ABSTRACT

Nasopharyngeal carcinoma (NPC) is a highly metastatic cancer that is endemic in South East Asia and Southern China. Despite the gravity of the disease, the current knowledge on its molecular pathogenesis is still inadequate to improve the disease management. The present study seeks to understand the molecular mechanism of NPC, with an aim to identify potential therapeutic targets or biomarkers. From a previous expression microarray study, Four -Jointed Box 1 (FJX1) gene was found to be upregulated in NPC compared to non-cancerous controls with negligible expression in 5 vital normal human organs. Human FJX1 is a Drosophila orthologue of *four-jointed* (*fj*) gene which codes for a Golgi-resident kinase that phosphorylates specific cadherin domains and functions downstream of the Notch and Hippo signaling pathways. The overexpression of FJX1 in primary NPC tissues was confirmed at both mRNA and protein levels, while its low expression was validated in 16 normal human organs. Both overexpression and knockdown experiments showed that FJX1 increased the aggressiveness of NPC cells by promoting cell proliferation, invasion and anchorageindependent growth. Concomitant change of Cyclins D1 and E1 levels were observed with FJX1 level, suggesting FJX1 enhances cell proliferation through cell cycle regulation. The results of the present study demonstrate for the first time the overexpression of FJX1 in NPC as a putative oncogene, and it represents an attractive therapeutic target for NPC.

ABSTRAK

Karsinoma nasofaring (KNF), endemik di Asia Tenggara dan Selatan China, merupakan sejenis kanser yang sangat mudah bermetastasis. Walaupun penyakit ini membawa kesan yang teruk kepada penghidapnya, pengetahuan mengenai pertumbuhan penyakit ini di peringkat molekul masih lagi tidak mencukupi untuk memperbaiki cara pengurusan penyakit tersebut. Kajian ini bertujuan untuk memahami mekanisma molekular KNF, dengan tujuan untuk mengenal pasti gen - gen yang boleh dijadikan sebagai bakal gen sasaran dalam rawatan atau sebagai gen penanda. Dengan berpandukan kajian mikroatur pengekspresan yang terdahulu, ekspresi gen Four-Jointed Box 1 (FJX1) telah dikenal pasti berada di tahap yang tinggi di KNF berbanding kumpulan kawalan bukan kanser. Ekspresi FJX1 di 5 organ manusia penting yang normal pula berada pada tahap yang sangat rendah. Gen manusia FJX1 adalah ortolog kepada gen Drosophila bergelar four-jointed (fj), yang mana protinnya merupakan kinase di Golgi yang memfosforilasi domain-domain cadherin tertentu. Fi juga berfungsi di bawah kawalan tapak jalan Notch dan Hippo. Peningkatan FJX1 di KNF telah dipastikan pada kedua-dua tahap, baik di tahap mRNA mahupun di tahap protin. Eskpresinya juga telah disahkan rendah di 16 organ manusia normal. Eksperimen-eksperimen in vitro telah menunjukkan bahawa FJX1 meningkatkan sifat agresif sel-sel KNF dengan menggalakkan pertubuhan, penyerbuan, dan pertumbuhan tanpa lekap sel-sel tersebut. Perubahan sekali gus tahap Cyclin D1 dan Cyclin E1 bersama-sama tahap FJX1 juga didapati — ini menunjukkan bahawa FJX1 menggalakkan pertumbuhan melalui proses kitaran sel. Hasil kajian ini membuktikan buat julung kalinya peningkatan tahap FJX1 di KNF, dan sebagai sebagai bakal gen penyebab kanser, gen ini juga merupakan sasaran bagi rawatan yang berpotensi bagi KNF.

ACKNOWLEDGEMENTS

In the name of Allah, Most Gracious, Most Merciful.

I would like to convey my deepest appreciation to Dr Yap Lee Fah of Cancer Research Initiatives Foundation (CARIF) for supervising me on the project through to completion. I would like to convey my gratitude to Dr Ng Ching for co-supervising me in Universiti Malaya.

I would like to thank the staffs of CARIF, laboratory or management, for all kinds of support. I am truly grateful for having been apprenticed under the tutelage of Mrs Sharifah Hamid and Mrs Akmal Nam. I am also heavily indebted to my team members of the nasopharyngeal carcinoma research group, in particular Ms Gan Siew Pey. I would also thank former members of the team, Ms Diana Anuar and Ms Chai Sook Keat. I would also like to thank members of Dr Ng's lab for helpful guidance and a lot of favors. I am lucky to be in the company of Ms Lee Sheau Yee, Prof Dr Cheong Sok Ching, Dr Lim Kue Peng, Ms Phuah Sze Yee, Mr Lim Siang Hui, Ms Kavitta Sivanandan and Mrs Gan Chai Phei (CARIF), as well as (at the time of writing, soon to be Dr) Yew Poh Yin, Ms Goh Siang Ling, and Mr Ang Cheng Choon (Dr. Ng's lab in Universiti Malaya).

I thank Dr Paul Vey Lim from Tung Shin Hospital, Kuala Lumpur for his crucial part in nasopharyngeal carcinoma research done in collaboration with CARIF, and appreciate his patients who have consented to take part in the study. I acknowledge Dr Paul Murray (University of Birmingham, United Kingdom) and Dr Ian Paterson (University of Bristol, United Kingdom) for their helpful advice and discussions. I offer my gratitude for Dr Yusuke Nakamura and Dr Hitoshi Zenbutsu (University of Tokyo, Japan) for providing support with the microarray analysis. I am privileged to work with the staffs of the Laboratory Department of Sime Darby Medical Center Subang Jaya, especially Mr Kumar and Prof Dr Rajadurai Pathmanathan. I would also like to mention helpful advice from members of my previous laboratory at Purdue University, USA; Dr Daniel Suter - my previous mentor, Dr Aih-Cheun Lee, as well as Dr Boris Decourt.

This study was funded by CARIF, the Ministry of Health, as well as Universiti Malaya (Peruntukan Penyelidikan Pascasiswazah PS230/2009C).

I would like to reserve a special mention to Prof Dr Teo Soo-Hwang, the Chief Executive of CARIF, as well as my aunt Dr Rohana Ahmad for perhaps the most crucial element of all: for simply keeping on believing in me even when I myself didn't.

I couldn't have done this without any of them, and without many more people who I could not list here.

Nothing is permanent in this wicked world – not even our troubles.

Charlie Chaplin.

Actor, director, screenwriter (1889 – 1977)

TABLE OF CONTENTS

		Page
TITLE		i
ABSTRACT		ii
ACKNOWLEDGEMENTS		iv
TABLE OF CONTENTS		vi
LIST OF FIGURES		xi
LIST OF TABLES		xiii
LIST OF SYMBOLS AND ABBREVIA	TIONS	xiv
CHAPTER		
1 INTRODUCTION		
1.1 General Introduction on Cancer		2
1.2 Nasopharyngeal Carcinoma (NPC	2)	
1.2.1 Background		3
1.2.2 Histopathology		3
1.2.3 Epidemiology		3
1.2.4 Etiological Factors		
1.2.4.1 Genetic		6
1.2.4.2 Diet		6
1.2.4.3 Epstein – Barr Virus		7
1.2.5 Clinical Presentation		8
1.2.6 Treatment		8

	1.3 Current Molecular Understanding of NPC	
	1.3.1 Cytogenetic Studies	9
	1.3.2 Molecular Alterations	
	1.3.2.1 Dysregulation of the Signaling Pathways	
	1.3.2.1.1 The Wnt Pathway	11
	1.3.2.1.2 The EGFR Pathway	12
	1.3.2.2 Overexpression of the DNA Repair Pathway Components	13
	1.3.2.3 Dysregulation of the Cell Cycle Components	14
	1.3.2.4 Dysregulation of Global miRNA Expression Profile	14
	1.3.2.5 Proteomic Studies	16
	1.4 The Four – Jointed Box One (FJX1) Human Gene	
	1.4.1 Background	17
	1.4.2 Subcellular Localization	20
	1.4.3 Molecular Function	20
	1.4.4 Physiological Function	21
	1.4.5 FJX1 in Neoplasia	
	1.4.5.1 Expression	23
	1.4.5.2 FJX1 and 11p13 Chromosome Amplification	
	in Human Cancers	23
	1.5 Hypothesis and Objectives of the Study	24
2	METHODOLOGY	
	2.1 Clinical Cohort and Specimens	27
	2.2 Cell Lines	28

2.3 Cell Culture

	2.3.1	Maintenance of Cell Lines	28
	2.3.2	Trypsinization of Cell Lines	29
	2.3.3	Cryopreservation of Cell Lines	30
2.4	Moleo	cular Biology	
	2.4.1	Total RNA Isolation	30
	2.4.2	First – strand cDNA Synthesis	30
	2.4.3	Real – time Quantitative PCR (qPCR)	31
	2.4.4	Semi – quantitative PCR (semi-qPCR)	33
	2.4.5	Cloning of FJX1	33
2.5	Bioch	emistry	
	2.5.1	Protein Extraction	35
	2.5.2	Protein Concentration Determination	35
	2.5.3	Western Blot	35
	2.5.4	Immunohistochemistry	36
	2.5.5	Immunocytochemistry	37
2.6	In vitr	ro Assays	
	2.6.1	Transient Overexpression of Recombinant FJX:V5 Protein	40
	2.6.2	Transient Knockdown of Endogenous FJX1 Transcript	40
	2.6.3	Proliferation Assay	41
	2.6.4	Transwell Migration Assay	41
	2.6.5	Transwell Invasion Assay	42
	2.6.6	Soft – agar Assay	42

3 RESULTS

3.1 Candidate Gene Selection	45
3.2 Validation of Gene Expression	
3.2.1 Overexpression in Primary NPC Tissue Samples	46
3.2.2 Low Expression in Normal Human Organs	48
3.3 Protein Expression in Primary NPC Tissues	50
3.4 FJX1 Expression in NPC and	
Normal Immortalized Epithelium Cell Lines	53
3.5 FJX1 <i>in vitro</i> studies	
3.5.1 Endogenous FJX1 Knockdown	
3.5.1.1 FJX1 Knockdown in HONE1 Cells	54
3.5.1.2 FJX1 Knockdown in HK1 Cells	55
3.5.2 Recombinant FJX1 Protein Overexpression	57
3.5.3 FJX1 Promoted Cell Proliferation	
3.5.3.1 FJX1 Enhanced Cell Proliferation Possibly Through Regulation	on of Cyclins
D1 and E1	61
3.5.4 Motimycin C Arrested Cell Proliferation Without Altering the Eff	ects of FJX1
Knockdown or Overexpression	
3.5.4.1 FJX1 Did Not Change Cell Migratory Ability Towards FBS	64
3.5.4.2 FJX1 Enhanced Cell Invasion	65
3.5.5 FJX1 Increased Anchorage – independent Cell Growth	66
3.5.6 FJX1 was not involved in Epithelial – to – Mesenchymal Transit	ion and
Cellular Differentiation	67

4 DISCUSSION

RF	EFERENCES	81
5	CONCLUSION	80
	4.4 In vitro Studies of FJX1	76
	4.3 Knockdown and Overexpression of FJX1	74
	4.2 FJX1 Expression in NPC and Normal Organs	73
	4.1 Candidate Gene Selection	72

LIST OF FIGURES

Figure	Description	Page
1.1	NPC incidence in Peninsular Malaysia, 2006	5
1.2	Chromosomal location of human FJX1	18
1.3	Human FJX1 protein	18
1.4	Protein sequence alignment of human and mouse FJX1 and <i>Drosophila</i> Fj	19
3.1	Validation of upregulated expression of candidate genes in primary NPC tissues	47
3.2	Validation of low expression of candidate genes in normal human organs	49
3.3	FJX1 was upregulated at the protein level in NPC	51
3.4	FJX1 expression in NPC cell lines varies	53
3.5	Endogenous FJX1 knockdown in HK1 cells	56
3.6	Overexpression of FJX:V5 in SUNE1 and TWO4 cells as detected by Western	58
3.7	Overexpression of FJX:V5 in SUNE1 and TWO4 cells as detected by immunocytochemistry	59
3.8	FJX1 enhances cell proliferation	60
3.9	Alteration in FJX1 level was accompanied by change in cyclins D1 and E1 transcript	61

Figure	Description	Page
3.10	Mitomycin C treatment did not affect FJX1 knockdown or overexpression, but was effective in restricting cell proliferation	63
3.11	FJX1 did not change migratory ability of cells towards FBS	64
3.12	FJX1 enhances cell invasion	65
3.13	FJX1 facilitates anchorage-independent growth	66
3.14	Change in FJX1 level was not accompanied with change in EMT and differentiation marker levels	68
3.15	Change in FJX1 level was not accompanied with change in localization and staining intensity of EMT markers	69

LIST OF TABLES

Table	Description	Page
2.1	Non-NPC samples used in immunohistochemistry	27
2.2	Cell lines	29
2.3	Primers used in PCR	32
2.4	Antibodies used in Western blotting and immunocytochemistry	38-39
3.1	FJX1 immunohistochemistry analysis	52

LIST OF SYMBOLS AND ABBREVIATIONS

°C	degrees Celcius
μg	microgram
μl	microliter
μΜ	micromolar
bp	base pair
g	force of gravity
g	gram
hr	hour
kb	kilobase pair
kDa	kiloDalton
М	molar
mg	milligram
min	minute (time)
ml	milliliter
mM	millimolar
mm ²	milimeter square
ng	nanogram
rpm	revolution per minute
sec	second (time)
U	enzyme unit
v/v	volume per volume

ADPRT	poly (ADP-ribose) polymerase 1
BART	BamHIA rightward transcripts
BCL-2	B-cell leukemia/lymphoma 2
BLAST	Basic Local Alignment Search Tool
BSA	bovine serum albumin
CapG	capping protein (actin filament), gelsolin-like
CARIF	Cancer Research Initiatives Foundation
CCND1	cyclin D1
CCNE1	cyclin E1
CD200	cluster of differentiation 200
CD44	cluster of differentiation 44
CDK2	cyclin dependent kinase 2
CDK4	cyclin dependent kinase 4
CDKN1B	cyclin-dependent kinase inhibitor 1B
CDKN2A-CDKN2B	cyclin-dependent kinase inhibitor 2A-cyclin-dependent kinase 4
	inhibitor B
cDNA	complementary DNA
CGH	comparative genomic hybridization
CHEK1	CHK1 checkpoint homolog (S. pombe)
CK10	keratin 10
CK5	keratin 5
CLCA2	chloride channel accessory 2

CLDN1	claudin 1
CLIC1	chloride intracellular channel 1
CO_2	carbon dioxide
СТ	cycle threshold
DAB	diamino benzidine
DMSO	dimethyl sulfoxide
DNA	deoxyribonucleic acid
DNA-PKC	deoxyribonucleic acid-protein kinase catalytic polypeptide
dNTP	deoxynucleotide triphosphate
DPX	P-xylylene–A,A'–bispyridinum dibromide
Ds	dachsous
DTT	dithiothreitol
EBER1	Epstein-Barr virus encoded-RNA 1
EBER2	Epstein-Barr virus encoded-RNA 2
EBNA1	Epstein-Barr nuclear antigen
EBV	Epstein–Barr virus
EDTA	ethylenediaminetetraacetic acid
EGF	epidermal growth factor
EGFR	epidermal growth factor receptor
EHS	Engelbreth–Holm-Swarm
EM	extracellular matrix
EMT	epithelial-to-mesenchymal transition
ERCC1	excision repair cross-complementing rodent repair deficiency,
	complementation group 1

Erk	mitogen-activated protein kinase 1
ESI-Q-TOF MS	electrospray ionization-quadrupole time-of-flight MS
EST	expressed sequence tag
EZH2	enhancer of zeste homolog 2 (Drosophila)
FACS	fluorescent activated cell sorter
Fat4	FAT tumor suppressor homolog 4 (Drosophila)
FBS	fetal bovine serum
FFPE	formalin-fixed paraffin embedded
FGFR3	fibroblast growth factor receptor 3
Fj	four-jointed
FJX1	four-jointed box 1
Ft	fat
FZD6	frizzled family receptor 6
FZD7	frizzled family receptor 7
GABBR1	gamma-aminobutyric acid (GABA) B receptor, 1
GAPDH	glyceraldehyde-3-phosphate dehydrogenase
GSK-3beta	glycogen synthase kinase 3 beta
HC1	hydrochloric acid
HDAC1	histone deacetylase 1
HLA	Human Leukocyte Antigen
HMGB1	high-mobility group box 1
HOGG1	8-oxoguanine DNA glycosylase
IMRT	intensity-modulated radiotherapy
IPTG	isopropyl β-D-1-thiogalactopyranoside

ITGA9	integrin alpha-9
JAK/STAT	janus kinase / signal transducer and activator of transcription
KSFM	keratinocyte serum-free medium
LATS2	large tumor suppressor, homolog 2 (Drosophila)
LB	Laura-Bertani
LMP2A	latent membrane protein 2A
LMP2B	latent membrane protein 2B
MDS1-EVI1	ecotropic viral integration site 1
Mek	mitogen-activated protein kinase kinase 1
MgCl ₂	magnesium chloride
МНС	Major Histocompatibility Complex
miRNA	micro RNA
mRNA	messenger RNA
MS	mass spectrometry
MTC	Multiple Tissue cDNA
Myc	myelocytomatosis viral oncogene homolog (avian)
Na_3VO_4	Sodium orthovanadate
NaCl	Sodium chloride
NaOH	Sodium hydroxide
NP-40	nonyl phenoxypolyethoxylethanol
NPC	nasopharyngeal carcinoma
P53	protein 53
PAGE	polyacrylamide gel
PBL	peripheral blood leukocyte

PBS	phosphate buffer saline
PBST	phosphate buffer saline Tween-20
PCR	polymerase chain reaction
pEGFR	phosphorylated EGFR
pERK	phosphorylated ERK
PRKDC	protein kinase, DNA-activated, catalytic polypeptide
qPCR	quantitative real-time PCR
RAD23A	UV excision repair protein RAD23 homolog A
RAD23B	UV excision repair protein RAD23 homolog B
Raf	v-raf murine leukemia viral oncogene homolog
RALA	v-ral simian leukemia viral oncogene homolog A (ras related)
Ras	RAS p21 protein activator (GTPase activating protein) 1
RASSF1A	ras association domain-containing protein 1A
RASSF2	ras association domain-containing protein 2
RIPA	radioimmuno precipitation assay
RKIP	phosphatidylethanolamine binding protein 1
RNA	ribonucleic acid
RNAi	RNA interference
RPMI	Roswell Park Memorial Institute medium
RQ	relative quantification
S100A9	S100 calcium binding protein A9
SCCA1	serpin peptidase inhibitor, clade B (ovalbumin), member 4
SDS	sodium dodecyl sulphate

SELDI-TOF MS	surface-enhanced laser desorption/ionization time-of-flight mass
	spectrometry
semi-qPCR	semi-quantitative PCR
siRNA	small interfering RNA
STR	single tandem repeat
TNFRSF19	tumor necrosis factor receptor superfamily, member 19
Tris	tris (hydroxymethyl) aminomethane
USA	the United States of America
UTR	untranslated region
UV	ultra violet
VEGF	vascular endothelial growth factor
WHO	World Health Organization
WIF-1	wnt inhibitory factor 1
WNT5A	wingless-type MMTV integration site family, member 5A
X-Gal	bromo-chloro-indolyl-galactopyranoside
XPC	xeroderma pigmentosum, complementation group C
XPD	excision repair cross-complementing rodent repair deficiency,
	complementation group 2
XRCC1	X-ray repair complementing defective repair in Chinese hamster cells
	1
YAP	yes-associated protein 1
ZO-1	tight junction protein 1 (zona occludens 1)