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ABSTRACT  

 

     Differential evolution (DE) is a simple yet powerful evolutionary algorithm (EA). It 

has demonstrated good convergence, and its principles are easy to understand. DE has 

effectively solved various global optimization problems, including benchmark 

functions. These problems have shown different challenging characteristics such as non-

convexity, non-linearity, and/or multi-modality which became difficult for traditional 

non-linear programming to deal with.  

      The performance of DE algorithm depends heavily on the selected mutation strategy 

and its associated control parameters. The sensitivity of the DE algorithm to its mutation 

strategy and to the corresponding control parameters can significantly deteriorate its 

performance if the strategy is improperly selected. Hence, the process of choosing a 

suitable DE strategy and setting its control parameters is difficult and requires much 

user experience. In this thesis, the fundamental contributions include the analysis, 

design, and evaluation of the adaptive DE algorithms.  

      Firstly, a comprehensive procedural analysis is conducted to investigate the various 

adaptive schemes that have been utilized to automatically control the DE parameters 

and/or its mutation strategies. In the same analysis, two taxonomies are proposed for the 

purpose. The first one is proposed to eliminate any ambiguity related to classify any 

adaptive EA. The new classification comprises three levels of categories instead of two 

regarding the parameter control type (deterministic, adaptive, self-adaptive) and the 

evidence (absolute, relative) used for determining the change of the parameter. The 

second taxonomy is a new taxonomy proposed to classify the adaptive DE algorithms in 

particular into two categories (DE with adaptive parameters and DE with adaptive 

parameters and strategies) considering the adaptive components used in this algorithm.    
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   Secondly, a new DE algorithm (ARDE-SPX) is introduced that automatically adapts a 

repository of DE strategies and parameters control schemes to avoid the problems of 

stagnation and make DE respond to a wide range of function characteristics at different 

stages of evolutionary search. ARDE algorithm makes use of JADE strategy and the 

MDE_pBX parameters adaptive schemes as frameworks. Then a new adaptive 

procedure called adaptive repository (𝐴𝑅) is developed to select the appropriate 

combinations of the JADE strategies and the parameter control schemes of the 

MDE_pBX to generate the next population based on their fitness values. The adaptive 

repository mechanism is a general scheme and can be embedded with high flexibility 

into any population-based evolutionary algorithm. Moreover, this work is extended to 

integrate the SPX crossover operator with the adaptive ARDE algorithm in a new way 

of implementation in order to make the adaptive ARDE algorithm satisfy both the 

global and local search requirements.  

     Thirdly, experimental results are presented to confirm the reliability of the proposed 

ARDE-SPX over several existing adaptive DE variants. These comparisons are 

conducted in terms of the solution precision, successful rate and robustness over thirty-

three standard and transformed benchmark functions. ARDE is also used to develop a 

new dynamic parameter identification framework to estimate the barycentric parameters 

of the CRS A456 robot manipulator. The simulation results show the effectiveness of 

the ARDE method over other conventional techniques, transcending the limits of the 

existing state-of-the-art algorithms in estimating the parameters of robot.  

 

 

 

 

 



v 

ABSTRAK  

 

   Evolusi Pengkamiran (DE) adalah satu algoritma evolusi (EA) mudah lagi berkuasa. 

Ia berkesan menghasilkan keputusan yang hebat dalam menyelesaikan pelbagai masalah 

pengoptimuman global dari pelbagai disiplin seperti kejuruteraan dan sains. Masalah-

masalah ini telah menunjukkan ciri-ciri cabaran yang berbeza seperti bukan 

kecembungan, bukan-kelinearan, dan / atau multi-modaliti yang menjadi sukar bagi 

pengaturcaraan tidak linear tradisional untuk ditangani. DE telah menunjukkan 

penumpuan yang baik, dan prinsipnya mudah difahami. Oleh itu, popularitinya telah 

beransur-ansur meningkat dan ia telah digunakan dalam banyak aplikasi dunia sebenar.    

   Walaubagaimanapun, prestasi algoritma DE adalah peka kepada jenis strategi yang 

dipilih dan kawalan parameter yang berkaitan kerana kelakuan yang berbeza bagi 

pelbagai masalah di pelbagai peringkat proses evolusi. Kepekaan algoritma DE terhadap 

strateginya dan kawalan parameter boleh membawa kepada kemerosotan prestasi yang 

ketara jika strategi tidak dipilih secara wajar. Oleh itu, proses pemilihan strategi DE 

yang sesuai dan menetapkan kawalan parameter adalah sukar dan memerlukan 

pengalaman pengguna yang lebih. Dalam tesis ini, sumbangan asas termasuk analisis, 

reka bentuk, dan penilaian penyesuaian DE algoritma seperti berikut,  

     Pertama, analisis prosedur yang menyeluruh telah dijalankan untuk menyiasat 

pelbagai skim yang sesuai yang telah digunakan untuk mengawal nilai parameter DE 

dan / atau strategi mutasinya secara automatik. Dalam analisis yang sama, dua 

taksonomi telah dicadangkan untuk tujuan itu. Yang pertama adalah taksonomi lanjutan 

kepada klasifikasi penetapan parameter EA yang umum. Adalah dicadangkan untuk 

menghapuskan apa-apa kekaburan berkaitan dengan mengkelaskan mana-mana EA 

penyesuaian. Dengan itu, klasifikasi baru adalah tiga tahap kategori dan bukannya dua 

dengan mengambilkira jenis kawalan parameter (berketentuan, penyesuaian, 
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penyesuaian diri) dan bukti (mutlak, relatif) yang digunakan untuk menentukan 

perubahan parameter. Taksonomi kedua adalah satu taksonomi baru yang dicadangkan 

untuk mengklasifikasikan algoritma DE penyesuaian khususnya kepada dua kategori 

(DE dengan parameter penyesuaian;  DE dengan parameter penyesuaian dan strategi) 

dengan mengambil kira komponen penyesuaian yang digunakan dalam algoritma ini. 

    Kedua, algoritma DE baru (ARDE-SPX) diperkenalkan yang menyesuaikan diri 

secara automatik repositori strategi DE dan skim kawalan parameter untuk mengelakkan 

masalah genangan dan membuat DE respons kepada pelbagai ciri-ciri fungsi di pelbagai 

peringkat carian evolusi. Algoritma ARDE menggunakan strategi JADE dan skim 

penyesuaian parameter MDE_pBX sebagai rangka kerja. Kemudian, prosedur 

penyesuaian baru yang dikenali sebagai repositori penyesuaian (AR) dibangunkan untuk 

memilih kombinasi yang sesuai bagi strategi JADE dan skim kawalan parameter 

MDE_pBX bagi menjana penduduk akan datang berdasarkan kepada nilai-nilai 

kecergasan mereka. Mekanisme repositori penyesuaian adalah skim umum dan boleh 

digunakan dengan fleksibiliti yang tinggi di dalam mana-mana algoritma evolusi 

berasaskan populasi. Selain itu, kerja ini telah dilanjutkan untuk mengintegrasikan 

pengendali crossover SPX dengan algoritma ARDE penyesuaian dengan cara 

pelaksanaan yang baru untuk membuat algoritma ARDE penyesuaian memuaskan 

kedua-dua keperluan carian global dan tempatan. 

    Ketiga, keputusan eksperimen dibentangkan untuk mengesahkan kebolehpercayaan 

ARDE-SPX yang dicadangkan terhadap beberapa varian DE penyesuaian yang sedia. 

Perbandingan ini dijalankan dari segi ketepatan penyelesaian, kadar kejayaan dan 

kemantapan terhadap lebih 33 piawaian dan fungsi penanda aras berubah. ARDE juga 

telah digunakan untuk membangunkan satu rangka kerja pengenalan parameter dinamik 

yang baru untuk menganggarkan parameter barycentric daripada pengoperasi robot CRS 

A456. Keputusan simulasi menunjukkan kaedah ARDE adalah lebih berkesan 
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bernbanding teknik konvensional yang lain, melampaui batas algoritma canggih sedia 

ada dalam menyelesaikan masalah robot. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Research Background  

      Many applications (or global optimization problems), including benchmark 

problems, have been proliferated in diverse disciplines, such as engineering, science, 

and medicine. The process of solving such problems has yielded new practical solvers, 

known as computational intelligence (CI), which are mainly inspired by biological 

processes such as artificial neural networks and evolutionary computations. These 

solvers determine the most suitable solution for a certain feasible region when they are 

applied to different problems. A prominent example of a CI method is the evolutionary 

algorithm (EA) (Bongard, 2009; Brownlee, 2011; Kephart, 2011), which is a 

population-based optimizer whose mechanisms are inspired by biological evolutionary 

processes such as mutation, crossover, and survival selection. EAs have many dialects, 

including genetic algorithm (GA) (Holland, 1992) , particle swarm optimization (PSO) 

(Kennedy & Eberhart, 1995), and differential evolution (DE) (Storn & Price, 1997). 

They are all derivate-free methods and require only information regarding the objective 

function itself, without auxiliary properties (Eiben & Smith, 2003). EAs have 

successfully solved many numerical and combinatorial optimization problems (Blum & 

Roli, 2003; Niu & Xu, 2014).  

    DE is a simple yet powerful evolutionary algorithm (Storn & Price, 1997). It has 

effectively solved various global optimization problems, including benchmark 

functions. Moreover, DE has demonstrated good convergence, and its principles are 

easy to understand. Hence, its popularity has gradually increased and it has been used in 

many real-world applications (Chakraborty, Abbott, & Das, 2012; Dragoi, Curteanu, 

Galaction, & Cascaval, 2013).   
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Current studies on EA and its dialects mainly concentrates on three aspects (Wang, 

2011):  

 EAs design: it refers to the process of balancing the exploration and exploitation 

capabilities of the algorithm. This process is deemed to be a key factor to the 

performance of the algorithm. Exploration indicates that an algorithm should be 

capable of probing extensively into search regions. This capability is closely 

related to the robustness of the algorithm. By contrast, exploitation focuses the 

search on the neighborhoods of the current solutions. It directly affects the 

convergence speed.  

 EAs analysis: The global convergence properties and the time complexity of 

EAs have been actively researched through theoretical analysis (He & Yao, 

2002). 

 EAs application: EAs have been widely applied to various fields, such as project 

scheduling, control system design, task assignment, antenna array optimization, 

and power system optimization. 

   The current study considers EAs design. In particular, it examines the implementation 

of adaptive EAs. This type of EAs, if well designed, can enhance the robustness and 

convergence performance of the algorithm by dynamically updating the EA parameters 

for different objective function landscapes during evolution. DE is a representative EA 

and is very sensitive to its parameter settings; thus, this study aims to investigate these 

settings with the diverse versions of adaptive DE algorithms. Then, a new adaptive DE 

algorithm will be designed. EAs application is also considered. Specifically, the new 

adaptive DE is applied to estimate the parameters of a robot manipulator.   
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1.2 Research Motivation  

     The use of hand-tuning is more difficult than expected, as is the preliminary testing 

of the parameters of any EA, including DE. Given a specific task, one may have to 

spend much time attempting to fine-tune corresponding parameters. In addition, some 

objective functions are highly sensitive to the settings algorithmic parameters. This 

dilemma motivates many researchers to either limit these parameters or to develop a 

new algorithm.  In the new algorithm, control parameters are adapted by employing an 

adaptive/self-adaptive procedure. These automatic and dynamic adaptive mechanisms 

address the problems stemming from inappropriate parameter setting and may facilitate 

the desired increase in convergence rate.   

   Efficient recently developed adaptive DE algorithms have efficiently addressed 

various benchmark problems with different characteristics and real-world applications. 

However, other major issues in adaptive DE must be addressed to test the algorithm 

comprehensively for users in view of future problem optimization. One of these issues 

involves the adaptation of various DE mutation strategies through evolution in addition 

to its control parameters. This trend in the theoretical insight into adaptive DE is highly 

favorable and remains a progressive research area, thus motivating us to contribute a 

new adaptive DE algorithm whose performance is competitive with that of other state-

of-the-art adaptive DE algorithms, as discussed in Chapter 4.  

    Moreover, few review studies have captured the overall performance of adaptive DE 

thus far. Das and Suganthan (2011) conducted a comprehensive survey that addresses 

almost all of the issues in current research on DE. However, DE parameters control is 

highlighted only in a short section. This research follows the review conducted by Neri 

and Tirronen (2010) which presents DE and its most recent advances in a classification 

format. Detailed experiments have been conducted according to a large set of various 

benchmark problems to test the overall performance of these algorithmic classes. 
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Selected adaptive DE variants were included and then discussed under this 

classification. Recently, Chiang, Chen, and Lin (2013) published a new taxonomy on 

DE parameters control mechanisms based on the type of parameter values, the number 

of parameter values, and the information used to adjust the parameter values. However, 

the review articles that address DE parameters control are rare and out-of-date. This 

drawback has motivated us to contribute the comprehensive review presented in 

Chapter 3 to examine some of the major aspects related to DE parameter setting.  

 

1.3 Problem Statement  

     Unlike other EA dialects, the DE algorithm tends to suffer from stagnation rather 

than premature convergence (Lampinen & Zelinka, 2000). In DE stagnation, the 

algorithm may occasionally stop approaching the global minimum even if the 

population has not converged to local minimum or any other point. The population 

remains diverse, and new individuals may still enter the population. Nonetheless, the 

algorithm does not search for better solutions. It may converge but it is unlikely to do 

so.         

   Recent studies such as (Mallipeddi, Suganthan, Pan, & Tasgetiren, 2011; Qin, Huang, 

& Suganthan, 2009) have shown that the effectiveness, efficiency, and robustness of the 

DE algorithm depends heavily on the selected mutation strategy and its associated 

control parameters. The sensitivity of the DE algorithm to its mutation strategy and to 

the corresponding control parameters can significantly deteriorate its performance if the 

strategy is improperly selected. Hence, the process of choosing a suitable DE strategy 

and setting its control parameters is difficult and requires much user experience. These 

studies have also indicated that the use of different DE mutation strategies with various 

control parameter settings can be appropriate during the evolution and can alleviate the 

decline in DE performance. However, these adaptive DE algorithms often lose their 
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efficiency when they are applied to solve complex problems with high dimensions given 

the distinct characteristics of such algorithms.  

    Additionally, some problems require different parameter settings at different stages of 

the evolution. These optimization problems vary in terms of complexity, as follows: 

 Some problems require an algorithm with high exploration capability when the 

solution space increases exponentially with the problem dimension. 

 Problem characteristics may change with the increase in the problem dimension; 

for instance, unimodal problems may become multimodal ones with high 

dimension.  

   Therefore, in order to address the aforementioned complex problem instances, in this 

study an improved DE algorithm that attempts to adaptively choose the suitable DE 

strategies and parameter control schemes during the different evolution stages is 

investigated. Moreover, this algorithm has been integrated with a local search method to 

further improve its performance.  

 

1.4 Research Objectives  

      The primary objective of this study is to generate an overview of EAs parameter 

settings. Hence, it has been designed from the ground up to support the control of the 

various parameters of the EAs in general and of the DE algorithm in particular. The 

present study has three major objectives:  

1. To investigate the adaptation properties of different adaptive DE variants by 

conducting a structural analysis of each variant. To achieve this objective, the 

following two sub-objectives are to be accomplished: 

 To present the rudiments of EAs parameter control settings using an 

extended taxonomy of different approaches used to set these parameters on-

the-fly while solving the problem.   
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 To analyze and describe in depth the working principles, structural 

modifications, and similarities and differences of certain selected state-of-

the-art adaptive DE variants based on the extended taxonomy.  

2. To develop an improved DE algorithm (ARDE-SPX) that automatically adapt a 

repository of advanced DE strategies and parameters control schemes to avoid the 

problem of stagnation and make DE respond to a wide range of function 

characteristics at different stages of  evolutionary search. Then, to integrate the new 

algorithm with a local search (LS) method to further improve its performance. 

3. To compare the performance of the proposed ARDE-SPX algorithm with the 

standard DE and several state-of the-art adaptive DE versions as follows,  

 To implement the ARDE-SPX on a set of benchmark functions of different 

characteristics such as, convexity, non-convexity, multimodality, and non-

linearity.  

 To develop a new dynamic parameter identification framework to estimate 

the barycentric parameters of the CRS A456 robot manipulator based on the 

new ARDE algorithm.    

 

1.5 Research Questions 

   In this study, the main question is:  

 Can the DE algorithm be implemented such that it adapts the mutation 

strategies and their associated parameter control schemes without explicit 

tuning? 

  Four additional questions that can be derived from the main one: 

Question 1) How are changes made to the EAs such that they can be considered 

as self-adapted algorithms? 
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Question 2) What is the evidence of the change in self-adapted EAs? 

Question 3) What main components of the DE algorithm affect its overall 

performance? 

Question 4) Can the integration of an EA with a heuristic method perform better 

than either of its parent algorithms?  

Therefore, our hypothesis is that a DE algorithm with adaptive mutation strategies and 

parameter control schemes can be designed and implemented for efficient and effective 

function optimizations.  

 

1.6 Scope of Research     

     In consideration of the strong and multifaceted contribution trends of the DE 

algorithm and our tendency toward simplicity, we design a state-of-the-art schematic 

flow diagram of DE by customizing a distinct alphabetic index for each contribution 

aspect, as depicted in Figure 1.1. As the figure shows, some or even all areas of DE 

algorithm can overlap in a common work. The scope of this research has been 

highlighted in “pink”, and the alphabetic index is labeled as (a.1), (b.2), and (b.3).  

     This study emphasizes DE parameter settings and how the algorithm performance 

can be significantly improved by integrating parameter-setting schemes during 

evolution. This process relieves users of the task of performing difficult and time-

consuming manual settings. This area of research related to adaptive DE has been 

extended further to adapt different DE mutation strategies and to control their 

parameters. This adaptive DE trend has generated promising solutions given that some 

DE strategies may effectively solve certain problems but are ineffective with other 

problems. The scope of this study also covers the integration of the new adaptive DE 

with a local search (LS) technique. This integration always outperforms its predecessors 

in benchmark problems or specific applications.   
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     This research also applies the adaptive DE to real-world problems by estimating the 

parameters of a robot manipulator system.  

 

(S) Differential Evolution Algorithm

(b) DE Structural Development

(b.1) Investigation on

Standard and/or Modified

DE strategies (b.2) Parameter Settings

(b.2.1)

Parameter

Tuning

(b.2.2)

Parameter

Control

(b.3) Integration of

DE with other

systems

(b.4) Mixed Variables

(b.4.1)

Continues

(b.4.2)

Integer

(b.4.3)

Discrete

(a) DE as a Problem Solver

(a.1) DE in wide range of real

world applications

(a.2) Multi-Modal and

Multi-Objective problems

(a.3) Nonlinear functions and constraints

handling

 

Figure 1.1: Combination of Differential Evolution state-of-the-art work  

 

 

1.7 Research Significance  

      DE and its numerous variants have developed rapidly as simple and robust 

algorithms. Practitioners from different disciplines of science and engineering have 

applied DE algorithms to address various optimization problems in their own fields. 

Thus, it can be applied to almost any optimization problem, regardless of whether it is 

continuous, combinatorial, or mixed-variable. Claims and counterclaims have recently 

been proposed, especially by engineers, regarding the rules to be followed in choosing 

the appropriate control values of standard DE parameters with which to solve practical 

problems. Adaptive DE variants can automatically determine suitable parameter 

settings; thus, the use of an adaptive DE variant in the present study can significantly 

benefit many applications. To highlight the significance of the DE method and its 

variants, Figure 1.2 outlines the applications in which the DE algorithm can be 
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successfully implemented.  

 

Figure 1.2: The most significant applications of Differential Evolution algorithm (Das 

& Suganthan, 2011)  

 

1.8 Research Processes 

    The research process in this study is consists of certain phases and steps, as 

summarized in Figure 1.3. The main steps to completing the research are outlined in an 

ordered format. This order emphasizes the importance of achieving one step before 

transitioning to the next. The steps that detail the contributions of this study are also 

highlighted in the figure. The processes are briefly described as follows:  

Process 1 (EA Definition and Parameters Setting): The general structure, steps and 

standard classification of the parameter settings of the EAs are investigated.  

Process 2 (DE Standard Structure and Variants): The DE algorithm is examined as a 

prominent example of EA. The process analyzes the overall structure, mechanism, and 

variants of the DE algorithm. 
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Process 3 (DE Parameter Setting): The study of the parameter settings of the DE 

algorithm is divided into two processes: 

 Process 3.1 (DE Parameter Tuning): The theory regarding the                                        

manual tuning of DE parameters control is reviewed. Then setting values for the 

parameter control of DE are suggested for rapid and good perfomance.  

 Process  3.2 (Adaptive DE algorithms): The DE algorithms with adaptive 

parameters and/or mutation strategies are investigated.  

 Process 3.2.1 (Analysis of Adaptive DE Algorithms): Different adaptive DE 

variants are subject to a comprehensive procedural analysis and classified. 

 Process 3.2.2 (Development of a New Adaptive DE algorithm): The standard 

DE algorithm is improved by adding an adaptive strategy. 

 Process  3.2.3 (DE and LS Method): The new adaptive DE algorithm is 

integrated with a LS technique, and its perfomance is investigated.    

 Process 3.2.4 (Evaluation): The developed DE algorithm is evaluated 

according to a set of benchmark functions with different characteristics. The 

results of the evaluation are then validated.   

 Process 3.2.5 (Real-World Application): The new adaptive DE algorithm is 

applied to a real-world problem by estimating the parametrs of a robot 

manipulator system.  
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Process 1:
Evolutionary Algorithms: Definition

and New Parameter settings
classification

Process 2:
Differential Evolution: standard
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Process 3:
Differential Evolution: Parameter
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Parameter Tuning of Differential
Evolution: Review and Suggested
Settings for Parameters Control

Process 3.2:
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Process 3.2.2 and Process 3.2.3 :
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and real-world application
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versions Algorithm

Development

Start

End

 

 

Figure 1.3: Research processes of developing and evaluating a new adaptive DE 

algorithm. The parts of contributions have been highlighted 
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1.9 Outline of the Thesis 

      The remainder of this thesis is organized as follows:  

CHAPTER 2 discusses various topics to provide sufficient background on diverse issues 

that concern the general definition of EAs and their importance as a problem solver in 

continuous and non-continuous optimization problems, the classical DE algorithm, DE 

literature, and DE control parameters. This chapter also describes the single-objective 

optimization function and its associated terminologies, and the general concept of the 

No-Free-Lunch Theorem.  

CHAPTER 3 presents a comprehensive description of EAs parameter settings then 

provides an extended EA parameter settings’ taxonomy.  The new extended EA 

parameter setting taxonomy is applied to multiple adaptive DE algorithms in specific, as 

an example to convey the main purpose of this taxonomy. Then, a procedural analysis 

study is established on these algorithms to elucidate the conceptual similarities and 

differences among them, the pros and cons of the adaptive schemes. 

CHAPTER 4 presents the general steps that should be considered to create an EA with 

parameter control. Then the mechanism of the developed adaptive DE algorithm 

(ARDE-SPX) is described in details. The description encompasses the mechanism 

adopted to create the repository of the DE strategies and the parameters control 

schemes. The description also includes the local search method (SPX) that has been 

used to improve the performance of the adaptive ARDE algorithm.  

CHAPTER 5 provides an experimental study to identify the competitive nature of six 

DE variants in solving different optimization problems and compare their results. In 

addition, this chapter presents the results of evaluating the developed adaptive DE 

algorithm (ARDE-SPX) on a set of benchmark functions with different characteristics in 

terms of the solution accuracy, convergence speed, and robustness. ARDE-SPX are also 

compared with several state-of-the-art adaptive DE variants.  
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CHAPTER 6 presents the application of the new adaptive DE algorithm on the 

parameter estimation of the CRS A456 robot manipulator system. Simulation results are 

presented to show the effectiveness of the ARDE method over other conventional 

techniques in solving the problem of the robot.   

CHAPTER 7 concludes the thesis and summarizes the objectives addressed in it. 

Suggestions and future work development are also offered in this final chapter.   
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CHAPTER 2 

       DIFFERENTIAL EVOLUTION: A REVIEW 

 

2.1 Introduction  

       Real-world optimization problems are encountered in various important 

applications such as machine learning and system design, and in science and 

engineering disciplines. Continuous and extensive research efforts have been made to 

find the best solutions for these problems. The main challenge in finding such solutions 

is that they often involve uncertainties and/or noise that lead to theoretical optima that 

are not optimal or practical in real life. Optimization algorithms have been widely 

employed to address these challenges, and they are used to find parameters (or 

structures) that maximize or minimize user-defined objective functions. For some 

typical optimization problems, efficient algorithms are used, whereas for many 

continuous or non-linear problems heuristics are used to solve them. Moreover, as 

problem complexity increases in conjunction with the need to reduce the time available 

for thorough problem analysis and tailored algorithm design, robust algorithms with 

satisfactory performance become urgently needed. These algorithms should not only be 

applicable to specific problem, but should also be  applicable to a wide range of 

problems, and yield good (not necessarily optimal) solutions within an acceptable time 

(Eiben & Smith, 2003). Robust optimization aims to find solutions that not only 

perform optimally in the theoretical optimization model, but also remain stable despite 

variations caused by uncertainties and/or noise. Developing such heuristics remains a 

hot research topic (Weise, 2009).  

     Natural computation is an emerging interdisciplinary field of computational systems. 

It utilizes concepts and ideas, and gains insights from natural systems, including 

ecological, biological, and physical, in which a range of methodologies and approaches 
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Generation 

are studied to address large, complex, and dynamic problems. Evolutionary algorithms 

(EAs) are population-based stochastic search methods that include genetic algorithms 

(GA), evolution strategy (ES), evolutionary programming (EP) and differential 

evolution (DE). These algorithms form a rich class of meta-heuristic algorithms and 

computational intelligence techniques that derive from biological notions such as 

variation operations (crossover, mutation) and survival of the fittest (selection), for 

incrementally directing the search course (population) toward a prospective set of better 

candidate solutions (individuals or chromosomes) (see Figure 2.1). The cost function 

(evaluation) determines which of the solution “lives” with or without considering the 

level of constraint handling. These operations compose a loop (generation), and EAs 

usually execute a number of generations until the obtained best-so-far solution is 

satisfactory or other termination criterion is fulfilled.    

 

Figure 2.1: The typical EA cycle (Eiben & Smith, 2003) 

 

     Although all EAs rely on the same concept of this basic procedure and its 

probabilistic operators, differences still exist among these algorithms. For example, GA 

strongly stresses on crossover operator as the main operator to create variations, and 

decision variables are originally encoded as a bit-string and are manipulated by logical 

operators, thereby making GA suitable for discrete optimization. As opposed to GA, ES 

Recombination 

Mutation  Evaluation  

Selection 

Chromosomes 

 Population 
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is continuous optimizer because it encodes variables as floating-point numbers and 

modifies them by using arithmetic operators, which makes it suitable for continuous 

optimization. For the main variation operator, ES concentrates more on the mutation 

operation, although it may also integrate the crossover as an additional operator 

(Brownlee, 2011; Eiben & Smith, 2003; Goldberg, 1989; Mitchell, 1998).   

    Globally, EAs provide effective and reliable answers to the challenges of deploying 

automated solution methods for solving various optimization problems within a minimal 

amount of time. EAs’ features, such as population of solution and variation operators, 

provide the ability to create a proper balance between exploitation and exploration of 

the search process when solving problems with complex characteristics (noise, chaos, 

discontinuous and nonlinearity); by providing a means of escaping from local optima 

and maintaining solutions diversity. These features distinguish EAs from other 

traditional optimization methods, such as local search algorithms, and other stochastic 

algorithms, such as simulated annealing (SA) and various hill-climbing algorithms (HC) 

(Eiben & Smith, 2003; Fogel, 1994). The general pseudo-code fashion of EAs is 

illustrated in Algorithm 2.1, which shows the usual approach that reflects the evolution 

from biology to computer science. 

 

2.1.1 Differential Evolution: Definition   

         More than a decade ago, DE emerged as a very competitive form of EAs. DE is a 

population-based optimizer that is effective on a large range of classical optimization 

problems, primarily to continuous search spaces (Ahandani, Shirjoposh, & Banimahd, 

2011; Feoktistov, 2006; Price, Storn, & Lampinen, 2005; Storn & Price, 1997; Storn & 

Price, 1995; Zou, Liu, Gao, & Li, 2011) like ES. Its effectiveness is due to its properties, 

such as simplicity, efficiency, and ease of implementation/coding with very few control 

parameters. Recent studies found that DE produces outstanding results in widely used 
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benchmark functions (Ahandani, Shirjoposh, & Banimahd, 2011; Piotrowski, 

Napiorkowski, & Kiczko, 2012; Spadoni & Stefanini, 2012; Storn & Price, 1996; Wang, 

Cai, & Zhang, 2012) and real-world applications (Goudos, Siakavara, Samaras, 

Vafiadis, & Sahalos, 2011; Peng, Dai, Wang, Hu, Chang, & Chen, 2011; Zhang, Chen, 

Dai, & Cai, 2010).  

Algorithm 2.1: General scheme of an Evolutionary Algorithm pseudo-code                                                       

01: BEGIN 

0:2 Step 1 (INITIALIZATION) generate an initial population 𝑃(𝑡 = 0) with random candidate solutions,   

                 〈𝑥1
𝑡 , 𝑥2

𝑡 , … , 𝑥𝑁𝑝
𝑡 〉 ∈ [𝑋𝑚𝑖𝑛, 𝑋𝑚𝑎𝑥] ; 

03: Step 2 (EVALUATION) evaluate each candidate solution 𝑃(𝑡 = 0) = {𝑓(𝑥1
𝑡), 𝑓(𝑥2

𝑡), … , 𝑓(𝑥𝑁𝑝
𝑡 )}; 

04: Step 3 (WHILE STOPING CRETERION(S) IS NOT FULFILLED) 𝜏(𝑃(𝑡)) ≠ 𝑡𝑟𝑢𝑒  

05:    DO 

06:      Step 3.1 (SELECTION) select the best parents by generating an intermediate population 𝑃(𝑡)́  

from the current population 𝑃(𝑡); 

07:      Step 3.2 (RECOMBINATION) set the parents’ pool 𝑆𝑃(𝑡)́  from interchanging information and 

genes among two or more parents, randomly and repeatedly, selected from 𝑃(𝑡)́  as follows,  

            𝑆𝑃(𝑡)́ = 𝑟{𝑝𝑐} (�́�(𝑡)) ; 

08:      Step 3.3 (MUTATION) set the mutated pool 𝐶�́�(𝑡) by applying a stochastic variability on 𝑆𝑃(𝑡)́  

as follows,   𝐶�́�(𝑡) = 𝑚{𝑝𝑚}(𝑆�́�(𝑡)) ; 

09:      Step 3.4 (EVALUATION) evaluate the fitness function for each chromosome �́́�(𝑡) = 𝑓(𝐶�́�(𝑡)) ; 

10:      Step 3.5 (SELECTION) select the individuals for the next generation 𝑃(𝑡 + 1) = 𝑆(�́́�(𝑡)) ; 

11:      𝑡 = 𝑡 + 1; 

12:    OD 

13: END 

      The first published article on DE is a technical report entitled “Differential 

evolution- A simple and efficient adaptive scheme for global optimization over 

continuous spaces” (Storn & Price, 1995) of the ICSI. Originally, the concept was based 

on the population-based genetic annealing algorithm that was developed by Price in 

1994. After its development, Price modified the annealing algorithm to use arithmetic 

floating-point vector operations instead of logical ones. Therefore, the annealing 

mechanism was removed and replaced with differential mutation combined with 

discrete recombination and pair-wise selection. The recasts changed genetic annealing 

from a bit-string into a continuous optimizer and thus, the obtained algorithm gave rise 

to DE. 
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A recent suggestion to create a website that provides useful information about DE was 

met with interest. Accordingly, the two forefathers of the field, Storn and Lampinen, 

published their own official bibliography Web sites that supplied all DE materials, such 

as source codes and some useful links dated from 1995 up to 2002. These sites can be 

accessed at http://www.icsi.berkeley.edu/~storn/code/  and 

http://www.lut.fi/~jlapine/debiblio.html. 

    

2.2 Why Differential Evolution? 

       DE was selected as a parent algorithm in this thesis because the literature indicates 

that DE is superior to its more traditional EAs cousins, such as GA and ES in 

fundamental and explicit ways (Das & Suganthan, 2011; Price, Storn, & Lampinen, 

2005) as follows:  

 Implementation/coding are easy, flexible, and straightforward. The main body of 

the algorithm may require only few lines to code in any programming language. In 

addition, many references (Feoktistov, 2006; Lin, Qing, & Feng, 2011; Price, Storn, 

& Lampinen, 2005; Storn & Price, 1997) and Web sites (Beuhren, 22 Sep 2011; 

Storn, 2000) provide DE open source code written in different programming 

languages, such as C, MATLAB, Fortran, and Java, which is particularly beneficial 

for those who unfamiliar with programming as well as practitioners from other 

fields. The simplicity of DE makes these codes easy to analyze and then 

modify/amend according to users domain-specific problems. Moreover, although 

particle swarm optimization (PSO) is also very simple to code, the performance of 

DE and its variants is largely better than the PSO variants over a wide variety of 

problems, as indicated by studies like (Das, Abraham, Chakraborty, & Konar, 2009; 

Rahnamayan, Tizhoosh, & Salama, 2008; Vesterstrom & Thomsen, 2004). 

http://www.icsi.berkeley.edu/~storn/code/
http://www.lut.fi/~jlapine/debiblio.html
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 Limited number of parameters to be adjusted (𝐹, 𝐶𝑅, and  𝑁𝑝 in classical DE). The 

effect of these parameters on the performance of DE and the different ways they 

have been tuned is discussed in a later chapter. 

 Low and efficient memory consumption compared with other well-known and 

competitive real/deterministic parameter optimizers, such as CMA-ES (Hansen & 

Ostermeier, 2001; Rahnamayan & Dieras, 2008). This advantage, in addition to 

lower computational complexity, increased the demand to utilize DE on a large scale 

and in expensive optimization problems that have dimensions that may exceed 100 

variables. Based on the distinctive characteristics of both algorithms, researchers 

have recently been encouraged to launch new forms of algorithms that combine DE 

and CMA-ES into one hybrid system and demonstrated their capability in a number 

of analytical and empirical studies (Ghosh, Das, Roy, Islam, & Suganthan, 2012; 

Kaempf & Robinson, 2009).  

 It is a significantly faster optimization algorithm with a high convergence rate in 

finding optimal solutions because of two main features. First, when working directly 

with continuous variables, the use of arithmetic operators instead of logical 

operators saves more time and removes inaccuracy more efficiently compared with 

traditional GA. Second, the faster performance of the algorithm is due to the 

dexterity of the different variants of DE mutation strategies and the greatest freedom 

in terms of constructing different variations in mutation distributions. Some of these 

strategies are already based on constructing candidate solutions from the current and 

superior solution, thereby accelerating the convergence rate (Jeyakumar & 

Shanmugavelayutham, 2009, 2011; Jeyakumar & Velayutham, 2010; Mezura-

Montes, Edith Miranda-Varela, & del Carmen Gomez-Ramon, 2010; Mezura-

Montes, Velazquez-Reyes, & Coello, 2006).  
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All aforementioned advantages may encourage any researcher or practitioner to use DE. 

DE is still in its infancy (approximately 14 years old) and is being improved gradually, 

but it has already been established as a universal optimization tool (Das & Suganthan, 

2011). An Internet search through Web of Science by using the keyword “Differential 

Evolution Algorithm” revealed about 6,217 relevant articles published between 1996 

and 2014. Several thousand application articles in diverse areas were found. The 

robustness and versatility of DE have encouraged researchers and practitioners from 

several domains of science and engineering to use DE in solving optimization problems 

that arise in their own fields. Figure 2.2 shows an abrupt growth in the number of 

publications and citations related to DE because of its growing popularity as a simple 

and robust optimizer.  

 

 

 

Figure 2.2: Differential Evolution research trend (based on information extracted from 

Web of Science database site) 
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The same figure indicates that research on DE from 2008 and 2012 increased and 

became multifaceted all around the globe within a short time.  

     Despite the popularity of DE, however, DE performed poorly in many cases. Over 

the past few years, many researchers have contributed to making DE a general and fast 

optimization method for any kind of optimization problem by adjusting various 

constitutes (aspects) of DE (e.g., initialization, mutation, diversity enhancement, and 

selection), and conducting multiple attempts to automatically adjust the algorithm’s 

parameters for single or multiple problems. Table 2.1 covers excerpts of some of the 

most prominent milestones and epochs in the DE full story since its discovery in 1996 

until current time.  

 

2.3 Differential Evolution: Basic Concept and Variants  

       Like nearly all EAs, DE is a group-based optimizer that tackles a starting point 

problem by sampling the objective function at multiple, randomly chosen initial points 

instead of conducting a point-to-point search. The group is called as population, and 

denoted by 𝑃(𝑡 = 0) = {𝑋1
𝑡, 𝑋2

𝑡 , ⋯ , 𝑋𝑁𝑝
𝑡 }.  

In its basic concept, DE searches for a global optimum point in a 𝐷-dimensional real 

parameter space ℝ𝐷. Before a population can be initialized, the upper 𝑋𝑚𝑎𝑥 =

{𝑥𝑚𝑎𝑥,1, 𝑥𝑚𝑎𝑥,2, … , 𝑥𝑚𝑎𝑥,𝐷}  and lower 𝑋𝑚𝑖𝑛 = {𝑥𝑚𝑖𝑛,1, 𝑥𝑚𝑖𝑛,2, … , 𝑥𝑚𝑖𝑛,𝐷} bounds of the 

preset parameters are specified to define the domain from which the values 𝑥𝑖,𝑗
𝑡 ;  𝑗 ∈

{1, … , 𝐷} of each 𝑁𝑝 real-valued parameter vectors in the initial population are chosen. 

Hence, the initial population is nourished by candidate solutions using the standard 

equation: 

𝑥𝑖,𝑗
𝑡=0 = 𝑋𝑚𝑖𝑛,𝑗 + 𝛼𝑖,𝑗 ∙ (𝑋𝑚𝑎𝑥,𝑗 − 𝑋𝑚𝑖𝑛,𝑗) (2.1) 
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Table 2.1: Historical elucidation of the Differential Evolution algorithm invention and development 

Details  Citation (papers) 

Juncture   

1
9

9
5
 

1
9

9
6
 

1
9

9
7
 

1
9

9
8
 

1
9

9
9
 

2
0

0
0
 

2
0

0
1
 

2
0

0
2
 

2
0

0
3
 

2
0

0
4
 

2
0

0
5
 

2
0

0
6
 

2
0

0
7
 

2
0

0
8
 

2
0

0
9
 

2
0

1
0
 

2
0

11
 

 

2
0

1
2

- 

The first technical report was written on DE. (Storn & Price, 1995)                   

The successful of DE was demonstrated at the 

First International Contest on Evolutionary 

Optimization (1
st
 ICEO). 

(Storn & Price, 1996) 

                 

 

Two journal articles published describing DE 

in details and its very good results  
(Price & Storn, 1997; Storn & Price, 1997) 

                 
 

DE was presented at the Second International 

Contest on Evolutionary Optimization (2
nd

 

ICEO)  

(Price, 1997) 

                                                          

 

A compendium on DE ‘New Ideas on 

Optimization’ has been summarized by Price. 
(Price, 1999) 

                                        
 

New mutation schemes were presented and 

some other developed strategies.  

(Fan & Lampinen, 2002; Fan & Lampinen, 2003; Feoktistov 

& Janaqi, 2004a, 2004b; Feoktistov & Janaqi, 2004d) 

                 
 

In 2007, two types of crossover operations 

were considered: binomial and exponential 

schemes. In 2011, two new crossover schemes 

were designed: consecutive binomial 

crossover and non-consecutive exponential 

crossover.  

(Lin, Qing, & Feng, 2011; Price, 1999; Zaharie, 2007) 

                 

 

The first modifications of DE selection rule 

for constraints handling, were presented. 

(Lampinen, 2001, 2002; Montes, Coello Coello, & Tun-

Morales, 2004) 

                 
 

Preliminary recommendations on how to 

choose appropriate parameter settings of DE 

(Lampinen & Zelinka, 2000; Price & Storn, 1997; Price, 

1997, 1999; Storn, 1996; Storn & Price, 1996; Storn & Price, 

1997; Storn & Price, 1995) 

                 

 

            Specified number of DE publications in general fields                          Unspecified number of DE publications in general fields    

    

                    Unspecified number of DE publications in the field of parameter settings 
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                                                                                Table 2.1- Continued  

Details  Citation (papers) 

Juncture   

1
9

9
5
 

1
9

9
6
 

1
9

9
7
 

1
9

9
8
 

1
9

9
9
 

2
0

0
0
 

2
0

0
1
 

2
0

0
2
 

2
0

0
3
 

2
0

0
4
 

2
0

0
5
 

2
0

0
6
 

2
0

0
7
 

2
0

0
8
 

2
0

0
9
 

2
0

1
0
 

2
0

11
 

 

2
0

1
2

-  

The era of developing adaptive DE parameter 

control methods started in 2002 and 

continues to be a very hectic trend until 

current time. 

(Abbass, 2002; Brest & Maucec, 2011; Das, Mandal, & 

Mukherjee, 2014; Liu & Lampinen, 2002a; Liu & Lampinen, 

2005; Teo, 2006; Tvrdik, 2009; Urfalioglu & Arikan, 2011; 

Wang, Rahnamayan, & Wu, 2013; Yin, Wang, & Hu, 2012; 

Zaharie, 2002b; Zhao, Wang, Chen, & Zhu, 2014; Zhu, Tang, 

Fang, & Zhang, 2013) 

                  

DE in a wide range of real-world applications 

with good results.  

(Chandra & Chattopadhyay, 2014; Develi & Yazlik, 2012; Liu, 

Ni, Liu, & Xu, 2012; Oh, Kim, & Pedrycz, 2012; Ponsich & 

Coello Coello, 2011; Storn, 1996; Subudhi & Jena, 2011; Titare, 

Singh, Arya, & Choube, 2014; Zhang, Chen, Dai, & Cai, 2010) 

                 

 

DE framework significant improvements 

have been presented in many aspects:  

- Structure based randomization of 

individuals: Compact DE.  

- Integration based randomization of 

individuals with explicit exploitative 

component: Memetic Differential Evolution 

and its variants. 

- Increase the search moves of DE with 

structured population: Parallel DE; 

Distributed DE; Micro-DE 

- Other hybridization and improvements in 

the overall structure of DE which is still an 

ongoing research field.  

(Caraffini, Neri, & Poikolainen, 2013; Feoktistov & Janaqi, 

2004c; Kukkonen & Lampinen, 2005; Mininno, Neri, Cupertino, 

& Naso, 2011; Neri & Mininno, 2010; Neri & Tirronen, 2008; 

Qasem & Shamsuddin, 2011; Sayah & Hamouda, 2013; Sindhya, 

Ruuska, Haanpaa, & Miettinen, 2011; Weber, Neri, & Tirronen, 

2011; Weber, Tirronen, & Neri, 2010; Zaharie, 2004) 

                 

 

                  Specified number of DE publications in general fields                          Unspecified number of DE publications in general fields    

                  

                      Unspecified number of DE publications in the field of parameter settings  



24 

where 𝛼𝑖,𝑗 is a random number generator that returns a uniformly distributed random 

number within the range [0,1), that is, 0 ≤ 𝛼𝑖,𝑗 < 1, and is instantiated independently 

for each component of the 𝑖𝑡ℎ vector. The classical DE pseudo-code is depicted in 

Algorithm 2.2. The algorithm scheme shows that after the initialization step (lines 1-

10), DE circulates in a loop of evolutionary operations, that is, mutation (lines 12-17), 

crossover (lines 24-28), and evaluation and selection (lines 29-32). selectfloat denotes 

that the user chooses a floating-point number within a specified range, whereas 

selectnum denotes that the user chooses an integer number within a specified range. For 

clarification, Figure 2.3 shows a flowchart of the steps of DE.   

 

2.3.1 Mutation Operator  

        Almost all EAs methods subscribe to an important scheme that is responsible for 

producing the noisy vectors, preventing the risk of stagnation, responsible for the 

convergence rate of the algorithm, and diversity of population, throughout the evolution 

process; this strategy is referred to as mutation operation. Specifically, in DE algorithm 

mutation operation is considered as the main operation, it plays a key role in the 

performance of the algorithm. Moreover, the name of DE algorithm is itself drawn from 

the mechanism of this operation since the mutation amount which is called mutant 

vector 𝑉𝑖(𝑡) = {𝑣𝑖,1
𝑡 , 𝑣𝑖,2

𝑡 , … , 𝑣𝑖,𝐷
𝑡 } is derived from differentiate multiple randomly 

selected members, 𝑟1 and 𝑟2 ∈ {1,2, … , 𝑁𝑝}, of the current population to produce the 

mutant vector. These indices should be mutually different and also different from the 

current index 𝑖. In DE literature, these parent vectors are called target vectors 𝑋𝑖
𝑡. A 

parameter called scaling factor, 𝐹𝑦 ∈ [0,2], is then multiplied by the 𝑦𝑡ℎ difference value 

(𝑥𝑟1𝑦
𝑡 − 𝑥𝑟2𝑦

𝑡 ) to control the amplification of the differential variation. In many recent 

DE algorithms, each pair of difference vectors might be associated with its own 𝐹𝑦, this 
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has been introduced to alleviate the greediness tendency of the previous schemes by 

providing an appropriate means when incorporating the best individual value, 𝑋𝑏𝑒𝑠𝑡  , 

from the current population in the difference scheme. According to DE logic, a 

provisional (interim) offspring so-called donor vector 𝑉𝑖(𝑡) is then generated using the 

standard mutation equation,  

 

𝑣𝑖
𝑡 = 𝑏𝑖

𝑡 +∑𝐹𝑦(𝑥𝑟1𝑦
𝑡 − 𝑥𝑟2𝑦

𝑡 ),    1 ≤ 𝑖 ≠ 𝑟1𝑦 ≠

𝑦≥1

𝑟2𝑦 ≤ 𝑁𝑝 (2.2)  

 

In several well-known DE mutation strategies the base vector, 𝑏𝑖
𝑡, is the best member of 

the running population, for the intension that the information of the superior individual 

could be propagated among the population. Diverse mutation schemes have been 

extracted from the above equation and have been subsequently proposed in literature 

(Feoktistov, 2006; Liu & Lampinen, 2005; Price & Storn, 1997; Price, Storn, & 

Lampinen, 2005). Equations (2.3-2.10) list the eight most frequently used mutation 

strategies; they are as follows connected with the name of each corresponding strategy, 

 

𝐷𝐸/𝑟𝑎𝑛𝑑/1  𝑣𝑖,𝑗
𝑡 = 𝑥𝑟1,𝑗

𝑡 + 𝐹1. (𝑥𝑟2,𝑗
𝑡 − 𝑥𝑟3,𝑗

𝑡 ) (2.3) 

𝐷𝐸/𝑏𝑒𝑠𝑡/1  𝑣𝑖,𝑗
𝑡 = 𝑥𝑏𝑒𝑠𝑡,𝑗

𝑡 + 𝐹1. (𝑥𝑟1,𝑗
𝑡 − 𝑥𝑟2,𝑗

𝑡 ) (2.4) 

𝐷𝐸/𝑟𝑎𝑛𝑑/2  𝑣𝑖,𝑗
𝑡 = 𝑥𝑟1,𝑗

𝑡 + 𝐹1. (𝑥𝑟2,𝑗
𝑡 − 𝑥𝑟3,𝑗

𝑡 + 𝑥𝑟4,𝑗
𝑡

− 𝑥𝑟5,𝑗
𝑡 ) 

(2.5) 

𝐷𝐸/𝑏𝑒𝑠𝑡/2  𝑣𝑖,𝑗
𝑡 = 𝑥𝑏𝑒𝑠𝑡,𝑗

𝑡 + 𝐹1. (𝑥𝑟1,𝑗
𝑡 − 𝑥𝑟2,𝑗

𝑡 + 𝑥𝑟3,𝑗
𝑡

− 𝑥𝑟4,𝑗
𝑡 ) 

(2.6) 

𝐷𝐸/𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑡𝑜 − 𝑟𝑎𝑛𝑑/1  𝑣𝑖,𝑗
𝑡 = 𝑥𝑖,𝑗

𝑡 + 𝐹1. (𝑥𝑟3,𝑗
𝑡 − 𝑥𝑖,𝑗

𝑡 ) + 𝐹2. (𝑥𝑟1,𝑗
𝑡

− 𝑥𝑟2,𝑗
𝑡 ) 

(2.7) 
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𝐷𝐸/𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑡𝑜 − 𝑏𝑒𝑠𝑡/1  𝑣𝑖,𝑗
𝑡 = 𝑥𝑖,𝑗

𝑡 + 𝐹1. (𝑥𝑏𝑒𝑠𝑡,𝑗
𝑡 − 𝑥𝑖,𝑗

𝑡 ) + 𝐹2. (𝑥𝑟1,𝑗
𝑡

− 𝑥𝑟2,𝑗
𝑡 ) 

(2.8) 

𝐷𝐸/𝑟𝑎𝑛𝑑 − 𝑡𝑜 − 𝑏𝑒𝑠𝑡/1  𝑣𝑖,𝑗
𝑡 = 𝑥𝑟3,𝑗

𝑡 + 𝐹1. (𝑥𝑏𝑒𝑠𝑡,𝑗
𝑡 − 𝑥𝑟3,𝑗

𝑡 ) + 𝐹2. (𝑥𝑟1,𝑗
𝑡

− 𝑥𝑟2,𝑗
𝑡 ) 

(2.9) 

𝐷𝐸/𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑡𝑜 − 𝑟𝑎𝑛𝑑/2  𝑣𝑖,𝑗
𝑡 = 𝑥𝑖,𝑗

𝑡 + 𝐹1. (𝑥𝑟3,𝑗
𝑡 − 𝑥𝑖,𝑗

𝑡 ) + 𝐹2. (𝑥𝑟1,𝑗
𝑡

− 𝑥𝑟2,𝑗
𝑡 ) + 𝐹3. (𝑥𝑟4,𝑗

𝑡 − 𝑥𝑟5,𝑗
𝑡 ) 

(2.10) 

 

The eight above strategies can be simplified to the standard convention 𝐷𝐸/𝑥/𝑦/𝑧 

where 𝑥 is the manner in which the individual to be perturbed, 𝑦 is the number of 

difference vector pairs involved in the construction of the mutant vector, where a 

difference vectors means the difference between two randomly selected members from 

the current population excluding the current and the best vectors from them. More often, 

𝑦 is only associated with 1 or 2. 𝑧 is the type of crossover used [which we will be taking 

a closer look at in the next definition]. It is worth noting that some of these DE 

strategies have been misnamed in many publications, which has led to a misconception 

to the mechanism of some of the new proposed DE methods, as in (Qin & Suganthan, 

2005; Zhang & Sanderson, 2009a). Thus, in this study we preferred to recall all the 

well-known DE strategies with their corresponding names in order to eliminate any 

confusions related to them in the future.      

Recently, DE/current-to-rand/1 without crossover has been proposed in (Iorio & Li, 

2004) as a rotation-invariant mutation strategy and has proved to provide good results 

for multi-objective optimization problems and rotational problems. 

       It is also worth remembering that after applying mutation operation to the 

individual values, we may run the risk of exceeding the boundaries limitations of 

all/some of the donor vector values; therefore (Algorithm 2.2, lines 18-23) are used to 

tackle this problem and to guarantee that the vector components are always inside the 
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valid boundary values. In literature, there are some other proposed solutions (Price, 

1999; Price, Storn, & Lampinen, 2005; Rönkkönen, Kukkonen, & Price, 2005; Storn & 

Price, 1997; Storn & Price, 1995) for the ‘out of bounds’ problem, they are either to set 

the values on bound (reflected from the specified boundaries), or use them as they are 

(out of bound) and let the algorithm itself adjusts them automatically through the 

evolution process.    

 

2.3.2 Crossover Operator  

        After the mutation phase, another substantial perturbation operation called 

crossover or recombination process comes into play, which is subsequently applied to 

further raise the potential of population’s diversity. Two standard crossover 

interpretations are considered: binomial crossover (𝑏𝑖𝑛) and exponential 

crossover (𝑒𝑥𝑝), as illustrated in Equation 2.11 and 2.12 respectively, to deliver the so-

called trial vector 𝑈𝑖(𝑡) = {𝑢𝑖,1
𝑡 , 𝑢𝑖,2

𝑡 , … , 𝑢𝑖,𝐷
𝑡 }. For both interpretations a user-specified 

real parameter value called crossover probability or crossover rate, 𝐶𝑅 ∈ [0,1], is used 

to control the mixing process. Considering once again the aforementioned 

convention 𝐷𝐸/𝑥/𝑦/𝑧 , the letter 𝑧 is substituted to 𝑏𝑖𝑛 or 𝑒𝑥𝑝 regarding to which 

crossover strategy we are referring to. Accordingly, the eight DE variants are then 

extended to be a total of 8 × 2 = 16  variants after combining one type of mutation 

scheme with either “binomial” or “exponential” crossover scheme (Price, Storn, & 

Lampinen, 2005; Storn & Price, 1995).  

In binomial genewise crossover, a component of the donor vector 𝑣𝑖,𝑗 
𝑡  is inherited with 

probability 𝐶𝑅 for the offspring 𝑢𝑖,𝑗
𝑡 , and with probability 1 − 𝐶𝑅 from the target 

vector 𝑥𝑖,𝑗
𝑡 .  
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𝐷𝐸/𝑥/𝑦/𝑏𝑖𝑛  𝑢𝑖,𝑗
𝑡 = {

𝑣𝑖,𝑗     
𝑡      ( 𝛽𝑖,𝑗 ≤ 𝐶𝑅) 𝑜𝑟 (𝑗 = 𝑗𝑟𝑎𝑛𝑑)

𝑥𝑖,𝑗
𝑡                                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 (2.11) 

 

where 𝛽𝑖,𝑗 is a real number, uniformly generated in the range [0,1]. 𝑗𝑟𝑎𝑛𝑑 is a randomly 

generated integer in the range [1, 𝐷] to ensure that the trial vector 𝑈𝑖(𝑡) will differ from 

its corresponding target vector 𝑋𝑖(𝑡) by at least one component. This crossover 

convention is analogue with the so-called uniform crossover which is often used in EAs. 

On the other hand, in the case of exponential crossover a consecutive component(s) 

from the donor vector are truncated and then donated to the trial vector after the latter 

has already inherited all its parameters from the target vector. Initially, two cut points 

are randomly chosen and then applied to the donor vector; They are respectively: the 

first cut point, 𝑛 ∈ {1, … , 𝐷 − 1} and the second cut point, 𝐿 ∈ {1,… , 𝐷 − 1} with 

probability 𝑃𝑟𝑜𝑏(𝐿 = ℎ) = 𝐶𝑅ℎ; where ℎ is the number of the mutated components. 

The number of components between the points 𝑛 and 𝐿 are counted in a circular manner 

depending on either a series of Bernoulli experiments of probability 𝐶𝑅 or the crossover 

length has already achieved the 𝐷 − 1. New random decisions are made for both 𝑛 and 

𝐿 for each trial vector 𝑈𝑖(𝑡).  

 

𝐷𝐸/𝑥/𝑦/𝑒𝑥𝑝  𝑢𝑖,𝑗
𝑡 = {

 𝑣𝑖,𝑗
𝑡            𝑓𝑜𝑟 𝑗 = 〈𝑛〉𝐷 , 〈𝑛 + 1〉𝐷 , … , 〈𝑛 + 𝐿 − 1〉𝐷

𝑥𝑖,𝑗
𝑡                 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑗 ∈ [1, 𝐷]                        

 (2.12)  

 

where the acute brackets 〈 〉𝐷 denote a modulo function with modulus 𝐷. This type of 

crossover is similar to the so-called two-point crossover used in EAs. Finally, the 

pseudo-code of the bin crossover strategy is given in (Algorithm 2.2, line 24-28). In this 

strategy, 𝑖𝑟𝑎𝑛𝑑 is a function used to generate a random integer number within the 

interval {1, … , 𝐷}.  
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2.3.3 Selection Operator  

   Then one-to-one greedy selection operation rises to decide whether the trial vector 

𝑈𝑖
𝑡 would win the competition over its corresponding target vector 𝑋𝑖

𝑡 to be a member 

𝑋𝑖
𝑡+1 in the population of the next generation. This competition is normally based on the 

evaluation of both individuals’ fitness function, and since DE has a minimization 

propensity, the comparison will end up with the solution that has less or equal fitness 

value, as illustrated in Equation 2.13. This selection strategy has one advantage over 

many other selection strategies such as tournament selection, rank based selection, and 

fitness proportional selection, this is so because its unique merit of reserving the old (i.e. 

target vectors) and the new (i.e. trial vectors) candidate solutions, then to set off the 

comparison process on these individuals alike.    

 

𝑋𝑖
𝑡+1 = {

𝑈𝑖
𝑡           𝑖𝑓  𝑓(𝑈𝑖

𝑡)  ≤ 𝑓(𝑋𝑖
𝑡)

𝑋𝑖
𝑡              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒             

 
(2.13)  

 

Algorithm 2.2: General pseudo-code fashion of DE algorithm                                                     

0: BEGIN 

1:  Step1 (INITIALIZATION) Initialize the generation counter 𝑡 = 0. Set the mean value of 𝐶𝑅 and the 

value of 𝐹. Generates an initial population 𝑃(𝑡 = 0) with random candidate solutions target 

vectors; 〈𝑋1
𝑡 , 𝑋2

𝑡 , … , 𝑋𝑁𝑝
𝑡 〉 ∈ [𝑋𝑚𝑖𝑛 , 𝑋𝑚𝑎𝑥] 

2:  FOR 𝑖 = 1 to 𝑁𝑝 do 

3:    FOR 𝑗 = 1 to 𝐷 do 

4:       𝑥𝑖,𝑗
𝑡 = 𝑥𝑗,𝑚𝑖𝑛 + 𝛼𝑖,𝑗(𝑥𝑗,𝑚𝑎𝑥 − 𝑥𝑗,𝑚𝑖𝑛)  

5:    END FOR 

6:  END FOR 

7:  FOR 𝑖 = 1 to 𝑦 do 

8:    𝐹 = 𝑠𝑒𝑙𝑒𝑐𝑡𝑓𝑙𝑜𝑎𝑡[0, 2]; 

9:  ENDFOR 

10:   𝐶𝑅 = 𝑠𝑒𝑙𝑒𝑐𝑡𝑓𝑙𝑜𝑎𝑡[0, 1]; 

11: Step2 (EVOLUTION) DO WHILE budget condition 

12:   Step 2.2 (𝐷𝐸/𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑡𝑜 − 𝑟𝑎𝑛𝑑/1 MUTATION) is applied to obtain the donor vector 𝑉𝑖
𝑡. 

Generate three mutually different vectors 𝑟1, 𝑟2 and 𝑟3, and are different from 𝑖. 

13:    FOR 𝑖 = 1 to 𝑁𝑝 do 

14:      FOR 𝑗 = 1 to 𝐷 do 

15:         𝑣𝑖,𝑗
𝑡 = 𝑥𝑖,𝑗

𝑡 + 𝐹. (𝑥𝑟3,𝑗
𝑡 − 𝑥𝑖,𝑗

𝑡 ) + 𝐹. (𝑥𝑟1,𝑗
𝑡 − 𝑥𝑟2,𝑗

𝑡 ) 

16:      END FOR 

17:     END FOR 

18:    Step 2.3 (BOUNDARIES CONSTRAINTS) Regularize infeasible mutant vector 𝑉𝑖
𝑡 



30 

19:     FOR 𝑖 = 1 to 𝑁𝑝 do 

20:        FOR 𝑗 = 1 to 𝐷 do  

21:           IF (𝑣𝑖,𝑗
𝑡  <  𝑥𝑗,𝑚𝑖𝑛) or (𝑣𝑖,𝑗

𝑡 > 𝑥𝑗,𝑚𝑎𝑥) THEN  𝑣𝑖,𝑗
𝑡 = 𝑥𝑗,𝑚𝑖𝑛 + (𝑥𝑗,𝑚𝑎𝑥 − 𝑥𝑗,𝑚𝑖𝑛) × 𝑟𝑎𝑛𝑑(0,1) 

22:        END FOR 

23:      END FOR 

24:     Step 2.4 (BINOMIAL CROSSOVER) applies one of the two crossover schemes to obtain the trial 

vector 𝑈𝑖
𝑡 

25:       𝑘 = 𝑖𝑟𝑎𝑛𝑑({1, … , 𝐷}) 

26:       FOR 𝑗 = 1 to 𝐷 do 

27:          IF  𝑟𝑎𝑛𝑑(0,1) < 𝐶𝑅 or 𝑗 = 𝑘  THEN   𝑢𝑖,𝑗
𝑡 = 𝑣𝑖,𝑗

𝑡    ELSE    𝑢𝑖,𝑗
𝑡 = 𝑥𝑖,𝑗

𝑡   

28:        END FOR 

29:     Step 2.6: (SELECTION) select the individuals with the minimum fitness value for the next 

generation  

30:          FOR 𝑖 = 1 to 𝑁𝑝 do 

31:             IF  𝑓(𝑈𝑖
𝑡 ≤ 𝑋𝑖

𝑡) THEN     𝑋𝑖
𝑡+1 = 𝑈𝑖

𝑡   ELSE    𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡  

32:          END FOR  

33:      Step 2.7 increments the generation count 𝑡 = 𝑡 + 1  

34: END WHILE 

35: END 
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Figure 2.3: A generate-and-test DE flowchart loop (Price, Storn, & Lampinen, 2005) 
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2.4 Parameter Settings of Differential Evolution  

      All dialects of EAs are based on the same generic framework whose details need to 

be specified to obtain a particular EA. These details are commonly known as EA 

parameters. They include probability of mutation, tournament size of selection, or 

population size. Designing an EA for a given application requires selecting appropriate 

values for these parameters. The values of these parameters (which are also called 

algorithm parameters or strategy parameters) significantly determine whether the 

algorithm will find an optimal or near-optimal solution or will find such a solution 

efficiently (Cotta, Sevaux, & Sörensen, 2008; Lobo, Lima, & Michalewicz, 2007).  

       Fine-tuning is a complicated task, and any attempt to choose the right parameter 

values is lost a priori. As a result of this drawback, optimal convergence can be achieved 

and the user can be liberated from tedious parameter tuning trials by altering these 

parameters on-the-fly during the evolutionary process by taking the actual search 

progress into account. The main idea is not to choose the parameters semi-arbitrarily
1
 

but to allow the parameters to adapt to the problem (Eiben, Hinterding, & Michalewicz, 

1999; Eiben & Smith, 2003); this type of setting is called parameter control. EA 

literature presents three types of parameter control, namely, deterministic, adaptive, and 

self-adaptive. DE is a particular instance of EA. Therefore, the issue of parameter 

control has been investigated in the DE literature.   

      Recently, the development of adaptive DE algorithms shows faster and more reliable 

convergence performance than the classical DE algorithms with manual parameter 

settings over many problems. There are some adaptive DE variants in literature that 

piqued our interest with their superior performance such as DESAP with self-adapting 

populations (Teo, 2006); FADE, which is a fuzzy-based DE algorithm (Liu & 

Lampinen, 2005); improved SaDE (Qin & Suganthan, 2005) for parameters and 

                                                        

1 The choices were often made from experience   
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strategies adaptive of DE; jDE, which is a self-adaptive DE algorithm, and its improved 

version jDE-2, see (Brest, Boskovic, Greiner, Zumer, & Maucec, 2007; Brest, Greiner, 

Boskovic, Mernik, & Zumer, 2006); and JADE with and without archive (Zhang & 

Sanderson, 2009b), and so on. The topic of EA parameter settings and adaptive DE 

algorithms will be discussed in a later chapter. 

 

2.5 Unconstraint Optimization Problems   

      When optimizing a function or a process, we must first specify our objectives. Any 

optimization problem can be distinguished according to the presence or absence of (1) 

an objective function and (2) Constraints. The resulting four categories are shown in 

Table 2.2 (Eiben & Smith, 2003). When the main task in optimization (minimization or 

maximization) is to provide the value of a predefined cost or objective function by 

determining a set of model parameters or state variables, in which the absence of 

constraints make it less challenging, the problem is called a free optimization problem 

(unconstraint optimization problem).     

                                            

Table 2.2: Problem types (Eiben & Smith, 2003) 

Constraints Objective Function 

Yes No 

Yes Constrained optimization problem Constraint satisfaction problem 

No Free optimization problem No problem 

 

    In free optimization problem, a common (standard) model form 〈𝕏, 𝑓〉 is frequently 

defined as the minimization of an objective function (or fitness function) 𝑓 on 𝕏. If a 

criterion 𝑓 is subjected to maximization, then it is of equivalent to minimize its negation 

(−𝑓). A mathematical formulation of the objective function is 𝑓: 𝕏 →  𝕐 with 𝕐 ⊆  ℝ, 

where 𝕐 is the co-domain of 𝑓, and its range should be a subset of real numbers ℝ. 𝕏 is 

called a free search space, which is the set of all elements 𝔵 that can be processed by 



33 

search operations. Hence, the optimization target is to find the best element 𝑋∗ ∈  𝕏 

with respect to such criteria 𝑓 ∈ 𝔽, that governs the overall performance of the system 

to be the best under certain conditions (Eiben & Smith, 2003; Weise, 2009). For real 

parameter optimization, each value of 𝑋 is a real number. Without losing generality, we 

will consider only the type of free optimization problem with minimization propensity to 

a single-objective function. This type of optimization problems is commonly used to 

evaluate the performance of any algorithm, for example, DE, GA and PSO, or to verify 

a rigorous and fair performance comparison of various optimization methods, for 

example DE and its variants. It also exists in real-world applications such as engineering 

and scientific applications. De Jong first presented numerous unconstrained test 

problems, which are then recommended for the purpose (De Jong, 1975; Storn & Price, 

1995). These functions are commonly called benchmark test functions. Thirty-three 

benchmark functions are considered in this study, as given in Appendix A and B. The 

behavior (complexity) of these problems varies to cover most difficulties faced in the 

area of continuous global optimization and real-world applications. Most of these 

functions are considered as difficult to optimize.  

The definitions and mathematical formulation of some terminologies, difficulties and 

challenges related to such functions, are illustrated in Table 2.3 (Weise, 2009).  

   Figure 2.4 illustrates such a function f defined over a three-dimensional space 𝔽 =

(𝕏, 𝕐, ℤ). As outlined in the graph, we distinguish between local and global optima. A 

global optimum is an optimum of the whole domain 𝔽 while a local optimum is an 

optimum of only a subset of 𝔽. 
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3
4

 

 

             

                            

                             Table 2.3: Definitions and mathematical formulations of different terminologies related to optimization 

Terminology General Definitions  Sub-Definitions Mathematical formulation 

Local Optimum 

 

 

 

 

A local optimum 𝑋∗ ∈  𝕏 of one (objective) function 

𝑓: 𝕏 →  ℝ is either a local maximum or a local minimum 

                   

Local Maximum 

 

Is a local optimum with an input element 

𝑓(�̂�)  ≥ 𝑓(𝑋) for all x neighboring �̂� 

 

If 𝕏 ∈  ℝ𝑛 we can write, 

 

∀�̂� ∃𝜖 > 0: 𝑓(�̂�)  ≥ 𝑓(𝑋)∀𝑋 ∈

 𝕏, |𝑋 − �̂�| < 𝜖  

 

Local Minimum  

 

Is a local optimum with an input element 

𝑓(�̂�)  ≤ 𝑓(𝑋) for all 𝑥 neighboring �̂� 

 

If 𝕏 ∈  ℝ𝑛 we can write, 

 

∀�̂� ∃𝜖 > 0: 𝑓(�̂�)  ≤ 𝑓(𝑋)∀𝑋 ∈

 𝕏, |𝑋 − �̂�| < 𝜖  

Global Optimum 

 

 

 

A global optimum 𝑋∗ ∈  𝕏 of one (objective) function 

𝑓: 𝕏 →  ℝ is either a global maximum or a global 

minimum. Even a 1-𝐷 function 𝑓: 𝕏 =  ℝ →  ℝ may 

have more than one global maximum, multiple global 

minima, or even both in its domain 𝕏 

 

Global Maximum 

  

Is a global optimum with an input 

element 𝑓(�̂�) ≥ 𝑓(𝑋)∀𝑋 ∈ 𝕏 

 

 

- 

 

Global Minimum  

 

Is a global optimum with an input 

element 𝑓(�̂�) ≤ 𝑓(𝑋)∀𝑋 ∈ 𝕏 

 

 

- 

Solution Space 

The union of all solutions of an optimization problem is called its solution space 𝕊, where 𝒳∗ ⊆  𝕊 ⊆  𝕏. A solution space contains (and can be equal 

to) the global optimal set 𝒳∗. A valid solution X ∈  𝕊, which is not an element of  𝒳∗, may exist, particularly within the context of constraint 

optimization 

Candidate Solution A candidate solution 𝑋 is an element of the problem space 𝕏 
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Global Maximum 

Local 

Minimum  

Local 

Maximum 

Global 

Minimum 

Local 

Minimum 

 

 

 

 

 

 

Figure 2.4: Function with multi global and local maximum and minimum points 

 

2.6 No-Free Lunch Theorem and Domain Knowledge Utilization  

      Most search heuristic algorithms have little or no problem-specific knowledge 

utilization. For this reason, they are called “black-box” optimization algorithms. 

Primary examples of the black-box approaches are EAs, simulated annealing (SA), hill 

climbing (HC), and hill descending (HD). Brute-force approaches or random search 

approaches are also black box optimization algorithms. Thus, they represent an 

important benchmark against which the performance of other algorithms may be 

measured. The general search process idea of these algorithms is to describe how to 

search the solution space without being restricted to the type of problem. Some of these 

algorithms may be tailored (i.e. customized) to make them suitable for a particular 

problem.  

   Recently, no free lunch (NFL) theorem for search and optimization (Wolpert & 

MacReady, 1997) has sparked intense debate in the computational intelligence 

community. NFL theorem has had a considerable effect on the field of optimization 

research. This theorem states that any optimization algorithm 𝑎𝑖  that searches for an 
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extremum of a cost function performs exactly the same as all other optimization 

algorithms 𝑎𝑖−1s, such as a random search algorithm, when averaged over all possible 

cost functions 𝑓 if and only if 𝑓 is closed under permutation (c.u.p) and each target 

function in 𝑓 is equally likely (a uniform probability distribution over fitness functions). 

NFL can be defined by using Equation 2.14 as follows: For any two black box 

optimization algorithms 𝑎1 and 𝑎2, the performance 𝑃, averaged over all combinatorial 

optimization problems 𝑓, is constant for any pair of algorithms, 

 

∑𝑃(𝑑𝑚|𝑓, 𝑚, 𝑎1)

𝑓

=∑𝑃(𝑑𝑚|𝑓,𝑚, 𝑎2)

𝑓

 
(2.14) 

 

where 𝑚  is the number of algorithm iterations, and 𝑑𝑚 is the time-ordered set of 𝑚 

distinct points visited. In (Igel & Toussaint, 2004), it is proved that as the cardinality of 

the search space increases, the fraction of nonempty subsets that are closed under 

permutation rapidly approaches zero, and the number of local minima and constraints 

on steepness lead to subsets that are not closed under permutation. Thus, the result is 

consistent with intuition that on average, there are some algorithms that will perform 

better than others. However, NFL theorem suggests that this assertion is not precise, and 

finding an optimal algorithm with exceptional performance is applicable only for 

limited problems (particularly those of similar characteristics). This idea means that if 

an algorithm performs well on a set of problems, then it will perform poorly on all 

others, and any algorithm can outperforms another algorithm if it is specialized to the 

structure of a problem under consideration. Based on the NFL theorem, super-

algorithms are non-existent.  

    As emphasized above, NLF theorem implies that across all optimization problems, 

the average performance of all algorithms is the same unless it incorporates prior 

problem domain knowledge into the behavior of the algorithms (such as EAs and its 
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variant DE as they are not problem-specific in nature) for performance improvement 

and to match algorithms to problems (Ho & Pepyne, 2002). Therefore, the general 

framework of a problem solver will be as depicted in Figure 2.5.  

 

Optimization

Algorithm

Domain

Knowledge

Real-World

Optimization

Algorithm

 

Figure 2.5: General framework of a problem solver 

 

As discussed in (Bonissone, Subbu, Eklund, & Kiehl, 2006), such knowledge can be 

embedded by using two methods, which are  classified in Figure 2.6. It indicates that the 

performance of any EA can be remarkably improved if integrated with additional 

domain knowledge approaches.  

 

Domain Knowledge

Explicit Domain Knowledge Implicit Domain Knowledge

Data Structure

Encoding

Constraints

Seeding the Initial Iteration

Interweaving Local Exploitation

within Global Search

Variational and Selection Operation

Tuning and Control of Algorithms Parameters
 

Figure 2.6: General classification of domain knowledge methods 

 

    In this thesis, an adaptive DE algorithm that is not problem specific in nature was 

proposed. This algorithm was compared with other state-of-the-art algorithms on a 

variety of benchmark functions with different characteristics. The utilization of the 
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domain knowledge was considered in the application of the proposed algorithm for real-

world robot manipulator application.  

 

2.7 Summary  

     This chapter discusses various topics to provide sufficient background on diverse 

issues that concern DE literature.  

   An overview of the general concept of EAs and their importance as a problem solver 

in continuous and non-continuous optimization problems is initially presented.  

   The main reasons for selecting DE as a parent algorithm are briefly explained. The 

classical version that encompasses DE basic operators and variants, are then discussed. 

The presented DE algorithm in this chapter (Algorithm 2.2) is utilized as a parent 

algorithm for introducing any other enhanced version. Adaptive DE exhibits superior 

performance and advancement over classical DE with manual settings, according to the 

reported results of numerous comparative studies of DE parameter settings. Studies on 

adaptive DE have asserted the efficiency of this algorithm.  

The obtained details of classical DE and adaptive DE will serve as a basis for the 

procedural analysis and algorithm development in later chapters. 

   An unconstraint single-objective optimization problem and its classes are illustrated to 

function as an evaluation and application domain of adaptive DE algorithms. Finally, a 

brief discussion on the no-free lunch theorem and domain knowledge utilization is 

presented.  

   Adaptive DE algorithms have shown effeciency over the standard DE algorithms with 

fixed parameters over many optimization problems. Therefor, Chapter 3 provides a 

comprehensive review and analysis on this type of algorithms and their adaptive 

mechanisms.  
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CHAPTER 3 

ADAPTIVE DIFFERENTIAL EVOLUTION: TAXONOMY AND ANALYSIS 

 

3.1 Introduction 

     Globally, the goal of parameter settings is to keep up the optimal 

exploration/exploitation balance so that the algorithm is able to find a global optimum 

in a minimum amount of time. A well-chosen set of these parameters brings about the 

convergence performance and robustness of an algorithm with various degrees. The 

setting of these parameters is problem-dependent, neither an intuitive nor a 

straightforward task, and requires previous experience of the user. The standard 

procedure of DE generally disposes the following four main control parameters: 

 Population size (𝑁𝑝), which determines the total number of potential solutions 

in the same generation. 

 Mutation scaling factor (𝐹), which determines the amount of differentiation 

ratios that the perturbed solution could acquire. 

 Crossover rate (𝐶𝑅), which determines the probability that the yielded offspring 

inherits the actual genes of an individual. 

 Number of generations (𝑡), which determines the period needed to determine 

when the DE run would be terminated. 

   Tremendous research efforts have been focused on finding reasonably good settings 

for the control parameters of DE, either by manual tuning or alternative adaptive setting 

techniques. Adaptive DE algorithms exhibit faster and more reliable convergence 

performance than classical DE with manual parameter settings.  

    To the best of our knowledge, only a few significant review studies on DE have been 

reported: Das and Suganthan (2011) published a comprehensive survey article that, 
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almost, addresses all the issues concerning current DE-research, such as DE and 

constrained optimization functions, important schemes of DE for single-objective 

functions, DE in complex environments, theoretical analysis and development of DE, 

most contemporary engineering applications of  DE, and so on. However, the share of 

DE parameters control topic in this survey is only a terse section that discusses some of 

the most prominent and recent DE variants in the field. This article followed Neri and 

Tirronen (2010) survey paper that presents DE and its most recent advances in a 

classification format, whereby, these reviewed methods were categorized into two main 

classes: the first class is based on integrating DE with an extra component like local 

search methods. The second class is based on modifying DE structure. Detailed 

experiments have been conducted based on a broad set of various benchmark problems 

to test the overall performance of these algorithmic classes. Recently, Chiang, Chen, and 

Lin (2013) published a new taxonomy on DE parameters control mechanisms based on 

the type of parameter values (discrete, continuous), number of parameter values 

(multiple, individual, variable), and the information used to adjust the parameter values 

(random, population, parent, individual).  

    Accordingly, the present study in this chapter is devoted to provide two types of 

review and analysis on DE parameter settings. First, in order not to overlook the 

importance of parameter tuning, this chapter presents a short review on DE parameters 

tuning with a table composed of some estimated recommended guidelines gleaned from 

literature for setting these parameters. These settings are chosen to almost fit different 

optimization problems. Second, an overall review and analysis are presented of the 

state-of-the-art research on certain selected adaptive DE versions, which, according to 

our judgment, are the most promising and successful parameter control solutions that 

have been published on relevant forums. This analysis is addressed using a classification 

of adaptive DE provided in the same section and using the new classification of the 



41 
 

extended parameter control taxonomy of EAs.  

 

3.2 Evolutionary Algorithms Parameter Settings: Extended Taxonomy  

      The critical decision in implementing any EA is on how to set the values for various 

parameters of that algorithm. These values greatly affect the performance of the 

evolution. Parameter settings are commonly composed of crossover rate, mutation step, 

population size, selection pressure, and penalty coefficient. It is an important and 

promising aspect of evolutionary computation. The efficiency of any EA greatly 

depends on the setting of these parameters, that is, by parameter tuning or parameter 

control. Parameter tuning is also called off-line setting and involves using several 

“standard” parameter setting values in advance and keeping these settings fixed during 

the run, whereas parameter control is also called on-line setting and involves using 

another class of approaches where parameters are subject to change or evolve as 

problem parameters are optimized. Scientists and practitioners typically tune EA 

parameters manually and are guided only by their experience and some rules of thumb. 

Parameter tuning often requires tedious and time-consuming human involvement. 

Moreover, the process of any EA, and not necessarily DE, is essentially adaptive and 

dynamic process; thus, using fixed parameters with constant values opposes this 

essence. Intuitively, the values of these parameters might be optimal at different stages 

of the evolution; any effort spent toward this direction is indeed lost a priori (Angeline, 

1995; Brest, Boskovic, Greiner, Zumer, & Maucec, 2007; Cotta, Sevaux, & Sörensen, 

2008; Eiben, Hinterding, & Michalewicz, 1999; Eiben & Smith, 2003). The downsides 

or limitations of parameter tuning are as follows (Lobo, Lima, & Michalewicz, 2007):     

 Parameter values tuned for a single problem may lead to a large difference in 

performance if these parameters were set to different values.  
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 A parameter tuned for one test problem and produced superior results may not be as 

effective in other problems. 

 EA parameters are intrinsically dependent; thus, tuning them independently is 

inconvenient.  

An alternative form is parameter control, which refers to when an automated setting is 

applied on EA parameter values. Globally, the automation of parameter settings 

encompasses three main categories (Cotta, Sevaux, & Sörensen, 2008; Eiben & Smith, 

2003; Lobo, Lima, & Michalewicz, 2007):  

 Deterministic parameter control – automation occurs when a deterministic rule is 

triggered to modify the value of a strategy parameter in a fixed, predetermined 

manner without using any feedback from the search.  

 Adaptive parameter control – automation occurs during the evolution when the 

strategy parameter direction and/or magnitude are adjusted according to a pre-

designed rule. Basically, automation incorporates information gleaned from the 

feedback based on algorithm performance, such as the quality of the individual 

fitness value, without being part of the evolution, where the new control parameter 

value may or may not persists or propagates throughout the next iterations.   

 Self-adaptive parameter control – automation occurs when the strategy parameters 

undergo genetic encoding and when the alteration is subject to evolution and 

pressure (i.e., mutation and crossover); better parameter values tend to produce 

better individuals (i.e., solutions) with the highest chance to  survive and propagate 

for more off-springs.  

    Another important criterion that should be considered when discussing parameter 

control techniques is the evidence of change in parameter value, which can be observed 

from the performance of operators, the diversity of the population, and fitness values. 

Evidence can be absolute or relative. Absolute evidence is when a rule is applied to alter 
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a strategy parameter value on the basis of a predefined event feedback, such as updating 

the probability of mutation rate in accordance with a fuzzy rule set, population diversity 

drops at some given value, and even time elapses, rather than being relative to the 

performance of other values. By contrast, relative evidence is when the strategy 

parameter value is altered according to the fitness of the offspring produced and the 

better is rewarded; this change is specified relative, not deterministically, to one value 

present at any time. Therefore, deterministic parameter control is impossible with 

relative evidence and thus for self-adaptive parameter control with absolute evidence 

(Angeline, 1995; Cotta, Sevaux, & Sörensen, 2008; Eiben, Hinterding, & Michalewicz, 

1999; Eiben & Smith, 2003). 

    The aforementioned terminologies of the parameter setting of EAs have led to the 

taxonomy illustrated in Figure 3.1. The new taxonomy is an extension of a former one 

suggested in (Eiben & Smith, 2003) which caused some confusion among a number of  

researchers working in this field, particularly in distinguishing deterministic and 

absolute adaptive rule, as well as relative adaptive rule and self-adaptive rule.  
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Figure 3.1: Extended taxonomy of parameters settings in EAs 
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Accordingly, we investigated the subject of parameter control and found new 

subcategories that can be added to the main one to address the ambiguity in 

classification. The definitions of these subcategories are as follows: 

 Fully-Deterministic Scheme and Partially-Deterministic Scheme, these two 

subcategories fall under Deterministic Parameter Control category. Their main 

feature is not receiving any feedback from the search during the evolution. 

Technically, a fully-predetermined rule is when a user makes a complete counter-

intuition on how to steer the control parameter to the desired direction and/or 

magnitude; for instance, a rule is triggered on the basis of a certain number of 

generations that elapsed. By contrast, a partially-predetermined rule is when one 

uses random based scheme to alter, for example,  mutation probability after every 

100 generations (Fogel, Fogel, & Atmar, 1991).  

 Progressive-Controlled Based, this subcategory is applied when some feedback 

from the search is discriminated as measurements on the basis of user pre-

determined rules. When these measurements achieve a threshold, a corresponding 

adaptive rule is applied to update its relative parameter control. Thus, the progress 

of updating parameter values, as well as the search, is controlled under 

inconsiderable intuition. For instance, these measurements may be based on 

gathering information from previous runs through data mining-based fuzzy-

knowledge control (Liu & Lampinen, 2005), theoretical considerations (Smith & 

Smuda, 1995), or practical experience encapsulation (Lis, 1996).A prominent 

example of this type of parameter control is the 1/5 success rule of Rechenberg 

(Rechenberg, 1973; Schwefel, 1977); this rule is applied at certain periodic 

intervals deterministically.  

 Progressive-Uncontrolled Based (Learning Process-Based), this subcategory is 

the most prominent in literature. This sub-classification falls between adaptive rule 
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with relative evidence and self-adaptive with evolution-process rule, because both 

rules are intersected on the basis of updating the control parameter values 

associated with each individual, at each generation based on their corresponding 

fitness value; better features of individuals will be propagated to the next 

populations over time. The only difference is that in progressive-uncontrolled rule 

feedback is gained from the search to allow the parameter control to gradually 

adapt by applying a pre-specified strategy, which is most likely analogue to that of 

crossover and mutation strategies (Hansen & Ostermeier, 1996; Qin & Suganthan, 

2005; Zhang & Sanderson, 2009b); most of these strategies are learning schemes 

that collect experience from previous search. In such methods, the changes 

performed on the parameter values are fully uncontrolled, because the adaptive rule 

is associated only with the “fittest” solutions and its corresponding control 

parameters. This subcategory causes much confusion for some researchers working 

in this field (Zhang & Sanderson, 2009b). For convenience, we use dashed-line 

connector to make it optional for researchers who desire to stick with the former 

taxonomy, not to use the latter one, and include the learning style under self-

adaptive category, as shown in Figure 3.1.  

Ultimately, categories that are involved in the search and gradually evolved by either 

learning or evolution strategy as long as the search is not yet terminated, are considered 

as implicit parameter control, otherwise, are explicit parameter control.  

 

3.3 Differential Evolution Parameters Tuning  

    As a starting point, (Storn & Price, 1997; Storn & Price, 1995), in his early studies, 

examined the DE performance towards different 𝐹 and 𝐶𝑅 settings. He concluded that 

the choice of  𝐹 has a higher priority impact on the performance of DE than that of 𝐶𝑅. 

This is because of its ability to change the characteristics of the search. Later, and based 
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on the basis of discussion reported in (Price & Storn, 1997), the study (Liu & Lampinen, 

2005) recommends the use of 0.9 as a control parameters setting for both 𝐹 and 𝐶𝑅, 

whereas the empirical analysis reported in (Zielinski, Weitkemper, Laur, & Kammeyer, 

2006) demonstrated that a setting of 𝐹 ≥ 0.6 and 𝐶𝑅 ≥ 0.6 leads to DE having better 

performance. Zaharie draws our attention to her two distinctive seminal studies. 

The first one (Zaharie, 2002a) was a complete theoretical and empirical analysis of DE 

control parameter settings and their effects on the population diversity; then she pointed 

out to a simple relation (see Equation 3.1) that can frequently be used to find 

appropriate values for the control parameters.  

 

(2𝐹2𝐶𝑅 −
2𝐶𝑅

𝑁𝑝
+
𝐶𝑅2

𝑁𝑝
+ 1) . 𝑣𝑎𝑟(𝑃𝑥

𝑡) (3.1) 

 

where 𝑣𝑎𝑟(𝑃𝑥
𝑡) indicates the population variance as in Equation 3.2, 

 

𝑉𝑎𝑟(𝑃𝑥
𝑡) =

1

𝑁𝑝
∑ (𝑥𝑖

𝑡 − 〈𝑥〉𝑡)2𝑁𝑝−1
𝑖=0  ;    〈𝑥〉𝑡 =

1

𝑁𝑝
∑ 𝑥𝑖

𝑡𝑁𝑝−1
𝑖=0  (3.2) 

 

From Equation 3.1 we can see that if the factor 2𝐹2𝐶𝑅 −
2𝐶𝑅

𝑁𝑝
+
𝐶𝑅2

𝑁𝑝
+ 1 > 1 then the 

variation operators induce an increase in the population diversity, while if  2𝐹2𝐶𝑅 −

2𝐶𝑅

𝑁𝑝
+
𝐶𝑅2

𝑁𝑝
+ 1 < 1 then the population variance decreases. Thus, accordingly, and base 

on what has already been proved experimentally that the selection operator usually 

reduces the population diversity,  the values of the control parameters which satisfy 

Equation 3.3 can be considered to be critical; this is only to assure that the factor 

2𝐹2 −
2

𝑁𝑝
+
𝐶𝑅

𝑁𝑝
  is always greater than one.  
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2𝐹2 −
2

𝑁𝑝
+
𝐶𝑅

𝑁𝑝
= 0 (3.3) 

 

As such, Figure 3.2 confirms what has been predicted in (Zaharie, 2002a) that 𝐹 =

0.1341 is a critical value when 𝑁𝑝 = 50 and 𝐶𝑅 = 0.2, in the sense that the population 

variance is close in proximity to the constant. These results were generated using 

Zaharie’s modified version of DE over 100 run averages.  
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Figure 3.2: The evolution trend of the population variance of a single control parameter 

𝐹 for different values (Price, Storn, & Lampinen, 2005) 

 

Thereafter, she presented her second work in (Zaharie, 2007) as a way of letting the 

practitioners have sufficient analysis about the influence of the crossover probability 𝐶𝑅 

on 𝑃𝑚 for both binomial and exponential crossover variants. Where 𝑃𝑚 denotes the 

probability that a component of an individual is mutated, and can be measured by first 

identifying the type of the crossover being used, then applying one of the following 

probability equations:   
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Binomial Crossover Probability 𝑃𝑚 = 𝐶𝑅 (1 −
1

𝐷
) + 1/𝐷  (3.4) 

Exponential Crossover Probability  𝑃𝑚 = 1 − 𝐶𝑅
𝐷/𝐷(1 − 𝐶𝑅) (3.5) 

 

Figure 3.3 depicts the correspondence tendency between 𝐶𝑅 value and 𝑃𝑚 value for 

binomial and exponential crossover for two dimensions of the problem (𝐷 = 30, 𝐷 =

100).  

 

 

Figure 3.3: Correspondence’s tendencies between the mutation probability, 𝑃𝑚 and the 

crossover probability, 𝐶𝑅 for binomial and exponential crossover. (a) For 30 dimensions 

problems. (b) For 100 dimensions problems 

 

The same figure shows the linear dependence between 𝑃𝑚 and 𝐶𝑅 in the case of 

binomial crossover and nonlinear dependence in the case of exponential crossover 
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combined with and the fact that the difference between both variants is more significant 

when 𝐷 is larger. In addition to the previous analysis, she presented in the same article a 

symmetrical comparison on the performance of the two crossover variants. 

    Throughout this literature, it has been noted that there is no exact conclusive result on 

what is preferable for DE parameter tuning. For example, Pedersen in (Pedersen, 2010)  

has pointed out in his technical report that Rastrigin function (a multi model separable 

function) (Liu & Lampinen, 2005) has not been solved by DE with (𝐷 = 30,𝑁𝑝 =

75, 𝐶𝑅 = 0.8803, and 𝐹 = 0.4717) parameter settings and suggested the practitioners 

try other parameter settings, or to choose another optimization method such as PSO. 

While Zaharie in (Zaharie, 2007) offered a rigorous analysis for this function in 

particular and argued that this function can be solved by DE with parameters tuned to 

(𝐷 = 30,𝑁𝑝 = 50, 𝐹 = 0.5, 𝐶𝑅 < 0.3 for binomial crossover and 𝐶𝑅 ≤ 0.97 for 

exponential crossover), and has reached the desired optimum with the accuracy 

𝜖 = 10−6.  

     More often than not, people use what has already worked well in previously reported 

cases. Hence, we enlisted DE parameter control tuning in Table 3.1. This table includes 

the corresponding guideline for each parameter based on the encapsulation of practical 

experience which are the most promising and successful parameter control settings and 

have already been tested and showed to be effective on relevant forums. 

 

3.4 Adaptive Differential Evolution: Procedural Analysis and Comparison  

 

      In literature, there are many recent and prominent adaptive DE variants that show 

efficiency and reliability in their performance. In this study, most of these algorithms 

have been reviewed and analyzed on case-by-case bases each according to the facts of 

its particular situation (parameter control scheme and/or adaptive DE mutation strategy) 

that has been implemented (see Figure 3.4). 
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 Table 3.1: Table of DE algorithm control parameters with their estimated 

corresponding setting guidelines 

 

Then, an extensive comparison among these methods has been conducted based on their 

conceptual similarities and differences, and the pros and cons of each algorithm. These 

algorithms are as follows: 

 FADE: is a parameter adaptive DE in which the control parameters (𝐹 and 𝐶𝑅) 

of DE are adjusted using fuzzy logic (Liu & Lampinen, 2005).  

 jDE is a parameter adaptive DE  in which the control parameters (𝐹 and 𝐶𝑅) of 

DE are adjusted using self-adaptive scheme (Brest, Greiner, Boskovic, Mernik, 

& Zumer, 2006). 

Parameter  Guideline 

 

 

 

𝑵𝒑  

Generally, the large 𝑁𝑝 the more robust will be the search, although, sometimes due to 

complex objective function, the generation will be cumbersome by a considerable amount 

of computational time, as well as the possibility of increasing in the set of potential 

ineffective moves. On the other hand, it should not be small in order to avoid stagnation 

and have adequate population diversity (Liu & Lampinen, 2005; Storn & Price, 1997). 

Arguably, a plausible choice of 𝑁𝑝 is recommended in the range 𝟐𝑫 ≤ 𝑵𝒑 ≤ 𝟐𝟎𝑫. 

 

 

 

 

 

 

𝑭  

Many studies have been reported, for example (Lampinen & Zelinka, 2000), and arrived at 

similar conclusions: a small 𝐹 increases in the probability of DE gets trapped in a local 

minimum and leads to a premature convergence due to the extensive exploitation caused, 

whilst a large 𝐹 makes DE over explorative and significantly slows down the convergence 

speed. The empirical analyses also suggest, that the use of (𝐹 = 1) is not recommended 

since it leads to a significant decrease in the exploration power (Liu & Lampinen, 2005; 

Storn & Price, 1997). Literature recommends 𝑭 ∈ [
𝟐

𝑵𝒑
, 𝟏 ]. Eventually and based on what 

Zaharie has concluded in (Zaharie, 2002a), the setting ( 𝑭 ∈ [
𝟐

𝑵𝒑
,
𝑫

𝑵𝒑
), where 𝐷 ≤ 𝑁𝑝) is 

highly recommended if wanting to narrow down the range of  𝐹; otherwise a gradual 

increase of the value within the range (
𝑫

𝑵𝒑
< 𝐹 ≤ 1 ) is recommended until satisfied.  

 

 

𝑪𝑹  

It is arguable that the small value of 𝐶𝑅 will lead to a small probability change in the 

number of parameters being swapped between the two engaged individuals. Otherwise, a 

high value of 𝐶𝑅 (𝐶𝑅 = 1) will dramatically reduce the diversity amount of the offspring 

solution to be only inherited from the interim individual, which makes the crossover 

operation useless (Lampinen & Zelinka, 2000). In many studies (Liu & Lampinen, 2002b; 

Storn & Price, 1997), the setting 𝑪𝑹 ∈ [𝟎. 𝟕, 𝟎. 𝟗] is recommended. 

 

𝒕  

Usually determined by assigning a user-defined parameter for an acceptable stopping or 

convergence criteria (CPU time, total number of fitness evaluations, and so on) then 

connecting the metric 𝑡 directly to the evolutionary process (i.e. the aforementioned 

criteria) (Eiben & Smith, 2003). The range 𝟑𝟎𝟎 ≤ 𝒕 ≤ 𝟓𝟎𝟎𝟎  is recommended for high 

dimensional and noisy problems. 
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 DESAP is a parameter adaptive DE in which the control parameters (𝐹, 𝐶𝑅 and 

𝑁𝑝) of DE are all adjusted though evolution (Teo, 2006). 

 JADE is a parameter adaptive DE  in which the control parameters (𝐹 and 𝐶𝑅) 

of DE are adjusted using self-adaptive learning scheme (Zhang & Sanderson, 

2009b).  

Adaptive DE Algorithms

Adaptive Parameters with

Single DE Strategy

Adaptive Parameters with

Multiple DE Strategies

with Standard

Mutation Strategy

with Advanced

Mutation Strategy

with Standard

Mutation Strategy

with Advanced

Mutation Strategy

- FADE

- jDE

- DESAP

- JADE

- MDE_pBX

- p-ADE

- SaDE

- EPSDE

- CoDE

- SaDE-MMTS

- SaJADE

- HSPEADE

 

Figure 3.4: Simple classification illustrates the position of each adaptive DE variant 

with respect to the type of adaptive procedure it applies 

 

 MDE_pBX is a parameter adaptive DE  in which the control parameters (𝐹 and 

𝐶𝑅) of DE are adjusted using self-adaptive learning scheme (Islam, Das, Ghosh, 

Roy, & Suganthan, 2012). 

 p-ADE is a parameter adaptive DE that adjusts the parameters of 𝐹 and 𝐶𝑅 and 

other control parameters related to its mutation scheme in an adaptive manner 

(Bi & Xiao, 2011).  
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 SaDE is a parameter and strategy adaptive DE in which the control parameters 

(𝐹 and 𝐶𝑅)  of DE as well as the DE strategies are adjusted using adaptive 

techniques (Qin, Huang, & Suganthan, 2009). 

 EPSDE is a new version of adaptive DE in which an ensemble of control 

parameters and strategies are created then selected randomly for each individual. 

(Mallipeddi, Suganthan, Pan, & Tasgetiren, 2011);  

 CoDE is a composition based DE in which three DE strategies and three control 

parameters values of 𝐹 and 𝐶𝑅 are combined randomly to generate the trial 

vectors (Wang, Cai, & Zhang, 2011).   

 SaDE-MMTS is a parameter and strategy adaptive DE in which the control 

parameters (𝐹 and 𝐶𝑅) of DE as well as the DE strategies are adjusted using 

adaptive techniques. This algorithm is an integration of SaDE, JADE and local 

search algorithms (Zhao, Suganthan, & Das, 2011). 

 SaM (SaJADE) is a parameter and strategy adaptive DE in which the control 

parameters (𝐹 and 𝐶𝑅) of DE as well as the JADE strategies are adjusted using 

adaptive techniques. This algorithm is an improvement to the JADE (Gong, Cai, 

Ling, & Li, 2011). 

 HSPEADE is a parameter and strategies adaptive DE. This algorithm is an 

improvement for the EPSDE algorithm. In this algorithm the Harmony Search 

algorithm (HS) is used to select the control parameter values of 𝐹 and 𝐶𝑅 as 

well as the DE strategies from the ensemble instead of the random manner 

(Mallipeddi, 2013).    

To convey the aforementioned information, this section is subdivided into three major 

subsections.  
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3.4.1 DE with Adaptive Parameters and Single Strategy 

      In this subsection the main characteristics and mechanisms of six remarkable 

adaptive DE versions are stated in details, on the basis of parameter adaptive schemes 

and DE strategies.  

 

3.4.1.1 Adaptive DE with Single Standard Strategy 

 

 FADE Algorithm   

   FADE uses the standard DE scheme DE/rand/1/bin. It updates the values of 𝐹 and 𝐶𝑅 

at each generation using a mechanism, which is based on the fuzzy logic controller 

(FLC); whereby a fuzzy knowledge-based system is used to update the control 

parameters on-line, in a dynamic adaptive manner to the inconsistent situation. 

o The values of function values, population diversity (𝐹𝐶) and parameter vectors (𝑃𝐶), 

and their updates after 𝑛𝑡ℎ generations are calculated and then used as input to the 

FLCs, and the values of the control parameters (i.e. 𝐹 and 𝐶𝑅) are the outputs. 

o The values of 𝐹 and 𝐶𝑅 are then assigned to the fuzzy sets membership functions.   

o “9 × 2” IF-THEN fuzzy rules statements are used to formulate the conditional 

statements that comprise fuzzy logic. 

o Mamdani fuzzy inference method is used as the fuzzy control strategy to map from 

the given inputs to an output. 

o The defuzzification process is held to map from a space of fuzzy output into a space 

of real output.  

 

 jDE Algorithm   

    jDE uses the standard DE scheme DE/rand/1/bin. It updates the values of 𝐹 and 𝐶𝑅 in 

a self-adaptive manner based on adjusting the control parameters 𝐹 and 𝐶𝑅 by means of 
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evolution and applied at the individual level. First, each individual 𝑥𝑖
𝑡 , 𝑖 = 1,2, … ,𝑁𝑝 is 

associated with its corresponding control parameters 𝐹 and 𝐶𝑅. These parameters are 

then initialized to 𝐹𝑖
𝑡 = 0.5 and 𝐶𝑅𝑖

𝑡 = 0.9. The new control parameters of 

𝐹𝑖
𝑡+1 and 𝐶𝑅𝑖

𝑡+1 are then assigned to random values according to uniform distributions 

on [0.1,1] and [0, 1] respectively as follows, 

 

𝐹𝑖
𝑡+1 = {

0.1 + 𝑟𝑎𝑛𝑑1 × 0.9,     𝑖𝑓  𝑟𝑎𝑛𝑑2 < 𝜏1
𝐹𝑖
𝑡,                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒      

 
(3.6) 

𝐶𝑅𝑖
𝑡+1 = {

𝑟𝑎𝑛𝑑3,                        𝑖𝑓  𝑟𝑎𝑛𝑑4 < 𝜏2
𝐶𝑅𝑖

𝑡,                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒      
 (3.7) 

where 𝑟𝑎𝑛𝑑𝑗;   𝑗 ∈  {1,2,3,4} are uniform random values ∈ [0,1]. In this 

algorithm, 𝜏1 and 𝜏2 represent the probabilities limits that permit the adjustment of 𝐹 

and 𝐶𝑅 values; they are both assigned to the same value 0.1.  

  

3.4.1.2 Adaptive DE with Single Advanced Strategy 

 

 DESAP Algorithm   

o Advanced DESAP Mutation and Crossover Schemes 

    In DESAP the base strategy used is a bit different from the standard DE/rand/1/bin 

and of some sort similar to the strategy introduced in (Abbass, 2002). 

Crossover Scheme: The crossover operator is performed first with some 

probability, 𝑟𝑎𝑛𝑑(0,1) < 𝛿𝑟1 or 𝑖 = 𝑗, where 𝑗 is a randomly selected variable within 

individual 𝑖. The updating strategy is as follows,  

 

𝑋𝑐ℎ𝑖𝑙𝑑 = 𝑋𝑟1 + 𝐹 ∙ (𝑋𝑟2 − 𝑋𝑟3)  (3.8) 
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The ordinary amplification factor 𝐹 is set to 1, thereby at least one variable in 𝑋 must be 

changed. Otherwise the value of 𝑋𝑐ℎ𝑖𝑙𝑑 and its control parameters will be set to the same 

values associated with 𝑋𝑟1.  

Mutation Scheme: The mutation stage is implemented with some mutation 

probability, 𝑟𝑎𝑛𝑑(0,1) < 𝜂𝑟1, otherwise all the values will remain fixed.  

 

𝑋𝑐ℎ𝑖𝑙𝑑 = 𝑋𝑐ℎ𝑖𝑙𝑑 + 𝑟𝑎𝑛𝑑𝑛(0, 𝜂𝑟1 )  (3.9) 

 

As can be seen from the equation above, that DESAP mutation is not derived from one 

of the DE standard mutation schemes.   

 

o DESAP Parameter Control Schemes  

     DESAP is proposed not only to update the values of the mutation and crossover 

control parameters, 𝜂 and 𝛿, but, rather, it adjusts the population size parameter,𝜋 as 

well in a self-adaptive manner. All parameters undergo the evolution and pressure (i.e. 

crossover and mutation) in a way analogue to their corresponding individuals. The terms 

𝛿 and 𝜋 have the same meaning as 𝐶𝑅 and 𝑁𝑝, respectively, 𝜂 refers to the probability 

of applying the mutation scheme whereas the ordinary 𝐹 is kept fixed during the 

evolution process. Mainly, two versions of DESAP have been applied. The population 

size of both DESAP versions (Rel and Abs) are initialized by generating, randomly, a 

population of (10 × 𝑛) initial vectors 𝑋, where 𝑛 denotes the number of design 

variables which are already recommended by the authors of the original DE method 

(Storn & Price, 1995). The mutation probability 𝜂𝑖 and crossover rate 𝛿𝑖 are both 

initialized to random values generated uniformly between [0,1]. The population size 

parameter 𝜋𝑖 is initialized in DESAP-Abs version to, 
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𝜋𝑖 = 𝑟𝑜𝑢𝑛𝑑(𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒 + 𝑟𝑎𝑛𝑑𝑛(0,1)) (3.10) 

 

whereas in DESAP-Rel to, 

𝜋𝑖 = 𝑟𝑎𝑛𝑑(−0.5,0. 5) (3.11) 

 

the updating process is then applied on the parameters 𝛿, η and 𝜋 , at the same level with 

their corresponding individuals using the same crossover and mutation schemes (see 

Equation 3.8-3.9).  

 

 Updating the crossover rate 𝛿  

𝛿𝑐ℎ𝑖𝑙𝑑 = 𝛿𝑟1 + 𝐹 ∙ (𝛿𝑟2 − 𝛿𝑟3) (3.12) 

𝛿𝑐ℎ𝑖𝑙𝑑 = 𝑟𝑎𝑛𝑑𝑛(0,1) (3.13) 

 

 Updating the mutation probability η 

𝜂𝑐ℎ𝑖𝑙𝑑 = 𝜂𝑟1 + 𝐹 ∙ (𝜂𝑟2 − 𝜂𝑟3)  (3.14) 

𝜂𝑐ℎ𝑖𝑙𝑑 = 𝑟𝑎𝑛𝑑𝑛(0,1)  (3.15) 

  

Updating the population size 𝜋 

DESAP-Abs:  𝜋𝑐ℎ𝑖𝑙𝑑 = 𝜋𝑟1 + 𝑖𝑛𝑡(𝐹 ∙ (𝜋𝑟2 − 𝜋𝑟3)) (3.16) 

DESAP-Rel:   𝜋𝑐ℎ𝑖𝑙𝑑 = 𝜋𝑟1 + 𝑖𝑛𝑡(𝐹 ∙ (𝜋𝑟2 − 𝜋𝑟3)) (3.17) 

DESAP-Abs:  𝜋𝑐ℎ𝑖𝑙𝑑 = 𝜋𝑐ℎ𝑖𝑙𝑑 + 𝑖𝑛𝑡(𝑟𝑎𝑛𝑑𝑛(0.5,1)) (3.18) 

DESAP-Rel:   𝜋𝑐ℎ𝑖𝑙𝑑 = 𝜋𝑐ℎ𝑖𝑙𝑑 + 𝑟𝑎𝑛𝑑𝑛(0, 𝜂𝑟1 )  (3.19) 

 

The ordinary amplification factor 𝐹 is set to 1. The evolution process of DESAP 

continues until it achieves a pre-specified population size 𝑀, then the new population 

size is calculated for the next generation as, 
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DESAP-Abs:          𝑀𝑛𝑒𝑤 = 𝑟𝑜𝑢𝑛𝑑(∑ 𝜋/𝑀)𝑀
1  (3.20) 

DESAP-Rel:         𝑀𝑛𝑒𝑤 = 𝑟𝑜𝑢𝑛𝑑(𝑀 + (𝜋 ×𝑀)) (3.21) 

 

For the next generation and in an attempt to carry forward all the individuals with the 

remaining (𝑀𝑛𝑒𝑤 −𝑀) individuals, the condition (𝑀𝑛𝑒𝑤 > 𝑀) should be satisfied; 

otherwise, carry forward only the first 𝑀𝑛𝑒𝑤 individuals of the current generation.  

 

 JADE Algorithm  

o Advanced JADE Mutation Schemes  

    There are different mutation versions of JADE have been proposed in (Zhang & 

Sanderson, 2009a) and (Zhang & Sanderson, 2009b), which we refer to in our study. 

The first new mutation scheme is called DE/current-to-pbest/1/bin (see Equation 3.22), 

which it has less greedy property than its previous specification scheme, DE/current-to-

best/1/bin, since it utilizes not only the information of the best individual, but the 

information of the 𝑝% good solutions in the current population indeed.  

 

𝑣𝑖,𝑗
𝑡 = 𝑥𝑖,𝑗

𝑡 + 𝐹𝑖. (𝑥𝑏𝑒𝑠𝑡,𝑗
𝑝,𝑡 − 𝑥𝑖,𝑗

𝑡 ) + 𝐹𝑖 . (𝑥𝑟1,𝑗
𝑡 − 𝑥𝑟2,𝑗

𝑡 ), (3.22) 

where 𝑝 ∈ (0, 1] and 𝑥𝑏𝑒𝑠𝑡,𝑗
𝑝,𝑡

 is a random uniform chosen vector as one of the superior 

100𝑝% vectors in the current population. The second mutation scheme with an external 

archive, denoted as 𝐴, that has been introduced to store the recent explored inferior 

individuals that have been excluded from the search process and their differences from 

the individuals in the running population, 𝑃. The archive vector 𝐴 is first initialized to 

be empty. Thereafter, solutions that are failed in the selection operation of each 

generation are added to this archive. The new mutation operation is then reformulated as 

follows, 
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𝑣𝑖
𝑡 = 𝑥𝑖

𝑡 + 𝐹𝑖 . (𝑥𝑏𝑒𝑠𝑡
𝑝,𝑡 − 𝑥𝑖

𝑡) + 𝐹𝑖. (𝑥𝑟1
𝑡 − �̃�𝑟2

𝑡 ), (3.23) 

 

where 𝑥𝑖
𝑡 and 𝑥𝑟1

𝑡  are generated from 𝑃 in the same way as in the original JADE, 

whereas �̃�𝑟2
𝑡  is randomly generated from the union, 𝐴 ∪ 𝑃. Eventually, randomly 

selected solutions are going to be removed from the archive if its size exceeds a certain 

threshold, say population size 𝑁𝑝, just to keep the archive within a specified dimension. 

It is clear that if the archive size has been set to be zero then Equation 3.22 is a special 

case of Equation 3.23.   

Another variant has been proposed to further increase the population diversity, named 

archive-assisted DE/rand-to-pbest/1 as follows, 

 

𝑣𝑖
𝑡 = 𝑥𝑟1

𝑡 + 𝐹𝑖 . (𝑥𝑏𝑒𝑠𝑡
𝑝,𝑡 − 𝑥𝑟1

𝑡 ) + 𝐹𝑖. (𝑥𝑟2
𝑡 − �̃�𝑟3

𝑡 ) (3.24) 

o JADE Parameter Control Schemes  

   JADE updates four control parameters (𝐹, 𝐶𝑅, 𝜇𝐹 and 𝜇𝐶𝑅) during the evolution 

process.  

Mutation factor (F) and location parameter of mutation probability distribution (𝜇𝐹): 

The mutation probability 𝐹𝑖 is independently generated at each generation for each 

individual 𝑖 according to the following formula, 

 

 𝐹𝑖 = 𝑟𝑎𝑛𝑑𝑐𝑖(𝜇𝐹, 0.1) (3.25) 

 

where 𝑟𝑎𝑛𝑑𝑐𝑖 is a Cauchy distribution with location parameter 𝜇𝐹 and scale parameter 

0.1. If 𝐹𝑖 ≥ 1 then the value is truncated to be 1 or regenerated if 𝐹𝑖 ≤ 0. The location 

parameter 𝜇𝐹 is first initiated to be 0.5. In this step, JADE shows some similarity in 

updating the mean of the distribution, 𝜇𝐶𝑅 , to the learning style used in Population 
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Based Incremental Learning (PBIL) algorithm (Baluja, 1994; Baluja & Caruana, 1995). 

The standard version of the PBIL uses learning rate 𝐿𝑅 ∈ (0,1] that must be fixed a 

priori. Then, by utilizing Hebbian-inspired rule the difference rate (1 − 𝐿𝑅) is 

multiplied by the probability vector (𝑃𝑉) that represents the combined experience of the 

PBIL throughout the evolution process, whereas 𝐿𝑅 is multiplied by each bit (i.e. gene’s 

value) of the current individual(s) used in the updating process. Likewise, JADE 

updates the mutation distribution mean location, 𝜇𝐹 is updated at the end of each 

generation after accumulating the set of all the successful mutation probabilities 𝐹𝑖’s at 

generation 𝑡, denoted by 𝑆𝐹,. The new 𝜇𝐶𝑅 is updated as,  

 

𝜇𝐹 = (1 − 𝑐) ∙ 𝜇𝐹 + 𝑐 ∙ 𝑚𝑒𝑎𝑛𝐿(𝑆𝐹), (3.26) 

 

where 𝑚𝑒𝑎𝑛𝐿(. ) is Lehmer mean, 

                                                                 𝑚𝑒𝑎𝑛𝐿(𝑆𝐹) =
∑ 𝐹2𝐹∈𝑆𝐹

∑ 𝐹𝐹∈𝑆𝐹

 
(3.27) 

 

Crossover probability (CR) and mean of crossover probability distribution (𝜇𝐶𝑅): The 

crossover probability 𝐶𝑅𝑖 is updated, independently, for each individual according to a 

normal distribution, 

𝐶𝑅𝑖 = 𝑟𝑎𝑛𝑑𝑛𝑖(𝜇𝐶𝑅 , 0.1), (3.28) 

with mean 𝜇𝐶𝑅 and standard deviation 0.1 and truncated to the interval (0, 1]. The mean 

𝜇𝐶𝑅 is first initiated to be 0.5. Then, similar to the updating scheme of the mutation 

probability mean, the distribution of the crossover mean, 𝜇𝐶𝑅  , is updated at each 

generation after accumulating the set of all the successful crossover probabilities 𝐶𝑅𝑖’s 

at generation 𝑡, denoted by 𝑆𝐶𝑅, hence calculate its 𝑚𝑒𝑎𝑛𝐴(𝑆𝐶𝑅). The new 𝜇𝐶𝑅 is 

updated by the equation, 
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    𝜇𝐶𝑅 = (1 − 𝑐) ∙ 𝜇𝐶𝑅 + 𝑐 ∙ 𝑚𝑒𝑎𝑛𝐴(𝑆𝐶𝑅), (3.29) 

where 𝑐 is a positive constant ∈ (0,1] and 𝑚𝑒𝑎𝑛𝐴(∙) is the usual arithmetic mean.  

 

 MDE_pBX Algorithm  

o Advanced MDE_pBX Mutation and Crossover Schemes 

Mutation Scheme: The new proposed mutation scheme DE/current-to-grbest/1/bin, 

utilizes the best individual 𝑥𝑔𝑟𝑏𝑒𝑠𝑡
𝑡  chosen from the 𝑞% group of individuals randomly 

selected from the current population for each target vector. The group size 𝑞 of the 

MDE_pBX is varying from 5% to 65% of the 𝑁𝑝. The new scheme can be described 

as, 

𝑣𝑖
𝑡 = 𝑥𝑖

𝑡 + 𝐹𝑦 ∙  (𝑥𝑔𝑟𝑏𝑒𝑠𝑡
𝑡 − 𝑥𝑖

𝑡 + 𝑥𝑟1
𝑡 − 𝑥𝑟2

𝑡 ), (3.30) 

 

where 𝑥𝑟1
𝑡  𝑎𝑛𝑑 𝑥𝑟2

𝑡  are two different individuals randomly selected from the current 

population and they are also mutually different from the running individual 𝑥𝑖
𝑡 and 

𝑥𝑔𝑟𝑏𝑒𝑠𝑡
𝑡 .   

Crossover Scheme: The new proposed recombination scheme 𝑝-Best, has been defined 

as a greedy strategy; it is based on the incorporation between a randomly selected 

mutant vector perturbed by one of the 𝑝 top-ranked individual selected from the current 

population to yield the trial vector at the same index. Throughout evolution the value of 

parameter 𝑝 is reduced linearly in an adaptive manner (see Equation 3.37).  

 

o MDE_pBX Parameters Control Schemes 

Modifications applied to the adaptive schemes in MDE_pBX: The scalar factor 𝐹𝑖 and 

the crossover rate 𝐶𝑅𝑖 of each individual are both altered independently at each 

generation using JADE schemes (see Equation 3.25 and Equation 3.28). The new 
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modifications have been applied only to 𝐹𝑚 and 𝐶𝑅𝑚 adapting schemes. In MDE_pBX, 

both 𝐹𝑚 and 𝐶𝑅𝑚 are subscribed to the same rule of adjusting. Firstly, the values of 𝐹𝑚 

and 𝐶𝑅𝑚 are initialized to 0.5 and 0.6 respectively, then are updated at each generation 

in the following way, 

 

𝐹𝑚 = 𝑤𝐹  ∙ 𝐹𝑚 + (1 − 𝑤𝐹) ∙ 𝑚𝑒𝑎𝑛𝑝𝑜𝑤(𝐹𝑠𝑢𝑐𝑐𝑒𝑠𝑠)  (3.31) 

𝐶𝑅𝑚 = 𝑤𝐶𝑅 ∙  𝐶𝑅𝑚 + (1 − 𝑤𝐶𝑅) ∙  𝑚𝑒𝑎𝑛𝑝𝑜𝑤(𝐶𝑅𝑠𝑢𝑐𝑐𝑒𝑠𝑠)  (3.32) 

 

where a set of successful scale factors 𝐹𝑠𝑢𝑐𝑐𝑒𝑠𝑠  and a set of successful crossover 

probability 𝐶𝑅𝑠𝑢𝑐𝑐𝑒𝑠𝑠 are generated from the current population. And | | stands for the 

cardinality of each successful set. The variable 𝑛 is set to 1.5 as it proves to give better 

results on a wide range of test problems. Then the mean power 𝑚𝑒𝑎𝑛𝑝𝑜𝑤  of each set is 

calculated as follows,  

 

𝑚𝑒𝑎𝑛𝑃𝑜𝑤(𝐹𝑠𝑢𝑐𝑐𝑒𝑠𝑠) = ∑ (𝑥𝑛 /|𝐹𝑠𝑢𝑐𝑐𝑒𝑠𝑠|)
1
𝑛

𝑥∈𝐹𝑠𝑢𝑐𝑐𝑒𝑠𝑠

 (3.33) 

𝑚𝑒𝑎𝑛𝑃𝑜𝑤(𝐶𝑅𝑠𝑢𝑐𝑐𝑒𝑠𝑠) = ∑ (𝑥𝑛 /|𝐶𝑅𝑠𝑢𝑐𝑐𝑒𝑠𝑠|)
1
𝑛

𝑥∈𝐶𝑅𝑠𝑢𝑐𝑐𝑒𝑠𝑠

 (3.34) 

 

Together with calculating the weight factors 𝑤𝐹 and 𝑤𝐶𝑅 as, 

 

𝑤𝐹 = 0.8 + 0.2 × 𝑟𝑎𝑛𝑑(0, 1) (3.35) 

𝑤𝐶𝑅 = 0.9 + 0.1 × 𝑟𝑎𝑛𝑑 (0, 1)  (3.36) 

 

the 𝐹𝑚 and 𝐶𝑅𝑚 are formulized. As can be seen from Equations 3.35-3.36, the value of 

𝑤𝐹 uniformly randomly varies within the range [0.8, 1], while the value of 𝑤𝐶𝑅 
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uniformly randomly varies within the range[0.9, 1]. The small random values used to 

perturb the parameters 𝐹𝑚 and 𝑚𝑒𝑎𝑛𝑃𝑜𝑤 will reveal an improvement in the performance 

of MDE_𝑝BX as it emphasizes slight varies on these two parameters each time 𝐹 is 

generated.  

Crossover amplification factor ( 𝑝): Throughout evolution the value of parameter 𝑝 is 

reduced linearly in the following manner, 

 

𝑝 = 𝑐𝑒𝑖𝑙 [
𝑁𝑝

2
∙ (1 −

𝐺 − 1

𝐺𝑚𝑎𝑥
)] (3.37) 

 

where 𝑐𝑒𝑖𝑙(𝑦) is the “𝑐𝑒𝑖𝑙𝑖𝑛𝑔” function that outputs the smallest integer ≥ 𝑦. 𝐺 =

[1,2,3, …𝐺𝑚𝑎𝑥] is the running generation index, 𝐺𝑚𝑎𝑥 is the maximum number of 

generations, and 𝑁𝑝 is the population size. The reduction monotony of the parameter 𝑝 

creates the required balance between exploration and exploitation.  

 

 p-ADE Algorithm  

o Advanced p-ADE Mutation scheme  

   A new mutation strategy called  DE/rand-to-best/pbest/bin is used; which is, 

essentially, based on utilizing the best global solution and the best previous solution of 

each individual that are involved in the differential process, thus bringing in more 

effective  guidance  information to generate new individuals for the next generation. 

The detailed operation is as follows, 

 

  𝑣𝑖
𝑡 = 𝑊𝑖

𝑡 ∙  𝑥𝑟1
𝑡 +𝐾𝑖

𝑡  ∙ (𝑥𝑏𝑒𝑠𝑡
𝑡 − 𝑥𝑖

𝑡) + 𝐹𝑖
𝑡  ∙ (𝑥𝑝𝑏𝑒𝑠𝑡𝑖

𝑡 − 𝑥𝑖
𝑡) (3.38) 

 

where 𝑥𝑏𝑒𝑠𝑡
𝑡  denotes the best individual in the current generation 𝑡. 𝑥𝑟1

𝑡  is a random 
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generated individual where 𝑟1 ∈ [1, 𝑁𝑝] and 𝑟1 ≠ 𝑖. 𝑥𝑝𝑏𝑒𝑠𝑡𝑖
𝑡  denotes the best 𝑖𝑡ℎ’s 

previous individual picked up from the previous generation. The mutation’s control 

parameters 𝑊𝑖
𝑡,𝐾𝑖

𝑡, and 𝐹𝑖
𝑡 of the 𝑖𝑡ℎ individual are updated using a dynamic adaptive 

manner. The most remarkable merit of this mutation technique is the inclusion of three 

different working parts at the same time: 

 Inertial Part (Inheriting part) represented by 𝑊𝑖
𝑡 ∙  𝑥𝑟1

𝑡  where the current 

individual,𝑣𝑖
𝑡, inherits traits from another individual at generation 𝑡. 

 Social Part (Learning Part) represented by 𝐾𝑖
𝑡 ∙ (𝑥𝑏𝑒𝑠𝑡

𝑡 − 𝑥𝑖
𝑡) where the current 

individual,𝑣𝑖
𝑡, gains information from the superior individual in the current generation 

𝑡. 

 Cognitive Part (Private Thinking) represented by 𝐹𝑖
𝑡  ∙ (𝑥𝑝𝑏𝑒𝑠𝑡𝑖

𝑡 − 𝑥𝑖
𝑡)  where the 

current individual,𝑣𝑖
𝑡, reinforces its own perception through the evolution process.  

The high values of both the inertial and the cognitive part play a key role in intensifying 

the exploration searching space, thus improving its ability for finding the global 

solution. While the large values of the social part promotes connections among 

individuals, thus resulting to speed up the convergence rate. From the previous 

description of the main mechanism of 𝑝-ADE mutation scheme and the PSO standard 

perturbation scheme (Kennedy & Eberhart, 1995; Xin, Chen, Zhang, Fang, & Peng, 

2012), we can observe that they are closely related in origin, in particular, for the case 

where the mutation (see Equation 3.38) is divided into three learning parts in the same 

manner applied by PSO algorithm. In 𝑝-ADE there is an additional mechanism which is 

called classification mechanism. This classification mechanism is coupled with the 

mutation scheme to be implemented on the whole population at each generation. 

Accordingly, the new mechanism divides the population’s individuals into three classes: 
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Superior individuals: The first individuals’ category where the fitness values of these 

individuals fall in the range 𝑓𝑖 − 𝑓𝑚𝑒𝑎𝑛 < −𝐸(𝑓
2), where 𝑓𝑚𝑒𝑎𝑛 is the mean fitness 

values and  𝐸(𝑓2) is the second moment of the fitness values of all individuals in the 

current generation. In this case, the exploration ability of the search process is 

enhanced by further intensifying the inertial and cognitive parts in order to increase 

the likelihood of the excellent individual to find the global solution in its 

neighborhood area. So, the corresponding individual is generated as follows, 

 

 𝑣𝑖
𝑡 = 𝑊𝑖

𝑡 ∙  𝑥𝑟1
𝑡 + 𝐹𝑖

𝑡  ∙ (𝑥𝑝𝑏𝑒𝑠𝑡𝑖
𝑡 − 𝑥𝑖

𝑡)   (3.39) 

Inferior individuals: The second individuals’ category where the fitness values of 

these individuals fall in the range 𝑓𝑖 − 𝑓𝑚𝑒𝑎𝑛 > 𝐸(𝑓
2). The individual in this case has 

poor traits since its place in the search space is far away from the global optimum. 

Therefore, the exploration search ability is also intensified for rapid convergence 

rate. So, the corresponding individual is generated as follows, 

 

  𝑣𝑖
𝑡 = 𝑊𝑖

𝑡 ∙  𝑥𝑟1
𝑡 +𝐾𝑖

𝑡  ∙ (𝑥𝑏𝑒𝑠𝑡
𝑡 − 𝑥𝑖

𝑡) (3.40) 

 

Medium Individuals: The third individuals’ category where the fitness values of these 

individuals fall in the range −𝐸(𝑓2) < 𝑓𝑖 − 𝑓𝑚𝑒𝑎𝑛 < 𝐸(𝑓
2). The individuals in this 

category are not superior nor are they inferior; therefore, the complete perturbation 

scheme (see Equation 3.38) should be implemented entirely for further enhancing 

both the exploitation and exploration abilities.  

 

o p-ADE Parameter Control Schemes 

     p-ADE comprises four control parameters involved in the search process, including 

three mutation scheme parameters ( 𝑊, 𝐹 and 𝐾) and crossover rate 𝐶𝑅. A dynamic 
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adaptive scheme has been proposed to commonly update the four parameters through 

the run as follows, 

𝑊𝑖
𝑡 = 𝑊𝑚𝑖𝑛 + (𝑊𝑚𝑎𝑥 −𝑊𝑚𝑖𝑛)  × ((2 − 𝑒𝑥 𝑝 (

𝑡

𝐺𝑒𝑛
× 𝑙 𝑛(2))) ×

1

2
 

+
𝑓𝑖
𝑡 − 𝑓𝑚𝑖𝑛

𝑡

𝑓𝑚𝑎𝑥
𝑡 − 𝑓𝑚𝑖𝑛

𝑡 ×
1

2
 ) 

(3.41) 

𝐾𝑖
𝑡 = 𝐾𝑚𝑖𝑛 + (𝐾𝑚𝑎𝑥 − 𝐾𝑚𝑖𝑛)  × ((𝑒𝑥 𝑝 (

𝑡

𝐺𝑒𝑛
× 𝑙 𝑛(2)) − 1) ×

1

2
 

+
𝑓𝑖
𝑡 − 𝑓𝑚𝑖𝑛

𝑡

𝑓𝑚𝑎𝑥
𝑡 − 𝑓𝑚𝑖𝑛

𝑡 ×
1

2
 ) 

(3.42) 

𝐹𝑖
𝑡 = 𝐹𝑚𝑖𝑛 + (𝐹𝑚𝑎𝑥 − 𝐹𝑚𝑖𝑛)  × ((2 − 𝑒𝑥 𝑝 (

𝑡

𝐺𝑒𝑛
× 𝑙 𝑛(2))) ×

1

2
 

+
𝑓𝑚𝑎𝑥
𝑡 − 𝑓𝑖

𝑡

𝑓𝑚𝑎𝑥
𝑡 − 𝑓𝑚𝑖𝑛

𝑡 ×
1

2
 ) 

(3.43) 

𝐶𝑅𝑖
𝑡 = 𝐶𝑅𝑚𝑖𝑛 + (𝐶𝑅𝑚𝑎𝑥 − 𝐶𝑅𝑚𝑖𝑛) × ((2 − 𝑒𝑥 𝑝 (

𝑡

𝐺𝑒𝑛
× 𝑙 𝑛(2))) ×

1

2
 

+
𝑓𝑖
𝑡 − 𝑓𝑚𝑖𝑛

𝑡

𝑓𝑚𝑎𝑥
𝑡 − 𝑓𝑚𝑖𝑛

𝑡  ×
1

2
 ) 

(3.44) 

As can be seen from the above equations, the main adaptive scheme is equally captive 

to the influence of the number of generations achieved, as well as the fitness values. 

Technically, the value of each control parameter varies within its specified range as, 

𝑊 ∈ [0.1, 0.9], 𝐾 ∈ [0.3, 0.9], 𝐹 ∈ [0.3, 0.9] and 𝐶𝑅 ∈ [0.1, 0.9] during the run of the 

algorithm. Throughout the evolution process, the values of these parameters will 

gradually decreases; thereby transits the search from exploration to exploitation.  

 

3.4.2 DE with Adaptive Parameters and Multiple Strategies 

 

   In this subsection the main characteristics and mechanisms of four remarkable 

adaptive DE versions are stated in details, on the basis of parameter adaptive schemes 
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and multiple adaptive DE strategies.  

 

3.4.2.1 Adaptive DE with Multiple Standard Strategies  

 

 SaDE Algorithm   

o SaDE Strategies Adaptive  

   The main feature of SaDE is to automatically adapt multiple standard DE mutation 

strategies (DE/rand/1/bin; DE/rand-to-best/2/bin; DE/rand/2/bin; and DE/current-to-

rand/1 with no crossover) and update the corresponding control parameters during the 

evolution process using parameter, 𝑝𝑘(𝑘 = 1,2,3,4).  

Determine the probability of applying each candidate strategy to the current population 

(𝑝𝑘): Initially, the probabilities of applying each scheme, 𝑝𝑘
𝑡 , is set to 1/𝐾 so as to 

assign an equally likely probability for all strategies. Then, the probability of applying 

each strategy is then updated every 50 generations in the following manner,  

𝑝𝑘
𝑡 =

𝑆𝑘
𝑇

∑ 𝑆𝑘
𝑇𝐾

𝑘=1

 (3.45) 

where 

𝑆𝑘
𝑡 =

∑ 𝑛𝑠𝑘
𝑡𝑇−1

𝑡=𝑇−𝐿𝑃

∑ 𝑛𝑠𝑘
𝑡 + ∑ 𝑛𝑓𝑘

𝑡𝑇−1
𝑡=𝑇−𝐿𝑃

𝑇−1
𝑡=𝑇−𝐿𝑃

+ 𝜀,     𝑓𝑜𝑟 𝑘 = 1,2, … , 𝐾;  𝑇 > 𝐿𝑃 

where 𝐾 is the number of strategies available for perturbation. 𝐿𝑃 is the period assigned 

for learning in which the learning process is activated only when 𝑇 > 𝐿𝑃; in the current 

study it has been set to 50 generations. 𝑛𝑠𝑘
𝑡  (Success Memory) and 𝑛𝑓𝑘

𝑡 (Failure 

Memory) are both memories generated by the 𝑘𝑡ℎ strategy and used to record the 

number of trial vectors that have been succeeded or failed to enter the search process 

respectively. 𝜀 = 0.001 this small value is added to avoid the possibility of the null rate 

of success.  Once these memories’ sizes reach to a certain threshold, i.e. after 𝐿𝑃 
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iterations, all previous records will be eliminated from these memories, i.e. 𝑛𝑠𝑇−𝐿𝑃 and 

𝑛𝑓𝑇−𝐿𝑃 in order to allow those vectors that are generated in the current iteration to be 

stored. Finally, 𝑆𝑘
𝑇 is divided by ∑ 𝑆𝑘

𝑇𝐾
𝑘=1  to guarantee that the resultant 𝑝𝑘

𝑡  is always 

summed to 1.  

 

o SaDE Parameters Control Schemes   

      Set the mutation factor 𝐹𝑖 values to be independently generated at each generation 

according to Gaussian distribution with mean 0.5 and standard deviation 0.3 as follows, 

 

𝐹𝑖 = 𝑟𝑎𝑛𝑑𝑛(0.5,0.3) (3.46) 

Accordingly, both the local (with small 𝐹𝑖 values) and global (with large 𝐹𝑖 values) 

search ability will be kept throughout the evolutionary process, hence to generate, good 

mutant vectors.  

Crossover Probability (𝐶𝑅𝑖) and the Mean Crossover Probability Distribution (𝐶𝑅𝑚): 

The strategy of controlling the crossover probability 𝐶𝑅 is an adaptive learning based. It 

starts with independently generating crossover probabilities 𝐶𝑅𝑖 under Gaussian 

distribution with mean 𝐶𝑅𝑚 and standard deviation 0.1 as follows,  

 

𝐶𝑅𝑖 = 𝑟𝑎𝑛𝑑𝑛(𝐶𝑅𝑚, 0.1)   (3.47) 

The 𝐶𝑅𝑖 values will remain fixed for 5 generations before the next generation has 

launched. Throughout these generations 𝐶𝑅𝑖 values that are associated with successful 

trial vectors are recorded. While the value of the median,𝐶𝑅𝑚, is first initialized to 0.5, 

then updated every 25 generations based on the successful 𝐶𝑅𝑖 values,  
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𝐶𝑅𝑚 =
1

𝐾
 ∑ 𝐶𝑅𝑠𝑢𝑐(𝑘),
𝐾
𝑘=1     (3.48) 

where 𝐾 denotes the number of successful 𝐶𝑅𝑖 values accumulated over 25 generations 

and 𝐶𝑅𝑠𝑢𝑐 is the 𝑘𝑡ℎ 𝐶𝑅 successful value.  

 

 

 EPSDE Algorithm  

o EPSDE Parameters Control Schemes and Strategies  

   EPSDE is unlike other adaptive DE variants, it is an ensemble of mutation strategies 

and parameter values of DE. EPSDE does not involve certain equation to modify the 

values of the control parameters, but rather it assigns for each member of the initial 

population a mutation strategy randomly selected from a pool of mutation strategies 

with diverse characteristics, and randomly takes values for the associated parameter 

from a pool of values.  Throughout evolution, the population members that produce 

individuals better than the target vectors, their mutation strategies and associated 

parameter values retained for the next generation, while those fail to produce better 

individuals are reinitialized with a new mutation strategy and associated parameter 

values from the respective pools or from the successful combinations stored with equal 

probability. In EPSDE, there are two pools: 

   Pool of mutation strategies: this pool includes the DE strategies that are involved in 

the evolution. These strategies have been selected with diverse characteristics:  

1. Strategies rely on the best individual in the current population, DE/best/2/bin. 

2. Strategies which bear stronger exploration capabilities, DE/rand/1/bin. 

3. Strategies being rotational invariant without crossover DE/current-to-rand/1.  

   Pool of parameter control values: in this pool the three crucial parameter values (𝐹 

and 𝐶𝑅) are set to different ranges. The pool of 𝐶𝑅 values is taken in the range 0.1 −

0.9 in steps of 0.1. The pool of 𝐹 values is taken in the range 0.4 − 0.9 in steps of 0.1.  
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3.4.2.2 Adaptive DE with Multiple Advanced Strategies  

 

 SaDE-MMTS Algorithm  

     SaDE-MMTS has been proposed to enhance the performance of the standard SaDE 

algorithm; by incorporating SaDE with the JADE mutation strategy (JADEw) and 

integrating it with the modified multi-trajectory algorithm (MMTS), in order to solve 

problems with complex characteristics and high dimensionality. This integration can be 

encapsulated into three main parts: SaDE-MMTS = JADE mutation scheme + SaDE 

algorithm + MMTS method (Local Search), as follows: 

 

o SaDE-MMTS Advanced Adaptive DE Strategies   

     JADE mutation strategy with external archive (JADEw) as in Equation 3.23 is 

adopted and engaged with three crossover operators (binomial and exponential), and no 

crossover option as well, to generate the trail vectors for the new population. Hence, the 

expected number of perturbation strategies is three and they are applied according to the 

strategy probability, as in the SaDE algorithm. The selection of the mutation strategy is 

according to the probability, 𝑝𝑘
𝑡 , of applying each JADE with archive strategy in the 

current population (see Equation 3.45).  

 

o SaDE Parameters Control Schemes  

    The control parameters 𝐹 and 𝐶𝑅 are updated through the evolution process in the 

same manner used in SaDE (see Equations 3.46-3.47).  

 

o MMTS method 

      The original MTS (Tseng & Chen, 2007, 2008) algorithm is first proposed to solve 

large scale global optimization problems. The main underlying idea of this algorithm is 
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the employment of randomly selected search combinations (i.e. agents) uniformly 

distributed over the whole search space to seek out for better solutions. Each 

combination applies one of three candidate local search methods that is better fit the 

search space characteristics of a solution’s neighborhoods; these combinations are 

generated using the basic orthogonal array 𝑂𝐴𝑛×𝑘 where 𝑛 is the number of testing 

experiments and 𝑘 is the number of factors in each experiment.  

 

 SaM 

     SaM is a strategy adaptation mechanism that can be integrated with any DE variant 

to make it strategy adaptive. SaM creates a pool of strategies and selects the candidate 

strategy to be applied on the running individual 𝑋𝑖 from this pool according to Equation 

3.49, 

  𝑆𝑖 = ⌊𝜂𝑖 × 𝐾⌋ + 1  (3.49) 

where 𝜂𝑖  ∈ [0,1) is a strategy parameter control variable. 𝐾 is the total number of 

strategies in the pool and 𝑆𝑖 = 1,2, … , 𝐾 the selected DE strategy. For example, suppose 

𝐾 = 4 and at a certain generation 𝜂𝑖  ∈ [0,0.25), then based on the calculation of 

Equation 3.49 the value of  𝑆𝑖 is 1.  

SaM has suggested three approaches to update the value of 𝜂𝑖 during evolution. In this 

study, the first approach has been considered which is inspired by the parameter 

adaptation equation of JADE. For each individual 𝑋𝑖 at generation 𝑡, a new value for 𝜂𝑖 

is generated as, 

  𝜂𝑖 = {
𝑟𝑎𝑛𝑑𝑛𝑖 (𝜇𝑠,

1

6
) ,          𝑡 = 1

𝑟𝑎𝑛𝑑𝑛𝑖(𝜇𝑠, 0.1),   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

(3.50) 

 

where 𝑟𝑎𝑛𝑑𝑛𝑖(𝜇𝑠, 0.1) indicates a normal random distribution of mean 𝜇𝑠 and standard 
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deviation 0.1. The mean 𝜇𝑠 is initialized to be 0.5 and then updated at the end of each 

generation in the same adaptation equation used in JADE (see Equation 3.29) as 

follows: 

 

  𝜇𝑠 = (1 − 𝑐) × 𝜇𝑠 + 𝑐 ×𝑚𝑒𝑎𝑛𝐴(𝐻𝑠)  (3.51) 

where 𝐻𝑠denotes as the set of all successful DE strategy parameters 𝜂𝑖’s at generation 𝑡.   

SaM mechanism has been applied on JADE strategies to create a new approach called 

SaJADE. SaJADE employed a pool of different JADE strategies: (1) DE/current-to-

pBest/1/bin with no archive; (2) DE/current-to-pBest/1/bin with archive; (3) DE/rand-

to-pBest/1/bin with no archive; (4) DE/rand-to-pBest/1/bin with archive. The parameter 

adaptive equations used to update the values of 𝐹𝑖 and 𝐶𝑅𝑖 are also JADE schemes as in 

Equations 3.25-3.29. In SaJADE, assigning the parameter adaptive scheme to update 𝐹𝑖 

and 𝐶𝑅𝑖 is fixed and determined for each DE strategy. For updating the value of 𝐶𝑅𝑖, all 

the strategies use Equation 3.28. The difference is in updating the value of 𝐹𝑖 in which 

the strategies 1 and 3 use Equation 3.25; whereas strategies 2 and 4 use a modified 

version of Equation 3.25 which is normal distribution as follows, 

 

  𝐹𝑖 = 𝑟𝑎𝑛𝑑𝑛𝑖(𝜇𝐹, 0.1)  (3.52) 

3.4.3 Adaptive DE Comparisons    

       Ten adaptive DE algorithms have been presented in the previous subsections. These 

algorithms clearly exhibit diversity in terms of characteristic, structure, complexity, and 

algorithmic logic. Beside their advantages, these algorithms also show some 

shortcomings in particular cases. In this subsection, comparisons have been established 

among these methods based on their conceptual similarities and differences, and pros 
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and cons of each algorithm.    

   

3.4.3.1 Adaptive DE Conceptual Similarities and Differences  

    In this subsection, we discuss how the aforementioned methods relate and differ from 

each other and from the standard DE algorithm based on mutation strategy and 

parameter control schemes used in each algorithm.  

 

 Comparison Based DE Mutation Scheme   

       The ten algorithms presented under this comparison differ in their mutation 

strategies, as can be seen in Table 3.2, which gives a summary of the mutation schemes 

employed in each algorithm. All the algorithms adopt the classical crossover (𝑏𝑖𝑛) and 

selection operations in their main work, except DESAP which uses a modified crossover 

scheme similar to that of DE/rand/1 mutation scheme and MDE_𝑝BX which uses a new 

modified crossover scheme called 𝑝-Best; while both SaDE, EPSDE and SaJADE 

invent new adaptive schemes that can make a selection among a pool of candidate 

mutation schemes. SaDE-MMTS uses three crossover aspects (binomial, exponential, 

and no crossover). SaDE-MMTS creates a pool of DE strategies to automatically adapt 

one of them. 

 

 Comparison Based DE Parameter Control Schemes  

      The comparison in this subsection is based on the parameter setting taxonomy 

explained in Section 3.2. Table 3.3, elucidates the main features of the adaptation 

scheme being used to control the main four parameters (𝐹, 𝐶𝑅, 𝑁𝑝 and 𝑡) in the eleven 

adaptive DE variants. This table shows how the concept of adaptive has revealed by 

applying an adaptive rule to at least one of the algorithm component. From the same 
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table we can see that none of the algorithms has adapted the number of generations’ 

parameter, 𝑡 and none of them has also considered adapting the population size 

parameter, 𝑁𝑝 except DESAP algorithm. The main focus was only on 𝐹 and 𝐶𝑅.  

 

 

3.4.3.2 Adaptive DE Strengthens and Drawbacks  

     In this subsection, conceptual strengthens and drawbacks of each of the ten 

algorithms have been discussed in terms of modifying the main DE strategies, and the 

additional components that have been added to the original DE algorithm and function 

as adaptive features. It is clear that all the modifications and integrations proposed tend 

to include extra moves to the original DE, as well as create the proper balancing 

between the exploitation and exploration characteristics. However, there are also some 

drawbacks need to be considered.  

 

 Comparison Based DE Mutation Strategy   

       In this subsection the ten DE algorithms have been compared based on the mutation 

scheme used in each algorithm. Table 3.4 and Table 3.5 illustrate the algorithms 

comparison.   

 

 Comparison Based DE Parameter Control Schemes    

        Table 3.6 and Table 3.7, elucidate the points of strengthens and drawbacks of the 

adaptation scheme being used to control the main four parameters (𝐹, 𝐶𝑅, 𝑁𝑝 and 𝑡) in 

the ten DE variants. From the two tables we can see that there are some common pros 

and cons among certain algorithms. This is due to the fact that they use the same 

adaptation scheme.  
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7
4
 

 

 

 

 

         

  

                 Table 3.2: A summary of the type of mutation strategies used in the ten adaptive DE algorithms   

 

Algorithm Mutation Scheme Main Feature of the Scheme Base Scheme 

FADE DE/rand/1 Fixed DE/rand/1 

JADE wo DE/current-to-𝑝best/1 Utilization of the 100𝑝% best solutions DE/current-to-best/1 

JADE w archive DE/current-to-𝑝best/1 w archive  
Utilization of the 100𝑝% best solutions and the 𝐴 

inferior solutions 
DE/current-to-𝑝best/1  

MDE_𝑝BX DE/current-to-𝑔𝑟𝑏𝑒𝑠𝑡/1  
Utilization of the best individual selected from 

𝑞% group of individuals 
DE/current-to-𝑝best/1 

SaDE Pool of standard DE strategies Adaptive PCB among the schemes 
DE/rand/1; DE/rand/2; DE/current-to-rand/1; 

DE/rand-to-best/1 

jDE DE/rand/1 Fixed DE/rand/1 

DESAP (non-DE standard scheme) With deterministic mutation probability updates Simple Perturbation Scheme 

p-ADE DE/rand-to-best/𝑝best Adaptive Dynamic Structure PSO Standard Scheme 

SaJADE Pool of advanced DE strategies Adaptive LPB among the schemes 
DE/current-to-𝑝best/1 wo; DE/rand-to-𝑝best/1 wo; 

DE/current-to-𝑝best/1 w; DE/rand-to-𝑝best/1 w; 

SaDE-MMTS 
Pool of DE/current-to-𝑝best/1 w 

merged with two crossover schemes 

and no crossover 

 

Adaptive PCB among the schemes DE/current-to-𝑝best/1 w 

EPSDE Pool of standard DE strategies Deterministic/ Partial-predetermined 

DE/best/1; DE/best/2; DE/rand-to-best/1; DE/rand-

to-best/2; DE/rand/1; DE/rand/2; DE/current-to-

rand/1  

 

             Note:         LPB: Learning Process Based      PCB: Progressive-Controlled Based    EPB: Evolution Process Based 
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7
5
 

 

 

 

 

 

     Table 3.3: This table encompasses taxonomy of the adaptation scheme used to update the main control parameters in the ten  

                                                                               adaptive DE algorithms 

Algorithm Name 

Parameter control strategies based taxonomy  

𝑵𝒑 𝑭 𝑪𝑹 𝒕 

Type of Setting Type of Evidence Type of  Setting Type of 

Evidence 

Type of  Setting Type of 

Evidence 

Type of  Setting Type of 

Evidence 

FADE Tuned × Adaptive/PCB  Absolute Adaptive /PCB Absolute Tuned × 

JADE wo Tuned × Adaptive/ LPB  Relative Adaptive/ LPB Relative Tuned × 

JADE w  Tuned × Adaptive/ LPB Relative Adaptive/ LPB Relative Tuned × 

MDE_𝑝BX Tuned × Adaptive/ LPB Relative Adaptive/ LPB Relative Tuned × 

SaDE Tuned × 
Deterministic/ 

Partial-predetermined 
Absolute Adaptive/ LPB Relative Tuned × 

jDE Tuned × Self-adaptive/EPB  Relative  
Self-adaptive/ 

EPB 
Relative Tuned × 

DESAP Self-adaptive/ EPB Relative  
Self-adaptive/ 

EPB 
Relative 

Self-adaptive/ 

EPB  
Relative  Tuned × 

𝑝-ADE Tuned × Adaptive/ LPB Relative Adaptive/ LPB Relative Tuned × 

SaDE-MMTS Tuned × 
Deterministic/ 

Partial-predetermined 
Absolute Adaptive/ LPB Relative Tuned × 

EPSDE  Tuned × 
Deterministic/ 

Partial-predetermined 
Absolute    

Deterministic/ 

Partial-

predetermined 

Absolute    Tuned × 

SaJADE Tuned × Adaptive/ LPB  Relative Adaptive/ LPB Relative Tuned × 

 

               Note:         LPB: Learning Process Based      PCB: Progressive-Controlled Based    EPB: Evolution Process Based
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Table 3.4: DE algorithms points of strengthens based on mutation strategy 

 

Algorithm 

 

 

Strengthens of the DE Mutation 

 

JADE  

 

Alleviate the problem of premature convergence because of its ability to 

intensify the population diversity.  

 

 

 

JADE with archive 

 

 

 Increase the population diversity as such the problem stem from the 

convergence rate was further reduced. This is so because, the superior 

and inferior solutions are both incorporated into the mutation strategy.  

 No significant computational overhead as the archive operation has 

been made very simple. 

 

 

𝑝-ADE 

 

The ability to be dynamically changed to three different schemes according 

to the classification conditions upon the individuals’ quality that are located 

in the same population.   

 

 

 

MDE_𝑝BX 

  

It weaknesses the tendency of premature convergence and alleviates the 

attraction of any fixed point in the fitness landscape. This small 

modification has led to reduce the greediness feature of the DE mutation 

scheme towards choosing the superior solutions for perturbation and making 

it converges fast to a local point.  

 

 

DESAP 

 

No significant improvements over the standard DE. 

 

 

 

SaDE; 

SaDE-MMTS; 

SaJADE 

 

 

A learning strategy has been applied to gradually evolve the selection of one 

mutation scheme from a pool of mutation schemes in hand throughout 

generations. This characteristic allows further improvements in the DE 

moves, thus increasing the exploitation features of the algorithm. This 

learning strategy affords flexibility to be extended to include more candidate 

mutation schemes in an attempt to solve complex optimization problems. 

 

 

EPSDE 

 

The selection of the mutation strategies is made randomly from a pool of 

mutations with different characteristics to avoid the influence of less 

effective mutation strategies. 

 

 

FADE;  

jDE 

 

The standard DE/rand/1 scheme is always considered as the fastest non 

greedy scheme with good convergence performance.  
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Table 3.5: DE algorithms drawbacks based on mutation strategy 

 

Algorithm 

 

 

Drawbacks of the DE mutation 

 

JADE; 

JADE with archive; 

SaDE-MMTS; 

SaJADE 

 

Stagnation  

The population selective factor, 𝑝, is tuned before the run and kept fixed 

during the evolution process. This strategy might lead to stagnation 

problem especially after several epochs of evolution when the population 

diversity rate is very low and the superior solutions in the 𝑝% of the 

current population start to be close in values if not exactly same.  

𝑝-ADE 

 

Local optimum caused by greedy mutation  

Selecting the best solutions from the previous and current population may 

lead the new strategy become greedier toward good solutions, thus 

running the risk of falling into local optimum. 

MDE_𝑝BX 

 

Lack of strategy and parameter analysis & 

Crossover greediness tendency  

 The influence of the new mutation scheme on the diversity of 

population and convergence rate is not investigated.  

 The greediness of the new crossover scheme towards superior solutions 

and the associated parameter, 𝑝 of the top-ranking vectors, is fixed 

during the run.  This may lead to premature convergence problem.   

DESAP 

 

Lack of Exploitation and Exploration Ability 

The new crossover and mutation operations are simple and 

straightforward schemes, they did not bring about the desired performance 

and DESAP outperform the standard DE in only one out of five test 

problems.  

FADE;  

jDE; 

 

Lack of Population diversity  

This problem will arise in optimizing high dimensional functions and also 

when the characteristic of the test problem is challenging.  
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Table 3.6: DE algorithms points of strengthens based on parameter control schemes 

 

Algorithm 

 

Strengthens of Parameter Control Schemes 

 

 

 

JADE; 

JADE with archive; 

SaJADE 

 

 Adjusting the values of 𝐹 and 𝐶𝑅 in an adaptive characteristic based on 

a learning strategy that gains knowledge from previous iterations and 

cumulates it into two learning parameters, 𝜇𝐹 and 𝜇𝐶𝑅 to be retained and 

used in the current population. 

 Create the proper balance in maintaining the pressure on the population 

to move towards exploring more optimal solutions, as well as not to lose 

the exploitation features. 

 

 

 

𝑝-ADE 

 Possess a unique merit over other adaptive DE algorithms by involving 

the number of iterations passed over and the fitness value in the 

updating process; for the sake of accelerating the convergence rate,  

 Creating the required balance between the exploitation and exploration 

features. This has been achieved through selecting the best values for the 

control parameters 𝑊, 𝐾, 𝐹, and 𝐶𝑅.   

 

 

 

MDE_𝑝BX 

Modifies the original JADE scheme of adapting the values of 𝐹 and 𝐶𝑅. The 

new modifications to the control parameters schemes with the combination of 

the new mutation and crossover schemes in MDE_𝑝BX have greatly 

increased the ability of exploitation and exploration, and the search process is 

directed to explore better search space regions, hence, escaping from the 

possibility of getting trapped in suboptimal solutions. 

 

 

DESAP  The first attempt to demonstrate the possibility to produce an adaptive 

algorithm that not only updates the crossover and mutation rates but also 

the population size parameter as well.  

 Downsize DE parameters’ setting by updating the population size and 

other control parameters in an adaptive manner. 

 

FADE  The first attempt in using Fuzzy Control in DE parameter settings for the 

sake of reducing the user load from parameter tuning.  

 Possess robustness and fuzziness with problems in an imprecise 

environment 

 

SaDE ; 

SaDE-MMTS 
Utilizes an adaptive learning strategy to adjust the crossover rate and mutation 

rate during the search process. 

 

jDE Adjust both 𝐹 and 𝐶𝑅 in a self-adaptive manner with few additional 

parameters. 

 

EPSDE  The selection of the mutation and crossover parameter values is made 

randomly from a pool of values to avoid the influence of less effective 

parameter settings. 
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Table 3.7: DE algorithms drawbacks based on parameter control schemes 

Algorithm 

 

Drawbacks of Parameter Control Schemes 

 

 

 

JADE; 

JADE with archive; 

SaJADE 

  

 

Problem-dependent parameter selection 

The parameters 𝑐 and 𝑝 determine the adaptation rate of 𝜇𝐶𝑅 and 𝜇𝐹 and the 

greediness of the mutation strategy are kept fixed during the run. These two 

parameters have the ability to affect the overall performance of JADE 

mutation. 

 

 

 

𝑝-ADE 

 

Time Consumption   

All of the four parameters (𝑊, 𝐾, 𝐹, and 𝐶𝑅) should be adjusted through the 

run, simultaneously with adjusting the mutation scheme. This may require 

increasing the number of iterations needed to achieve the optimal solution.    

 

 

 

 

MDE_𝑝BX 

 

Lack of theoretical guidelines  

There are two additional control parameters 𝑞 (the group size in the mutation 

operation) and 𝑝 (the number of the top-ranking vectors in the crossover 

operation). These parameters bring about the effect to the performance of the 

mutation and crossover, since both parameters were set to fixed values.   

 

 

 

 

 

DESAP 

 

Lack of Population diversity  

 It outperforms the standard DE over five test functions only.  

 It was found that both DESAP’s versions yielded highly similar results 

in terms of the best solution obtained; although, in providing more 

stability DESAP with absolute encoding was more favorable than 

DESAP with relative encoding.  

 

 

 

FADE 

 

Lack of Algorithm Performance Analysis 

It does not involve any relative consideration for the individual fitness value 

only absolute based on the knowledge gained from the fuzzy controller.   

 

 

 

 

SaDE;  

SaDE-MMTS 

 

Deterministic evidence rule for updating the mutation factor 

 The mutation factor, 𝐹, is updated through a deterministic rule based, 

though, it has been set to different random values through the evolution 

process.  

 It introduces additional learning parameters such as 𝑛𝑠 and 𝑛𝑓 to steer 

both learning strategies, thus making the algorithm cumbersome with too 

many parameters. 

 

 

 

 

jDE 

 

Lack of balance between the exploitation and exploration  

There is a weakness in the relative consideration of the individual fitness 

value since the values of 𝐹 and 𝐶𝑅 are selected according to the best fitness 

picked up from the current generation only, then updated according to a 

uniform distribution. This may lead the jDE’s moves to be biased towards 

exploration. 
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Table 3.7- Continued  
  

 

Algorithm 

 

Drawbacks of Parameter Control Schemes 

 

 

 

 

 

 

EPSDE  

 

Local Optima  

The procedure of adjusting the control parameter values is mostly 

implemented in a random way. There is no accumulating knowledge through 

the evolution and the parameter value that produce inferior solution will be 

reinitialized at the same generation. This procedure in conjunction with the 

random selection of the mutation scheme will in some cases divert the 

population to a wrong direction of the search space and fall in local optima if 

the algorithm fails to select the appropriate parameter values and scheme.   

 

 

 

3.4.3.3 Discussion and Conclusion  

   From this extensive review, we found two main points which are: 

1)  Review and analysis study on adaptive DE 

      Although few significant review studies on DE have been written, no extensive 

review or analysis study on adaptive DE has been published to date only the study of 

Chiang, Chen, and Lin (2013). Das and Suganthan (2011) published a comprehensive 

survey article that addresses general issues concerning DE research and the survey of 

Neri and Tirronen (2010) who presented a number of well-known DE versions of 

different characteristics in a classification format.  

For this reason, this chapter (Chapter 3) has been devoted to present a thorough review 

and analysis concerning the parameter settings of EAs and provide a new parameter 

settings’ classification. In this review, DE has been selected as an EA example to apply 

this classification on its adaptive versions. Then a new taxonomy on adaptive DE 

algorithms is also presented.   

 

2)  No DE algorithm applies the selection of different parameters adaptive 

schemes 

       Although many DEs with different adaptive characteristics have been discovered 
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through this review, no algorithm has yet been discovered that applies the selection of 

different parameter adaptive schemes through optimization besides adapting the DE 

strategies. For instance, the adaptive DE algorithms (jDE; SaDE; DESAP; JADE; 

SaDE-MMTS; MDE_pBX) have applied two parameter control strategies; one to update 

𝐹 value and another strategy to update 𝐶𝑅 value, except FADE, p-ADE which uses the 

same strategy to update 𝐹 and 𝐶𝑅. The adaptive DE algorithms (EPSDE; CoDE; 

HSPEADE) apply no adaptive schemes but rather the control parameters as well as the 

DE strategies have been selected as combinations from either the pool of successful 

combinations or from the initial pool based on the situation. The only adaptive DE 

algorithm that suggests using different parameter adaptive schemes is SaM (SaJADE). 

In SaJADE, each DE strategy has been assigned with certain selected parameter 

adaptive schemes as it may perform the best with this strategy, however, this selection 

has been predetermined before the run. Moreover, the integration with local search 

methods is limited to SaDE-MMTS as it can be observed from the review.  

    Figure 3.5 depicts an estimated rank of the aforementioned algorithms based on the 

experimental results (Mean ± STD) presented in their corresponding articles. The 

distinct layers in the figure refers that the DE algorithms in the same layer have almost 

equal performance. The sold arrow indicates that the algorithm in the source node has 

inherited the mutation strategy from the destination node. The intermittent line refers to 

the DE algorithms with less performance than their corresponding DE algorithm in the 

source node. The figure shows that, generally, the adaptive DE algorithms with multiple 

DE strategies such as ESPSDE and with single advanced DE strategy such as 

MDE_pBX always have the best performance over other algorithms. Then the superior 

performance is for the adaptive DE algorithms that employee both multiple and 

advanced DE strategies, such as HSPEADE and SaJADE. 
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    Moreover, it has also been found that the use of different parameter adaptive schemes 

such as in SaJADE has no less effect as applying multiple DE strategies to improve the 

search process of DE. In the case of multimodal problems with high dimensionality, the 

algorithm may require different steps size during the search process to escape from the 

local optima and speed up the convergence rate. It has also been found that applying 

different parameter adaptive schemes induces the population diversity.  

In addition, it has already been proved by the No Free Launch Theorem that the quest 

for good EA is lost a priori and the integration of the different characteristics of two or 

more algorithms will serve the search process.   

     For this reason, a new version of adaptive DE called ARDE-SPX is proposed in 

(Chapter 4). In this algorithm, a repository of different advanced DE strategies and 

parameter adaptive schemes for 𝐹 and 𝐶𝑅 has been created. The selection among the 

combinations of the DE strategies and the adaptive parameters schemes from the 

repository is implemented based on the fitness values of their corresponding trial 

vectors. Moreover, the ARDE has been integrated with the local search method (SPX 

crossover) to further improve its performance.  
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Figure 3.5: An estimated rank of the adaptive DE algorithms based on their recorded 

experimental results  

 

 

 



84 

 3.5 Summary  

   This chapter is designed from the ground up to support the issue of EAs parameter 

control values represented by, 

1)  New extended EA parameter setting taxonomy has been proposed to eliminate 

any confusion related to identify the type of the scheme used to control the 

algorithm’s parameters.  This problem has been overlooked by many previous 

related studies. For example, in literature many algorithms have been defined 

as “self-adaptive” algorithms, although their own parameters do not undergo 

mutation and crossover during the evolution process, thus their schemes should 

be considered under the definition of “adaptive” algorithms. The new extended 

EA parameter setting taxonomy has been applied to multiple adaptive DE 

algorithms in specific, as an example to convey the main purpose of this 

taxonomy. 

2) A comprehensive procedural analysis study has been established on these 

algorithms to elucidate the conceptual similarities and differences among them, 

the pros and cons of the adaptive schemes, as well as proposed solutions. In 

addition, the study has been extended to involve the DE mutation schemes 

employed by each method.  

   Finally, based on the review study presented in this chapter and to tackle some of the 

limitations in other adaptive DE algorithms, Chapter 4 presents a new adaptive DE 

algorithm that automatically tunes the mutation and crossover strategies, and the 

parameters control schemes of 𝐹 and 𝐶𝑅 using a simple and efficient mechanism.  
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CHAPTER 4 

 

 

DIFFERENTIAL EVOLUTION WITH ADAPTIVE REPOSITORY OF 

STRATEGIES AND PARAMETER CONTROL SCHEMES INTEGRATED 

WITH LOCAL SEARCH METHOD 

 

 

4.1 Introduction  

      Throughout literature, the adaptive (or self-adaptive) parameters of DEs have shown 

tremendous successful performance in solving different types of optimization problems 

and overcome the problem of the tedious and time-consuming manual (or tuning) 

settings. Moreover, it has also been proved that the use of multiple DE strategies besides 

the adaptive parameters of the algorithm will make DE algorithm more efficient.  

    In this chapter, a new adaptive DE algorithm named ARDE-SPX is presented. In 

ARDE, the DE strategies as well as the parameters adaptation schemes of the mutation 

factor 𝐹 and crossover rate 𝐶𝑅 are evolved through the run using a new adaptive 

mechanism. The ARDE has also been integrated with a local search technique called 

SPX-crossover to further increase its performance. Additionally, and in order not to 

overlook the general rudiments of how to build an adaptive EA, the first section of this 

chapter has been devoted for this purpose.   

 

4.2 General Steps to an Adaptive EA  

     Attention must be paid to the general steps that are required to integrate any 

proposed EA into the adaptation of parameter control concept; these steps are listed 

below. However, we should consider the different aspects of EAs in both informal and 

formal languages before going through these steps. This constitutes the various 

components of an EA, including selection, recombination, mutation, and survival 
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operators. The steps are as follows:  

Step1 (Individual Encoding and Population Representation): A population is a set or 

array of individuals or chromosomes, where 𝑝𝑜𝑝𝑠𝑖𝑧𝑒 refers to the number of individuals 

in each generation. We have to encode the information required for the problem analysis 

in the chromosome structure. Each chromosome should represent a complete solution to 

the problem at hand. Altogether, these parameters are called solution parameters. 

Additionally, if we intend to work on self-adaptive algorithm, the chromosome should 

implicitly include the encoding of the control parameter(s) (i.e., strategy parameter) to 

undergo evolution via recombination and mutation. Including this parameter requires 

considering an intelligent decision in such a way that better parameter values tend to 

produce better individuals (i.e., solutions) with the highest chance to survive and 

propagate for more off-springs.  

Step 2 (Chromosome Evaluation):  The definition of the fitness function is crucially 

important for a successful application. The fitness of each chromosome must be 

evaluated in any evolutionary algorithm. Many standard fitness functions can be used to 

test any proposed EA method. Stating the fitness function as minimization with or 

without constraints is more natural than that as maximization of some utility objectives 

throughout many problems; however, the result depends on the type of problem or 

application at hand.  

Step 3 (Chromosome Operations):  An important step in using EA is changing the 

candidate solutions to diversify the population with new solutions. Exploration and 

exploitation are the two cornerstones of problem solving by search. Proper balance must 

be achieved between exploration (i.e., to cover sufficiently the solution space seeking 

out for good solutions) and exploitation (i.e., refining the solutions by combining 

information gathered from good ones during the exploration phase) to achieve a 

successful evolution. Moreover, diversity maintenance is important to prevent 
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premature convergence and serves as a motivation to study and provide sufficient 

exploration and exploitation techniques to be incorporated into the main paradigm of 

EA. The main evolution operators that should be understood thoroughly and applied 

well are the following: selection, recombination, mutation, and survival operators. 

Step 4 (Stopping Criteria):  The most common stopping condition used in the literature 

is allowing the algorithm to run to a maximum number of iterations. A small number of 

iterations may not offer enough time for the algorithm to attain an optimum, especially 

when the search space is large. By contrast, nothing is gained from a very large number 

of iterations once the optimum solution is reached. In general, the product of the 

maximum number of iterations allowed and swarm size indicates the number of 

particles required to be evaluated by the EA algorithm.  

Step 5 (Investigate the Influence of Different Parameters of EA):  This step includes 

the following:  

 Population size (𝑝𝑜𝑝𝑠𝑖𝑧𝑒). Draw the effect of  𝑝𝑜𝑝𝑠𝑖𝑧𝑒 on the population diversity 

and performance of the proposed EA, and determine whether increasing the size of 

the population may prevent or, at least, reduce the chance of the algorithm to be 

trapped in a local minimum. 

  Selection and perturbation operators (recombination and mutation) with various 

qualitative and quantitative parameter settings. The type of parameter control 

settings to be adopted (i.e., deterministic, adaptive, and/or self-adaptive), change 

evidence, parameter(s), and method or approach to be applied should be determined 

in advance.  

  Scope of change. The scope of change can be at the gene, individual, or whole 

population level and it must be determined.  

 Termination criteria and number of EA generations 
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Step 6 (Experimental Results):  This step is performed to reach twofold goals. First, 

experimental results should be evaluated with various test problems to show the 

accuracy and efficiency of the proposed methods. Second, the relative performance of 

the proposed methods should be evaluated both in qualitative and/or quantitative terms 

when compared with other well-known state-of-the-art algorithms and reported when 

applied to the same test problem or application. The influences of different versions, 

components, and parameters of EA on performance in all these experiments must be 

investigated, analyzed, and reported.  

 

4.3 Adaptive Repository of DE Strategies and Parameters Control Schemes 

Integrated with SPX-Crossover (ARDE-SPX) 

     The idea of ARDE-SPX has been motivated by the prolonged experimental 

observations that different optimization problems require different mutation strategies 

with different parameter values depending on the problem characteristic (uni-model and 

muli-model). Basically, the proposed ARDE algorithm makes use of the JADE mutation 

strategies and the MDE_pBX parameters adaptive schemes of 𝐹 and 𝐶𝑅 as frameworks. 

Then a new adaptive procedure has been developed to select the appropriate 

combinations of the JADE strategies and the parameter control schemes to generate the 

next generation. Moreover, the hill climbing simplex crossover (SPX) has been adopted 

as a local search (LS) engine. SPX is an interesting technique and according to the 

recorded results in (Noman & Iba, 2008) it shows a promising ability to improve the 

performance of the DE algorithm. Based on this, this work has been extended to 

integrate the SPX crossover operator with the adaptive ARDE algorithm in a new way 

of implementation in order to make the adaptive ARDE algorithm satisfying both the 

global and local search requirements. The detailed characteristics and steps of the 

ARDE-SPX are provided in this section.  
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4.3.1 ARDE-SPX: The Repository of DE Strategies  

     In DE literature there are many DE strategies with diverse characteristics in order to 

create the strategy repository. The candidate strategies should be restrictive and selected 

neatly in order to avoid the undesirable influence of less effective strategies.  In this 

study, six DE strategies have been selected to be included in the strategy repository. 

These six DE strategies are gleaned from the JADE mutation variants (DE/current-to-

pbest/1 with archive and DE/rand-to-pbest/1 with archive). These new strategies have 

been inspired by the standard DE mutation strategies that rely on the best solution found 

so far, such as DE/best/1. They have proved to be very powerful strategies and can 

significantly increase the convergence rate. That is so because the JADE strategies 

could solve the high greediness tendency of the DE/best/1 and provide the proper 

balance between exploitation and exploration capabilities. The candidate DE strategies 

that have been chosen to be included in the repository of DE strategies are described as 

follows:  

 DE/current-to-pbest/1 with archive, as described in Equation 3.23, and coupled 

with two basic crossover strategies (binomial and exponential) to form two 

strategies, i.e., DE/current-to-pbest/1/bin with archive and DE/current-to-

pbest/1/exp with archive.  

 DE/rand-to-pbest/1 with archive, as described in Equation 3.24, and coupled 

with two basic crossover strategies (binomial and exponential) to form two 

strategies, i.e., DE/rand-to-pbest/1/bin with archive and DE/rand-to-pbest/1/exp 

with archive. These strategies have been proposed to solve large-scale problems 

and further increase the population diversity. That is so because they imitate the 

standard DE/rand/1 strategy which is already fast and robust, and it also bears 

strong exploration ability.   
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 DE/current-to-pbest/1 with archive and DE/rand-to-pbest/1 with archive, and no 

crossover are very effective strategies and they bear strong exploitation 

capabilities. These two strategies have been inspired by the DE/current-to-rand/1 

with no crossover strategy which has been widely used in the literature of 

multiple DE strategies algorithms. This type of strategy is a rotational-invariant 

strategy. It has been proposed to solve multi-objective optimization problems 

and it has also proved effectiveness in solving rotation problems better than 

other strategies.  

As can be noted above, the number of DE mutation strategies is only two (DE/current-

to-pbest/1 with archive and DE/rand-to-pbest/1 with archive). Then this number has 

increased to six DE strategies after incorporating the three DE crossover strategies (bin, 

exp, and no crossover) with them. The pseudo-code of the two mutation strategies 

(DE/current-to-pbest/1 with archive and DE/rand-to-pbest/1 with archive) are provided 

in Algorithm 4.1 and Algorithm 4.2, respectively.  

Algorithm 4.1: DE/current-to-pBest/1 with archive strategy 

01: Input: 𝑃(𝑋) (Target Population), 𝑁𝑝 (Population size), 𝐴 (Archive), 𝐷 (individual dimension), 𝐹 (Set 

of mutation factors) 

02: Output: 𝑃(𝑉) 
(Donor Population) 

03: Begin 

04: Step 1: Select two mutually randomly different vectors  𝑟1 and 𝑖 from 𝑃(𝑋). Select random vector 

𝑟2 from 𝑃(𝑋) ∪ 𝐴. Select random vector 𝑥𝑏𝑒𝑠𝑡
𝑝,𝑡

 as one of the 100p% best solutions in 𝑃(𝑋).  

05: Step 2:  𝑣𝑖,𝑗
𝑡+1 = 𝑥𝑖,𝑗

𝑡 + 𝐹𝑖 . (𝑥𝑏𝑒𝑠𝑡,𝑗
𝑝,𝑡

− 𝑥𝑖,𝑗
𝑡 ) + 𝐹𝑖. (𝑥𝑟1,𝑗

𝑡 − �̃�𝑟2,𝑗
𝑡 )    (𝑖 = 1,2, … , 𝑁𝑝) (𝑗 = 1,2, … , 𝐷)           

06: END 

 

 

Algorithm 4.2: DE/rand-to-pBest/1 with archive strategy 

01: Input: 𝑃(𝑋) (Target Population), 𝑁𝑝 (Population size), 𝐴 (Archive), 𝐷 (individual dimension), 𝐹 (Set 

of mutation factors) 

02: Output: 𝑃(𝑉) 
(Donor Population) 

03: Begin 

04: Step 1: Select three mutually randomly different vectors  𝑟1, 𝑟2 and 𝑖 from 𝑃(𝑋). Select random 

vector 𝑟3 from P(𝑋) ∪ 𝐴. Select random vector 𝑥𝑏𝑒𝑠𝑡
𝑝,𝑡

 as one of the 100p% best solution in 𝑃(𝑋).  

05: Step 2:  𝑣𝑖,𝑗
𝑡+1 = 𝑥𝑟1,𝑗

𝑡 + 𝐹𝑖 . (𝑥𝑏𝑒𝑠𝑡,𝑗
𝑝,𝑡

− 𝑥𝑟1,𝑗
𝑡 ) + 𝐹𝑖 . (𝑥𝑟2,𝑗

𝑡 − �̃�𝑟3,𝑗
𝑡 )  (𝑖 = 1,2, … , 𝑁𝑝) (𝑗 = 1,2, … , 𝐷) 

06: END 
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The reason of using the two crossover operators (binomial and exponential) is so 

because the binomial crossover is efficient to solve separable problems when 𝐶𝑅 is low 

while it is also efficient to solve non-separable problems when 𝐶𝑅 is high; whereas, the 

exponential crossover has been selected because it is appropriate for solving linked 

problems. 

 

4.3.2 ARDE-SPX: The Repository of Parameters Control Schemes  

       In conjunction with choosing the suitable DE strategy to be adopted, the proper 

selection of the schemes that update the values of the parameters 𝐹 and 𝐶𝑅 is also 

important. The adaptation of 𝐹 and 𝐶𝑅 values are based on the rule that better control 

parameter values tend to generate better individuals thus these control parameter values 

should be propagated to the next generations. 

    Basically, the adaptation of the control parameter values depends on two major issues 

(1) the way to accumulate the previous experience of the successful control parameter 

values throughout generations (2) the scheme of applying the adaptation steps to the 

control parameter values.  

   In this study, in order to measure the first point, the accumulation process has been 

inspired by the adaptation scheme of MDE-pBX which is also inspired by the 

adaptation scheme of JADE. In MDE-pBX the experience accumulation of the 

successful individuals’ parameters 𝐹𝑖 and 𝐶𝑅𝑖 are stored in the variables 𝐹𝑚 and 𝐶𝑅𝑚 

respectively, as described in details in Chapter 3 using Equations 3.31-3.36.  

For the second point of how to update the values of 𝐹𝑖 and 𝐶𝑅𝑖 is also inspired by 

JADE, where the 𝐹𝑚 and 𝐶𝑅𝑚 are used to be the mean for the Cauchy and the Gaussian 

distribution respectively, to generate new values for the 𝐹𝑖 and 𝐶𝑅𝑖 for each individual 𝑖 

at every generation. This process has also been described in details in Chapter 3 using 

Equations 3.25 and 3.28.  In this work, the JADE adaptation schemes for 𝐹𝑖  and 𝐶𝑅𝑖 
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have been further extended to be generated using Gaussian and Cauchy for both 𝐹𝑖 and 

𝐶𝑅𝑖, as follows, 

𝐹𝑖 =  𝑟𝑎𝑛𝑑𝑛(𝐹𝑚, 0.1) (4.1) 

𝐶𝑅𝑖 =  𝑟𝑎𝑛𝑑𝑐(𝐶𝑅𝑚, 0.1) (4.2) 

 

So, the result is four adaptation schemes including the previous two schemes which are 

contained in the repository of the parameters control schemes.  

The reason of using two distributions (Gaussian and Cauchy) is so because each 

distribution provides different adaptation steps based on its characteristics that can fit 

different stages of evolution for different problems scenarios. The Gaussian distribution 

(normal distribution) provides relatively small step size from the mean in comparison 

with the Cauchy distribution which has a far wider tail. This merit in Cauchy 

distribution makes it more likely to generate offspring further away from its parents and 

avoid the local optimum or escaping from a plateau when the population starts to be a 

basin of attraction of local optimum or plateau. On the other hand, the smaller hill 

around the mean in the Cauchy distribution makes it less effective in the exploitation of 

the local neighborhood area and thus has powerless ability in the small to mid-range 

search area. In Figure 4.1 the comparison between the Gaussian and the Cauchy 

distribution is depicted.  From the same figure it can be observed the difference between 

the two distributions with respect to the distribution tail length and the hill height. This 

figure has been plotted using the probability density functions (PDF) of the Gaussian 

and Cauchy distribution respectively as follows, 

 

Gaussian distribution PDF 𝐹𝑛(𝑥; 𝜇; 𝜎) =
1

𝜎√2𝜋
𝑒
−
(𝑥−𝜇)2

2𝜎2  (4.3) 
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where 𝜇 denotes the mean (i.e. distribution location) which has been set to be 0, and 𝜎 is 

the standard deviation which has been set to be 1.  

 

Cauchy distribution PDF 𝐹𝑐(𝑥; 𝑙; 𝑠) =
1

𝜋
𝑎𝑟𝑐𝑡𝑎𝑛 (

𝑥 − 𝑙

𝑠
) +

1

2
 (4.4) 

 

where 𝑙 denotes the distribution location which has been set to be 0, and 𝑠 is the scaling 

factor which has been set to be 1. The values of 𝑥 have been uniformly randomly 

generated within the range[−5, 5].  

 

 

Figure 4.1: Comparison between Cauchy and Gaussian probability density functions 

 

Accordingly, for 𝐹𝑖 control parameter, the usage of the two distributions is when the 

mutation strategy consternates highly around a certain value (i.e. best individual) 

especially in DE/current-to-pbest/1/bin with archive, DE/current-to-pbest/1/exp with 
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mutation strategies are already can provide mutation diversity such as DE/rand-to-

pbest/1/bin with archive, DE/rand-to-pbest/1/exp with archive and DE/rand-to-pbest/1 

with archive then the use of the Gaussian distribution can be adopted to balance the high 

population diversity produced by the mutation strategy and the small value of 𝐹𝑖 

produced by the Gaussian equation. However, the use of Cauchy distribution at the early 

stage of all DE variants is very useful, as the higher values of 𝐹𝑖 encourages the 

exploration ability of the population. On the other hand, at the late stage of the DE 

variants, the use of Gaussian distribution is useful, as it encourages the exploitation 

ability and stability of the population.   

    For 𝐶𝑅𝑖 control parameter, it is related to the diversity of population. The high values 

of 𝐶𝑅𝑖 generated by the Cauchy distribution can increase the population diversity 

especially at the early stage of DE. However, when applying Cauchy distribution using 

Equation 4.2, the long tail of Cauchy would generate higher values of 𝐶𝑅𝑖 , which these 

values would have to be truncated to 0 if the 𝐶𝑅𝑖 is less than 0, and truncated to 1 if the 

𝐶𝑅𝑖 is greater than 1. On the other hand, the usage of the Gaussian distribution is better 

useful at some search stages, as it provides 𝐶𝑅𝑖 values within the range because of its 

short tail, moreover, the values of 𝐶𝑅𝑖 may become independent of the Cauchy 

distribution.  

The pseudo-code of the parameter adaptation schemes for 𝐹 and 𝐶𝑅 values are provided 

in Algorithms 4.3-4.6.   

Algorithm 4.3: Update the value of 𝐹𝑚 scheme  

01: Input: 𝐹𝑚 (mean value of previous successful 𝐹), 𝑆𝐹 (set of successful mutation scalars), 𝑛 = 1.5 

02: Output: 𝐹�́� (updated mean value of 𝐹) 

03: BEGIN 

04: Step 1:  𝑚𝑒𝑎𝑛𝑝𝑜𝑤 = ∑ 𝑝𝑜𝑤𝑒𝑟((
𝑝𝑜𝑤𝑒𝑟(𝐹𝑖,𝑛)

|𝑆𝐹|
),1/𝑛)

|𝑆𝐹|
𝑖=1   where 𝐹𝑖 ∈  𝑆𝐹  

05: Step 2:  𝑤𝐹 = 0.8 + 0.2 × 𝑟𝑎𝑛𝑑(0,1)  
06: Step 3:  𝐹�́� =  𝑤𝐹 × 𝐹𝑚 + (1 − 𝑤𝐹) × 𝑚𝑒𝑎𝑛𝑝𝑜𝑤  

07: END 
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Algorithm 4.4: Update the value of 𝐶𝑅𝑚 scheme 

01: Input: 𝐶𝑅𝑚 (mean value of previous successful 𝐶𝑅), 𝑆𝐶𝑅(set of successful crossover rates), 𝑛 = 1.5 

02: Output: 𝐶𝑅𝑚́  (updated mean value of 𝐶𝑅) 

03: BEGIN 

04: Step 1:  𝑚𝑒𝑎𝑛𝑝𝑜𝑤 = ∑ 𝑝𝑜𝑤𝑒𝑟((
𝑝𝑜𝑤𝑒𝑟(𝐶𝑅𝑖,𝑛)

|𝑆𝐶𝑅|
),1/𝑛)

|𝑆𝐶𝑅|
𝑖=1    where 𝐶𝑅𝑖 ∈  𝑆𝐶𝑅 

05: Step 2:  𝑤𝐶𝑅 = 0.9 + 0.1 × 𝑟𝑎𝑛𝑑(0,1)  

06: Step 3:  𝐶𝑅𝑚́ =  𝑤𝐶𝑅 × 𝐶𝑅𝑚 + (1 − 𝑤𝐶𝑅) × 𝑚𝑒𝑎𝑛𝑝𝑜𝑤  

07: END 

 

 

Algorithm 4.5: Generate 𝐹 value scheme 

01: Input: 𝑠 (the cell’s index in the repository), 𝐹𝑚 (mean value of 𝐹) 

02: Output: 𝐹 (new 𝐹 value) 

03: BEGIN 

04: IF (‘𝐹𝑛‘ in 𝐶𝑒𝑙𝑙𝑠) THEN 𝐹 = 𝑟𝑎𝑛𝑑𝑛(𝐹𝑚, 0.1) 
                            ELSE 𝐹 = 𝑟𝑎𝑛𝑑𝑐(𝐹𝑚, 0.1) 
05: END 

 

 

Algorithm 4.6: Generate 𝐶𝑅 value scheme 

01: Input: 𝑠 (the cell’s index in the repository), 𝐶𝑅𝑚 (mean value of 𝐶𝑅) 

02: Output: 𝐶𝑅 (new 𝐶𝑅 value) 

03: BEGIN 

04: IF (‘𝐶𝑅𝑛‘ in 𝐶𝑒𝑙𝑙𝑠) THEN 𝐶𝑅 = 𝑟𝑎𝑛𝑑𝑛(𝐶𝑅𝑚, 0.1)  
                               ELSE  𝐶𝑅 = 𝑟𝑎𝑛𝑑𝑐(𝐶𝑅𝑚, 0.1) 
05: END 

 

4.3.3 ARDE-SPX: Adaptive Repository with Fitness Based Selection  

      After constructing the two repositories of the DE strategies and the parameter 

control schemes, the next step is to make these repositories adaptive through 

generations. Accordingly, a new mechanism has been used to implement the adaptive 

process based on the fitness value of each strategy. This mechanism is inspired by the 

fitness tournament selection (FTS) procedure used in GA.  

   The Fitness Tournament Selection (FTS) is one of the most commonly used selection 

method in GA to choose the parent individuals for crossover process. FTS properties 

were characterized in (Blickle & Thiele, 1997). In this study, FTS has been chosen in 

preference to other selection methods like (roulette wheel selection and rank selection) 

because it has a very simple and easy concept to be implemented, and it requires no 

knowledge about the population. It can handle both minimization and maximization 

problems without any structural change in the fitness function. Moreover, it has no 
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restriction on negative fitness function. Finally, it is a fast technique because it does not 

require any further calculations for the average of fitness or any other population 

statistics, all the solutions are sent to the same processor using only their relative fitness 

values (Elsayed, Sarker, & Essam, 2014).  

   The basic idea of FTS is to stochastically select individuals from the current 

generation to create the basis of the next generation. The selection process has 

replicated nature in that the individuals with better fitness values will tend to have better 

chance to survive to the next generation; whereas the individuals with weaker fitness 

values will have less probability to survive. The general idea of the FTS can be 

encapsulated as follows: 

 Evaluate each individual using the fitness function to get the fitness values 𝑓𝑖.  

 Set a value to the selection probability 𝑆𝑝 ∈ [0,1]. In practice, it has been found 

that it is always better to set the value of 𝑆𝑝 to be greater than 0.5 in order to 

favor the fittest individuals and increase the selection pressure. The tournament 

selection with 𝑆𝑝 = 1.0 is called deterministic tournament and the tournament 

selection with 𝑆𝑝 < 1.0 is called stochastic tournament.  

 Determine the tournament size 𝑇𝑠 ∈ [2, 𝑁𝑝], because at least two individuals 

should be involved in the competition. In practice, the larger the tournament 

size, the higher probability that the new population will contain individuals with 

fitness values above average. The lower tournament size will produce 

population consists of individuals with low fitness values.  

 Generate randomly uniformly distributed number 𝑟 ∈ [0,1] . Then if 𝑟 ≤ 𝑆𝑝, the 

fitter candidate individual among the  𝑇𝑠 individuals is selected; otherwise the 

weaker individual is chosen.  

The last two steps are repeated until the desired number of survival individuals is 

obtained. Table 4.1 illustrates step-by-step on how to get the number of copies for 5 
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individuals using the simple fitness function, f(x)= 𝑥2. The problem is minimization of 

the fitness function. The values of 𝑆𝑝 and  𝑇𝑠 are set to 0.7 and 2, respectively.  

Table 4.1: The 𝑥2 example of fitness tournament selection detailed steps 

No.  Individual  x f(x)= 𝒙𝟐 Compete individuals  r Winners   

1 11001 25 625 2 1 0.46 2 

2 01100 12 144 4 2 0.39 2 

3 00111 7 49 1 3 0.78 1 

4 11100 28 784 3 5 0.50 3 

5 10001 17 289 5 4 0.14  5 

 

From Table 4.1, it can be noted that individual 2 has two copies to be included in the 

next generation because of its low fitness value compared to other individuals; whereas 

individual 4 fails to have even one copy. However, individual 3, even with its low 

fitness value, could obtain only one copy to be included in the next generation. For this 

reason, it is preferable to use either deterministic tournament or at the very least set the 

selection pressure to high probability values. The standard procedure of the FTS 

algorithm is shown in Algorithm 4.7. In this algorithm, the function bestind returns the 

best individual from a set of solutions, and worstind returns the worst individual from a 

set of solutions.  

Algorithm 4.7: The standard FTS algorithm  

01: Input: Np (population size), 𝑋 (solution vectors), 𝑆𝑝 (selection probability), and  𝑇𝑠 (tournament size) 

02: Output: M (mating pool) 

03: Begin 

04: Step 1: Evaluate each individual using fitness function, 𝑓𝑖 = 𝑓(𝑋𝑖),      (𝑖 = 1,2… ,𝑁𝑝) 

05: Step 2: WHILE (𝑖 < 𝑁𝑝) DO 

06:             Step 2.1: Select 𝑇𝑠 individuals randomly from the current population 

07:             Step 2.2: Generate uniformly random number, 

                                                                   𝑟 = 𝑟𝑎𝑛𝑑(0,1)  
08:             Step 2.3: Selection of the survival individual  

                                                                   if ( 𝑟 ≤ 𝑆𝑝) then 𝑀𝑖 = 𝑏𝑒𝑠𝑡𝑖𝑛𝑑 (𝑋1, 𝑋2, …, 𝑋𝑇𝑠)      

                                                                                      else 𝑀𝑖 = 𝑤𝑜𝑟𝑠𝑡𝑖𝑛𝑑 (𝑋1, 𝑋2, …, 𝑋𝑇𝑠)                                               

09:             Step 2.4: 𝑖 = 𝑖 + 1 

10: END 

 The FTS method has been used as the base technique for the new adaptive procedure of 

the ARDE algorithm. This new adaptive procedure is implemented in conjunction with 
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the selection step of DE, as follows:   

Step 1 (Repository Construction): In the same selection step, a repository of empty 

cells is created. This repository is a result of uniting the two initial repositories of the 

DE strategies and the parameter control schemes into one repository called adaptive 

repository (𝐴𝑅). The address of each cell in this repository is one combination of the 

DE strategies and the parameter control schemes (DE strategy, 𝐹 adaptation scheme 

and/or 𝐶𝑅 adaptation scheme) that are involved in the ARDE algorithm. So, the total 

number of the cells is 20 because there are six DE strategies, two 𝐹 adaptation schemes, 

and two 𝐶𝑅 adaptation schemes to be involved in constructing the 𝐴𝑅; so the total 

number is (6 × 2 × 2) − 4 = 20 cells. This number is subtracted by 4 because the 

DE/current-to-pbest/1 with archive and DE/rand-to-pbest/1 with archive strategies do 

not require crossover strategy. The content of the cell is the fitness value(s) that has 

been obtained from applying its relative combination to the corresponding individual(s); 

otherwise, it is an empty cell if its relative combination has not been attempted in the 

search process. Figure 4.2 depicts the strategies and schemes combinations repository in 

the ARDE.  

Step 2 (Individuals Classification): In the selection step of ARDE, the target 

vectors 𝑋(𝑡)’s and the trial vectors 𝑈(𝑡)’s are first evaluated. Then a one-by-one 

competition is started to determine the vectors of the next generation 𝑋(𝑡 + 1)’s. These 

new vectors are either successful individuals (i.e. the trial vectors that their fitness 

values are better than their corresponding target vectors after applying the DE strategy 

and parameter control schemes) or failure individuals (i.e. the target vectors that their 

fitness values are still better than their corresponding trial vectors even after applying 

the DE strategy and the parameter control schemes). 

Step 3 (Averaging Cells): In this step, the cell that contains more than one fitness value 

is averaged using the equation, 
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𝑐𝑒𝑙𝑙𝑖 =
∑ 𝑓𝑖,𝑗
𝑛𝑓𝑐𝑖
𝑗=1

𝑛𝑓𝑐𝑖
 (4.5) 

where 𝑓𝑖,𝑗 is the fitness values and 𝑛𝑓𝑐𝑖 is the total number of fitness values in cell 𝑖. So, 

the result is a repository with cells that are either empty from a value (non-attempted in 

the search process) or occupied with a value (attempted in the search process).  

Step 4 (Cells Selection):  In this step of ARDE, the 𝑈(𝑡 + 1) individuals are generated 

by assigning DE strategies and parameter control schemes to the 𝑋(𝑡 + 1)s’ successful 

and failure individuals using an adaptive technique as, 

Step 4.1: For the successful individuals, the FTS mechanism is used to assign the 

DE strategies and parameter control schemes to them from the 𝐴𝑅 created in Step 1. 

In this adaptive method, the same table of FTS is created with only one difference is 

that the column of individuals is replaced with a column that includes the attempted 

cells of the repository with their average fitness values, as illustrated in Table 4.2. 

Then, for each successful individual, the FTS procedure determines which 

combination is to be assigned to it.  

 

Table 4.2: The FTS method used to assign the DE strategies and parameter control 

schemes to the successful individuals   

Successful 

Individuals 

Repository of Strategies (AR) 

Compete 

Cells 
r 

Winner 

Cell 
Cells Cells’ 

Avg. 

Fitness 
Cell 

No. 

DE Strategies F 

Scheme 

CR 

Scheme 

Individual 

11 

1 DE/current-to-

pbest/1/bin 

Fc CRc 9.703E+04 2 1 0.46 1 

Individual 

23 

2 DE/current-to-

pbest/1 

Fc - 1.090E+05 4 2 0.39 4 

Individual 

15 

3 DE/rand-to-

pbest/1/bin 

Fn CRn 8.386E+04 1 3 0.78 1 

Individual 

30 

4 DE/current-to-

pbest/1/exp 

Fn CRc 6.236E+04 3 5 0.50 3 

Individual 

45 

5 DE/rand-to-

pbest/1/exp 

Fc CRn 1.129E+05 5 4 0.14  4 
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In the same table, the problem is minimization and the values of 𝑆𝑝 and  𝑇𝑠 are set 

to 0.7 and 2, respectively. 

In the same step, two counters are created. The first counter is called 𝐶𝑜𝑢𝑛𝑡𝑠  which 

records the number of times its corresponding cell has been selected during one 

generation. The second counter is called 𝐶𝑜𝑢𝑛𝑡𝑤 which records the number of times 

in which this cell has won the competition in FTS.  

Step 4.2: For the failure individuals, a re-initialization mechanism is used to assign a 

combination of the strategies and schemes from the attempted and non-attempted 

cells of the 𝐴𝑅 with equal probability. In case there is not non-attempted cell, then 

the selection of combinations from the 𝐴𝑅 is applied among the attempted cells with 

equal probability. 

Step 5 (Repository Cleaning, Rewarding, and Penalizing Processes):  

Step 5.1 (Cleaning Process): In this step a cleaning mechanism is applied to 

discriminate the individuals on the basis of the age. In this mechanism the concept of 

"history" or “first-in-first-out (FIFO)” technique is used to eliminate the oldest fitness 

values in the cells. For each fitness value stored in a cell, its generation number (i.e., 

its history of birth) is stored too. Then cleaning is applied to those old fitness values 

existing in the 𝐴𝑅’s cells. A fitness value in a cell of the 𝐴𝑅 can be tagged as "old" if 

its history is earlier than the current generation number by 10 generations. For 

example, if the current number of generations is 11, then the clean operation is 

applied to all those fitness values with history equals to 1. And at generation 12, the 

clean operation removes all fitness values with history 2, and so on. Accordingly, the 

cell that contains one fitness value with “old” tag is turned to be empty cell (non-

attempted).  
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Figure 4.2: The complete structure of the adaptive repository, 𝐴𝑅 in the ARDE 

algorithm  
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Step 5.2 (Rewarding and Penalizing Processes): At each generation, the superior 

cell (cell with the highest 𝑝) is rewarded by eliminating its worst fitness value. The 

inferior cell (cell with the lowest 𝑝) is penalized by eliminating its best fitness value; 

where 𝑝 is the cell’s winning probability for each attempted-cell selected in the FTS 

mechanism and calculated as,  

𝐶𝑒𝑙𝑙𝑠. 𝑝 =
𝐶𝑒𝑙𝑙𝑠 . 𝐶𝑜𝑢𝑛𝑡𝑤

 𝐶𝑒𝑙𝑙𝑠 . 𝐶𝑜𝑢𝑛𝑡𝑠
 

(4.6) 

where 𝑠 is the index of the attempted-cell that participated in the FTS mechanism 

during the current generation.  

These steps of ARDE evolution are repeated till the stopping criteria are met. In Figure 

4.2 and Table 4.2, the letters 𝑛 and 𝑐 attached with 𝐹 and 𝐶𝑅 refer to the parameters 

adaptation schemes of Normal distribution and Cauchy distribution, respectively. 

    

4.3.4 ARDE-SPX: The Local Search of Hill-Climbing Crossover (SPX)  

       As we discussed in Chapter 2, that general problem solvers with an overall 

successful and efficient performance do not exist. The No Free Lunch theorem (NFL) 

and other empirical evidences have strongly support this view. In addition, (Torn & 

Zilinskas, 1989) in the section entitled: Global Search Method: Exploration and 

Exploitation, have provided that there are two important aspects in the design of a 

reliable global search should be considered: exploration, which means that every part of 

the search space is search enough to ensure global reliability; exploitation, which means 

that search efforts are to be concentrated around the best solutions found so far through 

searching their neighborhoods to generate better solutions. These two goals have been 

achieved by many search algorithms using a combination of dictated global and local 

search techniques.  
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     In many studies, local search has been used to enhance the overall performance of 

the DE algorithm. For example, in (Noman & Iba, 2008) a local search approach, called 

Differential Evolution with Adaptive Hill Climbing Simplex Crossover (DEahcSPX), 

has been integrated with the standard DE/rand/1/bin. The new algorithm has shown 

better or at least comparably performance to the standard DE on a wide range of 

benchmark functions. Another study in (Qin & Suganthan, 2005), Quasi-Newton 

method has been used as a local search method to speed up the convergence 

performance of the self-adaptive algorithm (SaDE) at different stages of the evolution. 

For the same algorithm, (Zhao, Suganthan, & Das, 2011) has integrated the local search 

method, called modified multi-trajectory search (MMTS) with SaDE, at different phases 

of the search process to increase the population diversity and provide approximate 

direction of evolution. Finally, in (Dong & Wang, 2014), the simplex crossover (SPX) 

has also been used to improve the DE performance in constraint optimization. It has 

been employed as a search engine in the neighborhood of the best feasible and 

infeasible solutions to guide the search to the optimal solution.  

    

4.3.4.1 SPX: Hill-Climbing Simplex Crossover 

      Simplex crossover (SPX) (Tsutsui, Yamamura, & Higuchi, 1999) has first proposed 

for real-coded GAs and it is now considered as one of the most common used LS 

techniques in EAs. It has a very simple concept and it is easy to realize. SPX ensures a 

good ability of exploration at the early stages of evolution and good exploitation ability 

at the late stages of evolution. This so because SPX generates offspring based on 

uniform distribution and its search region is adaptively adjusted during evolution. The 

SPX variant that has been used in this study is called SPX-n-m-𝜀, where n is the 

dimension of the search space, m is the number of parents selected from the parental 

pool (population) for recombination in the range [2, 𝑛 + 1], and 𝜀 is the SPX control 
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parameter that determines the expanding rate.  

    The main idea of SPX is to start with selecting mutually independent parents, 𝑋 =

{𝑥1, 𝑥2, … , 𝑥𝑚} from the population; then it generates 𝑦𝑚 offspring uniformly 

distributed around the center mass of their parents to form an area defined by 𝑚-

simplex. This simplex is expanded in each direction of the search by (𝑥𝑖 − 𝑂) with 

(𝜀 > 0), where 𝑂 is the centroid of the 𝑚 parents, calculated as: 

𝑂 =
1

𝑚
∑𝑥𝑖

𝑚

𝑖=1

 (4.7) 

and  

𝑦𝑖 = 𝑂 + 𝜀(𝑥𝑖 − 𝑂) ,   𝑖 = 1,2, … ,𝑚  (4.8) 

 

The new solutions are then generated using the hill-climbing crossover operation. The 

SPX crossover depicted in Figure 4.3 shows a three parental SPX in a two-dimensional 

problem which can be denoted as SPX-2-3-𝜀. In this figure 𝑑 refers to the difference 

value of (𝑥𝑖 − 𝑂). Finally, the standard procedure of the SPX crossover is shown in 

Algorithm 4.8. 
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Figure 4.3: SPX-2-3-𝜀  
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Algorithm 4.8: The standard SPX crossover 
01: Input: m (number of the parents), 𝑋 (solution vectors), and 𝜀 (expansion rate of SPX) 

02: Output: C (solution vector) 

03: Begin 

04: Step 1:  Calculate the central mass of the parents,  

𝑂 =
1

𝑚
∑𝑥𝑖

𝑚

𝑖=1

 

05: Step 2: Generate the new offspring 

06:              Step 2.1: Generate uniformly random numbers, 

 𝑟𝑖 = 𝑢
1
𝑖+1  ,      (𝑖 = 1,2, … ,𝑚 − 1) 

                  where 𝑢 is a uniform random number ∈ [0,1] 
07:             Step 2.2: Calculate the m-simplex area, 𝑦𝑖 = 𝑂 + 𝜀(𝑥𝑖 − 𝑂), ( 𝑖 = 1,2, … ,𝑚) 

08:             Step 2.3: Compute the new solutions by applying the hill-climbing SPX equation,  

                             𝐶𝑖 = {
0,                                                        (𝑖 = 1) 

𝑟𝑖−1(𝑦𝑖−1 − 𝑦𝑖 + 𝐶𝑖−1),       (𝑖 = 2,… ,𝑚)  
   

09:             Step 2.4: Calculate the last descendent solution as,  𝐶 = 𝐶𝑚 + 𝑦𝑚 

End 

 

4.3.4.2 SPX Crossover with Group Based Replacement  

     In this study, a new way in employing the SPX crossover local search has been 

proposed and integrated with the adaptive ARDE algorithm.  

The new implementation adopts the SPX mechanism previously explained with few 

additional modifications. First, in order to form the m-simplex, a group of m randomly 

individuals are selected from the current population. After that, the SPX crossover is 

applied to this group of individuals to generate new solution as in Algorithm 4.8. The 

new solution is then replaced with the worst individual in the group of parents and then 

in the population. This replacement is implemented without the need to evaluate the 

new solution and increase the number of fitness evaluations. This is so because, through 

experiment it has been found that the new solution generated from SPX crossover is 

mostly better than at least one individual in the group of the simplex with a very small 

probability to be worst. Moreover, it has also been found that even if the new individual 

is worst in its fitness value, the difference between its fitness and the fitness of the 

worse individual in the group is very small. In this way the new replacement will always 

have better effect on the population or at the very least no effect. This SPX process is 

applied once to the population individuals at every generation. 
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4.3.5 ARDE-SPX: Overall Algorithm Implementation 

 

      The first step in ARDE-SPX is the same step in all EAs dialects which is the 

population initialization, 𝑃(𝑡 = 0) = {𝑋1
0, 𝑋2

0, … , 𝑋𝑁𝑝
0 } with randomly generated 

candidate individuals using Equation 2.1. After the population initialization step, each 

individual is assigned with randomly selected combination of (DE strategy, 𝐹 adaptation 

scheme and/or 𝐶𝑅 adaptation scheme) from the 𝐴𝑅 to produce the population of trial 

vectors 𝑈(𝑡) = {𝑈1
𝑡, 𝑈2

𝑡, … , 𝑈𝑁𝑝
𝑡 }. In Step 4, the selection step of ARDE, the standard 

individual selection strategy of DE is implemented to obtain the population of  𝑋(𝑡 +

1) = {𝑋1
𝑡+1, 𝑋2

𝑡+1, … , 𝑋𝑁𝑝
𝑡+1}; in addition, the repository 𝐴𝑅, the set of the successful 

values of 𝐹 and 𝐶𝑅, and the archive of the inferior solution are all updated based on the 

fitness values of the yielded individuals. To improve the quality of the individuals in the 

𝑋(𝑡 + 1) population, the SPX-crossover is applied on randomly selected individuals 

from the current population in Step 5. In Step 6, and before the selection of the 

combinations, a cleaning scheme is applied to remove all the oldest fitness values from 

the cells according to a predefined epoch which is in this work set to be 10 generations. 

After this step, the selection of the strategies and schemes combinations can be 

implemented with regard to the average cells values of the 𝐴𝑅 in order to produce the 

new population 𝑈(𝑡 + 1). 

 

Algorithm 4.9: The ARDE-SPX algorithm  

BEGIN 

01: Step 1: (INITIALIZATION) Initialize the generation counter 𝑡 = 0. Generates an initial population 

𝑃(𝑡 = 0) with random candidate solutions target vectors; 〈𝑋1
𝑡 , 𝑋2

𝑡 , … , 𝑋𝑁𝑝
𝑡 〉 ∈ [𝑋𝑚𝑖𝑛 , 𝑋𝑚𝑎𝑥] 

     𝑥𝑖,𝑗
𝑡 = 𝑥𝑗,𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑(0,1)𝑖,𝑗 × (𝑥𝑗,𝑚𝑎𝑥 − 𝑥𝑗,𝑚𝑖𝑛)      (𝑖 = 1,2,…𝑁𝑝)  (𝑗 = 1,2, … , 𝐷) 

Set the mean values of 𝐹𝑚 = 0.5; the mean value of 𝐶𝑅𝑚 = 0.5; the tournament size 𝑇𝑠 = 2; the 

tournament probability 𝑆𝑝 = 1.0; the archive 𝐴 = ∅; the repository cells 𝐴𝑅 = ∅; the SPX crossover 

simplex size 𝑚 = 4;  

02: Step 2: (ASSIGN RANDOM STRATEGIES COMBINATIONS) 

(* The strategies pseudo-codes associated for each cell in 𝐴𝑅 are already stated in Algorithm 4.1 and 4.2 

for the mutation strategies (DE/current-to-pBest/1 and DE/rand-to-pBest/1), Algorithm 2.2 for the 

crossover strategies (bin, exp) and Algorithms 4.5-4.6 for the schemes of generating the values of 𝐹 and 

𝐶𝑅 *) 

              𝑖 = 1 

             WHILE (𝑖 ≤ 𝑁𝑝) DO 
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                𝑠 = 𝑖𝑟𝑎𝑛𝑑({1, … ,20})  
               Generate 𝑈𝑖

𝑡 using the 𝑐𝑒𝑙𝑙𝑠’ combination of the strategies and schemes from 𝐴𝑅  
                𝑖 = 𝑖 + 1 

              OD WHILE 

03: WHILE (the halting criteria is not satisfied) DO 

04: 𝐹𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = ∅; 𝐶𝑅𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = ∅ 

05: Step 3: (BOUNDARIES CONSTRAINTS) Regularize infeasible mutant vector 𝑈𝑖
𝑡 

06:             IF (𝑢𝑖,𝑗
𝑡  <  𝑥𝑗,𝑚𝑖𝑛) or (𝑢𝑖,𝑗

𝑡 > 𝑥𝑗,𝑚𝑎𝑥) THEN  𝑢𝑖,𝑗
𝑡 = 𝑥𝑗,𝑚𝑖𝑛 + (𝑥𝑗,𝑚𝑎𝑥 − 𝑥𝑗,𝑚𝑖𝑛) × 𝑟𝑎𝑛𝑑(0,1) 

                                                                                                                                 (𝑖 = 1,2, …𝑁𝑝)  

                                                                                                                                  (𝑗 = 1,2, … , 𝐷) 

07: Step 4: (INDIVIDUAL SELECTION AND REPOSITORY UPDATE) select the individuals with the 

minimum fitness value for the next generation  

08:              IF  𝑓(𝑈𝑖
𝑡 ≤ 𝑋𝑖

𝑡) THEN                      (𝑖 = 1,2, …𝑁𝑝)  

09:                Begin 

10:                   𝑋𝑖
𝑡+1 = 𝑈𝑖

𝑡   

11:                  Store in the cell associated with 𝑈𝑖
𝑡 its fitness value 𝐴𝑅← 𝑓(𝑈𝑖

𝑡) 
12:                  Update the archive 𝐴 with the inferior solutions 𝑋𝑖

𝑡  

13:                   𝐹𝑠𝑢𝑐𝑐𝑒𝑠𝑠 ← 𝐹𝑖 
14:                   𝐶𝑅𝑠𝑢𝑐𝑐𝑒𝑠𝑠 ← 𝐶𝑅𝑖 
15:                 End 

16:              ELSE  

17:                Begin 

18:                   𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡  

19:                  Store in the cell associated with 𝑋𝑖
𝑡 its fitness value 𝐴𝑅← 𝑓(𝑋𝑖

𝑡)                                                                                        
20:                End    

21: Step 5: (SPX CROSSOVER WITH GROUP BASED REPLACEMENT) 

22:          Step 5.1: Select 𝑟1, 𝑟2, 𝑟3, and 𝑟4 mutual different individuals from 𝑋𝑡+1 to construct the 𝑚- 

                                simplex  

23:              Step 5.2: Apply Algorithm 4.8 (SPX crossover) to generate new individual 𝐶 

24:              Step 5.3: Find 𝑊 = 𝑤𝑜𝑟𝑠𝑡𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙(𝑟1, 𝑟2, 𝑟3, 𝑟4)   
25:              Step 5.4: Replace individual 𝐶 with 𝑊 in the 𝑋𝑡+1 population 

26: Step 6: (REPOSITORY CLEANING, REWARDING AND PENALIZING) 

27:              If (𝑡 − 10 > 0) then delete from 𝑐𝑒𝑙𝑙𝑖 all fitness values with 𝑓𝑎𝑔𝑒 = 𝑡 − 10     

                                                                                                                                  (𝑖 = 1,2, … 20)    

28:              If (𝑡 >  1 ) THEN eliminate the worst 𝑓 from the cell with the highest 𝑝𝑠 and eliminate the    

                                                 best 𝑓  from the cell with the lowest 𝑝𝑠 using Equation 4.6 

29: Step 7: (AVERAGING THE REPOSITORY CELLS) 

30:               𝐴𝑅← 𝑐𝑒𝑙𝑙𝑖 =
∑ 𝑓𝑖,𝑗
𝑛𝑓𝑐𝑖
𝑗=1

𝑛𝑓𝑐𝑖
    (𝑖 = 1,2, … 20)   

31: Step 8: (UPDATE ARDE-SPX PARAMETERS) 

32:            Update the values of 𝐹𝑚 and 𝐶𝑅𝑚 using Algorithm 4.3 and Algorithm 4.4, respectively. 

33: Step 9: (STRATEGIES SELECTION) 

34:             IF (𝑋𝑖
𝑡+1) is successful individual THEN  

                                                       Apply Algorithm 4.7 (FTS) to select new attempted-cell from 𝐴𝑅                                                      

                                                                                                                                          (𝑖 = 1,2, …𝑁𝑝) 

                                                       Update the selected attempted-cell’s counters  𝐶𝑜𝑢𝑛𝑡𝑤𝑠  and  𝐶𝑜𝑢𝑛𝑡𝑠𝑠  

                                                                         ELSE select random cell from 𝐴𝑅  

35: Step 10: 𝑡 = 𝑡 + 1 
36: OD WHILE 

END 

 

4.3.6 ARDE-SPX: Algorithm Complexity Analysis 

       On the complexity of ARDE-SPX shown in Algorithm 4.9, ARDE-SPX does not 

increase the overall complexity with respect to the other adaptive DE algorithms. The 
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total ARDE-SPX complexity is calculated as follows,  

(1) The complexity of both the mutation and crossover operations in the standard DE 

and ARDE-SPX is 𝑂(𝑁𝑝 ∙ 𝐷). In addition, the complexity of finding the pBest solution 

takes 𝑂(𝑁𝑝 ∙ 𝑙𝑜𝑔𝑁𝑝); so, the overall complexity of the mutation and the crossover 

operations in ARDE-SPX is 𝑂(𝑁𝑝 ∙ (𝐷 + 𝑙𝑜𝑔𝑁𝑝)). (2) The selection operation in the 

standard DE and ARDE-SPX takes 𝑂(𝑁𝑝) arithmetic operations. Since the parameters 

adaptation is already embedded in the selection operation, thus the overall complexity 

of the selection and parameters adaptation in ARDE-SPX is the same, 𝑂(𝑁𝑝). (3) The 

complexity of the FTS selection scheme of the adaptive repository and its cleaning, 

rewarding and penalizing processes in its worst case is 𝑂(𝑁𝑝). (4) In ARDE, the 

complexity of the group base selection of SPX is 𝑂(𝑚 ∙ 𝐷) and since 𝑚 can be set to 𝐷 

as the maximum simplex size, thus the complexity of SPX is 𝑂(𝐷2). Hence, the total 

complexity of the ARDE-SPX can be calculated as, 

     → 𝑂(𝑁𝑝 ∙ (𝐷 + 𝑙𝑜𝑔𝑁𝑝)) + 𝑂(𝑁𝑝) + 𝑂(𝑁𝑝) + 𝑂(𝐷2) 

In literature, the population size 𝑁𝑝 is set to be proportional to the problem 

dimension 𝐷; so, 𝑁𝑝  has been substituted by 𝐷 in the above formula as,  

                                  → 𝑂(𝐷 ∙ (𝐷 + 𝑙𝑜𝑔𝐷)) + 𝑂(𝐷) + 𝑂(𝐷) + 𝑂(𝐷2) 

By eliminating the terms with less than 𝐷2, we have  

                                  → 𝑂(𝐷2) + 𝑂(𝐷 𝑙𝑜𝑔𝐷) + 𝑂(𝐷) + 𝑂(𝐷) + 𝑂(𝐷2) 

                                  → 𝑂(2𝐷2) 

when the constant 2 is dropped, the final complexity becomes   

                                  → 𝑂(𝐷2)
𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦
⇒             𝑂(𝑇 ∙ 𝐷2)  

where 𝑇 is the total number of generations. The total complexity of ARDE-SPX is the 

same as in many other adaptive DE variants like JADE and SaJADE (Gong, Cai, Ling, 

& Li, 2011).  

 



109 

4.3.7 ARDE-SPX: Comparison with Other Adaptive DE Variants  

      ARDE-SPX is an adaptive algorithm that updates the values of 𝐹 and 𝐶𝑅 in a 

learning controlled based and updates the selection of the DE strategies in a progressive 

controlled based. Compared with the variants of DE where the parameters and multi-

strategies of DE are adaptive (SaDE, SaJADE, EPSDE, CoDE, SaDE-MMTS and 

HSPEADE), the main differences between ARDE-SPX and these algorithms are as 

follows:  

 The repository of DE strategies and parameter adaptive schemes: ARDE-

SPX is different from all the aforementioned algorithms in one major point 

which is the adaptation of the combinations of the parameters control schemes in 

addition to the adaptation of the DE strategies. This mechanism is called 

adaptive repository, 𝐴𝑅 . In this mechanism the algorithm decides which better 

combination to select through the adaptation process. The adaptive repository is 

a new attempt in the field of adaptive DE algorithms.   

 Ease of Implementation: ARDE-SPX uses a very simple and straightforward 

mechanism to implement the adaption process of 𝐴𝑅 which is based on the 

fitness tournament scheme of selection (FTS) method used in GA. This 

mechanism decides which combinations of DE strategy and parameters control 

scheme are assigned for each individual based on the fitness function values 

accumulated every 10 generations. ARDE considers the successful and failure 

combinations at the same time, then the selection will be implemented based on 

the average of their fitness values; so, all the combinations attempted through 

every 10 generations have equal chances to survive. In addition, in ARDE the 

successful individual is more likely not to be assigned to the same combination 

that generates it. FTS establishes a competition between two selected 

combinations from the repository and selects the fitter one based on its fitness 
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value. One advantage of such a mechanism is that it guarantees that all the 

attempted combinations will participate in generating the next population and 

FTS decides which combination to choose with respect to its average fitness 

value.  In this way, it increases the population diversity and increases the chance 

that the failure combination may become successful combination if it has been 

assigned to another individual.   

 Local Search Integration: few adaptive DE algorithms have been yet 

integrated with local search technique except for SaDE-MMTS. In ARDE, the 

SPX crossover has been integrated to improve the quality of the solutions at 

each generation.  

 No Extra Parameters Control: in ARDE-SPX, there are any extra control 

parameters need to be adapted during the run like in SaDE, SaJADE, SaDE-

MMTS and HSPEADE. There are only few setting parameters (tournament size, 

𝑇𝑠 , tournament probability, 𝑆𝑝 and the simplex size 𝑚) which can easily be 

tuned before the run according to predefined values.  

 In general, using this simple mechanism of 𝐴𝑅 makes ARDE easy to implement 

more than SaDE, SaDE-MMTS and HSPEADE that are complex to implement; 

and more efficient than EPSDE, CoDE and SaJADE in the adaptation process. 

In addition, the ARDE-SPX algorithm updates the control parameters 𝐹 and 𝐶𝑅 

except for the population size 𝑁𝑝. Because through experiments it has been 

found that the 𝑁𝑃 does not have significant effects on the performance of DE as 

the other control parameters, 𝐹 and 𝐶𝑅. 
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4.4 Summary  

      In this chapter, two major points have been addressed: 

1) The general steps of how to develop an adaptive EA have been provided in 

details. These steps represent the general methodology to modify any standard 

EA and make it an adaptive one. In this study the Differential Evolution has 

been considered as the case study to apply these steps.  

2) A new mechanism in adapting the parameters control schemes and the DE 

strategies have been proposed in this chapter. This proposed mechanism is based 

on creating a repository that involve all the possible combinations of these 

strategies and schemes and embedded them inside the standard DE to introduce 

the adaptive repository, ARDE. The evolutionary part of the DE is kept 

untouched except the selection step where the repository is updated. Then an 

additional step has been added to assign a combination for each individual in the 

population. The use of different schemes for the parameters adaptation and the 

mutation strategies makes DE more general algorithm that can solve different 

optimization problems. It also increases the population diversity and at the same 

time decreases the risk to fall into local optima. Finally, the ARDE has been 

combined with a local search method, SPX-crossover to make the algorithm 

more reliable and robust. In the following chapter, the computer experimental 

results will support this expectation.  

   Finally, in order to validate the new proposed adaptive DE algorithm (ARDE-SPX), 

several benchmark problems are used for the purpose in Chapter 5. Then, the 

performance of ARDE-SPX is compared with several adaptive DE algorithms. The 

ARDE-SPX is also validated by implementing it to estimate the parameters of a robot 

manipulator in Chapter 6.  
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CHAPTER 5 

RESULTS AND DISCUSSION 

 

5.1 Introduction  

     In this chapter, two types of experiments have been conducted. In the first 

experiment, six standard DE variants with different mutation schemes have been 

compared over 28 standard benchmark (unimodal and multimodal) functions. The 

objective of this experiment is to provide a table of 𝐹 and 𝐶𝑅 settings associated with 

their corresponding DE variants. This table provides the best settings of each DE variant 

in which it could perform the best over each test problem. It is aimed at practitioners 

from different disciplines to help them achieve better results when adopting DE as an 

optimizer with less time and effort, as well as reducing the computational complexity 

when solving some applications that require the algorithm simplicity to ensure the 

implementation speed. In the second experiment, extensive experimental results and 

discussions have been presented to confirm the reliability of the proposed ARDE-SPX 

over several existing adaptive DE variants. These comparisons have been conducted in 

terms of the solution precision, successful rate and robustness over 33 standard and 

transformed benchmark (unimodal and multimodal) functions.  

 

5.2 Experimental Setup 

5.2.1 Unconstrained Benchmark Functions  

        Twenty-eight standard benchmark functions (i.e. functions with no modifications 

on their main characteristics, such as shifting, rotating or hybrid with other functions) 

are first considered in this study. These functions have been gleaned from different 

sources, for instance, the functions (𝑓1, 𝑓5 − 𝑓6, 𝑓8, 𝑓23) are called De Jong’s functions 
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test suite (De Jong, 1975), functions (𝑓20 − 𝑓21, 𝑓24 − 𝑓28) are called Dixon-Szegö 

functions (Dixon & Szego, 1978), and function (𝑓13) is called Griewank function 

(Griewank, 1981). They are either called Convex or Non-Convex depending on the 

characteristics of the function’s landscape. More details about these functions can be 

found in (Lee & Yao, 2004; Torn & Zilinskas, 1989; Yao, Liu, & Lin, 1999). These 

functions have been classified in terms of their modality feature into two main classes 

(unimodal and multimodal) functions (see Figure 5.1). The word modality refers to the 

number of peaks in the fitness landscape.  

 

Benchmark Functions’ Classification
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    Figure 5.1: General classification of twenty eight standard benchmark functions 

 

Class 1 (Unimodal Functions), these functions have only one global minimum 

solution in the feasible region of the search, they can be continues (𝑓1 − 𝑓4, 𝑓6 − 𝑓8) or 

discontinue function (𝑓5 ) with no or single local minimum. In the presence of a local 

minimum, the task of optimization becomes a cumbersome task; as such, an improper 

designed algorithm can get stuck in the local minima. An additional modulation can 
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also be padded to a function formulation in order to produce frequent local minima, as 

in problem (𝑓6) which is called a noisy quadratic function, without affecting the 

overall general characteristic of this function as being unimodal; this function is used 

to assess the performance of an algorithm on noisy data.  

Some of the unimodal functions inherent a certain kind of deceptiveness and they are 

hard to optimize. The deceptiveness could be that the global minimum is either 

located on a flat surface (𝑓5) or located very near to the local minimum. Sometimes, 

deceptiveness is due to the fact that the global minimum lies in a narrow curving 

valley (𝑓8) or it shows fractal properties around the global minimum (𝑓6). These 

functions are considered as high-dimensional functions except the Rosenbrock 

function (𝑓8).  

Class2 (Multimodal Functions), these functions (𝑓9 − 𝑓28) have more than one (few 

or exponential) local minima with one or multiple global minima depending on the 

function characteristics. In most cases of multimodal functions, the number of local 

minima will dramatically increases with increasing the problem dimension. Functions 

(𝑓10 − 𝑓18) are high-dimensional multimodal functions where the number of local 

minima increases exponentially with the problem dimension. These functions are the 

most difficult class of problems for many optimization algorithms. Functions (𝑓19 −

𝑓22, 𝑓24 − 𝑓25) are low-dimensional multimodal functions which have only few local 

minima. Function (𝑓23, 𝑓26 − 𝑓28) are low-dimensional multimodal functions where 

the number of local minima increases exponentially and dependently on the problem 

characteristics. The number of local minima in these functions is determined by the 

problem characteristic. Generalized Rosenbrock Function (𝑓9) is a high-dimension 

multimodal function with few local minima. Over the last decade this function has 

been considered as a unimodal function with no local minimum to test the 

performance of many algorithms. Recent investigation (Shang & Qiu, 2006) has 
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proved that for 4 ≤  𝐷 , the Rosenbrock function has two minima; as such it has been 

considered as a multimodal function in this study. Easom function (𝑓19) is used to be 

considered as a unimodal function. However, this function has one global minimum 

located in a very small area relative to the search space. This global minimum is 

surrounded by a small number of local minima. Thus, it has been considered as a 

multimodal function in this study.  

Then, five transformed (shifted and/or rotated) test functions (𝐹2, 𝐹6,  𝐹8, 𝐹9 and 𝐹10) are 

also considered in this study. The detailed description of these functions can be found in 

(Liang, Suganthan, & Deb, 2005; Qin, Huang, & Suganthan, 2009). They are: 

- 𝐹2: Shifted Schwefel Function 1.2  (Unimodal) 

- 𝐹6: Shifted Rotated Ackley Function (Multimodal)  

- 𝐹8: Shifted Rotated Griewank Function (Multimodal) 

- 𝐹9: Shifted Rastrigin Function (Multimodal) 

- 𝐹10: Shifted Rotated Rastrigin Function (Multimodal) 

   In Table 5.1, the problem dimension is denoted as D. the initial range of the variable is 

denoted as 𝕊. The global minima values of the given functions are denoted as 𝑓𝑚𝑖𝑛. The 

complete functions formulations are provided in Appendices A and B. 
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         Table 5.1: Problem dimension, global optimum parameters set, global optimum value, search range, and initialization range of 

thirty-three benchmark functions 

𝒇 D Global Optimum 𝒙∗ Local Minima 𝑭(𝒙∗) Search Range (𝕊) Initialization Range 

Unimodal Standard Functions (high-dimensional Functions) 

𝒇𝟏 30, 100 (0,0,…,0) No 0 [-100,100] [-100,100] 

𝒇𝟐 30, 100 (0,0,…,0) No 0 [-10,10] [-10,10] 

𝒇𝟑 30, 100 (0,0,…,0) No 0 [-100,100] [-100,100] 

𝒇𝟒 30, 100 (0,0,…,0) No 0 [-100,100] [-100,100] 

𝒇𝟓 30, 100 (0,0,…,0) No 0 [-100,100] [-100,100] 

𝒇𝟔 30, 100 (0,0,…,0) No 0+noise [-1.28,1.28] [-1.28,1.28] 

𝒇𝟕 30, 100 (0,0,…,0) No 0 [-100,100] [-100,100] 

 

Unimodal Standard Functions (low-dimensional Functions) 

 

𝒇𝟖 2 (1,1) No 0 [-30,30] [-30,30] 

 

Multimodal Standard Functions (high-dimensional Functions) 

𝒇𝟗 30, 100 (1,1,…,1) 2 0 [-30,30] [-30,30] 

𝒇𝟏𝟎 30, 100 (420.9687,…, 420.9687) exponential -418.9829∙ 𝐷 [-500, 500] [-500, 500] 

𝒇𝟏𝟏 30, 100 (0,0,…,0) exponential 0 [-5.12, 5.12] [-5.12, 5.12] 

𝒇𝟏𝟐 30, 100 (0,0,…,0) exponential 0 [-32,32] [-32, 32] 

𝒇𝟏𝟑 30, 100 (0,0,…,0) exponential 0 [-600, 600] [-600, 600] 

𝒇𝟏𝟒 30, 100 (-1,-1,…,-1) exponential 0 [-50, 50] [-50, 50] 

𝒇𝟏𝟓 30, 100 (1,1,…,1) exponential 0 [-50, 50] [-50, 50] 

𝒇𝟏𝟔 30, 100 ( (D+1-1), 2(D+1-2), …, D(D+1-

D)) 

exponential -D(D+4)(D-1)/6 [-D
2 
, D

2 
] [-D

2 
, D

2 
] 

𝒇𝟏𝟕 30, 100 (0,0,…,0) exponential 0 [-100,100] [-100,100] 

𝒇𝟏𝟖 30, 100 (0,0,…,0) exponential 0 [-10,10] [-10,10] 
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                                                                                         Table 5.1- Continued  
 

𝒇 D Global Optimum 𝒙∗ Local Minima 𝑭(𝒙∗) Search Range (𝕊) 

 

Initialization Range 

 

 

Multimodal Standard Functions (low-dimensional Functions) 

 

𝒇𝟏𝟗 2 (𝜋, 𝜋) few -1 [-100,100] [-100,100] 

𝒇𝟐𝟎 2 (−𝜋, 12.275); (𝜋, 2.275); (9.42478, 

2.475) 

3 0.397887 [-5,10]x[0,15] [-5,10]x[0,15] 

𝒇𝟐𝟏 2 (0, -1) 4 3.0000 [-2, 2] [-2, 2] 

𝒇𝟐𝟐 2 (-0.0898, 0.7126); 

(0.0898, -0.7126) 

4 -1.0316 [-3,3]x[-2,2] [-3,3]x[-2,2] 

𝒇𝟐𝟑 2 (-32, -32) = m ≈1 [-65.536, 65.536] [-65.536, 65.536] 

𝒇𝟐𝟒 3 (0.114, 0.556, 0.852) 4 -3.86278 [0, 1] [0, 1] 

𝒇𝟐𝟓 6 (0.201, 0.150, 0.477, 0.275, 0.311, 

0.657) 

6 -3.3237 [0, 1] [0, 1] 

𝒇𝟐𝟔 4 (4, 4, 4, 4) 5 -10.1532 [0, 10] [0,10] 

𝒇𝟐𝟕 4 (4, 4, 4, 4) 7 -10.4029 [0, 10] [0, 10] 

𝒇𝟐𝟖 4 (4, 4, 4, 4) 10 -10.5364 [0, 10] [0, 10] 

 

Unimodal Transformed Functions (high-dimensional Functions) 

 

𝑭𝟐 30, 100 (𝑜, 𝑜, 𝑜 … 𝑜) No 0 [-100,100] [-100,100] 

 

Multimodal Transformed Functions (high-dimensional Functions) 

 

𝑭𝟔 30, 100 (𝑜, 𝑜, 𝑜 … 𝑜) exponential 0 [-32,32] [-32,32] 

𝑭𝟖 30, 100 (𝑜, 𝑜, 𝑜 … 𝑜) exponential 0 No bounds [0,600] 

𝑭𝟗 30, 100 (𝑜, 𝑜, 𝑜 … 𝑜) exponential 0 [-5,5] [-5,5] 

𝑭𝟏𝟎 30, 100 (𝑜, 𝑜, 𝑜 … 𝑜) exponential 0 [-5,5] [-5,5] 

o is the shifted vector 
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5.2.2 Algorithms for Comparison  

      In this study two main experiments are conducted:  

- Experiment 1, an empirical study on the competitive convergence nature of six DE 

mutation variants (with different trial vector generation strategies) are compared to 

solve twenty-eight unconstrained optimization problems. The general purposes of this 

comparison are: (1) to present a list of good choices of DE parameters for various 

optimization problems which would help the practitioners form different field achieve 

better solutions with little efforts to solve their optimization problems (2) to identify the 

best DE mutation variants to constitute the adaptive pool of strategies in the ARDE-SPX 

algorithm. For fair comparison, the crossover type that has been adopted in all strategies 

is the binomial crossover. The DE mutation strategies are: 

 Four standard DE strategies have been selected for the comparison (DE/rand/1, 

DE/current-to-rand/1, DE/best/1, and DE/current-to-best/1), as in Equations 

(2.3-2.4, and 2.7-2.8) respectively. Here, the DE variants in Equations 2.3 and 

2.7 are chosen because they are fast, robust, and they bear very strong 

exploration ability. Moreover, they employ the most commonly used trial vector 

generation strategy. While the DE variants in Equations 2.4 and 2.8 are chosen 

because they rely on the best solution found so far and this increases the 

reliability as well as the convergence rate. 

 Two advanced DE strategies have been selected for the comparison 

(DE/current-to-pBest/1/bin without archive and DE/current-to-pBest/1/bin with 

archive), as in Equations 3.25 and 3.26 respectively. These strategies have 

shown powerful performance and improve the population diversity especially 

for high-dimension problems.  

In this experiment, the comparison is conducted on 28 benchmark functions in terms of 

the solution precision (Mean±Std).  
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- Experiment 2, simulations are carried out to obtain a comparative performance 

analysis of the ARDE-SPX with respect to five recent and well known state-of-the-art 

adaptive DE variants such as jDE, SaDE, JADE without archive, JADE with archive 

and SaJADE. These algorithms have different adaptive characteristics, as explained in 

Chapter 4. The parameters of these algorithms have been set based on what have already 

been implemented in their corresponding references unless different settings used will 

be referred to it in the corresponding subsection. In this experiment, the parameter 

settings are as follow unless a change is mentioned:  

 ARDE-SPX has been initialized with 𝐶𝑅𝑚 =0.5, 𝐹𝑚 =0.5, 𝑝 =0.05, and 

𝑎𝑟𝑐ℎ𝑖𝑣𝑒 𝑠𝑖𝑧𝑒 =𝑁𝑝. For the tournament selection 𝑇𝑠 = 2 and 𝑆𝑝 = 1.0. For SPX 

crossover 𝜀 = 1.0, and m = 3 for 𝐷 ≤ 30 and 𝑚 = 4 for 𝐷 = 100.  

 jDE has been initialized with 𝜏1 = 𝜏2 =0.1, as suggested in (Brest, Boskovic, 

Greiner, Zumer, & Maucec, 2007). 

 SaDE has been initialized with  𝑝𝑘 = 1/4 where (𝑘 = 1,2,3,4) and 𝐶𝑅𝑚 =0.5, 

as suggested in (Qin, Huang, & Suganthan, 2009).  

 JADE with and without archive have been initialized with 𝜇𝐶𝑅 =0.5, 𝜇𝐹 =0.5, 

𝑝 =0.05 and 𝑐 =0.1, and 𝑎𝑟𝑐ℎ𝑖𝑣𝑒 𝑠𝑖𝑧𝑒 =𝑁𝑝, as suggested in (Zhang & 

Sanderson, 2009b). 

 SaJADE with 𝜇𝐶𝑅 =0.5, 𝜇𝐹 =0.5, 𝜇𝑆 =0.5, 𝑝 =0.05 and 𝑐 =0.1, and 

𝑎𝑟𝑐ℎ𝑖𝑣𝑒 𝑠𝑖𝑧𝑒 =𝑁𝑝, as suggested in (Gong, Cai, Ling, & Li, 2011).  

In this experiment, all the comparisons have been conducted on 33 benchmark functions 

in terms of the convergence speed, solution precision and robustness. Finally, for all 

experiments, the following settings have been used unless a change is mentioned: 

 The function dimension: 𝐷 = 30 and 𝐷 = 100. 

 The population size: 𝑁𝑝 = 30 if 𝐷 ≤  10, 𝑁𝑝 = 100 if 𝐷 = 30, and 𝑁𝑝 = 400 

if 𝐷 = 100.  
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 Termination Error (Ter_Err): For functions 𝑓1 − 𝑓5, 𝑓7, and 𝑓9 − 𝑓18, 

Ter_Err=10−8; for  function 𝐹2, Ter_Err=10−6; for functions 𝑓6, 𝐹6, 𝐹8, 𝐹9 and 

𝐹10, Ter_Err=10−2.  

 Maximum Number of Fitness Evaluations (MAX_FEs): If 𝐷 = 30 −for 𝑓1, 𝑓5, 

𝑓7, 𝑓14and 𝑓15, MAX_FEs=  150 000; for 𝑓2 and 𝑓12, MAX_FEs=  200 000; 

for 𝑓6, 𝑓13, 𝑓16 − 𝑓18, 𝐹2, 𝐹6, 𝐹8, 𝐹9 and 𝐹10, MAX_FEs=  300 000; for 𝑓3, 𝑓4, 

and 𝑓9 − 𝑓11, MAX_FEs=  500 000. If 𝐷 = 100 − for 𝑓1 and 𝑓7, MAX_FEs=

 800 000; for 𝑓5, 𝑓6, 𝑓10, 𝑓16 − 𝑓18, 𝐹2, 𝐹6, 𝐹8, 𝐹9 and 𝐹10, MAX_FEs=

 1 000 000; for 𝑓2 and 𝑓11 − 𝑓15, MAX_FEs=  1 200 000; for 𝑓3, 𝑓4, and 𝑓9, 

MAX_FEs=  2 000 000.  

  

5.2.3 Comparison Strategies and Metrics   

         In general, for fair comparison, the population size for all the DE algorithms over 

each problem have been initialized using the same population size, the same initial 

population values, and the same termination condition in each run; so, any difference in 

their performance is mainly belong to the algorithms’ internal search operators. The 

results of all the experiments in this study have been validated on the basis of the paired 

two-sample t-test. Two important aspects have been considered in conducting the 

comparisons:  

Statistical Testing: Since all the algorithms start with the same initial population over 

each problem instance, the paired t-test is used to compare their final accuracies which 

are assumed to be normally distributed (Bi & Xiao, 2011; Zhu, Tang, Fang, & Zhang, 

2013). T-test is a popular tool in evolutionary computing used to measure the significant 

statistical difference between two sets (algorithms) of results. It is calculated using the 

direct difference method (Runyon, Haber, Pittenger, & Coleman, 1996) which is given 

by the following equation: 
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𝑡 =
�̅�

√∑𝐷
2 −

(∑𝐷)2

𝑁
𝑁(𝑁 − 1)

 
(5.1) 

 

where �̅� = �̅�1 − �̅�2 and �̅�1, �̅�2 are the sample average of the two groups. 𝐷 is the 

difference between the two pairs of random groups. 𝑁 is the sample size of a single 

group, then the degree of freedom is calculated as 𝑁 − 1; so, if the experiments have 

been implemented over 50 independent-runs, then the degree of freedom is 

approximately equal to 49. A two-tailed test is conducted at significance levels of 

𝛼 = 0.05 (95% confidence interval, t-value= 2.0100) of all the statistical testing of 

results. The t-test is easy to be implemented since it is now included in most of the well-

known software packages (e.g. Microsoft Office Excel, SPSS, etc.). In this study, the 

Microsoft Office Excel package of t-test has been used as shown in Figure 5.2. From the 

same figure it can be noted that the “t-test: Pairs two sample for means” has been 

selected, because this test is suitable in case when each pair of two algorithms has the 

same initial condition. Moreover, the reason of choosing the Microsoft Office Excel 

package to do the t-test is because in this study Delphi 7 has been used to implement the 

algorithms and this software has a big number library that gives results in floating point 

number with high accuracy (e.g. 1.432E-90) which makes Excel better suited software 

for this type of data.  

The Criteria of Comparisons: The comparative study focuses on four important 

criteria:  

(1) The solution precision, which is measured by the objective function value 

achieved till the maximum number of function evaluations (MAX_FEs). The 

mean and standard deviation of the optimized fitness values are calculated.    

(2) The number of function evaluations (FESS), which is defined as the number of 

function evaluations required by an algorithm to reach the predefined 
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termination error value (Ter_Err) before reaching the MAX_FEs. FESS is used 

to measure the convergence speed and reliability of an algorithm.  

(3) The success rate (Sr), which is calculated as the number of successful runs 

divided by the total number of runs. Successful run is defined as the run where 

the accuracy of the finial function value can reach the Ter_Err before reaching 

the MAX_FEs. Sr is used to measure the robustness of an algorithm.   

(4) The convergence graph, which shows the convergence performance of an 

algorithm by plotting the average of the best fitness values achieved through the 

run.  

 

Figure 5.2: A snapshot of the Microsoft Office Excel package of t-test  

 

System Configuration: Simulations were implemented on an Intel® Core™ Duo CPU 

T6670 @ 2.20GHz 2.20, GHz 4.00 GB of Memory, and Windows 7 Professional 

Version 2009 using Borland Delphi 7.  
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5.3 Experimental Results and Discussions 

5.3.1 Comparison of Multiple DE Variants Based Parameter Tuning  

         In this comparison the problem dimension is set to (𝐷 = 30) for the high-

dimensional problems only. The population size is set to (𝑁𝑝 = 100) if (𝐷 = 30) and is 

set to (𝑁𝑝 = 30) if (𝐷 < 30) for all test problems, except for the standard Rosenbrock 

function, 𝑓8. The population size of this function has been set to 100 because this 

function needs high solution diversity; otherwise it always stuck in the flat area of the 

solutions nearby the optimum. In this experiment, all of the six DE variants have been 

taken with no adaptive operation to any of their control parameters, and 𝐹 and 𝐶𝑅 are 

set manually to values within the range [0.1, 0.95] and 0.05 steps that give, 

approximately, good convergence performance on average. The p value in both 

DE/current-to-pBest/1/bin with no archive and DE/current-to-pBest/1/bin with archive 

is set to be 0.05. The solution precision has been used to detect which variant is more 

competitive. To measure the solution precision, the mean and standard deviation of the 

best fitness values achieved over 30 runs are calculated for each DE mutation variant. In 

this experiment, the preference of the best variant has been determined manually based 

on the best mean and standard deviation achieved without using t-test because the 

comparison here is not crucial.  

Table 5.2 displays the 𝐹 and 𝐶𝑅 values tuned by trial-and-error for the various pairs DE 

variant-test function that provide the best performance. The mean and standard 

deviation of the objective function values obtained for the unimodal functions: 𝑓1 − 𝑓8 

and the multimodal functions: 𝑓9 − 𝑓28 are presented in Table 5.3. For space purposes, 

in these two tables the name of the DE variant has been substituted with the word 

“scheme” and a number that indicates the index of the variant, i.e, DE/rand/1/bin is 

Scheme1, DE/current-to-rand/1/bin is Scheme 2, DE/best/1/bin is Scheme 3, 
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DE/current-to-best/bin is Scheme 4, DE/current-to-pBest/1/bin without archive is 

Scheme 5 and DE/current-to-pBest/1/bin with archive is Scheme 6.  

   In the case of the unimodal functions 𝑓1 − 𝑓5, the results in Table 5.3 show that the 

best performance is provided by DE/current-to-pBest/1/bin with archive. For the noise 

function 𝑓6, the DE/current-to-best/1/bin could outperform other variants and the 

DE/current-to-pBest/1/bin with archive comes in the second place; whereas for the 

standard Rosenbrock function 𝑓8, the variant DE/best/1/bin could significantly 

outperform other variants. In general, it is clear that in the case of all unimodal 

functions the DE variants that involve the best individual found so far in their difference 

pairs can display better performance than other variants with random individuals only. 

This is mainly due to the characteristics of the unimodal functions that do not possess 

any local minimum that cause these types of greedy variants to fall in. Moreover, the 

greedy variants of DE can lead to very fast convergence in the unimodal functions.  

   In the case of multimodal functions with high-dimensions 𝑓9 − 𝑓18, the results in Table 

5.3 show that the performance of the DE variants varies depending on the problem 

complexity. For  𝑓9 the greedy DE variants present better results than the other variants 

and DE/current-to-pBest/bin with no archive performs the best except the DE/best/1/bin 

which always falls into the local minimum during the experiment because of its high 

greedy tendency. For 𝑓10 the entire DE variants could provide the same performance and 

almost with the same 𝐹 and 𝐶𝑅 settings. Whereas for  𝑓11 − 𝑓13 the DE variants with 

only random individuals (DE/rand/1/bin and DE/current-to-rand/1/bin) could 

significantly outperform other variants, as the characteristics of these functions demand 

an algorithm with high exploration and exploitation capability to escape from the local 

minima. However, in the case of 𝑓13 the DE variants DE/current-to-pBest with and 

without archive could also perform well. This proves the reliability of these two variants 

to create the proper balance between the exploitation and exploration, as well as the fast 
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convergence. This also has made these two variants perform the best on 𝑓14 − 𝑓18.  

    In the case of the multimodal low dimensional problems 𝑓19 − 𝑓28, the settings of 𝐹 

and 𝐶𝑅 could bring about the desired performance for all the variants in 𝑓19 − 𝑓24. The 

difference appeared in  𝑓25 − 𝑓28 as these functions have the local minimum very near to 

the global minimum which makes these functions demand algorithms with different 

characteristics in order to escape from the local entrapment. For example, in  𝑓25 the 

greedy variants DE/current-to-best/1/bin, and DE/current-to-pBest/1/bin with and 

without archive could outperform other variants, whereas in  𝑓26 − 𝑓27 the variant 

DE/rand/1/bin outperform all other variants because of its high exploration capability.   

   Finally, the results displayed in Table 5.3 are based on the settings provided in Table 

5.2 which are obtained by trial-and-error experiments. This implies that these values can 

be changed if future experiments provide better results. However, based on the current 

experimental settings it can be noted that the selection of the DE variants and the 

associated parameter settings are problem dependent. There are some problems demand 

greedy variants whereas there are some other problems demand high randomness in the 

algorithm. At the same time, there are some problems require different settings for 𝐹 

and 𝐶𝑅. For the powerful DE variants, it can be noted that the DE/current-to-

pBest/1/bin with and without archive are very powerful variants because of their 

characteristics to involve the greediness tendency as well as the proper randomness in 

the same time.  
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                   Table 5.2: The F and CR values tuned for each pair of DE mutation variant-benchmark functions 

 

Fun. 
Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 

F CR F CR F CR F CR F CR F CR 

𝒇𝟏 0.4 0.9 0.5 0.5 0.6 0.8 0.6 0.8 0.5 0.6 0.5 0.9 

𝒇𝟐 0.4 0.9 0.5 0.7 0.6 0.8 0.6 0.8 0.5 0.7 0.5 0.9 

𝒇𝟑 0.4 0.9 0.6 0.9 0.6 0.9 0.6 0.8 0.6 0.9 0.5 0.9 

𝒇𝟒 0.4 0.5 0.6 0.4 0.6 0.3 0.7 0.8 0.6 0.6 0.5 0.9 

𝒇𝟓 0.4 0.9 0.4 0.4 0.5 0.5 0.6 0.6 0.5 0.5 0.5 0.9 

𝒇𝟔 0.4 0.9 0.4 0.1 0.4 0.2 0.5 0.1 0.5 0.1 0.5 0.9 

𝒇𝟕 0.4 0.9 0.5 0.5 0.6 0.8 0.6 0.8 0.5 0.6 0.5 0.9 

𝒇𝟖 0.2 0.95 0.3 0.95 0.6 0.95 0.6 0.95 0.75 0.95 0.95 0.95 

𝒇𝟗 0.5 0.9 0.7 0.9 0.7 0.8 0.7 0.8 0.7 0.8 0.6 0.9 

𝒇𝟏𝟎 0.95 0.1 0.95 0.1 0.95 0.1 0.95 0.1 0.95 0.1 0.95 0.1 

𝒇𝟏𝟏 0.2 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.95 0.1 

𝒇𝟏𝟐 0.4 0.9 0.6 0.8 0.5 0.1 0.7 0.4 0.5 0.1 0.7 0.9 

𝒇𝟏𝟑 0.4 0.9 0.6 0.8 0.7 0.2 0.7 0.2 0.7 0.7 0.5 0.9 

𝒇𝟏𝟒 0.2 0.1 0.6 0.8 0.5 0.2 0.5 0.2 0.5 0.2 0.6 0.9 

𝒇𝟏𝟓 0.4 0.9 0.5 0.3 0.5 0.3 0.5 0.3 0.5 0.3 0.6 0.9 

𝒇𝟏𝟔 0.5 0.95 0.6 0.9 0.95 0.9 0.95 0.95 0.7 0.95 0.7 0.95 

𝒇𝟏𝟕 0.4 0.9 0.6 0.9 0.7 0.9 0.8 0.9 0.7 0.9 0.7 0.95 

𝒇𝟏𝟖 0.3 0.9 0.5 0.1 0.5 0.1 0.5 0.1 0.6 0.9 0.6 0.9 

𝒇𝟏𝟗 0.4 0.9 0.6 0.9 0.6 0.9 0.4 0.9 0.4 0.9 0.6 0.9 

𝒇𝟐𝟎 0.4 0.9 0.4 0.9 0.6 0.8 0.6 0.8 0.6 0.8 0.5 0.9 

𝒇𝟐𝟏 0.4 0.9 0.4 0.9 0.6 0.7 0.4 0.9 0.4 0.9 0.5 0.9 

𝒇𝟐𝟐 0.4 0.9 0.6 0.8 0.6 0.8 0.6 0.8 0.6 0.8 0.5 0.9 

𝒇𝟐𝟑 0. 5 0.9 0.95 0.8 0.95 0.8 0.95 0.8 0.95 0.8 0.95 0.8 

𝒇𝟐𝟒 0.5 0.9 0.6 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 

𝒇𝟐𝟓 0.5 0.95 0.7 0.4 0.95 0.1 0.7 0.2 0.7 0.2 0.7 0.2 

𝒇𝟐𝟔 0.6 0.9 0.65 0.9 0.95 0.2 0.2 0.1 0.2 0.1 0.95 0.2 

𝒇𝟐𝟕 0.6 0.9 0.65 0.9 0.95 0.2 0.2 0.1 0.2 0.1 0.65 0.95 

𝒇𝟐𝟖 0.5 0.9 0.6 0.8 0.95 0.2 0.2 0.1 0.95 0.95 0.95 0.95 
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     Table 5.3: Mean and standard deviation of 30-dimensional and low dimensional problems achieved for multiple DE mutation 

                                                             strategies averaged over 30-independent runs  

Fun. MAX-NFEs 
Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 

Mean ± Std Mean ± Std Mean ± Std Mean ± Std Mean ± Std Mean ± Std 

𝒇𝟏 150,000 
5.724E-28± 

5.924E-28 

5.415E-52± 

1.798E-51 

1.111E-73± 

2.140E-73 

7.570E-77± 

8.227E-77 

8.406E-86± 

4.660E-86 

3.357E-112± 

1.117E-111 

𝒇𝟐 200,000 
3.214E-20± 

1.919E-20 
1.252E-39± 

1.082E-39 

1.331E-51± 

1.862E-51 

9.462E-51± 

4.366E-51 

2.878E-63± 

1.844E-63 

2.620E-74± 

3.186E-74 

𝒇𝟑 500,000 
1.455E-13± 

2.650E-13 

2.931E-23± 

5.562E-23 

1.911E-68± 

6.323E-68 

8.280E-48± 

1.352E-47 

5.536E-69± 

1.953E-68 
8.549E-206± 

0.000E+00 

𝒇𝟒 500,000 
7.941E-16± 

2.922E-16 

9.708E-24± 

4.153E-24 

4.293E-22± 

8.694E-22 

3.399E-26± 

6.883E-26 

2.554E-44± 

1.330E-43 

1.875E-140± 

8.4231E-140 

𝒇𝟓 10,000 
2.000E+02 

2.632E+02 

1.267E+00± 

1.143E+00 

2.000E-01± 

4.068E-01 

0.000E+00± 

0.000E+00 

0.000E+00± 

0.000E+00 

0.000E+00± 

0.000E+00 

𝒇𝟔 300,000 
5.541E-02± 

1.692E-02 

3.486E-03± 

1.823E-03 

9.941E-03± 

2.986E-03 
9.648E-04± 

3.828E-04 

1.305E-03± 

5.360E-04 

2.867E-03± 

2.194E-03 

𝒇𝟕 150,000 
4.764E-27± 

4.682E-27 

1.953E-50± 

5.365E-50 

6.153E-72± 

1.466E-71 

1.139E-75± 

1.277E-75 

1.749E-84± 

2.452E-84 

1.204E-111± 

3.597E-111 

𝒇𝟖 10,000 
6.666E-23± 

2.264E-22 

6.935E-04± 

9.535E-04 

0.000E+00± 

0.000E+00 

1.531E-14± 

7.916E-14 

9.379E-15± 

2.365E-14 

9.624E-10± 

1.918E-09 

𝒇𝟗 500,000 
6.269E-12± 

2.165E-11 

2.358E-10± 

3.725E-10 

3.998E-01± 

1.220E+00 

2.909E-30± 

1.459E-29 

2.058E-31± 

1.127E-30 

1.923E-30± 

5.867E-30 

𝒇𝟏𝟎 150,000 
-1.257E+04± 

2.013E-05 

-1.257E+04± 

1.056E-04 
-1.257E+04± 

8.946E-09 

-1.257E+04± 

1.027E-07 

-1.257E+04± 

2.676E-07 

-1.257E+04± 

3.688E-02 

𝒇𝟏𝟏 200,000 
0.000E+00± 

0.000E+00 

6.239E-12± 

5.289E-12 

6.633E-02± 

2.524E-01 

3.987E-16± 

6.214E-16 

3.268E-16± 

3.018E-16 

4.071E-17± 

2.476E-17 

𝒇𝟏𝟐 200,000 
2.385E-18± 

0.000E+00 

2.385E-18± 

0.000E+00 

4.120E-18± 

2.351E-33 

4.120E-18± 

2.351E-33 

2.790E-18± 

7.462E-19 

2.848E-18± 

7.802E-19 

𝒇𝟏𝟑 300,000 
0.000E+00± 

0.000E+00 

0.000E+00± 

0.000E+00 

4.156E-20± 

2.332E-20 

2.349E-20± 

2.732E-20 
0.000E+00± 

0.000E+00 

0.000E+00± 

0.000E+00 

𝒇𝟏𝟒 150,000 
1.032E-31± 

6.372E-32 

4.001E-33± 

1.859E-32 

3.077E-39± 

6.637E-55 

3.077E-39± 

6.637E-55 

3.077E-39± 

6.637E-55 

1.721E-34± 

9.426E-34 
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                                                                                Table 5.3- Continued  

 

Fun. MAX-NFEs 
Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 

Mean ± Std Mean ± Std Mean ± Std Mean ± Std Mean ± Std Mean ± Std 

𝒇𝟏𝟓 150,000 
8.638E-28± 

1.110E-27 

1.315E-33± 

7.201E-33 

1.440E-38± 

2.655E-54 

1.440E-38± 

2.655E-54 

1.440E-38± 

2.655E-54 

4.800E-33± 

2.629E-32 

𝒇𝟏𝟔 150,000 
-4.903E+03± 

3.261E+01 

-4.891E+03± 

7.604E+01 

-4.280E+03± 

4.799E+02 

-4.586E+03± 

3.519E+02 

-4.930E+03± 

2.457E-10 

-4.930E+03± 

7.425E-04 

𝒇𝟏𝟕 150,000 
1.965E-01± 

1.824E-02 

1.472E-01± 

4.124E-02 

2.898E-01± 

5.477E-02 

2.303E-01± 

4.634E-02 

1.913E-01± 

2.680E-02 
1.098E-01± 

3.051E-02 

𝒇𝟏𝟖 150,000 
3.394E-13± 

1.819E-12 

6.445E-03± 

1.047E-03 

1.839E-16± 

2.268E-16 

1.335E-04± 

1.032E-04 

9.754E-17± 

1.999E-16 

1.112E-17± 

3.880E-17 

𝒇𝟏𝟗 6,000 
-1.000E+00± 

0.000E+00 

-1.000E+00± 

0.000E+00 

-1.000E+00± 

0.000E+00 

-1.000E+00± 

0.000E+00 

-1.000E+00± 

0.000E+00 

-1.000E+00± 

2.132E-13 

𝒇𝟐𝟎 6,000 
3.979E-01± 

1.129E-16 

3.979E-01± 

1.129E-16 

3.979E-01± 

1.129E-16 

3.979E-01± 

1.129E-16 

3.979E-01± 

1.129E-16 

3.979E-01± 

1.129E-16 

𝒇𝟐𝟏 6,000 
3.000E+00± 

0.000E+00 

3.000E+00± 

0.000E+00 

3.000E+00± 

0.000E+00 

3.000E+00± 

0.000E+00 

3.000E+00± 

0.000E+00 

3.000E+00± 

0.000E+00 

𝒇𝟐𝟐 6,000 
-1.032E+00± 

0.000E+00 

-1.032E+00± 

0.000E+00 

-1.032E+00± 

0.000E+00 

-1.032E+00± 

0.000E+00 

-1.032E+00± 

0.000E+00 

-1.032E+00± 

0.000E+00 

𝒇𝟐𝟑 6,000 
9.980E-01± 

3.388E-16 

9.980E-01± 

3.388E-16 

9.980E-01± 

3.388E-16 

9.980E-01± 

3.388E-16 

9.980E-01± 

3.388E-16 

9.980E-01± 

3.388E-16 

𝒇𝟐𝟒 6,000 
-3.863E+00± 

2.710E-15 

-3.863E+00± 

2.710E-15 

-3.863E+00± 

2.710E-15 

-3.863E+00± 

2.710E-15 

-3.863E+00± 

2.710E-15 

-3.863E+00± 

2.710E-15 

𝒇𝟐𝟓 6,000 
-3.290E+00± 

5.348E-02 

-3.322E+00± 

4.136E-04 

-3.322E+00± 

4.223E-05 

-3.322E+00± 

2.042E-06 

-3.322E+00± 

1.485E-06 

-3.322E+00± 

3.072E-04 

𝒇𝟐𝟔 6,000 
-1.0153E+01± 

1.807E-15 

-1.01525E+01± 

3.237E-03 

-9.462E+00± 

1.742E+00 

-9.635E+00± 

1.538E+00 

-1.013E+01± 

4.828E-02 

-9.881E+00± 

3.339E-01 

𝒇𝟐𝟕 6,000 
-1.040E+01± 

2.471E-10 

-1.0402E+01± 

1.372E-05 

-1.037E+01± 

1.222E-01 

-1.040E+01± 

1.191E-02 

-1.040E+01± 

4.191E-04 

-1.040E+01± 

3.076E-06 

𝒇𝟐𝟖 6,000 
-1.053E+01± 

9.034E-15 

-1.053E+01± 

6.648E-05 

-1.053E+01± 

8.776E-03 

-1.053E+01± 

6.320E-04 

-1.053E+01± 

9.034E-15 

-1.053E+01± 

3.039E-08 
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5.3.2 Comparison of Multiple Adaptive DE Variants  

      In this subsection, a performance comparison of ARDE-SPX with that of jDE, 

SaDE, JADE without archive (JADEwo), JADE with archive (JADEw), and SaJADE is 

presented in terms of three aspects: 1) Final solution precision; 2) the success rate; 3) 

Convergence speed. The parameters settings of all algorithms are used as mentioned in 

Section 5.2.2-Experiment 2. For all the test problems the dimensions are provided in 

Table 5.1.  

 

5.3.2.1 Final Solution Precision (Mean ± Std) 

     In this subsection, the performance comparison between ARDE-SPX with the other 

adaptive DE variants is conducted based on the quality of the final solution achieved 

after the optimization process has terminated. This is measured by averaging the final 

solution and the standard deviation over 50-independent runs using the pre-specified 

MAX_NFEs as mentioned in Section 5.2.2.  

Tables 5.4-5.6 show the mean and standard deviation of the final solutions for 50-

independent runs of each of the six algorithms on 33 benchmark functions for the high 

(𝐷 = 30, 𝐷 = 100) and low dimensional problems. The statistics of this comparison is 

calculated at the end of the optimization. Since all the algorithms start with the same 

initial population, the paired t-test is used for these statistics to compare the means of 

the best and second best algorithms.  In the last row of each table the statistical symbols 

‘†’ and ‘‡’ are defined. ‘†’ indicates that the ARDE-SPX algorithms performs 

significantly better than the other algorithms at a 0.05 level of significance of 49 

degrees of freedom by the paired two tailed t-test; whereas the symbol ‘‡’ indicates that 

the corresponding algorithm is better than the ARDE-SPX algorithm. The best results 

are typed in bold and the second best in italic.  
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The results in these tables suggest that the ARDE-SPX performs the best and second 

best for most of the test problems.  

   From Table 5.4, which shows the results of 𝐷 = 30 problems, it can be noted that the 

ARDE-SPX has significantly best performance for the test problems 𝑓1, 𝑓3 −

𝑓4,𝑓7, 𝑓9, 𝑓12, 𝑓14 − 𝑓15, 𝑓17, 𝐹2, 𝐹6, and 𝐹10, and has second best performance for the test 

problems 𝑓2, 𝑓6, 𝑓16, 𝑓18, and 𝐹8 over all the adaptive DE methods. In the case of 𝑓10, 

ARDE-SPX performs worse than jDE and SaDE because this function requires a 

method with high randomness ability to overcome the difficulties of exploring its 

landscape. In the same way, jDE outperforms ARDE-SPX over the test function 𝑓18. In 

the case of 𝑓11, it can be noted that the methods with high greediness tendency such as 

JADEwo and SaJADE outperform other methods with less greediness such as ARDE-

SPX and jDE. For the same reason, SaJADE outperforms ARDE-SPX in the 

convergence speed for the test functions 𝑓2 and 𝑓6, because it involves the JADE 

mutation with no archive in addition to the mutation with archive. Accordingly, the 

JADEwo focuses on the best fitness area and this increases the convergence speed 

especially in somehow low dimensional problems (i.e.𝐷 = 30).  

   From Table 5.5, which shows the results of the high dimension 𝐷 = 100 problems, it 

can be noted that on the majority of the test problems, ARDE-SPX performs 

significantly better than other DE variants. This is because ARDE-SPX could diversify 

the yielded offspring using its multiple mutation and crossover schemes even with the 

small population size of 400 that is probably not sufficient for most of the test cases. 

The only competitive method in this comparison is jDE which shows significant better 

performance than ARDE-SPX on the test functions 𝑓10, 𝑓11, and 𝐹9. This is because the 

mutation DE/rand/1 in jDE is more robust than the greedy mutations of JADE and this 

may improve the algorithm performance on some of the test problems. For the functions 

𝑓5 and 𝑓16, the algorithms SaJADE and JADEw could outperform ARDE-SPX in the 
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convergence speed only but not on the quality of the final solution achieved.  

   From Table 5.6, which shows the simulation results of the low dimensional 

problems𝑓8, 𝑓19 − 𝑓28, it can be noted that there is no superior adaptive DE algorithm to 

solve these set of functions. The simulation results also indicate that DE with adaptive 

parameter control does not work efficiently within the small number of fitness 

evaluations required to optimize these problems. In these low dimensional problems, the 

adaptive DE algorithm fluctuates around the optimal fitness area and more often falls 

into local optima because of the limited number of generations, as well as the small 

population size; so, it is recommended to use the standard DE with its multiple mutation 

variants to solve these low dimensional problems as suggested in Table 5.2.  

   In general, the ARDE-SPX approach is the first in terms of the quality of the final 

solution followed by jDE, SaJADE, JADEw, JADEwo and then SaDE. This high 

reliable performance of ARDE-SPX stems from both the diversity provided by the 

multiple mutation schemes and crossover schemes incorporated with the DE/current-to-

pBest/1 and the multiple adaptive parameter control schemes. In addition, an important 

observation is in the case of the difficult problems (transformed functions) the ARDE-

SPX shows significant performance better than the other methods especially in the case 

of rotation problems. This is due to incorporating the DE/current-to-pBest/1 with no 

crossover that shows reliability in solving these types of problems.  
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         Table 5.4: Mean and standard deviation of 30-dimensional problems averaged over 50-independent runs for the high  

                                                     dimensional test problems 𝑓1 − 𝑓7 ; 𝑓9 − 𝑓18; 𝐹2,𝐹6, 𝐹8 − 𝐹10 

Fun. MAX-NFEs 
jDE SaDE JADE wo JADE w SaJADE ARDE-SPX 

Mean ± Std Mean ± Std Mean ± Std Mean ± Std Mean ± Std Mean ± Std 

𝒇𝟏 150,000 
1.461E-28± 

2.511E-28† 

2.523E-35± 

2.524E-36† 

2.334E-61± 

4.244E-61† 

3.245E-56± 

4.332E-55† 

2.556E-76± 

3.432E-76† 

3.856E-80± 

2.173E-80 

𝒇𝟐 200,000 
1.472E-23± 

1.121E-23† 

5.615E-25± 

5.122E-25† 

1.796E-26± 

2.334E-26† 

1.025E-24± 

1.761E-23† 
5.820E-45± 

2.001E-45‡ 

6.544E-43± 

7.376E-43 

𝒇𝟑 500,000 
4.233E-14± 

2.162E-13† 

1.267E-37± 

2.372E-37† 

3.874E-61± 

4.556E-60† 

4.231E-79± 

4.002E-80† 

1.112E-77± 

4.121E-77† 

7.099E-85± 

7.603E-85 

𝒇𝟒 500,000 
2.217E-15± 

2.000E-15† 

5.313E-27± 

4.581E-26† 

6.884E-23± 

7.332E-23† 

5.431E-54± 

5.899E-55† 

2.731E-20± 

2.877E-20† 

1.156E-59 

1.390E-60 

𝒇𝟓 

10,000 
2.978E+02± 

1.885E+02 

5.061E+01± 

6.231E+01  

2.878E+00± 

1.322E+00 

4.556E+00± 

1.778E+00 

0.00E+00± 

0.00E+00 

0.00E+00± 

0.00E+00 

150,000 
0.000E+00± 

0.000E+00 

0.000E+00± 

0.000E+00 

0.000E+00± 

0.000E+00 

0.000E+00± 

0.000E+00 

0.00E+00 

0.00E+00 

0.000E+00± 

0.000E+00 

𝒇𝟔 300,000 
2.654E-03± 

7.751E-04† 

1.962E-03± 

2.331E-04† 

5.891E-04± 

1.885E-04† 

5.988E-04± 

2.455E-04† 

4.221E-04± 

2.121E-04‡ 

5.132E-04± 

1.561E-04 

𝒇𝟕 150,000 
2.521E-27± 

2.361E-27† 

3.415E-30± 

2.433E-30† 

1.234E-58± 

3.445E-58† 

2.135E-55± 

2.422E-54† 

5.011E-70± 

4.212E-70† 
7.900E-75± 

6.438E-75 

𝒇𝟗 500,000 
1.480E-03± 

2.137E-03† 

6.785E-02± 

4.862E-01† 

2.223E-30± 

2.334E-30† 

1.923E-29± 

1.923E-29† 

2.134E-30± 

5.231E-30† 
1.343E-30± 

1.345E-30 

𝒇𝟏𝟎 
100,000 

-1.257E+04± 

6.324E-11‡ 

-1.257E+04± 

5.223E-10‡ 

-1.257E+04± 

3.568E-05† 

-1.257E+04± 

3.887E-04† 

-1.257E+04± 

6.877E-07† 

-1.257E+04± 

5.572E-09 

500,000 
-1.257E+04± 

0.000E+00 

-1.257E+04± 

0.000E+00 

-1.257E+04± 

0.000E+00 

-1.257E+04± 

0.000E+00 

-1.257E+04± 

0.000E+00 

-1.257E+04 

0.000E+00 
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                                                                                  Table 5.4- Continued  
 

Fun. MAX_NFEs 
jDE SaDE JADE wo JADE w SaJADE ARDE-SPX 

Mean ± Std Mean ± Std Mean ± Std Mean ± Std Mean ± Std Mean ± Std 

𝒇𝟏𝟏 
100,000 

4.799E-04± 

1.006E-04† 

2.623E-03± 

7.966E-04† 

2.111E-04± 

2.311E-04‡ 
3.024E-04± 

3.459E-04‡ 

2.654E-04± 

2.332E-04‡ 

3.568E-04± 

6.775E-05 

500,000 
0.000E+00± 

0.000E+00 

0.000E+00± 

0.000E+00 

0.000E+00± 

0.000E+00 

0.000E+00± 

0.000E+00 

0.000E+00± 

0.000E+00 

0.000E+00± 

0.000E+00 

𝒇𝟏𝟐 
50,000 

2.465E-04± 

5.211E-05† 

4.765E-06± 

7.980E-07† 

1.098E-09± 

6.532E-10† 

4.102E-09± 

1.877E-09† 

1.145E-12± 

2.000E-12† 

5.234E-15± 

1.312E-15 

200,000 
4.781E-15± 

8.776E-15 

4.144E-15± 

0.000E+00 

4.144E-15± 

0.000E+00 

4.144E-15± 

0.000E+00 

4.144E-15± 

0.000E+00 

4.144E-15± 

0.000E+00 

𝒇𝟏𝟑 
50,000 

2.002E-05 

4.781E-05 

3.351E-09± 

3.592E-08 

6.771E-10± 

5.664E-11 

9.322E-07± 

8.558E-07 

0.000E+00± 

0.000E+00 

0.000E+00± 

0.000E+00 

300,000 
0.000E+00± 

0.000E+00 

0.000E+00± 

0.000E+00 

0.000E+00± 

0.000E+00 

0.000E+00± 

0.000E+00 

0.000E+00± 

0.000E+00 

0.000E+00± 

0.000E+00 

𝒇𝟏𝟒 
50,000 

4.445E-07 

3.564E-07† 
7.146E-11± 

6.211E-12† 

1.587E-17± 

2.344E-16† 

3.458E-16± 

1.763E-15† 

1.354E-19± 

2.179E-19† 
4.811E-21± 

5.433E-21 

150,000 
2.595E-29± 

6.734E-29 

1.601E-32± 

0.000E+00 

1.601E-32± 

0.000E+00 

1.601E-32± 

0.000E+00 

1.601E-32± 

0.000E+00 

1.601E-32± 

0.000E+00 

𝒇𝟏𝟓 
50,000 

1.843E-06± 

2.844E-07† 

1.223E-09± 

2.367E-09† 

1.986E-15± 

5.432E-15† 

3.671E-13± 

4.112E-13† 

8.416E-17± 

7.328E-17† 

2.455E-19± 

1.223E-19 

150,000 
1.802E-28± 

2.023E-28 

1.401E-32± 

0.000E+00 

1.401E-32± 

0.000E+00 

1.401E-32± 

0.000E+00 

1.401E-32± 

0.000E+00 

1.401E-32± 

0.000E+00 

𝒇𝟏𝟔 300,000 
-1.003E+03± 

1.211E+00† 

-2.891E+02± 

1.455E+02† 

-3.390E+03± 

4.005E-04† 

-4.930E+03± 

3.645E-10‡ 

-4.925E+03± 

2.433E-07† 

-4.930E+03± 

1.889E-09 

𝒇𝟏𝟕 300,000 
1.962E-01± 

1.372E-02† 

1.487E-01± 

4.963E-02† 

2.001E-01± 

2.132E-02† 

1.982E-01± 

2.680E-02† 

1.821E-01± 

3.900E-02† 

1.128E-01± 

2.141E-02 

𝒇𝟏𝟖 300,000 
5.864E-10± 

7.521E-10‡ 

2.875E-06± 

3.363E-06† 

3.667E-06± 

3.001E-06† 

2.766E-05± 

3.112E-06† 

3.120E-07± 

5.131E-07† 

4.242E-08± 

5.643E-09 
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                                                                               Table 5.4- Continued  
      

Fun. MAX_NFEs 
jDE SaDE JADE wo JADE w SaJADE ARDE-SPX 

Mean ± Std Mean ± Std Mean ± Std Mean ± Std Mean ± Std Mean ± Std 

𝑭𝟐 300,000 
5.043E-07± 

4.790E-06† 

1.331E-08± 

1.746E-09† 

5.823E-23± 

4.874E-23† 

3.473E-26± 

3.216E-26† 

1.782E-25± 

2.625E-25† 
8.245E-28± 

7.616E-29 

𝑭𝟔 300,000 
2.033E+01± 

1.451E-02† 

2.048E+01± 

2.165E-02† 

2.031E+01± 

5.098E-01† 

2.033E+01± 

2.761E-01† 

2.024E+01± 

6.801E-02† 

2.020E+01± 

3.648E-02 

𝑭𝟖 300,000 
2.905E-02± 

6.122E-03† 

2.431E-03± 

2.614E-02† 

4.921E-02± 

3.271E-02† 

2.562E-03± 

4.627E-02‡ 
1.453E-02± 

2.672E-02† 

5.542E-03± 

2.113E-03 

𝑭𝟗 300,000 
0.000E+00± 

0.000E+00 

0.000E+00± 

0.000E+00 

0.000E+00± 

0.000E+00 

0.000E+00± 

0.000E+00 

0.000E+00± 

0.000E+00 

0.000E+00± 

0.000E+00 

𝑭𝟏𝟎 300,000 
4.651E+01± 

3.628E+00† 

2.980E+01± 

2.518E+00† 

3.241E+01± 

5.017E+00† 

3.102E+01± 

2.451E+00† 

2.931E+01± 

3.267E+00† 

1.029E+01± 

2.813E+00 
 

† indicates that ARDE-SPX performs better than other algorithms with 95% confidence level by t-test. 

‡ indicates that the corresponding algorithm is better than ARDE-SPX. 
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  Table 5.5: Mean and standard deviation of 100-dimensional problems averaged over 50 independent runs for the high  

                                                   dimensional test problems 𝑓1 − 𝑓7 ; 𝑓9 − 𝑓18; 𝐹2,𝐹6, 𝐹8 − 𝐹10 

Fun. MAX_NFEs 
jDE SaDE JADE wo JADE w SaJADE ARDE-SPX 

Mean ± Std Mean ± Std Mean ± Std Mean ± Std Mean ± Std Mean ± Std 

𝒇𝟏 800,000 
4.825E-17± 

2.113E-17
†
 

3.111E-20± 

3.045E-20
†
 

1.566E-50± 

2.332E-50
†
 

8.511E-69± 

8.677E-70
†
 

2.953E-81± 

1.811E-81
†
 

3.237E-88± 

3.433E-88 

𝒇𝟐 1,200,000 
3.445E-14± 

3.233E-13
†
 

2.112E-16± 

1.113E-15
†
 

2.662E-39± 

2.222E-39
†
 

6.755E-46± 

5.882E-47
†
 

1.394E-50± 

2.171E-49
†
 

1.603E-52± 

2.211E-51 

𝒇𝟑 2,000,000 
5.466E+00± 

5.332E+00
†
 

2.889E-02± 

1.674E-02
†
 

4.534E-06± 

4.221E-06
†
 

3.235E-09± 

3.792E-09
†
 

5.001E-09± 

4.551E-08
†
 

8.201E-10± 

7.941E-11 

𝒇𝟒 2,000,000 
4.121E-01± 

4.521E+00
†
 

3.711E-05± 

2.811E-04
†
 

1.005E-02± 

1.112E-03
†
 

7.223E-08± 

6.611E-07
†
 

1.020E-05± 

2.609E-04
†
 

6.351E-09± 

5.419E-08 

𝒇𝟓 

40,000 
2.122E+04± 

7.172E+03
†
 

2.045E+03± 

1.971E+03
†
 

2.331E+02± 

3.001E+01
†
 

2.822E+02± 

2.983E+01
†
 

6.768E+01± 

4.275E+01
‡
 

8.104E+01± 

7.631E+01 

1,000,000 
0.000E+00± 

0.000E+00 

0.000E+00± 

0.000E+00 

0.000E+00± 

0.000E+00 

0.000E+00± 

0.000E+00 

0.000E+00± 

0.000E+00 

0.000E+00± 

0.000E+00 

𝒇𝟔 1,000,000 
1.788E-02± 

2.776E-03
†
 

5.489E-03± 

4.322E-03
†
 

2.854E-03± 

3.211E-04
†
 

1.993E-03± 

2.533E-04
†
 

7.344E-04± 

3.109E-03
†
 

3.864E-04± 

2.283E-04 

𝒇𝟕 800,000 
3.624E-16± 

3.233E-16
†
 

2.854E-18± 

2.110E-19
†
 

4.377E-48± 

4.566E-49
†
 

6.231E-68± 

6.129E-68
†
 

1.248E-78± 

1.177E-78
†
 

7.206E-83± 

6.350E-84 

𝒇𝟗 2,000,000 
3.121E+00± 

2.111E+00
†
 

2.551E+00± 

3.056E-01
†
 

9.376E-01± 

2.002E+00
†
 

8.775E-01± 

1.155E+00
†
 

8.675E-01± 

1.578E-01
†
 

5.208E-01± 

4.462E-01 

𝒇𝟏𝟎 1,000,000 
-1.257E+04± 

6.324E-5
‡
 

-1.073E+04± 

7.985E+01
‡ 

-9.981E+04± 

5.576E+02
† 

-9.176E+04± 

4.122E+02
†
 

-9.345E+04± 

3.642E+02
†
 

-1.001E+04± 

8.521E+01 

𝒇𝟏𝟏 1,200,000 
3.122E-04± 

3.212E-03
‡
 

7.435E-03± 

2.887E-03
‡
 

2.024E-01± 

2.112E-02
†
 

3.514E-01± 

3.332E-02
†
 

2.140E-01± 

1.579E-02
†
 

8.729E-02± 

7.435E-02 

𝒇𝟏𝟐 

200,000 
7.645E-01± 

3.729E-01
†
 

6.013E-03± 

5.434E-04
†
 

8.332E-06± 

1.266E-06
†
 

3.133E-07± 

1.572E-07
†
 

3.411E-08± 

1.662E-09
†
 

6.811E-11± 

5.309E-10 

1,200,000 
9.677E-14± 

1.032E-14
†
 

1.711E-14± 

8.323E-15
†
 

7.827E-15± 

5.011E-16
†
 

7.291E-15± 

0.000E+00
†
 

7.688E-15± 

0.000E+00
†
 

6.772E-15± 

0.000E+00 
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                                                                              Table 5.5- Continued  
 

Fun. MAX-NFEs 
jDE SaDE JADE wo JADE w SaJADE ARDE-SPX 

Mean ± Std Mean ± Std Mean ± Std Mean ± Std Mean ± Std Mean ± Std 

𝒇𝟏𝟑 
200,000 

8.455E-01± 

4.766E-02
†
 

2.545E-03± 

7.612E-03
†
 

5.111E-04± 

1.456E-03
†
 

6.557E-09± 

7.122E-09
†
 

2.579E-12± 

5.051E-13
†
 

2.250E-16± 

1.354E-15 

1,200,000 
0.000E+00± 

0.000E+00 

7.112E-12± 

5.223E-13 

5.125E-05± 

4.668E-04 

0.000E+00± 

0.000E+00 

0.000E+00± 

0.000E+00 

0.000E+00± 

0.000E+00 

𝒇𝟏𝟒 
200,000 

2.445E+00± 

2.311E-01
†
 

7.877E-06± 

3.221E-06
†
 

1.483E-11± 

2.334E-11
†
 

3.412E-14± 

3.566E-13
†
 

4.425E-16± 

4.032E-17
†
 

8.001E-19± 

8.221E-20 

1,200,000 
2.980E-23± 

2.676E-23 

5.455E-30± 

4.326E-30 

4.706E-33± 

0.000E+00 

4.706E-33± 

0.000E+00 

4.706E-33± 

0.000E+00 

4.706E-33± 

0.000E+00 

𝒇𝟏𝟓 
200,000 

2.112E+01± 

6.875E+00
†
 

5.213E-03± 

4.723E-03
†
 

2.603E-08± 

1.455E-09
†
 

1.304E-11± 

2.511E-12
†
 

8.592E-14± 

5.382E-14
†
 

3.471E-16± 

3.005E-16 

1,200,000 
2.327E-22± 

1.456E-22 

2.891E-27± 

2.356E-27 

1.355E-32± 

0.000E+00 

1.355E-32± 

0.000E+00 

1.355E-32± 

0.000E+00 

1.355E-32± 

0.000E+00 

𝒇𝟏𝟔 1,000,000 
-3.629E+00± 

1.265E+04
†
 

-5.811E+00± 

3.453E+02
†
 

-5.520E+00± 

2.633E+02
†
 

-7.147E+01± 

6.112E+03
‡
 

-1.629E+01± 

1.265E+04
†
 

-9.130E+01± 

8.702E+03 

𝒇𝟏𝟕 1,000,000 
3.902E-01± 

3.831E-02
†
 

3.554E-01± 

5.044E-02
†
 

3.322E-01± 

4.245E-02
†
 

2.657E-01± 

2.835E-02
†
 

2.785E-01± 

2.131E-02
†
 

1.937E-01± 

1.119E-02 

𝒇𝟏𝟖 1,000,000 
5.432E-03± 

5.433E-04
†
 

6.011E-03± 

2.776E-03
†
 

3.887E-11± 

4.108E-11
†
 

7.623E-06± 

4.002E-06
†
 

1.663E-19± 

1.645E-20
†
 

6.231E-24± 

5.292E-23 

𝑭𝟐 1,000,000 
6.102E+01± 

7.932E+01
†
 

4.234E+02± 

8.190E+01
†
 

6.467E-12± 

5.524E-13
†
 

2.951E-13± 

2.721E-13
†
 

1.946E-14± 

2.478E-13
†
 

8.798E-15± 

8.532E-15 

𝑭𝟔 1,000,000 
2.136E+01± 

4.102E-02
†
 

2.134E+01± 

5.332E-02
†
 

2.321E+01± 

4.433E-01
†
 

2.130E+01± 

1.761E-01
†
 

2.282E+01± 

3.965E+00
†
 

2.052E+01± 

1.256E-02 

𝑭𝟖  1,000,000 
4.941E-03± 

2.312E-03
†
 

2.012E-02± 

2.002E-02
†
 

6.288E-03± 

5.211E-02
†
 

7.412E-03± 

7.541E-03
†
 

4.134E-03± 

5.121E-03
†
 

3.781E-03± 

7.811E-03 

𝑭𝟗 1,000,000 
0.000E+00+ 

0.000E+00
‡
 

2.531E+01 

7.313E+00
†
 

3.468E+00 

2.329E+00
†
 

2.011E+00± 

2.857E+00 

1.654E+00 

2.020E+00
†
 

1.323E-02 

2.000E+00 

𝑭𝟏𝟎 1,000,000 
2.103E+02± 

3.345E+01
†
 

4.212E+02± 

5.921E+01
†
 

2.200E+02± 

1.548E+02
†
 

2.082E+02± 

3.437E+02
†
 

1.833E+02± 

1.243E+01
†
 

1.322E+02± 

1.254E+01 
 
† indicates that ARDE-SPX performs better than other algorithms with 95% confidence level by t-test. 

‡ indicates that the corresponding algorithm is better than ARDE-SPX. 
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      Table 5.6: Mean and standard deviation of the low dimensional problems 𝑓8 and 𝑓19 − 𝑓28, averaged over 50 independent runs  
 

Fun. MAX_NFEs 
jDE SaDE JADE wo JADE w SaJADE ARDE-SPX 

Mean ± Std Mean ± Std Mean ± Std Mean ± Std Mean ± Std Mean ± Std 

𝒇𝟖 10,000 
5.561E-27± 

1.175E-28
‡
 

5.814E-05± 

8.632E-04
†
 

1.322E-09± 

2.332E-10
†
 

8.655E-10± 

2.877E-10
†
 

2.805E-10± 

7.869E-10
†
 

3.365E-12 

2.481E-12 

𝒇𝟏𝟗 6,000 
-1.000E+00± 

0.000E+00 

-1.000E+00± 

0.000E+00 

-1.000E+00± 

0.000E+00 

-1.000E+00± 

0.000E+00 

-1.000E+00± 

0.000E+00 

-1.000E+00± 

0.000E+00 

𝒇𝟐𝟎 6,000 
3.979E-01± 

3.324E-16 

3.979E-01± 

3.324E-16 

3.979E-01± 

3.324E-16 

3.979E-01± 

3.324E-16 

3.979E-01± 

1.129E-16 

3.979E-01± 

3.324E-16 

𝒇𝟐𝟏 6,000 
3.000E+00± 

0.000E+00 

3.000E+00± 

0.000E+00 

3.000E+00± 

0.000E+00 

3.000E+00± 

0.000E+00 

3.000E+00± 

0.000E+00 

3.000E+00± 

0.000E+00 

𝒇𝟐𝟐 6,000 
-1.032E+00± 

0.000E+00 

-1.032E+00± 

0.000E+00 

-1.032E+00± 

0.000E+00 

-1.032E+00± 

0.000E+00 

-1.032E+00± 

0.000E+00 

-1.032E+00± 

0.000E+00 

𝒇𝟐𝟑 6,000 
9.980E-01± 

3.388E-16 

9.980E-01± 

3.388E-16 

9.980E-01± 

3.388E-16 

9.980E-01± 

3.388E-16 

9.980E-01± 

3.388E-16 

9.980E-01± 

3.388E-16 

𝒇𝟐𝟒 6,000 
-3.863E+00± 

0.000E+00 

-3.863E+00± 

2.788E-15 

-3.863E+00± 

0.000E+00 

-3.863E+00± 

1.277E-16 

-3.863E+00± 

2.710E-15 

-3.863E+00± 

0.000E+00 

𝒇𝟐𝟓 6,000 
-3.268E+00± 

4.842E-02 

-3.322E+00± 

2.771E-02 

-3.310E+00± 

3.557E-02 

-3.311E+00± 

4.001E-02 

-3.282E+00± 

5.607E-02 

-3.322E+00± 

1.223E-02 

𝒇𝟐𝟔 6,000 
-1.0153E+01± 

1.983E-12
‡
 

-1.0052E+01± 

6.886E-02
†
 

-1.0153E+01± 

3.988E-14
‡
 

-9.788E+00± 

1.556E+00
†
 

-1.012E+00± 

2.691E+00
‡
 

-1.013E+00± 

3.542E+00 

𝒇𝟐𝟕 6,000 
-1.0402E+01± 

2.654E-15 

-1.0402E+01± 

6.554E-12 
-1.0402E+01± 

8.955E-16 

-1.0402E+01± 

1.998E-12 

-1.0402E+01± 

1.369E-15 

-1.0402E+01± 

8.955E-13 

𝒇𝟐𝟖 6,000 
-1.0536E+01± 

7.133E-16 

-1.0536E+01± 

7.982E-05 

-1.0536E+01± 

7.833E-12 

-1.0536E+01± 

5.664E-14 

-1.0536E+01± 

2.205E-15 

-1.0536E+01± 

5.664E-17 
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Moreover, the local search represented by the SPX crossover plays an important role in 

improving the quality of the solutions in the population by replacing the worst solution 

found so far in the current population with the one generated by the SPX crossover 

which is most likely to be better than its previous one.    

 

5.3.2.2 Convergence Speed and Robustness (FESS, Sr)  

       In Tables 5.7 and 5.8, the success rate (Sr) and the average number of function 

evaluations over successful runs (FESS) of each adaptive DE algorithm have been 

summarized at 𝐷 = 30 and 𝐷 = 100. Sr and FESS are useful to compare the reliability 

and the convergence velocity of any proposed algorithm, respectively.  

   From these two tables, it can be seen that ARDE-SPX requires the minimum FESS to 

reach the Ter_Err on the majority of the test functions compared with the other adaptive 

DE variants. ARDE-SPX also obtains the greatest overall success rate measured by  

∑𝑆𝑟 =
∑ (𝑆𝑟𝑖𝑛 %)
𝑛𝑓
𝑖=1

100
  where 𝑛𝑓 is the total number of the test functions which is in our 

experiment = 22. At the problem dimension 𝐷 = 30, the ARDE-SPX has achieved ∑Sr 

=18.70 and ∑Sr =14.85 at the problem dimension 𝐷 = 100.  

   The difference between ARDE-SPX and the other adaptive DE variants in terms of the 

FESS and the convergence rate Sr is significant and it shows the reliability and 

robustness of the proposed ARDE-SPX algorithm. This is due to the different mutation 

and crossover strategies of DE as well as the diversity in employing different 

distributions in the parameter control schemes represented by the Normal and Cauchy 

distributions that result to guide the search to better directions within minimum cost and 

time.  
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       Table 5.7: Mean of the NFEs required to obtain the accuracy level Ter_Err and success rate 𝑆𝑟 for 50-independent runs of the 30- 

                                                             dimensional problems 𝑓1 − 𝑓7 ; 𝑓9 − 𝑓18; 𝐹2,𝐹6, 𝐹8 − 𝐹10 

Fun. jDE SaDE JADE wo JADE w SaJADE ARDE-SPX 

FESS (Sr%) FESS (Sr%) FESS (Sr%) FESS (Sr%) FESS (Sr%) FESS (Sr%) 

𝒇𝟏 5.881E+04 (100) 4.223E+04 (100) 2.911E+04 (100) 3.113E+04 (100) 2.381E+04 (100) 2.032E+04 (100) 

𝒇𝟐 7.983E+04 (100) 7.192E+04 (100) 4.778E+04 (100) 5.563E+04 (100) 4.012E+04 (100) 3.892E+04 (100) 

𝒇𝟑 3.211E+05 (100) 3.087E+05 (100) 8.778E+04 (100) 7.334E+04 (100) 8.532E+04 (100) 5.954E+04 (100) 

𝒇𝟒 4.001E+05 (100) 1.577E+05 (100) 2.032E+05 (100) 2.311E+04 (100) 3.243E+05 (100) 2.122E+04 (100) 

𝒇𝟓 2.213E+04 (100) 1.643E+04 (100) 1.102E+04 (100) 1.326E+04 (100) 8.764E+03 (100) 8.371E+03 (100) 

𝒇𝟔 1.100E+05 (100) 5.340E+04 (100) 2.866E+04 (100) 3.011E+04 (100) 2.258E+04 (100) 2.558E+04 (100) 

𝒇𝟕  6.233E+04 (100) 3.667E+04 (100) 3.021E+04 (100) 3.412E+04 (100) 2.611E+04 (100) 2.300E+04 (100) 

𝒇𝟗  4.021E+05 (25)  2.722E+05 ( 70) 1.533E+05 (100) 1.232E+05 (100) 1.201E+05 (100) 1.0233E+05 (100) 

𝒇𝟏𝟎 9.071E+04 (100) 9.342E+04 (100) 1.277E+05 (100) 1.131E+05 (95) 1.128E+05 (100) 1.059E+05 (100) 

𝒇𝟏𝟏 1.187E+05 (100) 1.421E+05 (100) 1.316E+05 (100) 1.342E+05 (100) 1.304E+05 (100) 1.335E+05 (100) 

𝒇𝟏𝟐 9.110E+04 (100) 5.765E+04 (100) 4.544E+04 (100) 7.680E+04 (100) 3.476E+04 (100) 2.871E+04 (100) 

𝒇𝟏𝟑 6.432E+04 (100) 5.102E+04 (100) 3.223E+04 (100) 3.655E+04 (100) 2.652E+04 (100) 2.492E+04 (100) 

𝒇𝟏𝟒 5.437E+04 (100) 4.432E+04 (100) 2.698E+04 (100) 2.920E+04 (100) 2.541E+04 (100) 2.531E+04 (100) 

𝒇𝟏𝟓 6.230E+04 (100) 4.549E+04 (100) 3.000E+04 (100) 3.207E+04 (100) 2.833E+04 (100) 2.581E+04 (100) 

𝒇𝟏𝟔 NA (0) NA (0) NA (0) 2.210E+05 (100) 2.339E+05 (100) 2.250E+05 (100) 

𝒇𝟏𝟕     NA (0) NA (0) NA (0) NA (0) NA (0) NA (0) 

𝒇𝟏𝟖  2.178E+05 (100) 2.544E+05 (15) 2.9211E+05 (20) 2.872E+05 (20) 1.612E+05 (60) 1.483E+05 (85) 

𝑭𝟐 2.022E+05 (90) 2.097E+05 (100) 1.232E+5 (100) 1.038E+5 (100) 9.998E+04 (100) 8.781E+04 (100) 

𝑭𝟔     NA (0) NA (0) NA (0) NA (0) NA (0) NA (0) 

𝑭𝟖  1.211E+05 (55) 1.235E+05 (65) 4.426E+04 (70) 3.501E+04 (78) 3.433E+04 (70) 2.850E+04 (85) 

𝑭𝟗 8.421E+04 (100) 2.021E+05 (100) 9.549E+04 (100) 1.143E+05 (100) 1.125E+05 (100) 1.110E+05 (100) 

𝑭𝟏𝟎     NA (0) NA (0) NA (0) NA (0) NA (0) NA (0) 

∑𝑺𝒓   16.70 16.50 16.90 17.93 18.30 18.70 
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Table 5.8: Mean of the NFEs required to obtain the accuracy level Ter_Err and success rate 𝑆𝑟 for 50-independent runs of the  

100-dimentional problems 𝑓1 − 𝑓7 ; 𝑓9 − 𝑓18; 𝐹2,𝐹6, 𝐹8 − 𝐹10 

Fun. jDE SaDE JADE wo JADE w SaJADE ARDE-SPX 

FESS (Sr%) FESS (Sr%) FESS (Sr%) FESS (Sr%) FESS (Sr%) FESS (Sr%) 

𝒇𝟏 5.232E+05 (100) 4.122E+05 (100) 2.102E+05 (100) 1.677E+05 (100) 1.412E+05 (100) 1.282E+05 (100) 

𝒇𝟐 8.100E+05 (100) 6.032E+05 (100) 2.988E+05 (100) 2.564E+05 (100) 2.304E+05 (100) 2.209E+05 (100) 

𝒇𝟑 NA (0) 1.712E+06 (95) 1.431E+06 (100) 9.458E+05 (100) 7.112E+05 (100) 6.521E+05 (100) 

𝒇𝟒 1.211E+06 (2) 5.766E+05 (80)  1.122E+06 (20) 4.322E+05  (91) 7.533E+05 (85) 3.919E+05 (95) 

𝒇𝟓 2.232E+05 (100) 1.432E+05 (100) 1.097E+05 (100) 3.125E+04 (100) 3.243E+04 (100) 3.311E+04 (100) 

𝒇𝟔  1.100E+05 (100) 1.568E+05 (100) 3.021E+04 (100) 3.620E+04 (100) 2.241E+04 (100) 2.055E+04 (100) 

𝒇𝟕  5.587E+05 (100) 5.022E+05 (100) 2.780E+05 (100) 2.512E+05 (100) 1.713E+05 (100) 1.540E+05 (100) 

𝒇𝟗  NA (0) NA (0) NA (0) NA (0) NA (0) NA (0) 

𝒇𝟏𝟎 5.342E+05 (100) 8.501E+05 (100) 8.340E+05 (100) 8.546E+05 (100) 8.012E+05 (100) 6.821E+05 (95) 

𝒇𝟏𝟏 1.159E+06 (2) NA (0) NA (0) NA (0) NA (0) 1.192E+06 (10) 

𝒇𝟏𝟐 8.021E+05 (100) 6.122E+05 (100) 2.780E+05 (100) 2.551E+05 (100) 2.190E+05 (100) 1.861E+05 (100) 

𝒇𝟏𝟑 5.311E+05 (100) 4.021E+05 (98) 1.850E+05 (95) 1.743E+05 (100) 1.545E+05 (100) 1.322E+05 (100) 

𝒇𝟏𝟒 5.329E+04 (100) 3.863E+04 (100) 1.556E+04 (100) 1.374E+04 (100) 1.413E+04 (100) 1.301E+04 (100) 

𝒇𝟏𝟓 6.129E+04 (100) 4.095E+04 (100) 1.908E+04 (100) 1.655E+04 (100) 1.561E+04 (100) 1.221E+04 (100) 

𝒇𝟏𝟔 NA (0) NA (0) NA (0) NA (0) NA (0) NA (0) 

𝒇𝟏𝟕 NA (0) NA (0) NA (0) NA (0) NA (0) NA (0) 

𝒇𝟏𝟖  7.541E+05 (75) 8.145E+05 (70) 4.343E+05 (100) 3.632E+05 (90) 3.472E+05 (100) 2.810E+05 (100) 

𝑭𝟐 NA (0) NA (0) 9.475E+05 (87) 8.895E+05 (88) 7.822E+05 (90) 7.120E+05 (92) 

𝑭𝟔 NA (0) NA (0) NA (0) NA (0) NA (0) NA (0) 

𝑭𝟖  4.341E+05 (77) 5.632E+05 (63) 1.670E+05 (88) 1.425E+05 (92) 1.791E+05 (88) 1.353E+05 (93) 

𝑭𝟗 4.971E+05 (97) NA (0) NA (0) NA (0) NA (0) 5.632E+05  (35) 

𝑭𝟏𝟎  NA (0) NA (0) NA (0) NA (0) NA (0) NA (0) 

∑𝑺𝒓   12.53 13.06 13.90 14.61 14.63 14.85 
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5.3.2.3 Convergence Plot  

    In this subsection, a comparison on the convergence performance of the six 

algorithms (jDE, SaDE, JADEwo, JADEw, SaJADE, and ARDE-SPX) is conducted 

using the convergence graph for nine benchmark functions ( f1,  f2,  f6,  f9, f12,  f15, f18, F2, 

F9) with 30-dimension and 100-dimension problems. Because the convergence graphs 

of most of the test functions are similar in their characteristics, these nine functions have 

been selected as representative instances. These graphs illustrate the convergence 

characteristics in terms of the best fitness value of the run of each algorithm. In 

addition, the evolution trend of the 𝜇𝐹 and 𝜇𝐶𝑅 is also illustrated.  

    Figure 5.3 illustrates the performance of the six algorithms for nine 30-dimensional 

benchmark functions. From this figure, it can be noted that ARDE-SPX has the best 

performance in the convergence speed for the functions (f1, f6, f9, f12, f15, F2, F9), and the 

second best performance after SaJADE and jDE for the functions   f2 and  f18, 

respectively.    

     Figure 5.4 illustrates the performance of the six algorithms for nine 100-dimensional 

benchmark functions. From this figure, it can be noted that ARDE-SPX has the best 

performance in the convergence speed for the functions (f1,  f2,  f6,  f9, f12,  f15, f18, F2), 

and the second best performance after jDE for the function F9 .  

   As can be seen from these figures, the importance of ARDE-SPX appears significantly 

in the high dimension problems. The convergence rate of ARDE-SPX in 100-dimensinal 

problems is relatively high compared with the other adaptive DE; except in the case of 

F9 where jDE performs the best. This is due to the high randomness possessed by jDE 

which can make this algorithm escape from the local entrapment.   

     Finally, Figure 5.5 depicts the evolution trend of the parameters 𝐹𝑚 and 𝐶𝑅𝑚on some 

selected functions with the mean curve. It clearly illustrates the adaptation 

characteristics of ARDE-SPX.   
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Figure 5.3-(c) 

 

Figure 5.3-(d) 
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Figure 5.3- (e) 

 

Figure 5.3- (f) 
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Figure 5.3- (g) 

 

Figure 5.3- (h) 
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Figure 5.3- (i) 

 

Figure 5.3: Convergence performance of the algorithms for nine 30-dimentional 

functions. (a) f1. (b) f2. (c) f6. (d) f9. (e) f12. (f) f15. (g) f18. (h) F2. (i) F9.  
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Figure 5.4-(a) 

 

Figure 5.4-(b) 
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Figure 5.4-(c) 

 

Figure 5.4-(d) 
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Figure 5.4-(e) 

 

Figure 5.4-(f) 
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Figure 5.4-(g) 

 

Figure 5.4-(h) 
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Figure 5.4-(i) 

 

Figure 5.4: Convergence performance of the algorithms for nine 100-dimentional 

functions. (a) f1. (b) f2. (c) f6. (d) f9. (e) f12. (f) f15. (g) f18. (h) F2. (i) F9. 
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Figure 5.5-(a) 

 

Figure 5.5-(b) 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FES

f1, D=30

 

 

Fm

CRm

0 1 2 3 4 5

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FES

f1, D=100

 

 

Fm

CRm



153 

 

Figure 5.5-(c) 

 

Figure 5.5-(d) 

 

Figure 5.5: Adaptation characteristics of 𝐹𝑚 and 𝐶𝑅𝑚 on the selected functions. (a) 

𝑓1(𝐷 = 30). (b) 𝑓1 (𝐷 = 100). (c) 𝑓9 (𝐷 = 30). (d) 𝑓9 (𝐷 = 100) 
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5.4 Summary  

     In this chapter, two performance comparisons have been presented.  

1) The first comparison is established among different DE mutation schemes 

(DE/rand/1, DE/current-to-rand/1, DE/best/1, DE/current-to-best/1, DE/current-

to-pBest/1 without archive and DE/current-to-pBest/1 with archive) in terms of 

the solution precision over 28 benchmark functions. In this comparison, a table of 

𝐹 and 𝐶𝑅 parameter settings is provided where each DE scheme could perform 

the best over the different test problems. This table can be used by the 

practitioners when they want to tune the parameters of DE to perform well on 

optimization problems with different characteristics and dimensionality with less 

time and effort.   

2) The second comparison is established among ARDE-SPX with five significant 

state-of-the-art adaptive DE variants (jDE, SaDE, JADE with no archive, JADE 

with archive, and SaJADE) over 33 test problems with different characteristics 

(unimodal, multimodal, shifted, rotated, etc.) and different dimensionality (6-D, 

30-D, and 100-D). This comparison has been implemented in terms of the 

solution precision, robustness, and convergence speed. All the tests conducted 

could lead to one conclusion that ARDE with its incorporated local search SPX 

crossover can outperform the other adaptive DE variants on a wide variety of 

objective functions; while at the same time it enhances the ability of the standard 

DE to accurately find good solutions in the search space during optimization. 
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CHAPTER 6 

 

SYSTEM IDENTIFICATION AND CONTROL OF ROBOT MANIPULATOR 

BASED ON ARDE ALGORITHM 

 

6.1 Introduction  

      A requirement for new robotic manipulators is the ability to detect and manipulate 

objects in their environments. Robotic manipulators are highly nonlinear systems, and 

an accurate mathematical model is difficult to obtain using conventional techniques. 

Therefore, an efficient technique is required to deal with these types of complex and 

dynamic systems. The objective of this chapter is to develop a new dynamic parameter 

identification framework to estimate the barycentric parameters of the CRS A456 robot 

manipulator based on ARDE algorithm. The simulation results presented in this chapter 

show the effectiveness of the ARDE method over other conventional techniques, 

transcending the limits of the existing state-of-the-art algorithms in solving the problem 

of robot.  

  

6.2 Research Background  

     There are many industrial applications where the robot manipulator is required to 

carry out precise task with high accuracy and repeatability. Recently, the application of 

robotic technology in clinical medicine has been a very active research area. For 

instance, in surgical operations the robot manipulator serves as an assistant to the doctor 

or as an extension of the doctor capabilities (Gomes, 2011; Pisla, Gherman, Vaida, 

Suciu, & Plitea, 2013). These kinds of advanced robot applications require an accurate 

model of the robotic system, which in turn, requires sufficiently accurate knowledge of 

the parameters of robot dynamics to be applied in advanced control system design, 
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preoperative planning, process supervision, and simulation and training.    

     Dynamic models of robot arms used in model-based control schemes are designed in 

terms of various inertial and friction parameters that must be either measured directly or 

determined experimentally. However, direct measurements of such characteristics are 

rather impractical or even impossible in many cases. Inertial parameters of robot links 

cannot be measured without dismantling the robot arm, while highly nonlinear inherent 

phenomena at robot joints cannot be directly quantified. Therefore, models describing 

nonlinear effects such as friction should be addressed in conjunction with methods of 

determining parameters of the dynamic model of the arm based on experiments, in order 

to fully identify the dynamic model of the robot arm (Mavroidis, Flanz, Dubowsky, 

Drouet, & Goitein, 1998).  

      There are many traditional methods that have been used for dealing with dynamic 

robot parameter identification including Kalman Filter (Gautier & Poignet, 2001) and 

least square method (Karahan & Binguel, 2008; Khalil, Gautier, & Lemoine, 2007), etc. 

However, some model parameters such as link mass and link lengths cannot be easily 

measured using these methods especially with the effect of noise factor, or in other 

words their measurements relatively difficult (Fleming & Purshouse, 2002). Moreover, 

these traditional techniques are relatively effective for a class of specific issues. For 

example, the structural model is reliable but the data has limited accuracy. Furthermore, 

they depend on unrealistic assumptions that models must be unimodal, continuous and 

derivable. These methods sometimes converge slowly, and sometimes at local optimum, 

or even not at all.  

      Recently, there have been intelligent proposed methods for estimation based on the 

use of universal approximations such as fuzzy logic and neural network methodologies. 

These methods seem to be very attractive because in the ideal case they allow the 

modeling of the dynamic effects even ‘bad’-modeled, for example, friction.  In recent 
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years, Evolutionary algorithms such as Genetic Algorithm (GA), Differential Evolution 

(DE) and Particle Swarm Optimization (PSO) have been studied extensively. They have 

been used to improve the dexterity of robot manipulators in many fields such as control, 

parameter identification, robot design and planning (Bingul & Karahan, 2011; Vuong & 

Ang, 2009; Zakharov & Halasz, 2001). They have been known to be better suited for 

noisy, discontinuous functions because they require no knowledge or gradient 

information about the response surface. This ability of Evolutionary algorithms has 

encouraged researchers to use these methods in order to moderate the difficulties of 

noise and nonlinearity that often arise in dynamic models. GAs is better suited for noisy, 

discontinuous functions because there is no requirement for a derivative in the fitness 

function. Moreover, GAs accumulate information about the system during the search 

process, which makes them more desirable than the traditional numerical methods 

(Adamson & Liu, 2006) through the use of real-coded GA to estimate friction and 

torque sensor model parameters. The simulation approach demonstrates the 

effectiveness of the GA. By identifying the parameters, the position tracking error and 

the velocity tracking of the joint is enhanced. The performance of GA has been also 

analyzed and evaluated in optimizing the precision of kinematic parameters of the robot 

manipulator by developing a forward calibration algorithm which is based on GAs.  The 

main problem for this approach is to find a good mathematical correction function and 

in (Wang, 2009) a suggestion has been made to enhance the accuracy of the robot 

manipulator by using some new techniques such as ANN and Fuzzy Logic technique.  

   Differential Evolution (DE) Algorithm has extensively been used to minimize 

nonlinear and non-differentiable continuous space functions. So far, there has been no 

attempt to optimize the design parameters of manipulator by which performance 

variations will be minimal. In (Rout & Mittal, 2010) a modification in differential 

evolution is proposed to incorporate the effect of noise in the optimization process and 
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obtain the optimal design of manipulator, which is insensitive to noise. In this 

optimization process, the kinematic and dynamic models of the manipulators are used. 

The results indicate that the DE converges quickly with fewer generations and function 

evaluations than GA. Hence, fast performance of DE indicates that this approach can be 

a viable optimization technique.  

     However, the performance of DE is still sensitive to its control parameters such as 

mutation factor (𝐹) and crossover rate (𝐶𝑅). Recently, the development of adaptive DE 

has shown more reliable performance than DE with manual settings (Liu & Lampinen, 

2005; Tvrdik, 2009; Zhu, Tang, Fang, & Zhang, 2013).  

     In this chapter, the application of ARDE algorithm is used to estimate the barycentric 

parameters of the CRS A456 robot manipulator. This algorithm is used to off-line 

estimate the optimal parameters of the inverse dynamic model of the CRS A465 robot 

arm, which is expected to be insensitive to noise.  

   

6.3 Dynamic Model of the CRS A456 Robot Manipulator  

     The CRS A465 arm considered in this work is used as a slave robot in a research cell 

for orthopedic robot-assisted surgery (see Figure 6.1). In this application, the end 

effector of the arm carries the surgical tool - the “drilling/machining tool”. Due to the 

symmetry of the drilling tool, only five degrees of freedom is required. Therefore, only 

the first five joints of the arm are considered to be the subject for the modeling task in 

this work. 

     The equation of motion for the robot is developed using the L-E formulation. The L-

E is non-recursive method that allows the development of the robot model using a set of 

equations derived from the energy model (Mittal & Nagrath, 2003).  Based on this 

formulation the torque acting on any joint axis is: 
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𝜏𝑖  = ∑𝐷𝑖𝑗(𝑞, 𝜒)�̈�

𝑁

𝑗=1

+∑∑𝐻𝑖𝑗𝑘(𝑞, 𝜒)𝑞�̇�𝑞�̇�

𝑁

𝑘=1

𝑁

𝑗=1

+ 𝐺𝑖(𝑞, 𝜒) + 𝜏𝑓𝑖  (6.1) 

 

where  

𝜏𝑖         is the torque acting on joint 𝑖, 𝑖 = 1, 2. . . 𝑁,  𝑁   is the number of degrees of 

freedom,  

𝑞, �̇�, �̈�   are the position, velocity and acceleration of robot joints, respectively,  

χ           is the model parameters,  

𝐷𝑖𝑗        is the effective and coupling inertia,  

𝐻𝑖𝑗𝑘     is the centripetal and Coriolis effect,  

𝐺𝑖        is the Gravity loading, and  

𝜏𝑓𝑖       is the joint friction. 

The details of the coefficients 𝐷𝑖𝑗 and 𝐻𝑖𝑗𝑘 is given in (Mittal & Nagrath, 2003) through 

examination of Equation 6.1 shows that the equation of motion is linear in the robot 

physical parameters, 𝜒, that is the mass, center of gravity locations moments and 

products of inertia of each link (see Figure 6.2). Therefore Equation 6.1 can be written 

as,  

𝜏 = 𝜙(𝑞, �̇�, �̈�)𝜒 (6.2) 

where 𝜏 is the torque vector, 𝜙(𝑞, �̇�, �̈�) represents an (𝑁 ×  𝑅) observation matrix, and 

the R- length vector 𝜒, contains the effective inertial parameters of the manipulator 

grouped in the barycentric or base parameters. 
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Figure 6.1: Structure of a single robotic cell for robot assisted orthopaedic surgery 

(Kinsheel, Taha, Deboucha, & Ya, 2012) 

 

The identification “observation” matrix 𝜙(𝑞, �̇�, �̈�) depends on the joint angles, 

velocities, and accelerations. The barycentric parameters of a link are combinations of 

its inertial parameters and its descendants in the kinematic chain (Renaud, 1987). The 

categorization and grouping of the barycentric parameters is done symbolically or by 

applying a set of rules. Normally, special computer programs are developed for 

automatic generation of the symbolic model and the associated barycentric parameters. 

For the CRS A465 the set of the barycentric parameters, χ are given in (Kinsheel, Taha, 

Deboucha, & Ya, 2012).  

   In this study, in order to make a clear comparison among the estimation methods, the 

problem has been simplified to consider only a single joint arm of the CRS A465 to 

estimate its parameters. The CRS 465 single joint arm has four parameters 𝑎𝑖, 𝑖 =

1, … ,4 to be identified; they are the inertia, the viscous friction coefficient, the positive 

side Coulomb friction, and the negative side Coulomb friction, respectively. The system 
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equation becomes:  

𝜏 = 𝑎𝜒     (6.3) 

 

where 𝜏  is the torque, and 𝜒 is the barycentric parameters that have been reduced to four 

parameters, they are the angular acceleration 𝑥1, the angular velocity 𝑥2, the positive 

sign of the velocity 𝑥3 (=1  if 𝑥2 is positive, 0 otherwise) and the negative sign of the 

velocity 𝑥4 (= 1 if 𝑥2 is negative, 0 otherwise). 

 

 

 

 

 

 

Figure 6.2: Coordinate frame assignment of single joint CRS A465 

 

6.4 System Implementation   

 

      The kinematic and dynamic models of manipulators are nonlinear and coupled. 

Thus, explicit modeling of noises will make dynamic modal complex. To overcome this 

problem the ARDE algorithm has been utilized for improving the parameter estimation 

of the robot manipulator and to deliver minimum performance variation. As a case 

study, the single joint arm model of the CRS A465 is considered. The CRS 465 single 

joint arm has 𝐴 = 4 parameters to be estimated, as discussed in Section 6.3. In the 

simulation, 𝑎1 is the inertia, 𝑎2 is the viscous friction coefficient, 𝑎3 is the positive side 
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Coulomb friction, and 𝑎4 is the negative side Coulomb friction.  

To develop the new dynamic parameter identification framework based on ARDE, 

attention has to be paid to the following setting points that characterize the ARDE 

algorithm as well as the standard DE algorithm to the robot application: 

 Individual (solution encoding) and Population representation: A population 

with 𝑝𝑜𝑝𝑠𝑖𝑧𝑒 (𝑁𝑃 = 30) of individuals, refers to the number of individuals at 

each generation. First, we have to encode the necessary information required for 

the parameter estimation in the individual structure. Each individual should 

represent a complete solution to the problem at hand. In our application the 

individual is a vector of 4 real-coded parameters known as solution parameters.  

 Parameter control: The control parameters that are going to be considered are 

the mutation factor, 𝐹 and the crossover rate, 𝐶𝑅. In the standard DE/rand/1/bin, 

these parameters have been set to 0.5 and 0.9, respectively. In ARDE, 𝐹 and 𝐶𝑅  

values are undergo the evolution via the adaptive system; in such a way that 

better values of these parameters would lead to better individuals which in turn 

are more likely to survive and produce offspring and hence propagate these 

better parameter values to the next generation. The other parameters in ARDE 

have been initialized with 𝐶𝑅𝑚 =0.5, 𝐹𝑚 =0.5, 𝑝 =0.05, and 

𝑎𝑟𝑐ℎ𝑖𝑣𝑒 𝑠𝑖𝑧𝑒 =𝑁𝑝. The local search part of the SPX has been switched off.  

 Individual evaluation (solution validation): The definition of the fitness 

function is crucially important for a successful application. In this work, we have 

to evaluate the fitness of each individual based on the mean square error (MSE) 

of the estimated model, as in Equation 6.4.  

 

𝑀𝑆𝐸 =∑(𝜏𝑖 − �̂�𝑖)
2

𝑛

𝑖=1

   (6.4)  
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where 𝜏 represents the measured torque in our application and �̂� is the estimated 

torque using the DE and ARDE algorithms. 𝑛 is the dimension of 𝜏 vector.  

 Stopping criteria: The most common stopping condition used in literature is to 

allow the algorithm to run to a maximum number of iterations. A small number 

of iterations may not give the algorithm enough time to reach an optimum 

especially when the size of the search space is large. On the other hand, a very 

large number of iterations may be unnecessary because there can no further gain 

once the optimum solution is reached; so, the number of iterations for the 

standard DE and ARDE is set at 200.  

In this comparison the ordinary least square (OLS) identification method (see Equation 

6.5) has also been included to estimate the unknown parameters 𝑋𝑂𝐿𝑆 by minimizing the 

sum of the squared error between the actual torque 𝜏 and the predicted torque 𝜙𝑋𝑂𝐿𝑆, as 

follows:  

𝑋𝑂𝐿𝑆 = (𝜙
𝑇𝜙)−1𝜙𝑇𝜏 (6.5) 

Using the aforementioned methods and their corresponding settings the barycentric 

parameters of the CRS 465 single joint arm are estimated. The results of the three 

estimation techniques are presented in Table 6.1. These results have been averaged over 

30-independent runs.  

A clear comparison among these methods is presented in Table 6.2 which illustrates the 

mean square error and the standard deviation of the prediction error. From the same 

table it can be observed that the ARDE could outperform the OLS and the standard DE 

for both values. This is so because ARDE updates the values of the control parameters 

each generation and this change can deal with difficult problems such as noise. 
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Table 6.1: Barycentric parameters estimation of the single joint CRS A465 robot arm 

Single Joint 

Parameters 
OLS Standard DE ARDE 

𝑎1 0.0036 0.0037 0.0038 

𝑎2 0.0164 0.0143 0.0169 

𝑎3 0.0089 0.0594 0.0112 

𝑎4 -0.2582 -0.3060 -0.2261 

 

Table 6.2: Mean square error and standard deviation of the estimation methods for the 

estimated model averaged over 30-independent runs 

OLS Standard DE  ARDE 

MSE (Std Dev) MSE (Std Dev) MSE (Std Dev) 

9.259E-02 

(2.099E+00) 

8.872E-02 

(1.415E+00) 

5.143E-02 

(1.390E+00) 

 

Figure 6.3 depicts the different behavior of  𝐹 and 𝐶𝑅 values during the 200 generations 

due to the population information. The plot of the figure shows a significant high 

fluctuation at the early stages of the run then begins to stabilize due to stability in the 

population. This change in 𝐹 and 𝐶𝑅 values helps ARDE to escape from the local 

optimums generated by the noisy components in the dataset. 

    The distinct performance of the ARDE in comparison with the standard DE and the 

OLS is further proved in the torque prediction, as depicted in Figure 6.4. From this 

figure, and based on the barycentric parameters, it is worth noting that the standard DE 

and ARDE are both nearer to the measured torque than the OLS. The difference is 

clearer in the accuracy of the model as already presented in Table 4.  However, the 

difference between the standard DE and ARDE performance plot will be more 

significant as the number of the estimated parameters is increased. 
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(a) F-Value 

 

(b) CR-Value 

 

Figure 6.3: The behavior of the F and CR values in ARDE algorithm during 200 

generations 
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Figure 6.4: Measured torque compared with estimated torque using different 

methods 

 

6.5 Summary  

      In this chapter, the ARDE is utilized to estimate the barycentric parameters of single 

joint CRS A465 robot arm dynamics. In this method the values of the control 

parameters 𝐹 and 𝐶𝑅 are adapted using the adaptive repository mechanism of 

parameters and mutation strategies. The main advantages of this approach are: 

computationally efficient, and well-adaptable with optimization techniques. ARDE is 

not only a simple approach in comparison with other adaptive DE variants, but is also 

reliable and easy to be implemented in real time applications such as robot system 

identification. The barycentric parameters of a single joint CRS A465 robot are also 

estimated using OLS and the standard DE, and the experimental results suggest that 

ARDE provides better overall performance than the ordinary least square method and 

the standard DE with fixed parameters.  
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CHAPTER 7 

 

CONCLUSIONS AND FUTURE WORK 

 

7.1 Introduction  

    This thesis contains an exploration of adaptive EA strategies for global optimization. 

The work was not driven by an existing algorithm nor by a single application. Rather, 

this work was motivated by a desire to cover and understand the subject of adaptive EA 

algorithms in general from the most basic level. In this study, adaptive DE has been 

treated as a case study of this type of algorithms then a new adaptive DE algorithm 

called ARDE-SPX has been proposed that could overcome the limitations over other 

state-of-the-art adaptive DE variants existing in literature. While a number of 

benchmark functions were explored to examine in-depth the performance of the ARDE-

SPX algorithm. Robot manipulator system identification has also been considered as a 

real-world application to study the performance of the ARDE-SPX in comparison with 

standard methods.  

    In this final chapter, a summary of conclusions, contributions and future work 

directions on developments and improvements of adaptive EA algorithms are presented.  

 

7.2 Research Conclusions 

      The fundamental conclusions of this research work include the analysis and 

development of adaptive DE algorithm and its application to a real-world application 

are summarized below.  

 The classification of adaptive Evolutionary Algorithms and adaptive Differential 

Evolution algorithms is always an on-going research area. The research on 
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developing adaptive EA algorithms has been such a hot topic. As more and more 

new adaptive algorithms are proposed with new characteristics, the need for a 

general classification that can cover all these types of algorithms becomes a 

large demand. These classifications provide knowledge to those researches who 

are interested in this type of algorithms on what have been implemented and 

what improvements or developments can be added in this area as future work.  

In this thesis, two classifications have been proposed for the purpose: First, 

extension taxonomy to the EA parameter settings that covers in general the type 

of parameters settings in evolutionary computations. Second, general 

classification to the adaptive DE algorithms that classifies these algorithms 

based on the parameters control of the algorithm as well as the number of DE 

strategies employed in the implementation.  

 Differential Evolution parameters tuning is no less important than the adaptive 

Differential Evolution. Many researchers from different disciplines like 

engineering seek out the simplicity for their applications. Some of the real-world 

applications such on-line systems demand fast algorithms with less number of 

parameters to be used such as the standard DE, and this requires a prior 

knowledge on which parameter settings can give the best performance of the 

algorithm. In general, parameter setting is a problem dependent; there is no 

possibility that any algorithm can be tuned once to optimize all types of 

problems. A table that composed of the DE parameters tuning for different 

problems has been granted for those practitioners who are interested to use the 

standard DE.   

 Results of the Differential Evolution with adaptive repository and local search 

(ARDE-SPX) are promising; however, the ARDE-SPX is still in its infancy. The 

results of the final solution precision based on the mean and standard deviation, 
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as well as the robustness of the ARDE-SPX represented by the mean of the 

successful rate have confirmed that ARDE-SPX has the advantage over other 

adaptive DE variants presented in the comparison. The comparison between 

ARDE-SPX and other adaptive DE methods based on the number of functions 

that each algorithm has achieved the best results over the other algorithms. 

ARDE-SPX has the superior performance in both 30-dimension and 100-

dimension problems. But, it is also important to mention that this current study, 

like many other newly proposed algorithms, needs further study to shed the 

lights more on its benefits, weaknesses and limitations.  

 The advantages of the ARDE-SPX are not the same for different problems. 

Similar to all optimization algorithms, ARDE-SPX does not present consistent 

behavior over different problems. However, the overall performance of ARDE-

SPX has shown to be better than the other five adaptive DE algorithms over the 

selected benchmark test suite.    

 The proposed adaptive repository is general enough to be applied on different 

algorithms. The adaptive repository mechanism of strategies and parameters 

adaptation schemes is a general mechanism and can be embedded with high 

flexibility inside any population-based evolutionary algorithm for further 

investigation.  

 There is fewer control parameters in ARDE-SPX than most of the adaptive DE 

algorithms. ARDE-SPX has no extra control parameters added to its main 

procedure. The only way that may increase the ARDE-SPX’s control parameters 

depends on the DE strategies and parameters control schemes involved in the 

repository.  

 ARDE has shown good results in real-world application. In system 

identification and control of robot manipulator, ARDE has shown better 
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performance than the standard DE and the ordinary least square method OLS. 

Because of the high randomness of ARDE in terms of its adaptive manner, it 

could overcome the problem of the robot noisy data.  

 

7.3 Research Future Work  

    Many studies can be conducted to extend or enhance the adaptive DE algorithms 

based on the analysis of these methods or from the new proposed ARDE-SPX 

algorithm. Some of these directions can be stated as follows:  

 The use of alternative DE strategies in ARDE-SPX. Investigate the use of the 

adaptive repository mechanism of ARDE on other DE strategies rather than 

JADE with archive. So far, there are many DE strategies and can be either 

replaced or integrated with the existing JADEw strategies.  

 The use of alternative parameter control schemes in ARDE-SPX. Investigate the 

use of the adaptive repository mechanism of ARDE-SPX on other parameters 

adaptive schemes of 𝐹 and 𝐶𝑅 rather than the adaptation scheme of MDE_pBX. 

There are many parameter adaptive/self-adaptive schemes that can be integrated 

with the ARDE-SPX.  

 Generalize ARDE-SPX to handle constraint and multi-objective optimization. In 

most of the practical applications there are the problems of constraint handling 

and mutli-objective. There are many DE approaches for handling these kinds of 

problems; they can be integrated with ARDE-SPX to solve multi-objective 

constrained problems.  

   Extend the adaptive repository of DE (ARDE-SPX) to non-continuous 

optimization (discrete/integer). In this study, the continuous optimization of 

ARDE-SPX is considered. There are many optimization problems that require 

individuals with discrete values, these types of problems are called 
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combinatorial problems. There some previous work has been done on modifying 

DE to deal with discrete variables; these components can be added to ARDE-

SPX to solve these problems.  

 Investigate the use of different local search algorithms. There many other local 

search algorithms than SPX, such as Hill-Climbing and Tabu search methods. 

These algorithms can be added to the ARDE algorithm, then a comparison 

analysis can be conducted to investigate the effect of each of these algorithms on 

the performance of ARDE.  

 Multi-comparison statistical test. It would be interesting to use some muli-

comparison statistical test such as Friedman test, ANOVA and Wilcoxon Rank 

to analyze the differences among the state-of-the-art adaptive DE variants and 

ARDE-SPX algorithm.  

 Increase the number of joints in the robot part. In order to further investigate the 

performance of the ARDE as an estimator technique and any possible 

shortcomings, further work is considered to increase the number of joints of the 

robot arm which in turn will increase the number of parameters of the predicted 

model. 

 Improve the performance of the JADE mutation strategy and its variants (JADE 

with archive, SaDE-MMTS, and SaJADE). The selection of the best 

individuals,  𝑝% of the population size in the mutation strategy can be 

implemented in an adaptive manner based on the population diversity. 

 Improve the performance of the MDE_pBX algorithm in different directions. 

The MDE_pBX algorithm is a platform for many modifications. 1) An analytical 

investigation on the effects of the two new strategies (mutation and crossover) 

on the population diversity and convergence rate. 2) The connotation of a 

dynamic grouping can be a future MDE_𝑝BX development to include new 
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operators such as 𝐷𝐸/𝑔𝑟_𝑏𝑒𝑠𝑡/1, 𝐷𝐸/𝑔𝑟_𝑏𝑒𝑠𝑡/2, etc., then their effectiveness 

could be measured on different types of test functions. 3) The parameter, 𝑝, may 

also be modified to be adaptive or at the very least dynamic during the evolution 

process, hence its performance effectiveness can further be investigated. 4) 

There are two additional control parameters 𝑞 (the group size in the mutation 

operation) and 𝑝 (the number of the top-ranking vectors in the crossover 

operation), a theoretical guidelines of how to select the values of 𝑝 and 𝑞 can be 

investigated. 

 Enhance the adaptive scheme of the parameters control in the SaDE and its 

variant SaDE-MMTS. In these two algorithms, the parameter 𝐹 can be set to an 

adaptive rule that accumulate knowledge from the previous generations. 

 Improve the adaptive ensemble of EPSDE. The random strategy of the EPSDE 

in selection the parameters control and DE strategies can be improved by 

accumulating knowledge regarding the performance of the control parameter 

values through certain number of generations. 
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APPENDIX A 

STANDARD BENCHMARK FUNCTIONS  

 

 

UNIMODAL FUNCTIONS  

 

A. Sphere Function 

 

𝑓1(𝑥) =∑𝑥𝑖
2

𝐷

𝑖=1

        − 100 ≤ 𝑥𝑖 ≤ 100 

global minimum (𝑓1) =  𝑓1(0,…, 0)= 0 

 

 

B. Schwefel 2.22 Function  

 

𝑓2(𝑥) =∑|𝑥𝑖|

𝐷

𝑖=1

+∏|𝑥𝑖|

𝐷

𝑖=1

          − 10 ≤ 𝑥𝑖 ≤ 10 

global minimum (𝑓2) =  𝑓2(0,…, 0)= 0 

 

 

C. Schwefel 1.2 Function 

 

𝑓3(𝑥) =∑(∑𝑥𝑗

𝑖

𝑗=1

)

2
𝐷

𝑖=1

             − 100 ≤ 𝑥𝑖 ≤ 100 

global minimum (𝑓3) =  𝑓3(0,…, 0)= 0 

 

 

D. Schwefel 2.21 Function 

 

𝑓4(𝑥) = 𝑚𝑎𝑥{|𝑥𝑖| , 1 ≤ 𝑥𝑖 ≤ 𝐷}      − 100 ≤ 𝑥𝑖 ≤ 100 

global minimum (𝑓4) =  𝑓4(0,…, 0)= 0 

 

 

E.  Step Function  

𝑓5(𝑥) =∑⌊𝑥𝑖 + 0.5⌋
2

𝐷

𝑖=1

      − 100 ≤ 𝑥𝑖 ≤ 100 

global minimum(𝑓5) =  𝑓5(0,…, 0)= 0 
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F. Quartric Noise Function  

 

𝑓6(𝑥) =∑𝑖𝑥𝑖
4

𝐷

𝑖=1

+ 𝑟𝑎𝑛𝑑[0,1)       − 1.28 ≤ 𝑥𝑖 ≤ 1.28 

global minimum(𝑓6) =  𝑓6(0,…, 0)= 0+ noise  

 

 

G. Access Parallel Hyper-Ellipsoid Function  

 

𝑓7(𝑥) =∑𝑖𝑥𝑖
2

𝐷

𝑖=1

      − 100 ≤ 𝑥𝑖 ≤ 100  

global minimum(𝑓7) =  𝑓7(0,…, 0)= 0 

 

 

H. Standard Rosenbrock Function  

 

𝑓8(𝑥1, 𝑥2) = 100(𝑥1
2 − 𝑥2)

2 + (𝑥1 − 1)
2     − 30 ≤ 𝑥𝑖 ≤ 30 

global minimum (𝑓8) =  𝑓8(1, 1)= 0 

 

 

 

MULTIMODAL FUNCTIONS  

 

 

I. Generalized Rosenbrock Function 

 

𝑓9(𝑥) = ∑[100(𝑥𝑖
2 − 𝑥𝑖+1)

2 + (𝑥𝑖 − 1)
2]

𝐷−1

𝑖=1

      − 30 ≤ 𝑥𝑖 ≤ 30 

global minimum (𝑓9) =  𝑓9(1,…, 1)= 0 

 

 

J. Schwefel Function  

 

𝑓10 =∑[−𝑥𝑖𝑠𝑖𝑛√|𝑥𝑖|]

𝐷

𝑖=1

              − 500 ≤ 𝑥𝑖 ≤ 500 

global minimum (𝑓10) =  𝑓10(420.9687,…, 420.9687)= -418.9829∙ 𝐷  

 

 

K. Rastrigin Function  

 

𝑓11 = ∑[𝑥𝑖
2 − 10 𝑐𝑜𝑠(2𝜋𝑥𝑖) + 10]

𝐷

𝑖=1

           − 5.12 ≤ 𝑥𝑖 ≤ 5.12 
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global minimum (𝑓11) =  𝑓11(0,0,…, 0)= 0  

 

 

 

L. Ackley Function  

 

𝑓12 = −20𝑒𝑥𝑝

(

 −0.2√
1

𝐷
∑𝑥𝑖

2

𝐷

𝑖=1
)

 − 𝑒𝑥𝑝(
1

𝐷
∑cos(2π𝑥𝑖)

𝐷

𝑖=1

) + 20 + е𝑥𝑝(1) 

−32 ≤ 𝑥𝑖 ≤ 32      global minimum (𝑓12) =  𝑓12(0,0,…, 0)= 0  

 

 

M. Griewank Function    

   

𝑓13 =
1

4000
∑𝑥𝑖

2 −∏ 𝑐𝑜𝑠 (
𝑥𝑖

√𝑖
) + 1

𝐷

𝑖=1

𝐷

𝑖=1

   

−600 ≤ 𝑥𝑖 ≤ 600      global minimum (𝑓13) =  𝑓13(0,0,…, 0)= 0  

 

 

 

 

N. Generalized Penalized Functions 

 

𝑓14 =
𝜋

𝐷
{10𝑠𝑖𝑛2(𝜋𝑦1) +∑(𝑦𝑖 − 1)

2[1 + 10 𝑠𝑖𝑛2(𝜋𝑦𝑖+1)] + (𝑦𝐷 − 1)
2

𝐷−1

𝑖=1

}

+∑𝑢(𝑥𝑖, 10, 100, 4)

𝐷

𝑖=1

 

−50 ≤ 𝑥𝑖 ≤ 50      global minimum (𝑓14) =  𝑓14(-1,-1,…, -1)= 0 

  

𝑓15(𝑥) = 0.1 {𝑠𝑖𝑛
2(3𝜋𝑥1)

+∑(𝑥𝑖 − 1)
2[1 + 𝑠𝑖𝑛2(3𝜋𝑥𝑖+1)] + (𝑥𝐷 − 1)

2[1 + 𝑠𝑖𝑛2(2𝜋𝑥𝐷)]

𝐷−1

𝑖=1

}

+∑𝑢(𝑥𝑖, 5, 100, 4)

𝐷

𝑖=1

 

 

−50 ≤ 𝑥𝑖 ≤ 50      global minimum (𝑓15) =  𝑓15(1,1,…, 1)= 0  

 

where 𝑦𝑖 = 1 +
1

4
(𝑥𝑖 + 1) and  

 



189 

𝑢(𝑥𝑖, 𝑎, 𝑘,𝑚) = {

𝑘(𝑥𝑖 − 𝑎)
𝑚,                   𝑥𝑖 > 𝑎,

0,                          − 𝑎 ≤ 𝑥𝑖 ≤ 𝑎,

𝑘(−𝑥𝑖 − 𝑎)
𝑚,                𝑥𝑖 < −𝑎.

 

 

 

 

O. Nuemaier 3 Function  

𝑓16(𝑥) =∑(𝑥𝑖 − 1)
2 −∑𝑥𝑖𝑥𝑖−1

𝐷

𝑖=2

𝐷

𝑖=1

 

 

−𝐷2 < 𝑥𝑖 < 𝐷
2  for 𝑖 = 1,2,3, … , 𝐷        global minimum(𝑓16)=−𝐷(𝐷 + 4)(𝐷 − 1)/6  

at 𝑥𝑖 = 𝑖(𝐷 + 1 − 𝑖) 
 

 

 

 

P. Salomon Function 

 

𝑓17(𝑥) = 1 − cos(2𝜋‖𝑥‖) + 0.1‖𝑥‖, where 

‖𝑥‖ = √∑𝑥𝑖
2

𝐷

𝑖=1

 

 

−100 ≤ 𝑥𝑖 ≤ 100      global minimum (𝑓17) = 𝑓17(0,0, … ,0) = 0 

 

 

Q. Alpine Function 

 

𝑓18(𝑥) =  ∑|𝑥𝑖 sin(𝑥𝑖) + 0.1𝑥𝑖|

𝐷

𝑖=1

 

 

−10 ≤ 𝑥𝑖 ≤ 10      global minimum (𝑓18) = 𝑓18(0,0, … ,0) = 0 

 

 

R. Easom Function  

 

 

𝑓19(𝑥1, 𝑥2) = − 𝑐𝑜𝑠(𝑥1) 𝑐𝑜𝑠(𝑥2) 𝑒𝑥𝑝(−(𝑥1 − 𝜋)
2 − (𝑥2 − 𝜋)

2)  
 

−100 ≤ 𝑥𝑖 ≤ 100        global minimum(𝑓19)= 𝑓19(𝜋, 𝜋)= -1 

 

 

S. Branin Function  

 

 

𝑓20(𝑥1, 𝑥2) = (𝑥2 −
5.1

4𝜋2
𝑥1
2 +

5

𝜋
𝑥1 − 6)

2 + 10 (1 −
1

8𝜋
) cos(𝑥1) + 10 

 

−5 ≤ 𝑥1 ≤ 10    and    0 ≤ 𝑥2 ≤ 15        global minima(𝑓20)= 𝑓20 (−𝜋, 12.275); 𝑓20 (𝜋, 
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2.275);  𝑓20 (9.42478, 2.475)= 0.397887 

 

 

T. Goldstein-Price Function  

 

 

𝑓21(𝑥1, 𝑥2) =  [1 + (𝑥1 + 𝑥2 + 1)
2(19 − 14𝑥1 + 3𝑥1

2 − 14𝑥2 + 6𝑥1𝑥2 + 3𝑥2
2)]

× [30 + (2𝑥1 − 3𝑥2)
2(18 − 32𝑥1 + 12𝑥1

2 + 48𝑥2 − 36𝑥1𝑥2 + 27𝑥2
2)] 

 

−2 ≤ 𝑥𝑖 ≤ 2    global minimum(𝑓21)=  𝑓21(0, -1)= 3.0000 

 

 

 

U. Six-hump Camel Back Function 

 

𝑓22(𝑥1, 𝑥2) = (4 − 2.1𝑥1
2 +

𝑥1
4

3
) 𝑥1

2 + 𝑥1𝑥2 + (−4 + 4𝑥2
2)𝑥2

2 

 

−3 ≤ 𝑥1 ≤ 3    and   −2 ≤ 𝑥2 ≤ 2        global minima(𝑓22)= 𝑓22(-0.0898, 0.7126) and  

𝑓22 (0.0898, -0.7126)= -1.0316 

 

 

V. Shekel Foxholes Function  

 

𝑓23 = [
1

500
+∑

1

𝑗 + ∑ (𝑥𝑖 − 𝑎𝑖𝑗)
6𝐷

𝑖=1

𝑚

𝑗=1

]

−1

 

 

−65.536 ≤ 𝑥𝑖 ≤ 65.536        global minimum(𝑓23)= 𝑓23 (-32, -32) = 0.998004 

where m is a constant number fixed in advance. It is recommended to set m=24, 25, or 

30. In our case m=25, and   

𝑎1𝑗 = {−32,−16, 0, 16, 32,−32,−16, 0, 16, 32,−32,−16, 0, 16, 32,−32, −16, 0,  

16, 32,−32,−16, 0, 16, 32} 
𝑎2𝑗 =

{−32,−32,−32, −32,−32,−16,−16,−16,−16,−16, 0, 0, 0, 0, 0, 16, 16, 16, 16, 16}  
 

 

W. Hartman’s Family  

 

𝑓(𝑥) = −∑𝑐𝑖

4

𝑖=1

𝑒𝑥𝑝(−∑𝑎𝑖𝑗

𝐷

𝑗=1

(𝑥𝑗 − 𝑝𝑖𝑗)
2
 ) 

 

with D=3, 6 for 𝑓24(𝑥) and 𝑓25(𝑥), respectively, 0 ≤ 𝑥𝑖 ≤ 1. The coefficients a, p and c 

are defined by Table I. Global minimum (𝑓24) = 𝑓24(0.114, 0.556, 0.852) = -3.86278. 

Global minimum (𝑓25) = 𝑓25(0.201, 0.150, 0.477, 0.275, 0.311, 0.657) = -3.3237.  
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Table I 

Hartman Functions 𝒇𝟐𝟒 and 𝒇𝟐𝟓 

 
i 𝑎𝑖𝑗, j = 1, …, 6 𝑐𝑖 𝑝𝑖𝑗, j=1,…,6 

1 10 3 17 3.5 1.7 8 1 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886 

2 0.05 10 17 0.1 8 14 1.2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991 

3 3 3.5 1.7 10 17 8 3 0.2348 0.1415 0.3522 0.2883 0.3047 0.6650 

4 17 8 0.05 10 0.1 14 3.2 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381 

 

 

 X. Shekel’s Family  

 

𝑓(𝑥) = − ∑(∑(𝑥𝑗 − 𝑎𝑗𝑖)
2

𝐷

𝑗=1

+ 𝑐𝑖)

−1
𝑚

𝑖=1

   

 

 

with m= 5, 7, and 10 for 𝑓26(𝑥), 𝑓27(𝑥) and 𝑓28(𝑥), respectively, 0 ≤ 𝑥𝑖 ≤ 10. The 

coefficients a and c are defined by Table II. Global minimum (𝑓26) = 𝑓26(4, 4, 4, 4) = -

10.1532. Global minimum (𝑓27) = 𝑓27(4, 4, 4, 4)= -10.4029. Global minimum (𝑓28)= 

𝑓28(4, 4, 4, 4) = -10.5364.  

 

 

Table II 

Shekel Functions 𝒇𝟐𝟔, 𝒇𝟐𝟕 and 𝒇𝟐𝟖 

 
i 𝑎𝑖𝑗, j = 1, …, 4 𝑐𝑖 

1 4 4 4 4 0.1 

2 1 1 1 1 0.2 

3 8 8 8 8 0.2 

4 6 6 6 6 0.4 

5 3 7 3 7 0.4 

6 2 9 2 9 0.6 

7 5 5 3 3 0.3 

8 8 1 8 1 0.7 

9 6 2 6 2 0.5 

0 7 3.6 7 3.6 0.5 
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APPENDIX B 

TRANSFORMED BENCHMARK FUNCTIONS  

 

 

UNIMODAL FUNCTIONS  

 

 

A. Shifted Schwefel 1.2 Function  

 

𝐹2(𝑥) =∑(∑𝑧𝑗

𝑖

𝑗=1

)

2
𝐷

𝑖=1

,            𝑧 = 𝑥 − 𝑜          − 100 ≤ 𝑥𝑖 ≤ 100 

 

𝑥 = [𝑥1, 𝑥2, … , 𝑥𝐷],   𝑜 = [𝑜1, 𝑜2, … , 𝑜𝐷] is the shifted global optimum 

             global minimum (𝐹2) =  𝐹2(o,…, o)= 0 

 

 

MULTIMODAL FUNCTIONS  

 

 

B. Shifted Rotated Ackley Function 

 

𝐹6 = −20𝑒𝑥𝑝

(

 −0.2√
1

𝐷
∑𝑥𝑖

2

𝐷

𝑖=1
)

 − 𝑒𝑥𝑝 (
1

𝐷
∑cos(2π𝑥𝑖)

𝐷

𝑖=1

) + 20 + е𝑥𝑝(1), 

 

z = (x − o) × M     − 32 ≤ 𝑥𝑖 ≤ 32 
 

𝑥 = [𝑥1, 𝑥2, … , 𝑥𝐷],  𝑜 = [𝑜1, 𝑜2, … , 𝑜𝐷]: is the shifted global optimum 

𝑀 is a linear transformation matrix with condition number =1, 

        global minimum (𝐹6) =  𝐹6(o,…, o)= 0 

 

 

C. Shifted Rotated Griewank Function without bounds 

 

𝐹8 =
1

4000
∑𝑧𝑖

2 −∏ 𝑐𝑜𝑠 (
𝑧𝑖

√𝑖
) + 1

𝐷

𝑖=1

𝐷

𝑖=1

,       z = (x − o) × M  

 

𝑥 = [𝑥1, 𝑥2, … , 𝑥𝐷] ,    𝑜 = [𝑜1, 𝑜2, … , 𝑜𝐷]:  is the shifted global optimum 

𝑀 = �́�(1 + 0.3|𝑁(0,1)|) where  �́� is a linear transformation matrix with condition 

number =3 

         global minimum (𝐹8) =  𝐹8(o, o,…, o)= 0  
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D. Shifted Rastrigin Function 

 

𝐹9 = ∑[𝑧𝑖
2 − 10 𝑐𝑜𝑠(2𝜋𝑧𝑖) + 10]

𝐷

𝑖=1

,          𝑧 = 𝑥 − 𝑜         − 5 ≤ 𝑥𝑖 ≤ 5 

𝑥 = [𝑥1, 𝑥2, … , 𝑥𝐷],        𝑜 = [𝑜1, 𝑜2, … , 𝑜𝐷]: is the shifted global optimum 

     global minimum (𝐹9) =  𝐹9(o, o,…, o)= 0  

 

 

E. Shifted Rotated Rastrigin Function 

 

𝐹10 = ∑[𝑧𝑖
2 − 10 𝑐𝑜𝑠(2𝜋𝑧𝑖) + 10]

𝐷

𝑖=1

,         𝑧 = (𝑥 − 𝑜) ×𝑀           − 5 ≤ 𝑥𝑖 ≤ 5 

 

𝑥 = [𝑥1, 𝑥2, … , 𝑥𝐷],   𝑜 = [𝑜1, 𝑜2, … , 𝑜𝐷]: is the shifted global optimum 

𝑀 is a linear transformation matrix with condition number =2 

     global minimum (𝐹10) =  𝐹10(o, o,…, o)= 0  
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APPENDIX C 

 

STANDARD DE/RAND/1/BIN DELPHI 7 SOURCE CODE 

 
 

unit Unit1; 

 

interface 

 

uses 

  Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms, 

  Dialogs, Grids, StdCtrls, Buttons; 

 

type 

  TForm1 = class(TForm) 

    procedure BitBtn1Click(Sender: TObject); 

    procedure BitBtn2Click(Sender: TObject); 

  private 

    { Private declarations } 

  public 

    { Public declarations } 

  end; 

 

var 

  Form1: TForm1; 

 

implementation 

 

{$R *.dfm} 

 

procedure TForm1.BitBtn1Click(Sender: TObject); 

const 

    min=-100; 

    max=100; 

    f= 0.4; 

    CR=0.9; 

    P=50; 

type 

    rec=record 

          vector:array[1..P] of Real; 

          donor_vector: array[1..P] of real; 

          trial_vector: array[1..P] of real; 

          new_vector: array [1..P] of real; 

          fitness: real; 

           fitness1:real; 

         end; 

    population= array[1..500] of rec; 

 

 

 var 

    pop:population; 

    tempvec:array[1..P] of real; 

    i,j,Np,D,r1,r2,r3,k,Irand,t,generation,Gn,indx:Integer; 

    r,minn:Real; 

    ff:Textfile; 
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begin 

 

  Randomize; 

  AssignFile(ff,'Min.dat'); 

  Rewrite(ff); 

 

{***************************** Algorithm’s Variables *************************} 

  D:= StrToInt(Edit1.Text); 

  Np:= StrToInt(Edit2.text); 

  Gn:= StrToint ( Edit3.Text); 

 

{************* Step1: Initialization of Population with target vectors ************} 

  for i:= 1 to Np do 

   for j:= 1 to D do 

    pop[i].vector[j]:= min+(max-min)*random; 

 

  

{********* Evolution Steps (Mutation, Crossover, Evaluation and Selection)*********} 

 

generation:=0; 

 while (generation <= Gn) do 

  begin 

 

 {********* Step 2: Evaluation of Target Vectors using Sphere Function ************} 

   for i:=1 to Np do 

    begin 

     pop[i].fitness:=0.0; 

     for j:=1 to D do 

      pop[i].fitness:= Sqr(pop[i].vector[j])+pop[i].fitness; 

     end; 

 

 {******************** Print the Minimum Fitness to a file ***********************} 

  minn:= Pop[1].fitness;  

  for i:=2 to Np do 

   if(pop[i].fitness < minn) then  minn:= Pop[i].fitness; 

 

  Edit4.text:= FloatToStr(minn); 

 

  writeln(ff); 

   writeln(ff,'generation'+ INTTOSTR(GENERATION)); 

   writeln(ff); 

   for t:=1 to Np do 

   begin 

     for j:=1 to D do 

      write(ff,pop[t].vector[j],'  '); 

    Writeln(ff,'   ',pop[t].fitness); 

   end; 

 

 {*********************** Step 3: Mutation Operation (DE/rand/1) *****************} 

  i:=1; 

  while ( i<= Np ) do 

  begin 

   repeat 

    r1:= Random(Np)+1; 

   until (r1 <> i); 
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   repeat 

    r2:= Random(Np)+1; 

   until (r2 <> i)and(r2 <> r1); 

 

   repeat 

    r3:= Random(Np)+1; 

   until (r3 <> i)and (r3 <> r1)and (r3 <> r2); 

 

   for k:=1 to D do 

    pop[i].donor_vector[k]:=pop[r1].vector[k]+f*(pop[r2].vector[k]-  

                            pop[r3].vector[k]); 

 

   i:=i+1; 

  end; 

 

{*********************** Step 4: Boundary Constraints ****************************} 

  for i:=1 to Np do 

   for j:=1 to D do 

     if(pop[i].donor_vector[j]< min)or( pop[i].donor_vector[j]> max) then  

                                                                                        

   pop[i].donor_vector[j]:= min+(max-min)*random; 

 

{********************** Step 5: Crossover Operation (bin) ************************} 

  for i:=1 to Np do 

  begin 

    Irand:= Random(D)+1; 

   for j:=1 to D do 

    begin 

     r:=Random; 

     if ((r <= CR)or(j=Irand))then pop[i].trial_vector[j]:= Pop[i].donor_vector[j] 

     else pop[i].trial_vector[j]:= Pop[i].vector[j]; 

    end; 

  end; 

 

 

 {*********** Step 6: Evaluation of Trial Vectors using Sphere Function ***********} 

    for i:=1 to Np do 

    begin 

     pop[i].fitness1:=0.0; 

     for j:=1 to D do 

      pop[i].fitness1:= Sqr(pop[i].trial_vector[j])+pop[i].fitness1; 

     end; 

 

 {*************************Step 7: Selection Operation **************************} 

    for i:=1 to Np do 

     if (pop[i].fitness1 <= pop[i].fitness) then 

     for j:=1 to D do 

      begin 

       pop[i].new_vector[j]:=pop[i].trial_vector[j]; 

      end 

     else 

     for j:=1 to D do 

      begin 

       pop[i].new_vector[j]:=pop[i].vector[j]; 

      end; 
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{************ Step 8: Exchange the old Target Vectors with New Target Vectors******} 

    for i:= 1 to Np do 

     for j:=1 to D do 

      pop[i].vector[j]:= Pop[i].new_vector[j]; 

 

  generation := generation +1; 

 end; 

 

 Closefile(ff); 

end; 
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