TABLE OF CONTENTS

Acknowledgement i
Abstract ii
Abstrak iv
List of Figures vi
List of Tables xi

CHAPTER 1: INTRODUCTION 2

CHAPTER 2: LITERATURE REVIEW

2.1 Schiff bases and their metal complexes 6
2.2 Biological and antioxidant activities 13
2.3 Elemental analysis 16
2.4 FTIR spectroscopy 16
2.5 NMR spectroscopy 17
2.6 Ultraviolet-visible spectroscopy 20
2.7 Thermogravimetric analysis (TGA) 22

CHAPTER 3: EXPERIMENTAL

3.1 Materials 27
3.2 Preparation of H₂L₁ and its metal complexes 28
 3.2.1 Preparation of H₂L₁ 28
 3.2.2 Preparation of NiL₁ 28
 3.2.3 Preparation of CuL₁ 28
3.2.4 Preparation of ZnL1

3.3 Preparation of H₂L₂ and its metal complexes
 3.3.1 Preparation of H₂L₂
 3.3.2 Preparation of NiL₂
 3.3.3 Preparation of CuL₂
 3.3.4 Preparation of ZnL₂

3.4 Preparation of H₂L₃ and its metal complexes
 3.4.1 Preparation of H₂L₃
 3.4.2 Preparation of NiL₃
 3.4.3 Preparation of CuL₃
 3.4.4 Preparation of ZnL₃

3.5 Preparation of H₂L₄ and its metal complexes
 3.5.1 Preparation of H₂L₄
 3.5.2 Preparation of NiL₄
 3.5.3 Preparation of CuL₄
 3.5.4 Preparation of ZnL₄

3.6 Preparation of H₂L₅ and its metal complexes
 3.6.1 Preparation of H₂L₅
 3.6.2 Preparation of NiL₅
 3.6.3 Preparation of CuL₅
 3.6.4 Preparation of ZnL₅

3.7 Preparation of H₂L₆ and its metal complexes
 3.7.1 Preparation of H₂L₆
3.7.2 Preparation of NiL6 34
3.7.3 Preparation of CuL6 35
3.7.4 Preparation of ZnL6 35

3.8 Anti-oxidant activities of the Schiff bases and complexes by DPPH methods. 36

3.9 Anti-oxidant activities of the Schiff bases and complexes by FRAP method. 36

3.10 Analysis 37
3.10.1 Elemental analyses 37
3.10.2 FTIR spectroscopy 37
3.8.3 NMR spectroscopy 37
3.10.4 UV-Vis spectroscopy 37
3.10.5 Thermogravimetric analysis (TGA) 37
3.10.6 X-ray Crystallography 37
3.10.7 Free radical scavenging activity using DPPH method 38

CHAPTER 4: RESULTS AND DISCUSSION

4.1 Introduction 40

4.2 H2L1 and its Ni(II), Cu(II) and Zn(II) complexes 41
4.2.1 H2L1 41
4.2.2 Nickel(II) complex of H2L1 45
4.2.3 Copper(II) complex of H2L1 49
4.2.4 Zinc(II) complex of H2L1 53

4.3 H2L2 and its Ni(II), Cu(II) and Zn(II) complexes 56
4.3.1 \(\text{H}_2\text{L}_2 \) 56
4.3.2 Nickel(II) complex of \(\text{H}_2\text{L}_2 \) 59
4.3.3 Copper(II) complex of \(\text{H}_2\text{L}_2 \) 63
4.3.4 Zinc(II) complex of \(\text{H}_2\text{L}_2 \) 66

4.4 \(\text{H}_2\text{L}_3 \) and its Ni(II), Cu(II) and Zn(II) complexes 70
4.4.1 \(\text{H}_2\text{L}_3 \) 70
4.4.2 Nickel(II) complex of \(\text{H}_2\text{L}_3 \) 73
4.4.3 Copper(II) complex of \(\text{H}_2\text{L}_3 \) 76
4.4.4 Zinc(II) complex of \(\text{H}_2\text{L}_3 \) 79

4.5 \(\text{H}_2\text{L}_4 \) and its Ni(II), Cu(II) and Zn(II) complexes 83
4.5.1 \(\text{H}_2\text{L}_4 \) 83
4.5.2 Nickel(II) complex of \(\text{H}_2\text{L}_4 \) 87
4.5.3 Copper(II) complex of \(\text{H}_2\text{L}_4 \) 91
4.5.4 Zinc(II) complex of \(\text{H}_2\text{L}_4 \) 94

4.6 \(\text{H}_2\text{L}_5 \) and its Ni(II), Cu(II) and Zn(II) complexes 97
4.6.1 \(\text{H}_2\text{L}_5 \) 97
4.6.2 Nickel(II) complex of \(\text{H}_2\text{L}_5 \) 100
4.6.3 Copper(II) complex of \(\text{H}_2\text{L}_5 \) 102
4.6.4 Zinc(II) complex of \(\text{H}_2\text{L}_5 \) 106

4.7 \(\text{H}_2\text{L}_6 \) and its Ni(II), Cu(II) and Zn(II) complexes 109
4.7.1 \(\text{H}_2\text{L}_6 \) 109
4.7.2 Nickel(II) complex of \(\text{H}_2\text{L}_6 \) 112
4.7.3 Copper(II) complex of \(\text{H}_2\text{L}_6 \) 116
CHAPTER 5: ANTIOXIDANT ACTIVITIES

5.1 Introduction

5.2 The antioxidant activities

5.2.1 Free radical scavenging activity using DPPH method

(a) Method

(b) Results and Discussion

5.2.2 Total reducing power using FRAP method

(a) Method

(b) Results and discussion

5.3 Summary

CHAPTER 6: CONCLUSION AND SUGGESTIONS FOR FUTURE WORK

6.1 Conclusion

6.2 Suggestions for future work

REFERENCES

APPENDIX E