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ABSTRACT 

 

 Three generalised distributions are studied in this thesis from different aspects. 

The Hurwitz-Lerch zeta distribution (HLZD) that generalises the logarithmic 

distribution and a class of distributions that follows the power law is considered. To 

investigate the effects of parameters on the stochastic properties of the HLZD, 

stochastic orders between members in this large family are established. A relationship 

between the tail behaviours of the HLZD and that of a class of generalised logarithmic 

distribution is highlighted. The HLZD has shown good flexibilities in empirical 

modelling. A robust probability generating function based estimation method using 

Hellinger-type divergence is implemented in data-fitting and the results are compared 

with various other generalisations of logarithmic distribution. An augmented probability 

generating function is constructed to overcome the difficulties of this estimation 

procedure when some data are grouped. The Poisson-stopped sum of the Hurwitz-Lerch 

zeta distribution (Poisson-HLZD) is then proposed as a new generalisation of the 

negative binomial distribution. Several methods have been used in deriving the 

probability mass function for this new distribution to show the connections among 

different approaches from mathematics, statistics and actuarial science. Basic statistical 

measures and probabilistic properties of the Poisson-HLZD are examined and the 

usefulness of the model is demonstrated through examples of data-fitting on some real 

life datasets. Finally, the inverse trinomial distribution (ITD) is reviewed. Both Poisson-

HLZD and ITD are proved to have mixed Poisson formulation, which extend the 

applications of the models for various phenomena. The associated mixing distribution 

for the ITD is obtained as an infinite Laguerre series and the result is compared to some 

numerical inversions of Laplace transform. 
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ABSTRAK 

 

 Tiga taburan teritlak telah dikaji dalam tesis ini dari pelbagai aspek. Keluarga 

Hurwitz-Lerch zeta (HLZ) yang mengandungi taburan logaritma dan suatu kelas 

taburan yang mematuhi hukum kuasa telah dipertimbangkan. Penertiban stokastik bagi 

pembolehubah-pembolehubah rawak dalam keluarga HLZ telah diterbit untuk mengkaji 

kesan-kesan parameter terhadap sifat-sifat taburan. Hubungan antara kebarangkalian 

ekor bagi taburan HLZ dan suatu taburan logaritma teritlak juga ditunjukkan. Demi 

menggambarkan kelenturan taburan HLZ, satu kaedah penganggaran teguh yang 

menggunakan divergen jenis Hellinger berasaskan fungsi penjana kebarangkalian telah 

dilaksanakan dan keputusannya dibanding dengan pelbagai pengitlakan taburan 

logaritma yang lain. Pembinaan fungsi penjana kebarangkalian imbuhan telah dicadang 

untuk menyelesaikan masalah pelaksanaan kaedah ini apabila terdapat data yang 

terkumpul. Seterusnya, taburan Poisson-Hurwitz-Lerch zeta (Poisson-HLZ) telah dibina 

sebagai pengitlakan baru bagi taburan binomial negatif. Beberapa pendekatan telah 

digunakan dalam penerbitan fungsi kebarangkalian taburan ini untuk menunjukkan 

perkaitan antara kaedah-kaedah daripada bidang-bidang seperti matematik, statistik dan 

sains aktuari. Ukuran statistik asas dan sifat-sifat berkebarangkalian taburan Poisson-

HLZ telah diterbitkan dan kebergunaan model ini terus ditunjukkan melalui pemodelan 

beberapa set data yang benar. Akhirnya, taburan trinomial tersongsang (TTT) dikaji 

semula. Kedua-dua taburan Poisson-HLZ dan TTT telah dibukti sebagai taburan 

Poisson bercampur. Fakta ini boleh melanjutkan penggunaan taburan-taburan ini dalam 

pemodelan pelbagai fenomena. Taburan pencampuran bagi TTT juga diperoleh sebagai 

siri Laguerre tak terhingga dan hasilnya dibanding secara berangka dengan beberapa 

penyongsangan penjelmaan Laplace. 
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NOTATIONS AND ABBREVIATIONS 

 

 \  -  excluding  

  -   is approximately equal to 

  -   is defined by 

st   -   equality in law 

D

   -  convergence in distribution  

|n m   -   is divisible by m n  

  -  {1,2,...}  

0   -  {0,1,2,...}  

0

   -  {0, 1, 2,...}   

  -   the set of real numbers 

0

   -   the set of nonnegative real numbers 

  -   the set of complex numbers 

d   -  -dimensional space of real numbersd  

x     -  the greatest integer smaller than or equal to x  

x     -  the smallest integer greater than or equal to x  

 x   -   rounded to the nearest positive integerx  

max( , )x y  -  the larger of  and x y  

Re( )x   -  real part of x  

( )kn   -  ( 1) ( 1)n n n k    

( )kn   -  ( 1) ( 1)n n n k    

hr   -  is smaller in the hazard rate order than  
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lr   -  is smaller in the likelihood ratio order than  

Lt   -  is smaller in the Laplace transform order than  

rh   -  is smaller in the reverse hazard rate order than  

st   -  is smaller in the usual stochastic order than  

2   -  chi-square statistic  

2

,n   -  
2-level critical value of  distribution with    

     degrees of freedomn  

( , , )s a  -  Lerch transcendent  

( )s   -  Gamma function  

( , )s x   -  incomplete Gamma function  

f   -  umbral operator for f  

   -  probability measure  

r   -  -th momentr  

:r Y   -  -th moment of r Y  

r   -  -th central momentr  

ˆ( )θ X   -  maximum likelihood estimator for  based on theθ  

    sample X  

2 1[ , ; ; ]F a b c x  -  Gauss hypergeometric function  

kD   -   k-th derivative operator 

( , , )D nθ  -  probability generating function based divergence statistic  

( )f t   -  compositional inverse of ( )f t  

ˆ ( )f s   -  Laplace transform of f  

( )F x   -  distribution function with parameter   
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( )XG t               -                       probability generating function of random variable X 

( )I z   -  modified Bessel function of order   

log  -  natural logarithm  
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nL x
  -   Laguerre polynomials orthogonal with respect to  

 a xx e  over  

( | )L θ x  -   likelihood function based on sample x  

kp   -  probability function  

( )ks x   -  -th degree Sheffer polynomial in k x   
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( )FT x   -  tail probability of the distribution F  

AIC  -  Akaikean information criterion  

GLD  -  generalised logarithmic distribution  

HLZ  -   Hurwitz-Lerch zeta 
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CHAPTER 1  INTRODUCTION 

      

 Probability Models for Count Data  

Count data consists of the frequencies of random events. For example, the 

number of terrorists activities for 110 countries between 1971 and 2007 (Freytag et al., 

2011), number of single-vehicle fatal crashes at marked segments on multilane rural 

highways between 1997 and 2001 (Lord & Geedipally, 2011), counts of Leadbeater’s 

possum on 151 three-hectare sites in the montane ash forests in Victoria, Australia 

(Dobbie & Welsh, 2001) and, not forgotten, the number of deaths by horse kicks in the 

Prussian army analysed by L. von Bortkiewicz in 1898 (Quine & Seneta, 1987). The list 

of examples could never be exhausted as new data are generated through experiments, 

observations, and surveys every day. Count data are usually fitted to lattice distributions 

with support on the set of nonnegative integers 0  or the set of positive integers  or 

their subsets. These distributions will hereafter be generally referred to as discrete 

distributions.  

Empirical data fitting aims to find a parsimonious probability model that is 

adequate to accommodate the variations observed in real life data. Since the amazingly 

good fit obtained by Bortkiewicz in late nineteenth century (see Quine & Seneta, 1987), 

Poisson distribution has become a popular model for the counts of ‘rare events’.  

However, due to its single parameter restriction and rigid variance to mean ratio, the 

Poisson distribution is not flexible enough to describe datasets that are over-dispersed 

(Famoye & Singh, 2006; Rigby et al., 2008), under-dispersed (Ridout & Besbeas, 2004), 

with excess number of zero (Yip & Yau, 2005; Hu et al., 2011), with multiple modes 

(Cortina-Borja, 2006) or heavy-tailed (Hougaard et al., 1997; Gupta & Ong, 2005). The 
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negative binomial distribution (NBD) that consists of two parameters shows more 

flexibility over the Poisson when the data is over-dispersed and has been applied 

extensively in biology, actuarial science, economics and other areas. The popularity of 

the NBD has also been partly attributed to its mixed Poisson (MP) formulation as 

derived by Greenwood & Yule (1920) and its representation as the Poisson-stopped sum 

of logarithmic distribution (LD) obtained in Quenouille (1949). These derivations 

render the NBD with natural interpretations to many real life phenomena and also 

provide effective ways to construct generalisations of the NBD. Nonetheless, the NBD 

also has limitations for many datasets as reported in Joe & Zhu (2005), Zhang et al. 

(2008), Sugita et al. (2011) and Geedipally et al. (2012).  

In order to overcome the limitations of existing probability models, new 

distributions have been constructed in various ways and added into practitioners’ 

inventory. Some commonly used construction techniques include relaxation of 

parameters, introducing new parameters into existing models, forming finite mixture of 

distributions, continuous mixing, convolution, stopped-sum formulation, truncation, 

transformation and so on. For a general survey of these methods, see Johnson et al. 

(2005). On top of flexibility, it is also desirable for the extended models to equip with 

some stochastic interpretations and probabilistic properties that are useful in modelling. 

In addition, existence of simple and robust statistical inference procedure is also 

important factor that decides the practical usefulness of a probability model.  

 

 Thesis Organisation 

In the following chapters, some generalised distributions, including a new 

generalisation of the NBD, will be studied from different aspects. Literature review on 
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the developments of relevant theories and a summary of research findings will be 

presented in the following two sections. 

Chapter 2 consists of a collection of definitions, properties and theorems that 

will be used throughout the thesis. Stochastic orderings between distributions in the 

Hurwitz-Lerch zeta (HLZ) family will be established in Chapter 3 in which the tail 

behaviour of the HLZ distribution (HLZD) and a robust inference procedure will also be 

examined. Chapter 4 proposes the Poisson-Hurwitz-Lerch zeta distribution (Poisson-

HLZD) as a new generalisation of the NBD and explores its various properties in depth. 

The inverse trinomial distribution proposed by Shimizu & Yanagimoto (1991) is 

reviewed in Chapter 5 and some new results have been obtained. The thesis is 

concluded with remarks and discussion on possible future research directions in Chapter 

6. 

 

 Literature Review  

Since the derivation of Pascal distribution by Montmort in 1713 as the 

probability distribution of the number of tosses of a coin necessary to achieve k heads 

(Johnson et al., 2005), the NBD has gone through various generalisations in the passage 

of history. These include expansion of the parameter space, such as allow the k in a 

Pascal distribution to take non-integer positive value or even negative values as in 

Engen’s extended NBD (Engen, 1974).  To reflect the variations between the mean and 

variance, Jain & Consul (1971) proposed a generalised NBD with mean that is 

positively correlated to the variance by introducing new parameter through the 

Lagrangian transformation. Later, Ghitany & Al-Awadhi (2001) and Gupta & Ong 

(2004) mixed the Poisson mean with some generalised gamma distributions to construct 

larger families of distributions that include the NBD as special case. On the other hand, 
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generalisations of the NBD can also be achieved by extending the LD in a Poisson-

stopped sum formulation as shown in Kempton (1975), Ong (1995) and Khang & Ong 

(2007). 

The Zipf’s law or the power law that describes decay which is slower than the 

exponential rate has been applied to various fields where ranking of sizes or frequencies 

are of particular interest, such as quantitative linguistics (Calderon et al., 2009), human 

demography (Gan et al., 2006), economics (Zhang et al., 2009), citations (Perc, 2010) 

and internet traffic modelling (Clegg et al., 2010). Many well-known distributions such 

as the Zipf-Mandelbrot distribution, Lotka distribution and so on follow the Zipf’s law. 

A unified representation of these distributions that generalised the LD was discussed 

under the setting of HLZD in Zörnig & Altmann (1995). A list of  distributions in the 

HLZ family and their corresponding parameters can be found in Kemp (2010) where the 

HLZD was treated as a special case of the power series distribution. The reliability 

properties of the HLZD was examined in Gupta et al. (2008) in which the authors also 

demonstrated data-fitting by maximum likelihood (ML) procedure using global 

optimization technique. However, the parameters of the HLZD in their studies were 

restricted to a proper subset of the natural feasible parameter space. By relaxing the 

parameters, more flexible models can be obtained. The possibility of shifting the 

support of the HLZD to include zero has been addressed by Aksenov & Savageau 

(2005). Generalised HLZ functions have also been considered in constructing new 

continuous distributions as shown in Saxena et al. (2011) and Tomovski et al. (2012) 

recently. 

The magnitudes of the random variables in the HLZ family subject to different 

parameters can be compared by using the idea of stochastic orders. Stochastic orders 

have found applications in many diverse areas such as reliability theory and survival 

analysis, life sciences, operations research, actuarial science, economics, and 
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management science. These orders can be defined on random variables in different 

ways depending on the purpose of research. The usual stochastic ordering, which tells 

whether a random variable is more likely to take smaller values compared to another is 

useful, for example, in comparing risks. Some other orderings may be defined based on 

the hazard rate, reverse hazard rate or transforms of the random variables, see Shaked & 

Shanthikumar (2007). The relations between different types of orders are illustrated in 

Shaked & Wong (1997). Orderings of the Poisson and the MP random variables were 

established in Misra et al. (2003) whereas comparisons of the NBD and mixed NBD 

have been done by Pudprommarat & Bodhisuwan (2012). Similar results can be 

obtained for the HLZ family and the generalisation of NBD based on the HLZ family. 

As mentioned earlier, the NBD is a special case of stopped sum distribution. An 

F1-stopped sum distribution models the sum of observations from a cluster size 

distribution F2, which is independent of F1, when the number of observations follows 

distribution F1. It has been called by different names in literatures, such as the 

contagious distribution (Neyman, 1939), generalised F1 distribution (Gurland, 1957),  

compound F1 distribution (Feller, 1967) or, more recently, the multiple Poisson 

distribution when F1 is a Poisson distribution (Wimmer & Altmann, 1996).  

Charalambides (2005) considered the stopped-sum distribution as the total number of 

balls in a random occupancy model where the number of urns follows F1 distribution 

and apply combinatorial techniques to derive some of its moment properties. Using 

these properties, Johnson et al. (2005) showed that a stopped-sum distribution always 

has index of dispersion that is greater than that of its cluster size distribution. The 

Poisson-stopped sum distribution (PSSD) is perhaps the most popular model in this 

family. It has simple probability generating function (pgf) that is convenient for 

manipulation and probability mass function (pmf) that can always be evaluated 
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recursively. The moments, factorial moments, cumulants and factorial cumulants of a 

PSSD are closely related to their counterparts in the cluster size distribution as pointed 

out in Douglas (1980). Some of its subclasses that have attracted special attentions from 

researchers include the Hermite (Poisson-Binomial), Neyman Type A (Poisson-Poisson), 

Pólya-Aeppli (Poisson-Geometric), Delaporte (Willmot & Sundt, 1989), non-central 

negative binomial (Ong & Toh, 2001), inverse trinomial (Khang & Ong, 2007) and 

some of their generalisations.  

The PSSD also attracts attentions from researchers due to its close relationship 

with infinitely divisible distribution that underlies every Lévy process at a fixed time 

(Sato, 1999).  A comprehensive review on classical results of infinite divisibility can be 

found in Steutel & Van Harn (2004) and Bose et al. (2002). While all F1-stopped sum 

distributions with infinitely divisible F1 are infinitely divisible, de Finetti showed that 

all infinitely divisible distributions are actually weak limit of certain Poisson-stopped 

sum in 1931 (Johnson et al., 2005; Mainardi & Rogosin, 2006). In fact, all infinitely 

divisible discrete distributions can be uniquely represented in the form of PSSD with a 

cluster size distribution on the set of positive integers (Steutel, 1973). Two other closely 

related concepts are self-decomposability and unimodality. Not all infinitely divisible 

distributions are unimodal and Masse & Theodorescu (2005) indicate that characterising 

the modality region of a PSSD could be a difficult problem even in the relatively simple 

case such as the Neyman Type A distribution. Part of this problem can be tackled 

through the concept of self-decomposable distributions that form a large subclass of 

infinitely divisible law that possesses the unimodal property (Steutel & Van Harn, 2004, 

Chapter V). Self-decomposable distribution is also of interest as it contains the subclass 

of stable law. Since unimodality is not always closed under convolution, it motivates the 

study on strongly unimodal property that preserves unimodality when a strongly 

unimodal distribution convolutes with any other unimodal distributions. Discrete 
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strongly unimodality has been studied by Keilson & Gerber (1971), in which they 

proved that log-concavity of the probability function is a necessary and sufficient 

condition for a distribution to be strongly unimodal and show that the NBD is strongly 

unimodal under certain conditions. On the other hand, log-convexity of the probability 

function on 0  sufficiently leads to the infinite divisibility of a discrete distribution 

(Steutel & Van Harn, 2004, Chapter II).  

Applications of finite mixture models show traces in various areas including 

engineering image analysis (Omar Mohd Rijal, Norliza Mohd Noor & Liew, 2005), 

medicine (Tohka et al., 2007) and statistics (Titterington et al., 1985). An important 

subclass of the finite mixture models is the zero-modified distribution in which the 

probability of getting zero is either suppressed or inflated to get a better fit to the data. 

In order to explain apparent contagious phenomena due to unobserved heterogeneity, 

more general mixed distribution has been introduced by treating the parameter of a 

distribution as the outcome of a random variable (Cameron, 1998). This feature is 

particularly attractive in actuarial risk theory when the policyholders are believed to 

carry different degrees of accident proneness (Klugman et al., 2008). In the mixture 

family, the class of mixed Poisson distribution (MPD), in which many of the members 

are also PSSD’s, has been the focus of interest. Maceda (1948) proved that the MPD 

resulting from an infinitely divisible mixing distribution on a nonnegative support is 

always infinitely divisible and is hence a PSSD. Conversely, a condition, under which a 

PSSD is MPD with discrete mixing distribution, was given in Gurland (1957). In order 

to cover the case when a non-infinitely divisible mixing distribution result in an 

infinitely divisible MPD, the idea of quasi-infinite divisibility has been introduced (Puri 

& Goldie, 1979). Holgate (1970) showed that an absolutely continuous unimodal 

mixing distribution always gives rise to a unimodal MPD and the result was extended 

by Bertin & Theodorescu (1995) to mixing distribution that is not necessarily absolutely 
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continuous. Recently, Karlis & Xekalaki (2005) give a comprehensive survey on some 

important results related to the MPD while Gupta & Ong (2005) illustrated their 

applications in fitting very long-tailed data.    

The MPD can be studied through its pgf which corresponds to the Laplace 

transform of the mixing distribution after a substitution. This allows characterisation of 

the MPD via proving the completely monotone of a function, see Bhattacharya & 

Waymire (2007). Only very few papers in the literature show the proofs of these types, 

among these, Joe & Zhu (2005) have proved that a generalised Poisson distribution is 

MPD. Miller & Samko (2001) provide some useful results in proving the complete 

monotonicity of a function. Due to the complexity of the transformed function, 

recovering the mixing distribution in a closed form expression through inverse Laplace 

transform is not always possible. One of the possible solutions is to express the 

inversion in infinite series based on the Fourier-series method proposed by Dubner & 

Abate (1968). Inversion that is based on the Laguerre series was studied in Abate et al. 

(1996) whereas Kabardov & Ryabov (2009) consider the accelerated convergence of 

these series. Approximation to the inversion by using the maximum entropy principle 

based on moments was proposed by Tagliani & Velasquez (2004). This method is 

particularly useful in approximating the inversion of the transform of probability 

function as it produces nonnegative result. Hassanzadeh & Pooladi-Darvish (2007)  

compared different numerical Laplace inversion methods with known analytical 

solution and found that the Fourier-series method is more accurate although 

computationally more expensive. Later, Masol & Teugels (2010) compared results of 

numerical inversions of the transformed Gamma distribution and suggested the Post-

Widder algorithm or Gaver-Stehfest algorithm for approximations of the tail 

probabilities. Some of these methods require high-ordered differentiation, which could 

be a luxury demand from the computational point of view for more complicated 
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function.  Convergence of infinite series, stability of round-off errors and selection of 

truncation criteria should also be considered in the execution of these algorithms. 

Agreement of results from two or more methods is recommended for getting a reliable 

conclusion. 

Parameter estimation is an important step in modelling. The method of moments, 

ML estimation and Bayesian estimation are among the popular classical approaches. 

The famed ML estimator possesses many desirable features such as consistency, 

invariance, and asymptotically unbiased, efficient and normal under some regularity 

conditions. However, it is also known to be sensitive to the presence of outliers 

(Pawitan, 2001; Millar, 2011). More robust estimation methods that based on 

minimizing statistical distances between the model and the empirical distribution have 

been proposed and are getting increasingly popular following the advancement of 

computing technology. On the other hand, using transforms of distribution such as the 

pgf in estimation and hypothesis testing have been proposed by some researchers when 

the pgf has a simpler form than the probability functions; see, for example, 

Kocherlakota & Kocherlakota (1986) and Kemp & Kemp (1988). A novel approach 

through minimizing the generalized Hellinger-type divergence between the pgf and the 

empirical pgf has been proposed in Sim & Ong (2010) to eliminate the dependency of 

estimates on the dummy variable in the pgf. They have also demonstrated the 

robustness of the estimators in contaminated data through a series of simulation study 

and suggested the forms of divergence that are computationally more efficient. This 

approach, however, leads to certain arbitrariness in constructing the empirical pgf for 

grouped data. Reducing the effect of this arbitrariness and enhancing the estimation 

outcome are possible through some graduation schemes designed exclusively for some 

families of distributions. 
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 Contributions of the Thesis 

The main contributions of this thesis are listed as follows. Results obtained in 

Chapter 3 have been accepted for publication and two other submissions will be based 

on the findings in Chapter 4 and Chapter 5.  

 Further properties of the HLZD are derived and the feasibility of a pgf based 

estimation procedure for this family of distributions is examined. 

o Likelihood ratio orderings between the members of the HLZ class of 

distributions are established and will be applied to derive corresponding 

results for the Poisson-HLZD. 

o Comparison between the tail probabilities of the HLZD and that of the 

generalisation of LD in Khang & Ong (2007) is illustrated. 

o The pgf based estimation method suggested in Sim & Ong (2010) is 

modified to handle the problem arising from grouped data for the HLZ 

class of distributions.  

 A new class of distributions is constructed as the Poisson stopped-sum of the 

HLZD. This new class generalises the NBD to a 4-parameter model and is 

shown to be more flexible and useful in data-fitting. 

o Basic properties of the Poisson-HLZD, including expressions for 

probability function, generating function, moments and other measures, 

are derived.  

o The Poisson-HLZD is shown to be self-decomposable and strongly 

unimodal under certain conditions. 

o A moment-ratio diagram is used to depict the versatility of the Poisson-

HLZD as compare to other well-known frequency models. 
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o The Poisson-HLZD is proved to have a MP formulation under certain 

conditions and the mixing distribution is obtained numerically. 

 The inverse trinomial distribution is formulated as a MPD under certain 

condition. 

o A necessary and sufficient condition for the inverse trinomial distribution 

to have MP formulation is obtained. 

o The mixing distribution of the inverse trinomial distribution is derived in 

terms of the Laguerre polynomials and is compared to the result obtained 

from numerical inversion. 
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CHAPTER 2  PRELIMINARIES 

 

 Introduction 

Concepts and theorems that are useful for the derivations of results in 

subsequent chapters are presented in this chapter. The interrelations among some 

properties and their importance in statistics are also highlighted. 

 

 Absolutely Monotone and Completely Monotone 

A nonnegative function ( )f x  on (0, )  is said to be absolutely monotone
 
if its 

n-th derivative 
( ) ( )nf x  exists for all n  and 

( ) ( ) 0nf x   on (0, ) . If, on the other 

hand, 
( )( 1) ( ) 0n nf x   on (0, )  then ( )f x  is said to be completely monotone. 

The following results will be used in proving the complete monotonicity of 

functions in later chapters. 

Theorem 2.1 (Miller & Samko, 2001; Theorem 2): If ( )f x  is completely monotonic 

and ( )h s is nonnegative with a completely monotonic derivative, then  ( )f h s
 
is 

completely monotone with respect to s. 

 

Theorem 2.2 (Miller & Samko, 2001; Theorem 3): Given a completely monotone 

function ( )y h s , if the power series 
0

( ) k

k

k

y a y




 , where 0ka   for all k, converges 

for all y in the range of ( )h s , then ( ( ))h s  is completely monotone in s. 



13 
 

Theorem 2.3 (Miller & Samko, 2001; Theorem 4): Let ( , )K x t  be completely 

monotone in x for all (0, )t   and ( )f t  be a nonnegative locally integrable function 

such that all the integrals  

0( , ) ( ) ,    

b n

n
a

K x t f t dt n
x










 

converge uniformly in a neighbourhood of any point (0, )x  . Then  

( ) ( , ) ( ) ,    0 ;

b n

n
a

F x K x t f t dt a b
x


    







 

is completely monotone.  

 

 Probability Generating Function 

Let X be a discrete random variable with pmf { }kp , the probability generating 

function (pgf) of X, ( )XG t  is defined by 

( ) [ ]X k

X k

k

G t E t p t .      (2.1) 

( )XG t  always exists for 1 1t    with 0(0)XG p  and (1) 1XG  . The pgf uniquely 

determines a distribution and has the following properties: 

(a) Let ( )XG t  and ( )YG t  be the pgf’s of independent random variables X and Y 

respectively, then the pgf of the convolution of X and Y is ( ) ( )X YG t G t . 

(b) 
1

[ ] ( )X

t

d
E X G t

dt 

 .        (2.2) 

(c) The set of absolutely monotone functions ( )M t  on [0,1)  such that 
1

lim ( ) 1
t

M t


 ,  

is equal to the set of all pgf’s (Steutel & Van Harn, 2004, Theorem A.4.3). 
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 Stopped Sum Distribution 

Consider a discrete random variable N with pgf ( )NG t , and a sequence of 

independent and identically distribution random variables iY  having a common 

distribution as the random variable Y with pgf ( )YG t . The sum 
1

N

N i

i

S Y


 , which is 

stopped by the outcome of N, is said to have a stopped sum distribution. It is easy to 

show that the pgf of NS ,  

  ( ) ( ( ))
NS N YG t G G t .       (2.3) 

The distribution of Y is also called the cluster size distribution. When N is a Poisson 

random variable, we have the widely studied class of PSSD with pgf in the form  

exp[ ( ( ) 1)]YG t  ,        (2.4) 

where ( )YG t  is the pgf of the cluster size distribution and   is the Poisson mean of N. 

 

 Mixture Distribution 

Given k  and 
1 0,..., k  

 
such that 

1

1
k

i

i




 , a k-component finite-

mixture distribution ( )F x is defined as the weighted average of k distributions 1,..., kF F , 

that is 
1

( ) ( )
k

i i

i

F x F x


 . This formulation, which has natural interpretation when the 

sample is drawn from a population that consists of heterogeneous subpopulations, has 

made finite mixture models appealing in modelling.   

On the other hand, consider a parameter space   and a  -algebra A in  . Let 

  be a probability measure on A and ( )F x  be a distribution on  for every    

such that ( )F x  is A-measurable. A mixed distribution ( )F x  can be constructed 



15 
 

by defining ( ) ( ) ( )F x F x d  


   
(see Steutel & Van Harn, 2004,  Chapter VI). In this 

case,   is the probability measure induced by the mixing distribution that plays the role 

of a weight function. Furthermore, if ( )F x  is absolutely continuous with density ( )f x  

for every , then ( )F x is also absolutely continuous with density ( ) ( ) ( )f x f x d  


  .  

When ( )F x  is the distribution function of a discrete random variable, the pmf 

of the mixed distribution is given by ( ) ( )kp p k d  


  . The MPD, obtained by 

ascribing ( ) ,
!

ke
p k

k







  forms an important subclass that includes many well-known 

distributions such as the NBD, Delaporte, Poisson-inverse Gaussian (Sichel), Poisson-

Tweedie and so on (Johnson et al., 2005). The pmf and pgf of a MPD with mixing 

distribution ( )f   on [0, )  are, respectively, given by 

0

( )
!

k

k

e
p f d

k


 

 




       (2.5)

 

and  ( 1)

0
( ) ( )tG t e f d  


  .      (2.6) 

Theorem 2.4 (Bernstein's Theorem; Bhattacharya & Waymire, 2007; Theorem 8.6): A 

function ( )s  is completely monotonic on (0, )  if and only if there is a measure   on 

 0,
 
such that  

 
0

( ), 0ss e d s  


  .      (2.7) 

In particular,   is a probability measure if and only if 
0

lim ( ) 1
s

s


 .  

Expressions (2.6) and (2.7) also suggest that a substitution of 1t s   in the pgf 

( )G t  gives the Laplace transform of the mixing distribution ( )f  , see also Section 2.10. 

Furthermore, if (1 )G s  is completely monotone with respect to s on (0, ) such that 
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0
lim (1 ) 1
s

G s


 
 
then, by the Bernstein’s theorem, the random variable with pgf ( )G t  

must have a MPD. 

 

 Moments, Skewness and Kurtosis for PSSD 

Moments for the random variable X with pgf (2.4) will be considered in this 

section. Using (2.2), it is easy to show that the random variable X with pgf (2.4) has 

mean and variance 

[ ] [ ]E X E Y    and 
2( ) [ ]Var X E Y .    (2.8) 

If denote the r-th moment of X, [ ]rE X  by r and the r-th moment of Y by :r Y , Ross 

(1996) gives the recursive formula  

1

:

0

1r

r i r i Y

i

r

i
   







 
    

 
 ,       

which can be used repeatedly to obtain higher moments of X. For example, 

3 2 3 3

3 [ ] 3 [ ] [ ] ( [ ])E Y E X E Y E Y           (2.9) 

and 

 4 3 2 2 3

4 [ ] 3 [ ] [ ] 3 [ ] [ ] [ ] [ ] .E Y E X E Y E X E Y E X E Y               (2.10) 

Define the r-th central moments of X, [( ) ]r

r E X   . Using (2.9) and (2.10) 

and some simple algebra, the third and fourth central moments of X can be expressed in 

the moments of the cluster size distribution,  

3

3 [ ]E Y     and    
4 2 2 2

4 [ ] 3 ( [ ])E Y E Y    .    (2.11)

The skewness and kurtosis of a distribution can be defined through its central moments. 

For PSSD, they are closely linked to the Poisson mean and the moments of the cluster 

size distribution after substitution using (2.8) and (2.11). 
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Skewness 
3

2 3

[ ]

[ ]

E Y

E Y
  and Kurtosis 

4

2 2

[ ]
3

[ ]

E Y

E Y
   

 

 Sheffer Sequences and Generalised Laguerre Polynomials 

Let ( )kq x  be a k-degree polynomial in x over a field of characteristic zero. The 

formal power series 
0

( ) k

k

k

q x t




  is called the generating function of the polynomial 

sequence. Given 
0

( ) n

n

n

g t a t




  and 
1

( ) n

n

n

f t b t




 with 0 1 0a b  , the compositional 

inverse of ( )f t  always exists and is denoted by ( )f t . Consider generating function of 

the form 

  
 

( )

0

( )1

!( )

xf t kk

k

s x
e t

kg f t





          (2.12) 

where  ( )ks x  in (2.12) is a k-degree polynomial in x. ( )ks x  is called the Sheffer 

polynomial for ( ( ), ( ))g t f t . When ( ) 1g t  , ( )ks x  is named the associated sequence for 

( )f t . The Sheffer system of polynomials includes many well-known classical 

polynomials such as Hermite, Laguerre, Charlier, Abel, Bell, Poisson-Charlier, actuarial 

polynomials and so on, see Roman (2005). 

To facilitate further discussion, let kD  denote the k-th derivative operator on the 

algebra of Sheffer polynomials, that is 

 
( ) ,  ,

0,            ,

k n k

k n n x k n
D x

k n

 
 


  

where 
( ) ( 1)...( 1)kn n n n k    . When ( )ks x  is associated for ( )f t , defined the umbral 

operator f  for ( )f t  on the algebra of Sheffer polynomials by ( )k

f kx s x  . With 
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these notations, the recurrence formula for associated sequences for ( )f t  can be stated 

as follows. 

Theorem 2.5 (Roman, 2005; Corollary 3.6.6): If ( )ks x  is associated to ( )f t , then 

1( ) ( ) k

k f

t D

d
s x x f t x

dt




    . 

Given 1a    and 0n , the generalised Laguerre polynomials, denoted by 

 a

nL x ,  can be defined from the recurrence relation  

1 1( 1) ( ) (2 1 ) ( ) ( ) ( )a a a

n n nn L x n a x L x n a L x         

with 
0 ( ) 1aL x   and 

1 ( ) 1aL x a x    (see Erdélyi et al., 1953; Vol II, pg 188). The 

generalised Laguerre polynomials are orthogonal with respect to 
a xx e

 over  and 

has generating function 
1

0

1
( ) exp

(1 ) 1

a n

n a
k

xt
L x t

t t






 
    

 . 

If 
 

1

( )g f t
 and ( )xf te  are, respectively, pgf of independent random variables X 

and Y, then (2.12) is the pgf of X Y  and 
( )

( )
!

ks x
P X Y k

k
   . The non-central NBD 

and the discrete Charlier distribution are examples with pmf that are expressible in 

terms of orthogonal polynomials, see Ong (1987) and Ong (1988). 

 

 Probabilistic Properties of a Distribution 

In this section, a few probabilistic properties that have attracted attentions from 

researchers since the last century will be introduced. 
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2.7.1 Infinite Divisibility  

A random variable X  is said to be infinitely divisible if for every n  it can 

be written as 
,1 ,2 ,...

d

n n n nX X X X    , where 
,1 ,2 ,, ,...,n n n nX X X  are independent with 

n

d

jn XX ,
 for all j  and some random variable nX , the n-th order factor of X . The 

practical interest of infinite divisibility is mainly in modelling the sum of several 

independent quantities with the same distribution. 

All non-degenerate discrete infinitely divisible distributions must be unbounded, 

with positive mass at 0 and closed under convolution. Other useful properties are given 

in the following theorems. 

Theorem 2.6 (Steutel & Van Harn, 1979; Lemma 1.2.): A random variable with 

00 1p   and pgf ( )G t  is infinitely divisible if, and only if,  

  ( ) exp ( ) 1 ,G t H t        (2.13) 

for some 0   and ( )H t  is a unique pgf with (0) 0H  . 

For an infinitely divisible distribution with pgf ( )G t , the canonical measure kr  

can be defined via its generating function 

0

( ) log ( ) k

k

k

d
R t G t r t

dt





  .      (2.14) 

Theorem 2.7 (Steutel & Van Harn, 1979; Lemma 1.2.): A distribution is infinitely 

divisible if, and only if, the probabilities { }np  satisfy 

1

0

( 1)
n

n n j j

j

n p r p 



             (2.15) 

with canonical measure
 

0kr   for all k.  
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In other words, the non-negativity of the canonical measure kr  
characterizes the 

infinite divisibility of the distribution. Consider an infinitely divisible pgf ( )G t  written 

in the form of (2.13) with 
1

( ) k

k

k

H t q t




 . From (2.14),    

  1

1 1 0

( ) ( ) k k k

k k k

k k k

d d
R t H t q t kq t r t

dt dt
  

  


  

 
    

 
   .  

Comparing the coefficient of kt ,  

   1( 1)k kr k q   ;       (2.16) 

which shows the connection between the canonical measure of a Poisson-stopped sum 

distribution and its cluster size distribution. 

 

2.7.2 Log-convexity and Log-concavity 

Log-convexity and log-concavity are useful in deriving other properties of a 

distribution. A discrete distribution { }np  is said to be log-convex if 2

1 1n n np p p   for all 

n. Log-concave is defined with the inequality sign reverses. 

Theorem 2.8 (Steutel & Van Harn, 2004; Chapter II, Theorem 10.3): If the canonical 

measures kr   of an infinitely divisible distribution { }np  is log-concave, then { }np  is 

log-concave if, and only if 2

1 0r r . 

 It is easy to see that the product of two log-concave (log-convex) sequences is 

log-concave (log-convex). The sequence of natural numbers is log-concave. From 

(2.16), it is trivial that the canonical measure of a Poisson-stopped sum distribution is 

log-concave if the cluster size distribution is log-concave. 
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2.7.3 Discrete Self-Decomposability  

Following Steutel & Van Harn (1979), a discrete distribution on 
0
 with pgf 

( )G t  is said to be discrete self-decomposable if  

 ( ) 1 ( ),   | | 1, 0 1;G t G t G t t          

where ( )G t  is a pgf. From the definition, it is clear that a discrete self-decomposable 

distribution can be expressed as the convolution of two discrete distributions in which 

one is the thinning version of the original distribution. Discrete self-decomposability 

can be determined through its canonical measure as stated in the next theorem. 

Theorem 2.9 (Steutel & Van Harn, 1979; Theorem 2.2): A discrete distribution { }np  is 

discrete self-decomposable if, and only if, it is infinitely divisible and has a non-

increasing canonical measure nr .  

 

2.7.4 Unimodality and Strong Unimodality 

A discrete distribution { }np  is said to be unimodal if there exists an M  such 

that 1n np p   for all n M  and 1n np p   for all .n M  A discrete distribution { }np  

is strongly unimodal if the convolution of { }np  with any unimodal distribution is 

unimodal. The class of strongly unimodal discrete distribution is closed under reversal 

( n np p ), convolution and passage to limit. Strongly unimodal distributions also have 

all moments. 

Theorem 2.10 (Keilson & Gerber, 1971; Theorem 2): A necessary and sufficient 

condition for strongly unimodal is log-concavity, that is 2

1 1n n np p p   for all n. 
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 Stochastic Orders 

Consider two random variables X  and Y  with probability functions ( )f x  and 

( )g x  respectively. Denote by ( )F x  and ( )G x  the respective cumulative distribution 

function of X  and Y , and define their reliability functions to be ( ) 1 ( )F x F x   and 

( ) 1 ( )G x G x  . We say that X  is smaller than Y  in the usual stochastic order (written 

stX Y ) if ( ) ( )F x G x  for all x. X  is said to be smaller than Y  in the hazard rate 

order (written hrX Y ) if ( ) ( ) ( ) ( )F x G y F y G x  for all x y . Similarly, X is said to 

be smaller than Y  in the reverse hazard rate order (written )rhX Y  if 

( ) ( ) ( ) ( )F x G y F y G x  for all x y . On the other hand, if ( ) ( ) ( ) ( )f x g y f y g x  for all 

x y or equivalently 
( )

( )

f x

g x
 is monotone decreasing in x, then we say X  is smaller than 

Y  in the likelihood ratio order (written lrX Y ). The likelihood ratio order is important 

in the sense that it implies the previous three orderings and is easy to verify. The 

relations between the stochastic orders are summarized in Shaked & Wong (1997) in a 

diagram partially shown in Figure 2.1.  

 

Figure 2.1 Relations between stochastic orders 

 

If the relevant distributions are not in closed form, ordering that are defined 

based on other characteristics of the distributions could be used, for example, we say 

that X  is smaller than Y  in the Laplace transform order, denoted by LtX Y
 
if two 
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nonnegative random variables X  and Y  are such that [exp{ }] [exp{ }]E sX E sY    for 

all 0s  .  

 The following theorems are useful in deriving the orderings of a PSSD and MPD. 

Theorem 2.11 (Shaked & Shanthikumar, 2007; Theorem 1.A.4): Given two sequences 

of nonnegative independent random variables { , 1,2,...}jX j   and { , 1,2,...}jY j  . Let 

M  be a nonnegative integer-valued random variable which is independent of the iX ’s. 

and N be a nonnegative integer-valued random variable which is independent of the 

iY ’s. If i st iX Y , 1,2,...i  , and if ,stM N  then 
1 1

M N

j st j

j j

X Y
 

  . 

Using the notation st  to denote equality in law, an analogous result for MPD 

can be stated as follows. 

Theorem 2.12 (Shaked & Shanthikumar, 2007; Theorem 1.A.6): Consider a family of 

distribution function { , }G   . Let 1  and 2  be two random variables having 

supports in   with distribution functions 1F  and 2F  respectively and ( )i st iY X   be 

the random variables with distribution function given by ( ) ( ) ( ),i iH y G y dF y



   

,y  1,i   2. If ( ) ( ')stX X   whenever '  , and if 1 2st   , then 1 2stY Y . 

 

 Parameter Estimation and Model Selection 

Let A be a  -algebra on the sample space  . A parametric family is a set of 

probability measures Pθ  on the measurable space ( , A) such that Pθ  is determined 

when ,θ  which is an element in the parameter space 
d  for some fixed positive 
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integer d, is known.  Parameter estimation is a crucial step in statistical inference to find 

an appropriate θ  such that the probability measure Pθ  of a parametric family fits well 

to a set of given sample, see, for example, Shao (2003) .  

The popular quote “Everything should be made as simple as possible, but not 

simpler” points out the essence of the principle of parsimony that, as described in Box 

et al. (1994), “employs the smallest number of parameters for adequate representations”. 

Generalisation of probability distribution introduces more parameters into the models 

and hence usually produces a better fit to the data. To avoid over-fitting, several 

information theoretic based criteria have been developed for model selection. These 

include the Akaikean information criterion (AIC), Bayesian information criterion (BIC) 

that make use of different functional forms of the maximum log-likelihood statistic to 

measure the divergences between the proposed models and the real model (Van Der 

Hoeven, 2005). Other hypothesis testing approaches such as the likelihood ratio test, 

Wald’s test and the score test are also available, see Hogg et al. (2005). In this thesis, 

the likelihood ratio test will be used to select the appropriate model from a nested 

family of distributions. 

 

2.9.1 ML Estimation 

Given 1( ,..., )d  θ , let 1 2, ,..., nX X X  be a random sample from a 

population with probability function ( | )f k θ . For each fixed sample point 

1 2( , ,..., )nx x xx , the likelihood function is defined by 
1

( | ) ( | )
n

i

i

L f x


θ x θ . Let 

ˆ( )θ x  be a parameter value at which ( | )L θ x  attains its maximum. The ML 

estimator of the parameter θ  based on a sample X is ˆ( )θ X  (Casella & Berger, 2002). 
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Finding the ML estimates could be complicated step for certain parametric 

families as the system of ML equations obtained may not have a closed form solution 

and hence numerical methods such as the Newton-Raphson method or the EM 

algorithm will be implemented to seek for numerical solution. These numerical methods 

usually return a local maximum that depends on the choice of initial point. With the 

advancement in computing technology, stochastic optimization algorithm that returns 

the global maxima is preferred when the equations has no analytic solution. A simulated 

annealing type of random search algorithm will be used in this thesis to obtain the ML 

estimates for various models, see Robert & Casella (2004).  

Consider 
1

d
d

k

k

I


   , where kI  are intervals such that its supremum 

sup k kI u   and infimum inf k kI l   . Define 1 1 max{ ,..., }d ddia u l u l   .  

The algorithm to find the parameter θ̂  in   that returns the maximum of an objective 

function is outlined as follows. 

 

Algorithm 2.1   Global optimization algorithm for estimation 

1. Initialise the search space   based on the naturally bounded parameter space or 

defined a bounded space based on intuition or experience.  

2. Choose a stopping criterion   such that the programme terminates when 

 dia  . 

3. Set the counter k = 1 and choose a transition criterion T such that the search is 

refined whenever k T . 

4. Starting with a random point kθ  in ,  set ˆ
kθ θ  and calculate the value of the 

objective function ˆE
θ
 based on θ̂ . 
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5. while  dia    do 

a. while k T , do 

i. Randomly move to another point 1kθ  in   and calculate 

the value of the objective function 
1k

E
θ  

based on 1kθ . 

1. if 
1 ˆk

E E

θ θ

, then set 1k  , 1
ˆ

kθ θ  and 

1ˆ k
E E


 θθ

. repeat i. 

2. if 
1 ˆk

E E

θ θ

, then 1k k  . 

end do 

b. Define the refined search space s  such that ˆ
s θ  and 

  sdia dia   . Set s   and 1k  . 

end do 

6. Return the estimate θ̂  and ˆE
θ
.  

 

2.9.2 Likelihood Ratio Test 

Using the same notations in 2.9.1 and consider a simpler nested model with 

reduced parameter space 0  such that 0

0

d
   . The likelihood ratio test statistic 

for testing 0 0:H θ  versus 1 0: cH θ  is 0

sup ( | )

sup ( | )

L

L





 

θ x

θ x
. Let 0

ˆ ( )θ X  be the ML 

estimator for θ  in 0 , the test statistic can be written as 0
ˆ( ( ))

ˆ( ( ))

L

L
 

θ X

θ X
. When  

is a consistent estimator, under certain regularity conditions, 

0

22log
D

d d    

under 0H , see Casella & Berger (2002) and Hogg et al. (2005). 

0
ˆ ( )θ X
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2.9.3 AIC 

The AIC proposed in Akaike (1974) is a statistic which is penalized to reflect 

the trade-off between the fit to a model as quantified by ˆ( ( ))L θ X  and model complexity 

(Millar, 2011) and is given by 

 ˆAIC 2[ log( ( ( ))]k L  θ X , 

where k is the number of unknown parameters to be estimated in the model. The model 

with smallest fitted AIC is preferred in model selection. 

 

 Numerical Inversion of Laplace Transform 

The Laplace transform of a function :[0, )f    is the function f̂  defined by  

0

ˆ( ) ( )stf s e f t dt


   
whenever the integral converges. Some useful properties of the 

Laplace transform are listed in the following, see Bartle (1976). 

(a) If there exist a real number c  such that | ( ) | ctf t e  for sufficiently large t, then 

the Laplace transform exists for s c  and the convergence of the integral is 

uniform for s c    if 0  . 

(b) Under the boundedness condition in (a), f̂  has derivatives of all orders for 

s c  and that the n-th derivative 

( )

0

ˆ ( ) ( ) ( )n n stf s t e f t dt


  .      (2.17) 

If ( )f t  is a probability density function (pdf), it is trivial that the boundedness 

condition is satisfied for any 0c   since ( ) 0f t  . 

If ˆ ( )f s  is analytic throughout the finite complex plane except for a finite 

number of isolated singularities and RL  is a vertical line segment in the complex plane 
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joining Ri   and Ri   such that all singularities of f̂  lie on the left of RL . The 

inverse transform of f̂  can be obtained by evaluating the Bromwich integral 

 
1 ˆ( ) lim ( )

2 R

st

LR
f t e f s ds

i 
  ,   0t  . 

However, the integral is usually not easy to be evaluated for complicated f̂ . Hence, 

some numerical methods have been developed to recover ( )f t  based on the 

approximation to the integral through trapezoidal rules or others. 

 

2.10.1 Post-Widder Formula (Widder, 1941) 

This celebrated formula gives the inverse Laplace transform in analytic form and 

was first proved for special case by Post in 1930 and generalised by Widder in 1934. 

The implementation requires derivatives of all orders for f̂  on the entire positive half-

line and the inversion is given by 

 

1

( )( 1) ˆ( ) lim
!

kk
k

k

k k
f t f

k t t





   
   

  
. 

The convergence of the limit is slow and is often not efficient to be used although it has 

simpler form compares to other methods. 

 

2.10.2 Gaver-Stehfest Formula (Abate & Whitt, 2006; Masol & Teugels, 2010) 

This algorithm is a combination of Gaver’s formula with acceleration scheme 

for convergence proposed by Stehfest. The formula depends on a positive integer M to 

control the precision of results as follows 

2

1

log 2 log 2ˆ( ) ( , )
M

g k

k

k
f t f t M f

t t




 
  

 
 ,  
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where 

  
1min( , )

( 1)/2

2
( 1)

!

Mk M
M k

k

j k

M j jj

j j k jM





   

   
     

   
 . 

The selection of 1.1M n     will return a result with n significant digits when the 

computation is run on a computer with precision 2.2M   . Here, k    represents the 

greatest integer less than or equal to k whereas k    represents the smallest integer 

bigger than or equal to k. For transforms that have singularities only on the negative real 

axis and function f  that are infinitely differentiable for 0t  , the inversion is reported 

to have small relative error which approximately 
0.910 M

.  

 

2.10.3 The Fourier Series Method (Abate & Whitt, 1999, 2006)  

This inversion formula is derived as the trapezoidal approximation to the real 

part of the Bromwich integral. The approximant is given by 

 
/3 2

0

10 ˆ( , ) Re
M M

k
e k

k

f t M f
t t






  
   

  
 , 

where 

 
log10

3
k

M
ik   , ( 1)k

k k     

with 1i    and  

0

1

2
  ,  1k   for 1 k M  , 2 2 1 2 M

M k M k

M

k
  

  

 
   

 
 for 0 k M  ,  2 2 M

M  . 

Similar to the Gaver-Stehfest algorithm, the selection of 1.7M n     returns a result 

with n significant digits. The accuracy of this algorithm is reported to be satisfactory in 

most trial experiment although it takes a longer computer time to obtain the results. 
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CHAPTER 3  FURTHER PROPERTIES AND PARAMETER 

ESTIMATION FOR THE HURWITZ-LERCH ZETA 

DISTRIBUTION 

 

 Introduction 

In this chapter, further properties of the HLZD, including stochastic orderings 

and tail behaviour, are considered. A pgf based estimation method suggested in Sim & 

Ong (2010) will be modified to illustrate its feasibility in handling grouped data. 

Section 3.1 introduces the HLZD while Section 3.2 discusses the stochastic orderings 

among the members in this family. The tail behaviour of the HLZD is examined in 

Section 3.3 and the last section considers parameter estimation with the pgf based 

method illustrated by a number of datasets.  

 

 The HLZD 

The HLZD has pmf 

1

1
,

( , , ) ( )

k

k s
p

T s a k a



 



 1,2,...;k   

where 0 1;  ;  1 s a      and 0s   when 1  . Here, we use the standard 

notation 

1
1

( , , ) ( , 1, 1)
( )

k

s
k

T s a s a
k a


  






    


     

and  

0

( , , ) ,
( )

k

s
k

z
z s a

k a





 


  
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is the Lerch transcendent defined for 
0a Z   and s  when | | 1z   or Re 1s   when 

| | 1z  . If  Re( ) 0a   and either Re( ) 0s   when 1,  ( 1)z z   or Re( ) 1s   when 1z  , 

the integral representation   

        
 1

1

0

1
( , , )

( )

a t

s

t

e
z s a t dt

s e z

  

 
 





     (3.1) 

holds (Erdélyi et al., 1953; Vol I, p. 27). Furthermore, by using (3.1), the series 

representation of the Lerch transcendent can be extended to ( , , )z s a  which is an 

analytic function of z for \ [1, )z   provided Re( ) 0s   and Re( ) 0a  .  

Let Y be an HLZ random variable. Its pgf can be written as  

 

 

, 1, 1
( ) , for 0 1.

, 1, 1

Y

Y

t t s a
G t E t t

s a






  
        

   (3.2) 

The mean of the distribution is 
( , 1, )

[ ]
( , , )

T s a
E Y a

T s a






  . Some of the common 

distributions in the HLZ family are shown in Table 3.1. 

Table 3.1  

Some common distributions in the HLZ family 

 

 

 

 

 

Under this definition, the HLZD has a larger parameter space compares to the 

definition in Gupta et al. (2008), where the authors allowed 0,s   0 1a   and 

0 1  . Although the relaxation of parameters has the advantage of increasing the 

Distribution   s a 

Lotka 1 1 0 

Riemann zeta 1 s 0 

Zipf-Mandelbrot 1 s a 

Good   s 0 

Logarithmic   0 0 
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flexibility of the model in empirical modelling, some of the properties that are derived 

in their paper no longer hold in general as indicated in the following.  

 The HLZD hence defined may not be log-convex. 

 
1 1

1 1

2

12

2 1 2

1

( 1) ( 1)

, 1
( )

[( ) 1]
, 1

( )

k k

s s

k

sk

s
k

s

k a k a

s
k a

k a
s

k a

 







 

 







   

  
    

  
 

   
   

 

 

 

 The mode of the HLZD may not be 1. For 1s   ,  

 

11 1
(1 ) 1

1

sk

k

p

p k a
    

 
. 

 

If 1,s    then 

 
( 1)

( 1)1

( 1)

1 1
1 (1 )

1

s

sk

s

k

p
a k

p k a



 

 

 

 
      

 
. 

 

When 

( 1)

( 1)
1

s

s
a





 

 



 is not positive, it indicates that the mode is at 1 or 

else the mode is at 

( 1)

( 1)
max 1,

1

s

s
a





 

 

  
  

   

 as shown in Figure 3.1. 

 

 

Figure 3.1 

Pmf of the HLZD with 0.73660  , 0.34031a    and 2.5370s     
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 Likelihood Ratio Order in the HLZ Family 

Since the HLZ family consists of many distributions, the stochastic orderings 

shed light on their probabilistic behaviour relative to each other. Establishing the 

orderings in the HLZ family is also useful to infer orderings in the Poisson-HLZD in the 

next chapter. Figure 2.1 has clearly shown the hierarchical relationships among the 

stochastic orderings with the likelihood ratio order to be the strongest in the sense that it 

implies all other orders shown in that figure.  

The likelihood ratio order of the members in the HLZ family will be considered 

in three different cases depending on the number of different parameters between the 

models.  

 

Case 1: When only one parameter is different 

(a) If 1 2  , then 

1

1

1 2 1

2 1 2

1

2

1

( , , ) ( ) ( , , )

1 ( , , )

( , , ) ( )

k

k
s

k

s

T s a k a T s a

T s a

T s a k a



  

  







 
  

 


 is a decreasing function 

in k. Hence, 1 2( , , ) ( , , )lrHLZ s a HLZ s a  . 

(b) When 1 2a a , the ratio

1
1

1 1 2 2 1

1 1
1

2 2

1

( , , ) ( ) ( , , )
1

1 ( , , )

( , , ) ( )

k

s
s

k

s

T s a k a T s a a a

T s a k a

T s a k a



 

 








  
  

 


 is a 

decreasing function in k when 1s   . Hence, 1 2( , , ) ( , , )lrHLZ s a HLZ s a 
 
for

1s   .  

(c) If 2 1s s , then  
1

2 1

2

1

1 2

1
1

2

1

( , , ) ( ) ( , , )

1 ( , , )

( , , ) ( )

k

s
s s

k

s

T s a k a T s a
k a

T s a

T s a k a



 

 









 



 is a decreasing 

function in k, implying 1 2( , , ) ( , , )lrHLZ s a HLZ s a  .  
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Case 2: When two parameters are different 

(a) Consider   is common, then 
1 2

1

2

1 1

1 1 1 2 2 2

1

1 1 1
1

2 2 2

1

( , , ) ( ) ( , , ) ( )

1 ( , , ) ( )

( , , ) ( )

k

s s

k s

s

T s a k a T s a k a

T s a k a

T s a k a



 

 



 





 






. 

Clearly the ratio is a decreasing function of k if 

 
 

 

 

 

2 2

1 1

1 1

2 2

1 1

1 1

1

1

s s

s s

k a k a

k a k a

 

 

  


  
,  

that is, 

 

2 11 1

2 1

2 11 1

s s

k a k a

k a k a

 

    
   

      
.
 

Hence,
 1 1 2 2( , , ) ( , , )lrHLZ s a HLZ s a   if, and only if,  2 1s s  and 2 1a a . 

(b) If a  is common, then 
1

2 1

2

1

1

1 1 2 2 1

2 1 1 2
1

2 2

1

( , , ) ( ) ( , , )
( )

1 ( , , )

( , , ) ( )
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. The 

ratio is a decreasing function of k if 1 2   and 2 1s s . It is a strictly decreasing 

function of k if 1 2   and 2 1s s . Hence, 1 1 2 2( , , ) ( , , )lrHLZ s a HLZ s a  . 

(c) When s is common, then 
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and the ratio is a decreasing function of k if 1 2  and 1 2a a . Hence 

1 1 2 2( , , ) ( , , )lrHLZ s a HLZ s a  . 

 

 

 



35 
 

Case 3: When all three parameters are different 

Consider the ratio 
1 2

1

2

1

1 1

1 1 1 1 2 2 2 2 1

1

2 1 1 1 1 2
1

2 2 2 2
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( , , ) ( ) ( , , ) ( )
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k

k
s s

k s

s
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T s a k a

T s a k a
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  

  



 





  
  

  


. By 

applying the results in Case 2, this ratio is a decreasing function of k if 1 2  , 

1 2a a  and 2 1s s .Thus 1 1 1 2 2 2( , , ) ( , , )lrHLZ s a HLZ s a  . 

 

Based on the discussion above, some of the distributions in Table 3.1 can be 

ranked. For example, by assuming 0 1s  , 0a   and 1   to have same values in 

different models, we have 

Good lr LD lr Lotka (if 2 1  ) lr zeta lr Zipf-Mandelbrot. 

 

 Tail Behaviour of HLZD 

The rate of decay of a probability distribution determines whether the 

distribution has a short or long tail. Usually this can be assessed by finding the limit of 

the ratio of consecutive probabilities. For the HLZD,  

1

1lim lim .
1

s

k

k k
k

p a k

p a k
 





 

 
  

  
 

When 1  , ( 1)( ) s

kp a k     giving the distribution the long-tail property. It shows 

that the HLZD exhibits either exponential decay or power law decay. 

The upper tail probability of a random variable is often of interest. For the 

HLZD, define ( )HLZ i

i x

T x p




 . The tail probability can be expressed in terms of the 

Lerch transcendent as follows. 
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Compare this to the asymptotic upper tail probability of the generalised 

logarithmic distribution (GLD) in Khang & Ong (2007), which takes the form 

1/2

1/2

( 2 ) 3
( ) ( 2 , , )

22( ) log

x

GLD

q pr
T x q pr x

pr p


   . By taking 2q pr   , 0.5s   and 

0a  , it is interesting to see that the asymptotic ratio of the tail probabilities of both 

distributions can be made independent of x, that is 

 

3/2

1/2

( 2 ,1.5,1)( 2 )( )
.

( ) 2( ) log

GLD

HLZ

q pr q prT x

T x pr p

  
  

Figure 3.2 shows the graph of the above ratio over all possible combinations of p, 

q and r, we see that the ratio is within the range from 1 to less than 4.5.  

 

Figure 3.2  

Ratio of tail probabilities of GLD to HLZD for all possible combinations of p and r 
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 Estimation of Parameters in the HLZD 

In Gupta et al. (2008), the ML equations for the parameters in the HLZD are 

derived and the authors pointed out that the equations result in method of moment 

equations with different functional forms. However, closed form solution of these 

equations is unavailable and a global optimization technique is needed to find the ML 

estimates. In Sim & Ong (2010), an estimation procedure by minimizing the pgf-based 

divergence statistic 

 
1 2

0
( , , ) ( ) ( ; ) ( ) ,    0 1;nD n f t g t t dt      θ θ  

is proposed, where 
1

1
( ) i

n
x

n

i

f t t
n 

   is the empirical pgf based on n observations 

1 2, ,..., nx x x , ( ; )g t θ  is the pgf with parameter vector θ  and ( )t  is a weight function. 

For simplicity and shorter execution time, the statistics  
1 2

1
0

( , ) ( ) ( ; )nD n f t g t dt θ θ
 

and  
1 2

2
0

( , ) ( ) ( ; )nD n f t g t dt 


θ θ
 
suggested in the paper will be used in this 

section to estimate the parameters of the HLZD.  

A number of datasets will be used to demonstrate the parameter estimation and 

goodness-of-fit: (1) the distribution of number of moth species represented by n 

individuals in a sample from the lightly logged rainforest (Khang & Ong, 2007); (2) 

distribution of 1534 biologists according to the number of research papers to their credit 

(Jain & Gupta, 1973); (3) number of boards that contains at least one sowbug (Doray & 

Luong, 1997); (4) Corbet’s Malayan butterflies data (Gupta et al., 2008). These datasets 

have been fitted to various generalisations of the LD and will be used to illustrate the 

competency of the HLZD.  

Algorithm 2.1 has been used to minimize either 1( , )D nθ  or 2 ( , )D nθ  in the 

following estimations with ( ; )g t θ  equals to the HLZ pgf in (3.2). To accelerate 
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computations, the integrals involved are evaluated by a 6-point Gaussian quadrature. 

The performances of these estimates can be assessed based on the p-value. 

The moth data from Chey (2002) will be used as the first illustrative example. In 

Khang & Ong (2007), this distribution of number of moth species represented by n 

individuals in a sample from the lightly logged rainforest in Sabah, Malaysia was fitted 

to a GLD arises as the cluster size distribution in the Poisson-stopped sum 

representation of the inverse trinomial distribution. This GLD has interesting feature 

such as oscillatory behaviour. Using the ML estimates obtained from simulated 

annealing algorithm, their 
2  statistic shows a good fit with p-value of 0.77. Following 

the discussion in Section 3.3, the HLZD is expected to perform equally well for this set 

of data. In Table 3.2, using the same grouping, the results obtained by minimizing 

1( , )D nθ  and 2 ( , )D nθ  show adequate fit with a slightly smaller p-value of 0.73 and 0.76 

respectively. 
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Table 3.2  

Number of moth species represented by n individuals in a sample from the lightly 

logged rainforest fitted to the HLZD by minimizing 1( , )D nθ  and 2 ( , )D nθ   

 

1( , )D nθ : 0.8237;  0.2416;  0.3029s a      

2 ( , )D nθ : 0.8061;  0.0763;  0.4438s a      

 

The second dataset shows the distribution of 1534 biologists according to the 

number of research papers to their credit in The Review of Applied Entomology, Vol 24. 

This data has been fitted by Jain & Gupta (1973) to their GLD with a p-value of 0.238. 

Later, Tripathi & Gupta (1988) fitted the same set of data to another generalisation of 

the LD developed from taking limit in the truncated mixed generalised Poisson 

distribution proposed in Tripathi & Gupta (1984). They managed to improve the fit by 

using estimates from the method of moments, obtaining a p-value of 0.323. Our trials, 

N Number of species 1( , )D nθ  2 ( , )D nθ  

1 140 139.30 139.68 

2 36 38.01 37.21 

3 17 17.61 17.58 

4 13 9.81 9.93 

5 6 6.00 6.13 

6 2 3.89 3.99 

7 4 2.62 2.69 

8 2 1.82 1.86 

9 2 1.29 1.31 

10 0 0.93 0.94 

11 1 0.67 0.68 

12 0 0.50 0.50 

13 0 0.37 0.37 

14 0 0.28 0.27 

15 1 0.21 0.20 

>15 0 0.70 0.64 

Total 224 224 224 

df   3 3 
2    1.29 1.17 

p-value   0.7305 0.7604 
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on minimizing  1( , )D nθ
 
and 2 ( , )D nθ  are marginal, with p-values of 0.1359 and 0.1117 

respectively, see Table 3.3. 

Table 3.3 

Distribution of 1534 biologists according to the number of research papers to their 

credit fitted to the HLZD by minimizing 1( , )D nθ and 2 ( , )D nθ  

 

As shown in Table 3.1, the Good distribution is a special case in the HLZ family. 

Doray & Luong (1997) compared the efficiency of the ML estimator and a quadratic 

distance estimator that is constructed based on least square method for the Good family. 

The authors also pointed out that the usage of the quadratic distance estimator instead of 

ML estimator can be regarded as trading off efficiency versus robustness.  By fitting of 

the data of number of boards that contains at least one sowbug to the Good distribution, 

their reported p-values for the two methods of estimations are 0.5351 and 0.117 

Number of papers  

per author 

Observed 

Frequencies 1( , )D nθ  2 ( , )D nθ  

1 1062 1056.52 1057.44 

2 263 283.80 282.75 

3 120 104.47 103.84 

4 50 44.90 44.76 

5 22 21.17 21.25 

6 7 10.61 10.77 

7 6 5.56 5.71 

8 2 3.01 3.14 

9 0 1.67 1.77 

10 1 0.95 1.02 

11 1 0.55 0.60 

>11 0 0.80 0.93 

Total 1534 1534 1534 

df   4 4 
2    7.00 7.50 

p-value   0.1359 0.1117 

    0.6814 0.7050 

s   0.8443 1.0184 

a   0.5232 0.6217 
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respectively. Minimizing 1( , )D nθ
 
and 2 ( , )D nθ  gives p-values of 0.4819 and 0.4543 

respectively, which are also comparable to the ML estimates, see Table 3.4. 

Table 3.4 

Number of boards that contains at least one sowbug fitted to Good’s distribution  

by minimizing 1( , )D nθ and 2 ( , )D nθ  

Number of sowbug Observed 1( , )D nθ  2 ( , )D nθ  

1 28 26.91 27.24 

2 14 16.29 16.12 

3 11 11.32 11.12 

4 8 8.33 8.16 

5 11 6.32 6.20 

6 2 4.89 4.81 

7 3 3.84 3.79 

8 3 3.04 3.02 

9 3 2.43 2.43 

10 3 1.95 1.96 

11 2 1.58 1.59 

12 0 1.28 1.30 

13 1 1.04 1.07 

14 2 0.85 0.88 

15 1 0.69 0.72 

16 0 0.57 0.60 

17 2 0.47 0.49 

>18 0 2.21 2.49 

Total 94 94.00 94.00 

df  7 7 
2   6.51 6.76 

p-value  0.4819 0.4543 

   0.8450 0.8551 

s  -0.5186 -0.4691 

 

 The LD has been proposed to describe data on insect and species counts that 

exhibit long-tailed pattern (Fisher et al., 1943). However, the LD seems to be too 

restrictive for extra-long tail datasets as shown in Khang & Ong (2007). Another long 

tail example is given in Table 3.5 that consists of the Corbet’s Malayan butterflies data 

fitted to the HLZD Gupta et al. (2008) with ML estimates. Since the data is not primary, 
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an immediate problem in implementing the pgf based estimation method to this dataset 

is that classes larger than 24 has been grouped into one class. If we ignore the last class 

completely and minimizing the divergence between the ‘empirical pgf constructed only 

from the first 24 classes’ and the ‘pgf that only consists of 24 terms’, the deviance is 

very large. On the other hand, if we assume the 119 grouped observations to be 

uniformly distributed with one observation in each class after 24, the fit is still not 

satisfactory. The arbitrariness in handling the grouped data is a disadvantage in the pgf 

based estimation. This drawback can be removed by using a more objective data 

graduation scheme as shown below. 

When s is small, the ratios between the expected frequencies from consecutive 

classes in the HLZD are approximately  . In the global optimisation search for optimal 

solution, for each new random search of  , we make use of the observation from class 

24 and construct the sequence 
2{[3 ],[3 ],...}  , where  x  refer to x rounded to the 

nearest positive integer. The process continues until the sum of the sequence is 119.  

This sequence will be used to represent the observations in classes larger than 24 when 

constructing the empirical pgf. Using this augmented empirical pgf, the estimates 

obtained have greatly improved the fit as shown in the last column in Table 3.5. 

However, the smaller chi-square value compared to that in Gupta et al. (2008) could 

also be due to the extended parameter space that includes negative values for s. 
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Table 3.5 

Corbet’s Malayan butterflies data fitted to the HLZD based on three different ways to 

construct the empirical pgf: a) by truncating the tail, b) by assuming uniformly 

distributed observations at the tail and c) by redistribute the grouped observations 

according to the expected ratios in the HLZD 

Individuals/Species 
Number 

of Species 

Truncating  

the tail at 24 

Assuming one 

observation in 

each class after 

24 

Graduation of 

data  

using HLZ ratio 

1 118 119.14 117.75 118.93 

2 74 67.25 68.89 65.64 

3 44 45.87 47.33 45.67 

4 24 34.36 35.42 35.03 

5 29 27.22 27.96 28.37 

6 22 22.39 22.88 23.78 

7 20 18.91 19.24 20.42 

8 19 16.30 16.50 17.84 

9 20 14.27 14.38 15.80 

10 15 12.65 12.69 14.14 

11 12 11.33 11.31 12.77 

12 14 10.23 10.18 11.61 

13 6 9.31 9.23 10.62 

14 12 8.52 8.42 9.76 

15 6 7.85 7.72 9.02 

16 9 7.26 7.12 8.36 

17 9 6.74 6.59 7.78 

18 6 6.28 6.13 7.25 

19 10 5.87 5.72 6.79 

20 10 5.51 5.35 6.36 

21 11 5.18 5.02 5.98 

22 5 4.88 4.72 5.63 

23 3 4.61 4.45 5.31 

24 3 4.37 4.21 5.02 

>24 119 143.70 140.79 122.13 

Total  
62

0 
620 620 620 

df   21 21 21 
2    31.26 31.88 20.32 

p-value   0.0695 0.0602 0.5011 

    0.9924 0.9942 0.9803 

s   0.1340 0.2339 -0.1311 

a   0.5508 0.8630 0.0674 
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CHAPTER 4  THE POISSON-HURWITZ-LERCH ZETA 

DISTRIBUTION 

 

 Introduction 

In this chapter, the Poisson-stopped sum of HLZD is proposed as a new 

generalisation of the NBD. Section 4.1 introduces the construction of the models and 

some basic results are derived. Probabilistic properties of the model such as infinite 

divisibility, discrete self-decomposability, and so on are studied in Section 4.2 followed 

by Section 4.3, in which the Poisson-HLZD is proved to have a MP formulation and 

some numerical examples of inversions to recover the mixing distributions are given. 

Section 4.4 establishes the stochastic orderings between the members in the Poisson-

HLZ family. Finally, in Section 4.5, application of the model in data-fitting are 

illustrated. 

   

 The Poisson-HLZD 

Consider a pgf of the form 

( ) exp{ [ ( ) 1]},X YG t G t        (4.1) 

where ( )YG t  is the pgf of the HLZD in (3.2). A random variable X with pgf ( )XG t  is 

said to have a Poisson-HLZD and it can be expressed as  

0

N

i

i

X Y


         (4.2) 
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where N is a Poisson random variable with mean   and iY  are independent HLZ 

random variables having common distribution as Y. When s = 0, a = 0, ( )YG t  reduces to 

the pgf of a LD and ( )XG t  becomes a pgf for the NBD. 

 

4.1.1 Probability Mass Function of the Poisson-HLZD 

Let kp  be the probability function of the Poisson-HLZD. By the definition of 

pgf,  

0

( , 1, 1)
exp .

( , 1, 1)
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
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Differentiating both sides of (4.3) with respect to t, we get 
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By comparing the coefficient of nt from both sides, we obtain the recurrence formula 

1 1
0

( 1)
( 1)

( , 1, 1) ( 1 )

jn

n n js
j

j
n p p

s a a j

 


 




 

    
 .    (4.4) 

Since the HLZD has support on the positive integers, we can use the probability of zero 

occurrence  ep0  
to initiate the calculation in (4.4).  
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 In a more general setting, pgf (4.1) can also be regarded as a special case of 

(2.12) and the recurrence formula (4.4) followed by Theorem 2.5. The details of this 

approach are given in Appendix A. Another approach to derive the pmf in the context of 

actuarial science is shown in Appendix B. 

The Poisson-HLZD can take various shapes as shown in the following figures. 

Figure 4.1 also suggests the possibility of using Poisson-HLZD in modelling zero-

inflated data when there is no trivial reason to assume the data coming from different 

subpopulations.  

 

Figure 4.1 Pmf of Poisson-HLZD with 4.5; 0.98; 0.7, 0.01a s      

 

 

Figure 4.2 Pmf of Poisson-HLZD with 5.5; 0.7; 0.7, 0.1a s      
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Figure 4.3 Pmf of Poisson-HLZD with 5.5; 0.7; 0.7, 1.1a s       

 

 

4.1.2 Moment-Ratio Diagram  

The mean and variance of the Poisson-HLZD can be obtained using (2.8) and 

the first two moments of the HLZD from Gupta et al. (2008). 

( , 1, )
[ ]
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T s a
E X a

T s a
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
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 
 

2( , 2, ) ( , 1, )
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( , , ) ( , , )

T s a T s a
Var X a a

T s a T s a

 


 

 
    

The index of dispersion (ID), defined as the ratio of variance to the mean, is a 

useful indicator in model selection. A distribution which has ID > 1 is said to be over-

dispersed with respect to the Poisson distribution. 
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Property 1 The Poisson-HLZD is over-dispersed. 

Proof:     

Let Y be a HLZ random variable. Since the support of the HLZD is the set of 

positive integers, we must have 
2[ ] [ ]E Y E Y . The ID of Poisson-HLZD is given 

by 
2[ ]

1
[ ]

E Y

E Y




 .                                                     ■ 

As seen from the proof, Property 1 is also a general property of the PSSD with 

cluster size distribution on .  

Comparisons of probability models can be done in various ways depending on 

the objectives of studies. When flexibility of the models is concerned, the moment-ratio 

diagram or skewness-kurtosis plot, gives an insightful picture to the relative versatility 

of the models. Vargo et al. (2010) provide the moment-ratio diagrams for some 

common distributions and illustrate their applications in model selection. Skewness-

kurtosis plot of well-known MPD including the Sichel, Delaporte, Poisson-Tweedie and 

some zero-inflated models are shown in Rigby et al. (2008). For easy comparison with 

these models, the skewness-kurtosis plot for the Poisson-HLZD is superimposed to Fig. 

5 in the paper as shown in Figure 4.5.  

From the discussion in Section 2.5, the skewness and kurtosis can be calculated 

based on formula (2.2) in Gupta (1974) by treating the HLZD as a special case of the 

modified power series distribution. The system of simultaneous equations 

2

( , 1, )
1

( , , )

( , 2, ) ( , 1, )
[ 2 ] 2

( , , ) ( , , )

T s a
a

T s a

T s a T s a
a a

T s a T s a






 


 

  
   

  


    


    (4.5) 

is solved for   and s  for some given pairs ( , )a . To be specific, in order to obtained 

the lower boundary in Figure 4.4, the value of a is fixed at 0.99999  with   changes 
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from 0.05 to 0.85. The points on the upper boundary are obtained by fixing 0.99   

and a  changing from 0.07 to 9.9 with a step size of 0.1. The values of a near –1 are not 

considered because the corresponding combinations produce very large kurtoses that 

distort the graphical presentation. The values of   are chosen such that the 

computational time is acceptable. Construction of one boundary could take a few days 

due to the difficulties in solving (4.5). To avoid the case of not plotting the true 

boundaries, points of random combinations of parameters are generated as shown in 

Figure 4.4. All the points fall into the region between the two boundaries. In Figure 4.5, 

the boundaries shown in Figure 4.4 are superimposed on Fig 5. in Rigby et al. (2008) 

for easy comparison. It is observed that the region corresponding to the Poisson-HLZD 

includes both the Sichel and Poisson-Tweedie distributions and also cover part of the 

two regions representing zero-inflated Sichel and Poisson-shifted generalised inverse 

Gaussian. Part of the Maple programme is shown in Appendix C. 

 

Figure 4.4 

Moment-ratio plot for Poisson-HLZD with mean =1 and variance = 2 
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Figure 4.5 

Comparison of moment-ratio plot for various MPDs 

 

 Probabilistic Properties of the Poisson-HLZD 

Some modern probabilistic structures of the Poisson-HLZD which may be used 

to prove some other properties of the distribution are examined. Some of these 

properties may only be true under some restrictions in parameters. 

 

4.2.1 Infinite Divisibility 

By Theorem 2.6, the pgf in (4.1) clearly shows that the Poisson-HLZD is 

infinitely divisible. Hence, the recursive formula for the pmf of the Poisson-HLZD can 

also be obtained easily as a consequence of infinite divisibility. 
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From either (2.14) or (2.16), the canonical measure kr of the Poisson-HLZD is 

given in terms of the pmf of the HLZD as  

1

1

( 1)

( , , )( 1)

k

k s

k
r

T s a a k

 










 
.      (4.6) 

Using Theorem 2.9, an alternative derivation for (4.4) can be obtained. 

 1 1

0

1
0

( 1) ( 1)

( 1)
                

( , 1, 1) ( 1 )

n

n k n k

k

kn

n js
j

n p p n k q

j
p

s a j a



 



  






    



    





 

 

4.2.2 Discrete Self-Decomposable 

As shown in Figure 4.1, the Poisson-HLZD may not be unimodal. However, we 

can show that it is unimodal when a = 0.  

Property 2 When 0s  , the Poisson-HLZD is discrete self-decomposable when 0a  .  

Proof: 

From (4.6) and Theorem 2.9, this is equivalent to finding conditions such that 

the canonical measure nr

 

is non-increasing. 

  

1

1

1
1

1

( 1)

( , , )( 1)

( , , )( )

1 1
(1 )(1 )

1

n

s
n

n

n
s

s

n

r T s a a n

nr

T s a a n

n a n

 



 
















 




  
 

 

Under the stated condition,  
11 1 1 1

(1 )(1 ) (1 )(1 ) 1
1 1

s

n n n n
        

 
.    ■ 

 

 The condition in Property 2 is satisfied by distributions such as the LD and 

Lotka distribution in the HLZ family.   



52 
 

4.2.3 Poisson-HLZD as a Convolution of Two Random Variables 

From the definition of self-decomposable and Property 2, we know that under 

certain conditions the Poisson-HLZD may be expressed as convolution of two random 

variables with pgf’s  

(1 ) ( (1 ), 1, 1)
exp

( , 1, 1)

t t s a
e

s a

      



        
 

   
 

and  

          
1 1

1
0

( (1 ) )
exp

( , 1, 1) ( 1)

k k k

s
k

t t

s a k a

   



 




    
  
      

 , 

where 0 1  . The first pgf represents a thinning version of the Poisson-HLZD 

whereas the second distribution could be a new distribution that needs further 

exploration. 

 

4.2.4 Unimodality and Strong Unimodality 

Proving unimodality of a PSSD in general is not always direct. On the other 

hand, strong unimodality which implies unimodality could be easier to verify by using 

Theorem 2.8 and Theorem 2.10. 

Property 3 The canonical measures nr  of Poisson-HLZD is log-concave if  0s   and 

1
1 1

2 2

s
a

a



 

 
 

. The same conditions lead to strong unimodality of the Poisson-HLZD. 

Proof:  

From (4.6), 

12 2

2

1 1

2 2

( 2)( ) ( 1)

( 1) ( 2)

( 2)( ) 1
1 .

( 1) ( 1)

s

n

n n

s s

r a n a n n

r r a n n n

a n a n

a n a n



 

    
  

   

     
     

      
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This is because the function 
2( 1)

( ) 0
( 2)

x
f x

x x


 



  

and is decreasing in x for 

0x  . Since

 

2

1
1 1 0

( 1)

s

s
a n

 
    

  
, from Theorem 2.8, the probability 

distribution is log-concave if, and only if,

 

  

2

11

1

2

0
1

2

1( , , )( 2)
2 1

2

( , , )( 1)

ss

s

r aT s a a

r a

T s a a














  
   

 


.     

The conclusion then follows by Theorem 2.10.              ■ 

When s = 0 and a = 0, we have the NBD. 

  

 MP Formulation of Poisson-HLZD 

The Poisson-HLZD will be shown to have a MP formulation, which is 

equivalent to showing that after substitution of 1t u   in the pgf of the Poisson-HLZD, 

the resulting function  

(1 ) ( (1 ), 1, 1)
( ) exp

( , 1, 1)

u u s a
F u e

s a

  



      
  

   
    (4.7) 

is completely monotone in u on (0, ) . Since the pgf is a power series with positive 

coefficients and always exists on the interval [ 1,1] , according to Theorem 2.2, a 

substitution of 1t u   will make ( )F u  completely monotone on (0,1] . Hence, only the 

complete monotonicity of ( )F u  for 1u   will be proved in the following and the 

Weierstrass M-test will be used to justify the uniform convergent requirement in 

Theorem 2.3. 

(Weierstrass M-test)  Suppose that ( , )f x t  is Riemann integrable over [ , ]a c  for all 

c a  and all t J . Suppose there exists a positive function M defined for x a  such 
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that ( , ) ( )f x t M x  for all x a  and t J , and such that the infinite integral 

( )
a

M x dx


  exists. Then for each  t J , the integral ( , )
a

f x t dx


  converges uniformly 

on J (Bartle, 1976). 

Theorem 4.1 The Poisson-HLZD has MP formulation when 1s   . 

Proof: 

Applying Theorem 2.1 by taking ( ) exp
( , 1, 1)

y
f y e

s a

 



  
  

   
, it is easy to 

see that f is completely monotone in y. It remains to show that  

( ) ( 1) ( (1 ), 1, 1)h u u u s a       

is completely monotone for u >1. Using the integral representation (3.1), 

0

1 1
( ) ( 1)

( 1) ( 1)

at s

t
h u u e t dt

s e u



 
   





 

Hence, ( )h u  is nonnegative for u > 1. 

The derivative of ( )h u , 

1

0 0

'( ) ( 1) ( (1 ), 1, 1) ( (1 ), 1, 1)

( (1 ), , 1) ( (1 ), 1, 1)

1 1 1

( 1) ( ) ( 1) ( 1)
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u s a a u s a

a
e t dt e t dt
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 

 

  
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 
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1 1
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I e t dt
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a
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
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By taking 11
( )

( )

at sf t e t
s

 


, 
1

( , )
( 1)t

K u t
e u


 

 in Theorem 2.3, it is easy 

to see that 

1
( , ) 0

( 1)t
K u t

e u
 

 
 , 

and 
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  
( 1)

( 1) ( , ) ! ( 1) 0.
k

k
k t k

k
K u t k e u

u
 

 
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
 

Observed that ( , ) ( )
k

k
K u t f t

u




 is a product of two bounded continuous 

functions and is hence Riemann integrable on [0, ]c  for any 0c  . For any given 

0k ,  

1 ( 1) 1

( 1)

! 1 !
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a k t s k sk
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s



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





. By the Weierstrass  M-

test, the uniform convergence of the integral 
0

( , ) ( )
n

n
K u t f t dt

u










 can be 

justified and Theorem 2.3 can be applied to conclude that 1I  and 2I  are both 

completely monotone on (1, ) .   

  Although the sum of two completely monotone functions is completely 

monotone, there is no analogous argument about the difference of two 

completely monotone functions. To proceed, apply change of variable x at ,  
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/ /
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1
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 

  
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Xf x e x
s

 


 and 
1

( )
( 1)

y s

Yf y e y
s


   

be the respective pdf of 

Gamma random variables X and Y. Let 1( , ) t s

x
s x e t dt


     be the upper 

incomplete Gamma function, 
( , )

( )
( )

s x
P X x

s


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
 and 

( 1, )
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( 1)

s x
P Y x

s

 
 

 
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Using the recurrence relation of the incomplete Gamma function  

( 1, ) ( , ) s xs x s s x x e      (Erdélyi et al., 1953; Vol II, p.134),  

 
( , )
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( )

s xs s x x e
P Y x

s s

 
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( ),
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s s s
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 
 for all 0x  . 

This shows that X is stochastically smaller than Y. The following shows that if X 

is stochastically smaller than Y then 
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These results show that  
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for all 0k  and u > 1. Hence, the sign of 
( ) ( )kh u  is dominated by the sign of 

1

k

k
I

u




, which is completely monotone. Therefore, '( )h u  is completely 

monotone.                         ■ 

 

Using the Laplace transform of the mixing distribution, the moments of the 

mixing distribution can be obtained easily and the moment generating function 

(1 ) ( (1 ), 1, 1)
( ) exp .

( , 1, 1)

t t s a
M t e

s a

  



      
  

   
 Various approaches have been 

developed to approximate the pdf of a distribution from its moments. These include the 

applications of the Pearson curves, orthogonal polynomials (Provost, 2005) or the 

maximum entropy principle (Tagliani & Velasquez, 2004).  With the advancements of 

modern computing technology, numerical inversion as described in Section 2.10 also 

gives satisfactory results as shown in the following examples.  

Figure 4.6 shows the performance of the Gaver-Stehfest formula and the Fourier 

series method. The inversions highly coincide for most of the domain of x, except for 

small values of x where the Fourier series method fails to produce any value. In Figure 

4.7, the inversions are fine for all values of x, except at a point near 0.5. The diagram 

shows a spike from the Fourier series method which could represent a singularity or 

point mass in the mixing distribution. In general, the Bernstein’s theorem does not 

guarantee the mixing distribution to be absolutely continuous. 
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Figure 4.6 

Pdf of mixing distribution of Poisson-HLZD with 

3,  0.8949, 0.9509, 0.6905s a      

  

 

Figure 4.7 

Pdf of mixing distribution of Poisson-HLZD with  

4.5,  0.98,  0.01,  0.7s a      
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 Stochastic Orders Related to the Poisson-HLZ Family 

The results established in Section 3.2 will be applied to deduce similar 

properties for the Poisson-HLZD based on Theorem 2.11 and Theorem 2.12. Before that, 

the following property for the Poisson distribution is needed. 

Lemma 4.1 The likelihood ratio orders among the Poisson random variables follow the 

orders between their means. 

Proof: Let 1  and 2 with 1 2  , be the means of two Poisson random 

variables X  and Y  respectively. The ratio of corresponding pmf’s, 

 

1

2 1

2

1

( ) 1

2 2

!

!

x

x

x

e

x e
e

x



 






 



 



 
  

 
  

is a monotone decreasing function in x. Hence, lrX Y .                    ■ 

Since the likelihood ratio order implies the usual stochastic order, hazard rate 

order and reverse hazard rate order, the conclusion above also holds for these orders. 

Using Theorem 2.11 and Lemma 4.1, some orderings among the Poisson-

HLZDs can be determined. However, when the conditions in the theorems are not 

satisfied, the orders are not trivial. 

 

4.4.1 Comparison of Poisson and Poisson-HLZD 

Let N be a Poisson random variable with mean *  and M be a MP random 

variable with mean   that has pdf ( )f  . The orders, lr  and st , between N and M 

can be determined by using the following theorem from Misra et al. (2003). 
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Lemma 4.2 (Misra et al., 2003; Lemma 3.1 & Theorem 3.1): Define 

1

1( ) [ ] / [ ]k ka k E e E e     , 0 1(0)a  , 
1 ln [ ]E e   , 2 [ ]E    and 

0

( ln )
( )

!

jk

k

j

x
h x x

j

 
  

 
 , for 0 1x  , 0,  1,  ...k  . Then, 

 0 1 20      . 

 lrM N  if, and only if 00 *   . 

 stM N  if, and only if 10 *   . 

To apply Lemma 4.2, 0 , 1 , and 2  can be found from the Laplace transform 

of the mixing distribution. From 
0

ˆ( ) ( )uf u e f d  


  , we have ˆ[ ] (1)E e f  , 

ˆ[ ] '(1)E e f   , and ˆ[ ] '(0)E f   . For Poisson-HLZD,  
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These three numbers are sufficient to determine the order of Poisson-HLZD as 

compare to a Poisson random variable. The following property gives a more general 

result on the PSSD. 
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Property 4 If M is a Poisson-stopped sum random variable that has MPD, then M is 

stochastically larger than a Poisson random variable with mean *  if, and only if 

 * exp[ (0) 1 ] '(0)G G    , where ( )G t  is the pgf of the cluster size distribution of M. 

Proof: 

Let  ( ) exp[ ( ) 1 ]MG t G t  , the Laplace transform of the mixing distribution 

is given by  ˆ( ) exp[ (1 ) 1 ]f u G u   . Hence,  

 ˆ '( ) exp[ (1 ) 1 ] '(1 )f u G u G u       

and 

 

 

 

 

 

0

1

2

ˆ exp[ (0) 1 ] '(0)'(1)
'(0)

ˆ exp[ (0) 1 ](1)

ˆln (1) 1 (0)

ˆ '(1) exp[ (0) 1 ] '(0)

G Gf
G

Gf

f G

f G G

 
 



 

  


  



   

   

 

       ■ 

 

 Examples of Data-Fitting 

The Poisson-HLZD is fitted to some well-known datasets to the model to 

illustrate its usefulness. Although there is no closed form expression for the pmf of the 

Poisson-HLZD, by (4.4), the ML estimates of the parameters can be obtained using 

Algorithm 2.1. 

Table 4.1 shows the well-known accident claim data from Bühlmann (1970), 

which has been fitted to different models by many authors. It is shown in Gathy & 

Lefevre (2010) that NBD and a generalised NBD that is derived from the Lagrangian 

Katz family (3 parameters) do not provide good fit whereas generalised Poisson (2 

parameters) gives only marginal p-value of 0.0632. Our results show that the full 

Poisson-HLZD give very good fit to the data with AIC = 109227.52. From the values of 
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the estimates for s and a, a simpler model with a = 0 and s = 2 is selected based on 

smaller AIC of 109225.32. Nevertheless, in Klugman et al. (2008), the authors were 

able to get an AIC of 109223.6 by using the Sichel distribution. Although the difference 

in AIC between the reduced model and Sichel is small, from the 
2  statistic, the Sichel 

is still preferred. 

Table 4.1 

Fitting  Bühlmann’s accident claim data to Poisson-HLZD 

 

Claim 

numbers 

Observed 

frequencies 
a = 0, s = 2 Full model 

Poisson-inverse 

Gaussian* 

0 103704 103654.28 103700.25 103710.0 

1 14075 14143.94 14072.69 14054.7 

2 1766 1745.29 1775.36 1784.9 

3 255 252.41 252.91 254.5 

4 45 44.62 41.19 40.4 

5 6 9.38 7.88 6.9 

6 2 2.25 1.65 1.3 

>6 0 0.84 0.5 0.3 

Df   4 2 4 
2    2.2378 0.8786 0.9719 

p-value   0.6921 0.6445 0.9143 

log-

likelihood 
  -54610.66 -54609.76 -54609.8 

      0.14486 0.14471  

    0.44173 0.35946  

s   2 1.84329  

a   0 0.11579  
 

* The result in this column follows Klugman (2009) except that the author combines the last three groups 

while calculating the 
2  statistic.  

 

In Table 4.2, the Poisson-HLZD is fitted to data of automobile accident claims 

on 9461 contracts as illustrated in Thyrion (1960). This data was shown to have bad fit 

to Poisson and NBD. In Ruohonen (1988), the author also fitted a three parameter 

model, which represents two processes with ‘good’ and ‘bad’ risk, to this set of data and 

get marginal fit at 10% significance level. Table 4.2 shows that the 2 value can be 
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reduced significantly when fitted to the Poisson-HLZD. From the result of the full 

model, a simpler model that will produce slightly heavy-tail distribution requires 0a  . 

Testing 0 : 0H a   versus 1 : 0H a   at 5% significance level, the likelihood ratio test 

statistic 2

0.05,10.004 3.841   . The AIC of reduced model is also smaller than that 

of the full model. Hence, the Poisson-stopped sum of Good distribution gives an 

adequate parsimonious model for the data.  

Table 4.2 

 Fitting Thyrion’s accident claim data to Poisson-HLZD 

 

**The data in this column follows Ruohonen (1988). 

Claim 

numbers 

Observed 

frequencies 
NBD a = 0 Full model 

Weighted  

Poisson** 

0 7840 7848.25 7838.94 7838.04 7837.4 

1 1317 1285.1 1323.09 1323.71 1326.16 

2 239 257.5 227.63 228.45 222.76 

3 42 54.74 49.78 49.44 52.68 

4 14 11.97 13.82 13.57 15.08 

5 4 2.66 4.61 4.53 4.66 

6 4 0.6 1.76 1.75 1.5 

7 1 0.14 0.73 0.76 0.5 

>7 0 0.04 0.65 0.74 0.26 

Total  9461 9461 9461.01 9460.99 9461 

df   3 2 1 2 

 2    12.69 2.02 1.85 4.12 

p-value 
 

0.0053 0.3649 0.1742 0.1277 

log-likelihood   -5348.056 -5342.26 -5342.258  

       0.1868875 0.1880749 0.188  

     0.2370001 0.68918 0.7817  

s   0 1.975 2.665  

a   0 0 0.2287  
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CHAPTER 5  THE INVERSE TRINOMIAL DISTRIBUTION AS A 

MIXED POISSON DISTRIBUTION 

 

 Introduction 

The univariate inverse trinomial distribution (ITD) can be derived from various 

mechanisms as mentioned in Shimizu et al. (1997). In this chapter, the ITD will be 

proved to be a MPD under certain condition and its mixing distribution is obtained. The 

evolution of the ITD as a random walk model and some related results in the literature 

will be introduced in Section 5.1. In Section 5.2, the Bernstein’s theorem is applied 

again to show that ITD can be regarded as a MPD and its mixing distribution is 

represented as an infinite Laguerre series in Section 5.3.  

 

 The ITD as a Random Walk Model  

In Vol I, Section XIV.4, Feller (1967) describes the fortune of a gambler, who 

plays against an infinitely rich opponent, by using a simple random walk model starting 

at z  with absorbing barrier at 0. Let the probabilities of steps of –1 and +1 be p and 

r respectively, with 0p r   and 1p r  . The random variable M, which represents 

the number of steps until the process ends at 0, has pmf 

  

( )/2 ( )/2; 2 | ( ),
( ) / 2

0                                          ; otherwise.

m z m z

m

mz
r p m z

p m zm

 
  

  
   

  

Applying the transformation 2M Y z  , Yanagimoto’s (1989) inverse binomial 

random variable Y which has the lost-games distribution is obtained, see Kemp & Kemp, 

(1968). The random variable Y has pmf
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(2 )

( 1) ( 1)

y z y

y

y z z
p p r

y y z

 

    

, 0y .    (5.1) 

The inverse binomial distribution is further generalised in Shimizu & Yanagimoto 

(1991) to obtain the ITD by introducing a nonzero probability of stagnant in the random 

walk model.  

Consider the random walk model illustrated in Figure 5.1 that has a starting 

point at 0   and an absorbing barrier at 0. The probabilities of a –1, 0, or +1 step are 

given by p, q and r respectively, such that  and 1p r p q r    . An inverse trinomial 

random variable X is defined by X N   , where N is the number of steps until the 

process is absorbed by 0. The pmf of X is 

/2

2
0 , , 2

jkk

k

j

kp q pr
p

j j k jk q

 



  



  
   

    
 , 

0k ;   (5.2) 

where 
( )!

, , 2 !( )!( 2 )!

k k

j j k j j j k j

 

 

  
 

    
. When   is not an integer, the factorial 

will be replaced by Gamma function.  

 

Figure 5.1 

Random walk model in the ITD 

The ITD is named to reflect its relationship with the trinomial random variable Z 

which takes values 
1 1

,0,  and 
 

 with probabilities p, q and r respectively. The inverse 

of log [ ]tZE e  is equal to log [ ]tNE e  for log
2

p
t

r

   
    
   

, where N X   ; see 

Shimizu et al. (1997). In the same paper, the authors also derived two expressions for 
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the pgf of the multivariate ITD, from which we obtain two expressions for the pgf of 

univariate ITD, 

   
2 2

2
( )

1 1 4
X

p
G t

qt qt prt


 
 

 
     
   

    (5.3) 

and  

2

2 1 2

1 1 4
( ) , ; 1;

1 1 2 2 (1 )
X

q p pr t
G t F

qt q qt

 

 


     
      

       
,  (5.4) 

where  2 1

0

( ) ( )
, ; ;

( ) !

j
j j

j j

a b x
F a b c x

c j





  is the Gauss hypergeometric function. If r = 0, 

(5.3) reduces to the pgf of NBD. 

Khang & Ong (2007) studied the ITD as a PSSD and derived a new 

generalisation of LD from the cluster size distribution. Aoyama et al. (2008) further 

generalised the shifted ITD to a distribution of random walk on a half plane with 5 

transition probabilities. More recently, a subclass of this generalisation, the 3,1GIT  

which exhibits under-, equi- and over-dispersed properties was extended as a 

convolution of binomial and negative binomial random variables in Imoto (2012).  

Since the ITD is both a PSSD and a generalisation of the NBD, it is therefore interesting 

to investigate whether it is also a MPD.  
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 ITD as a MPD 

Using expression (5.3), let 

( ) (1 )Xs G s     

        

   
2 2

2

1 1 4 (1 )

p

q qs q qs pr s


 
 

 
        
   

    

It is easy to verify that  0 1  . ( )s  is nonnegative on [0,1]  as this part is the 

reflection image of a pgf about the line 0.5s  . Since  

            
2 2 2 21 4 (1 ) ( 4 )(1 ) 2 (1 ) 1q qs pr s q pr s q s          ,   (5.5) 

a nonnegative leading coefficient for the quadratic in (1 )s  in (5.5) is required for ( )s  

to remain nonnegative on (1, ) , that is 

2 24 0 2 1 2 1 ( ) .q pr q pr p r pr p r            

Hence, a necessary condition for ITD to be a MPD is 1p r  . Argument for 

sufficiency is more complicated and can be done by treating ( )f x x  and 

   
2 2( ) 1 1 4 (1 )h s q qs q qs pr s         in Theorem 2.1 and apply the following 

lemmas. 

 

Lemma 5.1 ( )f x x  is completely monotone on (0, ) for 0  . 

Proof: 

Let ( )f x x  , ( ) 2 ( )( 1) ( ) ( 1) ( ) 0n n n n

nf x x       .          ■ 

 

Lemma 5.2 When 1p r  ,    
2 2( ) 1 1 4 (1 )h s q qs q qs pr s         is 

nonnegative and has completely monotone derivative on (0, ) . 
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Proof: 

  21 4p r pr q    , 

   

   

 

2 2

2 2 2

1 1 4 (1 )

1 1 (1 )

1 1 2 2

q qs q qs pr s

q qs q qs q s

q qs q qs

      

       

       

2 1 ( )x x k x    , with substitution 1x q qs   . 

Under the condition 1p r  , 21 (1 ) 2( )q r r r r       has a global 

maximum at (0.25, 0.5), hence we conclude that 
1

1 1  for 0
2

q qs q s     

and ( )h s  is nonnegative.  

To show that ( )h s has completely monotone derivative ( )
d

h s
ds

. By the 

chain rule,  

( ) ( ) ( )
d d dx d

h s k x q k x
ds dx ds dx

   .  

Since multiplying a positive constant does not change the completely monotone 

property, we only need to look at the complete monotonicity of ( )k x . It is easy 

to deduce that 

2 1

1 2
0,  when 3,5,...

( ) ( 1) 1 3 ... (2 3) (2 1)
0,  when 2,4,...

nn
n

n

nd
k x n x

ndx





 

         
 

  

Hence, ( )h s has completely monotone derivative on (0, ) .          ■ 

 

Lemma 5.3 When 1p r  ,    
2 2( ) 1 1 4 (1 )h s q qs q qs pr s         is 

nonnegative and has completely monotone derivative on (0, ) . 
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Proof: 

21 4p r q pr     or 
2

4
1

pr

q
 .  

Denote 
2

4 pr
a

q
  and use the substitution 1x q qs    or 

1
(1 )

x
s

q


  . 

   

 

2 2

2 2

2

( ) 1 1 4 (1 )

(1 )

1 2 ( )

h s q qs q qs pr s

x x a x

x a x ax a k x

       

   

     

 

Since (0, ) (1 , ) (0, )s x q        , to show that ( )h s  is nonnegative, we 

only need to show that the function under the square root is positive for 

(0, )s  . The quadratic equation   21 2 0a x ax a     has roots 

22 4 4 (1 )

2(1 ) 1

a a a a a a

a a

     


 
 and is positive whenever   

         
2

2 / 2
2 .

1 1 1 2 / 1 ( )

pr q pra a a
x pr

a a pr q p r


    

    
 

Since (1 , )x q    and 2 1pr q  , ( )h s  is nonnegative.  

The next step is to show that ( )
d

h s
ds

 is completely monotone. Similar to 

the proof in Lemma 5.2, we only need to look at the complete monotonicity of 

( )k x . For (1 , )x q   , we have 

 
2 2 2 2

12 2 (1 )
( ) 1 1 0

2 (1 ) (1 )

a x ad x a x
k x

dx x a x x a x

  
    

   
 

and 

32
2 2

2 2 2 3
( ) [(1 ) 2 ] 0.

( (1 ) )

d a
k x a a x ax a

dx x a x


      

 
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Higher derivatives are very complicated and it is not easy to determine their 

positivities. Instead of taking higher derivatives, consider the function 

3

2 2
1( ) [(1 ) 2 ]k x a x ax a



     

          

3
23 2

2
2

(1 ) .
1 (1 )

a a
a x

a a



   
     

    

    (5.6) 

For 
1 1

a a
x

a a
 

 

 

or  
1

a a
x

a





, using formula 2.1.5.5 from (Prudnikov et 

al., 1986; Vol 5, pg 27), expression (5.6) has inverse Laplace transform, 

3

2
1

1 2

2

(1 )
( ) ( )

(1 )

(1 )

a
v

a
a a

l t e tI t
aa

a












  

where ( )I z  is the modified Bessel function of order   defined by  

 

2

0

1

1 4
( )

2 ! ( 1)

k

k

z

I z z
k k










 
 

     
   

 . 

It is easy to see from the definition that the modified Bessel function is 

nonnegative when the argument is real. Since 1( )k x  is the Laplace transform of a 

nonnegative function ( )l t , 1( )k x  must be alternate in sign after every 

differentiation according to (2.17). Hence, completes the proof that ( )h s has 

completely monotone derivative.             ■ 

 

Theorem 5.1 When 1p r  , ITD has a MP formulation. 

Proof: 

Take ( )f x x  ,    
2 2( ) 1 1 4 (1 )h s q qs q qs pr s       

 
and apply 

Theorem 2.1, together with Lemma 5.1, Lemma 5.2, and Lemma 5.3.        ■ 
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The admissible values for p and q in the original parameter space form a 

triangular region bounded by the lines, 
1

(1 )
2

p q   and 1p q   for 0 1q  . The 

additional condition  

2 2

1

2 (1 ) 1 1

2 (1 )

4 (4 4) 0

p r

p p p q p q

p p q q

p q p q

 

       

   

    

 

The solutions for p in the quadratic equation 
2 24 (4 4) 0p q p q     are 

1 1 2

2

q q
p

  
 . Hence, for 0.5q  , the ITD is always a MPD. However, for 

0.5q  , the ITD has MP formulation if and only if 
1 1 2

1
2

q q
p q

  
   . These 

pairs of ( , )q p  are shown in the shaded region in  Figure 5.2. 

 

Figure 5.2 

Region in the ITD parameter space that is corresponding to MPD for 0.5q   
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 Mixing Distribution of the ITD 

Theorem 5.2 When 1p r  , the ITD with pmf given by (5.2) has a mixed Poisson 

formulation and the mixing pdf )(xf  is given by 

  
 

 

11
1

0

( ) 1/ 2 4
( )

2 1 ( )

i
x

i i
i

i i

prp x x
f x e L

i

 


 

    

 




    
            

 ,  (5.7) 

when the infinite series convergent. Here,  a

nL x  is the Laguerre polynomial orthogonal 

over  with respect to 
1a xx e 

, and 2q pr   . 

Proof:  

In the Euler transformation 

    
2

2 1 2 1

1 1
, ;2 ;2 1 , ; ;

2 2 2 1

z
F z z F

z

  
   

    
    

   

, 

set 
2

1 2

pr u
z

qu pr u




 
, and substitute into (5.4),  

       

2 1

4
( ) , 1/ 2;2 1;

1 ( 2 ) 1 ( 2 )
X

pr tp
G t F

q pr t q pr t



  
   

             

. 

Let prq 2  and substitute 1t s  in the expression above gives 
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which can be rewritten as  
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To find the inverse Laplace transform of (5.8), we apply the inverse Laplace 

transform (Roberts & Kaufman, 1966; pg 223, Formula 20), 
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with 1a  , 
1

b





  , n i  and   . Since 21 ( ) 0p r    , the 

conditions of the formula are satisfied. Hence, 
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Note that if 0r  , (5.7) reduces to the gamma pdf 1( / )
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As pointed out in Abate et al. (1996), one of the problems with an infinite 

Laguerre series is slow convergence for large argument. To evaluate the performance of 

(5.7), comparisons with the numerical methods introduced in Section 2.10 are 

performed by using some random combinations of parameters. The graphs of the 

mixing distributions obtained by using (1) Post-Widder formula; (2) Gaver-Stehfest 

algorithm; (3) Laguerre series are shown in Figure 5.3 and Figure 5.4.  

In Figure 5.3, the blue line that represents the Laguerre series completely 

conincides with the red line from the Gaver-Stehfest algorithm and is not visible in the 

diagram. The Post-Widder method with n = 15 took more than 100 seconds to obtain a 

not so accurate approximation where as the other two methods took just a few seconds. 

Figure 5.4, on the other hand, shows some undesirable results when the 

computation becomes unstable. In (a), the Post-Widder formula produces a spike near 

1x  , whereas the results of two other methods coincide.  In (b), all three methods 

shows high degree of agreement for small x, for larger x, the Laguerre series become 

unstable and exhibits oscillation behaviour and also produces negative values. 
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Figure 5.3 

Inversions of Laplace transform of mixing distribution of ITD 

(a) 0.966, 0.5,  0.487, 0.013p q r        (b) 4, 0.6,  0.39997, 0.00003p q r       

  

 

Figure 5.4 

Inversions of Laplace transform of mixing distribution of ITD 

(a) 4.982, 0.8,  0.1981, 0.0019p q r            (b) 7.5, 0.33,  0.5, 0.17p q r      
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CHAPTER 6  CONCLUSION AND FUTURE WORK 

 

A number of generalised distributions, both old and new, have been considered 

in this research and some new results have been obtained. These models generalise 

some classical distributions and have shown advantages in describing the variations 

observed in some real life datasets. Judging from the goodness-of-fit statistics to the 

tested datasets, the HLZD has shown good competency among other generalisations of 

the LD. The proposed pgf based estimation method performed well with the HLZD on 

many datasets reflected in goodness-of-fit that are comparable to that given by the ML 

estimation. A simple data graduation scheme, which can be easily applied to other 

families of distribution with similar property, is proposed to avoid the arbitrariness in 

handling grouped data when constructing the empirical pgf and the result obtained is 

encouraging. Although the method works well in the given examples, large scale 

simulation experiment and sensitivity analysis of the method to the construction of the 

augmented pgf deserves further investigations.   

The Poisson-HLZD has been constructed and its properties are explored from 

different aspects. Although some of the probabilistic properties are true only under 

certain conditions, they are not too restrictive as they are satisfied by most of the well-

known distributions in the family.  

In deriving the recursive formula for the pmf, a number of methods that are 

scattered in various disciplines have been applied, hence building up some connections 

among the different approaches. However, as mentioned in Chapter 4, the pmf of the 

Poisson-HLZD has a k-term recurrence formula where k is varying. This varying k 

makes the ML estimation procedure time consuming and require more memory 

especially when the data has long tail. Implementation of the pgf based estimation 



76 
 

method as described in Chapter 3 can be considered in the future to reduce the 

computing power. On the other hand, the De Pril’s formula in Appendix B is an 

application of the Sundt and Jewell’s recursion for the Poisson case which has a 2-term 

recurrence formula. When a stopped sum distribution is stopped by a random variable 

with distribution that has a k-term recurrence formula in specific form for a constant k, 

the stopped sum distribution can then be evaluated recursively. The advantage of this 

type of recursion is evident. With a varying k, high-ordered convolution may involve 

whereas for a fixed k, only a maximum of k-convolution is needed. This drawback 

hence restricted the willingness of using such distribution to model quantity such as the 

claim number. It is therefore of practical interest to derive a k-term recurrence formula 

for the pmf of the Poisson-HLZD for some fixed k although the existence of such 

formula is still unclear. There also exists in some literatures, recursive formula for 

aggregate sum that is stopped by a MPD with specific form. Since the Poisson-HLZD 

has been proved to have such formulation, it provides an alternative way to tackle the 

problem. The difficulty in this approach is that, the mixing distribution for Poisson-

HLZD is expressed in Laplace transform, justifying the condition of existing result is 

not a trivial problem. 

The Poisson-HLZD and ITD share some common characteristics. Both 

distributions are PSSD with cluster size distributions that are related as described in 

Section 3.3. It is therefore natural to study the possible relation between the tail 

probabilities of the Poisson-HLZD and that of the ITD.  

Following the MP property of the Poisson-HLZD and ITD, a few new 

distributions has occurred as by-products in this research. Two mixing distributions 

arise from the Poisson-HLZD and the ITD are supposed to have generalised the gamma 

distribution in some ways. Another possibly new distribution appears in the 

decomposition of the Poisson-HLZD following its self-decomposability property. 
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Investigating the properties of these ‘new’ distributions could lead to new research 

directions. From computational point of view, the inversion of the mixing distribution is 

not always a smooth process. Problems like singularities or convergence are definitely 

some important considerations that the numerical analysts would like to investigate. 

  



78 
 

REFERENCES 

 

Abate, J., Choudhury, G. L. & Whitt, W. (1996). On the Laguerre Method for 

Numerically Inverting Laplace Transforms. INFORMS Journal on Computing, 

8(4), 413-427.  

 

 

Abate, J. & Whitt, W. (1999). Infinite-Series Representations of Laplace Transforms of 

Probability Density Functions for Numerical Inversion. Journal of the 

Operations Research Society of Japan, 42(3), 268-285.  

 

 

Abate, J. & Whitt, W. (2006). A Unified Framework for Numerically Inverting Laplace 

Transforms. INFORMS Journal on Computing, 18(4), 408-421.  

 

 

Akaike, H. (1974). A New Look at the Statistical Model Identification. IEEE 

Transactions on Automatic Control, 19(6), 716-723. 

 

 

Aksenov, S.V., Savageau, M.A., (2005). Some properties of the Lerch family of discrete 

distributions. Preprint downloaded from arXiv:math.PR/054485v1. 

 

 

Aoyama, K., Shimizu, K. & Ong, S. H. (2008). A First-Passage Time Random Walk 

Distribution with Five Transition Probabilities: A Generalization of the Shifted 

Inverse Trinomial. Annals of the Institute of Statistical Mathematics, 60(1), 1-20.  

 

 

Bartle, R. G. (1976). The Elements of Real Analysis. New York: Wiley. 

 

 

Bertin, E. & Theodorescu, R. (1995). Preserving Unimodality by Mixing. Statistics & 

Probability Letters, 25(3), 281-288.  

 

 

Bhattacharya, R. N. & Waymire, E. C. (2007). A Basic Course in Probability Theory. 

New York: Springer.   

 

 

Bose, A., Dasgupta, A. & Rubin, H. (2002). A Contemporary Review and Bibliography 

of Infinitely Divisible Distributions and Processes. Sankhya-the Indian Journal 

of Statistics Series A, 64(3), 763-819.  

 

 

Box, G. E. P., Jenkins, G. M. & Reinsel, G. C. (1994). Time Series Analysis: 

Forecasting and Control (3rd ed.). Englewood Cliffs: Prentice Hall. 

 

 



79 
 

Bühlmann, H. (1970). Mathematical Methods in Risk Theory. New York: Springer-

Verlag. 

 

 

Calderon, F., Curilef, S. & Ladron de Guevara, M. L. (2009). Probability Distribution in 

a Quantitative Linguistic Problem. Brazilian Journal of Physics, 39(2A), 500-

502.  

 

 

Cameron, A. C. (1998). Regression Analysis of Count Data. Cambridge and New York: 

Cambridge University Press. 

 

 

Casella, G. & Berger, R. L. (2002). Statistical Inference (2nd ed.). Pacific Grove: 

Thomson Learning. 

 

 

Chadjiconstantinidis, S. & Pitselis, G. (2009). Further Improved Recursions for a Class 

of Compound Poisson Distributions. Insurance: Mathematics and Economics, 

44(2), 278-286.  

 

 

Charalambides, C. A. (2005). Combinatorial Methods in Discrete Distributions. 

Hoboken: Wiley-Interscience. 

 

 

Chey, V. K. (2002). Comparison of Moth Diversity between Lightly and Heavily 

Logged Sites in a Tropical Rain Forest. Malayan Nature Journal, 56(1), 23-41. 

 

 

Clegg, R. G., Di Cairano-Gilfedder, C. & Zhou, S. (2010). A Critical Look at Power 

Law Modelling of the Internet. Computer Communications, 33(3), 259-268.  

 

 

Cortina-Borja, M. (2006). Some Remarks on the Generalized Hermite and Generalized 

Gegenbauer Probability Distributions and Their Applications. In R. Köhler & P. 

Grzybek (Eds.), Exact Methods in the Study of Language: Festchrift for the 75th 

Birthday of Gabriel Altmann (pp. 49-60). Berlin and New York: de Gruyter. 

 

 

Doray, L. G. & Luong, A. (1997). Efficient Estimators for the Good Family. 

Communications in Statistics-Simulation and Computation, 26(3), 1075-1088.  

 

 

Douglas, J. B. (1980). Analysis with Standard Contagious Distributions. Fairland: 

International Co-operative Pub. House. 

 

 

Dubner, H. & Abate, J. (1968). Numerical Inversion of Laplace Transforms by Relating 

Them to the Finite Fourier Cosine Transform. J. ACM, 15(1), 115-123.  

 

 



80 
 

Engen, S. (1974). On Species Frequency Models. Biometrika, 61(2), 263-270.  

 

 

Erdélyi, A., Magnus, W., Oberhettinger, F. & Tricomi, F. G. (1953). Higher 

Transcendental Functions. New York: McGraw-Hill. 

 

 

Famoye, F. & Singh, K. P. (2006). Zero-Inflated Generalized Poisson Regression Model 

with an Application to Domestic Violence Data. Journal of Data Science, 4(1), 

117-130.  

 

 

Feller, W. (1967). An Introduction to Probability Theory and Its Applications (3d ed.). 

New York: Wiley. 

 

 

Fisher, R. A., Corbet, A. S. & Williams, C. B. (1943). The Relation between the 

Number of Species and the Number of Individuals in a Random Sample of an 

Animal Population. Journal of Animal Ecology, 12, 42-58.  

 

 

Freytag, A., Krüger, J. J., Meierrieks, D. & Schneider, F. (2011). The Origins of 

Terrorism: Cross-Country Estimates of Socio-Economic Determinants of 

Terrorism. European Journal of Political Economy, 27, Supplement 1(0), S5-

S16.  

 

 

Gan, L., Li, D. & Song, S. (2006). Is the Zipf Law Spurious in Explaining City-Size 

Distributions? Economics Letters, 92(2), 256-262.  

 

 

Gathy, M. & Lefevre, C. (2010). On the Lagrangian Katz Family of Distributions as a 

Claim Frequency Model. Insurance：Mathematics & Economics, 47(1), 76-83.  

 

 

Geedipally, S. R., Lord, D. & Dhavala, S. S. (2012). The Negative Binomial-Lindley 

Generalized Linear Model: Characteristics and Application Using Crash Data. 

Accident Analysis and Prevention, 45, 258-265.  

 

 

Ghitany, M. E. & Al-Awadhi, S. A. (2001). A Unified Approach to Some Mixed 

Poisson Distributions. Tamsui Oxford Journal of Mathematical Sciences, 17(2), 

147-161.  

 

 

Greenwood, M. & Yule, G. U. (1920). An Inquiry into the Nature of Frequency 

Distributions Representative of Multiple Happenings with Particular Reference 

to the Occurrence of Multiple Attacks of Disease or of Repeated Accidents. 

Journal of the Royal Statistical Society, Series A, 83, 255-279.  

 

 



81 
 

Gupta, P. L., Gupta, R. C., Ong, S.-H. & Srivastava, H. M. (2008). A Class of Hurwitz-

Lerch Zeta Distributions and Their Applications in Reliability. Applied 

Mathematics and Computation, 196(2), 521-531.  

 

 

Gupta, R. C. (1974). Modified Power Series Distribution and Some of Its Applications. 

Sankhya-the Indian Journal of Statistics Series B, 36(3), 288-298.  

 

 

Gupta, R. C. & Ong, S. H. (2004). A New Generalization of the Negative Binomial 

Distribution. Computational Statistics & Data Analysis, 45(2), 287-300.  

 

 

Gupta, R. C. & Ong, S. H. (2005). Analysis of Long-Tailed Count Data by Poisson 

Mixtures. Communications in Statistics-Theory and Methods, 34(3), 557-573.  

 

 

Gurland, J. (1957). Some Interrelations among Compound and Generalized 

Distributions. Biometrika, 44(1/2), 265-268.  

 

 

Hassanzadeh, H. & Pooladi-Darvish, M. (2007). Comparison of Different Numerical 

Laplace Inversion Methods for Engineering Applications. Applied Mathematics 

and Computation, 189(2), 1966-1981.  

 

 

Hogg, R. V., McKean, J. W. & Craig, A. T. (2005). Introduction to Mathematical 

Statistics (6th ed.). Upper Saddle River.: Pearson Education. 

 

 

Holgate, P. (1970). The Modality of Some Compound Poisson Distributions. 

Biometrika, 57(3), 666-667.  

 

 

Hougaard, P., Lee, M. L. T. & Whitmore, G. A. (1997). Analysis of Overdispersed 

Count Data by Mixtures of Poisson Variables and Poisson Processes. Biometrics, 

53(4), 1225-1238.  

 

 

Hu, M.-C., Pavlicova, M. & Nunes, E. V. (2011). Zero-Inflated and Hurdle Models of 

Count Data with Extra Zeros: Examples from an Hiv-Risk Reduction 

Intervention Trial. American Journal of Drug and Alcohol Abuse, 37(5), 367-

375.  

 

 

Imoto, T. (2012). An Extension of GIT3,1: A Convolution of Binomial Variable and 

Negative Binomial Variable. Proceedings of the 1st ISM International Statistical 

Conference, 13-20.  

 

 

Jain, G. C. & Consul, P. C. (1971). A Generalized Negative Binomial Distribution. 

SIAM Journal on Applied Mathematics, 21(4), 501-513.  



82 
 

Jain, G. C. & Gupta, R. P. (1973). A Logarithmic Series Type Distribution. Trabajos de 

Estadistica, 24, 99-105.  

 

 

Joe, H. & Zhu, R. (2005). Generalized Poisson Distribution: The Property of Mixture of 

Poisson and Comparison with Negative Binomial Distribution. Biometrical 

Journal, 47(2), 219-229.  

 

 

Johnson, N. L., Kemp, A. W. & Kotz, S. (2005). Univariate Discrete Distributions (3rd 

ed.). Hoboken, N.J.: Wiley. 

 

 

Kabardov, M. M. & Ryabov, V. M. (2009). Acceleration of the Convergence of the 

Laguerre Series in the Problem of Inverting the Laplace Transform. 

Computational Mathematics and Mathematical Physics, 49(4), 579-588.  

 

 

Karlis, D. & Xekalaki, E. (2005). Mixed Poisson Distributions. International Statistical 

Review, 73(1), 35-58.  

 

 

Keilson, J. & Gerber, H. (1971). Some Results for Discrete Unimodality. Journal of the 

American Statistical Association, 66(334), 386-389.  

 

 

Kemp, A. W. (2010). Families of Power Series Distributions, with Particular Reference 

to the Lerch Family. Journal of Statistical Planning and Inference, 140(8), 

2255-2259.  

 

 

Kemp, A. W. & Kemp, C. D. (1968). On a Distribution Associated with Certain 

Stochastic Processes. Journal of the Royal Statistical Society. Series B, 30(1), 

160-163.  

 

 

Kemp, C. D. & Kemp, A. W. (1988). Rapid Estimation for Discrete Distributions. 

Journal of the Royal Statistical Society. Series D (The Statistician), 37(3), 243-

255.  

 

 

Kempton, R. A. (1975). A Generalized Form of Fisher's Logarithmic Series. Biometrika, 

62(1), 29-38.  

 

 

Khang, T. F. & Ong, S. H. (2007). A New Generalization of the Logarithmic 

Distribution Arising from the Inverse Trinomial Distribution. Communications 

in Statistics-Theory and Methods, 36(1), 3-21.  

 

 

Klugman, S. A., Panjer, H. H. & Willmot, G. E. (2008). Loss Models : From Data to 

Decisions (3rd ed.). Hoboken, N.J.: John Wiley & Sons. 



83 
 

Kocherlakota, S. & Kocherlakota, K. (1986). Goodness of Fit Tests for Discrete 

Distributions. Communications in Statistics-Theory and Methods, 15(3), 815-

829.  

 

 

Lord, D. & Geedipally, S. R. (2011). The Negative Binomial–Lindley Distribution as a 

Tool for Analyzing Crash Data Characterized by a Large Amount of Zeros. 

Accident Analysis & Prevention, 43(5), 1738-1742.  

 

 

Maceda, E. C. (1948). On the Compound and Generalized Poisson Distributions. The 

Annals of Mathematical Statistics, 19(3), 414-416.  

 

 

Mainardi, F. & Rogosin, S. (2006). The Origin of Infinitely Divisible Distributions: 

From De Finetti's Problem to Levy-Khintchine Formula. Mathematical Methods 

in Economics and Finance, 1(1), 37-55.  

 

 

Masol, V. & Teugels, J. L. (2010). Numerical Accuracy of Real Inversion Formulas for 

the Laplace Transform. Journal of Computational and Applied Mathematics, 

233(10), 2521-2533.  

 

 

Masse, J. C. & Theodorescu, R. (2005). Neyman Type A Distribution Revisited. 

Statistica Neerlandica, 59(2), 206-213.  

 

 

Millar, R. B. (2011). Maximum Likelihood Estimation and Inference: With Examples in 

R, SAS, and ADMB. United Kingdom: John Wiley & Sons, Ltd. 

 

 

Miller, K. S. & Samko, S. G. (2001). Completely Monotonic Functions. Integral 

Transforms and Special Functions, 12(4), 389-402.  

 

 

Misra, N., Singh, H. & Harner, E. J. (2003). Stochastic Comparisons of Poisson and 

Binomial Random Variables with Their Mixtures. Statistics & Probability 

Letters, 65(4), 279-290.  

 

 

Neyman, J. (1939). On a New Class of "Contagious" Distributions, Applicable in 

Entomology and Bacteriology. Annals of Mathematical Statistics, 10(1), 35-57.  

 

 

Omar Mohd Rijal, Norliza Mohd Noor, & Liew, K. W. (2005). Two-component 

mixture distributions for measuring area and compactness of intermetallic 

formation from the Au-Al wire bonding image. WSEAS Transactions on Circuits 

and Systems, 4(9), 1085-1093. 

 

 



84 
 

Ong, S. H. (1987). Some Notes on the Non-Central Negative Binomial Distribution. 

Metrika, 34, 225-236.  

 

 

Ong, S. H. (1988). A Discrete Charlier Series Distribution. Biometrical Journal, 30(8), 

1003-1009.  

 

 

Ong, S. H. (1995). Computation of Probabilities of a Generalized Log-Series and 

Related Distributions. Communications in Statistics-Theory and Methods, 24(1), 

253-271.  

 

 

Ong, S. H. & Toh, K. K. (2001). Cluster Size Distribution of the Non-Central Negative 

Binomial Distribution. Communications in Statistics-Theory and Methods, 

30(11), 2415-2426.  

 

 

Pawitan, Y. (2001). In All Likelihood : Statistical Modelling and Inference Using 

Likelihood. New York: Oxford University Press. 

 

 

Perc, M. (2010). Zipf’s Law and Log-Normal Distributions in Measures of Scientific 

Output across Fields and Institutions: 40 Years of Slovenia’s Research as an 

Example. Journal of Informetrics, 4(3), 358-364.  

 

 

Provost, S. B. (2005). Moment-Based Density Approximants. The Mathematica Journal, 

9(4), 727-756.  

 

 

Prudnikov, A. P., Brychkov, I. U. A. & Marichev, O. I. (1986). Integrals and Series. 

New York: Gordon and Breach Science Publishers. 

 

 

Pudprommarat, C. & Bodhisuwan, W. (2012). Stochastic Orders Comparisons of 

Negative Binomial Distribution with Negative Binomial-Lindley Distribution. 

Open Journal of Statistics, 2(2), 208-212.  

 

 

Puri, P. S. & Goldie, C. M. (1979). Poisson Mixtures and Quasi-Infinite Divisibility of 

Distributions. Journal of Applied Probability, 16(1), 138-153.  

 

 

Quenouille, M. H. (1949). A Relation between the Logarithmic, Poisson, and Negative 

Binomial Series. Biometrics, 5, 162-164.  

 

 

Quine, M. P. & Seneta, E. (1987). Bortkiewicz's Data and the Law of Small Numbers. 

International Statistical Review, 55(2), 173-181.  

 

 



85 
 

Ridout, M. S. & Besbeas, P. (2004). An Empirical Model for Underdispersed Count 

Data. Statistical Modelling, 4(1), 77-89.  

 

 

Rigby, R. A., Stasinopoulos, D. M. & Akantziliotou, C. (2008). A Framework for 

Modelling Overdispersed Count Data, Including the Poisson-Shifted 

Generalized Inverse Gaussian Distribution. Computational Statistics & Data 

Analysis, 53(2), 381-393.  

 

 

Robert, C. P. & Casella, G. (2004). Monte Carlo Statistical Methods (2nd ed.). New 

York: Springer.  

 

 

Roberts, G. E. & Kaufman, H. (1966). Table of Laplace Transforms. Philadelphia: 

Saunders. 

 

 

Roman, S. (2005). The Umbral Calculus. Mineola, New York: Dover Publications. 

 

 

Ross, S. M. (1996). Stochastic Processes (2nd ed.). New York: Wiley. 

 

 

Ruohonen, M. (1988). A Model for the Claim Number Process. Astin Bulletin, 18(1), 

57-68.  
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APPENDIX A: DERIVATION OF THE PROBABILITY MASS 

FUNCTION FOR POISSON-HURWITZ-LERCH ZETA 

DISTRIBUTION USING THEOREM 2.5 

 

Consider the pgf of the Poisson-HLZD in (4.1) expressed in the form (2.12) 
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APPENDIX B: DERIVATION OF THE PROBABILITY MASS 

FUNCTION FOR POISSON-HURWITZ-LERCH ZETA 

DISTRIBUTION USING DE PRIL’S FORMULA 

 

The following theorem of De Pril is given in Chadjiconstantinidis & Pitselis 

(2009). 
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APPENDIX C: MAPLE PROGRAMME FOR THE CONSTRUCTION 

OF MOMENT-RATIO DIAGRAM 

 

 

with(Statistics): 

with(stats[statplots]): 

with(stats[random]): 

K:=[]:U:=[]: 

 
k:=(t*diff(LerchPhi(t,s-1,a+1)/LerchPhi(t,s+1,a+1)-

2*a*LerchPhi(t,s,a+1)/LerchPhi(t,s+1,a+1)+a^2,t)+(LerchPhi(t,s-

1,a+1)/LerchPhi(t,s+1,a+1)-

2*a*LerchPhi(t,s,a+1)/LerchPhi(t,s+1,a+1)+a^2)*(LerchPhi(t,s,a+1)/Lerc

hPhi(t,s+1,a+1)-a))/(l^0.5*((LerchPhi(t,s-1,a+1)/LerchPhi(t,s+1,a+1)-

2*a*LerchPhi(t,s,a+1)/LerchPhi(t,s+1,a+1)+a^2))^1.5): 

 

u:=3+(t*diff(t*diff(LerchPhi(t,s-1,a+1)/LerchPhi(t,s+1,a+1)-

2*a*LerchPhi(t,s,a+1)/LerchPhi(t,s+1,a+1)+a^2,t)+(LerchPhi(t,s-

1,a+1)/LerchPhi(t,s+1,a+1)-

2*a*LerchPhi(t,s,a+1)/LerchPhi(t,s+1,a+1)+a^2)*(LerchPhi(t,s,a+1)/Lerc

hPhi(t,s+1,a+1)-a),t)+(t*diff(LerchPhi(t,s-1,a+1)/LerchPhi(t,s+1,a+1)-

2*a*LerchPhi(t,s,a+1)/LerchPhi(t,s+1,a+1)+a^2,t)+(LerchPhi(t,s-

1,a+1)/LerchPhi(t,s+1,a+1)-

2*a*LerchPhi(t,s,a+1)/LerchPhi(t,s+1,a+1)+a^2)*(LerchPhi(t,s,a+1)/Lerc

hPhi(t,s+1,a+1)-a))*(LerchPhi(t,s,a+1)/LerchPhi(t,s+1,a+1)-

a))/(l*( LerchPhi(t,s-1,a+1)/LerchPhi(t,s+1,a+1)-

2*a*LerchPhi(t,s,a+1)/LerchPhi(t,s+1,a+1)+a^2)^2): 

 

for i from 1 to 110 do 

a:=-1+i*0.1: 

t:=0.99:ans:=fsolve({l1*(LerchPhi(t,s1,a+1)/LerchPhi(t,s1+1,a+1)

-a)=1,l1*(LerchPhi(t,s1-1,a+1)-

a*LerchPhi(t,s1,a+1))/LerchPhi(t,s1+1,a+1)=2+a},{l1,s1}): 

    l:=subs(ans,l1): 

    s:=subs(ans,s1): 

p1:=evalf(k): 

p2:=evalf(u): 

K:=[op(K),p1]: 

U:=[op(U),p2]: 

od; 

xylist:=zip((x,y)->[x,y],K,U): 

plot(xylist,style=line); 

 

 


