THE APOPTOTIC ANALYSIS OF 7α-HYDROXY-β-SITOSTEROL EXTRACTED FROM *CHISOCHETON TOMENTOSUS* (MELIACEAE) IN CANCER CELL LINES

MOHAMMAD TASYRIQ BIN CHE OMAR

DISSERTATION SUBMITTED IN FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER OF SCIENCE

INSTITUTE OF BIOLOGICAL SCIENCES FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR

2012

ABSTRACT

The main objective of the present study is to investigate the cytotoxicity potential and anti-cancer mechanism of 7α -hydroxy- β -sitosterol (CT1), a known stigmastane sterol extracted from bark of Chisocheton tomentosus (Meliaceae). In vitro exposures of this compound was conducted on five cancer cell lines; breast adenocarcinoma cells (MCF-7), hepatocyte liver carcinoma cell (HepG2), oral squamous carcinoma cell (HSC-4) and (HSC-2) and epidermoid cervical carcinoma (Ca Ski) and in comparison with normal human mammary epithelia cell line (HMEC). Cell viability was assessed by the [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] MTT assay and Live/Dead cytotoxic/viability assay. The flow cytometric analysis and DNA fragmentation assays were used to determine mode of cell death mediated by CT1. Wound healing assay was performed to investigate the potential of migration inhibitory effect of CT1. Protein levels were examined by Western blot analysis. The results demonstrated that CT1 exposure markedly cytotoxic toward MCF-7, HepG2 and HSC-4 cells in time- and dose-dependent manner. Conversely CT1 did not significantly affect the viability of HSC-2, Ca Ski and HMEC cells within a similar dosage range. In vitro scratch assay showed the potential of CT1 to inhibit migration of HSC-4 cells without significant effect observed for MCF-7 and HepG2 cells. Flow cytometric analysis for annexin V/PI dual staining demonstrated that death was achieved via apoptosis followed by secondary necrosis after 24 h post-treatment period at IC_{50} concentrations. Apoptotic effects of CT1 were confirmed by DNA fragmentation which showed laddering of DNA for three tumor cell lines without forming significant laddering in HMEC cells. Cell cycle analysis also demonstrated that CT1 caused an accumulation in the G₀/G₁-phase of cell cycle in MCF-7 cells. Western blotting analysis on apoptotic proteins lysed from MCF-7 cells treated with CT1 suggested that induction of MCF-7 cell death via apoptosis was modulated through both intrinsic and extrinsic pathway. A time-dependent up regulation of Bax/Bcl protein ratio, Fas Ligand and procaspase 8 proteins and down regulation of procaspase 9, procaspase 3, procaspase 6, Bim and ERK 1/2 proteins were detected in MCF-7 cells confirmed the pathway. In conclusion, CT1, a natural compound from the Malaysian plant exhibited its potential use as a cancer chemopreventive agent.

ABSTRAK

Tujuan utama kajian terkini ini adalah untuk mengenal-pasti keupayaan sitotoksik dan mekanisma anti-kanser oleh 7α -hydroxy- β -sitosterol (CT1), sejenis sterol yang dikenali sebagai stigmastane yang diestrak daripada kulit pokok Chisocheton tomentosus yang berasal dari keluarga tumbuhan Meliaceae. Sebatian ini didedahkan kepada lima jenis sel kanser iaitu sel payudara (MCF-7), sel hati (HepG2), sel mulut (HSC-4 dan HSC-2) dan sel servik (Ca Ski) dan juga sel normal dari epithelia (HMEC) secara luar dari organisma. Keupayaan sel untuk meneruskan kelangsungan hidup dinilai dengan menggunakan eksperimen MTT dan Live/Dead. Analisis aliran sitometer dan pemecahan DNA digunakan untuk menentukan jenis kematian sel yang disebabkan oleh CT1. Eksperimen pemulihan luka dijalankan untuk menyiasat keupayaan kesan perencatan CT1 terhadap activiti pergerakan sel. Aras protein ditentukan dengan kajian western blot. Keputusan menunjukan bahawa pendedahan CT1 mengakibatkan kesan sitotoksik terhadap sel MCF-7, HepG2 dan HSC-4 dalam keadaan bergantung terhadap dos dan tempoh rawatan. Sebaliknya CT1 tidak memberi kesan yang penting terhadap kelangsungan hidup sel HSC-2, Ca Ski dan HMEC di dalam julat dos yang sama. Eksperimen pemulihan luka memperlihatkan keupayaan CT1 untuk merencatkan pergerakan sel HSC-4 tanpa memberi kesan yang secukupnya di dalam sel MCF-7 dan HepG2. Analisis aliran sitometer dengan menggunakan gabungan annexin V dan PI telah menunjukkan kematian sel disebabkan oleh apoptosis, kemudian diikuti dengan nekrosis sekunder setelah 24 jam sel dirawat dengan IC₅₀ masing-masing. Kesan apoptotik yang berada dalam CT1 disahkan dengan pemecahan DNA yang mana mempamerkan pecahan DNA seperti corak tangga untuk ketiga-tiga sel kanser dan tidak bagi sel HMEC. Aliran sitometer juga menunjukan yang CT1 telah mengakibatkan pengumpulan sel di fasa G_0/G_1 di dalam kitaran sel MCF-7. Analisis western blot terhadap protein-protein apoptotik yang diperolehi dari sel MCF-7 yang telah dirawat dengan CT1 menyokong bahawa rangsangan kematian sel-sel MCF-7 melalui apoptosis telah dikawal oleh mekanisma laluan dalam dan luar. Peningkatan terhadap nisbah protein Bax/Bcl-2, Fas Ligand dan procaspase 8 dan penurunan terhadap protein procaspase 9, procaspase 3, procaspase 6, Bim dan ERK1/2 di dalam sel MCF-7 secara bergantung terhadap tempoh telah mengesahkan laluan ini. Kesimpulannya, kompoun semulajadi CT1, yang diperolehi dari tumbuhan Malaysia telah mempamerkan kebolehanya untuk digunakan sebagai agent kimia mencegah barah.

ACKNOWLEDGMENT

In the name of Allah, most Gracious, most Merciful. I would like to convey my gratitude to my supervisor, Associate Professor Dr. Noor Hasima Nagoor for her guidance, concern, understanding and her support throughout the development of this project, and not forgetting postdoctoral fellow, Dr Lionel In Lian Aun for his guidance and help in the technical and analysis aspects of the project.

My greatest appreciation to Professor Dr. Khalijah Awang and Dr Ibrahim Najmuldeen from Phytochemistry laboratory for providing the natural compound, CT1 and relevant data pertaining to it's isolation and purification. My deepest appreciation is also dedicated to the TIDREC UM staff, Mrs. Juraina Abu Bakar for her help with flow cytometry and software analysis.

I also extend my thanks to my peers in the BGM2 laboratory; Phuah Neoh Hun, Yap Lim Hui, Norahayu Othman, Noor Shahirah Supardi, Nurhafiza Mohd Arshad, Yap Seow Hui, Devi Rosmey, Lau Su Ee and others for their kind help, support and friendship.

I would like to express my special appreciation to my beloved wife; Nur Syuhanis binti Maksir, my father; Che Omar bin Ibrahim, my mother; Siti Eshah binti Che Mat, my brothers and sisters who have supported me in every way possible throughout this study in University of Malaya.

Finally, my appreciation to everyone around me for their true-hearted support. I wish this academic writing would bring beneficial knowledge to all people.

TABLE OF CONTENT

			Page
Abst	ract		ii
Abst	rak		iii
Ackn	owledg	ement	iv
Table	e of Cor	ntents	v
List o	of Abbr	eviations	xi
List o	of Figur	res	xvii
List o	of Table	es	xxi
Chap	oter 1: I	ntroduction	1
1.1	Objec	tives of study	5
Chap	oter 2: I	literatureReview	
2.1	Cance	or Overview	6
	2.1.1	Breast Cancer	10
	2.1.2	Oral Cancer	11
	2.1.3	Cervical Cancer	12
	2.1.4	Liver Cancer	13
2.2	Cell D	eath	
	2.2.1	Apoptosis	14
	2.2.2	Necrosis	17

2.3 Cell Cycle

	2.3.1	Cell cycle overview	19
	2.3.2	Cell cycle check point and Restriction point	20
	2.3.3	Cell cycle and cancer	21
2.4	Natur	al products as Anti-cancer Agents	
	2.4.1	Botanical aspect of Meliaceae	23
	2.4.2	Chisocheton tomentosus properties	24
	2.4.3	Chemical constituents of Chisocheton species	25
	2.4.4	Properties and role of phytosterol in cancer	26
	2.4.5	Phytosterol oxides in culture and in vivo	29
2.5	Bcl-2	Family	
	2.5.1	Bcl-2 Family Overview	32
		Bcl-2 Family Overview Anti-Apoptotic Proteins	32 32
	2.5.2		
2.6	2.5.2	Anti-Apoptotic Proteins Pro-Apoptotic Proteins	32
2.6	2.5.2 2.4.3	Anti-Apoptotic Proteins Pro-Apoptotic Proteins se	32
2.6	2.5.22.4.3Caspa	Anti-Apoptotic Proteins Pro-Apoptotic Proteins se	32 34
2.6	2.5.22.4.3Caspa2.6.1	Anti-Apoptotic Proteins Pro-Apoptotic Proteins se Caspase Family Members Overview	32 34 37

vi

2.7	Signal	Transduction And Apoptosis	
	2.7.1	Extracellular Regulated-signaling Kinase	50
Chap	oter 3: N	Aaterials and Methods	
3.1	7α-hyo	droxy-β-sitosterol (CT1) Natural Compounds	
	3.1.1	Plant Materials	51
	3.1.2	Extraction and Purification of CT1 compound from	51
		Chisocheton tomentosus	
	3.1.3	Preparation of Stock and Working Solution	52
3.2	Cell L	ines	
	3.2.1	Reagents	52
	3.2.2	Cell Culture	52
	3.2.3	Cell sub-culture	53
	3.2.4	Cells counting	54
3.3	Cytoto	oxicity Assay	
	3.3.1	MTT Assay	55
	3.3.2	LIVE/DEAD Cytotoxicity/Viability Assay	56
3.4	Migra	tion Assay	
	3.4.1	Wound HealingAssay	57

3.5	Flow	Cytometry-based Apoptosis Assay	
	3.5.1	Fixation of cancer cells	57
	3.5.2	Cell Cycle Analysis	58
	3.5.3	Annexin V-FITC and PI Staining	58
	3.5.4	Data Analysis using FACSDiva software	59
3.6	DNA	Fragmentation	
	3.6.1	DNA Extraction	60
	3.6.2	Quantification of DNA	61
	3.6.3	Agarose Gel Electrophoresis	61
3.7	Protei	in Expression Analysis	
	3.7.1	Extraction of Cytoplasmic and Nuclear Protein	62
	3.7.2	Protein Quantification	63
	3.7.3	SDS-PAGE	64
	3.7.4	Western Blotting	65
	3.7.5	X-ray Film Detection	68
3.8	Statis	tical Analysis	68

Chapter 4: Results

4.1	Characterization of 7α -Hydroxy- β -sitosterol(CT1)		
	4.1.1	Ultraviolet–visible spectroscopy (UV) and Infrared spectroscopy (IR)	69
	4.1.2	Nuclear magnetic resonance spectroscopy (NMR)	69
	4.1.3	Correlation spectroscopy (COSY)	72
	4.1.4	Heteronuclear multiple-bond correlation spectroscopy (HMBC)	73
	4.1.5	Gas chromatography–mass spectrometry and X-ray Crystallography	74
4.2	Cytote	oxicity Assay	
	4.2.1	CT1 induces cytotoxic effect on various cancer cell lines	75
	4.2.2	Confirmation of cytotoxicity effect of CT1	78
4.3	Apopt	osis Determination	
	4.3.1	CT1 induces apoptosis-mediated cell death	80
	4.3.2	Confirmation of CT1's apoptosis-inducing effects	83
4.4	Cell C	ycle Analysis	
	4.4.1	Induction of cell cycle arrest by CT1	85

4.5 Wound healing Assay

4.5.1	Induction of anti-migration effects of CT1	88	
4.6 Western Blotting Analysis			
4.6.1	CT1 reduces ERK1/2, Bcl-2 and Bim while increasing FasL	89	
	protein levels		
4.6.2	CT1 induces intrinsic caspase-mediated apoptosis in MCF-7	91	
	cells		
Chapter 5: D	Discussion	93	
Chapter 6: Conclusion 110			
References 112			
Appendices		130	
Appendix	1: Molecular Marker		
Appendix	2: List of reagents for SDS-PAGE		
Appendix	3: LIVE DEAD Viability/Cytotoxicity Assay (CT1 Data)		
Appendix	4: Wound Healing Assay (CT1 Data)		
Appendix	5: Annexin-V Apoptosis Assay (CT1 Data)		
Appendix	6: Cell cycle Analysis (CT1 Data)		
Appendix	7: HMQC spectrum of CT1		
Appendix	8: HMBC spectrum of CT1		

LIST OF ABBREVIATION

¹³ C NMR	13-Carbon NMR
α	Alpha
β	Beta
δ_{C}	Carbon chemical shift
δ	Chemical shift
°C	Degree Celsius
m/z	Mass per charge
λ	Maximum wave length
±SD	Mean Standard Deviation
μ	Micro
µg/ml	Micrograms per Mililitre
μl	Microlitre
μΜ	Micromolar
$[\mathbf{M}]^+$	Molecular ion
1D-NMR	One Dimension Nuclear Magnetic Resonance
%	Percent
±	Plus-minus
+ve	Positive control
¹ H NMR	Proton NMR
2D-NMR	Two Dimension Nuclear Magnetic Resonance
(v/v)	Volume per Volume
(w/v)	Weight per Volume
А	Absorbance
AIF	Apoptosis Inducing Factor
ANOVA	Analysis of Variance
Apaf-1	Apoptotic Protease-Activating Factor-1
APS	Ammonium Persulfate
ATCC	American Tissue Culture Collection

ATP	Adenosine Triphosphate
Bax	Bcl-2 Associate X Protein
Bcl-2	B-cell Lymphocyte 2
Bcl-X _L	B-cell Lymphocyte extra large
BD	Becton Dickenson
BH	Bcl-2 Homology Domain
Bim	Bcl-2 Interacting Mediator
bp	Base Pairs
BSA	Bovine Serum Albumin
CA	California
CARD	Caspase Recruitment Domains
CARIF	Cancer Research Initiative Foundation
Caspase	Cystein Aspartate Protease
CDCl ₃	Deuterated chloroform
CDK	CyclinDependant Kinase
CERI	Cytoplasmic Extraction Reagent I
CER II	Cytoplasmic Extraction Reagent II
cIAP	Cellular Inhibitor of Apoptosis Protein
cm	Centimeter
cm^2	Centimeter Square
CO_2	Carbon dioxide
COSY	¹ H- ¹ H Correlation Spectroscopy
COX-2	Cyclooxygenase-2
d	Doublet
dATP	Deoxy Adenosine Triphosphate (dATP)
DEPT	Distortioness Enhancement by PolarizationTransfer
dH ₂ O	Distilled Water
DISC	Death Inducing Signaling Complex
DMEM	Dulbecco's Modified Eagles Medium
DMSO	Dimethyl sulfoxide

DNA	Deoxyribonucleic Acid
EDTA	Ethylene diamine tetra acetic acid
ER	Estrogen Receptor
ERK	Extracellular-Signal Regulated Kinase
EtBr	Ethidium Bromide
EthD-1	Ethidium Homodimer-1
et al.	and other
FBS	Fetal bovine serum
FADD	Fas Associated Death Domain
Fas	FS9 Associated Surface Antigen
FasL	FS9 Associated Surface Antigen Ligand
FITC	Fluorescence Isothiocyanate
g	Gravity
G	Gram
G_0	Quiescent State
G_1	Gap 1
G_2	Gap 2
GCMS	Gas Chromatography Mass Spectroscopy
GI	Growth inhibition
h	Hour
HCl	Hydrochloride Acid
HEPES	N-2-Hydroxylethyl-Piperazine-N-2-Ethane-Sulfonoc
HMBC	Heteronuclear Multiple Bond Correlation
HMQC	Heteronuclear Multiple Quantum Correlation
HPV	Human papilloma virus
HRP	Horseradish peroxidase
Hz	Hertz
IAP	Inhibitor of Apoptotic Protein
IC ₅₀	50% Inhibitory Concentration
IL	Illinois

Inc.	Incorporation
IR	Infrared
kDa	Kilodalton
kg	Kilogram
L	Litre
т	Multiplet
m	Meter
М	Mol
mA	Miliampere
MD	Maryland
max	Maximum
MEGM	Mammary Epithelia Growth Media
mg	Milligram
min	Minimum
mins	Minutes
ml	Milliliter
mM	Milimolar
MMC	Mitomycin-C
MS	Mass Spectroscopy
MTT	3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
MW	Molecular Weight
NaCl	Sodium chloride
NaHCO ₃	Sodium bicarbonate
NCI	National Cancer Institute
NCR	National Cancer Registry
ND	Not Determined
NER	Nuclear Extraction Reagent
NIH	National Institute of Health
ng	Nanogram
ng/µl	Nanogram Per Microliter

nm	Nanometer
NMR	Nuclear Magnetic Resonance
NSAID	Nonsteroidal Anti-Inflammatory Drug
NY	New York
OD	oligomerisation domain
OD	Optical Density
p	p-value of Data Statistical Significant
PAGE	Polyacrylamide Gel Electrophoresis
PBS	Phosphate Buffered Saline
pН	Potential of Hydrogen
PI	Propidium Iodide
PS	Phosphatidylserine
RNA	Ribonucleic Acid
Rnase H	Ribonuclease H
RPMI	Rosewell Park Memorial Institute
S	Singlet
s SD	Singlet South Dakota
	ç
SD	South Dakota
SD SD	South Dakota Standard deviation
SD SD SDS	South Dakota Standard deviation Sodium Dodecyl Sulfate
SD SD SDS sec	South Dakota Standard deviation Sodium Dodecyl Sulfate Seconds
SD SD SDS sec S phase	South Dakota Standard deviation Sodium Dodecyl Sulfate Seconds Synthetic Phase
SD SD SDS sec S phase spp.	South Dakota Standard deviation Sodium Dodecyl Sulfate Seconds Synthetic Phase Species
SD SDS sec S phase spp. TBE	South Dakota Standard deviation Sodium Dodecyl Sulfate Seconds Synthetic Phase Species Tris-Borate-EDTA
SD SDS SDS sec S phase Spp. TBE TEMED	South Dakota Standard deviation Sodium Dodecyl Sulfate Seconds Synthetic Phase Species Tris-Borate-EDTA N,N,N',N'-Tetramethyl-ethylenediamine
SD SDS SDS Sec S phase Spp. TBE TEMED	South Dakota Standard deviation Sodium Dodecyl Sulfate Seconds Synthetic Phase Species Tris-Borate-EDTA N,N,N',N'-Tetramethyl-ethylenediamine Tris-Glycine-SDS
SD SDS SDS sec S phase Spp. TBE TEMED TGS	South Dakota Standard deviation Sodium Dodecyl Sulfate Seconds Synthetic Phase Species Tris-Borate-EDTA N,N,N',N'-Tetramethyl-ethylenediamine Tris-Glycine-SDS
SD SDS SDS sec S phase Spp. TBE TEMED TGS TM	South Dakota Standard deviation Sodium Dodecyl Sulfate Seconds Synthetic Phase Synthetic Phase Species Tris-Borate-EDTA N,N,N',N'-Tetramethyl-ethylenediamine Tris-Glycine-SDS Trademark

U/ml	Unit PerMililitre
USA	United State of America
US FDA	United State Food and Drug Administration
UV	Ultraviolet
V	Volts
Vol.	Volume
WHO	World Health Organization
WT	Wild Type
Х	Times/Multiple
XIAP	X-linked Inhibitor of Apoptosis Protein

LIST OF FIGURES

Page

Figure 1.0	Chemical structure of 7α -hydroxy- β -sitosterol (CT1)	4
	isolated Chisocheton tomentosus (Meliaceae family).	4
Figure 2.1	The hallmark of cancer	8
Figure 2.2(1)	Apoptosis overviews	17
Figure 2.2(2)	The relationship between necrosis, apoptosis and autophagy cell deaths induce by therapeutic and metabolic stress.	18
Figure 2.3	Comparison of the mammalian cell cycle with human cancer cell cycle	22
Figure 2.4(1)	Chisocheton tomentosus fruit and leaves	25
Figure 2.4 (2)	Structure of cholesterol and major phytosterol	27
Figure 2.5(1)	The Bcl-2 family	34
Figure 2.5(2)	Model of (a) direct and (b) indirect activation of Bax/Bak.	36
Figure 2.6 (1)	The caspase family	38
Figure 2.6(2)	Schematic representation of hierarchical ordering of caspase	42
Figure 2.7	Schematic overview of MAPK pathway	50
Figure 4.11	¹ H-NMR spectrum of 7α -hydroxy- β -sitosterolCT1	71
Figure 4.12	¹³ C-DEPT NMR spectra of 7 α -hydroxy- β -sitosterolCT1	72
Figure 4.13	¹ H- ¹ H COSY spectrum of 7 α -hydroxy- β -sitosterolCT1	73
Figure 4.14	GC-MS of 7 α -hydroxy- β -sitosterolCT1	74

- Figure 4.21Comparison of total relative cell viability (%) between
various cancer cell lines and normal cell line (HMEC)
after treatment with CT1 at different concentration (0 to
100 μ M) at 24 hours post-treatment time, indicating
dose-dependent cytotoxicity. Results were expressed as
total percentage of viable cells. Each value is the mean
±SEM of three replicates.
- Figure 4.22Comparison of total relative cell viability (%) between
various cancer cell lines and normal cell line (HMEC)
after treatment with 100 μ M of CT1 at different post-
treatment time, indicating time-dependent cytotoxicity.
Results were expressed as total percentage of viable
cells. Each value is the mean ±SEM of three replicates.
- **Figure 4.23** Live/Dead viability/cytotoxicity assay depicting the cytotoxic effects of CT1 in cancer cell lines with minimal cytotoxic effects on human mammary epithelial cells normal control cells (A) Fluorescence microscope images of viable cells stained with acetomethoxy derivate of calcein (green) and non-viable cells stained with ethidium homodimer 1 (red). (B) Percentage of viable cells as calculated under a fluorescence microscope. A total of four random quadrants were selected from each triplicate for quantification. All data were presented as mean \pm SEM.
- Figure 4.31CT1 potentiates apoptosis mediated cell death in MCF-7
human breast cancer cells. Detection of apoptosis using
flow cytometry after annexin V-FITC/propidium iodide
(PI) staining. (A) MCF-7 cells and HMEC cells were
treated with CT1 at IC₅₀ concentrations for 12 h and 24
h. Dot plots are a representative of 1.0×10^4 cells of three
replicates with percentage of cells indicated in each
quadrant (B) Percentage of annexin V-FITC staining
cells as obtained from FACSDiva acquisition and

74

76

76

analysis software. All data were presented as mean \pm SEM.

- **Figure 4.32** CT1 induces apoptosis mediated cell death in HSC-4 human oral and HepG2 human liver cancer cells. Detection of apoptosis using flow cytometry after annexin V-FITC/propidium iodide (PI) staining. HSC-4 cells and HepG2 cells were treated with CT1 at IC₅₀ concentrations for 12 h and 24 h. Dot plots are a representative of 1.0 x 10^4 cells of three replicates with percentage of cells indicated in each quadrant. (B) Percentage of annexin V-FITC staining cells as obtained from FACSDiva acquisition and analysis software. All data were presented as mean ± SEM.
- Figure 4.33 Confirmation of apoptosis mediated cell death through observation of a 200 to 250 bp DNA laddering using the DNA fragmentation assay. (A) MCF-7 (B) HepG2 (C) HSC-4 and (D) HMEC cells were treated with CT1 for 12 h and 24 h followed by analysis of extracted DNA on 1.0% (w/v) agarose gel electrophoresis. +ve: positive control. M: 100 bp DNA size marker.
- Figure 4.41Cell cycle distribution of MCF-7 and HMEC cells using86flow cytometry after staining with propidiumiodide (PI)for 12 h and 24 h. I:Sub-G1; II:G0/G1; III:S; IV:G2/M.
- **Figure 4.42** Cell cycle distribution of HSC-4 and HepG2cells using flow cytometry after staining with propidiumiodide (PI) for 12 h and 24 h. I:Sub-G₁; II:G₀/G₁; III:S; IV:G₂/M.
- **Figure 4.5** Wound healing assay displaying the anti-migration effects of CT1 on HSC-4 cells, with minimal effects on MCF-7 cells and not at all on HepG2. All cells were treated with mitomycin c to halt proliferation, followed by CT1 at IC_{50} concentrations for 12 h. Wound edge images of each independent triplicate were captured and measured at 24 h post-treatment using T-scratch software, and percentage of migration is indicated as mean \pm SEM.

82

84

87

89

xix

- Observation on the effects of CT1 treatment on MCF-7 Figure 4.6 protein level using Western blot over 24 h. (A) CT1 was found to decrease ERK1/2 and anti-apoptotic Bcl-2 and Bim protein level, while increasing FasL protein levels. XIAP and pro-apoptotic Bax protein were unaffected following CT1 exposure. β -actin was used as a normalization all control for experiment. (B) Quantification of protein band intensities were determined by densitometry analysis and normalized to β -actin using the ImageJ v1.43 software. All results were presented as mean normalized intensity ±SEM of three experiments.
- **Figure 4.7** Activation of caspase upon CT1 treatment in MCF-7 cells. (A) Western blot analysis on protein level of various procaspases upon CT1 treatment. MCF-7 cells were treated with 16 μ mol/l of CT1 for 6 h, 12 and 24 h respectively. Western blot of cell extract were probed using the indicated procaspases antibodies and β -actin as a normalization control (B) Normalization on band intensities between procaspases and β -actin was determined by densitometry using ImageJ v1.43 software and result were presented as a mean normalized intensity \pm SEM of three independent experiments.
- Figure 5.0 Model for the initiation of apoptosis by Bim (A) In the absence of Bim, Bax is kept in check by both subsets of its prosurvival relatives ("Bcl" represents Bcl-2, Bcl-xL, and Bcl-w; "Mcl" represents Mcl-1 and A1). (B) WT Bim is proposed to also bind transiently to Bax, giving maximal activity.

92

91

105

LIST OF TABLES

		Page
Table 2.1	Occurrence of some selected chemical compounds in various	26
	species of Chisocheton	
Table 3.1	Type of cancer and normal cell lines with the indication of	53
	sources and various culture media used for cultivation	
Table 3.2	Summary of type, source and optimized dilution for primary	67
	and secondary antibodies used in western blotting	
	experiments	
Table 4.1	1D (1 H and 13 C) and 2D (HMQC, and HMBC) NMR spectral	70
	data of CT1	
Table 4.2	Summary of IC_{50} values and total cell viability of CT1	77
	treated cancer cell lines and HMEC cells as obtained from	
	MTT cell viability assays after 24 h exposure. All data are	
	presented as mean \pm SEM after deduction of DMSO solvent	
	induced cytotoxicity of three independent experiments.	