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ABSTRACT 

 

The emergence of multiple drug-resistant nosocomial pathogens affects the efficacy of 

chemotherapeutic treatment of infectious diseases in patients. Therefore, continuous 

development of new synthetic antibacterial compounds such as the synthetic peptides 

and Schiff base complexes to complement the current antibiotic treatment is essential. 

The in-vitro antibacterial activities of six synthetic cationic peptides and twenty-nine 

synthetic Schiff base complexes towards selected sixteen clinical strains of multiple 

drug-resistant methicillin-resistant Staphylococcus aureus (MRSA), Acinetobacter 

baumannii (AC), Klebsiella pneumoniae (KB) and Pseudomonas aeruginosa (PA) were 

investigated in this study. Evaluation of the antibacterial activities were determined 

through disk diffusion testing, broth micro-dilution assay for minimum inhibitory 

concentration (MIC) determination, cell inactivation assay and bacterial killing rate 

(time-kill) assay. Some of the Schiff base ligands were bound to various metals 

including nickel (Ni), cobalt (Co), zinc (Zn), cadmium (Cd) and copper (Cu). Among 

the twenty-nine synthetic Schiff base complexes screened in the disk diffusion test, the 

complex containing cadmium, LMA Cd-N3, was shown to be more effective as it 

inhibited the growth of six randomly selected bacterial strains (KB88, KB198, 

MRSA080925, MRSA08071, AC06127, AC08121), resulting in zones of inhibition that 

were comparable to the antibiotics (polymyxin B and vancomycin) used. Results from 

the time-kill assay showed that the LMA Cd-N3 complex achieved complete killing of 

bacterial cells after exposure to the complex for 4 hours (1X MIC at 625.0 ppm), 8 

hours (1X MIC at 156.3 ppm) and 12 hours (2X MIC at 625.0 ppm) for MRSA, AC and 

KB, respectively. On the other hand, complete killing was observed when similar strains 

of KB and AC were exposed to 0.5X MIC of polymyxin B (1.0 ppm) for 2 hours, while  

MRSA strain required 12 hours of exposure to 0.5X MIC of vancomycin (2.0 ppm). 
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Interestingly, KB had shown regrowth of cells within 4 hours to 24 hours of exposure to 

polymyxin B at 0.5X MIC, indicating that polymyxin B had lost its antibiotic effect 

after 4 hours of exposure. Apart from having poor antibacterial activity against all 

bacterial strains tested in the study, some of the cationic peptides were also shown to 

induce growth of bacterial cells at the range of concentration from 25.0 ppm to 375.0 

ppm. However, the growth of P. aeruginosa strains was not affected by the cationic 

peptides and Schiff base complexes where no inhibition zones were observed for the 

strains in the disk diffusion test. Results obtained from the assays in the study showed 

that both of the synthetic Schiff base complexes and cationic peptides exhibited 

antibacterial activity against Gram-positive and Gram-negative bacteria. Schiff base 

cadmium complex showed comparable results to commercial antibiotics used against 

bacterial strains of MRSA, A. baumannii and K. pneumoniae, whereas cationic peptides 

(RM) exerted slight antibacterial activities towards MRSA strains. The findings implied 

that the cadmium-containing Schiff base complex represents a good candidate for future 

research in the development of novel antibacterial compounds for treatment of diseases 

caused by MRSA, A. baumannii and K. pneumoniae. 
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ABSTRAK 

 

Kemunculan patogen nosokomia yang resistan terhadap antibiotik mempengaruhi 

keberkesanan rawatan kemoterapiutik penyakit berjangkit di kalangan pesakit. Oleh 

demikian, perkembangan berterusan sebatian antibakteria sintetik yang baru seperti 

peptida dan kompleks Schiff base untuk menambahbaik rawatan antibiotik adalah 

penting. Aktiviti antibakteria in-vitro bagi enam peptida sintetik kationik dan dua puluh 

sembilan kompleks sintetik Schiff base terhadap enam belas strain methicillin-resistant 

Staphylococcus aureus (MRSA), Acinetobacter baumannii (AC), Klebsiella 

pneumoniae (KB) dan Pseudomonas Aeruginosa (PA) telah dikaji. Penilaian aktiviti 

antibakteria bagi sebatian sintetik telah ditentukan melalui ujian resapan cakera, ujian 

‘broth micro-dilution’ untuk penentuan kepekatan perencatan minimum (MIC), ujian 

penyahaktifan sel dan ujian kadar pembasmian bakteria (time-kill). Sesetengah ligan 

Schiff base dapat mengikat dengan pelbagai logam termasuk nikel (Ni), kobalt (Co), 

zink (Zn), kadmium (Cd) dan kuprum (Cu). Antara dua puluh sembilan kompleks 

sintetik Schiff base yang dikaji melalui ujian resapan cakera, sebatian yang 

mengandungi kadmium, LMA Cd-N3 adalah lebih berkesan kerana mampu menghalang 

pertumbuhan enam bakteria yang dipilih secara rawak (KB88, KB198, MRSA080925, 

MRSA08071, AC06127, AC08121) serta menunjukkan keputusan zon perencatan yang 

setanding dengan antibiotik komersial (polymyxin B dan vancomycin) yang digunakan. 

Keputusan daripada ujian time-kill menunjukkan bahawa sebatian LMA Cd-N3 mampu 

membasmi kesemua sel-sel bakteria selepas pendedahan kepada sebatian tersebut 

selama 4 jam (1X MIC pada 625.0 ppm), 8 jam (1X MIC pada 156.3 ppm) dan 12 jam 

(2X MIC pada 625.0 ppm) masing-masing bagi MRSA, AC dan KB. Manakala, 

pembasmian kesemua sel KB dan AC berlaku selepas 2 jam pendedahan kepada 

polymyxin B pada 0.5X MIC (1.0 ppm), sementara MRSA memerlukan 12 jam 
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pendedahan kepada vancomycin pada 0.5X MIC (2.0 ppm). Yang menariknya, KB 

menunjukkan pertumbuhan semula sel selepas pendedahan kepada polymyxin B pada 

0.5X MIC dalam masa 4 jam hingga 24 jam menunjukkan bahawa polymyxin B telah 

kehilangan aktiviti antibiotik selepas 4 jam pendedahan. Selain daripada aktiviti 

antibakteria yang kurang memuaskan terhadap kesemua bakteria dalam kajian ini, 

sesetengah peptida kationik juga mampu menggalakkan pertumbuhan sel bakteria pada 

julat kepekatan 25.0 ppm hingga 375.0 ppm. Walaubagaimana pun, pertumbuhan P. 

aeruginosa tidak dipengaruhi oleh sebatian Schiff base dan zon perencatan tidak 

diperhatikan dalam ujian resapan cakera. Keputusan daripada ujian menunjukkan 

bahawa kedua-dua sebatian sintetik Schiff base dan peptida kationik menunjukkan 

aktiviti antibakteria terhadap bakteria Gram-positif dan Gram-negatif. Sebatian Schiff 

base kadmium mempamerkan keputusan yang standing dengan antibiotik komersial 

yang digunakan terhadap bakteria MRSA, A. baumannii dan K. pneumoniae, manakala 

peptide kationik (RM) hanya menunjukkan aktiviti antibakteria yang kurang 

memuaskan terhadap bakteria MRSA. Kajian ini menunjukkan bahawa sebatian Schiff 

base yang mengandungi kadmium merupakan calon yang baik dalam perkembangan 

sebatian antibakteria yang novel untuk rawatan penyakit yang disebabkan oleh MRSA, 

A. baumannii dan K. pneumoniae.  

  



vi 

 

ACKNOWLEDGEMENTS 

 

 

This work was carried out at the Institute of Biological Science, Microbiology Division 

at University Malaya, Kuala Lumpur, Malaysia. 

First of all, I would like to acknowledge my co-supervisor Professor Dr. Thong 

Kwai Lin, Professor at the Microbiology Division at University Malaya for giving me 

the opportunity to work on this study and not to mention providing the funds and 

laboratory equipment to make this work possible. 

Much appreciation is given to my main supervisor; Dr. Chai Lay Ching who had 

supervised the given thesis title and provide much needed guidance and advices for the 

completion of this dissertation. Without her assistance and continuous support, this 

dissertation would not be thorough. 

I would also like to thank my family members; to both of my parents and 

particularly to my sister, Adele who provided me with supports and advices especially 

when things get tough in the duration of this study. Not forgetting also, a big gratitude 

goes to all of my friends and laboratory mates for their friendship, support, advices, 

jokes and those little things that cheers and kept my spirit high for me to be able to 

complete this dissertation. 

 

  



vii 

 

TABLE OF CONTENTS 

 

Title           Page 

Abstract          ii 

Abstrak          iv 

Acknowledgements         vi 

Table of contents         vii 

List of figures          x 

List of tables          xi 

 

Chapter 1: Introduction        1 

1.1 Objectives         2 

 

Chapter 2: Literature review       3 

2.1 Healthcare-associated infection (HAI)     3 

 2.1.1 Staphylococcus aureus       3 

 2.1.2 Klebsiella pneumoniae       4 

 2.1.3 Acinetobacter baumannii and Pseudomonas aeruginosa  4 

2.2 Antibiotics         5 

2.3 Peptides         6 

 2.3.1 Structure of peptides       7 

 2.3.2 Modes of action        8 

 2.3.3 Resistance to peptides       10 

 2.3.4 Selectivity of peptides       10 

2.4 Metallic ion-bound complex       11 

 2.4.1 Effects of metal towards living organisms    11 

 2.4.2 Schiff base metal complexes      11 



viii 

 

 2.4.3 Applications of other metallic ion-bound complex   12 

 

Chapter 3: Methodology        14 

3.1 Materials         14 

 3.1.1 Bacterial cultures        14 

 3.1.2 Media         15 

 3.1.2.1 Lysogeny-Broth (LB) agar media composition   15 

 3.1.2.2 Veal infusion broth media      16 

 3.1.2.3 Mueller Hinton II agar (cation-adjusted) (MHII agar)  16 

 3.1.2.4 Mueller Hinton II (cation-adjusted) (MHII agar)   16 

 3.1.3 Antibiotics        17 

 3.1.3.1 Polymyxin B sulfate disk      17 

 3.1.3.2 Polymyxin B sulfate powder      17 

 3.1.3.3 Vancomycin disk       17 

 3.1.3.4 Vancomycin powder       17 

 3.1.4 Synthetic cationic peptides      18 

 3.1.5 Synthetic Schiff base complexes      19 

3.2 Methods         20 

 3.2.1 Bacterial cell culture preparation      20 

 3.2.2 Antibacterial activity screening for cationic peptides   20 

 3.2.2.1 Peptide preparation       21 

 3.2.2.2 Kirby-Bauer disk diffusion antibacterial susceptibility test  22 

 3.2.2.3 Broth micro-dilution assay      22 

 3.2.2.4 Cell inactivation assay      23 

 3.2.3 Antibacterial activity screening for Schiff base complexes  25 

 3.2.3.1 Schiff base complexes preparation     25 

 3.2.3.2 Kirby-Bauer disk diffusion antibacterial susceptibility test  26 



ix 

 

 3.2.3.3 Broth micro-dilution assay      27 

 3.2.3.4 Time-kill assay       28 

3.3 Data analysis         29 

 

Chapter 4: Results        30 

4.1 Antibacterial activity of cationic peptides     30 

 4.1.1 Kirby-Bauer disk diffusion antibacterial susceptibility test  30 

 4.1.2 Minimum inhibitory concentration (MIC) determination  30 

 4.1.3 Cell inactivation assay       31 

4.2 Antibacterial activity of Schiff base complexes    35 

 4.2.1 Kirby-Bauer disk diffusion antibacterial susceptibility test  35 

 4.2.2 Minimum inhibitory concentration (MIC) determination  37 

 4.2.3 Time-kill assay        37 

 

Chapter 5: Discussion        42 

5.1 Antibacterial activity of cationic peptides against selected   42 

 multidrug-resistant nosocomial bacteria     

5.2 Antibacterial activity of Schiff base complexes against selected  44 

 multidrug-resistant nosocomial bacteria 

5.3 Cadmium toxicity and bacterial resistance to cadmium   47 

5.4 Limitation of the study       49 

 

Chapter 6: Conclusion        50 

 

Bibliography          52 

 

Appendix          61 



x 

 

List of Figures 

 
Title                Page number 

Figure 2.1: Role of cationic peptides in innate immunity    8 

 

Figure 2.2: Activities of antimicrobial peptides     9 

 

Figure 2.3: Peptide interaction with cytoplasmic membrane   10 

 of bacteria and four modes of action proposed 

 

Figure 3.1: General flow diagram of assays conducted for the   21 

 antibacterial activity screening of cationic peptides 

 

Figure 3.2: General flow diagram of assays conducted for the   25 

 antibacterial activity screening of Schiff base complexes 

 

Figure 4.1: Relative growth rate of bacterial strains tested tested in  31 

 different concentrations of peptide α-RetroMAD1 (RM) at 

 750.0 ppm, 375.0 ppm, 187.5 ppm, 93.8 ppm and 46.9 ppm 

 

Figure 4.2: Bacterial growth inhibition of peptide α-RetroMAD1 (RM)  33 

 tested at 750.0 ppm in cell inactivation assay against different 

 strains of Methicillin-resistant Staphylococus aureus (MRSA), 

 Klebsiella pneumoniae (KB), Pseudomonas aeruginosa (PA) 

 and Acinetobacter baumannii (AC) 

 

Figure 4.3: Time-kill curves for K. pneumoniae (strain 88) against  39 

 metal complex LMA Cd-N3 

 

Figure 4.4: Time-kill curves for MRSA (strain 080925) against   40 

 metal complex LMA Cd-N3 

 

Figure 4.5: Time-kill curves for A. baumannii (strain 08121) against  41 

 metal complex LMA Cd-N3 

 

Figure 5.1: Chemical structure of Schiff base cadmium complex   41 

 (LMA Cd-N3) 



xi 

 

List of Tables 

 
Title               Page number 

Table 3.1: List of bacterial strains with antibiogram profiles   15 

 

Table 3.2: Recipe for LB agar media      16 

 

Table 3.3: List of synthetic cationic peptides and the    18 

 concentration (ppm) of stock solution provided 

 

Table 3.4: List of synthetic Schiff base complexes tested    19 

 

Table 4.1: Antibacterial activities of the peptide α-RetroMAD1   32 

 (RM) tested at 750.0 ppm in cell inactivation assay 

 

Table 4.2: Growth induction effects of the α-RetroMAD1 (RM)   34 

 tested at different concentrations in cell inactivation 

 assay for MRSA08071 

 

Table 4.3: Antibacterial activities of peptides (RG, HP, CT, BC, AB  35 

 and RM) tested at 25.0 ppm in cell inactivation assay 

 

Table 4.4: Zones of inhibition for Schiff base complexes    36 

 

Table 4.5: Minimum inhibitory concentration (MIC) of antibacterial  37 

 compounds tested in broth micro-dilution assay 

 

 

 

 



1 

 

CHAPTER 1 

 

INTRODUCTION 

 

Antibiotics are compounds that are able to inhibit the growth of bacteria or to 

kill the bacteria. The halting or inhibition of bacterial growth by antibiotics is referred to 

as bacteriostatic while the antibiotics that kill bacteria are referred to as bactericidal 

(Hancock, 2005). Therefore, in the case of infectious diseases, the administration of 

antibiotics to patient will either kill the microorganisms responsible for the disease or 

weaken the microorganisms to allow the immune response system of the human body 

itself to eliminate them. Thus, without the advent of antibiotics, the treatment of 

infectious diseases would not be possible. In nature, bacteria can acquire or develop 

resistance to antimicrobial compounds to enhance their own survivability. However, 

through the utilization of antibiotics in the treatment of infectious diseases and also as 

additives in animal feed, pathogenic bacteria especially the medically important 

Staphylococcus spp., Klebsiella spp., Acinetobacter spp. and Pseudomonas spp. have 

adapted and developed resistance to multiple or most of the currently available 

antibiotics. These made clinical treatments of infectious diseases caused by these 

nosocomial bacteria difficult. Due to the slow development and lack of new classes of 

antibiotics discovered (Bax et al., 2000), novel compounds present an interesting 

opportunity to be studied for their antibacterial property against nosocomial pathogens 

such as Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, and 

Pseudomonas aeruginosa. Therefore, novel compounds that possess antimicrobial 

properties may provide an alternative to antibiotics in order to overcome challenges 

faced in treatment of infectious diseases. Among the compounds of interest were the 

synthetic compounds of cationic peptides (Hancock, 2005; Li et al., 2007; Hartmann et 
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al., 2010; Ross & Vederas 2010) and metal complexes (Aiyelabola et al., 2012; 

Gwaram et al., 2012; Kumar et al., 2009; Nishat et al., 2011; Vinuelas-Zahinos et al., 

2011) which showed considerable potential in various applications; including 

anticancer, antiviral, antifungal and antibacterial properties. The study on the 

antibacterial effectiveness of the synthetic cationic peptides and metallic-ion bound 

Schiff base complexes would contribute to the crisis faced in the rapid emergence of 

antibiotic-resistant nosocomial pathogens in the medical sector. 

 

 

1.1 OBJECTIVES 

The objectives of this study were:  

(1) To determine the antibacterial properties of selected synthetic cationic peptides 

toward methicillin-resistant Staphylococcus aureus, multidrug-resistant 

Klebsiella pneumoniae, Acinetobacter baumanii and Pseudomonas aeruginosa. 

(2) To determine the antibacterial activities and kinetics of selected synthetic metal-

bound Schiff base complexes toward methicillin-resistant Staphylococcus 

aureus, multidrug-resistant Klebsiella pneumoniae, Acinetobacter baumanii and 

Pseudomonas aeruginosa. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1 Healthcare-associated infection (HAI) 

Human nosocomial infections or better known as healthcare-associated 

infections (HAI) can be described as infections obtained from the hospitals. Several 

pathogenic microorganisms are the cause for these infections. In clinical settings, 

Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii and 

Pseudomonas aeruginosa are among the medically important bacteria that not only 

causes the nosocomial infections, but they are also highly resistant to multiple 

antibiotics commonly used in clinical treatments (Navon-Venezia et al., 2005; Casey et 

al., 2007; Sikarwar et al., 2011; Su et al., 2012). 

 

2.1.1 Staphylococcus aureus 

Staphylococcus aureus are Gram-positive bacteria that can be observed as 

spherical bacteria and appeared in grape-like cluster when viewed under microscopic 

view (Defres et al., 2009). S. aureus are coagulase-positive, which differentiate them 

from the other Staphylococcus spp. such as S. epididermis, which are coagulase-

negative (Casey et al., 2007). S. aureus are among the medically important pathogenic 

bacteria responsible for nosocomial infections. Colonization of the bacteria is often 

found on the human skin and also in the nasal passageway. It is commonly associated 

with the skin and soft tissue infections (SSI), infections of bone and joint, endocarditis, 

bacteremia and also capable of producing life-threatening cytotoxins where the severity 

of toxicity ranges from food poisoning to serious toxic shock syndrome. Serious 

infections caused by S. aureus are treated with the glycopeptide antibiotics such as 
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vancomycin and teicoplanin. However, the methicillin-resistant S. aureus (MRSA) are 

known to be resistant to multiple antibiotics including the previously antibiotic of last 

resort for the treatment of S. aureus infections, vancomycin (Casey et al., 2007; Defres 

et al., 2009). 

 

2.1.2 Klebsiella pneumoniae 

The rod-shaped and Gram-negative bacteria, Klebsiella spp. are ubiquitous and 

can be found in the environment on surface water, sewage and soil. On human, it mainly 

colonizes the mucosal surfaces on the nasopharynx and intestinal tract. As opportunistic 

pathogen, K. pneumoniae are the medically important strain that are responsible for 

most of the nosocomial Klebsiella infections in humans. It is often associated with 

respiratory infections, pneumonia and urinary tract infection (UTI). Other diseases 

caused by the pathogen include bacteremia and septicemia (Podschun & Ullmann, 

1998). Some of the multiple drug-resistant strains are capable of producing the 

extended-spectrum β-lactamase (ESBL) enzyme that renders all β-lactam antibiotics 

ineffective (Won et al., 2011) 

 

2.1.3 Acinetobacter baumannii and Pseudomonas aeruginosa 

Both Acinetobacter spp. and Pseudomonas spp. are waterborne pathogens and 

are ubiquitous. The coccobacillus Acinetobacter spp. and the rod-shaped Pseudomonas 

spp. are opportunistic Gram-negative bacteria, often linked to respiratory infections and 

urinary tract infections. The species A. baumannii and P. aeruginosa are the medically 

important bacteria that are responsible for healthcare-associated infections particularly 

affecting patients that were admitted into the Intensive Care Units (ICUs) (Timurkaynak 

et al., 2006). They are often associated with ventilator-associated pneumonia, surgical 

site infections, meningitis and bacteremia. The spread of these bacteria is difficult to 
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control due to the ability of these bacteria to survive on most surfaces for prolonged 

period of time (Navon-Venezia et al., 2005). Traditionally, infections caused by A. 

baumannii are treated with the antibiotics imipenem and meropenem (Su et al., 2012). 

As for infections caused by the multiple drug-resistant strains, the lipopolypeptide 

polymyxin would be used as the antibiotic of choice for the treatment (Tomas et al., 

2005). Both of these pathogenic bacteria are feared not only for their ability to grow and 

survive in unfavorable conditions, but also their highly intrinsic resistance to most of the 

available antibiotics (Zavascki et al., 2010). 

 

2.2 Antibiotics 

In nature, antibiotics are compounds that are usually produced by 

microorganisms such as soil bacteria and fungi as a defense mechanism to inhibit or to 

kill other unwanted microorganisms in their growing environment (Walsh, 2000). 

Antibiotics used in the medical sector are obtained either from natural sources or 

through synthetic production (Ross & Vederas, 2010). Some of the known antibiotics 

include cephalosporin, erythromycin, fluoroquinolones, kanamycin, penicillin, 

streptomycin, tetracyclin. (Li & Vederas, 2009; Walsh, 2000). Three known 

mechanisms of antibiotic activity against microorganisms are the disruption of bacterial 

cell wall, inhibition of protein biosynthesis and interference of bacterial DNA 

biosynthesis and repair (Walsh, 2000). However, antibiotic resistance trait can be 

acquired by bacteria through prolonged use of antibiotics. Pathogenic microorganisms 

that acquired resistance to the present antibiotics, such as the methicillin-resistant S. 

aureus (MRSA) (Chomvarin et al., 2004), vancomycin-resistant Enterococci (VRE) 

(Bax et al., 2000) and the extensive drug resistance (XDR) A. baumannii (Liang et al., 

2011) posed serious threat to human health. Bacteria gain the resistance traits by 

synthesizing modified membrane pumps (efflux pumps) to flush out the antibiotics from 
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bacterial cell; the deactivation of antibiotics through the production of hydrolytic 

enzymes such as β-lactamase before it reaches its target antigen and to modify bacterial 

antigen in order to lower the binding affinity of antibiotics to target antigen (Nikaido, 

1998; Walsh, 2000). 

 

2.3 Peptides 

Due to the increased emergence of antibiotic-resistant pathogenic strains and the 

lack of long-lasting antibiotics (Frecer et al., 2004), an alternative compound to known 

antibiotics that have novel antimicrobial properties led to the studies on short polymer 

of amino acids such as the peptides (Nedjar-Arroume et al., 2008). Two early prominent 

discoveries of antimicrobial peptides produced by animals and insects were from 

amphibians and bees. The amphibian Bombina variegata secretes certain substances on 

the surfaces of its skin. The substances were then found to be a biological peptide, 

bombinins which had antimicrobial and haemolytic properties (Csordas & Michl, 1970). 

In 1972, Habermann isolated a peptide from the venom of bees, also showing 

antimicrobial and haemolytic properties. Other than the skin of amphibians and 

secretion of insects, another cationic antimicrobial peptide is the defensins which can be 

found in the neutrophils of mammals and it could reach to a high concentration of 10.0 

mg/ml (Hancock, 2001). Gramicidin, polymyxin and colistin were some of the 

examples of cationic peptides that had been used as peptide antibiotics in topical 

applications for diseases (Hancock, 1997). Several other peptides originated from 

various sources with potential antimicrobial properties have been reviewed; insect 

cecropins (Steiner et al., 1981) and bee venom melittin (Habermann, 1972), amphibians 

magainins (Zasloff, 1987) and bombinins (Barra & Simmaco, 1995), pig protegrin I 

(Storici, 1993), fruit fly drosomycin (Dimarcq, 1998), plant defensins (Garcia-Olmedo, 
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1998), octapeptin (Rosenthal et al., 1977) and lantibiotics (Chatterjee et al., 2005; Ross 

& Vederas, 2010). 

 

2.3.1 Structure of peptides 

Peptide antibiotics were classified into two classes, which were the non-

ribosomally synthesized peptides and the ribosomally synthesized peptides. Non-

ribosomal peptides were significantly modified and were synthesized by 

microorganisms, mainly by bacteria and fungi. However, ribosomally synthesized 

peptides were produced by all organisms as the peptide plays an important role in their 

defenses against environmental hazards (Figure 2.1) (Hancock & Chapple, 1999). 

Cationic peptides are made up of 10 to 40 amino acids and are amphipathic molecules, 

where it possessed both hydrophobic and hydrophilic sides in its structure. The peptides 

have net positive charges of +2, +4, +5 or +6. The charges were contributed by the 

presence of amino acid residues in the hydrophilic side of the structure (Hancock, 

1997). 
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Figure 2.1 :  Role of cationic peptides in innate immunity. Dotted arrows represent events that lead to 

increased production of extracellular cationic peptides. Solid red lines represent the actions 

of peptide, while solid pink lines represent the events that unfold due to invading bacteria. 

PMN=polymorphonuclear leococytes; LPS=lipopolysaccharide; LTA=lipoteichoic acid 

(Hancock, 2001) 

 

2.3.2 Modes of action 

Compared to the traditional antibiotics, some of the peptides have various 

mechanisms of action to inhibit or to kill the pathogens, which made it difficult for the 

pathogens to develop resistance traits to the peptide. The previously reported peptide, 

lantibiotics, possesses potent antimicrobial properties by having nano-molar minimum 

inhibitory concentration (MIC) activity (Chatterjee et al., 2005). Some of the 

antimicrobial agents such as antibiotics and antifungal agents have specific or narrow-

spectrum of activities whereas a number of antimicrobial peptides were reported to have 

broad range of antimicrobial activities against Gram-positive bacteria and Gram-

negative bacteria, antifungal and antiviral activity as described in Figure 2.2. 
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 Figure 2.2 : Activities of antimicrobial peptides (Hancock, 2001) 

 

Multiple hypotheses were proposed for the mechanism of action for peptides, 

but agreements were made that the positively-charged cationic peptides would interact 

with the highly anionic outer membrane of Gram negative bacteria or the thick cell wall 

of Gram positive bacteria. As for the actual killing mechanism of the peptide, four 

modes of actions have been proposed based on the model of membrane interaction 

(Figure 2.3); lysis of cells, damages to the internal targets of cells, the formation of 

channels and the breakdown of the cytoplasmic membrane (Hancock, 2001). 
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Figure 2.3 : Peptide interaction with cytoplasmic membrane of bacteria and four modes of action 

proposed (Hancock, 2001) 

 

2.3.3 Resistance to peptides 

The activity of antimicrobial cationic peptides was cited to be as effective 

against microorganisms of both the susceptible strains and the resistant strains. It was 

reported to be difficult for bacteria to develop resistance toward antimicrobial peptides. 

Multiple passages are required before the bacteria could develop increased resistance to 

the peptide. Though, Burkholderia cepacia and Serratia spp. were stated to be among 

the bacteria that are resistant to the antimicrobial effect of peptides (Hancock, 2001). 

 

2.3.4 Selectivity of peptides 

The phospholipids of the membrane in mammalian cells were comprised mainly 

of neutral zwitterionic phospholipids and cholesterol. However, the membranes of 

bacterial cells were comprised mainly of anionic lipids such as glycolipid 

lipopolysaccharide (LPS) and peptidoglycan. These made the cell membrane of bacteria 

negatively-charged. Due to the net positive charge of cationic peptides, the attraction 

between the opposite charges allowed the peptide to bind preferably with bacterial cells 

(Papo & Shai, 2003). 
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2.4 Metallic ion-bound complexes 

Another alternative to antibiotics are synthetic compounds that contain metals in 

its structure. In these metallic ion-bound compounds, the ligands are first synthesized 

before the metallic ions are chemically bound to the ligand through various chemical 

reactions. These gave rise to metal complexes with antimicrobial activity as a result of 

the metallic ions (Yamada, 1999, Vinuelas-Zahinos et al., 2011, Sabik et al., 2012) 

  

2.4.1 Effects of metal towards living organisms 

Metal elements such as nickel, zinc, cobalt and copper are essential to living 

organisms at low concentration as they are involved in the production of co-factors 

which are vital components of some of the enzymes involved in their biological 

processes. In contrast to that, high concentrations of metals are toxic to most living 

organisms where the metals would replace or compete with other essential ions, 

blocking vital functional groups of biological molecules (Hassen et al., 1998) and 

affecting enzymatic activity by altering the conformation sites of the enzymes, protein 

denaturation and disrupting the enzyme-substrate complex (Vig et al., 2003). On the 

other hand, heavy metals such as cadmium, chromium, lead, mercury and silver have no 

beneficial effects to living organisms (Abou-Shanab et al., 2007). 

 

2.4.2 Schiff base metal complexes 

Due to the toxicity of metals toward living organisms at high concentration, 

much attention was placed into the antimicrobial activity of metal complexes. The 

condensation of primary amines with carbonyl compounds such as aldehydes and 

ketones resulted in the formation of Schiff bases (Sabik et al., 2012). Hugo Schiff was 

described as the first researcher to synthesize the Schiff bases and its metal complexes 

(Yamada, 1999). Classified by the International Union of Pure and Applied Chemistry 
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(IUPAC) (Moss et al., 1995), Schiff base were defined of a compound having the 

hydrocarbyl group on nitrogen atom in its structure; R2C=NR’ (R’≠H), where R2 and R’ 

denote alkyl or aryl (Kumar et al., 2009). Schiff bases are more often served as ligands 

that will be bound with other elements such as metallic ions in the synthesis of macro 

cyclic complexes. The presence of nitrogen (N) donor atoms in the structure of Schiff 

base resulted in its unique coordination behaviors with metal ions (Vinuelas-Zahinos et 

al., 2011). The chemical coordination geometry of macro cyclic complexes that are 

bound to metallic ions can be altered in order to change its chemical properties (Shakir 

et al., 2012). The Schiff base complexes have been the focus of researchers due to the 

simplicity in its synthesis and also the potential of the complex to be used as 

antimicrobial agents (Yamada, 1999). In the recent years, considerable number of 

studies was conducted on Schiff base and its metal complexes as potential antimicrobial 

agents, where much of the metal complexes were synthesized, characterized and tested 

against variety strains of bacteria and fungus (Valent et al., 2002; Noyce et al., 2006; 

Reiss et al., 2009; Sabik et al., 2012; Nishat et al., 2011; Gwaram et al., 2012; Gupta et 

al., 2012; Shakir et al., 2012; Sunitha et al., 2012). 

 

2.4.3 Applications of other metallic ion-bound complexes 

The study of antimicrobial metal complexes was not only limited to association 

with macro cyclic complexes such as Schiff bases as ligands, other novel compounds 

containing metals have also been studied. A natural constituent of plant, coumarin was 

used as a ligand bonded with silver (Ag). The silver-coumarin complex was found to be 

highly potent against clinical strains of methicillin-resistant Staphylococcus aureus 

(MRSA), with MIC80 (defined as the minimum concentration of compound required to 

inhibit bacterial growth to 80%) of 0.63 μM (Creaven et al., 2006). In 2008, Gudasi and 

colleagues also studied on the antibacterial activity of metal-coumarin complex. In their 
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studies, cadmium (Cd) and zinc (Zn) complexes were found to be more effective against 

the fungal strains tested, whereas nickel (Ni) and cobalt (Co) complexes have 

comparable antibacterial activity to the antibiotic norfloxacin used in the study as 

control. Kim and colleagues (2008) studied the application of silver (Ag) and copper 

(Cu) coating on activated carbon filters (ACFs) that were used for water filtering and 

purification and found that copper-plated ACFs have higher inhibitory effect on S. 

aureus. Apart from that, studies on nanomaterial exhibiting antimicrobial activity 

resulted in the derivative of silver, titanium and zinc metal oxide nanoparticles. Results 

from the study showed promising bactericidal effect of all the metal oxides synthesized, 

especially of the silver oxide, Ag2O against Escherichia coli (E. coli) and Pseudomonas 

aeruginosa (P. aeruginosa) (Negi et al., 2012). The effectiveness of metals exerting 

antimicrobial activity was not limited only to the area of chemotherapy. In another 

application to study the possibility of creating novel antibacterial metals, various metals 

such as lead (Pb), nickel (Ni), copper (Cu), cobalt (Co), zinc (Zn), titanium (Ti) and 

silver (Ag) were studied for the suitability of the metals to be incorporated onto surface 

of steels or into the steels during its manufacturing process. As microorganisms grow on 

the surface of industrial metal components, the formation of bacterial biofilm would 

lead to the corrosion of the surface, causing material damage. Thus, antibacterial metals 

would prevent bacterial attachment and inhibiting its growth (Sreekumari et al., 2005; 

Yasuyuki et al., 2010). 
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CHAPTER 3 

 

METHODOLOGY 

 

3.1 Materials 

3.1.1 Bacterial cultures 

 A total of sixteen bacterial strains were tested in the study. The nosocomial 

bacterial strains originated from clinical settings and were resistant to multiple 

antibiotics. The antibiogram profiles of the strains were tabulated in Table 3.1. The 

sixteen randomly selected strains comprised of four strains of Acinetobacter baumannii 

(AC) (AC08121, AC06127, AC07078, AC07095), four strains of Klebsiella 

pneumoniae (KB) (KB83, KB88, KB92, KB198), four strains of methicillin-resistant 

Staphylococus aureus (MRSA) (MRSA080925, MRSA080521, MRSA08061, 

MRSA08071) and four strains of Pseudomonas aeruginosa (PA) (PA30, PA4, PA102, 

PA104) (Table 3.1). All bacterial strains were obtained from the cultures collection of 

Laboratory of Biomedical Science and Molecular Microbiology, Institute of Graduate 

Studies, University of Malaya, Kuala Lumpur, Malaysia and were used throughout the 

study. These pathogenic bacterial strains were used as the standard pathogenic culture 

for every multidrug-resistant antibacterial susceptibility tests in the laboratory. The 

strains were fully characterized; with their antibiogram profile included (Table 3.1). 
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Table 3.1 : List of bacterial strains tested with antibiogram profiles 

Bacterial 

species 

Laboratory code Origin Resistance to antibiotics 

Acinetobacter 

baumannii (AC) 

AC08121 

AC06127 

AC07078 

AC07095 

Clinical CIP, CFP, CRO, CXM, AMP, MEM, IMP 

CIP, CFP, CRO, CAZ, CXM, AMP 

CIP, CFP, CRO, CAZ, AMP, MEM, IMP 

CIP, CFP, CRO, CAZ, AMP, MEM, IMP 

Klebsiella 

pneumoniae 

(KB) 

KB83 

KB88 

KB92 

KB198 

Clinical AMP, PIP, ATM, STR, CFP, FEP, CHL 

AMP, PIP, ATM, KAN, SXT, CIP, TET 

AMP, PIP, ATM, KAN, STR, CRO, AMK 

AMP, PIP 

Methicillin-

resistant 

Staphylococcus 

aureus (MRSA) 

MRSA080925 

MRSA080521 

MRSA08061 

MRSA08071 

Clinical ERY, GEN, CIP, NET, OXA, SXT 

ERY, GEN, CIP, NET, TET, OXA, SXT 

ERY, GEN, CIP, NET, TET, OXA, SXT 

ERY, GEN, CIP, NET, TET, OXA, SXT 

 

Pseudomonas 

aeruginosa (PA) 

PA30 

PA4 

PA102 

PA104 

Clinical TET, SXT 

TET, CHL, SXT 

SXT 

TET, CTX, CRO 

CIP- ciprofloxacin, CFP- cefoperazine, CRO- ceftriaxone, CXM, cefuroxime, AMP- ampicillin, MEM- 

meropenem, IMP- imipenem, CAZ – ceftazidime, PIP- piperacillin, ATM- aztreonam, STR- 

streptomycin, FEP- cefepime, CHL- chloramphenicol, KAN- kanamycin, SXT- trimethoprim-

sulfomethaxazole, TET- tetracycline, AMK- amikacin, ERY- erythromycin, GEN- gentamicin, NET- 

netilmicin, OXA- oxacillin, CTX- cefotaxime 

 

 

3.1.2 Media 

3.1.2.1 Luria Bertani (LB) agar media composition 

 The weighed amount of media compositions were dissolved in 100.0 ml 

distilled water. To ensure complete dissolution, the mixture was heated with frequent 

agitation and followed by boiling for 1 minute. The mixture was then autoclaved at 

121
o
C for 15 minutes and was cooled down before use. 
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 Table 3.2 : Recipe for LB agar media 

Ingredient(s) Mass (g) and Volume (ml) 

Tryptone 1.0 

Agar powder 1.5 

Yeast extracts 0.5 

Sodium chloride (NaCl) 0.5 

Distilled water 100.0 ml 

 

3.1.2.2 Veal infusion broth media (Difco, New Jersey, USA) 

 25.0 g of the powder was suspended in 1 L of distilled water and mixed 

thoroughly. To ensure complete dissolution of the powder, the mixture was heated with 

frequent agitation and followed by boiling for 1 minute. The mixture was then 

autoclaved at 121
o
C for 15 minutes. The mixture was allowed to cool down before use. 

 

3.1.2.3 Mueller Hinton II agar (cation-adjusted) (MHII agar) (Oxoid, Hampshire, UK) 

 38.0 g of the powder was suspended in 1 L of distilled water and mixed 

thoroughly. To ensure complete dissolution of the powder, the mixture was heated with 

frequent agitation and followed by boiling for 1 minute. The mixture was then 

autoclaved at 121
o
C for 15 minutes and was allowed to cool down before use. 

 

3.1.2.4 Mueller Hinton II broth (cation-adjusted) (MHII broth) (BBL, Maryland, USA) 

 22.0 g of the powder was suspended in 1 L of distilled water and mixed 

thoroughly. To ensure complete dissolution of the powder, the mixture was heated with 

frequent agitation and followed by boiling for 1 minute. The mixture was then 

autoclaved at 121
o
C for 15 minutes and was allowed to cool down before use. 
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3.1.3 Antibiotics  

3.1.3.1 Polymyxin B sulfate disk (Oxoid, Hampshire, UK) 

 Commercial antibiotics disk with concentration of 300 units of polymyxin B 

sulfate were used as standard control for comparison towards Gram-negative bacteria in 

the disk diffusion test. 

 

3.1.3.2 Polymyxin B sulfate powder (Sigma, Missouri, USA) 

 Polymyxin B sulfate was used as the standard antibiotic control for comparison 

towards Gram-negative bacteria in the broth dilution assay. The stock solution was 

prepared using sterile distilled water as solvent and the stock was kept at 4
o
C in dark 

until use. The potency value of polymyxin B sulfate was calculated according to the 

formula outlined by the Clinical and Laboratory Standards Institute (CLSI) M7-A7 

guidelines (CLSI, 2006). The stock solution prepared had a concentration of 1,600.0 

ppm with the potency value of 790.0 μg/mg. The stock solution was subjected to ten-

fold (10X) serial dilution with sterile distilled water to the working concentration of 

16.0 ppm prior to use. 

  

3.1.3.3 Vancomycin disk (Oxoid, Hampshire, UK) 

 Commercial antibiotics disk containing 30.0 μg of vancomycin (Oxoid) were 

used as standard antibiotic control for comparison towards Gram-positive bacteria in the 

disk diffusion test. 

 

3.1.3.4 Vancomycin powder (Sigma, Missouri, USA) 

 Vancomycin (Sigma) was used as the standard antibiotic control for 

comparison towards Gram-positive bacteria in the broth dilution assay. The stock 

solution was prepared by using sterile distilled water as solvent and the stock was kept 

at 4
o
C in dark until use.  The potency value of vancomycin was calculated according to 
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the formula outlined by the Clinical and Laboratory Standards Institute (CLSI) M7-A7 

guidelines (CLSI, 2006). Stock solution was prepared at 1,600.0 ppm from vancomycin 

powder with the potency value of 1117.0 μg/mg. The stock solution prepared had a 

concentration of 1,600.0 ppm with the potency value of 1117.0 μg/mg. The stock 

solution was subjected to ten-fold (10X) serial dilution with sterile distilled water to the 

working concentration of 16.0 ppm prior to use. 

 

3.1.4 Synthetic cationic peptides 

 A total of six cationic peptides were synthetically synthesized and provided by 

the Biotechnology Company, BioValence Malaysia. The peptides were labeled as 

follows; α-RetroMAD1 (RM) (stock solution concentration of 1,500.0 ppm and 3,500.0 

ppm); RG and HP (stock solution concentration of 100.0 ppm); CT (stock solution 

concentration of 50.0 ppm); BC and AB (stock solution concentration of 150.0 ppm) 

(Table 3.3). All peptides were provided in liquid form with sterile distilled water used as 

solvent. The stock solution concentration refers to the highest concentration provided. 

The working solutions of the peptides were prepared using sterile distilled water as 

diluent. 

 

Table 3.3 : List of synthetic cationic peptides and the concentration 

  (ppm) of stock solution provided 

Cationic peptides Stock concentration (ppm) 

α-RetroMAD1 (RM) 1,500.0 and 3,500.0 

RG 100.0 

HP 100.0 

CT 50.0 

BC 150.0 

AB 150.0 
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3.1.5 Synthetic Schiff base complexes 

 Twenty-nine Schiff base complexes, which were labeled from S1 to S29 (stock 

solution concentration of 10,000.0 ppm) (Table 3.4) were synthesized and provided in 

crystalline solid with 99 % purity by Professor Dr. Hapipah from the Department of 

Chemistry, University of Malaya. The stock solution concentration refers to the highest 

concentration provided. 

 

Table 3.4 : Lists of synthetic Schiff base complexes  

  tested 

Label code Complexes 

S1 LMA Ni-N3 

S2 LMA Co-N3 

S3 LMA Zn-N3 

S4 LMA Cd-N3 

S5 2,6-DAP GH 

S6 2-AP GH 

S7 CL-AP GH 

S8 GH 

S9 Br-GH 

S10 CH3-O GH 

S11 Ind-BZH 

S12 Br-NiC 

S13 CL-NiC 

S14 Ind-NiC 

S15 CL-BZH 

S16 Br-BZH 

S17 LHA CuCl2 

S18 LHA ZnCl2 

S19 LHA 

S20 LH-BZ 

S21 LHA NiCl2 

S22 LNA CuBr2 

S23 LNA Cu-SCN 

S24 LNA ZnCl2 

S25 LNA ZnSCN 

S26 LMA ZnBr2 

S27 LMA MnSCN 

S28 LMA ZnSCN 

S29 LMA CuSCN 
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3.2 Methods 

3.2.1 Bacterial cell culture preparation 

 Bacterial cell cultures used in this work were kept and maintained as working 

stab culture and glycerol frozen culture. For short-term storage, the bacterial cultures 

were maintained as stab culture by stabbing the bacteria in LB agar tube before the 

tubes were allowed to grow overnight at 37
o
C. The stab cultures were stored at room 

temperature for a storage time of no longer than one month. For long term storage of 

culture, overnight bacterial cultures in veal infusion broth were mixed with 10 % 

glycerol, vortexed and stored at -80
o
C.  

 

 The test bacteria kept as stab cultures were inoculated onto LB agar media and 

were allowed to grow overnight at 37
o
C before being used in assays. Bacterial inoculum 

was prepared according to the procedures outlined by the Clinical and Laboratory 

Standards Institute (CLSI) M7-A7 guidelines (CLSI, 2006). Bacterial suspensions 

density were standardized to match the 0.5 McFarland turbidity standards 

(approximately 10
8
 CFU/ml) using turbidity meter (Dade Behring, California, USA). 

 

3.2.2 Antibacterial activity screening for cationic peptides 

 The antibacterial activity of the cationic peptides against selected nosocomial 

pathogens was examined using the Kirby-Bauer disk diffusion antibacterial 

susceptibility test, broth micro-dilution assay and cell inactivation assay (Figure 3.1). 
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Disk diffusion test to screen for initial screening of antibacterial activity 

 

Broth micro-dilution assay to determine the minimum inhibitory 

concentration (MIC) of peptide 

 

Cell inactivation assay (colony count to determine 

bactericidal activity of peptide) 

 
 

Figure 3.1 : General flow diagram of assays conducted for the antibacterial activity screening  

  of cationic peptides 

 

3.2.2.1 Peptide preparation 

 The peptides used in both the broth micro-dilution assay and cell inactivation 

assay were diluted using sterile distilled water as the diluent. Due to the untested 

antibacterial property of the compounds, the objective of the testing was to test the 

compounds at the highest concentration achievable. The peptide α-RetroMAD1 (RM) 

was used at its highest concentration from stock solution of 1,500.0 ppm and 3,500.0 

ppm without further dilution in the disk diffusion test. Since all peptides were provided 

in liquid form, their concentrations will be diluted when mixed with bacterial 

suspension in the assays. Hence, a two-fold dilution was chosen as it was suitable for 

the assays, in terms of concentration calculation and simpler methodology. In the broth 

micro-dilution assay, the peptide RM was diluted two-fold from stock solution of 

1,500.0 ppm to the working concentration of 750.0 ppm. In Part I of the cell inactivation 

assay, the peptide RM was diluted two-fold from stock solution of 1,500.0 ppm to the 

working concentration of 750.0 ppm. In Part II of the assay, the peptide RM was serially 

diluted two-fold from stock concentration of 1,500.0 ppm to 750.0 ppm, 375.0 ppm, 

187.5 ppm, 93.8 ppm and 46.9 ppm. In Part III of the cell inactivation assay of peptides 

RM, RG, HP, CT, BC and AB, the lowest concentration of peptide provided was CT 
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with 50.0 ppm. Accordingly, all of the peptide stock solutions with different 

concentrations were diluted and standardized to working concentration of 25.0 ppm. 

 

3.2.2.2 Kirby-Bauer disk diffusion antibacterial susceptibility test 

 Kirby-Bauer disk diffusion susceptibility tests were performed according to the 

procedures outlined by the Clinical and Laboratory Standards Institute (CLSI) M2-A9 

guidelines (CLSI, 2006). Randomly selected cultures of AC (08121 and 06127), KB (88 

and 198), MRSA (08071 and 08061) and PA (30 and 4) from stock were inoculated 

onto LB agar media and incubated for 16 hours to 18 hours at 37
o
C. Using sterile swab, 

colonies grown on the plate were picked-up and inoculated into 0.85% NaCl (w/v) 

saline solution. Cell density was standardized to 0.5 McFarland turbidity standards 

(approximately 10
8
 CFU/ml) using turbidity meter. The standardized cell suspensions 

were then swabbed onto MHII agar to obtain a bacterial lawn of inoculums. Ten 

microliters of the α-RetroMAD1 (RM) peptide (1,500.0 ppm and 3,500.0 ppm) were 

transferred onto sterile paper disks using micropipette. The disks were placed firmly 

onto the inoculated agar surface using sterile forceps. A negative control was included 

in each plate by placing a paper disk with sterile distilled water. Antibiotic disk of 

polymyxin B (300.0 unit) and vancomycin (30.0 μg) were included as positive control 

in each plate. The inhibition zones around each disk were measured after 18 hours of 

incubation at 37
o
C. 

 

3.2.2.3 Broth micro-dilution assay 

 The broth micro-dilution assays were performed according to the procedures 

outlined by the Clinical and Laboratory Standards Institute (CLSI) M7-A7 guidelines 

(CLSI, 2006), to determine the minimum inhibitory concentration (MIC) of the 

antibacterial compounds. Selected cultures of AC08121, KB88, MRSA08071 and PA30 
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were grown overnight on LB agar at 37
o
C. The bacterial inoculums were prepared by 

suspending the fresh bacterial colonies on LB agar into 1ml of 2X MHII broth and the 

concentration was adjusted to 0.5 McFarland turbidity standards. Fifty microlitre of the 

standardized bacterial suspension were then transferred into each respective well in a 

96-well microtitre plate. After that, 50.0 μl of peptide RM (1,500.0 ppm) was 

transferred into the first well (750.0 ppm) and then a two-fold dilution was performed 

for subsequent wells in the row. The content of each wells were mixed thoroughly using 

micropipette (the highest peptide concentration was 750.0 ppm, followed by 375.0 ppm, 

187.5 ppm, 93.8 ppm and 46.9 ppm). Similar procedure was also performed using 

Durham glass tubes instead of 96-wells microtitre plates. The wells without test 

compound (with bacterial inoculants) and wells without bacterial suspensions (with test 

compound) were used as positive growth control and broth sterility control, 

respectively. The commercial antibiotics powder of polymyxin B sulfate and 

vancomycin were prepared beforehand and included as positive controls. The plate was 

incubated at 37
o
C for 18 hours. After incubation, the turbidity of each well was visually 

compared to the negative control well to determine the growth end points. The MIC is 

the lowest concentration of the compound that completely inhibits the growth of 

organism in wells. After visual observation, the microtitre plate was left at room 

temperature for 30 minutes to equilibrate to room temperature (25
o
C). The cell 

suspension in the wells was thoroughly mixed using micropipette before measuring the 

optical density of cell suspension using microplate reader at the wavelength of 540.0 

nm. 

 

3.2.2.4 Cell inactivation assay 

 The cell inactivation assay was used only to evaluate the antibacterial activity 

of peptide RM. This analysis was performed in three different approaches. In the first 
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approach, four strains from each bacterial species in test were selected randomly for the 

assay. The bacterial strains selected were: MRSA (080925, 080521, 08061 and 08071); 

KB (83, 88, 92 and 198); AC (08121, 06127, 07078 and 07095); and PA (30, 4, 102 and 

104). The bacterial inoculants were prepared by suspending an approximately 10
8
 of 

cells (0.5 McFarland turbidity standards) from freshly grown colonies on LB agar plate 

in 1 ml of 2X MHII broth. Then, 50.0 μl of the inoculants were transferred into 

microcentrifuge tubes with an equal volume (50.0 μl) of 1500.0 ppm of peptide RM. 

The final concentration of peptide RM in the test was 750.0 ppm. The negative control 

was prepared by substituting peptide RM in the microcentrifuge tube with sterile saline 

solution; while tubes containing no bacterial inoculant act as broth sterility control. The 

antibiotics polymyxin B sulfate and vancomycin were prepared and included as positive 

controls. The tubes were vortexed and incubated at 37
o
C for 18 hours. After incubation, 

the number of cells in each tube was enumerated by plating 100.0 μl on LB agar and 

incubated at 37
o
C for 24 hours. The colony-forming units (CFU) were counted after 

incubation. The number of bacterial cells in each tube with 750.0 ppm of peptide RM 

was compared to the number of cells grown in MHII broth without peptide RM 

(negative control).  

 

 In the second approach, MRSA strain which shown higher sensitivity to 

peptide RM in the first approach was tested against a series of two-fold diluted peptide 

RM (ranged from 46.9 ppm to 750.0 ppm). MRSA08071 was randomly selected to be 

used in this test. In brief, 25.0 μl of bacterial inoculants in 2X MHII broth were added to 

a series of durham glass tubes containing 25.0 μl of peptide RM at different 

concentration. In each analysis, positive controls, negative control and broth sterility 

control prepared as described in the previous section were included in the test. All tubes 
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were incubated overnight at 37
o
C and the bacterial cells were enumerated by plating on 

LB agar. 

 

 In the final approach, all of the six peptides (RM, RG, HP, CT, BC and AB) 

were tested against bacterial strains of MRSA080925, KB88, AC08121 and PA30. The 

assay was conducted in Durham glass tubes following the procedure described in the 

first approach. The tested concentration of all of the 6 peptides was 25.0 ppm.  

 

3.2.3 Antibacterial activity screening for Schiff base complexes 

The antibacterial activity of the Schiff base complexes was examined using the 

Kirby-Bauer disk diffusion test, broth micro-dilution assay and time-kill assay (Figure 

3.2). 

 

 

Disk diffusion test to screen for antibacterial activity 

 

Broth micro-dilution assay to determine the minimum 

inhibitory concentration (MIC) of Schiff base complex 

 

Time-kill assay to determine the bacterial killing 

rate of Schiff base complex 

 
Figure 3.2 : General flow diagram of assays conducted for the antibacterial activity  

 screening of Schiff base complexes 

 

3.2.3.1 Schiff base complexes preparation 

 The entire Schiff complexes used in the disk diffusion test were dissolved in 

dimethyl sulfoxide (DMSO) (Seume Pharmacy, Leipzig, Germany). The Schiff base 
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complexes were tested at its highest concentration from stock solution of 10,000.0 ppm 

without further dilution in the disk diffusion test. Sterile distilled water was used as the 

solvent in the broth micro-dilution assay and time-kill assay. In the broth micro-dilution 

assay, new crystalline solids of Schiff base LMA Cd-N3 were provided and were 

dissolved in sterile distilled water to 5,000.0 ppm working solution. The prepared 

working solution was then serially diluted two-fold to 2,500.0 ppm, 1,250.0 ppm, 625.0 

ppm, 312.5 ppm, 156.3 ppm, 78.1 ppm, 39.1 ppm and 19.5 ppm. In time-kill assay, the 

same working solution of LMA Cd-N3 Schiff base complexes with concentration of 

5,000.0 ppm was used. The final concentration of the Schiff base complex in the 

experimental tube containing the mixture of the complex, broth, solvent and bacterial 

inoculum was prepared by diluting the working solution to the respective bacterial 

MICs at 1X, 2X and 4X higher MICs against the complex. 

 

3.2.3.2 Kirby-Bauer disk diffusion antibacterial susceptibility test 

 Kirby-Bauer disk diffusion susceptibility tests were performed according to the 

procedures outlined by the Clinical and Laboratory Standards Institute (CLSI) M2-A9 

guidelines (CLSI, 2006). Selected cultures of MRSA (080925 and 08071), KB (88 and 

198), AC (06127 and 08121) and PA (30 and 4) were inoculated onto LB agar and then 

incubated for 16 hours to 18 hours at 37
o
C. Using sterile swab, colonies were collected 

into screw-capped test tubes containing saline solution. Cell density was standardized to 

match those of 0.5 McFarland turbidity standards using turbidity meter. The 

standardized cell suspensions were then collected using swab and streaked onto MHII 

agar to obtain a bacterial lawn of inoculums. Twenty-four microliters of respective 

Schiff base complexes were transferred onto respective sterile paper disks using 

micropipette. The disks were placed onto agar surfaces of respective bacterial lawn of 

inoculums using sterile forceps. The concentration of complexes tested was 10,000.0 
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ppm per disk. Dimethyl Sulfoxide (DMSO) was used as solvent and was transferred 

onto disk as negative control. The solvent used in the preparation of the compounds was 

transferred onto disks as negative control. The commercial antibiotics disk of 

polymyxin B sulfate (300.0 units) and vancomycin (30.0 μg) were included as positive 

controls. Inhibition zones were observed after 18 hours of incubation of the plates at 

37
o
C. 

 

3.2.3.3 Broth micro-dilution assay  

 The broth micro-dilution assays were performed according to the procedures 

outlined by the Clinical and Laboratory Standards Institute (CLSI) M7-A7 guidelines 

(CLSI, 2006), to determine the MIC of the complexes. Selected cultures of AC08121, 

KB88 and MRSA080925 were inoculated onto LB agar and were then incubated for 16 

to 18 hours at 37
o
C. In a 96-wells microtitre plate, 100.0 μl of the Schiff base complex 

LMA Cd-N3 from the prepared working solution with concentration of 5,000.0 ppm was 

transferred into the first well before being serially diluted along the wells by two-fold 

using sterile distilled water. Using sterile swab, colonies were collected into screw-

capped test tubes containing 1ml of 2X (two-fold greater concentration of media) MHII 

broth. Turbidity meter was used to standardized cell density to match the 0.5 McFarland 

turbidity standards. Fifty microliters of the standardized cell suspensions were 

transferred into respective wells. Contents of wells were mixed thoroughly using 

micropipette (highest peptide concentration after previous serial dilutions with sterile 

distilled water and cell suspension was 2,500.0 ppm, 1,250.0 ppm, 625.0 ppm, 312.5 

ppm, 156.3 ppm, 78.1 ppm, 39.1 ppm and 19.5 ppm). Wells containing bacterial 

suspensions and wells without bacterial suspensions and compound were used as 

positive growth and broth sterility control, respectively. The commercial antibiotics 

powder of polymyxin B sulfate and vancomycin were prepared beforehand and included 
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as positive controls. The plate was incubated at 37
o
C for 18 hours. After incubation, the 

turbidity of wells containing the compound was visually compared to the turbidity in 

wells without compound to determine the growth end points. The MIC is the lowest 

concentration of the compound that completely inhibits the growth of organism in wells. 

 

3.2.3.4 Time-kill assay 

 Time-kill assay was performed according to the procedures outlined by the 

Clinical and Laboratory Standards Institute (CLSI) M26-A guidelines (CLSI 1999). The 

compound tested was the Schiff base metal complex; LMA Cd-N3 against selected 

susceptible strains of MRSA080925, KB88 and AC08121. Cultures from stock were 

inoculated onto LB agar media to obtain pure culture. Plates were then incubated for 16 

hours to 18 hours at 37
o
C. Using a sterile swab, single colonies were picked into tube of 

fresh MHII broth before being incubated for 18 hours at 37
o
C. Fresh 4.8 ml MHII broth 

was inoculated with 0.2 ml of overnight culture at the ratio of 1 to 25. The tube was 

incubated for 2 hours in rotary incubator at 37
o
C to reach the exponential (log) growth 

phase. Turbidity meter was then used to standardize the cell suspension in MHII broth 

to 0.5 McFarland turbidity standards. The standardized cell suspension was added to 2X 

MHII broth containing the Schiff base complex at one (1X), two (2X) and four times 

(4X) MICs of each complex to achieve an initial cell inoculum of 5 x 10
5
 CFU/ml (low 

inoculum). The assay was conducted in sterile polystyrene tubes. The antibiotics 

polymyxin B sulfate and vancomycin were prepared and tested at concentration of half 

(0.5X) MICs, as positive controls. Cell suspensions without compounds were included 

as growth control for each respective bacterial strain. The cell suspensions were 

incubated in rotary incubator at 37
o
C. During incubation, aliquots of cell suspension 

were removed at time intervals of 0, 2, 4, 8 and 12 hours and a series of dilutions were 

made. The diluted cell suspension were plated onto LB agar media and incubated at 
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37
o
C for 24 hours. The colony-forming units (CFU) were counted after incubation. 

Bacterial killing kinetic curves were plotted as the value of log10 CFU/ml against time 

of incubation (hours). 

 

3.3 Data analysis 

 Bacterial cell growth populations were converted to the value of log10 CFU/ml. 

Mean of two replicates were reported and data analysis with standard deviation for 

time-kill kinetic was conducted using the statistical software, IBM SPSS Statistics 

Version 20.0.0. 
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CHAPTER 4 

 

RESULTS 

 

4.1 Antibacterial activity of cationic peptides 

4.1.1 Kirby-Bauer disk diffusion antibacterial susceptibility test 

 From the disk diffusion susceptibility test, the clear zones around paper disks 

can be measured to indicate inhibition of growth by the antibacterial compounds tested. 

However, in the initial screening assay, no inhibition zones were observed in all sixteen 

strains of bacteria after incubation overnight with 1,500.0 ppm and 3,500.0 ppm of the 

cationic peptide α-RetroMAD1 (RM) (results were not shown). 

 

4.1.2 Minimum inhibitory concentration (MIC) determination 

 In the broth micro-dilution assay, the treatments of bacterial suspensions with 

the peptide RM in the 96-wells microtitre plate showed the presence of cell pellets at the 

bottom of all wells after overnight incubation; except for the broth sterility control. No 

growth inhibition was observed in all bacterial strains tested. From the optical density 

measurements, the peptide does not show any signs of inhibition against all of the tested 

bacteria as compared to the positive growth control (without added peptide) (results 

were not shown). However, we have observed higher MRSA cell density in the tubes 

with peptide concentration of 46.9 ppm, 93.8 ppm and 187.5 ppm relative to the positive 

growth control (Figure 4.1).   
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Figure 4.1 : Relative growth rate of bacterial strains tested in different concentrations of peptide α-

RetroMAD1 (RM) at 750.0 ppm, 375.0 ppm, 187.5 ppm, 93.8 ppm and 46.9 ppm (The 

percentages of relative growth rate were measured with microplate reader at wavelength of 

540 nm and calculated by taking into account of the optical density readings of cell 

suspensions containing peptide against those without peptide). Values above dotted lines 

represents increased growth rate and vice versa for values below the dotted lines for 

respective bacterial strains 

 

4.1.3 Cell inactivation assay 

 After initial screenings with the peptide RM, no inhibition zones could be 

obtained from disk diffusion test and no visible changes observed in MIC determination 

in broth micro-dilution assay. Therefore, cell inactivation assay in liquid media was 

conducted with selected bacterial strains of MRSA (080925, 080521, 08061 and 08071), 

KB (83, 88, 92 and 198), AC (08121, 06127, 07078 and 07095) and PA (30, 4, 102 and 

104) against peptide RM. In the first approach (Table 4.1 and Figure 4.2), results 

showed that the colony counts (CFU/ml) in the tubes with 750.0 ppm of peptide RM 

were lower than the tubes without peptide (positive growth control). The reduction in 

CFU count showed that the compound exert very little antibacterial activities towards 

the bacterial strains tested. 
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Table 4.1 : Antibacterial activities of the peptide α-RetroMAD1 (RM) tested at 750.0 

ppm in cell inactivation assay 

 

a 

Experimental 

tube (with 

peptide) 

[CFU/ml] 

b Control 

(without 

peptide) 

[CFU/ml] 

c Growth 

reduction 

[CFU/ml] 

d 

Experimental 

tube (with 

peptide) 

[log CFU/ml] 

e Control 

(without 

peptide) 

[log 

CFU/ml] 

f Log 

reduction 

[log 

CFU/ml] 

g Log 

growth 

inhibition 

(%) [log 

CFU/ml] 

MRSA080925 5.5x107 1.6x109 1.5x109 7.7 9.2 1.5 15.9 

MRSA080521 1.0x108 9.3x108 8.3x108 8.0 9.0 1.0 10.8 

MRSA08061 6.5x107 2.9x109 2.9x109 7.8 9.5 1.7 17.5 

MRSA08071 3.0x107 2.4x109 2.4x109 7.5 9.4 1.9 20.4 

MRSA08071 

(Vancomycin) 
5.0x107 8.8x108 8.3x108 7.7 8.9 1.2 13.9 

KB83 3.6x108 2.5x109 2.1x109 8.6 9.4 0.8 8.9 

KB88 7.5x108 2.8x109 2.1x109 8.9 9.4 0.6 6.1 

KB92 2.4x108 6.3x108 3.9x108 8.4 8.8 0.4 4.8 

KB198 3.5x108 2.6x109 2.2x109 8.5 9.4 0.9 9.3 

KB83 

(Polymyxin B) 
7.2x108 6.2x109 5.4x109 8.9 9.8 0.9 9.5 

AC08121 4.4x108 1.7x109 1.3x109 8.6 9.2 0.6 6.4 

AC06127 3.3x108 1.2x109 8.9x108 8.5 9.1 0.6 6.2 

AC07078 1.8x108 8.7x109 6.9x109 8.2 8.9 0.7 7.8 

AC07095 2.9x108 1.3x109 1.1x109 8.5 9.1 0.7 7.3 

AC06127 

(Polymyxin B) 
1.1x109 2.2x109 1.1x109 9.0 9.3 0.3 3.3 

PA30 3.2x108 1.8x109 1.4x109 8.5 9.2 0.7 8.0 

PA4 2.7x109 4.1x109 1.4x109 9.4 9.6 0.2 1.9 

PA102 5.8x108 1.1x109 5.4x108 8.8 9.0 0.3 3.2 

PA104 4.5x107 1.8x108 1.4x108 7.7 8.3 0.6 7.3 

MRSA denotes methicillin-resistant Staphylococcus aureus; KB denotes Klebsiella pneumoniae; PA 

denotes Pseudomonas aeruginosa; AC denotes Acinetobacter baumannii. Vancomycin and polymyxin B 

were included as antibiotic control at concentration of respective bacterial MIC; 4.0 ppm for MRSA and 

2.0 ppm for KB and AC 
a 
Average CFU readings per ml (cell suspension with peptide) 

b
 Average CFU readings per ml (control, cell suspension without peptide) 

c
 Difference between 

b
 control and 

a
 experimental tubes 

d 
Log10 (

a 
experimental tube) 

e 
Log10 (

b 
control) 

f 
Difference between log10 readings between  

e
 control and 

d 
experimental tube 

g 
(

f 
Log reduction/ 

e
 control) x 100% 
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Figure 4.2 : Bacterial growth inhibition of peptide α-RetroMAD1 (RM) tested at 750.0 ppm in cell 

inactivation assay against different strains of Methicillin-resistant Staphylococus aureus 

(MRSA), Klebsiella pneumoniae (KB), Pseudomonas aeruginosa (PA) and Acinetobacter 

baumannii (AC) 

 

 Further analysis in the second approach revealed a surprising result that at the 

concentration of lower than 375.0 ppm of peptide RM; the peptide seems to support the 

growth of MRSA. The result showed an increase in the differences of bacterial density 

in the tube with peptide with the bacterial density in the tube without peptide from 0.04 

to 0.28 log10 CFU/ml when the concentration of peptide RM dropped from 375.0 ppm 

to 46.9 ppm (Table 4.2). In the third approach of cell inactivation assay, the cationic 

peptides RG, HP, CT, BC, AB and RM at 25.0 ppm were tested against a set of selected 

bacterial strains. The reduction in CFU count showed that the remaining peptides also 

exert some antibacterial activities to a certain degree towards the bacterial strains tested. 

When compared among the rest of the peptides, strains KB88 and AC08121 were more 

susceptible to peptide CT; whereas peptide HP was shown to be more effective against 

strain PA30. Based on the results among all of the peptides tested, the antibacterial 

activity of peptide RG and RM were less effective against the tested bacterial strains, 

with low percentages of growth inhibition in the range of 0.3 to 13.3 % log10 CFU/ml. 
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As for peptide RM, it has poorest antibacterial activity among all of the other 

antibacterial peptides tested at low concentration of 25.0 ppm (Table 4.3). 

 

Table 4.2 : Growth induction effects of the α-RetroMAD1 (RM) tested at different 

concentrations in cell inactivation assay for strain MRSA08071 

Concentrations 

of peptide (ppm) 

a With 

peptide 

[CFU/ml] 

b Control 

(without 

peptide) 

[CFU/ml] 

c Growth 

induction 

[CFU/ml] 

d With 

peptide 

[log 

CFU/ml] 

e Control 

(without 

peptide) 

[log 

CFU/ml] 

f Log 

increment 

[log 

CFU/ml] 

g Log 

growth 

induction 

(%) [log 

CFU/ml] 

46.9 8.25x10
8 

4.30x10
8
 

3.95x10
8
 8.9 

8.6 

0.28 3.3 

93.8 6.95x10
8
 2.65x10

8
 8.8 0.21 2.4 

187.5 7.45x10
8
 3.15x10

8
 8.9 0.24 2.8 

375.0 4.70x10
8
 4.00x10

7
 8.7 0.04 0.4 

750.0 7.85x10
7
 - - - - 

Growth inductions instead of growth reductions were shown as hyphen (-)
 

a 
Average CFU readings per ml (cell suspension with peptide) 

b
 Average CFU readings per ml (control, cell suspension without peptide) 

c
 Difference between 

a
 experimental tubes and 

b
 control 

d 
Log10 (

a 
experimental tube) 

e 
Log10 (

b 
control) 

f 
Difference between log10 readings between 

e 
experimental tube and 

d
 control 

g 
(

f 
Log increment / 

e
 control) x 100% 
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Table 4.3 : Antibacterial activities of peptides (RG, HP, CT, BC, AB and RM) tested at 

25.0 ppm in cell inactivation assay 

Bacterial 

strain 
Compounds 

a With 

peptide 

(CFU/ml) 

b Control 

(CFU/ml) 

c Growth 

reduction 

(CFU/ml) 

d With 

peptide 

log10 

(CFU/ml) 

e Control 

log10 

(CFU/ml) 

f Log10 

reduction 

(CFU/ml) 

g Log10 

growth 

inhibition 

(%) 

(CFU/ml) 

 RG 6.15x10
8 

3.90x10
8
 - 8.8 8.6 - - 

 HP 8.30x10
8
 3.90x10

8
 - 8.9 8.6 - - 

MRSA CT 9.05x10
8
 8.05x10

8
 - 9.0 8.9 - - 

080925 BC 1.49x10
9
 2.70x10

8
 - 9.2 8.4 - - 

 AB 2.85x10
8
 2.70x10

8
 - 8.5 8.4 - - 

 RM 1.39x10
9
 1.48x10

9
 9.00x10

7
 9.1 9.2 0.03 0.3 

 RG 2.28x10
9
 1.04x10

9
 - 9.4 9.0 - - 

 HP 1.50x10
9
 1.04x10

9
 - 9.2 9.0 - - 

 CT 9.00x10
8
 3.55x10

9
 2.65x10

9
 9.0 9.6 0.6 6.2 

KB88 BC 1.43x10
9
 3.04x10

9
 1.61x10

9
 9.2 9.5 0.3 3.5 

 AB 1.21x10
9
 3.04x10

9
 1.83x10

9
 9.1 9.5 0.4 4.2 

 RM 1.57x10
9
 2.73x10

9
 1.16x10

9
 9.2 9.4 0.2 2.5 

 RG 5.50x10
8
 3.58x10

9
 3.03x10

9
 8.7 9.6 0.8 8.5 

 HP 3.00x10
8
 3.58x10

9
 3.28x10

9
 8.5 9.6 1.1 11.3 

AC CT 1.80x10
8
 3.18x10

9
 3.00x10

9
 8.3 9.5 1.2 13.1 

08121 BC 3.50x10
8
 2.96x10

9
 2.61x10

9
 8.5 9.5 0.9 9.8 

 AB 3.10x10
8
 2.96x10

9
 2.65x10

9
 8.5 9.5 1.0 10.3 

 RM 3.16x10
9
 3.62x10

9
 4.60x10

8
 9.5 9.6 0.1 0.6 

 RG 3.70x10
9
 4.00x10

9
 3.00x10

8
 9.6 9.6 0.0 0.4 

 HP 2.01x10
9
 4.00x10

9
 1.99x10

9
 9.3 9.6 0.3 3.1 

 CT 1.45x10
9
 2.00x10

9
 5.50x10

8
 9.2 9.3 0.1 1.5 

PA30 BC 1.53x10
9
 2.00x10

9
 4.70x10

8
 9.2 9.3 0.1 1.3 

 AB 1.80x10
9
 2.00x10

9
 2.00x10

8
 9.3 9.3 0.0 0.5 

 RM 2.16x10
9
 1.15x10

9
 - 9.3 9.1 - - 

Growth inductions instead of growth reductions were shown as hyphen (-). All cationic peptides were 

standardized to 25.0 ppm 
a 
Average CFU readings per ml (cell suspension with peptide) 

b
 Average CFU readings per ml (control, cell suspension without peptide) 

c
 Difference between 

b
 control and 

a
 experimental tubes 

d 
Log10 (

a 
experimental tube) 

e 
Log10 (

b 
control) 

f 
Difference between log10 readings between  

e
 control and 

d 
experimental tube 

g 
(

f 
Log reduction/ 

e
 control) x 100% 

 

4.2 Antibacterial activity of Schiff base complexes 

4.2.1 Kirby-Bauer disk diffusion antibacterial susceptibility test 

 Distinct clear zones indicating growth inhibition were observed for the LMA 

complexes series (S1, S2, S3 and S4) containing metal elements of nickel (Ni), cobalt 

(Co), zinc (Zn) and cadmium (Cd) (Table 4.4). KB, MRSA and AC were found to be 

susceptible to those complexes tested. No inhibition zone was observed for PA for all of 

the compounds tested. Based on the results, the complex LMA Cd-N3 (S4) was more 

efficient than the other compounds tested as it inhibited the growth of six bacterial 
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strains tested including strains KB88, KB198, MRSA080925, MRSA08071, AC06127 

and AC08121, resulting in clear inhibition zones around the disc. Based on the 

screening result, the most active compound, S4 was chosen for further testing of MIC 

determination and time-killing kinetic. 

 

Table 4.4 : Zones of inhibition for Schiff base complexes 
  Zones of inhibition (value to the nearest mm) 

  Gram-positive Gram-negative 

Code Compound MRSA 

080925 

MRSA 

08071 

KB 

88 

KB 

198 

AC 

06127 

AC 

08121 

PA 

30 

PA 

4 

Ctrl 0.85% saline 6 6 6 6 6 6 6 6 

Ctrl DMSO 6 6 6 6 6 6 6 6 

Ctrl Polymyxin B - - 15 15 16 15 - - 

Ctrl Vancomycin 16 17 - - - - - - 

S1 LMA Ni-N3 6 9 10 12 6 6 6 6 

S2 LMA Co-N3 6 9 9 11 6 6 6 6 

S3 LMA Zn-N3 6 8 8 10 6 6 6 6 

S4 LMA Cd-N3 20 10 10 12 14 12 6 6 

S5 2,6-DAP GH 7 6 6 6 6 6 6 6 

S6 2-AP GH 6 6 6 6 6 6 6 6 

S7 CL-AP GH 11 6 6 6 6 7 6 6 

S8 GH 6 6 6 6 6 8 7 6 

S9 Br-GH 10 6 6 6 6 7 6 6 

S10 CH3-O GH 6 6 6 6 6 7 6 6 

S11 Ind-BZH 6 6 6 6 6 6 6 6 

S12 Br-NiC 6 6 6 6 6 6 6 6 

S13 CL-NiC 6 6 6 6 6 6 6 6 

S14 Ind-NiC 6 6 6 6 6 7 6 6 

S15 CL-BZH 11 6 6 6 6 7 6 6 

S16 Br-BZH 10 6 6 6 6 7 6 6 

S17 LHA CuCl2 6 6 6 6 6 6 6 6 

S18 LHA ZnCl2 7 6 6 6 6 6 6 6 

S19 LHA 6 6 6 6 6 7 6 6 

S20 LH-BZ 6 6 6 6 6 8 6 6 

S21 LHA NiCl2 6 6 6 6 6 6 6 6 

S22 LNA CuBr2 6 6 6 6 6 6 6 6 

S23 LNA Cu-SCN 6 6 6 6 6 6 6 6 

S24 LNA ZnCl2 7 6 6 6 6 6 6 6 

S25 LNA ZnSCN 6 6 6 6 6 6 6 6 

S26 LMA ZnBr2 6 6 6 6 6 6 6 6 

S27 LMA MnSCN 6 6 6 6 6 6 6 6 

S28 LMA ZnSCN 6 6 6 6 6 6 6 6 

S29 LMA CuSCN 6 6 6 6 6 6 6 6 

Readings of 6 mm represents disk size; no inhibition zone observed. All Schiff base complexes were 

tested at 10,000.0 ppm. Disc concentration of polymyxin B tested was 300.0 units; concentration of 

vancomycin was 30.0 μg. Polymyxin B and vancomycin were not tested on P. aeruginosa; represented by 

hyphen (-) 

 

  



37 

 

4.2.2 Minimum inhibitory concentration (MIC) determination 

 In the broth micro-dilution assay, the MICs of S4 against strains MRSA080925, 

KB88 and AC08121 were shown in Table 9. The MIC of S4 against AC08121 was the 

lowest among the three tested bacterial strain (156.3 ppm); while the highest MIC was 

recorded for strain MRSA080925 (625.0 ppm) (Table 4.5). 

 

Table 4.5 : Minimum inhibitory concentration (MIC) of antibacterial compounds tested 

in broth micro-dilution assay 

Bacterial strains 

Minimum inhibitory concentration (MIC) (ppm) 

Antibacterial compounds 

LMA Cd-N3 Vancomycin Polymyxin B 

MRSA080925 625.0 4.0 - 

KB88 312.5 - 2.0 

AC08121 156.3 - 2.0 

Hyphen (-) represent antibiotics not tested against respective strains 

 

4.2.3 Time-kill assay 

 The bacterial killing kinetic of S4 against strains MRSA080925, KB88 and 

AC08121 was shown in Figures 7, 8 and 9. As defined by the Clinical and Laboratory 

Standards Institute (CLSI) M26-A guidelines (CLSI, 1999), a decrease of ≥ 3-log10 

CFU/ml from time-kill curves indicates the 99.9% of killing rate, the compound is 

considered to have bactericidal activity towards the bacterial cells tested. The complex 

S4 exhibited an insignificant bactericidal activity toward KB88 only after 8 hours of 

treatment at 1X MIC concentration (Figure 4.3). No complete killing was observed even 

after 24 hours of treatment with 1X MIC of complex S4. At a higher concentration at 2X 

MIC and 4X MIC, bactericidal activity of the complex can be observed after 4 hours 

and 2 hours of treatment, respectively. For strain MRSA080925, the complex tested at 

concentration of 1X MIC resulted in complete killing of bacterial cells after 4 hours of 

treatment (Figure 4.4). At higher concentrations of 2X and 4X MIC, complete killing of 

cells was achieved after 2 hours of treatment. No regrowth was observed for the 

complex at 1X, 2X and 4X MIC when tested against strain MRSA080925. As for strain 
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AC08121, bactericidal activity can be observed after 4 hours of treatment with 1X MIC 

and after 2 hours of treatment with 2X MIC (Figure 4.5). Complete killing was observed 

after 2 hours, 4 hours and 8 hours of treatments for the concentrations of 4X, 2X and 1X 

MIC, respectively. 

 

 As for the antibiotics treatment, both the polymyxin B and vancomycin were 

tested in time-kill assay at 0.5X concentration of respective bacterial MIC to the 

antibiotics. Complete killing of cells was achieved after 2 hours of exposure to 

polymyxin B for both strains AC08121 and KB88, whereas the bactericidal activity of 

vancomycin against strain MRSA080925 was slower and bactericidal activity was 

observed after 4 hours of treatment. Though, complete killing of MRSA was achieved 

after 12 hours of treatment with vancomycin. However, in the treatment of polymyxin B 

at 1.0 ppm against strain KB88, regrowth of cells occurred after 4 hours of treatment 

and continued to grow until 24 hours (Figure 4.3). 
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Figure 4.3 : Time-kill curves for K. pneumoniae (strain 88) against metal complex LMA Cd-N3. 

Concentrations of compounds tested were expressed as multiples of MIC. ‘LMA’ 

represents the metal complex LMA Cd-N3 at concentration of 1X (312.5 ppm), 2X (625.0 

ppm) and 4X (1250.0 ppm). The antibiotic polymyxin B was tested at concentration of 

0.5X (1.0 ppm) 
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Figure 4.4 : Time-kill curves for MRSA (strain 080925) against metal complex LMA Cd-N3. 

Concentrations of compounds tested were expressed as multiples of MIC. ‘LMA’ 

represents the metal complex LMA Cd-N3 at concentration of 1X (625.0 ppm), 2X (1250.0 

ppm) and 4X (2500.0 ppm). The antibiotic vancomycin was tested at concentration of 0.5X 

(2.0 ppm) 
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Figure 4.5 : Time-kill curves for A. baumannii (strain 08121) against metal complex LMA Cd-N3. 

Concentrations of compounds tested were expressed as multiples of MIC. ‘LMA’ 

represents the metal complex LMA Cd-N3 at concentration of 1X (156.3 ppm), 2X (312.5 

ppm) and 4X (625.0 ppm). The antibiotic polymyxin B was tested at concentration of 0.5X 

(1.0 ppm) 
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CHAPTER 5 

 

DISCUSSION 

 

5.1 Antibacterial activity of cationic peptides against selected multidrug-

resistant nosocomial bacteria 

 Discovery of antimicrobial cationic peptides, such as polymyxin B has churned 

up many interests worldwide on continuous search for new antimicrobial cationic 

peptides. To date, more than 600 cationic peptides have been discovered in virtually all 

organisms from microorganisms to man. These cationic peptides have a broad spectrum 

of antimicrobial activity including activity against bacteria, eukaryotic parasites, 

viruses, and fungi (Hancock, 2001). In this study, six potential antimicrobial cationic 

peptides were designed and synthesized by a local biotechnology company. The 

structure and composition of these cationic peptides provided by the company were 

unknown, as well as the antimicrobial activity and antimicrobial mechanism. Due to the 

limitation in the volume of the cationic peptide provided, only one of the peptide, α-

RetroMAD1 (RM), was selected for methodology optimization. Initially, Kirby-Bauer 

disk diffusion test was used to screen for the antibacterial activity. However, no activity 

could be detected with this method. No clear inhibition zone could be detected around 

the disc impregnated with peptide RM. This could be due to (i) low or no antibacterial 

activity of the peptide; or (ii) the peptide was unable to diffuse through the agar media. 

The agar media used in the study was prepared according to Clinical and Laboratory 

Standards Institute (CLSI) M2-A9 guidelines (CLSI, 2006). However, the peptides were 

unable to produce any inhibition zones even when tested against all bacterial strains at a 

high concentration of 3,500.0 ppm (results were not shown). Hence, based on the results 

obtained from the screening, it was safe to make assumption that the size of peptide 



43 

 

molecules could be larger than the matrix size of agar used. Therefore, to confirm the 

result, broth micro-dilution method was then adopted. Based on most of the studies on 

antibacterial activity of cationic peptides published (Hancock and Lehrer, 1998; 

Friedrich et al., 2000; Hancock and Rozek, 2002), broth micro-dilution method was 

proved to be efficient and suitable for the determination of the antibacterial property of 

cationic peptides. Nonetheless, even at the highest concentration (750.0 ppm) tested, the 

peptide RM did not show any substantial capability to inhibit the growth of the 

multidrug-resistant bacterial pathogens tested (Table 4.1). However, the cell inactivation 

assay employed in this work captured some antibacterial activity of peptides RG, HP, 

CT, BC and AB when tested at 25.0 ppm toward the multidrug-resistant Acinetobacter 

baumanii (strain AC08121) (Table 4.3) and peptide RM against MRSA and multidrug-

resistant Klebsiella pneumoniae tested (Table 4.1, Figure 4.2). The log reduction of 

strain AC08121 with 25.0 ppm of the peptides ranged from 0.8 to 1.2 log10 CFU/ml 

(Table 4.3). It is believed that if the bacterial strains were to be challenged with higher 

concentrations of the peptides, the antibacterial activity of these peptides will be more 

significant. 

 

 According to the work of Hancock and Rozek (2002), virtually all cationic 

peptides cause severe membrane perturbations in bacteria if high enough concentrations 

are administered. Complete and rapid disruption of membrane potential and all 

macromolecular synthesis occur at concentrations of 10-fold higher than the minimum 

bactericidal concentration (MBC); at the MBC concentration, only macromolecular 

synthesis is inhibited (Hancock and Rozek, 2002).  At the concentration of 750.0 ppm, 

the inhibitory effect of peptide RM against MRSA (log10 reduction of 1.0 to 1.9 log10 

CFU/ml); multidrug-resistant Acinetobacter baumannii (log10 reduction of 0.6 to 0.7 

log10 CFU/ml) and multidrug-resistant Klebsiella pneumoniae (log10 reduction 0.4 to 0.9 
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log10 CFU/ml) were comparable to the antibacterial effect of Vancomycin (1.2 log10 

reduction), Polymyxin B (0.3 log10 reduction), and Polymyxin B (0.9 log10 reduction), 

respectively (Table 4.1). However, when the peptide was tested at a low concentration 

of 46.9 ppm, the peptide RM induce higher bacterial growth in MRSA where it showed 

an increase of CFU count of bacterial suspension with peptide when compared to 

bacterial suspension without peptide (Table 4.2). Based on the results, it would appear 

that at lower concentration, the peptide RM tested in the study were able to be utilized 

by the bacteria as an additional or alternative source of nutrient that support an increase 

in biomass. However, further studies need to be conducted in order to verify the 

assumptions made. 

 

 As for the mechanism of action of the cationic peptides, considerable studies 

had been carried out to validate the attraction of positively-charged peptide towards the 

negatively-charged bacterial cell membrane, where most of the morphology of bacterial 

cells viewed under scanning electron microscope (SEM)/transmission electron 

microscope (TEM) (Shimoda et al., 1995; Friedrich et al., 2000; Hartmann et al., 2010) 

and atomic force microscope (AFM) (Li et al., 2007) revealed the damaging effect of 

the peptides toward the cell membranes of bacteria. 

 

5.2 Antibacterial activity of Schiff base complexes against selected multidrug-

resistant nosocomial bacteria 

 Up to date, published data on bacterial killing rate (time-kill assay) of Schiff 

base metal complexes toward multidrug-resistant bacteria is limited. In this work, the 

antibacterial activity of 29 synthetic Schiff base compounds were screened using disk 

diffusion and broth micro-dilution assays; while the bacterial killing kinetic was 

determined with time-kill assay. From the time-kill assay (Figure 4.3, Figure 4.4 and 
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Figure 4.5), the bactericidal activity of cadmium-containing Schiff base complex was 

shown to be more effective against MRSA, followed by multidrug-resistant A. 

baumannii and K. pneumoniae. The order of susceptibility to the complex was also 

supported by the results of disk diffusion test (Table 4.4). The findings indicated that the 

bactericidal activity of Schiff base cadmium complex (LMA Cd-N3) was more effective 

against Gram-positive bacteria. Gram-positive bacteria were described to be more 

sensitive to metals when compared to Gram-negative bacteria (Wang et al., 2010). The 

enhanced antimicrobial activity of metal complexes compared to unbound metallic ions 

and ligands was extensively studied (Mohamed et al., 2011; Vinuelas-Zahinos et al., 

2011; Sabik et al., 2012; Aiyelabola et al., 2012; Sunitha et al., 2012). Based on 

chelation theory, the enhancement is due to the increased lipophilic nature of the metal 

complex, achieved by the overlapping of ligand orbital with metal orbital in the 

complex, which causes partial sharing of the positive charge of metals with the donor 

groups on ligands. This coordination chemistry reduces the polarity of metal and thus 

increasing the lipophilic nature of the metal to the lipid layer of bacterial cell membrane 

(Figure 5.1) (Nishat et al., 2011; Sabik et al., 2012; Sunitha et al., 2012). 

 

 
 

Figure 5.1: Chemical structure of Schiff base cadmium complex  

(LMA Cd-N3); Aqua{2-morpholino-N-[1-(2-pyridyl)-ethylidene] 

ethanamine-k
3
N,N’,N”}-bis(azido-k

N
) 

cadmium (II) 
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 In agreement with studies done by Vinuelas-Zahinos and colleagues (2011), 

among the complexes of various metals, cadmium compounds were found to be the 

most active compound against Bacillus subtilis and Staphylococcus epidermidis. The 

heavy metal cadmium, was described to disrupt normal cellular processes of living 

organisms by binding to different cellular target sites; by displacing zinc in some of the 

zinc-containing essential enzymes and inhibits activity of the enzymes (Wang et al., 

2010) and the damaging effect towards membrane structure when cadmium binds to 

phosphate ligands present on the membrane (Vig et al., 2003). Due to the highly 

negative-charged LPS on the cell walls of Gram-negative bacteria and the opposite 

charges of both the cationic metal ions and cationic peptides, metal ions will be 

adsorbed to bacterial cell surfaces through passive biosorption (Chakravarty et al., 

2012). Likewise, the adsorption of positively-charged cadmium to the cell wall of 

Gram-positive bacteria, Bacillus subtilis was also reported (Boyanov et al., 2003). 

 

 Utilizing the antibiotic polymyxin B in time-kill assay, regrowth of K. 

pneumoniae strains after 4 hours signifies the loss of bactericidal activity of the 

antibiotics beyond 4 hours of treatment. In agreement with similar time-kill studies done 

by Pournaras and colleagues (2001), the treatments of clinical strains of K. pneumoniae 

with polymyxin E (colistin) also showed regrowth after 8 hours of exposure to the 

antibiotics. Polymyxins were a class of decapeptide antibiotics that have antimicrobial 

spectrum against Gram-negative bacteria such as K. pneumoniae and A. baumannii. Out 

of the five polymyxins available (A, B, C, D and E), only polymyxin B and polymyxin 

E were administered in treatments of infectious diseases in clinical settings (Falagas & 

Michalopoulos, 2006). The incidences of cellular regrowth following exposure to 

various antibiotics were also common among the studies of bacterial killing rate in time-



47 

 

kill assays. Some of the regrowth were observed in the studies of clinical strains 

bacteria from using the antibiotics piperacillin and cefepime against K. pneumoniae 

(Burgess & Hall, 2004); amikacin and ceftobiprole against P. aeruginosa (Kresken et 

al., 2011) and daptomycin against vancomycin-resistant Enterococcus faecium 

(Sakoulas et al., 2012). 

 

 In the time-kill assay, the effect of antibiotic carryover was controlled by 

dilutions of broth aliquots before plating. Besides, as described in CLSI M26-A 

guidelines (CLSI, 1999), the effect of antibiotic carryover occurs mainly at higher 

concentrations (>16X MIC) of the antibacterial compounds tested. Due to the 

ineffectiveness of most of the antibacterial compounds tested against the strains of P. 

aeruginosa, the bacteria were excluded from the time-kill assay. Likewise, other novel 

thiosemicarbazone-derived Schiff base metal complexes of cobalt (Co), nickel (Ni), zinc 

(Zn) and cadmium (Cd) were also found to have no antimicrobial activity against P. 

aeruginosa in studies done by Vinuelas-Zahinos and colleagues (2011). 

 

5.3 Cadmium toxicity and bacterial resistance to cadmium 

 The element cadmium can be found in the environment. Human exposure to 

cadmium generally occurs through food sources such as vegetables and cereals that 

were grown in polluted soils, or seafood from polluted water, inhalation of polluted air 

from either industrial processes or tobacco smoking; and polluted drinking-water 

(Satarug et al., 2000). Accumulations of cadmium in human body take place mainly in 

the kidney. High amounts of accumulated cadmium lead to renal dysfuntion, which 

resulted in increased excretion of biologically important proteins of low molecular 

weight such as β2-microglobulin and retinol-binding protein in the urine (Buchet et al., 

1990). Renal dysfunction is more prevalent among those with diabetics; deficiency in 
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vitamin C, Ca, P and Zn; and women with reduced body Fe. Other diseases include the 

formation of kidney stones and disruption of calcium metabolism (Satarug et al., 2000). 

The Joint Food and Agriculture Organization of the United Nations (FAO)/WHO 

Expert Committee on Food Additives (JECFA) had established a Provisional Tolerable 

Monthly Intake (PTMI) for cadmium with 25 μg/kg of human body weight, 3 μg/L of 

drinking-water and an annual average of 5 ng/m
3
 of air inhalation exposure (WHO, 

2010). 

 

 Resistance to heavy metal ions such as arsenic, mercury and cadmium had been 

reported in the hospital isolates of Staphylococcus aureus (Chopra, 1975; Witte et al., 

1986). The resistance to cadmium is due to the presence of two genes on the resistance 

(R) plasmid; cadA and cadB genes. The cadmium resistance ability is primarily 

governed by the cadA gene which offers high level of resistance while the cadB gene 

provides resistance to a lesser extend (Weiss et al., 1978). The cadA gene is located on 

mostly plasmid that encodes for penicillinase production (Chopra, 1975). Up to date, 

there are limited published data regarding the resistance to antibacterial Schiff base 

metal complexes. Despite the bacterial innate or acquired resistance to heavy metals, the 

Schiff base Cd complex showed comparable results to the commercial antibiotics used 

for the treatments of diseases caused by MRSA and K. pneumoniae (Table 4.4, Figure 

4.3 and Figure 4.4). Besides, due to the relatively new compounds (Gwaram et al., 

2012; Gupta et al., 2012; Shakir et al., 2012; Sunitha et al., 2012), the resistance of 

microorganisms towards Schiff base metal complexes remains to be studied in future 

researches. Furthermore, the cytotoxicity studies of Schiff base complexes tested in this 

study were conducted by the research team of Professor Dr. Hapipah for the 

development of potential anticancer drugs (Gwaram, personal communication, 2012). 
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5.4 Limitation of the study 

 Unfortunately, there were some limitations to the study; namely the availability 

and the effectiveness of the compounds which causes minor restriction to the study. 

From the beginning and towards the end of the study, the synthetic compounds were 

synthesized and provided by different individuals. The cationic peptide, α-RetroMAD1 

(RM) was the first peptide provided at the concentration of 1,500.0 ppm. A higher 

concentration at 3,500.0 ppm of the said peptide arrived afterwards. The rest of the 

peptides; RG, HP, CT, BC and AB were obtained at different concentrations shortly 

after. The different concentrations of compounds obtained at different time periods 

resulted in inconsistent working concentrations of the compounds. In the case of the 

peptides RG, HP, CT, BC and AB; the compound labeled CT was provided at the lower 

concentration of 50.0 ppm when compared to the rest of the peptides. Due to that, the 

working concentration of the rest of the peptides (RG, HP, BC and AB) would have to 

be standardized to 25.0 ppm for the assays as the solution would be diluted by two-fold. 

Furthermore, only small volumes of the peptides were provided and this limits the 

amount of assays that can be conducted in this study. Besides that, some of the peptides 

were shown to increase growth of bacterial cells at low concentration. Due to the low 

availability and low bactericidal property of the peptides, another new synthetic 

compound would have to be obtained and the focus of the work was shifted to the Schiff 

base complexes in the later part of the study. However, both of the synthetic peptides 

and Schiff base complexes were part of bio-prospective projects and proprietary for 

respective individuals. Therefore, only the compound abbreviations code and 

concentrations were revealed. 
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CHAPTER 6 

 

CONCLUSION 

 

 The overall objective of the dissertation was to determine the antibacterial 

properties of synthetic compounds comprising of cationic peptides and Schiff base 

complexes. The study was conducted in the hopes of identifying potential antibacterial 

agents as alternatives to existing antibiotics. All of the compounds obtained were 

screened for its antibacterial properties against selected nosocomial bacterial strains of 

methicillin-resistant Staphylococcus aureus (MRSA), Klebsiella pneumoniae, 

Acinetobacter baumannii and Pseudomonas aeruginosa. The synthetic cationic peptides 

have poor bactericidal activity against all bacterial strains even when tested at a high 

concentration of 750.0 ppm in disk diffusion screening, broth micro-dilution assay and 

cell inactivation assay. Slight percentages of growth inhibition of 10 % to 20 % of log10 

CFU/ml were observed when the peptide (RM) was tested at 750.0 ppm against strains 

of MRSA. Some of the peptides were even found to enhance the bacterial growth of 

MRSA, K. pneumoniae and P. aeruginosa tested at a lower concentration of 25.0 ppm. 

Furthermore, the strains of P. aeruginosa were not affected by all of the peptides tested 

in the assays. Consequently, the cationic peptides tested in this study may not be 

suitable to be used as antibacterial agents. 

 

 Among the twenty-nine Schiff base complexes, the cadmium-containing 

complex (LMA Cd-N3) was found to have the highest antibacterial activity against both 

the Gram-positive bacteria MRSA and the Gram-negative bacteria K. pneumoniae and 

A. baumannii in the disk diffusion screening. However, the strains of P. aeruginosa 

were also not affected by the entire Schiff base complexes tested in the disk diffusion 
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screening and were omitted from the time-kill assay. Interesting to note that, the 

exposure of K. pneumoniae (strain KB88) to the antibiotic polymyxin B in time-kill 

assay showed regrowth of bacterial cells after exposure to the antibiotic for 4 hours. 

Whereas the exposure of similar bacterial strain to the complex LMA Cd-N3 showed no 

regrowth even after 24 hours of incubation. As for MRSA (strain 080925), complete 

killing of bacterial cells were achieved after 4 hours of exposure to LMA Cd-N3, 8 

hours earlier than the exposure to the antibiotic vancomycin. The findings suggest that 

the Schiff base cadmium complex had considerable antibacterial activity towards both 

multiple drug-resistant nosocomial Gram-positive bacteria and Gram-negative bacteria, 

particularly MRSA, A. baumannii and K. pneumoniae. These results warrant further 

studies on the application of the Schiff base metal complexes in the treatments of 

infectious diseases caused by these pathogenic bacteria. These could overcome or 

alleviate the problems faced in the antibiotic-resistant trait of pathogenic 

microorganisms. 
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APPENDIX 

 

 Kirby-Bauer disk diffusion antibacterial susceptibility test 

 
Schiff base metal complexes S1, S2, S3 and S4 of LMA series of 

10,000.0 ppm; containing nickel (Ni) {S1}, cobalt (Co) {S2}, zinc 

(Zn) {S3} and cadmium (Cd) {S4} 

 

 
Bacterial lawn of MRSA080425 

 

 

 

 
Bacterial lawn of MRSA08071 
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Bacterial lawn of KB88 

 

 

 

 

 

 
Bacterial lawn of KB198 
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Bacterial lawn of AC06127 

 

 

 

 
Bacterial lawn of AC08121 
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Antibiotic disks (300.0 units polymyxin B and 30.0 μg 

vancomycin) 

 

 
Bacterial lawn of MRSA080425, 30.0 µg vancomycin 

 

 
Bacterial lawn of MRSA08071, 30.0 µg vancomycin 

 

 
Bacterial lawn of KB88, 300.0 units polymyxin B 
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Bacterial lawn of KB198, 300.0 units polymyxin B 

 

 
Bacterial lawn of AC06127, 300.0 units polymyxin B 

 

 
Bacterial lawn of AC08121, 300.0 units polymyxin B 
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Time-kill assay 

 

Raw data of bactericidal activity of compounds towards K. pneumoniae (strain 88) in 

time-kill assay 

 
KB88 LMA Cd-N3 Polymyxin B 

Time 
(hours) 

control 1X 
Log 

reduction 
2X 

Log 
reduction 

4X 0.5X 
Log 

reduction 

0 5.5 5.5 - 5.5 - 5.6 5.3 - 

2 7.1 5.4 1.7 4.9 2.2 0.0 0.0 - 

4 8.4 5.6 2.8 4.6 3.8 0.0 0.0 - 

8 9.3 5.6 3.7 3.3 6 0.0 3.6 5.7 

12 9.6 4.7 4.9 0.0 - 0.0 5.4 4.2 

24 9.7 4.7 5 0.0 - 0.0 8.3 1.4 
All values were tabulated in log10 CFU/ml. Bold numbers represent bactericidal activity as defined by 

reduction of ≥ 3 log10 CFU/ml. Different concentrations of MICs were represented by 1X, 2X, 4X and 

0.5X 

 

 

KB88 control 

Time 
(hours) 

ctrl 
(1) 

ctrl 
(2) 

ctrl 
CFU/ml 

(1) 

ctrl 
CFU/ml 

(2) 

MEAN 
CFU/ml 

0 38 32 3.80x105 3.20x105 3.50x105 

2 133 125 1.33x107 1.25x107 1.29x107 

4 244 242 2.44x108 2.42x108 2.43x108 

8 192 201 1.92x109 2.01x109 1.97x109 

12 44 38 4.40x109 3.80x109 4.10x109 

24 53 59 5.30x109 5.90x109 5.60x109 

 

 

KB88 1X LMA Cd-N3 

Time 
(hours) 

1X (1) 1X (2) 
1X 

CFU/ml 
(1) 

1X 
CFU/ml 

(2) 

MEAN 
CFU/ml 

0 43 26 4.30x105 2.60x105 3.45x105 

2 28 22 2.75x105 2.20x105 2.48x105 

4 44 34 4.40x105 3.40x105 3.90x105 

8 46 36 4.60x105 3.55x105 4.08x105 

12 43 59 4.30x104 5.90x104 5.10x104 

24 47 53 4.70x104 5.25x104 4.98x104 
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KB88 2X LMA Cd-N3 

Time 
(hours) 

2X (1) 2X (2) 
2X 

CFU/ml 
(1) 

2X 
CFU/ml 

(2) 

MEAN 
CFU/ml 

0 26 44 2.55x105 4.35x105 3.45x105 

2 69 80 6.85x104 8.00x104 7.43x104 

4 43 35 4.25x104 3.50x104 3.88x104 

8 22 21 2.20x103 2.10x103 2.15x103 

12 - - - - - 

24 - - - - - 

 

 

KB88 4X LMA Cd-N3 

Time 
(hours) 

4X (1) 4X (2) 
4X 

CFU/ml 
(1) 

4X 
CFU/ml 

(2) 

MEAN 
CFU/ml 

0 43 31 4.30x105 3.10x105 3.70x105 

2 - - - - - 

4 - - - - - 

8 - - - - - 

12 - - - - - 

24 - - - - - 

 

 

KB88 0.5X Polymyxin B 

Time 
(hours) 

0.5X (1) 0.5X (2) 
0.5X 

CFU/ml 
(1) 

0.5X 
CFU/ml 

(2) 

MEAN 
CFU/ml 

0 25.5 19 2.55x105 1.90x105 2.23x105 

2 - - - - - 

4 - - - - - 

8 63 1.5 6.30x103 1.50x103 3.90x103 

12 31 17.5 3.10x105 1.75x105 2.43x105 

24 33 44.5 3.30x108 4.45x107 1.87x108 
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Raw data of bactericidal activity of compounds towards MRSA (strain 080925) in time-

kill assay 

 MRSA080925 LMA Cd-N3 Vancomycin 

Time (hours) Control 1X 
Log 

reduction 
2X 

Log 

reduction 
4X 0.5X 

Log 

reduction 

0 5.6 5.6 - 5.7 - 5.1 5.8 - 

2 6.4 4.8 1.6 0.0 - 0.0 4.9 1.5 

4 7.6 0.0 - 0.0 - 0.0 4.0 3.6 

8 8.9 0.0 - 0.0 - 0.0 2.7 6.2 

12 9.3 0.0 - 0.0 - 0.0 0.0 - 

24 9.6 0.0 - 0.0 - 0.0 0.0 - 

All values were tabulated in log10 CFU/ml. Bold numbers represent bactericidal activity as defined by 

reduction of ≥ 3 log10 CFU/ml. Different concentrations of MICs were represented by 1X, 2X, 4X and 

0.5X 

 

 
MRSA080425 control 

Time 

(hours) 
ctrl (1) 

ctrl 

(2) 

ctrl 

CFU/ml 

(1) 

ctrl 

CFU/ml 

(2) 

MEAN 

CFU/ml 

0 37 35 3.70x10
5
 3.50x10

5
 3.60x10

5
 

2 25 28 2.50x10
6
 2.80x10

6
 2.65x10

6
 

4 38 45 3.80x10
7
 4.50x10

7
 4.15x10

7
 

8 78 71 7.80x10
8
 7.10x10

8
 7.45x10

8
 

12 186 178 1.86x10
9
 1.78x10

9
 1.82x10

9
 

24 46 39 4.60x10
9
 3.90x10

9
 4.25x10

9
 

 

 
MRSA080425 1X LMA Cd-N3 

Time 

(hours) 
1X (1) 1X (2) 

1X 

CFU/ml 

(1) 

1X 

CFU/ml 

(2) 

MEAN 

CFU/ml 

0 39 40 3.85x10
5
 4.00x10

5
 3.93x10

5
 

2 64 63 6.40x10
4
 6.25x10

4
 6.33x10

4
 

4 - - - - - 

8 - - - - - 

12 - - - - - 

24 - - - - - 
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MRSA080425 2X LMA Cd-N3 

Time 

(hours) 
2X (1) 2X (2) 

2X 

CFU/ml 

(1) 

2X 

CFU/ml 

(2) 

MEAN 

CFU/ml 

0 39 62 3.85x10
5
 6.15x10

5
 5.00x10

5
 

2 - - - - - 

4 - - - - - 

8 - - - - - 

12 - - - - - 

24 - - - - - 

 

 
MRSA080425 4X LMA Cd-N3 

Time 

(hours) 
4X (1) 4X (2) 

4X 

CFU/ml 

(1) 

4X 

CFU/ml 

(2) 

MEAN 

CFU/ml 

0 18.5 5 1.85x10
5
 5.00x10

4
 1.18x10

5
 

2 - - - - - 

4 - - - - - 

8 - - - - - 

12 - - - - - 

24 - - - - - 

 

 
MRSA080425 0.5X Vancomycin 

Time 

(hours) 
0.5X (1) 0.5X (2) 

0.5X 

CFU/ml 

(1) 

0.5X 

CFU/ml 

(2) 

MEAN 

CFU/ml 

0 53 64 5.30x10
5
 6.40x10

5
 5.85x10

5
 

2 59 9 5.85x10
4
 8.50x10

4
 7.18x10

4
 

4 107 117 1.07x10
4
 1.17x10

4
 1.12x10

4
 

8 6 5 6.00x10
2
 5.00x10

2
 5.50x10

2
 

12 - - - - - 

24 - - - - - 
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Raw data of bactericidal activity of compounds towards A. baumannii (strain 08121) in 

time-kill assay 

 AC08121 LMA Cd-N3 Polymyxin B 

Time (hours) control 1X 
Log 

reduction 
2X 

Log 

reduction 
4X 0.5X 

Log 

reduction 

0 5.6 5.9 - 5.7 - 5.8 5.8 - 

2 7.0 4.7 2.3 3.8 3.2 0.0 0.0 - 

4 8.4 3.8 4.6 0.0 - 0.0 0.0 - 

8 8.9 0.0 - 0.0 - 0.0 0.0 - 

12 9.1 0.0 - 0.0 - 0.0 0.0 - 

24 9.5 0.0 - 0.0 - 0.0 0.0 - 

All values were tabulated in log10 CFU/ml. Bold numbers represent bactericidal activity as defined by 

reduction of ≥ 3 log10 CFU/ml. Different concentrations of MICs were represented by 1X, 2X, 4X and 

0.5X 

 

 
AC08121 control 

Time 

(hours) 
ctrl (1) 

ctrl 

(2) 

ctrl 

CFU/ml 

(1) 

ctrl 

CFU/ml 

(2) 

MEAN 

CFU/ml 

0 38 35 3.80x10
5
 3.50x10

5
 3.65x10

5
 

2 95 97 9.50x10
6
 9.70x10

6
 9.60x10

6
 

4 22 24 2.20x10
8
 2.40x10

8
 2.30x10

8
 

8 78 79 7.80x10
8
 7.90x10

8
 7.85x10

8
 

12 130 127 1.30x10
9
 1.27x10

9
 1.29x10

9
 

24 36 32 3.60x10
9
 3.20x10

9
 3.40x10

9
 

 

 
AC08121 1X LMA Cd-N3 

Time 

(hours) 
1X (1) 1X (2) 

1X 

CFU/ml 

(1) 

1X 

CFU/ml 

(2) 

MEAN 

CFU/ml 

0 72 74 7.20x10
5
 7.40x10

5
 7.30x10

5
 

2 77 32 7.70x10
4
 3.20x10

4
 5.45x10

4
 

4 87 44 8.70x10
3
 4.40x10

3
 6.55x10

3
 

8 - - - - - 

12 - - - - - 

24 - - - - - 
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AC08121 2X LMA Cd-N3 

Time 

(hours) 
2X (1) 2X (2) 

2X 

CFU/ml 

(1) 

2X 

CFU/ml 

(2) 

MEAN 

CFU/ml 

0 44 66 4.35x10
5
 6.60x10

5
 5.48x10

5
 

2 21 95 2.10x10
3
 9.50x10

3
 5.80x10

3
 

4 - - - - - 

8 - - - - - 

12 - - - - - 

24 - - - - - 

 

 
AC08121 4X LMA Cd-N3 

Time 

(hours) 
4X (1) 4X (2) 

4X 

CFU/ml 

(1) 

4X 

CFU/ml 

(2) 

MEAN 

CFU/ml 

0 57 68 5.65x10
5
 6.75x10

5
 6.20x10

5
 

2 - - - - - 

4 - - - - - 

8 - - - - - 

12 - - - - - 

24 - - - - - 

 

 

AC08121 0.5X Polymyxin B 

Time 

(hours) 
0.5X (1) 0.5X (2) 

0.5X 

CFU/ml 

(1) 

0.5X 

CFU/ml 

(2) 

MEAN 

CFU/ml 

0 59 61 5.90x10
5
 6.05x10

5
 5.98x10

5
 

2 - - - - - 

4 - - - - - 

8 - - - - - 

12 - - - - - 

24 - - - - - 

 

 


