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ABSTRACT 

 

A hot-wire chemical vapour deposition (HWCVD) system is a simple and cost-

effective technique for deposition of Si-based films. Silicon carbide (SiC) on the other 

hand is a very interesting material with many unique properties. This work is directed 

towards understanding how the structural properties of the SiC films affect the opto-

electronic properties of the films. This is important for application of this wide band gap 

semiconductor as a window material in photovoltaic solar cells.  

In this work, an HWCVD system built in the laboratory is successfully utilized 

to grow multi-phased SiC films from silane (SiH4) and methane (CH4) gases without 

hydrogen dilution. In the first part of this work, the influence of precursor gas 

concentration on chemical bonding, crystallinity and elemental composition of the films 

is studied. The precursor gas concentration is changed by depositing films at different 

CH4 flow-rates with the SiH4 flow-rate fixed at SiH4 starving condition and at different 

total gas partial pressures with the fixed ratio of SiH4 to CH4 flow-rate. In the second 

part of this work, the effects of deposition pressure and substrate-to-filament distance on 

the structural and optical properties of films are investigated. The deposition pressure 

controls the residence time of precursor molecules in the reactor and the filament-to-

substrate distance determines the energy of the radicals reaching the growth sites. Then, 

the structural properties of the films are studied with respect to the optical energy gap 

(Eg), refractive index (n), and photoluminescence properties of the SiC films. The final 

part of this work focuses on the growth mechanism of SiC films. 

In this work, high quality SiC films have been successfully grown in the 

HWCVD system. The highest growth rate of the SiC films achieved in this work is 

higher than reported values for films grown by conventional deposition techniques. It is 

established that the formation of SiC nano-crystals can be manipulated by controlling 

the CH4 to SiH4 flow-rate ratio in SiH4 starving condition. It is also shown that an 

optimum total gas partial pressure is required for the formation of SiC nano-crystalline 

phases in the films. The decrease in filament-to-substrate distance is shown to promote 

the formation of nano-crystalline SiC phases and hydrogenated amorphous carbon (a-

C:H) clusters in the film structure. It is verified that the structure of SiC films grown is 

independent of the substrate used for the films. Also, It is shown that the Eg and n 

values are strongly affected by the structural properties of the films such as the Si-C 

bond density and the presence of a-C:H clusters. Compositional analysis showed that 

the carbon content controls both the Eg and n values of the films. Photoluminescence 

emission from the SiC films is the result of band-to-band transition and radiative 

recombination processes in the band tail states. The precursor gases concentration in the 

reactor, residence time of the precursor gas molecules, growth radicals in the reactor, 

and the flux of energetic growth radicals determine the growth mechanism involved in 

the growth process of the SiC thin films by HWCVD technique.  
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ABSTRAK 

 

Sistem pemendapan wap kimia dawai panas (HWCVD) adalah teknik yang 

mudah dan kos efektif untuk pemendapan filem berasaskan silikon. Silikon karbaid 

(SiC) pula adalah suatu bahan yang sangat menarik yang mempunyai banyak ciri-ciri 

yang unik. Hala tuju kerja ini adalah untuk memahami kesan sifat struktur filem SiC ke 

atas sifat opto-elektronik filem. Ini adalah penting untuk aplikasi bahan semikonduktor 

jurang jalur lebar ini sebagai bahan tetingkap dalam sel-sel solar fotovoltan.  

Di dalam kerja ini, sistem HWCVD yang dibina di makmal berjaya digunakan 

untuk pemendapan filem SiC pelbagai fasa dari gas silan (SiH4) dan metana (CH4) tanpa 

pencairan gas hidrogen. Di dalam bahagian pertama kerja ini, pengaruh kepekatan gas 

pelopor ke atas ikatan kimia, penghabluran dan komposisi elemen di dalam filem dikaji. 

Kepekatan gas pelopor diubah dengan memendapkan filem dengan kadar aliran gas CH4 

yang bebeza pada kadar aliran SiH4 yang ditetapkan pada tahap keadaan ketandusan 

SiH4 dan jumlah tekanan separa gas yang berbeza dengan nisbah kadar aliran SiH4 

kepada CH4 yang tetap. Dalam bahagian kedua kerja ini, kesan tekanan di masa 

pemendapan dan jarak filamen-ke-substrat ke atas sifat-sifat struktur dan optik filem 

dikaji. Tekanan pemendapan mengawal masa mastautin molekul pelopor dalam reaktor 

dan jarak filamen-ke-substrat menentukan tenaga radikal yang sampai di kawasan 

pemendapan. Sifat struktur filem pula dikaji merujuk kepada jurang tenaga optik (Eg), 

indeks biasan (n) dan pemancaran fotoluminesen filem SiC. Bahagian akhir kerja ini 

memberi tumpuan kepada mekanisme pertumbuhan filem SiC.  

Di dalam kerja ini, filem SiC berkualiti tinggi telah berjaya dimendapkan dengan 

kadar pemendapan yang tinggi di dalam sistem HWCVD ini. Kadar pertumbuhan 

tertinggi filem SiC yang dicapai dalam kerja adalah lebih tinggi daripada yang 

dilaporkan bagi filem-filem yang dimendapkan dengan kaedah konvensional. 

Pembentukan nano-hablur SiC boleh dimanipulasi dengan mengawal nisbah kadar 

aliran CH4 kepada SiH4 dalam keadaan ketandusan SiH4 telah dimantapkan. Ia juga 

menunjukkan bahawa jumlah tekanan separa gas optimum diperlukan untuk 

pembentukan fasa SiC nano-kristal ke dalam filem. Penurunan jarak filamen-ke-substrat 

menggalakkan pembentukan fasa SiC nano-kristal dan kelompok amorfus karbon 

berhidrogen (a-C: H) dalam struktur filem. Telah disahkan juga di dalam kerja ini 

bahawa struktur filem SiC yang dimendapkan tidak bergantung pada substrat yang 

digunakan untuk filem. Perubahan struktur dalam filem seperti ketumpatan ikatan Si-C 

dan kehadiran kelompok a-C:H dalam struktur filem telah ditunjukkan mempengaruhi 

nilai Eg dan n dengan ketara. Analisis komposisi menunjukkan bahawa kandungan 

karbon mengawal kedua-dua nilai Eg dan dan n bagi filem. Pemancaran fotoluminesen 

daripada filem SiC adalah hasil peralihan jalur-ke-jalur dan proses penggabungan 

semula radiatif yang berlaku di keadaan jalur ekor. Kepekatan gas pelopor di dalam 

reaktor, masa mastautin molekul gas pelopor dan radikal pertumbuhan dalam reaktor 

dan fluks radikal pertumbuhan bertenaga menentukan mekanisme pertumbuhan yang 

terlibat dalam proses pertumbuhan filem nipis SiC dengan kaedah HWCVD. 
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1.1 Introduction  

 

Silicon carbide (SiC) was discovered by an American inventor, Edward G. 

Acheson in 1891 while attempting to produce artificial diamonds. It is a wide band gap 

semiconductor long known to have potential for high temperature, high power, high 

frequency and radiation hardened applications. SiC has been used as an industrial 

material since the last century because of its unique properties, such as high thermal 

conductivity (3.2 W cm
-1

 K
-1

), high breakdown electric field (2.2 × 10
6
 Vcm

-1
), high 

forward current density, high saturated electron drift velocity, high electronic mobility, 

high blocking voltage, excellent oxidation resistance, strength retention to high 

temperature (above 600
°
C), high wear resistance and so on. The scientific interest in 

SiC is driven by the existence of a diversity of different polytypes of SiC. SiC is the 

only IV-IV compound that forms stable long-range ordered structures. Over 200 

crystallographic modifications of SiC have been reported originating from differences in 

the stacking sequence of Si-C double layers along the [111] or [0001] direction. The 

most common polytypes of SiC crystals include 3C (zinc blend), 6H, 4H, and 2H 

(wurtzite) (Z.C. Feng, 2004; Friedrichs, Kimoto, Ley, & Pensl, 2011; Harris, 1995; Y. 

S. Park, 1998).  

Hydrogenated amorphous SiC (a-Si1-xCx:H) is also of considerable current 

interest both fundamentally, as a typical amorphous system with variable disorder and 

microstructure, and technologically, with regard to its applications in electronics and 

optoelectronics. Wide applications of this material are due to the fact that its optical gap 

can be significantly tailored by varying the compositional ratio of its constituent 

elements. In addition, a-SiC:H film is known to be chemically and mechanically 

stronger than hydrogenated amorphous silicon (a-Si) films and recently has been 

recognized to be compatible for applications in biomedical devices (Saddow, 2012; Will 
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et al., 2010). SiC in its crystalline and amorphous form has also become attractive as an 

important wide band-gap semiconductor material for applications in optoelectronic 

devices, such as window layer in silicon solar cells (G. Ambrosone et al., 2002; Chang 

et al., 2012; Klein, Finger, Carius, & Stutzmann, 2005; Mao et al., 2012; S. Miyajima, 

Irikawa, Yamada, & Konagai, 2010; Ogawa et al., 2008). Window layer is a transparent 

film that allows full penetration of solar spectrum into the active part of the solar cell.  

It is well known that the growth of crystalline SiC thin films requires high 

temperatures (above 1000
°
C) that exceed the melting point of available and cheap 

substrates. Therefore, for applications such as in thin film solar cells on cheap glass 

substrates, low-temperature deposition of SiC is necessary. Amorphous SiC films can 

be easily deposited by glow discharge technique at low substrate temperatures. 

Nevertheless, for such applications, a material with high electron mobility is desired. 

Later studies showed that nano-crystalline SiC, which contains SiC nano-crystallites 

embedded in an amorphous SiC matrix, is more suitable than amorphous SiC for 

applications in solar cells. Many researchers have attempted to produce this kind of SiC 

thin films, which is expected to exhibit excellent properties due to the quantum 

confinement effect (Chang, et al., 2012; Q. Cheng, Xu, S. , 2007; Y. Hoshide, Tabata, 

A., Kitagawa, A., Kondo, A., 2009; Jha et al., 2012; A. Tabata, Komura, Hoshide, 

Narita, & Kondo, 2008).  

Amorphous and nanocrystalline SiC thin films have been conventionally grown 

by plasma enhanced chemical vapour deposition (PECVD) technique, which allows low 

substrate temperature growth at temperatures below 300
°
C. However, it has some 

disadvantages such as low deposition rate and degradation of SiC optical properties 

induced by the surface damage due to ion bombardment effect.  
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Hot-wire chemical vapour deposition (HWCVD) technique, invented for 

deposition of Si films at high deposition rate, has been realized to be a promising 

method to grow high quality SiC films at low substrate temperature compared to those 

prepared by conventional PECVD method (A. A. Kumbhar, Dusane, Bauer, & 

Schröder, 1998; A. S. Kumbhar, Bhusari, & Kshirsagar, 1995; Mahan, Nelson, 

Salamon, & Crandall, 1991). The presence of neutral radicals and molecules instead of 

ionized plasma in this system during the growth process makes it a more attractive 

process for thin film growth. This technique involves an efficient decomposition of the 

source gas catalytically in the presence of a resistively heated filament (usually 

tungsten). The generated species are transported to the substrate for film growth at low 

temperatures in the range of 150
°
C – 400

°
C, making the process suitable for film growth 

on low-cost glass substrates. Also, a HWCVD system is simple to develop and can be 

built in any research laboratory at low-cost without complications. This technique 

emphasizes gentle reactions on the growing surface and is free from ion bombardment 

damage. The deposition area could be expanded arbitrarily by enlarging the spanning 

area of the catalyser filaments. In HWCVD, the gas utilization efficiency is 5 to 10 

times higher than in PECVD, thus contributing to higher growth rate of the material. 

The HWCVD thus provides enormous promise for better technological feasibility in the 

commercial production of large area semiconductor devices (Chakraborty & Das, 2006; 

Matsumura, Umemoto, Izumi, & Masuda, 2003). Therefore, there has been a growing 

interest in the last decade among researchers to produce SiC films for optoelectronic 

applications using HWCVD technique. It has been generally accepted that HWCVD 

generates H radicals at a higher density than plasma processes by 1 or 2 order of 

magnitude (Umemoto, 2002). It is commonly believed that H radicals play an important 

role in the low-temperature growth of nanocrystalline Si-based thin films (Matsuda, 

2004). Thus, for deposition of nanocrystalline SiC films, usually the source gases are 
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diluted by hydrogen gas. However, this significantly reduces the growth rate of the 

films, which is a disadvantage from the view point of cost reduction. In addition, it 

should be noted that a PECVD system is comparatively more expensive and less 

economical to run than a HWCVD system. A home-built HWCVD system has the 

added advantage of flexibility for design modification to suit the needs of research for 

enhancing the properties of the films produced for relevant applications.  

In spite of the abundance of published works on the deposition of silicon films 

by HWCVD with detailed investigations on its optical and structural properties, similar 

research aspects done on SiC films are still lacking. Many aspects on the growth 

mechanism of SiC films by HWCVD technique particularly and studies on the 

dependence of its properties on the deposition conditions have yet to be understood. 

In this work, a home-built HWCVD system in the Low Dimensional Materials 

Research Centre (LDMRC), University of Malaya was utilized to grow SiC thin films. 

This system was designed and built by Aniszawati Azis, a former PhD student in the 

centre for her PhD research. She has shown in her work that this system has the ability 

to produce SiC films (Azis, 2012). However, the films were mostly Si-rich and 

amorphous and the density of Si-C bonds in the films was low. Moreover, very little 

investigation was done on the properties of the films deposited using this system since 

the focus of her research was mainly to design and build the HWCVD system and to test 

it for the production of SiC films. In the present work, this system has been slightly 

modified to improve the efficiency of the system and selected deposition parameters 

have been chosen as the variable parameters studied to be optimized for production of 

good quality SiC films. Various important characterization techniques will be utilized to 

study the films’ properties with respect to the deposition parameters. In addition, the 

growth mechanism of SiC films produced by this system will be studied from analysis 
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done on the structural properties of the films with respect to the deposition parameters 

studied.  

Some neglected aspects of SiC films deposited by HWCVD, specifically from 

pure silane and methane gases without hydrogen dilution will be explored in this work. 

The deposition parameters are known to significantly influence the growth mechanism 

and the film properties. However, investigations on the effect of some important 

deposition parameters on the film properties is still needed to understand the growth 

mechanism of the films by HWCVD, especially in the absence of hydrogen dilution 

which has been established to be necessary to produce nano-crystalline SiC films. The 

effect of deposition parameters such as filament-to-substrate distance, methane gas 

flow-rate and total gas partial pressure on the SiC deposition mechanism and film 

properties have occasionally been reported (A. Tabata & Komura, 2007) but more 

studies are still needed to fully justify the reported effects. Also, studies on the 

correlation of the structural properties with respect to the important optical parameters 

like optical energy gap and refractive index of SiC films have not been reported much in 

literature. In this work, the above mentioned issues will be investigated 

comprehensively.  

 

1.2 Objectives of Research  

 

In order to address the issues much needed to understand the properties and 

deposition mechanisms of SiC films grown by HWCVD as mentioned above, this PhD 

thesis will present the work done to achieve the following objectives:  

1. To produce SiC film involving high Si-C bond density with wide-band gap 

using a home-built HWCVD system at high deposition rate from a mixture of 

pure silane and methane gases without hydrogen dilution. 
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2. To determine the influence of critical deposition parameters on the structural and 

optical properties of SiC films deposited. The important deposition parameters 

include methane gas flow-rate, total gas partial pressure, deposition pressure and 

filament-to-substrate distance.  

3. To determine that the structural properties of SiC films are not dependent on the 

substrate used and correlate the structural properties to the optical properties of 

the films.   

4. To determine the growth mechanisms of these SiC thin films grown by 

HWCVD technique from the discharge of pure silane (SiH4) and methane (CH4) 

without hydrogen dilution.  

In order to achieve these main objectives, the results in this work are presented, 

discussed and analyzed in two main chapters with specific objectives detailed in each of 

these chapters.   

 

1.3 Organization of the Thesis 

 

This thesis is organized into six chapters. Chapter 2 provides a brief literature 

review related to this research. This chapter provides some information on SiC material 

and its various structures, properties and applications. Subsequently, description on the 

HWCVD technique is provided with information on the advantages of this technique 

and its development in the deposition of SiC.   

Chapter 3 presents the experimental and analytical methods involved in this 

research. This chapter consists of two main parts and the first part includes a description 

of the home-built HWCVD deposition system and all the procedures required for 

deposition of SiC film including substrate cleaning, filament pre-heating and the film 
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deposition procedures. The second part of this chapter presents various characterization 

techniques utilized in this work. This part gives a description of each characterization 

method, instrumentation and theoretical calculation involved.  

The results and discussions are presented in Chapters 4 and 5. Chapter 4 presents 

the study on the effects of methane gas flow-rate at silane starving condition and the 

total gas partial pressure on the crystallinity, elemental composition and chemical 

bonding properties of films grown on crystal silicon substrates. Chapter 5 presents the 

study on the influence of deposition pressure and filament-to-substrate distance, two 

important deposition parameters in HWCVD on the structural, elemental composition, 

morphology and optical properties of films deposited on both glass and crystal silicon 

substrates. Correlation between the structural and optical properties of the films is 

presented and discussed in this chapter. Finally, the growth mechanisms of SiC films 

are formulated and presented based on the all the results obtained. This thesis is 

concluded in Chapter 6 along with suggestions for future works on the SiC films 

deposited using the home-built HWCVD system. 

 

 

 



CHAPTER 2: LITERATURE REVIEW 

  9 

 

 

CHAPTER 2 

 

Literature Review 

  



CHAPTER 2: LITERATURE REVIEW 

  10 

2.1 Introduction  

 

This chapter presents a literature review related to this research, which contains 

three parts. The first part provides general information about silicon carbide material, its 

structural properties and potential applications. The second part involves most 

conventional deposition techniques used for preparation of SiC thin films and their 

advantages and disadvantages. The last part of this chapter will introduce hot-wire 

chemical vapour deposition as a technique used in this work and give a brief history of 

its development, its advantages over other techniques, and some proposed chemical 

reactions involved during the deposition process. 

 

2.2 General Properties of Silicon Carbide 

 

Silicon carbide (SiC) is a binary compound, which is well known as an 

important wide band gap semiconductor. It is the only chemically stable form of Si and 

C atoms. Since Si and C are both group IV atoms, they are covalently bonded. 

Nevertheless, because of the difference in electronegativity of Si and C, this compound 

has 12% ionicity (Yoshida et al., 2007).  

SiC is a part of a family of materials called polytypism that is a one-dimensional 

polymorphism. An almost infinite number of SiC polytypes are possible, and 

approximately 250 polytypes have been already discovered (Fissel, 2003; Karch, 

Bechstedt, Pavone, & Strauch, 1996; Wang, Ma, & Zupan, 2006; Willander, Friesel, 

Wahab, & Straumal, 2006). Different polytypes arise from the different stacking 

sequences of the Si-C bilayer producing crystals with different unit cell dimensions 

along the [0001] or c-axis. The reason for the stability of so many polytypes in SiC is 

not well understood yet. It is noticeable that each polytypes differs from the others in 
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terms of band gap, and other fundamental properties. Therefore, SiC can be considered 

as a family of a large number of semiconductors. The most dominant polytypes are 3C 

(cubic), 2H, 4H and 6H (hexagonal), and 15 R (rhombohedral). The number represents 

the number of double layers in the stacking sequence and the letter represents crystal 

structure. Figure 2.1 illustrates the three most common SiC polytypes. 

 

Figure 2.1: The three most common polytypes in SiC viewed in the [1120] plane. From left to 

right, 4H-SiC, 6H-SiC, and 3C-SiC; k and h denote crystal symmetry points that are cubic and 

hexagonal, respectively. 

 

It is well known that among the different SiC polytypes, the cubic SiC (3C-SiC) 

exhibits the highest electron mobility and is more stable than hexagonal system. 

Meanwhile, it is the only one that can be grown on low-cost Si substrates to merge into 

the well-developed Si-bases integration technology (Zhe Chuan Feng, 2006; Hiromasa, 

Takahiro, Tetsuya, Hiroaki, & Kiyoshi, 2011; Komiyama, Abe, Suzuki, Kita, & 

Nakanishi, 2005).  

Physical properties of crystalline SiC, such as high thermal conductivity, high-

saturated drift velocity, and high breakdown field make it attractive for many 
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applications including high temperature, high power and high frequency devices that are 

not possible using Si or GaAs. SiC is also resistant to high radiation doses and thus 

suitable for nuclear power applications (Harris, 1995; Y. S. Park, 1998). However, 

because of difficulties in production of good quality SiC single crystals with low cost, 

the SiC technology has faced major limitation yet.  

Beside crystalline SiC, its amorphous form (a-SiC) has attracted much attention 

due to its magnificent properties such as high stability, tuneable band gap and refractive 

index by varying the chemical composition and so on. Si-rich a-SiC is usually employed 

as a transparent layer in solar cells and photo-detectors, while C-rich a-SiC films are a 

good candidate as an active layer in electroluminescent devices (Q. Cheng & et al., 

2008; Vasin, 2008). In addition, due to coexistence of topological, structural and 

compositional disorder, it is a representative material for fundamental studies of an 

amorphous system with variable disorder (Compagnini, Foti, & Makhtari, 1998; El 

Khakani, Guay, Chaker, & Feng, 1995; Rovira & Alvarez, 1997; Solomon, 2001; 

Tersoff, 1994). This complexity of a-SiC films has led to long time study on this 

material which has been deposited by various deposition techniques.  

It should be mentioned that there are other structures than crystalline and 

amorphous SiC that have been obtained by several researchers that are microcrystalline 

and nano-crystalline SiC. These structures involve crystalline SiC or Si grains that 

embedded in the amorphous SiC matrix. These kinds of systems usually exhibit unique 

and interesting properties such as strong room temperature PL, wide band gap and high 

electron mobility as reported in the literature (G. Ambrosone et al., 2006; Coscia, 

Ambrosone, & Basa, 2008; Klein, Dasgupta, Finger, Carius, & Bronger, 2008; Xu, Yu, 

Rusli, Yoon, & Che, 2000; M. B. Yu, Rusli, Yoon, Xu, et al., 2000; W. Yu, Wang, X., 

Lu, W., Wang, S., Bian, Y., Fu, G., 2010). It should be mentioned that these unique 

properties have been attributed to the quantum confinement of nano-crystallites.  
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The structural model of amorphous and nano-crystalline SiC is not unique. This 

is because of the capability of carbon to have twofold, threefold and fourfold 

coordination adds a degree of freedom in local structure arrangement which is absent in 

the other amorphous semiconductor alloys. However, there have been some suggested 

models of chemical ordering in amorphous silicon carbon alloys according to what have 

been obtained from various theoretical and experimental techniques. (Bhusari & 

Kshirsagar, 1993; King, et al., 2011; Lee & Bent, 2000; Pascarelli, Boscherini, Mobilio, 

& Evangelisti, 1992; Rovira & Alvarez, 1997; Tersoff, 1994). Here, some of these 

models are demonstrated for clarity. Figure 2.2 (a) and (b) show the a-SiC :H with so 

called polymethylsilane and polycarbosilane structures, respectively. These structures 

have been proposed by M.-S. Lee et al. from analysis of a-SiC:H films deposited by 

HWCVD technique from mono- and trimethylsilane gases (Lee & Bent, 2000). They 

have also suggested microcrystalline structure for the films containing SiC crystallites 

in the a-SiC matrix, which were deposited under higher substrate temperature (See 

Figure 2.3). 

 

  

(a) (b) 

Figure 2.2: Schematic illustration of a-SiC:H proposed by Lee et al. (a) polymethylsilane 

structure and (b) polycarbosilane structure (Lee & Bent, 2000). 
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Figure 2.3: Proposed microcrystalline SiC structure by Lee et al. 

 

There are other structural models for a-SiC which have been proposed recently by S.W. 

King et al. (King, et al., 2011) as shown in Figure 2.4. They suggested various models 

of the atomic bonding/network structure for the a-SiC:H films by detail analysis of 

Fourier transform infrared (FTIR) spectra. Figure 2.4 (a) shows an amorphous SiC 

structure with a random orientation of the SiC4 tetrahedra and the formation of 

vacancies and dangling bonds. In addition, the incorporation of hydrogen prevents 

optimum SiC4 linkage in the SiC structure. In Figures 2.4 (b) to (e) the hydrogen 

content increased progressively and thus the film’s structure became less dense.  
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(a) 

 

(b) 

 

Figure 2.4: Atomic structure and bonding for a-SiC:H films with various hydrogen 

content (King, et al., 2011). 
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(c) 

 

(d) 

Figure 2.4, Continued. 

 

2.3 Common Deposition Techniques Used for Preparation of SiC Films 

 

The choice of the deposition technique usually depends on the desirable 

structure of SiC thin film. Moreover, the structural and optical properties of SiC thin 
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films strongly depend on deposition technique as well as deposition conditions. In this 

section, a preview of conventional deposition techniques for preparation of SiC films 

and highlighted properties of resulting films will be presented. 

Based on the literature, two main groups of deposition techniques have been 

conventionally adopted for preparation of SiC thin films; chemical vapour deposition 

(CVD) and sputtering. It should be noted that each of them involves several sub-

methods in terms of supplied activation source. However, beside these most widely used 

techniques, other deposition techniques have been also reported for preparation of SiC 

thin films such as Laser assisted deposition (LAD) (Sung et al., 1992), ion beam 

assisted deposition (Rivière, Zaytouni, & Delafond, 1996) and sublimation (Oulachgar, 

Aktik, Dostie, Gujrathi, & Scarlete, 2007). Nevertheless, this section will only 

concentrate on the mentioned main conventional techniques based on the literature.  

 

2.3.1 Chemical Vapour Deposition (CVD) Methods 

 

For deposition of SiC films in the forms of single and polycrystalline SiC and 

amorphous, chemical vapour deposition technique has been widely employed (Dhanaraj 

et al., 2007; Ellison et al., 2000; Ellison et al., 1999; Kordina et al., 1996; Morgan, 

2006; Y. S. Park, 1998). In a typical chemical vapour deposition process the substrate is 

exposed to one or more unstable precursors, which react with the substrate surface to 

yield the desired deposit (Comninellis & Chen, 2009). In this process, the activation 

energy for chemical reactions can be supplied by various energy sources. If heating the 

substrate is used to activate the reaction of precursors, the process is called thermal 

CVD. For this purpose, usually high temperature above 1000°C is required. As a result, 

uniform and reproducible films are grown. However, the main limitation of this 
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technique is its required high temperature, which suffers from structural damage and 

formation of voids in the films (S. H. Feng & Chen, 2002).  

Photo-assisted CVD is an alternative modification of CVD method, which has 

been used for amorphous and nano-crystalline SiC deposition (Chevaleevski, Myong, & 

Lim, 2003; Dasgupta, Ghosh, Kshirsagar, & Ray, 1997; Lim & Shevaleevskiy, 2008; 

Yeop Myong, Kew Lee, Yoon, & Su Lim, 2002). There are two main variants of this 

method as light source of excitation used in the decomposition process:  

(i) Laser-induced Photo-CVD, which uses high-energy coherent radiations 

as light source to decompose reactive gases. In this manner, various gas 

lasers can be used. However, they are expensive while some effects such 

as damage due to high-energy photons are expected.  

(ii) Lamp-induced Photo-CVD, which uses incoherent radiations to perform 

an indirect photolysis mechanism. Usually a low-pressure Hg lamp is 

used to dissociate the gas mixture due to high catalytic activity of 

mercury. It is a soft process because the damage of the film surface by 

the ions is negligible. Therefore, less bombardment-induced defects and 

sharper interfaces are expected especially in very thin films (Bullot & 

Schmidt, 1987).   

 

Plasma-enhanced CVD (PECVD) is a modification of CVD method and 

undoubtedly has been the most conventional deposition technique for production of SiC 

films. In this method, plasma is used as a source of energy in order to dissociate the 

reactive gases at temperatures much lower than their pyrolysis temperature. Plasma can 

be defined as a gas vapour in which a part of the atoms (molecules) has been ionized. 

The main advantage of this method is its low operation temperature, which is usually 

below 400
°
C. Moreover, this method has ability to deposit films on various substrates 
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over a large area (Hori & Goto, 2002). However, decrease in optical gap for high carbon 

content SiC films have been observed due to graphite like sp
2
 C-C bonding (Hu, 2004). 

In addition, presence of large density of ions in the plasma sometimes causes surface 

damages due to ion bombardment. It is worth noting that for deposition of 

nanocrystalline silicon carbide films, heavy hydrogen dilution is necessary that 

significantly decreases the deposition rate. 

Next modification of CVD method is electron cyclotron resonance CVD (ECR-

CVD) that have been used for deposition of amorphous and crystalline SiC films 

(Chew, 2002; Conde et al., 1999; Toal, Reehal, Barradas, & Jeynes, 1999; Xu, et al., 

2000). The principle of this technique is that the frequency of the input source (usually 

in the microwave region) is matched with the cyclotron frequency set by magnetic field 

in a resonant chamber. When this matching occurs, electrons adsorb energy from the 

exiting electric field. Since in ECR-CVD the ion energy is low, the energy of impinging 

ions on the surface can be controlled independently of the microwave power by 

applying a bias voltage to the substrate electrode. In addition ECR plasma is usually 

operated at low pressures (< 10 mTorr) which avoids polymerization by reducing the 

number of gas-phase collisions and allow sharper interfaces (Conde, et al., 1999).  

Catalytic CVD (also known as hot wire or hot filament CVD) is another simple 

modification of CVD technique, which is conventionally employed to produce Si-based 

and diamond films (Mahan, 2003; Mahan, Carapella, Nelson, Crandall, & Balberg, 

1991; Martin, Teplin, Doyle, Branz, & Stradins, 2010; Matsumura, 1998; Soni, Phatak, 

& Dusane, 2010). This technique has become attractive in last two decades for 

deposition of device quality amorphous and nano-crystalline Si films at high deposition 

rate. Many research works have been published on both better understanding of this 

technique and toward optoelectronic applications especially in solar cells. However, 

much less references are available in the literature about the deposition of SiC thin films 
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by this technique. Since this technique is the subject of the present study, it will be 

described in more details in section 2.4. 

 

2.3.2 Sputtering Methods 

 

Cathodic sputtering is a multipurpose thin film deposition method used for a 

long time in different industrial developments. The principle of sputtering is that a solid 

is subjected to bombardment by high-energy particles such as ions. As a result, 

individual atoms or molecules achieve enough energy to escape from the surface. These 

ejected atoms or molecules can then form a new layer on the substrate surface. The 

sputter deposition is generally a more physical than chemical process. Physical 

sputtering of polycrystalline SiC target by argon ions always yields unhydrogenated and 

nearly stoichiometric materials. Co-sputtering from silicon and graphite targets allows 

variable Si/C ratio of the films. Sputtering in the presence of reactive gases such as H2, 

CH4 and SiH4 leads to incorporation of desirable amount of hydrogen as well as Si/C 

ratio into the films (Bullot & Schmidt, 1987). Therefore, by this method it is possible to 

avoid use of toxic gases as well as accurately control the film thickness. 

Deposition of various structures of SiC film by sputtering technique has been 

reported. Nano-crystalline SiC has been prepared by co-sputtering of silicon and carbon 

targets in H2 environment (Kerdiles, 2000; Kerdiles, Madelon, & Rizk, 2001). 

Amorphous hydrogenated SiC films have been deposited by d.c. sputtering of 

polycrystalline Si target in the presence of CH4 and H2 gases as source of C and H in the 

film (Saleh, Munisa, & Beyer, 2003). Unhydrogenated amorphous SiC films have been 

obtained by sputtering of SiC target in the presence of Ar gas (Seo, Joung, Park, & 

Choi, 2011; Tang, Tan, Huang, Dong, & Jiang, 2005).  
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2.4 Hot-Wire Chemical Vapour Deposition (HWCVD) Technique 

 

2.4.1 History of HWCVD Technique 

 

Hot-wire chemical vapour deposition (HWCVD) technique was first introduced 

in 1979 by Weismann et al (Wiesmann, Ghosh, McMahon, & Strongin, 1979). They 

could deposit amorphous hydrogenated silicon (a-Si:H) thin films by high-temperature 

thermal decomposition of silane using a heated tungsten filament with relatively high 

deposition rate. However, their films were poor in quality due to low pressure they used 

in the deposition process. Therefore, researches on this method remained stagnated until 

1988 that Matsumura et al (Matsumura & Ihara, 1988) obtained good quality a-Si:H 

films with high deposition rate by using much higher pressures. Since they discover the 

catalytic role of the heated filament in decomposition of SiH4 molecules, they named it 

as “Catalytic-CVD (Cat-CVD)” method. Device quality a-Si:H films deposited by the 

same method with hydrogen content as low as 1%, which is desired for solar cell 

applications, was reported in 1991 by Mahan et al (Mahan, Carapella, et al., 1991; 

Mahan, Nelson, et al., 1991). This research group, however, called this deposition 

technique as “HWCVD”. Since then, HWCVD has attracted much interest as a 

promising deposition technique for Si-based materials thin films.  

 

2.4.2 Advantages of HWCVD  

 

The highlighted advantages of HWCVD method and resulting Si-based thin 

films are listed below (Feenstra, Schropp, & Van der Weg, 1999; Gogoi, Jha, & 

Agarwal, 2010; Matsumura, 1998; Soni, et al., 2010): 
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i. High deposition rate: For deposition of Si-based thin films high deposition 

rates > 10 Å/s can be achieved without the deteriorating their device quality. 

This value is an order of magnitude higher than that expected using PECVD 

methods (Feenstra, et al., 1999; Takashi Itoh et al., 2001; Jadkar et al., 2007; 

Jadkar, Sali, Musale, Kshirsagar, & Takwale, 2002; Matsumura, Umemoto, & 

Masuda, 2004). 

ii. Ion-free plasma: In HWCVD technique, only neutral atoms and molecules 

(radicals) are present in the gas phase. Therefore, the film surface does not suffer 

from plasma damage or charge-induced damage. This makes HWCVD a 

“gentle” process (Mahan, 2003; Matsumura, et al., 2004).   

iii. Easily scalable deposition system: An extreme simplicity of geometry of the 

HWCVD system allows one to control the deposition process easily by adjusting 

only few parameters.  

iv. Low cost of HWCVD system 

v. Large area deposition: The deposition area can be easily widened by expansion 

of the spanned area of filaments.   

vi. Low substrate temperature: The substrate temperature in HWCVD method is 

usually set to 300
°
C or less. Meanwhile, the radiations from the hot filament 

does not significantly effect on the substrate temperature when the distance 

between filament and the substrate is above 10 mm. Low-temperature deposition 

techniques are desired from the viewpoint of widening the application of SiC 

films in optoelectronic devices such as solar cells and thin film transistors. 

Moreover, for such applications, SiC film must be deposited on glass substrates 

that require low-temperature deposition method. 

vii. Lower hydrogen incorporation into the film: To saturate dangling bonds in a-

Si:H, theoretically about 0.1% hydrogen alloying is required. Materials 
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deposited by HWCVD show significant lower hydrogen content (about 1%) 

compared to those of deposited by PECVD (above 10%). Therefore, it is 

expected that low-hydrogen Si-alloys prepared using HWCVD are superior for 

optoelectronic applications (Mahan, 2003). 

viii. High efficiency gas usage: It is generally accepted that for the filament 

temperatures above 1800 
°
C, SiH4 gas completely decompose into Si and H 

atoms. This high efficiency gas decomposition significantly reduces the 

deposition cost. 

  

2.4.3 Some Physics and Chemistry of HWCVD 

 

Since the invention of HWCVD technique, several research groups have studied 

the chemical reactions and kinetics in this method both experimentally and theoretically 

(Doyle, Robertson, Lin, He, & Gallagher, 1988; Duan, Zaharias, & Bent, 2002; 

Gallagher, 2001; Holt et al., 2001; Mahan, Carapella, et al., 1991; Matsumura & Ihara, 

1988; Umemoto, 2002; van Veenendaal & Schropp, 2002; Zheng & Gallagher, 2006). 

These studies mostly have performed in Si deposition in the form of amorphous, poly-, 

micro, and nano- crystalline structures. Therefore, currently extensive works are 

available about the chemical reactions of different radicals produced in the HWCVD 

system. In this section, a brief explanation of what occur in Si deposition by HWCVD is 

presented.  

The deposition process in the HWCVD system is generally composed of three 

stages:  

i. Catalytically dissociation of source gases on a resistively heated filament 

surface, 

ii. Gas phase reactions in the region between filament and the substrate, and 
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iii. Surface reactions on the substrate and growing surface that is heated by 

an external heater or by the radiations from the hot filament itself. 

 

It has been established that a tungsten filament with a temperature of 1400
º
C and 

above is able to decompose silane (SiH4) gas, which is usually utilized in Si deposition. 

However, filament temperature above 1800
°
C is advantageous since it avoids 

incorporation of Si atoms into and onto the filament surface i.e. silicide formation on the 

filament surface and hence shortening the filament lifetime due to breakage. 

Meanwhile, higher filament temperature (>1800 
º
C) leads to efficient decomposition of 

silane gas into atomic silicon and hydrogen as shown in following reaction (Gallagher, 

2001; Jadkar, et al., 2002; van Veenendaal & Schropp, 2002): 

 

SiH4                                                                      Si + 4H                            (2.1) 

 

Heintze et al. discovered that Si film could not be deposited when the W wire is 

covered with Al2O3, even if its temperature exceeds 1600
°
C. They concluded that the 

reaction at the hot filament is catalytic (Heintze, Zedlitz, Wanka, & Schubert, 1996). 

The catalytic role of the filament in this cracking reaction has been also proven by 

several investigations (Duan, et al., 2002; van Veenendaal & Schropp, 2002). They have 

shown that the decomposition probability is dependent on both filament material and 

temperature. Moreover, the small activation energy of silane decomposition strongly 

confirms that the cracking reaction of silane is catalytic rather than thermal (Duan & 

Bent, 2005; Mahan, 2003). The activation energy for pyrolytically cleave four Si-H 

bonds in SiH4 is 12.9 eV, while decomposition of SiH4 by a hot tungsten filament only 

needs 0.74 eV energy (Mahan, 2003). 

Hot filament (>1800 °C) 
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Beside the generation of radicals, the transport of the radicals from the filament 

to the substrate surface has a critical influence on the film properties. The deposition 

pressure and the distance between the filament and the substrate influence the reactions 

on the path from the filament to the substrate. If the deposition pressure is too low in 

such a way that the mean free path of Si and H atoms emitted from the hot filament is 

equal or greater than the distance between filament and the substrate, they will reach 

and diffuse into the substrate without any further reactions. Otherwise, they will go 

through a chain of subsequent gas-phase reactions with the existing molecules and 

radicals in the chamber before reaching the growth surface. These reactions determine 

the growth species for the film deposition. It should be mentioned that the stability, 

sticking coefficient and surface mobility of the generated species are important for the 

film growth.  

The gas phase reactions involve radical-molecule and radical-radical reactions.  

 

i. Radical-molecule reactions 

 

The insertion reaction of Si into silane and the abstraction reaction of hydrogen 

are the most important reactions in the gas phase. The insertion reaction of Si can be 

done in two possible forms as follows: 

 

Si + SiH4 → SiH +SiH3                                           (2.2) 

Si + SiH4 → HSiSiH3                                             (2.3) 

 

However, the later reaction is energetically more favourable because it is an 

exothermic reaction. It should be noted that HSiSiH3 compound is not stable and will be 

stabilized via reactions (Mahan, 2003; Muller, Holt, Goodwin, & Goddard, 2000; van 

Veenendaal & Schropp, 2002): 
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HSiSiH3 → H2SiSiH2                                              (2.4) 

or further reacts with SiH4 : 

HSiSiH3 +SiH4 → SiH2 + Si2H6                                    (2.5) 

 

The abstraction reaction of hydrogen has been proposed as follows: 

 

H + SiH4 →SiH3 +H2.                                             (2.6) 

 

It is generally accepted that SiH3 is quite stable species and will not go through further 

gas phase reactions. Thus, it is a primary source of the film growth. 

 

ii. Radical-radical reactions 

 

The next gas phase reactions involve radical-radical collisions. Some of possible 

radical-radical reactions are: 

 

H + SiH3 →SiH2 + H2                                        (2.7) 

H + Si2H2 → Si2H + H2                                       (2.8) 

SiH3 + SiH3 → SiH4 +H2                                       (2.9) 

 

These reactions become important at higher pressures due to increment of 

radical density in the chamber. Usually, generation of the above products as a result of 

radical-radical interactions has negative effects on the structural and optical properties 

of the film. 

Reactive species, impinging onto a surface can react at the surface to form new 

species, which are adsorbed onto the substrate surface. The deposition rate of the film is 
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determined by the flux of radicals impinging on the substrate and the reaction 

probability with the film surface. Although the gas phase chemistry of HWCVD is 

believed to be very different compared to the conventional thermal CVD and PECVD, 

however, the it has been proposed that the deposition models used in PECVD and 

HWCVD should be similar (Gallagher, 2001; van Veenendaal & Schropp, 2002). 

Surface reactions generally involve (Pant, Russell, Huff, Aparicio, & Birkmire, 2001):  

 

i. Adsorption of radicals and film precursors on the film surface, 

ii. Surface rearrangement reactions. 

 

Atomic Si, SiH, and SiH2 have much higher surface reaction rate than SiH3 

because the former radicals can directly insert in SiH bond of the surface while SiH3 

requires a surface dangling bond. This is commonly described by a value called the 

sticking probability (s). Theoretical and empirical values of the sticking probability of 

SiHx molecules have been reported for PECVD and HWCVD systems. The sticking 

probability of SiHx (x=0-4) has been shown to depend inversely on the number of H atoms 

bonded to Si in the growth radical (Pant, Huff, & Russell, 2001). However, I.T. Martin 

et al. have shown that the sticking coefficient of the growth radicals approach unity as 

the growing surface dehydrogenated at higher substrate temperature (Martin, et al., 

2010). Hence, the reactions in the gas phase result in changes of surface reactivity of the 

precursors, the abstraction of hydrogen leads to generation of more reactive species, the 

insertion of Si in silane results in less reactive radicals.  

W.M.M. Kessels et al. have proposed the surface reactions of SiH3 as a primary 

growth species from their theoretical prediction (Kessels, et al., 2003). As shown in 

Figure 2.5, the first reaction is the absorption of SiH3 on a surface dangling bond, which 

has no barrier. The second reaction is the abstraction of a surface H atom by SiH3 that 
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creates a surface dangling bond. This reaction is important because it leads to formation 

of new sites for SiH3 adsorption. The third reaction is the insertion of SiH3 into a 

strained Si-Si bond at the surface.  

 

 

Figure 2.5: Proposed SiH3 surface reactions during deposition of a-Si:H film as reported in the 

literature. (a) adsorption of SiH3 from the gas phase onto a dangling bond; (b) abstraction of an 

H atom by SiH3 creating a dangling bond and a gaseous SiH4 molecule; (c) insertion of SiH3 

into a strained surface Si-Si bond. The five-folded coordinated Si atom can dissociate by the 

transfer of a H atom from the SiH3 radical to a surface Si atom (Kessels, et al., 2003). 

 

Hydrogen 

Silicon 
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Researchers also have suggested other surface reactions as follows: 

 

Si + SiH(s) → SiSiH(s) = SiH(s) +2 d.b.                                (2.10) 

                            H + SiH(s) → H2 + d.b.                                                       (2.11) 

                            SiH3+ d.b. → SiH3(s)                                                           (2.12) 

                            Si + d.b. → Si(s) + 3d.b.                                                      (2.13) 

                            H + d.b. → SiH(s).                                                               (2.14) 

 

where subscript (s) refers to a radical bonded to Si in the film and d.b. stands for 

dangling bond. The first two reactions are the reactions of Si and H with hydrogen-

passivated surface, while the rest are reactions of SiH3, Si, and H with a dangling bond. 

The second reaction also known as the etching reaction that is believed to be very 

important in growth of high quality ordered amorphous and crystalline films. 

 

2.4.4 Development of HWCVD Technique for SiC Deposition  

 

Silicon carbide thin films have been deposited commonly by using plasma-

enhanced chemical vapour deposition (PECVD) technique. However, since the 

HWCVD method was proposed as a promising technique to grow Si based materials, 

much effort have been paid to deposit better quality silicon carbon thin films without 

any help from plasma at higher deposition rate and by this new technique. First work on 

preparation of silicon carbon alloys was reported in 1995 by Kumbhar et al (A. S. 

Kumbhar, et al., 1995). They used a gas mixture of SiH4/CH4/H2 and varied the silane 

fraction in the mixture. Their silicon carbon films were amorphous in structure as 

indicated by XRD broad peak. They proposed the growth mechanism in such a way that 
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SiH4 species are adsorbed on the hot filament and subsequently energetic Si atoms are 

evaporated from the filament. They suggested the following reactions to be occurred: 

 

SiH4(gas) → Si(liquid) + 2H2(gas)                                                          (2.15) 

CH4(gas) → C(solid) + 2H2(gas)                                                             (2.16) 

Si(liquid) + C (solid) → SiC(gas)                                                            (2.17) 

Si(hot gas) +CH4(gas) → Si-C-H2(gas) +H2(gas)                                       (2.18) 

 

However, at low silane fraction (<10%) reactions (2.16) and (2.17) have been proposed 

to be dominant during deposition process. They indicated that low silane fraction (silane 

starvation) in HWCVD method yields growth of a-SiC:H films. Later in 1998, another 

research group reported formation of micro-crystalline silicon phase in amorphous 

silicon carbon alloy using HWCVD method (A. A. Kumbhar, et al., 1998). They 

synthesized silicon-carbon alloy films from pure SiH4 and CH4 gases without hydrogen 

dilution. Formation of micro-crystalline silicon phase has been verified by the observed 

sharp peak near 520 cm
-1

 in the Raman spectra of the films. However, the crystalline-

SiC phase did not exist in their films. Deposition of nano-crystalline cubic SiC (nc-3C-

SiC) using HWCVD method was first reported in 2000 by Yu et al (M. B. Yu, Rusli, 

Yoon, Chen, et al., 2000). They utilized SiH4/CH4 gas mixture diluted with pure 

hydrogen gas and successfully deposited nc-3C-SiC film on Si substrate. However, the 

relatively high substrate temperature of 600
º
C used in their film deposition, limited the 

optoelectronic application. Moreover, this research group did not propose any growth 

mechanism of SiC nano-crystallites in the HWCVD system.  

Next two years, in 2002, George et al. successfully deposited -SiC on Si 

substrate using bias enhanced HWCVD technique from methane and hydrogen gas 

mixture (George et al., 2002). They used Si substrate as a source of Si in their 
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deposition. They found that the formation of highly oriented -SiC films was due to 

applying of bias and use of low pressure during the deposition. The bias resulted in the 

bombardment of the substrate and the growing film by high-energy positive ions. Low 

pressure leads to the mean free path of the precursor species comparable to the distance 

between filament and the substrate. However, this method has limitation of deposition 

of SiC films at high temperatures (> 700
°
C) and only on Si substrate.  

The interest in SiC deposition by HWCVD technique has been significantly 

increased and many other researchers have attempted to prepare SiC films by this 

technique in order to understand the properties of the resulting films as well as growth 

mechanism of SiC films in HWCVD. However, different structures of SiC such as 

amorphous, microcrystalline and nano-crystalline structures have been obtained from 

different deposition conditions. For example, Tabata group have obtained amorphous 

and nano-crystalline SiC films using SiH4/CH4/H2 gas mixture under different 

conditions (A. Tabata, Hoshide, & Kondo, 2010; A. Tabata & Komura, 2007; A. 

Tabata, Komura, Narita, & Kondo, 2009; A. Tabata, Kuroda, M., Mori, M., Mizutani, 

T., Suzuoki, Y., 2004; A. Tabata & Mori, 2008). Chen et al. have deposited 

microcrystalline SiC (c-SiC) films from decomposition of monomethylsilane (MMS) 

diluted in H2 gas (Chen et al., 2012; Chen, Huang, Yang, Carius, & Finger, 2010; Chen, 

Huang, Yang, Carius, & Finger, 2011; Chen, Yang, Carius, & Finger, 2010). It should 

be noted that formation of this kind of SiC structure has only reported from HWCVD 

using MMS as a source gas. It seems that the presence of Si-C bond in this molecule has 

important role for growing stoichiometric and highly crystalline films. While deposition 

of a-SiC embedded with nano- or micro-crystalline silicon by HWCVD has also been 

reported by other groups (I. Ferreira, Fernandes, & Martins, 1999; Takashi Itoh, et al., 

2001; Mao, et al., 2012; Shen, et al., 2012). It has been shown that high hydrogen 

dilution of the gas mixture enhances the formation of SiC crystallites into the films 
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(Mao, et al., 2012; A. Tabata & Mori, 2008; Q. Zhao et al., 2004). In addition it has 

been concluded that higher deposition pressures and filament temperature are suitable 

condition for growth of nc-3C-SiC (Shen, et al., 2012; A. Tabata et al., 2006; A. Tabata, 

et al., 2009; Wu, 2011; Q. Zhao, et al., 2004). Now, after about two decades from the 

first SiC deposition by HWCVD technique, many aspects remained unknown. In 

addition, because of lack of theoretical calculations and/or experimental measurement 

of chemical reactions and radicals in the HWCVD of SiC, the growth mechanism of SiC 

material from the SiH4 and CH4 gas mixture has not been explored clearly yet. 

However, it is generally believed that presence of large flux of H radicals is required for 

improvement of the crystallinity in SiC films. This is due to the effect of H radicals in 

etching of the weak and strained bonds and nucleation for crystalline growth.  

Beside studies on growth of SiC films by HWCVD, some attempts have been 

taken toward doping of amorphous and crystalline SiC to improve the electrical 

properties for potential applications in optoelectronic devices such as solar cells. T. Itoh 

et al. have shown for the first time the possibility of doping of a-SiC films including c-

Si grains by HWCVD technique using B2H6 and PH3 gases for n-type and p-type 

doping, respectively (T. Itoh, Fukunaga, Katoh, Fujiwara, & Nonomura, 2002; Takashi 

Itoh, et al., 2001). They demonstrated that the dark and photoconductivity of the B- and 

P-doped films was larger than undoped samples. A year later, Miyajima’s group 

successfully fabricated a-Si solar cells with p-layer (B-doped a-SiC films containing c-

Si grains) and obtained a conversion efficiency of 10.2% (Shinsuke Miyajima, Yamada, 

& Konagai, 2003). They also deposited n- and p-type nano-crystalline cubic SiC films 

by HWCVD. It has been shown that p-type doping significantly affected absorption 

coefficients above the band gap of nc-3C-SiC:H compared with n-type doping 

(Shinsuke Miyajima, Yamada, & Konagai, 2007). Recently, several works have been 

reported the development in application of microcrystalline SiC films deposited by 
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HWCVD as transparent window layer in silicon solar cells (Chen, et al., 2012; Chen, 

Huang, et al., 2010; Chen, et al., 2011; Mao, et al., 2012).  

It is concluded that the HWCVD method is a promising deposition technique for 

preparing device quality SiC films. Therefore, more information about the details of SiC 

growth mechanism and influence of various deposition parameters on the properties of 

SiC films deposited using this technique would be useful for further development in this 

field.  
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3.1 Introduction 

 

The SiC thin films were deposited using a home-built hot-wire chemical vapour 

deposition, HWCVD system and characterized by using a series of characterization 

methods. This chapter contains two main parts, the experimental and analytical methods 

involved in this work. The first part of this chapter describes the HWCVD deposition 

system, pre-deposition, and film deposition procedures, while the second part of this 

chapter presents the instruments, characterization procedure and calculation methods 

utilized in characterizing the films and analysis of results. These characterization 

methods include mechanical profilometry, Fourier transform infrared spectroscopy 

(FTIR), Micro-Raman scattering spectroscopy, X-ray diffraction (XRD), Auger electron 

spectroscope (AES), field emission scanning electron microscope (FESEM), UV-Vis-

NIR spectroscopy, and photoluminescence (PL) spectroscopy.  

 

3.2 Hot-Wire Chemical Vapour Deposition (HWCVD) System 

 

In this work, a home-built HWCVD system in the low dimensional material 

research centre (LDMRC), University of Malaya, was utilized for deposition of SiC thin 

films. This system comprises a reaction chamber, a vacuum pumping system, the gases 

supply and distribution system, the electrical power supply system, and detoxification 

system. A schematic diagram of the HWCVD system used in this study is shown in 

Figure 3.1.  
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Figure 3.1: Schematic diagram of HWCVD system. 

 

The vacuum pumping system provides a clean environment in the reaction 

chamber for the film deposition. In the HWCVD system, a rotary vane pump (model 

Edward E2M28) is utilized to evacuate the deposition chamber and to maintain the 

required pressure during the deposition process. This rotary vane pump is able to 

evacuate the deposition chamber to a pressure of 6.0 × 10
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condition, the chamber is pumped down until base pressure is as low as 2.0 × 10 
-5

 mbar 

for 1 hour pumping by diffusion pump (model Edward F603 with heating power of 

1300 W). The cooling system for the diffusion pump is circulated by chiller to enhance 

pumping efficiency of the diffusion pump. The cooling temperature of the chiller is 

fixed at 22
°
C. The pressure in the chamber for low and high level vacuum is measured 

using pirani (Leybold vacuum gauge with model TTR91) and penning (Leybold 

vacuum gauge with model PTR 225) gauge respectively. 

The rotary vane pump is connected to a 10 kVA Uninterruptible Power Supply 

(UPS) in order to make sure that there is no abrupt interruption in the power supply 

during the deposition. This UPS can sustain the power supply for about 2 hours when 

there is any break in power supply. This is to confirm that silane gas is always in 

pumping and vacuum condition. 

The nitrogen gas is used to purge the gas line and reaction chamber before and 

after deposition to remove any contaminants in the gas lines and deposition system. In 

addition, the nitrogen gas is directed into the rotary vane pump to prevent the silane gas 

from condensing in the pump during deposition and to dilute the gas before leaving 

through the exhaust lines. The excess silane gas exits via the exhaust line into the 

detoxification system, which is located outside the laboratory. 

A cross-sectional overview of HWCVD reaction chamber is shown in Figure 

3.2. The chamber is made of stainless steel, which is a passive material in the presence 

of the reactant gases. The dimensions of the reaction chamber are 200 mm in height, 

180 mm in diameter and 6 mm in wall thickness. The mixed source gases enter the 

chamber from the top plate through a shower head and exit from the bottom of the 

chamber to the rotary pump. Two stainless steel rods are the filament holders, which are 

connected to the top plate of the chamber. These holders are connected to the DC power 
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supply to heat up the filament during the deposition. The filament is a 99.9% pure 

tungsten wire with a diameter of 0.5 mm coiled into 2 cm length helix. It is fixed 

between two holders by screws at the desired distance to the substrate holder. The 

filament temperature is controlled by adjusting the applied voltage on it. The substrate 

holder is placed 10 cm below the gas shower. It consists of two stainless steel plates and 

is attached to the heater and thermocouple that are sandwiched between the plates. Four 

glass stands are used to isolate the substrate holder from the electrical connections.  

 

 

Figure 3.2: Schematic diagram of the HWCVD reaction chamber. 
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SiH4 and CH4 are used as the source gas for Si and C in SiC thin films deposition, while 

PN and N2 are used for purging the HWCVD system, which includes the gas line, 

reaction chamber and roughing after every deposition. All these gases are distributed 

from the gas cylinders inside the gas room to the reaction chamber. The gases are 

carried through ¼” stainless steel tubing using Swagelock connectors and valves to a 

gas distribution panel. 

The SiH4 is a highly inflammable gas and thus, its cylinder is kept in the safety 

cabinet attached to an exhaust system which is able to remove any SiH4 gas in case of 

leakage. A photograph of this safety cabinet is shown in Figure 3.3. The SiH4 gas 

cylinder has a special gas regulator, model AP1510S, which is connected to a special 

purging system. This purging system is connected to an N2 gas cylinder. This special 

gas regulator has a pneumatic valve, which allows gas through it only when the pressure 

of N2 is about 50 psi. This N2 gas is connected to the regulator through a safety system. 

This safety system, which is particularly used for SiH4 gas can stop the SiH4 gas from 

flowing into the chamber instantly in the case of emergency. 

From the gas distribution panel, the gases separately pass through metering 

valves (Swagelock, SS-4MG) and then the mass flow controller (MFC) with model 

(Aalborg, GFC17), to display the gas flow-rate. Metering valves control the gas 

pressure to avoid high pressure gases entering the MFC. On exiting the MFC, the gases 

pass through check valves (Swagelock, SS-CHS4-1/3) which are used to prevent back 

flow of the gases. The gases are mixed before inflowing to the reaction chamber. 

For the SiH4 gas, the bypass line is provided for safety purposes, which allow 

the SiH4 gas to be pumped out via the rotary pump directly if any blockage occurs at the 

entrance of the MFC. Also, it is used to remove excess SiH4 and other gases at a faster 

purging rate after the deposition process. 
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Figure 3.3: Photograph of the safety cabinet for SiH4 gas tank. 

 

The last part of the HWCVD system is the detoxification system. The excess of 

SiH4 gas in the reaction chamber is diluted with nitrogen gas in the rotary pump and 

delivered from rotary pump to detoxification tank through the exhaust line to avoid 

explosion in the air. The detoxification tank, which is made of hard polymer, contains a 

solution of potassium permanganate (KMnO4, M=158.04 g/mol). This solution reacts 

with SiH4 and converts it to non-toxic products according to the following chemical 

reaction: 

 

8KMnO4 + 3SiH4 → 8MnO4 + 3SiO2 + 8KOH + 2H2O                 (3.1) 
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This process starts from the opening of the SiH4 gas line until a few hours after 

deposition. 

The electrical power supply system includes two parts, the DC power supply for 

the filament heating, and the power supply for the substrate heating. An automatic 

voltage regulator (VMARK AVR-1000VA) is connected to the substrate heater to 

stabilize the voltage. The applied voltage to the filament and the substrate is adjusted by 

the voltage regulator (IBC Regavolt, 0-240 V A.C., 1 KVA). A temperature controller 

(Taishio TS501) is used to monitor the substrate temperature during the deposition 

process. The substrate temperature is measured by a chromel-alumel k-type 

thermocouple, which operates from room temperature up to 500
º
C. 

 

3.3 Sample Preparation 

3.3.1 Pre-deposition Procedure 

 

Before film deposition, it is essential to clean the substrates and filament 

according to the standard procedures in order to avoid absorption of dusts and 

contaminations in the film during the deposition.  

 

3.3.1.1 Substrate Cleaning 

 

In this work, SiC films are deposited on glass and p-type c-Si (111) 

simultaneously. They are first cut into 2 cm × 2 cm squares. Before deposition, it is 

essential to clean the substrates properly to remove any types of contamination from the 

substrate surface in order to deposit films having better properties. The method of 

substrate cleaning varies for different substrates. 
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For cleaning the glass substrates, they are placed in a clean beaker and rinsed 

with deionized water several times. Then they are immersed in a beaker containing soap 

solution (Decon 90 diluted with distilled water). Next, this beaker is placed in the 

ultrasonic bath for 15 minutes followed by rinsing with deionized water. Finally, they 

are immersed in acetone and ethanol, and dried thoroughly by industrial nitrogen gas. 

The cleaning process for the c-Si substrates starts with rinsing the substrates 

with deionized water similar to glass substrates. Then, they are immersed in a beaker 

containing H2O:HCL:H2O2 = 86:11:3 solution for 6 minutes to remove inorganic 

contaminations from the Si-substrate surface. Then, the substrates are rinsed again with 

deionized water. The Si substrates are then put in a beaker containing a solution of 

H2O:H2O2:NH4OH = 4:1:1 for 6 minutes followed by rinsing with deionized water to 

remove any organic contaminations. Finally, the Si-substrates are immersed in a 

solution of H2O: HF = 10:1 for 6 minutes and then rinsed with deionized water to 

remove native oxides from the Si surface. The last step is to dry the substrates using 

nitrogen gas. 

After the cleaning process, the cleaned substrates are immediately put into the 

reaction chamber, which is directly pumped down.  

 

3.3.1.2 Filament Pre-heating 

 

The W filament was pre-heated before every deposition to remove existing 

oxides from the filament surface. For this purpose, the W-filament was heated at 1900
º
C 

under flow of hydrogen gas (40 sccm) for 10 minutes. The procedure of filament pre-

heating is carried out after evacuation of the system by rotary pump to the pressure of 

8×10
-3

 mbar.  
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3.3.2 Film Deposition Procedure 

 

In order to deposit SiC thin films, it is important to ensure that all the 

components of the reaction chamber are clean. The cleaning of the chamber’s wall and 

components is performed first by rubbing with sand paper and then cleaning thoroughly 

with acetone.  

After cleaning the chamber and the substrates, the latter are fixed on the 

substrate holder by using a stainless steel mask. It is of importance to double check all 

the electrical connections of the substrate heater, thermocouple, and the filament before 

closing the chamber. Next, the chamber is completely sealed to prevent any leakage, 

and evacuated by using rotary and diffusion pump. Before turning on the rotary pump, it 

is required to check and ensure that all the valves in the system are closed. After starting 

the rotary pump and the pressure display, the roughing valve should be slowly opened 

until fully opened to prevent damaging the pump. The rotary pump is able to evacuate 

the system to 6 × 10
-3

 mbar in 1-2 hours. During this stage, it is important to empty all 

the gas lines from the gas tank to the chamber. For this purpose, all the valves of SiH4 

and CH4 lines including metering valves, MFCs, and valves in the distribution panel are 

opened respectively from the chamber to the tank. After the pressure 6 × 10
-3

 mbar is 

obtained, the metering valves are closed and the MFCs are switched off. The diffusion 

pump would help to reach the base pressure of 2 × 10
-5

 mbar after around 1 hour. To 

start pumping with diffusion pump it is essential to turn on the water chiller 30 minutes 

before heating the diffusion pump. This, makes the body of diffusion pump cold (22
º
C) 

and enhances the pumping efficiency. The last step before switching on the diffusion 

pump is opening the backing valve and waiting until the pressure becomes stable. The 

diffusion pump is then switched on and left to warm up for about 30 to 40 minutes 

before opening the high vacuum valve. A fan is usually used to prevent excess heating 
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at the bottom part of the diffusion pump. Before opening main vacuum valve, the 

roughing valve must be completely closed. Afterwards, the high vacuum valve is 

gradually opened. Now, the pressure is decreasing with higher rate and to lower values. 

After the pressure of 2 × 10
-5

 mbar is obtained, the high vacuum valve is slowly closed 

and the roughing valve is opened again. The diffusion pump is then switched off while 

the cooling system is kept operating to cool the body of the diffusion pump. Then, the 

backing valve is closed tightly. The next step before starting the film deposition is 

heating the substrates to reach the desired temperature. In this work, the substrate 

temperature is always kept constant at 300
º
C and set to this value by the temperature 

controller. Subsequently, the heating is started by applying the AC voltage of 80 V by 

Regavolt. Once the temperature of substrates reaches 300
º
C and the pressure is stable, 

the gases are flowing into the chamber. Before SiH4 is allowed to flow into the 

deposition chamber, the N2 gas cylinder (see Figure 3.2, labelled as 5) is opened. This 

will automatically turn on the pneumatic valve and allow the SiH4 gas to flow through 

it. The excess flow switch (EFS) in the gas line will be activated if the SiH4 pressure in 

the line is abruptly increased above 70 psi and the alarm in the safety cabinet will ring. 

Concurrently, nitrogen gas labelled as 1 in Figure 3.2, is allowed to flow into the rotary 

pump in order to dilute the excess SiH4 gas during deposition for safety purposes. To 

flow the SiH4 into the reaction chamber, first the SiH4 gas tank is opened slightly until 

the gas pressure reaches 100 psi and then the valve is closed. Then the MFC of SiH4 is 

switched on and the metering valve slowly opened. The CH4 gas flows into the reaction 

chamber simply by opening the gas tank followed by switching on the CH4 MFC and 

opening the corresponding metering valve. The flow rates of SiH4 and CH4 are 

monitored by their individual MFCs as fixed at the desired values for every film 

deposition. The deposition pressure is controlled by adjusting the roughing valve 

connected to the reaction chamber. 
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The deposition process begins when the filament is heated up until 1900
º
C by 

applying AC voltage to it. The voltage must be gradually increased from zero until the 

filament temperature reaches 1900
º
C. First stages of increasing the applied voltage 

should be done very carefully and slowly to prevent sudden expansion of filament and 

likely deformation or disconnection of the filament. The temperature of the filament is 

monitored by an optical pyrometer (model Raytek), which operates at spectral range of 

1.0 μm. The emissivity value is set at 0.35 as mentioned in the pyrometer’s manual. The 

deposition time is started once the filament temperature reaches 1900
º
C, and is ended 

when the applied voltage is decreased to zero. The deposition time is fixed at 30 

minutes for every deposition. During the deposition, all the deposition parameters 

including substrate temperature, deposition pressure, filament temperature, and gases 

flow rates are monitored and maintained. However, the radiations from the hot filament 

sometimes influence the substrate temperatures. This depends mostly on the distance 

between filament and substrates. The variation of substrate temperature because of 

filament radiation during the deposition process for two sets of samples prepared at 

different deposition pressure and filament-to-substrate distance is shown in Figure 3.4. 

From this figure, it is seen that the substrate temperature is almost independent of 

deposition pressure. Similar results were observed for the films deposited at various gas 

flow rates and gas pressures. Nevertheless, it was found that the decrease in the distance 

between substrate and filament significantly increased the substrate temperature. 
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Figure 3.4: Variation in substrate temperature as a function of deposition time at 

different (a) deposition pressures and (b) filament-to-substrate distances. The 

data are obtained from this work. 

 

Once the deposition process is completed, the applied voltage is decreased to 

zero, the substrate heating is stopped by decreasing the AC voltage to zero. 

Subsequently, the CH4 gas tank is closed and the roughing valve is fully opened. The 



CHAPTER 3: EXPERIMENTAL METHODS 

  47 

gas lines are pumped until the pressure reaches the pre-deposition pressure. This means 

that all gases are finished, which is also indicated by the MFCs that show zero flow rate 

for both SiH4 and CH4 gases. This verifies that no excess gas remains in the gas lines. 

Subsequently, the SiH4 line must be purged by purified nitrogen gas several times to 

flush out any excess silane in the gas line. For this purpose, firstly, the valve in the SiH4 

line to the system is closed. Then, the PN gas tank (labelled as 3 in Figure 3.1) is 

opened to fill the SiH4 line with the nitrogen gas and then it is closed. Subsequently, the 

valve on the SiH4 line is opened to allow nitrogen to flow in the line with high pressure 

through the metering valve and MFC toward the chamber. The pumping is continued 

until the nitrogen gas pressure reaches zero. This action is repeated several times to 

ensure that all the excess SiH4 gases are purged from the line. 

When all gases in the lines are pumped out and the system evacuated until the 

pressure of 6 × 10
-3

 mbar, we just have to wait until the samples are cooled down to 

near room temperature. The system can be switched off by closing all the gas valves and 

roughing valve and switching off the rotary pump. Now, the chamber can be opened in 

order to take out the deposited films for characterization. The films are transferred into a 

clean sample container and kept in the dry cabinet for future characterizations.  

In this work, the filament and substrate temperatures were fixed at 1900
º
C and 

300
º
C; respectively for deposition of total six sets of silicon carbide thin films. Two sets 

of samples were deposited by varying the CH4 gas flow rate from 10 to 100 sccm while 

SiH4 flow rate was fixed at 0.5 and 1 sccm. To investigate the effect of gas pressure, 

two sets of films were prepared at fixed SiH4 to CH4 flow rate ratio of 0.05 while the 

total gas partial pressure was varied from 12 to 33 Pa. For one set, the deposition 

pressure was kept constant at 80 Pa by adjusting the roughing valve, and in another set, 

the deposition pressure was equal to the total gas partial pressure by leaving the 
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roughing valve fully opened. Lastly, the effect of deposition pressure and the filament-

to-substrate distance (d) on the properties of SiC films were studied by preparing films 

at SiH4 and CH4 flow rates of 1 and 20 sccm, respectively, and changing the deposition 

pressure and d.  

 

3.4 Characterization and Analytical Procedures 

 

This section describes the characterization and analytical procedures performed 

to characterize the SiC films and analyse the data obtained. These characterization 

techniques include surface profilometery to determine the film thickness and deposition 

rate, Fourier transform infrared (FTIR) spectroscopy and Raman scattering spectroscopy 

to investigate the bonding configurations, Auger electron spectroscopy (AES) for 

elemental composition, field emission scanning electron microscope (FESEM) to study 

the morphology, and UV-Vis-NIR spectroscopy for optical characterization of the films. 

 

3.4.1 Thickness Measurement by Surface Profilometry 

 

The thickness of SiC films deposited on glass and c-Si was determined using a 

KLA-Tencor P-6 surface profiler system, shown in Figure 3.5, which works in contact 

mode. 

Before SiC film deposition, a mask was placed on the substrates in order to 

create a well-defined edge between substrate and SiC film. The profiler measures the 

step height between the edge of the film and the substrate. A horizontal scan across the 

step from the substrate to the middle of the film provides the thickness of the film 

deposited on the substrate. The average of four measurements from different edges was 

taken as the average film thickness. 
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Figure 3.5: KLA-Tencor P-6 surface profiler system used for thickness measurement. 

 

3.4.2 Fourier Transform Infrared (FTIR) Spectroscopy 

 

Chemical bonding of silicon carbide films was studied using Fourier transform 

infrared (FTIR) spectroscopy. It is a non-destructive chemical analysis method, which is 

particularly sensitive to the asymmetrical bonding in semiconductor materials such as 

silicon carbide. In this work, FTIR spectra of HWCVD deposited amorphous and nano-

crystalline SiC thin films on c-Si substrates were recorded using a Perkin Elmer System 

2000 FTIR as shown in Figure 3.6. The measurement was done in the range of 400-

4000 cm
-1

 at the resolution of 4 cm
-1

. A bare Si substrate was used as a reference. 

A chemical covalent bond can be considered as an elastic spring connected with 

two balls (atoms). The stronger the spring (i.e. the bond), the faster the vibration. Thus, 

the frequency of vibration is an indication of bond strength or can be related to the type 

of bond. 

A molecular vibration occurs when atoms in a molecule are in periodic motion 

while the whole molecule undergoes translational and rotational motions. All molecules 
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have their inherent frequencies of vibration. A simple diatomic molecule such as H2 has 

only one bond, which may stretch. Molecules that are more complex have many bonds, 

and vibrations can be conjugated.  

 

 

Figure 3.6: Perkin Elmer System 2000 FTIR used for chemical bonding investigation. 

 

When molecules are irradiated with an IR of a continuous wavelength, the IR 

with the same wavelength (or wavenumber) as the frequency of an inherent vibration 

(or other modes) of the molecular bonds will be absorbed, and an absorption peak will 

appear at the wavelength (or wavenumber). In other words, the molecular vibration with 

the same frequency will be activated or accumulated (also called “resonated”) (Zhang, 

Li, & Kumar, 2009). Infrared radiation interacting with a vibrating molecule will only 

occur if there is oscillation of the electric vector of the radiation field with similar 

frequency, as the molecular dipole moment. If the normal vibration modulates the 

molecular dipole moment, a vibration is considered infrared active.  

 

(
  

  
)                                                            (3.2) 
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where μ is the molecular dipole moment and q stands for the normal coordinate 

describing the motion of the atoms during a normal vibration (Schrader, 1995). 

Molecular vibrations that can cause a change in the dipole moment include stretching, 

wagging, rocking, bending and twisting of an asymmetrical nature. Symmetrical bonds 

cannot be detected by this method because they do not pose any dipole moment. The 

vibrational modes of each molecule produce an absorption peak in the FTIR spectrum. 

The position of the peaks depends on the dipole moment or relative electronegativity of 

the two bonded atoms. The integrated intensity of the absorption peak is proportional to 

the concentration of the respective bonds in the material. How wide the absorption 

peaks are is due to the way the  structure of the film is ordered (Prado et al., 2001). 

Thus, important information regarding the chemical structure and the bonding 

characteristics of the film are provided by its FTIR spectrum.   

Based on the theory, for SiC films, homonuclear bonds such as Si-Si and C-C do 

not have dipole moment and thus cannot be detected in FTIR spectra. However, other 

bonds such as Si-C, Si-H and C-H are IR active. A typical FTIR spectrum of a SiC film 

is shown in Figure 3.7, which shows broad, shallow interference fringes in the 

transmittance IR spectra. This is due to the refractive index of the film, which is 

between that of Si substrate and air. The result is index contrast between the film and 

the substrate (Rajagopalan, 2003). Three main absorption bands are observed centred at 

around 800, 2080, and 2900 cm
-1

 corresponding to stretching vibrations of Si-C, Si-H, 

and C-H bonds, respectively. The CH3 symmetric deformation mode in (Si-CH3) group 

results in the absorption band at 1250 cm
-1

. Another absorption peak at ~1000 cm
-1

 is 

usually observed in FTIR spectrum of SiC films deposited by HWCVD technique, 

which is attributed to wagging/rocking modes of C-H bonds in the Si:C-Hn 

configuration. However, it should be noted that this absorption band is not correlated to 

C-H stretching vibration at 2800-3000 cm
-1

. Vasin et al. have suggested that the main 
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contribution of the absorption band at 2800-3000 cm
-1

 comes from hydrogenated carbon 

clusters, i.e. from vibration of carbon-hydrogen bonds in the C:C-H configuration, while 

the contribution of Si:C-Hn bonds is minor (Vasin, 2008).  

In order to analyse FTIR results quantitatively, it is important that the absorption 

coefficient (α(ω)) for the films should be measured, which can be done employing 

Lambert-Beer’s law: 

 

 ( )  
 

 
  [  ( )  ( )]                                             (3.3) 

 

where d is the film thickness and T0(ω) is the fitted baseline corresponding to zero 

absorption as indicated by a dashed line in Figure 3.7. 

 

 

Figure 3.7: A typical FTIR spectrum for silicon carbide films. The dashed line is the baseline 

used to subtract the interference fringes in the spectrum.  
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The bond density is directly proportional to the integrated intensity of its IR 

absorption band as follows: 

 

   ∫
 ( )

 
                                                     (3.4) 

 

where A is inverse absorption cross section constant of the considered absorption mode. 

Table 3.1 lists this constant corresponding to various absorption bands of the SiC films. 

It should be noted that the absorption band around 600-1100 cm
-1

 is usually a 

superposition of various absorption peaks at ~650 cm
-1

, 800 cm
-1

, and 1000 cm
-1

 

corresponding to Si-H wagging mode, Si-C stretching mode, and C-H wagging in Si-

CH3 respectively. Therefore, to calculate the Si-C bond density, the deconvolution of 

this band into constituents is required. In this work, the deconvolution was done by 

using Origin 8.0 software. An example of such deconvolution is presented in Figure 3.8. 

 

Table 3.1: Inverse absorption cross sections (A) of various 

absorption bands in FTIR spectrum. 

Absorption band A (cm
-2

) 

Si-H wagging mode (650 cm
-1

) 

Si-H stretching (2080 cm
-1

) 

3.6 ×10
19  

1.4 ×10
20

 

Si-C stretching mode (800 cm
-1

) 2.13 ×10
19

 

C-H (2800-3000 cm
-1

) 1.35 ×10
21
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Figure 3.8: A typical deconvolution of IR absorption band of SiC film in the region of 400-

1400 cm
-1

. 

 

3.4.3 Micro-Raman Scattering Spectroscopy 

 

Raman scattering spectroscopy provides information about molecular vibrations 

that can be used for sample identification and qualification. Raman spectroscopy is 

based on the Raman Effect, which consist of the inelastic scattering of photons by the 

sample. Vibrational transitions are observable in either IR or Raman spectra, but there is 

a significant difference between the origin of Raman spectra and IR spectra. In the case 

of Raman scattering spectroscopy, irradiation of the sample is done by intense laser 

beam in the UV-visible region (ν0), and the scattered light is normally seen a 

perpendicular direction to the incident beam (Figure 3.9).  
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Figure 3.9: Differences in mechanism of Raman vs IR (Ferraro, et al., 2003). 

 

There are two types of scattered lights: one, known as Reyleigh scattering, is 

strong and with frequency similar to that of the incident beam (ν0); and the other, 

referred to as Raman scattering, is significantly weak (~ 10
-5

 of the incident beam) and 

with frequencies ν0±νm, where νm is a vibrational frequency of a molecule. The ν0-νm 

and ν0+νm lines are known as Stokes and anti-Stokes lines, respectively. Therefore, in 

Raman spectroscopy the vibrational frequency (νm) is measured as a shift from the 

incident beam frequency (ν0) (Ferraro, et al., 2003). 

A similar condition that was mentioned for IR must be met to observe the 

Raman spectrum vibration. When there is exposure of a molecule to an electric field, 

electrons and nuclei are forced to move in opposite directions, creating a dipole 

moment, which is proportional to the strength of the electric field and to the molecular 

polarizability α. A molecular vibration is observable in the Raman spectrum when the 

molecular polarizability is modulated by the vibration (Schrader, 1995), 

(
  

  
)                                                                (3.5) 
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The intensities of bands in the Raman spectrum of a compound are governed by the 

change in the polarizability that occurs during the vibrations. The intensity of any band 

in the Raman spectrum is given by the following expression: 

 

          (     ) (
  

  
)
 

                                        (3.6) 

 

Where IL is the power of the laser at the sample (ν0-νm), the wavenumber at which the 

band is measured, and dα/dq, the change in the polarizability of the vibration. This 

parameter is the Raman equivalent of absorptivity and is sometimes called the Raman 

cross section (Griffiths & De Haseth, 2007). 

In silicon carbide films, Si-Si and C-C bonds satisfy the above condition and 

thus can produce a Raman peak. However, Si-C bonds have low Raman cross section 

particularly in amorphous structure. It has been reported that the Raman cross section of 

Si-C bond is around 40 times smaller than that of C-C bonds (W. Yu, Lu, W., Han, L., 

Fu, G., 2004). Therefore, usually only a broad, weak Raman band can be observed due 

to Si-C from SiC films.  

The Raman scattering spectra of the films were recorded using a Renishaw inVia 

Raman Microscope as shown in Figure 3.10. The measurements were carried out with 

two different excitation sources i.e. 514 nm Ar
+
 laser and 325 nm He-Cd laser with the 

laser power of 10 mw. A schematic diagram of the Raman spectrometer is shown in 

Figure 3.11. From the figure, the laser beam is passed through a sample. Light scattered 

sideways from the sample is collected by a lens and passed into a grating 

monochromator. The signal is measured by a sensitive photomultiplier and after 

amplification a computer that plots the Raman spectrum processes it. In this work, the 

Raman shift was measured in the range of 100-2000 cm
-1

.  
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Figure 3.10: Renishaw inVia Raman Microscope used to study the bonding 

configuration in the SiC films. 

 

 

Figure 3.11: Schematic diagram of a Raman Spectrometer. 

 

An example of a Raman scattering spectrum of SiC films is shown in Figure 

3.12. In this figure, three main Raman bands in the spectrum are indicated 

Laser source 
Laser beam Sample 

Detector 

Grating 

Collecting lens 

Monochromator 
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corresponding to Si-Si, Si-C and C-C vibrations in the SiC film. This shows that the 

film consists of separated phases. However, the intensity of each band depends on the 

Raman cross section of respective bonding vibrations.  

 

 

Figure 3.12: A typical Raman scattering spectrum (excitation laser: 325 nm) of 

HWCVD deposited SiC films. 

 

3.4.4 X-Ray Diffraction (XRD) 

 

X-Ray Diffraction (XRD) is a powerful and established technique that provides 

information about material identification and crystal size. It is based on the diffraction 

of X-ray radiation within the film structure. In this work, the XRD pattern of SiC films 

was recorded using SIEMENS D5000 X-ray diffractometer, with Cu Kα (λ=1.5418 Å) 

in the range of 2θ=5-80º. A photograph of the XRD instrument is shown in Figure 3.13. 
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Figure 3.13: SIEMENS D5000 X-ray diffractometer used to investigate the 

crystalline structure of the films. 

 

There are diffraction effects when there is impingement of electromagnetic 

radiation on periodic structures with geometrical variations on the length scale of the 

wavelength of the radiation. The crystals and molecules interatomic distances of 0.15-

0.4 nm match to the electromagnetic spectrum with the wavelength of X-ray, with 

photon energies between 3 and 8 keV. Therefore, phenomena such as constructive and 

destructive interference should be observable when there is exposure of crystalline and 

molecular structures to X-ray.  

The condition of constructive interference of two parallel X-ray beams which are 

reflected by two parallel atomic planes with a distance d, is given by Bragg’s law: 

 

Electron gun 

Detector 

Sample holder 
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     ( )                                                       (3.7) 

where θ is angle of incident X-ray beam with respect to the atomic plane, λ is the 

wavelength and n is an integer number, corresponding to the reflection order (see Figure 

3.14 (a)). 

 

 

Figure 3.14: (a) The principle of X-ray diffraction and (b) schematic diagram of X-ray 

diffractometer. 

 

A schematic description of an X-ray diffractometer is shown in Figure 3.14 (b). 

The X-rays coming from the X-ray tube are incident on the sample which is set at any 
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desired angle to the incident beam. The collection of the diffraction pattern is by 

varying the incidence angle of the incoming X-ray beam by θ and the scattering angle 

by 2θ while measuring the scattered intensity I(2θ). A real picture of X-ray 

diffractometer is shown in Figure 3.13. 

If the atoms in a crystal are regularly arranged in a long range, the diffraction 

pattern contains sharp interference peaks. The size of crystallites (t) can be determined 

from Scherrer formula: 

 

  
    

      
                                                     (3.8) 

 

where B is the width at an intensity level equal to half the maximum (FWHM) of the 

diffraction peak and θB is the Bragg angle, which is the angle of incident X-ray beam. 

From this formula, it is obvious that bigger crystals result in sharper diffraction peaks at 

the position of 2θB.  

The Bragg condition is not fulfilled in liquids and amorphous solids due to lack 

of long range order. The amorphous phase can only produce a broad peak in the 

diffraction pattern. 

 

3.4.5 Auger Electron Spectroscopy (AES)  

 

In 1925, Auger observed that an ionized atom could eject another electron 

(second ionization) if the first ionization occurs in the inner shell. Because the kinetic 

energy of the second ejected electron is dependent on the electronic structure of the 

element, it can be used to identify the element from which the electron is ejected. This is 

called Auger effect. The ejected electron is known as Auger electron. Based on the 
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auger effect, Auger electron spectroscopy (AES) was developed to identify the elements 

in a given material (Zhang, et al., 2009).  

In depth analysis of samples, AES instrument uses ion beam etching to eliminate 

the material from the sample surface. One cycle of a typical depth profile involves 

etching a small increment into the sample, stopping, measuring relevant portions of 

Auger spectrum, and employing the equation for elemental quantification in the film 

structure.  

Elemental composition of SiC films was investigated by using Auger electron 

spectroscopy (AES) technique. This measurement was performed using a JEOL JAMP-

9500F field emission Auger microscope, as indicated in Figure 3.15. The concentration 

of constituent atoms was made available by Auger Electron Spectroscopy with depth 

profiling with Ar
+
 ions (4 kV accelerating voltage) etching rate of 14.8 nm/min. An 

example of Auger depth profile of HWCVD deposited SiC film is shown in Figure 3.16. 

Here, the SiC film, SiC/Si interface and Si substrate regions are indicated. Relative 

atomic concentration of constituent elements is calculated using their relative sensitivity 

factors (RSF). The RSFs are 0.121, 0.122, 0.365, and 0.238 for carbon, nitrogen, 

oxygen, and silicon, respectively. 
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Figure 3.15: JEOL JAMP-9500F field emission Auger microscope used for elemental 

composition measurements. 

 

 

Figure 3.16: Typical Auger depth profile of SiC film deposited by HWCVD technique. 
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3.4.6 Field Emission Scanning Electron Microscope (FESEM) 

 

The surface and morphological properties of SiC films were examined using 

Field Emission Electron Microscope (FESEM). High-resolution images were taken 

using an FEI Quanta FESEM as shown in Figure 3.17. The images were taken in high 

vacuum at acceleration voltage 0f 20 kV.  

 

Figure 3.17: FEI Quanta Field Emission Electron Microscope 

(FESEM) used for high-resolution imaging of SiC films. 

 

The principle of scanning electron microscopy (SEM) is the detection and 

visualization of secondary and backscattered electrons because of the interaction 

between an electron beam and the sample surface. An SEM mainly consists of an 
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electron gun, a lens system, detector and display as shown in Figure 3.18. A high-

energy electrons beam is emitted and moves downward through a series of magnetic 

lenses designed to direct the electrons to a very fine spot. When a focused electron beam 

strikes the sample surface, different types of signals are generated from the sample and 

detected by various sensors. Secondary electrons with lower energy give information 

about the surface of the specimen while backscattered electrons come from a deeper 

interaction zone of interest.  

 

 

Figure 3.18: A schematic diagram of FESEM system. 

 

3.4.7 UV-Vis-NIR Spectroscopy 

 

When photons impinge on a semiconductor, the photons of energy hν ≥ Eg are 

absorbed, while those of energy less than the band gap are transmitted. The ratio of the 

transmitted and the incident light is a function of the photon wavelength and the 

thickness travelled. The absorbance is given according to Beer-Lambert’s law, 
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                (
 

  
)                                          (3.9) 

 

where ε, c, and l are molar absorptivity, molar concentration, and path length of sample 

respectively. I0 is the intensity of incident beam and I is the intensity of transmitted 

beam. 

Optical characterization of SiC films deposited on glass substrates were carried 

out using a Jasco V-750 UV-Vis-NIR spectrophotometer, as shown in Figure 3.19. 

 

 

Figure 3.19: Jasco V-750 UV-Vis-NIR spectrophotometer used for optical characterization. 

 

The measurements were performed in both transmission and reflection modes. 

For transmission, a bare glass substrate was employed as a reference while in reflection 

mode an aluminium-coated glass was used as a reference with total reflection. Incident 

beam was normal to the film surface for transmission measurement. However, in the 

reflection mode the incident angle was fixed at 5º in respect of the normal direction to 

the film surface. The measurement was performed in the spectral range of 190-2500 nm 

with interval of 2 nm. The absorption region in the transmittance spectrum was where 
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the transmission intensity showed significant decrease. A typical optical transmission 

and reflection spectra of SiC thin films is shown in Figure 3.20. 

 

 

Figure 3.20: A typical transmission and reflection spectra of SiC film deposited by HWCVD. 

(The data are extracted from this work.) 

 

From transmission and reflection spectra, optical constants of the film including 

refractive index, thickness, and energy band gap can be calculated.  

 

3.4.7.1 Determination of Film Thickness and Refractive Index  

 

In this section, a method introduced by Manifacier et al. (Manifacier, Gasiot, & 

Fillard, 1976) is presented that will be utilized for optical characterization of SiC films. 

According to this method, the refractive index (n) of the films can be written as follows: 
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no is the refractive index of air;1.00 and n1 is the refractive index of glass substrate; 

1.52. TMax and Tmin are the values of transmission obtained from the interference fringes 

of the spectrum using an envelope method as shown in Figure 3.21. 

 

 

Figure 3.21: The transmission spectrum of SiC film with envelope functions of 

TMax and Tmin used for refractive index calculation (The data corresponds to the film 

deposited under deposition pressure of 40 Pa). 

 

The optical thickness can be determined using a method proposed by Davis et al. 

(Davis, Piggins, & Bayliss, 1987): 
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                                                             (3.12) 

 

where m is interference order, λ, n and d, are the wavelength, refractive index and 

optical thickness of the corresponding interference order, respectively. 

The interference order is taken from the smallest value for the first extreme point 

and increases by half for next maximum or minimum point. It should be noted that the 

value of m is the integer for maximum points and half integer for minimum points. By 

varying the m value for a series of interference fringes, a set of mλ/2 values are 

produced which is equal to nd. To determine the m values, a simple graphical method 

introduced by Swanepoel et al. (Swanepoel, 1983) is used. If the order number (integer 

or half integer) of the first extreme is m1, the equation for the extreme points can be 

written as follows: 

 

    (   
 

 
)                                                   (3.13) 

or 

 

           ⁄                                           (3.14) 

 

If k/2 is plotted versus n/λ, the amount of m1 can be obtained from the intercept of the 

straight line. By selecting the correct first interference order, the optical thickness (d) 

can be simply determined by dividing nd by n at the longest wavelength obtained from 

the Manifacier method. The values of the refractive index as a function of wavelength 

are then calculated using this thickness. These values must satisfy the Cauchy function: 
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                                                         (3.15) 

 

where a and n0′ are linear slope and static refractive index of the film, respectively. 

 

3.4.7.2 Optical Absorption and Band Gap 

 

From the transmission and reflection spectra, the absorption coefficient of the 

films can be obtained using the following equation: 

 

  
 

 
  (

   

 
)                                                 (3.16) 

 

where d is the optical thickness of the film as determined following the method 

explained in above section. T and R are the transmission and reflection data as obtained 

from UV-Vis-NIR measurement.  

The energy band gap of SiC films, Eg can be determined from the Tauc relation 

(Tauc & Abeles, 1972): 

 

    (    )
 
                                             (3.17) 

 

where B is a constant and E is the photon energy. In order to determine the value of Eg, 

graph of (αE)
1/2

 versus photon energy, E, is plotted as an example as shown in Figure 

3.22. Extrapolation of the linear part of this plot for (αE)
1/2

 = 0 gives the value of Eg.  
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Figure 3.22: An example of Tauc plot of SiC film for determination of energy gap. 

 

3.4.8 Photoluminescence Spectroscopy 

 

Photoluminescence (PL) spectroscopy is a powerful tool for semiconductor 

material characterization. This characterization technique is fast, simple, and non-

destructive. This technique is based on the emission of light by a semiconductor 

material when it is photo-excited by a monochromatic light of certain energy. Therefore, 

PL can provide information on radiative recombination centres like defects and 

impurities in the material.   

PL characteristics of the films in this work were recorded using a Renishaw 

2000 at room temperature. This system is an integrated PL/Raman measuring system 

which was also used for Raman measurement. A helium cadmium laser was used as an 

excitation source with the wavelength of 325 nm. 
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4.1 Introduction 

 

In this chapter, the deposition of SiC thin films using hot-wire chemical vapour 

deposition (HWCVD) from pure silane and methane gas mixture is presented. The 

influence of precursor gas concentration on chemical bonding, crystallinity and 

elemental composition properties of the films are studied from analysis done on the 

Fourier transform infra-red (FTIR), Raman scattering, X-ray diffraction, and Auger 

depth profiling measurement of the films deposited on c-Si substrate. Two series of SiC 

films were studied in this part. The FTIR transmission spectra were carried out to study 

the heteronuclear bonds such as Si-C, Si-H and C-H bonds present in the films. While 

Raman scattering spectroscopy was performed to detect the homonuclear bonds i.e. Si-

Si and C-C bonds and carbon bonding configuration. The first series of films consisted 

of two sets of films deposited at two different silane flow-rates of 0.5 and 1 sccm while 

the flow-rates of methane gas were varied from 10 to 100 sccm in each set. The choice 

of SiH4 flow rate was based on earlier reports in the literature that verified ‘silane 

starving’ condition is necessary to obtain better quality SiC films (A. A. Kumbhar, et 

al., 1998; A. S. Kumbhar, et al., 1995). The second series of films also consisted of 

films deposited at different silane (SiH4) and methane (CH4) flow-rates with the gas 

flow ratio fixed. Two sets of films were deposited for this series. The films in the first 

set were deposited at the deposition pressure of the total gas partial pressure by setting 

the rotary pump valve fully opened while the deposition pressure of the second set of 

films was fixed by controlling the rotary pump valve. It should be noted that the other 

deposition parameters not mentioned above were fixed and will be detailed in the 

following section.  
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Three main objectives of the work done in this chapter are: 

 

1. To deposit SiC films by HWCVD technique from pure silane and methane gas 

mixture. 

2. To determine the effect of methane flow rate on the quality of the films i.e. Si-C 

bond density, crystallinity and deposition rate by varying the methane flow rate 

at two different fixed silane flow rate. The films in series 1 are used to study the 

structural properties of the films with increase in the concentration of methane 

molecules.  

3. To determine the influence of total gas partial pressure on the structural 

properties of the SiC films. The films deposited in series 2 are studied to 

establish that the flow-rate ratio of silane to methane is not a determining factor 

to the structural properties of the films and increase in the concentration of 

precursor gases silane and methane at fixed silane to methane flow-rate ratio has 

significant influence on the structural properties.  

 

4.2 Deposition Parameters of SiC Thin Films Highlighted  

 

The deposition parameters of the SiC films prepared by HWCVD technique 

studied in this chapter are listed in Table 4.1. 

It should be noted that for the samples prepared in series 1, the methane flow 

rate, [CH4], was varied from 10 to 100 sccm, while keeping silane flow rate, [SiH4], 

constant at either 0.5 or 1 sccm. In addition, two sets of samples were deposited in 

series 2. Silane to methane flow-rate ratio, [SiH4]/[CH4], was fixed at 0.05, while the 

flow rate of each gas was varied. This process was performed in two different 

conditions. Firstly, the deposition pressure was set to be equal to the total gas partial 

pressure. For this purpose, the roughing valve was kept fully opened during deposition. 
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Therefore, the deposition pressure was a variable parameter. This set of samples is 

called “VP” which stands for “Variable Pressure”. For the second set, however, the 

deposition pressure was always kept constant at 80 Pa regardless of the  

 partial pressure. Adjusting the deposition pressure in this set was done by 

regulating the roughing valve until the pressure reading is equal to 80 Pa. This set is 

named “FP” which stands for “Fixed Pressure”. 

 

Table 4.1: Deposition parameters for SiC films used in this chapter. 

Deposition Parameter Value 

Filament temperature 1900
º
C 

Substrate temperature 300
°
C 

Methane flow rate 10-100 sccm (series 1) 

10-40 sccm (series 2) 

Silane flow rate 1 sccm (series 1, first set) 

0.5 sccm (series 1, second set) 

0.5-2 sccm (series 2) 

Deposition pressure 80 Pa  

12-33 Pa (series 2, VP set) 

Filament-to-substrate distance 25 mm 

Deposition time 30 min 

 

4.3 Deposition of SiC Films Under Fixed Silane Flow-Rate with the Methane 

Flow-Rates Varied 

 

4.3.1 Chemical Bonding Investigation by FTIR Spectroscopy 

 

The bonding configurations of the films were studied by FTIR spectroscopy. 

Figure 4.1 (a) and (b) show the thickness-normalized FTIR absorption spectra of SiC 

films deposited at SiH4 flow rate of 0.5 and 1 sccm, respectively, and indicated CH4 

flow rates.  
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(a) 

 

(b) 

Figure 4.1: FTIR absorption spectra of SiC film deposited under different CH4 flow 

rate and SiH4 flow rate of (a) 0.5 sccm and (b) 1 sccm. 
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The main feature of these spectra was a sharp and intense absorption band in the 

range of 600 cm
-1

 to 1100 cm
-1

. This band is contributed by the superposition of 

absorption peaks located at about 650 cm
-1

, 800 cm
-1

 and 980 cm
-1

 corresponding to the 

Si-H wagging (w), Si-C stretching (str) and C-Hn wagging (w) vibration modes, 

respectively (Hartel, 2010). Additionally, a weak absorption band in the range of 1900 

to 2200 cm
-1

 was detected which is attributed to Si-H (str) vibration mode (Chew, 

2002). C-Hn stretching vibration at the range of 2800-3000 cm
-1

 (Ritikos, Siong, Ab. 

Gani, Muhamad, & Rahman, 2009), usually observed in hydrogenated a-SiC films was 

absent in our spectra. It was observed that the former absorption band increased in 

intensity with the decrease in CH4 flow rate, while the Si-H (str) band followed the 

opposite trend. The decrease in the Si-H (str) intensity indicates a decrease in the 

hydrogen concentration in the films prepared at lower CH4 flow rate. Moreover, the 

evolution in the shape and width of the Si-C (str) band suggested a phase transformation 

from amorphous to crystalline (Kerdiles, 2000; Rajagopalan, 2003) with decrease in 

CH4 flow rate. In order to verify this transformation, the standard deconvolutions have 

been done for this absorption band. The Si-C (str) band was fitted to both Gaussian and 

Lorentzian distribution curves to determine the amorphous and crystalline components 

of the SiC phase in the film structure respectively. Many researchers working on SiC 

films have widely adopted this technique (Finger et al., 2009; Rajagopalan, 2003; W. 

Yu, Wang, X., Lu, W., Wang, S., Bian, Y., Fu, G., 2010). The Lorentzian component of 

Si-C (str) mode was dominant in the films deposited at lower CH4 flow rate with 

insignificant presence of Si-H (w) and C-H (w) modes. The presence of Gaussian Si-C 

(str), Si-H (w) and C-H (w) modes became more significant compared to the Lorentzian 

Si-C (str) mode at higher CH4 flow rate. The SiC crystalline volume fraction of the 

films prepared at different CH4 flow rate was estimated following the formula 

AL/(AG+AL) where AL and AG were the areas under Si-C Lorentzian and Gaussian 



CHAPTER 4: RESULTS AND DISCUSSION: PART 1 

  78 

components, respectively. Figure 4.2 shows the variation of SiC crystalline volume 

fraction as a function of CH4 flow rate for the films deposited under SiH4 flow rate of 1 

and 0.5 sccm. It was noticed that the volume fraction of SiC crystallites considerably 

decreased with increase in CH4 flow rate and similar trends were observed for both sets 

of films. This variation indicates a phase transition from crystalline to amorphous in the 

film structure. 

 

 

Figure 4.2: Variations of SiC crystalline volume fraction of the films 

deposited at SiH4 flow rate of 0.5 and 1 sccm as a function of CH4 

flow rate. 

 

The bond density (N) of Si-C and Si-H can be calculated by using the following 

formula: 

  
 

  
∫ ( )                                                             (4.1) 

where A, 0, and α() are reverse cross section, position of the absorption peak and 

absorption coefficient, respectively. The standard values of A for Si-C and Si-H 
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stretching vibration modes adopted from literature are 2.13×10
19

 and 1.40×10
20

 cm
-2

, 

respectively (Kaneko, 2005). Figure 4.3 shows a decrease in bond density of Si-H and 

increase in Si-C bond with the decrease in CH4 flow rate. The absence of C-H (str) 

indicates there were no a-C:H clusters in the films while the presence of C-H (w) 

vibration mode, was associated to the C-H bonds attached to Si atom (Si-C-H) (Vasin, 

2008). It can be concluded that the films deposited at high CH4 flow rate are generally 

amorphous with a mixture of a-Si:H phase embedded within a more dominant a-SiC:H 

phase, while the films deposited at lower CH4 flow rate showed lower hydrogen 

concentration with more ordered Si‒C matrix. The Si-C and Si-H bond densities in the 

films were calculated and listed in Table 4.2. 

 

 

Figure 4.3: Variations of integrated intensities of Si-C, Si-H, and C-H bands in the 

films prepared under various methane and silane flow rates. 
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Table 4.2: Si-C and Si-H bond densities of SiC films deposited 

under different methane and silane flow rate. 

CH4 (sccm) 

± 0.1 sccm 

SiH4 (sccm) 

± 0.01 sccm 

NSi-C ( cm
-3

) 

± 0.1×10
23

 

NSi-H (cm
-3

) 

±0.5×10
21

 

10.0 0.50 2.0×10
23

 3.5×10
21

 

30.0 0.50 7.1×10
22

 4.0×10
21

 

50.0 0.50 7.9×10
22

 6.0×10
21

 

75.0 0.50 8.3×10
22

 6.5×10
21

 

100.0 0.50 1.0×10
23

 6.0×10
21

 

10.0 1.00 1.8×10
23

 8.0×10
20

 

20.0 1.00 8.4×10
22

 1.5×10
21

 

40.0 1.00 5.6×10
22

 5.5×10
21

 

70.0 1.00 5.9×10
22

 8.0×10
21

 

100.0 1.00 3.4×10
22

 8.0×10
21

 

 

4.3.2 Raman Scattering Spectroscopy 

 

Figures 4.4 (a) and (b) show the Raman scattering spectra (excitation 

wavelength of 325 nm) of the SiC films deposited at different CH4 flow rate with SiH4 

flow rate fixed at 1 and 0.5 sccm, respectively. The broad band centred at 480 cm
-1

 

attributed to Si-Si TO mode indicates the presence of a-Si phase in all the films. For the 

films prepared at SiH4 flow rate of 1 sccm, the intensity of this band monotonically 

increased with the increase in CH4 flow rate, indicating the increase in presence of a-Si 

phase in the film structure. In the case of the films prepared at SiH4 flow rate of 0.5 

sccm, an initial increase in the intensity of this band was observed with increase in CH4 

flow rate from 10 to 30 sccm followed by a continuous decrease in its intensity with 

further increase in CH4 flow rate. The band located in the region between 700 and   
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1000 cm
-1

 which is associated with Si-C bonds was weak due to the low Raman 

efficiency of SiC (Q. Cheng & et al., 2008; Bibhu P. Swain & Dusane, 2006).  

 

 

(a) 

 

(b) 

Figure 4.4: Raman scattering spectra of SiC films deposited at indicated 

CH4 flow rates and SiH4 flow rate of (a) 0.5 sccm and (b) 1 sccm. 
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A sharp observable peak at 1550 cm
-1

 is attributed to atmospheric oxygen 

(Huang, 2002; J. R. Shi, et al, 2000). However, for the films prepared at SiH4 flow rate 

of 0.5 sccm and CH4 flow rate of 10 and 100 sccm, this peak was accompanied by a 

broad band centred at ~1500 cm
-1

. This band is usually associated with the C-C sp
2
 

bonds in a-C:H films; however this band was red-shifted compared to the positions of 

the G bands of a-C:H films at 1590 cm
-1

 (A. C. Ferrari & Robertson, 2000; Andrea 

Carlo Ferrari & Robertson, 2004) which is due to the addition of Si to the carbon matrix 

(Guruvenket, 2010). Therefore, the formation of multi-phased films consisting of a-Si, 

a-C and SiC phases was obviously confirmed by the Raman results.  

 

4.3.3  XRD Analysis 

 

Figures 4.5 (a) and (b) show the XRD patterns of the SiC films deposited at 

various SiH4 and CH4 flow rate. As shown in both figures, all samples revealed an XRD 

peak at 2 of 56.7° corresponding to the crystalline Si (311) orientation plane. This 

preferred orientation of Si crystallites is due to Si substrates, since the XRD pattern of 

Si substrate showed an XRD peak at the same position. Three XRD peaks were 

observed at 2 of 35.7°, 60.0° and 71.8° corresponding to the (111), (220) and (311) 

reflection planes of 3C-SiC, respectively from the films deposited at CH4 flow rate 

below 30 sccm (A. Tabata, et al., 2010). This shows that SiC crystallites are formed in 

the films deposited at lower CH4 flow rate (< 30 sccm) and this is consistent with FTIR 

results, which showed a high SiC crystalline volume fraction for these films. This is 

particularly obvious for the set of films prepared at SiH4 flow rate of 1 sccm.  
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(a) 

 

(b) 

Figure 4.5: XRD patterns of SiC films deposited at indicated CH4 flow rates and SiH4 

flow rate of (a) 0.5 sccm and (b) 1 sccm. The XRD pattern of c-Si bare substrate was 

also shown in both graphs. The XRD peaks corresponding to Si and 3C-SiC were 

labelled in the figure. 
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The SiC mean crystallite size of the films estimated from the XRD peak of 3C-SiC 

(111) using Scherrer’s formula (Klug & Alexander, 1974), was in the range of 2-6 nm. 

The samples prepared at CH4 flow rate above 30 sccm are amorphous. It should be 

noted that the films prepared at SiH4 flow rate of 1 and 0.5 sccm, showed the formation 

of 3C-SiC nano-crystallites and exhibited high density of Si-C bonds when the CH4 

flow rate is 20 sccm and 10 sccm, respectively. The SiH4 to CH4 flow rate ratio for both 

of them was the same and equal to 0.05 showing that the formation of SiC crystallites 

can be manipulated by controlling the SiH4 to CH4 flow rate ratio. 

 

4.3.4 AES Analysis 

 

The relative atomic concentrations of silicon, Si, and carbon, C, in the films 

were obtained from the Auger electron spectroscopy. Figure 4.6 shows the variation of 

C/Si ratio with [CH4]/[SiH4] ratio. The inset shows this plot as a function of [CH4]. 

Since the C/Si appears to show stronger dependence on [CH4]/[SiH4] gas ratio than the 

[CH4], the discussion on the results will be focused on the former. The C/Si ratio was 

less than 1 in all films indicating that the relative concentration of Si was higher than 

that of C in all of the SiC thin films studied in this work. High [SiH4] of 1 sccm resulted 

in higher C/Si ratio at each [CH4]/[SiH4] ratio. The increase in [CH4]/[SiH4] ratio up to 

100 decreased the C/Si ratio in both set of films. However, further increase in 

[CH4]/[SiH4] ratio to 200 which was observed only in the films deposited at [SiH4] of 

0.5 sccm for the range of [CH4] studied in this work, intensely increased the C/Si ratio. 

These results show that C incorporation into the film structure was strongly influenced 

by the partial pressure of CH4 with respect to the SiH4 gas. At [SiH4] of 1 sccm, higher 

density of H radicals, generated from decomposition of SiH4 gas by the heated W-

filament, go through the secondary gas-phase reactions with the CH4 molecules and 



CHAPTER 4: RESULTS AND DISCUSSION: PART 1 

  85 

enhances the density of C-related radicals reaching the growth sites. This explains the 

higher incorporation of C atoms in the films deposited at the [SiH4] of 1 sccm at each 

[CH4]/[SiH4] ratio. The increase in [CH4]/[SiH4] ratio decreased the partial pressure of 

SiH4 gas and consequently limited the number of Si and H radicals generated during 

SiH4 decomposition by the hot filament and thus reduced the density of C-related 

radicals reaching the growth sites. Further increase in [CH4]/[SiH4] ratio from 100 to 

200 resulted in a significant decrease in Si-related radicals reaching the growth sites. 

However, the H radicals produced still contributed to the secondary gas-phase reactions 

with CH4 molecules and resulting in the production of C-related radicals. Thus an 

increase in C/Si ratio was seen in this region of [CH4]/[SiH4] ratio. The decrease in a-Si 

phase in the film as shown by the Raman results with increase in [CH4] for the films 

prepared at [SiH4] of 0.5 sccm also confirmed these results. 

 

 

Figure 4.6: Dependence of carbon to silicon content ratio (C/Si) of 

SiC films on CH4 to SiH4 flow rate ratio. The inset displays C/Si 

ratio as a function of CH4 flow rate. 

 



CHAPTER 4: RESULTS AND DISCUSSION: PART 1 

  86 

The films deposited at the lowest and highest [CH4]/[SiH4] ratio with [SiH4] of 1 

and 0.5 sccm respectively showed the most near stoichiometric composition. However, 

the latter films were inhomogeneous and consisted of a-Si:H, a-C:H and a-SiC:H phases 

as confirmed by Raman and FTIR results. The film deposited at the lowest [CH4]/[SiH4] 

ratio with [SiH4] of 0.5 sccm had low C/Si ratio but showed high SiC crystalline volume 

fraction indicating that the SiC nano-crystallites were embedded within the a-SiC:H, a-

Si:H and a-C:H phases. These results were partly different from those reported by Y. 

Hoshide et al (Y. Hoshide, Komura, Y., Tabata, A., Kitagawa, A., Kondo, A., 2009) in 

their work on HWCVD SiC films. They showed that increasing [CH4]/[SiH4] ratio to 2 

resulted in an amorphous film structure, but the configuration of the deposition system 

used in this work and the different parameters such as pressure and filament temperature 

used in this work enabled nano-crystalline SiC film structure to be grown at much 

higher [CH4]/[SiH4] ratio.  

 

4.3.5 Deposition Rate 

 

The average deposition rate of the films was calculated by dividing the film 

thickness by the deposition time. Figure 4.7 shows the dependence of the deposition rate 

of SiC thin films on the SiH4 and CH4 flow rates. The deposition rate of the films 

deposited at SiH4 flow rate of 1 sccm is generally higher than those of 0.5 sccm. It is 

worth noting that the deposition rates of the films deposited in this work, are higher than 

those reported by other researchers using plasma-enhanced CVD (PECVD) technique 

(G. Ambrosone, Coscia, U., Ferrero, S., Giorgis, F., Mandracci, P., Pirri, C.F. , 2002; Q. 

Cheng, Xu, S. , 2007; A. Tabata, Kuno, Y., Suzuoki, Y., Mizutani, T., 1997). 

Interestingly, these deposition rates are also higher compared to those reported by other 

research groups under similar conditions using HWCVD (Y. Hoshide, Tabata, A., 
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Kitagawa, A., Kondo, A., 2009; Bibhu P. Swain & Dusane, 2006; A. Tabata, et al., 

2009).  

It is well known that in HWCVD systems, SiH4 molecules are efficiently 

decomposed at the heated W-filament above 1800°C resulting in the generation of high 

densities of Si and H radicals (Zheng & Gallagher, 2006). In contrast, although the 

decomposition of CH4 molecules may occur in the same way as SiH4, they decompose 

mainly via gas phase reactions (A. Tabata & Komura, 2007). An increase in SiH4 flow 

rate leads to the production of more Si and H radicals, which in turn, increases the 

number of reactions with CH4 molecules and the generation of more C-related radicals. 

This enhances the density of the reactive precursors and thus leads to higher film 

deposition rate for the films deposited at SiH4 flow rate of 1 sccm.  

 

 

Figure 4.7: Deposition rate of SiC films deposited at different CH4 flow rate 

and SiH4 flow rate of 0.5 and 1 sccm. 
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The increase in [CH4] produced similar trends in deposition rates of the films 

prepared at [SiH4] of 1 and 0.5 sccm. It increased significantly with initial increase in 

[CH4] from 10 to 40 sccm and tended to saturate with further increase in [CH4]. The 

films deposited at the lowest [CH4] showed the highest SiC crystalline volume fraction 

indicating high coverage of the growth surface with H atoms. The low [CH4] allowed 

generation of higher density of Si and H radicals from SiH4 decomposition at the heated 

W-filament and enhanced the density of H atoms reaching the growth sites. This also 

resulted in more effective etching of the amorphous phase by the H atoms leading to 

lowest deposition rate of the films deposited at the lowest [CH4]. Increase in [CH4] from 

10 to 40 sccm increased the deposition rate of the films significantly, but further 

increase in [CH4] did not produce much change in the deposition rate. It is believed that 

the increase in deposition rate with the increase in [CH4] was contributed by a 

significant reduction in the density of H radicals reaching the growth sites thus reducing 

H etching effects. Although the density of Si and C related radicals reaching the growth 

sites was also decreasing, the decrease in H etching effect was more significant as the 

density of H radicals was dramatically reduced through gas phase reactions with the 

increase in [CH4]. This resulted in the increase in the deposition rate. Similar variation 

in the deposition rate had been reported in the region where the structure of SiC phase 

transformed from nano-crystalline to amorphous (Komura, 2008), comparable to what 

had occurred here. However, when [CH4] increased further beyond 40 sccm, the 

significant decrease in the density of H, Si and C-related radicals reaching the growth 

surface resulted in an equilibrium state between the growth and etching rate of the films 

during the growth process. This contributed to the almost constant deposition rate with 

the increase in [CH4] above 40 sccm. These findings show that the [SiH4] is an 

important parameter affecting the deposition rate with [CH4] being influential at lower 

flow rates. 
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4.4 Deposition of SiC Films Under Different Gas Pressures with the Silane to 

Methane Flow-Rate Ratio Fixed 

 

4.4.1 Introduction 

 

It is generally known that the deposition pressure and gas flow rate are the two 

key parameters controlling the SiC film properties. With regards to gas flow-rate, 

researchers generally consider the ratio of gases introduced into the reaction chamber as 

an important deposition parameter and put no emphasis on the effects of the actual gas 

flow-rates used on the film properties. When considering the effects of deposition 

pressure on the film properties, most studies focus on the effects on the film properties 

when the gas ratios are fixed with the gas flow-rates fixed and the deposition pressure 

changed by controlling the pumping rate evacuating the deposition chamber. In this part 

of this work, the effects of varying the reactant gas flow-rates which directly influences 

total gas partial pressure at a fixed SiH4 to CH4 flow-rate ratio on the properties of the 

films produced are investigated. Thorough literature search done to gather information 

on similar work done by other researchers reveals that there is no reported work 

available so far covering this aspect. Two sets of samples were deposited for this study. 

For the first set of samples (labelled as VP samples), the deposition pressure was fixed 

at the lowest stable pressure recorded in the deposition chamber when the reactant gases 

were fully admitted. The pumping rate evacuating the reaction chamber was maintained 

at the highest rate by fully opening the roughing valve. In other words, the films in this 

set were deposited at the same pressure as the total gas partial pressure. For the second 

set of films (labelled as FP samples), the deposition pressure was kept constant by 

regulating the pumping rate using the roughing valve. As a result, for each total gas 

partial pressure, two films deposited at two different deposition pressures were studied. 
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The influence of these deposition pressures on the properties of the films at similar total 

gas partial pressure was also investigated. 

The SiH4 to CH4 flow rate ratio for all samples was fixed at 1:20 while the total 

gas partial pressure used during the deposition ranged from 12 to 38 Pa. For the FP 

samples, the process pressure was maintained at 80 Pa by controlling the pumping rate 

with the roughing valve of the rotary pump. For the VP samples, the roughing valve was 

kept fully opened, thus resulting in the reaction chamber pressure increasing with the 

increase in the gas flow rates. For clarity, the gas flow rates and deposition pressures for 

the deposition of these samples are listed in Table 4.3. 

 

Table 4.3: Methane and silane gas flow rates, total gas partial pressure and deposition 

pressures in deposition of SiC films in the FP and VP series. 

Sample 

ID 

CH4 flow 

rate (sccm) 

± 0.1  

SiH4 flow 

rate (sccm) 

± 0.01  

[SiH4]/[CH4] 

Total gas partial 

pressure (Pa) 

± 1 

Deposition 

Pressure (Pa) 

± 1 

FP-1 10.0 0.50 0.05 12. 80 

FP-2 20.0 1.00 0.05 20 80 

FP-3 30.0 1.50 0.05 27 80 

FP-4 40.0 2.00 0.05 33 80 

FP-5 50.0 2.50 0.05 38 80 

VP-1 10.0 0.50 0.05 12 12 

VP-2 20.0 1.00 0.05 20 20 

VP-3 30.0 1.50 0.05 27 27 

VP-4 40.0 2.00 0.05 33 33 

VP-5 50.0 2.50 0.05 38 38 
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4.4.2 Chemical Bonding Investigation by FTIR Spectroscopy 

 

Figures 4.8 (a) and (b) show the FTIR spectra for both  the FP and VP samples, 

respectively. In the case of the VP samples, VP-1 showed a dominant absorption peak 

centered at about 800 cm
-1

. The other VP samples showed small  absorption peaks 

centred at approximately 660, 770, 1000 and 2000 cm
-1

 correspodning to Si-Hn wagging 

modes, Si-C stretching mode, C-Hn wagging mode or Si-O stretching mode and Si-Hn 

stretching mode, respectively. The dominant absorption peak produced by VP-1 sample 

was actually due to the overlapping of these peaks but the significant presence of SiC 

phase in this film resulted in the Si-C stretching band becoming very significant. The 

Si-C stretching band appeared to be suppressed when the total gas partial pressure was 

increased. The increase in total gas partial pressure with this set of samples also resulted 

in an increased presence of Si-O bonds. Increase in the total gas partial pressure above 

12 Pa for this set of samples suppressed the formation of Si-C phases and favoured the 

formation of a-Si:H and SiO phases in the films. 
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(a) 

 

(b) 

Figure 4.8: FTIR spectra of  films deposited at different gas partial pressures with 

the SiH4 to CH4 flow-rate ratio fixed at 1:20: (a) The deposition pressure was 

fixed at the total gas partial pressure (VP samples) and (b) The deposition 

pressure was fixed at 80 Pa (FP samples). 
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In the case of FP samples, significant presence of SiC phase was observed in all 

the films as indicated by the presence of a dominant peak centred at 800 cm
-1 

in the 

FTIR spectra of these films. This absorption peak centred at 800 cm
-1

 was sharp and 

very intense for the VP-1 and VP-2 films. However, the intensity of this absorption 

band significantly decreased and appeared to be red-shifted for the other three films in 

this set. This absorption band also broadened for these films transforming from the 

Lorentzian to the Gaussian line shape. Additionally, two more absorption bands 

associated to Si-H and C-H wagging modes at 660 and 1000 cm
-1

, respectively, 

appeared in the FTIR spectra of these films. The decrease in the Si-C peak intensity, 

red-shift in the peak position, transformation in the line shape from Lorentzian to 

Gaussian of the Si-C peak along with the increase in Si-H and C-H bond densities with 

increases in the total gas partial pressure for this set of films showed the transformation 

of the SiC phase in the films from nano-crystalline to amorphous phase and a relative 

increase in the presence of a-C:H and a-Si:H phases with increase in total gas partial 

pressure when the pressure in the reaction chamber is fixed at 80 Pa. 

Consequently, maintaining the reaction chamber pressure at a higher pressure 

than the total gas partial pressure allowed the radicals to have longer residence time in 

chamber resulting in higher probability of secondary gas phase reactions. This favoured 

the formation of SiC phases in the film structure. However, formation of nano-

crystalline SiC phase in the films was shown to be more favourable at low total gas 

partial pressure especially when the pressure in the reaction chamber during the 

deposition process was higher than the total gas partial pressure. Increase in the total gas 

partial pressure by increasing the SiH4 and CH4 flow-rates keeping the flow-rate ratio 

constant only resulted in the suppression in the formation of SiC phases in the film 

structure. The increased presence of SiH4 molecules produced more secondary gas 

phase reactions of the Si based radicals with these molecules favouring the formation of 
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more Si-Si and Si-H bonds compared to Si-C bonds in the films during surface 

interactions. This explained the decrease in SiC phases in the films and the relative 

increase in a-Si:H phases in the films when the total gas partial pressure was increased. 

 

4.4.3 Raman Scattering Spectroscopy 

 

The presence of pure silicon in the crystalline or amorphous phase can be 

determined from Raman scattering spectra. Figures 4.9 (a) and (b) show the Raman 

scattering spectra (excitation wavelength: 325 nm) of VP and FP films, respectively. 

Bulk crystalline silicon produces a very sharp and narrow peak at 520 cm
-1

 that is the 

characteristic of Si-Si transverse optical (TO) vibrational mode. The amorphous silicon, 

on the other hand, gives a broad peak centred at around 480 cm
-1

. A sharp Raman peak 

around 515 cm
-1

 together with broad band near 480 cm
-1

 was observed for the VP-2, 

VP-3, and VP-4 films. This indicates the presence of nano-crystalline silicon phases in 

the film where the silicon nano-crystallites were embedded in the amorphous Si matrix. 

The downshift of the peak position to lower wavenumber on the other hand gave a clear 

indication of the reduction in the size of the crystallites. A typical deconvolution of this 

band into component bands was shown in Figure 4.10. It was found that another 

component at about 500 cm
-1

 was necessary to fit this Raman band. This band 

represents the amorphous grain boundary (GB) surrounding the Si nano-crystalline 

grains. However, the Raman scattering spectrum of the VP-1 sample exhibits a broad 

peak centred at 480 cm
-1

 which indicates that only amorphous silicon phases were 

present. The FTIR spectra of all the FP films show broad absorption peak centred at 480 

cm
-1

 in the region of 100-600 cm
-1

 indicating an increase in gas phase reaction due to 

the lower pumping rate resulting in the formation of a-Si:H phases in the film structure 

instead of nano-crystalline Si phases as in the VP samples.  
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(a) 

 

(b) 

Figure 4.9: Raman scattering spectra of (a) VP and (b) FP films.  
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Figure 4.10: Typical deconvolution of Raman spectrum in the ranged of Si-Si vibrations. 

 

In this section, the results show that formation of Si nano-crystals were more 

favourable when the films were deposited at the pressure maintained at the total gas 

partial pressure (VP samples) and the crystalline Si peak appears to be most dominant 

compared to the a-Si peak for the VP-3 sample. The nano-crystalline phase was totally 

suppressed in the VP-1 sample suggesting that a reduction in gas phase reactions 

reduces the number of energetic H radicals reaching the growth sites resulting in low H 

etching effects thus reducing the formation of nano-crystalline Si phases. The decrease 

in the nano-crystalline phase present in the VP-4 sample indicates that an increase in 

occurrence of collisions during gas phase reactions resulting in less energetic H radicals 

reaching the growth sites thus suppressing the formation of nano-crystalline phases. 

Therefore, an optimum total gas partial pressure was required in the formation of nano-

crystalline phases in the films. 
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4.4.4 XRD Analysis 

 

Figures 4.11 (a) and (b) show the XRD spectra of the SiC films grown at various 

total gas partial pressures for VP and FP samples respectively. For the VP samples, 

three XRD peaks located at 2 of 28.5°,47.2° and 56.7° assigned to the diffraction peaks 

of crystalline Si with orientations of (111), (220), and (311) planes, respectively were 

observed. These results confirmed the Raman results that nano-crystalline Si phases 

were present in these films although the peak at 56.7° is mainly contributed by the c-Si 

substrate as confirmed from the XRD spectrum of the bare Si substrate. The mean 

crystallite size estimated from the XRD peak of Si(111) was increased from 3.2 to 5 nm 

which indicates an increase in crystallinity of the silicon phases in the film with 

increasing total gas partial pressure. Additionally, the film deposited at lowest total gas 

partial pressure, VP-1, shows XRD peak at 2 of 35.6° assigned to the diffraction peak 

of crystalline cubic silicon carbide with orientation (111) indicating the presence of 3C-

SiC phase in the film structure with orientation of (111). All the FP samples showed a 

dominant single Si peak at 56.7° which was believed to be from the c-Si substrate as the 

Raman results showed that nano-crystalline phase were not present in these films. The 

presence of 3C-SiC phases in the FP-1 and FP-2 samples were also shown from the 

XRD spectra of these samples. The presence of 3C-SiC phases in the films deposited at 

the lowest total gas partial pressures further confirmed the FTIR results showing that 

low total gas partial pressure was more favourable in the formation of crystalline SiC 

phases in the film structure and longer residence time of the radicals through increasing 

the deposition pressures further enhanced the presence of crystalline SiC phases. 
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(a) 

 

(b) 

Figure 4.11: XRD pattern of SiC films prepared under different 

total gas partial pressures (a) VP (b) FP. 
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4.4.5 AES Analysis 

 

Figure 4.12 shows the Auger depth profile of the VP and FP samples. The 

atomic composition of each element and the integrated intensities of Si-H wagging 

mode and Si-C stretching mode are presented in Table 4.4. Since the composition of Si 

and C atoms were not constant for the FP samples, two values obtained from the 

maximum and minimum values of relative atomic concentration were provided. By 

having a closer look at the Auger depth profiles of the films, the following analyses 

were made: 

1. For both series, the relative atomic concentration of Si was increased while 

the relative atomic concentration of C was decreased with increasing total gas partial 

pressure. This was due to the increase in the number of SiH4 molecules decomposed at 

the heated filament. Although the number of CH4 molecules was also increased, these 

molecules needed a filament temperature of 2400
°
C to decompose, thus these molecules 

were mostly not decomposed at the filament temperature of 1900
°
C used in this work. 

C-related radicals were mainly produced during gas phase reactions between CH4 

molecules and H radicals in the plasma. The abundant presence of Si-related radicals 

generated at the filament produced even more Si-related radicals during the secondary 

gas phase reactions. These explain the higher incorporation of Si atoms in all the 

samples with increase in total gas partial pressure. The Si-radicals were also more 

energetic on reaching the growth sites for the VP samples due to the less frequent 

collisions during gas phase reactions thus inducing the formation of highly nano-

crystalline Si phase in the VP samples as indicated by the XRD results.  



CHAPTER 4: RESULTS AND DISCUSSION: PART 1 

  100 

 

Figure 4.12: Auger depth profile of SiC films. (a): VP-1, (b): VP-2, (c): VP-3, (d) VP-

4, (e): FP-1, (f): FP-2, (g): FP-3, (h): FP-4. 

 

2. The carbon incorporation in FP samples was generally higher than that of VP 

samples. As mentioned before, FP samples were prepared at higher pressure by 

increasing the dwell time of the molecules in the reactor. This has increased the 

probability of collisions between molecules and radicals. Therefore, gas phase reactions 

became more important in contributing to the growth of these films. As a result, more 

C-related radicals were generated during the growth process of the FP films. This is 

necessary for formation of 3C-SiC crystallites, which occurs only when the carbon 

incorporation is high enough (near stoichiometric).  



CHAPTER 4: RESULTS AND DISCUSSION: PART 1 

  101 

Table 4.4: Relative atomic concentration of constituent elements in SiC films 

(set VP and FP) as obtained from Auger depth profile, and Si-H and Si-C bond 

densities in the films calculated from FTIR spectra. 

Sample 

ID 

Si% 

± 0.02 

C% 

± 0.02 

O% 

± 0.01 

ISi-H 

(10
5
 cm

-2
) 

ISi-C 

(10
5
 cm

-2
) 

VP-1 50.16 40.50 7.20 ND 15.66 

VP-2 76.44 11.46 9.63 0.677 0.120 

VP-3 79.74 11.16 6.97 0.258 0.171 

VP-4 80.78 9.20 7.84 0.483 0.133 

 Max min Max Min    

FP-1 71.02 - 24.44 - 2.20 ND 68.6 

FP-2 80.00 56.42 40.32 15.00 1.25 3.41 36.0 

FP-3 78.28 64.22 34.90 16.00 1.21 3.19 6.97 

FP-4 82.50 60.50 37.50 13.50 1.21 2.18 5.96 

 

In should be noted that the carbon content of sample FP-1 detected by AES is 

low. However, the FTIR shows a very high intensity Si-C peak. These results appeared 

to be contradictory, however it was obvious here that the higher presence of energetic H 

atoms reaching the growth sites was necessary in the formation of Si-C bonds 

particularly for the nc-SiC phases. Although a higher presence of C atoms was 

necessary to form nc-SiC, but higher concentration of H radicals reaching the growth 

sites was also necessary to form Si-C bonds in the film through H etching effects. The 

higher concentration of C atoms present in the films deposited at high total gas partial 

pressure may result in the formation of a-C:H phases instead of SiC phases.  
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3. Oxygen contamination detected in the VP samples is about 7-10% that is much 

higher than that of FP samples. It has been reported that the surface Si dangling bonds 

are easily passivated by oxygen (Goh, 2012; Hartel, 2010). This suggests that during the 

deposition of VP samples, many Si dangling bonds were present which passivated by 

oxygen atoms in the chamber. Presence of oxygen in these samples is also detected in 

the FTIR spectra that show an absorption peak located at 1000-1080 cm
-1

 that attributed 

to stretching mode of Si-O bonds. In contrast, FP samples show negligible oxygen 

content which might be due to formation of more hydrogen terminated Si in these 

samples that is also supported by FTIR results and by comparing the integrated intensity 

of Si-H bonds between FP and VP samples (see Table 4.4). 

4. The atomic concentration of Si and C in each of VP samples is almost 

constant along its depth but not in FP samples. This is related to different dominant 

reactions that took place during deposition. In the process of VP samples deposition, the 

gas phase reaction is not very significant because of low pressure and short dwell time 

of molecules. Therefore, the most controlling reaction is surface reaction. The radicals 

produced by dissociation of SiH4 are very energetic when they reach the substrate 

surface. This allows them to continuously find the favourable growth site for growth of 

crystalline Si. On the other hand, in the case of FP samples, by increasing the total gas 

partial pressure the more Si and H radicals are generated near the heated filament. Then, 

they undergo gas phase reactions to decompose the CH4 molecules and produce C-

related radicals. Depth profiles of these samples show that carbon incorporation 

increases toward the interface of film and substrate. This means at initial growth of the 

film, the C-related radicals react with the surface of substrate and bond to Si atoms. 

However, the C-related radicals are not so energetic and they form relatively weak Si-C 

bonds. It is known that the sticking coefficient of C-based radicals is lower than that of 

Si-based radicals (Q. Cheng & et al., 2008; Q. Cheng, Eugene Tam, Shuyan Xub and 
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Kostya (Ken) Ostrikov, 2010). By continuing the deposition process, the weak C bonds 

can be easily broken and replaced by more energetic Si and H radicals, which reduces 

the carbon content. This effect becomes more visible at higher total gas partial pressures 

i.e. FP-3 and FP-4. 

 

4.4.6 Deposition Rate 

 

Figure 4.13 shows the variations of the deposition rate of FP and VP films as a 

function of the total gas partial pressure. The values of deposition rates were estimated 

from dividing the average film thicknesses measured via surface profiler by the 

deposition time. Generally, the deposition rate of VP films are higher than that of FP 

films and the deposition rate increases from 0.1 to 1.2 nm/s with increase in total gas 

partial pressure for both sets of the films.  

 

Figure 4.13: Deposition rate of VP and FP films as a function of total gas partial pressure. 
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The SiC film deposition in HWCVD systems occurs by the decomposition of 

silane and methane gas molecules with the hot filament and gas phase reactions. SiH4 

molecules are known to be preferentially decomposed on the heated-filament surface 

with the temperatures above 1800
°
C via reaction (2.1) (Gallagher, 2001). CH4 

molecules are mainly decomposed through reaction with the H radicals that generated 

near the filament resulting from silane dissociation (A. Tabata & Komura, 2007). The 

produced Si and C related radicals contributed to the film growth at the surface of 

substrate. Therefore, introducing more silane and methane gases, results in more growth 

radical production, which enhanced the deposition rate. 

In contrast, it was found that applying higher deposition pressure at similar gas 

pressures, in contrast, leads to a slight decrease in deposition rate. This was the result of 

increment of dwell time of the radicals and molecules due to higher probability of their 

collisions with other species on the way to reach the growth surface. The other research 

groups have reported similar variations of deposition rate with gas pressure (Komura, 

2008; A. Tabata, Kuroda, M., Mori, M., Mizutani, T., Suzuoki, Y., 2004). 

 

4.5 Summary 

 

In this chapter, it has been established that multi-phased SiC thin films can be 

deposited using a HWCVD system built in-house for this work from pure silane and 

methane gas mixture without hydrogen dilution. The formed films were multi-phased in 

structure consisting of a-Si:H, a-C:H, nc-Si:H, a-SiC and nc-SiC phases. The influence 

of methane flow rate at fixed silane flow-rates of 0.5 and 1 sccm on the structural, 

chemical bonding and elemental composition properties of the films has been 

investigated in the first part of the work. In the second part of the work, the influence of 
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total gas partial pressure with the silane to methane flow-rate ratio fixed on these 

properties was studied at deposition pressure equal to the total gas partial pressure and a 

fixed deposition pressure. 

An increase in CH4 flow rate with the SiH4 flow-rate fixed at low flow-rate of 

0.5 and 1 sccm resulted in a transition from crystalline to amorphous phase of the SiC 

phases present in the film structure. The films deposited at high CH4 flow rates are 

generally amorphous with a mixture of a-Si:H phase embedded within a more dominant 

a-SiC:H phase, while the films deposited at low CH4 flow rates have a more ordered Si-

C matrix with lower hydrogen concentration. SiC crystallites are formed in the films 

deposited at low CH4 flow rate. The formation of SiC crystallites can be manipulated by 

controlling the CH4 to SiH4 flow rate ratio but this is only possible at low SiH4 flow-

rates not larger than 1 sccm.  

Maintaining the reaction chamber pressure at a higher pressure than the total gas 

partial pressure has been shown to favour the formation of SiC phases in the film 

structure. However, formation of nano-crystalline SiC phase in the films is shown to be 

more favourable at low total gas partial pressure especially when the pressure in the 

reaction chamber during the deposition process was higher than the total gas partial 

pressure. An optimum total gas partial pressure is required for the formation of nano-

crystalline phases in the films. Low total gas partial pressure and longer residence time 

of the radicals through increasing the deposition pressures are shown to be more 

favourable in the formation of crystalline SiC phases in the film structure.  

This work establishes that nano-crystalline SiC film structure can be grown at 

much higher CH4 to SiH4 flow-rate ratio and the deposition rates are higher than those 

reported by other research groups under similar conditions using HWCVD. The 
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deposition mechanism of the films studied in this work has been established through 

studying the properties of the films deposited under the different deposition conditions. 
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5.1 Introduction 

 

In Chapter 4, the home- built HWCVD system used for this work was shown to 

be capable of depositing multi-phased SiC thin films from pure silane and methane gas 

mixture without hydrogen dilution. The influence of methane flow rate at fixed silane 

flow-rates and total gas partial pressure at fixed silane to methane flow-rate ratio on the 

structural, chemical bonding and elemental composition properties of the films was 

studied. It was established that nano-crystalline SiC film structure can be grown using 

this system at high growth rate. However, the capability of this system to grow films 

with higher crystallinity needs to be explored. In this chapter, the influence of 

deposition pressure and filament to substrate distance on the structural properties of the 

films is studied for this purpose.  

Information on the refractive index and optical band gap of SiC films is very 

important for applications of the thin films in the optoelectronic devices. The high 

refractive index of SiC is very useful in reducing solar cell reflectivity. The wide band 

gap of SiC makes it a good candidate for solar cell window layer material. This property 

of SiC is also useful for applications in short-wavelength blue and ultraviolet 

optoelectronics devices. Therefore, it is very useful to explore the possibility of 

controlling the refractive index and band gap of SiC films through identifying the 

deposition parameters which can strongly influence these parameters. The correlation 

between the structural properties and optical properties of SiC films is important 

information that can be utilized to control the refractive index and energy gap of the 

films. However, not much work on this aspect of SiC films deposited by HWCVD has 

been reported in the literature. Another flaw is that the measurement of refractive index 

and band gap energy is usually done on films deposited on transparent substrates like 

glass and quartz and characterizations done using FTIR spectroscopy can only be done 
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on films grown on c-Si substrates. Therefore, valuable information giving accurate 

correlation between these properties derived from optical transmission spectroscopy 

measurements cannot be obtained. The objectives of this work presented in this chapter 

as outlined below are to address these issues. The objectives are 

1. To investigate the influence of deposition pressure and substrate to filament 

distance on the growth rate, structural and optical properties of SiC films 

prepared by HWCVD. 

2. To identify the structural properties, which control the refractive index and 

band gap energy of the SiC films.  

3. To correlate the optical properties to the structural properties of the SiC films.  

4. To show that the structural properties of SiC films deposited by the home-built 

HWCVD from silane and methane discharge are not substrate dependent. 

 

5.1 Deposition Parameters of SiC Thin Films 

 

Two series of SiC films were deposited under five deposition pressures and four 

filament-to-substrate distances. Details on the deposition parameters used during the 

deposition of these series of films are tabulated in Tables 5.1 and 5.2. The deposition 

pressures are adjusted by controlling the opening of the roughing valve between the 

rotary pump and the deposition chamber. The SiH4 and CH4 flow-rates are fixed at 1 

and 20 sccm respectively since these were the best flow-rates for these gases for 

obtaining SiC nano-crystalline phases in the films as shown by the results in Chapter 4. 

The substrate temperature is fixed at 300
°
C as done in Chapter 4 since this temperature 

is the highest temperature that contamination effects from the heating of the Viton O-

rings in the system are minimized. The filament temperature of 1900
°
C is used because 
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this is the highest filament temperature achieved in this system at the present filament 

configuration and power supply used. The effects of deposition pressure and filament-

to-substrate distance on the growth rate, parameters obtained from the optical 

transmission spectra of the films, photoluminescence properties and structural properties 

will be studied in this chapter. The optical energy gap and refractive index of the films 

will be derived from the parameters obtained from the optical transmission spectra of 

the films deposited on glass substrates. The structural properties like the chemical 

bonding properties studied from the FTIR spectra, the morphology and elemental 

composition of the films will be analysed from the films deposited on c-Si substrates 

only. On the other hand, XRD and micro Raman scattering analysis will be done on 

films deposited on both c-Si and glass substrates to show that the structural properties 

are not substrate dependent. When this can be confirmed, the properties of the films 

obtained from films deposited on glass substrates only can be studied in respect of all 

the structural properties of the SiC films irrespective of the substrates used so that a 

complete correlation between these properties to each other can be analysed. 

 

Table 5.1: The deposition parameters for the preparation of SiC 

thin films at various deposition pressures. 

Deposition Parameter Value 

SiH4 flow rate 1.0 sccm 

CH4 flow rate 20 sccm 

Deposition pressure 20, 40, 80, 140, 250 Pa  

Substrate temperature 300 
º
C 

Filament temperature 1900 
º
C 

Filament-to-substrate distance 25 mm 
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Table 5.2: The deposition parameters for the preparation of SiC 

thin films at different filament-to-substrate distances. 

Deposition Parameter Value 

SiH4 flow rate 1.0 sccm 

CH4 flow rate 20 sccm 

Deposition pressure 80 Pa 

Substrate temperature 300 
º
C 

Filament temperature 1900 
º
C 

Filament-to-substrate distance 10, 15, 20, 25 mm 

 

 

5.2 Influence of the Deposition Pressure on the Properties of SiC Films 

 

5.2.1 FTIR Spectroscopy Analysis of SiC Films Deposited on c-Si Substrate  

 

The bonding configurations present in the films were studied by FTIR 

spectroscopy. Figure 5.1 shows the thickness-normalized FTIR absorption spectra of 

SiC films grown at different deposition pressures. 

The main features observed in the spectra of the SiC films studied in Chapter 4 

are also observed. The absorption peaks detected from the films include the Si-H 

wagging mode (w) at 650 cm
-1

, Si-C stretching mode (str) at 800 cm
-1

, C-H (W) at 980 

cm
-1

, Si-CH3 (w) at 1250 cm
-1

, Si-H (str) at 2080 cm
-1

, and C-Hn (str) at 2800 - 3000 

cm
-1

. 
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`  

Figure 5.1: FTIR spectra of SiC films deposited at different deposition pressures. 

 
 

Since Si-C bond is highly IR active, the presence of Si-C bonds in the films is 

confirmed by the presence of an absorption band at around 800 cm
-1

. The spectra of the 

films deposited at pressures below 80 Pa exhibited very weak Si-C peaks but strong 

presence of Si-H wagging and stretching bands indicating that these films were Si-rich 

SiC films. However, higher deposition pressures showed an increase in dominance of 

the Si-C band and the position of the peak was shifted to higher wavenumbers compared 

to the Si-rich SiC films deposited at lower pressure. Since the absorption band located 

between 600 and 1100 cm
-1

 is produced by the superposition of Si-H (w), Si-C (str) and 

C-H (w) vibration modes, it is necessary to deconvolute this band into these component 

peaks in order to determine the integrated intensity of Si-C bonds. The integrated 

intensities of deconvoluted Si-C (str), C-Hn (w), and Si-H (str) peaks for the SiC films 

deposited at various deposition pressures are plotted in Figure 5.2. It was observed that 

the density of Si-H and Si-C bonds followed similar trends with the increase in 

deposition pressure, both showing a maximum at 80 Pa. The density of C-H bonds in 

the films showed a gradual increase with increase in pressure from 20 to 80 Pa followed 
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by a significant increase to saturation for the films deposited at pressure of 140 Pa. It 

was also observed that the intensity of C-H and Si-CH3 peaks progressively increased 

with the increase in deposition pressure from 80 to 250 Pa. This implies that at high 

deposition pressure, through secondary gas phase reactions high density of CH3 radicals 

were formed and these radicals were more readily incorporated into the film structure 

through surface interaction process. From these results, it was found that the most 

stoichiometric SiC film with highest Si-C bond density were deposited under 

intermediate deposition pressure of 80 Pa. Below this pressure, the a-SiC:H films 

formed were Si-rich while the films grown at pressures above 80 Pa were shown to be 

rich in hydrocarbon (C-Hn bonds) content. 

 

 
 

Figure 5.2: From top to bottom: integrated intensities of Si-H(str), C-H(w), and 

Si-C(str) bonds in SiC films as a function of deposition pressure. 
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5.2.2 Raman Scattering Spectroscopy Analysis of SiC Films Deposited on c-Si and 

Glass Substrates 

 

As Si-Si and C-C bonds do not have dipole moment, therefore these bonds 

cannot be detected in FTIR spectra of the films. Raman scattering spectroscopy is a 

powerful tool to investigate these phases. Figure 5.3 shows Raman scattering spectra 

(excitation laser: 325 nm) of SiC films deposited under different deposition pressures. 

The various observed bands of intrinsic vibrations were appropriately labelled in the 

figure. The films deposited at 20 and 40 Pa exhibited a sharp peak at 518 cm
-1

 

suggesting the presence of Si nano-crystalline phases or clusters in the film structure. At 

higher pressure, the sharp peak at 518 cm
-1

 disappeared and was replaced by the 

appearance of a broad peak at 480 cm
-1

. This peak corresponded to the amorphous Si 

component suggesting that high deposition pressure was more favourable for the 

formation of amorphous Si phases in the film structure. The peak corresponds to Si-C 

bonds (~ 800 cm
-1

) was weak due to lower cross section of Si-C bond compared to those 

of Si-Si and C-C bonds (Racine et al., 2001). 

The presence of a broad band in the range of 1400-1600 cm
-1

 shown by the 

spectra of the film prepared at 80 Pa indicates the presence of C-C bonds in the a-C:H 

clusters within the SiC matrix (Kerdiles et al., 2000). However, this band was not 

observed in the spectra of the other films.  
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Figure 5.3: Raman scattering spectra with UV excitation (325 nm) from the SiC films 

deposited on c-Si substrate under different deposition pressures.  

 

Visible Raman scattering (514 nm) was used to further study the a-C:H phases in 

the film structure and the obtained spectra are shown in Figure 5.4. The films deposited 

at low pressures below 80 Pa did not show any signature of C-C band, but the films 

deposited at higher pressures showed a significant appearance of C-C vibrational band. 

The increase in the slope of the baseline for this band is usually associated with an 

increase in the hydrogen content in a-C:H films (A. C. Ferrari & Robertson, 2000). 

Thus, the increase in the gradient of the slope produced by the increase in the deposition 

pressure as shown in Figure 5.4 showed that the deposition pressure was able to vary the 

hydrogen content in the a-C:H phases in the film structure. This is consistent with the 

FTIR analysis where the deposition pressure was shown to increase the hydrocarbon 

content in the film structure. 
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Figure 5.4: Raman scattering spectra with visible excitation (514 nm) from the SiC 

films deposited on c-Si substrate under various deposition pressures. 

 

The two different observations obtained from the UV and visible Raman 

scattering of the films deposited at pressure above 80 Pa were contributed by the 

different penetration depth of UV and visible light into the films. The Raman spectra 

from the films deposited at lower pressure did not show any difference when these two 

different excitation wavelengths were used. This indicates that these films had very high 

absorption coefficient for light in both UV and visible excitation wavelengths. 

Therefore, the laser beam was mostly absorbed on the upper surface layer of these films 

and thus, the Raman spectra provide the bonding information of the surface of the film 

only. 

It is generally known that visible Raman spectroscopy is 50-230 times more 

sensitive to sp
2
 sites as visible photons preferentially excite their  states. UV Raman 

spectroscopy, with its higher photon energy of 3.8 eV, excites both  and  states and 
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so is able to probe both sp
2
 and sp

3
 sites, allowing a direct probe of the sp

3
 bonding (A. 

C. Ferrari & Robertson, 2000). This could be another reason for the different results 

obtained from the UV and visible excitation Raman spectra for the films deposited at 

deposition pressures above 80 Pa. This implies that the films prepared at higher 

pressures above 140 Pa contain C-C bonds predominantly in sp
2
 configuration. The 

higher H content as shown by the increase in the background slope of the Raman 

spectra in this region for these films may have induced the formation of sp
2
-C bonds in 

the films deposited at higher deposition pressures. However, the film deposited at 80 Pa 

showed the presence of sp
3 

carbon clusters as observed as a broad band in the C-C 

region in UV Raman spectrum of this film (Figure 5.3).  

Figure 5.5 shows the C-C region of visible Raman scattering spectra after 

baseline subtraction from the films deposited at different pressures. It was observed that 

the intensity of this band, which is centred at about 1440 cm
-1

 considerably increased 

with increase in the deposition pressure. Furthermore, the position of this peak was 

slightly shifted towards higher wavenumbers together with emerging and growing a 

new component at about 1550 cm
-1

 with the increase in the deposition pressure. This is 

further indicated an increase in the presence of a-C:H clusters in sp
2
 bonding 

configuration with increase in the deposition pressure. 
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Figure 5.5: Raman scattering spectra with visible excitation wavelength from 

the SiC films deposited under different deposition pressures in the C-C region. 

 

The results obtained in this part are shown to be partly different from similar 

works reported by Y. Komura et al (Komura, 2008) and T. Wu et al (Wu, 2011). In both 

cases, they reported that the structure of deposited films changed from nc-Si embedded 

in a-SiC to nc-3C-SiC structure with increasing deposition pressure. However, this work 

showed that the structure has changed from nc-Si embedded in Si rich a-SiC:H to 

stoichiometric homogeneous a-SiC to hydrocarbon rich a-SiC:H with increasing 

deposition pressure. A possible reason for this difference can be contributed by the high 

hydrogen dilution of the reactive gases in the works reported by Komura et al (Komura, 

2008) and Wu et al (Wu, 2011). This showed that the significant presence of reactive H 

atoms at the growth surface was very important for the formation of crystalline phases 

in the a-SiC:H films. Without hydrogen dilution, an increase in deposition pressure 

reduces the number of reactive hydrogen atoms at the growth surface, resulting in the 

formation of only amorphous phases in the films.  
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Raman scattering spectra (excitation wavelength: 514 nm) of the films deposited 

under various deposition pressures on glass substrate are shown in Figure 5.6. By 

comparing these spectra with the Raman spectra of those deposited on c-Si, it is seen 

that the characteristics of the films deposited on c-Si and glass substrates are quite 

similar. A sharp peak near 520 cm
-1

 together with a broad band centred at ~480 cm
-1

 

corresponding to nc-Si grains in the amorphous Si matrix were observed for the films 

deposited at 20 and 40 Pa. However, only a-Si component was significant for the films 

deposited at pressures of 80 Pa and above. In the region of signature for C-C bond, a 

broad band centred at about 1450 cm
-1

 was detected for the films deposited at 80 Pa and 

above. The intensity of this band increases with increasing deposition pressure. These 

observations were consistent with what was observed for the films deposited on c-Si 

substrate. This indicates that the bonding properties present in the film structure were 

not substrate dependent. This makes it possible to relate the bonding properties to the 

optical properties of the films as the optical properties are usually obtained from the 

films deposited on transparent substrates like glass or quartz and bonding properties 

obtained from FTIR spectra are obtained from films deposited on c-Si substrates.  
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Figure 5.6. Visible Raman scattering spectra of the films deposited under 

different deposition pressures on glass substrate. 

 

5.2.3 XRD Analysis of SiC Films Deposited on c-Si and Glass Substrates 

 

Figures 5.7 (a) and (b) show XRD patterns of the SiC films deposited under 

different deposition pressures on c-Si and glass substrates, respectively. The films 

deposited at 20 and 40 Pa showed crystalline Si peaks located at 28°, 47.5°, and 56.5° 

corresponding to reflection planes of (111), (220), and (311), respectively. These 

indicate that nano-crystalline phases were present in these films. However, the films 

deposited at 80 Pa and above did not show any diffraction peak. Therefore, these films 

were completely amorphous in structure. It should be noticed that the XRD patterns 

obtained from the films deposited on glass and c-Si are similar. Nevertheless, in the case 

of the film deposited at 20 Pa on c-Si substrate, the XRD peak related to Si (311) 

reflection plane is higher in intensity probably due to contribution from the c-Si 
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substrate. As indicated in Chapter 4, the c-Si substrate also exhibits an XRD peak at this 

position.  

 

 

(a) 

 

(b) 

Figure 5.7: XRD patterns of the films deposited under different deposition pressures on 

(a) glass and (b) c-Si. 
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5.2.4 Elemental Composition 

 

Figure 5.8 shows the average relative atomic concentration of silicon, carbon, 

and oxygen in the films prepared at different deposition pressures. The atomic 

concentration of carbon in the films prepared at 20 and 40 Pa was about 10%. However, 

it was increased from ~10% to ~30% when the deposition pressure was increased from 

40 to 80 Pa and remained almost constant with further increase in deposition pressure. 

This indicates that the films deposited under deposition pressures below 80 Pa were Si-

rich as demonstrated by the FTIR spectra of these films. These films, however, showed 

slightly higher oxygen content (~10-12 %), which was almost comparable to carbon 

content. The oxygen concentration in the films however dropped with increasing 

deposition pressure, which could be due to the significant increase in C incorporation 

into the film structure. 

 

Figure 5.8: The variation of relative atomic concentration of silicon, carbon and 

oxygen in the films as a function of deposition pressure obtained from AES analysis. 
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The uniformity of elemental composition within the SiC films deposited under 

different deposition pressure was investigated by using Auger depth profile as shown in 

Figure 5.9. It was seen that the carbon incorporation was almost constant throughout the 

depth of the films deposited at 20 to 80 Pa. However, when deposited at 140 Pa the film 

demonstrates the presence of two different layers; one with constant carbon content of 

~40% and another one with decreasing amount of carbon, which changed from 40% to 

20% from the substrate/film interface to the surface of the film. These two layers were 

shown to have almost similar thicknesses. For the film grown at high pressure of 250 

Pa, the first layer with the higher carbon content of ~ 40% was very thin, compared to 

the layer with decreasing carbon content. 

The number of molecules in the chamber increases with increasing deposition 

pressure. This increases the number of gas phase reactions and produces many radicals. 

Meanwhile, the rate of impingement of these species on the growth surface increases, 

which leads to higher etching rate of relatively weak bonds on the surface. 

Consequently, at higher pressure, although probability of carbon incorporation in the 

film is higher, they are easily etched away by the abundant radicals produced in the gas 

phase. Therefore, it was found that 80 Pa is the optimum deposition pressure favourable 

for the growth of film with stable carbon incorporation during the deposition process.  
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Figure 5.9: Auger depth profile of SiC films deposited under different deposition pressures. 

 

5.2.5 Morphology 

 

The variation in morphology of SiC films deposited at various deposition 

pressures was studied from surface FESEM images as shown in Figure 5.10. One Si-

rich SiC film (40 Pa) was selected as an example for comparison of the morphology 

with the other a-SiC:H films. The FESEM image of the film containing nc-Si showed a 

smooth surface morphology with very fine grains, which is characteristic of nano-

crystalline films. Other researchers have reported similar morphology from SiC (I. 

Ferreira, Cabrita, A., Fortunato, E., Martins, R., 2002; Wu, 2011). However, other 

amorphous SiC films showed formation of larger grains and their size was increased 

with increasing the deposition pressure. Formation of larger grains at higher pressure 

can be related to formation of a-C:H and a-Si:H clusters in the films. 
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Figure 5.10: FESEM images of the surface of the films deposited at different 

deposition pressures. 
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5.2.6 Optical Properties 

 

5.2.6.1 UV-Vis-NIR Spectroscopy 

 

The optical properties of the SiC films deposited under different deposition 

pressure were studied by UV-Vis-NIR transmission spectra as shown in Figure 5.11 (a). 

It can be seen that the absorption edge was significantly blue-shifted with increasing 

deposition pressure from 20 to 80 Pa. However, further increase in the deposition 

pressure resulted in a red-shift in the absorption edge. The absorption coefficients of the 

films deposited under different pressures were calculated using equation (3.16) and 

shown in Figure 5.11 (b). The films prepared at low pressures below 80 Pa (Si-rich SiC 

films) showed high absorption in the visible region, while the SiC films deposited at 

higher pressure above 80 Pa were transparent in the wide range of the visible region. It 

was noticed that there was a turning point for the film deposited at 80 Pa where the 

transmission in the visible region was the highest. 

The energy band gap of the films was calculated using Tauc’s plot (Tauc & 

Abeles, 1972). Si-rich films prepared at 20 and 40 Pa had a band gap of 1.8 and 1.9 eV, 

respectively. However, an increase in the deposition pressure from 40 to 80 Pa, has 

remarkably increased the energy band gap up to 2.47 eV. This sharp increase in band 

gap was shown to be parallel to the sudden increase in Si-C bonds in the film as shown 

earlier (Figure 5. 2). The increase in the H content in the films deposited at higher 

pressures may also contribute towards the increase in the energy gap in the films. 

Further increase in the deposition pressure from 80 to 250 Pa, however, resulted in a 

slight decrease in energy band gap of the film to 2.2 eV. This may be due to significant 

increase in sp
2
-C bonds in the film structure.  
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(a) 

 

(b) 

Figure 5.11: (a) UV-Vis-NIR transmission spectra and (b) Absorption 

coefficient of the films deposited at different deposition pressures.  
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The slope of Tauc plot (B) represents the disorder parameter where higher value 

of B means lower structural disorder. The Mott formula below shows the different 

parameters involved in determining the value of B (Mott, 1979): 

 

   
 ( ) 

   
                                                      (5.1) 

 

where n is the refractive index, N(E) is the density of states at the band edge and ∆E is 

the width of the mobility edge. B-parameter of SiC films deposited at various deposition 

pressures was calculated and shown in Figure 5.12. The B value increases to a 

maximum for the film deposited at 80 Pa and decreases to a minimum at the highest 

deposition pressure of 250 Pa. The results showed that the Si-rich films deposited at low 

deposition pressures exhibits relatively high structural disorder which can be due to the 

existence of nc-Si grains in a-SiC matrix and the presence of compositional disorder due 

to homonuclear Si-Si bonds in the film structure. However, the film prepared at 80 Pa 

with the widest optical band gap showed a high B value (~ 600 cm
-1/2

eV
-1/2

), which is 

larger than the values reported by other researchers for a-SiC:H films (Chew, 2002). 

High values of B have been reported for Si-rich a-SiC:H films and have been attributed 

to a Si dominated microstructure with mostly sp
3
 bonding environment (Chew, 2002). 

The high B-value for film deposited at 80 Pa may indicate that this film has a 

homogeneous amorphous SiC network dominated by Si microstructures within a 

dominant sp
3
 bonding environment. At pressures above 80 Pa, the B-parameter 

dramatically dropped, indicating that the films were highly disordered. These films as 

shown by the Raman results consisted of sp
2
 carbon phases combined with clusters of a-

Si phases clusters. Meanwhile, the Auger depth profile also showed that the elemental 

composition within the film from the film/substrate interface to the surface was not 

uniform and could be separated into regions of high and low carbon content. 
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Figure 5.12: Dependence of band gap and disorder parameter (B) of SiC films 

on the deposition pressures. 

 

These results strongly indicate that the key parameter that controlled the energy 

band gap is the density of Si-C bonds. To further confirm this, the variation of Eg with 

Si-C bond density is shown in Figure 5.13. This plot shows that Eg had a reverse 

exponential dependence on Si-C bond density where Eg is shown to increase to a 

saturation value with increasing Si-C bond density. 
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Figure 5.13: Dependence of band gap of the SiC films prepared under different 

deposition pressures on the Si-C bond density of the films. 

 

Figure 5.14 shows the variation of refractive index of the films deposited under 

different deposition pressures. The refractive indices of Si-rich a-SiC films (the first two 

points) were higher (~2.6-2.7) and did not show much variation with the deposition 

pressure. However, the refractive index of the films is dramatically dropped with further 

increase in deposition pressure and reached the value of 1.7 at the deposition pressure of 

250 Pa. 
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Figure 5.14: Refractive index of SiC films prepared under different deposition pressures. 

 

The abrupt reduction in refractive index and increase in Eg, with increasing 

deposition pressure from 40 to 80 Pa, could be attributed to the compositional and 

structural changes of the films from Si-rich a-SiC films to near stoichiometric a-SiC. 

Incorporation of carbon atoms was high in the films deposited at deposition pressure of 

80 Pa and above. However, a slight decrease in Eg was observed (~0.2 eV) with 

increasing pressure from 80 to 250 Pa. This decrease probably was caused by the 

increased presence of a-C: H in the form of sp
2
 clusters at this pressure as shown in the 

FTIR and Raman scattering spectra. The presence of these sp
2
 carbon clusters, also led 

to inhomogeneity in the film structure, which was reflected by decrease of the B value 

in these films  
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5.2.6.2 Photoluminescence Spectroscopy 

 

Figure 5.15 shows room temperature photoluminescence (PL) spectra of SiC 

films deposited under various deposition pressures. The films prepared at 20 and 40 Pa 

exhibited a broad band centred at about 2.1 eV, which is greater than their optical band 

gap. From structural and compositional characterizations, it was revealed that these 

films are Si-rich with the presence of nc-Si grains in the amorphous matrix. It has been 

reported that Si-rich a-SiC films did not produce PL emission at room temperature due 

to quenching effect (Chew, 2002). Chew et al. have explained that at room temperature, 

the rate of nonradiative recombination through paramagnetic Si dangling bond states in 

Si-rich a-SiC films is 10 orders of magnitude higher than that of the band tail radiative 

recombination. However, they observed PL emission from only C-rich a-SiC films at 

room temperature. Similarly, in another study of PL properties of a-SiC films, it has 

been shown that the films with carbon content below 0.55 did not exhibit any PL 

emission at room temperature (Q. Cheng & et al., 2008). However, higher carbon 

content resulted in intense PL emission. Nevertheless, broad band room temperature PL 

has been reported recently from the a-SiC films embedded with nc-Si (G. Ambrosone, 

Basa, Coscia, & Passacantando, 2012). Reduction in the size of Si nano-crystallites led 

to enhancement of PL emission and a blue-shift of its position. Therefore, PL band 

observed in this work for the Si-rich films can be attributed to the existence of nano-

crystalline Si phase in the material. 
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Figure 5.15: Room temperature PL spectra of SiC films deposited under different 

deposition pressures.  

 

The films deposited under higher deposition pressures exhibited a PL band, with 

centres shifted to lower energies. Incorporation of carbon in these films in the form of 

sp
2
 clusters in a-SiC matrix, as shown in Raman analysis, resulted in increment of the 

band tail states into the energy gap. These states acted as centres for radiative 

recombination producing the PL emission at lower energy from these films. The 

interference peaks observed in the PL spectra of these films were the result of optical 

interference of reflected light at the surface of the films and the top surface of the 

substrate. 
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5.2.7 Deposition Rate 

 

Figure 5.16 shows the deposition rate of the SiC films versus deposition 

pressure. A sharp decrease in deposition rate from 0.7 to 0.45 nm/s was observed with 

the increase in deposition pressure from 20 to 80 Pa. Further increase in pressure led to 

a sharp increase in the deposition rate from 0.45 to 0.82 nm/s. 

At low pressures (< 80 Pa), the probability of dissociating SiH4 molecules on the 

hot-wire (HW) as Si and H atoms was high and the concentration of molecules in the 

chamber was low. This allowed Si and H radicals to have a mean free path comparable 

to the distance between HW and the substrate. Therefore, they were able to reach the 

substrate surface directly or after only a few collisions with other molecules. As a result, 

the number of gas phase reactions that usually lead to creation of C-related radicals was 

limited and thus, Si-rich films were deposited under this condition. However, 

bombardment of the growth surface by the H radicals promoted the crystallinity of Si 

phase in the material as verified from XRD and Raman analysis. By increasing the 

deposition pressure, the mean free path of Si molecules were reduced and they collided 

with many more molecules or radicals before reaching the growth sites. This enabled 

CH4 molecules to decompose through secondary gas phase reactions while decreasing 

the deposition rate. 
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Figure 5.16: Deposition rate of SiC films as a function of deposition pressure. 

 

However, further increase in the deposition pressure (above 80 Pa), resulted in a 

significant increase in the deposition rate. This increase in deposition rate is attributed to 

higher incorporation of silicon and carbon into the film, which was made possible by 

the higher probability of gas phase reactions. Nevertheless, they formed a considerable 

amount of a-C:H and a-Si:H clusters in a-SiC matrix as confirmed from the Raman and 

FTIR analysis. This is responsible for degradation of the optical properties of the 

material such as narrowing the energy band gap. 

Figure 5.17 demonstrates a simplified diagram of the deposition mechanism in 

HWCVD chamber under low and high deposition pressure for comparison. It is seen 

that at low deposition pressures, the presence of molecules and radicals at low density 

results in few gas phase reactions. Therefore, Si radicals generated at the HW can easily 

reach the substrate surface and form a Si-rich film. However, as shown in the figure, 

under high deposition pressures, many collisions occur in the gas phase that lead to 
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production of various species such as SiHn (n=1,2,3), SiCH3, CHn (n=1,2,3). As a result, 

more carbon atoms can be incorporated into the film structure. 

 

 

Figure 5.17: Deposition mechanism of SiC from methane and silane gases in HWCVD 

chamber under low and high deposition pressures. 

 

5.3 Influence of Filament-to-Substrate Distance on the Properties of SiC Films 

 

5.3.1 Introduction  

 

In this section, the influence of the filament-to-substrate distance (d) on the 

structural, compositional, crystallinity, optical properties and the deposition rate of SiC 

films were investigated.  
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5.3.2 FTIR Spectroscopy Analysis of SiC Films Deposited on c-Si Substrate  

 

Figure 5.18 shows the FTIR transmission spectra of the SiC film deposited under 

different filament-to-substrate distance. Three absorption bands were observed in all the 

films corresponding to Si-C, Si-H, and C-H stretching vibration mode centred at 

approximately 800, 2080, and 2900 cm
-1

, respectively.   

 

 

Figure 5.18: FTIR transmission spectra of SiC films deposited under 

different filament-to-substrate distances (d). 

 

 

Figure 5.19 shows the Si-C absorption band, which is normalized to the films’ 

thicknesses. It can be seen that the position of Si-C band was progressively shifted from 

~ 790 cm
-1

 to ~ 810 cm
-1

 with decrease in d from 25 to 10 mm. In addition, the intensity 

of Si-C absorption band increased with the decrease in d
 
from 25 mm to 15 mm and 

slightly decreased with further decrease in d down to 10 mm. 
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Figure 5.19: Si-C absorption band of SiC films prepared at various 

filament-to-substrate distances (d). 

 

In order to analyse the FTIR spectra in more detail, the Si-C bands were 

deconvoluted into consituent peaks, which consisted of one Gaussian and one 

Lorentzian peak at around 800 cm
-1

 corresponding to Si-C bonds in amorphous and 

crystalline structures, respectively. Figure 5.20 shows the SiC crystalline volume 

fraction and Si-C integrated intensity in the films as a function of d. It is seen that the 

integrated intensity of Si-C peak remarkably increased with decrease in d from 25 to 20 

mm and remained almost constant with further decrease in d. However, the SiC 

crystalline volume fraction increased monotonically from 35% to 65% with decrease in 

d from 25 to 10 mm. This indicates that at low d, the crystalinity improved 

correspondingly with distinct increase in Si-C bond density. However, further increase 

in crystallinity did not result in much change in Si-C bond density. This indicates that 

the rearrangement of network structure caused by surface reactions and hydrogen 

etching effect promoted the enhancement in crystallinity, when substrate was closer to 

500 600 700 800 900 1000 1100 1200

0

1x10
4

2x10
4

3x10
4

4x10
4

5x10
4

 

 

d=15 mm

d=10 mm

d=25 mm

A
b

s
o

rp
ti

o
n

 c
o

e
ff

. 
(c

m
-2
)

Wavenumber (cm
-1
)

d=20 mm



CHAPTER 5: RESULTS AND DISCUSSIONS: PART 2 

  139 

the hot filament. This enhancement in crystalline volume fraction also caused a 

blueshift of the Lorentzian component of Si-C band. Figure 5.21 demonstrates the linear 

dependence of peak position of the Lorentzian component of Si-C band with SiC 

crystalline volume fraction. A blueshift of this peak position has been reported to be 

attributed to the improvement of SiC crystallinity (Rajagopalan, 2003), however, there 

has been no reports of similar works providing concrete evidence of this fact.  

 

 

Figure 5.20: The variations of SiC crystalline volume fraction and Si-C 

integrated intensity in the films as a function of d. 

 



CHAPTER 5: RESULTS AND DISCUSSIONS: PART 2 

  140 

 

Figure 5.21: Variation of peak posotion of Lorentzian component of Si-C band 

with SiC crystalline volume fraction. 

 

Figure 5.22 shows the IR absorption band corresponding to Si-H stretching 

vibrations in the region of 1950-2250 cm
-1

. Coincidently, the amorphous SiC film 

which is deposited at the highest d of 25 mm also showed the highest Si-H peak 

intensity. The intensity of this peak decreases with decreasing d from 25 to 15 mm and 

increases slightly with further decrease in d to 10 mm. Meanwhile, the position of this 

band was slightly shifted to higher wavenumber with decrease in d.  

The variations of Si-H bond density exhibited the opposite trend with respect to 

C-H bond density with d as shown in Figure 5.23. This means that there exists an 

exchange process of H atoms between Si and C atoms. In other words, there is a 

competition between Si and C atoms to bond with H atoms reaching the growth sites. It 

was noticed that except for the film prepared at largest d (25 mm), the C-H bond density 

was always greater than that of Si-H in the films. 
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Figure 5.22: The IR absorption band in the region of Si-H stretching vibrations. 

 

 

Figure 5.23: Variations of Si-H and C-H bond densities in the SiC films versus 

filament-to-substrate distance. 
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5.3.3 Raman Scattering Spectroscopy Analysis of SiC Films Deposited on c-Si and 

Glass Substrates  

 

To investigate the homonuclear bonding i.e. Si-Si and C-C bonds in the films, 

the Raman scattering spectra of the films deposited at diffent d is shown in Figure 5.24. 

It was shown earlier (see section 5.2.2) that the Raman results obtained from UV 

excitation may not provide enough information on the bonding properties of the films. 

In this section, only Raman scattering spectra of the films performed with visible light 

(514 nm) excitation are shown. As can be seen in Figure 5.24, the c-Si peak from the Si 

substrate is observed from all films indicating that the light penetrated through the film 

and reached the substrate. Other peaks such as a-Si, 3C-SiC, and C-C were also labelled 

in the figure. In the region of 600-1000 cm
-1

 corresponding to Si-C bonds (see Figure 

5.25), only a broad band centered at 780 cm
-1

 resulted from Si-C in amorphous structure 

was observed from the film deposited at d of 25 mm. However, with the decrease in d, 

this broad band was split into two separate bands centred at ~770 cm
-1

 and ~890 cm
-1

 

due to TO and LO modes of SiC vibrations in 3C-SiC structure, respectively. This 

further confirmed earlier observations showing enhancement in SiC crystallinity with 

decrease in d. 
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Figure 5.24: Raman scattering spectra of SiC films deposited on c-Si substrate 

at indicated d. 

 

Figure 5.25: Raman scattering spectra of SiC films deposited at different d in 

the range of Si-C vibrations. 
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Another significant feature in the Raman spectra was a broad band in the region 

of 1200-1600 cm
-1

 corresponding to C-C bond in the film structure. The slope of the 

baseline of this band appears to decrease with increasing d, indicating that the H content 

in films increases with decreasing d. As d decreases, the Si and H atoms reaching the 

growth sites become more energetic due to lower probability of collisions with other 

molecules. The energetic H atoms cousing more active H etching effects thus forming 

stronger Si-Si, Si-C and C-C bonds in the film structure as the H atoms actively etch 

away weak Si-H and C-H bonds at the growth sites. 

Figure 5.26 shows the Raman spectra in this region after subtracting the baseline 

from the spectra. It was observed that the position of this band was shifted towards 

higher wavenumber with decreasing d.  

In a-C:H, the G peak is downshifted with increasing band gap and sp
3
 content, 

from 1580 to 1520 cm
-1

 for excitation at 514 nm. In a-C:H this is contributed by the 

increase in polymeric C network in the film structure. Another cause of downshifting 

could be due to the presence of excess electron on the more electronegative C atoms 

linked to Si, resulting in weaker C=C bonds with lower vibrational frequencies (Racine, 

et al., 2001).  
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Figure 5.26: Raman scattering spectra of SiC films deposited at different 

d in the range of C-C vibrations. 

 

The shifting of G peak toward lower frequencies in a-SiC:H has been attributed 

to incorporation of more Si atoms into the carbon clusters (J. R. Shi et al., 1999; F. Zhao 

et al., 2009). Thus, the upshifting of this band with decreasing d indicates the fomation 

of C-C clusters with lower incorporation of Si. 

In order to investigate the properties of SiC films deposited under different d on 

glass substrate, Raman scattering spectra of these films were recorded and shown in 

Figure 5.27. The Raman spectra of these films exhibit the presence of a-Si, a-SiC, 3C-

SiC, and a-C:H phases in the films. Comparing the Raman spectra of the films on glass 

substrates with those of films on c-Si substrate as shown in Figure 5.24, the structure 

and phases present in the films deposited on both glass and c-Si substrates were similar. 

The only difference is the absence of c-Si peak at 520 cm
-1

, which was due to the 

substrate and not the film itself. 
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Figure 5.27: Raman scattering spectra of SiC films deposited on glass 

under different filament-to-substrate distances. 

 

5.3.4 XRD Analysis of SiC Films Deposited on c-Si and Glass Substrates 

 

Figure 5.28 shows the XRD spectra of the SiC films deposited on c-Si substrate 

at various d. The film prepared at largest d, 25 mm, shows no XRD peak in its 

spectrum. This indicates that this film is amorphous. However, three XRD peaks related 

to reflection planes of 3C-SiC emerged for other films as labelled in the Figure. The 

intensity of the peaks was progressively increased with decrease in d, which indicates 

improvement of crystallinity with reducing d. This result supports FTIR analysis that 

also showed enhancement of crystallinity in the films. The SiC mean crystallite size was 

calculated by employing the Scherrer’s formula. The variation of the crystallite size 

with d is shown in the inset as obtained from the (111), (200) and (311) diffraction 

peaks. 
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Figure 5.28: XRD pattern of SiC films deposited under various d on c-Si 

substrate. The inset shows variations of SiC crystallite size estimated from 

different XRD peaks. 

 

 

Figure 5.29: XRD patterns of SiC films deposited on glass substrate under various d. 

 



CHAPTER 5: RESULTS AND DISCUSSIONS: PART 2 

  148 

Figure 5.29 demonstrates the XRD patterns of SiC films deposited on glass 

substrate under various d. The film deposited at 25 mm was completely amorphous. 

However, the decrease in d from 25 mm to 20 mm resulted in emergence of an small 

XRD peak at 35.6° corresponding to 3C-SiC(111) plane. Further decrease in d, led to 

improvement in the crystallinity of SiC films, which was reflected by the appearance of 

two other XRD peaks at 60° and 71.8° corresponding to 3C-SiC (220) and 3C-SiC 

(311), respectively. Concurrently, the intensity of XRD peaks progressively increased 

with the decrease in d.  

The results shown in Raman and XRD analysis for the films deposited on c-Si 

and glass substrates further confirmed that the deposition of SiC films using HWCVD 

technique under various filament-to-substrate distances was substrate independent. 

Consequently, the optical properties of these films can be safely correlated to their 

structural properties.  

In this part of this work, the XRD and Raman results further showed that the 

structural properties - the crystallinity, the presence of crystalline and amorphous Si 

phase in the film, the hydrogen content and structural order in the carbon phase - were 

not dependent on the type of the substrate. The substrate temperature and filament 

temperature in this work were fixed at 300
º
C and 1900

º
C, respectively. This is lower 

than the temperatures reported by Z. Sun et al (Sun, Sun, Wang, & Zheng, 1995) where 

the SiC growth is observed through HWCVD decomposition of CH4 mixed with H2. In 

another report George et al. used bias enhanced low-pressure hot filament chemical 

vapour deposition (George, et al., 2002) at substrate temperature of 750
º
C resulting in 

growth of SiC from methane gas on Si substrate. The role of bias and low pressure in 

deposition of SiC film was established. Therefore at low substrate temperature (this 

work) Si atoms from the c-Si substrate cannot be activated and contribute to the surface 
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reactions and growth of SiC. Instead, Si-related radicals generated from the dissociation 

of silane gas are important in the formation of Si-C bonds in the gas phase and/or on the 

substrate surface.  

 

5.3.5 Elemental Composition  

 

The relative atomic composition and its stability in the SiC films deposited under 

different filament-to-substrate were studied by Auger depth profile analysis. Figure 5.30 

shows the depth profile of the films deposited on c-Si substrate. It was noticed that the 

silicon and carbon incorporations were almost stable during the deposition. In addition, 

the carbon content in the SiC films did not significantly changed with d. 

 

 

Figure 5.30: Auger depth profile of SiC films deposited at different d. 
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Figure 5.31 shows the variations of silicon, carbon, and oxygen atomic 

concentration, determined from AES measurement, as a function of d. It is seen that d 

had almost no effects on Si, C or O content. Si content was always higher than C 

content. This is because silane is more actively dissociated by hot filament at this 

temperature. Carbon incorporation in the films was mostly from gas phase reactions. 

The oxygen content slightly increased with decrease in d due to oxidation of the film 

surface as a result of the presence of Si dangling bonds in the films deposited at lower d.  

 

 

Figure 5.31: Variations of silicon, carbon, and oxygen atomic concentration versus d. 

 

5.3.6 Morphology 

 

Figure 5.32 shows the surface morphology of the films deposited under various 

d. High and low magnification FESEM images were provided for each film.  
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Figure 5.32: FESEM images of the surface of the films deposited at different 

filament-to-substrate distances. 
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Amorphous SiC film deposited at d of 25 mm showed large grains with an 

average diameter of approximately 100-200 nm. However, the film deposited at d of 20 

nm, which was shown to be nc-3C-SiC in structure, exhibited a smooth surface with 

very fine and compact grains. This is a characteristic of the surface morphology of 

nano-crystalline structures. In spite of improvement in the crystallinity with further 

decrease in d, the surface compactness of these films is shown to reduce and somewhat 

produced a porous surface. This could be related to incorporation of hydrogen in the 

form of a-C:H and a-Si:H phases in the films structure as verified from the FTIR and 

Raman results. This change in the structure is shown to affect the refractive index of the 

films. 

 

5.3.7 Optical Properties  

 

5.3.7.1 UV-Vis-NIR Spectroscopy 

 

Figure 5.33 (a) and (b) show the optical transmission spectra and respective 

Tauc plots of SiC films deposited under different filament-to-substrate distance (d). The 

variations of energy band gap and refractive index of the films is plotted in Figure 5.34 

as a function of d. It is noteworthy that the band gap of the films reached a maximum 

with decrease in d from 25 to 20 mm. However, further decrease in d led to a redshift in 

band gap. 
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(a) 

 

(b) 

Figure 5.33: (a) UV-Vis-NIR transmission spectra and (b) Absorption coefficient 

of the films deposited at different d. 
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Figure 5.34: Band gap and refractive index of SiC films deposited under different d. 

 

The widening of band gap with the decrease in d originated from significant 

enhancement of Si-C bond density along with the formation of 3C-SiC nano-crystallite 

in the film as shown in FTIR and XRD results. Nevertheless, the decrease in energy 

band gap with further decrease in d did not show any direct dependence on Si-C bond 

density. The total Si-C bond density in the films did not significantly change with 

decrease in d from 20 to 10 mm, but the crystallinity of SiC network improved, which 

was reflected by the enhancement of SiC crystalline volume fraction (see Figure 5.20). 

Therefore, the narrowing of the energy band gap can be explained by the agglomeration 

of sp
2
 carbon that was observed through Raman spectra. It was found that the C-C band 

in Raman spectra of these films broadened and shifted to the higher wavenumbers along 

with the decrease in the energy band gap, which indicates formation of pure a-C:H 

clusters in the films (M. Park et al., 2001). 
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Figure 5.35 shows the variation of B-parameter and E04-Eg representative of the 

band tail width of SiC films deposited under various d. It can be clearly seen that these 

parameters showed opposite trends. This indicates that the film with higher structural 

order has narrower band tail. This clearly verifies the correlation between structural 

order and optical properties in SiC alloy. It was noticed that the SiC film with 

amorphous structure exhibits the highest structural order, which was reflected by the 

highest B-parameter and lowest band tail width. This shows that the formation of nano-

crystals produced inhomogeneity in the film that reduced the structural ordering. 

Furthermore, increase in sp
2
 carbon clustering with the decrease in d, as demonstrated in 

the Raman spectra explains further increase in structural disorder in the film. 

 

 

Figure 5.35: Variations of B-parameter, the slope of Tauc plot, and E04-Eg, the width 

of band tail as a function of d. The dashed lines are visual guides. 
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5.3.7.2 Photoluminescence Spectroscopy 

 

Figure 5.36 shows room temperature PL spectra from SiC films deposited at 

various d. The positions of the main PL band for all films (EPL) are listed in Table 5.3 

and compared with their energy gap. It was observed that EPL was blue-shifted with 

initial decrease in d from 25 to 20 mm. However, further decrease in d resulted in red-

shifting of EPL. This variation is consistent with the trend observed for Eg. 

 

 

Figure 5.36: Room temperature PL spectra of the SiC films deposited under 

different filament-to-substrate distances. 

 

As pointed out in section 5.2.6.2, room temperature PL is not usually observed 

from a-SiC with carbon content below 0.5. However, several researchers have reported 

PL emission from nano-crystalline SiC embedded in a-SiC (M. B. Yu, Rusli, Yoon, Xu, 

et al., 2000) or a-SiO2 (Guo et al., 2001) matrix. However, the values reported for EPL in 

the previous studies are usually greater than the room temperature optical band gap 
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energy of the bulk 3C-SiC. For example, Yu et al. have reported a PL energy of 2.6 eV 

attributed to the quantum size effect in SiC nano-crystallites (M. B. Yu, Rusli, Yoon, 

Xu, et al., 2000). In another study, visible PL emission with the energy of ~2.5 eV has 

been observed from SiC nano-crystalline films, which is higher than the their energy 

band gap (Xu, et al., 2000). Xu et al. have suggested that the origin of this intense 

photon emission in the SiC nano-crystals is the radiative recombination due to the direct 

optical transitions. Recently, Yu et al. have observed a PL emission showing a dominant 

PL band centred at ~2.5 eV originated from radiative recombination in quantized states 

of SiC nano-crystals and a weaker component at ~ 1.9 eV originated from radiative 

recombination in the band tail states of amorphous SiC matrix (W. Yu et al., 2011). 

Therefore, the PL spectra obtained in this work probably were not contributed by the 

SiC nano-crystals. The radiative recombination resulted from band-to-band transition 

and this process contributes to the dominant process for the PL emission. However, 

radiative recombination in the band tail states of amorphous environment is responsible 

for the peak shoulder detected in the lower energy region.  

 

Table 5.3. PL energy and energy band gap of SiC films 

deposited under different d. 

d (mm) 

      

E
PL

(eV) 

        𝑉 

E
g
(eV) 

       𝑉 

25 2.04 2.46 

20 2.14 2.57 

15 2.10 2.17 

10 2.06 1.97 
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5.3.8 Deposition Rate  

 

Figure 5.37 shows the deposition rate of SiC films deposited under various d. 

The deposition rate decreased from ~0.45 nm/s to ~0.25 nm/s with decreasing d from 25 

to 20 mm. This reduction in the deposition rate was in agreement with the transition 

from amorphous to nano-crystalline structure as shown in the XRD results. However, 

further decrease in d led to a monotonic increase in the deposition rate up to 0.55 nm/s. 

 

 

Figure 5.37: Deposition rate of SiC films as a function of d. 

 

The decrease in the deposition rate with decreasing d from 25 to 20 mm is 

attributed to the increase of the flux of H radicals reaching the film-growing surface. H 

radicals generated from the SiH4 decomposition at the HW, usually go through gas 

phase reactions and thus are converted to other species on the way to the substrate 

surface. However, the decrease in the distance between filament and the substrate 

allows H radicals to reach the growth surface directly. These energetic H radicals 
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promote crystallinity in the film by penetrating the layers below the top surface of the 

film and was caused the breaking of weak Si-H bonds, thus leading to formation of 

ordered Si-C network. However, further improvement in crystallinity with decreasing d 

led to an increase in the deposition rate. Similar enhancement of crystallinity and 

deposition rate with reduction of d has been reported for nc-Si:H films deposited from 

pure SiH4 gas by HWCVD technique (Waman, 2011). They attributed this increase in 

deposition rate to the enhancement in the diffusion of radicals such as Si-H, Si-H2, or 

(Si-H2)n. Nevertheless, in this work, the formation of C-Hn and sp
2
 C-C bonds seems to 

contribute to enhancement of the deposition rate at lower d as shown in IR and Raman 

results.  

Figure 5.38 shows a simple illustration of the deposition mechanism in HWCVD 

chamber under three different filament-to-substrate distances for comparison. It should 

be noted that not all radicals species created in the gas phase are shown in the figure. 

From what has been reported in the literature, in spite of extensive work done in radical 

measurements from various techniques for Si deposition by HWCVD from SiH4/H2 

gases (Nakamura & Koshi, 2006; Umemoto, 2002; Zheng & Gallagher, 2006), no direct 

measurement or theoretical work on chemical reactions and radicals produced in the 

HWCVD system with SiH4 and CH4 gases is available yet. Therefore, the detail of 

chemical reactions and resulting radicals in the chamber is still unknown. However, 

from this study, the role of H radicals in the crystallinity of the films was verified in 

spite of absence of hydrogen dilution of the source gases. These abundant H radicals 

were generated from the silane decomposition on the hot filament. When the filament is 

placed far from the substrate, generated radicals on the HW including H radicals are 

consumed through gas phase reactions. Therefore, the flux of H radicals reaching the 

substrate surface is fairly low. Under this situation, formation of a significant amount of 

SiHn, SiCHn, and CHn precursors led to deposition of amorphous SiC films with high 
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hydrogen content and inhomogeneous structure. However, by decreasing the distance 

between filament and the substrate, availability of high density of H radicals resulted in 

growth of SiC crystallites in the film structure. Further decrease in d, although 

enhancing the crystallinity, however, increased the hydrogen incorporation.  

 

 

Figure 5.38: Deposition mechanism in the HWCVD chamber under different filament-to-

substrate distances. 

 

5.4 Correlation Between Optical Parameters and Structural Properties of SiC 

Films Deposited by HWCVD 

 

So far, the optical and structural properties of SiC films deposited under 

different conditions were shown. In addition, the optical parameters were correlated to 

the structural properties of the films in each set of samples. However, it has been widely 

reported that the optical properties of SiC films deposited by PECVD are not dependent 

on deposition conditions and only depend on the carbon content of the SiC films 

particularly in low carbon content region (G. Ambrosone, et al., 2002; Conde, et al., 
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1999; Hartel, 2010; Mastelaro et al., 1996). Nevertheless, in the case of HWCVD SiC 

films, there is a lack of comprehensive investigation to establish such a correlation. B.P. 

Swain has correlated the increase of band gap of HWCVD a-SiC:H films to the increase 

in Si-C bond density. However, the decrease in the size of graphite carbon clusters 

resulted in saturation of band gap at higher carbon content (B.P. Swain, 2006a). T. Wu 

et al has reported that the volume fraction of Si-phased in SiC films controls the energy 

band gap (Wu, 2011). Some other researchers believe that the carbon incorporation in 

the SiC film plays a key role in regulation of the band gap (A. S. Kumbhar, et al., 1995; 

Mori, Tabata, & Mizutani, 2006; A. Tabata, Kuroda, M., Mori, M., Mizutani, T., 

Suzuoki, Y., 2004). However, sometimes the variation of the energy gap or refractive 

index cannot be explained in terms of the carbon content. For example, in nano-

crystalline SiC films the enhancement of energy band gap has been attributed to the 

improvement of crystallinity (Mao, et al., 2012; A. Tabata & Mori, 2008). 

In this work, the deposition of amorphous and nano-crystalline SiC under 

different deposition conditions by HWCVD method was demonstrated. Although there 

are many factors affecting energy band gap and refractive index as reported in the 

literature and this work, most of the previous reports emphasized the influence of 

carbon content. In order to further establish this influence on the optical properties after 

establishing that the structural properties of SiC films were not dependent on substrate, 

the dependence of optical parameters on the carbon content of SiC films prepared in this 

work at various conditions was studied using optical parameters obtained at various 

deposition conditions including the parameters obtained in Chapter 4 along with 

parameters obtained from reported work in the literature. 

Figure 5.39 demonstrates the variation of the energy band gap and refractive 

index of the SiC films deposited under various d as a function of G peak position and 
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the integrated intensity of the G peak. From this figure, it is seen that the increase in sp
2
 

carbon clusters also causes a monotonic decrease in the refractive index although an 

increase in refractive index is expected with improvement of crystallinity. In both 

graphs, the decreasing trends were observed except for the film prepared under largest d 

that is amorphous. This film, which is indicated in the figure, did not follow the trend 

due to different film structure. This indicates that the factors controlling the optical 

parameters in amorphous SiC films are different for nano-crystalline SiC films. 

 

 

 

Figure 5.39: Variation of energy band gap and refractive index of the SiC films 

deposited under different d as a function of G peak position (top graph) and the 

integrated intensity of G peak (bottom graph). 
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In order to make a comparison of the present results with what have been 

reported in the literature from HWCVD deposited SiC films, the data from references 

are plotted in Figure 5.40 together with present work. This figure shows the variation of 

energy band gap of SiC films as a function of carbon content in the films. It is worth 

noting that the data obtained from this work exhibit almost the same trend as previous 

reports. This indicates that almost linear dependence of Eg on carbon content could be 

established for HWCVD SiC films.  

 

 

Figure 5.40: Energy band gap of SiC films as a function of carbon content in the films. 

Full squares show the results obtained in this work. Other symbols are the values from 

references for comparison as indicated in the figure (I. Ferreira, et al., 2001; Shen, et al., 

2012; B.P. Swain, 2006b; Bibhu P. Swain & Dusane, 2006; A. Tabata, Kuroda, M., 

Mori, M., Mizutani, T., Suzuoki, Y., 2004). 
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Figure 5.41 illustrates the refractive index of SiC films prepared under different 

deposition conditions as a function of carbon content in the films. However, since not 

much reported work is available on the behaviour of the refractive index of HWCVD 

deposited SiC films as a function of carbon content, this work is compared with the 

existing reports on refractive index of SiC films deposited by PECVD technique 

(Akaoglu, Sel, Atilgan, & Katircioglu, 2008; G. Ambrosone, Coscia, U., Ferrero, S., 

Giorgis, F., Mandracci, P., Pirri, C.F. , 2002; DellaSala, Fiorini, Skumanich, & Amer, 

1985; Pascual, Andlijar, Fernhndez, & Bertran, 1995). 

 

 

Figure 5.41: Refractive index of SiC films as a function of carbon content in the 

films. Full squares show the results obtained in this work. Other symbols are the 

values for PECVD SiC films from references for comparison as indicated in the 

figure. 
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From Figure 5.41 it appears that refractive index of SiC films decreases with the 

increasing carbon content in the films. The data obtained in this work follow the general 

trend in spite of relatively lower values than PECVD deposited SiC films. This is 

probably due to the different kinetic mechanism in HWCVD. In HWCVD, because of 

lower dissociation of CH4 molecules, usually CHx radicals are produced and 

incorporated into the films. Therefore, the presence of many H terminated bonds would 

result in less dense films. As a result, in this work, SiC films with slightly lower 

refractive index than PECVD SiC films (in the literature) were obtained. However, 

refractive index fairly provides an estimation of carbon content in HWCVD SiC films 

as suggested in early studies (Bullot & Schmidt, 1987). 

 

5.4 Summary 

 

In this chapter, the effects of two important deposition parameters that is 

deposition pressure and filament-to-substrate distance on the growth rate, structural and 

optical properties of SiC films were studied. In order to explore the influence of 

structural properties on the refractive index, optical energy gap and photoluminescence 

properties of deposited films, the dependence of SiC film deposition in HWCVD on c-

Si and glass substrates was also investigated. This is to facilitate the fact that the optical 

energy gap and refractive index of the films were derived from the optical transmission 

spectra of the films which can only be measured on films on glass substrates. 

The results in this chapter show that deposition pressures and filament-to-

substrate distances have strong influence on the growth rate of the SiC films grown by 

HWCVD system used in this work. The growth rate of SiC films was reduced 
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significantly at the critical deposition pressure and filament to substrate distance of 80 

Pa and 20 mm respectively, where the film structure reached a transition point of 

structural change from nano-crystalline to a totally amorphous structure. It was also 

established from the results in this chapter that the formation of a-C:H clusters was 

responsible for higher deposition rate at high deposition pressures (above 80 Pa) and 

lower filament-to-substrate distances (below 2.0 cm).  

The structural properties of SiC films deposited under various deposition 

pressures obtained from XRD, Raman and FTIR analysis reveal that the increase in 

deposition pressure from 40 to 80 Pa has transformed the structure of the film from a 

structure of Si nano-crystallites embedded in Si-rich amorphous SiC film to a nearly 

stoichiometric and highly ordered amorphous SiC film structure. Further increase in the 

deposition pressure resulted in the formation of a multi-phased film structure consisting 

of a-Si:H, a-C:H, and a-SiC with high structural disorder.  

The influence of filament-to-substrate distance (d) on structural properties of 

SiC films was significant. It was shown that the decrease in d promoted the formation of 

nano-crystalline SiC phases and a-C:H clusters in the films as verified by the XRD and 

Raman analysis respectively. The Si-C bond density showed no dependence on the 

deposition pressure with increasing d from 10 to 20 mm but decreased significantly 

when the film structure changed to an amorphous film structure with increase in d to 25 

mm. From AES measurement it was revealed that the filament-to-substrate distance had 

no important effect on composition of the films.  

The Raman scattering and XRD measurements of the films deposited under 

various deposition pressures and filament-to-substrate distances were compared for the 

films deposited on glass and c-Si substrate. The results confirmed that the structure of 

SiC films grown was not dependent on the substrate used for the films and the problem 
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of relating the structural properties to the optical energy gap and refractive index 

obtained only from films deposited on glass substrate can be resolved. To the best of the 

author’s knowledge, most reported work on this aspect did not establish the fact that the 

structural properties of SiC films grown by HWCVD were independent of substrate 

prior to relating the structural properties of the films to the optical properties of the 

films which can only be measured on films deposited on transparent substrates. 

Optical characterization and analysis of the films deposited under different 

deposition pressure showed that the energy gap of the films was largely influenced by 

the structural changes in the films. It was established that the energy band gap increases 

exponentially with increasing Si-C bond density. A wide band gap of ~2.5 eV was 

obtained from a-SiC film deposited at 80 Pa showing that the Si-C bond density was 

highest for this film. However, an increase in the deposition pressure resulted in a 

continuous decrease in the refractive index of the films, showing that the decrease in the 

optical energy gap and refractive index with increasing deposition pressure above 80 Pa 

were not mainly influenced by the Si-C bond density in the films. This parallel decrease 

in optical energy gap and refractive index with increase in deposition pressure was 

attributed to the presence of a-C:H clusters in the film structure. The formation of a-C:H 

clusters formed defect states in the forbidden gap of the a-SiC structure at high 

pressures which reduced the optical energy gap of the films. The increase in the H 

content in a-C:H clusters incorporated in the film structure was responsible for the 

further decrease in the refractive index with increasing the deposition pressure although 

the Si-C bond density in the films decreased.  

Radiative recombination processes in the films has revealed the role of Si 

crystallites as radiative recombination centres. The Si-rich SiC films embedded with Si 

nano-crystallites showed a room temperature PL emission in the visible range. 
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Amorphous SiC films deposited under high deposition pressure produced PL emission 

peak at lower energies which originated from radiative recombination in the tail states.  

The effects of filament-to-substrate distance on optical energy gap, refractive 

index and the PL properties of SiC were found to be related to the variation of a-C:H 

clusters since these properties were not related to the Si-C bond density in the films 

mainly because the films were mainly nano-crystalline in structure. The increase in the 

presence of a-C:H clusters at low d led to a decrease in both the optical energy band gap 

and refractive index as the a-C:H clusters created defect states and increased the H 

content in the SiC film structure. The increase in the H content was mainly in the a-C:H 

clusters as reflected by the increase in the slope of C-C bond signature region in the 

Raman spectra. From the room temperature PL spectra of the films in this series, it was 

revealed that the main radiative recombination processes were contributed by the band-

to-band and band-to-band tail transitions in the amorphous SiC matrix showing that the 

a-C:H clusters in the film structure played an important role in the PL properties of the 

films as well. 

It was established that the growth mechanism of SiC films by HWCVD is 

mainly controlled by deposition pressure and filament-to-substrate distance. The 

deposition pressure determined the rate of gas phase reactions by controlling the density 

and residence time of the radicals in the deposition chamber. On the other hand, the 

distance between filament and the substrate governed the flux of energetic H radicals 

reaching the growth surface and thus had a great effect on the surface reactions. 

Therefore, these two deposition parameters significantly determined the structural 

properties of deposited films as well as the deposition rate. 

It was shown earlier in this work on the role of Si-C bond density, H content and 

the a-C:H clusters presence in controlling the refractive index and the optical energy 
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gap of the films. However, the AES results showed that that the carbon content in the 

film was the most important overall parameter that controlled the refractive index and 

optical energy gap of SiC films deposited by the HWCVD in this work. The results in 

this work showed that increase in the carbon content has increased optical energy band 

gap of SiC films but showed a reversed trend on the refractive index. The C atoms in the 

film structure were either bonded to Si atoms forming SiC phases or bonded to C or H 

atoms forming a-C:H clusters. Therefore, even though the bonding configuration of 

carbon atoms incorporated in the film structure had control on these optical parameters, 

the actual carbon content in the film structure played a major role in controlling these 

two optical parameters as established in this work. This is the first time within the 

author’s knowledge that it is reported that the C content in SiC films deposited by 

HWCVD is the most important structural parameter that controls the optical energy gap 

and refractive index of the films.   
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6.1 Conclusions 

 

In this work, a home-built hot-wire chemical vapour deposition system was 

successfully utilized to grow multi-phased silicon carbide thin films from pure silane 

and methane gases without hydrogen dilution. In the first part of this work, the SiC 

films were only grown on crystalline silicon substrates (c-Si) and the influence of 

precursor gas concentration on chemical bonding, crystallinity and elemental 

composition properties of the films were studied. The structural properties of the films 

were analyzed from the Fourier transform infra-red (FTIR), Raman scattering and X-ray 

diffraction (XRD) spectroscopy measurements. Auger Electron Spectroscopy (AES) 

depth profiling measurement was done on these films to study the elemental 

composition distribution within the films. The precursor gas concentration was varied 

by depositing two series of films where the first series of films consisted of films 

deposited at different methane (CH4) flow-rates with the silane (SiH4) flow-rate fixed at 

SiH4 starving condition with flow-rate of 0.5 and 1 standard cubic cm (sccm), and the 

second series of films deposited at different total gas partial pressures with the SiH4 to 

CH4 flow-rate ratio fixed at 1:20. Two sets of films were deposited for the second series 

of films where the deposition pressure was fixed equal to the total gas partial pressure 

and 80 Pa for the first and second set of films respectively. In the second part of this 

work, the films were deposited simultaneously on both glass and c-Si substrates. The 

effects of deposition pressure with the SiH4 to CH4 flow-rates fixed and substrate to 

filament distance on the structural and optical properties of films were investigated. The 

deposition pressure controlled the residence time of precursor molecules in the reactor 

and the substrate to filament distance determined the energy of the radicals reaching the 

growth sites and therefore directly influenced surface reactions, which controlled 

incorporation of atoms into the film structure. Raman scattering and XRD spectroscopy 
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measurements were done on films deposited on both c-Si and glass substrates and the 

results were used to show that the structural properties of these films were not substrate 

dependent. AES depth profiling, FTIR spectroscopy, field emission scanning electron 

microscopy (FESEM) and photoluminescence (PL) measurements were done only on 

films on c-Si substrates. These results were used to relate the structural properties to the 

optical properties of the SiC films and determine the important structural parameters, 

which can be used to control the optical properties of the films. Finally, the growth 

mechanism of SiC films deposited by the HWCVD system used in this work was 

analyzed.  

High quality SiC thin films with high deposition rate has been successfully 

grown using the home-built HWCVD system in Low Dimensional Materials Research 

Centre, University of Malaya. The highest growth rate of the SiC films achieved in this 

work, which is close to 1.8 nm/s is higher than the growth rates of SiC films reported in 

the literature for films grown by HWCVD, PECVD or various sputtering techniques. 

The results from this study showed that lower CH4 gas flow-rate in silane 

starving condition was more favourable for the formation of SiC films with high density 

of Si-C bonds. The high density Si-C bond concentration was an important factor 

contributing to the formation of SiC nano-crystallites deposited at low CH4 flow rate in 

this work, where SiC films were deposited by HWCVD without hydrogen dilution. In 

most reported works on SiC deposition using a similar technique, hydrogen dilution has 

been established to be necessary for the formation of nano-crystalline phase in SiC 

films. Thus, it was established here that the formation of SiC crystallites can be 

manipulated by controlling the CH4 to SiH4 flow rate ratio in SiH4 starving condition 

where the silane flow-rate did not exceed 1 sccm. 
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The formation of SiC phases in the film structure was demonstrated to be more 

favourable at deposition pressure higher than the total gas partial pressure, showing that 

increase in residence time of the precursor gas molecules in the reaction chamber was 

an important factor for Si-C bond formation. However, formation of high Si-C bond 

density at low total gas partial pressure was required to form nano-crystalline SiC phase 

in the films. In the initial part of this work, it was realized that an optimum total gas 

partial pressure is required for the formation of SiC nano-crystalline phases in the films. 

Low total gas partial pressure and longer residence time of the precursor molecules in 

the reactor were shown to be necessary for the formation of nano-crystalline SiC phases 

in the film structure. This work also established that nano-crystalline SiC film structure 

can be grown at much higher CH4 to SiH4 flow-rate ratio than those reported by other 

research groups under similar conditions using HWCVD. 

The results in this work showed that at fixed SiH4 and CH4 flow-rates, the film 

structure transformed from a structure of nc-Si phase embedded within an a-SiC phase 

to a nearly stoichiometric and highly ordered a-SiC at an optimum deposition pressure. 

Deposition pressure above this optimum pressure was shown to result in the formation 

of multi-phased film structure consisting of a-Si:H, a-C:H, and a-SiC with high 

structural disorder.  

The influence of filament-to-substrate distance (d) on structural properties of 

SiC films was significant. It was shown that the decrease in d promoted the formation of 

nano-crystalline SiC phases and a-C:H clusters in the film structure. The Si-C bond 

density was not dependent on d when the film structure was nano-crystalline in structure 

but at large d, the Si-C bond density was shown to decrease significantly and as 

demonstrated above this consistently led to the formation of an amorphous film 

structure 
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Comparison of the Raman scattering spectroscopy and XRD results on the films 

deposited under various deposition pressure and filament-to-substrate distance on both 

glass and c-Si substrate verified that the structure of SiC films grown was not dependent 

on the substrate used for the films. This is an important requirement to correlate the 

optical energy gap and refractive index of the films, which were measured on films 

deposited on glass substrates only with the structural properties especially when 

characterization could only be done on films deposited on c-Si substrates only. To the 

best of the author’s knowledge, most reported work on this aspect did not establish the 

fact that the structural properties of SiC films grown by HWCVD were independent of 

substrate prior to relating the structural properties of the films to the optical properties 

of the films.  

Optical energy gap and refractive index of SiC films are important parameters 

for application of this material in opto-electronic devices. In this work, it was 

established that these parameters, which were determined from the optical transmission 

spectra of the films, were strongly affected by the structural changes in the films. The 

optical energy band gap of the a-SiC films showed significant dependence on the Si-C 

bond density in the film structure. The largest optical band gap of ~2.5 eV achieved in 

this work was obtained from a-SiC film with the highest Si-C bond density deposited at 

the optimum deposition pressure. Increase in deposition pressure above the optimum 

pressure was demonstrated to produce a parallel decrease in the optical energy gap and 

refractive index and the presence of a-C:H clusters in the film structure was also shown 

to be responsible for this trend. The changes in the optical energy gap and refractive 

index due to the increased presence of a-C:H clusters was shown to have a more 

dominant effect in nano-crystalline SiC films deposited at different d where the Si-C 

bond density did not show much variation. The increase in the presence of a-C:H 

clusters at low d and high deposition pressure led to a decrease in both the optical 
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energy band gap and refractive index as the a-C:H clusters created defect states and 

increased the H content in the SiC film structure regardless of the structure of the film, 

whether it was amorphous or nano-crystalline. The results in this work also revealed 

that the PL emission from the SiC films was the result of band-to-band transition and 

radiative recombination processes occurring in the band tail states of the amorphous SiC 

matrix. Thus it was established that SiC phases and the a-C:H clusters in the film 

structure played important roles in the PL emission of the films. 

The AES results from this work showed that increase in the carbon content 

increased optical energy band gap of SiC films but showed a reversed trend on the 

refractive index. This nicely complemented the role of Si-C bond density and a-C:H 

clusters in controlling both these parameters as explained above since the C atoms in the 

film structure were either bonded to Si atoms forming SiC phases or bonded to C or H 

atoms forming a-C:H clusters. Therefore, naturally the amount of carbon atoms 

incorporated in the film structure can be the main parameter used to control these 

optical parameters. This is the first time within the author’s knowledge that this 

explanation on how the optical band gap and refractive index of SiC films deposited by 

HWCVD from the discharge of pure SiH4 and CH4 gases without hydrogen dilution is 

reported. 

The deposition mechanisms of the SiC films grown by HWCVD in this work 

have been established from the analysis on the variation of growth rates, bonding 

properties and elemental composition of the films with the various growth parameters 

studied. Generally, the concentration of precursor gases in the chamber and residence 

time of the precursor gas molecules and growth radicals in the reaction chamber showed 

strong influence on the growth rate of the films. The concentration of precursor gases in 

the chamber and residence time was controlled by the CH4 flow-rate, total gas partial 
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pressure and the deposition pressure in this work. The deposition parameters were 

responsible for the increased presence of C and H atoms reaching the growth sites. The 

H atoms created nucleation sites and the C atoms enhanced the formation of SiC and a-

C:H phases in the film structure promoting film growth. The filament temperature used 

in this work effectively dissociated the SiH4 gas in the vicinity of the filament but did 

not contribute much to the number of C atoms reaching the growth sites. The filament to 

substrate distance on the other hand governed the flux of energetic H radicals reaching 

the growth surface and thus contributed significantly to the surface reactions, which 

incorporated atoms into the film structure. Therefore, these two deposition parameters 

significantly influenced the structural properties of deposited films as well as the 

deposition rate. Another significant result produced in this work is the transformation of 

the film structure from amorphous to nano-crystalline phase, which was shown to 

produce a significant drop in the growth rate. Dominant H etching effect at this critical 

CH4 flow-rate with the SiH4 flow-rate fixed at SiH4 starving condition and filament-to-

substrate distance produced the low growth rate. 

 

6.3 Recommendations For Future Work 

 

The results in this work can be strengthened further if further investigations 

which are not within the scope of this work are done. A high resolution transmission 

electron microscopy (HRTEM) analysis can be more conclusive in confirming the 

presence of the various amorphous and crystalline phases present in the film structure. 

This measurement is capable of determining the size as well as the polytypes of SiC 

nano-crystallites present. The energy dispersive X-ray (EDX) analysis equipped with 
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HRTEM system can also provide a precise record of the elemental composition of the 

different phases in the film structure.  

 

Better understanding of the gas phase reactions and the main radicals and 

precursors contributing to the growth of the SiC films can be achieved if in-situ gas-

phase diagnostic technique such as mass spectroscopy is available during the film 

growth process. Consequently, the growth mechanism responsible for the growth of SiC 

thin film by HWCVD can be clearly understood. As a result, a precise control of the 

structure of the films under different deposition conditions can be made possible.  

 

Further studies on the effect of other deposition parameters of HWCVD system 

are recommended. Since the hot filament plays the most important role in the deposition 

of SiC films by HWCVD, it would be beneficial to study the effect of the use of 

different filament material, filament geometry and filament layout in relation to the 

properties of the SiC films, The influence of filament temperature on the film properties 

is an important area of study to pursue in future studies as dissociation of CH4 gas can 

be enhanced by the filament temperature which may result in the formation of other SiC 

polytypes. 

 

Finally, the application of amorphous and nano-crystalline SiC films as a 

window layer in silicon solar cells should be investigated and tested in future works. 

This would further enhance the capability of the home-built HWCVD system used in 

this work to produce high quality SiC films for this purpose. Additionally, other 

applications on the SiC material produced by this simple and cost-effective home-built 

HWCVD system can be tested if mechanical, bio-compatibility and electrical properties 

of the films are studied. These properties of SiC have generated a lot of interest in 
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studying the material as a coating material, in medical applications, and electronic 

devices.      
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APPENDIX A 

Measurable and Calculated Values Obtained from Samples Studied in This Work 

 

Table A.1: Si-C bond density, deposition rate, and energy gap of the 

SiC films deposited by HWCVD technique at various methane flow 

rate and two constant silane flow rate. 

CH4 

(sccm) 

± 0.1 

SiH4 

(sccm)     

± 0.01 

N Si-C 

(cm
-3

)     

±0.1×10
23

 

Deposition rate 

(nm/s) 

±0.01 

Eg 

(eV) 

±0.02 

10.0 0.50 2.0×10
23

 0.09 2.00 

30.0 0.50 7.1×10
22

 0.29 2.36 

50.0 0.50 7.9×10
22

 0.31 1.98 

75.0 0.50 8.3×10
22

 0.47 2.08 

100.0 0.50 1.0×10
23

 0.40 2.16 

10.0 1.00 1.8×10
23

 0.35 1.60 

20.0 1.00 8.4×10
22

 0.65 1.96 

40.0 1.00 5.6×10
22

 0.78 1.94 

70.0 1.00 5.9×10
22

 0.80 2.02 

100.0 1.00 3.4×10
22

 0.92 1.88 
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Table A.2: Si-C bond density, deposition rate, and energy gap of the SiC films 

deposited by HWCVD technique at various total gas partial pressures. 

Sample 

ID 

CH4 

(sccm) 

± 0.1 

SiH4 

(sccm) 

± 0.01 

Deposition 

pressure (Pa) 

± 1 

N Si-C 

(cm
-3

)    

±0.1×10
23

  

Deposition rate 

(nm/s)               

± 0.01 

Eg 

(eV)   

± 0.02 

VP-1 10.0 0.50 12 4.2×10
22

 0.33 2.54 

VP-2 20.0 1.00 20 3.3×10
20

 0.82 1.86 

VP-3 30.0 1.50 27 4.6×10
20

 0.81 1.72 

VP-4 40.0 2.00 33 3.5×10
20

 1.13 1.62 

VP-5 50.0 2.50 38 7.2×10
20

 1.73 1.68 

FP-1 10.0 0.50 80 1.8×10
23

 0.15 2.10 

FP-2 20.0 1.00 80 9.5×10
22

 0.56 1.96 

FP-3 30.0 1.50 80 1.9×10
22

 0.61 1.92 

FP-4 40.0 2.00 80 1.7×10
22

 0.82 1.88 

FP-5 50.0 2.50 80 1.2×10
22

 1.14 1.84 
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Table A.3: Si-C bond density, deposition rate, and energy gap of the SiC films 

deposited by HWCVD technique at various deposition pressures. 

CH4 

(sccm)  

± 0.1 

SiH4 

(sccm)   

± 0.01 

Deposition 

pressure (Pa) 

± 1 

N Si-C     

(cm
-3

)       

± 0.1×10
23

 

Deposition rate 

(nm/s)              

± 0.01 

Eg    

(eV)     

± 0.02 

20.0 1.00 20 2.9×10
20

 0.70 1.82 

20.0 1.00 40 5.1×10
21

 0.55 1.90 

20.0 1.00 80 1.4×10
23

 0.47 2.46 

20.0 1.00 140 6.4×10
22

 0.66 2.38 

20.0 1.00 250 3.6×10
22

 0.82 2.22 

 

 

Table A.4: Si-C bond density, deposition rate, and energy gap of the SiC films 

deposited by HWCVD technique at various filament-to-substrate distances. 

CH4 

(sccm) 

± 0.1 

SiH4 

(sccm) 

± 0.01 

Filament-to-substrate 

distance (mm) 

± 1 

N Si-C   

(cm
-3

) 

±0.1×10
23

 

Deposition rate 

(nm/s) 

± 0.01 

Eg 

(eV) 

± 0.02 

20.0 1.00 10 1.7×10
23

 0.54 
1.98 

20.0 1.00 15 1.7×10
23

 0.42 
2.16 

20.0 1.00 20 1.6×10
23

 0.25 
2.58 

20.0 1.00 25 1.1×10
23

 0.43 
2.46 

 

 

 


