

ADAPTIVE DIFFERENTIAL EVOLUTION ALGORITHM WITH

FITNESS BASED SELECTION OF PARAMETERS AND

MUTATION STRATEGIES

RAWAA DAWOUD HASSAN AL-DABBAGH

THESIS SUBMITTED IN FULFILMENT OF THE

REQUIREMENTS FOR THE DEGREE OF DOCTOR

OF PHILOSOPHY

FACULTY OF COMPUTER SCIENCE AND

INFORMATION TECHNOLOGY

UNIVERSITY OF MALAYA

KUALA LUMPUR

2015

iii

ABSTRACT

 Differential evolution (DE) is a simple yet powerful evolutionary algorithm (EA). It

has demonstrated good convergence, and its principles are easy to understand. DE has

effectively solved various global optimization problems, including benchmark

functions. These problems have shown different challenging characteristics such as non-

convexity, non-linearity, and/or multi-modality which became difficult for traditional

non-linear programming to deal with.

 The performance of DE algorithm depends heavily on the selected mutation strategy

and its associated control parameters. The sensitivity of the DE algorithm to its mutation

strategy and to the corresponding control parameters can significantly deteriorate its

performance if the strategy is improperly selected. Hence, the process of choosing a

suitable DE strategy and setting its control parameters is difficult and requires much

user experience. In this thesis, the fundamental contributions include the analysis,

design, and evaluation of the adaptive DE algorithms.

 Firstly, a comprehensive procedural analysis is conducted to investigate the various

adaptive schemes that have been utilized to automatically control the DE parameters

and/or its mutation strategies. In the same analysis, two taxonomies are proposed for the

purpose. The first one is proposed to eliminate any ambiguity related to classify any

adaptive EA. The new classification comprises three levels of categories instead of two

regarding the parameter control type (deterministic, adaptive, self-adaptive) and the

evidence (absolute, relative) used for determining the change of the parameter. The

second taxonomy is a new taxonomy proposed to classify the adaptive DE algorithms in

particular into two categories (DE with adaptive parameters and DE with adaptive

parameters and strategies) considering the adaptive components used in this algorithm.

iv

 Secondly, a new DE algorithm (ARDE-SPX) is introduced that automatically adapts a

repository of DE strategies and parameters control schemes to avoid the problems of

stagnation and make DE respond to a wide range of function characteristics at different

stages of evolutionary search. ARDE algorithm makes use of JADE strategy and the

MDE_pBX parameters adaptive schemes as frameworks. Then a new adaptive

procedure called adaptive repository (𝐴𝑅) is developed to select the appropriate

combinations of the JADE strategies and the parameter control schemes of the

MDE_pBX to generate the next population based on their fitness values. The adaptive

repository mechanism is a general scheme and can be embedded with high flexibility

into any population-based evolutionary algorithm. Moreover, this work is extended to

integrate the SPX crossover operator with the adaptive ARDE algorithm in a new way

of implementation in order to make the adaptive ARDE algorithm satisfy both the

global and local search requirements.

 Thirdly, experimental results are presented to confirm the reliability of the proposed

ARDE-SPX over several existing adaptive DE variants. These comparisons are

conducted in terms of the solution precision, successful rate and robustness over thirty-

three standard and transformed benchmark functions. ARDE is also used to develop a

new dynamic parameter identification framework to estimate the barycentric parameters

of the CRS A456 robot manipulator. The simulation results show the effectiveness of

the ARDE method over other conventional techniques, transcending the limits of the

existing state-of-the-art algorithms in estimating the parameters of robot.

v

ABSTRAK

 Evolusi Pengkamiran (DE) adalah satu algoritma evolusi (EA) mudah lagi berkuasa.

Ia berkesan menghasilkan keputusan yang hebat dalam menyelesaikan pelbagai masalah

pengoptimuman global dari pelbagai disiplin seperti kejuruteraan dan sains. Masalah-

masalah ini telah menunjukkan ciri-ciri cabaran yang berbeza seperti bukan

kecembungan, bukan-kelinearan, dan / atau multi-modaliti yang menjadi sukar bagi

pengaturcaraan tidak linear tradisional untuk ditangani. DE telah menunjukkan

penumpuan yang baik, dan prinsipnya mudah difahami. Oleh itu, popularitinya telah

beransur-ansur meningkat dan ia telah digunakan dalam banyak aplikasi dunia sebenar.

 Walaubagaimanapun, prestasi algoritma DE adalah peka kepada jenis strategi yang

dipilih dan kawalan parameter yang berkaitan kerana kelakuan yang berbeza bagi

pelbagai masalah di pelbagai peringkat proses evolusi. Kepekaan algoritma DE terhadap

strateginya dan kawalan parameter boleh membawa kepada kemerosotan prestasi yang

ketara jika strategi tidak dipilih secara wajar. Oleh itu, proses pemilihan strategi DE

yang sesuai dan menetapkan kawalan parameter adalah sukar dan memerlukan

pengalaman pengguna yang lebih. Dalam tesis ini, sumbangan asas termasuk analisis,

reka bentuk, dan penilaian penyesuaian DE algoritma seperti berikut,

 Pertama, analisis prosedur yang menyeluruh telah dijalankan untuk menyiasat

pelbagai skim yang sesuai yang telah digunakan untuk mengawal nilai parameter DE

dan / atau strategi mutasinya secara automatik. Dalam analisis yang sama, dua

taksonomi telah dicadangkan untuk tujuan itu. Yang pertama adalah taksonomi lanjutan

kepada klasifikasi penetapan parameter EA yang umum. Adalah dicadangkan untuk

menghapuskan apa-apa kekaburan berkaitan dengan mengkelaskan mana-mana EA

penyesuaian. Dengan itu, klasifikasi baru adalah tiga tahap kategori dan bukannya dua

dengan mengambilkira jenis kawalan parameter (berketentuan, penyesuaian,

vi

penyesuaian diri) dan bukti (mutlak, relatif) yang digunakan untuk menentukan

perubahan parameter. Taksonomi kedua adalah satu taksonomi baru yang dicadangkan

untuk mengklasifikasikan algoritma DE penyesuaian khususnya kepada dua kategori

(DE dengan parameter penyesuaian; DE dengan parameter penyesuaian dan strategi)

dengan mengambil kira komponen penyesuaian yang digunakan dalam algoritma ini.

 Kedua, algoritma DE baru (ARDE-SPX) diperkenalkan yang menyesuaikan diri

secara automatik repositori strategi DE dan skim kawalan parameter untuk mengelakkan

masalah genangan dan membuat DE respons kepada pelbagai ciri-ciri fungsi di pelbagai

peringkat carian evolusi. Algoritma ARDE menggunakan strategi JADE dan skim

penyesuaian parameter MDE_pBX sebagai rangka kerja. Kemudian, prosedur

penyesuaian baru yang dikenali sebagai repositori penyesuaian (AR) dibangunkan untuk

memilih kombinasi yang sesuai bagi strategi JADE dan skim kawalan parameter

MDE_pBX bagi menjana penduduk akan datang berdasarkan kepada nilai-nilai

kecergasan mereka. Mekanisme repositori penyesuaian adalah skim umum dan boleh

digunakan dengan fleksibiliti yang tinggi di dalam mana-mana algoritma evolusi

berasaskan populasi. Selain itu, kerja ini telah dilanjutkan untuk mengintegrasikan

pengendali crossover SPX dengan algoritma ARDE penyesuaian dengan cara

pelaksanaan yang baru untuk membuat algoritma ARDE penyesuaian memuaskan

kedua-dua keperluan carian global dan tempatan.

 Ketiga, keputusan eksperimen dibentangkan untuk mengesahkan kebolehpercayaan

ARDE-SPX yang dicadangkan terhadap beberapa varian DE penyesuaian yang sedia.

Perbandingan ini dijalankan dari segi ketepatan penyelesaian, kadar kejayaan dan

kemantapan terhadap lebih 33 piawaian dan fungsi penanda aras berubah. ARDE juga

telah digunakan untuk membangunkan satu rangka kerja pengenalan parameter dinamik

yang baru untuk menganggarkan parameter barycentric daripada pengoperasi robot CRS

A456. Keputusan simulasi menunjukkan kaedah ARDE adalah lebih berkesan

vii

bernbanding teknik konvensional yang lain, melampaui batas algoritma canggih sedia

ada dalam menyelesaikan masalah robot.

viii

DEDICATION

I dedicate this thesis to my parents and my brothers for their endless love, support and

encouragement throughout my life …

ix

ACKNOWLEDGMENTS

To my Lord Allah Almighty, I am thankful for the blessings and virtues, and for

reconcile, strength, patience, courage, and determination he gave me to complete this

work, Alhamdulillah. This work would not be accomplished without the help of so

many people. In the following lines is a brief account of some but not all who deserve

my thanks.

Foremost, I would like to express my sincere gratitude to my supervisor Prof. Dr. Mohd

Sapiyan Baba for the continuous support of my PhD study and research, for his

patience, motivation, enthusiasm, and immense knowledge. His guidance helped me in

all the time of research and writing of this thesis. I could not have imagined having a

better advisor and mentor for my PhD study.

Besides my supervisor, I would like to thank the rest of my thesis supervisory

committee: Dr. Norisma Idris and Prof. Dr. Saad Mekhilef for their support,

encouragement and insightful comments.

My sincere thanks also goes to Dr. Azeddien Kinsheel from University of Tripoli, Prof.

Dr. Bara’a A. Attea from University of Baghdad and Dr. János Botzheim from Tokyo

Metropolitan University for offering me valuable information which helped me to

understand many things related to my work and leading me working on diverse exciting

projects.

My warmest gratitude goes to all my family members, especially my mother and my

father who always believed in me, gave me all the possible support, and being patient

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCEQFjAA&url=http%3A%2F%2Fwww.researchgate.net%2Fprofile%2FJanos_Botzheim&ei=bxWRVOKkMoe8uAT8lIGADg&usg=AFQjCNHmccIUvSQ9h0hWAqNf3--0zp1gzg&sig2=Ydo-Z2vRSUL0WFn-SeGolg&bvm=bv.82001339,d.c2E

x

with me for years. I would like to thank my brother Mohanad for his endless support in

so many aspects, by giving me help throughout my research, and, of course, sharing my

happiness and sorrow by being my wonderful home mate for years. I am also thankful

for my second brother Zaid for his support and concern about my study.

I must extend my sincere thanks to the University of Baghdad and the Ministry of

Higher Education in Iraq for their support by sponsoring me for the three years and half

of my study. None the less, my gratitude to the Malaysian people in general for their

perfect hospitality in their green land during my study.

I am deeply thankful for every wonderful friend I have in my country for their endless

friendship and support …

xi

TABLE OF CONTENTS

ORIGINAL LITERARY WORK DECLARATION ...ii

ABSTRACT ... iii

ABSTRAK ... v

DEDICATION ... viii

ACKNOWLEDGEMENTS ... ix

TABLE OF CONTENTS ... xi

LIST OF TABLES ... xvi

LIST OF FIGURES .. xviii

LIST OF ALGORITHMS .. xx

LIST OF SYMBOLS AND ABBREVIATIONS ... xxi

LIST OF APPENDICES ... xxiv

CHAPTER 1: INTRODUCTION .. 1

1.1 Research Background ... 1

1.2 Research Motivation .. 3

1.3 Problem Statement ... 4

1.4 Research Objectives ... 5

1.5 Research Questions .. 6

1.6 Scope of Research .. 7

1.7 Research Significance .. 8

1.8 Research Processes ... 9

1.9 Outline of the Thesis .. 12

xii

CHAPTER 2: DIFFERENTIAL EVOLUTION: A REVIEW 4

2.1 Introduction .. 14

 2.1.1 Differential Evolution: Definition .. 16

2.2 Why Differential Evolution? .. 18

2.3 Differential Evolution: Basic Concept and Variants .. 21

2.3.1 Mutation Operator ... 24

2.3.2 Crossover Operator .. 27

2.3.3 Selection Operator ... 29

2.4 Parameter Settings of Differential Evolution ... 31

2.5 Unconstraint Optimization Problems .. 32

2.6 No-Free Lunch Theorem and Domain Knowledge Utilization 35

2.7 Summary .. 38

CHAPTER 3: ADAPTIVE DIFFERENTIAL EVOLUTION: TAXONOMY

AND ANALYSIS ..1

3.1 Introduction .. 39

3.2 Evolutionary Algorithms Parameter Settings: Extended Taxonomy 41

3.3 Differential Evolution Parameters Tuning ... 45

3.4 Adaptive Differential Evolution: Procedural Analysis and Comparison 49

 3.4.1 DE with Adaptive Parameters and Single Strategy 53

 3.4.1.1 Adaptive DE with Single Standard Strategy 53

 3.4.1.2 Adaptive DE with Single Advanced Strategy 54

3.4.2 DE with Adaptive Parameters and Multiple Strategies 65

xiii

 3.4.2.1 Adaptive DE with Multiple Standard Strategies 66

 3.4.2.2 Adaptive DE with Multiple Advanced Strategies 69

3.4.3 Adaptive DE Comparisons .. 71

 3.4.3.1 Adaptive DE Conceptual Similarities and Differences 72

 3.4.3.2 Adaptive DE Strengthens and Drawbacks 73

 3.4.3.3 Discussion and Conclusion .. 80

3.5 Summary .. 84

CHAPTER 4: DIFFERENTIAL EVOLUTION WITH ADAPTIVE

REPOSITORY OF STRATEGIES AND PARAMETER CONTROL

SCHEMES INTEGRATED WITH LOCAL SEARCH METHOD ….. 4

4.1 Introduction .. 85

4.2 General Steps to an Adaptive EA ... 85

4.3 Adaptive Repository of DE Strategies and Parameters Control Schemes

Integrated with SPX-Crossover (ARDE-SPX) .. 88

4.3.1 ARDE-SPX: The Repository of DE Strategies ... 89

4.3.2 ARDE-SPX: The Repository of Parameters Control Schemes 91

4.3.3 ARDE-SPX: Adaptive Repository with Fitness Based Selection 95

4.3.4 ARDE-SPX: The Local Search of Hill-Climbing Crossover (SPX) 102

 4.3.4.1 SPX: Hill-Climbing Simplex Crossover 103

 4.3.4.2 SPX Crossover with Group Based Replacement 105

4.3.5 ARDE-SPX: Overall Algorithm Implementation 106

4.3.6 ARDE-SPX: Algorithm Complexity Analysis .. 107

xiv

4.3.7 ARDE-SPX: Comparison with Other Adaptive DE Variants 109

4.4 Summary .. 111

CHAPTER 5: RESULTS AND DISCUSSION .. 4

5.1 Introduction .. 112

5.2 Experimental Setup .. 112

5.2.1 Unconstrained Benchmark Functions .. 112

5.2.2 Algorithms for Comparison ... 118

5.2.3 Comparison Strategies and Metrics .. 120

5.3 Experimental Results and Discussions ... 123

5.3.1 Comparison of multiple DE variants based parameter tuning 123

5.3.2 Comparison of multiple adaptive DE variants.. 129

 5.3.2.1 Final solution precision (Mean ± Std) 129

 5.3.2.2 Convergence speed and robustness (FESS, Sr) 138

 5.3.2.3 Convergence plot ... 141

5.4 Summary .. 154

CHAPTER 6: SYSTEM IDENTIFICATION AND CONTROL OF ROBOT

MANIPULATOR BASED ON ARDE ALGORITHM ... 4

6.1 Introduction .. 155

6.2 Research Background ... 155

6.3 Dynamic Model of the CRS A456 Robot Manipulator 158

6.4 System Implementation .. 161

6.5 Summary .. 166

xv

CHAPTER 7: CONCLUSION AND FUTURE WORK ... 4

7.1 Introduction .. 167

7.2 Research Conclusions .. 167

7.3 Research Future Work .. 170

REFERENCES .. 173

APPENDIX A .. 186

APPENDIX B .. 192

APPENDIX C .. 194

LIST OF PUBLICATIONS AND PAPERS PRESENTED 198

xvi

LIST OF TABLES

Table 2.1 Historical elucidation of the Differential Evolution algorithm

invention and development

22

Table 2.2 Problem types

32

Table 2.3 Definitions and mathematical formulations of different

terminologies related to optimization

34

Table 3.1 Table of DE algorithm control parameters with their estimated

corresponding setting guidelines

50

Table 3.2 A summary of the type of mutation strategies used in the ten

adaptive DE algorithms

74

Table 3.3 This table encompasses taxonomy of the adaptation scheme

used to update the main control parameters in the ten adaptive

DE algorithms

75

Table 3.4 DE algorithms points of strengthens based on mutation

strategy

76

Table 3.5 DE algorithms drawbacks based on mutation strategy

77

Table 3.6 DE algorithms points of strengthens based on parameter

control schemes

78

Table 3.7 DE algorithms drawbacks based on parameter control schemes

79

Table 4.1 The 𝑥2 example of fitness tournament selection detailed steps

97

Table 4.2 The FTS method used to assign the DE strategies and

parameter control schemes to the successful individuals

99

Table 5.1 Problem dimension, global optimum parameters set, global

optimum value, search range, and initialization range of thirty-

three benchmark functions

116

Table 5.2

The F and CR values tuned for each pair of DE mutation

variant-benchmark functions

126

xvii

Table 5.3 Mean and standard deviation of 30-dimensional and low

dimensional problems achieved for multiple DE mutation

strategies averaged over 30-independent runs

127

Table 5.4 Mean and standard deviation of 30-dimensional problems,

averaged over 50-independent runs for the high dimensional

test problems 𝑓1 − 𝑓7 ; 𝑓9 − 𝑓18; 𝐹2,𝐹6, 𝐹8 − 𝐹10

132

Table 5.5 Mean and standard deviation of 100-dimensional problems,

averaged over 50 independent runs for the high dimensional

test problems 𝑓1 − 𝑓7 ; 𝑓9 − 𝑓18; 𝐹2,𝐹6, 𝐹8 − 𝐹10

135

Table 5.6 Mean and standard deviation of the low dimensional problems

𝑓8 and 𝑓19 − 𝑓28, averaged over 50 independent runs

137

Table 5.7 Mean of the NFEs required to obtain the accuracy level

Ter_Err and success rate Sr for 50-independent runs of the 30-

dimentional problems 𝑓1 − 𝑓7 ; 𝑓9 − 𝑓18; 𝐹2,𝐹6, 𝐹8 − 𝐹10

139

Table 5.8 Mean of the NFEs required to obtain the accuracy level

Ter_Err and success rate Sr for 50-independent runs of the 100-

dimentional problems 𝑓1 − 𝑓7 ; 𝑓9 − 𝑓18; 𝐹2,𝐹6, 𝐹8 − 𝐹10

140

Table 6.1 Barycentric parameters estimation of the single joint CRS

A465 robot arm

164

Table 6.2 Mean square error and standard deviation of the estimation

methods for the estimated model averaged over 30-

independent runs

164

xviii

LIST OF FIGURES

Figure 1.1 Combination of Differential Evolution state-of-the-art work

8

Figure 1.2 The most significant applications of Differential Evolution

algorithm

9

Figure 1.3 Research processes of developing and evaluating a new

adaptive DE algorithm. The parts of contributions have been

highlighted

11

Figure 2.1 The typical EA cycle

15

Figure 2.2 Differential Evolution research trend (based on information

extracted from Web of Science database site)

20

Figure 2.3 A generate-and-test DE flowchart loop

30

Figure 2.4 Function with multi global and local maximum and minimum

points

35

Figure 2.5 General framework of a problem solver

37

Figure 2.6 General classification of domain knowledge methods

37

Figure 3.1 Extended taxonomy of parameters settings in EAs

43

Figure 3.2 The evolution trend of the population variance of a single

control parameter 𝐹 for different values

47

Figure 3.3 Correspondence’s tendencies between the mutation

probability, 𝑃𝑚 and the crossover probability, 𝐶𝑅 for binomial

and exponential crossover. (a) For 30 dimensions problems. (b)

For 100 dimensions problems

48

Figure 3.4 Simple classification illustrates the position of each adaptive

DE variant with respect to the type of adaptive procedure it

applies

51

Figure 3.5 An estimated rank of the adaptive DE algorithms based on

their recorded experimental results

83

Figure 4.1

Comparison between Cauchy and Gaussian probability density

functions

93

xix

Figure 4.2 The complete structure of the adaptive repository, 𝐴𝑅 in the

ARDE algorithm

101

Figure 4.3 SPX-2-3-𝜀

104

Figure 5.1 General classification of twenty eight standard benchmark

functions

113

Figure 5.2 A snapshot of the Microsoft Office Excel package of t-test

122

Figure 5.3 Convergence performance of the algorithms for nine 30-

dimentional functions. (a) f1. (b) f2. (c) f6. (d) f9. (e) f12. (f) f15.

(g) f18. (h) F2. (i) F9.

146

Figure 5.4 Convergence performance of the algorithms for nine 100-

dimentional functions. (a) f1. (b) f2. (c) f6. (d) f9. (e) f12. (f) f15.

(g) f18. (h) F2. (i) F9.

151

Figure 5.5 Adaptation characteristics of 𝐹𝑚 and 𝐶𝑅𝑚 on the selected

functions. (a) 𝑓1(𝐷 = 30). (b) 𝑓1 (𝐷 = 100). (c) 𝑓9 (𝐷 = 30).

(d) 𝑓9 (𝐷 = 100)

153

Figure 6.1 Structure of a single robotic cell for robot assisted orthopaedic

surgery

160

Figure 6.2 Coordinate frame assignment of single joint CRS A465

161

Figure 6.3 The behavior of the F and CR values in ARDE algorithm

during 200 generations

165

Figure 6.4 Measured torque compared with estimated torque using

different methods

166

xx

LIST OF ALGORITHMS

Algorithm 2.1 General scheme of an Evolutionary Algorithm pseudo-code

17

Algorithm 2.2 General pseudo-code fashion of DE algorithm

29

Algorithm 4.1 DE/current-to-pBest/1 with archive strategy

90

Algorithm 4.2 DE/rand-to-pBest/1 with archive strategy

90

Algorithm 4.3 Update the value of 𝐹𝑚 scheme

94

Algorithm 4.4 Update the value of 𝐶𝑅𝑚 scheme

95

Algorithm 4.5 Generate 𝐹 value scheme

95

Algorithm 4.6 Generate 𝐶𝑅 value scheme

95

Algorithm 4.7 The standard FTS algorithm

97

Algorithm 4.8 The standard SPX crossover

105

Algorithm 4.9 The ARDE-SPX algorithm

106

xxi

LIST OF SYMBOLS AND ABBREVIATIONS

CI Computational Intelligence

EA Evolutionary Algorithm

GA Genetic Algorithm

PSO Particle Swarm Optimization

ES Evolution Strategy

EP Evolutionary Programming

DE Differential Evolution

ARDE-SPX Adaptive Repository Differential Evolution Integrated with SPX

Crossover

𝑃 Population

𝑡 Index of the current iteration (generation)

𝑇 Total number of iterations (generations)

𝑋 Individual (Vector, Chromosome)

𝑥𝑖 The individual’s variables in global optimization problem,

𝑖 = 1,2, … , 𝑁𝑝

𝑁𝑝 Population size

𝑋𝑚𝑖𝑛 Lower bound of the variable’s domain

𝑋𝑚𝑎𝑥 Upper bound of the variable’s domain

𝑓 Fitness function

𝑟 Crossover operator

𝑝𝑐 Recombination probability

𝑚 Mutation operator

𝑝𝑚 Mutation probability

𝑋∗ Best solution that has the optimal fitness value

𝕏 Free search space

𝕊 Solution search space

𝜖 Precision factor

𝜏 Stopping condition criteria

𝐹 DE mutation scaling factor

𝐶𝑅 DE crossover rate

𝐷 The individual’s dimension (Problem dimension)

𝑟1, 𝑟2, and 𝑟3 Mutually different individuals

𝛼𝑖,𝑗 Uniform random number generator within the range [0,1)

𝑉𝑖 Donor vector

𝐷𝐸/𝑥/𝑦/𝑧 DE nomenclature scheme reference

bin Binomial crossover in DE

exp Exponential crossover in DE

 𝑈𝑖 Trial vector

𝛽𝑖,𝑗 Uniform random number within the range [0,1]

𝑟𝑎𝑛𝑑 (0,1) Uniform random number generator within the range [0,1]

𝑟𝑎𝑛𝑑𝑛 (𝑚, 𝑑) Normal random number distribution generator with mean 𝑚 and

standard deviation 𝑑.

xxii

𝑟𝑎𝑛𝑑𝑐 (𝑚, 𝑑) Cauchy random number distribution generator with mean 𝑚 and

standard deviation 𝑑.

𝜂 Mutation scale factor in DESAP

𝛿 Crossover rate in DESAP

𝜋 Population size in DESAP

𝐴 The archive in the JADE

𝑥𝑏𝑒𝑠𝑡
𝑝 Random individual from the 𝑝% good solutions in the current

population in JADE, and 𝑝 ∈ (0, 1]

�̃�𝑟2 Random individual selected from 𝐴 ∪ 𝑃

𝜇𝐹 Mean parameter of mutation probability distribution in JADE

𝜇𝐶𝑅 Mean parameter of crossover probability distribution in JADE

𝑆𝐹 Set of all the successful mutation probabilities 𝐹𝑖 in generation

𝑡 in JADE

𝑆𝐶𝑅 Set of all the successful crossover probabilities 𝐶𝑅𝑖 in generation

𝑡 in JADE

𝑚𝑒𝑎𝑛𝐿(∙) The Lehmer mean

𝑚𝑒𝑎𝑛𝐴(∙) the usual arithmetic mean

𝐿𝑅, 𝑐 Learning rate

𝑥𝑔𝑟𝑏𝑒𝑠𝑡 The best individual from the 𝑞% group of individuals in

MDE_pBX

𝐹𝑚 Mean parameter of mutation probability distribution in

MDE_pBX

𝐶𝑅𝑚 Mean parameter of crossover probability distribution in

MDE_pBX

𝑚𝑒𝑎𝑛𝑝𝑜𝑤 (∙) Mean power

𝐹𝑠𝑢𝑐𝑐𝑒𝑠𝑠 Set of all the successful mutation probabilities 𝐹𝑖 at generation 𝑡

in MDE_pBX

𝐶𝑅𝑠𝑢𝑐𝑐𝑒𝑠𝑠 Set of all the successful crossover probabilities 𝐶𝑅𝑖 at generation 𝑡

in MDE_pBX

𝑤𝐹 Weight factor of 𝐹𝑚

𝑤𝐶𝑅 Weight factor of 𝐶𝑅𝑚

𝑊, 𝐾, and 𝐹 Mutation scalar factors in p-ADE

𝑥𝑏𝑒𝑠𝑡 The best individual in the current generation 𝑡 in p-ADE

𝑥𝑝𝑏𝑒𝑠𝑡 The best previous individual picked up from the previous

generation in p-ADE

𝐸(∙) Second moment value

𝑝𝑘 The probability of applying each DE strategy in SaDE

𝑛𝑠𝑘 The successful memory in SaDE

𝑛𝑓𝑘 The failure memory in SaDE

𝐶𝑅𝑠𝑢𝑐 Set of all the successful crossover probabilities 𝐶𝑅𝑖 in SaDE

𝜂𝑖 Strategy parameter control variable in SaM within the range [0,1)

𝑆𝑖 The selected DE strategy in SaM

𝜇𝑠 Mean parameter of strategy probability distribution in SaM

𝐻𝑠 Set of all successful DE strategy parameters at generation𝑡 in SaM

xxiii

FTS Fitness Tournament Selection

𝑆𝑝 Selection probability in FTS

 𝑇𝑠 Tournament size in FTS

AR Adaptive Repository in ARDE

𝑐𝑒𝑙𝑙𝑖 The cell index in AR

𝑛𝑓𝑐𝑖 Total number of fitness values in cell 𝑖

SPX-n-m-𝜀 The Simplex Crossover

n The dimension of the search space in SPX

m The number of parents in SPX

𝜀 The expanding rate in SPX

𝑂 The centroid of the 𝑚 parents in SPX

𝐶 The descent solution in SPX

Ter_Err Termination Error

MAX_FEs Maximum Number of Fitness Evaluations

std Standard Deviation

Sr Success rate

FESS Average number of function evaluations over successful runs

𝜏𝑖 The torque acting on joint 𝑖

�̂�𝑖 The estimated torque acting on joint 𝑖

𝑞, �̇�, �̈� The position, velocity and acceleration of robot joints

χ The robot model parameters

𝑀𝑆𝐸 The mean square error

OLS Ordinary Least Square method

xxiv

LIST OF APPENDICES

APPENDIX A: STANDARD BENCHMARK FUNCTIONS 186

APPENDIX B: TRANSFORMED BENCHMARK FUNCTIONS 192

APPENDIX C: STANDARD DE/RAND/1/BIN DELPHI 7 SOURCE CODE 194

1

CHAPTER 1

INTRODUCTION

1.1 Research Background

 Many applications (or global optimization problems), including benchmark

problems, have been proliferated in diverse disciplines, such as engineering, science,

and medicine. The process of solving such problems has yielded new practical solvers,

known as computational intelligence (CI), which are mainly inspired by biological

processes such as artificial neural networks and evolutionary computations. These

solvers determine the most suitable solution for a certain feasible region when they are

applied to different problems. A prominent example of a CI method is the evolutionary

algorithm (EA) (Bongard, 2009; Brownlee, 2011; Kephart, 2011), which is a

population-based optimizer whose mechanisms are inspired by biological evolutionary

processes such as mutation, crossover, and survival selection. EAs have many dialects,

including genetic algorithm (GA) (Holland, 1992) , particle swarm optimization (PSO)

(Kennedy & Eberhart, 1995), and differential evolution (DE) (Storn & Price, 1997).

They are all derivate-free methods and require only information regarding the objective

function itself, without auxiliary properties (Eiben & Smith, 2003). EAs have

successfully solved many numerical and combinatorial optimization problems (Blum &

Roli, 2003; Niu & Xu, 2014).

 DE is a simple yet powerful evolutionary algorithm (Storn & Price, 1997). It has

effectively solved various global optimization problems, including benchmark

functions. Moreover, DE has demonstrated good convergence, and its principles are

easy to understand. Hence, its popularity has gradually increased and it has been used in

many real-world applications (Chakraborty, Abbott, & Das, 2012; Dragoi, Curteanu,

Galaction, & Cascaval, 2013).

2

Current studies on EA and its dialects mainly concentrates on three aspects (Wang,

2011):

 EAs design: it refers to the process of balancing the exploration and exploitation

capabilities of the algorithm. This process is deemed to be a key factor to the

performance of the algorithm. Exploration indicates that an algorithm should be

capable of probing extensively into search regions. This capability is closely

related to the robustness of the algorithm. By contrast, exploitation focuses the

search on the neighborhoods of the current solutions. It directly affects the

convergence speed.

 EAs analysis: The global convergence properties and the time complexity of

EAs have been actively researched through theoretical analysis (He & Yao,

2002).

 EAs application: EAs have been widely applied to various fields, such as project

scheduling, control system design, task assignment, antenna array optimization,

and power system optimization.

 The current study considers EAs design. In particular, it examines the implementation

of adaptive EAs. This type of EAs, if well designed, can enhance the robustness and

convergence performance of the algorithm by dynamically updating the EA parameters

for different objective function landscapes during evolution. DE is a representative EA

and is very sensitive to its parameter settings; thus, this study aims to investigate these

settings with the diverse versions of adaptive DE algorithms. Then, a new adaptive DE

algorithm will be designed. EAs application is also considered. Specifically, the new

adaptive DE is applied to estimate the parameters of a robot manipulator.

3

1.2 Research Motivation

 The use of hand-tuning is more difficult than expected, as is the preliminary testing

of the parameters of any EA, including DE. Given a specific task, one may have to

spend much time attempting to fine-tune corresponding parameters. In addition, some

objective functions are highly sensitive to the settings algorithmic parameters. This

dilemma motivates many researchers to either limit these parameters or to develop a

new algorithm. In the new algorithm, control parameters are adapted by employing an

adaptive/self-adaptive procedure. These automatic and dynamic adaptive mechanisms

address the problems stemming from inappropriate parameter setting and may facilitate

the desired increase in convergence rate.

 Efficient recently developed adaptive DE algorithms have efficiently addressed

various benchmark problems with different characteristics and real-world applications.

However, other major issues in adaptive DE must be addressed to test the algorithm

comprehensively for users in view of future problem optimization. One of these issues

involves the adaptation of various DE mutation strategies through evolution in addition

to its control parameters. This trend in the theoretical insight into adaptive DE is highly

favorable and remains a progressive research area, thus motivating us to contribute a

new adaptive DE algorithm whose performance is competitive with that of other state-

of-the-art adaptive DE algorithms, as discussed in Chapter 4.

 Moreover, few review studies have captured the overall performance of adaptive DE

thus far. Das and Suganthan (2011) conducted a comprehensive survey that addresses

almost all of the issues in current research on DE. However, DE parameters control is

highlighted only in a short section. This research follows the review conducted by Neri

and Tirronen (2010) which presents DE and its most recent advances in a classification

format. Detailed experiments have been conducted according to a large set of various

benchmark problems to test the overall performance of these algorithmic classes.

4

Selected adaptive DE variants were included and then discussed under this

classification. Recently, Chiang, Chen, and Lin (2013) published a new taxonomy on

DE parameters control mechanisms based on the type of parameter values, the number

of parameter values, and the information used to adjust the parameter values. However,

the review articles that address DE parameters control are rare and out-of-date. This

drawback has motivated us to contribute the comprehensive review presented in

Chapter 3 to examine some of the major aspects related to DE parameter setting.

1.3 Problem Statement

 Unlike other EA dialects, the DE algorithm tends to suffer from stagnation rather

than premature convergence (Lampinen & Zelinka, 2000). In DE stagnation, the

algorithm may occasionally stop approaching the global minimum even if the

population has not converged to local minimum or any other point. The population

remains diverse, and new individuals may still enter the population. Nonetheless, the

algorithm does not search for better solutions. It may converge but it is unlikely to do

so.

 Recent studies such as (Mallipeddi, Suganthan, Pan, & Tasgetiren, 2011; Qin, Huang,

& Suganthan, 2009) have shown that the effectiveness, efficiency, and robustness of the

DE algorithm depends heavily on the selected mutation strategy and its associated

control parameters. The sensitivity of the DE algorithm to its mutation strategy and to

the corresponding control parameters can significantly deteriorate its performance if the

strategy is improperly selected. Hence, the process of choosing a suitable DE strategy

and setting its control parameters is difficult and requires much user experience. These

studies have also indicated that the use of different DE mutation strategies with various

control parameter settings can be appropriate during the evolution and can alleviate the

decline in DE performance. However, these adaptive DE algorithms often lose their

5

efficiency when they are applied to solve complex problems with high dimensions given

the distinct characteristics of such algorithms.

 Additionally, some problems require different parameter settings at different stages of

the evolution. These optimization problems vary in terms of complexity, as follows:

 Some problems require an algorithm with high exploration capability when the

solution space increases exponentially with the problem dimension.

 Problem characteristics may change with the increase in the problem dimension;

for instance, unimodal problems may become multimodal ones with high

dimension.

 Therefore, in order to address the aforementioned complex problem instances, in this

study an improved DE algorithm that attempts to adaptively choose the suitable DE

strategies and parameter control schemes during the different evolution stages is

investigated. Moreover, this algorithm has been integrated with a local search method to

further improve its performance.

1.4 Research Objectives

 The primary objective of this study is to generate an overview of EAs parameter

settings. Hence, it has been designed from the ground up to support the control of the

various parameters of the EAs in general and of the DE algorithm in particular. The

present study has three major objectives:

1. To investigate the adaptation properties of different adaptive DE variants by

conducting a structural analysis of each variant. To achieve this objective, the

following two sub-objectives are to be accomplished:

 To present the rudiments of EAs parameter control settings using an

extended taxonomy of different approaches used to set these parameters on-

the-fly while solving the problem.

6

 To analyze and describe in depth the working principles, structural

modifications, and similarities and differences of certain selected state-of-

the-art adaptive DE variants based on the extended taxonomy.

2. To develop an improved DE algorithm (ARDE-SPX) that automatically adapt a

repository of advanced DE strategies and parameters control schemes to avoid the

problem of stagnation and make DE respond to a wide range of function

characteristics at different stages of evolutionary search. Then, to integrate the new

algorithm with a local search (LS) method to further improve its performance.

3. To compare the performance of the proposed ARDE-SPX algorithm with the

standard DE and several state-of the-art adaptive DE versions as follows,

 To implement the ARDE-SPX on a set of benchmark functions of different

characteristics such as, convexity, non-convexity, multimodality, and non-

linearity.

 To develop a new dynamic parameter identification framework to estimate

the barycentric parameters of the CRS A456 robot manipulator based on the

new ARDE algorithm.

1.5 Research Questions

 In this study, the main question is:

 Can the DE algorithm be implemented such that it adapts the mutation

strategies and their associated parameter control schemes without explicit

tuning?

 Four additional questions that can be derived from the main one:

Question 1) How are changes made to the EAs such that they can be considered

as self-adapted algorithms?

7

Question 2) What is the evidence of the change in self-adapted EAs?

Question 3) What main components of the DE algorithm affect its overall

performance?

Question 4) Can the integration of an EA with a heuristic method perform better

than either of its parent algorithms?

Therefore, our hypothesis is that a DE algorithm with adaptive mutation strategies and

parameter control schemes can be designed and implemented for efficient and effective

function optimizations.

1.6 Scope of Research

 In consideration of the strong and multifaceted contribution trends of the DE

algorithm and our tendency toward simplicity, we design a state-of-the-art schematic

flow diagram of DE by customizing a distinct alphabetic index for each contribution

aspect, as depicted in Figure 1.1. As the figure shows, some or even all areas of DE

algorithm can overlap in a common work. The scope of this research has been

highlighted in “pink”, and the alphabetic index is labeled as (a.1), (b.2), and (b.3).

 This study emphasizes DE parameter settings and how the algorithm performance

can be significantly improved by integrating parameter-setting schemes during

evolution. This process relieves users of the task of performing difficult and time-

consuming manual settings. This area of research related to adaptive DE has been

extended further to adapt different DE mutation strategies and to control their

parameters. This adaptive DE trend has generated promising solutions given that some

DE strategies may effectively solve certain problems but are ineffective with other

problems. The scope of this study also covers the integration of the new adaptive DE

with a local search (LS) technique. This integration always outperforms its predecessors

in benchmark problems or specific applications.

8

 This research also applies the adaptive DE to real-world problems by estimating the

parameters of a robot manipulator system.

(S) Differential Evolution Algorithm

(b) DE Structural Development

(b.1) Investigation on

Standard and/or Modified

DE strategies (b.2) Parameter Settings

(b.2.1)

Parameter

Tuning

(b.2.2)

Parameter

Control

(b.3) Integration of

DE with other

systems

(b.4) Mixed Variables

(b.4.1)

Continues

(b.4.2)

Integer

(b.4.3)

Discrete

(a) DE as a Problem Solver

(a.1) DE in wide range of real

world applications

(a.2) Multi-Modal and

Multi-Objective problems

(a.3) Nonlinear functions and constraints

handling

Figure 1.1: Combination of Differential Evolution state-of-the-art work

1.7 Research Significance

 DE and its numerous variants have developed rapidly as simple and robust

algorithms. Practitioners from different disciplines of science and engineering have

applied DE algorithms to address various optimization problems in their own fields.

Thus, it can be applied to almost any optimization problem, regardless of whether it is

continuous, combinatorial, or mixed-variable. Claims and counterclaims have recently

been proposed, especially by engineers, regarding the rules to be followed in choosing

the appropriate control values of standard DE parameters with which to solve practical

problems. Adaptive DE variants can automatically determine suitable parameter

settings; thus, the use of an adaptive DE variant in the present study can significantly

benefit many applications. To highlight the significance of the DE method and its

variants, Figure 1.2 outlines the applications in which the DE algorithm can be

9

successfully implemented.

Figure 1.2: The most significant applications of Differential Evolution algorithm (Das

& Suganthan, 2011)

1.8 Research Processes

 The research process in this study is consists of certain phases and steps, as

summarized in Figure 1.3. The main steps to completing the research are outlined in an

ordered format. This order emphasizes the importance of achieving one step before

transitioning to the next. The steps that detail the contributions of this study are also

highlighted in the figure. The processes are briefly described as follows:

Process 1 (EA Definition and Parameters Setting): The general structure, steps and

standard classification of the parameter settings of the EAs are investigated.

Process 2 (DE Standard Structure and Variants): The DE algorithm is examined as a

prominent example of EA. The process analyzes the overall structure, mechanism, and

variants of the DE algorithm.

Differential Evolution

Algorithm

Electrical
Power
System

Bio-
informatics

Control
System and

Robot

Wireless
Communica

-tion

Pattern
Recognition
and Image
Processing

Signal
Processing

10

Process 3 (DE Parameter Setting): The study of the parameter settings of the DE

algorithm is divided into two processes:

 Process 3.1 (DE Parameter Tuning): The theory regarding the

manual tuning of DE parameters control is reviewed. Then setting values for the

parameter control of DE are suggested for rapid and good perfomance.

 Process 3.2 (Adaptive DE algorithms): The DE algorithms with adaptive

parameters and/or mutation strategies are investigated.

 Process 3.2.1 (Analysis of Adaptive DE Algorithms): Different adaptive DE

variants are subject to a comprehensive procedural analysis and classified.

 Process 3.2.2 (Development of a New Adaptive DE algorithm): The standard

DE algorithm is improved by adding an adaptive strategy.

 Process 3.2.3 (DE and LS Method): The new adaptive DE algorithm is

integrated with a LS technique, and its perfomance is investigated.

 Process 3.2.4 (Evaluation): The developed DE algorithm is evaluated

according to a set of benchmark functions with different characteristics. The

results of the evaluation are then validated.

 Process 3.2.5 (Real-World Application): The new adaptive DE algorithm is

applied to a real-world problem by estimating the parametrs of a robot

manipulator system.

11

Process 1:
Evolutionary Algorithms: Definition

and New Parameter settings
classification

Process 2:
Differential Evolution: standard

structure, mechanisms and variants

Process 3:
Differential Evolution: Parameter

Settings

Process 3.1:
Parameter Tuning of Differential
Evolution: Review and Suggested
Settings for Parameters Control

Process 3.2:
Parameters and Strategies Adaptive

Differential Evolution

Process 3.2.2 and Process 3.2.3 :
Propose New Adaptive Differential

Evolution + LS

Process 3.2.3 and Process 3.2.4 :
Evaluation of the New Adaptive DE
Algorithm on a set of test functions

and real-world application

Process 3.2.1:
Procedural Analysis of different
adaptive Differential Evolution

versions Algorithm

Development

Start

End

Figure 1.3: Research processes of developing and evaluating a new adaptive DE

algorithm. The parts of contributions have been highlighted

12

1.9 Outline of the Thesis

 The remainder of this thesis is organized as follows:

CHAPTER 2 discusses various topics to provide sufficient background on diverse issues

that concern the general definition of EAs and their importance as a problem solver in

continuous and non-continuous optimization problems, the classical DE algorithm, DE

literature, and DE control parameters. This chapter also describes the single-objective

optimization function and its associated terminologies, and the general concept of the

No-Free-Lunch Theorem.

CHAPTER 3 presents a comprehensive description of EAs parameter settings then

provides an extended EA parameter settings’ taxonomy. The new extended EA

parameter setting taxonomy is applied to multiple adaptive DE algorithms in specific, as

an example to convey the main purpose of this taxonomy. Then, a procedural analysis

study is established on these algorithms to elucidate the conceptual similarities and

differences among them, the pros and cons of the adaptive schemes.

CHAPTER 4 presents the general steps that should be considered to create an EA with

parameter control. Then the mechanism of the developed adaptive DE algorithm

(ARDE-SPX) is described in details. The description encompasses the mechanism

adopted to create the repository of the DE strategies and the parameters control

schemes. The description also includes the local search method (SPX) that has been

used to improve the performance of the adaptive ARDE algorithm.

CHAPTER 5 provides an experimental study to identify the competitive nature of six

DE variants in solving different optimization problems and compare their results. In

addition, this chapter presents the results of evaluating the developed adaptive DE

algorithm (ARDE-SPX) on a set of benchmark functions with different characteristics in

terms of the solution accuracy, convergence speed, and robustness. ARDE-SPX are also

compared with several state-of-the-art adaptive DE variants.

13

CHAPTER 6 presents the application of the new adaptive DE algorithm on the

parameter estimation of the CRS A456 robot manipulator system. Simulation results are

presented to show the effectiveness of the ARDE method over other conventional

techniques in solving the problem of the robot.

CHAPTER 7 concludes the thesis and summarizes the objectives addressed in it.

Suggestions and future work development are also offered in this final chapter.

14

CHAPTER 2

 DIFFERENTIAL EVOLUTION: A REVIEW

2.1 Introduction

 Real-world optimization problems are encountered in various important

applications such as machine learning and system design, and in science and

engineering disciplines. Continuous and extensive research efforts have been made to

find the best solutions for these problems. The main challenge in finding such solutions

is that they often involve uncertainties and/or noise that lead to theoretical optima that

are not optimal or practical in real life. Optimization algorithms have been widely

employed to address these challenges, and they are used to find parameters (or

structures) that maximize or minimize user-defined objective functions. For some

typical optimization problems, efficient algorithms are used, whereas for many

continuous or non-linear problems heuristics are used to solve them. Moreover, as

problem complexity increases in conjunction with the need to reduce the time available

for thorough problem analysis and tailored algorithm design, robust algorithms with

satisfactory performance become urgently needed. These algorithms should not only be

applicable to specific problem, but should also be applicable to a wide range of

problems, and yield good (not necessarily optimal) solutions within an acceptable time

(Eiben & Smith, 2003). Robust optimization aims to find solutions that not only

perform optimally in the theoretical optimization model, but also remain stable despite

variations caused by uncertainties and/or noise. Developing such heuristics remains a

hot research topic (Weise, 2009).

 Natural computation is an emerging interdisciplinary field of computational systems.

It utilizes concepts and ideas, and gains insights from natural systems, including

ecological, biological, and physical, in which a range of methodologies and approaches

15

Generation

are studied to address large, complex, and dynamic problems. Evolutionary algorithms

(EAs) are population-based stochastic search methods that include genetic algorithms

(GA), evolution strategy (ES), evolutionary programming (EP) and differential

evolution (DE). These algorithms form a rich class of meta-heuristic algorithms and

computational intelligence techniques that derive from biological notions such as

variation operations (crossover, mutation) and survival of the fittest (selection), for

incrementally directing the search course (population) toward a prospective set of better

candidate solutions (individuals or chromosomes) (see Figure 2.1). The cost function

(evaluation) determines which of the solution “lives” with or without considering the

level of constraint handling. These operations compose a loop (generation), and EAs

usually execute a number of generations until the obtained best-so-far solution is

satisfactory or other termination criterion is fulfilled.

Figure 2.1: The typical EA cycle (Eiben & Smith, 2003)

 Although all EAs rely on the same concept of this basic procedure and its

probabilistic operators, differences still exist among these algorithms. For example, GA

strongly stresses on crossover operator as the main operator to create variations, and

decision variables are originally encoded as a bit-string and are manipulated by logical

operators, thereby making GA suitable for discrete optimization. As opposed to GA, ES

Recombination

Mutation Evaluation

Selection

Chromosomes

 Population

16

is continuous optimizer because it encodes variables as floating-point numbers and

modifies them by using arithmetic operators, which makes it suitable for continuous

optimization. For the main variation operator, ES concentrates more on the mutation

operation, although it may also integrate the crossover as an additional operator

(Brownlee, 2011; Eiben & Smith, 2003; Goldberg, 1989; Mitchell, 1998).

 Globally, EAs provide effective and reliable answers to the challenges of deploying

automated solution methods for solving various optimization problems within a minimal

amount of time. EAs’ features, such as population of solution and variation operators,

provide the ability to create a proper balance between exploitation and exploration of

the search process when solving problems with complex characteristics (noise, chaos,

discontinuous and nonlinearity); by providing a means of escaping from local optima

and maintaining solutions diversity. These features distinguish EAs from other

traditional optimization methods, such as local search algorithms, and other stochastic

algorithms, such as simulated annealing (SA) and various hill-climbing algorithms (HC)

(Eiben & Smith, 2003; Fogel, 1994). The general pseudo-code fashion of EAs is

illustrated in Algorithm 2.1, which shows the usual approach that reflects the evolution

from biology to computer science.

2.1.1 Differential Evolution: Definition

 More than a decade ago, DE emerged as a very competitive form of EAs. DE is a

population-based optimizer that is effective on a large range of classical optimization

problems, primarily to continuous search spaces (Ahandani, Shirjoposh, & Banimahd,

2011; Feoktistov, 2006; Price, Storn, & Lampinen, 2005; Storn & Price, 1997; Storn &

Price, 1995; Zou, Liu, Gao, & Li, 2011) like ES. Its effectiveness is due to its properties,

such as simplicity, efficiency, and ease of implementation/coding with very few control

parameters. Recent studies found that DE produces outstanding results in widely used

17

benchmark functions (Ahandani, Shirjoposh, & Banimahd, 2011; Piotrowski,

Napiorkowski, & Kiczko, 2012; Spadoni & Stefanini, 2012; Storn & Price, 1996; Wang,

Cai, & Zhang, 2012) and real-world applications (Goudos, Siakavara, Samaras,

Vafiadis, & Sahalos, 2011; Peng, Dai, Wang, Hu, Chang, & Chen, 2011; Zhang, Chen,

Dai, & Cai, 2010).

Algorithm 2.1: General scheme of an Evolutionary Algorithm pseudo-code

01: BEGIN

0:2 Step 1 (INITIALIZATION) generate an initial population 𝑃(𝑡 = 0) with random candidate solutions,

 〈𝑥1
𝑡 , 𝑥2

𝑡 , … , 𝑥𝑁𝑝
𝑡 〉 ∈ [𝑋𝑚𝑖𝑛, 𝑋𝑚𝑎𝑥] ;

03: Step 2 (EVALUATION) evaluate each candidate solution 𝑃(𝑡 = 0) = {𝑓(𝑥1
𝑡), 𝑓(𝑥2

𝑡), … , 𝑓(𝑥𝑁𝑝
𝑡)};

04: Step 3 (WHILE STOPING CRETERION(S) IS NOT FULFILLED) 𝜏(𝑃(𝑡)) ≠ 𝑡𝑟𝑢𝑒

05: DO

06: Step 3.1 (SELECTION) select the best parents by generating an intermediate population 𝑃(𝑡)́

from the current population 𝑃(𝑡);

07: Step 3.2 (RECOMBINATION) set the parents’ pool 𝑆𝑃(𝑡)́ from interchanging information and

genes among two or more parents, randomly and repeatedly, selected from 𝑃(𝑡)́ as follows,

 𝑆𝑃(𝑡)́ = 𝑟{𝑝𝑐} (�́�(𝑡)) ;

08: Step 3.3 (MUTATION) set the mutated pool 𝐶�́�(𝑡) by applying a stochastic variability on 𝑆𝑃(𝑡)́

as follows, 𝐶�́�(𝑡) = 𝑚{𝑝𝑚}(𝑆�́�(𝑡)) ;

09: Step 3.4 (EVALUATION) evaluate the fitness function for each chromosome �́́�(𝑡) = 𝑓(𝐶�́�(𝑡)) ;

10: Step 3.5 (SELECTION) select the individuals for the next generation 𝑃(𝑡 + 1) = 𝑆(�́́�(𝑡)) ;

11: 𝑡 = 𝑡 + 1;

12: OD

13: END

 The first published article on DE is a technical report entitled “Differential

evolution- A simple and efficient adaptive scheme for global optimization over

continuous spaces” (Storn & Price, 1995) of the ICSI. Originally, the concept was based

on the population-based genetic annealing algorithm that was developed by Price in

1994. After its development, Price modified the annealing algorithm to use arithmetic

floating-point vector operations instead of logical ones. Therefore, the annealing

mechanism was removed and replaced with differential mutation combined with

discrete recombination and pair-wise selection. The recasts changed genetic annealing

from a bit-string into a continuous optimizer and thus, the obtained algorithm gave rise

to DE.

18

A recent suggestion to create a website that provides useful information about DE was

met with interest. Accordingly, the two forefathers of the field, Storn and Lampinen,

published their own official bibliography Web sites that supplied all DE materials, such

as source codes and some useful links dated from 1995 up to 2002. These sites can be

accessed at http://www.icsi.berkeley.edu/~storn/code/ and

http://www.lut.fi/~jlapine/debiblio.html.

2.2 Why Differential Evolution?

 DE was selected as a parent algorithm in this thesis because the literature indicates

that DE is superior to its more traditional EAs cousins, such as GA and ES in

fundamental and explicit ways (Das & Suganthan, 2011; Price, Storn, & Lampinen,

2005) as follows:

 Implementation/coding are easy, flexible, and straightforward. The main body of

the algorithm may require only few lines to code in any programming language. In

addition, many references (Feoktistov, 2006; Lin, Qing, & Feng, 2011; Price, Storn,

& Lampinen, 2005; Storn & Price, 1997) and Web sites (Beuhren, 22 Sep 2011;

Storn, 2000) provide DE open source code written in different programming

languages, such as C, MATLAB, Fortran, and Java, which is particularly beneficial

for those who unfamiliar with programming as well as practitioners from other

fields. The simplicity of DE makes these codes easy to analyze and then

modify/amend according to users domain-specific problems. Moreover, although

particle swarm optimization (PSO) is also very simple to code, the performance of

DE and its variants is largely better than the PSO variants over a wide variety of

problems, as indicated by studies like (Das, Abraham, Chakraborty, & Konar, 2009;

Rahnamayan, Tizhoosh, & Salama, 2008; Vesterstrom & Thomsen, 2004).

http://www.icsi.berkeley.edu/~storn/code/
http://www.lut.fi/~jlapine/debiblio.html

19

 Limited number of parameters to be adjusted (𝐹, 𝐶𝑅, and 𝑁𝑝 in classical DE). The

effect of these parameters on the performance of DE and the different ways they

have been tuned is discussed in a later chapter.

 Low and efficient memory consumption compared with other well-known and

competitive real/deterministic parameter optimizers, such as CMA-ES (Hansen &

Ostermeier, 2001; Rahnamayan & Dieras, 2008). This advantage, in addition to

lower computational complexity, increased the demand to utilize DE on a large scale

and in expensive optimization problems that have dimensions that may exceed 100

variables. Based on the distinctive characteristics of both algorithms, researchers

have recently been encouraged to launch new forms of algorithms that combine DE

and CMA-ES into one hybrid system and demonstrated their capability in a number

of analytical and empirical studies (Ghosh, Das, Roy, Islam, & Suganthan, 2012;

Kaempf & Robinson, 2009).

 It is a significantly faster optimization algorithm with a high convergence rate in

finding optimal solutions because of two main features. First, when working directly

with continuous variables, the use of arithmetic operators instead of logical

operators saves more time and removes inaccuracy more efficiently compared with

traditional GA. Second, the faster performance of the algorithm is due to the

dexterity of the different variants of DE mutation strategies and the greatest freedom

in terms of constructing different variations in mutation distributions. Some of these

strategies are already based on constructing candidate solutions from the current and

superior solution, thereby accelerating the convergence rate (Jeyakumar &

Shanmugavelayutham, 2009, 2011; Jeyakumar & Velayutham, 2010; Mezura-

Montes, Edith Miranda-Varela, & del Carmen Gomez-Ramon, 2010; Mezura-

Montes, Velazquez-Reyes, & Coello, 2006).

20

All aforementioned advantages may encourage any researcher or practitioner to use DE.

DE is still in its infancy (approximately 14 years old) and is being improved gradually,

but it has already been established as a universal optimization tool (Das & Suganthan,

2011). An Internet search through Web of Science by using the keyword “Differential

Evolution Algorithm” revealed about 6,217 relevant articles published between 1996

and 2014. Several thousand application articles in diverse areas were found. The

robustness and versatility of DE have encouraged researchers and practitioners from

several domains of science and engineering to use DE in solving optimization problems

that arise in their own fields. Figure 2.2 shows an abrupt growth in the number of

publications and citations related to DE because of its growing popularity as a simple

and robust optimizer.

Figure 2.2: Differential Evolution research trend (based on information extracted from

Web of Science database site)

21

The same figure indicates that research on DE from 2008 and 2012 increased and

became multifaceted all around the globe within a short time.

 Despite the popularity of DE, however, DE performed poorly in many cases. Over

the past few years, many researchers have contributed to making DE a general and fast

optimization method for any kind of optimization problem by adjusting various

constitutes (aspects) of DE (e.g., initialization, mutation, diversity enhancement, and

selection), and conducting multiple attempts to automatically adjust the algorithm’s

parameters for single or multiple problems. Table 2.1 covers excerpts of some of the

most prominent milestones and epochs in the DE full story since its discovery in 1996

until current time.

2.3 Differential Evolution: Basic Concept and Variants

 Like nearly all EAs, DE is a group-based optimizer that tackles a starting point

problem by sampling the objective function at multiple, randomly chosen initial points

instead of conducting a point-to-point search. The group is called as population, and

denoted by 𝑃(𝑡 = 0) = {𝑋1
𝑡, 𝑋2

𝑡 , ⋯ , 𝑋𝑁𝑝
𝑡 }.

In its basic concept, DE searches for a global optimum point in a 𝐷-dimensional real

parameter space ℝ𝐷. Before a population can be initialized, the upper 𝑋𝑚𝑎𝑥 =

{𝑥𝑚𝑎𝑥,1, 𝑥𝑚𝑎𝑥,2, … , 𝑥𝑚𝑎𝑥,𝐷} and lower 𝑋𝑚𝑖𝑛 = {𝑥𝑚𝑖𝑛,1, 𝑥𝑚𝑖𝑛,2, … , 𝑥𝑚𝑖𝑛,𝐷} bounds of the

preset parameters are specified to define the domain from which the values 𝑥𝑖,𝑗
𝑡 ; 𝑗 ∈

{1, … , 𝐷} of each 𝑁𝑝 real-valued parameter vectors in the initial population are chosen.

Hence, the initial population is nourished by candidate solutions using the standard

equation:

𝑥𝑖,𝑗
𝑡=0 = 𝑋𝑚𝑖𝑛,𝑗 + 𝛼𝑖,𝑗 ∙ (𝑋𝑚𝑎𝑥,𝑗 − 𝑋𝑚𝑖𝑛,𝑗) (2.1)

22

2
2

Table 2.1: Historical elucidation of the Differential Evolution algorithm invention and development

Details Citation (papers)

Juncture

1
9

9
5

1
9

9
6

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0

2
0

0
1

2
0

0
2

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

2
0

1
0

2
0

11

2
0

1
2

-

The first technical report was written on DE. (Storn & Price, 1995)

The successful of DE was demonstrated at the

First International Contest on Evolutionary

Optimization (1
st
 ICEO).

(Storn & Price, 1996)

Two journal articles published describing DE

in details and its very good results
(Price & Storn, 1997; Storn & Price, 1997)

DE was presented at the Second International

Contest on Evolutionary Optimization (2
nd

ICEO)

(Price, 1997)

A compendium on DE ‘New Ideas on

Optimization’ has been summarized by Price.
(Price, 1999)

New mutation schemes were presented and

some other developed strategies.

(Fan & Lampinen, 2002; Fan & Lampinen, 2003; Feoktistov

& Janaqi, 2004a, 2004b; Feoktistov & Janaqi, 2004d)

In 2007, two types of crossover operations

were considered: binomial and exponential

schemes. In 2011, two new crossover schemes

were designed: consecutive binomial

crossover and non-consecutive exponential

crossover.

(Lin, Qing, & Feng, 2011; Price, 1999; Zaharie, 2007)

The first modifications of DE selection rule

for constraints handling, were presented.

(Lampinen, 2001, 2002; Montes, Coello Coello, & Tun-

Morales, 2004)

Preliminary recommendations on how to

choose appropriate parameter settings of DE

(Lampinen & Zelinka, 2000; Price & Storn, 1997; Price,

1997, 1999; Storn, 1996; Storn & Price, 1996; Storn & Price,

1997; Storn & Price, 1995)

 Specified number of DE publications in general fields Unspecified number of DE publications in general fields

 Unspecified number of DE publications in the field of parameter settings

23

2
3

 Table 2.1- Continued

Details Citation (papers)

Juncture

1
9

9
5

1
9

9
6

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0

2
0

0
1

2
0

0
2

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

2
0

1
0

2
0

11

2
0

1
2

-

The era of developing adaptive DE parameter

control methods started in 2002 and

continues to be a very hectic trend until

current time.

(Abbass, 2002; Brest & Maucec, 2011; Das, Mandal, &

Mukherjee, 2014; Liu & Lampinen, 2002a; Liu & Lampinen,

2005; Teo, 2006; Tvrdik, 2009; Urfalioglu & Arikan, 2011;

Wang, Rahnamayan, & Wu, 2013; Yin, Wang, & Hu, 2012;

Zaharie, 2002b; Zhao, Wang, Chen, & Zhu, 2014; Zhu, Tang,

Fang, & Zhang, 2013)

DE in a wide range of real-world applications

with good results.

(Chandra & Chattopadhyay, 2014; Develi & Yazlik, 2012; Liu,

Ni, Liu, & Xu, 2012; Oh, Kim, & Pedrycz, 2012; Ponsich &

Coello Coello, 2011; Storn, 1996; Subudhi & Jena, 2011; Titare,

Singh, Arya, & Choube, 2014; Zhang, Chen, Dai, & Cai, 2010)

DE framework significant improvements

have been presented in many aspects:

- Structure based randomization of

individuals: Compact DE.

- Integration based randomization of

individuals with explicit exploitative

component: Memetic Differential Evolution

and its variants.

- Increase the search moves of DE with

structured population: Parallel DE;

Distributed DE; Micro-DE

- Other hybridization and improvements in

the overall structure of DE which is still an

ongoing research field.

(Caraffini, Neri, & Poikolainen, 2013; Feoktistov & Janaqi,

2004c; Kukkonen & Lampinen, 2005; Mininno, Neri, Cupertino,

& Naso, 2011; Neri & Mininno, 2010; Neri & Tirronen, 2008;

Qasem & Shamsuddin, 2011; Sayah & Hamouda, 2013; Sindhya,

Ruuska, Haanpaa, & Miettinen, 2011; Weber, Neri, & Tirronen,

2011; Weber, Tirronen, & Neri, 2010; Zaharie, 2004)

 Specified number of DE publications in general fields Unspecified number of DE publications in general fields

 Unspecified number of DE publications in the field of parameter settings

24

where 𝛼𝑖,𝑗 is a random number generator that returns a uniformly distributed random

number within the range [0,1), that is, 0 ≤ 𝛼𝑖,𝑗 < 1, and is instantiated independently

for each component of the 𝑖𝑡ℎ vector. The classical DE pseudo-code is depicted in

Algorithm 2.2. The algorithm scheme shows that after the initialization step (lines 1-

10), DE circulates in a loop of evolutionary operations, that is, mutation (lines 12-17),

crossover (lines 24-28), and evaluation and selection (lines 29-32). selectfloat denotes

that the user chooses a floating-point number within a specified range, whereas

selectnum denotes that the user chooses an integer number within a specified range. For

clarification, Figure 2.3 shows a flowchart of the steps of DE.

2.3.1 Mutation Operator

 Almost all EAs methods subscribe to an important scheme that is responsible for

producing the noisy vectors, preventing the risk of stagnation, responsible for the

convergence rate of the algorithm, and diversity of population, throughout the evolution

process; this strategy is referred to as mutation operation. Specifically, in DE algorithm

mutation operation is considered as the main operation, it plays a key role in the

performance of the algorithm. Moreover, the name of DE algorithm is itself drawn from

the mechanism of this operation since the mutation amount which is called mutant

vector 𝑉𝑖(𝑡) = {𝑣𝑖,1
𝑡 , 𝑣𝑖,2

𝑡 , … , 𝑣𝑖,𝐷
𝑡 } is derived from differentiate multiple randomly

selected members, 𝑟1 and 𝑟2 ∈ {1,2, … , 𝑁𝑝}, of the current population to produce the

mutant vector. These indices should be mutually different and also different from the

current index 𝑖. In DE literature, these parent vectors are called target vectors 𝑋𝑖
𝑡. A

parameter called scaling factor, 𝐹𝑦 ∈ [0,2], is then multiplied by the 𝑦𝑡ℎ difference value

(𝑥𝑟1𝑦
𝑡 − 𝑥𝑟2𝑦

𝑡) to control the amplification of the differential variation. In many recent

DE algorithms, each pair of difference vectors might be associated with its own 𝐹𝑦, this

25

has been introduced to alleviate the greediness tendency of the previous schemes by

providing an appropriate means when incorporating the best individual value, 𝑋𝑏𝑒𝑠𝑡 ,

from the current population in the difference scheme. According to DE logic, a

provisional (interim) offspring so-called donor vector 𝑉𝑖(𝑡) is then generated using the

standard mutation equation,

𝑣𝑖
𝑡 = 𝑏𝑖

𝑡 +∑𝐹𝑦(𝑥𝑟1𝑦
𝑡 − 𝑥𝑟2𝑦

𝑡), 1 ≤ 𝑖 ≠ 𝑟1𝑦 ≠

𝑦≥1

𝑟2𝑦 ≤ 𝑁𝑝 (2.2)

In several well-known DE mutation strategies the base vector, 𝑏𝑖
𝑡, is the best member of

the running population, for the intension that the information of the superior individual

could be propagated among the population. Diverse mutation schemes have been

extracted from the above equation and have been subsequently proposed in literature

(Feoktistov, 2006; Liu & Lampinen, 2005; Price & Storn, 1997; Price, Storn, &

Lampinen, 2005). Equations (2.3-2.10) list the eight most frequently used mutation

strategies; they are as follows connected with the name of each corresponding strategy,

𝐷𝐸/𝑟𝑎𝑛𝑑/1 𝑣𝑖,𝑗
𝑡 = 𝑥𝑟1,𝑗

𝑡 + 𝐹1. (𝑥𝑟2,𝑗
𝑡 − 𝑥𝑟3,𝑗

𝑡) (2.3)

𝐷𝐸/𝑏𝑒𝑠𝑡/1 𝑣𝑖,𝑗
𝑡 = 𝑥𝑏𝑒𝑠𝑡,𝑗

𝑡 + 𝐹1. (𝑥𝑟1,𝑗
𝑡 − 𝑥𝑟2,𝑗

𝑡) (2.4)

𝐷𝐸/𝑟𝑎𝑛𝑑/2 𝑣𝑖,𝑗
𝑡 = 𝑥𝑟1,𝑗

𝑡 + 𝐹1. (𝑥𝑟2,𝑗
𝑡 − 𝑥𝑟3,𝑗

𝑡 + 𝑥𝑟4,𝑗
𝑡

− 𝑥𝑟5,𝑗
𝑡)

(2.5)

𝐷𝐸/𝑏𝑒𝑠𝑡/2 𝑣𝑖,𝑗
𝑡 = 𝑥𝑏𝑒𝑠𝑡,𝑗

𝑡 + 𝐹1. (𝑥𝑟1,𝑗
𝑡 − 𝑥𝑟2,𝑗

𝑡 + 𝑥𝑟3,𝑗
𝑡

− 𝑥𝑟4,𝑗
𝑡)

(2.6)

𝐷𝐸/𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑡𝑜 − 𝑟𝑎𝑛𝑑/1 𝑣𝑖,𝑗
𝑡 = 𝑥𝑖,𝑗

𝑡 + 𝐹1. (𝑥𝑟3,𝑗
𝑡 − 𝑥𝑖,𝑗

𝑡) + 𝐹2. (𝑥𝑟1,𝑗
𝑡

− 𝑥𝑟2,𝑗
𝑡)

(2.7)

26

𝐷𝐸/𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑡𝑜 − 𝑏𝑒𝑠𝑡/1 𝑣𝑖,𝑗
𝑡 = 𝑥𝑖,𝑗

𝑡 + 𝐹1. (𝑥𝑏𝑒𝑠𝑡,𝑗
𝑡 − 𝑥𝑖,𝑗

𝑡) + 𝐹2. (𝑥𝑟1,𝑗
𝑡

− 𝑥𝑟2,𝑗
𝑡)

(2.8)

𝐷𝐸/𝑟𝑎𝑛𝑑 − 𝑡𝑜 − 𝑏𝑒𝑠𝑡/1 𝑣𝑖,𝑗
𝑡 = 𝑥𝑟3,𝑗

𝑡 + 𝐹1. (𝑥𝑏𝑒𝑠𝑡,𝑗
𝑡 − 𝑥𝑟3,𝑗

𝑡) + 𝐹2. (𝑥𝑟1,𝑗
𝑡

− 𝑥𝑟2,𝑗
𝑡)

(2.9)

𝐷𝐸/𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑡𝑜 − 𝑟𝑎𝑛𝑑/2 𝑣𝑖,𝑗
𝑡 = 𝑥𝑖,𝑗

𝑡 + 𝐹1. (𝑥𝑟3,𝑗
𝑡 − 𝑥𝑖,𝑗

𝑡) + 𝐹2. (𝑥𝑟1,𝑗
𝑡

− 𝑥𝑟2,𝑗
𝑡) + 𝐹3. (𝑥𝑟4,𝑗

𝑡 − 𝑥𝑟5,𝑗
𝑡)

(2.10)

The eight above strategies can be simplified to the standard convention 𝐷𝐸/𝑥/𝑦/𝑧

where 𝑥 is the manner in which the individual to be perturbed, 𝑦 is the number of

difference vector pairs involved in the construction of the mutant vector, where a

difference vectors means the difference between two randomly selected members from

the current population excluding the current and the best vectors from them. More often,

𝑦 is only associated with 1 or 2. 𝑧 is the type of crossover used [which we will be taking

a closer look at in the next definition]. It is worth noting that some of these DE

strategies have been misnamed in many publications, which has led to a misconception

to the mechanism of some of the new proposed DE methods, as in (Qin & Suganthan,

2005; Zhang & Sanderson, 2009a). Thus, in this study we preferred to recall all the

well-known DE strategies with their corresponding names in order to eliminate any

confusions related to them in the future.

Recently, DE/current-to-rand/1 without crossover has been proposed in (Iorio & Li,

2004) as a rotation-invariant mutation strategy and has proved to provide good results

for multi-objective optimization problems and rotational problems.

 It is also worth remembering that after applying mutation operation to the

individual values, we may run the risk of exceeding the boundaries limitations of

all/some of the donor vector values; therefore (Algorithm 2.2, lines 18-23) are used to

tackle this problem and to guarantee that the vector components are always inside the

27

valid boundary values. In literature, there are some other proposed solutions (Price,

1999; Price, Storn, & Lampinen, 2005; Rönkkönen, Kukkonen, & Price, 2005; Storn &

Price, 1997; Storn & Price, 1995) for the ‘out of bounds’ problem, they are either to set

the values on bound (reflected from the specified boundaries), or use them as they are

(out of bound) and let the algorithm itself adjusts them automatically through the

evolution process.

2.3.2 Crossover Operator

 After the mutation phase, another substantial perturbation operation called

crossover or recombination process comes into play, which is subsequently applied to

further raise the potential of population’s diversity. Two standard crossover

interpretations are considered: binomial crossover (𝑏𝑖𝑛) and exponential

crossover (𝑒𝑥𝑝), as illustrated in Equation 2.11 and 2.12 respectively, to deliver the so-

called trial vector 𝑈𝑖(𝑡) = {𝑢𝑖,1
𝑡 , 𝑢𝑖,2

𝑡 , … , 𝑢𝑖,𝐷
𝑡 }. For both interpretations a user-specified

real parameter value called crossover probability or crossover rate, 𝐶𝑅 ∈ [0,1], is used

to control the mixing process. Considering once again the aforementioned

convention 𝐷𝐸/𝑥/𝑦/𝑧 , the letter 𝑧 is substituted to 𝑏𝑖𝑛 or 𝑒𝑥𝑝 regarding to which

crossover strategy we are referring to. Accordingly, the eight DE variants are then

extended to be a total of 8 × 2 = 16 variants after combining one type of mutation

scheme with either “binomial” or “exponential” crossover scheme (Price, Storn, &

Lampinen, 2005; Storn & Price, 1995).

In binomial genewise crossover, a component of the donor vector 𝑣𝑖,𝑗
𝑡 is inherited with

probability 𝐶𝑅 for the offspring 𝑢𝑖,𝑗
𝑡 , and with probability 1 − 𝐶𝑅 from the target

vector 𝑥𝑖,𝑗
𝑡 .

28

𝐷𝐸/𝑥/𝑦/𝑏𝑖𝑛 𝑢𝑖,𝑗
𝑡 = {

𝑣𝑖,𝑗
𝑡 (𝛽𝑖,𝑗 ≤ 𝐶𝑅) 𝑜𝑟 (𝑗 = 𝑗𝑟𝑎𝑛𝑑)

𝑥𝑖,𝑗
𝑡 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2.11)

where 𝛽𝑖,𝑗 is a real number, uniformly generated in the range [0,1]. 𝑗𝑟𝑎𝑛𝑑 is a randomly

generated integer in the range [1, 𝐷] to ensure that the trial vector 𝑈𝑖(𝑡) will differ from

its corresponding target vector 𝑋𝑖(𝑡) by at least one component. This crossover

convention is analogue with the so-called uniform crossover which is often used in EAs.

On the other hand, in the case of exponential crossover a consecutive component(s)

from the donor vector are truncated and then donated to the trial vector after the latter

has already inherited all its parameters from the target vector. Initially, two cut points

are randomly chosen and then applied to the donor vector; They are respectively: the

first cut point, 𝑛 ∈ {1, … , 𝐷 − 1} and the second cut point, 𝐿 ∈ {1,… , 𝐷 − 1} with

probability 𝑃𝑟𝑜𝑏(𝐿 = ℎ) = 𝐶𝑅ℎ; where ℎ is the number of the mutated components.

The number of components between the points 𝑛 and 𝐿 are counted in a circular manner

depending on either a series of Bernoulli experiments of probability 𝐶𝑅 or the crossover

length has already achieved the 𝐷 − 1. New random decisions are made for both 𝑛 and

𝐿 for each trial vector 𝑈𝑖(𝑡).

𝐷𝐸/𝑥/𝑦/𝑒𝑥𝑝 𝑢𝑖,𝑗
𝑡 = {

 𝑣𝑖,𝑗
𝑡 𝑓𝑜𝑟 𝑗 = 〈𝑛〉𝐷 , 〈𝑛 + 1〉𝐷 , … , 〈𝑛 + 𝐿 − 1〉𝐷

𝑥𝑖,𝑗
𝑡 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑗 ∈ [1, 𝐷]

 (2.12)

where the acute brackets 〈 〉𝐷 denote a modulo function with modulus 𝐷. This type of

crossover is similar to the so-called two-point crossover used in EAs. Finally, the

pseudo-code of the bin crossover strategy is given in (Algorithm 2.2, line 24-28). In this

strategy, 𝑖𝑟𝑎𝑛𝑑 is a function used to generate a random integer number within the

interval {1, … , 𝐷}.

29

2.3.3 Selection Operator

 Then one-to-one greedy selection operation rises to decide whether the trial vector

𝑈𝑖
𝑡 would win the competition over its corresponding target vector 𝑋𝑖

𝑡 to be a member

𝑋𝑖
𝑡+1 in the population of the next generation. This competition is normally based on the

evaluation of both individuals’ fitness function, and since DE has a minimization

propensity, the comparison will end up with the solution that has less or equal fitness

value, as illustrated in Equation 2.13. This selection strategy has one advantage over

many other selection strategies such as tournament selection, rank based selection, and

fitness proportional selection, this is so because its unique merit of reserving the old (i.e.

target vectors) and the new (i.e. trial vectors) candidate solutions, then to set off the

comparison process on these individuals alike.

𝑋𝑖
𝑡+1 = {

𝑈𝑖
𝑡 𝑖𝑓 𝑓(𝑈𝑖

𝑡) ≤ 𝑓(𝑋𝑖
𝑡)

𝑋𝑖
𝑡 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2.13)

Algorithm 2.2: General pseudo-code fashion of DE algorithm

0: BEGIN

1: Step1 (INITIALIZATION) Initialize the generation counter 𝑡 = 0. Set the mean value of 𝐶𝑅 and the

value of 𝐹. Generates an initial population 𝑃(𝑡 = 0) with random candidate solutions target

vectors; 〈𝑋1
𝑡 , 𝑋2

𝑡 , … , 𝑋𝑁𝑝
𝑡 〉 ∈ [𝑋𝑚𝑖𝑛 , 𝑋𝑚𝑎𝑥]

2: FOR 𝑖 = 1 to 𝑁𝑝 do

3: FOR 𝑗 = 1 to 𝐷 do

4: 𝑥𝑖,𝑗
𝑡 = 𝑥𝑗,𝑚𝑖𝑛 + 𝛼𝑖,𝑗(𝑥𝑗,𝑚𝑎𝑥 − 𝑥𝑗,𝑚𝑖𝑛)

5: END FOR

6: END FOR

7: FOR 𝑖 = 1 to 𝑦 do

8: 𝐹 = 𝑠𝑒𝑙𝑒𝑐𝑡𝑓𝑙𝑜𝑎𝑡[0, 2];

9: ENDFOR

10: 𝐶𝑅 = 𝑠𝑒𝑙𝑒𝑐𝑡𝑓𝑙𝑜𝑎𝑡[0, 1];

11: Step2 (EVOLUTION) DO WHILE budget condition

12: Step 2.2 (𝐷𝐸/𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑡𝑜 − 𝑟𝑎𝑛𝑑/1 MUTATION) is applied to obtain the donor vector 𝑉𝑖
𝑡.

Generate three mutually different vectors 𝑟1, 𝑟2 and 𝑟3, and are different from 𝑖.

13: FOR 𝑖 = 1 to 𝑁𝑝 do

14: FOR 𝑗 = 1 to 𝐷 do

15: 𝑣𝑖,𝑗
𝑡 = 𝑥𝑖,𝑗

𝑡 + 𝐹. (𝑥𝑟3,𝑗
𝑡 − 𝑥𝑖,𝑗

𝑡) + 𝐹. (𝑥𝑟1,𝑗
𝑡 − 𝑥𝑟2,𝑗

𝑡)

16: END FOR

17: END FOR

18: Step 2.3 (BOUNDARIES CONSTRAINTS) Regularize infeasible mutant vector 𝑉𝑖
𝑡

30

19: FOR 𝑖 = 1 to 𝑁𝑝 do

20: FOR 𝑗 = 1 to 𝐷 do

21: IF (𝑣𝑖,𝑗
𝑡 < 𝑥𝑗,𝑚𝑖𝑛) or (𝑣𝑖,𝑗

𝑡 > 𝑥𝑗,𝑚𝑎𝑥) THEN 𝑣𝑖,𝑗
𝑡 = 𝑥𝑗,𝑚𝑖𝑛 + (𝑥𝑗,𝑚𝑎𝑥 − 𝑥𝑗,𝑚𝑖𝑛) × 𝑟𝑎𝑛𝑑(0,1)

22: END FOR

23: END FOR

24: Step 2.4 (BINOMIAL CROSSOVER) applies one of the two crossover schemes to obtain the trial

vector 𝑈𝑖
𝑡

25: 𝑘 = 𝑖𝑟𝑎𝑛𝑑({1, … , 𝐷})

26: FOR 𝑗 = 1 to 𝐷 do

27: IF 𝑟𝑎𝑛𝑑(0,1) < 𝐶𝑅 or 𝑗 = 𝑘 THEN 𝑢𝑖,𝑗
𝑡 = 𝑣𝑖,𝑗

𝑡 ELSE 𝑢𝑖,𝑗
𝑡 = 𝑥𝑖,𝑗

𝑡

28: END FOR

29: Step 2.6: (SELECTION) select the individuals with the minimum fitness value for the next

generation

30: FOR 𝑖 = 1 to 𝑁𝑝 do

31: IF 𝑓(𝑈𝑖
𝑡 ≤ 𝑋𝑖

𝑡) THEN 𝑋𝑖
𝑡+1 = 𝑈𝑖

𝑡 ELSE 𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡

32: END FOR

33: Step 2.7 increments the generation count 𝑡 = 𝑡 + 1

34: END WHILE

35: END

f(X
0,t

) f(X
1,t

) f(X
2,t

) f(X
3,t

) f(X

)t,Np 2 f(X

)t,Np 1

f(V
0,t

) f(V
1,t

) f(V
2,t

) f(V
3,t

) f(V

) f(V

)

CROSSOVER

SELECTION

f(X
0,t+1

) f(X

)12 t,Npf(X

1,t+1
) f(X

2,t+1
) f(X

3,t+1
) f(X)11 t,Np

X
0,t

X
1,t

X
2,t

X
3,t

X t,Np 2 X t,Np 1

F

V
0,t

V
1,t

V
2,t

V
3,t

V V

X
0,t+1

X
1,t+1

X
2,t+1

X
3,t+1

X X

X
r2,t

X
r1,t

+ -

X
r0,t

+

+

t,Np 2 t,Np 1

12 t,Np 11 t,Np

t,Np 2 t,Np 1

1) Choose target vector and base vector

2) Random choice of two population members

3) Compute weight difference vector

(target vector)

(=base vector)

4) Add to base vector

Parameter

Vector

Objective function

value

u
0,t (trial vector)

5) x
0,t+1

= u
0,t

if f(u
0,t

) <= f(x
0,t

), else x
0,t+1

= x
0,t

Figure 2.3: A generate-and-test DE flowchart loop (Price, Storn, & Lampinen, 2005)

31

2.4 Parameter Settings of Differential Evolution

 All dialects of EAs are based on the same generic framework whose details need to

be specified to obtain a particular EA. These details are commonly known as EA

parameters. They include probability of mutation, tournament size of selection, or

population size. Designing an EA for a given application requires selecting appropriate

values for these parameters. The values of these parameters (which are also called

algorithm parameters or strategy parameters) significantly determine whether the

algorithm will find an optimal or near-optimal solution or will find such a solution

efficiently (Cotta, Sevaux, & Sörensen, 2008; Lobo, Lima, & Michalewicz, 2007).

 Fine-tuning is a complicated task, and any attempt to choose the right parameter

values is lost a priori. As a result of this drawback, optimal convergence can be achieved

and the user can be liberated from tedious parameter tuning trials by altering these

parameters on-the-fly during the evolutionary process by taking the actual search

progress into account. The main idea is not to choose the parameters semi-arbitrarily
1

but to allow the parameters to adapt to the problem (Eiben, Hinterding, & Michalewicz,

1999; Eiben & Smith, 2003); this type of setting is called parameter control. EA

literature presents three types of parameter control, namely, deterministic, adaptive, and

self-adaptive. DE is a particular instance of EA. Therefore, the issue of parameter

control has been investigated in the DE literature.

 Recently, the development of adaptive DE algorithms shows faster and more reliable

convergence performance than the classical DE algorithms with manual parameter

settings over many problems. There are some adaptive DE variants in literature that

piqued our interest with their superior performance such as DESAP with self-adapting

populations (Teo, 2006); FADE, which is a fuzzy-based DE algorithm (Liu &

Lampinen, 2005); improved SaDE (Qin & Suganthan, 2005) for parameters and

1 The choices were often made from experience

32

strategies adaptive of DE; jDE, which is a self-adaptive DE algorithm, and its improved

version jDE-2, see (Brest, Boskovic, Greiner, Zumer, & Maucec, 2007; Brest, Greiner,

Boskovic, Mernik, & Zumer, 2006); and JADE with and without archive (Zhang &

Sanderson, 2009b), and so on. The topic of EA parameter settings and adaptive DE

algorithms will be discussed in a later chapter.

2.5 Unconstraint Optimization Problems

 When optimizing a function or a process, we must first specify our objectives. Any

optimization problem can be distinguished according to the presence or absence of (1)

an objective function and (2) Constraints. The resulting four categories are shown in

Table 2.2 (Eiben & Smith, 2003). When the main task in optimization (minimization or

maximization) is to provide the value of a predefined cost or objective function by

determining a set of model parameters or state variables, in which the absence of

constraints make it less challenging, the problem is called a free optimization problem

(unconstraint optimization problem).

Table 2.2: Problem types (Eiben & Smith, 2003)

Constraints Objective Function

Yes No

Yes Constrained optimization problem Constraint satisfaction problem

No Free optimization problem No problem

 In free optimization problem, a common (standard) model form 〈𝕏, 𝑓〉 is frequently

defined as the minimization of an objective function (or fitness function) 𝑓 on 𝕏. If a

criterion 𝑓 is subjected to maximization, then it is of equivalent to minimize its negation

(−𝑓). A mathematical formulation of the objective function is 𝑓: 𝕏 → 𝕐 with 𝕐 ⊆ ℝ,

where 𝕐 is the co-domain of 𝑓, and its range should be a subset of real numbers ℝ. 𝕏 is

called a free search space, which is the set of all elements 𝔵 that can be processed by

33

search operations. Hence, the optimization target is to find the best element 𝑋∗ ∈ 𝕏

with respect to such criteria 𝑓 ∈ 𝔽, that governs the overall performance of the system

to be the best under certain conditions (Eiben & Smith, 2003; Weise, 2009). For real

parameter optimization, each value of 𝑋 is a real number. Without losing generality, we

will consider only the type of free optimization problem with minimization propensity to

a single-objective function. This type of optimization problems is commonly used to

evaluate the performance of any algorithm, for example, DE, GA and PSO, or to verify

a rigorous and fair performance comparison of various optimization methods, for

example DE and its variants. It also exists in real-world applications such as engineering

and scientific applications. De Jong first presented numerous unconstrained test

problems, which are then recommended for the purpose (De Jong, 1975; Storn & Price,

1995). These functions are commonly called benchmark test functions. Thirty-three

benchmark functions are considered in this study, as given in Appendix A and B. The

behavior (complexity) of these problems varies to cover most difficulties faced in the

area of continuous global optimization and real-world applications. Most of these

functions are considered as difficult to optimize.

The definitions and mathematical formulation of some terminologies, difficulties and

challenges related to such functions, are illustrated in Table 2.3 (Weise, 2009).

 Figure 2.4 illustrates such a function f defined over a three-dimensional space 𝔽 =

(𝕏, 𝕐, ℤ). As outlined in the graph, we distinguish between local and global optima. A

global optimum is an optimum of the whole domain 𝔽 while a local optimum is an

optimum of only a subset of 𝔽.

34

3
4

 Table 2.3: Definitions and mathematical formulations of different terminologies related to optimization

Terminology General Definitions Sub-Definitions Mathematical formulation

Local Optimum

A local optimum 𝑋∗ ∈ 𝕏 of one (objective) function

𝑓: 𝕏 → ℝ is either a local maximum or a local minimum

Local Maximum

Is a local optimum with an input element

𝑓(�̂�) ≥ 𝑓(𝑋) for all x neighboring �̂�

If 𝕏 ∈ ℝ𝑛 we can write,

∀�̂� ∃𝜖 > 0: 𝑓(�̂�) ≥ 𝑓(𝑋)∀𝑋 ∈

 𝕏, |𝑋 − �̂�| < 𝜖

Local Minimum

Is a local optimum with an input element

𝑓(�̂�) ≤ 𝑓(𝑋) for all 𝑥 neighboring �̂�

If 𝕏 ∈ ℝ𝑛 we can write,

∀�̂� ∃𝜖 > 0: 𝑓(�̂�) ≤ 𝑓(𝑋)∀𝑋 ∈

 𝕏, |𝑋 − �̂�| < 𝜖

Global Optimum

A global optimum 𝑋∗ ∈ 𝕏 of one (objective) function

𝑓: 𝕏 → ℝ is either a global maximum or a global

minimum. Even a 1-𝐷 function 𝑓: 𝕏 = ℝ → ℝ may

have more than one global maximum, multiple global

minima, or even both in its domain 𝕏

Global Maximum

Is a global optimum with an input

element 𝑓(�̂�) ≥ 𝑓(𝑋)∀𝑋 ∈ 𝕏

-

Global Minimum

Is a global optimum with an input

element 𝑓(�̂�) ≤ 𝑓(𝑋)∀𝑋 ∈ 𝕏

-

Solution Space

The union of all solutions of an optimization problem is called its solution space 𝕊, where 𝒳∗ ⊆ 𝕊 ⊆ 𝕏. A solution space contains (and can be equal

to) the global optimal set 𝒳∗. A valid solution X ∈ 𝕊, which is not an element of 𝒳∗, may exist, particularly within the context of constraint

optimization

Candidate Solution A candidate solution 𝑋 is an element of the problem space 𝕏

35

Global Maximum

Local

Minimum

Local

Maximum

Global

Minimum

Local

Minimum

Figure 2.4: Function with multi global and local maximum and minimum points

2.6 No-Free Lunch Theorem and Domain Knowledge Utilization

 Most search heuristic algorithms have little or no problem-specific knowledge

utilization. For this reason, they are called “black-box” optimization algorithms.

Primary examples of the black-box approaches are EAs, simulated annealing (SA), hill

climbing (HC), and hill descending (HD). Brute-force approaches or random search

approaches are also black box optimization algorithms. Thus, they represent an

important benchmark against which the performance of other algorithms may be

measured. The general search process idea of these algorithms is to describe how to

search the solution space without being restricted to the type of problem. Some of these

algorithms may be tailored (i.e. customized) to make them suitable for a particular

problem.

 Recently, no free lunch (NFL) theorem for search and optimization (Wolpert &

MacReady, 1997) has sparked intense debate in the computational intelligence

community. NFL theorem has had a considerable effect on the field of optimization

research. This theorem states that any optimization algorithm 𝑎𝑖 that searches for an

36

extremum of a cost function performs exactly the same as all other optimization

algorithms 𝑎𝑖−1s, such as a random search algorithm, when averaged over all possible

cost functions 𝑓 if and only if 𝑓 is closed under permutation (c.u.p) and each target

function in 𝑓 is equally likely (a uniform probability distribution over fitness functions).

NFL can be defined by using Equation 2.14 as follows: For any two black box

optimization algorithms 𝑎1 and 𝑎2, the performance 𝑃, averaged over all combinatorial

optimization problems 𝑓, is constant for any pair of algorithms,

∑𝑃(𝑑𝑚|𝑓, 𝑚, 𝑎1)

𝑓

=∑𝑃(𝑑𝑚|𝑓,𝑚, 𝑎2)

𝑓

(2.14)

where 𝑚 is the number of algorithm iterations, and 𝑑𝑚 is the time-ordered set of 𝑚

distinct points visited. In (Igel & Toussaint, 2004), it is proved that as the cardinality of

the search space increases, the fraction of nonempty subsets that are closed under

permutation rapidly approaches zero, and the number of local minima and constraints

on steepness lead to subsets that are not closed under permutation. Thus, the result is

consistent with intuition that on average, there are some algorithms that will perform

better than others. However, NFL theorem suggests that this assertion is not precise, and

finding an optimal algorithm with exceptional performance is applicable only for

limited problems (particularly those of similar characteristics). This idea means that if

an algorithm performs well on a set of problems, then it will perform poorly on all

others, and any algorithm can outperforms another algorithm if it is specialized to the

structure of a problem under consideration. Based on the NFL theorem, super-

algorithms are non-existent.

 As emphasized above, NLF theorem implies that across all optimization problems,

the average performance of all algorithms is the same unless it incorporates prior

problem domain knowledge into the behavior of the algorithms (such as EAs and its

37

variant DE as they are not problem-specific in nature) for performance improvement

and to match algorithms to problems (Ho & Pepyne, 2002). Therefore, the general

framework of a problem solver will be as depicted in Figure 2.5.

Optimization

Algorithm

Domain

Knowledge

Real-World

Optimization

Algorithm

Figure 2.5: General framework of a problem solver

As discussed in (Bonissone, Subbu, Eklund, & Kiehl, 2006), such knowledge can be

embedded by using two methods, which are classified in Figure 2.6. It indicates that the

performance of any EA can be remarkably improved if integrated with additional

domain knowledge approaches.

Domain Knowledge

Explicit Domain Knowledge Implicit Domain Knowledge

Data Structure

Encoding

Constraints

Seeding the Initial Iteration

Interweaving Local Exploitation

within Global Search

Variational and Selection Operation

Tuning and Control of Algorithms Parameters

Figure 2.6: General classification of domain knowledge methods

 In this thesis, an adaptive DE algorithm that is not problem specific in nature was

proposed. This algorithm was compared with other state-of-the-art algorithms on a

variety of benchmark functions with different characteristics. The utilization of the

38

domain knowledge was considered in the application of the proposed algorithm for real-

world robot manipulator application.

2.7 Summary

 This chapter discusses various topics to provide sufficient background on diverse

issues that concern DE literature.

 An overview of the general concept of EAs and their importance as a problem solver

in continuous and non-continuous optimization problems is initially presented.

 The main reasons for selecting DE as a parent algorithm are briefly explained. The

classical version that encompasses DE basic operators and variants, are then discussed.

The presented DE algorithm in this chapter (Algorithm 2.2) is utilized as a parent

algorithm for introducing any other enhanced version. Adaptive DE exhibits superior

performance and advancement over classical DE with manual settings, according to the

reported results of numerous comparative studies of DE parameter settings. Studies on

adaptive DE have asserted the efficiency of this algorithm.

The obtained details of classical DE and adaptive DE will serve as a basis for the

procedural analysis and algorithm development in later chapters.

 An unconstraint single-objective optimization problem and its classes are illustrated to

function as an evaluation and application domain of adaptive DE algorithms. Finally, a

brief discussion on the no-free lunch theorem and domain knowledge utilization is

presented.

 Adaptive DE algorithms have shown effeciency over the standard DE algorithms with

fixed parameters over many optimization problems. Therefor, Chapter 3 provides a

comprehensive review and analysis on this type of algorithms and their adaptive

mechanisms.

39

CHAPTER 3

ADAPTIVE DIFFERENTIAL EVOLUTION: TAXONOMY AND ANALYSIS

3.1 Introduction

 Globally, the goal of parameter settings is to keep up the optimal

exploration/exploitation balance so that the algorithm is able to find a global optimum

in a minimum amount of time. A well-chosen set of these parameters brings about the

convergence performance and robustness of an algorithm with various degrees. The

setting of these parameters is problem-dependent, neither an intuitive nor a

straightforward task, and requires previous experience of the user. The standard

procedure of DE generally disposes the following four main control parameters:

 Population size (𝑁𝑝), which determines the total number of potential solutions

in the same generation.

 Mutation scaling factor (𝐹), which determines the amount of differentiation

ratios that the perturbed solution could acquire.

 Crossover rate (𝐶𝑅), which determines the probability that the yielded offspring

inherits the actual genes of an individual.

 Number of generations (𝑡), which determines the period needed to determine

when the DE run would be terminated.

 Tremendous research efforts have been focused on finding reasonably good settings

for the control parameters of DE, either by manual tuning or alternative adaptive setting

techniques. Adaptive DE algorithms exhibit faster and more reliable convergence

performance than classical DE with manual parameter settings.

 To the best of our knowledge, only a few significant review studies on DE have been

reported: Das and Suganthan (2011) published a comprehensive survey article that,

40

almost, addresses all the issues concerning current DE-research, such as DE and

constrained optimization functions, important schemes of DE for single-objective

functions, DE in complex environments, theoretical analysis and development of DE,

most contemporary engineering applications of DE, and so on. However, the share of

DE parameters control topic in this survey is only a terse section that discusses some of

the most prominent and recent DE variants in the field. This article followed Neri and

Tirronen (2010) survey paper that presents DE and its most recent advances in a

classification format, whereby, these reviewed methods were categorized into two main

classes: the first class is based on integrating DE with an extra component like local

search methods. The second class is based on modifying DE structure. Detailed

experiments have been conducted based on a broad set of various benchmark problems

to test the overall performance of these algorithmic classes. Recently, Chiang, Chen, and

Lin (2013) published a new taxonomy on DE parameters control mechanisms based on

the type of parameter values (discrete, continuous), number of parameter values

(multiple, individual, variable), and the information used to adjust the parameter values

(random, population, parent, individual).

 Accordingly, the present study in this chapter is devoted to provide two types of

review and analysis on DE parameter settings. First, in order not to overlook the

importance of parameter tuning, this chapter presents a short review on DE parameters

tuning with a table composed of some estimated recommended guidelines gleaned from

literature for setting these parameters. These settings are chosen to almost fit different

optimization problems. Second, an overall review and analysis are presented of the

state-of-the-art research on certain selected adaptive DE versions, which, according to

our judgment, are the most promising and successful parameter control solutions that

have been published on relevant forums. This analysis is addressed using a classification

of adaptive DE provided in the same section and using the new classification of the

41

extended parameter control taxonomy of EAs.

3.2 Evolutionary Algorithms Parameter Settings: Extended Taxonomy

 The critical decision in implementing any EA is on how to set the values for various

parameters of that algorithm. These values greatly affect the performance of the

evolution. Parameter settings are commonly composed of crossover rate, mutation step,

population size, selection pressure, and penalty coefficient. It is an important and

promising aspect of evolutionary computation. The efficiency of any EA greatly

depends on the setting of these parameters, that is, by parameter tuning or parameter

control. Parameter tuning is also called off-line setting and involves using several

“standard” parameter setting values in advance and keeping these settings fixed during

the run, whereas parameter control is also called on-line setting and involves using

another class of approaches where parameters are subject to change or evolve as

problem parameters are optimized. Scientists and practitioners typically tune EA

parameters manually and are guided only by their experience and some rules of thumb.

Parameter tuning often requires tedious and time-consuming human involvement.

Moreover, the process of any EA, and not necessarily DE, is essentially adaptive and

dynamic process; thus, using fixed parameters with constant values opposes this

essence. Intuitively, the values of these parameters might be optimal at different stages

of the evolution; any effort spent toward this direction is indeed lost a priori (Angeline,

1995; Brest, Boskovic, Greiner, Zumer, & Maucec, 2007; Cotta, Sevaux, & Sörensen,

2008; Eiben, Hinterding, & Michalewicz, 1999; Eiben & Smith, 2003). The downsides

or limitations of parameter tuning are as follows (Lobo, Lima, & Michalewicz, 2007):

 Parameter values tuned for a single problem may lead to a large difference in

performance if these parameters were set to different values.

42

 A parameter tuned for one test problem and produced superior results may not be as

effective in other problems.

 EA parameters are intrinsically dependent; thus, tuning them independently is

inconvenient.

An alternative form is parameter control, which refers to when an automated setting is

applied on EA parameter values. Globally, the automation of parameter settings

encompasses three main categories (Cotta, Sevaux, & Sörensen, 2008; Eiben & Smith,

2003; Lobo, Lima, & Michalewicz, 2007):

 Deterministic parameter control – automation occurs when a deterministic rule is

triggered to modify the value of a strategy parameter in a fixed, predetermined

manner without using any feedback from the search.

 Adaptive parameter control – automation occurs during the evolution when the

strategy parameter direction and/or magnitude are adjusted according to a pre-

designed rule. Basically, automation incorporates information gleaned from the

feedback based on algorithm performance, such as the quality of the individual

fitness value, without being part of the evolution, where the new control parameter

value may or may not persists or propagates throughout the next iterations.

 Self-adaptive parameter control – automation occurs when the strategy parameters

undergo genetic encoding and when the alteration is subject to evolution and

pressure (i.e., mutation and crossover); better parameter values tend to produce

better individuals (i.e., solutions) with the highest chance to survive and propagate

for more off-springs.

 Another important criterion that should be considered when discussing parameter

control techniques is the evidence of change in parameter value, which can be observed

from the performance of operators, the diversity of the population, and fitness values.

Evidence can be absolute or relative. Absolute evidence is when a rule is applied to alter

43

a strategy parameter value on the basis of a predefined event feedback, such as updating

the probability of mutation rate in accordance with a fuzzy rule set, population diversity

drops at some given value, and even time elapses, rather than being relative to the

performance of other values. By contrast, relative evidence is when the strategy

parameter value is altered according to the fitness of the offspring produced and the

better is rewarded; this change is specified relative, not deterministically, to one value

present at any time. Therefore, deterministic parameter control is impossible with

relative evidence and thus for self-adaptive parameter control with absolute evidence

(Angeline, 1995; Cotta, Sevaux, & Sörensen, 2008; Eiben, Hinterding, & Michalewicz,

1999; Eiben & Smith, 2003).

 The aforementioned terminologies of the parameter setting of EAs have led to the

taxonomy illustrated in Figure 3.1. The new taxonomy is an extension of a former one

suggested in (Eiben & Smith, 2003) which caused some confusion among a number of

researchers working in this field, particularly in distinguishing deterministic and

absolute adaptive rule, as well as relative adaptive rule and self-adaptive rule.

Parameter Control

Deterministic

Partially-

Deterministic

Fully-

Deterministic

Adaptive Self-Adaptive

Absolute Relative

Evolution-Process

Based

Learning-Process

Based

Progressive-

Controlled Based

Explicit Parameter

Control

Implicit Parameter

Control

Absolute

Parameter Settings

Before the Run After the Run

Parameter tuning

Relative

Figure 3.1: Extended taxonomy of parameters settings in EAs

44

Accordingly, we investigated the subject of parameter control and found new

subcategories that can be added to the main one to address the ambiguity in

classification. The definitions of these subcategories are as follows:

 Fully-Deterministic Scheme and Partially-Deterministic Scheme, these two

subcategories fall under Deterministic Parameter Control category. Their main

feature is not receiving any feedback from the search during the evolution.

Technically, a fully-predetermined rule is when a user makes a complete counter-

intuition on how to steer the control parameter to the desired direction and/or

magnitude; for instance, a rule is triggered on the basis of a certain number of

generations that elapsed. By contrast, a partially-predetermined rule is when one

uses random based scheme to alter, for example, mutation probability after every

100 generations (Fogel, Fogel, & Atmar, 1991).

 Progressive-Controlled Based, this subcategory is applied when some feedback

from the search is discriminated as measurements on the basis of user pre-

determined rules. When these measurements achieve a threshold, a corresponding

adaptive rule is applied to update its relative parameter control. Thus, the progress

of updating parameter values, as well as the search, is controlled under

inconsiderable intuition. For instance, these measurements may be based on

gathering information from previous runs through data mining-based fuzzy-

knowledge control (Liu & Lampinen, 2005), theoretical considerations (Smith &

Smuda, 1995), or practical experience encapsulation (Lis, 1996).A prominent

example of this type of parameter control is the 1/5 success rule of Rechenberg

(Rechenberg, 1973; Schwefel, 1977); this rule is applied at certain periodic

intervals deterministically.

 Progressive-Uncontrolled Based (Learning Process-Based), this subcategory is

the most prominent in literature. This sub-classification falls between adaptive rule

45

with relative evidence and self-adaptive with evolution-process rule, because both

rules are intersected on the basis of updating the control parameter values

associated with each individual, at each generation based on their corresponding

fitness value; better features of individuals will be propagated to the next

populations over time. The only difference is that in progressive-uncontrolled rule

feedback is gained from the search to allow the parameter control to gradually

adapt by applying a pre-specified strategy, which is most likely analogue to that of

crossover and mutation strategies (Hansen & Ostermeier, 1996; Qin & Suganthan,

2005; Zhang & Sanderson, 2009b); most of these strategies are learning schemes

that collect experience from previous search. In such methods, the changes

performed on the parameter values are fully uncontrolled, because the adaptive rule

is associated only with the “fittest” solutions and its corresponding control

parameters. This subcategory causes much confusion for some researchers working

in this field (Zhang & Sanderson, 2009b). For convenience, we use dashed-line

connector to make it optional for researchers who desire to stick with the former

taxonomy, not to use the latter one, and include the learning style under self-

adaptive category, as shown in Figure 3.1.

Ultimately, categories that are involved in the search and gradually evolved by either

learning or evolution strategy as long as the search is not yet terminated, are considered

as implicit parameter control, otherwise, are explicit parameter control.

3.3 Differential Evolution Parameters Tuning

 As a starting point, (Storn & Price, 1997; Storn & Price, 1995), in his early studies,

examined the DE performance towards different 𝐹 and 𝐶𝑅 settings. He concluded that

the choice of 𝐹 has a higher priority impact on the performance of DE than that of 𝐶𝑅.

This is because of its ability to change the characteristics of the search. Later, and based

46

on the basis of discussion reported in (Price & Storn, 1997), the study (Liu & Lampinen,

2005) recommends the use of 0.9 as a control parameters setting for both 𝐹 and 𝐶𝑅,

whereas the empirical analysis reported in (Zielinski, Weitkemper, Laur, & Kammeyer,

2006) demonstrated that a setting of 𝐹 ≥ 0.6 and 𝐶𝑅 ≥ 0.6 leads to DE having better

performance. Zaharie draws our attention to her two distinctive seminal studies.

The first one (Zaharie, 2002a) was a complete theoretical and empirical analysis of DE

control parameter settings and their effects on the population diversity; then she pointed

out to a simple relation (see Equation 3.1) that can frequently be used to find

appropriate values for the control parameters.

(2𝐹2𝐶𝑅 −
2𝐶𝑅

𝑁𝑝
+
𝐶𝑅2

𝑁𝑝
+ 1) . 𝑣𝑎𝑟(𝑃𝑥

𝑡) (3.1)

where 𝑣𝑎𝑟(𝑃𝑥
𝑡) indicates the population variance as in Equation 3.2,

𝑉𝑎𝑟(𝑃𝑥
𝑡) =

1

𝑁𝑝
∑ (𝑥𝑖

𝑡 − 〈𝑥〉𝑡)2𝑁𝑝−1
𝑖=0 ; 〈𝑥〉𝑡 =

1

𝑁𝑝
∑ 𝑥𝑖

𝑡𝑁𝑝−1
𝑖=0 (3.2)

From Equation 3.1 we can see that if the factor 2𝐹2𝐶𝑅 −
2𝐶𝑅

𝑁𝑝
+
𝐶𝑅2

𝑁𝑝
+ 1 > 1 then the

variation operators induce an increase in the population diversity, while if 2𝐹2𝐶𝑅 −

2𝐶𝑅

𝑁𝑝
+
𝐶𝑅2

𝑁𝑝
+ 1 < 1 then the population variance decreases. Thus, accordingly, and base

on what has already been proved experimentally that the selection operator usually

reduces the population diversity, the values of the control parameters which satisfy

Equation 3.3 can be considered to be critical; this is only to assure that the factor

2𝐹2 −
2

𝑁𝑝
+
𝐶𝑅

𝑁𝑝
 is always greater than one.

47

2𝐹2 −
2

𝑁𝑝
+
𝐶𝑅

𝑁𝑝
= 0 (3.3)

As such, Figure 3.2 confirms what has been predicted in (Zaharie, 2002a) that 𝐹 =

0.1341 is a critical value when 𝑁𝑝 = 50 and 𝐶𝑅 = 0.2, in the sense that the population

variance is close in proximity to the constant. These results were generated using

Zaharie’s modified version of DE over 100 run averages.

Y

-A
x
is

Generations

F=0.3

F=0.2

60

50

40

20

10
F=0.1341

F=0.1
0

20

30V
a

r(
P

x
,t
)

40 60 800

Iterations

Figure 3.2: The evolution trend of the population variance of a single control parameter

𝐹 for different values (Price, Storn, & Lampinen, 2005)

Thereafter, she presented her second work in (Zaharie, 2007) as a way of letting the

practitioners have sufficient analysis about the influence of the crossover probability 𝐶𝑅

on 𝑃𝑚 for both binomial and exponential crossover variants. Where 𝑃𝑚 denotes the

probability that a component of an individual is mutated, and can be measured by first

identifying the type of the crossover being used, then applying one of the following

probability equations:

48

Binomial Crossover Probability 𝑃𝑚 = 𝐶𝑅 (1 −
1

𝐷
) + 1/𝐷 (3.4)

Exponential Crossover Probability 𝑃𝑚 = 1 − 𝐶𝑅
𝐷/𝐷(1 − 𝐶𝑅) (3.5)

Figure 3.3 depicts the correspondence tendency between 𝐶𝑅 value and 𝑃𝑚 value for

binomial and exponential crossover for two dimensions of the problem (𝐷 = 30, 𝐷 =

100).

Figure 3.3: Correspondence’s tendencies between the mutation probability, 𝑃𝑚 and the

crossover probability, 𝐶𝑅 for binomial and exponential crossover. (a) For 30 dimensions

problems. (b) For 100 dimensions problems

The same figure shows the linear dependence between 𝑃𝑚 and 𝐶𝑅 in the case of

binomial crossover and nonlinear dependence in the case of exponential crossover

0.03

0.13

0.23
0.32

0.42

0.52
0.61

0.71

0.81
0.9 0.92 0.95 0.97 0.99 1

0.03 0.03 0.04 0.04 0.05 0.06 0.08 0.11
0.16

0.31
0.38

0.52

0.66

0.86

1

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.92 0.95 0.97 0.99 1

P
m

CR

(a) 30 dimensions problems

bin

exp

0.01

0.11

0.21

0.31

0.41

0.51
0.6

0.7

0.8

0.9 0.92 0.95 0.97 0.99 1

0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.03 0.05
0.09 0.12

0.19

0.31

0.63

1

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.92 0.95 0.97 0.99 1

P
m

CR

(b) 100 dimensions problems

bin

exp

49

combined with and the fact that the difference between both variants is more significant

when 𝐷 is larger. In addition to the previous analysis, she presented in the same article a

symmetrical comparison on the performance of the two crossover variants.

 Throughout this literature, it has been noted that there is no exact conclusive result on

what is preferable for DE parameter tuning. For example, Pedersen in (Pedersen, 2010)

has pointed out in his technical report that Rastrigin function (a multi model separable

function) (Liu & Lampinen, 2005) has not been solved by DE with (𝐷 = 30,𝑁𝑝 =

75, 𝐶𝑅 = 0.8803, and 𝐹 = 0.4717) parameter settings and suggested the practitioners

try other parameter settings, or to choose another optimization method such as PSO.

While Zaharie in (Zaharie, 2007) offered a rigorous analysis for this function in

particular and argued that this function can be solved by DE with parameters tuned to

(𝐷 = 30,𝑁𝑝 = 50, 𝐹 = 0.5, 𝐶𝑅 < 0.3 for binomial crossover and 𝐶𝑅 ≤ 0.97 for

exponential crossover), and has reached the desired optimum with the accuracy

𝜖 = 10−6.

 More often than not, people use what has already worked well in previously reported

cases. Hence, we enlisted DE parameter control tuning in Table 3.1. This table includes

the corresponding guideline for each parameter based on the encapsulation of practical

experience which are the most promising and successful parameter control settings and

have already been tested and showed to be effective on relevant forums.

3.4 Adaptive Differential Evolution: Procedural Analysis and Comparison

 In literature, there are many recent and prominent adaptive DE variants that show

efficiency and reliability in their performance. In this study, most of these algorithms

have been reviewed and analyzed on case-by-case bases each according to the facts of

its particular situation (parameter control scheme and/or adaptive DE mutation strategy)

that has been implemented (see Figure 3.4).

50

 Table 3.1: Table of DE algorithm control parameters with their estimated

corresponding setting guidelines

Then, an extensive comparison among these methods has been conducted based on their

conceptual similarities and differences, and the pros and cons of each algorithm. These

algorithms are as follows:

 FADE: is a parameter adaptive DE in which the control parameters (𝐹 and 𝐶𝑅)

of DE are adjusted using fuzzy logic (Liu & Lampinen, 2005).

 jDE is a parameter adaptive DE in which the control parameters (𝐹 and 𝐶𝑅) of

DE are adjusted using self-adaptive scheme (Brest, Greiner, Boskovic, Mernik,

& Zumer, 2006).

Parameter Guideline

𝑵𝒑

Generally, the large 𝑁𝑝 the more robust will be the search, although, sometimes due to

complex objective function, the generation will be cumbersome by a considerable amount

of computational time, as well as the possibility of increasing in the set of potential

ineffective moves. On the other hand, it should not be small in order to avoid stagnation

and have adequate population diversity (Liu & Lampinen, 2005; Storn & Price, 1997).

Arguably, a plausible choice of 𝑁𝑝 is recommended in the range 𝟐𝑫 ≤ 𝑵𝒑 ≤ 𝟐𝟎𝑫.

𝑭

Many studies have been reported, for example (Lampinen & Zelinka, 2000), and arrived at

similar conclusions: a small 𝐹 increases in the probability of DE gets trapped in a local

minimum and leads to a premature convergence due to the extensive exploitation caused,

whilst a large 𝐹 makes DE over explorative and significantly slows down the convergence

speed. The empirical analyses also suggest, that the use of (𝐹 = 1) is not recommended

since it leads to a significant decrease in the exploration power (Liu & Lampinen, 2005;

Storn & Price, 1997). Literature recommends 𝑭 ∈ [
𝟐

𝑵𝒑
, 𝟏]. Eventually and based on what

Zaharie has concluded in (Zaharie, 2002a), the setting (𝑭 ∈ [
𝟐

𝑵𝒑
,
𝑫

𝑵𝒑
), where 𝐷 ≤ 𝑁𝑝) is

highly recommended if wanting to narrow down the range of 𝐹; otherwise a gradual

increase of the value within the range (
𝑫

𝑵𝒑
< 𝐹 ≤ 1) is recommended until satisfied.

𝑪𝑹

It is arguable that the small value of 𝐶𝑅 will lead to a small probability change in the

number of parameters being swapped between the two engaged individuals. Otherwise, a

high value of 𝐶𝑅 (𝐶𝑅 = 1) will dramatically reduce the diversity amount of the offspring

solution to be only inherited from the interim individual, which makes the crossover

operation useless (Lampinen & Zelinka, 2000). In many studies (Liu & Lampinen, 2002b;

Storn & Price, 1997), the setting 𝑪𝑹 ∈ [𝟎. 𝟕, 𝟎. 𝟗] is recommended.

𝒕

Usually determined by assigning a user-defined parameter for an acceptable stopping or

convergence criteria (CPU time, total number of fitness evaluations, and so on) then

connecting the metric 𝑡 directly to the evolutionary process (i.e. the aforementioned

criteria) (Eiben & Smith, 2003). The range 𝟑𝟎𝟎 ≤ 𝒕 ≤ 𝟓𝟎𝟎𝟎 is recommended for high

dimensional and noisy problems.

51

 DESAP is a parameter adaptive DE in which the control parameters (𝐹, 𝐶𝑅 and

𝑁𝑝) of DE are all adjusted though evolution (Teo, 2006).

 JADE is a parameter adaptive DE in which the control parameters (𝐹 and 𝐶𝑅)

of DE are adjusted using self-adaptive learning scheme (Zhang & Sanderson,

2009b).

Adaptive DE Algorithms

Adaptive Parameters with

Single DE Strategy

Adaptive Parameters with

Multiple DE Strategies

with Standard

Mutation Strategy

with Advanced

Mutation Strategy

with Standard

Mutation Strategy

with Advanced

Mutation Strategy

- FADE

- jDE

- DESAP

- JADE

- MDE_pBX

- p-ADE

- SaDE

- EPSDE

- CoDE

- SaDE-MMTS

- SaJADE

- HSPEADE

Figure 3.4: Simple classification illustrates the position of each adaptive DE variant

with respect to the type of adaptive procedure it applies

 MDE_pBX is a parameter adaptive DE in which the control parameters (𝐹 and

𝐶𝑅) of DE are adjusted using self-adaptive learning scheme (Islam, Das, Ghosh,

Roy, & Suganthan, 2012).

 p-ADE is a parameter adaptive DE that adjusts the parameters of 𝐹 and 𝐶𝑅 and

other control parameters related to its mutation scheme in an adaptive manner

(Bi & Xiao, 2011).

52

 SaDE is a parameter and strategy adaptive DE in which the control parameters

(𝐹 and 𝐶𝑅) of DE as well as the DE strategies are adjusted using adaptive

techniques (Qin, Huang, & Suganthan, 2009).

 EPSDE is a new version of adaptive DE in which an ensemble of control

parameters and strategies are created then selected randomly for each individual.

(Mallipeddi, Suganthan, Pan, & Tasgetiren, 2011);

 CoDE is a composition based DE in which three DE strategies and three control

parameters values of 𝐹 and 𝐶𝑅 are combined randomly to generate the trial

vectors (Wang, Cai, & Zhang, 2011).

 SaDE-MMTS is a parameter and strategy adaptive DE in which the control

parameters (𝐹 and 𝐶𝑅) of DE as well as the DE strategies are adjusted using

adaptive techniques. This algorithm is an integration of SaDE, JADE and local

search algorithms (Zhao, Suganthan, & Das, 2011).

 SaM (SaJADE) is a parameter and strategy adaptive DE in which the control

parameters (𝐹 and 𝐶𝑅) of DE as well as the JADE strategies are adjusted using

adaptive techniques. This algorithm is an improvement to the JADE (Gong, Cai,

Ling, & Li, 2011).

 HSPEADE is a parameter and strategies adaptive DE. This algorithm is an

improvement for the EPSDE algorithm. In this algorithm the Harmony Search

algorithm (HS) is used to select the control parameter values of 𝐹 and 𝐶𝑅 as

well as the DE strategies from the ensemble instead of the random manner

(Mallipeddi, 2013).

To convey the aforementioned information, this section is subdivided into three major

subsections.

53

3.4.1 DE with Adaptive Parameters and Single Strategy

 In this subsection the main characteristics and mechanisms of six remarkable

adaptive DE versions are stated in details, on the basis of parameter adaptive schemes

and DE strategies.

3.4.1.1 Adaptive DE with Single Standard Strategy

 FADE Algorithm

 FADE uses the standard DE scheme DE/rand/1/bin. It updates the values of 𝐹 and 𝐶𝑅

at each generation using a mechanism, which is based on the fuzzy logic controller

(FLC); whereby a fuzzy knowledge-based system is used to update the control

parameters on-line, in a dynamic adaptive manner to the inconsistent situation.

o The values of function values, population diversity (𝐹𝐶) and parameter vectors (𝑃𝐶),

and their updates after 𝑛𝑡ℎ generations are calculated and then used as input to the

FLCs, and the values of the control parameters (i.e. 𝐹 and 𝐶𝑅) are the outputs.

o The values of 𝐹 and 𝐶𝑅 are then assigned to the fuzzy sets membership functions.

o “9 × 2” IF-THEN fuzzy rules statements are used to formulate the conditional

statements that comprise fuzzy logic.

o Mamdani fuzzy inference method is used as the fuzzy control strategy to map from

the given inputs to an output.

o The defuzzification process is held to map from a space of fuzzy output into a space

of real output.

 jDE Algorithm

 jDE uses the standard DE scheme DE/rand/1/bin. It updates the values of 𝐹 and 𝐶𝑅 in

a self-adaptive manner based on adjusting the control parameters 𝐹 and 𝐶𝑅 by means of

54

evolution and applied at the individual level. First, each individual 𝑥𝑖
𝑡 , 𝑖 = 1,2, … ,𝑁𝑝 is

associated with its corresponding control parameters 𝐹 and 𝐶𝑅. These parameters are

then initialized to 𝐹𝑖
𝑡 = 0.5 and 𝐶𝑅𝑖

𝑡 = 0.9. The new control parameters of

𝐹𝑖
𝑡+1 and 𝐶𝑅𝑖

𝑡+1 are then assigned to random values according to uniform distributions

on [0.1,1] and [0, 1] respectively as follows,

𝐹𝑖
𝑡+1 = {

0.1 + 𝑟𝑎𝑛𝑑1 × 0.9, 𝑖𝑓 𝑟𝑎𝑛𝑑2 < 𝜏1
𝐹𝑖
𝑡, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(3.6)

𝐶𝑅𝑖
𝑡+1 = {

𝑟𝑎𝑛𝑑3, 𝑖𝑓 𝑟𝑎𝑛𝑑4 < 𝜏2
𝐶𝑅𝑖

𝑡, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3.7)

where 𝑟𝑎𝑛𝑑𝑗; 𝑗 ∈ {1,2,3,4} are uniform random values ∈ [0,1]. In this

algorithm, 𝜏1 and 𝜏2 represent the probabilities limits that permit the adjustment of 𝐹

and 𝐶𝑅 values; they are both assigned to the same value 0.1.

3.4.1.2 Adaptive DE with Single Advanced Strategy

 DESAP Algorithm

o Advanced DESAP Mutation and Crossover Schemes

 In DESAP the base strategy used is a bit different from the standard DE/rand/1/bin

and of some sort similar to the strategy introduced in (Abbass, 2002).

Crossover Scheme: The crossover operator is performed first with some

probability, 𝑟𝑎𝑛𝑑(0,1) < 𝛿𝑟1 or 𝑖 = 𝑗, where 𝑗 is a randomly selected variable within

individual 𝑖. The updating strategy is as follows,

𝑋𝑐ℎ𝑖𝑙𝑑 = 𝑋𝑟1 + 𝐹 ∙ (𝑋𝑟2 − 𝑋𝑟3) (3.8)

55

The ordinary amplification factor 𝐹 is set to 1, thereby at least one variable in 𝑋 must be

changed. Otherwise the value of 𝑋𝑐ℎ𝑖𝑙𝑑 and its control parameters will be set to the same

values associated with 𝑋𝑟1.

Mutation Scheme: The mutation stage is implemented with some mutation

probability, 𝑟𝑎𝑛𝑑(0,1) < 𝜂𝑟1, otherwise all the values will remain fixed.

𝑋𝑐ℎ𝑖𝑙𝑑 = 𝑋𝑐ℎ𝑖𝑙𝑑 + 𝑟𝑎𝑛𝑑𝑛(0, 𝜂𝑟1) (3.9)

As can be seen from the equation above, that DESAP mutation is not derived from one

of the DE standard mutation schemes.

o DESAP Parameter Control Schemes

 DESAP is proposed not only to update the values of the mutation and crossover

control parameters, 𝜂 and 𝛿, but, rather, it adjusts the population size parameter,𝜋 as

well in a self-adaptive manner. All parameters undergo the evolution and pressure (i.e.

crossover and mutation) in a way analogue to their corresponding individuals. The terms

𝛿 and 𝜋 have the same meaning as 𝐶𝑅 and 𝑁𝑝, respectively, 𝜂 refers to the probability

of applying the mutation scheme whereas the ordinary 𝐹 is kept fixed during the

evolution process. Mainly, two versions of DESAP have been applied. The population

size of both DESAP versions (Rel and Abs) are initialized by generating, randomly, a

population of (10 × 𝑛) initial vectors 𝑋, where 𝑛 denotes the number of design

variables which are already recommended by the authors of the original DE method

(Storn & Price, 1995). The mutation probability 𝜂𝑖 and crossover rate 𝛿𝑖 are both

initialized to random values generated uniformly between [0,1]. The population size

parameter 𝜋𝑖 is initialized in DESAP-Abs version to,

56

𝜋𝑖 = 𝑟𝑜𝑢𝑛𝑑(𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒 + 𝑟𝑎𝑛𝑑𝑛(0,1)) (3.10)

whereas in DESAP-Rel to,

𝜋𝑖 = 𝑟𝑎𝑛𝑑(−0.5,0. 5) (3.11)

the updating process is then applied on the parameters 𝛿, η and 𝜋 , at the same level with

their corresponding individuals using the same crossover and mutation schemes (see

Equation 3.8-3.9).

 Updating the crossover rate 𝛿

𝛿𝑐ℎ𝑖𝑙𝑑 = 𝛿𝑟1 + 𝐹 ∙ (𝛿𝑟2 − 𝛿𝑟3) (3.12)

𝛿𝑐ℎ𝑖𝑙𝑑 = 𝑟𝑎𝑛𝑑𝑛(0,1) (3.13)

 Updating the mutation probability η

𝜂𝑐ℎ𝑖𝑙𝑑 = 𝜂𝑟1 + 𝐹 ∙ (𝜂𝑟2 − 𝜂𝑟3) (3.14)

𝜂𝑐ℎ𝑖𝑙𝑑 = 𝑟𝑎𝑛𝑑𝑛(0,1) (3.15)

Updating the population size 𝜋

DESAP-Abs: 𝜋𝑐ℎ𝑖𝑙𝑑 = 𝜋𝑟1 + 𝑖𝑛𝑡(𝐹 ∙ (𝜋𝑟2 − 𝜋𝑟3)) (3.16)

DESAP-Rel: 𝜋𝑐ℎ𝑖𝑙𝑑 = 𝜋𝑟1 + 𝑖𝑛𝑡(𝐹 ∙ (𝜋𝑟2 − 𝜋𝑟3)) (3.17)

DESAP-Abs: 𝜋𝑐ℎ𝑖𝑙𝑑 = 𝜋𝑐ℎ𝑖𝑙𝑑 + 𝑖𝑛𝑡(𝑟𝑎𝑛𝑑𝑛(0.5,1)) (3.18)

DESAP-Rel: 𝜋𝑐ℎ𝑖𝑙𝑑 = 𝜋𝑐ℎ𝑖𝑙𝑑 + 𝑟𝑎𝑛𝑑𝑛(0, 𝜂𝑟1) (3.19)

The ordinary amplification factor 𝐹 is set to 1. The evolution process of DESAP

continues until it achieves a pre-specified population size 𝑀, then the new population

size is calculated for the next generation as,

57

DESAP-Abs: 𝑀𝑛𝑒𝑤 = 𝑟𝑜𝑢𝑛𝑑(∑ 𝜋/𝑀)𝑀
1 (3.20)

DESAP-Rel: 𝑀𝑛𝑒𝑤 = 𝑟𝑜𝑢𝑛𝑑(𝑀 + (𝜋 ×𝑀)) (3.21)

For the next generation and in an attempt to carry forward all the individuals with the

remaining (𝑀𝑛𝑒𝑤 −𝑀) individuals, the condition (𝑀𝑛𝑒𝑤 > 𝑀) should be satisfied;

otherwise, carry forward only the first 𝑀𝑛𝑒𝑤 individuals of the current generation.

 JADE Algorithm

o Advanced JADE Mutation Schemes

 There are different mutation versions of JADE have been proposed in (Zhang &

Sanderson, 2009a) and (Zhang & Sanderson, 2009b), which we refer to in our study.

The first new mutation scheme is called DE/current-to-pbest/1/bin (see Equation 3.22),

which it has less greedy property than its previous specification scheme, DE/current-to-

best/1/bin, since it utilizes not only the information of the best individual, but the

information of the 𝑝% good solutions in the current population indeed.

𝑣𝑖,𝑗
𝑡 = 𝑥𝑖,𝑗

𝑡 + 𝐹𝑖. (𝑥𝑏𝑒𝑠𝑡,𝑗
𝑝,𝑡 − 𝑥𝑖,𝑗

𝑡) + 𝐹𝑖 . (𝑥𝑟1,𝑗
𝑡 − 𝑥𝑟2,𝑗

𝑡), (3.22)

where 𝑝 ∈ (0, 1] and 𝑥𝑏𝑒𝑠𝑡,𝑗
𝑝,𝑡

 is a random uniform chosen vector as one of the superior

100𝑝% vectors in the current population. The second mutation scheme with an external

archive, denoted as 𝐴, that has been introduced to store the recent explored inferior

individuals that have been excluded from the search process and their differences from

the individuals in the running population, 𝑃. The archive vector 𝐴 is first initialized to

be empty. Thereafter, solutions that are failed in the selection operation of each

generation are added to this archive. The new mutation operation is then reformulated as

follows,

58

𝑣𝑖
𝑡 = 𝑥𝑖

𝑡 + 𝐹𝑖 . (𝑥𝑏𝑒𝑠𝑡
𝑝,𝑡 − 𝑥𝑖

𝑡) + 𝐹𝑖. (𝑥𝑟1
𝑡 − �̃�𝑟2

𝑡), (3.23)

where 𝑥𝑖
𝑡 and 𝑥𝑟1

𝑡 are generated from 𝑃 in the same way as in the original JADE,

whereas �̃�𝑟2
𝑡 is randomly generated from the union, 𝐴 ∪ 𝑃. Eventually, randomly

selected solutions are going to be removed from the archive if its size exceeds a certain

threshold, say population size 𝑁𝑝, just to keep the archive within a specified dimension.

It is clear that if the archive size has been set to be zero then Equation 3.22 is a special

case of Equation 3.23.

Another variant has been proposed to further increase the population diversity, named

archive-assisted DE/rand-to-pbest/1 as follows,

𝑣𝑖
𝑡 = 𝑥𝑟1

𝑡 + 𝐹𝑖 . (𝑥𝑏𝑒𝑠𝑡
𝑝,𝑡 − 𝑥𝑟1

𝑡) + 𝐹𝑖. (𝑥𝑟2
𝑡 − �̃�𝑟3

𝑡) (3.24)

o JADE Parameter Control Schemes

 JADE updates four control parameters (𝐹, 𝐶𝑅, 𝜇𝐹 and 𝜇𝐶𝑅) during the evolution

process.

Mutation factor (F) and location parameter of mutation probability distribution (𝜇𝐹):

The mutation probability 𝐹𝑖 is independently generated at each generation for each

individual 𝑖 according to the following formula,

 𝐹𝑖 = 𝑟𝑎𝑛𝑑𝑐𝑖(𝜇𝐹, 0.1) (3.25)

where 𝑟𝑎𝑛𝑑𝑐𝑖 is a Cauchy distribution with location parameter 𝜇𝐹 and scale parameter

0.1. If 𝐹𝑖 ≥ 1 then the value is truncated to be 1 or regenerated if 𝐹𝑖 ≤ 0. The location

parameter 𝜇𝐹 is first initiated to be 0.5. In this step, JADE shows some similarity in

updating the mean of the distribution, 𝜇𝐶𝑅 , to the learning style used in Population

59

Based Incremental Learning (PBIL) algorithm (Baluja, 1994; Baluja & Caruana, 1995).

The standard version of the PBIL uses learning rate 𝐿𝑅 ∈ (0,1] that must be fixed a

priori. Then, by utilizing Hebbian-inspired rule the difference rate (1 − 𝐿𝑅) is

multiplied by the probability vector (𝑃𝑉) that represents the combined experience of the

PBIL throughout the evolution process, whereas 𝐿𝑅 is multiplied by each bit (i.e. gene’s

value) of the current individual(s) used in the updating process. Likewise, JADE

updates the mutation distribution mean location, 𝜇𝐹 is updated at the end of each

generation after accumulating the set of all the successful mutation probabilities 𝐹𝑖’s at

generation 𝑡, denoted by 𝑆𝐹,. The new 𝜇𝐶𝑅 is updated as,

𝜇𝐹 = (1 − 𝑐) ∙ 𝜇𝐹 + 𝑐 ∙ 𝑚𝑒𝑎𝑛𝐿(𝑆𝐹), (3.26)

where 𝑚𝑒𝑎𝑛𝐿(.) is Lehmer mean,

 𝑚𝑒𝑎𝑛𝐿(𝑆𝐹) =
∑ 𝐹2𝐹∈𝑆𝐹

∑ 𝐹𝐹∈𝑆𝐹

(3.27)

Crossover probability (CR) and mean of crossover probability distribution (𝜇𝐶𝑅): The

crossover probability 𝐶𝑅𝑖 is updated, independently, for each individual according to a

normal distribution,

𝐶𝑅𝑖 = 𝑟𝑎𝑛𝑑𝑛𝑖(𝜇𝐶𝑅 , 0.1), (3.28)

with mean 𝜇𝐶𝑅 and standard deviation 0.1 and truncated to the interval (0, 1]. The mean

𝜇𝐶𝑅 is first initiated to be 0.5. Then, similar to the updating scheme of the mutation

probability mean, the distribution of the crossover mean, 𝜇𝐶𝑅 , is updated at each

generation after accumulating the set of all the successful crossover probabilities 𝐶𝑅𝑖’s

at generation 𝑡, denoted by 𝑆𝐶𝑅, hence calculate its 𝑚𝑒𝑎𝑛𝐴(𝑆𝐶𝑅). The new 𝜇𝐶𝑅 is

updated by the equation,

60

 𝜇𝐶𝑅 = (1 − 𝑐) ∙ 𝜇𝐶𝑅 + 𝑐 ∙ 𝑚𝑒𝑎𝑛𝐴(𝑆𝐶𝑅), (3.29)

where 𝑐 is a positive constant ∈ (0,1] and 𝑚𝑒𝑎𝑛𝐴(∙) is the usual arithmetic mean.

 MDE_pBX Algorithm

o Advanced MDE_pBX Mutation and Crossover Schemes

Mutation Scheme: The new proposed mutation scheme DE/current-to-grbest/1/bin,

utilizes the best individual 𝑥𝑔𝑟𝑏𝑒𝑠𝑡
𝑡 chosen from the 𝑞% group of individuals randomly

selected from the current population for each target vector. The group size 𝑞 of the

MDE_pBX is varying from 5% to 65% of the 𝑁𝑝. The new scheme can be described

as,

𝑣𝑖
𝑡 = 𝑥𝑖

𝑡 + 𝐹𝑦 ∙ (𝑥𝑔𝑟𝑏𝑒𝑠𝑡
𝑡 − 𝑥𝑖

𝑡 + 𝑥𝑟1
𝑡 − 𝑥𝑟2

𝑡), (3.30)

where 𝑥𝑟1
𝑡 𝑎𝑛𝑑 𝑥𝑟2

𝑡 are two different individuals randomly selected from the current

population and they are also mutually different from the running individual 𝑥𝑖
𝑡 and

𝑥𝑔𝑟𝑏𝑒𝑠𝑡
𝑡 .

Crossover Scheme: The new proposed recombination scheme 𝑝-Best, has been defined

as a greedy strategy; it is based on the incorporation between a randomly selected

mutant vector perturbed by one of the 𝑝 top-ranked individual selected from the current

population to yield the trial vector at the same index. Throughout evolution the value of

parameter 𝑝 is reduced linearly in an adaptive manner (see Equation 3.37).

o MDE_pBX Parameters Control Schemes

Modifications applied to the adaptive schemes in MDE_pBX: The scalar factor 𝐹𝑖 and

the crossover rate 𝐶𝑅𝑖 of each individual are both altered independently at each

generation using JADE schemes (see Equation 3.25 and Equation 3.28). The new

61

modifications have been applied only to 𝐹𝑚 and 𝐶𝑅𝑚 adapting schemes. In MDE_pBX,

both 𝐹𝑚 and 𝐶𝑅𝑚 are subscribed to the same rule of adjusting. Firstly, the values of 𝐹𝑚

and 𝐶𝑅𝑚 are initialized to 0.5 and 0.6 respectively, then are updated at each generation

in the following way,

𝐹𝑚 = 𝑤𝐹 ∙ 𝐹𝑚 + (1 − 𝑤𝐹) ∙ 𝑚𝑒𝑎𝑛𝑝𝑜𝑤(𝐹𝑠𝑢𝑐𝑐𝑒𝑠𝑠) (3.31)

𝐶𝑅𝑚 = 𝑤𝐶𝑅 ∙ 𝐶𝑅𝑚 + (1 − 𝑤𝐶𝑅) ∙ 𝑚𝑒𝑎𝑛𝑝𝑜𝑤(𝐶𝑅𝑠𝑢𝑐𝑐𝑒𝑠𝑠) (3.32)

where a set of successful scale factors 𝐹𝑠𝑢𝑐𝑐𝑒𝑠𝑠 and a set of successful crossover

probability 𝐶𝑅𝑠𝑢𝑐𝑐𝑒𝑠𝑠 are generated from the current population. And | | stands for the

cardinality of each successful set. The variable 𝑛 is set to 1.5 as it proves to give better

results on a wide range of test problems. Then the mean power 𝑚𝑒𝑎𝑛𝑝𝑜𝑤 of each set is

calculated as follows,

𝑚𝑒𝑎𝑛𝑃𝑜𝑤(𝐹𝑠𝑢𝑐𝑐𝑒𝑠𝑠) = ∑ (𝑥𝑛 /|𝐹𝑠𝑢𝑐𝑐𝑒𝑠𝑠|)
1
𝑛

𝑥∈𝐹𝑠𝑢𝑐𝑐𝑒𝑠𝑠

 (3.33)

𝑚𝑒𝑎𝑛𝑃𝑜𝑤(𝐶𝑅𝑠𝑢𝑐𝑐𝑒𝑠𝑠) = ∑ (𝑥𝑛 /|𝐶𝑅𝑠𝑢𝑐𝑐𝑒𝑠𝑠|)
1
𝑛

𝑥∈𝐶𝑅𝑠𝑢𝑐𝑐𝑒𝑠𝑠

 (3.34)

Together with calculating the weight factors 𝑤𝐹 and 𝑤𝐶𝑅 as,

𝑤𝐹 = 0.8 + 0.2 × 𝑟𝑎𝑛𝑑(0, 1) (3.35)

𝑤𝐶𝑅 = 0.9 + 0.1 × 𝑟𝑎𝑛𝑑 (0, 1) (3.36)

the 𝐹𝑚 and 𝐶𝑅𝑚 are formulized. As can be seen from Equations 3.35-3.36, the value of

𝑤𝐹 uniformly randomly varies within the range [0.8, 1], while the value of 𝑤𝐶𝑅

62

uniformly randomly varies within the range[0.9, 1]. The small random values used to

perturb the parameters 𝐹𝑚 and 𝑚𝑒𝑎𝑛𝑃𝑜𝑤 will reveal an improvement in the performance

of MDE_𝑝BX as it emphasizes slight varies on these two parameters each time 𝐹 is

generated.

Crossover amplification factor (𝑝): Throughout evolution the value of parameter 𝑝 is

reduced linearly in the following manner,

𝑝 = 𝑐𝑒𝑖𝑙 [
𝑁𝑝

2
∙ (1 −

𝐺 − 1

𝐺𝑚𝑎𝑥
)] (3.37)

where 𝑐𝑒𝑖𝑙(𝑦) is the “𝑐𝑒𝑖𝑙𝑖𝑛𝑔” function that outputs the smallest integer ≥ 𝑦. 𝐺 =

[1,2,3, …𝐺𝑚𝑎𝑥] is the running generation index, 𝐺𝑚𝑎𝑥 is the maximum number of

generations, and 𝑁𝑝 is the population size. The reduction monotony of the parameter 𝑝

creates the required balance between exploration and exploitation.

 p-ADE Algorithm

o Advanced p-ADE Mutation scheme

 A new mutation strategy called DE/rand-to-best/pbest/bin is used; which is,

essentially, based on utilizing the best global solution and the best previous solution of

each individual that are involved in the differential process, thus bringing in more

effective guidance information to generate new individuals for the next generation.

The detailed operation is as follows,

 𝑣𝑖
𝑡 = 𝑊𝑖

𝑡 ∙ 𝑥𝑟1
𝑡 +𝐾𝑖

𝑡 ∙ (𝑥𝑏𝑒𝑠𝑡
𝑡 − 𝑥𝑖

𝑡) + 𝐹𝑖
𝑡 ∙ (𝑥𝑝𝑏𝑒𝑠𝑡𝑖

𝑡 − 𝑥𝑖
𝑡) (3.38)

where 𝑥𝑏𝑒𝑠𝑡
𝑡 denotes the best individual in the current generation 𝑡. 𝑥𝑟1

𝑡 is a random

63

generated individual where 𝑟1 ∈ [1, 𝑁𝑝] and 𝑟1 ≠ 𝑖. 𝑥𝑝𝑏𝑒𝑠𝑡𝑖
𝑡 denotes the best 𝑖𝑡ℎ’s

previous individual picked up from the previous generation. The mutation’s control

parameters 𝑊𝑖
𝑡,𝐾𝑖

𝑡, and 𝐹𝑖
𝑡 of the 𝑖𝑡ℎ individual are updated using a dynamic adaptive

manner. The most remarkable merit of this mutation technique is the inclusion of three

different working parts at the same time:

 Inertial Part (Inheriting part) represented by 𝑊𝑖
𝑡 ∙ 𝑥𝑟1

𝑡 where the current

individual,𝑣𝑖
𝑡, inherits traits from another individual at generation 𝑡.

 Social Part (Learning Part) represented by 𝐾𝑖
𝑡 ∙ (𝑥𝑏𝑒𝑠𝑡

𝑡 − 𝑥𝑖
𝑡) where the current

individual,𝑣𝑖
𝑡, gains information from the superior individual in the current generation

𝑡.

 Cognitive Part (Private Thinking) represented by 𝐹𝑖
𝑡 ∙ (𝑥𝑝𝑏𝑒𝑠𝑡𝑖

𝑡 − 𝑥𝑖
𝑡) where the

current individual,𝑣𝑖
𝑡, reinforces its own perception through the evolution process.

The high values of both the inertial and the cognitive part play a key role in intensifying

the exploration searching space, thus improving its ability for finding the global

solution. While the large values of the social part promotes connections among

individuals, thus resulting to speed up the convergence rate. From the previous

description of the main mechanism of 𝑝-ADE mutation scheme and the PSO standard

perturbation scheme (Kennedy & Eberhart, 1995; Xin, Chen, Zhang, Fang, & Peng,

2012), we can observe that they are closely related in origin, in particular, for the case

where the mutation (see Equation 3.38) is divided into three learning parts in the same

manner applied by PSO algorithm. In 𝑝-ADE there is an additional mechanism which is

called classification mechanism. This classification mechanism is coupled with the

mutation scheme to be implemented on the whole population at each generation.

Accordingly, the new mechanism divides the population’s individuals into three classes:

64

Superior individuals: The first individuals’ category where the fitness values of these

individuals fall in the range 𝑓𝑖 − 𝑓𝑚𝑒𝑎𝑛 < −𝐸(𝑓
2), where 𝑓𝑚𝑒𝑎𝑛 is the mean fitness

values and 𝐸(𝑓2) is the second moment of the fitness values of all individuals in the

current generation. In this case, the exploration ability of the search process is

enhanced by further intensifying the inertial and cognitive parts in order to increase

the likelihood of the excellent individual to find the global solution in its

neighborhood area. So, the corresponding individual is generated as follows,

 𝑣𝑖
𝑡 = 𝑊𝑖

𝑡 ∙ 𝑥𝑟1
𝑡 + 𝐹𝑖

𝑡 ∙ (𝑥𝑝𝑏𝑒𝑠𝑡𝑖
𝑡 − 𝑥𝑖

𝑡) (3.39)

Inferior individuals: The second individuals’ category where the fitness values of

these individuals fall in the range 𝑓𝑖 − 𝑓𝑚𝑒𝑎𝑛 > 𝐸(𝑓
2). The individual in this case has

poor traits since its place in the search space is far away from the global optimum.

Therefore, the exploration search ability is also intensified for rapid convergence

rate. So, the corresponding individual is generated as follows,

 𝑣𝑖
𝑡 = 𝑊𝑖

𝑡 ∙ 𝑥𝑟1
𝑡 +𝐾𝑖

𝑡 ∙ (𝑥𝑏𝑒𝑠𝑡
𝑡 − 𝑥𝑖

𝑡) (3.40)

Medium Individuals: The third individuals’ category where the fitness values of these

individuals fall in the range −𝐸(𝑓2) < 𝑓𝑖 − 𝑓𝑚𝑒𝑎𝑛 < 𝐸(𝑓
2). The individuals in this

category are not superior nor are they inferior; therefore, the complete perturbation

scheme (see Equation 3.38) should be implemented entirely for further enhancing

both the exploitation and exploration abilities.

o p-ADE Parameter Control Schemes

 p-ADE comprises four control parameters involved in the search process, including

three mutation scheme parameters (𝑊, 𝐹 and 𝐾) and crossover rate 𝐶𝑅. A dynamic

65

adaptive scheme has been proposed to commonly update the four parameters through

the run as follows,

𝑊𝑖
𝑡 = 𝑊𝑚𝑖𝑛 + (𝑊𝑚𝑎𝑥 −𝑊𝑚𝑖𝑛) × ((2 − 𝑒𝑥 𝑝 (

𝑡

𝐺𝑒𝑛
× 𝑙 𝑛(2))) ×

1

2

+
𝑓𝑖
𝑡 − 𝑓𝑚𝑖𝑛

𝑡

𝑓𝑚𝑎𝑥
𝑡 − 𝑓𝑚𝑖𝑛

𝑡 ×
1

2
)

(3.41)

𝐾𝑖
𝑡 = 𝐾𝑚𝑖𝑛 + (𝐾𝑚𝑎𝑥 − 𝐾𝑚𝑖𝑛) × ((𝑒𝑥 𝑝 (

𝑡

𝐺𝑒𝑛
× 𝑙 𝑛(2)) − 1) ×

1

2

+
𝑓𝑖
𝑡 − 𝑓𝑚𝑖𝑛

𝑡

𝑓𝑚𝑎𝑥
𝑡 − 𝑓𝑚𝑖𝑛

𝑡 ×
1

2
)

(3.42)

𝐹𝑖
𝑡 = 𝐹𝑚𝑖𝑛 + (𝐹𝑚𝑎𝑥 − 𝐹𝑚𝑖𝑛) × ((2 − 𝑒𝑥 𝑝 (

𝑡

𝐺𝑒𝑛
× 𝑙 𝑛(2))) ×

1

2

+
𝑓𝑚𝑎𝑥
𝑡 − 𝑓𝑖

𝑡

𝑓𝑚𝑎𝑥
𝑡 − 𝑓𝑚𝑖𝑛

𝑡 ×
1

2
)

(3.43)

𝐶𝑅𝑖
𝑡 = 𝐶𝑅𝑚𝑖𝑛 + (𝐶𝑅𝑚𝑎𝑥 − 𝐶𝑅𝑚𝑖𝑛) × ((2 − 𝑒𝑥 𝑝 (

𝑡

𝐺𝑒𝑛
× 𝑙 𝑛(2))) ×

1

2

+
𝑓𝑖
𝑡 − 𝑓𝑚𝑖𝑛

𝑡

𝑓𝑚𝑎𝑥
𝑡 − 𝑓𝑚𝑖𝑛

𝑡 ×
1

2
)

(3.44)

As can be seen from the above equations, the main adaptive scheme is equally captive

to the influence of the number of generations achieved, as well as the fitness values.

Technically, the value of each control parameter varies within its specified range as,

𝑊 ∈ [0.1, 0.9], 𝐾 ∈ [0.3, 0.9], 𝐹 ∈ [0.3, 0.9] and 𝐶𝑅 ∈ [0.1, 0.9] during the run of the

algorithm. Throughout the evolution process, the values of these parameters will

gradually decreases; thereby transits the search from exploration to exploitation.

3.4.2 DE with Adaptive Parameters and Multiple Strategies

 In this subsection the main characteristics and mechanisms of four remarkable

adaptive DE versions are stated in details, on the basis of parameter adaptive schemes

66

and multiple adaptive DE strategies.

3.4.2.1 Adaptive DE with Multiple Standard Strategies

 SaDE Algorithm

o SaDE Strategies Adaptive

 The main feature of SaDE is to automatically adapt multiple standard DE mutation

strategies (DE/rand/1/bin; DE/rand-to-best/2/bin; DE/rand/2/bin; and DE/current-to-

rand/1 with no crossover) and update the corresponding control parameters during the

evolution process using parameter, 𝑝𝑘(𝑘 = 1,2,3,4).

Determine the probability of applying each candidate strategy to the current population

(𝑝𝑘): Initially, the probabilities of applying each scheme, 𝑝𝑘
𝑡 , is set to 1/𝐾 so as to

assign an equally likely probability for all strategies. Then, the probability of applying

each strategy is then updated every 50 generations in the following manner,

𝑝𝑘
𝑡 =

𝑆𝑘
𝑇

∑ 𝑆𝑘
𝑇𝐾

𝑘=1

 (3.45)

where

𝑆𝑘
𝑡 =

∑ 𝑛𝑠𝑘
𝑡𝑇−1

𝑡=𝑇−𝐿𝑃

∑ 𝑛𝑠𝑘
𝑡 + ∑ 𝑛𝑓𝑘

𝑡𝑇−1
𝑡=𝑇−𝐿𝑃

𝑇−1
𝑡=𝑇−𝐿𝑃

+ 𝜀, 𝑓𝑜𝑟 𝑘 = 1,2, … , 𝐾; 𝑇 > 𝐿𝑃

where 𝐾 is the number of strategies available for perturbation. 𝐿𝑃 is the period assigned

for learning in which the learning process is activated only when 𝑇 > 𝐿𝑃; in the current

study it has been set to 50 generations. 𝑛𝑠𝑘
𝑡 (Success Memory) and 𝑛𝑓𝑘

𝑡 (Failure

Memory) are both memories generated by the 𝑘𝑡ℎ strategy and used to record the

number of trial vectors that have been succeeded or failed to enter the search process

respectively. 𝜀 = 0.001 this small value is added to avoid the possibility of the null rate

of success. Once these memories’ sizes reach to a certain threshold, i.e. after 𝐿𝑃

67

iterations, all previous records will be eliminated from these memories, i.e. 𝑛𝑠𝑇−𝐿𝑃 and

𝑛𝑓𝑇−𝐿𝑃 in order to allow those vectors that are generated in the current iteration to be

stored. Finally, 𝑆𝑘
𝑇 is divided by ∑ 𝑆𝑘

𝑇𝐾
𝑘=1 to guarantee that the resultant 𝑝𝑘

𝑡 is always

summed to 1.

o SaDE Parameters Control Schemes

 Set the mutation factor 𝐹𝑖 values to be independently generated at each generation

according to Gaussian distribution with mean 0.5 and standard deviation 0.3 as follows,

𝐹𝑖 = 𝑟𝑎𝑛𝑑𝑛(0.5,0.3) (3.46)

Accordingly, both the local (with small 𝐹𝑖 values) and global (with large 𝐹𝑖 values)

search ability will be kept throughout the evolutionary process, hence to generate, good

mutant vectors.

Crossover Probability (𝐶𝑅𝑖) and the Mean Crossover Probability Distribution (𝐶𝑅𝑚):

The strategy of controlling the crossover probability 𝐶𝑅 is an adaptive learning based. It

starts with independently generating crossover probabilities 𝐶𝑅𝑖 under Gaussian

distribution with mean 𝐶𝑅𝑚 and standard deviation 0.1 as follows,

𝐶𝑅𝑖 = 𝑟𝑎𝑛𝑑𝑛(𝐶𝑅𝑚, 0.1) (3.47)

The 𝐶𝑅𝑖 values will remain fixed for 5 generations before the next generation has

launched. Throughout these generations 𝐶𝑅𝑖 values that are associated with successful

trial vectors are recorded. While the value of the median,𝐶𝑅𝑚, is first initialized to 0.5,

then updated every 25 generations based on the successful 𝐶𝑅𝑖 values,

68

𝐶𝑅𝑚 =
1

𝐾
 ∑ 𝐶𝑅𝑠𝑢𝑐(𝑘),
𝐾
𝑘=1 (3.48)

where 𝐾 denotes the number of successful 𝐶𝑅𝑖 values accumulated over 25 generations

and 𝐶𝑅𝑠𝑢𝑐 is the 𝑘𝑡ℎ 𝐶𝑅 successful value.

 EPSDE Algorithm

o EPSDE Parameters Control Schemes and Strategies

 EPSDE is unlike other adaptive DE variants, it is an ensemble of mutation strategies

and parameter values of DE. EPSDE does not involve certain equation to modify the

values of the control parameters, but rather it assigns for each member of the initial

population a mutation strategy randomly selected from a pool of mutation strategies

with diverse characteristics, and randomly takes values for the associated parameter

from a pool of values. Throughout evolution, the population members that produce

individuals better than the target vectors, their mutation strategies and associated

parameter values retained for the next generation, while those fail to produce better

individuals are reinitialized with a new mutation strategy and associated parameter

values from the respective pools or from the successful combinations stored with equal

probability. In EPSDE, there are two pools:

 Pool of mutation strategies: this pool includes the DE strategies that are involved in

the evolution. These strategies have been selected with diverse characteristics:

1. Strategies rely on the best individual in the current population, DE/best/2/bin.

2. Strategies which bear stronger exploration capabilities, DE/rand/1/bin.

3. Strategies being rotational invariant without crossover DE/current-to-rand/1.

 Pool of parameter control values: in this pool the three crucial parameter values (𝐹

and 𝐶𝑅) are set to different ranges. The pool of 𝐶𝑅 values is taken in the range 0.1 −

0.9 in steps of 0.1. The pool of 𝐹 values is taken in the range 0.4 − 0.9 in steps of 0.1.

69

3.4.2.2 Adaptive DE with Multiple Advanced Strategies

 SaDE-MMTS Algorithm

 SaDE-MMTS has been proposed to enhance the performance of the standard SaDE

algorithm; by incorporating SaDE with the JADE mutation strategy (JADEw) and

integrating it with the modified multi-trajectory algorithm (MMTS), in order to solve

problems with complex characteristics and high dimensionality. This integration can be

encapsulated into three main parts: SaDE-MMTS = JADE mutation scheme + SaDE

algorithm + MMTS method (Local Search), as follows:

o SaDE-MMTS Advanced Adaptive DE Strategies

 JADE mutation strategy with external archive (JADEw) as in Equation 3.23 is

adopted and engaged with three crossover operators (binomial and exponential), and no

crossover option as well, to generate the trail vectors for the new population. Hence, the

expected number of perturbation strategies is three and they are applied according to the

strategy probability, as in the SaDE algorithm. The selection of the mutation strategy is

according to the probability, 𝑝𝑘
𝑡 , of applying each JADE with archive strategy in the

current population (see Equation 3.45).

o SaDE Parameters Control Schemes

 The control parameters 𝐹 and 𝐶𝑅 are updated through the evolution process in the

same manner used in SaDE (see Equations 3.46-3.47).

o MMTS method

 The original MTS (Tseng & Chen, 2007, 2008) algorithm is first proposed to solve

large scale global optimization problems. The main underlying idea of this algorithm is

70

the employment of randomly selected search combinations (i.e. agents) uniformly

distributed over the whole search space to seek out for better solutions. Each

combination applies one of three candidate local search methods that is better fit the

search space characteristics of a solution’s neighborhoods; these combinations are

generated using the basic orthogonal array 𝑂𝐴𝑛×𝑘 where 𝑛 is the number of testing

experiments and 𝑘 is the number of factors in each experiment.

 SaM

 SaM is a strategy adaptation mechanism that can be integrated with any DE variant

to make it strategy adaptive. SaM creates a pool of strategies and selects the candidate

strategy to be applied on the running individual 𝑋𝑖 from this pool according to Equation

3.49,

 𝑆𝑖 = ⌊𝜂𝑖 × 𝐾⌋ + 1 (3.49)

where 𝜂𝑖 ∈ [0,1) is a strategy parameter control variable. 𝐾 is the total number of

strategies in the pool and 𝑆𝑖 = 1,2, … , 𝐾 the selected DE strategy. For example, suppose

𝐾 = 4 and at a certain generation 𝜂𝑖 ∈ [0,0.25), then based on the calculation of

Equation 3.49 the value of 𝑆𝑖 is 1.

SaM has suggested three approaches to update the value of 𝜂𝑖 during evolution. In this

study, the first approach has been considered which is inspired by the parameter

adaptation equation of JADE. For each individual 𝑋𝑖 at generation 𝑡, a new value for 𝜂𝑖

is generated as,

 𝜂𝑖 = {
𝑟𝑎𝑛𝑑𝑛𝑖 (𝜇𝑠,

1

6
) , 𝑡 = 1

𝑟𝑎𝑛𝑑𝑛𝑖(𝜇𝑠, 0.1), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(3.50)

where 𝑟𝑎𝑛𝑑𝑛𝑖(𝜇𝑠, 0.1) indicates a normal random distribution of mean 𝜇𝑠 and standard

71

deviation 0.1. The mean 𝜇𝑠 is initialized to be 0.5 and then updated at the end of each

generation in the same adaptation equation used in JADE (see Equation 3.29) as

follows:

 𝜇𝑠 = (1 − 𝑐) × 𝜇𝑠 + 𝑐 ×𝑚𝑒𝑎𝑛𝐴(𝐻𝑠) (3.51)

where 𝐻𝑠denotes as the set of all successful DE strategy parameters 𝜂𝑖’s at generation 𝑡.

SaM mechanism has been applied on JADE strategies to create a new approach called

SaJADE. SaJADE employed a pool of different JADE strategies: (1) DE/current-to-

pBest/1/bin with no archive; (2) DE/current-to-pBest/1/bin with archive; (3) DE/rand-

to-pBest/1/bin with no archive; (4) DE/rand-to-pBest/1/bin with archive. The parameter

adaptive equations used to update the values of 𝐹𝑖 and 𝐶𝑅𝑖 are also JADE schemes as in

Equations 3.25-3.29. In SaJADE, assigning the parameter adaptive scheme to update 𝐹𝑖

and 𝐶𝑅𝑖 is fixed and determined for each DE strategy. For updating the value of 𝐶𝑅𝑖, all

the strategies use Equation 3.28. The difference is in updating the value of 𝐹𝑖 in which

the strategies 1 and 3 use Equation 3.25; whereas strategies 2 and 4 use a modified

version of Equation 3.25 which is normal distribution as follows,

 𝐹𝑖 = 𝑟𝑎𝑛𝑑𝑛𝑖(𝜇𝐹, 0.1) (3.52)

3.4.3 Adaptive DE Comparisons

 Ten adaptive DE algorithms have been presented in the previous subsections. These

algorithms clearly exhibit diversity in terms of characteristic, structure, complexity, and

algorithmic logic. Beside their advantages, these algorithms also show some

shortcomings in particular cases. In this subsection, comparisons have been established

among these methods based on their conceptual similarities and differences, and pros

72

and cons of each algorithm.

3.4.3.1 Adaptive DE Conceptual Similarities and Differences

 In this subsection, we discuss how the aforementioned methods relate and differ from

each other and from the standard DE algorithm based on mutation strategy and

parameter control schemes used in each algorithm.

 Comparison Based DE Mutation Scheme

 The ten algorithms presented under this comparison differ in their mutation

strategies, as can be seen in Table 3.2, which gives a summary of the mutation schemes

employed in each algorithm. All the algorithms adopt the classical crossover (𝑏𝑖𝑛) and

selection operations in their main work, except DESAP which uses a modified crossover

scheme similar to that of DE/rand/1 mutation scheme and MDE_𝑝BX which uses a new

modified crossover scheme called 𝑝-Best; while both SaDE, EPSDE and SaJADE

invent new adaptive schemes that can make a selection among a pool of candidate

mutation schemes. SaDE-MMTS uses three crossover aspects (binomial, exponential,

and no crossover). SaDE-MMTS creates a pool of DE strategies to automatically adapt

one of them.

 Comparison Based DE Parameter Control Schemes

 The comparison in this subsection is based on the parameter setting taxonomy

explained in Section 3.2. Table 3.3, elucidates the main features of the adaptation

scheme being used to control the main four parameters (𝐹, 𝐶𝑅, 𝑁𝑝 and 𝑡) in the eleven

adaptive DE variants. This table shows how the concept of adaptive has revealed by

applying an adaptive rule to at least one of the algorithm component. From the same

73

table we can see that none of the algorithms has adapted the number of generations’

parameter, 𝑡 and none of them has also considered adapting the population size

parameter, 𝑁𝑝 except DESAP algorithm. The main focus was only on 𝐹 and 𝐶𝑅.

3.4.3.2 Adaptive DE Strengthens and Drawbacks

 In this subsection, conceptual strengthens and drawbacks of each of the ten

algorithms have been discussed in terms of modifying the main DE strategies, and the

additional components that have been added to the original DE algorithm and function

as adaptive features. It is clear that all the modifications and integrations proposed tend

to include extra moves to the original DE, as well as create the proper balancing

between the exploitation and exploration characteristics. However, there are also some

drawbacks need to be considered.

 Comparison Based DE Mutation Strategy

 In this subsection the ten DE algorithms have been compared based on the mutation

scheme used in each algorithm. Table 3.4 and Table 3.5 illustrate the algorithms

comparison.

 Comparison Based DE Parameter Control Schemes

 Table 3.6 and Table 3.7, elucidate the points of strengthens and drawbacks of the

adaptation scheme being used to control the main four parameters (𝐹, 𝐶𝑅, 𝑁𝑝 and 𝑡) in

the ten DE variants. From the two tables we can see that there are some common pros

and cons among certain algorithms. This is due to the fact that they use the same

adaptation scheme.

74

7
4

 Table 3.2: A summary of the type of mutation strategies used in the ten adaptive DE algorithms

Algorithm Mutation Scheme Main Feature of the Scheme Base Scheme

FADE DE/rand/1 Fixed DE/rand/1

JADE wo DE/current-to-𝑝best/1 Utilization of the 100𝑝% best solutions DE/current-to-best/1

JADE w archive DE/current-to-𝑝best/1 w archive
Utilization of the 100𝑝% best solutions and the 𝐴

inferior solutions
DE/current-to-𝑝best/1

MDE_𝑝BX DE/current-to-𝑔𝑟𝑏𝑒𝑠𝑡/1
Utilization of the best individual selected from

𝑞% group of individuals
DE/current-to-𝑝best/1

SaDE Pool of standard DE strategies Adaptive PCB among the schemes
DE/rand/1; DE/rand/2; DE/current-to-rand/1;

DE/rand-to-best/1

jDE DE/rand/1 Fixed DE/rand/1

DESAP (non-DE standard scheme) With deterministic mutation probability updates Simple Perturbation Scheme

p-ADE DE/rand-to-best/𝑝best Adaptive Dynamic Structure PSO Standard Scheme

SaJADE Pool of advanced DE strategies Adaptive LPB among the schemes
DE/current-to-𝑝best/1 wo; DE/rand-to-𝑝best/1 wo;

DE/current-to-𝑝best/1 w; DE/rand-to-𝑝best/1 w;

SaDE-MMTS
Pool of DE/current-to-𝑝best/1 w

merged with two crossover schemes

and no crossover

Adaptive PCB among the schemes DE/current-to-𝑝best/1 w

EPSDE Pool of standard DE strategies Deterministic/ Partial-predetermined

DE/best/1; DE/best/2; DE/rand-to-best/1; DE/rand-

to-best/2; DE/rand/1; DE/rand/2; DE/current-to-

rand/1

 Note: LPB: Learning Process Based PCB: Progressive-Controlled Based EPB: Evolution Process Based

75

7
5

 Table 3.3: This table encompasses taxonomy of the adaptation scheme used to update the main control parameters in the ten

 adaptive DE algorithms

Algorithm Name

Parameter control strategies based taxonomy

𝑵𝒑 𝑭 𝑪𝑹 𝒕

Type of Setting Type of Evidence Type of Setting Type of

Evidence

Type of Setting Type of

Evidence

Type of Setting Type of

Evidence

FADE Tuned × Adaptive/PCB Absolute Adaptive /PCB Absolute Tuned ×

JADE wo Tuned × Adaptive/ LPB Relative Adaptive/ LPB Relative Tuned ×

JADE w Tuned × Adaptive/ LPB Relative Adaptive/ LPB Relative Tuned ×

MDE_𝑝BX Tuned × Adaptive/ LPB Relative Adaptive/ LPB Relative Tuned ×

SaDE Tuned ×
Deterministic/

Partial-predetermined
Absolute Adaptive/ LPB Relative Tuned ×

jDE Tuned × Self-adaptive/EPB Relative
Self-adaptive/

EPB
Relative Tuned ×

DESAP Self-adaptive/ EPB Relative
Self-adaptive/

EPB
Relative

Self-adaptive/

EPB
Relative Tuned ×

𝑝-ADE Tuned × Adaptive/ LPB Relative Adaptive/ LPB Relative Tuned ×

SaDE-MMTS Tuned ×
Deterministic/

Partial-predetermined
Absolute Adaptive/ LPB Relative Tuned ×

EPSDE Tuned ×
Deterministic/

Partial-predetermined
Absolute

Deterministic/

Partial-

predetermined

Absolute Tuned ×

SaJADE Tuned × Adaptive/ LPB Relative Adaptive/ LPB Relative Tuned ×

 Note: LPB: Learning Process Based PCB: Progressive-Controlled Based EPB: Evolution Process Based

76

Table 3.4: DE algorithms points of strengthens based on mutation strategy

Algorithm

Strengthens of the DE Mutation

JADE

Alleviate the problem of premature convergence because of its ability to

intensify the population diversity.

JADE with archive

 Increase the population diversity as such the problem stem from the

convergence rate was further reduced. This is so because, the superior

and inferior solutions are both incorporated into the mutation strategy.

 No significant computational overhead as the archive operation has

been made very simple.

𝑝-ADE

The ability to be dynamically changed to three different schemes according

to the classification conditions upon the individuals’ quality that are located

in the same population.

MDE_𝑝BX

It weaknesses the tendency of premature convergence and alleviates the

attraction of any fixed point in the fitness landscape. This small

modification has led to reduce the greediness feature of the DE mutation

scheme towards choosing the superior solutions for perturbation and making

it converges fast to a local point.

DESAP

No significant improvements over the standard DE.

SaDE;

SaDE-MMTS;

SaJADE

A learning strategy has been applied to gradually evolve the selection of one

mutation scheme from a pool of mutation schemes in hand throughout

generations. This characteristic allows further improvements in the DE

moves, thus increasing the exploitation features of the algorithm. This

learning strategy affords flexibility to be extended to include more candidate

mutation schemes in an attempt to solve complex optimization problems.

EPSDE

The selection of the mutation strategies is made randomly from a pool of

mutations with different characteristics to avoid the influence of less

effective mutation strategies.

FADE;

jDE

The standard DE/rand/1 scheme is always considered as the fastest non

greedy scheme with good convergence performance.

77

Table 3.5: DE algorithms drawbacks based on mutation strategy

Algorithm

Drawbacks of the DE mutation

JADE;

JADE with archive;

SaDE-MMTS;

SaJADE

Stagnation

The population selective factor, 𝑝, is tuned before the run and kept fixed

during the evolution process. This strategy might lead to stagnation

problem especially after several epochs of evolution when the population

diversity rate is very low and the superior solutions in the 𝑝% of the

current population start to be close in values if not exactly same.

𝑝-ADE

Local optimum caused by greedy mutation

Selecting the best solutions from the previous and current population may

lead the new strategy become greedier toward good solutions, thus

running the risk of falling into local optimum.

MDE_𝑝BX

Lack of strategy and parameter analysis &

Crossover greediness tendency

 The influence of the new mutation scheme on the diversity of

population and convergence rate is not investigated.

 The greediness of the new crossover scheme towards superior solutions

and the associated parameter, 𝑝 of the top-ranking vectors, is fixed

during the run. This may lead to premature convergence problem.

DESAP

Lack of Exploitation and Exploration Ability

The new crossover and mutation operations are simple and

straightforward schemes, they did not bring about the desired performance

and DESAP outperform the standard DE in only one out of five test

problems.

FADE;

jDE;

Lack of Population diversity

This problem will arise in optimizing high dimensional functions and also

when the characteristic of the test problem is challenging.

78

Table 3.6: DE algorithms points of strengthens based on parameter control schemes

Algorithm

Strengthens of Parameter Control Schemes

JADE;

JADE with archive;

SaJADE

 Adjusting the values of 𝐹 and 𝐶𝑅 in an adaptive characteristic based on

a learning strategy that gains knowledge from previous iterations and

cumulates it into two learning parameters, 𝜇𝐹 and 𝜇𝐶𝑅 to be retained and

used in the current population.

 Create the proper balance in maintaining the pressure on the population

to move towards exploring more optimal solutions, as well as not to lose

the exploitation features.

𝑝-ADE

 Possess a unique merit over other adaptive DE algorithms by involving

the number of iterations passed over and the fitness value in the

updating process; for the sake of accelerating the convergence rate,

 Creating the required balance between the exploitation and exploration

features. This has been achieved through selecting the best values for the

control parameters 𝑊, 𝐾, 𝐹, and 𝐶𝑅.

MDE_𝑝BX

Modifies the original JADE scheme of adapting the values of 𝐹 and 𝐶𝑅. The

new modifications to the control parameters schemes with the combination of

the new mutation and crossover schemes in MDE_𝑝BX have greatly

increased the ability of exploitation and exploration, and the search process is

directed to explore better search space regions, hence, escaping from the

possibility of getting trapped in suboptimal solutions.

DESAP The first attempt to demonstrate the possibility to produce an adaptive

algorithm that not only updates the crossover and mutation rates but also

the population size parameter as well.

 Downsize DE parameters’ setting by updating the population size and

other control parameters in an adaptive manner.

FADE The first attempt in using Fuzzy Control in DE parameter settings for the

sake of reducing the user load from parameter tuning.

 Possess robustness and fuzziness with problems in an imprecise

environment

SaDE ;

SaDE-MMTS
Utilizes an adaptive learning strategy to adjust the crossover rate and mutation

rate during the search process.

jDE Adjust both 𝐹 and 𝐶𝑅 in a self-adaptive manner with few additional

parameters.

EPSDE The selection of the mutation and crossover parameter values is made

randomly from a pool of values to avoid the influence of less effective

parameter settings.

79

Table 3.7: DE algorithms drawbacks based on parameter control schemes

Algorithm

Drawbacks of Parameter Control Schemes

JADE;

JADE with archive;

SaJADE

Problem-dependent parameter selection

The parameters 𝑐 and 𝑝 determine the adaptation rate of 𝜇𝐶𝑅 and 𝜇𝐹 and the

greediness of the mutation strategy are kept fixed during the run. These two

parameters have the ability to affect the overall performance of JADE

mutation.

𝑝-ADE

Time Consumption

All of the four parameters (𝑊, 𝐾, 𝐹, and 𝐶𝑅) should be adjusted through the

run, simultaneously with adjusting the mutation scheme. This may require

increasing the number of iterations needed to achieve the optimal solution.

MDE_𝑝BX

Lack of theoretical guidelines

There are two additional control parameters 𝑞 (the group size in the mutation

operation) and 𝑝 (the number of the top-ranking vectors in the crossover

operation). These parameters bring about the effect to the performance of the

mutation and crossover, since both parameters were set to fixed values.

DESAP

Lack of Population diversity

 It outperforms the standard DE over five test functions only.

 It was found that both DESAP’s versions yielded highly similar results

in terms of the best solution obtained; although, in providing more

stability DESAP with absolute encoding was more favorable than

DESAP with relative encoding.

FADE

Lack of Algorithm Performance Analysis

It does not involve any relative consideration for the individual fitness value

only absolute based on the knowledge gained from the fuzzy controller.

SaDE;

SaDE-MMTS

Deterministic evidence rule for updating the mutation factor

 The mutation factor, 𝐹, is updated through a deterministic rule based,

though, it has been set to different random values through the evolution

process.

 It introduces additional learning parameters such as 𝑛𝑠 and 𝑛𝑓 to steer

both learning strategies, thus making the algorithm cumbersome with too

many parameters.

jDE

Lack of balance between the exploitation and exploration

There is a weakness in the relative consideration of the individual fitness

value since the values of 𝐹 and 𝐶𝑅 are selected according to the best fitness

picked up from the current generation only, then updated according to a

uniform distribution. This may lead the jDE’s moves to be biased towards

exploration.

80

Table 3.7- Continued

Algorithm

Drawbacks of Parameter Control Schemes

EPSDE

Local Optima

The procedure of adjusting the control parameter values is mostly

implemented in a random way. There is no accumulating knowledge through

the evolution and the parameter value that produce inferior solution will be

reinitialized at the same generation. This procedure in conjunction with the

random selection of the mutation scheme will in some cases divert the

population to a wrong direction of the search space and fall in local optima if

the algorithm fails to select the appropriate parameter values and scheme.

3.4.3.3 Discussion and Conclusion

 From this extensive review, we found two main points which are:

1) Review and analysis study on adaptive DE

 Although few significant review studies on DE have been written, no extensive

review or analysis study on adaptive DE has been published to date only the study of

Chiang, Chen, and Lin (2013). Das and Suganthan (2011) published a comprehensive

survey article that addresses general issues concerning DE research and the survey of

Neri and Tirronen (2010) who presented a number of well-known DE versions of

different characteristics in a classification format.

For this reason, this chapter (Chapter 3) has been devoted to present a thorough review

and analysis concerning the parameter settings of EAs and provide a new parameter

settings’ classification. In this review, DE has been selected as an EA example to apply

this classification on its adaptive versions. Then a new taxonomy on adaptive DE

algorithms is also presented.

2) No DE algorithm applies the selection of different parameters adaptive

schemes

 Although many DEs with different adaptive characteristics have been discovered

81

through this review, no algorithm has yet been discovered that applies the selection of

different parameter adaptive schemes through optimization besides adapting the DE

strategies. For instance, the adaptive DE algorithms (jDE; SaDE; DESAP; JADE;

SaDE-MMTS; MDE_pBX) have applied two parameter control strategies; one to update

𝐹 value and another strategy to update 𝐶𝑅 value, except FADE, p-ADE which uses the

same strategy to update 𝐹 and 𝐶𝑅. The adaptive DE algorithms (EPSDE; CoDE;

HSPEADE) apply no adaptive schemes but rather the control parameters as well as the

DE strategies have been selected as combinations from either the pool of successful

combinations or from the initial pool based on the situation. The only adaptive DE

algorithm that suggests using different parameter adaptive schemes is SaM (SaJADE).

In SaJADE, each DE strategy has been assigned with certain selected parameter

adaptive schemes as it may perform the best with this strategy, however, this selection

has been predetermined before the run. Moreover, the integration with local search

methods is limited to SaDE-MMTS as it can be observed from the review.

 Figure 3.5 depicts an estimated rank of the aforementioned algorithms based on the

experimental results (Mean ± STD) presented in their corresponding articles. The

distinct layers in the figure refers that the DE algorithms in the same layer have almost

equal performance. The sold arrow indicates that the algorithm in the source node has

inherited the mutation strategy from the destination node. The intermittent line refers to

the DE algorithms with less performance than their corresponding DE algorithm in the

source node. The figure shows that, generally, the adaptive DE algorithms with multiple

DE strategies such as ESPSDE and with single advanced DE strategy such as

MDE_pBX always have the best performance over other algorithms. Then the superior

performance is for the adaptive DE algorithms that employee both multiple and

advanced DE strategies, such as HSPEADE and SaJADE.

82

 Moreover, it has also been found that the use of different parameter adaptive schemes

such as in SaJADE has no less effect as applying multiple DE strategies to improve the

search process of DE. In the case of multimodal problems with high dimensionality, the

algorithm may require different steps size during the search process to escape from the

local optima and speed up the convergence rate. It has also been found that applying

different parameter adaptive schemes induces the population diversity.

In addition, it has already been proved by the No Free Launch Theorem that the quest

for good EA is lost a priori and the integration of the different characteristics of two or

more algorithms will serve the search process.

 For this reason, a new version of adaptive DE called ARDE-SPX is proposed in

(Chapter 4). In this algorithm, a repository of different advanced DE strategies and

parameter adaptive schemes for 𝐹 and 𝐶𝑅 has been created. The selection among the

combinations of the DE strategies and the adaptive parameters schemes from the

repository is implemented based on the fitness values of their corresponding trial

vectors. Moreover, the ARDE has been integrated with the local search method (SPX

crossover) to further improve its performance.

83

HSPEADE

MDE_pBX

JADEw

JADEw

MDE_pBX

JADEw

SaDE

jDE

SaDE

jDE

JADEwo

JADEwo

SaDE

jDE

EPSDE

Standard

DE

JADEw

SaDE

jDE

CoDE

JADEw

SaDE

jDE

EPSDE

EPSDE

SaJADE

JADEw

SaDE

jDE

JADEwo

p-ADE

JADEwo

SaDE

jDE

Standard DE

Standard DE

Standard DE

Standard DE

Standard DE

Standard DE

Standard DE

Standard DE

SaDE

SaDE-MMTS

Standard DE

jDE

SaDE

Standard DE

JADEw

jDE

FADE

Standard DE

Standard DE

S
u

p
e
r
io

r
 P

e
r
fo

r
m

a
n

c
e

In
fe

r
r
io

r
 P

e
r
fo

r
m

a
n

c
e

Figure 3.5: An estimated rank of the adaptive DE algorithms based on their recorded

experimental results

84

 3.5 Summary

 This chapter is designed from the ground up to support the issue of EAs parameter

control values represented by,

1) New extended EA parameter setting taxonomy has been proposed to eliminate

any confusion related to identify the type of the scheme used to control the

algorithm’s parameters. This problem has been overlooked by many previous

related studies. For example, in literature many algorithms have been defined

as “self-adaptive” algorithms, although their own parameters do not undergo

mutation and crossover during the evolution process, thus their schemes should

be considered under the definition of “adaptive” algorithms. The new extended

EA parameter setting taxonomy has been applied to multiple adaptive DE

algorithms in specific, as an example to convey the main purpose of this

taxonomy.

2) A comprehensive procedural analysis study has been established on these

algorithms to elucidate the conceptual similarities and differences among them,

the pros and cons of the adaptive schemes, as well as proposed solutions. In

addition, the study has been extended to involve the DE mutation schemes

employed by each method.

 Finally, based on the review study presented in this chapter and to tackle some of the

limitations in other adaptive DE algorithms, Chapter 4 presents a new adaptive DE

algorithm that automatically tunes the mutation and crossover strategies, and the

parameters control schemes of 𝐹 and 𝐶𝑅 using a simple and efficient mechanism.

85

CHAPTER 4

DIFFERENTIAL EVOLUTION WITH ADAPTIVE REPOSITORY OF

STRATEGIES AND PARAMETER CONTROL SCHEMES INTEGRATED

WITH LOCAL SEARCH METHOD

4.1 Introduction

 Throughout literature, the adaptive (or self-adaptive) parameters of DEs have shown

tremendous successful performance in solving different types of optimization problems

and overcome the problem of the tedious and time-consuming manual (or tuning)

settings. Moreover, it has also been proved that the use of multiple DE strategies besides

the adaptive parameters of the algorithm will make DE algorithm more efficient.

 In this chapter, a new adaptive DE algorithm named ARDE-SPX is presented. In

ARDE, the DE strategies as well as the parameters adaptation schemes of the mutation

factor 𝐹 and crossover rate 𝐶𝑅 are evolved through the run using a new adaptive

mechanism. The ARDE has also been integrated with a local search technique called

SPX-crossover to further increase its performance. Additionally, and in order not to

overlook the general rudiments of how to build an adaptive EA, the first section of this

chapter has been devoted for this purpose.

4.2 General Steps to an Adaptive EA

 Attention must be paid to the general steps that are required to integrate any

proposed EA into the adaptation of parameter control concept; these steps are listed

below. However, we should consider the different aspects of EAs in both informal and

formal languages before going through these steps. This constitutes the various

components of an EA, including selection, recombination, mutation, and survival

86

operators. The steps are as follows:

Step1 (Individual Encoding and Population Representation): A population is a set or

array of individuals or chromosomes, where 𝑝𝑜𝑝𝑠𝑖𝑧𝑒 refers to the number of individuals

in each generation. We have to encode the information required for the problem analysis

in the chromosome structure. Each chromosome should represent a complete solution to

the problem at hand. Altogether, these parameters are called solution parameters.

Additionally, if we intend to work on self-adaptive algorithm, the chromosome should

implicitly include the encoding of the control parameter(s) (i.e., strategy parameter) to

undergo evolution via recombination and mutation. Including this parameter requires

considering an intelligent decision in such a way that better parameter values tend to

produce better individuals (i.e., solutions) with the highest chance to survive and

propagate for more off-springs.

Step 2 (Chromosome Evaluation): The definition of the fitness function is crucially

important for a successful application. The fitness of each chromosome must be

evaluated in any evolutionary algorithm. Many standard fitness functions can be used to

test any proposed EA method. Stating the fitness function as minimization with or

without constraints is more natural than that as maximization of some utility objectives

throughout many problems; however, the result depends on the type of problem or

application at hand.

Step 3 (Chromosome Operations): An important step in using EA is changing the

candidate solutions to diversify the population with new solutions. Exploration and

exploitation are the two cornerstones of problem solving by search. Proper balance must

be achieved between exploration (i.e., to cover sufficiently the solution space seeking

out for good solutions) and exploitation (i.e., refining the solutions by combining

information gathered from good ones during the exploration phase) to achieve a

successful evolution. Moreover, diversity maintenance is important to prevent

87

premature convergence and serves as a motivation to study and provide sufficient

exploration and exploitation techniques to be incorporated into the main paradigm of

EA. The main evolution operators that should be understood thoroughly and applied

well are the following: selection, recombination, mutation, and survival operators.

Step 4 (Stopping Criteria): The most common stopping condition used in the literature

is allowing the algorithm to run to a maximum number of iterations. A small number of

iterations may not offer enough time for the algorithm to attain an optimum, especially

when the search space is large. By contrast, nothing is gained from a very large number

of iterations once the optimum solution is reached. In general, the product of the

maximum number of iterations allowed and swarm size indicates the number of

particles required to be evaluated by the EA algorithm.

Step 5 (Investigate the Influence of Different Parameters of EA): This step includes

the following:

 Population size (𝑝𝑜𝑝𝑠𝑖𝑧𝑒). Draw the effect of 𝑝𝑜𝑝𝑠𝑖𝑧𝑒 on the population diversity

and performance of the proposed EA, and determine whether increasing the size of

the population may prevent or, at least, reduce the chance of the algorithm to be

trapped in a local minimum.

 Selection and perturbation operators (recombination and mutation) with various

qualitative and quantitative parameter settings. The type of parameter control

settings to be adopted (i.e., deterministic, adaptive, and/or self-adaptive), change

evidence, parameter(s), and method or approach to be applied should be determined

in advance.

 Scope of change. The scope of change can be at the gene, individual, or whole

population level and it must be determined.

 Termination criteria and number of EA generations

88

Step 6 (Experimental Results): This step is performed to reach twofold goals. First,

experimental results should be evaluated with various test problems to show the

accuracy and efficiency of the proposed methods. Second, the relative performance of

the proposed methods should be evaluated both in qualitative and/or quantitative terms

when compared with other well-known state-of-the-art algorithms and reported when

applied to the same test problem or application. The influences of different versions,

components, and parameters of EA on performance in all these experiments must be

investigated, analyzed, and reported.

4.3 Adaptive Repository of DE Strategies and Parameters Control Schemes

Integrated with SPX-Crossover (ARDE-SPX)

 The idea of ARDE-SPX has been motivated by the prolonged experimental

observations that different optimization problems require different mutation strategies

with different parameter values depending on the problem characteristic (uni-model and

muli-model). Basically, the proposed ARDE algorithm makes use of the JADE mutation

strategies and the MDE_pBX parameters adaptive schemes of 𝐹 and 𝐶𝑅 as frameworks.

Then a new adaptive procedure has been developed to select the appropriate

combinations of the JADE strategies and the parameter control schemes to generate the

next generation. Moreover, the hill climbing simplex crossover (SPX) has been adopted

as a local search (LS) engine. SPX is an interesting technique and according to the

recorded results in (Noman & Iba, 2008) it shows a promising ability to improve the

performance of the DE algorithm. Based on this, this work has been extended to

integrate the SPX crossover operator with the adaptive ARDE algorithm in a new way

of implementation in order to make the adaptive ARDE algorithm satisfying both the

global and local search requirements. The detailed characteristics and steps of the

ARDE-SPX are provided in this section.

89

4.3.1 ARDE-SPX: The Repository of DE Strategies

 In DE literature there are many DE strategies with diverse characteristics in order to

create the strategy repository. The candidate strategies should be restrictive and selected

neatly in order to avoid the undesirable influence of less effective strategies. In this

study, six DE strategies have been selected to be included in the strategy repository.

These six DE strategies are gleaned from the JADE mutation variants (DE/current-to-

pbest/1 with archive and DE/rand-to-pbest/1 with archive). These new strategies have

been inspired by the standard DE mutation strategies that rely on the best solution found

so far, such as DE/best/1. They have proved to be very powerful strategies and can

significantly increase the convergence rate. That is so because the JADE strategies

could solve the high greediness tendency of the DE/best/1 and provide the proper

balance between exploitation and exploration capabilities. The candidate DE strategies

that have been chosen to be included in the repository of DE strategies are described as

follows:

 DE/current-to-pbest/1 with archive, as described in Equation 3.23, and coupled

with two basic crossover strategies (binomial and exponential) to form two

strategies, i.e., DE/current-to-pbest/1/bin with archive and DE/current-to-

pbest/1/exp with archive.

 DE/rand-to-pbest/1 with archive, as described in Equation 3.24, and coupled

with two basic crossover strategies (binomial and exponential) to form two

strategies, i.e., DE/rand-to-pbest/1/bin with archive and DE/rand-to-pbest/1/exp

with archive. These strategies have been proposed to solve large-scale problems

and further increase the population diversity. That is so because they imitate the

standard DE/rand/1 strategy which is already fast and robust, and it also bears

strong exploration ability.

90

 DE/current-to-pbest/1 with archive and DE/rand-to-pbest/1 with archive, and no

crossover are very effective strategies and they bear strong exploitation

capabilities. These two strategies have been inspired by the DE/current-to-rand/1

with no crossover strategy which has been widely used in the literature of

multiple DE strategies algorithms. This type of strategy is a rotational-invariant

strategy. It has been proposed to solve multi-objective optimization problems

and it has also proved effectiveness in solving rotation problems better than

other strategies.

As can be noted above, the number of DE mutation strategies is only two (DE/current-

to-pbest/1 with archive and DE/rand-to-pbest/1 with archive). Then this number has

increased to six DE strategies after incorporating the three DE crossover strategies (bin,

exp, and no crossover) with them. The pseudo-code of the two mutation strategies

(DE/current-to-pbest/1 with archive and DE/rand-to-pbest/1 with archive) are provided

in Algorithm 4.1 and Algorithm 4.2, respectively.

Algorithm 4.1: DE/current-to-pBest/1 with archive strategy

01: Input: 𝑃(𝑋) (Target Population), 𝑁𝑝 (Population size), 𝐴 (Archive), 𝐷 (individual dimension), 𝐹 (Set

of mutation factors)

02: Output: 𝑃(𝑉)
(Donor Population)

03: Begin

04: Step 1: Select two mutually randomly different vectors 𝑟1 and 𝑖 from 𝑃(𝑋). Select random vector

𝑟2 from 𝑃(𝑋) ∪ 𝐴. Select random vector 𝑥𝑏𝑒𝑠𝑡
𝑝,𝑡

 as one of the 100p% best solutions in 𝑃(𝑋).

05: Step 2: 𝑣𝑖,𝑗
𝑡+1 = 𝑥𝑖,𝑗

𝑡 + 𝐹𝑖 . (𝑥𝑏𝑒𝑠𝑡,𝑗
𝑝,𝑡

− 𝑥𝑖,𝑗
𝑡) + 𝐹𝑖. (𝑥𝑟1,𝑗

𝑡 − �̃�𝑟2,𝑗
𝑡) (𝑖 = 1,2, … , 𝑁𝑝) (𝑗 = 1,2, … , 𝐷)

06: END

Algorithm 4.2: DE/rand-to-pBest/1 with archive strategy

01: Input: 𝑃(𝑋) (Target Population), 𝑁𝑝 (Population size), 𝐴 (Archive), 𝐷 (individual dimension), 𝐹 (Set

of mutation factors)

02: Output: 𝑃(𝑉)
(Donor Population)

03: Begin

04: Step 1: Select three mutually randomly different vectors 𝑟1, 𝑟2 and 𝑖 from 𝑃(𝑋). Select random

vector 𝑟3 from P(𝑋) ∪ 𝐴. Select random vector 𝑥𝑏𝑒𝑠𝑡
𝑝,𝑡

 as one of the 100p% best solution in 𝑃(𝑋).

05: Step 2: 𝑣𝑖,𝑗
𝑡+1 = 𝑥𝑟1,𝑗

𝑡 + 𝐹𝑖 . (𝑥𝑏𝑒𝑠𝑡,𝑗
𝑝,𝑡

− 𝑥𝑟1,𝑗
𝑡) + 𝐹𝑖 . (𝑥𝑟2,𝑗

𝑡 − �̃�𝑟3,𝑗
𝑡) (𝑖 = 1,2, … , 𝑁𝑝) (𝑗 = 1,2, … , 𝐷)

06: END

91

The reason of using the two crossover operators (binomial and exponential) is so

because the binomial crossover is efficient to solve separable problems when 𝐶𝑅 is low

while it is also efficient to solve non-separable problems when 𝐶𝑅 is high; whereas, the

exponential crossover has been selected because it is appropriate for solving linked

problems.

4.3.2 ARDE-SPX: The Repository of Parameters Control Schemes

 In conjunction with choosing the suitable DE strategy to be adopted, the proper

selection of the schemes that update the values of the parameters 𝐹 and 𝐶𝑅 is also

important. The adaptation of 𝐹 and 𝐶𝑅 values are based on the rule that better control

parameter values tend to generate better individuals thus these control parameter values

should be propagated to the next generations.

 Basically, the adaptation of the control parameter values depends on two major issues

(1) the way to accumulate the previous experience of the successful control parameter

values throughout generations (2) the scheme of applying the adaptation steps to the

control parameter values.

 In this study, in order to measure the first point, the accumulation process has been

inspired by the adaptation scheme of MDE-pBX which is also inspired by the

adaptation scheme of JADE. In MDE-pBX the experience accumulation of the

successful individuals’ parameters 𝐹𝑖 and 𝐶𝑅𝑖 are stored in the variables 𝐹𝑚 and 𝐶𝑅𝑚

respectively, as described in details in Chapter 3 using Equations 3.31-3.36.

For the second point of how to update the values of 𝐹𝑖 and 𝐶𝑅𝑖 is also inspired by

JADE, where the 𝐹𝑚 and 𝐶𝑅𝑚 are used to be the mean for the Cauchy and the Gaussian

distribution respectively, to generate new values for the 𝐹𝑖 and 𝐶𝑅𝑖 for each individual 𝑖

at every generation. This process has also been described in details in Chapter 3 using

Equations 3.25 and 3.28. In this work, the JADE adaptation schemes for 𝐹𝑖 and 𝐶𝑅𝑖

92

have been further extended to be generated using Gaussian and Cauchy for both 𝐹𝑖 and

𝐶𝑅𝑖, as follows,

𝐹𝑖 = 𝑟𝑎𝑛𝑑𝑛(𝐹𝑚, 0.1) (4.1)

𝐶𝑅𝑖 = 𝑟𝑎𝑛𝑑𝑐(𝐶𝑅𝑚, 0.1) (4.2)

So, the result is four adaptation schemes including the previous two schemes which are

contained in the repository of the parameters control schemes.

The reason of using two distributions (Gaussian and Cauchy) is so because each

distribution provides different adaptation steps based on its characteristics that can fit

different stages of evolution for different problems scenarios. The Gaussian distribution

(normal distribution) provides relatively small step size from the mean in comparison

with the Cauchy distribution which has a far wider tail. This merit in Cauchy

distribution makes it more likely to generate offspring further away from its parents and

avoid the local optimum or escaping from a plateau when the population starts to be a

basin of attraction of local optimum or plateau. On the other hand, the smaller hill

around the mean in the Cauchy distribution makes it less effective in the exploitation of

the local neighborhood area and thus has powerless ability in the small to mid-range

search area. In Figure 4.1 the comparison between the Gaussian and the Cauchy

distribution is depicted. From the same figure it can be observed the difference between

the two distributions with respect to the distribution tail length and the hill height. This

figure has been plotted using the probability density functions (PDF) of the Gaussian

and Cauchy distribution respectively as follows,

Gaussian distribution PDF 𝐹𝑛(𝑥; 𝜇; 𝜎) =
1

𝜎√2𝜋
𝑒
−
(𝑥−𝜇)2

2𝜎2 (4.3)

93

where 𝜇 denotes the mean (i.e. distribution location) which has been set to be 0, and 𝜎 is

the standard deviation which has been set to be 1.

Cauchy distribution PDF 𝐹𝑐(𝑥; 𝑙; 𝑠) =
1

𝜋
𝑎𝑟𝑐𝑡𝑎𝑛 (

𝑥 − 𝑙

𝑠
) +

1

2
 (4.4)

where 𝑙 denotes the distribution location which has been set to be 0, and 𝑠 is the scaling

factor which has been set to be 1. The values of 𝑥 have been uniformly randomly

generated within the range[−5, 5].

Figure 4.1: Comparison between Cauchy and Gaussian probability density functions

Accordingly, for 𝐹𝑖 control parameter, the usage of the two distributions is when the

mutation strategy consternates highly around a certain value (i.e. best individual)

especially in DE/current-to-pbest/1/bin with archive, DE/current-to-pbest/1/exp with

archive, and DE/current-to-pbest/1 with archive then the Cauchy distribution is needed

to diversify the mutation and prevent the premature convergence. Whereas when the

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

p
d
f(

x
)

F
u
n
c
ti
o
n

x

N(0,1)

Cauchy, t=1

94

mutation strategies are already can provide mutation diversity such as DE/rand-to-

pbest/1/bin with archive, DE/rand-to-pbest/1/exp with archive and DE/rand-to-pbest/1

with archive then the use of the Gaussian distribution can be adopted to balance the high

population diversity produced by the mutation strategy and the small value of 𝐹𝑖

produced by the Gaussian equation. However, the use of Cauchy distribution at the early

stage of all DE variants is very useful, as the higher values of 𝐹𝑖 encourages the

exploration ability of the population. On the other hand, at the late stage of the DE

variants, the use of Gaussian distribution is useful, as it encourages the exploitation

ability and stability of the population.

 For 𝐶𝑅𝑖 control parameter, it is related to the diversity of population. The high values

of 𝐶𝑅𝑖 generated by the Cauchy distribution can increase the population diversity

especially at the early stage of DE. However, when applying Cauchy distribution using

Equation 4.2, the long tail of Cauchy would generate higher values of 𝐶𝑅𝑖 , which these

values would have to be truncated to 0 if the 𝐶𝑅𝑖 is less than 0, and truncated to 1 if the

𝐶𝑅𝑖 is greater than 1. On the other hand, the usage of the Gaussian distribution is better

useful at some search stages, as it provides 𝐶𝑅𝑖 values within the range because of its

short tail, moreover, the values of 𝐶𝑅𝑖 may become independent of the Cauchy

distribution.

The pseudo-code of the parameter adaptation schemes for 𝐹 and 𝐶𝑅 values are provided

in Algorithms 4.3-4.6.

Algorithm 4.3: Update the value of 𝐹𝑚 scheme

01: Input: 𝐹𝑚 (mean value of previous successful 𝐹), 𝑆𝐹 (set of successful mutation scalars), 𝑛 = 1.5

02: Output: 𝐹�́� (updated mean value of 𝐹)

03: BEGIN

04: Step 1: 𝑚𝑒𝑎𝑛𝑝𝑜𝑤 = ∑ 𝑝𝑜𝑤𝑒𝑟((
𝑝𝑜𝑤𝑒𝑟(𝐹𝑖,𝑛)

|𝑆𝐹|
),1/𝑛)

|𝑆𝐹|
𝑖=1 where 𝐹𝑖 ∈ 𝑆𝐹

05: Step 2: 𝑤𝐹 = 0.8 + 0.2 × 𝑟𝑎𝑛𝑑(0,1)
06: Step 3: 𝐹�́� = 𝑤𝐹 × 𝐹𝑚 + (1 − 𝑤𝐹) × 𝑚𝑒𝑎𝑛𝑝𝑜𝑤

07: END

95

Algorithm 4.4: Update the value of 𝐶𝑅𝑚 scheme

01: Input: 𝐶𝑅𝑚 (mean value of previous successful 𝐶𝑅), 𝑆𝐶𝑅(set of successful crossover rates), 𝑛 = 1.5

02: Output: 𝐶𝑅𝑚́ (updated mean value of 𝐶𝑅)

03: BEGIN

04: Step 1: 𝑚𝑒𝑎𝑛𝑝𝑜𝑤 = ∑ 𝑝𝑜𝑤𝑒𝑟((
𝑝𝑜𝑤𝑒𝑟(𝐶𝑅𝑖,𝑛)

|𝑆𝐶𝑅|
),1/𝑛)

|𝑆𝐶𝑅|
𝑖=1 where 𝐶𝑅𝑖 ∈ 𝑆𝐶𝑅

05: Step 2: 𝑤𝐶𝑅 = 0.9 + 0.1 × 𝑟𝑎𝑛𝑑(0,1)

06: Step 3: 𝐶𝑅𝑚́ = 𝑤𝐶𝑅 × 𝐶𝑅𝑚 + (1 − 𝑤𝐶𝑅) × 𝑚𝑒𝑎𝑛𝑝𝑜𝑤

07: END

Algorithm 4.5: Generate 𝐹 value scheme

01: Input: 𝑠 (the cell’s index in the repository), 𝐹𝑚 (mean value of 𝐹)

02: Output: 𝐹 (new 𝐹 value)

03: BEGIN

04: IF (‘𝐹𝑛‘ in 𝐶𝑒𝑙𝑙𝑠) THEN 𝐹 = 𝑟𝑎𝑛𝑑𝑛(𝐹𝑚, 0.1)
 ELSE 𝐹 = 𝑟𝑎𝑛𝑑𝑐(𝐹𝑚, 0.1)
05: END

Algorithm 4.6: Generate 𝐶𝑅 value scheme

01: Input: 𝑠 (the cell’s index in the repository), 𝐶𝑅𝑚 (mean value of 𝐶𝑅)

02: Output: 𝐶𝑅 (new 𝐶𝑅 value)

03: BEGIN

04: IF (‘𝐶𝑅𝑛‘ in 𝐶𝑒𝑙𝑙𝑠) THEN 𝐶𝑅 = 𝑟𝑎𝑛𝑑𝑛(𝐶𝑅𝑚, 0.1)
 ELSE 𝐶𝑅 = 𝑟𝑎𝑛𝑑𝑐(𝐶𝑅𝑚, 0.1)
05: END

4.3.3 ARDE-SPX: Adaptive Repository with Fitness Based Selection

 After constructing the two repositories of the DE strategies and the parameter

control schemes, the next step is to make these repositories adaptive through

generations. Accordingly, a new mechanism has been used to implement the adaptive

process based on the fitness value of each strategy. This mechanism is inspired by the

fitness tournament selection (FTS) procedure used in GA.

 The Fitness Tournament Selection (FTS) is one of the most commonly used selection

method in GA to choose the parent individuals for crossover process. FTS properties

were characterized in (Blickle & Thiele, 1997). In this study, FTS has been chosen in

preference to other selection methods like (roulette wheel selection and rank selection)

because it has a very simple and easy concept to be implemented, and it requires no

knowledge about the population. It can handle both minimization and maximization

problems without any structural change in the fitness function. Moreover, it has no

96

restriction on negative fitness function. Finally, it is a fast technique because it does not

require any further calculations for the average of fitness or any other population

statistics, all the solutions are sent to the same processor using only their relative fitness

values (Elsayed, Sarker, & Essam, 2014).

 The basic idea of FTS is to stochastically select individuals from the current

generation to create the basis of the next generation. The selection process has

replicated nature in that the individuals with better fitness values will tend to have better

chance to survive to the next generation; whereas the individuals with weaker fitness

values will have less probability to survive. The general idea of the FTS can be

encapsulated as follows:

 Evaluate each individual using the fitness function to get the fitness values 𝑓𝑖.

 Set a value to the selection probability 𝑆𝑝 ∈ [0,1]. In practice, it has been found

that it is always better to set the value of 𝑆𝑝 to be greater than 0.5 in order to

favor the fittest individuals and increase the selection pressure. The tournament

selection with 𝑆𝑝 = 1.0 is called deterministic tournament and the tournament

selection with 𝑆𝑝 < 1.0 is called stochastic tournament.

 Determine the tournament size 𝑇𝑠 ∈ [2, 𝑁𝑝], because at least two individuals

should be involved in the competition. In practice, the larger the tournament

size, the higher probability that the new population will contain individuals with

fitness values above average. The lower tournament size will produce

population consists of individuals with low fitness values.

 Generate randomly uniformly distributed number 𝑟 ∈ [0,1] . Then if 𝑟 ≤ 𝑆𝑝, the

fitter candidate individual among the 𝑇𝑠 individuals is selected; otherwise the

weaker individual is chosen.

The last two steps are repeated until the desired number of survival individuals is

obtained. Table 4.1 illustrates step-by-step on how to get the number of copies for 5

97

individuals using the simple fitness function, f(x)= 𝑥2. The problem is minimization of

the fitness function. The values of 𝑆𝑝 and 𝑇𝑠 are set to 0.7 and 2, respectively.

Table 4.1: The 𝑥2 example of fitness tournament selection detailed steps

No. Individual x f(x)= 𝒙𝟐 Compete individuals r Winners

1 11001 25 625 2 1 0.46 2

2 01100 12 144 4 2 0.39 2

3 00111 7 49 1 3 0.78 1

4 11100 28 784 3 5 0.50 3

5 10001 17 289 5 4 0.14 5

From Table 4.1, it can be noted that individual 2 has two copies to be included in the

next generation because of its low fitness value compared to other individuals; whereas

individual 4 fails to have even one copy. However, individual 3, even with its low

fitness value, could obtain only one copy to be included in the next generation. For this

reason, it is preferable to use either deterministic tournament or at the very least set the

selection pressure to high probability values. The standard procedure of the FTS

algorithm is shown in Algorithm 4.7. In this algorithm, the function bestind returns the

best individual from a set of solutions, and worstind returns the worst individual from a

set of solutions.

Algorithm 4.7: The standard FTS algorithm

01: Input: Np (population size), 𝑋 (solution vectors), 𝑆𝑝 (selection probability), and 𝑇𝑠 (tournament size)

02: Output: M (mating pool)

03: Begin

04: Step 1: Evaluate each individual using fitness function, 𝑓𝑖 = 𝑓(𝑋𝑖), (𝑖 = 1,2… ,𝑁𝑝)

05: Step 2: WHILE (𝑖 < 𝑁𝑝) DO

06: Step 2.1: Select 𝑇𝑠 individuals randomly from the current population

07: Step 2.2: Generate uniformly random number,

 𝑟 = 𝑟𝑎𝑛𝑑(0,1)
08: Step 2.3: Selection of the survival individual

 if (𝑟 ≤ 𝑆𝑝) then 𝑀𝑖 = 𝑏𝑒𝑠𝑡𝑖𝑛𝑑 (𝑋1, 𝑋2, …, 𝑋𝑇𝑠)

 else 𝑀𝑖 = 𝑤𝑜𝑟𝑠𝑡𝑖𝑛𝑑 (𝑋1, 𝑋2, …, 𝑋𝑇𝑠)

09: Step 2.4: 𝑖 = 𝑖 + 1

10: END

 The FTS method has been used as the base technique for the new adaptive procedure of

the ARDE algorithm. This new adaptive procedure is implemented in conjunction with

98

the selection step of DE, as follows:

Step 1 (Repository Construction): In the same selection step, a repository of empty

cells is created. This repository is a result of uniting the two initial repositories of the

DE strategies and the parameter control schemes into one repository called adaptive

repository (𝐴𝑅). The address of each cell in this repository is one combination of the

DE strategies and the parameter control schemes (DE strategy, 𝐹 adaptation scheme

and/or 𝐶𝑅 adaptation scheme) that are involved in the ARDE algorithm. So, the total

number of the cells is 20 because there are six DE strategies, two 𝐹 adaptation schemes,

and two 𝐶𝑅 adaptation schemes to be involved in constructing the 𝐴𝑅; so the total

number is (6 × 2 × 2) − 4 = 20 cells. This number is subtracted by 4 because the

DE/current-to-pbest/1 with archive and DE/rand-to-pbest/1 with archive strategies do

not require crossover strategy. The content of the cell is the fitness value(s) that has

been obtained from applying its relative combination to the corresponding individual(s);

otherwise, it is an empty cell if its relative combination has not been attempted in the

search process. Figure 4.2 depicts the strategies and schemes combinations repository in

the ARDE.

Step 2 (Individuals Classification): In the selection step of ARDE, the target

vectors 𝑋(𝑡)’s and the trial vectors 𝑈(𝑡)’s are first evaluated. Then a one-by-one

competition is started to determine the vectors of the next generation 𝑋(𝑡 + 1)’s. These

new vectors are either successful individuals (i.e. the trial vectors that their fitness

values are better than their corresponding target vectors after applying the DE strategy

and parameter control schemes) or failure individuals (i.e. the target vectors that their

fitness values are still better than their corresponding trial vectors even after applying

the DE strategy and the parameter control schemes).

Step 3 (Averaging Cells): In this step, the cell that contains more than one fitness value

is averaged using the equation,

99

𝑐𝑒𝑙𝑙𝑖 =
∑ 𝑓𝑖,𝑗
𝑛𝑓𝑐𝑖
𝑗=1

𝑛𝑓𝑐𝑖
 (4.5)

where 𝑓𝑖,𝑗 is the fitness values and 𝑛𝑓𝑐𝑖 is the total number of fitness values in cell 𝑖. So,

the result is a repository with cells that are either empty from a value (non-attempted in

the search process) or occupied with a value (attempted in the search process).

Step 4 (Cells Selection): In this step of ARDE, the 𝑈(𝑡 + 1) individuals are generated

by assigning DE strategies and parameter control schemes to the 𝑋(𝑡 + 1)s’ successful

and failure individuals using an adaptive technique as,

Step 4.1: For the successful individuals, the FTS mechanism is used to assign the

DE strategies and parameter control schemes to them from the 𝐴𝑅 created in Step 1.

In this adaptive method, the same table of FTS is created with only one difference is

that the column of individuals is replaced with a column that includes the attempted

cells of the repository with their average fitness values, as illustrated in Table 4.2.

Then, for each successful individual, the FTS procedure determines which

combination is to be assigned to it.

Table 4.2: The FTS method used to assign the DE strategies and parameter control

schemes to the successful individuals

Successful

Individuals

Repository of Strategies (AR)

Compete

Cells
r

Winner

Cell
Cells Cells’

Avg.

Fitness
Cell

No.

DE Strategies F

Scheme

CR

Scheme

Individual

11

1 DE/current-to-

pbest/1/bin

Fc CRc 9.703E+04 2 1 0.46 1

Individual

23

2 DE/current-to-

pbest/1

Fc - 1.090E+05 4 2 0.39 4

Individual

15

3 DE/rand-to-

pbest/1/bin

Fn CRn 8.386E+04 1 3 0.78 1

Individual

30

4 DE/current-to-

pbest/1/exp

Fn CRc 6.236E+04 3 5 0.50 3

Individual

45

5 DE/rand-to-

pbest/1/exp

Fc CRn 1.129E+05 5 4 0.14 4

100

In the same table, the problem is minimization and the values of 𝑆𝑝 and 𝑇𝑠 are set

to 0.7 and 2, respectively.

In the same step, two counters are created. The first counter is called 𝐶𝑜𝑢𝑛𝑡𝑠 which

records the number of times its corresponding cell has been selected during one

generation. The second counter is called 𝐶𝑜𝑢𝑛𝑡𝑤 which records the number of times

in which this cell has won the competition in FTS.

Step 4.2: For the failure individuals, a re-initialization mechanism is used to assign a

combination of the strategies and schemes from the attempted and non-attempted

cells of the 𝐴𝑅 with equal probability. In case there is not non-attempted cell, then

the selection of combinations from the 𝐴𝑅 is applied among the attempted cells with

equal probability.

Step 5 (Repository Cleaning, Rewarding, and Penalizing Processes):

Step 5.1 (Cleaning Process): In this step a cleaning mechanism is applied to

discriminate the individuals on the basis of the age. In this mechanism the concept of

"history" or “first-in-first-out (FIFO)” technique is used to eliminate the oldest fitness

values in the cells. For each fitness value stored in a cell, its generation number (i.e.,

its history of birth) is stored too. Then cleaning is applied to those old fitness values

existing in the 𝐴𝑅’s cells. A fitness value in a cell of the 𝐴𝑅 can be tagged as "old" if

its history is earlier than the current generation number by 10 generations. For

example, if the current number of generations is 11, then the clean operation is

applied to all those fitness values with history equals to 1. And at generation 12, the

clean operation removes all fitness values with history 2, and so on. Accordingly, the

cell that contains one fitness value with “old” tag is turned to be empty cell (non-

attempted).

101

Figure 4.2: The complete structure of the adaptive repository, 𝐴𝑅 in the ARDE

algorithm

Repository of Parameters Control

Schemes and DE Strategies

Cell 1

Cell 2

Cell 3

Cell 4

Cell 5

Cell 6

Cell 7

Cell 8

Cell 9

Cell 10

Cell 11

Cell 12

Cell 13

Cell 14

Cell 15

Cell 16

Cell 17

Cell 18

Cell 19

Cell 20 DE/rand-to-pBest/1/bin

Fn; CRc

DE/rand-to-pBest/1/bin

Fn; CRn

DE/current-to-pBest/1/exp

Fc; CRc

DE/current-to-pBest/1/exp

Fc; CRn

DE/current-to-pBest/1/exp

Fn; CRc

DE/current-to-pBest/1/exp

Fn; CRn

DE/current-to-pBest/1/bin

Fc; CRc

DE/current-to-pBest/1/bin

Fc; CRn

DE/current-to-pBest/1/bin

Fn; CRc

DE/current-to-pBest/1/bin

Fn; CRn

DE/current-to-pBest/1

Fc

DE/rand-to-pBest/1

Fn

DE/current-to-pBest/1

Fc

DE/current-to-pBest/1

Fn

DE/rand-to-pBest/1/exp

Fc; CRc

DE/rand-to-pBest/1/exp

Fc; CRn

DE/rand-to-pBest/1/exp

Fn; CRc

DE/rand-to-pBest/1/exp

Fn; CRn

DE/rand-to-pBest/1/bin

Fc; CRc

DE/rand-to-pBest/1/bin

Fc; CRn

Empty Cell

(Non-attempted Cell)
Occupied Cell

(attempted Cell)

C
ell C

o
n

ten
t

F
t=1

F
t=1

F
t=2

F
t=3

F
t=4

Fitness

Value

Fitness Age

102

Step 5.2 (Rewarding and Penalizing Processes): At each generation, the superior

cell (cell with the highest 𝑝) is rewarded by eliminating its worst fitness value. The

inferior cell (cell with the lowest 𝑝) is penalized by eliminating its best fitness value;

where 𝑝 is the cell’s winning probability for each attempted-cell selected in the FTS

mechanism and calculated as,

𝐶𝑒𝑙𝑙𝑠. 𝑝 =
𝐶𝑒𝑙𝑙𝑠 . 𝐶𝑜𝑢𝑛𝑡𝑤

 𝐶𝑒𝑙𝑙𝑠 . 𝐶𝑜𝑢𝑛𝑡𝑠

(4.6)

where 𝑠 is the index of the attempted-cell that participated in the FTS mechanism

during the current generation.

These steps of ARDE evolution are repeated till the stopping criteria are met. In Figure

4.2 and Table 4.2, the letters 𝑛 and 𝑐 attached with 𝐹 and 𝐶𝑅 refer to the parameters

adaptation schemes of Normal distribution and Cauchy distribution, respectively.

4.3.4 ARDE-SPX: The Local Search of Hill-Climbing Crossover (SPX)

 As we discussed in Chapter 2, that general problem solvers with an overall

successful and efficient performance do not exist. The No Free Lunch theorem (NFL)

and other empirical evidences have strongly support this view. In addition, (Torn &

Zilinskas, 1989) in the section entitled: Global Search Method: Exploration and

Exploitation, have provided that there are two important aspects in the design of a

reliable global search should be considered: exploration, which means that every part of

the search space is search enough to ensure global reliability; exploitation, which means

that search efforts are to be concentrated around the best solutions found so far through

searching their neighborhoods to generate better solutions. These two goals have been

achieved by many search algorithms using a combination of dictated global and local

search techniques.

103

 In many studies, local search has been used to enhance the overall performance of

the DE algorithm. For example, in (Noman & Iba, 2008) a local search approach, called

Differential Evolution with Adaptive Hill Climbing Simplex Crossover (DEahcSPX),

has been integrated with the standard DE/rand/1/bin. The new algorithm has shown

better or at least comparably performance to the standard DE on a wide range of

benchmark functions. Another study in (Qin & Suganthan, 2005), Quasi-Newton

method has been used as a local search method to speed up the convergence

performance of the self-adaptive algorithm (SaDE) at different stages of the evolution.

For the same algorithm, (Zhao, Suganthan, & Das, 2011) has integrated the local search

method, called modified multi-trajectory search (MMTS) with SaDE, at different phases

of the search process to increase the population diversity and provide approximate

direction of evolution. Finally, in (Dong & Wang, 2014), the simplex crossover (SPX)

has also been used to improve the DE performance in constraint optimization. It has

been employed as a search engine in the neighborhood of the best feasible and

infeasible solutions to guide the search to the optimal solution.

4.3.4.1 SPX: Hill-Climbing Simplex Crossover

 Simplex crossover (SPX) (Tsutsui, Yamamura, & Higuchi, 1999) has first proposed

for real-coded GAs and it is now considered as one of the most common used LS

techniques in EAs. It has a very simple concept and it is easy to realize. SPX ensures a

good ability of exploration at the early stages of evolution and good exploitation ability

at the late stages of evolution. This so because SPX generates offspring based on

uniform distribution and its search region is adaptively adjusted during evolution. The

SPX variant that has been used in this study is called SPX-n-m-𝜀, where n is the

dimension of the search space, m is the number of parents selected from the parental

pool (population) for recombination in the range [2, 𝑛 + 1], and 𝜀 is the SPX control

104

parameter that determines the expanding rate.

 The main idea of SPX is to start with selecting mutually independent parents, 𝑋 =

{𝑥1, 𝑥2, … , 𝑥𝑚} from the population; then it generates 𝑦𝑚 offspring uniformly

distributed around the center mass of their parents to form an area defined by 𝑚-

simplex. This simplex is expanded in each direction of the search by (𝑥𝑖 − 𝑂) with

(𝜀 > 0), where 𝑂 is the centroid of the 𝑚 parents, calculated as:

𝑂 =
1

𝑚
∑𝑥𝑖

𝑚

𝑖=1

 (4.7)

and

𝑦𝑖 = 𝑂 + 𝜀(𝑥𝑖 − 𝑂) , 𝑖 = 1,2, … ,𝑚 (4.8)

The new solutions are then generated using the hill-climbing crossover operation. The

SPX crossover depicted in Figure 4.3 shows a three parental SPX in a two-dimensional

problem which can be denoted as SPX-2-3-𝜀. In this figure 𝑑 refers to the difference

value of (𝑥𝑖 − 𝑂). Finally, the standard procedure of the SPX crossover is shown in

Algorithm 4.8.

y
1

y
2

y
3

x
1

x
2

x
3

O

d
d

Figure 4.3: SPX-2-3-𝜀

105

Algorithm 4.8: The standard SPX crossover
01: Input: m (number of the parents), 𝑋 (solution vectors), and 𝜀 (expansion rate of SPX)

02: Output: C (solution vector)

03: Begin

04: Step 1: Calculate the central mass of the parents,

𝑂 =
1

𝑚
∑𝑥𝑖

𝑚

𝑖=1

05: Step 2: Generate the new offspring

06: Step 2.1: Generate uniformly random numbers,

 𝑟𝑖 = 𝑢
1
𝑖+1 , (𝑖 = 1,2, … ,𝑚 − 1)

 where 𝑢 is a uniform random number ∈ [0,1]
07: Step 2.2: Calculate the m-simplex area, 𝑦𝑖 = 𝑂 + 𝜀(𝑥𝑖 − 𝑂), (𝑖 = 1,2, … ,𝑚)

08: Step 2.3: Compute the new solutions by applying the hill-climbing SPX equation,

 𝐶𝑖 = {
0, (𝑖 = 1)

𝑟𝑖−1(𝑦𝑖−1 − 𝑦𝑖 + 𝐶𝑖−1), (𝑖 = 2,… ,𝑚)

09: Step 2.4: Calculate the last descendent solution as, 𝐶 = 𝐶𝑚 + 𝑦𝑚

End

4.3.4.2 SPX Crossover with Group Based Replacement

 In this study, a new way in employing the SPX crossover local search has been

proposed and integrated with the adaptive ARDE algorithm.

The new implementation adopts the SPX mechanism previously explained with few

additional modifications. First, in order to form the m-simplex, a group of m randomly

individuals are selected from the current population. After that, the SPX crossover is

applied to this group of individuals to generate new solution as in Algorithm 4.8. The

new solution is then replaced with the worst individual in the group of parents and then

in the population. This replacement is implemented without the need to evaluate the

new solution and increase the number of fitness evaluations. This is so because, through

experiment it has been found that the new solution generated from SPX crossover is

mostly better than at least one individual in the group of the simplex with a very small

probability to be worst. Moreover, it has also been found that even if the new individual

is worst in its fitness value, the difference between its fitness and the fitness of the

worse individual in the group is very small. In this way the new replacement will always

have better effect on the population or at the very least no effect. This SPX process is

applied once to the population individuals at every generation.

106

4.3.5 ARDE-SPX: Overall Algorithm Implementation

 The first step in ARDE-SPX is the same step in all EAs dialects which is the

population initialization, 𝑃(𝑡 = 0) = {𝑋1
0, 𝑋2

0, … , 𝑋𝑁𝑝
0 } with randomly generated

candidate individuals using Equation 2.1. After the population initialization step, each

individual is assigned with randomly selected combination of (DE strategy, 𝐹 adaptation

scheme and/or 𝐶𝑅 adaptation scheme) from the 𝐴𝑅 to produce the population of trial

vectors 𝑈(𝑡) = {𝑈1
𝑡, 𝑈2

𝑡, … , 𝑈𝑁𝑝
𝑡 }. In Step 4, the selection step of ARDE, the standard

individual selection strategy of DE is implemented to obtain the population of 𝑋(𝑡 +

1) = {𝑋1
𝑡+1, 𝑋2

𝑡+1, … , 𝑋𝑁𝑝
𝑡+1}; in addition, the repository 𝐴𝑅, the set of the successful

values of 𝐹 and 𝐶𝑅, and the archive of the inferior solution are all updated based on the

fitness values of the yielded individuals. To improve the quality of the individuals in the

𝑋(𝑡 + 1) population, the SPX-crossover is applied on randomly selected individuals

from the current population in Step 5. In Step 6, and before the selection of the

combinations, a cleaning scheme is applied to remove all the oldest fitness values from

the cells according to a predefined epoch which is in this work set to be 10 generations.

After this step, the selection of the strategies and schemes combinations can be

implemented with regard to the average cells values of the 𝐴𝑅 in order to produce the

new population 𝑈(𝑡 + 1).

Algorithm 4.9: The ARDE-SPX algorithm

BEGIN

01: Step 1: (INITIALIZATION) Initialize the generation counter 𝑡 = 0. Generates an initial population

𝑃(𝑡 = 0) with random candidate solutions target vectors; 〈𝑋1
𝑡 , 𝑋2

𝑡 , … , 𝑋𝑁𝑝
𝑡 〉 ∈ [𝑋𝑚𝑖𝑛 , 𝑋𝑚𝑎𝑥]

 𝑥𝑖,𝑗
𝑡 = 𝑥𝑗,𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑(0,1)𝑖,𝑗 × (𝑥𝑗,𝑚𝑎𝑥 − 𝑥𝑗,𝑚𝑖𝑛) (𝑖 = 1,2,…𝑁𝑝) (𝑗 = 1,2, … , 𝐷)

Set the mean values of 𝐹𝑚 = 0.5; the mean value of 𝐶𝑅𝑚 = 0.5; the tournament size 𝑇𝑠 = 2; the

tournament probability 𝑆𝑝 = 1.0; the archive 𝐴 = ∅; the repository cells 𝐴𝑅 = ∅; the SPX crossover

simplex size 𝑚 = 4;

02: Step 2: (ASSIGN RANDOM STRATEGIES COMBINATIONS)

(* The strategies pseudo-codes associated for each cell in 𝐴𝑅 are already stated in Algorithm 4.1 and 4.2

for the mutation strategies (DE/current-to-pBest/1 and DE/rand-to-pBest/1), Algorithm 2.2 for the

crossover strategies (bin, exp) and Algorithms 4.5-4.6 for the schemes of generating the values of 𝐹 and

𝐶𝑅 *)

 𝑖 = 1

 WHILE (𝑖 ≤ 𝑁𝑝) DO

107

 𝑠 = 𝑖𝑟𝑎𝑛𝑑({1, … ,20})
 Generate 𝑈𝑖

𝑡 using the 𝑐𝑒𝑙𝑙𝑠’ combination of the strategies and schemes from 𝐴𝑅
 𝑖 = 𝑖 + 1

 OD WHILE

03: WHILE (the halting criteria is not satisfied) DO

04: 𝐹𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = ∅; 𝐶𝑅𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = ∅

05: Step 3: (BOUNDARIES CONSTRAINTS) Regularize infeasible mutant vector 𝑈𝑖
𝑡

06: IF (𝑢𝑖,𝑗
𝑡 < 𝑥𝑗,𝑚𝑖𝑛) or (𝑢𝑖,𝑗

𝑡 > 𝑥𝑗,𝑚𝑎𝑥) THEN 𝑢𝑖,𝑗
𝑡 = 𝑥𝑗,𝑚𝑖𝑛 + (𝑥𝑗,𝑚𝑎𝑥 − 𝑥𝑗,𝑚𝑖𝑛) × 𝑟𝑎𝑛𝑑(0,1)

 (𝑖 = 1,2, …𝑁𝑝)

 (𝑗 = 1,2, … , 𝐷)

07: Step 4: (INDIVIDUAL SELECTION AND REPOSITORY UPDATE) select the individuals with the

minimum fitness value for the next generation

08: IF 𝑓(𝑈𝑖
𝑡 ≤ 𝑋𝑖

𝑡) THEN (𝑖 = 1,2, …𝑁𝑝)

09: Begin

10: 𝑋𝑖
𝑡+1 = 𝑈𝑖

𝑡

11: Store in the cell associated with 𝑈𝑖
𝑡 its fitness value 𝐴𝑅← 𝑓(𝑈𝑖

𝑡)
12: Update the archive 𝐴 with the inferior solutions 𝑋𝑖

𝑡

13: 𝐹𝑠𝑢𝑐𝑐𝑒𝑠𝑠 ← 𝐹𝑖
14: 𝐶𝑅𝑠𝑢𝑐𝑐𝑒𝑠𝑠 ← 𝐶𝑅𝑖
15: End

16: ELSE

17: Begin

18: 𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡

19: Store in the cell associated with 𝑋𝑖
𝑡 its fitness value 𝐴𝑅← 𝑓(𝑋𝑖

𝑡)
20: End

21: Step 5: (SPX CROSSOVER WITH GROUP BASED REPLACEMENT)

22: Step 5.1: Select 𝑟1, 𝑟2, 𝑟3, and 𝑟4 mutual different individuals from 𝑋𝑡+1 to construct the 𝑚-

 simplex

23: Step 5.2: Apply Algorithm 4.8 (SPX crossover) to generate new individual 𝐶

24: Step 5.3: Find 𝑊 = 𝑤𝑜𝑟𝑠𝑡𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙(𝑟1, 𝑟2, 𝑟3, 𝑟4)
25: Step 5.4: Replace individual 𝐶 with 𝑊 in the 𝑋𝑡+1 population

26: Step 6: (REPOSITORY CLEANING, REWARDING AND PENALIZING)

27: If (𝑡 − 10 > 0) then delete from 𝑐𝑒𝑙𝑙𝑖 all fitness values with 𝑓𝑎𝑔𝑒 = 𝑡 − 10

 (𝑖 = 1,2, … 20)

28: If (𝑡 > 1) THEN eliminate the worst 𝑓 from the cell with the highest 𝑝𝑠 and eliminate the

 best 𝑓 from the cell with the lowest 𝑝𝑠 using Equation 4.6

29: Step 7: (AVERAGING THE REPOSITORY CELLS)

30: 𝐴𝑅← 𝑐𝑒𝑙𝑙𝑖 =
∑ 𝑓𝑖,𝑗
𝑛𝑓𝑐𝑖
𝑗=1

𝑛𝑓𝑐𝑖
 (𝑖 = 1,2, … 20)

31: Step 8: (UPDATE ARDE-SPX PARAMETERS)

32: Update the values of 𝐹𝑚 and 𝐶𝑅𝑚 using Algorithm 4.3 and Algorithm 4.4, respectively.

33: Step 9: (STRATEGIES SELECTION)

34: IF (𝑋𝑖
𝑡+1) is successful individual THEN

 Apply Algorithm 4.7 (FTS) to select new attempted-cell from 𝐴𝑅

 (𝑖 = 1,2, …𝑁𝑝)

 Update the selected attempted-cell’s counters 𝐶𝑜𝑢𝑛𝑡𝑤𝑠 and 𝐶𝑜𝑢𝑛𝑡𝑠𝑠

 ELSE select random cell from 𝐴𝑅

35: Step 10: 𝑡 = 𝑡 + 1
36: OD WHILE

END

4.3.6 ARDE-SPX: Algorithm Complexity Analysis

 On the complexity of ARDE-SPX shown in Algorithm 4.9, ARDE-SPX does not

increase the overall complexity with respect to the other adaptive DE algorithms. The

108

total ARDE-SPX complexity is calculated as follows,

(1) The complexity of both the mutation and crossover operations in the standard DE

and ARDE-SPX is 𝑂(𝑁𝑝 ∙ 𝐷). In addition, the complexity of finding the pBest solution

takes 𝑂(𝑁𝑝 ∙ 𝑙𝑜𝑔𝑁𝑝); so, the overall complexity of the mutation and the crossover

operations in ARDE-SPX is 𝑂(𝑁𝑝 ∙ (𝐷 + 𝑙𝑜𝑔𝑁𝑝)). (2) The selection operation in the

standard DE and ARDE-SPX takes 𝑂(𝑁𝑝) arithmetic operations. Since the parameters

adaptation is already embedded in the selection operation, thus the overall complexity

of the selection and parameters adaptation in ARDE-SPX is the same, 𝑂(𝑁𝑝). (3) The

complexity of the FTS selection scheme of the adaptive repository and its cleaning,

rewarding and penalizing processes in its worst case is 𝑂(𝑁𝑝). (4) In ARDE, the

complexity of the group base selection of SPX is 𝑂(𝑚 ∙ 𝐷) and since 𝑚 can be set to 𝐷

as the maximum simplex size, thus the complexity of SPX is 𝑂(𝐷2). Hence, the total

complexity of the ARDE-SPX can be calculated as,

 → 𝑂(𝑁𝑝 ∙ (𝐷 + 𝑙𝑜𝑔𝑁𝑝)) + 𝑂(𝑁𝑝) + 𝑂(𝑁𝑝) + 𝑂(𝐷2)

In literature, the population size 𝑁𝑝 is set to be proportional to the problem

dimension 𝐷; so, 𝑁𝑝 has been substituted by 𝐷 in the above formula as,

 → 𝑂(𝐷 ∙ (𝐷 + 𝑙𝑜𝑔𝐷)) + 𝑂(𝐷) + 𝑂(𝐷) + 𝑂(𝐷2)

By eliminating the terms with less than 𝐷2, we have

 → 𝑂(𝐷2) + 𝑂(𝐷 𝑙𝑜𝑔𝐷) + 𝑂(𝐷) + 𝑂(𝐷) + 𝑂(𝐷2)

 → 𝑂(2𝐷2)

when the constant 2 is dropped, the final complexity becomes

 → 𝑂(𝐷2)
𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦
⇒ 𝑂(𝑇 ∙ 𝐷2)

where 𝑇 is the total number of generations. The total complexity of ARDE-SPX is the

same as in many other adaptive DE variants like JADE and SaJADE (Gong, Cai, Ling,

& Li, 2011).

109

4.3.7 ARDE-SPX: Comparison with Other Adaptive DE Variants

 ARDE-SPX is an adaptive algorithm that updates the values of 𝐹 and 𝐶𝑅 in a

learning controlled based and updates the selection of the DE strategies in a progressive

controlled based. Compared with the variants of DE where the parameters and multi-

strategies of DE are adaptive (SaDE, SaJADE, EPSDE, CoDE, SaDE-MMTS and

HSPEADE), the main differences between ARDE-SPX and these algorithms are as

follows:

 The repository of DE strategies and parameter adaptive schemes: ARDE-

SPX is different from all the aforementioned algorithms in one major point

which is the adaptation of the combinations of the parameters control schemes in

addition to the adaptation of the DE strategies. This mechanism is called

adaptive repository, 𝐴𝑅 . In this mechanism the algorithm decides which better

combination to select through the adaptation process. The adaptive repository is

a new attempt in the field of adaptive DE algorithms.

 Ease of Implementation: ARDE-SPX uses a very simple and straightforward

mechanism to implement the adaption process of 𝐴𝑅 which is based on the

fitness tournament scheme of selection (FTS) method used in GA. This

mechanism decides which combinations of DE strategy and parameters control

scheme are assigned for each individual based on the fitness function values

accumulated every 10 generations. ARDE considers the successful and failure

combinations at the same time, then the selection will be implemented based on

the average of their fitness values; so, all the combinations attempted through

every 10 generations have equal chances to survive. In addition, in ARDE the

successful individual is more likely not to be assigned to the same combination

that generates it. FTS establishes a competition between two selected

combinations from the repository and selects the fitter one based on its fitness

110

value. One advantage of such a mechanism is that it guarantees that all the

attempted combinations will participate in generating the next population and

FTS decides which combination to choose with respect to its average fitness

value. In this way, it increases the population diversity and increases the chance

that the failure combination may become successful combination if it has been

assigned to another individual.

 Local Search Integration: few adaptive DE algorithms have been yet

integrated with local search technique except for SaDE-MMTS. In ARDE, the

SPX crossover has been integrated to improve the quality of the solutions at

each generation.

 No Extra Parameters Control: in ARDE-SPX, there are any extra control

parameters need to be adapted during the run like in SaDE, SaJADE, SaDE-

MMTS and HSPEADE. There are only few setting parameters (tournament size,

𝑇𝑠 , tournament probability, 𝑆𝑝 and the simplex size 𝑚) which can easily be

tuned before the run according to predefined values.

 In general, using this simple mechanism of 𝐴𝑅 makes ARDE easy to implement

more than SaDE, SaDE-MMTS and HSPEADE that are complex to implement;

and more efficient than EPSDE, CoDE and SaJADE in the adaptation process.

In addition, the ARDE-SPX algorithm updates the control parameters 𝐹 and 𝐶𝑅

except for the population size 𝑁𝑝. Because through experiments it has been

found that the 𝑁𝑃 does not have significant effects on the performance of DE as

the other control parameters, 𝐹 and 𝐶𝑅.

111

4.4 Summary

 In this chapter, two major points have been addressed:

1) The general steps of how to develop an adaptive EA have been provided in

details. These steps represent the general methodology to modify any standard

EA and make it an adaptive one. In this study the Differential Evolution has

been considered as the case study to apply these steps.

2) A new mechanism in adapting the parameters control schemes and the DE

strategies have been proposed in this chapter. This proposed mechanism is based

on creating a repository that involve all the possible combinations of these

strategies and schemes and embedded them inside the standard DE to introduce

the adaptive repository, ARDE. The evolutionary part of the DE is kept

untouched except the selection step where the repository is updated. Then an

additional step has been added to assign a combination for each individual in the

population. The use of different schemes for the parameters adaptation and the

mutation strategies makes DE more general algorithm that can solve different

optimization problems. It also increases the population diversity and at the same

time decreases the risk to fall into local optima. Finally, the ARDE has been

combined with a local search method, SPX-crossover to make the algorithm

more reliable and robust. In the following chapter, the computer experimental

results will support this expectation.

 Finally, in order to validate the new proposed adaptive DE algorithm (ARDE-SPX),

several benchmark problems are used for the purpose in Chapter 5. Then, the

performance of ARDE-SPX is compared with several adaptive DE algorithms. The

ARDE-SPX is also validated by implementing it to estimate the parameters of a robot

manipulator in Chapter 6.

112

CHAPTER 5

RESULTS AND DISCUSSION

5.1 Introduction

 In this chapter, two types of experiments have been conducted. In the first

experiment, six standard DE variants with different mutation schemes have been

compared over 28 standard benchmark (unimodal and multimodal) functions. The

objective of this experiment is to provide a table of 𝐹 and 𝐶𝑅 settings associated with

their corresponding DE variants. This table provides the best settings of each DE variant

in which it could perform the best over each test problem. It is aimed at practitioners

from different disciplines to help them achieve better results when adopting DE as an

optimizer with less time and effort, as well as reducing the computational complexity

when solving some applications that require the algorithm simplicity to ensure the

implementation speed. In the second experiment, extensive experimental results and

discussions have been presented to confirm the reliability of the proposed ARDE-SPX

over several existing adaptive DE variants. These comparisons have been conducted in

terms of the solution precision, successful rate and robustness over 33 standard and

transformed benchmark (unimodal and multimodal) functions.

5.2 Experimental Setup

5.2.1 Unconstrained Benchmark Functions

 Twenty-eight standard benchmark functions (i.e. functions with no modifications

on their main characteristics, such as shifting, rotating or hybrid with other functions)

are first considered in this study. These functions have been gleaned from different

sources, for instance, the functions (𝑓1, 𝑓5 − 𝑓6, 𝑓8, 𝑓23) are called De Jong’s functions

113

test suite (De Jong, 1975), functions (𝑓20 − 𝑓21, 𝑓24 − 𝑓28) are called Dixon-Szegö

functions (Dixon & Szego, 1978), and function (𝑓13) is called Griewank function

(Griewank, 1981). They are either called Convex or Non-Convex depending on the

characteristics of the function’s landscape. More details about these functions can be

found in (Lee & Yao, 2004; Torn & Zilinskas, 1989; Yao, Liu, & Lin, 1999). These

functions have been classified in terms of their modality feature into two main classes

(unimodal and multimodal) functions (see Figure 5.1). The word modality refers to the

number of peaks in the fitness landscape.

Benchmark Functions’ Classification

Unimodal Functions Multimodal Functions

Bi-dimensional & Multidimensional

No Local Minima

Bi-dimensional

Few Local

Minima

Exponential Local

Minima

Multidimensional

Few Local

Minima

Exponential Local

Minima

-Sphere Function (f
1

)

-Schwefel 2.22 Function (f
2
)

-Schwefel 1.2 Function (f
3
)

 (Rotated Parallel

 Hyper-Ellipsoid)

-Schwefel 2.21 Function (f
4
)

-Step Function (f
5
)

-Quartric Noise Function (f
6
)

-Axis Parallel Hyper-Ellipsoid

Function (f
7
)

-Standard Rosenbrock’s

Function (f
8
)

-Easom Function (f
19

)

-Branin Function (f
20

)

-Goldstein-Price

Function (f
21

)

- Six-hump Camel Back

Function (f
22

)

Shekel Foxholes

Function (f
23

)
-Schwefel Function (f

10
)

-Rastrigin Function (f
11

)

-Ackley Function (f
12

)

-Griewank Function (f
13

)

-Generalized

-Penalized Functions

(f
14

- f
15

)

- Neumaier 3 f
16

- Salomon f
17

- Apline f
18

-Generalized Rosenbrock

Function (f
9
)

-Hartman (H
3,4

) and

Hartman (H
6,4

) Functions

(f
24

- f
25

)

-Shekel’s Family (f
26

- f
28

)

 Figure 5.1: General classification of twenty eight standard benchmark functions

Class 1 (Unimodal Functions), these functions have only one global minimum

solution in the feasible region of the search, they can be continues (𝑓1 − 𝑓4, 𝑓6 − 𝑓8) or

discontinue function (𝑓5) with no or single local minimum. In the presence of a local

minimum, the task of optimization becomes a cumbersome task; as such, an improper

designed algorithm can get stuck in the local minima. An additional modulation can

114

also be padded to a function formulation in order to produce frequent local minima, as

in problem (𝑓6) which is called a noisy quadratic function, without affecting the

overall general characteristic of this function as being unimodal; this function is used

to assess the performance of an algorithm on noisy data.

Some of the unimodal functions inherent a certain kind of deceptiveness and they are

hard to optimize. The deceptiveness could be that the global minimum is either

located on a flat surface (𝑓5) or located very near to the local minimum. Sometimes,

deceptiveness is due to the fact that the global minimum lies in a narrow curving

valley (𝑓8) or it shows fractal properties around the global minimum (𝑓6). These

functions are considered as high-dimensional functions except the Rosenbrock

function (𝑓8).

Class2 (Multimodal Functions), these functions (𝑓9 − 𝑓28) have more than one (few

or exponential) local minima with one or multiple global minima depending on the

function characteristics. In most cases of multimodal functions, the number of local

minima will dramatically increases with increasing the problem dimension. Functions

(𝑓10 − 𝑓18) are high-dimensional multimodal functions where the number of local

minima increases exponentially with the problem dimension. These functions are the

most difficult class of problems for many optimization algorithms. Functions (𝑓19 −

𝑓22, 𝑓24 − 𝑓25) are low-dimensional multimodal functions which have only few local

minima. Function (𝑓23, 𝑓26 − 𝑓28) are low-dimensional multimodal functions where

the number of local minima increases exponentially and dependently on the problem

characteristics. The number of local minima in these functions is determined by the

problem characteristic. Generalized Rosenbrock Function (𝑓9) is a high-dimension

multimodal function with few local minima. Over the last decade this function has

been considered as a unimodal function with no local minimum to test the

performance of many algorithms. Recent investigation (Shang & Qiu, 2006) has

115

proved that for 4 ≤ 𝐷 , the Rosenbrock function has two minima; as such it has been

considered as a multimodal function in this study. Easom function (𝑓19) is used to be

considered as a unimodal function. However, this function has one global minimum

located in a very small area relative to the search space. This global minimum is

surrounded by a small number of local minima. Thus, it has been considered as a

multimodal function in this study.

Then, five transformed (shifted and/or rotated) test functions (𝐹2, 𝐹6, 𝐹8, 𝐹9 and 𝐹10) are

also considered in this study. The detailed description of these functions can be found in

(Liang, Suganthan, & Deb, 2005; Qin, Huang, & Suganthan, 2009). They are:

- 𝐹2: Shifted Schwefel Function 1.2 (Unimodal)

- 𝐹6: Shifted Rotated Ackley Function (Multimodal)

- 𝐹8: Shifted Rotated Griewank Function (Multimodal)

- 𝐹9: Shifted Rastrigin Function (Multimodal)

- 𝐹10: Shifted Rotated Rastrigin Function (Multimodal)

 In Table 5.1, the problem dimension is denoted as D. the initial range of the variable is

denoted as 𝕊. The global minima values of the given functions are denoted as 𝑓𝑚𝑖𝑛. The

complete functions formulations are provided in Appendices A and B.

116

1
1

6

 Table 5.1: Problem dimension, global optimum parameters set, global optimum value, search range, and initialization range of

thirty-three benchmark functions

𝒇 D Global Optimum 𝒙∗ Local Minima 𝑭(𝒙∗) Search Range (𝕊) Initialization Range

Unimodal Standard Functions (high-dimensional Functions)

𝒇𝟏 30, 100 (0,0,…,0) No 0 [-100,100] [-100,100]

𝒇𝟐 30, 100 (0,0,…,0) No 0 [-10,10] [-10,10]

𝒇𝟑 30, 100 (0,0,…,0) No 0 [-100,100] [-100,100]

𝒇𝟒 30, 100 (0,0,…,0) No 0 [-100,100] [-100,100]

𝒇𝟓 30, 100 (0,0,…,0) No 0 [-100,100] [-100,100]

𝒇𝟔 30, 100 (0,0,…,0) No 0+noise [-1.28,1.28] [-1.28,1.28]

𝒇𝟕 30, 100 (0,0,…,0) No 0 [-100,100] [-100,100]

Unimodal Standard Functions (low-dimensional Functions)

𝒇𝟖 2 (1,1) No 0 [-30,30] [-30,30]

Multimodal Standard Functions (high-dimensional Functions)

𝒇𝟗 30, 100 (1,1,…,1) 2 0 [-30,30] [-30,30]

𝒇𝟏𝟎 30, 100 (420.9687,…, 420.9687) exponential -418.9829∙ 𝐷 [-500, 500] [-500, 500]

𝒇𝟏𝟏 30, 100 (0,0,…,0) exponential 0 [-5.12, 5.12] [-5.12, 5.12]

𝒇𝟏𝟐 30, 100 (0,0,…,0) exponential 0 [-32,32] [-32, 32]

𝒇𝟏𝟑 30, 100 (0,0,…,0) exponential 0 [-600, 600] [-600, 600]

𝒇𝟏𝟒 30, 100 (-1,-1,…,-1) exponential 0 [-50, 50] [-50, 50]

𝒇𝟏𝟓 30, 100 (1,1,…,1) exponential 0 [-50, 50] [-50, 50]

𝒇𝟏𝟔 30, 100 ((D+1-1), 2(D+1-2), …, D(D+1-

D))

exponential -D(D+4)(D-1)/6 [-D
2
, D

2
] [-D

2
, D

2
]

𝒇𝟏𝟕 30, 100 (0,0,…,0) exponential 0 [-100,100] [-100,100]

𝒇𝟏𝟖 30, 100 (0,0,…,0) exponential 0 [-10,10] [-10,10]

117

1
1

7

 Table 5.1- Continued

𝒇 D Global Optimum 𝒙∗ Local Minima 𝑭(𝒙∗) Search Range (𝕊)

Initialization Range

Multimodal Standard Functions (low-dimensional Functions)

𝒇𝟏𝟗 2 (𝜋, 𝜋) few -1 [-100,100] [-100,100]

𝒇𝟐𝟎 2 (−𝜋, 12.275); (𝜋, 2.275); (9.42478,

2.475)

3 0.397887 [-5,10]x[0,15] [-5,10]x[0,15]

𝒇𝟐𝟏 2 (0, -1) 4 3.0000 [-2, 2] [-2, 2]

𝒇𝟐𝟐 2 (-0.0898, 0.7126);

(0.0898, -0.7126)

4 -1.0316 [-3,3]x[-2,2] [-3,3]x[-2,2]

𝒇𝟐𝟑 2 (-32, -32) = m ≈1 [-65.536, 65.536] [-65.536, 65.536]

𝒇𝟐𝟒 3 (0.114, 0.556, 0.852) 4 -3.86278 [0, 1] [0, 1]

𝒇𝟐𝟓 6 (0.201, 0.150, 0.477, 0.275, 0.311,

0.657)

6 -3.3237 [0, 1] [0, 1]

𝒇𝟐𝟔 4 (4, 4, 4, 4) 5 -10.1532 [0, 10] [0,10]

𝒇𝟐𝟕 4 (4, 4, 4, 4) 7 -10.4029 [0, 10] [0, 10]

𝒇𝟐𝟖 4 (4, 4, 4, 4) 10 -10.5364 [0, 10] [0, 10]

Unimodal Transformed Functions (high-dimensional Functions)

𝑭𝟐 30, 100 (𝑜, 𝑜, 𝑜 … 𝑜) No 0 [-100,100] [-100,100]

Multimodal Transformed Functions (high-dimensional Functions)

𝑭𝟔 30, 100 (𝑜, 𝑜, 𝑜 … 𝑜) exponential 0 [-32,32] [-32,32]

𝑭𝟖 30, 100 (𝑜, 𝑜, 𝑜 … 𝑜) exponential 0 No bounds [0,600]

𝑭𝟗 30, 100 (𝑜, 𝑜, 𝑜 … 𝑜) exponential 0 [-5,5] [-5,5]

𝑭𝟏𝟎 30, 100 (𝑜, 𝑜, 𝑜 … 𝑜) exponential 0 [-5,5] [-5,5]

o is the shifted vector

118

5.2.2 Algorithms for Comparison

 In this study two main experiments are conducted:

- Experiment 1, an empirical study on the competitive convergence nature of six DE

mutation variants (with different trial vector generation strategies) are compared to

solve twenty-eight unconstrained optimization problems. The general purposes of this

comparison are: (1) to present a list of good choices of DE parameters for various

optimization problems which would help the practitioners form different field achieve

better solutions with little efforts to solve their optimization problems (2) to identify the

best DE mutation variants to constitute the adaptive pool of strategies in the ARDE-SPX

algorithm. For fair comparison, the crossover type that has been adopted in all strategies

is the binomial crossover. The DE mutation strategies are:

 Four standard DE strategies have been selected for the comparison (DE/rand/1,

DE/current-to-rand/1, DE/best/1, and DE/current-to-best/1), as in Equations

(2.3-2.4, and 2.7-2.8) respectively. Here, the DE variants in Equations 2.3 and

2.7 are chosen because they are fast, robust, and they bear very strong

exploration ability. Moreover, they employ the most commonly used trial vector

generation strategy. While the DE variants in Equations 2.4 and 2.8 are chosen

because they rely on the best solution found so far and this increases the

reliability as well as the convergence rate.

 Two advanced DE strategies have been selected for the comparison

(DE/current-to-pBest/1/bin without archive and DE/current-to-pBest/1/bin with

archive), as in Equations 3.25 and 3.26 respectively. These strategies have

shown powerful performance and improve the population diversity especially

for high-dimension problems.

In this experiment, the comparison is conducted on 28 benchmark functions in terms of

the solution precision (Mean±Std).

119

- Experiment 2, simulations are carried out to obtain a comparative performance

analysis of the ARDE-SPX with respect to five recent and well known state-of-the-art

adaptive DE variants such as jDE, SaDE, JADE without archive, JADE with archive

and SaJADE. These algorithms have different adaptive characteristics, as explained in

Chapter 4. The parameters of these algorithms have been set based on what have already

been implemented in their corresponding references unless different settings used will

be referred to it in the corresponding subsection. In this experiment, the parameter

settings are as follow unless a change is mentioned:

 ARDE-SPX has been initialized with 𝐶𝑅𝑚 =0.5, 𝐹𝑚 =0.5, 𝑝 =0.05, and

𝑎𝑟𝑐ℎ𝑖𝑣𝑒 𝑠𝑖𝑧𝑒 =𝑁𝑝. For the tournament selection 𝑇𝑠 = 2 and 𝑆𝑝 = 1.0. For SPX

crossover 𝜀 = 1.0, and m = 3 for 𝐷 ≤ 30 and 𝑚 = 4 for 𝐷 = 100.

 jDE has been initialized with 𝜏1 = 𝜏2 =0.1, as suggested in (Brest, Boskovic,

Greiner, Zumer, & Maucec, 2007).

 SaDE has been initialized with 𝑝𝑘 = 1/4 where (𝑘 = 1,2,3,4) and 𝐶𝑅𝑚 =0.5,

as suggested in (Qin, Huang, & Suganthan, 2009).

 JADE with and without archive have been initialized with 𝜇𝐶𝑅 =0.5, 𝜇𝐹 =0.5,

𝑝 =0.05 and 𝑐 =0.1, and 𝑎𝑟𝑐ℎ𝑖𝑣𝑒 𝑠𝑖𝑧𝑒 =𝑁𝑝, as suggested in (Zhang &

Sanderson, 2009b).

 SaJADE with 𝜇𝐶𝑅 =0.5, 𝜇𝐹 =0.5, 𝜇𝑆 =0.5, 𝑝 =0.05 and 𝑐 =0.1, and

𝑎𝑟𝑐ℎ𝑖𝑣𝑒 𝑠𝑖𝑧𝑒 =𝑁𝑝, as suggested in (Gong, Cai, Ling, & Li, 2011).

In this experiment, all the comparisons have been conducted on 33 benchmark functions

in terms of the convergence speed, solution precision and robustness. Finally, for all

experiments, the following settings have been used unless a change is mentioned:

 The function dimension: 𝐷 = 30 and 𝐷 = 100.

 The population size: 𝑁𝑝 = 30 if 𝐷 ≤ 10, 𝑁𝑝 = 100 if 𝐷 = 30, and 𝑁𝑝 = 400

if 𝐷 = 100.

120

 Termination Error (Ter_Err): For functions 𝑓1 − 𝑓5, 𝑓7, and 𝑓9 − 𝑓18,

Ter_Err=10−8; for function 𝐹2, Ter_Err=10−6; for functions 𝑓6, 𝐹6, 𝐹8, 𝐹9 and

𝐹10, Ter_Err=10−2.

 Maximum Number of Fitness Evaluations (MAX_FEs): If 𝐷 = 30 −for 𝑓1, 𝑓5,

𝑓7, 𝑓14and 𝑓15, MAX_FEs= 150 000; for 𝑓2 and 𝑓12, MAX_FEs= 200 000;

for 𝑓6, 𝑓13, 𝑓16 − 𝑓18, 𝐹2, 𝐹6, 𝐹8, 𝐹9 and 𝐹10, MAX_FEs= 300 000; for 𝑓3, 𝑓4,

and 𝑓9 − 𝑓11, MAX_FEs= 500 000. If 𝐷 = 100 − for 𝑓1 and 𝑓7, MAX_FEs=

 800 000; for 𝑓5, 𝑓6, 𝑓10, 𝑓16 − 𝑓18, 𝐹2, 𝐹6, 𝐹8, 𝐹9 and 𝐹10, MAX_FEs=

 1 000 000; for 𝑓2 and 𝑓11 − 𝑓15, MAX_FEs= 1 200 000; for 𝑓3, 𝑓4, and 𝑓9,

MAX_FEs= 2 000 000.

5.2.3 Comparison Strategies and Metrics

 In general, for fair comparison, the population size for all the DE algorithms over

each problem have been initialized using the same population size, the same initial

population values, and the same termination condition in each run; so, any difference in

their performance is mainly belong to the algorithms’ internal search operators. The

results of all the experiments in this study have been validated on the basis of the paired

two-sample t-test. Two important aspects have been considered in conducting the

comparisons:

Statistical Testing: Since all the algorithms start with the same initial population over

each problem instance, the paired t-test is used to compare their final accuracies which

are assumed to be normally distributed (Bi & Xiao, 2011; Zhu, Tang, Fang, & Zhang,

2013). T-test is a popular tool in evolutionary computing used to measure the significant

statistical difference between two sets (algorithms) of results. It is calculated using the

direct difference method (Runyon, Haber, Pittenger, & Coleman, 1996) which is given

by the following equation:

121

𝑡 =
�̅�

√∑𝐷
2 −

(∑𝐷)2

𝑁
𝑁(𝑁 − 1)

(5.1)

where �̅� = �̅�1 − �̅�2 and �̅�1, �̅�2 are the sample average of the two groups. 𝐷 is the

difference between the two pairs of random groups. 𝑁 is the sample size of a single

group, then the degree of freedom is calculated as 𝑁 − 1; so, if the experiments have

been implemented over 50 independent-runs, then the degree of freedom is

approximately equal to 49. A two-tailed test is conducted at significance levels of

𝛼 = 0.05 (95% confidence interval, t-value= 2.0100) of all the statistical testing of

results. The t-test is easy to be implemented since it is now included in most of the well-

known software packages (e.g. Microsoft Office Excel, SPSS, etc.). In this study, the

Microsoft Office Excel package of t-test has been used as shown in Figure 5.2. From the

same figure it can be noted that the “t-test: Pairs two sample for means” has been

selected, because this test is suitable in case when each pair of two algorithms has the

same initial condition. Moreover, the reason of choosing the Microsoft Office Excel

package to do the t-test is because in this study Delphi 7 has been used to implement the

algorithms and this software has a big number library that gives results in floating point

number with high accuracy (e.g. 1.432E-90) which makes Excel better suited software

for this type of data.

The Criteria of Comparisons: The comparative study focuses on four important

criteria:

(1) The solution precision, which is measured by the objective function value

achieved till the maximum number of function evaluations (MAX_FEs). The

mean and standard deviation of the optimized fitness values are calculated.

(2) The number of function evaluations (FESS), which is defined as the number of

function evaluations required by an algorithm to reach the predefined

122

termination error value (Ter_Err) before reaching the MAX_FEs. FESS is used

to measure the convergence speed and reliability of an algorithm.

(3) The success rate (Sr), which is calculated as the number of successful runs

divided by the total number of runs. Successful run is defined as the run where

the accuracy of the finial function value can reach the Ter_Err before reaching

the MAX_FEs. Sr is used to measure the robustness of an algorithm.

(4) The convergence graph, which shows the convergence performance of an

algorithm by plotting the average of the best fitness values achieved through the

run.

Figure 5.2: A snapshot of the Microsoft Office Excel package of t-test

System Configuration: Simulations were implemented on an Intel® Core™ Duo CPU

T6670 @ 2.20GHz 2.20, GHz 4.00 GB of Memory, and Windows 7 Professional

Version 2009 using Borland Delphi 7.

123

5.3 Experimental Results and Discussions

5.3.1 Comparison of Multiple DE Variants Based Parameter Tuning

 In this comparison the problem dimension is set to (𝐷 = 30) for the high-

dimensional problems only. The population size is set to (𝑁𝑝 = 100) if (𝐷 = 30) and is

set to (𝑁𝑝 = 30) if (𝐷 < 30) for all test problems, except for the standard Rosenbrock

function, 𝑓8. The population size of this function has been set to 100 because this

function needs high solution diversity; otherwise it always stuck in the flat area of the

solutions nearby the optimum. In this experiment, all of the six DE variants have been

taken with no adaptive operation to any of their control parameters, and 𝐹 and 𝐶𝑅 are

set manually to values within the range [0.1, 0.95] and 0.05 steps that give,

approximately, good convergence performance on average. The p value in both

DE/current-to-pBest/1/bin with no archive and DE/current-to-pBest/1/bin with archive

is set to be 0.05. The solution precision has been used to detect which variant is more

competitive. To measure the solution precision, the mean and standard deviation of the

best fitness values achieved over 30 runs are calculated for each DE mutation variant. In

this experiment, the preference of the best variant has been determined manually based

on the best mean and standard deviation achieved without using t-test because the

comparison here is not crucial.

Table 5.2 displays the 𝐹 and 𝐶𝑅 values tuned by trial-and-error for the various pairs DE

variant-test function that provide the best performance. The mean and standard

deviation of the objective function values obtained for the unimodal functions: 𝑓1 − 𝑓8

and the multimodal functions: 𝑓9 − 𝑓28 are presented in Table 5.3. For space purposes,

in these two tables the name of the DE variant has been substituted with the word

“scheme” and a number that indicates the index of the variant, i.e, DE/rand/1/bin is

Scheme1, DE/current-to-rand/1/bin is Scheme 2, DE/best/1/bin is Scheme 3,

124

DE/current-to-best/bin is Scheme 4, DE/current-to-pBest/1/bin without archive is

Scheme 5 and DE/current-to-pBest/1/bin with archive is Scheme 6.

 In the case of the unimodal functions 𝑓1 − 𝑓5, the results in Table 5.3 show that the

best performance is provided by DE/current-to-pBest/1/bin with archive. For the noise

function 𝑓6, the DE/current-to-best/1/bin could outperform other variants and the

DE/current-to-pBest/1/bin with archive comes in the second place; whereas for the

standard Rosenbrock function 𝑓8, the variant DE/best/1/bin could significantly

outperform other variants. In general, it is clear that in the case of all unimodal

functions the DE variants that involve the best individual found so far in their difference

pairs can display better performance than other variants with random individuals only.

This is mainly due to the characteristics of the unimodal functions that do not possess

any local minimum that cause these types of greedy variants to fall in. Moreover, the

greedy variants of DE can lead to very fast convergence in the unimodal functions.

 In the case of multimodal functions with high-dimensions 𝑓9 − 𝑓18, the results in Table

5.3 show that the performance of the DE variants varies depending on the problem

complexity. For 𝑓9 the greedy DE variants present better results than the other variants

and DE/current-to-pBest/bin with no archive performs the best except the DE/best/1/bin

which always falls into the local minimum during the experiment because of its high

greedy tendency. For 𝑓10 the entire DE variants could provide the same performance and

almost with the same 𝐹 and 𝐶𝑅 settings. Whereas for 𝑓11 − 𝑓13 the DE variants with

only random individuals (DE/rand/1/bin and DE/current-to-rand/1/bin) could

significantly outperform other variants, as the characteristics of these functions demand

an algorithm with high exploration and exploitation capability to escape from the local

minima. However, in the case of 𝑓13 the DE variants DE/current-to-pBest with and

without archive could also perform well. This proves the reliability of these two variants

to create the proper balance between the exploitation and exploration, as well as the fast

125

convergence. This also has made these two variants perform the best on 𝑓14 − 𝑓18.

 In the case of the multimodal low dimensional problems 𝑓19 − 𝑓28, the settings of 𝐹

and 𝐶𝑅 could bring about the desired performance for all the variants in 𝑓19 − 𝑓24. The

difference appeared in 𝑓25 − 𝑓28 as these functions have the local minimum very near to

the global minimum which makes these functions demand algorithms with different

characteristics in order to escape from the local entrapment. For example, in 𝑓25 the

greedy variants DE/current-to-best/1/bin, and DE/current-to-pBest/1/bin with and

without archive could outperform other variants, whereas in 𝑓26 − 𝑓27 the variant

DE/rand/1/bin outperform all other variants because of its high exploration capability.

 Finally, the results displayed in Table 5.3 are based on the settings provided in Table

5.2 which are obtained by trial-and-error experiments. This implies that these values can

be changed if future experiments provide better results. However, based on the current

experimental settings it can be noted that the selection of the DE variants and the

associated parameter settings are problem dependent. There are some problems demand

greedy variants whereas there are some other problems demand high randomness in the

algorithm. At the same time, there are some problems require different settings for 𝐹

and 𝐶𝑅. For the powerful DE variants, it can be noted that the DE/current-to-

pBest/1/bin with and without archive are very powerful variants because of their

characteristics to involve the greediness tendency as well as the proper randomness in

the same time.

126

1
2

6

 Table 5.2: The F and CR values tuned for each pair of DE mutation variant-benchmark functions

Fun.
Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6

F CR F CR F CR F CR F CR F CR

𝒇𝟏 0.4 0.9 0.5 0.5 0.6 0.8 0.6 0.8 0.5 0.6 0.5 0.9

𝒇𝟐 0.4 0.9 0.5 0.7 0.6 0.8 0.6 0.8 0.5 0.7 0.5 0.9

𝒇𝟑 0.4 0.9 0.6 0.9 0.6 0.9 0.6 0.8 0.6 0.9 0.5 0.9

𝒇𝟒 0.4 0.5 0.6 0.4 0.6 0.3 0.7 0.8 0.6 0.6 0.5 0.9

𝒇𝟓 0.4 0.9 0.4 0.4 0.5 0.5 0.6 0.6 0.5 0.5 0.5 0.9

𝒇𝟔 0.4 0.9 0.4 0.1 0.4 0.2 0.5 0.1 0.5 0.1 0.5 0.9

𝒇𝟕 0.4 0.9 0.5 0.5 0.6 0.8 0.6 0.8 0.5 0.6 0.5 0.9

𝒇𝟖 0.2 0.95 0.3 0.95 0.6 0.95 0.6 0.95 0.75 0.95 0.95 0.95

𝒇𝟗 0.5 0.9 0.7 0.9 0.7 0.8 0.7 0.8 0.7 0.8 0.6 0.9

𝒇𝟏𝟎 0.95 0.1 0.95 0.1 0.95 0.1 0.95 0.1 0.95 0.1 0.95 0.1

𝒇𝟏𝟏 0.2 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.95 0.1

𝒇𝟏𝟐 0.4 0.9 0.6 0.8 0.5 0.1 0.7 0.4 0.5 0.1 0.7 0.9

𝒇𝟏𝟑 0.4 0.9 0.6 0.8 0.7 0.2 0.7 0.2 0.7 0.7 0.5 0.9

𝒇𝟏𝟒 0.2 0.1 0.6 0.8 0.5 0.2 0.5 0.2 0.5 0.2 0.6 0.9

𝒇𝟏𝟓 0.4 0.9 0.5 0.3 0.5 0.3 0.5 0.3 0.5 0.3 0.6 0.9

𝒇𝟏𝟔 0.5 0.95 0.6 0.9 0.95 0.9 0.95 0.95 0.7 0.95 0.7 0.95

𝒇𝟏𝟕 0.4 0.9 0.6 0.9 0.7 0.9 0.8 0.9 0.7 0.9 0.7 0.95

𝒇𝟏𝟖 0.3 0.9 0.5 0.1 0.5 0.1 0.5 0.1 0.6 0.9 0.6 0.9

𝒇𝟏𝟗 0.4 0.9 0.6 0.9 0.6 0.9 0.4 0.9 0.4 0.9 0.6 0.9

𝒇𝟐𝟎 0.4 0.9 0.4 0.9 0.6 0.8 0.6 0.8 0.6 0.8 0.5 0.9

𝒇𝟐𝟏 0.4 0.9 0.4 0.9 0.6 0.7 0.4 0.9 0.4 0.9 0.5 0.9

𝒇𝟐𝟐 0.4 0.9 0.6 0.8 0.6 0.8 0.6 0.8 0.6 0.8 0.5 0.9

𝒇𝟐𝟑 0. 5 0.9 0.95 0.8 0.95 0.8 0.95 0.8 0.95 0.8 0.95 0.8

𝒇𝟐𝟒 0.5 0.9 0.6 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8

𝒇𝟐𝟓 0.5 0.95 0.7 0.4 0.95 0.1 0.7 0.2 0.7 0.2 0.7 0.2

𝒇𝟐𝟔 0.6 0.9 0.65 0.9 0.95 0.2 0.2 0.1 0.2 0.1 0.95 0.2

𝒇𝟐𝟕 0.6 0.9 0.65 0.9 0.95 0.2 0.2 0.1 0.2 0.1 0.65 0.95

𝒇𝟐𝟖 0.5 0.9 0.6 0.8 0.95 0.2 0.2 0.1 0.95 0.95 0.95 0.95

127

1
2

7

 Table 5.3: Mean and standard deviation of 30-dimensional and low dimensional problems achieved for multiple DE mutation

 strategies averaged over 30-independent runs

Fun. MAX-NFEs
Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6

Mean ± Std Mean ± Std Mean ± Std Mean ± Std Mean ± Std Mean ± Std

𝒇𝟏 150,000
5.724E-28±

5.924E-28

5.415E-52±

1.798E-51

1.111E-73±

2.140E-73

7.570E-77±

8.227E-77

8.406E-86±

4.660E-86

3.357E-112±

1.117E-111

𝒇𝟐 200,000
3.214E-20±

1.919E-20
1.252E-39±

1.082E-39

1.331E-51±

1.862E-51

9.462E-51±

4.366E-51

2.878E-63±

1.844E-63

2.620E-74±

3.186E-74

𝒇𝟑 500,000
1.455E-13±

2.650E-13

2.931E-23±

5.562E-23

1.911E-68±

6.323E-68

8.280E-48±

1.352E-47

5.536E-69±

1.953E-68
8.549E-206±

0.000E+00

𝒇𝟒 500,000
7.941E-16±

2.922E-16

9.708E-24±

4.153E-24

4.293E-22±

8.694E-22

3.399E-26±

6.883E-26

2.554E-44±

1.330E-43

1.875E-140±

8.4231E-140

𝒇𝟓 10,000
2.000E+02

2.632E+02

1.267E+00±

1.143E+00

2.000E-01±

4.068E-01

0.000E+00±

0.000E+00

0.000E+00±

0.000E+00

0.000E+00±

0.000E+00

𝒇𝟔 300,000
5.541E-02±

1.692E-02

3.486E-03±

1.823E-03

9.941E-03±

2.986E-03
9.648E-04±

3.828E-04

1.305E-03±

5.360E-04

2.867E-03±

2.194E-03

𝒇𝟕 150,000
4.764E-27±

4.682E-27

1.953E-50±

5.365E-50

6.153E-72±

1.466E-71

1.139E-75±

1.277E-75

1.749E-84±

2.452E-84

1.204E-111±

3.597E-111

𝒇𝟖 10,000
6.666E-23±

2.264E-22

6.935E-04±

9.535E-04

0.000E+00±

0.000E+00

1.531E-14±

7.916E-14

9.379E-15±

2.365E-14

9.624E-10±

1.918E-09

𝒇𝟗 500,000
6.269E-12±

2.165E-11

2.358E-10±

3.725E-10

3.998E-01±

1.220E+00

2.909E-30±

1.459E-29

2.058E-31±

1.127E-30

1.923E-30±

5.867E-30

𝒇𝟏𝟎 150,000
-1.257E+04±

2.013E-05

-1.257E+04±

1.056E-04
-1.257E+04±

8.946E-09

-1.257E+04±

1.027E-07

-1.257E+04±

2.676E-07

-1.257E+04±

3.688E-02

𝒇𝟏𝟏 200,000
0.000E+00±

0.000E+00

6.239E-12±

5.289E-12

6.633E-02±

2.524E-01

3.987E-16±

6.214E-16

3.268E-16±

3.018E-16

4.071E-17±

2.476E-17

𝒇𝟏𝟐 200,000
2.385E-18±

0.000E+00

2.385E-18±

0.000E+00

4.120E-18±

2.351E-33

4.120E-18±

2.351E-33

2.790E-18±

7.462E-19

2.848E-18±

7.802E-19

𝒇𝟏𝟑 300,000
0.000E+00±

0.000E+00

0.000E+00±

0.000E+00

4.156E-20±

2.332E-20

2.349E-20±

2.732E-20
0.000E+00±

0.000E+00

0.000E+00±

0.000E+00

𝒇𝟏𝟒 150,000
1.032E-31±

6.372E-32

4.001E-33±

1.859E-32

3.077E-39±

6.637E-55

3.077E-39±

6.637E-55

3.077E-39±

6.637E-55

1.721E-34±

9.426E-34

128

1
2

8

 Table 5.3- Continued

Fun. MAX-NFEs
Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6

Mean ± Std Mean ± Std Mean ± Std Mean ± Std Mean ± Std Mean ± Std

𝒇𝟏𝟓 150,000
8.638E-28±

1.110E-27

1.315E-33±

7.201E-33

1.440E-38±

2.655E-54

1.440E-38±

2.655E-54

1.440E-38±

2.655E-54

4.800E-33±

2.629E-32

𝒇𝟏𝟔 150,000
-4.903E+03±

3.261E+01

-4.891E+03±

7.604E+01

-4.280E+03±

4.799E+02

-4.586E+03±

3.519E+02

-4.930E+03±

2.457E-10

-4.930E+03±

7.425E-04

𝒇𝟏𝟕 150,000
1.965E-01±

1.824E-02

1.472E-01±

4.124E-02

2.898E-01±

5.477E-02

2.303E-01±

4.634E-02

1.913E-01±

2.680E-02
1.098E-01±

3.051E-02

𝒇𝟏𝟖 150,000
3.394E-13±

1.819E-12

6.445E-03±

1.047E-03

1.839E-16±

2.268E-16

1.335E-04±

1.032E-04

9.754E-17±

1.999E-16

1.112E-17±

3.880E-17

𝒇𝟏𝟗 6,000
-1.000E+00±

0.000E+00

-1.000E+00±

0.000E+00

-1.000E+00±

0.000E+00

-1.000E+00±

0.000E+00

-1.000E+00±

0.000E+00

-1.000E+00±

2.132E-13

𝒇𝟐𝟎 6,000
3.979E-01±

1.129E-16

3.979E-01±

1.129E-16

3.979E-01±

1.129E-16

3.979E-01±

1.129E-16

3.979E-01±

1.129E-16

3.979E-01±

1.129E-16

𝒇𝟐𝟏 6,000
3.000E+00±

0.000E+00

3.000E+00±

0.000E+00

3.000E+00±

0.000E+00

3.000E+00±

0.000E+00

3.000E+00±

0.000E+00

3.000E+00±

0.000E+00

𝒇𝟐𝟐 6,000
-1.032E+00±

0.000E+00

-1.032E+00±

0.000E+00

-1.032E+00±

0.000E+00

-1.032E+00±

0.000E+00

-1.032E+00±

0.000E+00

-1.032E+00±

0.000E+00

𝒇𝟐𝟑 6,000
9.980E-01±

3.388E-16

9.980E-01±

3.388E-16

9.980E-01±

3.388E-16

9.980E-01±

3.388E-16

9.980E-01±

3.388E-16

9.980E-01±

3.388E-16

𝒇𝟐𝟒 6,000
-3.863E+00±

2.710E-15

-3.863E+00±

2.710E-15

-3.863E+00±

2.710E-15

-3.863E+00±

2.710E-15

-3.863E+00±

2.710E-15

-3.863E+00±

2.710E-15

𝒇𝟐𝟓 6,000
-3.290E+00±

5.348E-02

-3.322E+00±

4.136E-04

-3.322E+00±

4.223E-05

-3.322E+00±

2.042E-06

-3.322E+00±

1.485E-06

-3.322E+00±

3.072E-04

𝒇𝟐𝟔 6,000
-1.0153E+01±

1.807E-15

-1.01525E+01±

3.237E-03

-9.462E+00±

1.742E+00

-9.635E+00±

1.538E+00

-1.013E+01±

4.828E-02

-9.881E+00±

3.339E-01

𝒇𝟐𝟕 6,000
-1.040E+01±

2.471E-10

-1.0402E+01±

1.372E-05

-1.037E+01±

1.222E-01

-1.040E+01±

1.191E-02

-1.040E+01±

4.191E-04

-1.040E+01±

3.076E-06

𝒇𝟐𝟖 6,000
-1.053E+01±

9.034E-15

-1.053E+01±

6.648E-05

-1.053E+01±

8.776E-03

-1.053E+01±

6.320E-04

-1.053E+01±

9.034E-15

-1.053E+01±

3.039E-08

129

5.3.2 Comparison of Multiple Adaptive DE Variants

 In this subsection, a performance comparison of ARDE-SPX with that of jDE,

SaDE, JADE without archive (JADEwo), JADE with archive (JADEw), and SaJADE is

presented in terms of three aspects: 1) Final solution precision; 2) the success rate; 3)

Convergence speed. The parameters settings of all algorithms are used as mentioned in

Section 5.2.2-Experiment 2. For all the test problems the dimensions are provided in

Table 5.1.

5.3.2.1 Final Solution Precision (Mean ± Std)

 In this subsection, the performance comparison between ARDE-SPX with the other

adaptive DE variants is conducted based on the quality of the final solution achieved

after the optimization process has terminated. This is measured by averaging the final

solution and the standard deviation over 50-independent runs using the pre-specified

MAX_NFEs as mentioned in Section 5.2.2.

Tables 5.4-5.6 show the mean and standard deviation of the final solutions for 50-

independent runs of each of the six algorithms on 33 benchmark functions for the high

(𝐷 = 30, 𝐷 = 100) and low dimensional problems. The statistics of this comparison is

calculated at the end of the optimization. Since all the algorithms start with the same

initial population, the paired t-test is used for these statistics to compare the means of

the best and second best algorithms. In the last row of each table the statistical symbols

‘†’ and ‘‡’ are defined. ‘†’ indicates that the ARDE-SPX algorithms performs

significantly better than the other algorithms at a 0.05 level of significance of 49

degrees of freedom by the paired two tailed t-test; whereas the symbol ‘‡’ indicates that

the corresponding algorithm is better than the ARDE-SPX algorithm. The best results

are typed in bold and the second best in italic.

130

The results in these tables suggest that the ARDE-SPX performs the best and second

best for most of the test problems.

 From Table 5.4, which shows the results of 𝐷 = 30 problems, it can be noted that the

ARDE-SPX has significantly best performance for the test problems 𝑓1, 𝑓3 −

𝑓4,𝑓7, 𝑓9, 𝑓12, 𝑓14 − 𝑓15, 𝑓17, 𝐹2, 𝐹6, and 𝐹10, and has second best performance for the test

problems 𝑓2, 𝑓6, 𝑓16, 𝑓18, and 𝐹8 over all the adaptive DE methods. In the case of 𝑓10,

ARDE-SPX performs worse than jDE and SaDE because this function requires a

method with high randomness ability to overcome the difficulties of exploring its

landscape. In the same way, jDE outperforms ARDE-SPX over the test function 𝑓18. In

the case of 𝑓11, it can be noted that the methods with high greediness tendency such as

JADEwo and SaJADE outperform other methods with less greediness such as ARDE-

SPX and jDE. For the same reason, SaJADE outperforms ARDE-SPX in the

convergence speed for the test functions 𝑓2 and 𝑓6, because it involves the JADE

mutation with no archive in addition to the mutation with archive. Accordingly, the

JADEwo focuses on the best fitness area and this increases the convergence speed

especially in somehow low dimensional problems (i.e.𝐷 = 30).

 From Table 5.5, which shows the results of the high dimension 𝐷 = 100 problems, it

can be noted that on the majority of the test problems, ARDE-SPX performs

significantly better than other DE variants. This is because ARDE-SPX could diversify

the yielded offspring using its multiple mutation and crossover schemes even with the

small population size of 400 that is probably not sufficient for most of the test cases.

The only competitive method in this comparison is jDE which shows significant better

performance than ARDE-SPX on the test functions 𝑓10, 𝑓11, and 𝐹9. This is because the

mutation DE/rand/1 in jDE is more robust than the greedy mutations of JADE and this

may improve the algorithm performance on some of the test problems. For the functions

𝑓5 and 𝑓16, the algorithms SaJADE and JADEw could outperform ARDE-SPX in the

131

convergence speed only but not on the quality of the final solution achieved.

 From Table 5.6, which shows the simulation results of the low dimensional

problems𝑓8, 𝑓19 − 𝑓28, it can be noted that there is no superior adaptive DE algorithm to

solve these set of functions. The simulation results also indicate that DE with adaptive

parameter control does not work efficiently within the small number of fitness

evaluations required to optimize these problems. In these low dimensional problems, the

adaptive DE algorithm fluctuates around the optimal fitness area and more often falls

into local optima because of the limited number of generations, as well as the small

population size; so, it is recommended to use the standard DE with its multiple mutation

variants to solve these low dimensional problems as suggested in Table 5.2.

 In general, the ARDE-SPX approach is the first in terms of the quality of the final

solution followed by jDE, SaJADE, JADEw, JADEwo and then SaDE. This high

reliable performance of ARDE-SPX stems from both the diversity provided by the

multiple mutation schemes and crossover schemes incorporated with the DE/current-to-

pBest/1 and the multiple adaptive parameter control schemes. In addition, an important

observation is in the case of the difficult problems (transformed functions) the ARDE-

SPX shows significant performance better than the other methods especially in the case

of rotation problems. This is due to incorporating the DE/current-to-pBest/1 with no

crossover that shows reliability in solving these types of problems.

132

1
3

2

 Table 5.4: Mean and standard deviation of 30-dimensional problems averaged over 50-independent runs for the high

 dimensional test problems 𝑓1 − 𝑓7 ; 𝑓9 − 𝑓18; 𝐹2,𝐹6, 𝐹8 − 𝐹10

Fun. MAX-NFEs
jDE SaDE JADE wo JADE w SaJADE ARDE-SPX

Mean ± Std Mean ± Std Mean ± Std Mean ± Std Mean ± Std Mean ± Std

𝒇𝟏 150,000
1.461E-28±

2.511E-28†

2.523E-35±

2.524E-36†

2.334E-61±

4.244E-61†

3.245E-56±

4.332E-55†

2.556E-76±

3.432E-76†

3.856E-80±

2.173E-80

𝒇𝟐 200,000
1.472E-23±

1.121E-23†

5.615E-25±

5.122E-25†

1.796E-26±

2.334E-26†

1.025E-24±

1.761E-23†
5.820E-45±

2.001E-45‡

6.544E-43±

7.376E-43

𝒇𝟑 500,000
4.233E-14±

2.162E-13†

1.267E-37±

2.372E-37†

3.874E-61±

4.556E-60†

4.231E-79±

4.002E-80†

1.112E-77±

4.121E-77†

7.099E-85±

7.603E-85

𝒇𝟒 500,000
2.217E-15±

2.000E-15†

5.313E-27±

4.581E-26†

6.884E-23±

7.332E-23†

5.431E-54±

5.899E-55†

2.731E-20±

2.877E-20†

1.156E-59

1.390E-60

𝒇𝟓

10,000
2.978E+02±

1.885E+02

5.061E+01±

6.231E+01

2.878E+00±

1.322E+00

4.556E+00±

1.778E+00

0.00E+00±

0.00E+00

0.00E+00±

0.00E+00

150,000
0.000E+00±

0.000E+00

0.000E+00±

0.000E+00

0.000E+00±

0.000E+00

0.000E+00±

0.000E+00

0.00E+00

0.00E+00

0.000E+00±

0.000E+00

𝒇𝟔 300,000
2.654E-03±

7.751E-04†

1.962E-03±

2.331E-04†

5.891E-04±

1.885E-04†

5.988E-04±

2.455E-04†

4.221E-04±

2.121E-04‡

5.132E-04±

1.561E-04

𝒇𝟕 150,000
2.521E-27±

2.361E-27†

3.415E-30±

2.433E-30†

1.234E-58±

3.445E-58†

2.135E-55±

2.422E-54†

5.011E-70±

4.212E-70†
7.900E-75±

6.438E-75

𝒇𝟗 500,000
1.480E-03±

2.137E-03†

6.785E-02±

4.862E-01†

2.223E-30±

2.334E-30†

1.923E-29±

1.923E-29†

2.134E-30±

5.231E-30†
1.343E-30±

1.345E-30

𝒇𝟏𝟎
100,000

-1.257E+04±

6.324E-11‡

-1.257E+04±

5.223E-10‡

-1.257E+04±

3.568E-05†

-1.257E+04±

3.887E-04†

-1.257E+04±

6.877E-07†

-1.257E+04±

5.572E-09

500,000
-1.257E+04±

0.000E+00

-1.257E+04±

0.000E+00

-1.257E+04±

0.000E+00

-1.257E+04±

0.000E+00

-1.257E+04±

0.000E+00

-1.257E+04

0.000E+00

133

1
3

3

 Table 5.4- Continued

Fun. MAX_NFEs
jDE SaDE JADE wo JADE w SaJADE ARDE-SPX

Mean ± Std Mean ± Std Mean ± Std Mean ± Std Mean ± Std Mean ± Std

𝒇𝟏𝟏
100,000

4.799E-04±

1.006E-04†

2.623E-03±

7.966E-04†

2.111E-04±

2.311E-04‡
3.024E-04±

3.459E-04‡

2.654E-04±

2.332E-04‡

3.568E-04±

6.775E-05

500,000
0.000E+00±

0.000E+00

0.000E+00±

0.000E+00

0.000E+00±

0.000E+00

0.000E+00±

0.000E+00

0.000E+00±

0.000E+00

0.000E+00±

0.000E+00

𝒇𝟏𝟐
50,000

2.465E-04±

5.211E-05†

4.765E-06±

7.980E-07†

1.098E-09±

6.532E-10†

4.102E-09±

1.877E-09†

1.145E-12±

2.000E-12†

5.234E-15±

1.312E-15

200,000
4.781E-15±

8.776E-15

4.144E-15±

0.000E+00

4.144E-15±

0.000E+00

4.144E-15±

0.000E+00

4.144E-15±

0.000E+00

4.144E-15±

0.000E+00

𝒇𝟏𝟑
50,000

2.002E-05

4.781E-05

3.351E-09±

3.592E-08

6.771E-10±

5.664E-11

9.322E-07±

8.558E-07

0.000E+00±

0.000E+00

0.000E+00±

0.000E+00

300,000
0.000E+00±

0.000E+00

0.000E+00±

0.000E+00

0.000E+00±

0.000E+00

0.000E+00±

0.000E+00

0.000E+00±

0.000E+00

0.000E+00±

0.000E+00

𝒇𝟏𝟒
50,000

4.445E-07

3.564E-07†
7.146E-11±

6.211E-12†

1.587E-17±

2.344E-16†

3.458E-16±

1.763E-15†

1.354E-19±

2.179E-19†
4.811E-21±

5.433E-21

150,000
2.595E-29±

6.734E-29

1.601E-32±

0.000E+00

1.601E-32±

0.000E+00

1.601E-32±

0.000E+00

1.601E-32±

0.000E+00

1.601E-32±

0.000E+00

𝒇𝟏𝟓
50,000

1.843E-06±

2.844E-07†

1.223E-09±

2.367E-09†

1.986E-15±

5.432E-15†

3.671E-13±

4.112E-13†

8.416E-17±

7.328E-17†

2.455E-19±

1.223E-19

150,000
1.802E-28±

2.023E-28

1.401E-32±

0.000E+00

1.401E-32±

0.000E+00

1.401E-32±

0.000E+00

1.401E-32±

0.000E+00

1.401E-32±

0.000E+00

𝒇𝟏𝟔 300,000
-1.003E+03±

1.211E+00†

-2.891E+02±

1.455E+02†

-3.390E+03±

4.005E-04†

-4.930E+03±

3.645E-10‡

-4.925E+03±

2.433E-07†

-4.930E+03±

1.889E-09

𝒇𝟏𝟕 300,000
1.962E-01±

1.372E-02†

1.487E-01±

4.963E-02†

2.001E-01±

2.132E-02†

1.982E-01±

2.680E-02†

1.821E-01±

3.900E-02†

1.128E-01±

2.141E-02

𝒇𝟏𝟖 300,000
5.864E-10±

7.521E-10‡

2.875E-06±

3.363E-06†

3.667E-06±

3.001E-06†

2.766E-05±

3.112E-06†

3.120E-07±

5.131E-07†

4.242E-08±

5.643E-09

134

1
3

4

 Table 5.4- Continued

Fun. MAX_NFEs
jDE SaDE JADE wo JADE w SaJADE ARDE-SPX

Mean ± Std Mean ± Std Mean ± Std Mean ± Std Mean ± Std Mean ± Std

𝑭𝟐 300,000
5.043E-07±

4.790E-06†

1.331E-08±

1.746E-09†

5.823E-23±

4.874E-23†

3.473E-26±

3.216E-26†

1.782E-25±

2.625E-25†
8.245E-28±

7.616E-29

𝑭𝟔 300,000
2.033E+01±

1.451E-02†

2.048E+01±

2.165E-02†

2.031E+01±

5.098E-01†

2.033E+01±

2.761E-01†

2.024E+01±

6.801E-02†

2.020E+01±

3.648E-02

𝑭𝟖 300,000
2.905E-02±

6.122E-03†

2.431E-03±

2.614E-02†

4.921E-02±

3.271E-02†

2.562E-03±

4.627E-02‡
1.453E-02±

2.672E-02†

5.542E-03±

2.113E-03

𝑭𝟗 300,000
0.000E+00±

0.000E+00

0.000E+00±

0.000E+00

0.000E+00±

0.000E+00

0.000E+00±

0.000E+00

0.000E+00±

0.000E+00

0.000E+00±

0.000E+00

𝑭𝟏𝟎 300,000
4.651E+01±

3.628E+00†

2.980E+01±

2.518E+00†

3.241E+01±

5.017E+00†

3.102E+01±

2.451E+00†

2.931E+01±

3.267E+00†

1.029E+01±

2.813E+00

† indicates that ARDE-SPX performs better than other algorithms with 95% confidence level by t-test.

‡ indicates that the corresponding algorithm is better than ARDE-SPX.

135

1
3

5

 Table 5.5: Mean and standard deviation of 100-dimensional problems averaged over 50 independent runs for the high

 dimensional test problems 𝑓1 − 𝑓7 ; 𝑓9 − 𝑓18; 𝐹2,𝐹6, 𝐹8 − 𝐹10

Fun. MAX_NFEs
jDE SaDE JADE wo JADE w SaJADE ARDE-SPX

Mean ± Std Mean ± Std Mean ± Std Mean ± Std Mean ± Std Mean ± Std

𝒇𝟏 800,000
4.825E-17±

2.113E-17
†

3.111E-20±

3.045E-20
†

1.566E-50±

2.332E-50
†

8.511E-69±

8.677E-70
†

2.953E-81±

1.811E-81
†

3.237E-88±

3.433E-88

𝒇𝟐 1,200,000
3.445E-14±

3.233E-13
†

2.112E-16±

1.113E-15
†

2.662E-39±

2.222E-39
†

6.755E-46±

5.882E-47
†

1.394E-50±

2.171E-49
†

1.603E-52±

2.211E-51

𝒇𝟑 2,000,000
5.466E+00±

5.332E+00
†

2.889E-02±

1.674E-02
†

4.534E-06±

4.221E-06
†

3.235E-09±

3.792E-09
†

5.001E-09±

4.551E-08
†

8.201E-10±

7.941E-11

𝒇𝟒 2,000,000
4.121E-01±

4.521E+00
†

3.711E-05±

2.811E-04
†

1.005E-02±

1.112E-03
†

7.223E-08±

6.611E-07
†

1.020E-05±

2.609E-04
†

6.351E-09±

5.419E-08

𝒇𝟓

40,000
2.122E+04±

7.172E+03
†

2.045E+03±

1.971E+03
†

2.331E+02±

3.001E+01
†

2.822E+02±

2.983E+01
†

6.768E+01±

4.275E+01
‡

8.104E+01±

7.631E+01

1,000,000
0.000E+00±

0.000E+00

0.000E+00±

0.000E+00

0.000E+00±

0.000E+00

0.000E+00±

0.000E+00

0.000E+00±

0.000E+00

0.000E+00±

0.000E+00

𝒇𝟔 1,000,000
1.788E-02±

2.776E-03
†

5.489E-03±

4.322E-03
†

2.854E-03±

3.211E-04
†

1.993E-03±

2.533E-04
†

7.344E-04±

3.109E-03
†

3.864E-04±

2.283E-04

𝒇𝟕 800,000
3.624E-16±

3.233E-16
†

2.854E-18±

2.110E-19
†

4.377E-48±

4.566E-49
†

6.231E-68±

6.129E-68
†

1.248E-78±

1.177E-78
†

7.206E-83±

6.350E-84

𝒇𝟗 2,000,000
3.121E+00±

2.111E+00
†

2.551E+00±

3.056E-01
†

9.376E-01±

2.002E+00
†

8.775E-01±

1.155E+00
†

8.675E-01±

1.578E-01
†

5.208E-01±

4.462E-01

𝒇𝟏𝟎 1,000,000
-1.257E+04±

6.324E-5
‡

-1.073E+04±

7.985E+01
‡

-9.981E+04±

5.576E+02
†

-9.176E+04±

4.122E+02
†

-9.345E+04±

3.642E+02
†

-1.001E+04±

8.521E+01

𝒇𝟏𝟏 1,200,000
3.122E-04±

3.212E-03
‡

7.435E-03±

2.887E-03
‡

2.024E-01±

2.112E-02
†

3.514E-01±

3.332E-02
†

2.140E-01±

1.579E-02
†

8.729E-02±

7.435E-02

𝒇𝟏𝟐

200,000
7.645E-01±

3.729E-01
†

6.013E-03±

5.434E-04
†

8.332E-06±

1.266E-06
†

3.133E-07±

1.572E-07
†

3.411E-08±

1.662E-09
†

6.811E-11±

5.309E-10

1,200,000
9.677E-14±

1.032E-14
†

1.711E-14±

8.323E-15
†

7.827E-15±

5.011E-16
†

7.291E-15±

0.000E+00
†

7.688E-15±

0.000E+00
†

6.772E-15±

0.000E+00

136

1
3

6

 Table 5.5- Continued

Fun. MAX-NFEs
jDE SaDE JADE wo JADE w SaJADE ARDE-SPX

Mean ± Std Mean ± Std Mean ± Std Mean ± Std Mean ± Std Mean ± Std

𝒇𝟏𝟑
200,000

8.455E-01±

4.766E-02
†

2.545E-03±

7.612E-03
†

5.111E-04±

1.456E-03
†

6.557E-09±

7.122E-09
†

2.579E-12±

5.051E-13
†

2.250E-16±

1.354E-15

1,200,000
0.000E+00±

0.000E+00

7.112E-12±

5.223E-13

5.125E-05±

4.668E-04

0.000E+00±

0.000E+00

0.000E+00±

0.000E+00

0.000E+00±

0.000E+00

𝒇𝟏𝟒
200,000

2.445E+00±

2.311E-01
†

7.877E-06±

3.221E-06
†

1.483E-11±

2.334E-11
†

3.412E-14±

3.566E-13
†

4.425E-16±

4.032E-17
†

8.001E-19±

8.221E-20

1,200,000
2.980E-23±

2.676E-23

5.455E-30±

4.326E-30

4.706E-33±

0.000E+00

4.706E-33±

0.000E+00

4.706E-33±

0.000E+00

4.706E-33±

0.000E+00

𝒇𝟏𝟓
200,000

2.112E+01±

6.875E+00
†

5.213E-03±

4.723E-03
†

2.603E-08±

1.455E-09
†

1.304E-11±

2.511E-12
†

8.592E-14±

5.382E-14
†

3.471E-16±

3.005E-16

1,200,000
2.327E-22±

1.456E-22

2.891E-27±

2.356E-27

1.355E-32±

0.000E+00

1.355E-32±

0.000E+00

1.355E-32±

0.000E+00

1.355E-32±

0.000E+00

𝒇𝟏𝟔 1,000,000
-3.629E+00±

1.265E+04
†

-5.811E+00±

3.453E+02
†

-5.520E+00±

2.633E+02
†

-7.147E+01±

6.112E+03
‡

-1.629E+01±

1.265E+04
†

-9.130E+01±

8.702E+03

𝒇𝟏𝟕 1,000,000
3.902E-01±

3.831E-02
†

3.554E-01±

5.044E-02
†

3.322E-01±

4.245E-02
†

2.657E-01±

2.835E-02
†

2.785E-01±

2.131E-02
†

1.937E-01±

1.119E-02

𝒇𝟏𝟖 1,000,000
5.432E-03±

5.433E-04
†

6.011E-03±

2.776E-03
†

3.887E-11±

4.108E-11
†

7.623E-06±

4.002E-06
†

1.663E-19±

1.645E-20
†

6.231E-24±

5.292E-23

𝑭𝟐 1,000,000
6.102E+01±

7.932E+01
†

4.234E+02±

8.190E+01
†

6.467E-12±

5.524E-13
†

2.951E-13±

2.721E-13
†

1.946E-14±

2.478E-13
†

8.798E-15±

8.532E-15

𝑭𝟔 1,000,000
2.136E+01±

4.102E-02
†

2.134E+01±

5.332E-02
†

2.321E+01±

4.433E-01
†

2.130E+01±

1.761E-01
†

2.282E+01±

3.965E+00
†

2.052E+01±

1.256E-02

𝑭𝟖 1,000,000
4.941E-03±

2.312E-03
†

2.012E-02±

2.002E-02
†

6.288E-03±

5.211E-02
†

7.412E-03±

7.541E-03
†

4.134E-03±

5.121E-03
†

3.781E-03±

7.811E-03

𝑭𝟗 1,000,000
0.000E+00+

0.000E+00
‡

2.531E+01

7.313E+00
†

3.468E+00

2.329E+00
†

2.011E+00±

2.857E+00

1.654E+00

2.020E+00
†

1.323E-02

2.000E+00

𝑭𝟏𝟎 1,000,000
2.103E+02±

3.345E+01
†

4.212E+02±

5.921E+01
†

2.200E+02±

1.548E+02
†

2.082E+02±

3.437E+02
†

1.833E+02±

1.243E+01
†

1.322E+02±

1.254E+01

† indicates that ARDE-SPX performs better than other algorithms with 95% confidence level by t-test.

‡ indicates that the corresponding algorithm is better than ARDE-SPX.

137

1
3

7

 Table 5.6: Mean and standard deviation of the low dimensional problems 𝑓8 and 𝑓19 − 𝑓28, averaged over 50 independent runs

Fun. MAX_NFEs
jDE SaDE JADE wo JADE w SaJADE ARDE-SPX

Mean ± Std Mean ± Std Mean ± Std Mean ± Std Mean ± Std Mean ± Std

𝒇𝟖 10,000
5.561E-27±

1.175E-28
‡

5.814E-05±

8.632E-04
†

1.322E-09±

2.332E-10
†

8.655E-10±

2.877E-10
†

2.805E-10±

7.869E-10
†

3.365E-12

2.481E-12

𝒇𝟏𝟗 6,000
-1.000E+00±

0.000E+00

-1.000E+00±

0.000E+00

-1.000E+00±

0.000E+00

-1.000E+00±

0.000E+00

-1.000E+00±

0.000E+00

-1.000E+00±

0.000E+00

𝒇𝟐𝟎 6,000
3.979E-01±

3.324E-16

3.979E-01±

3.324E-16

3.979E-01±

3.324E-16

3.979E-01±

3.324E-16

3.979E-01±

1.129E-16

3.979E-01±

3.324E-16

𝒇𝟐𝟏 6,000
3.000E+00±

0.000E+00

3.000E+00±

0.000E+00

3.000E+00±

0.000E+00

3.000E+00±

0.000E+00

3.000E+00±

0.000E+00

3.000E+00±

0.000E+00

𝒇𝟐𝟐 6,000
-1.032E+00±

0.000E+00

-1.032E+00±

0.000E+00

-1.032E+00±

0.000E+00

-1.032E+00±

0.000E+00

-1.032E+00±

0.000E+00

-1.032E+00±

0.000E+00

𝒇𝟐𝟑 6,000
9.980E-01±

3.388E-16

9.980E-01±

3.388E-16

9.980E-01±

3.388E-16

9.980E-01±

3.388E-16

9.980E-01±

3.388E-16

9.980E-01±

3.388E-16

𝒇𝟐𝟒 6,000
-3.863E+00±

0.000E+00

-3.863E+00±

2.788E-15

-3.863E+00±

0.000E+00

-3.863E+00±

1.277E-16

-3.863E+00±

2.710E-15

-3.863E+00±

0.000E+00

𝒇𝟐𝟓 6,000
-3.268E+00±

4.842E-02

-3.322E+00±

2.771E-02

-3.310E+00±

3.557E-02

-3.311E+00±

4.001E-02

-3.282E+00±

5.607E-02

-3.322E+00±

1.223E-02

𝒇𝟐𝟔 6,000
-1.0153E+01±

1.983E-12
‡

-1.0052E+01±

6.886E-02
†

-1.0153E+01±

3.988E-14
‡

-9.788E+00±

1.556E+00
†

-1.012E+00±

2.691E+00
‡

-1.013E+00±

3.542E+00

𝒇𝟐𝟕 6,000
-1.0402E+01±

2.654E-15

-1.0402E+01±

6.554E-12
-1.0402E+01±

8.955E-16

-1.0402E+01±

1.998E-12

-1.0402E+01±

1.369E-15

-1.0402E+01±

8.955E-13

𝒇𝟐𝟖 6,000
-1.0536E+01±

7.133E-16

-1.0536E+01±

7.982E-05

-1.0536E+01±

7.833E-12

-1.0536E+01±

5.664E-14

-1.0536E+01±

2.205E-15

-1.0536E+01±

5.664E-17

138

Moreover, the local search represented by the SPX crossover plays an important role in

improving the quality of the solutions in the population by replacing the worst solution

found so far in the current population with the one generated by the SPX crossover

which is most likely to be better than its previous one.

5.3.2.2 Convergence Speed and Robustness (FESS, Sr)

 In Tables 5.7 and 5.8, the success rate (Sr) and the average number of function

evaluations over successful runs (FESS) of each adaptive DE algorithm have been

summarized at 𝐷 = 30 and 𝐷 = 100. Sr and FESS are useful to compare the reliability

and the convergence velocity of any proposed algorithm, respectively.

 From these two tables, it can be seen that ARDE-SPX requires the minimum FESS to

reach the Ter_Err on the majority of the test functions compared with the other adaptive

DE variants. ARDE-SPX also obtains the greatest overall success rate measured by

∑𝑆𝑟 =
∑ (𝑆𝑟𝑖𝑛 %)
𝑛𝑓
𝑖=1

100
 where 𝑛𝑓 is the total number of the test functions which is in our

experiment = 22. At the problem dimension 𝐷 = 30, the ARDE-SPX has achieved ∑Sr

=18.70 and ∑Sr =14.85 at the problem dimension 𝐷 = 100.

 The difference between ARDE-SPX and the other adaptive DE variants in terms of the

FESS and the convergence rate Sr is significant and it shows the reliability and

robustness of the proposed ARDE-SPX algorithm. This is due to the different mutation

and crossover strategies of DE as well as the diversity in employing different

distributions in the parameter control schemes represented by the Normal and Cauchy

distributions that result to guide the search to better directions within minimum cost and

time.

139

1
3

9

 Table 5.7: Mean of the NFEs required to obtain the accuracy level Ter_Err and success rate 𝑆𝑟 for 50-independent runs of the 30-

 dimensional problems 𝑓1 − 𝑓7 ; 𝑓9 − 𝑓18; 𝐹2,𝐹6, 𝐹8 − 𝐹10

Fun. jDE SaDE JADE wo JADE w SaJADE ARDE-SPX

FESS (Sr%) FESS (Sr%) FESS (Sr%) FESS (Sr%) FESS (Sr%) FESS (Sr%)

𝒇𝟏 5.881E+04 (100) 4.223E+04 (100) 2.911E+04 (100) 3.113E+04 (100) 2.381E+04 (100) 2.032E+04 (100)

𝒇𝟐 7.983E+04 (100) 7.192E+04 (100) 4.778E+04 (100) 5.563E+04 (100) 4.012E+04 (100) 3.892E+04 (100)

𝒇𝟑 3.211E+05 (100) 3.087E+05 (100) 8.778E+04 (100) 7.334E+04 (100) 8.532E+04 (100) 5.954E+04 (100)

𝒇𝟒 4.001E+05 (100) 1.577E+05 (100) 2.032E+05 (100) 2.311E+04 (100) 3.243E+05 (100) 2.122E+04 (100)

𝒇𝟓 2.213E+04 (100) 1.643E+04 (100) 1.102E+04 (100) 1.326E+04 (100) 8.764E+03 (100) 8.371E+03 (100)

𝒇𝟔 1.100E+05 (100) 5.340E+04 (100) 2.866E+04 (100) 3.011E+04 (100) 2.258E+04 (100) 2.558E+04 (100)

𝒇𝟕 6.233E+04 (100) 3.667E+04 (100) 3.021E+04 (100) 3.412E+04 (100) 2.611E+04 (100) 2.300E+04 (100)

𝒇𝟗 4.021E+05 (25) 2.722E+05 (70) 1.533E+05 (100) 1.232E+05 (100) 1.201E+05 (100) 1.0233E+05 (100)

𝒇𝟏𝟎 9.071E+04 (100) 9.342E+04 (100) 1.277E+05 (100) 1.131E+05 (95) 1.128E+05 (100) 1.059E+05 (100)

𝒇𝟏𝟏 1.187E+05 (100) 1.421E+05 (100) 1.316E+05 (100) 1.342E+05 (100) 1.304E+05 (100) 1.335E+05 (100)

𝒇𝟏𝟐 9.110E+04 (100) 5.765E+04 (100) 4.544E+04 (100) 7.680E+04 (100) 3.476E+04 (100) 2.871E+04 (100)

𝒇𝟏𝟑 6.432E+04 (100) 5.102E+04 (100) 3.223E+04 (100) 3.655E+04 (100) 2.652E+04 (100) 2.492E+04 (100)

𝒇𝟏𝟒 5.437E+04 (100) 4.432E+04 (100) 2.698E+04 (100) 2.920E+04 (100) 2.541E+04 (100) 2.531E+04 (100)

𝒇𝟏𝟓 6.230E+04 (100) 4.549E+04 (100) 3.000E+04 (100) 3.207E+04 (100) 2.833E+04 (100) 2.581E+04 (100)

𝒇𝟏𝟔 NA (0) NA (0) NA (0) 2.210E+05 (100) 2.339E+05 (100) 2.250E+05 (100)

𝒇𝟏𝟕 NA (0) NA (0) NA (0) NA (0) NA (0) NA (0)

𝒇𝟏𝟖 2.178E+05 (100) 2.544E+05 (15) 2.9211E+05 (20) 2.872E+05 (20) 1.612E+05 (60) 1.483E+05 (85)

𝑭𝟐 2.022E+05 (90) 2.097E+05 (100) 1.232E+5 (100) 1.038E+5 (100) 9.998E+04 (100) 8.781E+04 (100)

𝑭𝟔 NA (0) NA (0) NA (0) NA (0) NA (0) NA (0)

𝑭𝟖 1.211E+05 (55) 1.235E+05 (65) 4.426E+04 (70) 3.501E+04 (78) 3.433E+04 (70) 2.850E+04 (85)

𝑭𝟗 8.421E+04 (100) 2.021E+05 (100) 9.549E+04 (100) 1.143E+05 (100) 1.125E+05 (100) 1.110E+05 (100)

𝑭𝟏𝟎 NA (0) NA (0) NA (0) NA (0) NA (0) NA (0)

∑𝑺𝒓 16.70 16.50 16.90 17.93 18.30 18.70

140

1
4

0

Table 5.8: Mean of the NFEs required to obtain the accuracy level Ter_Err and success rate 𝑆𝑟 for 50-independent runs of the

100-dimentional problems 𝑓1 − 𝑓7 ; 𝑓9 − 𝑓18; 𝐹2,𝐹6, 𝐹8 − 𝐹10

Fun. jDE SaDE JADE wo JADE w SaJADE ARDE-SPX

FESS (Sr%) FESS (Sr%) FESS (Sr%) FESS (Sr%) FESS (Sr%) FESS (Sr%)

𝒇𝟏 5.232E+05 (100) 4.122E+05 (100) 2.102E+05 (100) 1.677E+05 (100) 1.412E+05 (100) 1.282E+05 (100)

𝒇𝟐 8.100E+05 (100) 6.032E+05 (100) 2.988E+05 (100) 2.564E+05 (100) 2.304E+05 (100) 2.209E+05 (100)

𝒇𝟑 NA (0) 1.712E+06 (95) 1.431E+06 (100) 9.458E+05 (100) 7.112E+05 (100) 6.521E+05 (100)

𝒇𝟒 1.211E+06 (2) 5.766E+05 (80) 1.122E+06 (20) 4.322E+05 (91) 7.533E+05 (85) 3.919E+05 (95)

𝒇𝟓 2.232E+05 (100) 1.432E+05 (100) 1.097E+05 (100) 3.125E+04 (100) 3.243E+04 (100) 3.311E+04 (100)

𝒇𝟔 1.100E+05 (100) 1.568E+05 (100) 3.021E+04 (100) 3.620E+04 (100) 2.241E+04 (100) 2.055E+04 (100)

𝒇𝟕 5.587E+05 (100) 5.022E+05 (100) 2.780E+05 (100) 2.512E+05 (100) 1.713E+05 (100) 1.540E+05 (100)

𝒇𝟗 NA (0) NA (0) NA (0) NA (0) NA (0) NA (0)

𝒇𝟏𝟎 5.342E+05 (100) 8.501E+05 (100) 8.340E+05 (100) 8.546E+05 (100) 8.012E+05 (100) 6.821E+05 (95)

𝒇𝟏𝟏 1.159E+06 (2) NA (0) NA (0) NA (0) NA (0) 1.192E+06 (10)

𝒇𝟏𝟐 8.021E+05 (100) 6.122E+05 (100) 2.780E+05 (100) 2.551E+05 (100) 2.190E+05 (100) 1.861E+05 (100)

𝒇𝟏𝟑 5.311E+05 (100) 4.021E+05 (98) 1.850E+05 (95) 1.743E+05 (100) 1.545E+05 (100) 1.322E+05 (100)

𝒇𝟏𝟒 5.329E+04 (100) 3.863E+04 (100) 1.556E+04 (100) 1.374E+04 (100) 1.413E+04 (100) 1.301E+04 (100)

𝒇𝟏𝟓 6.129E+04 (100) 4.095E+04 (100) 1.908E+04 (100) 1.655E+04 (100) 1.561E+04 (100) 1.221E+04 (100)

𝒇𝟏𝟔 NA (0) NA (0) NA (0) NA (0) NA (0) NA (0)

𝒇𝟏𝟕 NA (0) NA (0) NA (0) NA (0) NA (0) NA (0)

𝒇𝟏𝟖 7.541E+05 (75) 8.145E+05 (70) 4.343E+05 (100) 3.632E+05 (90) 3.472E+05 (100) 2.810E+05 (100)

𝑭𝟐 NA (0) NA (0) 9.475E+05 (87) 8.895E+05 (88) 7.822E+05 (90) 7.120E+05 (92)

𝑭𝟔 NA (0) NA (0) NA (0) NA (0) NA (0) NA (0)

𝑭𝟖 4.341E+05 (77) 5.632E+05 (63) 1.670E+05 (88) 1.425E+05 (92) 1.791E+05 (88) 1.353E+05 (93)

𝑭𝟗 4.971E+05 (97) NA (0) NA (0) NA (0) NA (0) 5.632E+05 (35)

𝑭𝟏𝟎 NA (0) NA (0) NA (0) NA (0) NA (0) NA (0)

∑𝑺𝒓 12.53 13.06 13.90 14.61 14.63 14.85

141

5.3.2.3 Convergence Plot

 In this subsection, a comparison on the convergence performance of the six

algorithms (jDE, SaDE, JADEwo, JADEw, SaJADE, and ARDE-SPX) is conducted

using the convergence graph for nine benchmark functions (f1, f2, f6, f9, f12, f15, f18, F2,

F9) with 30-dimension and 100-dimension problems. Because the convergence graphs

of most of the test functions are similar in their characteristics, these nine functions have

been selected as representative instances. These graphs illustrate the convergence

characteristics in terms of the best fitness value of the run of each algorithm. In

addition, the evolution trend of the 𝜇𝐹 and 𝜇𝐶𝑅 is also illustrated.

 Figure 5.3 illustrates the performance of the six algorithms for nine 30-dimensional

benchmark functions. From this figure, it can be noted that ARDE-SPX has the best

performance in the convergence speed for the functions (f1, f6, f9, f12, f15, F2, F9), and the

second best performance after SaJADE and jDE for the functions f2 and f18,

respectively.

 Figure 5.4 illustrates the performance of the six algorithms for nine 100-dimensional

benchmark functions. From this figure, it can be noted that ARDE-SPX has the best

performance in the convergence speed for the functions (f1, f2, f6, f9, f12, f15, f18, F2),

and the second best performance after jDE for the function F9 .

 As can be seen from these figures, the importance of ARDE-SPX appears significantly

in the high dimension problems. The convergence rate of ARDE-SPX in 100-dimensinal

problems is relatively high compared with the other adaptive DE; except in the case of

F9 where jDE performs the best. This is due to the high randomness possessed by jDE

which can make this algorithm escape from the local entrapment.

 Finally, Figure 5.5 depicts the evolution trend of the parameters 𝐹𝑚 and 𝐶𝑅𝑚on some

selected functions with the mean curve. It clearly illustrates the adaptation

characteristics of ARDE-SPX.

142

Figure 5.3-(a)

Figure 5.3-(b)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

x 10
4

10
-90

10
-80

10
-70

10
-60

10
-50

10
-40

10
-30

10
-20

10
-10

10
0

10
10

FES

lo
g
 (

F
it
n
e
s
s
 V

a
lu

e
)

f1, D=30

jDE

SaDE

JADEwo

JADEw

SaJADE

ARDE-SPX

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

x 10
4

10
-40

10
-30

10
-20

10
-10

10
0

10
10

10
20

f2, D=30

FES

lo
g
 (

F
it
n
e
s
s
 V

a
lu

e
)

jDE

SaDE

JADEwo

JADEw

SaJADE

ARDE-SPX

143

Figure 5.3-(c)

Figure 5.3-(d)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

x 10
4

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

f6,D=30

FES

lo
g
 (

F
it
n
e
s
s
 V

a
lu

e
)

jDE

SaDE

JADEwo

JADEw

SaJADE

ARDE-SPX

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

x 10
4

10
-4

10
-2

10
0

10
2

10
4

10
6

10
8

10
10

f9, D=30

FES

lo
g
 (

F
it
n
e
s
s
 V

a
lu

e
)

jDE

SaDE

JADEwo

JADEw

SaJADE

ARDE-SPX

144

Figure 5.3- (e)

Figure 5.3- (f)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

x 10
4

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

f12, D=30

FES

lo
g
 (

F
it
n
e
s
s
 V

a
lu

e
)

jDE

SaDE

JADEwo

JADEw

SaJADE

ARDE-SPX

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

x 10
4

10
-35

10
-30

10
-25

10
-20

10
-15

10
-10

10
-5

10
0

10
5

10
10

f15, D=30

FES

lo
g
 (

F
it
n
e
s
s
 V

a
lu

e
)

jDE

SaDE

JADEwo

JADEw

SaJADE

ARDE-SPX

145

Figure 5.3- (g)

Figure 5.3- (h)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

x 10
4

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

f18, D=30

FES

lo
g
 (

F
it
n
e
s
s
 V

a
lu

e
)

jDE

SaDE

JADEwo

JADEw

SaJADE

ARDE-SPX

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

x 10
4

10
-25

10
-20

10
-15

10
-10

10
-5

10
0

10
5

10
10

FES

lo
g
 (

F
it
n
e
s
s
 V

a
lu

e
)

F2, D=30

jDE

SaDE

JADEwo

JADEw

SaJADE

ARDE-SPX

146

Figure 5.3- (i)

Figure 5.3: Convergence performance of the algorithms for nine 30-dimentional

functions. (a) f1. (b) f2. (c) f6. (d) f9. (e) f12. (f) f15. (g) f18. (h) F2. (i) F9.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

x 10
4

10
-20

10
-15

10
-10

10
-5

10
0

10
5

F9, D=30

FES

lo
g
 (

F
it
n
e
s
s
 V

a
lu

e
)

jDE

SaDE

JADEwo

JADEw

SaJADE

ARDE-SPX

147

Figure 5.4-(a)

Figure 5.4-(b)

0 1 2 3 4 5

x 10
5

10
-80

10
-70

10
-60

10
-50

10
-40

10
-30

10
-20

10
-10

10
0

10
10

FES

lo
g
 (

F
it
n
e
s
s
 V

a
lu

e
)

f1, D=100

jDE

SaDE

JADEwo

JADEw

SaJADE

ARDE-SPX

0 1 2 3 4 5

x 10
5

10
-50

10
-40

10
-30

10
-20

10
-10

10
0

10
10

10
20

10
30

f2, D=100

FES

lo
g
 (

F
it
n
e
s
s
 V

a
lu

e
)

jDE

SaDE

JADEwo

JADEw

SaJADE

ARDE-SPX

148

Figure 5.4-(c)

Figure 5.4-(d)

0 1 2 3 4 5

x 10
5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

f6,D=100

FES

lo
g
 (

F
it
n
e
s
s
 V

a
lu

e
)

jDE

SaDE

JADEwo

JADEw

SaJADE

ARDE-SPX

0 1 2 3 4 5

x 10
5

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

f9,D=100

FES

lo
g
 (

F
it
n
e
s
s
 V

a
lu

e
)

jDE

SaDE

JADEwo

JADEw

SaJADE

ARDE-SPX

149

Figure 5.4-(e)

Figure 5.4-(f)

0 1 2 3 4 5

x 10
5

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

f12, D=100

FES

lo
g
 (

F
it
n
e
s
s
 V

a
lu

e
)

jDE

SaDE

JADEwo

JADEw

SaJADE

ARDE-SPX

0 1 2 3 4 5

x 10
5

10
-20

10
-15

10
-10

10
-5

10
0

10
5

10
10

f15, D=100

FES

lo
g
 (

F
it
n
e
s
s
 V

a
lu

e
)

jDE

SaDE

JADEwo

JADEw

SaJADE

ARDE-SPX

150

Figure 5.4-(g)

Figure 5.4-(h)

0 1 2 3 4 5

x 10
5

10
-20

10
-15

10
-10

10
-5

10
0

10
5

f18, D=100

FES

lo
g
 (

F
it
n
e
s
s
 V

a
lu

e
)

jDE

SaDE

JADEwo

JADEw

SaJADE

ARDE-SPX

0 1 2 3 4 5

x 10
5

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

10
6

F2, D=100

FES

lo
g
 (

F
it
n
e
s
s
 V

a
lu

e
)

jDE

SaDE

JADEwo

JADEw

SaJADE

ARDE-SPX

151

Figure 5.4-(i)

Figure 5.4: Convergence performance of the algorithms for nine 100-dimentional

functions. (a) f1. (b) f2. (c) f6. (d) f9. (e) f12. (f) f15. (g) f18. (h) F2. (i) F9.

0 1 2 3 4 5

x 10
5

10
-20

10
-15

10
-10

10
-5

10
0

10
5

F9,D=100

FES

lo
g
 (

F
it
n
e
s
s
 V

a
lu

e
)

jDE

SaDE

JADEwo

JADEw

SaJADE

ARDE-SPX

152

Figure 5.5-(a)

Figure 5.5-(b)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FES

f1, D=30

Fm

CRm

0 1 2 3 4 5

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FES

f1, D=100

Fm

CRm

153

Figure 5.5-(c)

Figure 5.5-(d)

Figure 5.5: Adaptation characteristics of 𝐹𝑚 and 𝐶𝑅𝑚 on the selected functions. (a)

𝑓1(𝐷 = 30). (b) 𝑓1 (𝐷 = 100). (c) 𝑓9 (𝐷 = 30). (d) 𝑓9 (𝐷 = 100)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FES

f9, D=30

Fm

CRm

0 1 2 3 4 5

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FES

f9, D=100

Fm

CRm

154

5.4 Summary

 In this chapter, two performance comparisons have been presented.

1) The first comparison is established among different DE mutation schemes

(DE/rand/1, DE/current-to-rand/1, DE/best/1, DE/current-to-best/1, DE/current-

to-pBest/1 without archive and DE/current-to-pBest/1 with archive) in terms of

the solution precision over 28 benchmark functions. In this comparison, a table of

𝐹 and 𝐶𝑅 parameter settings is provided where each DE scheme could perform

the best over the different test problems. This table can be used by the

practitioners when they want to tune the parameters of DE to perform well on

optimization problems with different characteristics and dimensionality with less

time and effort.

2) The second comparison is established among ARDE-SPX with five significant

state-of-the-art adaptive DE variants (jDE, SaDE, JADE with no archive, JADE

with archive, and SaJADE) over 33 test problems with different characteristics

(unimodal, multimodal, shifted, rotated, etc.) and different dimensionality (6-D,

30-D, and 100-D). This comparison has been implemented in terms of the

solution precision, robustness, and convergence speed. All the tests conducted

could lead to one conclusion that ARDE with its incorporated local search SPX

crossover can outperform the other adaptive DE variants on a wide variety of

objective functions; while at the same time it enhances the ability of the standard

DE to accurately find good solutions in the search space during optimization.

155

CHAPTER 6

SYSTEM IDENTIFICATION AND CONTROL OF ROBOT MANIPULATOR

BASED ON ARDE ALGORITHM

6.1 Introduction

 A requirement for new robotic manipulators is the ability to detect and manipulate

objects in their environments. Robotic manipulators are highly nonlinear systems, and

an accurate mathematical model is difficult to obtain using conventional techniques.

Therefore, an efficient technique is required to deal with these types of complex and

dynamic systems. The objective of this chapter is to develop a new dynamic parameter

identification framework to estimate the barycentric parameters of the CRS A456 robot

manipulator based on ARDE algorithm. The simulation results presented in this chapter

show the effectiveness of the ARDE method over other conventional techniques,

transcending the limits of the existing state-of-the-art algorithms in solving the problem

of robot.

6.2 Research Background

 There are many industrial applications where the robot manipulator is required to

carry out precise task with high accuracy and repeatability. Recently, the application of

robotic technology in clinical medicine has been a very active research area. For

instance, in surgical operations the robot manipulator serves as an assistant to the doctor

or as an extension of the doctor capabilities (Gomes, 2011; Pisla, Gherman, Vaida,

Suciu, & Plitea, 2013). These kinds of advanced robot applications require an accurate

model of the robotic system, which in turn, requires sufficiently accurate knowledge of

the parameters of robot dynamics to be applied in advanced control system design,

156

preoperative planning, process supervision, and simulation and training.

 Dynamic models of robot arms used in model-based control schemes are designed in

terms of various inertial and friction parameters that must be either measured directly or

determined experimentally. However, direct measurements of such characteristics are

rather impractical or even impossible in many cases. Inertial parameters of robot links

cannot be measured without dismantling the robot arm, while highly nonlinear inherent

phenomena at robot joints cannot be directly quantified. Therefore, models describing

nonlinear effects such as friction should be addressed in conjunction with methods of

determining parameters of the dynamic model of the arm based on experiments, in order

to fully identify the dynamic model of the robot arm (Mavroidis, Flanz, Dubowsky,

Drouet, & Goitein, 1998).

 There are many traditional methods that have been used for dealing with dynamic

robot parameter identification including Kalman Filter (Gautier & Poignet, 2001) and

least square method (Karahan & Binguel, 2008; Khalil, Gautier, & Lemoine, 2007), etc.

However, some model parameters such as link mass and link lengths cannot be easily

measured using these methods especially with the effect of noise factor, or in other

words their measurements relatively difficult (Fleming & Purshouse, 2002). Moreover,

these traditional techniques are relatively effective for a class of specific issues. For

example, the structural model is reliable but the data has limited accuracy. Furthermore,

they depend on unrealistic assumptions that models must be unimodal, continuous and

derivable. These methods sometimes converge slowly, and sometimes at local optimum,

or even not at all.

 Recently, there have been intelligent proposed methods for estimation based on the

use of universal approximations such as fuzzy logic and neural network methodologies.

These methods seem to be very attractive because in the ideal case they allow the

modeling of the dynamic effects even ‘bad’-modeled, for example, friction. In recent

157

years, Evolutionary algorithms such as Genetic Algorithm (GA), Differential Evolution

(DE) and Particle Swarm Optimization (PSO) have been studied extensively. They have

been used to improve the dexterity of robot manipulators in many fields such as control,

parameter identification, robot design and planning (Bingul & Karahan, 2011; Vuong &

Ang, 2009; Zakharov & Halasz, 2001). They have been known to be better suited for

noisy, discontinuous functions because they require no knowledge or gradient

information about the response surface. This ability of Evolutionary algorithms has

encouraged researchers to use these methods in order to moderate the difficulties of

noise and nonlinearity that often arise in dynamic models. GAs is better suited for noisy,

discontinuous functions because there is no requirement for a derivative in the fitness

function. Moreover, GAs accumulate information about the system during the search

process, which makes them more desirable than the traditional numerical methods

(Adamson & Liu, 2006) through the use of real-coded GA to estimate friction and

torque sensor model parameters. The simulation approach demonstrates the

effectiveness of the GA. By identifying the parameters, the position tracking error and

the velocity tracking of the joint is enhanced. The performance of GA has been also

analyzed and evaluated in optimizing the precision of kinematic parameters of the robot

manipulator by developing a forward calibration algorithm which is based on GAs. The

main problem for this approach is to find a good mathematical correction function and

in (Wang, 2009) a suggestion has been made to enhance the accuracy of the robot

manipulator by using some new techniques such as ANN and Fuzzy Logic technique.

 Differential Evolution (DE) Algorithm has extensively been used to minimize

nonlinear and non-differentiable continuous space functions. So far, there has been no

attempt to optimize the design parameters of manipulator by which performance

variations will be minimal. In (Rout & Mittal, 2010) a modification in differential

evolution is proposed to incorporate the effect of noise in the optimization process and

158

obtain the optimal design of manipulator, which is insensitive to noise. In this

optimization process, the kinematic and dynamic models of the manipulators are used.

The results indicate that the DE converges quickly with fewer generations and function

evaluations than GA. Hence, fast performance of DE indicates that this approach can be

a viable optimization technique.

 However, the performance of DE is still sensitive to its control parameters such as

mutation factor (𝐹) and crossover rate (𝐶𝑅). Recently, the development of adaptive DE

has shown more reliable performance than DE with manual settings (Liu & Lampinen,

2005; Tvrdik, 2009; Zhu, Tang, Fang, & Zhang, 2013).

 In this chapter, the application of ARDE algorithm is used to estimate the barycentric

parameters of the CRS A456 robot manipulator. This algorithm is used to off-line

estimate the optimal parameters of the inverse dynamic model of the CRS A465 robot

arm, which is expected to be insensitive to noise.

6.3 Dynamic Model of the CRS A456 Robot Manipulator

 The CRS A465 arm considered in this work is used as a slave robot in a research cell

for orthopedic robot-assisted surgery (see Figure 6.1). In this application, the end

effector of the arm carries the surgical tool - the “drilling/machining tool”. Due to the

symmetry of the drilling tool, only five degrees of freedom is required. Therefore, only

the first five joints of the arm are considered to be the subject for the modeling task in

this work.

 The equation of motion for the robot is developed using the L-E formulation. The L-

E is non-recursive method that allows the development of the robot model using a set of

equations derived from the energy model (Mittal & Nagrath, 2003). Based on this

formulation the torque acting on any joint axis is:

159

𝜏𝑖 = ∑𝐷𝑖𝑗(𝑞, 𝜒)�̈�

𝑁

𝑗=1

+∑∑𝐻𝑖𝑗𝑘(𝑞, 𝜒)𝑞�̇�𝑞�̇�

𝑁

𝑘=1

𝑁

𝑗=1

+ 𝐺𝑖(𝑞, 𝜒) + 𝜏𝑓𝑖 (6.1)

where

𝜏𝑖 is the torque acting on joint 𝑖, 𝑖 = 1, 2. . . 𝑁, 𝑁 is the number of degrees of

freedom,

𝑞, �̇�, �̈� are the position, velocity and acceleration of robot joints, respectively,

χ is the model parameters,

𝐷𝑖𝑗 is the effective and coupling inertia,

𝐻𝑖𝑗𝑘 is the centripetal and Coriolis effect,

𝐺𝑖 is the Gravity loading, and

𝜏𝑓𝑖 is the joint friction.

The details of the coefficients 𝐷𝑖𝑗 and 𝐻𝑖𝑗𝑘 is given in (Mittal & Nagrath, 2003) through

examination of Equation 6.1 shows that the equation of motion is linear in the robot

physical parameters, 𝜒, that is the mass, center of gravity locations moments and

products of inertia of each link (see Figure 6.2). Therefore Equation 6.1 can be written

as,

𝜏 = 𝜙(𝑞, �̇�, �̈�)𝜒 (6.2)

where 𝜏 is the torque vector, 𝜙(𝑞, �̇�, �̈�) represents an (𝑁 × 𝑅) observation matrix, and

the R- length vector 𝜒, contains the effective inertial parameters of the manipulator

grouped in the barycentric or base parameters.

160

Figure 6.1: Structure of a single robotic cell for robot assisted orthopaedic surgery

(Kinsheel, Taha, Deboucha, & Ya, 2012)

The identification “observation” matrix 𝜙(𝑞, �̇�, �̈�) depends on the joint angles,

velocities, and accelerations. The barycentric parameters of a link are combinations of

its inertial parameters and its descendants in the kinematic chain (Renaud, 1987). The

categorization and grouping of the barycentric parameters is done symbolically or by

applying a set of rules. Normally, special computer programs are developed for

automatic generation of the symbolic model and the associated barycentric parameters.

For the CRS A465 the set of the barycentric parameters, χ are given in (Kinsheel, Taha,

Deboucha, & Ya, 2012).

 In this study, in order to make a clear comparison among the estimation methods, the

problem has been simplified to consider only a single joint arm of the CRS A465 to

estimate its parameters. The CRS 465 single joint arm has four parameters 𝑎𝑖, 𝑖 =

1, … ,4 to be identified; they are the inertia, the viscous friction coefficient, the positive

side Coulomb friction, and the negative side Coulomb friction, respectively. The system

161

equation becomes:

𝜏 = 𝑎𝜒 (6.3)

where 𝜏 is the torque, and 𝜒 is the barycentric parameters that have been reduced to four

parameters, they are the angular acceleration 𝑥1, the angular velocity 𝑥2, the positive

sign of the velocity 𝑥3 (=1 if 𝑥2 is positive, 0 otherwise) and the negative sign of the

velocity 𝑥4 (= 1 if 𝑥2 is negative, 0 otherwise).

Figure 6.2: Coordinate frame assignment of single joint CRS A465

6.4 System Implementation

 The kinematic and dynamic models of manipulators are nonlinear and coupled.

Thus, explicit modeling of noises will make dynamic modal complex. To overcome this

problem the ARDE algorithm has been utilized for improving the parameter estimation

of the robot manipulator and to deliver minimum performance variation. As a case

study, the single joint arm model of the CRS A465 is considered. The CRS 465 single

joint arm has 𝐴 = 4 parameters to be estimated, as discussed in Section 6.3. In the

simulation, 𝑎1 is the inertia, 𝑎2 is the viscous friction coefficient, 𝑎3 is the positive side

162

Coulomb friction, and 𝑎4 is the negative side Coulomb friction.

To develop the new dynamic parameter identification framework based on ARDE,

attention has to be paid to the following setting points that characterize the ARDE

algorithm as well as the standard DE algorithm to the robot application:

 Individual (solution encoding) and Population representation: A population

with 𝑝𝑜𝑝𝑠𝑖𝑧𝑒 (𝑁𝑃 = 30) of individuals, refers to the number of individuals at

each generation. First, we have to encode the necessary information required for

the parameter estimation in the individual structure. Each individual should

represent a complete solution to the problem at hand. In our application the

individual is a vector of 4 real-coded parameters known as solution parameters.

 Parameter control: The control parameters that are going to be considered are

the mutation factor, 𝐹 and the crossover rate, 𝐶𝑅. In the standard DE/rand/1/bin,

these parameters have been set to 0.5 and 0.9, respectively. In ARDE, 𝐹 and 𝐶𝑅

values are undergo the evolution via the adaptive system; in such a way that

better values of these parameters would lead to better individuals which in turn

are more likely to survive and produce offspring and hence propagate these

better parameter values to the next generation. The other parameters in ARDE

have been initialized with 𝐶𝑅𝑚 =0.5, 𝐹𝑚 =0.5, 𝑝 =0.05, and

𝑎𝑟𝑐ℎ𝑖𝑣𝑒 𝑠𝑖𝑧𝑒 =𝑁𝑝. The local search part of the SPX has been switched off.

 Individual evaluation (solution validation): The definition of the fitness

function is crucially important for a successful application. In this work, we have

to evaluate the fitness of each individual based on the mean square error (MSE)

of the estimated model, as in Equation 6.4.

𝑀𝑆𝐸 =∑(𝜏𝑖 − �̂�𝑖)
2

𝑛

𝑖=1

 (6.4)

163

where 𝜏 represents the measured torque in our application and �̂� is the estimated

torque using the DE and ARDE algorithms. 𝑛 is the dimension of 𝜏 vector.

 Stopping criteria: The most common stopping condition used in literature is to

allow the algorithm to run to a maximum number of iterations. A small number

of iterations may not give the algorithm enough time to reach an optimum

especially when the size of the search space is large. On the other hand, a very

large number of iterations may be unnecessary because there can no further gain

once the optimum solution is reached; so, the number of iterations for the

standard DE and ARDE is set at 200.

In this comparison the ordinary least square (OLS) identification method (see Equation

6.5) has also been included to estimate the unknown parameters 𝑋𝑂𝐿𝑆 by minimizing the

sum of the squared error between the actual torque 𝜏 and the predicted torque 𝜙𝑋𝑂𝐿𝑆, as

follows:

𝑋𝑂𝐿𝑆 = (𝜙
𝑇𝜙)−1𝜙𝑇𝜏 (6.5)

Using the aforementioned methods and their corresponding settings the barycentric

parameters of the CRS 465 single joint arm are estimated. The results of the three

estimation techniques are presented in Table 6.1. These results have been averaged over

30-independent runs.

A clear comparison among these methods is presented in Table 6.2 which illustrates the

mean square error and the standard deviation of the prediction error. From the same

table it can be observed that the ARDE could outperform the OLS and the standard DE

for both values. This is so because ARDE updates the values of the control parameters

each generation and this change can deal with difficult problems such as noise.

164

Table 6.1: Barycentric parameters estimation of the single joint CRS A465 robot arm

Single Joint

Parameters
OLS Standard DE ARDE

𝑎1 0.0036 0.0037 0.0038

𝑎2 0.0164 0.0143 0.0169

𝑎3 0.0089 0.0594 0.0112

𝑎4 -0.2582 -0.3060 -0.2261

Table 6.2: Mean square error and standard deviation of the estimation methods for the

estimated model averaged over 30-independent runs

OLS Standard DE ARDE

MSE (Std Dev) MSE (Std Dev) MSE (Std Dev)

9.259E-02

(2.099E+00)

8.872E-02

(1.415E+00)

5.143E-02

(1.390E+00)

Figure 6.3 depicts the different behavior of 𝐹 and 𝐶𝑅 values during the 200 generations

due to the population information. The plot of the figure shows a significant high

fluctuation at the early stages of the run then begins to stabilize due to stability in the

population. This change in 𝐹 and 𝐶𝑅 values helps ARDE to escape from the local

optimums generated by the noisy components in the dataset.

 The distinct performance of the ARDE in comparison with the standard DE and the

OLS is further proved in the torque prediction, as depicted in Figure 6.4. From this

figure, and based on the barycentric parameters, it is worth noting that the standard DE

and ARDE are both nearer to the measured torque than the OLS. The difference is

clearer in the accuracy of the model as already presented in Table 4. However, the

difference between the standard DE and ARDE performance plot will be more

significant as the number of the estimated parameters is increased.

165

(a) F-Value

(b) CR-Value

Figure 6.3: The behavior of the F and CR values in ARDE algorithm during 200

generations

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generations

F-Value

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generations

CR-Value

166

Figure 6.4: Measured torque compared with estimated torque using different

methods

6.5 Summary

 In this chapter, the ARDE is utilized to estimate the barycentric parameters of single

joint CRS A465 robot arm dynamics. In this method the values of the control

parameters 𝐹 and 𝐶𝑅 are adapted using the adaptive repository mechanism of

parameters and mutation strategies. The main advantages of this approach are:

computationally efficient, and well-adaptable with optimization techniques. ARDE is

not only a simple approach in comparison with other adaptive DE variants, but is also

reliable and easy to be implemented in real time applications such as robot system

identification. The barycentric parameters of a single joint CRS A465 robot are also

estimated using OLS and the standard DE, and the experimental results suggest that

ARDE provides better overall performance than the ordinary least square method and

the standard DE with fixed parameters.

0 20 40 60 80 100 120 140 160 180
-6

-5

-4

-3

-2

-1

0

1

2

3
Single Joint Torque

Measured

OLS

standard-DE

ARDE

167

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Introduction

 This thesis contains an exploration of adaptive EA strategies for global optimization.

The work was not driven by an existing algorithm nor by a single application. Rather,

this work was motivated by a desire to cover and understand the subject of adaptive EA

algorithms in general from the most basic level. In this study, adaptive DE has been

treated as a case study of this type of algorithms then a new adaptive DE algorithm

called ARDE-SPX has been proposed that could overcome the limitations over other

state-of-the-art adaptive DE variants existing in literature. While a number of

benchmark functions were explored to examine in-depth the performance of the ARDE-

SPX algorithm. Robot manipulator system identification has also been considered as a

real-world application to study the performance of the ARDE-SPX in comparison with

standard methods.

 In this final chapter, a summary of conclusions, contributions and future work

directions on developments and improvements of adaptive EA algorithms are presented.

7.2 Research Conclusions

 The fundamental conclusions of this research work include the analysis and

development of adaptive DE algorithm and its application to a real-world application

are summarized below.

 The classification of adaptive Evolutionary Algorithms and adaptive Differential

Evolution algorithms is always an on-going research area. The research on

168

developing adaptive EA algorithms has been such a hot topic. As more and more

new adaptive algorithms are proposed with new characteristics, the need for a

general classification that can cover all these types of algorithms becomes a

large demand. These classifications provide knowledge to those researches who

are interested in this type of algorithms on what have been implemented and

what improvements or developments can be added in this area as future work.

In this thesis, two classifications have been proposed for the purpose: First,

extension taxonomy to the EA parameter settings that covers in general the type

of parameters settings in evolutionary computations. Second, general

classification to the adaptive DE algorithms that classifies these algorithms

based on the parameters control of the algorithm as well as the number of DE

strategies employed in the implementation.

 Differential Evolution parameters tuning is no less important than the adaptive

Differential Evolution. Many researchers from different disciplines like

engineering seek out the simplicity for their applications. Some of the real-world

applications such on-line systems demand fast algorithms with less number of

parameters to be used such as the standard DE, and this requires a prior

knowledge on which parameter settings can give the best performance of the

algorithm. In general, parameter setting is a problem dependent; there is no

possibility that any algorithm can be tuned once to optimize all types of

problems. A table that composed of the DE parameters tuning for different

problems has been granted for those practitioners who are interested to use the

standard DE.

 Results of the Differential Evolution with adaptive repository and local search

(ARDE-SPX) are promising; however, the ARDE-SPX is still in its infancy. The

results of the final solution precision based on the mean and standard deviation,

169

as well as the robustness of the ARDE-SPX represented by the mean of the

successful rate have confirmed that ARDE-SPX has the advantage over other

adaptive DE variants presented in the comparison. The comparison between

ARDE-SPX and other adaptive DE methods based on the number of functions

that each algorithm has achieved the best results over the other algorithms.

ARDE-SPX has the superior performance in both 30-dimension and 100-

dimension problems. But, it is also important to mention that this current study,

like many other newly proposed algorithms, needs further study to shed the

lights more on its benefits, weaknesses and limitations.

 The advantages of the ARDE-SPX are not the same for different problems.

Similar to all optimization algorithms, ARDE-SPX does not present consistent

behavior over different problems. However, the overall performance of ARDE-

SPX has shown to be better than the other five adaptive DE algorithms over the

selected benchmark test suite.

 The proposed adaptive repository is general enough to be applied on different

algorithms. The adaptive repository mechanism of strategies and parameters

adaptation schemes is a general mechanism and can be embedded with high

flexibility inside any population-based evolutionary algorithm for further

investigation.

 There is fewer control parameters in ARDE-SPX than most of the adaptive DE

algorithms. ARDE-SPX has no extra control parameters added to its main

procedure. The only way that may increase the ARDE-SPX’s control parameters

depends on the DE strategies and parameters control schemes involved in the

repository.

 ARDE has shown good results in real-world application. In system

identification and control of robot manipulator, ARDE has shown better

170

performance than the standard DE and the ordinary least square method OLS.

Because of the high randomness of ARDE in terms of its adaptive manner, it

could overcome the problem of the robot noisy data.

7.3 Research Future Work

 Many studies can be conducted to extend or enhance the adaptive DE algorithms

based on the analysis of these methods or from the new proposed ARDE-SPX

algorithm. Some of these directions can be stated as follows:

 The use of alternative DE strategies in ARDE-SPX. Investigate the use of the

adaptive repository mechanism of ARDE on other DE strategies rather than

JADE with archive. So far, there are many DE strategies and can be either

replaced or integrated with the existing JADEw strategies.

 The use of alternative parameter control schemes in ARDE-SPX. Investigate the

use of the adaptive repository mechanism of ARDE-SPX on other parameters

adaptive schemes of 𝐹 and 𝐶𝑅 rather than the adaptation scheme of MDE_pBX.

There are many parameter adaptive/self-adaptive schemes that can be integrated

with the ARDE-SPX.

 Generalize ARDE-SPX to handle constraint and multi-objective optimization. In

most of the practical applications there are the problems of constraint handling

and mutli-objective. There are many DE approaches for handling these kinds of

problems; they can be integrated with ARDE-SPX to solve multi-objective

constrained problems.

 Extend the adaptive repository of DE (ARDE-SPX) to non-continuous

optimization (discrete/integer). In this study, the continuous optimization of

ARDE-SPX is considered. There are many optimization problems that require

individuals with discrete values, these types of problems are called

171

combinatorial problems. There some previous work has been done on modifying

DE to deal with discrete variables; these components can be added to ARDE-

SPX to solve these problems.

 Investigate the use of different local search algorithms. There many other local

search algorithms than SPX, such as Hill-Climbing and Tabu search methods.

These algorithms can be added to the ARDE algorithm, then a comparison

analysis can be conducted to investigate the effect of each of these algorithms on

the performance of ARDE.

 Multi-comparison statistical test. It would be interesting to use some muli-

comparison statistical test such as Friedman test, ANOVA and Wilcoxon Rank

to analyze the differences among the state-of-the-art adaptive DE variants and

ARDE-SPX algorithm.

 Increase the number of joints in the robot part. In order to further investigate the

performance of the ARDE as an estimator technique and any possible

shortcomings, further work is considered to increase the number of joints of the

robot arm which in turn will increase the number of parameters of the predicted

model.

 Improve the performance of the JADE mutation strategy and its variants (JADE

with archive, SaDE-MMTS, and SaJADE). The selection of the best

individuals, 𝑝% of the population size in the mutation strategy can be

implemented in an adaptive manner based on the population diversity.

 Improve the performance of the MDE_pBX algorithm in different directions.

The MDE_pBX algorithm is a platform for many modifications. 1) An analytical

investigation on the effects of the two new strategies (mutation and crossover)

on the population diversity and convergence rate. 2) The connotation of a

dynamic grouping can be a future MDE_𝑝BX development to include new

172

operators such as 𝐷𝐸/𝑔𝑟_𝑏𝑒𝑠𝑡/1, 𝐷𝐸/𝑔𝑟_𝑏𝑒𝑠𝑡/2, etc., then their effectiveness

could be measured on different types of test functions. 3) The parameter, 𝑝, may

also be modified to be adaptive or at the very least dynamic during the evolution

process, hence its performance effectiveness can further be investigated. 4)

There are two additional control parameters 𝑞 (the group size in the mutation

operation) and 𝑝 (the number of the top-ranking vectors in the crossover

operation), a theoretical guidelines of how to select the values of 𝑝 and 𝑞 can be

investigated.

 Enhance the adaptive scheme of the parameters control in the SaDE and its

variant SaDE-MMTS. In these two algorithms, the parameter 𝐹 can be set to an

adaptive rule that accumulate knowledge from the previous generations.

 Improve the adaptive ensemble of EPSDE. The random strategy of the EPSDE

in selection the parameters control and DE strategies can be improved by

accumulating knowledge regarding the performance of the control parameter

values through certain number of generations.

173

REFERENCES

Abbass, H. A. (2002). The self-adaptive Pareto differential evolution algorithm. Paper

presented at the Proceedings of the IEEE Congress on Evolutionary

Computation (CEC2002), Honolulu, HI.

Adamson, M., & Liu, G. (2006). A genetic algorithms approach to model parameter

estimation of a robot joint with torque sensing.

Ahandani, M. A., Shirjoposh, N. P., & Banimahd, R. (2011). Three modified versions of

differential evolution algorithm for continuous optimization. Soft Computing,

15(4), 803-830. doi: 10.1007/s00500-010-0636-5

Angeline, P. J. (1995). Adaptive and self-adaptive evolutionary computations.

Computational Intelligence: A Dynamic Systems Perspective, 152-163.

Baluja, S. (1994). Population-based incremental learning: A method for

integrating genetic search based function optimization and competitive learning.

Pittsburgh, PA: Carnegie Mellon University.

Baluja, S., & Caruana, R. (1995). Removing the genetics from the standard genetic

algorithm Pittsburgh, PA: Carnegie Mellon University.

Beuhren, M. (2011). Differential Evolution, from

http://www.mathworks.com/matlabcentral/fileexchange/18593-differential-

evolution%20

Bi, X. J., & Xiao, J. (2011). Classification-based self-adaptive differential evolution

with fast and reliable convergence performance. Soft Computing, 15(8), 1581-

1599. doi: 10.1007/s00500-010-0689-5

Bingul, Z., & Karahan, O. (2011). Dynamic identification of Staubli RX-60 robot using

PSO and LS methods. Expert Systems with Applications, 38(4), 4136-4149. doi:

10.1016/j.eswa.2010.09.076

Blickle, T., & Thiele, L. (1997). A comparison of selection schemes used in genetic

algorithms Evolutionary Computation, 4(4), 261-294.

Blum, C., & Roli, A. (2003). Metaheuristics in combinatorial optimization: Overview

and conceptual comparison. Acm Computing Surveys, 35(3). doi:

10.1145/937503.937505

Bongard, J. (2009). Biologically Inspired Computing. Computer, 42(4), 95-98.

Bonissone, P. P., Subbu, R., Eklund, N., & Kiehl, T. R. (2006). Evolutionary algorithms

plus domain knowledge equals Real-world evolutionary computation. IEEE

Transactions on Evolutionary Computation, 10(3), 256-280. doi:

10.1109/tevc.2005.857695

http://www.mathworks.com/matlabcentral/fileexchange/18593-differential-evolution
http://www.mathworks.com/matlabcentral/fileexchange/18593-differential-evolution

174

Brest, J., Boskovic, B., Greiner, S., Zumer, V., & Maucec, M. S. (2007). Performance

comparison of self-adaptive and adaptive differential evolution algorithms. Soft

Computing, 11(7), 617-629. doi: 10.1007/s00500-006-0124-0

Brest, J., Greiner, S., Boskovic, B., Mernik, M., & Zumer, V. (2006). Self-adapting

control parameters in differential evolution: A comparative study on numerical

benchmark problems. IEEE Transactions on Evolutionary Computation, 10(6),

646-657. doi: 10.1109/tevc.2006.872133

Brest, J., & Maucec, M. S. (2011). Self-adaptive differential evolution algorithm using

population size reduction and three strategies. Soft Computing, 15(11), 2157-

2174. doi: 10.1007/s00500-010-0644-5

Brownlee, J. (2011). Clever Algorithms: Nature-Inspired Programming Recipes (First

ed.). Australia: LuLu Enterprises.

Caraffini, F., Neri, F., & Poikolainen, I. (2013). Micro-differential evolution with extra

moves along the axes. Proceedings of the 2013 IEEE Symposium on Differential

Evolution (SDE).

Chakraborty, U. K., Abbott, T. E., & Das, S. K. (2012). PEM fuel cell modeling using

differential evolution. Energy, 40(1), 387-399. doi:

10.1016/j.energy.2012.01.039

Chandra, A., & Chattopadhyay, S. (2014). A novel approach for coefficient quantization

of low-pass finite impulse response filter using differential evolution algorithm.

Signal Image and Video Processing, 8(7), 1307-1321. doi: 10.1007/s11760-012-

0359-4

Chiang, T. C., Chen, C. N., & Lin, Y. C. (2013). Parameter control mechanisms in

differential evolution: A tutorial review and taxonomy. Proceedings of the 2013

IEEE Symposium on Differential Evolution (SDE).

Cotta, C., Sevaux, M., & Sörensen, K. E. (2008). Adaptive and multilevel metaheuristics

(Vol. 136). Berlin,Germany: Springer-Verlag.

Das, S., Abraham, A., Chakraborty, U. K., & Konar, A. (2009). Differential evolution

using a neighborhood-based mutation operator. IEEE Transactions on

Evolutionary Computation, 13(3), 526-553. doi: 10.1109/tevc.2008.2009457

Das, S., Mandal, A., & Mukherjee, R. (2014). An adaptive differential evolution

algorithm for global optimization in dynamic environments. IEEE Transactions

on Cybernetics, 44(6), 966-978. doi: 10.1109/tcyb.2013.2278188

Das, S., & Suganthan, P. N. (2011). Differential evolution: A survey of the state-of-the-

art. IEEE Transactions on Evolutionary Computation, 15(1), 27-54. doi:

10.1109/tevc.2010.2059031

De Jong, K. A. (1975). An analysis of the behavior of a class of genetic adaptive

systems. PhD Thesis, University of Michigan, Dissertation Abstracts

International 36(10), 5140B. (University Microfilms No. 76-9381)

175

Develi, I., & Yazlik, E. N. (2012). Optimum antenna configuration in MIMO systems: a

differential evolution based approach. Wireless Communications & Mobile

Computing, 12(6), 473-480. doi: 10.1002/wcm.974

Dixon, L. C. W., & Szego, G. (1978). The global optimization problem: An introduction.

Paper presented at the Proceeding Toward Global Optimization 2, Amsterdam,

Netherlands: North-Holland.

Dong, N., & Wang, Y. (2014). A memetic differential evolution algorithm based on

dynamic preference for constrained optimization problems. Journal of Applied

Mathematics 2014, 1-15.

Dragoi, E. N., Curteanu, S., Galaction, A. I., & Cascaval, D. (2013). Optimization

methodology based on neural networks and self-adaptive differential evolution

algorithm applied to an aerobic fermentation process. Applied Soft Computing,

13(1), 222-238. doi: 10.1016/j.asoc.2012.08.004

Eiben, A. E., Hinterding, R., & Michalewicz, Z. (1999). Parameter control in

evolutionary algorithms. IEEE Transactions on Evolutionary Computation, 3(2),

124-141. doi: 10.1109/4235.771166

Eiben, A. E., & Smith, J. E. (2003). Introduction to evolutionary computing (Second

ed.). Berlin,Germany: Springer-Verlag.

Elsayed, S. M., Sarker, R. A., & Essam, D. L. (2014). A self-adaptive combined

strategies algorithm for constrained optimization using differential evolution.

Applied Mathematics and Computation, 241, 267-282. doi:

10.1016/j.amc.2014.05.018

Fan, H.-Y., & Lampinen, J. (2002). A trigonometric mutation approach to differential

evolution. Paper presented at the Giannakoglou KC, Tsahalis DT, Papailiou

JPKD, Fogarty T (eds) Evolutionary methods for design, optimization

and control with Applications to Industrial Problems, CIMNE, Barcelona.

Fan, H. Y., & Lampinen, J. (2003). A trigonometric mutation operation to differential

evolution. Journal of Global Optimization, 27(1), 105-129. doi:

10.1023/a:1024653025686

Feoktistov, V. (2006). Differential evolution: In search of solutions (Vol. 5). New

York, United State: Springer-Verlag.

Feoktistov, V., & Janaqi, S. (2004a). Differential evolution. France: LGI2P-l’Ecole des

Mines d’Ales, Parc Scientifique G. Besse, 30035 Nˆımes.

Feoktistov, V., & Janaqi, S. (2004b). Generalization of the strategies in differential

evolution. Paper presented at the 18-th Annual IEEE International Parallel and

Distributed Processing Symposium, Santa Fe, New Mexico, USA.

Feoktistov, V., & Janaqi, S. (2004c). New energetic selection principle in differential

evolution. Paper presented at the 6th International Conference on Enterprise

Information Systems - ICEIS 2004, Porto-Portugal.

176

Feoktistov, V., & Janaqi, S. (2004d). New strategies in differential evolution - Design

principle I.C. Parmee editor, Adaptive computing in design and manufacture VI

(pp. 335-346). UK, London: Springer - Verlag London Limited.

Fleming, P. J., & Purshouse, R. C. (2002). Evolutionary algorithms in control systems

engineering: a survey. Control Engineering Practice, 10(11), 1223-1241. doi:

10.1016/s0967-0661(02)00081-3

Fogel, D. B. (1994). An introduction to simulated evolutionary optimization. IEEE

Transactions on Neural Networks, 5(1), 3-14. doi: 10.1109/72.265956

Fogel, D. B., Fogel, L. J., & Atmar, J. W. (1991, Nov 4-6). Meta-evolutionary

programming. Paper presented at the Conference on Signals, Systems and

Computers. 1991 Conference Record of the Twenty-Fifth Asilomar, San Diego,

CA, USA.

Gautier, M., & Poignet, P. (2001). Extended Kalman filtering and weighted least squares

dynamic identification of robot. Control Engineering Practice, 9(12), 1361-

1372. doi: 10.1016/s0967-0661(01)00105-8

Ghosh, S., Das, S., Roy, S., Islam, S. K. M., & Suganthan, P. N. (2012). A differential

covariance matrix adaptation evolutionary algorithm for real parameter

optimization. Information Sciences, 182(1), 199-219. doi:

10.1016/j.ins.2011.08.014

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine

Learning. New Jersey, United States: Pearson Education (US).

Gomes, P. (2011). Surgical robotics: Reviewing the past, analysing the present,

imagining the future. Robotics and Computer-Integrated Manufacturing, 27(2),

261-266. doi: 10.1016/j.rcim.2010.06.009

Gong, W., Cai, Z., Ling, C. X., & Li, H. (2011). Enhanced differential evolution with

adaptive strategies for numerical optimization. IEEE Transactions on Systems

Man and Cybernetics Part B-Cybernetics, 41(2), 397-413. doi:

10.1109/tsmcb.2010.2056367

Goudos, S. K., Siakavara, K., Samaras, T., Vafiadis, E. E., & Sahalos, J. N. (2011). Self-

adaptive differential evolution applied to real-valued antenna and microwave

design problems. IEEE Transactions on Antennas and Propagation, 59(4), 1286-

1298. doi: 10.1109/tap.2011.2109678

Griewank, A. O. (1981). Generalized descent for global optimization. Journal of

Optimization Theory and Applications, 34(1), 11-39.

Hansen, N., & Ostermeier, A. (1996). Adapting arbitrary normal mutation distributions

in evolution strategies: The covariance matrix adaptation Paper presented at the

Proceedings of the 1996 IEEE International Conference on Evolutionary

Computation, Nagoya, Japan.

177

Hansen, N., & Ostermeier, A. (2001). Completely derandomized self-adaptation in

evolution strategies. Evolutionary Computation, 9(2), 159-195. doi:

10.1162/106365601750190398

He, J., & Yao, X. (2002). From an individual to a population: An analysis of the first

hitting time of population-based evolutionary algorithms. IEEE Transactions on

Evolutionary Computation, 6(5), 495-511. doi: 10.1109/tevc.2002.800886

Ho, Y. C., & Pepyne, D. L. (2002). Simple explanation of the no free lunch theorem of

optimization Cybernetics and Systems Analysis, 38(2), 292–298.

Holland, J. H. (1992). Genetic algorithms. Scientific American, 267(1), 66-72.

Igel, C., & Toussaint, M. (2004). A no-free-lunch theorem for non-uniform distributions

of target functions Journal of Mathematical Modelling and Algorithms, 3, 313–

322.

Iorio, A. W., & Li, X. D. (2004). Solving rotated multi-objective optimization problems

using differential evolution. Ai 2004: Advances in Artificial Intelligence,

Proceedings, 3339, 861-872.

Islam, S. M., Das, S., Ghosh, S., Roy, S., & Suganthan, P. N. (2012). An adaptive

differential evolution algorithm with novel mutation and crossover strategies for

global numerical optimization. IEEE Transactions on Systems Man and

Cybernetics Part B-Cybernetics, 42(2), 482-500. doi:

10.1109/tsmcb.2011.2167966

Jeyakumar, G., & Shanmugavelayutham, C. (2009). An empirical comparison of

differential evolution variants for high dimensional function optimization. Paper

presented at the Iama: 2009 International Conference on Intelligent Agent &

Multi-Agent Systems, Chennai, INDIA.

Jeyakumar, G., & Shanmugavelayutham, C. (2011). Empirical measurements on the

convergence nature of differential evolution variants Advances in Computer

Science and Information Technology, Pt I (Vol. 131, pp. 472-480). Berlin,

Heidelberg: Springer-Verlag.

Jeyakumar, G., & Velayutham, C. S. (2010). A comparative study on theoretical and

empirical evolution of population variance of differential evolution variants.

Paper presented at the SEAL'10 Proceedings of the 8th international conference

on Simulated evolution and learning, Kanpur, India.

Kaempf, J. H., & Robinson, D. (2009). A hybrid CMA-ES and HDE optimisation

algorithm with application to solar energy potential. Applied Soft Computing,

9(2), 738-745. doi: 10.1016/j.asoc.2008.09.009

Karahan, O., & Binguel, Z. (2008). Modelling and identification of STAUBLI RX-60

robot. 2008 IEEE Conference on Robotics, Automation, and Mechatronics, Vols

1 and 2, 184-189.

178

Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. Paper presented at the

1995 Proceedings of IEEE International Conference on Neural Networks, Perth,

WA.

Kephart, J. O. (2011). Learning from Nature. Science, 331(6018), 682-683. doi:

10.1126/science.1201003

Khalil, W., Gautier, M., & Lemoine, P. (2007). Identification of the payload inertial

parameters of industrial manipulators. Paper presented at the IEEE International

Conference on Robotics and Automation, Rome, ITALY.

Kinsheel, A., Taha, Z., Deboucha, A., & Ya, T. M. Y. S. T. (2012). Robust least square

estimation of the CRS A465 robot arm’s dynamic model parameters. Journal of

Mechanical Engineering Research 4(3), 89-99.

Kukkonen, S., & Lampinen, J. (2005). GDE3: The third evolution step of generalized

differential evolution. Paper presented at the The 2005 IEEE Congress on

Evolutionary Computation, Edinburgh, Scotland.

Lampinen, J. (2001). Solving problems subject to multiple nonlinear constraints by the

differential evolution. Paper presented at the Proceedings of MENDEL'01 - 7th

International Conference on Soft Computing, Brno, Czech Republic.

Lampinen, J. (2002). A constraint handling approach for the differential evolution

algorithm. Paper presented at the Proceedings of the 2002 Congress on

Evolutionary Computation - CEC2002, Honolulu, HI.

Lampinen, J., & Zelinka, I. (2000). On stagnation of the differential evolution

algorithm. Paper presented at the Proceedings of MENDEL'00 - 6th

International Mendel Conference on Soft Computing, Brno, Czech Republic.

Lee, C. Y., & Yao, X. (2004). Evolutionary programming using mutations based on the

Levy probability distribution. IEEE Transactions on Evolutionary Computation,

8(1), 1-13. doi: 10.1109/tevc.2003.816583

Liang, J. J., Suganthan, P. N., & Deb, K. (2005). Novel composition test functions for

numerical global optimization. 2005 IEEE Swarm Intelligence Symposium, 68-

75.

Lin, C., Qing, A., & Feng, Q. (2011). A comparative study of crossover in differential

evolution. Journal of Heuristics, 17(6), 675-703. doi: 10.1007/s10732-010-

9151-1

Lis, J. (1996). Parallel genetic algorithm with dynamic control parameter. Paper

presented at the Proceedings of the 1996 IEEE Conference on Evolutionary

Computation, Nagoya, Japan.

Liu, J., & Lampinen, J. (2002a). Adaptive parameter control of differential evolution.

Paper presented at the Proceedings of MENDEL'02 - 8th International Mendel

Conference on Soft Computing, Brno, Czech Republic.

179

Liu, J., & Lampinen, J. (2002b). On setting the control parameter of the differential

evolution algorithm. Paper presented at the Proceedings of the 8th international

Mendel conference on soft computing, Brno, Czech Republic.

Liu, J., & Lampinen, J. (2005). A fuzzy adaptive differential evolution algorithm. Soft

Computing, 9(6), 448-462. doi: 10.1007/s00500-004-0363-x

Liu, Y., Ni, F. L., Liu, H., & Xu, W. F. (2012). Enhancing pose accuracy of space robot

by improved differential evolution. Journal of Central South University of

Technology, 19(4), 933-943. doi: 10.1007/s11771-012-1095-1

Lobo, F. G., Lima, C. F., & Michalewicz, Z. (2007). Parameter setting in evolutionary

algorithms (Vol. 54). Berlin, Germany: Springer-Verlag.

Mallipeddi, R. (2013). Harmony search based parameter ensemble adaptation for

differential evolution. Journal of Applied Mathematics. doi:

10.1155/2013/750819

Mallipeddi, R., Suganthan, P. N., Pan, Q. K., & Tasgetiren, M. F. (2011). Differential

evolution algorithm with ensemble of parameters and mutation strategies.

Applied Soft Computing, 11(2), 1679-1696. doi: 10.1016/j.asoc.2010.04.024

Mavroidis, C., Flanz, J., Dubowsky, S., Drouet, P., & Goitein, M. (1998). High

performance medical robot requirements and accuracy analysis. Robotics and

Computer-Integrated Manufacturing, 14(5-6), 329-338. doi: 10.1016/s0736-

5845(98)00022-2

Mezura-Montes, E., Edith Miranda-Varela, M., & del Carmen Gomez-Ramon, R.

(2010). Differential evolution in constrained numerical optimization: An

empirical study. Information Sciences, 180(22), 4223-4262. doi:

10.1016/j.ins.2010.07.023

Mezura-Montes, E., Velazquez-Reyes, J., & Coello, C. A. C. (2006). A comparative

study of differential evolution variants for global optimization. Paper presented

at the GECCO 2006: Genetic and Evolutionary Computation Conference,

Seattle, WA.

Mininno, E., Neri, F., Cupertino, F., & Naso, D. (2011). Compact differential evolution.

IEEE Transactions on Evolutionary Computation, 15(1), 32-54. doi:

10.1109/tevc.2010.2058120

Mitchell, M. (1998). An introduction to genetic algorithms (Third ed.).

London, England: MIT Press.

Mittal, R. K., & Nagrath, I. J. (2003). Robotics and control New Delhi: Tata McGraw-

Hill.

Montes, E. M., Coello Coello, C. A., & Tun-Morales, E. I. (2004). Simple feasibility

rules and differential evolution for constrained optimization. Paper presented at

the Proceedings of the Third Mexican International Conference on Artificial

Intelligence (MICAI'2004), New York.

180

Neri, F., & Mininno, E. (2010). Memetic compact differential evolution for cartesian

robot control. IEEE Computational Intelligence Magazine, 5(2), 54-65. doi:

10.1109/mci.2010.936305

Neri, F., & Tirronen, V. (2008). On memetic differential evolution frameworks: A study

of advantages and limitations in hybridization. 2008 IEEE Congress on

Evolutionary Computation, Vols 1-8, 2135-2142. doi: 10.1109/cec.2008.4631082

Neri, F., & Tirronen, V. (2010). Recent advances in differential evolution: a survey and

experimental analysis. Artificial Intelligence Review, 33(1-2), 61-106. doi:

10.1007/s10462-009-9137-2

Niu, M., & Xu, Z. (2014). Efficiency ranking-based evolutionary algorithm for power

system planning and operation. IEEE Transactions on Power Systems, 29(3),

1437-1438. doi: 10.1109/tpwrs.2013.2292435

Noman, N., & Iba, H. (2008). Accelerating differential evolution using an adaptive local

search. IEEE Transactions on Evolutionary Computation, 12(1), 107-125. doi:

10.1109/tevc.2007.895272

Oh, S. K., Kim, W.-D., & Pedrycz, W. (2012). Design of optimized cascade fuzzy

controller based on differential evolution: Simulation studies and practical

insights. Engineering Applications of Artificial Intelligence, 25(3), 520-532. doi:

10.1016/j.engappai.2012.01.002

Pedersen, M. E. H. (2010). Good parameters for differential evolution: Hvass

Laboratories.

Peng, L., Dai, G., Wang, M., Hu, H., Chang, Y., & Chen, F. (2011). Self-adaptive

uniform differential evolution for optimizing the initial integral point of the

earth-moon low-energy transfer. Paper presented at the Proceedings of the

Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering.

Piotrowski, A. P., Napiorkowski, J. J., & Kiczko, A. (2012). Differential evolution

algorithm with Separated Groups for multi-dimensional optimization problems.

European Journal of Operational Research, 216(1), 33-46. doi:

10.1016/j.ejor.2011.07.038

Pisla, D., Gherman, B., Vaida, C., Suciu, M., & Plitea, N. (2013). An active hybrid

parallel robot for minimally invasive surgery. Robotics and Computer-Integrated

Manufacturing, 29(4), 203-221. doi: 10.1016/j.rcim.2012.12.004

Ponsich, A., & Coello Coello, C. A. (2011). Differential evolution performances for the

solution of mixed-integer constrained process engineering problems. Applied

Soft Computing, 11(1), 399-409. doi: 10.1016/j.asoc.2009.11.030

Price, K., & Storn, R. (1997). Differential evolution: A simple evolution strategy for fast

optimization. Dr. Dobb's Journal of Software Tools, 22(4), 18-24.

Price, K. V. (1997). Differential evolution vs. the functions of the 2nd ICEO. Paper

presented at the Proceedings of 1997 IEEE International Conference on

Evolutionary Computation (ICEC '97), Indianapolis, In.

181

Price, K. V. (1999). An introduction to differential evolution. New Ideas in

Optimization. London: McGraw-Hill.

Price, K. V., Storn, R. M., & Lampinen, J. A. (2005). Differential evolution: A practical

approach to global optimization (First ed.). Berlin, Germany: Springer-Verlag.

Qasem, S. N., & Shamsuddin, S. M. (2011). Memetic elitist pareto differential evolution

algorithm based radial basis function networks for classification problems.

Applied Soft Computing, 11(8), 5565-5581. doi: 10.1016/j.asoc.2011.05.002

Qin, A. K., Huang, V. L., & Suganthan, P. N. (2009). Differential evolution algorithm

with strategy adaptation for global numerical optimization. IEEE Transactions

on Evolutionary Computation, 13(2), 398-417. doi: 10.1109/tevc.2008.927706

Qin, A. K., & Suganthan, P. N. (2005). Self-adaptive differential evolution algorithm for

numerical optimization. Paper presented at the Proceedings of the 2005 IEEE

Congress on Evolutionary Computation, Edinburgh, SCOTLAND.

Rahnamayan, S., & Dieras, P. (2008). Efficiency competition on N-queen problem: DE

vs. CMA-ES. Paper presented at the Canadian Conference on Electrical and

Computer Engineering, Niagara Falls, CANADA.

Rahnamayan, S., Tizhoosh, H. R., & Salama, M. M. A. (2008). Opposition-based

differential evolution. IEEE Transactions on Evolutionary Computation, 12(1),

64-79. doi: 10.1109/tevc.2007.894200

Rechenberg, I. (1973). Evolutionsstrategie: Optimierung technischer systeme nach

prinzipien der biologischen evolution: Frommann-Holzboog.

Renaud, M. (1987). Quasi-minimal computation of the dynamic model of a

robotmanipulator utilizing the Newton-Euler formalism and the notion of

augmented body. Paper presented at the Proc. IEEE Int. Conf. Robot

Automation, Raleigh, North Carolina.

Rönkkönen, J., Kukkonen, S., & Price, V. K. (2005). Real-parameter optimization with

differential evolution. Paper presented at the The 2005 IEEE Congress on

evolutionary computation CEC 2005, Edinburgh, Scotland.

Rout, B. K., & Mittal, R. K. (2010). Optimal design of manipulator parameter using

evolutionary optimization techniques. Robotica, 28, 381-395. doi:

10.1017/s0263574709005700

Runyon, R. P., Haber, A., Pittenger, D. J., & Coleman, K. A. (1996). Fundamentals of

behavioral statistics (8th ed.). Boston: McGraw-Hill.

Sayah, S., & Hamouda, A. (2013). A hybrid differential evolution algorithm based on

particle swarm optimization for nonconvex economic dispatch problems.

Applied Soft Computing, 13(4), 1608-1619. doi: 10.1016/j.asoc.2012.12.014

182

Schwefel, H. P. (1977). Numerische optimierung von computor-modellen mittels der

evolutionsstrategie: mit einer vergleichenden einführung in die hill-climbing-

und zufallsstrategie: Birkhäuser.

Shang, Y. W., & Qiu, Y. H. (2006). A note on the extended Rosenbrock function.

Evolutionary Computation, 14(1), 119-126. doi: 10.1162/106365606776022733

Sindhya, K., Ruuska, S., Haanpaa, T., & Miettinen, K. (2011). A new hybrid mutation

operator for multiobjective optimization with differential evolution. Soft

Computing, 15(10), 2041-2055. doi: 10.1007/s00500-011-0704-5

Smith, R. E., & Smuda, E. (1995). Adaptively resizing populations: Algorithm, analysis

and first results. Complex Systems, 9(1), 47-72.

Spadoni, M., & Stefanini, L. (2012). A Differential evolution algorithm to deal with

box, linear and quadratic-convex constraints for boundary optimization. Journal

of Global Optimization, 52(1), 171-192. doi: 10.1007/s10898-011-9695-0

Storn, R. (1996). On the usage of differential evolution for function optimization. Paper

presented at the Biennial Conference of the North America Fuzzy Information

Processing Society (NAFIPS 1996), Berkeley, CA, New York.

Storn, R. (2000). Differential evolution (DE), from

http://www1.icsi.berkeley.edu/~storn/code.html

Storn, R., & Price, K. (1996). Minimizing the real functions of the ICEC'96 contest by

differential evolution. Paper presented at the IEEE International Conference on

Evolutionary Computation.

Storn, R., & Price, K. (1997). Differential evolution - A simple and efficient heuristic

for global optimization over continuous spaces. Journal of Global Optimization,

11(4), 341-359. doi: 10.1023/a:1008202821328

Storn, R. M., & Price, K. V. (1995). Differential Evolution - A simple and efficient

adaptive scheme for global optimization over continuous spaces. Berkeley, CA,

USA: International Computer Science Institute.

Subudhi, B., & Jena, D. (2011). A differential evolution based neural network approach

to nonlinear system identification. Applied Soft Computing, 11(1), 861-871. doi:

10.1016/j.asoc.2010.01.006

Teo, J. (2006). Exploring dynamic self-adaptive populations in differential evolution.

Soft Computing, 10(8), 673-686. doi: 10.1007/s00500-005-0537-1

Titare, L. S., Singh, P., Arya, L. D., & Choube, S. C. (2014). Optimal reactive power

rescheduling based on EPSDE algorithm to enhance static voltage stability.

International Journal of Electrical Power & Energy Systems, 63, 588-599. doi:

10.1016/j.ijepes.2014.05.078

Torn, A., & Zilinskas, A. (1989). Global optimization Lecture Notes in Computer

Science (Vol. 350, pp. 1-252).

http://www1.icsi.berkeley.edu/~storn/code.html

183

Tseng, L. Y., & Chen, C. (2007). Multiple trajectory search for multiobjective

optimization. Paper presented at the 2007 IEEE Congress on Evolutionary

Computation, Singapore, SINGAPORE.

Tseng, L. Y., & Chen, C. (2008). Multiple trajectory search for large scale global

optimization. Paper presented at the 2008 IEEE Congress on Evolutionary

Computation, Hong Kong, PEOPLES R CHINA.

Tsutsui, S., Yamamura, M., & Higuchi, T. (1999). Multi-parent Recombination with

Simplex Crossover in Real Coded Genetic Algorithms. Paper presented at the

Genetic Evol. Comput. Conf. (GECCO’99)

Tvrdik, J. (2009). Adaptation in differential evolution: A numerical comparison. Applied

Soft Computing, 9(3), 1149-1155. doi: 10.1016/j.asoc.2009.02.010

Urfalioglu, O., & Arikan, O. (2011). Self-adaptive randomized and rank-based

differential evolution for multimodal problems. Journal of Global Optimization,

51(4), 607-640. doi: 10.1007/s10898-011-9646-9

Vesterstrom, J., & Thomsen, R. (2004). A comparative study of differential evolution,

particle swarm optimization, and evolutionary algorithms on numerical

benchmark problems. Paper presented at the Cec2004: Proceedings of the 2004

Congress on Evolutionary Computation (CEC 2004), Portland, OR.

Vuong, N. D., & Ang, M. H., Jr. (2009). Dynamic Model Identification for Industrial

Robots. Acta Polytechnica Hungarica, 6(5), 51-68.

Wang, H., Rahnamayan, S., & Wu, Z. (2013). Parallel differential evolution with self-

adapting control parameters and generalized opposition-based learning for

solving high-dimensional optimization problems. Journal of Parallel and

Distributed Computing, 73(1), 62-73. doi: 10.1016/j.jpdc.2012.02.019

Wang, K. (2009). Application of genetic algorithms to robot kinematics calibration.

International Journal of Systems Science, 40(2), 147-153. doi:

10.1080/00207720802630644

Wang, Y. (2011). Evolutionary algorithms for complex continuous optimization

problems. Doctor of Philosophy, Central South University, China.

Wang, Y., Cai, Z., & Zhang, Q. (2011). Differential evolution with composite trial

vector generation strategies and control parameters. IEEE Transactions on

Evolutionary Computation, 15(1), 55-66. doi: 10.1109/tevc.2010.2087271

Wang, Y., Cai, Z., & Zhang, Q. (2012). Enhancing the search ability of differential

evolution through orthogonal crossover. Information Sciences, 185(1), 153-177.

doi: 10.1016/j.ins.2011.09.001

Weber, M., Neri, F., & Tirronen, V. (2011). Shuffle or update parallel differential

evolution for large-scale optimization. Soft Computing, 15(11), 2089-2107. doi:

10.1007/s00500-010-0640-9

184

Weber, M., Tirronen, V., & Neri, F. (2010). Scale factor inheritance mechanism in

distributed differential evolution. Soft Computing, 14(11), 1187-1207. doi:

10.1007/s00500-009-0510-5

Weise, T. (2009). Global optimization algorithms -Theory and applications (pp. 820).

Retrieved from http://www.it-weise.de/projects/book.pdf

Wolpert, D. H., & MacReady, W. G. (1997). No free lunch theorems for optimization.

IEEE Transactions on Evolutionary Computation, 1(1), 67–82.

Xin, B., Chen, J., Zhang, J., Fang, H., & Peng, Z. H. (2012). Hybridizing differential

evolution and particle swarm optimization to design powerful optimizers: A

review and taxonomy. IEEE Transactions on Systems Man and Cybernetics Part

C-Applications and Reviews, 42(5), 744-767. doi: 10.1109/tsmcc.2011.2160941

Yao, X., Liu, Y., & Lin, G. M. (1999). Evolutionary programming made faster. IEEE

Transactions on Evolutionary Computation, 3(2), 82-102.

Yin, J., Wang, Y., & Hu, J. (2012). Free search with adaptive differential evolution

exploitation and quantum-inspired exploration. Journal of Network and

Computer Applications, 35(3), 1035-1051. doi: 10.1016/j.jnca.2011.12.004

Zaharie, D. (2002a). Critical values for the control parameters of differential evolution

algorithms Paper presented at the Proceedings of MENDEL 2002, 8th

International Mendel Conference on Soft Computing, Brno, Czech Republic.

Zaharie, D. (2002b). Parameter adaptation in differential evolution by controlling the

population diversity. Paper presented at the Proc. of SYNASC'2002, Analele

Univ. Timisoara,Timisoara, Roumania.

Zaharie, D. (2004). A multi-population differential evolution algorithm for multi-modal

optimization. Paper presented at the Mendel'04 - 10th International Conference

on Soft Computing, Brno, Czech Republic.

Zaharie, D. (2007). A comparative analysis of crossover variants in differential

evolution. Paper presented at the Proceedings of the IMCSIT, 2nd International

Symposium Advances in Artificial Intelligence and Applications (AAIA'07).

Zakharov, A., & Halasz, S. (2001). Parameter identification of a robot arm using genetic

algorithms. Periodica Politehnica Ser. Eng, 45(3-4), 195-209.

Zhang, J., & Sanderson, A. C. (2009a). Adaptive differential evolution: A robust

approach to multimodal problem optimization (Vol. 1). Chennai, India: Springer-

Verlag.

Zhang, J., & Sanderson, A. C. (2009b). JADE: Adaptive differential evolution with

optional external archive. IEEE Transactions on Evolutionary Computation,

13(5), 945-958. doi: 10.1109/tevc.2009.2014613

http://www.it-weise.de/projects/book.pdf

185

Zhang, X., Chen, W., Dai, C., & Cai, W. (2010). Dynamic multi-group self-adaptive

differential evolution algorithm for reactive power optimization. International

Journal of Electrical Power & Energy Systems, 32(5), 351-357. doi:

10.1016/j.ijepes.2009.11.009

Zhao, S.-Z., Suganthan, P. N., & Das, S. (2011). Self-adaptive differential evolution

with multi-trajectory search for large-scale optimization. Soft Computing,

15(11), 2175-2185. doi: 10.1007/s00500-010-0645-4

Zhao, S., Wang, X., Chen, L., & Zhu, W. (2014). A novel self-adaptive differential

evolution algorithm with population size adjustment scheme. Arabian Journal

for Science and Engineering, 39(8), 6149-6174. doi: 10.1007/s13369-014-1248-

7

Zhu, W., Tang, Y., Fang, J. A., & Zhang, W. (2013). Adaptive population tuning scheme

for differential evolution. Information Sciences, 223, 164-191. doi:

10.1016/j.ins.2012.09.019

Zielinski, K., Weitkemper, P., Laur, R., & Kammeyer, K. D. (2006). Parameter study for

differential evolution using a power allocation problem including including

interference cancellation. Paper presented at the Proceedings of the IEEE

congress on evolutionary computation, Vancouver, BC.

Zou, D., Liu, H., Gao, L., & Li, S. (2011). A novel modified differential evolution

algorithm for constrained optimization problems. Computers & Mathematics

with Applications, 61(6), 1608-1623. doi: 10.1016/j.camwa.2011.01.029

186

APPENDIX A

STANDARD BENCHMARK FUNCTIONS

UNIMODAL FUNCTIONS

A. Sphere Function

𝑓1(𝑥) =∑𝑥𝑖
2

𝐷

𝑖=1

 − 100 ≤ 𝑥𝑖 ≤ 100

global minimum (𝑓1) = 𝑓1(0,…, 0)= 0

B. Schwefel 2.22 Function

𝑓2(𝑥) =∑|𝑥𝑖|

𝐷

𝑖=1

+∏|𝑥𝑖|

𝐷

𝑖=1

 − 10 ≤ 𝑥𝑖 ≤ 10

global minimum (𝑓2) = 𝑓2(0,…, 0)= 0

C. Schwefel 1.2 Function

𝑓3(𝑥) =∑(∑𝑥𝑗

𝑖

𝑗=1

)

2
𝐷

𝑖=1

 − 100 ≤ 𝑥𝑖 ≤ 100

global minimum (𝑓3) = 𝑓3(0,…, 0)= 0

D. Schwefel 2.21 Function

𝑓4(𝑥) = 𝑚𝑎𝑥{|𝑥𝑖| , 1 ≤ 𝑥𝑖 ≤ 𝐷} − 100 ≤ 𝑥𝑖 ≤ 100

global minimum (𝑓4) = 𝑓4(0,…, 0)= 0

E. Step Function

𝑓5(𝑥) =∑⌊𝑥𝑖 + 0.5⌋
2

𝐷

𝑖=1

 − 100 ≤ 𝑥𝑖 ≤ 100

global minimum(𝑓5) = 𝑓5(0,…, 0)= 0

187

F. Quartric Noise Function

𝑓6(𝑥) =∑𝑖𝑥𝑖
4

𝐷

𝑖=1

+ 𝑟𝑎𝑛𝑑[0,1) − 1.28 ≤ 𝑥𝑖 ≤ 1.28

global minimum(𝑓6) = 𝑓6(0,…, 0)= 0+ noise

G. Access Parallel Hyper-Ellipsoid Function

𝑓7(𝑥) =∑𝑖𝑥𝑖
2

𝐷

𝑖=1

 − 100 ≤ 𝑥𝑖 ≤ 100

global minimum(𝑓7) = 𝑓7(0,…, 0)= 0

H. Standard Rosenbrock Function

𝑓8(𝑥1, 𝑥2) = 100(𝑥1
2 − 𝑥2)

2 + (𝑥1 − 1)
2 − 30 ≤ 𝑥𝑖 ≤ 30

global minimum (𝑓8) = 𝑓8(1, 1)= 0

MULTIMODAL FUNCTIONS

I. Generalized Rosenbrock Function

𝑓9(𝑥) = ∑[100(𝑥𝑖
2 − 𝑥𝑖+1)

2 + (𝑥𝑖 − 1)
2]

𝐷−1

𝑖=1

 − 30 ≤ 𝑥𝑖 ≤ 30

global minimum (𝑓9) = 𝑓9(1,…, 1)= 0

J. Schwefel Function

𝑓10 =∑[−𝑥𝑖𝑠𝑖𝑛√|𝑥𝑖|]

𝐷

𝑖=1

 − 500 ≤ 𝑥𝑖 ≤ 500

global minimum (𝑓10) = 𝑓10(420.9687,…, 420.9687)= -418.9829∙ 𝐷

K. Rastrigin Function

𝑓11 = ∑[𝑥𝑖
2 − 10 𝑐𝑜𝑠(2𝜋𝑥𝑖) + 10]

𝐷

𝑖=1

 − 5.12 ≤ 𝑥𝑖 ≤ 5.12

188

global minimum (𝑓11) = 𝑓11(0,0,…, 0)= 0

L. Ackley Function

𝑓12 = −20𝑒𝑥𝑝

(

 −0.2√
1

𝐷
∑𝑥𝑖

2

𝐷

𝑖=1
)

 − 𝑒𝑥𝑝(
1

𝐷
∑cos(2π𝑥𝑖)

𝐷

𝑖=1

) + 20 + е𝑥𝑝(1)

−32 ≤ 𝑥𝑖 ≤ 32 global minimum (𝑓12) = 𝑓12(0,0,…, 0)= 0

M. Griewank Function

𝑓13 =
1

4000
∑𝑥𝑖

2 −∏ 𝑐𝑜𝑠 (
𝑥𝑖

√𝑖
) + 1

𝐷

𝑖=1

𝐷

𝑖=1

−600 ≤ 𝑥𝑖 ≤ 600 global minimum (𝑓13) = 𝑓13(0,0,…, 0)= 0

N. Generalized Penalized Functions

𝑓14 =
𝜋

𝐷
{10𝑠𝑖𝑛2(𝜋𝑦1) +∑(𝑦𝑖 − 1)

2[1 + 10 𝑠𝑖𝑛2(𝜋𝑦𝑖+1)] + (𝑦𝐷 − 1)
2

𝐷−1

𝑖=1

}

+∑𝑢(𝑥𝑖, 10, 100, 4)

𝐷

𝑖=1

−50 ≤ 𝑥𝑖 ≤ 50 global minimum (𝑓14) = 𝑓14(-1,-1,…, -1)= 0

𝑓15(𝑥) = 0.1 {𝑠𝑖𝑛
2(3𝜋𝑥1)

+∑(𝑥𝑖 − 1)
2[1 + 𝑠𝑖𝑛2(3𝜋𝑥𝑖+1)] + (𝑥𝐷 − 1)

2[1 + 𝑠𝑖𝑛2(2𝜋𝑥𝐷)]

𝐷−1

𝑖=1

}

+∑𝑢(𝑥𝑖, 5, 100, 4)

𝐷

𝑖=1

−50 ≤ 𝑥𝑖 ≤ 50 global minimum (𝑓15) = 𝑓15(1,1,…, 1)= 0

where 𝑦𝑖 = 1 +
1

4
(𝑥𝑖 + 1) and

189

𝑢(𝑥𝑖, 𝑎, 𝑘,𝑚) = {

𝑘(𝑥𝑖 − 𝑎)
𝑚, 𝑥𝑖 > 𝑎,

0, − 𝑎 ≤ 𝑥𝑖 ≤ 𝑎,

𝑘(−𝑥𝑖 − 𝑎)
𝑚, 𝑥𝑖 < −𝑎.

O. Nuemaier 3 Function

𝑓16(𝑥) =∑(𝑥𝑖 − 1)
2 −∑𝑥𝑖𝑥𝑖−1

𝐷

𝑖=2

𝐷

𝑖=1

−𝐷2 < 𝑥𝑖 < 𝐷
2 for 𝑖 = 1,2,3, … , 𝐷 global minimum(𝑓16)=−𝐷(𝐷 + 4)(𝐷 − 1)/6

at 𝑥𝑖 = 𝑖(𝐷 + 1 − 𝑖)

P. Salomon Function

𝑓17(𝑥) = 1 − cos(2𝜋‖𝑥‖) + 0.1‖𝑥‖, where

‖𝑥‖ = √∑𝑥𝑖
2

𝐷

𝑖=1

−100 ≤ 𝑥𝑖 ≤ 100 global minimum (𝑓17) = 𝑓17(0,0, … ,0) = 0

Q. Alpine Function

𝑓18(𝑥) = ∑|𝑥𝑖 sin(𝑥𝑖) + 0.1𝑥𝑖|

𝐷

𝑖=1

−10 ≤ 𝑥𝑖 ≤ 10 global minimum (𝑓18) = 𝑓18(0,0, … ,0) = 0

R. Easom Function

𝑓19(𝑥1, 𝑥2) = − 𝑐𝑜𝑠(𝑥1) 𝑐𝑜𝑠(𝑥2) 𝑒𝑥𝑝(−(𝑥1 − 𝜋)
2 − (𝑥2 − 𝜋)

2)

−100 ≤ 𝑥𝑖 ≤ 100 global minimum(𝑓19)= 𝑓19(𝜋, 𝜋)= -1

S. Branin Function

𝑓20(𝑥1, 𝑥2) = (𝑥2 −
5.1

4𝜋2
𝑥1
2 +

5

𝜋
𝑥1 − 6)

2 + 10 (1 −
1

8𝜋
) cos(𝑥1) + 10

−5 ≤ 𝑥1 ≤ 10 and 0 ≤ 𝑥2 ≤ 15 global minima(𝑓20)= 𝑓20 (−𝜋, 12.275); 𝑓20 (𝜋,

190

2.275); 𝑓20 (9.42478, 2.475)= 0.397887

T. Goldstein-Price Function

𝑓21(𝑥1, 𝑥2) = [1 + (𝑥1 + 𝑥2 + 1)
2(19 − 14𝑥1 + 3𝑥1

2 − 14𝑥2 + 6𝑥1𝑥2 + 3𝑥2
2)]

× [30 + (2𝑥1 − 3𝑥2)
2(18 − 32𝑥1 + 12𝑥1

2 + 48𝑥2 − 36𝑥1𝑥2 + 27𝑥2
2)]

−2 ≤ 𝑥𝑖 ≤ 2 global minimum(𝑓21)= 𝑓21(0, -1)= 3.0000

U. Six-hump Camel Back Function

𝑓22(𝑥1, 𝑥2) = (4 − 2.1𝑥1
2 +

𝑥1
4

3
) 𝑥1

2 + 𝑥1𝑥2 + (−4 + 4𝑥2
2)𝑥2

2

−3 ≤ 𝑥1 ≤ 3 and −2 ≤ 𝑥2 ≤ 2 global minima(𝑓22)= 𝑓22(-0.0898, 0.7126) and

𝑓22 (0.0898, -0.7126)= -1.0316

V. Shekel Foxholes Function

𝑓23 = [
1

500
+∑

1

𝑗 + ∑ (𝑥𝑖 − 𝑎𝑖𝑗)
6𝐷

𝑖=1

𝑚

𝑗=1

]

−1

−65.536 ≤ 𝑥𝑖 ≤ 65.536 global minimum(𝑓23)= 𝑓23 (-32, -32) = 0.998004

where m is a constant number fixed in advance. It is recommended to set m=24, 25, or

30. In our case m=25, and

𝑎1𝑗 = {−32,−16, 0, 16, 32,−32,−16, 0, 16, 32,−32,−16, 0, 16, 32,−32, −16, 0,

16, 32,−32,−16, 0, 16, 32}
𝑎2𝑗 =

{−32,−32,−32, −32,−32,−16,−16,−16,−16,−16, 0, 0, 0, 0, 0, 16, 16, 16, 16, 16}

W. Hartman’s Family

𝑓(𝑥) = −∑𝑐𝑖

4

𝑖=1

𝑒𝑥𝑝(−∑𝑎𝑖𝑗

𝐷

𝑗=1

(𝑥𝑗 − 𝑝𝑖𝑗)
2
)

with D=3, 6 for 𝑓24(𝑥) and 𝑓25(𝑥), respectively, 0 ≤ 𝑥𝑖 ≤ 1. The coefficients a, p and c

are defined by Table I. Global minimum (𝑓24) = 𝑓24(0.114, 0.556, 0.852) = -3.86278.

Global minimum (𝑓25) = 𝑓25(0.201, 0.150, 0.477, 0.275, 0.311, 0.657) = -3.3237.

191

Table I

Hartman Functions 𝒇𝟐𝟒 and 𝒇𝟐𝟓

i 𝑎𝑖𝑗, j = 1, …, 6 𝑐𝑖 𝑝𝑖𝑗, j=1,…,6

1 10 3 17 3.5 1.7 8 1 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886

2 0.05 10 17 0.1 8 14 1.2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991

3 3 3.5 1.7 10 17 8 3 0.2348 0.1415 0.3522 0.2883 0.3047 0.6650

4 17 8 0.05 10 0.1 14 3.2 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

 X. Shekel’s Family

𝑓(𝑥) = − ∑(∑(𝑥𝑗 − 𝑎𝑗𝑖)
2

𝐷

𝑗=1

+ 𝑐𝑖)

−1
𝑚

𝑖=1

with m= 5, 7, and 10 for 𝑓26(𝑥), 𝑓27(𝑥) and 𝑓28(𝑥), respectively, 0 ≤ 𝑥𝑖 ≤ 10. The

coefficients a and c are defined by Table II. Global minimum (𝑓26) = 𝑓26(4, 4, 4, 4) = -

10.1532. Global minimum (𝑓27) = 𝑓27(4, 4, 4, 4)= -10.4029. Global minimum (𝑓28)=

𝑓28(4, 4, 4, 4) = -10.5364.

Table II

Shekel Functions 𝒇𝟐𝟔, 𝒇𝟐𝟕 and 𝒇𝟐𝟖

i 𝑎𝑖𝑗, j = 1, …, 4 𝑐𝑖

1 4 4 4 4 0.1

2 1 1 1 1 0.2

3 8 8 8 8 0.2

4 6 6 6 6 0.4

5 3 7 3 7 0.4

6 2 9 2 9 0.6

7 5 5 3 3 0.3

8 8 1 8 1 0.7

9 6 2 6 2 0.5

0 7 3.6 7 3.6 0.5

192

APPENDIX B

TRANSFORMED BENCHMARK FUNCTIONS

UNIMODAL FUNCTIONS

A. Shifted Schwefel 1.2 Function

𝐹2(𝑥) =∑(∑𝑧𝑗

𝑖

𝑗=1

)

2
𝐷

𝑖=1

, 𝑧 = 𝑥 − 𝑜 − 100 ≤ 𝑥𝑖 ≤ 100

𝑥 = [𝑥1, 𝑥2, … , 𝑥𝐷], 𝑜 = [𝑜1, 𝑜2, … , 𝑜𝐷] is the shifted global optimum

 global minimum (𝐹2) = 𝐹2(o,…, o)= 0

MULTIMODAL FUNCTIONS

B. Shifted Rotated Ackley Function

𝐹6 = −20𝑒𝑥𝑝

(

 −0.2√
1

𝐷
∑𝑥𝑖

2

𝐷

𝑖=1
)

 − 𝑒𝑥𝑝 (
1

𝐷
∑cos(2π𝑥𝑖)

𝐷

𝑖=1

) + 20 + е𝑥𝑝(1),

z = (x − o) × M − 32 ≤ 𝑥𝑖 ≤ 32

𝑥 = [𝑥1, 𝑥2, … , 𝑥𝐷], 𝑜 = [𝑜1, 𝑜2, … , 𝑜𝐷]: is the shifted global optimum

𝑀 is a linear transformation matrix with condition number =1,

 global minimum (𝐹6) = 𝐹6(o,…, o)= 0

C. Shifted Rotated Griewank Function without bounds

𝐹8 =
1

4000
∑𝑧𝑖

2 −∏ 𝑐𝑜𝑠 (
𝑧𝑖

√𝑖
) + 1

𝐷

𝑖=1

𝐷

𝑖=1

, z = (x − o) × M

𝑥 = [𝑥1, 𝑥2, … , 𝑥𝐷] , 𝑜 = [𝑜1, 𝑜2, … , 𝑜𝐷]: is the shifted global optimum

𝑀 = �́�(1 + 0.3|𝑁(0,1)|) where �́� is a linear transformation matrix with condition

number =3

 global minimum (𝐹8) = 𝐹8(o, o,…, o)= 0

193

D. Shifted Rastrigin Function

𝐹9 = ∑[𝑧𝑖
2 − 10 𝑐𝑜𝑠(2𝜋𝑧𝑖) + 10]

𝐷

𝑖=1

, 𝑧 = 𝑥 − 𝑜 − 5 ≤ 𝑥𝑖 ≤ 5

𝑥 = [𝑥1, 𝑥2, … , 𝑥𝐷], 𝑜 = [𝑜1, 𝑜2, … , 𝑜𝐷]: is the shifted global optimum

 global minimum (𝐹9) = 𝐹9(o, o,…, o)= 0

E. Shifted Rotated Rastrigin Function

𝐹10 = ∑[𝑧𝑖
2 − 10 𝑐𝑜𝑠(2𝜋𝑧𝑖) + 10]

𝐷

𝑖=1

, 𝑧 = (𝑥 − 𝑜) ×𝑀 − 5 ≤ 𝑥𝑖 ≤ 5

𝑥 = [𝑥1, 𝑥2, … , 𝑥𝐷], 𝑜 = [𝑜1, 𝑜2, … , 𝑜𝐷]: is the shifted global optimum

𝑀 is a linear transformation matrix with condition number =2

 global minimum (𝐹10) = 𝐹10(o, o,…, o)= 0

194

APPENDIX C

STANDARD DE/RAND/1/BIN DELPHI 7 SOURCE CODE

unit Unit1;

interface

uses

 Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,

 Dialogs, Grids, StdCtrls, Buttons;

type

 TForm1 = class(TForm)

 procedure BitBtn1Click(Sender: TObject);

 procedure BitBtn2Click(Sender: TObject);

 private

 { Private declarations }

 public

 { Public declarations }

 end;

var

 Form1: TForm1;

implementation

{$R *.dfm}

procedure TForm1.BitBtn1Click(Sender: TObject);

const

 min=-100;

 max=100;

 f= 0.4;

 CR=0.9;

 P=50;

type

 rec=record

 vector:array[1..P] of Real;

 donor_vector: array[1..P] of real;

 trial_vector: array[1..P] of real;

 new_vector: array [1..P] of real;

 fitness: real;

 fitness1:real;

 end;

 population= array[1..500] of rec;

 var

 pop:population;

 tempvec:array[1..P] of real;

 i,j,Np,D,r1,r2,r3,k,Irand,t,generation,Gn,indx:Integer;

 r,minn:Real;

 ff:Textfile;

195

begin

 Randomize;

 AssignFile(ff,'Min.dat');

 Rewrite(ff);

{***************************** Algorithm’s Variables *************************}

 D:= StrToInt(Edit1.Text);

 Np:= StrToInt(Edit2.text);

 Gn:= StrToint (Edit3.Text);

{************* Step1: Initialization of Population with target vectors ************}

 for i:= 1 to Np do

 for j:= 1 to D do

 pop[i].vector[j]:= min+(max-min)*random;

{********* Evolution Steps (Mutation, Crossover, Evaluation and Selection)*********}

generation:=0;

 while (generation <= Gn) do

 begin

 {********* Step 2: Evaluation of Target Vectors using Sphere Function ************}

 for i:=1 to Np do

 begin

 pop[i].fitness:=0.0;

 for j:=1 to D do

 pop[i].fitness:= Sqr(pop[i].vector[j])+pop[i].fitness;

 end;

 {******************** Print the Minimum Fitness to a file ***********************}

 minn:= Pop[1].fitness;

 for i:=2 to Np do

 if(pop[i].fitness < minn) then minn:= Pop[i].fitness;

 Edit4.text:= FloatToStr(minn);

 writeln(ff);

 writeln(ff,'generation'+ INTTOSTR(GENERATION));

 writeln(ff);

 for t:=1 to Np do

 begin

 for j:=1 to D do

 write(ff,pop[t].vector[j],' ');

 Writeln(ff,' ',pop[t].fitness);

 end;

 {*********************** Step 3: Mutation Operation (DE/rand/1) *****************}

 i:=1;

 while (i<= Np) do

 begin

 repeat

 r1:= Random(Np)+1;

 until (r1 <> i);

196

 repeat

 r2:= Random(Np)+1;

 until (r2 <> i)and(r2 <> r1);

 repeat

 r3:= Random(Np)+1;

 until (r3 <> i)and (r3 <> r1)and (r3 <> r2);

 for k:=1 to D do

 pop[i].donor_vector[k]:=pop[r1].vector[k]+f*(pop[r2].vector[k]-

 pop[r3].vector[k]);

 i:=i+1;

 end;

{*********************** Step 4: Boundary Constraints ****************************}

 for i:=1 to Np do

 for j:=1 to D do

 if(pop[i].donor_vector[j]< min)or(pop[i].donor_vector[j]> max) then

 pop[i].donor_vector[j]:= min+(max-min)*random;

{********************** Step 5: Crossover Operation (bin) ************************}

 for i:=1 to Np do

 begin

 Irand:= Random(D)+1;

 for j:=1 to D do

 begin

 r:=Random;

 if ((r <= CR)or(j=Irand))then pop[i].trial_vector[j]:= Pop[i].donor_vector[j]

 else pop[i].trial_vector[j]:= Pop[i].vector[j];

 end;

 end;

 {*********** Step 6: Evaluation of Trial Vectors using Sphere Function ***********}

 for i:=1 to Np do

 begin

 pop[i].fitness1:=0.0;

 for j:=1 to D do

 pop[i].fitness1:= Sqr(pop[i].trial_vector[j])+pop[i].fitness1;

 end;

 {*************************Step 7: Selection Operation **************************}

 for i:=1 to Np do

 if (pop[i].fitness1 <= pop[i].fitness) then

 for j:=1 to D do

 begin

 pop[i].new_vector[j]:=pop[i].trial_vector[j];

 end

 else

 for j:=1 to D do

 begin

 pop[i].new_vector[j]:=pop[i].vector[j];

 end;

197

{************ Step 8: Exchange the old Target Vectors with New Target Vectors******}

 for i:= 1 to Np do

 for j:=1 to D do

 pop[i].vector[j]:= Pop[i].new_vector[j];

 generation := generation +1;

 end;

 Closefile(ff);

end;

198

LIST OF PUBLICATIONS

ACADEMIC JOURNALS

1. Rawaa Dawoud Al-Dabbagh, Azeddien Kinsheel, Mohd Sapiyan Baba and

Saad Mekhilef. A combined compact genetic algorithm and local search method

for optimizing the ARMA(1,1) model of a likelihood estimator. ScienceAsia.

40S(1). February 2014. Pages 78-86. (ISI-Published)

2. Rawaa Dawoud Al-Dabbagh, Azeddien Kinsheel, Saad Mekhilef, Mohd

Sapiyan Baba and Shahab Shamshirband. System Identification and Control of

Robot Manipulator based on Fuzzy Adaptive Differential Evolution Algorithm.

Advances in Engineering Software. Volume 71. December 2014. Pages 60-66.

(ISI-Published)

3. Rawaa Dawoud Al-Dabbagh, Saad Mekhilef and Mohd Sapiyan Baba.

Parameters’ fine tuning of differential evolution algorithm. Computer Systems

Science and Engineering. Vol 30 No 2. March 2015. (ISI-Published)

4. Mohanad Dawood Al-Dabbagh, Rawaa Dawoud Al-Dabbagh, R. S. A. Raja

Abdullah, and F. Hashim A new modified differential evolution algorithm

scheme-based linear frequency modulation radar signal de-noising. Engineering

Optimization. 47(6). June 2015. Pages 771-787. (ISI-Published)

PROCEEDINGS

1. Rawaa Dawoud Al-Dabbagh, Mohd Sapiyan Baba, Saad Mekhilef and

Azeddien Kinsheel. The Compact Genetic Algorithm for Likelihood Estimator of

First Order Moving Average Model. 2012 2nd International Conference on

Digital Information and Communication Technology and its Applications,

DICTAP 2012. January 2012. Pages 474-481.

2. Rawaa Dawoud Al-Dabbagh, Azeddien Kinsheel, Mohd Sapiyan Baba and

Saad Mekhilef. An Integration of Compact Genetic Algorithm and Local Search

Method for Optimizing ARMA (1, 1) Model of Likelihood Estimator. 2nd

International Conference on Computer Science and Computational Mathematics

(ICCSCM 2013). February 2013. Pages 60-67.

3. Mohanad Dawood Al-Dabbagh, R. S. A. Raja Abdullah, Rawaa Dawoud Al-

Dabbagh and F. Hashim. Differential Evolution Algorithm for Linear

Frequency Modulation Radar Signal Denoising. IEEE RF and Microwave

Conference (RFM) 2013. December 2013. Pages 234-237.

199

4. Rawaa Dawoud Al-Dabbagh, János Botzheim and Mohanad Dawood Al-

Dabbagh. Comparative analysis of a modified differential evolution algorithm

based on bacterial mutation scheme. IEEE SSCI Symposium on DE (SDE)

2014. December 2014. Pages 1-8.

5. Rawaa Dawoud Al-Dabbagh. Differential Evolution with Adaptive Repository

of Strategies and Parameter Control Schemes. IEEE CEC 2015. May 2015.

https://www.researchgate.net/profile/Janos_Botzheim
https://www.researchgate.net/profile/Janos_Botzheim

