ABSTRACT

Contamination of soil by organic compounds, especially hydrocarbon, is prevalent in industrialized and oil producing countries of the world. About 1.7 to 8.8 million metric tons of oil is released into the water and soils every year. This may pose a great threat to the environment and human being at large. This study evaluated the efficiency of organic wastes (biowastes) as supplementations for remediation of diesel fuel contaminated soil. Three organic wastes [tea leaf (TL), Soybean cake (SC) and Potato skin (PS)] and two economically viable plants (Dracaena reflexa and Podocarpus polystachyus) were utilized to evaluate the biodegradation of diesel fuel in soil contaminated with different concentrations of oil. For biodegradation studies, soils were treated with 20%, 15%, 10% and 5% (w/w) diesel fuel and amended with 10% and 5% TL, SC and PS. Completely randomized design was used for a period of 126 days under laboratory condition. At the end of 126 days, soil polluted with 20% diesel oil and amended with 5% TL recorded the lowest percentage of oil degradation (14.5%) and diesel utilizing bacteria at 30×10^5 colony-forming units (CFU) per gram of soil. The highest rate of biodegradation (95%) was recorded in soil polluted with 5% diesel oil and amended with 10% SC with the count of diesel utilizing bacteria at 210×10^5 CFU/g. First order kinetic showed that soil amended with SC had the highest rate of oil degradation and illustrates the least half-life for all the diesel fuel concentrations. Bioremediation of diesel fuel contaminated soil with biomass amendments was monitored for a period of one year under natural condition. Result indicates complete biodegradation of C₈ to C₁₆ and remarkable biodegradation of C₁₆ to C₂₂ hydrocarbon fractions in contaminated soil amended with SC. In phytoremediation study, contamination of soil with 2.5% and 1% diesel fuel and amended with 5% of the three different organic residues was monitored for a period of 270 days under laboratory and natural conditions. About 98.8%, 90.3% and 19% oil loss was recorded in soil amended with SC, polluted with 1%, 2.5% and 5% diesel oil planted with D. reflexa, respectively. However, diesel contaminated soil with Dracaena but without organic wastes recorded 62%, 52.4% and 8.5% for 1%, 2.5% and 5% contamination, respectively under laboratory condition. Also 91%, 84% and 13.8% oil loss was recorded in soil amended with SC, polluted with 1%, 2.5% and 5% diesel oil with P. polystachyus, respectively. The remediation process was influenced by oil concentration and organic biomass added. However, D. reflexa and P. polystachyus root did not accumulate hydrocarbons from the soil, thus indicating that the mechanism of the oil degradation was via phytovolatilization or rhizodegradation. Phytoremediation of cocontamination of soil with heavy metals (80 ppm Zn and 60 ppm Pb) and 2.5% diesel fuel was amended with 5% organic waste was studied for a period of 180 days. Significant bioaccumulation of Pb and Zn in the root and stem of Dracaena plant was observed. At the end of 180 days, 16.53 mg/kg and 12.2 mg/kg of Zn accumulation in root and stem while 16.7 mg/kg and 9.8 mg/kg of Pb in root and stem of D. reflexa was recorded, respectively. However, 11.8 mg/kg and 9.8 mg/kg bioaccumulation of Zn and Pb was observed in root of P. polystachyus. Potential of five diesel utilizing bacterial (DUB) isolates (Stenotrophomonas acidaminiphila, Bacillus lichenifomis, Brevibacillus parabrevis, Ochrobactrum tritici, Pesedomonas citronellolis) from oil-contaminated soil to degrade diesel fuel was studied in broth culture for 35 days at 32^oC. At the end of the incubation period higher percentage degradation was recorded for Bacillus lichenifomis (45.8%).

In conclusion, the results of these studies illustrated the potential of SC and the two plants (*D. reflexa and P. polystachyus*) as a good option for enhanced remediation of hydrocarbon-contaminated soil.

ABSTRAK

Pencemaran tarah oleh sebatian/bahanorganik terutamanya hidrokarbon adalah sangat lazim dinegara perindustrian yang menghasilhan minyak. Kira-kira 1.7 hingga 8.8 juta tan metrik minyak dilepaskan ke dalam air dan tanah setiap tahun. Pada umumnya, ini membawa ancaman kepada alam sekitar dan manusia. Kajian ini menilai kecekapan sisa organik sebagai pelengkap pada pemulihan tanah tercemar oleh bahan api diesel. Tiga sisa organik [teh daun (TL), kek soya (SC) dan kulit kentang (PS)] dan dua tumbuhan berdaya maju (Dracaena reflexa dan Podocarpus polystachyus) telah digunakan untuk menilai tahap biodegradasi bahan api diesel dalam tanah yang tercemar menggunakan kepekatan minyak berbeza. Tahap biodegradasi tanah telah dirawat dengan 20%, 15%, 10% dan 5% (w / w) bahan api diesel dan dipinda dengan 10% dan 5% TL, SC dan PS. Ini telah dikaji secara rawak di bawah reka bentuk lengkap bagi tempoh 126 hari di bawah keadaan makmal. Di penghujung hari yang ke-126, kadar peratusan terendah degradasi minyak adalah (14.5%) dalam tanah yang tercemar dengan minyak diesel sebanyak 20%, Seterusnya, dipinda menggunakan TL dan diesel pada 5% dengan kiraan bakteria pada 30×10^5 pembentukan unit koloni (CFU) bagi setiap gram tanah. Kadar tertinggi biodegradasi (95%) dalam tanah tercemar dengan 5% minyak diesel direkod dan dipinda dengan 10% SC dalam kiraan bakteria sebanyak 210 \times 10 5 CFU / g. Keputusan hasil kinetik tertib pertama menunjukkan bahawa tanah yang dipinda mempunyai kadar degradasi minyak paling tinggi menggunakan SC serta menggambarkan separuh hayat yang berkurang bagi semua kepekatan bahan api diesel. Bioremediasi tanah yang tercemar dengan minyak diesel dan pindaan sisa organik dipantau untuk tempoh satu tahun di bawah keadaan semula jadi. Keputusan menunjukkan bahawa biodegradasi penuh C8 hingga C16 dan biodegradasi luar biasa C16 ke C₂₂ merupakan pecahan hidrokarbon di dalam tanah tercemar yang dipinda dengan SC.

Dalam kajian fitopemulihan, pencemaran tanah pada 2.5% dan 1%, dipinda dengan 5% daripada tiga bahan buangan organik yang berbeza dan dipantau bagi tempoh 270 hari di

bawah keadaan makmal dan semulajadi. Kadar kehilangan minyak direkod pada 98.8%, 90.3% dan 19% dalam tanah yang dipinda dengan SC. Tanah tersebut tercemar dengan 1%, 2.5% dan 5% minyak diesel dengan D. reflexa. Walaubagaimanapun, dalam tanah tercemar yang mengandungi Dracaena tanpa sisa organik, tahap pencemaran masingmasing dicatat pada 62%, 52.4% dan 8.5% 1%, 2.5% dan 5% di bawah keadaan makmal. Kadar kehilangan minyak direkod pada 91%, 84%, dan 13.8% dalam tanah yang dipinda dengan SC, tercemar pada 1%, 2.5% dan 5% minyak diesel dan P. polystachyus. Proses pemulihan dipengaruhi oleh faktor kepekatan minyak dan sisa organik biomas. Malah, akar D. reflexa dan P. polystachyus, tidak mengumpul sisa hidrokarbon dari tanah, sekali gus menunjukkan bahawa mekanisme degradasi minyak adalah melalui fitoremediasi. Proses fitoremediasi tanah yang tercemar dengan logam berat (80 ppm Zn dan 60 ppm Pb) dan tanah yang tercemar dengan 2.5% bahan api diesel, dipinda dengan 5% sisa organik bagi kajian selama 180 hari. Biaokumulasi logam Pb dan Zn dalam akar dan batang tumbuhan Dracaena diperhatikan. Pada akhir tempoh 180 hari, masingmasing sebanyak 16.53 mg / kg dan 12.2 mg / kg pengumpulan Zn diperhatikan dalam akar dan batang manakala 16.7 mg / kg dan 9.8 mg / kg Pb diperhatikan dalam akar dan batang D. reflexa. Walau bagaimanapun, hanya 11.8 mg / kg dan 9.8 mg / kg logam Zn dan Pb diperhatikan dalam akar P. polystachyus. Potensi lima bakteria menggunakan diesel pencilan (DUB) (Stenotrophomonas acidaminiphila, Bacillus lichenifomis, Brevibacillus parabrevis, Ochrobactrum tritici, Pesedomonas citronellolis) dari tanah yang tercemar dengan minyak diperhatikan selama 35 hari pada 320 °C bagi mengkaji pengurangan minyak diesel. Pada hari terakhir tempoh pengeraman, kadar peratusan degradasi yang tinggi direkod bagi Bacillus lichenifomis pada 45.8%.

Kesimpulannya, keputusan kajian ini menggambarkan potensi SC serta dua tumbuhan iaitu (*Dracaena reflexa dan Podocarpus polystachyus*) sebagai pilihan terbaik bagi meningkatkan daya pemulihan tanah tercemar dengan hidrokarbon.

ACKNOWLEDEGMENT

First and foremost, I praise God, the almighty for the gift of life, health and providing me this opportunity and granting me the capability to proceed successfully. This research has been extremely fulfilling, not only because of how much I learned, but especially because it may eventually contribute to the preservation of the environment and assist in the development of better strategies for approaching environmental contamination.

I would like to express my great gratitude to Professor Dr. Agamuthu Periathamby, for his guidance, stimulating suggestions and encouragement helped me to overcome difficulties during the research and writing of this thesis. Thank you for your guide and without your guide this research will not be completed and well organized.

My appreciation goes to the University of Malaya, for providing the research grant (PS300/2010B, PV055/2011B and FP014/2010A) to fund this research.

My sincere thanks go to Assistant Professor Dr. Babak Motesharezadeh and Dr. Abioye O. Peter, for their support and time when I had questions or needed advice. Furthermore, I would also like to thank Dr. Roslanzairi Mostapa, for his assistance and allowing me use the facilities and instrumentation at the Malaysian Nuclear Agency.

This thesis is dedicated to my family. My deepest appreciation and love goes to my mother and brother, Fakhrosadat and Ehsan, for their support and patient throughout my study outside the country and always encourage me to be best. Thank you very much.

Last but not least, I would like to thank all my lab mates in solid waste laboratory for their co-operation and advices. Thank you and I love you all.

v

TABLE OF CONTENTS

ABSTRACT	i
ABSTRAK	iii
ACKNOWLEDGEMENT	v
TABLE OF CONTENTS	vi
LIST OF FIGURES	xv
LIST OF TABLES	xxviii
LIST OF PLATES	xxxiv
LIST OF ABBREVIATIONS	xxxiii

CHAPTER 1 INTRODUCTION

1.1	Significance of petroleum hydrocarbons	1
1.2	Risk of spills for the environment and human health	3
1.3	Environmental biotechnology to diesel fuel clean up	5
1.4	Problem statement of diesel	8
1.5	Aim and Objectives	11
1.6	Research plan	12
СНАРТ	TER 2 LITERATURE REVIEW	
2.1	Overview of Petroleum Hydrocarbons	13
	2.1.1 Structure and chemistry of PAHs	13
	2.1.2 Diesel fuel toxicity and its composition	16
2.2	Weathering Processes of petroleum sources	18

2.3	Biodeg	radation of pollution contaminated sites	20
	2.3.1	Biodegradation of organic compounds by bacteria	21
2.4	Mecha	nism of petroleum hydrocarbon degradation	24
	2.4.1	Degradation of hydrocarbon fractions	26
	2.4.2	Biodegradation of Aromatic compounds	27
	2.4.3	Biodegradation of Benzene	28
	2.4.4	Biodegradation of <i>n</i> -alkane	32
2.5	Factors	affecting biodegradation	35
	2.5.1	Oxygen	36
	2.5.2	Soil properties	37
	2.5.3	Nutrient availability	37
	2.5.4	Moisture	39
	2.5.5	Temperature	39
	2.5.6	Acidity or Alkalinity	41
	2.5.7	Bioavailability of hydrocarbon	41
	2.5.8	Chemical properties of hydrocarbon	42
	2.5.9	Concentration of Petroleum hydrocarbon	43
2.6	Remed	iation techniques	44
	2.6.1	Current clean up techniques	47
		i. Soil washing with solvents and water	48
		ii. Soil vapor extraction	49
		iii. Solidification/stabilization	50

2.6.2 Biological technology/ Bioremediation	50
i. In situ bioremediation	53
ii. Bioventing	54
iii. Biosparging/air sparging	55
iv. Ex situ bioremediation	56
v. Bioreactor	56
vi. Land farming	57
vii. Composting and addition of composting materia	als 57
viii. Biopiling	59
2.6.3 Bioremediation strategies	61
i. Monitored natural recovery	61
ii. Biostimulation approach	61
iii. Bioaugmentation approach	62
2.6.4 Cost of remediation	67
2.6.5 Phytoremediation (Phytotechnology)	68
2.6.6 Costs of phytoremediation	71
2.6.7 Methods of phytoremediation application	71
i. In-situ phytoremediation	71
ii. In-vivo phytoremediation	72
iii. In-vitro phytoremediation	72
2.6.8 Mechanisms of phytoremediation	72
i. Phytoaccumulation/ Phytoextraction	75

		ii.	Phytodegradation/ Phytotransformation	76
		iii.	Phytostabilization	78
		iv.	Rhizodegradation	79
		v.	Phytovolatilization	81
	2.6.9	Influ	ence of Environmental Factors on Phytoremediation	83
	2.6.10	Inter	raction between plants and microorganisms	83
	2.6.11	Plan	t Selection Criteria	84
	2.6.12	Plan	t spices used in this study	87
		i.	Dracaena reflexa	87
		ii.	Podocarpus polystachyus	88
2.7	Biode	grada	tion Kinetics	89
2.8	Stable	isoto	pes: A tool to monitor biodegradation process	93
2.9	Heavy	v meta	ls and PAHs as mixed contaminations	97
CHAPTI	E R 3		METHODS AND MATERIALS	
3.1	Collec	ction of	of soil, diesel fuel, organic wastes and plant materials	100
3.1.1	Organ	ic wa	stes used in this study	101
	i.	Sper	nt Tea leaf	101
	ii.	Soyl	pean cake (SC)	102
	iii.	Pota	to skin (peel)	104
3.2	Physic	coche	mical analysis of soil and organic wastes	105
3.2.1	Diesel	fuel	characteristics	106
3.3	Biosti	mulat	ion methodology under laboratory condition	106

	3.3.1	Exp	perimental set- up	106
	3.3.2	Sar	npling and analysis	107
		i.	Measurement of residual total petroleum hydrocarbon	107
			in soil	
		ii.	PAHs extraction by hydroxypropyl[b]cyclodextrin (Bioavailability)	108
		iii.	Measurement of dehydrogenase activity	108
		iv.	Soil respiration	109
		v.	Isolation and identification of bacterial diesel degraders	109
		vi.	Measurement of pH value	111
		vii	Seed germination toxicity test	111
		viii.	Gas Chromatography analysis of residual degraded	112
			diesel fuel	
		ix.	Biodegradation efficiency calculation	112
		X.	kinetics of diesel removal and Half- Life	112
		xi.	Measurement of stable isotope carbon (δ^{13} C)	113
3.4	Biosti	mulat	ion methodology under natural condition	114
	3.4.1	Sam	pling	115
3.5	Phyton	remed	liation methodology used in this study	115
	3.5.1	Phys wast	sicochemical analysis of soil, diesel fuel and organic	115
	3.5.2	Expe	eriment set-up under laboratory and natural conditions	115
	3.5.3	Sam	pling and analysis	116

		i. Plant biomass	116
3.6	Phyto	remediation of heavy metals in diesel fuel contaminated soil	117
	3.6.1	Selection of heavy metals concentration	117
	3.6.2	Preparation of co- contaminated soil	117
	3.6.3	Sampling and analysis of samples	118
	3.6.4	Analysis of heavy metals in soil and plants	118
	3.6.5	Calculations of Translocation factor and Bioconcentartion factor	119
	3.6.6	Rate of metal uptake by plants	120
3.7	Biode	egradation studies with microorganisms isolated	120
3.8	Statis	stical analysis	121
СНАРТЕ	R 4	RESULTS AND DISCUSSION	
4.1	Chara	acterization of soil and amendments	122
4.2	Evalu	nation of bioremediation under lab condition	124
	4.2.1	Biodegradation of diesel fuel (5 % pollution)	124
	4.2.2	Biodegradation of diesel fuel (10% pollution)	129
	4.2.3	Biodegradation of diesel fuel (15% pollution)	134
	4.2.4	Biodegradation of diesel fuel (20% pollution)	139
	4 2 5	Kinetics model and Half- Life of biodegradation	144
	4.2.5		
	4.2.5 4.2.6	Microbial population of soil polluted with 5% diesel fuel	148
			148 154
	4.2.6	Microbial population of soil polluted with 5% diesel fuel	

	4.2.10	Bioavailable fraction in total content of analyzed PAHs	163
		in diesel fuel contaminated soil	
	4.2.11	pH of soil contaminated with 5, 10, 15 and 20% diesel fuel	167
	4.2.12	Seed germination toxicity test	172
	4.2.13	Monitoring bioremediation using CO ₂ produced	175
	4.2.14	Dehydrogenase activity (DHA)	186
	4.2.15	Correlation between CO_2 evolution, Dehydrogenase activity and TPH degradation	190
	4.2.16	¹³ C stable isotope analysis	192
	4.2.17	Biodegradation Efficiency (BE)	194
4.3	Results	of bioremediation studies under field condition	197
	4.3.1	Biostimulation of diesel fuel contaminated soil	197
	4.3.2	Extraction and analysis of residual diesel by GC/MS	201
4.4		of phytodegradation of soil contaminated with diesel oil using exa under laboratory condition	212
	4.4.1	Loss of diesel fuel in soil planted with D. reflexa	212
	4.4.2	Bacterial count	216
	4.4.3	pH of soil in <i>D. reflexa</i> remediation under laboratory condition	219
	4.4.4	Plant growth and Biomass production under laboratory condition	221
	4.4.5	Plant uptake of hydrocarbons	225
4.5		of phytodegradation of soil contaminated with diesel using <i>tachyus</i> under laboratory conditions	226
	1 .porys	wenyus under laboratory conditions	

	4.5.1	Loss of diesel fuel in soil planted with P.polystachyus	226
	4.5.2	Bacterial count	229
	4.5.3	pH of soil in <i>P.polystachyus</i> remediation	233
	4.5.4	Plant growth and biomass production	234
	4.5.5	Plant uptake of hydrocarbons	237
4.6		of phytodegradation of soil contaminated with diesel using <i>xa</i> under natural condition	237
	4.6.1	Loss of diesel fuel in soil planted with D.reflexa	238
	4.6.2	Bacterial count	241
	4.6.3	pH of soil in <i>D.reflexa</i> remediation under natural condition	245
	4.6.4	Response of <i>D. reflexa</i> to oil population under natural condition	246
4.7	•	egradation of soil contaminated with diesel using <i>tachyus</i> under natural condition	247
	4.7.1	Loss of diesel fuel in soil planted with P.polystachyus	247
	4.7.2	Bacterial count	250
	4.7.3	pH of soil in the <i>P.polystachyus</i> remediation	253
	4.7.4	Bioaccumulation of heavy metals by Dracaena reflexa	255
	4.7.5	Translocation and Bioconcentration factors of Zn and Pb in <i>D. reflexa</i> treatment	259
	4.7.6	Rate of metal uptake by Dracaena reflexa	262
	4.7.7	Bioaccumulation of heavy metal by <i>Podocarpus</i> polystachyus	263
		porystaettyus	

	4.7.9 Rate of metal uptake by <i>Podocarpus polystachyus</i>	269
4.8	Biodegradation test using bacteria isolated from diesel-contaminated soil	270
4.9	Comparison results of phytoremediation studies with <i>Dracaena</i> and <i>Podocarpus</i>	272
4.10	General discussion	272
СНАРТИ	ER 5 CONCLUSION AND RECOMMENDATIONS	
5.1	Conclusion	275
5.2	Recommendations	277
REFERE	ENCES	280
APENDIX A	A Chemical composition of Diesel fuel	311
APENDIX I	B Methodology for biostimulation	312
APENDIX	C Germination index calculation	313
APENDIX	D Methodology for phytodegradation	314
APENDIX	E Experimental Design for phytoremediation study	315
	under laboratory and natural conditions	
APENDIX F	Methodology for phytodegradation of co-contaminated soil	316
APENDIX G	Experimental Design for phytoremediation of co-contaminated soil	317
APENDIX H	I Publications	318

LIST OF FIGURES

Figure 2.1	Petroleum hydrocarbon structural relationships	14
Figure 2.2	Main principle of aerobic degradation of hydrocarbons by microorganisms	25
Figure 2.3	Initial steps of bacterial biodegradation pathways for benzene substrates	29
Figure 2.4	Possible mechanisms of benzene degradation under a anaerobic conditions	30
Figure 2.5	Possible mechanisms of benzene degradation under aerobic conditions	31
Figure 2.6	Basic metabolism of n-alkanes degradation	34
Figure 2.7	Factors affecting biodegradation process	35
Figure 2.8	Schematic diagram of soil vapor extraction system	49
Figure 2.9	Air sparging and soil vapor extraction system	56
Figure 2.10	Scheme of different mechanisms of contaminant removal by plants	74
Figure 2.11	Hypothetical pathway representing the metabolism of trichoroethylene (TCE) in plant tissues	75
Figure 2.12	Phytoextraction mechanisms	76
Figure 2.13	Phytodegradation mechanisms	77
Figure 2.14	Phytostabilization mechanisms	78

Figure 2.15	Schematic representation of the enzymatic and microbial activities responsible for the enhanced remediation in rhizosphere zone	80
Figure 2.16	Plant-degrader interactions potentially involved in rhizodegradation	80
Figure 2.17	Kinetics of Biodegradation	90
Figure 2.18	Schematic diagram of an elemental analyser (EA) in series with IRMS for the analysis of carbon isotope ratios	95
Figure 2.19	Uptake mechanisms on phytoremediation of HMs	98
Figure 4.1	Biodegradation of diesel fuel in soil contaminated with 5% oil and amended with 5% organic wastes. Bars indicates standard error $(n = 3)$	125
Figure 4.2	Biodegradation of diesel fuel in soil contaminated with 5% oil and amended with 10% organic wastes. Bars indicate standard error $(n = 3)$	125
Figure 4.3	Mean comparison of biodegradation in soil polluted with 5% diesel oil amended with 10% organic wastes	129
Figure 4.4	Biodegradation of diesel fuel in soil contaminated with 10% oil and amended with 5% organic wastes. Bars indicate standard error $(n = 3)$	130
Figure 4.5	Biodegradation of diesel fuel in soil contaminated with 10% oil and amended with 10% organic wastes. (Bars indicate standard error, $n = 3$)	130
Figure 4.6	Mean comparison of biodegradation in soil polluted with 10% diesel oil amended with 10% organic wastes	134
Figure 4.7	Biodegradation of diesel fuel in soil contaminated with 15% oil and amended with 5% organic wastes. Bars	135

indicates standard error (n = 3)

Figure 4.8	Biodegradation of diesel fuel in soil contaminated with 15% oil and amended with 10% organic wastes. (Bars indicates standard error, $n = 3$)	135
Figure 4.9	Mean comparison of biodegradation in soil polluted with 15% diesel oil amended with 10% organic wastes amended with 10% organic wastes. (Bars indicates standard error, $n = 3$)	139
Figure 4.10	Biodegradation of diesel fuel in soil contaminated with 20% oil and amended with 5% organic wastes. (Bars indicates standard error, $n = 3$)	140
Figure 4.11	Biodegradation of diesel fuel in soil contaminated with 20% oil and amended with 10% organic wastes. Bars indicates standard error $(n = 3)$	141
Figure 4.12	Mean comparison of biodegradation in soil polluted with 20% diesel oil amended with 10% organic wastes	143
Figure 4.13	Total CFU of aerobic heterotrophic bacterial (AHB) in soil contaminated with 5% diesel fuel amended with 5% organic wastes. Bars indicates standard error ($n = 3$)	148
Figure 4.14	Total CFU of aerobic heterotrophic bacterial (AHB) in soil contaminated with 5% diesel fuel amended with 10% organic wastes. Bars indicates standard error ($n = 3$)	149
Figure 4.15	Total CFU of diesel utilizing bacterial (DUB) in soil contaminated with 5% diesel fuel amended with 5% organic wastes. Bars indicates standard error ($n = 3$)	150
Figure 4.16	Total CFU of diesel utilizing bacterial (DUB) in soil contaminated with 5% diesel fuel amended with 10% organic wastes. Bars indicates standard error ($n = 3$)	150

- Figure 4.17Total CFU of aerobic heterotrophic bacterial (AHB) in152soil contaminated with 10% diesel fuel amended with5% organic wastes. Bars indicates standard error (n = 3)
- Figure 4.18 Total CFU of aerobic heterotrophic bacterial (AHB) in soil contaminated with 10% diesel fuel amended with 10% organic wastes. Bars indicates standard error (n = 3)
- Figure 4.19 Total CFU of diesel utilizing bacterial (DUB) in soil 154 contaminated with 10% diesel fuel amended with 5% organic wastes. Bars indicates standard error (n = 3)
- Figure 4.20 Total CFU of diesel utilizing bacterial (DUB) in soil 154 contaminated with 10% diesel fuel amended with 10% organic wastes. Bars indicates standard error (n = 3)
- Figure 4.21 Total CFU of aerobic heterotrophic bacterial (AHB) in 156 soil contaminated with 15% diesel fuel amended with 5% organic wastes. Bars indicates standard error (n = 3)
- Figure 4.22 Total CFU of aerobic heterotrophic bacterial (AHB) in soil contaminated with 15% diesel fuel amended with 10% organic wastes. Bars indicates standard error (n = 3)
- Figure 4.23 Total CFU of diesel utilizing bacterial (DUB) in soil contaminated with 15% diesel fuel amended with 5% organic wastes. Bars indicates standard error (n = 3)
- Figure 4.24 Total CFU of diesel utilizing bacterial (DUB) in soil contaminated with 15% diesel fuel amended with 10% organic wastes. Bars indicates standard error (n = 3)
- Figure 4.25 Total CFU of aerobic heterotrophic bacterial (AHB) in 160 soil contaminated with 20% diesel fuel amended with 5% organic wastes. Bars indicates standard error (n = 3)

- Figure 4.26 Total CFU of aerobic heterotrophic bacterial (AHB) in 160 soil contaminated with 20% diesel fuel amended with 10% organic wastes. Bars indicates standard error (n = 3)
- Figure 4.27 Total CFU of diesel utilizing bacterial (DUB) in soil contaminated with 20% diesel fuel amended with 5% organic wastes. Bars indicates standard error (n = 3)
- Figure 4.28Total CFU of diesel utilizing bacterial (DUB) in soil162contaminated with 20% diesel fuel amended with 10%organic wastes. Bars indicates standard error (n = 3)
- Figure 4.29 Bioavailable fractions in total content of analyzed PAHs 164 in contaminated soil with 5 % diesel fuel and amended with 10% organic wastes. The same letter represents no significant difference (p > 0.05)
- Figure 4.30 Bioavailable fractions in total content of analyzed PAHs 165 in contaminated soil with 10 % diesel fuel and amended with 10% organic wastes. The same letter represents no significant difference (p > 0.05)
- Figure 4.31 Bioavailable fractions in total content of analyzed PAHs 166 in contaminated soil with 15% diesel fuel and amended with 10% organic wastes. The same letter represents no significant difference (p > 0.05)
- Figure 4.32 Bioavailable fractions in total content of analyzed PAHs 167 in contaminated soil with 20% diesel fuel and amended with 10% organic wastes. The same letter represents no significant difference (p > 0.05)
- Figure 4.33 pH of soil polluted with 5% diesel fuel and amended 168 with 5% organic wastes. Bars indicates standard error (n = 3)
- Figure 4.34 pH of soil polluted with 5% diesel fuel and amended 168

with 10% organic wastes. Bars indicates standard error (n = 3)

- Figure 4.35 pH of soil polluted with 10% diesel fuel and amended 169 with 5% organic wastes. Bars indicates standard error (n = 3)
- Figure 4.36 pH of soil polluted with 10% diesel fuel and amended 170 with 10% organic wastes. Bars indicates standard error (n = 3)
- Figure 4.37 pH of soil polluted with 15% diesel fuel and amended 170 with 5% organic wastes. Bars indicates standard error (n = 3)
- Figure 4.38 pH of soil polluted with 15% diesel fuel and amended 171 with 10% organic wastes. Bars indicates standard error (n = 3)
- Figure 4.39 pH of soil polluted with 20% diesel fuel and amended 171 with 5% organic wastes. Bars indicates standard error (n = 3)
- Figure 4.40 pH of soil polluted with 20% diesel fuel and amended 172 with 10% organic wastes. Bars indicates standard error (n = 3)
- Figure 4.41 Seed germination toxicity index (%) A) amended soil 175 with 5% organic wastes B) amended soil with 10% organic wastes
- Figure 4.42 Correlation between oil degradation in 20% pollution 182 and CO₂ evolution, A) Soil amended with SC, B) Soil amended with PS, C) Soil amended with TL, D) Unamended control soil
- Figure 4.43 Correlation between oil degradation in 15% pollution 183 and CO₂ evolution, A) Soil amended with SC, B) Soil

amended with PS, C) Soil amended with TL, D) Unamended control soil

- Figure 4.44 Correlation between oil degradation in 10% pollution 184 and CO₂ evolution, A) Soil amended with SC, B) Soil amended with PS, C) Soil amended with TL, D) Unamended control soil
- Figure 4.45 Correlation between oil degradation in 5% pollution and 185 CO₂ evolution, A) Soil amended with SC, B) Soil amended with PS, C) Soil amended with TL, D) Unamended control soil
- Figure 4.46 Dehydrogenase activity (DHA) in soil polluted with 5% 187 diesel fuel, (A) soil amended with 5% organic wastes,(B) soil amended with 10% organic wastes
- Figure 4.47 Dehydrogenase activity (DHA) in soil polluted with 10% 188 diesel fuel, (A) soil amended with 5% organic wastes,(B) soil amended with 10% organic wastes
- Figure 4.48 Dehydrogenase activity (DHA) in soil polluted with 15% 188 diesel fuel, (A) soil amended with 5% organic wastes,(B) soil amended with 10% organic wastes
- Figure 4.49 Dehydrogenase activity (DHA) in soil polluted with 20% 189 diesel fuel, (A) soil amended with 5% organic wastes,(B) soil amended with 10% organic wastes
- Figure 4.50 Biodegradation efficiency obtained through the 195 respirometric data in soil polluted with5% diesel oil and amended with A) 10% organic wastes B) 5% organic wastes. Bars indicates standard error (n = 3)
- Figure 4.51 Biodegradation efficiency obtained through the 195 respirometric data in soil polluted with10% diesel oil and amended with A) 10% organic wastes B) 5% organic

wastes. Bars indicates standard error (n = 3)

- Figure 4.52 Biodegradation efficiency obtained through the 196 respirometric data in soil polluted with 15% diesel oil and amended with A) 10% organic wastes B) 5% organic wastes. Bars indicates standard error (n = 3)
- Figure 4.53 Biodegradation efficiency obtained through the 196 respirometric data in soil polluted with 20% diesel oil and amended with A) 10% organic wastes B) 5% organic wastes. Bars indicates standard error (n = 3)
- Figure 4.54 Biodegradation of diesel fuel in soil contaminated with 197 5% oil and amended with 10% organic wastes. (Bars indicates standard error n = 3)
- Figure 4.55 Biodegradation of diesel fuel in soil contaminated with 198 10% oil and amended with 10% organic wastes. (Bars indicate standard error n = 3)
- Figure 4.56 Biodegradation of diesel fuel in soil contaminated with 199 15% oil and amended with 10% organic wastes. (Bars indicates standard error n = 3)
- Figure 4.57 Biodegradation of diesel fuel in soil contaminated with 200 20% oil and amended with 10% organic wastes. (Bars indicates standard error n = 3)
- Figure 4.58 Chromatogram of residual diesel fuel in contaminated 203 soil with 5% oil a) amended with 5% SC (T1) b) amended with 5% SC (T 365) c) unamended control soil (T 365)
- Figure 4.59 Chromatogram of residual diesel fuel in contaminated 204 soil with 5% oil a) amended with 10% SC (T1) b) amended with 10% SC (T 365) c) unamended control soil (T 365)

- Figure 4.60 Chromatogram of residual diesel fuel in contaminated 206 soil with 10% oil a) amended with 5% SC (T1) b) amended with 5% SC (T 365) c) unamended control soil (T 365)
- Figure 4.61 Chromatogram of residual diesel fuel in contaminated 207 soil with 10% oil a) amended with 10% SC (T1) b) amended with 10% SC (T 365) c) unamended control soil (T 365)
- Figure 4.62 Chromatogram of residual diesel fuel in contaminated 209 soil with 15% oil a) amended with 5% SC (T1) b) amended with 5% SC (T 365) c) unamended control soil (T 365)
- Figure 4.63 Chromatogram of residual diesel fuel in contaminated 210 soil with 15% oil a) amended with 10% SC (T1) b) amended with 10% SC (T 365) c) unamended control soil (T 365)
- Figure 4.64 Chromatogram of residual diesel fuel in contaminated 211 soil with 20% oil a) amended with 5% SC (T1) b) amended with 5% SC (T 365) c) unamended control soil (T 365)
- Figure 4.65 Chromatogram of residual diesel fuel in contaminated 212 soil with 20% oil a) amended with 10% SC (T1) b) amended with 10% SC (T 365) c) unamended control soil (T 365)
- Figure 4.66Biodegradation of diesel fuel in soil contaminated with2141% oil. Bars indicates standard error (n = 3)
- Figure 4.67Biodegradation of diesel fuel in soil contaminated with2142.5% oil. Bars indicates standard error (n = 3)
- Figure 4.68 Biodegradation of diesel fuel in soil contaminated with 216

5% oil. Bars indicates standard error (n = 3)

- Figure 4.69 Total CFU of aerobic heterotrophic bacterial (AHB) in 217 soil contaminated with 1% diesel fuel. Bars indicates standard error (n = 3)
- Figure 4.70 Total CFU of aerobic heterotrophic bacterial (AHB) in 217 soil contaminated with 2.5% diesel fuel. Bars indicates standard error (n = 3)
- Figure 4.71 Total CFU of diesel utilizing bacterial (DUB) in soil 218 contaminated with 1% diesel fuel. Bars indicates standard error (n = 3)
- Figure 4.72 Total CFU of diesel utilizing bacterial (DUB) in soil 219 contaminated with 2.5% diesel fuel. Bars indicates standard error (n = 3)
- Figure 4.73pH of soil contaminated with 1% diesel fuel planted with220D. reflexa. Bars indicates standard error (n = 3)
- Figure 4.74pH of soil contaminated with 2.5% diesel fuel planted220with D. reflexa. Bars indicates standard error (n = 3)
- Figure 4.75pH of soil contaminated with 5% diesel fuel planted with221D. reflexa. Bars indicates standard error (n = 3)
- Figure 4.76Biodegradation of diesel fuel in soil contaminated with2271% oil. Bars indicates standard error (n = 3)
- Figure 4.77Biodegradation of diesel fuel in soil contaminated with2272.5% oil. Bars indicates standard error (n = 3)
- Figure 4.78Biodegradation of diesel fuel in soil contaminated with2285% oil. Bars indicates standard error (n = 3)
- Figure 4.79 Total CFU of aerobic heterotrophic bacterial (AHB) in 230 soil contaminated with 1% diesel fuel. Bars indicates standard error (n = 3)

- Figure 4.80 Total CFU of aerobic heterotrophic bacterial (AHB) in 230 soil contaminated with 2.5% diesel fuel. Bars indicates standard error (n = 3)
- Figure 4.81 Total CFU of diesel utilizing bacterial (DUB) in soil 232 contaminated with 1% diesel fuel. Bars indicates standard error (n = 3)
- Figure 4.82 Total CFU of diesel utilizing bacterial (DUB) in soil 232 contaminated with 2.5% diesel fuel. Bars indicates standard error (n = 3)
- Figure 4.83pH of soil contaminated with 1% diesel fuel planted with233P.polystachyus. Bars indicates standard error (n = 3)
- Figure 4.84 pH of soil contaminated with 2.5% diesel fuel planted 234 with P.polystachyus. Bars indicates standard error (n = 3)
- Figure 4.85 Biodegradation of diesel fuel in soil contaminated with 239 1% oil. Bars indicates standard error (n = 3)
- Figure 4.86Biodegradation of diesel fuel in soil contaminated with2392.5% oil. Bars indicates standard error (n = 3)
- Figure 4.87Biodegradation of diesel fuel in soil contaminated with2405% oil. Bars indicates standard error (n = 3)
- Figure 4.88 Total CFU of aerobic heterotrophic bacterial (AHB) in 242 soil contaminated with 1% diesel fuel. Bars indicates standard error (n = 3)
- Figure 4.89 Total CFU of aerobic heterotrophic bacterial (AHB) in 242 soil contaminated with 2.5% diesel fuel. Bars indicates standard error (n = 3)
- Figure 4.90 Total CFU of diesel utilizing bacterial (DUB) in soil 244 contaminated with 1% diesel fuel. Bars indicates standard error (n = 3)

- Figure 4.91 Total CFU of diesel utilizing bacterial (DUB) in soil 244 contaminated with 2.5% diesel fuel. Bars indicates standard error (n = 3)
- Figure 4.92 pH of soil contaminated with 1% diesel fuel planted with 245 P.polystachyus. Bars indicates standard error (n = 3)
- Figure 4.93 pH of soil contaminated with 2.5% diesel fuel planted 246 with P.polystachyus. Bars indicates standard error (n = 3)
- Figure 4.94Biodegradation of diesel fuel in soil contaminated with2481% oil. Bars indicates standard error (n = 3)
- Figure 4.95Biodegradation of diesel fuel in soil contaminated with2482.5% oil. Bars indicates standard error (n = 3)
- Figure 4.96Biodegradation of diesel fuel in soil contaminated with2495% oil. Bars indicates standard error (n = 3)
- Figure 4.97 Total CFU of aerobic heterotrophic bacterial (AHB) in 251 soil contaminated with 1% diesel fuel. Bars indicates standard error (n = 3)
- Figure 4.98 Total CFU of aerobic heterotrophic bacterial (AHB) in 251 soil contaminated with 2.5% diesel fuel. Bars indicates standard error (n = 3)
- Figure 4.99 Total CFU of diesel utilizing bacterial (DUB) in soil 252 contaminated with 1% diesel fuel. Bars indicates standard error (n = 3)
- Figure 4.100 Total CFU of diesel utilizing bacterial (DUB) in soil 252 contaminated with 2.5% diesel fuel. Bars indicates standard error (n = 3)
- Figure 4.101 pH of soil contaminated with 1% diesel fuel planted with 253 P.polystachyus. Bars indicates standard error (n = 3)
- Figure 4.102pH of soil contaminated with 2.5% diesel fuel planted254with P.polystachyus. Bars indicates standard error (n = 3)

LIST OF TABLES

Table 1.1	Annual number of oil spills	9
Table 2.1	Chemical Structures of Various Categories of Hydrocarbons	15
Table 2.2	Relation of carbon number and boiling point ranges	17
Table 2.3	Selected diesel fuel hydrocarbons and some chemical properties of them	17
Table 2.4	Microorganisms reported to utilize petroleum fractions for growth	23
Table 2.5	Factors affecting the biodegradation process	44
Table 2.6	Treatment techniques reviewed	46
Table 2.7	Chemical and physical techniques for oil remove	47
Table 2.8	Summary of advantages and disadvantages of in situ and ex situ on bioremediation processes	60
Table 2.9	Literature on bioremediation techniques for treating contamination	65
Table 2.10	Data cost for bioremediation projects	67
Table 2.11	Advantages and disadvantages of phytoremediation technology	70
Table 2.12	Phytoremediation overview	82
Table 2.13	Plants used for phytoremediation of petroleum hydrocarbon	86
Table 2.14	Stable isotope fraction ratios	93

Table 3.1	Dry matter and chemical composition of tea leaf	101
Table 3.2	Physico-chemical composition of soybean cake waste	103
Table 3.3	Chemical composition of potato peel wastes	104
Table 3.4	Experimental Design of phytoremediation	118
Table 3.5	Experimental Design	121
Table 4.1	Soil and organic wastes characterization	123
Table 4.2	Net percentage (%) loss of TPH in soil amended with 5% diesel fuel and 5% organic waste amendments	137
Table 4.3	Net loss percentage (%) of TPH in soil amended with 5% diesel fuel and 10% organic waste amendments	128
Table 4.4	Analysis of variance for biodegradation of 5% diesel fuel amended with 10% organic wastes	128
Table 4.5	Net (%) loss of TPH in soil amended with 10% diesel fuel with 5% organic waste amendment	132
Table 4.6	Net (%) loss of TPH in soil amended with 10% diesel fuel with 10% organic waste amendment	133
Table 4.7	Analysis of variance for biodegradation of 10% diesel fuel amended with 10% organic wastes	133
Table 4.8	Net percentage (%) loss of TPH in soil amended with 15% diesel fuel and 10% organic waste amendments during bioremediation	137
Table 4.9	Net percentage (%) loss of TPH in soil amended with 15% diesel fuel and 5% organic waste amendments	137

Table 4.10	Analysis of variance for biodegradation of 15% diesel fuel amended with 10% organic wastes	138
Table 4.11	Net percentage (%) loss of TPH in soil amended with 20% diesel fuel and 10% organic waste amendments	142
Table 4.12	Net percentage (%) loss of TPH in soil amended with 20% diesel fuel and 5% organic waste amendments	142
Table 4.13	Analysis of variance for biodegradation of 20% diesel fuel amended with 10% organic wastes	143
Table 4.14	kinetic model and half- life of diesel fuel degradation amended with 5% organic wastes	145
Table 4.15	Kinetic model and half- life of diesel fuel degradation amended with 10% organic wastes	146
Table 4.16	Seed germination toxicity test (%)	173
Table 4.17	CO_2 Produced (mg/100g) in soil polluted with 20% diesel fuel	176
Table 4.18	CO_2 Produced (mg/100g) in soil polluted with 15% diesel fuel	177
Table 4.19	CO_2 Produced (mg/100g) in soil polluted with 10% diesel fuel	178
Table 4.20	CO_2 Produced (mg/100g) in soil polluted with 5% diesel fuel	180
Table 4.21	Matrix of correlation coefficients between CO_2 evolution, Dehydrogenase activity and TPH degradation	191
Table 4.22	Isotopic Composition (δ^{13} C) of carbon dioxide in biodegradation experiments (‰)	193

Table 4.23	Dry mass of <i>Dracaena</i> plant parts at the end of experiment (270 days)	224
Table 4.24	Dry mass of <i>Podocarpus</i> plant parts at the end of experiment (270 days)	236
Table 4.25	Heavy metal concentrations of diesel fuel, soil contaminated with 2.5% oil and unpolluted soil before remediation	255
Table 4.26	Residual Zn concentration in soil remediated with Dracaena and polluted with 80 ppm Zn after 6 months	256
Table 4.27	Residual Pb concentration in soil remediated with Dracaena and polluted with 60 ppm Pb after 6 months	256
Table 4.28	Zn contents with <i>D. reflexa</i> in soil contaminated with 80 ppm Zn	257
Table 4.29	Pb contents in <i>D. reflexa</i> in soil contaminated with 60 ppm Pb	258
Table 4.30	Bioconcentration and translocation factors of Zinc in <i>Dracaena</i> remediated soil	260
Table 4.31	Bioconcentration and translocation factors of Pb in <i>Dracaena</i> remediated soil	261
Table 4.32	Rate of constant metals uptake by Dracaena	262
Table 4.33	Residual Zn concentration in soil remediated with <i>Podocarpus</i> and polluted with 80 ppm Zn after 6 months	263

Table 4.34	Residual Pb concentration in soil remediated with	264
	Podocarpus and polluted with 60 ppm Pb after 6 months	
Table 4.35	Zn contents with P. polystachyus in soil contaminated	265
	with 80 ppm Zn	
Table 4.36	Pb contents in P. polystachyus in soil contaminated with	266
	60 ppm Pb	
Table 4.37	Bioconcentration and translocation factors of Zinc in	267
	Podocarpus remediated soil	
Table 4.38	Bioconcentration and translocation factors of Lead in	268
	Podocarpus remediated soil	
Table 4.39	Rate of constant metals uptake in remediate soil with	269
	Podocarpus	
Table 4.40	Percentage of diesel fuel biodegradation by microbial	271
	isolates	

LIST OF PLATES

Plate 2.1	Dracaena reflexa	87
Plate 2.2	Podocarpus polystachyus	88
Plate 3.1	Tea leaf used in this study	102
Plate 3.2	Soy cake used for study	103
Plate 3.3	Potato skin used for study	105
Plate 3.4	Gas chromatography	109
Plate 3.5	Biolog microstation machine	111
Plate 3.6	Isotope Ratio Mass Spectrometer	115
Plate 4.1	<i>D. reflexa</i> , A: <i>Dracaena</i> amended with TL, B: <i>Dracaena</i> amended with SC, C: <i>Dracaena</i> amended with PS, D: Control Plant, E: Phytotoxicity effect of oil on <i>Dracaena</i>	225
Plate 4.2	<i>P.polystachyus</i> , A: <i>Polystachyus</i> amended with TL, B: <i>Polystachyus</i> amended with SC, C: <i>Polystachyus</i> amended with PS, D: Control Plant, E: Phytotoxicity effect of oil on <i>Polystachyus</i>	238

LIST OF SYMBOLS AND ABBREVIATIONS

AHB	Aerobic Heterotrophic Bacteria
BCF	Bioconcentartion Factor
CF–IRMS	Continuous Flow Isotope Ratio Mass Spectrometer
CFUs	Colony Forming Units
DUB	Diesel Fuel Utilizing Bacteria
EIA	Energy Information Administration
EPA	Environmental Protection Agency
GC-MSD	Gas Chromatography/ Mass Spectrometry Detector
HPCD	Hydroxypropyl[B]Cyclodextrin
ICP- OES	Inductively Coupled Plasma-Optical Emission Spectroscopy
INTF	Iodonitrotetrazolium Formazan
MSM	Mineral Salt Medium
NRC	National Research Council
NPL	National Priorities List
PS	Potato Skin
PAH	Polyaromatic Hydrocarbon
TL	Tea Leaf
TPH	Total Petroleum Hydrocarbon
TF	Translocation Factor
SC	Soybean Cake
USITC	United States International Trade Commission
VOCs	Volatile Organic Compounds