fractions of the elements in the soil, the 

samples were put through an incubation period of one month. During this period, the 

moisture of the bags was kept at about (70% ±10) (Saadati et al., 2012). Then soil samples 

were co-contaminated with 2.5 % diesel oil and thoroughly mixed. 5% of different organic 

wastes (TL, SC and PS) were also mixed separately with the oil contaminated soil. After 

mixing the soil, it was allowed to stabilize for four days before transplanting the plants into 

the contaminated soil. The experiment was carried out in three replicates at room 

temperature (30 ± 2 
0
C). The plants were moderately watered every three days with tap 

water to prevent leaching from the plastic bags. The design of the experiment is shown in 

appendix G. 

 

3.6.3 Sampling and analysis of samples 

 

Soil samples were taken from within the rhizosphere zone (1 cm) of plants for each 

plastic bag on a monthly basis for a period of nine months. Analysis of different parameters 

such as pH, TPH, DUB and AHB counts was carried out as described in the methods 

section 3.5.2. 

 

3.6.4 Analysis of heavy metals in soil and plants 

 

The root tissue was extracted with dichloromethane in a Soxhlet extractor for 10 hours 

to determine if the roots absorbed the hydrocarbons from the soil. The extracts were  
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analyzed for hydrocarbons using gas chromatography with a mass-selective detector (HP-

6890). The GC was equipped with cross-linked 5% phenyl methyl siloxane capillary 

column; HP-5MS. Helium was used as a carrier gas. The temperature program was started 

at 40 
0
C and raised by 10 

0
C/min until 300 

0
C, which was maintained for 8 min. The rate of 

heavy metals in plant tissues was determinated by hot plate wet digestion method (Marin et 

al., 2011).  

Heavy metals (Zn and Pb) in soil were determined by the EPA method 3050B (acid 

extraction method). Briefly, soil was dried at 40 
0
C and ground with a laboratory blender 

(Waring model). 1 g samples were placed in a 250 ml flask for digestion. Then the samples 

were heated at 95 
o
C with 10 ml of 50% HNO3 without boiling. This was followed by the 

addition of 65% HNO3 until no brown fumes were given up by the samples. Then, 

gradually, 10 ml of 30% H2O2 and 37% HCL were added at 95 
o
C for 15 minutes. The 

digestation obtained was filtered (0.45 μm filter paper) and diluted to 100 ml with 

deionized water and analyzed with Inductively Coupled Plasma-Optical Emission 

Spectroscopy (ICP- OES). 

3.6.5 Calculations of Translocation factor and Bioconcentartion factor   

 

The transfer capability of heavy metals from soil to the edible part of vegetables was 

generally described using the translocation factor (TF) (Li et al., 2010), 

 

TF   =    Metal concentration in edible part of plant                       (Eq 3.8) 

                  Metal concentration in root of plant 

 

 

For plants, the Bioconcentartion factor (BCF) has been used as a measure of the metal 

accumulation efficiency, whereby value greater than 1 is an indication of plants potential to 

phytoextraction (Ashraf et al., 2012). BCF was calculated using the following formula, 
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BCF   =   Average metal conc. in the whole plant tissue (mg kg 
-1

)                (Eq 3.9) 

                           Metal in the soil (mg kg 
-1

) 

 

3.6.6 Rate of metal uptake by plants 

 

 

The rate of uptake of heavy metals (Zn and Pb) by Dracaena and Podocarpus was 

calculated using the first order kinetic model as follows: 

k = -1/t (ln M/Mo)                                                                (Eq 3.10)  

where;  

k = first order rate constant for metal uptake per month 

t = time in month 

M = mass of residual metal in the soil (mg/kg) 

Mo = initial mass of metal in the soil (mg/kg) 

 

3.7    Biodegradation studies with microorganisms isolated 
 

 

 

A total of 12 hydrocarbon utilizing bacteria (3 from uncontaminated soil and 9 from 

contaminated soil) were isolated and identified. Out of all the bacteria identified, 6 bacteria 

were selected based on the efficient utilization of oil in the preliminary trials and their rapid 

growth on oil agar for the biodegradation study. The rates and extent of diesel fuel 

degradation by these six selected microbial isolates were determined using gravimetric 

analysis (Ijah et al., 2008). The biodegradation studies were carried out by introducing one 

single colony of isolated bacteria into 10 ml nutrient broth (Merck) and incubated overnight 

at 30 
o
C. After inoculating 2 ml of 24 hour broth culture of each microbial isolates into 100 

ml of sterile MSM, then added 0.5 g of diesel fuel in an Erlenmeyer flask. The experiment 

was set up in triplicates with control flasks which contained 100 ml of sterile mineral salts 

medium plus 0.5 g of diesel fuel but without added microorganisms. The flasks were 

incubated in an incubator shaker (Thermo-line, Japan) maintained at 33 
0
C at 150 rpm for 
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35 days. At 7 day intervals, triplicate flasks per organisms plus control flasks were removed 

from the incubator shaker and the diesel fuel degradation was determined using gravimetric 

analysis. The solvent was removed by rotary evaporator and the weight of the residual oil 

was measured and recorded, and the percentage biodegradation of the used lubricating oil 

was calculated using the formula of Ijah and Ukpe, (1992); 

 

% biodegradation = [(TPH control- TPH treatment)/ TPH control] ×100          (Eq 3.11) 

 

3.8      Statistical analysis 
 

 

The effects of each factor, including the microbial count and activity, and different 

species of plants on the concentration of residual diesel fuel in biostimulation and 

phytoremediation experiments were done by analysis of variance (ANOVA), SPSS version 

8. If ANOVA results were significant at α = 0.05 (95% confidence level), Duncan test 

comparison was used to determine the difference among treatments. 
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

 

This study was conducted to investigate the potential of biowaste amendments in the 

remediation of diesel-contaminated soil and thus the results and discussion of the findings 

of the study are presented in Chapter four. The chapter is divided into four sections. Section 

I presents the results and discussion obtained from bioremediation studies under laboratory 

and natural conditions; Section II presents results and discussion for findings of 

phytoremediation studies under laboratory and natural conditions; Section III the overall 

results for both bioremediation and phytoremediation clean-up techniques are compared 

and discussed; finally in Section IV a general discussion is postulated highlighting the 

significant results of both clean-up techniques. 

 

4.1 Characterization of soil and amendments 

 

The physicochemical properties of the soils and organic wastes used in the investigation 

of bioremediation are presented in Table 4.1. The native soil had a natural pH (~7) with low 

concentration of N (0.8%) compared with SC (1.3%), PS (1.1%) and TL (1.02%). Among 

the different organic wastes, SC had the highest concentration of N and P. The soil used for 

bioremediation had C: N ratio of 16.4. This is a low ratio for effective biodegradation of oil 

in the soil (Gavrilescu, 2010); hence, it needed the addition of biowastes as a source of 

nutrients. Gavrilescu, (2010) reported that the optimom value of nutrient content for oil 

degradation and condition requirement for microbial growth is ratio C:N: P = 100:1:1.       

In addition, Röling et al., (2004) recorded the highest rate of hydrocarbon degradation in 

those contaminated soil amended with 2.5 g/kg of N, which gave C: N ratio of 300. The 
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nutrient content, particularly N and P, are the most important parameters to enhance 

biodegradation of diesel in hydrocarbon-contaminated soil.   

 

Table 4.1 Characteristics of soil and organic wastes used in the project 

 
                                                                              Organic Wastes                                           

 
   Parameters                  Soil                     TL                       SC                   PS       
      

Total nitrogen (%)         0.8 ± 0.1         1.02 ± 0.08      1.3 ± 0.1         1.10 ± 0.04 

Phosphorus (%)    0.6 ± 0.5         0.7 ± 0.6          0.9 ± 0.9        0.7 ± 0.1 

Moisture content (%)  10.2 ± 0.8         34.3 ± 0.5        75.9 ±1.6        62.1 ± 2.0   

Organic C (%)             13.1 ± 1.3         55.6 ± 1.2       72.2 ± 0.9     66.3 ± 1.1 

  pH               7.03 ± 1.5        6.5 ± 1.2          6.8 ± 1.2       6.9 ± 0.5 

Silt (%)               70.0 ± 2.5                -                      -                          -  

Sand (%)               20.0 ± 1.8                -                      -                          - 

Clay (%)                        10.0± 1.6                -                     -                           -  

Texture               Silty loam               -                     -                           - 

 

TL: Tea Leaf, SC: Soy Cake, PS: Potato Skin 

 

The moisture content in SC (75.9%) was higher than the native soil (10.2%) and other 

organic wastes PS (62.1%) and TL (34.3%) (Table 4.1). Moisture could provide a 

conductive situation for some selected microorganisms that will contribute positively to 

biodegradation of diesel fuel in contaminated soil.   
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4.2 Evaluation of bioremediation under lab condition 

 

Total petroleum hydrocarbon residual was determinated for four different oil 

concentrations (5, 10, 15 and 20 % w/w) with two different quantities of organic waste 

amendments (5 and 10 % w/w). The experiments were monitored for a period of 126 days, 

because at the end of 126 days, the percentage of degradation stopped and reached to 95% 

of the initial amount of all the hydrocarbons. 

 

4.2.1 Biodegradation of diesel fuel (5 % pollution) 

 

The percentage of diesel degradation in soil contaminated at 5% (w/w) with 5% and 

10% organic waste amendments are shown in Figures 4.1 and 4.2, respectively. The results 

show that the rate of oil degradation was higher in the treatments amended with 10% 

organic wastes compared with 5% organic wastes. Amended soil with 10% and 5% SC 

recorded 95% and 81% diesel loss, whereas 10% and 5% PS and TL treatments recorded 

73%, 68% and 85%, 80% oil loss, respectively.  
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Figure 4.1 Biodegradation of diesel fuel in soil contaminated with 5% oil and amended       

with 5% organic wastes. (Bars indicate standard error, n = 3). 
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Figure 4.2 Biodegradation of diesel fuel in soil contaminated with 5% oil and amended      

with 10% organic wastes. (Bars indicate standard error, n = 3). 
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The rate of biodegradation in unamended soil was 40% which was significantly lower 

(45%) than soil amended with 10% SC. Similar results were obtained by Van Gestel et al., 

(2003) who reported 85% diesel oil reduction in contaminated soil amended with different 

composts (vegetable, fruit and garden waste) at ratio of 1:10 (oil/compost) over a period of 

12 weeks. Results indicated high rate of degradation in all the treatments with 5% diesel 

fuel. The reason could due to the low concentration of oil in the soil, which did not pose 

serious challenge to affect metabolic activities of microorganisms. Amended soil with 10% 

and 5% SC had a higher rate of biodegradation at 95% and 81%, respectively; this might be 

due to the high rate of nutrients (N and P) in SC compared with other organic wastes (Table 

4.1). N and P are known as two impotent nutrients to enhance hydrocarbon-utilizing 

bacteria to breakdown oil compounds and degrade them to carbon dioxide and water 

(Abioye et al., 2012a; Chaîneau et al., 2005; Padayachee and Lin, 2011). 

Only 10% oil degradation was recorded in all autoclaved soil contaminated with 5% oil 

amended with 0.5% NaN3 which might be due to some non-biological factors such as 

photodegradation or evaporation. Van Gestel et al., (2003) observed that the reduction in 

diesel oil concentration was not only due to degradation, but also possibly due to adsorption 

to organic substances or volatilization. This is in contrast with findings of Palmroth et al., 

(2002) who recorded 70% diesel oil loss in autoclaved soil samples during the one-month 

study. The reason for this difference might be due to degree of sterilization and the 

poisoned control soil in this study was autoclaved twice, whereas, Palmroth et al., (2002) 

had not autoclaved the soil and only had added sodium azide (0.5%), so the poisoned 

control was not sterilized completely.  

Table 4.2 shows the net percentage oil loss with 5% diesel fuel and amended with 5% 

organic wastes. It indicates the effectiveness of each individual amendment compared with 

the control treatment. The highest net percentage (43.3%) of TPH was recorded in SC 
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amended soil over a period of 126 days, followed by 34.8% and 30% in those treatments 

amended with 5% PS and 5% TL, respectively. 

The lowest oil loss was recorded from the soil amended with TL compared to those 

amended with PS and SC. Soil amended with 5% SC recorded a higher net percentage TPH 

loss (12%), except for the period of 14 days. Table 4.3 shows the net percentage of oil loss 

with 5% diesel fuel and amended with 10% organic wastes. Throughout this study soil 

amended with 10% SC recorded the highest net percentage (55%) oil loss. Soil treated with 

TL recorded the lowest net percentage (40%) of oil loss during the 126 days. Statistical 

analysis shows a significant difference in net percentage oil loss at P < 0.05 confident level 

in treatments amended with 10% organic wastes, but no significant differences were 

observed for those treated with 5% organic wastes. Chiu at al., (2009) achieved 54% net 

percentage oil loss in soil amended with mushroom compost over a period of 22 days, 

which is similar compared to this result.  

 

Table 4.2 Net (%) loss of TPH in soil amended with 5% diesel fuel with 5% organic waste 

amendment compared with control 
[[[

 
Treatment                                               Time (days) 

                            14          28            42          56          70            84           98         112         126 

 

Soil+Oil+TL  6.5±1.2  12.5±3.1  13±2.2   24±1.3   26± 3     28±2.4    34±1.9   30.5±3.1  30±1.7 

Soil+Oil+SC  12±2.1   15±2.7     19±2.5   29±3.6    36±2.8   37±1.5   42±2.2   42±3.1   43.3±2.7 

Soil+Oil+PS  13.2±3  14.5±3.4   16±2.4  25.8±4.1  28.4±3.5  31±2.1  36 ±2.2  34±1.5  34.8±2.4 

 

Net % loss = % loss in TPH (with organic wastes) - % loss in TPH (soil only)  
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Table 4.3 Net (%) loss of TPH in soil amended with 5% diesel fuel with 10% organic waste 

amendment compared with control 
[[[

 

Treatment                                               Time (days) 

                            14           28          42          56            70           84              98         112         126 

Soil+Oil+TL   17.9±4.8   23±7    25.8±3.7  32±3.5   32±2.1    34.4±2.6    39±2.5   40±3.3   40±2.6 

Soil+Oil+SC   35.4±5.6   45±3.1  47.2±3.7  49.6±4.7  48.8±5.3  55.2±4.1  54±2.8   55±3      55±3.7 

Soil+Oil+PS   24±3.7     35±5.6   36.4±4.2 36.8±2.3   40±3.4   48.3±6.8   45 ±3.5   46±1.5   45±1.7 

 

Net % loss = % loss in TPH (with organic wastes) - % loss in TPH (soil only)  

 

 

Statistical analysis (ANOVA) showed that the treatments were significantly different at      

P < 0.01 confidence level for 5% and 10% organic wastes amendment (Table 4.4). 

Comparison of means revealed that there was no significant difference among treatments 

amended with organic wastes, while significant difference (P < 0.01) was recorded between 

unamended soil (control) with treatments amended with organic wastes, which proves the 

positive effect of organic wastes during the biodegradation of diesel oil in the soil (Figure 

4.3). 

 

Table 4.4 Analysis of variance for biodegradation of 5% diesel fuel amended with 10% 

organic wastes 

S.V SS df MS 

Biodegradation 30047.209 4 7511.802 ** 

Error 10263.597 40 257.59 

Total 40310.806 44  

S.V= Source of variance, MS = Mean square, SS = Sum of square, ** = Significant at 1% level 
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Figure 4.3 Comparison of means of biodegradation in soil polluted with 5% diesel oil 

amended with 10% organic wastes. The same letter represents no significant difference. 

   

4.2.2 Biodegradation of diesel fuel (10% pollution) 

  

The percentage of diesel fuel degradation in soil polluted with 10% oil concentration  

with 5% or 10 % organic waste amendments are shown in Figures 4.4 and 4.5, respectively. 

The results show rapid reduction of over 50% of diesel oil amended with 10% SC during 

the 56-day period compared with that with 5% amendment with 28% degradation for the 

same period. However, soil treated with 5% PS and TL recorded the same percentage of 

biodegradation (25%) at the end of 56 days, where there was a 58% loss of oil in soil 

amended with 10% SC, while soil amended with 10% TL and PS recorded 39% and 42 % 

biodegradation, respectively.  

(%
) 
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Figure 4.4 Biodegradation of diesel fuel in soil contaminated with 10% oil and amended      

with 5% organic wastes. (Bars indicate standard error, n = 3). 
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Figure 4.5 Biodegradation of diesel fuel in soil contaminated with 10% oil and amended      

with 10% organic wastes. (Bars indicate standard error, n = 3). 
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 The reason for the rapid reduction of oil in the first 56 days with 10% organic wastes 

might be due to the high amount of amendment compared with 5% organic wastes which 

lead to an increase in the bioavailability of oil for hydrocarbon utilizing bacteria to rapidly 

degrade compounds and support their metabolic activities. Abioye et al., (2012a) indicated 

similar results with rapid degradation of lubricating oil within the first 14 days in soil 

amended with spent mushroom compost. This result is also supported by Singh and Lin 

(2009) who reported 60% degradation in soil polluted with diesel oil and amended with 

fertilizers in a period of 30 days of experimentation. According to Bossert and Bartha 

(1984), a high percentage of biodegradation occurs within the first 90 days of the 

remediation process. At the end of 126 days, soil treatments amended with 10% SC showed 

the higher rate of degradation (82%) in soil polluted with 10% diesel oil compared with TL 

and PS with 58% and 68%, respectively (Figure 4.5).  In addition, treatments amended with 

5% organic waste and polluted soil with 10% oil, SC showed the highest biodegradation 

rate (55%) followed by PS and TL treatments which were 52% and 48%, respectively. In 

unamended control and sterilized control soils, the percentage of degradation recorded were 

32% and 9%, respectively. Wellman et al., (2001) recorded similar results with 32% 

reduction in a control treatment of hydrocarbon concentration over a period of 41 days. 

Organic wastes and composts with high carbon source have increased ability for oxygen 

diffusion and mineral nutrients availability which helps bacterial adsorption to the surface 

of soil. In addition, SC like other amendments probably promoted and enhanced the 

physico-chemical characteristics of soil to increase the microbial population and adaption 

in oil polluted soil (Jørgensen et al., 2000). 

Statistical analysis shows significant (P < 0.05) differences between unamended 

(control) polluted soil and amended soil with organic wastes in all the treatments, which  
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proves the positive effect of the organic wastes during the biodegradation of diesel oil in 

the soil. In contrast, some researchers have indicated that there are no beneficial effects of 

amendment on degradation of hydrocarbon compounds. Schaefer and Juliane (2007) 

evaluated the effect of different additives such as brewery and horticultural wastes on TPH 

degradation at 5000 mg/Kg concentration of crude oil and indicated that the application of 

these wastes as treatment amended did not enhance the degradation of oil. They assumed 

that micro-organisms preferred the additives as nutrient sources over the less easily 

degradable, nitrogen deficient, long-chain crude oil (Schaefer and Juliane, 2007). 

The result of net percentage oil loss in soil amended with 5% organic waste and 10% diesel 

fuel is shown in Table 4.5. Results indicated the higher net percentage oil loss in soil 

amended with SC (25%) compared to TL (18.4%) and PS (24%). 

Statistical analysis does not  show significant differences at α = 5% in the net percentage 

TPH loss in soil amended with 5% , but there was a significant difference among those 

treated with 10% organic wastes at  P < 0.05 confidence level. 

 

 

Table 4.5 Net (%) loss of TPH in soil amended with 10% diesel fuel with 5% organic waste 

amendment compared with control

 
Treatment                                               Time (days) 

                            14           28          42           56           70          84          98         112        126 

Soil+Oil+TL    2.5±0.5   2.5±1    2.6±1.1   8±2.1     13±1.2   16±3.1    15±2    18±1.9   18.4±3.3 

Soil+Oil+SC    5±2.2    5.5±0.7    9±0.6    11±1.1    16±1.3   22±1      26±0.8    26±0.5   25±1.2 

Soil+Oil+PS      2±0.7    1±0.2     1±0.2     8±0.9     15.4±1.8   19±2.1   22 ±2.5  22±2.1  24±2.3 

 

Net % loss = % loss in TPH ( with organic wastes) - % loss in TPH (soil only)  
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Table 4.6 shows the net percentage of oil loss in soil amended with 10% diesel fuel with 

10% organic waste during the bioremediation study. The results are similar with 5% 

organic wastes (Table 4.5). 

 

 

Table 4.6 Net (%) loss of TPH in soil amended with 10% diesel fuel with 10% organic 

waste amendment compared with control 

 
Treatment                                               Time (days) 

                            14            28            42          56          70           84          98         112        126 

Soil+Oil+TL  11±1.8  14. 6±2.8   17.4±2.2  21±3.1   25±1.3   26±2.9    25±3.5    26±2.5  26±3.6 

Soil+Oil+SC  22±2.6  24.5±2  28.6±3.1   39.4±3.5  42.8±3.6  48.7±5.2  48±3.5  49±4.1  50±5.5 

Soil+Oil+PS  19.1±2  23±2.6   24.8±2.9  23.7±1.8   34±2.4    37±3.3    36 ±2.7   35±3.2  36±3.2 

 

Net % loss = % loss in TPH (with organic wastes) - % loss in TPH (soil only)  

 

Statistical analysis (ANOVA) shows that the treatments inhibited a significant difference at 

P < 0.01 confident level for 5 and 10% organic waste amendments (Table 4.7). Comparison 

of means revealed that there was a significant difference between treatments amended with 

different organic wastes (Figure 4.6). 

  

Table 4.7 Analysis of variance for biodegradation of 10% diesel fuel amended with 10% 

organic wastes 

S.V SS df MS 

Biodegradation 17809.952 4 4452.488 ** 

Error 7323.6 40 183.09 

Total 25133.552 44  

  S.V= Source of variance, MS = Mean square, SS = Sum of square, ** = Significant at 1% level 
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Figure 4.6 Comparison of means of biodegradation in soil polluted with 10% diesel oil 

amended with 10% organic wastes. The same letter represents no significant difference. 
 

 

4.2.3 Biodegradation of diesel fuel (15% pollution) 

 

At the end of 126 days, total petroleum hydrocarbon degradation in soil amended with 

5% and 10% SC recorded 42% and 55%, respectively (Figures 4.7 and 4.8). Whereas, the 

soil amended with 10% and 5% TL and PS recorded 33%, 25% and 42%, 40% 

biodegradation, respectively. This result is similar to Bento et al., (2005) who have reported 

72% degradation of light fraction of diesel oil amended with nutrients after six weeks. In 

contrast, Ijah and Antai (2003b) have indicated a high rate of biodegradation of crude oil in 

soil polluted with a high amount of crude oil (10% and 20%) within a period of 6 months. 

However, it was observed that soil amended with 10% organic wastes recorded a higher 

rate of biodegradation than treatments amended with 5% organic wastes. This might be due 

to the high amount of nutrient contents, particularly N and P, in soybean cake (Table 4.1) 

(%
) 
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than the other two wastes, which lead to stimulate indigenous microorganisms to break 

down the oil.  
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Figure 4.7 Biodegradation of diesel fuel in soil contaminated with 15% oil and amended      

with 5% organic wastes. (Bars indicate standard error, n = 3). 
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Figure 4.8 Biodegradation of diesel fuel in soil contaminated with 15% oil and amended      

with 10% organic wastes. (Bars indicate standard error, n = 3). 
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This result is in conflict with those recorded by Chaîneau et al., (2005) who have 

reported that a low amount of nutrient addition in soil polluted with crude oil recorded a 

higher percentage of degradation and assimilation compared with the treatments amended 

with high nutrients. The differences in these results might be due to the differences in the 

type of oil used or differences in the soil amendments used. In the Chaîneau et al., (2005) 

study a mixture of inorganic salts were used but this research used different organic wastes 

which did not show any toxic effect to the soil and the microorganisms. Abioye et al., 

(2010) who reported the addition of wastes, such as, brewery-spent grain to lubricating oil-

contaminated soil, enhanced the degradation of oil, is in line with the findings of this 

research. Tables 4.8 and 4.9 show the net percentage TPH loss from soil amended with 

10% and 5% organic wastes and polluted with 15% diesel oil. At the end of 28 days soil 

amended with PS showed a higher net percentage (17%) oil loss compared with other 

treatments; overall, soil treated with 10% and 5% SC recorded higher net percentage of 

TPH loss at 47% and 34%, respectively. Statistical analysis does not show significant 

differences in the net percentage oil loss among those treated at 10% organic waste. 

However, there was a significant difference among those treated with 5% organic wastes at 

P < 0.05. The results are agreement with the study of Adesodun and Mbagwu (2008) which 

indicated that there was a significant difference in the net percentage waste lubricating oil 

loss in soil amended with poultry manure (PM) over in a period of 18 months. The overall 

observation illustrates that SC is providing a suitable nutrient supplement in stimulating 

microbial degradation of diesel fuel.  
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Table 4.8 Net (%) loss of TPH in soil amended with 15% diesel fuel with 10% organic 

waste amendment compared with control 
[[[

 

Treatment                                               Time (days) 

                           14         28           42           56         70           84           98           112         126 

Soil+Oil+TL  6±0.8  9.3±1.2   16.5±1.8  25±3.1   31±2.1   31±2.3    32±1.5   32±3.5   32±1.6 

Soil+Oil+SC  12±0.6  16±1.5   23±2.1   30±3.5   35±2.6    41±3.2   46±2.5    46±3.1    47±2.5 

Soil+Oil+PS  15±1.3  17±2.1   21±2.2  26±1.8    30±2.1   31±2.6    33 ±2.1    33±2.2   34±3.1 

 

Net % loss = % loss in TPH (with organic wastes) - % loss in TPH (soil only)  

 

 

 

 

 

 

Table 4.9 Net (%) loss of TPH in soil amended with 15% diesel fuel with 5% organic waste 

amendment compared with control 
[[[

 

Treatment                                               Time (days) 

                            14         28            42            56            70          84           98          112         126 

Soil+Oil+TL   5±0.6   5.2±2.1     6.5±2.8  10.3±3.1   14.5±2   15±2.2   15.7±2.3   16±1.5   17±2.6 

Soil+Oil+SC  7.2±1.6  10.2±1.9   17±1   21.2±2.5  25.8±2.5  31.3±2   31.7±2.5   32.4±3.4   34±3.5 

Soil+Oil+PS 10±2.3  12.7±1.1   16±1.9  19.2±3.1  20.8±1.7   22±2.6   24.7±1.1   24±2.7    25±3.1 

 

Net % loss = % loss in TPH (with organic wastes) - % loss in TPH (soil only)  

 

 

Statistical analysis (ANOVA) shows that the treatments were significantly different in 

10% organic waste amendments at P < 0.01 confident level (Table 4.10). The result also 

was significant with 5% organic waste amendments. Comparison of means revealed that 

there were no significant differences among treatments amended with organic wastes but 
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there was a significant difference between unamended (control) polluted soil and the 

amended with organic wastes in all the treatments (Figure 4.9)  

 

Table 4.10 Analysis of variance for biodegradation of 15% diesel fuel amended with 10% 

organic wastes 

S.V SS df MS 

Biodegradation 9693.284 4 2423.321 ** 

Error 4327.533 40 108.188 

Total 14020.818 44  

  S.V= Source of variance, MS = Mean square, SS = Sum of square, ** = Significant at 1% level 
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Figure 4.9 Comparison of means of biodegradation in soil polluted with 15% diesel oil 

amended with 10% organic wastes. The same letter represents no significant difference. 

(%
) 



 

139 

 

4.2.4 Biodegradation of diesel fuel (20% pollution) 

 

At the end of 42 days, the percentage of biodegradation was 11%, 8.5% and 7% in soil 

amended with 5% SC, PS and TL, respectively (Figure 4.10). Whereas, only 25% 

biodegradation was recorded in soil amended with 10% SC, and 17% and 19% oil loss with 

TL and PS amendments was recorded, respectively (Figure 4.11). At the end of 126 days, 

the rate of biodegradation was too low in all treatments amended with 5% organic wastes. 

However, maximum percentage of oil loss recorded was 25% and 21% in soil amended 

with 10% and 5% SC, respectively. The soil amended with oil without organic wastes 

shows 5% degradation in a period of 126 days. These results are similar to those of Lee et 

al., (2008) who is reported that the addition of mineral nutrients and organic amendments is 

a viable choice in the remediation of contaminated soils. They reported a significant 

reduction in waste lubricating oil achieved by adding manure compost due to it is providing 

an alternative source of nutrients, especially vitamins, nitrogen and phosphorus. 

It is clear that the percentage of degradation was too slow in all the treatments during the 

first 42 days. The reason for the low rate of biodegradation within this period might be due 

to the impact of a high concentration of oil on microorganism growth, which leads to 

negative effects on microbial population in polluted soil. This initial trend of low 

degradation due to high concentration of oil has also been reported by Abioye et al., 

(2012a) and Rahman et al., (2002).  

 

 

 



 

140 

 

0

10

20

30

14 28 42 56 70 84 98 112 126

B
io

d
e

g
ra

d
a

ti
o

n
 (
 %

 )
  

Time ( Days)

Soil+20%Oil+5%TL

Soil+20%Oil+5%SC

Soil+20%Oil+5%PS

Soil+20%Oil only

Autoclaved Soil+20%Oil+0.5% NaN3

 
 

Figure 4.10 Biodegradation of diesel fuel in soil contaminated with 20% oil and amended 

with 5% organic wastes. (Bars indicate standard error, n = 3). 
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Figure 4.11 Biodegradation of diesel fuel in soil contaminated with 20% oil and amended 

with 10% organic wastes. (Bars indicate standard error, n = 3). 
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Tables 4.11 and 4.12 show the net percentage loss of TPH in soil amended with 20% 

diesel fuel and 10% and 5% organic waste amendments. Statistical analysis shows that 

there was significant difference (P < 0.05) in percentage of biodegradation between soil 

treated with 10% SC and those amended with 10% PS and TL, but there was no significant 

difference between treatments with 10% PS and TL. On the other hand, there was a 

significant difference between soil amended with 5% SC with those amended with 5% TL 

but the result does not show significant difference between soil amended with 5% PS and 

TL.  

 

 

 

 

 

 

Table 4.11 Net (%) loss of TPH in soil amended with 20% diesel fuel and 10% organic 

waste amendment compared with control 

 
Treatment                                               Time (days) 

                          14          28           42           56          70           84           98         112          126 

Soil+Oil+TL   4±0.9   7.8±2.6   9.5±1.8   9.2±1   11.3±1.2   11±1.5   11±2.1    17±0.5   12.2±1.6 

Soil+Oil+SC   9±1.1   12.2±2.2   16.6±1   18±1.5  19±1.8   19±2.2   20.4±1.8  20±1.4    20±1.1 

Soil+Oil+PS   7.7±1.6  10±1.8   11±0.9  12.2±2.1  14±0.7   13±1.6   14±0.8    14±1.7   14.1±0.5 

 

Net % loss = % loss in TPH (with organic wastes) - % loss in TPH (soil only)  
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Table 4.12 Net (%) loss of TPH in soil amended with 20% diesel fuel with 5% organic 

waste amendment compared with control 

 
Treatment                                               Time (days) 

                          14         28          42            56           70           84           98         112         126 

Soil+Oil+TL  3±1.2   5.1±1.4    7±0.9     7.1±0.3    8±1.2     8±1.3     9.2±1.1   9±0.4  9.5±0.6 

Soil+Oil+SC  4.5±1.3  6.5±0.9  11±1.7  11.3±2   13.6±2.6    14±1.8    15±1.4  15±0.9   16±2.1 

Soil+Oil+PS   3±0.7  6.8±1.1   8.5±0.4   8±1.9     9.7±1.1   10.2±0.8   11±1.2    11±1.5   13±0.8 

 

Net % loss = % loss in TPH (with organic wastes) - % loss in TPH (soil only)  

 

 

 

Statistical analysis (ANOVA) shows that the treatments were statistically significant for 

all assessed traits at P < 0.01 confidence level in 10% organic waste amendments (Table 

4.13). The same result was recorded with 5% organic waste amendments. Comparison of 

means revealed that there was a significant difference between SC amendment with the 

other two organic wastes (PS and TL), but it was not significant between TL and PS 

treatments. However, polluted soil amended with organic wastes had a significant 

difference with unamended (control) (Figure 4.12). 

 

Table 4.13 Analysis of variance for biodegradation of 20% diesel fuel amended with 10% 

organic wastes 

S.V SS df MS 

Biodegradation 2260.609 4 565.152 ** 

Error 621.209 40 15.53 

Total 2881.818 44  

  S.V= Source of variance, MS = Mean square, SS = Sum of square, ** = Significant at 1% level 
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Figure 4.12 Comparison of means of biodegradation in soil polluted with 20% diesel oil 

amended with 10% organic wastes. The same letter represents no significant difference. 

 

4.2.5  Kinetics model and Half- Life of biodegradation 

 

The first-order kinetic model was used to calculate the rate of biodegradation and it has 

been reported by many authors (Jørgensen et al., 2000; Namkoong et al., 2002). Tables 4.14 

and 4.15 show the biodegradations constant rate in the treatment with 5% and 10% of 

different organic wastes, respectively. Half-life indicates the length of time it takes to 

degrade half of the hydrocarbon. The coefficient of determination (R
2
) indicates that the 

model fits well with all the treatments.  Data for the sampling periods was combined before 

this model could be used. The kinetics parameter shows the highest rate of degradation for 

soil polluted with 5% diesel fuel accrued in soil amended with 10% SC treatment (k = 

0.22/day and half-life of 3.05 days) (Table 4.15).  

(%
) 
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The addition of 5% and 10% SC recorded the highest rate of biodegradation and half-life 

compared to other organic wastes (PS and TL). It illustrates that SC is the most effective 

treatment in stimulating biodegradation of soil polluted with diesel fuel throughout the 

study period. However, this result is different from Abioye et al., (2012a), who found that 

the highest rate of biodegradation was in 15% lubricating oil-contaminated soil amended 

with banana skin, while soil amended with brewery spent had the highest percentage of 

biodegradation during 84 days study. However, by increasing the level of pollution to 15% 

and 20% diesel oil, SC and PS recorded the same results in the biodegradation rate and 

half-life at the two different levels of amendments. In soil polluted with 20% diesel oil the 

highest rate of biodegradation and half-life was in soil treated with SC, which recorded k = 

0.021 day 
-1

, half-life of 33 days and 0.033 day 
-1

, half-life of 21 days in soil amended with 

5% and 10% SC, respectively. Soil amended with 5% SC and PS, and polluted with 15% 

diesel oil indicated the same rate of biodegradation, k = 0.044/day and 0.041/day with half-

life of 15.75 days and 16.9 days, respectively.  
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Table 4.14 Kinetic model and half- life of diesel fuel degradation amended with 5% organic 

wastes  

         Treatment                         Biodegradation        Half- life (days)          Coefficients of            

constant (k) day
-1                  

(
 
t 1/2

 
)

                                  
determination (R

2
) 

                                         

 

Soil + TL+ 5% Oil                     0.069                 10.04                        0.70 

 

Soil + SC+ 5% Oil                     0.114                 6.05                          0.97 

 

Soil + PS+ 5% Oil                     0.098                 7.07                          0.89                  

 

Soil + 5% Oil                             0.038                 18.24                        0.88 

 

Autoclaved soil + 5% Oil          0.005                133.30                       0.93 

 

Soil + TL+ 10% Oil                   0.050                13.86                         0.82 

 

Soil + SC+ 10% Oil                   0.061                11.36                         0.96 

 

Soil + PS+ 10% Oil                   0.051                13.59                         0.94 

 

Soil + 10% Oil                           0.031                22.35                         0.92 

 

Autoclaved soil + 10% Oil        0.006               115.52                        0.65 

 

Soil + TL+ 15% Oil                   0.024               28.88                          0.94        

 

Soil + SC+ 15% Oil                   0.044               15.75                          0.98 

 

Soil + PS+ 15% Oil                   0.041               16.90                           0.94 

 

Soil + 15% Oil                           0.006              115.52                         0.92 

 

Autoclaved soil + 15% Oil        0.001               462.0                          0.90 

  

Soil + TL+ 20% Oil                   0.014              49.5                             0.88 

  

Soil + SC+ 20% Oil                   0.021              33.0                             0.92 

 

Soil + PS+ 20% Oil                   0.020              38.32                           0.91 

  

Soil + 20% Oil                           0.002              330.0                           0.80 

 

Autoclaved soil + 20% Oil        0.001              693.14                         0.72 
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Table 4.15 Kinetic model and half- life of diesel fuel degradation amended with 10% 

organic wastes 

         Treatment                         Biodegradation             Half- life (days)             Coefficients of            

constant (k) day
-1                             

(
 
t 1/2

 
)

                                   
determination (R

2
) 

                                         

Soil + TL+ 5% Oil                     0.146                         4.74                       0.92 

 

Soil + SC+ 5% Oil                     0.227                          3.05                      0.94 

 

Soil + PS+ 5% Oil                     0.176                           3.93                      0.90   

 

Soil + 5% Oil                             0.037                          18.73                    0.87 

 

Autoclaved soil + 5% Oil          0.013                          53.31                    0.83 

 

Soil + TL+ 10% Oil                   0.076                          9.12                      0.92 

 

Soil + SC+ 10% Oil                   0.153                          4.53                      0.97 

   

Soil + PS+ 10% Oil                   0.115                          6.02                       0.90 

 

Soil + 10% Oil                           0.037                          18.74                    0.94                

  

Autoclaved soil + 10% Oil        0.01                             64.78                   0.89           

  

Soil + TL+ 15% Oil                   0.044                          15.75                    0.98 

 

Soil + SC+ 15% Oil                   0.061                          11.36                    0.92       

 

Soil + PS+ 15% Oil                   0.059                          12.37                    0.88                           

 

Soil + 15% Oil                           0.005                         128.36                   0.69                      

        

Autoclaved soil + 15% Oil        0.001                          495.10                  0.62   

 

Soil + TL+ 20% Oil                   0.019                          35.36                   0.90 

 

Soil + SC+ 20% Oil                   0.033                          21.0                     0.88 

 

Soil + PS+ 20% Oil                   0.030                           25.5                     0.85 

 

Soil + 20% Oil                           0.0017                        407.73                  0.91    

 

Autoclaved soil + 20% Oil        0.0011                        630.13                  0.98 
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In soil polluted with 10% diesel oil and amended with 10% SC recorded the 

biodegradation rate of 0.153/day and half-life of 4.53 days, while the rate of biodegradation 

and half-life were 0.061/day and 11.36 days respectively in soil amended with 5% SC. 

Statistical analysis indicates that there is a significant relationship between the 

concentration of diesel oil in contaminated soil and the rate of biodegradation. As results 

show, a higher rate of degradation was recorded in soil polluted with 5% diesel oil 

compared with 20% diesel oil, which could be attributed to the reduction of the population 

of microorganism and enzyme activity at different levels of oil pollution. The general trend 

with soil polluted at a high-level of diesel oil shows that these organic wastes are not 

efficient enough to stimulate the biodegradation process. These results are similar to the 

result of research done by Adesodum and Mbagwu (2008) who reported the ineffectiveness 

of organic wastes with a high level of spent oil pollution which could be attributed to 

reduction in the activity of the soil microbes at this level of pollution. Many researchers 

have reported negative effects of petroleum pollution on microflora that lead to decrease in 

the biodegradation rate and as such bioremediation is a useful method to remediate 

petroleum hydrocarbon at moderate concentration (Bossert and Bartha, 1984; Schaefer and 

Juliane, 2007).  

The results of soil amended with 5% of different organic wastes also show that SC had 

the lowest half-life and the highest biodegradation rate in soil contaminated with 20%, 

15%, 10% and 5% diesel oil. The half-life were 33 days, 15.75 days, 11.36 days and 6.05 

days at  20%, 15%, 10% and 5% diesel oil, respectively (Table 4.13). The reason for the 

higher rate of biodegradation in soil amended with SC might be the buffering effects of SC 

and presenting higher quantities of N and P compared with TL and PS, which attributed to 

its C: N ratio. The result is similar to that of  Medjor et al., (2012) who reported that at the  



 

148 

 

end of 1200 hours of bioremediation of groundwater polluted with diesel oil, first order 

reaction showed the constant rate of 0.002 hour
-1

and half-life (t1/2) of 346.5 hours. 

Namkoong et al., (2002) also have indicated that soil treated with sewage sludge with a 

higher amount of N and P recorded a high biodegradation rate at the end of one month of 

study. They reported low half-life and high biodegradation rate constant in diesel-

contaminated soil with sewage sludge amendment compared with unamended control soil.  

4.2.6 Microbial population of soil polluted with 5% diesel fuel 

The total colony forming units of aerobic heterotrophic bacteria (AHB) in soil amended 

with 5% SC and polluted with 5% diesel fuel ranged between 13 × 10 
7 

colony forming 

units (CFU)/g and 80× 10
7 

CFU/g while soil treated with 5% PS and TL recorded 11× 10 
7 

CFU/g to 70×10 
7 

CFU/g and 17×10
7 

CFU/g to 60 ×10
7 

CFU/g, respectively (Figure 4.13). 

In control (unamended) treatment AHB had the lowest range from 5 ×10
7 

CFU/g to 51 ×10
7 

CFU/g. The CFU of AHB in soil amended with SC was significantly higher than the 

control soil. 
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Figure 4.13 Total CFU of aerobic heterotrophic bacterial (AHB) in soil contaminated with 

5% diesel fuel amended with 5% organic wastes. Bars indicate standard error (n = 3). 
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No significant difference was recorded in AHB counts among soils amended with 

different organic wastes. Figure 4.14, also shows the population of aerobic heterotrophic 

bacteria in soil contaminated with 5% diesel fuel and amended with 10% organic wastes. 

Soil amended with 10% SC recorded a higher number of AHB ranging between 31 ×10
7 

CFU/g and 263 ×10
7 

CFU/g compared with other treatments at the end of 126 days. Results 

indicate that soil amended with 5% organic wastes shows lower counts than those amended 

with 10% organic wastes. This finding is similar to Bento et al., (2005) who recorded a 

higher count of AHB in soil polluted with diesel fuel and amended with crop residues.  
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Figure 4.14 Total CFU of aerobic heterotrophic bacterial (AHB) in soil contaminated with 

5% diesel fuel amended with 10% organic wastes. Bars indicate standard error (n = 3). 

 

 

 

The count of diesel utilizing bacteria (DUB) in soil amended with 5% and 10% organic 

wastes are shown in Figures 4.15 and 4.16, respectively. The DUB of soil amended with 

5% SC was higher than those amended with 5% PS and TL. AHB count ranged between 18 
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×10
5 

CFU/g and 99 ×10
5 

CFU/g while those amended with 5% PS and TL had 83 ×10
7 

CFU/g and 75×10
7 

CFU/g  at the end of 126 days.  
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Figure 4.15 Total CFU of diesel utilizing bacterial (DUB) in soil contaminated with 5% 

diesel fuel amended with 5% organic wastes. Bars indicate standard error (n = 3). 
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Figure 4.16 Total CFU of diesel utilizing bacterial (DUB) in soil contaminated with 5% 

diesel fuel amended with 10% organic wastes. Bars indicate standard error (n = 3). 
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It was observed that there was an increase in AHB population in soil amended with 5% 

SC from 13 ×10
7 

CFU/g to 54 ×10
7 

CFU/g during the first eight weeks which began to 

decrease in week nine. However, the bacteria population continued to increase until the end 

of the study. There was no bacterial growth detected in all sterilized samples during the 126 

days of the study period. In unamended control soil the range was from 3.0×10
7 

CFU/g to 

22 ×10
7 

CFU/g. The result agreed with Padayachee and Lin (2011) who reported an 

increase in bacterial population from 2.0 × 10
6
 to 3.2 × 10

6 
CFU/ml in soil polluted with 

diesel oil during the 1
st
 week of all supplemented microcosms amended with fertilizers. 

Count of DUB in soil amended with 10% SC showed 11% higher than those amended with 

10% PS and TL (Figure 4.16). Statistical analysis shows that there was no significant 

difference between DUB counts on soil amended with 5% and 10% organic wastes at P < 

0.05 confidence level, but there was significant differences between control soil and soil 

amended with organic wastes. 

 

 

4.2.7 Microbial population of soil polluted with 10% diesel fuel 

 
 

At the end of 126 days, AHB enumeration of 5% SC amended soil showed 17.6% and 

71.4% higher than those amended with PS and TL, respectively (Figure 4.17). The count of 

AHB was between 14 ×10
7 

CFU/g and 120 ×10
7 

CFU/g in amended soil with 5% SC, while 

soil amended with 5% PS and TL the ranged of AHB was from 14 ×10
7 

CFU/g to 102 ×10
7 

CFU/g  and 11 ×10
7 

CFU/g to 7×10
8 

CFU/g, respectively. Therefore, AHB in soil amended 

with 5% PS was higher on 28
th

, 56
th

 and 84
th

 days than those amended with 5% SC and TL, 

but this difference was not significant at P < 0.05 confident level. Statistical analysis also 

shows that there was a significant difference between soil amended with 5% SC with TL, 
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but there was no significant difference between amended soil with SC and PS at P < 0.05 

confident level.  
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Figure 4.17 Total CFU of aerobic heterotrophic bacterial (AHB) in soil contaminated with 

10% diesel fuel amended with 5% organic wastes. Bars indicate standard error (n = 3). 
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Figure 4.18 Total CFU of aerobic heterotrophic bacterial (AHB) in soil contaminated with 

10% diesel fuel amended with 10% organic wastes. Bars indicate standard error (n = 3). 
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It is observed that soil treated with 10% organic wastes had higher microbial population 

(Figure 4.18), during the period of study compared with control soil and among the organic 

waste amended, the AHB count was higher in the order SC > PS > TL throughout the 126 

day period of study. The count of AHB in treatments amended with 10% organic wastes 

was 6 times higher than in the naturally attenatuated soil (unamended) treatments. 

However, the number of heterotrophic microorganisms in unamended control soil was 2 

×10
8 

CFU/g at the end of study, so it shows the lowest number of CFU in control treatments 

compare to treatments amended with organic wastes. This finding is similar to the finding 

of Li et al., (2006) who reported that the CFU of AHB in all treatments was significantly (P 

< 0.05) higher than that of the control treatments, and correlated positively with soil 

residual TPH content during the first 30 days of the incubation.  

The CFU of DUB in soil amended with 5% SC ranged from 34 ×10
7 

CFU/g to 155 ×10
7 

CFU/g (Figure 4.19).  However, the DUB count in soil amended with 10% SC ranged from 

14 ×10
5 

CFU/g to 176 ×10
5 

CFU/g (Figure 4.19). It is obvious that DUB count was higher 

in 10% organic wastes compared with that amended with 5% organic wastes. Similar result 

has been reported by Abioye et al., (2012a) and Okoh (2006) which indicates that the 

addition of nutrients to contaminated soil will enhance the rate of biodegradation and 

stimulate the microbial population. The DUB count was lower in unamended soil (2 ×10
5 

CFU/g to 23 ×10
5 

CFU/g) compared with those amended with organic wastes. Statistical 

analysis does not show any significant difference among soil amended with different 

organic wastes, but there was statistical difference between unamended controls soils with 

those treated with organic wastes. 
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Figure 4.19 Total CFU of diesel utilizing bacterial (DUB) in soil contaminated with 10% 

diesel fuel amended with 5% organic wastes. Bars indicate standard error (n = 3). 
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Figure 4.20 Total CFU of diesel utilizing bacterial (DUB) in soil contaminated with 10% 

diesel fuel amended with 10% organic wastes. Bars indicate standard error (n = 3). 

 

 



 

155 

 

Higher counts of DUB and AHB were recorded in all soil amended with organic wastes 

compared with unamended polluted soil. This might be due to the ability of amended 

organic wastes to naturalize the effects of toxic oil on microbial population by providing 

better physicochemical properties of soil (Abioye et al., 2012b). Amendments might 

improve the soil aeration condition which is a favored factor for the growth of oil utilizing 

bacteria species that are only aerobic in nature. In soil treated with sodium azide there were 

counts of DUB and AHB. This result is similar to the finding of Palmroth et al., (2002) who 

recorded bacteria counts in control poisoned soil. Higher counts of DUB and AHB 

demonstrated by soil treated with 10% organic wastes compared with those of 5% 

amendments might be due to the quantity of organic wastes added which probably provided 

more nutrients to the soil bacteria than those amended with 5% organic wastes. 

 

 

4.2.8 Microbial population of soil polluted with 15% diesel fuel 
 

 

 

At the end of 126 days, counts of aerobic heterotrophic bacteria in soil amended with 

15% diesel oil contaminated and amended with 5% SC ranged from 9 ×10
7 

CFU/g to 

65×10
7 

CFU/g while soil amended with PS and TL recorded a range of 8 ×10
7 

CFU/g to 58 

×10
7 

CFU/g and 8 ×10
7 

CFU/g to 48 ×10
7 

CFU/g, respectively (Figure 4.21). Figure 4.22 

also shows the count of AHB in soil polluted with 15% diesel oil and amended with 10% 

organic wastes. SC amendment had the highest microbial population (102×10
7 

CFU/g) at 

the end of 126 days. Unamended control soil recorded 15×10
7 

CFU/g microbial population 

during the period of study. There was no significant difference between aerobic 

heterotrophic bacteria count of soil amended with 5% and 10% organic wastes; however, 

there was a significant difference between the counts of AHB in soil treated with 

supplements and unamended control soils at P < 0.05 confidence level.  
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Figure 4.21 Total CFU of aerobic heterotrophic bacterial (AHB) in soil contaminated with 

15% diesel fuel amended with 5% organic wastes. Bars indicate standard error (n = 3). 
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Figure 4.22 Total CFU of aerobic heterotrophic bacterial (AHB) in soil contaminated with 

15% diesel fuel amended with 10% organic wastes. Bars indicate standard error (n = 3). 
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The AHB count in soil treatment with 10% SC was 5.8 times higher than unamended 

control soil (Figure 4.22). The AHB count in soil amendment with 10% organic waste was 

twice of the AHB count in soil amended with 5% organic wastes. As mentioned earlier 

(4.2.6) with the increased amount of organic waste amendments a suitable condition will be 

provided for microbial growth and increase the microbial population.  

The counts of diesel utilizing bacteria in soil treatment with 5 % and 10% organic 

wastes are shown in Figures 4.23 and 4.24, respectively. The results indicate that the 

supplementation of organic wastes to 15% diesel fuel contaminated soil enhanced the 

growth of microorganisms compared with naturally attenuated microcosm. The DUB was 

highest in soil amended with 10% SC (145 ×10
5 

CFU/g) compared with those amended 

with 10% PS and TL (122 ×10
5 

CFU/g and 110 ×10
5 

CFU/g, respectively). At the end of 

the study the number of DUB in soil treated with 10% SC was six-fold more than in 

unamended soil. There was a significant difference between the population in soils 

amended with organic wastes and control treatment (P < 0.05). However, in the soil treated 

with sodium azide there was 6 ×10
5 

CFU/g microbial population at the end of 126 days. 

This result is in contrast with et al., (2012a) who reported that there was no microbial 

growth in poisoned control soil. The reason for this difference might be the differences in 

microbial ecology of the soil used for these two experiments. 
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Figure 4.23 Total CFU of diesel utilizing bacterial (DUB) in soil contaminated with 15% 

diesel fuel amended with 5% organic wastes. Bars indicate standard error (n = 3). 
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Figure 4.24 Total CFU of diesel utilizing bacterial (DUB) in soil contaminated with 15% 

diesel fuel amended with 10% organic wastes. Bars indicate standard error (n = 3). 
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4.2.9 Microbial population of soil polluted with 20% diesel fuel 

 
 

The counts of AHB in soil contaminated with 20% diesel fuel and amended with 5% SC 

ranged between 8 × 10
7 

CFU/g and 43 × 10
7 

CFU/g while that of soil amended with 5% PS 

and TL ranged from 6.0 ×10
7 

CFU/g to 20.0 ×10
7 

CFU/g and 2 ×10
7 

CFU/g to 22 ×10
7 

CFU/g respectively, between 0 and 126 days (Figure 4.25). There was a decrease in the 

number of colonies on the 72
nd

 day in soil amended with 5% SC, but it continued to grow 

until the end of 126 days. The count of AHB in soil amended with 5% PS and TL was 

almost similar during the study. Figure 4.26 also shows the count of AHB in soil 

contaminated with 20% diesel fuel and amended with 10% organic wastes. The soil 

amended with 10% SC had the highest range which was from 11 × 10
7 

CFU/g to 65 ×10
7 

CFU/g while the soil treated with PS and TL recorded 11 ×10
7 

CFU/g to 56×10
7 

CFU/g and 

8 × 10
7 

CFU/g to 38 × 10
7 

CFU/g respectively, in the 126 day period of this study (Figure 

4.26). It was noticed that with increased oil concentration in contaminated soil the number 

of colony forming units decreased. In addition, with the addition of more supplements to 

the contaminated soil, the number of microbial population increased and that in turn led to 

an increase in the rate of biodegradation.  
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Figure 4.25 Total CFU of aerobic heterotrophic bacterial (AHB) in soil contaminated with 

20% diesel fuel amended with 5% organic wastes. Bars indicate standard error (n = 3). 
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Figure 4.26 Total CFU of aerobic heterotrophic bacterial (AHB) in soil contaminated with 

20% diesel fuel amended with 10% organic wastes. Bars indicate standard error (n = 3). 
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The count of diesel utilizing bacteria in soil contaminated with 20% and amended with 

5% SC had a higher range which was from 8 × 10
5 

CFU/g to 51 × 10
5 

CFU/g compared 

with soil amended with 5% PS (8 ×10
5 

CFU/g to 38 ×10
5 

CFU/g) and 5% TL (4 ×10
5 

CFU/g to 30.0×10
5 

CFU/g) during the 126 days of study (Figure 4.27). Also, the DUB 

count was the highest in soil amended with 10% SC which ranged between 11 × 10
5 

CFU/g 

and 77 ×10
5 

CFU/g while soil amended with 10% PS and TL recorded 13 × 10
5 

CFU/g to 

60.0 ×10
5 

CFU/g and 6 ×10
5 

CFU/g  to 40.0 × 10
5 

CFU/g , respectively (Figure 4.28). The 

DUB in unamended control soil recorded 16 × 10
5 

CFU/g at the end of study. Statistical 

analysis indicates significant difference between unamended control soil and soil amended 

with organic wastes at P < 0.05 confidence level.  
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Figure 4.27 Total CFU of diesel utilizing bacterial (DUB) in soil contaminated with 20% 

diesel fuel amended with 5% organic wastes. Bars indicates standard error (n = 3). 
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Figure 4.28 Total CFU of diesel utilizing bacterial (DUB) in soil contaminated with 20% 

diesel fuel amended with 10% organic waste. Bars indicate standard error (n = 3). 

 

 

 

The count of DUB in all treatments amended with organic wastes was higher compared 

with those of unamended control soil and autoclaved poisoned control soil at all the 

different levels of diesel oil pollution (5%, 10%, 15% and 20%) during the 126 days of this 

study. These results are similar to those of many researchers who have reported the number 

of hydrocarbon utilizing bacteria as ×10
6 

CFU/g or ×10
8 

CFU/g (Antai and Mgbomo, 1993; 

Ijah and Antai, 2003b). The difference in microbial population in other studies compared 

with this study might be due to the different type of oil and the microbial ecology of the 

soil which was used in those studies. However, soil contaminated with limited 

concentration of diesel fuel (5%) recorded a higher population of DUB and AHB compared 

with the soil with the higher oil concentration (10%, 15% and 20%). This might be due to 

the toxicity effects of the higher oil concentration on microbial growth which has negative 

impacts on microbial enumeration. Rahman et al., (2002) demonstrated that by decreasing 



 

163 

 

oil concentration from 10% to 1%, the count of microbial population increased. It is 

noticeable that, those soils polluted with diesel fuel and amendment with organic waste 

recorded a higher microbial population, particularly in SC treatments. This may be a result 

of appreciable quantities of nutrients (N and P), especially N which has an important role in 

biodegradative activities. This reason is supported by Abioye et al., (2009), Adesodun and 

Mbagwu, (2008) and Ijah and Antai, (2003a).  

 

4.2.10 Bioavailable fraction in total content of analyzed PAHs in diesel fuel 

contaminated soil 

 

Sites contaminated with petroleum hydrocarbons can be evaluated using bioassays 

(assessments of bioavailability or bioaccessibility by uptake or/ and toxicity to 

microorganisms). Figure 4.29 indicates the bioavailable fraction in the total content of soil 

polluted with 5 % diesel fuel. At the 14 days, the bioavailability fractions ranged from 65% 

to 87% among the various treatments. It was noticeable that in all the treatments, there was 

a significant decrease in hydroxypropyl[b]cyclodextrin (HPCD) extracted over time. The 

10% SC amended treatment and polluted with 5% diesel oil recorded a significant 

reduction which was from 81% (T 14) to 4.5% (T 126), while this decrease was not 

significant in those unamended and sterilized soil. The bioavailability of sterilized control 

soil decreased from 87% to 58% by the 126
th

 day.  

This is in total agreement with a previous study that showed the lowest bioavailability of 

PAHs was in the sewage sludge with the highest organic carbon content (Amir et al., 2005). 

Amir et al., (2005) indicated that the tendency of change of bioavailability or content of  

various hydrocarbon compounds during composting is found to be strongly related to the 

number of their aromatic rings, their structure and molecular weight. In addition, results 
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illustrated by contaminated soil with 10% diesel fuel there was a significant difference  

among the different amendments, and bioavailability decreased from 86.6% to 12.2%, 

77.1% to 20.3% and 83% to 22.2% in soil treated with 10% SC, TL and PS, respectively 

(Figure 4.30), while in unamended sterilized soil the differences was not significant. It has 

been observed that by increasing the soil-pollutant contact time, extractability and 

bioavailability decreased. Various researchers (Reid et al., 2000; Semple et al., 2001) have 

reported this phenomenon.  
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Figure 4.29 Bioavailable fractions in total content of analyzed PAHs in contaminated soil 

with 5 % diesel fuel and amended with 10% organic wastes. The same letter represents no 

significant difference (p > 0.05). 
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Figure 4.30 Bioavailable fractions in total content of analyzed PAHs in contaminated soil 

with 10 % diesel fuel and amended with 10% organic wastes. The same letter represents no 

significant difference (p > 0.05). 

 

 

Guozhong et al., (2011) found that excessive amendment of meat compost that increased 

the organic carbon content reduced the amount of bioavailable PAH because of 

sequestration. Some studies showed that soil properties, i.e. organic matter content, matrix 

nanoporosity and hydrophobicity influenced a decrease/increase of the bioavailable 

sequestrated fraction (Chung and Alexander, 2002). The result is line with Puglisi et al., 

(2007) who recorded the percentage of bioavailability of phenanthrene in sterilized control 

soil which decreased from 87.3 % in 20 days to 47.5% in 240 days, while in non-sterilized 

soil amended with compost it decreased from 51.1% to 0, at the end of 240 days. This 

shows that, the bioavailability was significantly reduced in soils amended with compost. In 

addition, it has been well demonstrated that decomposition of organic hydrocarbons in 

contaminated soil reduces the bioavailability of organic chemicals and results in a non-

degraded residue in the soil (Semple et al., 2003). 
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A similar trend was observed in the soil polluted with 15% and 20% diesel fuel (Figures 

4.31 and 4.32). Statistical analysis carried out did not show any significant difference 

among treatments in 14 days (T14) at 15% diesel fuel. The percentage of bioavailability 

had a sharp decrease in soil amended with 10% SC from 80.35 % to 21% in 126 days at 

15% diesel fuel. Whereas, in autoclaved control soil it was reduced from 70.2 % to 65% 

and 89% to 70% at 15 and 20 % diesel fuel, respectively. The results are similar to Semple 

et al., (2001) who indicated that the mixture of compost-soil reduced pollutant 

concentration or/and matrix that had less pollutants in a bioavailable form. The impact of 

organic wastes on the contribution of the potentially bioavailable fraction of the PAH 

clearly depended on the stage of the experiment and organic waste type (Oleszczuk, 2007). 

A significant lowering of the potentially bioavailable fraction in soil amended with organic 

wastes was noted during the biodegradation process of diesel fuel contaminated soil. 
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Figure 4.31 Bioavailable fractions in total content of analyzed PAHs in contaminated soil 

with 15% diesel fuel and amended with 10% organic wastes. The same letter represents no 

significant difference (p > 0.05). 
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Figure 4.32 Bioavailable fractions in total content of analyzed PAHs in contaminated soil 

with 20% diesel fuel and amended with 10% organic wastes. The same letter represents no 

significant difference (p > 0.05). 

 

 

4.2.11 pH of soil contaminated with 5, 10, 15 and 20% diesel fuel 

 

The pH of soil polluted with different concentrations of diesel fuel (5%, 10%, 15% and 

20%) and amended with organic wastes (5% and 10%) demonstrated that at the initial stage 

pH increased slightly, followed by a decrease from 56 day to 84 day period. It increased 

again to 7.0  throughout the period of the study. Figures 4.33 to 4.40 show the pH assessed 

during the 126-day period of bioremediation study. Addition of amendment, especially SC 

and PS, lead to rise in the pH from 6.8 to as high as 8.0 in soil polluted with 15% diesel oil. 

Soil amended with TL had lower pH which rose from 6.4 to 7.1 in soil treatment with 5% 

and 10% oil concentration. It might be because the TL naturally has low pH and during the 

biodegradation of oil in soil amended with TL it always favored slightly acidic or natural 

pH. This result is in conformity to Ijah et al., (2008) who reported amending hydrocarbon 

contaminated soil with chicken drop, lead to increased pH of the soil from 6.7 to 7.7. 
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Figure 4.33 pH of soil polluted with 5% diesel fuel and amended with 5% organic wastes. 

Bars indicate standard error (n = 3). 
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Figure 4.34 pH of soil polluted with 5% diesel fuel and amended with 10% organic wastes. 

Bars indicate standard error (n = 3). 
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Initially, the soil pH increased in all the treatments after the soil was polluted with oil and 

amended with organic wastes. It later decreased from 42 days until 70 days in all the 

amendments. The reason for the drops in pH between 42 and 70 days might be due to 

microbial activities during the biodegradation of oil which lead to the accumulation of 

secondary metabolites that are slightly acidic in nature. The pH of all treatments increased 

within the last six weeks of study.  
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Figure 4.35 pH of soil polluted with 10% diesel fuel and amended with 5% organic wastes. 

Bars indicates standard error (n = 3). 
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Figure 4.36 pH of soil polluted with 10% diesel fuel and amended with 10% organic 

wastes. Bars indicate standard error (n = 3). 
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Figure 4.37 pH of soil polluted with 15% diesel fuel and amended with 5% organic wastes. 

Bars indicate standard error (n = 3). 
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Figure 4.38 pH of soil polluted with 15% diesel fuel and amended with 10% organic 

wastes. Bars indicate standard error (n = 3). 
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Figure 4.39 pH of soil polluted with 20% diesel fuel and amended with 5% organic wastes. 

Bars indicate standard error (n = 3). 

Time (days) 

Time (days) 

p
H

 
p

H
 



 

172 

 

5

6

7

8

9

0 14 28 42 56 70 84 98 112 126

SoiL+ 20%Oil+10%TL SoiL+ 20%Oil+10%SC
Soil+20%Oil+10%PS SoiL+ 20%Oil Only
Autoclaved soiL+ 20%Oil+0.5% NaN3

 
 

Figure 4.40 pH of soil polluted with 20% diesel fuel and amended with 10% organic 

wastes. Bars indicate standard error (n = 3). 

 

 

4.2.12 Seed germination toxicity test 

 

 Seed growth and germination test suggested by Millioli et al. (2009) was employed 

using Lettuce seed (Lactuca sativa) is an optimal plant choice and is sensitive to toxic 

compounds, especially petroleum products (Oleszczuk, 2008). Table 4.16 shows the result 

of germination toxicity with lettuce after the bioremediation was completed. It is noticeable 

that soil amended with 10% SC and contaminated with 5% diesel oil had 100% 

germination over the period of 126 days. While 90%, 60% and 40% germination was 

recorded in soil amended with 10% SC and polluted with 10%, 15% and 20% diesel oil, 

respectively. Only 20% and 10% germination was recorded in poisoned control soil 

contaminated with 5 % and 10% diesel oil, respectively. The results are similar to findings 

of Saadoun and Al-Ghazawi (2010) who reported a 30% decline in Cochorus olitorius seed  
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germination in soil contamination with diesel fuel at 100 mg/Kg or higher. Statistical 

analysis revealed a positive correlation between germination toxicity test and percentage of 

oil loss in contaminated soil. However, it shows that by increasing the quantity of organic 

waste amendments, a shorter period is needed to remediate petroleum hydrocarbon from 

soil contamination. Banks and Schultz (2005) illustrated increasing the rate of seed 

germination by reducing quantity of oil in the soil.  

 

Table 4.16 Seed germination toxicity test (%) 

 
                                                                         Treatments 

 
Percentage of  

oil pollution                      A              B             C               D           E            F                 

 
                                                                  

 5% organic waste amendments 

 

5                                    60±0         90±10        70±6        40±0      20± 0       100 

 

10                                  40±10       70±6          50±6        40±0      10±0        100 

 

15                                  30±0         50±0          30±0        20±6          0          100                                                                          

 

20                                  10±6         30±6          20±0        10±0          0          100 

 

10% organic waste amendments 

 

5                                    80±0          100           90±6        40±0        20±0       100 

   

10                                  60±0          90±10       80±0        40±6        10±0       100                                      

 

15                                  40±10        60±0         40±0        20±0           0          100 

 

20                                  20±0          40±0         30±0        10±0            0         100     

 
     A= Soil+Oil+TL,  B= Soil+Oil+SC,   C= Soil+ Oil+PS,  D= Soil+Oil,                                    

     E= Autoclaved soil+ Oil+NaN3,   F= Unamended soil 
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Seed germination toxicity index (GI) was used to evaluate the phytotoxicity and rate of 

detoxification of soil at the end of the bioremediation process. Figure 4.41 shows the GI in 

soil polluted with 20%, 15%, 10% and 5% diesel fuel and amended with 5% and 10% 

organic wastes. Soil treated with 10% organic wastes showed that the index was higher 

than that amended with 5% organic wastes. Results indicated that with the increased rate of 

oil pollution, the rate of the GI decreased. The negative impact of hydrocarbon on the rate 

of the GI may be due to toxic effects of hydrocarbons on plants which were inherent to 

plant growth. This result is similar to Aparna et al., (2010) who reported a decrease in 

phytotoxicity of sediment as indicated by the increase in the value of the GI. The highest GI 

was recorded in soil amended with 10% SC (93.34%, 63.33%, 23.23% and 10% at 5, 10, 15 

and 20% diesel oil, respectively). This has proven the effectiveness of SC in enhancing 

biodegradation of diesel contaminated soil. These results match with Mandal et al., (2012) 

who indicated that the GI increased considerably after remediation of petroleum 

hydrocarbon contaminated soil. In addition, Oleszczuk (2008) reported that the germination 

index of Lepidium sativum increased after the addition of compost to wastewater sludge 

during 11 weeks. However, the lowest value of GI was recorded for unamended control 

treatment soil and soil contaminated with 20% diesel fuel. There was a significant 

difference in the germination index between control soil and amended soil with organic 

wastes at P < 0.05. Hydrocarbon compounds may affect the root activities in absorption of 

nutrients or reducing water and gas exchange (Abioye et al., 2012b). It may also enter the 

seeds and change the metabolic reaction and damage cell membranes and reduce the 

respiration, transport rate (Abioye et al., 2012b; Adam and Duncan, 2002). This physical 

barrier was shown to delay seed emergence which could be an additional factor in the 

overall inhibitory effect of diesel fuel contamination on growth of plants and germination 

(Shafiq and Iqbal, 2012). 
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Figure 4.41 Seed germination toxicity index (%) A) amended soil with 5% organic wastes 

B) amended soil with 10% organic wastes 

 

4.2.13 Monitoring bioremediation using CO2 produced 

 

 

The metabolic activity of microorganisms (respiration) in soil amended with 5% and 

10% organic wastes and treated with 5%, 10%, 15% and 20% (w/w) diesel fuel is shown in 

Tables 4.17 to 4.20. In all the treatments, the accumulation of carbon dioxide                 

(CO2) increased gradually, to the last date of sampling. The cumulative total of CO2 

produced by treatments showed significantly higher than for uncontaminated control soil at            

P < 0.05 confidence level. In 20% oil pollution, the highest CO2 evolution was by soil 

amendment with 10% SC was (55.13 mg) and the lowest amount of CO2 released in 

unamended control was (37.7 mg) at the end of 42 days, while soil amended with 10%  PS 

and TL librated 52.4 mg and 46.2 mg, respectively (Table 4.17). Obire and Nwaubeta 

(2001) also reported a progressive increase in the amount of carbon dioxide produced for 

the first four weeks in the hydrocarbon contaminated soils. 

3
3

.3
3

2
3

.3
3

3
.1

3

1
.7

3

9
0

.3
4

4
0

1
5

5
.1

5

5
5

3
3

.3
4

6
.3

2
.6

7

1
5

.3
4

1
2

.6
7

2
.3

3

1
.0

6

2
.3

1

0

20

40

60

80

100

5 10 15 20

G
I
 (

%
)

Diesel oil concentration (%)

A B 



 

176 

 

 

Table 4.17  CO2 produced (mg/100g) in soil polluted with 20% diesel fuel. 

 
      Period (days)                                                     Treatments  

 
                                                   A                   B                  C                 D                  E 

  10% organic waste amendments   

                 
                 7                          27.12±2.2       35.77±2.4    27.87±2.7   13.65±1.5          0                                       
                  
                14                         34.56±3.6       42.32±3.7    38.15±2.4   19.16±2.1          0            
               
                21                         28.22±2.5      46.28±3.5     43.56±4.1   23.17±2.2    1.10±0.4 
                
                28                         35.05±4.3      50.35±2.1     46.22±3.5   28.54±1.8    2.20±0.3 
                
                35                         39.10±3.3      52.17±4.2     50.34±3.5    31.24±3.1   3.40±0.5 
                
                42                         46.22±3.1      55.13±5.4    52.40±3.4    37.70±2.1    4.70±0.8 
 
  5% organic waste amendments   
                  
               7                            11.2±1.8        29.1±2.2       20±0.5        13.65±1.5          0                                                 
                  
               14                          17.8±1.1        30±2.4          22.5±1.7     19.16±2.1          0            
                
               21                          21.7±2.2        32.2±3.1       27.4±1.6     23.17±2.2     1.1±0.4 
               
               28                          29.2±1. 5      38.1±2.5        30.4±3.3     28.54±1.8     2.2±0.3 
               
               35                          32.6±3.8        44.0±5.2        33.3±4.4    31.24±3.1    3.4±0.5 
               
               42                          36.6±3.3        48.6±2.8        38.9±4.1    37.7±2.1      4.7±0.8 

 
 

       A= Soil+20% Oil+ TL,   B= Soil+20% Oil+ SC,  C= Soil+20% Oil+ PS,      

       D= Soil+20% Oil Only,   E= Autoclaved soil+20% Oil+ 0.5% NaN3 

 

 

In 15% oil pollution the rate of CO2 production in unamended control soil was 26.7 mg 

at the end of 42 days which was at a lower rate compared with those amended with organic 

wastes. CO2 produced were 44.2 mg, 50.2 mg and 43.8 mg in soil amended with 10% TL, 

SC and PS, respectively (Table 4.18). After 42 days, lower CO2 evolution was recorded in 

soil amended with 5% TL, SC and PS with 41.1 mg, 49.6 mg and 35 mg, respectively. The 
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 differences in all the amounts of CO2 released were not significant at P < 0.05 confidence 

level. This result is similar to the findings of Oh et al., (2000) who indicated that soil 

amended with nutrients showed rapid increase in the amount of CO2 production during the 

177 days of incubation compared with a no-nutrient added sample. In soil amended with 

5% organic waste, the rate of CO2 increased gradually, but there was a decrease on the 28
th

 

day. The reseaon might be due to a rapid depletion of available nutrients resulting from 

consumption of a large organic carbon source (Molina-Barahona et al., 2004). 

 

Table 4.18 CO2 produced (mg/100g) in soil polluted with 15% diesel fuel 

 
      Period (days)                                                     Treatments  

 
                                                A                    B                   C                  D            E 

  10% organic waste amendments    
                 

                 7                          13.1±1.3      36.12±5.4     26.7±4.2     7.6±1.1          0                                       
                  
                14                         24.7±2.2       40.2±2.3      28.5±5.6     13.6±0.7        0            
               
                21                         26.3±4.4       42.1±6.2      33.6±4.6     18.7±3.1        0 
                
                28                         32.5±2.5      44.8±5.8       36.05±6.5    25±2.6      2.8±0.3 
                
                35                         34.8±3.2      47.2±5.4       39.3±6.8      30.2±4.5    3.4±0.8 
                
                42                         44.2±3.5      50.2±5.6      43.8±6.3      35.5±6.2     3.9±0.2 
 

  5% organic waste amendments   
                  
               7                            11.7±2.1      23.7±2.2      15.6±1.6       7.6±1.1         0                                                 
                  
               14                          25.2±4.6      35.6±4.1      17.6±2.2      13.6±0.7        0            
                 
               21                          36.7±5.5      42.7±4.3      25.2±1.3      18.7±3.1        0 
               
               28                          28.2±3.2      40.6±3.6      36.7±4.4     25±2.67     2.8±0.3 
                
               35                          35.7±3.3      47.9±3.1      33.1±5.7     30.2±4.5    3.4±0.8 
               
               42                          41.1±4.6      49.6±5.2       35±4.5        35.5±6.2   3.9±0.2 

 
 

       A= Soil+15% Oil+ TL,   B= Soil+15% Oil+ SC,  C= Soil+15% Oil+ PS,      

       D= Soil+15% Oil Only,   E= Autoclaved soil+15% Oil+ 0.5% NaN3 
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The amount of CO2 increased rapidly to the end day of sampling (Table 4.19). About 32.5 

mg CO2 was produced in uncontaminated soil while in soil treated with 10% SC, PS and 

TL, it was 63.25 mg, 52.7 mg and 55.2 mg, respectively (Table 4.19), while 45.15 mg CO2 

was recorded in soil amended with 5% SC at the end of 42 days. Statistical analysis showed 

no significant differences in CO2 released among all the treatments, at P < 0.05 confidence 

level. 

 

 

Table 4.19 CO2 produced (mg/100g) in soil polluted with 10% diesel fuel 

 
      Period (days)                                                     Treatments  

 
                                               A                    B                 C                  D                   E 

  10% organic waste amendments   

                 

                 7                    18.91±1.2       12.50±0.7      15±1.2            5.70±0.4           0                                       

                   

                14                   22.72±1.9       22.80±1.7      22.50±1.4       15.30±0.5         0            

               

                21                   36.72±4.1       39.10±2.4      35.60±3.3       21.40±2.3         0 

                

                28                   42.15 ±1.4     48.80±3.8       46.90± 3.4       28.20±0.9    1.80±0.6 

                

                35                   50.80±3.2      57.25±2.1       50.30±2.4        30.10±1.2     2 ±0.9 

                

                42                   55.23±3.5      63.25±5.4      52.70±3.45       32.50±2.6    3.10±1.4 

 

  5% organic waste amendments   

                  

               7                      11.3±1.3          10.2±3.3       9.8±1.1            5.7±0.4           0                                                 

                  

               14                    20.2±4.1          16.8±1.9       5.6±2.3           15.3±0.5          0            

                 

               21                    25.5±1.4         30.1±3.4      25.6±2.4           21.4±2.3          0 

               

               28                    30.1±2.3         42.3±3.5       37.2±3.6         28.2±0.9     1.8±0.6 

                

               35                    38.9±4.3        38.5±3.2        41.1±2.9         30.1±1.2      2.2±0.9 

                

               42                    40.7±3.8         45.1±3.6       43±2.6            32.5±2.6     3.1±1.4 

 
 

       A= Soil+10% Oil+ TL,   B= Soil+10% Oil+ SC, C= Soil+10% Oil+ PS,      

       D= Soil+10% Oil Only,   E= Autoclaved soil+10% Oil+ 0.5% NaN3 
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The cumulative amount of CO2 released shows a more distinct effect of organic 

amendments on TPH degradation. The respiration rate in soil polluted with 5% diesel fuel 

increased significantly (Table 4.20). The dramatic increase in CO2  evolution at the early 

stage was probably due to the rapid degradation of TPH during the same period. In those 

treatments (TL, SC and PS), where hydrocarbons were added to soil, except for the 

sterilized contaminated soil (SCS), it was possible to observe significantly higher values of 

CO2 release. Since there was total lack of microbial activity in the sterilized soil, the SCS 

treatment showed the lowest value of respiration. Although total amount of CO2 evolved 

for TL was the lowest among the organic amendments experiments, it was 55% and 82% 

higher than that of soil-only experiment in 5% and 10% TL, respectively. 
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Table 4.20 CO2 produced (mg/100g) in soil polluted with 5% diesel fuel 

 
      Period (days)                                                     Treatments  

 
                                              A               B                  C                   D                 E 

  10% organic waste amendments   

                 

                 7                     26.2±2.2    16.3±1.4       14.7±2.5       12.3±0.8           0                                       

                   

                14                    34.1±3.7    32.5±5.3       25.5±2.6       16.6±1.7           0            

               

                21                    40.4±5.1    45.1±2.5       37.2±3.5        25.7±4.7     2.4±0.4 

                

                28                    47.5±3.4    51.4±3.3       46.1±4.8        28.4±3.6     3.5±0.2 

                

                35                    54.8±2.7    57.4±4.2      55.7±6.7         30.1±2.7     4.4±1.5 

                

                42                    60.3±5.6    65.2±4.5       61.1±5.1        33.13±4.5    5±1.2 

 

  5% organic waste amendments   

                  

               7                       15.2±2.4     22.1±5.1     13.3±1.2       12.3±0.8             0                                                 

                  

               14                     26.8±3.3     28.1±2.2     18.5±2.8       16.67±1.7           0            

                 

               21                     31.2±5.2     38.4±3.7     33.4±5.6       25.7±4.7        2.4±0.4 

               

               28                     46.2±4.5    49.3±6.5      44.4±6.4       28.4±3.6        3.5±0.2 

                

               35                     42.6±4.7     45.6±6.5     40.3±3.8      30.1±2.7         4.4±1.5 

               

               42                     51.3±6.5     58.2±3.5     55.8± 5.4     33.1±4.5         5±1.2 

 
       A= Soil+5% Oil+ TL,   B= Soil+5% Oil+ SC,    C= Soil+5% Oil+ PS,      

       D= Soil+5% Oil Only,   E= Autoclaved soil+5% Oil+ 0.5% NaN3 

 

 

 

 

The correlation between soil polluted with 20%, 15%, 10% and 5% diesel fuel and CO2 

evolution is shown in Figures 4.42 to 4.45. The results illustrated a positive linear 

correlation (R
2
= 0.8 and above) between soil amended with 5% and 10% organic wastes 

compared with unamended control soil which showed little correlation. It also indicated  
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that all treatments amended with 10% organic wastes showed a higher correlation than that 

amended with 5% organic wastes. High correlation was recorded in soil contaminated with 

5% diesel fuel (R
2
 =

 
0.93 – 0.99). Among the treatments amended with organic wastes, the 

lowest correlation was observed in soil polluted with 15% oil and amended with 5% TL. 

These results agreed with those of Mancera-Lo´pez et al., (2008) who reported that in 

bioaugmented systems with Rhizopus sp. and A. sydowii, a positive correlation of 

respirometric activity (CO2 production) with hydrocarbon removal was recorded. However, 

the positive linear correlation between TPH removal and respirometric activity recorded in 

all treatments amended with organic wastes. The high correlation is  because of the 

increased mineralized of microorganisms in all the treatments which was due to the 

increasing in microbial activity that is able to breakdown of the hydrocarbon compounds 

and thereby releasing CO2 during this process. Similar findings were observed by Ijah and 

Anti (2003a), which showed that during bioremediation of crude oil in contaminated soil 

amended with chicken drop pigs, there was a positive correlation (R
2 

= 0.9) between CO2 

evolution and rate of biodegradation in all treatments compared with control soil. 
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Figure 4.42 Correlation between oil degradation in 20% pollution and CO2 evolution, A) Soil amended with SC, B) Soil amended with PS, C) Soil 

amended with TL, D) Unamended control soil 
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Figure 4.43 Correlation between oil degradation in 15% pollution and CO2 evolution, A) Soil amended with SC, B) Soil amended with PS, C) Soil 

amended with TL, D) Unamended control soil 
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Figure 4.44 Correlation between oil degradation in 10% pollution and CO2 evolution, A) Soil amended with SC, B) Soil amended with PS, C) Soil 

amended with TL, D) Unamended control soil 
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Figure 4.45 Correlation between oil degradation in 5% pollution and CO2 evolution, A) Soil amended with SC, B) Soil amended with PS, C) Soil 

amended with TL, D) Unamended control soil 
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4.2.14 Dehydrogenase activity (DHA) 

 

Biological oxidation activity was investigated based on DH enzyme to evaluate the 

efficiency of the microbial community to utilize organic compounds. This is as an index of 

the total oxidative activity in a sample (Aparna et al., 2010). Figure 4.46 shows the DHA in 

soil contaminated with 5% diesel fuel and treated with 5% and 10% organic wastes. DHA 

increased with time and then significantly decreased at 70 days in soil amended with 10% 

organic wastes. The highest microbial activity was recorded by soil amended with 10% SC 

(200 μINTF/g dw) at 126 days, which is 2.7 fold higher than unamended control soil in the 

same time. However, in soil amended with 5% TL, SC and PS, 173.2, 190 and 150 

μINTF/g dw dehydrogenase activity was recorded at the end of 126 days, respectively. It is 

observed that by increasing the percentage of organic wastes amendment the rate of DHA is 

increased compared with the low percentage of amendment. At the end of 126 days DHA 

diminished in all treatment units since all available organics were degraded. These results 

agree with the findings of Aparna et al., (2010) who reported that in the biostimulation 

process with nutrient addition there was increased dehydrogenase activity from 5.8 μg 

INTF/g dw to 95.6 μg INTF/g dw in the period of 36 days.  
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Figure 4.46 Dehydrogenase activity (DHA) in soil polluted with 5% diesel fuel, (A) soil 

amended with 5% organic wastes, (B) soil amended with 10% organic wastes. 

 

 

Figure 4.47 illustrates the rate of DHA in soil polluted with 10% diesel fuel and 

amended with 5% and 10% organic wastes. At the start of the experiment, the DHA was 

low and not significantly different between treatments.  However, over the 42 days the 

values increased significantly. DHA in soil amended with 10% organic wastes was higher 

than those amended with 5% organic wastes. At the end of 126 days, DHA recorded in soil 

treated with 10% SC, TL and PS was 290, 243 and 240 μg INTF/g dw, respectively. This 

shows that, among different treatment in soil amended with 5% organic waste, SC had the 

highest rate of DHA which was 2.8 fold higher than the control soil. Figure 4.47 show 

changes the dehydrogenase activity 15% diesel contaminated soils amended with different 

organic wastes, respectively. 
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Figure 4.47 Dehydrogenase activity (DHA) in soil polluted with 10% diesel fuel, (A) soil 

amended with 5% organic wastes, (B) soil amended with 10% organic wastes. 
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Figure 4.48 Dehydrogenase activity (DHA) in soil polluted with 15% diesel fuel, (A) soil 

amended with 5% organic wastes, (B) soil amended with 10% organic wastes. 
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Bento et al., (2003) reported the highest DHA in bioaugmentation of soil contaminated with 

diesel fuel that was 3.3 fold higher than natural attenuation soil. They also mentioned that 

the variety of DHA depended on the soil, bioremediation treatment and incubation time. By 

increasing the incubation period DHA will be increased in contaminated soil. Figure 4.49 

show changes the dehydrogenase activity at 20% diesel contaminated soils amended with 

different organic wastes, respectively. In the range of 14 to 126 days, soil amended with 

10% SC presented an increase than other amendments, but with a sharp drop on 98
th

 day. 

However, soil treated with 5% SC, PS and TL recorded 300, 268 and 246 μg INTF/g dw 

respectively, compared with unamended controlled soil with 100 μg INTF/g dw. The result 

contrasts with those of Lee at al., (2011) which demonstrated a significant decrease in DHA 

during the bioaugmentation and biostimulation process on the 23
rd 

day of study and 

increased gradually until the end of 40 days due to low water content. This final decrease 

very likely indicates the lack of optimum growth conditions for microorganisms, when the 

nutrient source, added only once at the initial phase of the trial, had been exhausted.  

 

 

 

 

 

 

 

  

 

Figure 4.49 Dehydrogenase activity (DHA) in soil polluted with 20% diesel fuel, (A) soil 

amended with 5% organic wastes, (B) soil amended with 10% organic wastes. 
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4.2.15 Correlation between CO2 evolution, Dehydrogenase activity and TPH 

degradation 

 

Table 4.21 shows the correlation coefficients among TPH degraded, cumulative CO2 

evolved and dehydrogenase activity. High correlations were found between the amount of 

TPH degraded, the amount of CO2 evolved, and dehydrogenase activity. Degradation of 

TPH was significantly related to microbial respiration as measured by CO2 evolution. 

Significant positive correlation (R
2  

= 0.93, P < 0.01) was also found between TPH 

degraded and CO2 accumulation in soil amended with 10% organic wastes and polluted 

with 20% diesel oil. The lowest correlation (R
2  

= 0.52,  P < 0.05) was observed between 

dehydrogenase activity and microbial respiration in soil contaminated with 10% diesel oil 

and amended with 5% organic wastes. This result indicates that the amount of CO2 evolved 

and dehydrogenase activity matched well with TPH degradation. The results are similar to 

the result of Namkoong et al., (2002) who found high correlations (r = 0.80 and above) 

among TPH degradation rate, dehydrogenase activity and the amount of CO2 evolved in 

bioremediation of diesel oil contaminated soil using sewage sludge or compost 

amendments. Also, there was a strong correlation between soil enzymes activity, CO2- 

evolution, TPH degradation and microbial counts (Bahrampor and Sarvimoghanlo, 2012; 

Balba et al., 1998).  
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Table 4.21 Matrix of correlation coefficients between CO2 evolution, Dehydrogenase 

activity and TPH degradation 

                                         TPH degraded            Cumulative CO2                DHA 
                                                 (%)                             (mg/100 gr)            (μg NITF/g dw soil)            

          

 5% diesel + 5% organic waste  
 

        TPH degraded                       1.00                               0.913
**

                         0.825
**

    
 
        Cumulative CO2                              0.913

** 
                          1.00                             0.832

**
                                                                                                                                                           

    
        DHA                                     0.825

**
                           0.832

**
                         1.00 

5% diesel + 10% organic waste  
 

        TPH degraded                       1.00                               0.854
**

                         0.903
**

 
 
        Cumulative CO2                     0.854

**
                          1.00                              0.839

**
 

  
        DHA                                      0.903

**
                          0.839

**                                       
1.00 

10% diesel + 5% organic waste  
 

        TPH degraded                       1.00                              0.909
**

                          0.564
**

      
 
        Cumulative CO2                              0.909

**
                           1.00                              0.522

*
 

 
        DHA                                     0.564

**
                          0.522

*
                           1.00                  

10% diesel + 10% organic waste  
 

        TPH degraded                       1.00                              0.848
**

                          0.861
**

     
 
        Cumulative CO2                              0.848

**
                           1.00                             0.757

**
               

 
        DHA                                     0.861

**
                           0.757

**
                         1.00 

15% diesel + 5% organic waste  
 

        TPH degraded                       1.00                              0.766
**

                          0.824
**

 
 
        Cumulative CO2                             0.766

**
                          1.00                              0.820

**
 

  
        DHA                                      0.824

**
                         0.820

**
                          1.00 

15% diesel + 10% organic waste  
 

        TPH degraded                       1.00                              0.823
**

                          0.903
**

        
  
        Cumulative CO2                    0.823

**
                          1.00                              0.735

**
         

  
        DHA                                     0.903

**
                          0.735

**
                          1.00 

 

20% diesel + 5% organic waste  
 
        TPH degraded                       1.00                             0.767

**
                           0.902

**
                       

 
        Cumulative CO2                    0.767

**
                         1.00                               0.671

**
 

 
        DHA                                      0.902

**
                        0.671

**
                           1.00 

20% diesel + 10% organic waste  
 
        TPH degraded                      1.00                              0.930

**
                           0.907

**
                                       

  
        Cumulative CO2                   0.930

**
                         1.00                                0.839

**
             

 
        DHA                                    0.907

**
                          0.839

**
                            1.00 

**
 Correlation is significant at the 0.01 level.      

*
Correlation is significant at 0.05 level. 

Treatments         
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4.2.16 
13

C stable isotope analysis 

 

In this study continuous-flow isotope ratio mass spectrometry (CF/IRMS) was used to 

investigate the δ
13

C of dissolved organic carbon as evidence for biodegradation of 

hydrocarbons. It has been proven to be an excellent environmental detector (St-Jean, 2003). 

The result of 
13

C stable isotope analysis in contaminated soil amended with SC was 

selected to monitor the pathways of degradation. The isotopic composition of CO2 is shown 

in Table 4.22. All 
13

C analyses were conducted in two replicates. Therefore, each data point 

in the two runs represents the average of the duplicate analysis. This monitoring could be 

obtained by the analysis of 
13

C stable isotope compositions of the residual fractions of 

contaminants. Results indicate that there was an enrichment of 
13

C and more positive result 

in all treatments amended with SC during the biodegradation process. The measured δ
13

C 

signature of CO2 evolved from amended contaminated soil varied between -24 and -28 ‰. 

This difference in the value of δ
13

C indicates that microbial process was involved in the 

degradation of the diesel fuel fraction leading to the enrichment of δ
13

C in diesel fuel 

residual. The unamended control soil treatment varied between -27 and -29 ‰. Most of the 

PAHs had stable carbon isotopic ratios in the range of –22 to –30 ‰ (Sun et al., 2003). 

However, Landmeyer et al., (1996) reported that the value of δ
13

C, at sites where 

methanogenesis occurred, ranged from -30 ‰ up to +11.9‰. The small increase in the δ
13

C 

of CO2 was an expected result that mineralization of microbial biomass or an intermediate 

product during the degradation of diesel, will lead to a sharp increase in CO2 concentration. 

This result is supported by Lollar et al., (2007) who indicated that the 
13

C enrichment 

results in microbial degradation of contaminated compounds. They also mentioned that the 

differences in the measured δ
13

C values are attributable to the linearity of the analytical  
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system. Aggarwal et al., (1997) reported that the changes in the δ
13

C of CO2 generated 

during the degradation might also result from selective degradation of fractions of diesel oil 

that may have different isotopic compositions. 

 
Table 4.22 Isotopic Composition (δ13C) of carbon dioxide in biodegradation experiments (‰) 

 
                                                                                         Sampling (days)         

 
      Treatments                                        1                              70                         126 

 

Soil+5% Oil+ 5% SC                            -28.15                    -27.7                       -26.43 

Soil+5% Oil+ 10% SC                          -28.56                    -27.69                     -26.71 

Soil+5% Oil                                          -28.11                     -27.60                    -27.87        

Autoclaved Soil+ 5%Oil                       -28.23                    -27.92                     -28.01  

Soil+10% Oil+ 5% SC                          -26.38                    -26.26                     -25.84 

Soil+10% Oil+ 10% SC                        -28.76                    -27.02                     -26.07 

Soil+10% Oil                                        -28.81                     -28.31                    -28.07 

 Autoclaved Soil+ 10%Oil                    -28.84                      -28.82                   -28.75 

Soil+15% Oil+ 5% SC                          -25.19                      -25.71                   -25.45 

Soil+15% Oil+ 10% SC                        -25.05                      -25.66                   -25.39 

Soil+15% Oil                                        -26.55                      -26.63                    -26.21 

 Autoclaved Soil+ 15%Oil                    -29.05                      -29.26                    -28.31 

Soil+20% Oil+ 5% SC                          -24.97                      -24.43                    -24.88 

Soil+20% Oil+ 10% SC                        -28.92                     -28.72                     -26.77 

Soil+20% Oil                                         -28.42                     -28.47                    -28.15 

Autoclaved Soil+ 20%Oil                     -28.53                     -28.50                     -28.47    

 
- Precision of analysis is ± 0.2 ‰ 

- Unit is parts per thousands (‰) 
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4.2.17 Biodegradation Efficiency (BE) 

 

Based on the amount of carbon dioxide produced, the efficiency of biodegradation was 

calculated. BE of contaminated soil with 5, 10, 15 and 20% diesel fuel concentration and 

amended with 5 and 10% organic wastes are shown in Figures 4.50 to 4.53. The 

biodegradation efficiency was evaluated according the CO2 evolution data. The results 

clearly indicate that those treatments amended with organic wastes had the best efficiency 

on the biodegradation of soil contaminated with diesel fuel. These effects were statistically 

significant for a 95% confidence level (P < 0.05) compared with those non-amended 

contaminated soil. Among the organic wastes, soil treated with 10 % SC showed the 

highest BE (up to 99%, 96%, 76% and 84%) in soil polluted with 5, 10, 15 and 20% diesel 

fuel respectively. Positive values in the BE demonstrated that the organic wastes have a 

favorable effect on the pollutant removal efficiency. Therefore, BE effect was higher in soil 

amended with 10% compared with 5% organic wastes. The result is in line with Mariano et 

al., (2007) who reported that the addition of nutrients (fertilizer) to remediate soil 

contaminated with diesel fuel indicated up to 19% BE during the 50 days of study and this 

was considered significant compared with controlled treatment. In contrast, Morais and 

Tornisielo (2009) obtained no significant differences (P > 0.05) in the efficiency of 

biodegradation during the biodegradation process using the inoculums, which indicates no 

increase in the biodegradation rate. In addition, they reported the contribution of fertilizers 

plus inoculums, did not affect the increase in efficiency of biodegradation. The reseaon for 

the different results might be the environmental condition in the process of biodegradation.  
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Figure 4.50 Biodegradation efficiency obtained through the respirometric data in soil 

polluted with 5% diesel oil and amended with A) 10% organic wastes B) 5% organic 

wastes. Bars indicate standard error (n = 3). 
 

 

 

Figure 4.51 Biodegradation efficiency obtained through the respirometric data in soil 

polluted with 10% diesel oil and amended with A) 10% organic wastes B) 5% organic 

wastes. Bars indicate standard error (n = 3). 
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Figure 4.52 Biodegradation efficiency obtained through the respirometric data in soil 

polluted with 15% diesel oil and amended with A) 10% organic wastes B) 5% organic 

wastes. Bars indicate standard error (n = 3). 

 

Figure 4.53 Biodegradation efficiency obtained through the respirometric data in soil 

polluted with 20% diesel oil and amended with A) 10% organic wastes B) 5% organic 

wastes. Bars indicate standard error (n = 3). 
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4.3 Results of bioremediation studies under field condition 

 

The bioremediation study of diesel contaminated soil exposed to sunlight and rainfall 

(under natural condition) was conducted at the pilot site for a period of one year             

(February 2010 to February 2011). Average rainfall and temperature were 636.9 mm and 

33
o
C, respectively. Only 10% organic waste amendments was used to evaluate 

biostimulation of diesel contaminated soil under natural condition, due to significant effects 

of 10% organic waste amendments on biodegradation of diesel fuel under laboratory term. 

4.3.1 Biostimulation of diesel fuel contaminated soil 

Figures 4.54 to 4.57 show the percentage of biodegradation 5%, 10%, 15% and 20% diesel 

fuel contaminated soil amendment with 10% organic wastes under natural condition for a 

period of one year. Soil samples were collected every two months for the determination of 

the biodegradation rate during the period of study.  
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Figure 4.54 Biodegradation of diesel fuel in soil contaminated with 5% oil and amended      

with 10% organic wastes. (Bars indicate standard error, n = 3). 
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At the end of one year, the percentage of diesel fuel degradation in soil polluted with 5% oil 

and amended with  10% TL, SC and PS recorded 90%, 98% and 92%, respectively (Figure 

4.54). While the percentage of biodegradation in unamended control soil was 58% which 

was higher than the rate of biodegradation under laboratory condition. SC treated soil 

recorded the highest percentage of biodegradation under field condition (98%). The reseaon 

for the high percentage of biodegradation might be the favorable environmental condition 

and a longer period of biodegradation under natural condition.  

As mentioned earlier  (2.5.3) moisture and temperature are known to be important 

factors in the bioremediation process due to the direct effect on the chemistry of 

hydrocarbon compounds, and also these two factors can modify the diversity and 

physiology of microorganisms (Okoh, 2006). In addition, temperature played the main role 

in the metabolism of microbial hydrocarbon which is attributed for the breakdown of 

hydrocarbon compounds.  In soil polluted with 10% diesel fuel, all treatments amended 

with organic wastes show a high percentage of biodegradation (Figure 4.55). 78%, 91% and 

85% oil loss was recorded in soil contaminated with 10% diesel fuel, at the end of 12 

months of study. SC amendment recorded a higher rate of degradation which was almost 

double the rate of biodegradation compared with unamended control soil (45.6%). The 

results also indicate a similar result of biodegradation rate in soil contaminated with 15% 

diesel oil (Figure 4.56). At the end of one year, SC treated soil recorded 72% 

biodegradation in natural conditions compared with 55% under laboratory condition. 

Boopathy (2004) reported a significant degradation of diesel fuel under all conditions 

compared with unsupplemented treatment. At the end of the study, the soil polluted with 

20% diesel oil indicated 40%, 51% and 44% oil loss in soil treated with TL, SC and PS, 

respectively (Figure 4.57), while unamended controlled soil showed 21% biodegradation at 

the end of 12 months. 
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Figure 4.55 Biodegradation of diesel fuel in soil contaminated with 10% oil and amended 

with 10% organic wastes. (Bars indicate standard error, n = 3). 
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Figure 4.56 Biodegradation of diesel fuel in soil contaminated with 15% oil and amended 

with 10% organic wastes. (Bars indicate standard error, n = 3). 
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Figure 4.57 Biodegradation of diesel fuel in soil contaminated with 20% oil and amended 

with 10% organic wastes. (Bars indicates standard error, n = 3). 

 

 

The result shows an increase in the rate of biodegradation in simulated natural condition. 

These results demonstrated that there were suitable environmental conditions (exposed to 

rainfall and sunlight) compared with conditions in the laboratory which resulted in an 

increase in oil loss of all treatments. For example, the temperature range between 27 to 39 

o
C, which is possibly suitable to stimulate the microbial activity in contaminated soil.  

Many researchers have reported on the significant role of temperature (Boopathy, 2000 and 

Chaillan et al., 2006). Another reseaon for recording a higher rate of biodegradation in all 

treatments under natural conditions compared with treatments in laboratory conditions 

might be due to photodegradation or evaporation of some part of diesel compounds which 

was in poisoned treatment (autoclaved control soil) with 10%, 14%, 17% and 22% in soil 

contaminated with 20%, 15%, 10% and 5% diesel fuel, respectively. 
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4.3.2 Extraction and analysis of residual diesel by GC/MS 

The residual oil was analyzed and identified based on their mass spectra and retention 

times, as indicated by the chromatogram of the remaining diesel after biodegradation tests. 

Diesel is a complex hydrocarbon compound like aromatics and n-alkanes. Microorganisms 

are known to attack and degrade a specific component as compared with other components 

of oil (Luo et al., 2012). It has been indicated that the same microorganisms were able to 

degrade the same compounds to different extents (Obayori et al., 2009). Representatives of 

GC/MS chromatograms showing the total petroleum hydrocarbon patterns at the 30
th

 day 

and at the end of one year (day 365) of treatment amended with SC and unamended 

controlled soil is illustrated in Figure 4.58 – 4.65. Chromatographic analysis gives 

clearance to estimate the effects of treatments on degradation of diesel fuel in the light (C12 

– C23) and heavy (C23 – C40) fractions (Bento, et al., 2005). As GC/MS chromatogram 

results in all treatments demonstrated low molecular weight of total petroleum hydrocarbon 

(C8- C12) fraction it was quickly degraded and removed due to low concentration and high 

volatility and degradability, while the high molecular weight of total petroleum 

hydrocarbon (C > 12) fraction was more hardy for biodegradation (Taccari et al., 2010). 

The GC/MS results agreed with previous reports showing that biostimulation can lead to a 

more effective method of degradation of oil from contaminated soil (Bento et al., 2005; 

Marchal et al., 2003; Olson et al., 1999). Moreover, there are growing evidences that 

biostimulation of petroleum hydrocarbon contaminated lands using amendments like 

composts, organic and inorganic wastes are the best approach for bioremediation. Figure 

4.58 shows the GC/MS chromatographic profiles of residual diesel fuel in soil polluted 

with 5% oil and amended with 5% SC on 30
th

 day and at the end of the experiment. 

Comparison of the chromatograms before and after the biodegradation process 

demonstrated that the most hydrocarbon fractions had been removed at the end of one-year  
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compared with unamneded controlled soil. At the end of one year, the hydrocarbon fraction 

in the range of C19 to C30 in soil treated with 5% oil and amended with 5% SC shows a 

higher degradation compared with the start of the experiment. Moreover, in unamended 

control treatment most fractions remained at the end of one year which shows the positive 

role of organic wastes to enhance the diesel fuel contaminated soil. These results agree with 

Xu and Lu (2010) who reported the removal of C12 to C29 compounds from crude oil 

polluted soil, at the end of the incubation period. The results of soil contaminated with 5% 

diesel oil and amended with 10% SC indicated that complete biodegradation of fractions 

the in the total time of twelve months (Figure 4.59). C15 to C26 were highly degraded in soil 

treated with 10% SC at the end of the one-year compared with hydrocarbon components in 

amended soil with 5% SC which was partially degraded, while there was no complete 

degradation of the fractions in unamended control soil at the end of the 12
th

 month. 

However, the significantly higher decay rates in biodegradation of C15 - C26 fractions in soil 

amended with organic wastes might be due to their nutrient composition, especially 

nitrogen and phosphorus, which are very important ingredients for a successful 

biodegradation of diesel fuel. Depending on the environmental conditions, these nutrients 

could become limiting factors, therefore the increase of these nutrients are essential to 

enhance the biodegradation of petroleum hydrocarbon pollutants (Kim et al., 2005; Okoh 

and Trejo-Hernandez, 2006). This result is similar to a study of Ijah and Anti (2003b) who 

reported the high hydrocarbon fractions (C14 to C32) in contaminated soil with crude oil 

during the period of 6 to 9 months. The rapid degradation of hydrocarbon fractions in the 

range of C8 to C14 was recorded in all the treatments, which might be due to the straight 

structure of compounds that make it easy to degrade. Ghazali et al. (2004) and Erikson et 

al. (1998) indicated that cyclic or straight aliphatic hydrocarbons below C14 require shorter 

sampling times to give good results of degradation due to their high volatility compared 

with hydrocarbon with above C14 that can be absorbed by soil particles, which make them 

less volatile (Eriksson et al., 1998; Ghazali et al., 2004).  
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a) 

 
b) 

 
c) 

 

                                                          

Figure 4.58 Chromatogram of residual diesel fuel in contaminated soil with 5% oil  a) 

amended with 5% SC (T 30)  b) amended with 5% SC (T 365)  c) unamended control soil 

(T 365). 
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a) 

 
b) 

 
c) 

 

Figure 4.46 Chromatogram of residual diesel fuel in contaminated soil with 5% oil  a) 

amended with 10% SC (T0)  b) amended with 10% SC (T 365)  c) unamended control soil 

(T 365) 

 

 

 

 

 

                                     
 

Figure 4.59 Chromatogram of residual diesel fuel in contaminated soil with 5% oil  a) 

amended with 10% SC (T 30)  b) amended with 10% SC (T 365)  c) unamended control 

soil (T 365). 
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The GC/MS analysis of soil polluted with 10% diesel fuel and amended with 5% and 10% 

SC are illustrated in Figures 4.60 and 4.61, respectively. The results suggest a significant 

reduction in diesel content (C8 – C26) in the biostimulation samples compared with the 

natural attenuation. The effect of biostimulation of diesel oil on the degradation of the light 

fraction (C12 – C23) of TPH was higher than the heavy fraction. Bento et al., (2005) 

observed that the bioaugmentation of soil polluted with diesel oil had the highest 

degradation in the heavy fractions (75.2%) and light fractions (72.5%) after 12 weeks of 

study. On the other hand, Seklemova et al., (2001) evaluated the addition of nutrients in 

forest contaminated soil with diesel oil and found no effects on the degradation of TPH 

fractions (light or heavy). The reason for differences in results of this study compared with 

Seklemova study might be attributed to the soils that had varying effects on the degradation 

of diesel oil. It is obvious that contaminated soil with 10% SC and amended with 5% and 

10% SC degraded all the hydrocarbon fractions presented in diesel oil (C9 – C26) compared 

with unamended control soil. While low degradation of heavy fractions might be due to the 

structure of the compounds that make them more complex and strong to break down by the 

enzyme system of microorganisms. However, the results are relevant in that the heavy 

range of hydrocarbon fractions were properly degraded in contaminated soil with 10% 

diesel oil and amended with organic wastes within the 365 days of study. Hydrocarbon 

components of C8 – C14 fractions are known as the most quickly biodegraded components 

of oil due to the volatility and their simple structure have been reported. However, they are 

sensitive to removal by water washing (Abioye et al. 2012a; George et al., 2002).  
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Figure 4.60 Chromatogram of residual diesel fuel in contaminated soil with 10% oil  a) 

amended with 5% SC (T 30)  b) amended with 5% SC (T 365)  c) unamended control soil 

(T 365). 
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Figure 4.61 Chromatogram of residual diesel fuel in contaminated soil with 10% oil  a) 

amended with 10% SC (T 30)  b) amended with 10% SC (T 365)  c) unamended control 

soil (T 365). 
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The results are similar to the finding of Chang et al., (2010) who discovered remarkable 

degradation of (C10 - C16) hydrocarbon fraction in aged petroleum hydrocarbon 

contaminated soil. Ijah and Antai, (2003b) also reported that soil contaminated with 10% 

crude oil C14 fraction was completely degraded within the period of one year. 

The GC/MS results of biodegradation of hydrocarbon fractions in the soil contaminated 

with 15% diesel oil are shown in Figures 4.62 and 4.63. The result shows that the 

contaminated soil amended with 5% SC had slight degradation of the hydrocarbon fractions 

within the one year of study (Figure 4.62), while soil amended with 10% SC recorded an 

increase in biodegradation of all fractions. Analysis of the oil extracted from the soil after 

one-year shows that all hydrocarbon fractions below the C13 were completely degraded in 

soil treated with either 10% and 5% SC compared with controlled soil, while heavy 

hydrocarbon components were partially degraded in soil after one year. Soil polluted with 

20% diesel oil there was no complete degradation of fractions and results do not show any 

significant difference in removing hydrocarbon components in high concentration of diesel 

oil (Figures 4.64 and 4.65). The peaks of long-chain petroleum hydrocarbons were 

relatively higher than those of short chain hydrocarbons. Similar results were achieved by 

(Huang et al., 2005). The reason for the incomplete hydrocarbon fractions biodegradation 

in 15% and 20% diesel oil might be attributed to a high poison effect of oil on 

microorganisms to breakdown the complex structural oil components, which make it 

significantly difficult for HUB in complete degradation. 
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Figure 4.62 Chromatogram of residual diesel fuel in contaminated soil with 15% oil  a) 

amended with 5% SC (T 30)  b) amended with 5% SC (T 365)  c) unamended control soil 

(T 365). 

 

Retention time (min) 

n
-C

 3
6

 

n
-C

 3
4

 

n
-C

 2
2

 

n
-C

 1
3

 

n
-C

 1
5

 

n
-C

 2
4

 

n
-C

 2
1

 

n
-C

 1
8

 

n
-C

 1
9

 

n
-C

 2
0

 

n
-C

 2
6
 

n
-C

 2
8

 

n
-C

 2
9
 

n
-C

 3
2
 

n
-C

 1
5
 

n
-C

 1
9
 

n
-C

 2
0
 

n
-C

 2
2
 

n
-C

 2
4
 

n
-C

 2
8
 

n
-C

 2
9
 

n
-C

 3
2

 

n
-C

 3
4

 

n
-C

 3
6

 n
-C

 3
4

 

n
-C

 2
8
 n
-C

 2
7

 

n
-C

 2
5

 

n
-C

 2
4
 

n
-C

 2
2
 

n
-C

 2
0

 

n
-C

 1
0
 

n
-C

 1
3
 n

-C
 1

5
 

n
-C

 1
8
 

n
-C

 3
0

 



 

210 

 

a) 

b) 
 

c) 
 

 

 

 

 

 

b) 

 

 

 

 

c) 

b) 

 

c) 

 

 

 

 

 

 

 

 

Retention time (min) 

 

Figure 4.63 Chromatogram of residual diesel fuel in contaminated soil with 15% oil  a) 

amended with 10% SC (T 30)  b) amended with 10% SC (T 365)  c) unamended control 

soil (T 365). 
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Figure 4.64 Chromatogram of residual diesel fuel in contaminated soil with 20% oil  a) 

amended with 5% SC (T 30)  b) amended with 5% SC (T 365)  c) unamended control soil 

(T 365). 
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Figure 4.65 Chromatogram of residual diesel fuel in contaminated soil with 20% oil  a) 

amended with 10% SC (T 30)  b) amended with 10% SC (T 365)  c) unamended control 

soil (T 365) 
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4.4 Result of phytodegradation of soil contaminated with diesel oil using D. reflexa 

under laboratory condition 

 

4.4.1 Loss of diesel fuel in soil planted with D. reflexa 

 

 

At the end of 270 days, the percentage of biodegradation in all different amendments 

and soil polluted with 1 % and 2.5% oil ranged between 13.8% - 98.8% and 11.1% - 

90.3%, respectively (Figures 4.66 and 4.67). Oil loss was higher in soil treated with SC 

(98.8% and 90.3%) followed by soil amended with PS (94% - 85%) and TL (86.1% - 

75.2%) in contaminated soil with 1% and 2.5% diesel fuel, respectively. The percentage of 

biodegradation in contaminated soil containing Dracaena without organic wastes recorded 

62% and 52.4%, while in control soil without the plant recorded 26.6% and 24.4% oil loss 

in soil polluted with 1% and 2.5% diesel fuel, respectively during the period of study. 

About 13.8% and 11.1% oil loss was recorded in autoclaved control soil without  plant and 

polluted with 1% and 2.5% diesel fuel, respectively. The reason for the degradation of oil in 

autoclaved control soil (without plant) might be some non-biological factors such as 

volatilization or photodegradation which was recorded in poisoned treatments amended 

with oil and sodium azide. In addition, the highest rate of biodegradation was recorded in 

soil amended with SC which is probably due to a higher amount of N and P (Table 4.1), 

compared with other organic waste amendments. It was also reported by pervious work that 

soil amended with SC showed a higher rate of degradation (Dadrasnia and Agamuthu, 

2010, 2012). This result is similar to the finding of Palmroth et al., (2002) which indicated 

60% oil loss in soil polluted with diesel fuel and amended with NPK fertilizer and planted 

with pine trees at the end of one month. Similarly, Dominguez-Rosado and Pichtel (2005) 

recorded 67% engine oil loss in contaminated soil planted with mustard and sunflower 

plants. 
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Figure 4.66 Biodegradation of diesel fuel in soil contaminated with 1% oil. Bars indicate 

standard error (n = 3). 
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Figure 4.67 Biodegradation of diesel fuel in soil contaminated with 2.5% oil. Bars indicate 

standard error (n = 3). 
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A significant difference was observed between soil treated with different organic wastes, 

unplanted contaminated soil and contaminated soil planted with Dracaena at both 

concentrations (P < 0.05). Statistical analysis did not show significant difference in 

biodegradation of diesel fuel between soils amended with PS and SC amendments but there 

was significant difference (P < 0.05) in the results between soils amended with TL and 

another two different organic waste amendments. However, the results indicated that in all 

treatments amended with organic wastes the rate of oil loss was significantly higher than 

those of unamended and unplanted treatments. This is in agreement with the finding of 

Vouillamoz and Milke (2001) who indicated that compost addition allowed diesel loss 

down from 1200 to 200 mg TPH kg
-1 

in contaminated soil planted with ryegrass. Kim et al., 

(2010) also recorded a significant reduction during the phytodegradation of diesel-

contaminated soil at the end of 120 days.  

Phytoremediation experiment was monitored for 150 days only for 5% fuel because all 

the plants at this concentration died within 150 days. At the end of 150 days, oil loss in soil 

polluted with 5% diesel fuel and amended with SC recorded 19%, followed by soil 

amended with PS (16.4%) and TL (13.6%), while in contaminated soil without organic 

waste amendments and planted with Dracaena the rate of biodegradation was 8.5%. As 

Figure 4.68 shows in 120 and 150 days the percentage of oil loss remained stable in all 

amended treatments.  

 

 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=Vouillamoz%20J%5BAuthor%5D&cauthor=true&cauthor_uid=11380193
http://www.ncbi.nlm.nih.gov/pubmed?term=Milke%20MW%5BAuthor%5D&cauthor=true&cauthor_uid=11380193
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Figure 4.68  Biodegradation of diesel fuel in soil contaminated with 5% oil. Bars indicate 

standard error (n = 3). 

 

 

 

4.4.2 Bacterial count 

 

 

Aerobic heterotrophic bacteria (AHB) count in Dracaena remediated soil amended with 

SC ranged from 0.78 × 10
9
 to 3.38 ×10

9 
CFU/g soil, which is 18.8% and 39% higher than 

that of amended with PS and TL, respectively (Figures 4.69 and 4.70). At the end of 270 

days, the count of diesel utilizing bacteria (DUB) soil amended with SC showed a higher 

microbial population (378 ×10
5 

CFU/g soil and 355 ×10
5 

CFU/g soil) in soil polluted with 

1% and 2.5% diesel fuel, respectively (Figures 4.71 and 4.72). The treatment with only 

Dracaena plant without organic wastes amendment recorded low counts of AHB (172 × 

10
5
 CFU/g soil and 209 × 10

5
 CFU/g soil) in 2.5% and 1% pollution, respectively. Also low 

counts of DUB and AHB were recorded in soil without plant and organic wastes. However, 

those treatments amended with SC had a higher number of AHB and DUB in both 

concentrations of diesel fuel. 
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Figure 4.69 Total CFU of aerobic heterotrophic bacterial (AHB) in soil contaminated with 

1% diesel fuel. Bars indicate standard error (n = 3). 
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Figure 4.70  Total CFU of aerobic heterotrophic bacterial (AHB) in soil contaminated with 

2.5% diesel fuel. Bars indicate standard error (n = 3). 
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Figure 4.71 Total CFU of diesel utilizing bacterial (DUB) in soil contaminated with 1% 

diesel fuel. Bars indicate standard error (n = 3). 
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Figure 4.72 Total CFU of diesel utilizing bacterial (DUB) in soil contaminated with 2.5% 

diesel fuel. Bars indicate standard error (n = 3). 
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The reason for the increase in microbial population of  DUB and AHB in contaminated soil 

with diesel fuel and amended with different organic wastes might be due to the quantities of 

nutrients in the organic wastes especially N and P that enhanced the multiplication of 

bacteria in the soil. The results are similar to the findings of Muratova et al., (2003) who 

reported heterotrophic microorganisms that are able to degrade oil was significantly 

increased by plant compared with no plant contaminated soil. They observed that the 

amount of PAH oxidizing microorganisms was seven times higher in the rhizosphere of 

alfalfa and in the case of reed it was four times lower in the rhizosphere than controlled soil 

(Muratova et al., 2003). The DUB isolated from the contaminated soil was identified as 

species of the Pseudomona sp., Bacillus amyloliquefaciens and Micrococcus sp.. These 

bacterial species together with root exudates of the Dracaena plants possibly helped in the 

removal of diesel fuel from the soil. 

 

 

4.4.3  pH of soil in D. reflexa remediation under laboratory condition 
 

 

The pH of soil remediated with the D. reflexa at 1%, 2.5% and 5% are shown in Figure     

4.73 – 4.75. The pH of the soils ranged from slightly acidic to alkaline (6 to 8.7). The pH of 

autoclaved control soil was alkaline compared with other treatments. This might be due to 

the addition of sodium azide, while pH of treatments amended with organic wastes show a 

slightly acidic condition which might be because plants grow better in soil amended with 

organic wastes than other treatments. It may be because of high metabolic activities of 

microorganisms which produce an acidic in condition for rhizosphere. The range of pH was 

higher in soil polluted with 1% diesel compared with those contaminated soil with 2.5% 

and 5%, which might be as a result of high microbial activity in treatments amended with 
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1% diesel oil. It has been proven that microbial activities produce acidic radicals during the 

degradation process (Singh and Sharma, 2008).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.73   pH of soil contaminated with 1% diesel fuel planted with D. reflexa. Bars 

indicate standard error (n = 3). 

 

 

 

   Figure 4.74  pH of soil contaminated with 2.5% diesel fuel planted with D. reflexa. Bars 

indicate standard error (n = 3). 
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Figure 4.75   pH of soil contaminated with 5% diesel fuel planted with D. reflexa. Bars 

indicate standard error (n = 3). 

 

 

 

 

4.4.4 Plant growth and Biomass production under laboratory condition 

 

 

The response of the D. reflexa plant to 1, 2.5 and 5 % concentrations of diesel was 

monitored throughout the 270 days of the experiment. No plant death was recorded in the 

1% diesel fuel; however, some of the plants in the 2.5% fuel showed signs of phytotoxicity 

such as yellowing of leaves and stunted growth compared with the controlled. The 

experiment was monitored for 150 days only for 5% fuel because all the plants at this 

concentration died within 150 days. The results are in line with the findings of Vouillamoz 

and Mike (2001), who reported a reduced growth rate in ryegrass planted in diesel-

contaminated soil. The pictures of the D. reflexa plant are shown in Plate 4.1. 
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Plate 4.1  D. reflexa, A: Dracaena amended with TL, B: Dracaena amended with SC, C: 

Dracaena amended with PS, D: Control Plant, E: Phytotoxicity effect of oil on Dracaena 
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In order to further assess the endurance of the plant species to petroleum-contaminated soil, 

the D. reflexa was planted in soil containing different concentrations of petroleum 

contaminants. Different parameters including stem height, fresh weight, dry weight, root 

length, root weight, and growth rate were measured and recorded. At the initial three weeks 

of culture, all plants growing in petroleum contaminated soil showed no visible differences 

in appearance with those in the corresponding controls, although there was a little inhibition 

of the plants growing in treatment with 5% fuel, compared with those planted in clean soil. 

After 270- days’ exposure, the highest of the D. reflexa longitudinal growth was observed 

in the amendment with SC contaminated soils with 1% and 2.5 % of petroleum 

hydrocarbons which was 20% and 36% higher than that of the plants growing in clean soil, 

respectively. The biomass of 2.5% oil contaminated soil (SC amended) was 1.8 and 4.7 

times more than treatment amended with PS and TL, respectively. In addition, the result 

indicated that the biomass of treatment at 1% oil amended with SC was 1.8 and 2.7 times 

more than the treatment amended with PS and TL, respectively. It was followed by 

increasing biomass to 1.1 times more in SC amendment at 1% diesel fuel compared with  

unamended soil. The development of the plants during the 270-day culture period was also 

evaluated by measuring the dry weight of the plants. It was observed that the biomass of the 

D. reflexa growing in soil amended with SC and 1% diesel did not decrease significantly as 

compared with that in the corresponding control, although the change in the biomass of the 

plants depended on the level of petroleum contaminants in soil (Table 4. 23). Noticeably, 

there was 65% decrease in the biomass of the plants growing in high concentration (5% 

diesel fuel) of petroleum contaminants; D. reflexa species was still alive although some 

chlorosis was observed in the leaves. Thus, D. reflexa is likely to phytoremediate diesel 

fuel contaminated soil with a concentration ≤ 5% (50g/kg) on the basis of the endurance of 

the species. 
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Table 4.23  Dry mass of Dracaena plant parts at the end of experiment (270 days) 
 

    Dry weight (g) 
 

             Treatment                         Leaves                    Stem                   Roots 
 

                A                                   4.3 ± 0.9               3.0± 0.3               1.2± 0.2 

                B                              8.4± 1.2                 9.3± 0.6               5.5±0.1 

                C                                   5.8±0.2                 4.1±1.6                3.1±0.6 

                D                                   1.6±0.7                 2.6± 1.1               0.9±0.3 

               G                                 1.8±1.2                 0.8±0.2                0.5±0.2  

               H                                    5.6 ± 1.1               6.7± 0.3               2.3± 0.6 

                I                                    3.3 ± 1.4                2.8± 0.7               1.9± 0.1 

                J                                    1.1 ± 0.7               1.8± 0.6                0.6± 0.2 

                M                                  0.7 ± 0.4               0.4± 0.1               0.4± 0.6 

                N                                  2.1 ± 0.8                3.3± 0.2               1.2± 0.2 

               O                                   1.7 ± 0.9                1.3± 0.7               0.8± 1.1 

                P                                   0.6 ± 0.1                0.2± 0.6               0.4± 0.2 

                S                                  7.6 ± 0.2                 9.2± 1.5               4.8± 0.3 

 

 A, soil + 1% oil + TL; B, soil + 1% oil + SC; C, soil + 1% oil + PS; D, soil + 1%   oil only; 

G, soil + 2.5% oil + TL; H, soil + 2.5% oil + SC; I, soil + 2.5% oil + PS; J, soil + 2.5% oil 

only; M, soil + 5% oil + TL; N, soil + 5% oil + SC; O, soil + 5% oil + PS; P, soil + 5% oil 

only; S, control soil i.e. without oil contamination. (Values expressed as mean and standard 

deviation = 3). 
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4.4.5 Plant uptake of hydrocarbons 

 

 

Hydrocarbon concentration in shoot and root tissue was analyzed to determine if 

phytoaccumulation and phytodegradation played a role in diesel fuel removal mechanism. 

The GC/MS analysis of the plant extract did not show the presence of hydrocarbons in all 

the treatments. This is in sharp contrast to the results of Palmroth et al., (2002) who 

observed an uptake of diesel oil by grass root. The difference might be due to the different 

plants used in these studies; it might also be due to differences in the weather conditions. 

Palmroth et al., (2002) work was conducted in a cold temperate zone of Finland, while this 

study was conducted in the tropical zone (Malaysia). Radwan et al., (2000) found that long-

chain hydrocarbons accumulated in broad bean (Vicia faba), grown in oily soil. The 

accumulation, especially in the seeds, was thought to pose a risk to human or animal 

nutrition (Radwan et al., 2000). The result suggests that the mechanism of hydrocarbon 

removal by the Dracaena plants may be via rhizodegradation which has been well 

documented (Abhilash et al., 2009; Gerhardt et al., 2009). Also, the removal of the oil may 

be the result of root exudates produced by the D.reflexa plant which enhanced the activities 

of soil microorganisms in mineralizing the oil in the soil. This is supported by the findings 

of different researchers, who have stated that flavonoids and other compounds released by 

roots can stimulate growth and activity of hydrocarbon degrading bacteria (Chaudhry et al., 

2005; Leigh et al., 2006). In addition, root growth and death are known to promote soil 

aeration which can enhance oxidative degradation of organic contaminants (Kuiper et al., 

2004; Leigh et al., 2002). 
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4.5 Results of phytodegradation of soil contaminated with diesel using P.polystachyus 

under laboratory conditions 

 

4.5.1 Loss of diesel fuel in soil planted with P.polystachyus 

 
 

The loss of diesel fuel in soil treatment contaminated with  1%, 2.5% and 5% oil are 

shown in Figures 4.76 to 4.78. The loss of diesel fuel at the end of 270 days in soil 

contaminated with 2.5% and 1% oil ranged from 12– 84% and 13 – 91%, respectively in all 

the different treatments. Contaminated soil treated with SC recorded the highest loss of oil 

(84% and 91%) in 270 days followed by soil treated with PS (72% and 79%) in 2.5% and 

1% contaminated soil respectively. The contaminated soil containing only Podocarpus 

plant, without organic wastes treatment recorded 43% and 53% oil loss while control soil 

without Podocarpus plant showed 23% and 26% oil loss in 2.5% and 1% contaminated 

soil, respectively at the end of 270 days.  

About 12% and 13% oil loss in soil contaminated with 2.5% and 1% oil may be due to 

non biological factors like evaporation; this was recorded in autoclaved soil treated with 

sodium azide after 270 days. The high loss of oil in soil treated with SC and Podocarpus 

plants may be due to the presence of appreciable nitrogen (1.3%) and phosphorus (0.9%) 

contents in SC (Table 4.1), and this was also recorded in our previous works, where soil 

amended with SC recorded  78 % loss of diesel fuel (Dadrasnia  and Agamuthu, 2010). A 

significant difference was observed between soil treated with different organic wastes, 

unplanted contaminated soil and contaminated soil planted with Dracaena at both 

concentrations (P < 0.05). Statistical analysis does not show any significant difference in 

biodegradation of diesel fuel between soils amended with PS and SC but there was a 
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significant difference (P < 0.05) in the results between soils amended with TL and two 

other different organic waste amendments.  
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Figure 4.76  Biodegradation of diesel fuel in soil contaminated with 1% oil. Bars indicate 

standard error (n = 3). 
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Figure 4.77 Biodegradation of diesel fuel in soil contaminated with 2.5% oil. Bars indicate 

standard error (n = 3). 
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Figure 4.78 Biodegradation of diesel fuel in soil contaminated with 5% oil. Bars indicate 

standard error (n = 3). 

 

 

All treatments amended with organic wastes showed rate of oil loss was significantly 

higher than those in unamended and unplanted treatments. The results are similar to these 

of Lu et al., (2010) who reported 32% degradation of petroleum in soil planted with 

Eleusine indica and only 5% of PAHs had dissipated in the unvegetated treatments. The 

finding of Diab (2008) demonstrated the effect of plant roots in biodegradation of diesel oil. 

He showed that TPH biodegradation was enhanced in the rhizosphere soil of the legume 

plant (Vicia faba) as compared with Zea mays and Triticum aestivuml. Yateem et al., 

(2000) investigated the degradation of total petroleum hydrocarbon (TPH) in the 

rhizospheric and nonrhizospheric soil of three plants, ryegrass (Lolium perenne),  alfalfa 

(Medicaga sativa) and broad beans (Vicia faba), and the result showed that TPH 

degradation in the soil cultivated with alfalfa and broad beans was 35.8 and 36.6 %, 

respectively, compared with 24% degradation in ryegrass.  
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The experiment was monitored for 120 days only for 5% fuel because all the plants at this 

concentration died within 120 days. Oil loss in soil polluted with 5% diesel fuel and 

amended with SC recorded 13.8%, followed by soil amended with PS (8.5%) and TL 

(9.4%), while in contaminated soil without organic waste amendments and planted with 

Podocarpus the rate of biodegradation was 4.1% (Figure 4.77). The percentage of 

biodegradation in soil amended with TL was slightly higher (0.9%) than those treated with 

PS.  

 

4.5.2 Bacterial count 

 

The microbial populations of AHB in 1% and 2.5% diesel contaminated soil, planted 

with Podocarpus, are show in Figure 4.79 and 4.80, respectively. The microbial count of 

AHB recorded 11 × 10
7
 CFU/g soil to 281× 10

7
 CFU/g soil and 9 × 10

7
 CFU/g soil to 252× 

10
7
 CFU/g soil, in soil contaminated with 1% and 2.5% diesel oil, respectively. Sun et al., 

(2011) also illustrated an increase in the soil’s microbial community during the 

biodegradation PAH- contaminated soil by alfalfa (Medicago sativa L.). The rapid increase 

in total aerobic hydrocarbon bacteria after contamination of soil could be attributed to the 

availability of carbon source from the diesel oil (Lawson et al., 2012). 
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Figure 4.79 Total CFU of aerobic heterotrophic bacterial (AHB) in soil contaminated with 

1% diesel fuel. Bars indicate standard error (n = 3). 
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Figure 4.80  Total CFU of aerobic heterotrophic bacterial (AHB) in soil contaminated with 

2.5% diesel fuel. Bars indicate standard error (n = 3). 
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The counts of diesel utilizing bacteria (DUB) in soil contaminated with 1% and 2.5% diesel 

fuel are shown in Figures 4.81 and 4.82, respectively. Contaminated soil treated with SC 

and Podocarpus remediation shows high counts of DUB (272 ×10
5
 CFU/g and 301 × 10

5
 

CFU/g) in both soil samples contaminated with 2.5% and 1% oil respectively. This is 

similar to the findings of Ijah and Antai (2003a), whereas the treatment with only 

Podocarpus plant without organic waste amendments recorded low counts of DUB (150 × 

10
5
 CFU/g and 180 × 10

5
 CFU/g) in 2.5% and 1% pollution respectively. The reason for 

the increase in the counts of DUB in contaminated soil amended with organic wastes might 

be due to the presence of nutrients in the organic wastes, especially nitrogen and 

phosphorus that enhanced bacteria population in the soil.  

DUB isolated from the contaminated soil was identified as species of Pseudomonas, 

Streptococcus sinensis and Bacillus amyloliquefaciens. These bacterial species have been 

implicated in hydrocarbon degradation by different researchers (Van Hamme et al. 2003; 

Bento et al., 2005). These bacterial species together with root exudates of plants possibly 

help in the removal of diesel fuel from the soil.   
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Figure 4.81 Total CFU of diesel utilizing bacterial (DUB) in soil contaminated with 1% 

diesel fuel. Bars indicate standard error (n = 3). 
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Figure 4.82 Total CFU of diesel utilizing bacterial (DUB) in soil contaminated with 2.5% 

diesel fuel. Bars indicate standard error (n = 3). 

 

 



 

233 

 

4.5.3 pH of soil in P.polystachyus remediation 

 

The pH of the soils varies from slightly acidic to alkaline (6 to 8) (Figures 4.83 and 

4.84) during a period of 270 days. The pH of soil amended with SC and TL was slightly 

acidic compared with other treatments. Decrease in pH might be due to high metabolic 

activities of microorganisms which produced acidic condition in the rhizosphere (Gadd, 

2010). The range of pH was higher in soil polluted with 1% compared with the soil 

contaminated with 2.5% and 5%, which might be as a result of high microbial activity in 

treatments amended with 1% diesel oil. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.83 pH of soil contaminated with 1% diesel fuel planted with P.polystachyus. 

Bars indicate standard error (n = 3). 
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Figure 4.84 pH of soil contaminated with 2.5% diesel fuel planted with P.polystachyus. 

Bars indicates standard error (n = 3). 

 

 

 

4.5.4 Plant growth and biomass production under laboratory condition 

 

The appearance of the plants exposed to 1% and 2.5% of diesel were monitored 

throughout the 270 days of the experiment. No plant death was recorded in the 1% diesel 

fuel; however, some of the plants in the 2.5% fuel showed signs of phytotoxicity such as 

yellowing of leaves and stunted growth compared with the control. Plants in soil 

contaminated with 2.5% diesel oil showed high symptoms of phytotoxicity with death of at 

least one Podocarpus plant recorded in each treatment (data not shown) (Plate 4.2). These 

results showed that Podocarpus could tolerate minimum degree of exposure to 

hydrocarbons. Dry mass of the Podocarpus plants in each treatment was determined at the 

end of 270 days as shown in Table 4.24. 
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Plate 4.2 P.polystachyus, A: Polystachyus amended with TL, B: Polystachyus amended 

with SC, C: Polystachyus amended with PS, D: Control Plant, E: Phytotoxicity effect of oil 

on Polystachyus 
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Table 4.24  Dry mass of Podocarpus plant parts at the end of experiment (270 days). 
 
                                                                   Dry weight (g) 

 

 Treatment                          Leaves                     Stem                     Roots       
       
 
     A                                    2.5 ± 0.3                1.9 ± 0.4              1.1 ± 0.5                   

     B                                 4.3 ± 0.8                 6.6 ± 0.4               2.9 ± 0.3  

     C                                    2.9 ± 0.6                 2.7 ± 0.5               2 ± 0.6              

     D                                    1.1 ± 0.4                0.9 ± 0.7               0.6 ± 0.5 

     E                                  1.0 ± 0.7                  0.5 ± 0.2              0.3 ± 0.4 

     F                                    3.6 ± 0.8                  3.3 ± 0.7              1.8 ± 0.2                  

     G                                    2.0 ± 1.1                 1.7 ± 0.9              0.8 ± 0.3                     

     H                                    0.7 ± 0.4                 0.6 ± 0.1              0.3 ± 0.2   

     M                                   2.4 ± 0.4                   4 ± 1.1                2.2 ± 0.2     

 

A, soil + 1% oil + TL; B, soil + 1% oil + SC; C, soil + 1% oil + PS; D, soil + 1% oil only; 

E, soil + 2.5% oil + TL; F, soil + 2.5% oil + SC; G, soil + 2.5% oil + PS; H, soil + 2.5% oil  

only; M, control soil i.e. without oil contamination. (Values expressed as mean and 

standard deviation = 3). 
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4.5.5 Plant uptake of hydrocarbons  

 

 

Podocarpus roots from different treatments were Soxhlet extracted to determine if 

there was phytoaccumulation of hydrocarbons in the plant roots. The GC/MS analysis 

of the extract did not show presence of hydrocarbons in all the treatments. This is in 

sharp contrast to the results of Palmroth et al., (2002), who observed an uptake of diesel 

oil by grass roots, but agrees with the findings of Chaîneau et al., (2005) who did not 

observe uptake of hydrocarbons by maize root. The result is also similar to that of 

Santosh et al., (2009), who observed that the application of organic amendments 

stabilized As, Cr and Zn in heavy metals contaminated soil and reduced their uptake by 

plant tissues. The result suggests that the mechanism of hydrocarbon removal by 

Podocarpus plants may be via rhizodegradation or phytovolitilization which has been 

well documented (Abhilash et al. 2009; Gerhardt et al. 2009). In addition, the removal 

of the oil may be because of root exudates produced by the plant which enhanced the 

activities of soil microorganisms in mineralizing the oil in the soil.   
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4.6 Result of phytodegradation of soil contaminated with diesel using D.reflexa 

under natural condition 

 

4.6.1 Loss of diesel fuel in soil planted with D.reflexa 

 

The percentages of oil degradation in contaminated soil in 1% and 2.5% of diesel oil 

under natural condition are shown in Figures 4.85 and 4.86, respectively. In all the 

treatments 10 – 80.6% and 13 – 90.8% oil loss were recorded in soil polluted with 2.5 

and 1% diesel fuel, respectively. At the end of 270 days, the highest percentage of 

biodegradation in soil amended with SC recorded (90.8% and 80.6%), followed by TL     

(82.2% and 70.1%) and soil amended with PS (78.8% and 65.6%) in soil contaminated  

with 1 and 2.5% diesel fuel. The experiment with soil polluted with 5% diesel oil was 

conducted for a period of only 180 days under natural condition, because all plants died 

after 6 months. At the end of 180 days, the results show 24.2%, 23% and 21.6% oil loss 

in soil amended with SC, TL and PS with 5% diesel fuel, respectively (Figure 4.87).  

In soil polluted with 5%, 2.5% and 1% diesel fuel without plant and organic wastes 

recorded 8.5%, 27.4% and 38.1% oil degradation at the end of experiment. On the other 

hand, soil contaminated and planted with Dracaena without organic wastes shows 

11.9%, 46.6% and 66.8% oil loss at 5%, 2.5% and 1% diesel fuel. The results are 

different from phytoremediation set up under laboratory and natural conditions with the 

same plants, where soil amended with SC had the highest percentage of oil loss 

(98.88%, 90.31% and 19) at 1%, 2.5% and 5%. In addition, soil amended with PS 

showed better results of degradation compared with that amended with TL while at the 

end of the experiment, under natural condition, the contaminated soil amended with TL 

had a higher rate of oil loss compared with that amended with the PS. The reason might 

be due to difference in weather conditions in terms of temperature and rainfall that help 

Dracaena to grow better in those amended with TL than the contaminated soil with PS.  
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Figure 4.85 Biodegradation of diesel fuel in soil contaminated with 1% oil. Bars 

indicate standard error (n = 3). 
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Figure 4.86 Biodegradation of diesel fuel in soil contaminated with 2.5% oil. Bars 

indicate standard error (n = 3). 
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Figure 4.87 Biodegradation of diesel fuel in soil contaminated with 5% oil. Bars 

indicates standard error (n = 3). 

 

 

 

 

Similar results were reported by many researchers (Abioye et al., 2012b; Dowling 

and Doty, 2009). It also might be due to the ability of SC and TL to enhance the growth 

of Dracaena. The result is similar to Zand et al., (2010) who investigated the effect of 

peat amendment with two local plants (maize and tall fescue) on the degradation of 

petroleum hydrocarbons and reported that tall fescue removed 96.3% of the initial TPHs 

from contaminated soil. In addition, the results are in agreement with Dominguez-

Rosado et al., (2004) who reported 67% of used motor oil remediation in 

sunflower/mustard, with the addition of NPK fertilizer after 150 days. 

At the end of the experiment, 13%, 10% and 5% oil loss were recorded in autoclaved 

control soil due to non-biological factors, at 1%, 2.5% and 5% diesel fuel, respectively. 

It was noticed that there was a slow rate of degradation on the 90
th

 and 180
th

 days of 

diesel fuel, which might be due to no rainfall and high temperature conditions within 

these months (June - July 2011) and ( August - September 2011). The results indicated 

that addition of organic wastes to contaminated soil planted with Dracaena can improve  
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the rate of biodegradation about 24% higher than those contaminated soil without 

organic wastes and cultivated with Dracaena. The results are similar to the finding of 

Kim et al., (2010) who illustrated that after 120 days, diesel oil concentration in the 

planted soil, with fertilizer, was significantly decreased. Statistical analysis does not 

show any significant difference between soils amended with organic wastes (P  <  0.05), 

while there was a significant difference (P  <  0.05) between contaminated soil with 

plant and without organic wastes and contaminated soil without plant and organic 

wastes.  

 

4.6.2 Bacterial count 

 

 

Microbial population of heterotrophic bacteria (AHB) contaminated soil planted with 

Dracaena under natural condition and exposed to sunlight and rainfall at 1% and 2.5% 

diesel oil are shown in Figures 4.88- 4.89. AHB count shows 2.02 × 10
9
 CFU/g to 2.98 

× 10
9
 CFU/g and 1.91 × 10

9
 CFU/g to 2.78 × 10

9
 CFU/g in soil amended with organic 

wastes at 1% and 2.5% diesel oil, respectively. Whereas, in contaminated soil with 

Dracaena and without organic wastes the aerobic microbial population was recorded as 

1.6 × 10
9
 CFU/g and 1.7× 10

9
 CFU/g in pollution with 2.5% and 1% diesel oil, 

respectively. The result of microbial population was similar to the result of 

phytoremediation set up under laboratory conditions. However, the number of microbial 

count in soil amended with TL was higher than those contaminated soil amended with 

PS under natural conditions, which is in contrast to the finding of a laboratory study 

with the same plant. However, the number of aerobic bacteria in soil polluted with 1% 

oil and amended with SC was 10.5 and 15.2 times higher than those amended with TL 

and PS, respectively. 
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Figure 4.88 Total CFU of aerobic heterotrophic bacterial (AHB) in soil contaminated 

with 1% diesel fuel. Bars indicate standard error (n = 3). 
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Figure 4.89 Total CFU of aerobic heterotrophic bacterial (AHB) in soil contaminated 

with 2.5% diesel fuel. Bars indicate standard error (n = 3). 
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The number of diesel utilizing bacteria (DUB) in soil contaminated with 1% and 2.5 % 

is shown in Figures 4.90 and 4.91, respectively. Similarly the result for the soil 

amended with SC under laboratory conditions, showed a higher number of DUB count 

ranging from 355 × 10
5
 CFU/g to 324 × 10

5
 CFU/g in soil polluted with 1% and 2.5 % 

diesel oil, respectively. It was observed that the DUB count in polluted soil with 

Dracaena plant and without organic wastes was lower than those of treatments 

amended with organic wastes, ranging between 198 × 10
5
 CFU/g and 145× 10

5
 CFU/g 

at 1% and 2.5% diesel oil, respectively. As mentioned earlier (2.5.3), the reason for the 

higher number of microbial population in those treated with organic wastes compared 

with the unamended is due to the availability of nutrients (N and P) in organic wastes 

which enhances the proliferation of microorganisms in polluted soil. It was noticed that 

DUB and AHB counts in all treatments had decreased slightly on the 90
th

 and 180
th

 days 

due to the climatic conditions such as high temperature during that period compared 

with laboratory conditions. This result was reflected in the percentage of diesel fuel 

biodegradation in the same period. Since, the same source of soil and plant was used, 

the microbes isolated from contaminated soil were similar to those isolated from the 

laboratory experiment. The bacteria were identified as Pseudomonas citronellolis and 

Bacillus amyloliquefaciens. These bacteria have been identified by various researchers 

(Van Hamme et al., 2003; Ijah and Antai, 2003a,b). Several authors have shown the 

positive effects of bacteria with root exudates to break down the hydrocarbon 

compounds during the biodegradation of oil (Van Aken et al. 2009; Newman and 

Reynolds, 2005). 
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Figure 4.90 Total CFU of diesel utilizing bacterial (DUB) in soil contaminated with 1% 

diesel fuel. Bars indicate standard error (n = 3). 

 

 

0

100

200

300

400

0 30 60 90 120 150 180 210 240 270

Soil+ 5% TL+2.5% oil+Dracaena Soil+ 5% SC+2.5% oil+Dracaena

Soil+ 5%PS+2.5% oil+Dracaena Soil+2.5% oil+Dracaena

Soil+ 2.5% oil Only Autoclaved soil+ 2.5% oil+ 0.5% NaN3

Time  ( days)

D
U

B
 c

o
u

n
ts

 (
 1

0
 5

X
 C

F
U

/ 
g

 s
o

il
)

 
 

Figure 4.91 Total CFU of diesel utilizing bacterial (DUB) in soil contaminated with 

2.5% diesel fuel. Bars indicate standard error (n = 3). 
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4.6.3 pH of soil in D.reflexa remediation under natural condition 

 

 

pH of remediated soil with Dracaena at 1% and 2.5% diesel oil during the period of 

study are shown in Figures 4.92 and 4.93. The pH of soil treated under natural 

conditions and exposed to rainfall and sunlight was quite acidic compared with those 

treatments under laboratory conditions. This finding is similar to Ijah et al., (2008) who 

reported a varying range of pH during the degradation of petroleum hydrocarbons in the 

period of study. All treatments amended with organic wastes show more acidic pH 

compared with those unamended contaminated soil. It may be because of high 

metabolic activities of microorganisms which produce acidic conditions in the 

rhizosphere. Gerhardt et al., (2009) reported that plant roots produced more exudates 

which are slightly acidic in nature. 
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Figure 4.92 pH of soil contaminated with 1% diesel fuel planted with D. reflexa. 

Bars indicate standard error (n = 3). 
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Figure 4.93 pH of soil contaminated with 2.5% diesel fuel planted with D. reflexa. 

Bars indicate standard error (n = 3). 

 

 

 

 

4.6.4 Response of D. reflexa to oil pollution under natural condition 

 
 

 

The response of the D. reflexa exposed to rainfall and sunlight was better than those 

plants studied under laboratory conditions (29.5 ± 2
0
C). The reason might be the fact 

that all plants exposed to sunlight had higher ability to do the photosynthetic activities 

compared with those plants in the laboratory. No plant death was recorded at both 

concentration of diesel oil throughout the 270 days of the study. However, one plant 

dead in each treatment in the contaminated soil with 5% oil. It demonstrates that plants 

cannot survive in high concentration of diesel oil. Generally, plants amended with 

organic wastes grow better than the unamended plants which might be because of the 

presence of nutrients.  
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4.7 Phytodegradation of soil contaminated with diesel using P.polystachyus under 

natural condition 

 

4.7.1 Loss of diesel fuel in soil planted with P.polystachyus 
 

 
At the end of 270 days, the percentage of oil loss in soil treated with SC and 

Podocarpus recorded 85.5% and 77.6% in contaminated soil with 1% and 2.5% diesel 

fuel, respectively (Figures 4.954 and 4.95). Polluted soil treated with SC had the highest 

rate of degradation while, the percentage of degradation in contaminated soil with 1% 

and 2.5% diesel fuel and amended with PS and TL recorded 67.2%, 58% and 72%, 

60%, respectively. However, at the end of 270 days, contaminated soil without organic 

waste amendments with Podocarpus had 44.6% and 33.5% at 1% and 2.5% diesel fuel, 

respectively. At the end of the experiment, 13% and 9.6% oil loss was recorded in 

autoclaved control soil including sodium azide with 1% and 2.5% diesel fuel that might 

be due to some non-biological factors such as photodegradation or evaporation. High 

rate of degradation recorded in soil amended with organic wastes (TL, SC and PS) 

compared with unamended treatments was because of available appreciable nutrients 

such as N and P in the organic wastes that enhanced the microbial growth in the 

rhizosphere area of plants. In addition, it might be also as a result of the fact that 

contaminated soil loosens the compactness due to mixing organic wastes with polluted 

soil before transferring plants, which make it more sufficient for bacteria aeration in the 

soil. The result is line with Palmroth et al., (2002) who reported 60% oil loss in diesel-

contaminated soil with the addition of NPK fertilizer and planted with pine tree during 

one month. Statistical analysis of oil degradation in all the treatments treated with 

organic wastes dose not show significant difference at P < 0.05 significant level, while 

there was significant difference (P < 0.05) between the treatments amended without 

organic waste with organic waste. However, the results prove the fact that organic 
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wastes positively attributed to the biodegradation of the diesel oil from the 

contaminated soil. 
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Figure 4.94 Biodegradation of diesel fuel in soil contaminated with 1% oil. Bars 

indicate standard error (n = 3). 
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Figure 4.95 Biodegradation of diesel fuel in soil contaminated with 2.5% oil. Bars 

indicate standard error (n = 3). 
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The monitoring experiment at 5% diesel oil planted with P. polystachyus was conducted 

for a period of 180 days as all the plants died at this concentration. However, 

contaminated soil amended with SC, TL and PS recorded 20.8%, 15.6% and 16.1% 

degradation in 5% diesel oil at the end of six months (Figure 4.96). The result revealed 

that those treated with Podocarpus, without organic wastes, the percentage of 

degradation at 5% oil is significantly low (10%) compared with those amended with 

organic wastes. Vouillamoz and Milke (2001) illustrated the positive effects of compost 

addition on the rate of degradation during the phytoremediation of diesel fuel in 

contaminated soil. The percentage of degradation at 5% oil with Podocarpus under 

natural conditions was slightly higher compared with phytoremediation set up with 5% 

oil under laboratory condition. The reason might be that the outdoors experiment lasted 

270 days with exposure to sunlight and rainfall compared to laboratory condition, 

without sunlight but with artificial light. 
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Figure 4.96  Biodegradation of diesel fuel in soil contaminated with 5% oil. Bars 

indicate standard error (n = 3). 
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4.7.2 Bacterial count 

 

 

The microbial population of AHB in Podocarpus, contaminated with diesel oil at 1% 

and 2.5% under natural condition are shown in Figures 4.97 and 4.98, respectively. The 

count of AHB in all amended soil treated with organic wastes ranged from 212 × 10
7
 

CFU/g to 255 × 10
7
 CFU/g and 177 × 10

7
 CFU/g to 232 × 10

7
 CFU/g in 1% and 2.5% 

oil, respectively. Similar to phytoremediation under laboratory conditions, soil amended 

with SC recorded the highest AHB count (255× 10
7
 CFU/g and 232× 10

7
 CFU/g), 

followed by TL amended (231× 10
7
 CFU/g and 185× 10

7
 CFU/g) and those of amended 

with PS that recorded 212× 10
7
 CFU/g and 177× 10

7
 CFU/g in 1% and 2.5% oil, 

respectively, whereas those treatments with Podocarpus alone recorded 161× 10
7
 

CFU/g and 141× 10
7
 CFU/g in contaminated soil with 1% and 2.5% diesel oil, 

respectively. The DUB counts of contaminated soil amended with SC had the highest 

population compared with other treatments. The count of DUB in all amended soil 

treated with organic wastes ranged from 229 × 10
5
 CFU/g to 281 × 10

5
 CFU/g and 205 

× 10
5
 CFU/g to 278 × 10

5
 CFU/g in 1% and 2.5% oil, respectively. Those treatments 

amended with SC ranged between 281× 10
7
 CFU/g and 278× 10

7
 CFU/g with 1% and 

2.5% diesel oil, respectively (Figures 4.99 and 4.100). The bacteria isolated and 

identified was similar to the species of isolated from the Dracaena experiment which 

were Bacillus sp. and Pseudomonas sp. . These species might be attributed to plant roots 

to degrade diesel oil in rhizosphere zone of the plant. These bacteria species have been 

reported by Madhuri and Rangaswamy (2009) who indicated microorganisms have the 

ability to degrade petroleum hydrocarbon fractions. This result is similar to the finding 

of phytoremediation with the D. reflexa. 
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Figure 4.97 Total CFU of aerobic heterotrophic bacterial (AHB) in soil contaminated 

with 1% diesel fuel. Bars indicate standard error (n = 3). 
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Figure 4.98 Total CFU of aerobic heterotrophic bacterial (AHB) in soil contaminated 

with 2.5% diesel fuel. Bars indicate standard error (n = 3). 
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Figure 4.99 Total CFU of diesel utilizing bacterial (DUB) in soil contaminated with 1% 

diesel fuel. Bars indicate standard error (n = 3). 
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Figure 4.100  Total CFU of diesel utilizing bacterial (DUB) in soil contaminated with 

2.5% diesel fuel. Bars indicate standard error (n = 3). 
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4.7.3 pH of soil in P.polystachyus remediation 

 

 

Figures 4.101 and 4.102 show the pH of remediated soil with Podocarpus at 1% and 

2.5% oil during the period of the study. The pH of soil treated under natural conditions,  

and exposed to rainfall and sunlight was quite acidic compared with those treated under 

laboratory condition. This finding is similar to that of Ijah et al., (2008) who reported a 

varying range of pH during the degradation of petroleum hydrocarbons during period of 

study. All treatments amended with organic wastes show more acidic pH compared with 

those unamended contaminated soil. This may be because of high metabolic activities of 

microorganisms which produced acidic conditions in the rhizosphere. Gerhardt et al., 

(2009) reported that plant roots produced more exudates which are slightly acidic in 

nature. 
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Figure 4.101 pH of soil contaminated with 1% diesel fuel planted with P.polystachyus. 

Bars indicate standard error (n = 3). 
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Figure 4.102 pH of soil contaminated with 2.5% diesel fuel planted with 

P.polystachyus. Bars indicate standard error (n = 3). 

 

 

 

 

4.7.4 Bioaccumulation of heavy metals by Dracaena reflexa 

 

 

The transformation and bioaccumulation potential of plants are the key factor 

controlling the efficiency of remediation technology. The heavy metal concentrations of 

diesel fuel, unpolluted soil and contaminated soil with 2.5 % diesel oil before 

remediation are shown in Table 4.25. Diesel fuel contained the lowest concentration of 

zinc (Zn) and lead (Pb) compared to unplanted polluted soil. However, soil used for 

phytoremediation had 18.1(mg/kg) and 19.2 (mg/kg) Zn and Pb, respectively. After soil 

was artificially polluted with 2.5% diesel oil and 80 (mg/kg) Zn or 60 (mg/kg) Pb, the 

amount of Zn and Pb reached 74.52 (mg/kg) and 55.3 (mg/kg), respectively. After 

harvesting plants from different treatments, roots, leaves and stems were dried at 40 
0
C 

for 3 days, then ground, and 0.5 g digested with mixture of acids were analyzed with 

ICP- OES to determine the accumulation of metals in the soil and plant. 
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Table 4.25 Heavy metal concentration of diesel fuel, soil contaminated with 2.5% oil 

and unpolluted soil before remediation. 

 

                  Heavy metals (mg/kg)* 

 
       Substrate                                              Zn                             Pb 

   

    Diesel fuel                                             0.84                          0.03 

    Unpolluted soil                                     18.1                          19.2           

    Soil + 2.5% oil                                      19.32                        19.4 

    Soil+2.5% oil+ 80 ppm Zn                   74.52                          - 

    Soil+2.5% oil+ 60 ppm Pb                       -                            55.3                  

* mg/kg = ppm 

 

 

 

Based on preliminary trials (3.8.1), it was decided to use two microelements which have 

a major impact on the growth of microorganisms, namely Zn (80 mg kg
-1

) and Pb (60 

mg kg
-1

). The residue of Zn and Pb concentrations in the soil polluted with 80 ppm Zn 

and 60 ppm Pb and planted with the D. reflexa in different treatments are shown in 

Tables 4.26 and 4.27. Zn accumulation in soil of those amended with organic wastes 

ranged from 32.5 mg/Kg to 41.03 mg/Kg, while in polluted control soil with the 

Dracaena and without organic wastes recorded 58.1 mg/Kg. Pb accumulation in treated 

soil amended with organic wastes recorded a range of between 21.1 mg/Kg and 34.2 

mg/Kg, whereas in polluted and unamended treatment there was a higher quantity of Pb. 

Translocation of Zn and Pb from the roots of the Dracaena plant to the leaves and stems 

was recorded in all the treatments. 
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Table 4.26 Residual Zn concentration in soil remediated with Dracaena and polluted 

with 80 ppm Zn after 6 months  

 

                         Heavy metal (mg/Kg) 

 
 

                                                                                   Zn                              
 

Soil+2.5% oil + TL+ Dracaena                               32.5 

Soil+2.5% oil + SC + Dracaena                              34.2 

Soil+2.5% oil + PS + Dracaena                              41.0 

Soil+2.5% oil + Dracaena                                       58.1 

Soil without oil+ Dracaena                                     14.3  

 

 

 

Table 4.27 Residual Pb concentration in soil remediated with Dracaena and polluted 

with 60 ppm Pb after 6 months  

 

                         Heavy metal (mg/Kg) 

 
                                                                                      Pb                              
 

Soil+2.5% oil + TL+ Dracaena                                   21.1 

Soil+2.5% oil + SC + Dracaena                                  28.2 

Soil+2.5% oil + PS + Dracaena                                   34.2 

Soil+2.5% oil + Dracaena                                           45.4 

Soil without oil+ Dracaena                                          ND 

ND: Not detected 

 

At the end of 180 days, appreciable quantities of Zn and Pb were detected to accumulate 

in Dracaena roots, stem and leaves (Tables 4.28 and 4.29). There is accumulation of Zn 

Treatments 
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 and Pb in roots and steams. The result is in conflict to the finding of Palmorth et al., 

(2007) which demonstrated that in contaminated soil with weathered hydrocarbons and 

amended with fertilizers (NPK) and biowaste composts; there was no accumulation of 

heavy metals in plant contextures. The differences discovered in the results might be 

due to the use of different sources of hydrocarbon and differences in the soil and plants 

used in both experiments. They used poplar grasses, clover and pine while in this study 

Dracaena reflexa was used.  

 In addition, the differences can be because of using freshly contaminated soil in this 

study while Palmroth et al., (2007) had used weathered hydrocarbon contaminated soil. 

All of these parameters can attribute to the different results between the two studies. 

 

 

 

Table 4.28   Zn contents with D. reflexa in soil contaminated with 80 ppm Zn 

 

                                            Zn (mg/Kg)

 
                                      Roots                  Stems                 Leaves 

   
 

Soil+2.5% oil + TL+ Dracaena          15.1                      10.9                           ND 

Soil+2.5% oil + SC + Dracaena         16.53                    12.2                          6.32 

Soil+2.5% oil + PS + Dracaena         12.2                       8.25                          4.2 

Soil+2.5% oil + Dracaena                  3.4                         1.8                            ND          

Soil+ Dracaena                                   1.4                         ND                           0.08    

 

ND: Not detected 
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Table 4.29  Pb contents in D. reflexa in soil contaminated with 60 ppm Pb 

 

                                            Pb (mg/Kg)

 
                                    Roots                    Stems                 Leaves 

   
 

Soil+2.5% oil + TL+ Dracaena           16.70                  9.8 0                         3.50 

Soil+2.5% oil + SC + Dracaena         13.83                   6.70                          ND  

Soil+2.5% oil + PS + Dracaena          10.10                   7.60                         ND         

Soil+2.5% oil + Dracaena                   1.10                      ND                        0.005        

Soil without oil+ Dracaena                 0.8 0                    0.065                       ND   

ND: Not detected 

 

 

 

 

There was bioaccumulation of Zn and Pb in Dracaena roots compared with stems 

and leaves in different treatments. No accumulation of Pb was recorded in leaves of all 

treatments (Table 4.29). Soil treated and amended with TL recorded the highest 

accumulation of Pb in tissues, however, soil amended with TL and SC recorded close 

result in accumulation of Zn in tissues, which was probably due to the large amounts of 

fiber and proteins contained in the tea waste. The result is supported by Zuorro and 

Lavecchia (2010) who reported that removal efficient of up to 98% of Pb
2+

 in lead 

contaminated soil using spent tea leaves. Accumulation of Zn in Dracaena roots in the 

polluted soil amended with organic waste ranged from 12.2 mg/Kg to 16.53 mg/Kg. 

Accumulation of Zn in treatments amended with SC shows a higher amount (16.53 

mg/Kg) compared with the other two organic wastes amendment. In addition, the 

accumulation of Pb in Dracaena roots in the polluted soil amended with organic waste 

ranged from 10.1 mg/Kg to 16.7 mg/Kg, while in soil amended with TL recorded a 

higher rate of accumulation (16.7 mg/Kg) and in unpolluted controlled soil without 

Dracaena had 0.8 mg/Kg. However, accumulation of Zn in plant tissue was higher than 

Pb; this might be because of higher quantity of Zn in polluted soil compared with Pb 
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polluted soil (Table 4.26). A small quantity of Pb was detected in Dracaena leaves; 

however, 3.5 mg/Kg Pb was recorded in treatment amended with TL. Accumulation of 

Pb was minimal in leaves (0.005 mg/Kg) compared with the quantity in roots (1.1 

mg/Kg), in control soil with Dracaena polluted with 2.5% diesel fuel (Table 4.28). In 

general, from the results obtained and described above, Dracaena reflexa obviously has 

the ability to accumulate heavy metals in tissues. Thus, the accumulation of Pb and Zn 

is remarkable in Dracaena plant amended with organic wastes than with unamended 

control soil and treated with Dracaena without organic wastes. Organic waste 

amendments might provide a suitable condition to increase the bioavailability of metals 

in hydrocarbon polluted soil through to enhance the capability of the plant to uptake 

these metals in different plant tissues. The result agrees with the finding of Tan et al., 

(2007) who reported that D. reflexa has ability to accumulate Zn and Cd in different 

tissues in polluted soil with Zn and Cd under greenhouse conditions. However, the 

result is in contrast to Clemente et al., (2006) and Walker et al., (2004) who reported 

that the mobility and bioavailability of heavy metals could be reduced in the case of 

fresh contamination by adding organic amendments and vegetation. The accumulation 

of Zn and Pb in Dracaena tissues indicated that the D. reflexa could be a sink for 

bioavailable Zn and Pb. In addition, low concentration of Pb in Dracaena might be due 

to the lack of transport mechanisms for Pb in Dracaena tissues. This is similar to the 

result of Blaylock et al., (1997) who found that the mobility and translocation of Pb 

from roots to leaves is very slow. 

 

4.7.5 Translocation and bioconcentration factors of Zn and Pb in D. reflexa 

 

 

Table 4.30 shows the translocation factor (TF) in the edible part of the plant and the 

bioconcentration factor (BCF) of Zn in all the treatments. In polluted soil with 80 ppm 

Zn, the highest BCF was observed in amended soil with SC, while the lowest was, in 
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the soil without plant and uncontaminated (0.019). According to Santosh et al., (2009), 

BCF is the measurement of the metal accumulation efficiency and indicates the capacity 

of metal accumulation in relation to plant biomass. The bioconcentration factor was 

higher in those treatments amended with organic wastes compared with the unamended 

control soil. This might be because of available nutrients for the plant growth that 

produced high plant biomass, thereby persuading bioaccumulation of the metals in the 

plant tissues more than those of the unamended control treatments. Statistical analysis 

shows a significant difference between TF in stems and leaves (P < 0.05). The highest 

TF in leaves and steam was observed in soil amended with SC (Table 4.30). 

 

 

Table 4.30  Bioconcentration and translocation factors of Zn in Dracaena remediated 

soil 

 

                                             Zinc (Zn)

 
                                            BCF           TF (in stem)         TF (in leaves) 

 

Soil+2.5% oil + TL+ Dracaena          0.348               0.720                          0.000    

Soil+2.5% oil + SC + Dracaena         0.470               0.730                          0.380 

Soil+2.5% oil + PS + Dracaena         0.329               0.670                          0.330 

Soil+2.5% oil + Dracaena                  0.069              0.529                           0.000 

Soil without oil + Dracaena                0.019              0.000                          0.057 

 

 

 

Table 4.31 shows the translocation factor (TF) in the edible part of the plant and 

Bioconcentration factor (BCF) of Pb in all the treatments. In polluted soil with 60 ppm 

Pb, the highest BCF was observed in amended soil with TL, while the lowest was, in the 

soil without a plant and uncontaminated (0.002). Statistical analysis does not show 

significant different between amendment treatments TF in stems and leaves at P < 0.05.  
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The highest TF in leaves was recorded in soil amended with TL, while the highest 

TF in stems was observed in soil amended with PS (Table 4.31). The result is in 

contrast to the result of Adesodun et al., (2010) who reported that TF of Zn in soil 

remediate with sunflower and contaminated with Zn was more than 1. The differences 

in the results recorded in the two studies might be because of the use of different plants 

for phytoremediation. 

The results disagree with Santosh et al., (2009) who found that the application of 

dairy sludge significantly reduced the extractable As, Cr and Zn concentration in soil, 

while the application of organic amendment stabilized As, Cr and Zn and reduced their 

uptake in plant tissue. The differences in the results might be due to the use different of 

plants; Santosh et al., (2009) used Jatropha in their study and their treatments were not 

polluted with hydrocarbon compounds.   

 

 

 

Table 4.31  Bioconcentration and translocation factors of Pb in Dracaena remediated 

soil 

 

                                            Lead (Pb)

 
                                            BCF             TF (in stem)              TF (in leaves) 

 

Soil+2.5% oil + TL+ Dracaena          0.54                  0.58                          0.20     

Soil+2.5% oil + SC + Dracaena         0.37                  0.48                          0.00 

Soil+2.5% oil + PS + Dracaena         0.32                  0.75                           0.00 

Soil+2.5% oil + Dracaena                  0.01                  0.00                           0.00 

Soil without oil + Dracaena                0.00                 0.08                           0.00  
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4.7.6  Rate of metal uptake by Dracaena reflexa 

 

 

Table 4.32 reveals the rate of heavy metal uptake from soil by Dracaena. Within the 

180 day period treatments amended with organic waste recorded the highest rate of 

metal uptake than the unamended soil. However, treated soil amended with TL recorded 

a higher rate of uptake in Zn and Pb contamination, followed by waste amended soil 

with SC and PS. The reason for this higher uptake rate by amended soil compared to 

control treatments can be attributed to the speed of the growth of Dracaena in these 

treatments that was much faster and it grew taller than plants in controls. The result is 

similar to the findings of Chen et al., (2011) who reported that using Shougang slag (SG 

slag) as an amendment in heavy metal contaminated soil increased the rate of adsorption 

capacity which led to increase in rate constant of Zn, Cd, Cu and Pb compared with 

those amended with Baoshan slag (BS slag). 

 

 

 

Table 4.32 Rate of metals uptake from soil by Dracaena 

 

                                            Rate of uptake (monthly)

 
                               Zn                            Pb                                                       

 

Soil+2.5% oil + TL+ Dracaena                 0.138                           0.160 

Soil+2.5% oil + SC + Dracaena                0.129                           0.112       

Soil+2.5% oil + PS + Dracaena                0.099                           0.080      

Soil+2.5% oil + Dracaena                         0.041                           0.032 

Soil without oil + Dracaena                      0.098                           0.000 
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4.7.7 Bioaccumulation of heavy metals by Podocarpus polystachyus 

 

 

 Residual Zn and Pb concentrations in the soil polluted with 80 ppm Zn and 60 ppm 

Pb and planted with P. polystachyus in different treatments are shown in Tables 4.33 

and 4.34. Zn accumulation in those amended with organic wastes ranged from 28.7 

mg/Kg to 37.1 mg/Kg, while in polluted control soil with Podocarpus and without 

organic wastes recorded 57.3 mg/Kg. Pb accumulation in treated soil amended with 

organic wastes recorded a range between 34.6 mg/Kg and 37.1 mg/Kg, whereas in 

polluted and unamended treatment it shows a higher quantity of Pb. Translocation of Zn 

and Pb from the root of Podocarpus plant to the leaves and stems was recorded in all 

the treatments. 

 

 

Table 4.33  Residual Zn concentration in soil remediated with Podocarpus and polluted 

with 80 ppm Zn after 6 months  

 

 

                         Heavy metal (mg/Kg) 

 
 

                                                                                      Zn                              
 

Soil+2.5% oil + TL+ Podocarpus                                 36.6 

Soil+2.5% oil + SC + Podocarpus                                28.7 

Soil+2.5% oil + PS + Podocarpus                                37.1 

Soil+2.5% oil + Podocarpus                                         57.3 

Soil without oil + Podocarpus                                      15.2                   
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Table 4.34 Residual Pb concentration in soil remediated with Podocarpus and polluted 

with 60 ppm Pb after 6 months  

 

 

                         Heavy metal (mg/Kg) 

 
                                                                                         Pb                              
 

Soil+2.5% oil + TL+ Podocarpus                                   36.2 

Soil+2.5% oil + SC + Podocarpus                                  34.6 

Soil+2.5% oil + PS + Podocarpus                                   37.1 

Soil+2.5% oil + Podocarpus                                           41.2 

Soil without oil + Podocarpus                                         15.8 

ND: Not detected 

 

 

 

At the end of 180 days, quantities of Zn and Pb were determined to detect the 

accumulation in Podocarpus roots, stem and leaves (Table 4.35 and 4.36). Heavy metal 

uptake demonstrated the accumulation of Zn in the root and stem of Podocarpus while 

there was no accumulation of Zn in leaves of Podocarpus in all the treatments. The 

accumulation of Zn in the leaves of Podocarpus ranged from 1.1 mg/kg to 2.01 mg/kg 

in those planted amended soil with organic wastes, whereas in the roots of Podocarpus 

the range was between 10.4 mg/kg to 13.7 mg/kg. Soil amended with SC and planted 

with Podocarpus recorded the highest Zn and Pb in stems and roots compared with 

other organic wastes. However, the result of Pb contaminated soil also revealed that 

there was no accumulation of metals in Podocarpus leaves (Table 4.37). The result of 

Zn and Pb accumulation is in line with the study of Hassinen et al., (2009), who 

recorded metal accumulation in the plant parts of hybrid aspen which planting on a 

metal contaminated sites, in the first year of study. 
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Table 4.35  Zn contents in soil of P. polystachyus planted and contaminated with 80 

ppm Zn 

 

                                            Zn (mg/Kg)

 
                                          Roots                  Stems                Leaves 

   
 

Soil+2.5% oil + TL+ Podocarpus         11.8                      6.73                     1. 2 

Soil+2.5% oil + SC + Podocarpus        13.7                      10. 8                    2.0 

Soil+2.5% oil + PS + Podocarpus         10.4                       8.7                      1.1 

Soil+2.5% oil + Podocarpus                  4.4                         ND                     ND          

Soil without oil + Podocarpus                6.1                        ND                      0.6    

 

ND: Not detected 

 

 

 

Detection of Pb was in the roots and stems of Podocarpus and only 0.8 mg/kg and 

0.5 mg/kg were detected in leaves of Podocarpus in soil amended with TL and PS in 

soil amended, respectively (Table 4.36). The trace of Pb in roots of plants was from 

7.21 mg/kg to 9.8 mg/kg in soil amended with organic wastes, while 0.1 mg/kg Pb was 

detected in roots of treatment with Podocarpus without organic waste amendments. 

However, no trace of Pb was detected in leaves, possibly that is why there is no report 

on phytoremediation of heavy metals with Podocarpus. The result is in agree to Mun et 

al., (2008) who discovered the bioaccumulation of Pb in stems and roots of the H. 

cannabinus. They reported that there is a hyperaccomulation of Pb in those amendments 

with added fertilizers compared with the ones without amendments. 
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Table 4.36   Pb contents in soil of P. polystachyus planted and contaminated with 60 

ppm Pb 

 

                                            Pb (mg/Kg)

 
                                      Roots                 Stems                  Leaves 

   
 

Soil+2.5% oil + TL+ Podocarpus          9.8                       6.3                       0.8 

Soil+2.5% oil + SC + Podocarpus         7.4                       5.2                       0.6  

Soil+2.5% oil + PS + Podocarpus         7.2                       4.3                       0.5         

Soil+2.5% oil + Podocarpus                  0.1                       0.0                      ND        

Soil without oil+ Podocarpus                0.9                        ND                     ND   

ND: Not detected 

 

 

 

 

The result of heavy metal accumulation in Podocarpus tissues (Table 4.36) is similar 

to the finding of Hassinen et al., (2009) who recorded that hybrid aspen has the ability 

to accumulate Zn and Fe from contaminated sites. Addition of organic amendments 

could promote plant growth, as well as, improve the absorption of metals and 

accumulation in the plant tissues. This might also be due to the quantity of nutrients in 

organic wastes which lead to enhance the ability of fibrous roots to growth. The results 

are in contrast to Tordoff et al., (2000) and Walker et al., (2004) who illustrated the 

significantly reduced uptake of metals such as As, Cr and Zn in contaminated soil by 

Jatropha curcas with the application of dairy sludge. The differences in the two studies 

might be because of different ecology and environmental factors of the soil which was 

utilized for phytoremediation purposes or the use of different organic amendments and 

plants (Abioye et al., 2010). 
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4.7.8 Translocation and Bioconcentration factors of metals in P. polystachyus 

 

The bioconcentration factor (BCF) and translocation factor (TF) of Zn and Pb with 

Podocarpus is shown in Tables 4.37 and 4.38. Among the different treatments the 

highest TF (stem) belongs to soil amended with PS (0.83) and in TF (leave) the highest 

was recorded in contaminated soil amended with SC (0.14). However, the highest BCF 

(0.35) was recorded in contaminated soil amended with SC and 2.5% diesel fuel. The 

finding is contrast with the TF (stem and leave) Zn recorded with Dracaena and it 

disagrees with the result of Santosh et al., (2009) who demonstrated the high TF in 

those treatments without organic waste amendments. The reason for different rate of 

uptake by plants is due to the differences in amendments and also may be difference in 

plants physiological system used in this study. The result of the bioconcentration factor 

(BCF) and translocation factor (TF) of Pb in Podocarpus is shown in Table 4.39.  

The highest TF in stem was recorded in soil amended with PS  with 0.83. There was 

significant difference in TF in Pb contaminated soil amended with organic wastes and 

unamended controlled soil at P < 0.05 confidence level. However, there was no 

significant difference between treatments in BCF. The results indicate that Podocarpus 

has the ability to be used for phytodegradation of hydrocarbons while bioaccumulation 

of metals was low in Podocarpus tissues. 
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Table 4.37 Bioconcentration and translocation factors of Zinc in Podocarpus 

remediated soil 

 

                                             Zinc (Zn)

 
                                                BCF           TF (in stem)         TF (in leaves) 

Soil+2.5% oil + TL+ Podocarpus          0.26               0.57                          0.10     

Soil+2.5% oil + SC + Podocarpus         0.35               0.78                          0.14 

Soil+2.5% oil + PS + Podocarpus         0.27               0.83                          0.10 

Soil+2.5% oil + Podocarpus                  0.06               0.00                          0.00 

Soil without oil + Podocarpus               0.09               0.00                          0.09 

 

 

 

 

 

 

Table 4.38 Bioconcentration and translocation factors of Lead in Podocarpus 

remediated soil 

 

                                             Lead (Pb)

 
                                                   BCF            TF (in stem)       TF (in leaves) 

 

Soil+2.5% oil + TL+ Podocarpus          0.30                0.64                   0.08 

Soil+2.5% oil + SC + Podocarpus         0.23                0.70                   0.08 

Soil+2.5% oil + PS + Podocarpus         0.21                0.60                   0.07 

Soil+2.5% oil + Podocarpus                 0.00                0.50                    0.00 

Soil without oil + Podocarpus               0.01                0.00                   0.00 
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4.7.9  Rate of metals uptake by Podocarpus polystachyus 

 

 

Table 4.39 reveals the rate of heavy metal uptake in remediation of soil by 

Podocarpus. Within 180 day period of study treatments amended with organic wastes 

recorded the highest rate of metals uptake than the unamended soil. However, treated 

soil amended with SC recorded a higher rate of uptake in Zn contamination, followed 

by amended soil with PS and TL but in Pb contaminated soil the rate of uptake was as 

follows SC > TL > PS. This shows the potential of organic waste amendments to 

enhance phytoremediation of the oil and at the same time bioaccumulation of metals. 

The result is line with the finding of the uptake rate in soil with Dracaena plant. The 

rate of uptake in Dracaena contaminated soil was higher than Podocarpus contaminated 

soil. The reason might be the differences in physiology of the plants or the faster growth 

and higher biomass of Dracaena plant compared with Podocarpus. 

 

 

 

 

 

Table 4.39 Rate of constant metals uptake in remediate soil with Podocarpus 

 

                                            Rate of uptake (monthly)

 
                                               Zn                                 Pb                                                       

 

Soil+2.5% oil + TL+ Podocarpus                 0.118                             0.071 

Soil+2.5% oil + SC + Podocarpus                0.159                             0.078       

Soil+2.5% oil + PS + Podocarpus                 0.116                            0.066     

Soil+2.5% oil + Podocarpus                         0.043                            0.050 

Soil without oil + Podocarpus                      0.029                           0.032 

 

 

 

 

 

 

Treatments 



 

270 

 

4.8 Biodegradation test using bacteria isolated from diesel-contaminated soil 

 

Five bacteria were selected for biodegradation study based on the efficient utilization 

of oil in the preliminary trials and their rapid growth in oil agar. The five microbial 

isolates were identified as species Stenotrophomonas acidaminiphila, Bacillus 

lichenifomis, Brevibacillus parabrevis, Ochrobactrum tritici, Pesedomonas 

citronellolis. These bacterial species have been identified by many reserchers (Zahra et 

al., 2006; Zanaroli et al., 2010). Table 4.40 shows the result of the percentage of 

biodegradation by these isolated bacteria during the 25 day incubating. Results indicate 

the appreciable percentage of biodegradation in microbial isolates compared to the 

percentage of oil loss in control flask (without microbial). The results illustrate the rapid 

reduction of oil in the first week of incubation. In flask incubated with Bacillus 

lichenifomis and Peseudomonas citronellolis recorded 24.7% and 24.6% 

biodegradation, respectively in 7
th

 day compared with 1.2% recorded in control flask. At 

the end of the incubation period higher percentage of degradation was recorded for 

Bacillus lichenifomis (45.8%) follow by Peseudomonas citronellolisc (40.6%), 

Brevibacillus parabrevis (33.2%), Ochrobactrum tritici (30.5%) and Stenotrophomonas 

acidaminiphila (28.4%). Out of 5 bacteria isolated Bacillus licheniformis recorded 

higher percentage of degradation compared with other bacteria. The reseaon might be 

due to the higher ability of Bacillus for biodegradation than other bacteria or might be 

because of the existance of effective biodegrative enzymes in Bacillus isolates. The 

result is supported by Kohsari et al., (2010) who reported that Bacillus licheniformis 

culture could efficiently reduce 35% of quinoline in aqueous media. They also indicated 

that resting cell of B.licheniformis were capable of removing 25% total nitrogen from 

5% crude oil. The result is similar with Ayoub and Ghaemi (2003) that B. licheniformis 

was highly effective in the degradation of cyclo- and iso- alkanes between C20 - C30.  
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Table 4.40 Percentage of diesel fuel biodegradation by microbial isolates 
 
 

 

                   Oil biodegradation (%) 

 

Microbial isolates  ( days)                                  7 14 21 28 35 

Bacillus licheniformis                        24.7 28.5 33.6 38.9 45.8 

Brevibacillus parabrevis                   21.1 24.4 26.7 30.8 33.2 

Ochrobactrum tritici 20.3 22.2 25.5 28.1 30.5 

Peseudomonas citronellolis 24.6 26.4 30.4 36.6 40.6 

Stenotrophomonas acidaminiphila 15.5 17.1 20.3 25.5 28.4 

Control 1.2 1.8 2 2.2 3 

  
 

 

 

In addition, Luo et al., (2012) reported that Psedomunas sp. degraded 75.9% of 

diesel oil from the bilge water within 10 days of incubation at optimal condition. The 

difference oil biodegradation might probably due to the different media pollution, which 

Luo et al., (2012) evaluated oil degradation in water pollution while we studied soil 

pollution with diesel oil. At the end of incubation period, Brevibacillus parabrevis 

recorded 33.2% degradation. The results from Bao et al., (2012) reflected that 

Brevibacillus parabrevis degraded 99% crude oil within 14 days and B. parabrevis 

could adapt to high concentration of petroleum environment with better biodegradation 

potential. The difference in result of degradation might be due to different oil used for 

the studies, and diesel oil probably inhibits the growth of the organisms and 

subsequently reduced the rate of oil biodegradation compared to the results of Bao et al., 

(2012). Stenotrophomonas acidaminiphila rcorded 28.4% degradation at the end of 25 

days. It might possibly be due to non production of biosurfactants by the isolated strains 

(Walter et al., 2010). 
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4.9 Comparison of results of phytoremediation between Dracaena and Podocarpus 

 
 

After 270 days, D. reflexa recorded higher rate of oil degradation compare with P. 

polystachyus. Total percentage of oil loss recorded by Dracaena was 98.8%, 90.3% and 

19% in soil polluted with 1, 2.5 and 5% diesel oil, respectively. P. polystachyus 

remediated 91%, 85% and 13.8% with 1, 2.5 and 5% diesel oil, respectively. It can be 

concluded that Dracaena will be good for remediation of low and medium 

concentration of diesel fuel contaminated soil for a period of nine months compare with 

Podocarpus. Dracaena has potential to develop and grow as shrub and survive for a 

several years. On the other hand, results demonstrated that both plants are not suitable 

for remediation of high level of diesel fuel contamination in a short term of remediation.   

 

4.10 General discussion 

 

The main objective of this research was to evaluate the potential of biowastes              

(organic waste amendments) to enhance the biodegradation (biostimulation) using two 

local plants (Dracaena and Podocarpus) for phytoremediation of diesel fuel 

contaminated soil. Four different concentrations (5, 10, 15 and 20% w/w) of diesel fuel 

were used for biostimulation studies within 126 days and 365 days under laboratory and 

natural conditions, respectively. SC showed the highest potential in enhancing the 

biodegradation of oil at all the diesel fuel pollution levels compared with PS and TL 

amendments. SC amendment enhanced the biodegradation of diesel fuel by 95% to 25% 

oil loss ranged for 5 to 20% diesel fuel. The reason for the high potential by SC might 

be due to its high nutrients level (especially N) compared to other amendments utilized 

in this study. The results obtained demonstrated the potential of organic wastes for oil 

bioremediation in the order SC > PS > TL.   

Two different rate of organic waste amendments (10% and 5%) were tested at four 

different levels of oil pollution (5, 10, 15 and 20% w/w) in order to evaluate which 
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amendments will show the best degradation rate on diesel fuel. Treatments amended 

with 10% biowastes recorded the highest percentage of degradation compared to 

polluted soil amended with 5% biowastes. In natural condition study, contaminated soil 

amended with SC aided an enhanced stimulation of hydrocarbon degradation and it 

showed high potential to degraded different level of the hydrocarbon fractions (C12 to 

C20) at the end of one-year study.  

Two local plants namely, Dracaena and Podocarpus were used and monitored for 

270 days under laboratory and natural conditions. The results of GC/MS of the two 

plants tissues did not show accumulation of oil; it is concluded that the mechanisms of 

phytoremediation by the plants possibly is via the phytovolitilization or 

rhizodegradation. It is supported by the fact that more number of bacteria is found in 

rhizosphere zone of plant roots than in unplanted contaminated soil. Comparison of the 

results of plants on phytoremediation shows the higher percentage of biodegradation 

under laboratory condition (98.8%) than those under natural condition (90.8%).  

Phytodegradation of soil polluted with 5% diesel oil with Podocarpus was conducted 

120 days (four months). At the end of the four months studies, at 5% diesel oil 

contamination, 13.8% and 18.6% oil loss were recorded with Podocarpus and 

Dracaena, respectively. 

 In overall, higher growth rate of D. reflexa resulted probably enhanced abundant 

fibrous root which in turn might have positively led to higher rate of oil biodegradation 

in the contaminated soil. Phytoremediation of co-contaminated soil with heavy metals 

(80 ppm Zn and 60 ppm Pb) and 2.5% diesel oil was monitored for a period of 6 months 

(180 days). Dracaena did not show accumulation of hydrocarbon in its tissues, while it 

is recorded appreciable bioaccumulation of heavy metals (Zn and Pb) in plant root and 

stem. These results demonstrated that Dracaena has high potential for remediation of 

hydrocarbon and heavy metals contaminated soil. The result agrees with the finding of 
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Tan et al., (2007) who reported that D. reflexa has ability to accumulate Zn and Cd in 

different tissues in polluted soil with Zn and Cd under greenhouse conditions.  

SC was more effective in phytodegradation studies with Dracaena and Podocarpus, 

while TL was more effective in accumulation of heavy metals (Zn and Pb) in 

phytoremediation studies of co-contamination soil with 2.5% diesel oil. The differences 

in the activities of these three different organic wastes might be due to differences in the 

structure and physiological systems of both plants which make it suitable for 

remediation process. It is concluded that to develope the better application of 

remediation methods for the removal of diesel fuel from soil, addition of biowastes has 

many essential advantages and potentially useful, due to their specificity and cost 

effective option. Based on the present studies, addition of nutrients (especially N and P) 

in the form of organic waste amendments as a cheap and available option to the 

contamination system may enhance the removal efficiencies further. The improvement 

of rhizoremediation of diesel fuel in soil by the native plants with respect to nutrients 

availability would benefit from further investigation. 
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATIONS 

 

5.1 CONCLUSION 

 

In the bioremediation study, a significant reduction in  diesel fuel (45%) was 

achieved by adding soycake. A 20 to 55 net percentage oil loss was recorded with 

supplementation of organic wastes compared with the control soil. Biodegradation, 

with addition of amendments (TL, SC and PS), is the ideal option for remediation of 

hydrocarbon contaminated soil. DUB and AHB counts in all the soils amended with 

different biomass were higher compared with that of unamended control soil. Bacillus 

licheniformis, recorded higher percentage of degradation (45.8%) compared to other 

five bacteria isolated. The results of monitoring 
13

C stable isotope illustrates 

enrichment value of δ
13

C in treatments amended with organic wastes compared to 

control soil which exhibited mineralization of microbial biomass during the 

degradation of diesel contaminated soil. Germination toxicity test with lettuce seed 

(Lactuca sativa) (after bioremediation process) was higher in soil polluted with 5% 

and 10% diesel fuel and soil amended with 10% organic wastes. However, treatments 

amended with 15% and 20% oil recorded the highest toxicity (10%– 40%) of seed 

germination for remediated soil.  

The first order kinetic model shows the highest rate of degradation for soil polluted 

with 5% diesel fuel accrued in soil amended with 10% SC treatment (k = 0.22/day and 

half-life of  3.05 days). Phytoremediation study with D. reflexa and P. polystachyus 

demonastrated possitive effects on enhancing the reduction of diesel fuel from 

contaminated soil compared  to the unplanted control soil. Furthermore, addition of  

 



 

276 

 

organic residual, especially SC, to the diesel-contaminated soil enhanced the growth 

of plants and propagation of microbial population in the soil. No accumulation of 

hydrocarbon was found in the plants tissues, indicating that oil loss from the polluted 

soil might be via phytovolitilization or rhizodegradation mechanisms. Findings of the 

study concluded that the decrease in total petroleum hydrocarbon was attributable to 

increased diesel utilizing bacterial population in the rhizosphere. 

 Both plants showed the ability of bioaccomulation of Zn and Pb present in the soil 

in their roots and stems. First order kinetic model shows that treated soil amended with 

TL recorded a higher rate of uptake of Zn and Pb, with 0.14 and 0.16 mg kg
-1

per 

month by Dracaena. The study the ability of SC and TL with plants for remediation of 

heavy metals (Zn and Pb) and hydrocarbons in contaminated soil. It is conclusive that 

these two species are hypertolerant to the presence of heavy metals in soil. This 

provides an optional method in removing metals and diesel fuel contaminants from 

soil while assisting the growth of economically viable plants like Dracaena which is 

being used for NASA study as an air cleaner.  

 

5.2 RECOMMENDATIONS 

 In this study three different organic wastes were utilized, it is recommended 

using other available organic wastes which may give different results. 

 Further studies should be done using higher levels of Organic wastes. 

 Older contaminated soils are more difficult to remediate than freshly 

contaminated ones. However, it is recommended that bioremediation and 

phytoremediation is done on older soils. 
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APPENDIX A 
 

 

        Chemical composition of Diesel fuel* 

 

Compound Detected 

 

Result 

 

Alkanes 

 

 

 

1791 ppm 

 

Naphthalene 

 

 

 

56 ppm 

 

* GC-MS Screening 
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                 APPENDIX B 
 

 

Methodology for biostimulation                                                                                         

 

 

 

   

                                                                                                                                    
 

 

 

 

  
               

 

                                                                                                                                                                   

 

 

                                                          

Sample collection of soil, diesel 

fuel and organic wastes 

 

Physicochemical analysis of 

samples 

 

Artificial pollution of 1500 g soil 

with 5, 10, 15 and 20% oil (w/w) 

 

Addition of 5 and 10% (w/w)  

organic wastes; TL, SC and PS 

Monitoring for a period  

of 126 days 

Soil toxicity test using 

lettuce seed 

 

Oil pollution 

 

Biostimulation 
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APPENDIX C 
 

 

 
 

Germination index (%) = (% SG) x (%GR)                                       (Eq 3.2) 

                                                      100 

% SG = (% EG/%CG) x 100  

% GR = (GERm/GERCm) x 100  

 

where % SG = seed germination,  

% GR = growth of the root,  

% EG = germination in contaminated soil,  

% CG = germination in control soil,  

GERm = elongation of root in contaminated soil,  

GERCm = elongation of root in control soil.  
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                   APPENDIX D 
 

 

 

                 Methodology for phytodegradation 

 

 

 

   

                                                                                                                                    
 

 

 

 

  
               

 

                                                                                                                                                              
 

 

 

Sample collection of soil, plant, 

diesel fuel and organic wastes 

 

Physicochemical analysis of 

samples 

 

Artificial pollution of soil with 1, 

2.5 and 5% oil (w/w) & Addition 

of  5% (w/w) organic wastes; TL, 

SC and PS 

 

Planting D. reflexa and P. 

polystachyus in polluted soil. 

 

Monitoring for a period of 9 

months 

Extraction of plant parts for 

possible accumulation of 

hydrocarbon. 

 

Oil pollution 

 

Phytoremediation 

 

Harvesting 
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APPENDIX E 
 

 

 

 Experimental Design for phytoremediation study under laboratory and natural 

conditions 
 

      Treatment                                             Details of Treatment 

           A                              2 Kg soil + 1 % oil + 5% TL + Dracaena/Podocarpus 

           B                              2 Kg soil + 1 % oil + 5% SC + Dracaena/Podocarpus 

           C                              2 Kg soil + 1% oil + 5% PS + Dracaena/Podocarpus 

           D                              2 Kg soil + 1% oil + Dracaena/Podocarpus 

           E                               2 Kg soil + 1% oil only 

           F                               2 Kg autoclaved soil + 1 % oil + 0.5% NaN3 

          G                                2 Kg soil + 2.5 % oil + 5% TL + Dracaena/Podocarpus 

          H                                2 Kg soil + 2.5 % oil + 5% SC + Dracaena/Podocarpus 

           I                                2 Kg soil + 2.5 % oil + 5% PS+ Dracaena/Podocarpus 

           J                                2 Kg soil + 2.5 % oil + Dracaena/Podocarpus 

           K                               2 Kg soil + 2.5 % oil only 

           L                               2 Kg autoclaved soil + 2.5 % oil + 0.5% NaN3 

           M                              2 Kg soil + 5 % oil + 5% TL + Dracaena/Podocarpus 

           N                               2 Kg soil + 5 % oil + 5% SC + Dracaena/Podocarpus 

           O                               2 Kg soil + 5 % oil + 5% PS+ Dracaena/Podocarpus 

           P                                2 Kg soil + 5 % oil + Dracaena/Podocarpus 

           Q                               2 Kg soil +5 % oil only 

           R                               2 Kg autoclaved soil + 5 % oil + 0.5% NaN3 

           S                                2 Kg soil without oil + Dracaena/Podocarpus 
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APPENDIX F 
 

 

 

 

                 Methodology for phytodegradation of co-contaminated soil 

 

 

 

   

                                                                                                                                    
 

 

 

 

  
               

 

                                                                                                                                                               

 

 

 

Sample collection of soil, plant, 

diesel fuel and organic wastes 

 

Physicochemical analysis of 

samples 

 

Artificial pollution of soil 80 ppm 

Zn and 60 ppm Pb + 2.5% (w/w) 

diesel oil + addition of 5% (w/w)of 

biowastes 

 

Planting D. reflexa and P. 

polystachyus in polluted soil. 

 

Monitoring for a period of 6 

months 

Extraction of plant parts for 

possible accumulation of 

metal. 

 

Oil pollution 

 

Phytoremediation 

 

Harvesting 
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APPENDIX G 
 

 

  Experimental Design for phytoremediation of co-contaminated soil 

 

   Treatment                              Details of Treatment 

 

         A          2 Kg soil + 2.5 % oil + 5% TL + 60 ppm Pb + Dracaena or Podocarpus 

         B          2 Kg soil + 2.5 % oil + 5% SC + 60 ppm Pb + Dracaena or Podocarpus 

         C          2 Kg soil + 2.5 % oil + 5% PS+ 60 ppm Pb + Dracaena or Podocarpus 

         D          2 Kg soil + 2.5 % oil + 60 ppm Pb + Dracaena or Podocarpus 

         E          2 Kg soil + 60 ppm Pb + + Dracaena or Podocarpus 

         F          2 Kg soil + 60 ppm Pb + 2.5 % oil only 

        G          2 Kg autoclaved soil + 2.5 % oil + 60 ppm Pb + 0.5% NaN3 

 

        H          2 Kg soil + 2.5 % oil + 5% TL + 80 ppm Zn + Dracaena or Podocarpus 

         I           2 Kg soil + 2.5 % oil + 5% SC + 80 ppm Zn + Dracaena or Podocarpus 

         J          2 Kg soil + 2.5 % oil + 5% PS+ 80 ppm Zn + Dracaena or Podocarpus 

         K         2 Kg soil + 2.5 % oil + 80 ppm Zn + Dracaena or Podocarpus 

         L         2 Kg soil + 80 ppm Zn + + Dracaena or Podocarpus 

         M        2 Kg soil + 80 ppm Zn + 2.5 % oil only 

         N         2 Kg autoclaved soil + 2.5 % oil + 80 ppm Zn + 0.5% NaN3 

         O         2 Kg soil + Dracaena or Podocarpus  

 

     Note: 1) Only 2.5% oil was used in co-contaminated soil 

               2) 60 ppm Pb and 80 ppm Zn were used since they had major impact on the                 

microbial growth. 
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Dynamics of diesel fuel degradation in contaminated soil using  

organic wastes 

 

Abstract 

 

Bioremediation is an effective measure in dealing with such contamination, particularly 

those from petroleum hydrocarbon sources. The effect of soil amendments on diesel fuel 

degradation in soil was studied. Diesel fuel was introduced into the soil at the 

concentration of 5 % (w/w) and mixed with three different organic wastes tea leaf, soy 

cake, and potato skin, for a period of three months. Within 84 days 35% oil loss was 

recorded in the unamended polluted soil while 88%, 81% and 75% oil loss were 

recorded in the soil amended with soy cake, potato skin and tea leaf, respectively. Diesel 

fuel utilizing bacteria counts were high in all organic wastes amended treatments, 

ranging from 111×10
6
 to 152

 
×10

6
 Colony Forming Unit/gram of soil, compared to the 

unamended control soil which gave 31×10
6
 CFU/g. The bacterial count was 

significantly high compared to unamended soil. The diesel fuel utilizing bacteria 

isolated from the oil contaminated soil belongs to Bacillus licheniformis, Ochrobactrum 

tritici and Staphylococcus sp. Oil–polluted soil amended with soy cake recorded the 

highest oil biodegradation with a net loss of 53%, compared to the other treatments. 

Dehydrogenase enzyme activity, which was assessed by 2,3,5-triphenyltetrazolium 

chloride technique, correlated significantly with the total petroleum hydrocarbons 

degradation and accumulation of CO2. First-order kinetic model revealed that soy cake 

was the best of the three organic wastes used, with biodegradation rate constant of 0.148 

day
−1

 and half-life of 4.68 days. The results showed there is potential for soy cake, 

potato skin and tea leaf to enhance biodegradation of diesel in oil contaminated soil. 

  

Key words: Bioremediation, Diesel fuel, Hydrocarbon, Organic waste 
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Manuscript No: GNEST/30/01/13/1031-R.1 

 

Potential of biowastes to remediate diesel fuel contaminated soil 
 

 

Abstract 

 

The unintended release of hydrocarbons into the environment can negatively impact 

human and animal health, and could further change the characteristics of soils. The aim 

of the present work was to investigate the rate of biodegradation at 10 and 20% diesel 

fuel in contaminated soil amended with 10% of three different organic wastes (tea leaf, 

soy cake, and potato skin) for a period of 126-days. 82 and 25% oil loss was recorded in 

soil amended with soy cake at 10% and 20 % oil pollution, respectively. Diesel fuel 

utilizing bacteria counts were high in all organic wastes amended treatments, ranging 

from 150×10
6
 to 176 ×10

6
 CFU/g of soil, compared with the unamended control soil 

which gave 23 ×10
6 

CFU/g. Dehydrogenase activity in soil was markedly enhanced by 

the application of organic wastes. Diesel oil composition monitored by GC/MS 

indicated complete degradation of n-C9 – C12. First-order kinetic model showed that 

among the three organic wastes used, soy cake had the highest biodegradation rate 

constant of 0.153 day
−1

 at 10% oil pollution, while biodegradation rate was 0.033 day
−1

 

at 20% oil pollution. The results showed there is potential for soy cake, potato skin and 

tea leaf to enhance biodegradation of diesel in contaminated soil. 

 

Key words: Bioremediation, Diesel fuel, Hydrocarbon, Organic waste 
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Manuscript No: AF5855 
 

 

 

Bioavailability and bioremediation of diesel fuel-contaminated soil 

using organic wastes as supplement 

 

 

Abstract 

 

Soil and surface water contamination by organic compounds is a common occurrence in 

most developing countries. This caused harmful effects on the environment and human 

beings. Bioremediation can be an alternative green technology for remediation of such 

hydrocarbon-contaminated soil. Bioremediation of soil contaminated with 5% and 10% 

(w/w) diesel fuel amended with 10% soy cake (SC), potato skin (PS) and tea leaf (TL) 

was studied for a period of 84 days, under laboratory condition. At the end of 84 days, 

the highest percentage of oil biodegradation (88%) was recorded in soil contaminated 

with 5% diesel fuel and amended with SC, while only 75% of oil biodegradation was 

recorded in soil contaminated with 10% diesel fuel and amended with SC. 

Bioavailability which was assessed by the hydroxypropyl cyclodextrin (HPCD) 

extraction method showed that bioavailability reduced in soil amended with organic 

wastes. Results of first order kinetic model to determine the rate of biodegradation of 

diesel fuel revealed that soil amended with SC recorded the highest kinetic rate of oil 

biodegradation 0.148 day
-1

 and 0.103 day
-1

 in 5% and 10% oil pollution. The results of 

this study demonstrated the potential of SC as a good substrate to enhance remediation 

of hydrocarbon contaminated soil at low pollution concentration. 

 

Key words: Bioavailability, bioremediation, diesel fuel, organic waste 
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Published in Malaysian Journal of Science 

29(3): 225-230 (2010) 

 

 

Enhanced Degradation of Diesel-Contaminated Soil Using Organic 

Wastes 

 

Abstract 

 

This study was carried out to enhance the biodégradation of diesel fuel in soil 

contaminated with 10 %(w/w) diesel fuel amended with 10% tea leaf (TL), soy cake 

(SC), potato skin (PS) for a period of 3 months under laboratory condition. At the end of 

84 days, the highest percentage of oil biodégradation (76%) was recorded in soil 

amended with SC; 64% and 53% were recorded with soil amended with PS and TL 

respectively, while only 27% of oil degraded in control treatment. Hydrocarbon utilizing 

bacteria ( HUB ) counts were high in all organic wastes amended treatments, ranging 

from 45×10 
6
 CFU/g to 90×10 

6
 CFU/g of soil compared to unamended control soil 

(4×10 
6
 CFU/g to 8 ×10 

6
 CFU/g of soil ). The count in amended soil was significantly 

different at (P > 0.05) compared to unamended soil. The results obtained showed 90%, 

80% and 60% seed germination in remediated soil contaminated with 10% diesel fuel 

and amended with SC, PS and TL respectively, over the period of 84 days. The results 

show the high potential of SC for enhanced biodégradation of hydrocarbon in oil 

contaminated soil. 
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Diesel fuel degradation from contaminated soil by Dracaena reflexa 

using organic waste supplementation 

 

 

Abstract 

 

 The phytoremediation potential of Dracaena reflexa to remediate diesel contaminated 

soil was determined in a greenhouse study. D.reflexa was planted in soil contaminated 

with different concentrations of diesel fuel (1, 2.5 and 5% w/w). 5% (w/w) of three 

different organic wastes [tea leaf (TL), soy cake (SC) and potato skin (PS)] were mixed 

with the soil and monitored for 270 days. The results of the biodegradation of oil and its 

fractions showed a reduction of 90 and 98% of total petroleum hydrocarbons (TPHs) in 

soil amended with SC, at 2.5% and 1% fuel, respectively. It was observed that in the 

non-cultivated polluted soil the TPHs, were reduced by 24 -27%. Soil amended with SC 

provided the greatest diesel fuel loss when compared to other organic waste 

supplements. D. reflexa roots did not accumulate hydrocarbons from the soil, but the 

number of hydrocarbon utilizing bacteria was high in the rhizosphere, thus suggesting 

that the mechanism of the oil degradation was via rhizodegradation. This study has 

shown that D.reflexa amended with organic wastes has a potential for biodegrading 

hydrocarbon-contaminated soil.  

 

Key words: Phytoremediation, Rhizodegradation, Degradation, Dracaena reflexa. 
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Organic Wastes to Enhance Phytotreatment of Diesel-Contaminated 

Soil 

 

Abstract  

Toxic inorganic and organic chemicals are major contributors to environmental 

contamination and poses major health risk to human population. In this work, Dracaena 

reflexa and Podocarpus polystachyus were investigated for their potential to remove 

hydrocarbon from 2.5 and 1% diesel fuel contaminated soil amended individually with 

5% organic wastes [Tea Leaf (TL), Soy Cake (SC), and Potato Skin (PS)] for a period of 

270 days. Loss of 90 % and 99% oil was recorded in soil contaminated with 2.5 and 1% 

oil with SC amendment, respectively, compared with 52 % and 62% in unamended soil 

with D. reflexa at the end of 270 days. Similarly, 84 and 91% oil loss was recorded for 

P. polystachyus amended with organic wastes in 2.5 and 1% oil, respectively. Diesel 

fuel disappeared more rapidly in the soil amendment with SC than in other organic 

wastes supplementation. It was evident that plants did not accumulate hydrocarbon from 

the soil, while the number of hydrocarbon utilizing bacteria was high in the rhizosphere, 

thus suggesting that the mechanism of the oil degradation was rhizodegradation. Kinetic 

model result indicated a high rate of degradation in soil amendment with SC at 1 % with 

Dracaena compare to other treatments. Thus, a positive relationship was observed 

between diesel hydrocarbon degradation with plant biomass production. D. reflexa with 

organic wastes amendment has a greater potential of restoring hydrocarbon-

contaminated soil compared to P. polystachyus plant. 

 

Keywords: Phytodegradation, biowastes, Total petroleum hydrocarbon, D. reflexa, P.  

polystachyus  
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Bioremediation of diesel fuel contaminated soil by Podocarpus 

polystachyus enhanced with organic wastes 

 

 

Abstract 

A greenhouse experiment was performed to evaluate the effectiveness of Podocarpus 

polystachyus in phytoremediation of soil contaminated with 1% and 2.5% w/w diesel 

fuel. This research was aimed at assessing the potential of 5% (w/w) of three organic 

waste amendments (biowastes)[tea leaf (TL), soy cake (SC) and potato skin (PS)] to 

enhance degradation of diesel in contaminated soils for a period of 270 days. Addition 

of biowastes, especially SC, to contaminated soil planted with P. polystachyus rapidly 

increased the rate of removal of diesel fuel by 90% and 84% in soil contaminated with 

1% and 2.5% oil, respectively. Loss of diesel fuel at 53% and 43% were recorded in 

treatments without organic waste amendment and planted with P. polystachyus in 1% 

and 2.5% contamination, respectively. Diesel fuel degradation was more rapid in the 

soil amendment with SC than in other organic waste amendments. P. polystachyus roots 

did not accumulate oil from the contaminated soil, but the number of hydrocarbon 

utilizing bacteria (HUB) was high in the rhizosphere, thus suggesting that the 

mechanism of the oil degradation was via rhizodegradation or phytovolatilization. P. 

polystachyus with organic waste amendment has potential in restoring hydrocarbon-

contaminated soil. 

 

Key words: Phytoremediation, Podocarpus polystachyus, Diesel fuel, Organic waste 

amendments  

 


