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ABSTRACT 

 

The generation of important and useful products (e.g. ethanol, lactic acid etc.) through 

microbial fermentation often involves the breakdown of complex polymeric feedstock 

such as starch and cellulose through enzymatic scissions followed by subsequent 

metabolic conversion. The interplay between the kinetics of enzymatic depolymerization 

and the response of the microbes towards changes in the abiotic phase is critical for the 

adequate description of such a complex process. In this work, two unrelated frameworks, 

i.e. the Population Balance Modelling (PBM) and the Cybernetic Modelling (CM) were 

interlinked to model such a system. Specifically, the PBM technique was used to describe 

the enzymatic depolymerization whereas the CM framework was used to model the 

microbial response toward complex environmental changes. As the enzymes required to 

break down polymeric substrates are produced by the microbes, a more general treatment 

of the secretion of extracellular enzyme was also proposed in the CM model. In the course 

of interlinking the two frameworks, the numerical techniques for solving Population 

Balance Equations (PBEs) were explored. In this regard, the Fixed Pivot (FP) technique 

was successfully modified to solve chain-end scission which resembles the action of 

enzyme which removes a monomer from the end of a polymer chain. This method was 

further extended to include random scission (resembling the action of enzyme which 

randomly hydrolyzes the bond of a polymer chain) and mixed scission involving both 

modes. Simulation results showed that the FP technique was able to solve chain-end 

scission and simultaneous random and chain-end scissions to a high degree of accuracy 

using 0.02% and 1.2% of the time required for solving the exact case respectively. One 

notable feature of the interlinked framework is the flexible linkage, which allows the 

individual PBM and CM components to be independently modified to the desired levels 

of detail. The interlinked PBM and CM framework was implemented on two case studies 
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involving the Simultaneous Saccharification and Fermentation (SSF) of starch by two 

recombinant yeast strains capable of excreting glucoamylase alone or together with α-

amylase. The simulation results revealed that the proposed framework captured features 

not attainable by existing approaches. Examples of such include the ability of the model 

to indicate (in case study one) that an appropriate amount of glucose (7 g) mixed with 

starch (30 g) as initial substrates yielded an optimum productivity of ethanol. Not only 

that, the model showed (in case study two) that SSF is indifferent to the type of starch 

when both enzymes are present as opposed to when only glucoamylase is present, where 

the time required for ethanol concentration to peak differed by more than 30 hours 

between different starches. Thus, the effect of various enzymatic actions on the temporal 

evolution of the polymer distribution and how the microbes respond to the initial 

molecular distribution of the polymers can be studied. Such a framework also enables a 

more molecular and fundamental study of a complex SSF system, a feat which heretofore 

was unattainable by existing SSF models. 
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ABSTRAK 

 

Pengeluaran hasil penting dan berguna (misalnya etanol, asid laktik dan lain-lain) 

melalui penapaian mikrob sering melibatkan pecahan bahan mentah polimer kompleks 

seperti kanji dan selulosa melalui pengguntingan enzim diikuti dengan penukaran 

metabolik berikutnya. Hubungan di antara kinetik enzim penyahpolimeran dan tindak 

balas mikrob terhadap perubahan dalam fasa abiotik adalah kritikal untuk menerangkan 

suatu proses yang kompleks sebegini. Dalam karya ini, dua pendekatan yang tidak 

berkaitan, iaitu Permodelan Imbangan Populasi (PIP) dan Permodelan Cibernetik (PC) 

telah dikaitkan untuk memodel sistem seperti ini. Secara khusus, teknik PIP digunakan 

untuk menerangkan penyahpolimeran enzim manakala rangka kerja PC digunakan untuk 

memodel tindak balas mikrob terhadap perubahan persekitaran yang kompleks. Oleh 

sebab enzim yang diperlukan untuk penyahpolimeran dirembeskan oleh mikrob sendiri, 

satu olahan yang lebih umum untuk rembesan enzim ke luar sel juga dicadangkan dalam 

model PC. Dalam proses mengaitkan kedua-dua rangka kerja ini, kaedah berangka untuk 

menyelesaikan Persamaan PIP untuk pengguntingan enzim telah diterokai. Dalam hal ini, 

teknik Pangsi Tetap (PT) telah diubahsuai dengan sewajarnya untuk menyelesaikan 

pengguntingan akhir rantai yang menyerupai tindakan enzim yang membuang satu 

monomer dari hujung rantai polimer. Rangka kerja penyelesaian ini telah juga digunakan 

untuk menyelesaikan pengguntingan rawak (menyerupai tindakan enzim yang secara 

rawak memotong ikatan rantai polimer) dan campuran kedua-dua pengguntingan akhir 

rantai dan rawak. Keputusan simulasi menunjukkan bahawa teknik PT itu dapat 

menyelesaikan pengguntingan akhir rantai dan campuran kedua-dua jenis pengguntingan 

akhir rantai dan rawak dengan ketepatan yang tinggi dan hanya menggunakan 0.02% dan 

1.2% daripada masa yang diperlukan untuk menyelesaikan sistem persamaan penuh 

masing-masing. Satu ciri yang penting dalam model yang terhubungkait ini adalah 
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perkaitan yang mudah alih, seterusnya membolehkan komponen individu PIP dan PC 

untuk bebas diubahsuai kepada tahap keperincian yang dikendaki. Rangka kerja PIP-PC 

ini telah dilaksanakan ke atas dua kajian kes yang melibatkan Pemanisan dan Penapaian 

Serentak (PPS) kanji oleh dua jenis yis rekombinan yang mampu merembes glukoamilas 

atau kedua-dua glukoamilas dan α-amilas. Keputusan simulasi menunjukkan bahawa 

rangka kerja yang dicadangkan mempunyai ciri-ciri yang tidak dapat dicapai dengan 

pendekatan yang sedia ada. Antara contoh-contoh itu termasuk keupayaan model (dalam 

kajian kes pertama) untuk menunjukkan bahawa 7 g glukosa dicampur dengan 30 g kanji 

sebagai bahan mentah awal akan mencapai produktiviti etanol yang terbaik. Bukan itu 

sahaja, model menunjukkan (dalam kajian kes kedua) bahawa PPS tidak bergantung 

kepada jenis kanji apabila kedua-dua enzim hadir. Apabila hanya glukoamilas hadir, masa 

yang diperlukan untuk kepekatan etanol mencapai ke tahap maksimum berbeza sebanyak 

lebih daripada 30 jam antara kanji yang berbeza. Justeru itu, kesan pelbagai tindakan 

enzim pada perubahan dengan masa taburan polimer boleh dikaji. Rangka kerja 

sedemikian juga membolehkan kajian yang lebih molekular dan bersifat asas untuk sistem 

PPS yang kompleks, satu pencapaian yang melangkaui semua model PPS yang sedia ada. 
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CHAPTER 1 : INTRODUCTION 

 

1.1 Research Background 

 

Natural polymers, e.g. starch, cellulose etc., are important raw materials in the 

generation of valuable products such as fuel ethanol (Jang & Chou, 2013; G. S. Murthy, 

Johnston, Rauseh, Tumbleson, & Singh, 2011) and beer (Brandam, Meyer, Proth, 

Strehaiano, & Pingaud, 2003; Koljonen, Hämäläinen, Sjöholm, & Pietilä, 1995; Marc & 

Engasser, 1983) through fermentation. During fermentation, these macromolecules 

cannot be directly consumed by the microbes. Thus, they have to be first broken down to 

simple substrates to facilitate subsequent assimilation by the microbes for conversion to 

useful products. Amongst many other methods, enzymatic hydrolysis is one most 

promising approach (El-Zawawy, Ibrahim, Abdel-Fattah, Soliman, & Mahmoud, 2011). 

While commercial enzyme preparations can be dosed in to the fermentation broth for this 

purpose (C. G. Lee, Kim, & Rhee, 1992; T. Montesinos & J-M. Navarro, 2000), it is 

increasingly common to have the microbes produce the enzymes in situ (Altintas, Kirdar, 

Onsan, & Ulgen, 2002; Azmi, Ngoh, Mel, & Hasan, 2010; Kroumov, Módenes, & de 

Araujo Tait, 2006; Ochoa, Yoo, Repke, Wozny, & Yang, 2007). In short, microorganisms 

are employed to produce the depolymerization enzymes as well as to convert the 

depolymerized components into valuable products. Under such circumstances, the 

biochemistry of the process is highly complex. Being polydisperse in nature, the 

Molecular Weight Distribution (MWD) of natural polymers subject to enzymatic 

depolymerization is constantly evolving, and this creates a highly complex broth with 

numerous substrates, of which only those within a certain size range can be assimilated 

by the microbes. Given multiple substrate choices, the course of fermentation will be 

affected by the response of the microbes toward each potential nutrient. Accurate 
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knowledge of such information is particularly important to the practitioners as they 

attempt to design more efficient processes. 

 

In enzymatic depolymerization, the temporal evolution of the MWD varies according 

to the mode of action exhibited by the enzymes. Two commonly encountered enzymatic 

depolymerization phenomena are random and chain-end scission. For random scission, 

bond cleavages occur randomly along the bonds within a polymer chain while enzymes 

which exhibit chain-end scission behaviour remove a fixed number of mers from the end 

of a polymer chain. Examples of enzymes which exhibit random scission are α-amylase 

(EC 3.2.1.1) and endo-cellulases (EC 3.2.1.4) etc., whereas enzymes which exhibit chain-

end scission are glucoamylase (EC 3.2.1.3), β-amylase (EC 3.2.1.2), and exo-cellulases 

(EC 3.2.1.91) etc. The traditional kinetic approach to model enzymatic scission is to 

employ the Michaelis-Menten (M-M) type of expressions by treating the natural polymer 

as a grossly lumped entity (Kusunoki, Kawakami, Shiraishi, Kato, & Kai, 1982; Miranda 

& Murado, 1991; Nakamura, Kobayashi, Ohnaga, & Sawada, 1997; Polakovič & Bryjak, 

2004; Presečki, Blažević, & Vasić-Rački, 2013; Shiraishi, Kawakami, & Kusunoki, 

1985). Such an approach is incapable of distinguishing between different modes of 

enzymatic action and does not track the transient of the entire MWD.  To capture these 

details, the Population Balance Modelling (PBM) technique (D. Ramkrishna, 2000; 

Doraiswami Ramkrishna & Singh, 2014) is a suitable framework. In this technique, the 

temporal evolutions of all the polymer populations as well as the mode of enzymatic 

action are considered, thus allowing a more fundamental analysis of the depolymerization 

phenomena. The PBM technique was employed in several studies for the modelling of 

pure enzymatic scission of natural polymers, e.g. for the hydrolysis of cellulose (Griggs, 

Stickel, & Lischeske, 2012a, 2012b; Hosseini & Shah, 2011a, 2011b) and starch (Chang, 

Delwiche, & Wang, 2002). 
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The course of converting the products of enzymatic hydrolysis to useful products 

occurs mainly through the metabolism of microorganisms. In this process, substrates 

present in the abiotic phase are assimilated into the cells and go through a series of 

transformation reactions via complex metabolic networks with the production of 

intracellular metabolites as well as other metabolic products which eventually are 

excreted into the external environment of the cells. Cellular metabolism is also regulated 

internally in terms of the levels and activities of the key enzymes catalyzing specific 

reactions. Therefore, given a choice of different substrates, i.e. carbon and energy source, 

the rates at which these different substrates are assimilated into the biotic phase are 

determined by these in-built regulatory mechanisms. In the context of microbial 

conversion of starch hydrolysates, one example is the fermentation of sugars to ethanol 

by yeast where it is well established that in addition to glucose, maltose and maltotriose 

may also be fermented to produce ethanol, and the presence of glucose generally 

represses the consumption of these larger sugars (Duval, Alves Jr, Dunn, Sherlock, & 

Stambuk, 2010; Ernandes, D'Amore, Russell, & Stewart, 1992; T. Montesinos & J.-M. 

Navarro, 2000). In view of the capability of microbes in responding to diverse 

environmental changes, any effort in dynamic modelling must account for the effects of 

regulation. The Cybernetic Modelling (CM) approach, spearheaded by Ramkrishna and 

co-workers (cf. D. Ramkrishna and Song (2012) for a review of the developments) was 

thus developed in this light. Differing from the traditional approach in modelling physical 

systems which places a heavy demand for mechanistic information, the CM approach 

posits that metabolic regulation is attached to a certain goal-seeking behaviour of the 

organism. Using what they refer to as the “cybernetic variables”, the levels and activities 

of key enzymes necessary for affecting the microbial response to environmental changes 

are regulated by the minimization/maximization of an objective function. Evolving over 

the past three decades, this main feature of the CM approach has enabled it to successfully 
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predict the growth of various microbes in complex substrate environment --- from the 

simplest variant employed by Kompala and Ramkrishna (1986) to the more advanced 

variant implemented by Geng, Song, Yuan, and Ramkrishna (2012). For the case of 

fermenting the products of enzymatic hydrolysis, different variants of the cybernetic 

models, i.e. those developed by Kompala and Ramkrishna (1986) as well as by Varner 

and Ramkrishna (1998), were employed as part of the Simultaneous Saccharification and 

Fermentation (SSF) framework for both starch (Altintas et al., 2002; Chavan, 

Raghunathan, & Venkatesh, 2009; Ganti S. Murthy, Johnston, Rausch, Tumbleson, & 

Singh, 2012; Ochoa et al., 2007) as well cellulose (Ko et al., 2010) and lignocellulose 

(Shin, Yoo, Kim, & Yang, 2006) conversions. 

 

Insofar as the simultaneous scission and conversion of natural polymers is concerned, 

the most common modelling effort employed to date has been that of coupling the lumped 

parameter M-M type models with the unstructured models for microbial growth 

(Anuradha, Suresh, & Venkatesh, 1999; Hofvendahl, Åkerberg, Zacchi, & Hahn-

Hägerdal, 1999; Jang & Chou, 2013; C. G. Lee et al., 1992; Morales-Rodriguez, Gernaey, 

Meyer, & Sin, 2011; Ochoa et al., 2007; Podkaminer, Shao, Hogsett, & Lynd, 2011). 

While the M-M type models are a gross over-simplification of the depolymerization 

phenomena, the use of the unstructured models for microbial growth kinetics lacks the 

necessary robustness to handle complex nutrient environments (D. Ramkrishna & Song, 

2012). Employment of the CM approach improves prediction with regards to the 

microbial kinetics, but for SSF it has thus far only been primarily coupled to the M-M 

type models for enzymatic scission (Altintas et al., 2002; Chavan et al., 2009; Ko et al., 

2010; Shin et al., 2006), thereby ignoring the details of enzymatic scission at the 

molecular level. As the enzymatic scission and the microbial growth are both major 

components of the SSF process, successful mathematical abstraction of the process is 
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therefore closely dependent on the level of essential details given to each component. For 

this purpose, the PBM and the CM frameworks as alluded to previously are known to be 

excellent in capturing the critical details of the respective individual component (D. 

Ramkrishna & Song, 2012; Sterling & McCoy, 2001). Despite being the method par 

excellence in their own areas of application, the mathematical linkage between the two 

conceptually different techniques for the abstraction of the SSF process appears not to 

have been established. One possible reason might be the distinct mathematical nature of 

the two: the CM is formulated as a system of Ordinary Differential Equations (ODEs) 

which can be readily integrated with commercial solvers while the PBM involves the 

solution of a Partial Differential Equation (PDE) with an integral term, thus requiring the 

use of special techniques (M. Kostoglou, 2007; M. Kostoglou & Karabelas, 2002, 2004, 

2009; J. Kumar, Peglow, Warnecke, & Heinrich, 2008; S. Kumar & Ramkrishna, 1996a, 

1996b; D. Ramkrishna, 2000). Another plausible reason is the lack of cross-talk due to 

disciplinary differences: users of CM are more from the biochemical engineering 

fraternity (Shin et al., 2006; Song, Morgan, & Ramkrishna, 2009), while users of PBM 

are more in particulate technologies (Atmuri, Henson, & Bhatia, 2013; J. Kumar et al., 

2008; Nopens, Beheydt, & Vanrolleghem, 2005) and synthetic polymer (Alexopoulos, 

Pladis, & Kiparissides, 2013; Staggs, 2005). 

 

In this work, the general linkage between the two conceptually different approaches, 

i.e. the PBM and the CM, was for the first time established and introduced in a single 

framework. Figure 1.1 illustrates the general idea. The two critical links are denoted by 

the hedged arrows. The first involves the withdrawal of the small oligomers produced by 

enzymatic breakdown of large polymer chains by the microbes. The second involves the 

excretion of extracellular depolymerization enzymes into the fermentation broth for the 

breaking down of polymeric substrates. These links enable interactions between both 
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processes as described by PBM and CM. To PBM, instead of the classic accumulation of 

smaller sugars in the solution, their consumption might occur. In addition, the enzyme 

levels responsible for depolymerization might change depending on the output from CM.  

Both effects have to be incorporated into PBM. Likewise, to CM, the substrate 

concentrations will be much more dynamic instead of being merely depleting over time. 

Conceivably the microbes may have to switch back and forth between various preferred 

substrates as their relative abundance evolves over time. More critically, CM has to 

include the excretion of extracellular depolymerase, i.e. enzymes for depolymerization.  

If only large polymers are present, the depolymerase should be induced. When preferred 

substrates are formed, the depolymerase excretion should eventually be repressed.  

However, the previously released depolymerase remains active for a finite duration in the 

broth, and this must be recognizable by CM. 

 

 

Figure 1.1: Illustrating the linkage between the PBM and CM in a single framework. In 

particular, the induction/repression of the synthesis of extracellular depolymerase by the 

composition of the broth appears to be relatively unexplored within the CM framework.  
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In the work of Gadgil, Bhat, and Venkatesh (1996), the CM framework was used to 

model the excretion of extracellular α-galactosidase for the breakdown of disaccharide 

melibiose to glucose and galactose, of which the presence of glucose represses the 

assimilation of galactose and the excretion of α-galactosidase. The model involved a 

simplistic assumption that the concentration of α-galactosidase corresponded to the 

concentration of the key enzyme involved in metabolizing galactose, since both are 

repressed by glucose. This assumption was later also employed by Altintas et al. (2002) 

for the excretion of extracellular fusion protein displaying both α-amylase and 

glucoamylase activities for the breakdown of starch to glucose and reducing sugars. In 

their case, the presence of glucose represses the assimilation of reducing sugars, and thus 

the depolymerase was assumed to correspond to the key enzyme for metabolizing the 

reducing sugars. This strategy is only applicable when only two substrates are capable of 

being metabolized. For the breakdown of large polymers such as starch, clearly the 

microbes are incapable of consuming every reducing sugar in the broth but that only the 

smaller ones are consumed, e.g. glucose, maltose, and maltotriose for the yeast 

Saccharomyces cerevisiae (Duval et al., 2010; Ernandes et al., 1992; T. Montesinos & J.-

M. Navarro, 2000). As such, if the microbes are capable of metabolizing more than two 

substrates resulting from the breakdown of polymers, the choice of the key enzymes used 

to mimic the excretion of extracellular depolymerase is not apparent. Another 

contribution of this work is to clarify this choice in a systematic manner. 
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1.2 Research Objectives 

 

The main objectives of this research are as follow: 

 

a) To select or modify a potential numerical technique for approximating and solving 

population balance equations for both chain-end and random scissions as well as their 

combination thereof. This includes exploration of the inherent characteristics of the 

resulting formulation. 

 

b) To interlink the PBM and CM for modelling the batch growth of a microbial strain 

capable of simultaneously hydrolyzing a natural polymer and fermenting the resulting 

smaller saccharides. The resulting model will be used to analyze the growth of 

microbes on complex nutrients resulting from the individual or the combined actions 

of enzymes exhibiting random and chain-end scission behaviour. 

 

1.3 Structure of the Thesis 

 

The remaining six chapters are organized as follows: 

 

a) Chapter 2 reviews the pertinent literature of this research. A brief introduction to SSF 

is given followed by a review of the common methodologies employed in the 

modelling of SSF processes. After that, the PBM is introduced with specific 

reference to random and chain-end scissions, highlighting the state of solution 

techniques which are necessary and appropriate for achieving the objectives of this 

work. Moreover, the use of the PBM in modelling saccharification processes is also 
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reviewed. Following this, the mathematical background for the CM framework is 

given and past employments of the CM framework in modelling SSF are elaborated. 

b) Chapter 3 discusses the general methods used in meeting all the research objectives. 

The theoretical formulations and detailed mathematical derivations are deferred to 

Chapters 4 and 5 preceding the presentation of the results and discussions. 

c) Chapter 4 is the fulfilment of the first objective of this work. In this chapter, the 

theoretical formulations for solving population balance equations involving both 

chain-end and random scissions using the fixed pivot technique are deliberated. Upon 

establishing the necessary solution technique, the results are benchmarked against 

the exact solution. Further observations of the fixed pivot technique in solving chain-

end and random scissions are also presented. 

d) Chapter 5 fulfils the second objective where the general framework for interlinking 

the PBM and the CM components are presented. This is followed by a demonstration 

of the capability of the resulting framework in modelling the SSF processes. Two 

case studies are used for this purpose, the first involves the growth on starch of a 

yeast producing glucoamylase (chain-end scission enzyme) and the second for the 

growth on starch of a yeast producing both glucoamylase and α-amylase (random 

scission enzyme). 

e) Chapter 6 summarizes the key findings of this work, and proposes future extensions. 



10 
 

CHAPTER 2 : LITERATURE REVIEW 

 

2.1  Simultaneous Saccharification and Fermentation (SSF) 

 

The use of biological systems, i.e. microorganisms and biocatalysts, to produce 

valuable products is an ancient idea, e.g. in the making of cheese (Caplice & Fitzgerald, 

1999), wine (Pretorius, 2000) etc. Nevertheless, the technologies of bioprocessing are 

constantly evolving in the direction which enable the processes to be operated more 

efficiently and at the same time meeting specific economic objectives. One such example 

is the production of ethanol which finds its usefulness in the many facets of life, one of 

which is an alternative to fuel (G. S. Murthy et al., 2011). To produce ethanol, a well 

established biochemical route is to metabolize sugar with a selected microbial strain, e.g. 

S. cerevisiae under anaerobic condition (Shuler & Kargi, 2002). However, the search for 

more renewable feedstock has led to the use of polymeric substrates such as starchy, 

cellulosic and lignocellulosic biomass (Bansal, Hall, Realff, Lee, & Bommarius, 2009; 

Jang & Chou, 2013; van Maris et al., 2006) which must be hydrolyzed to yield the 

required substrates for subsequent microbial fermentation. As such, the two important 

stages in the production of ethanol (excluding the pre-treatment of raw materials) are the 

breaking of polymeric bonds through enzymatic hydrolysis followed by the conversion 

of smaller sugars through fermentation. Although these two steps are traditionally carried 

out separately because of the differences in the optimal operating conditions, it is an 

increasingly popular practice to consolidate the two stages by performing both hydrolysis 

and fermentation simultaneously (Taherzadeh & Karimi, 2007) – hence, the term 

‘Simultaneous Saccharification and Fermentation (SSF)’. Other than being employed in 

the production of ethanol, SSF is also being employed for the production of other 

chemicals such as lactic acid (R. P. John, Nampoothiri, & Pandey, 2009) and fumaric 
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acid (Deng, Li, Xu, Gao, & Huang, 2012) by using different strains. During SSF, the 

enzymes required for breaking the polymeric bonds can either be dosed externally or it 

can be biologically produced in situ. In the latter case, if there is no single strain capable 

of producing the enzymes and fermenting the substrates simultaneously, a concoction of 

different strains serving different purpose may be employed, e.g. as was done in the study 

of Azmi et al. (2010). One of the benefits of SSF over the separate hydrolysis and 

fermentation process is its ability to minimize the effect of inhibition (on the enzymes or 

the microbes) due to the continuous withdrawal of sugars from the fermentation broth 

through microbial consumption (Taherzadeh & Karimi, 2007). This contributed to higher 

product yield in the case of ethanol production compared to the traditional route (Eklund 

& Zacchi, 1995; Karimi, Emtiazi, & Taherzadeh, 2006; McMillan, Newman, Templeton, 

& Mohagheghi, 1999; Sun & Cheng, 2002). Depending on the implementational 

configurations, i.e. the origin of the enzymes used (whether dosed externally or produced 

by the microbes) and the number of strains involved, the SSF process can be very 

complicated to model and reported attempts to do this will be reviewed next. 

 

2.1.1 Modelling of SSF Processes 

 

The modelling of any process involving biological systems is non-trivial. This is more 

so true in the case where both enzymatic scissions and fermentation are carried out 

concurrently. Modelling of such processes requires the integration of two essential 

components, viz. the model for polymeric scissions as well as the model for microbial 

growth. The most common framework used to date is to employ the M-M type model for 

the enzymatic scission of polymer molecules and the Monod type kinetics for cell growth. 

As the Monod type kinetics for cell growth are unstructured and do not account for the 

intracellular components within the cell, the forms of expression used do not vary much 
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from those reported in standard biochemical engineering textbook, e.g. Shuler and Kargi 

(2002). In this regard, the differences in the expressions used are mainly due to 

assumptions on inhibition of cell growth by different components of the fermentation 

broth (e.g. ethanol, glucose etc.), the inclusion of maintenance considerations (Nakasaki, 

Murai, & Akiyama, 1988; Shen & Agblevor, 2011) or cellular death (Ochoa et al., 2007). 

 

As opposed to the model expressions for cell growth which are rather straightforward, 

the expressions for enzymatic scission of polymeric substrates vary according to the 

assumptions made with regard to the mechanism of scission. As the M-M type kinetic 

models are derived on the basis of the interaction between the enzyme and the substrate 

molecules, different expressions can be obtained with different mechanistic assumptions. 

One such example is the possibility of inhibition by different molecules on the enzyme 

activity. Such inhibitions may be initiated by the products (Anuradha et al., 1999; 

Hofvendahl et al., 1999; C. G. Lee et al., 1992; Morales-Rodriguez, Meyer, Gernaey, & 

Sin, 2011; Nakasaki et al., 1988; Podkaminer et al., 2011; Shen & Agblevor, 2010; Shen 

& Agblevor, 2011; van Zyl, van Rensburg, van Zyl, Harms, & Lynd, 2011; Zhang, Shao, 

Townsend, & Lynd, 2009), the substrates (Jang & Chou, 2013) or both (Davis, 2008; 

Kroumov et al., 2006; Philippidis, Spindler, & Wyman, 1992). Other than that, as the 

substrates involved in the SSF processes are polymers, the scission of these molecules 

produces many different products of different chain lengths. Depending on which 

intermediate products are to be accounted for in the model as well as the network of 

reactions assumed, the resulting systems of M-M type equations vary from one network 

to another. In the simplest form of reaction network, the initial substrate is assumed to be 

depolymerized to the final product without the production of intermediates, e.g. from 

cellulose to glucose (Nakasaki et al., 1988), starch to glucose (Anuradha et al., 1999; Jang 

& Chou, 2013; Kroumov et al., 2006; Matsumura & Hirata, 1989) etc. This is, of course, 
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a gross over-simplification of polymeric scission. Other authors expanded the reaction 

network by including more intermediate products such as the hydrolysis of cellulose 

following the order of cellulose → cellobiose → glucose (Morales-Rodriguez, Gernaey, 

et al., 2011; Morales-Rodriguez, Meyer, et al., 2011; Philippidis et al., 1992; Podkaminer 

et al., 2011; Shen & Agblevor, 2010; Shen & Agblevor, 2011; van Zyl et al., 2011; Zhang 

et al., 2009) or the hydrolysis of starch to various smaller oligomers (Davis, 2008; Hetényi, 

Németh, & Sevella, 2011; Hofvendahl et al., 1999; C. G. Lee et al., 1992). Such efforts 

although mathematically more developed are nonetheless still a departure from the true 

nature of polymeric scission. 

 

The type of enzymes employed with their respective mode of action also plays a part 

in dictating the model expressions. Two different types of enzymatic actions are typically 

encountered, i.e. random scission and chain-end scission. Although these are clearly 

distinct mode of actions, their mechanistic pronouncement in the M-M type models 

within the SSF framework is still unclear. For instance, various authors made no 

distinction between the actions of endo- and exo-acting enzymes, thus treating them as a 

single entity (Davis, 2008; Hetényi et al., 2011; Morales-Rodriguez, Gernaey, et al., 2011; 

Morales-Rodriguez, Meyer, et al., 2011; Nakasaki et al., 1988; Philippidis et al., 1992; 

Podkaminer et al., 2011; Shen & Agblevor, 2010; Shen & Agblevor, 2011; Zhang et al., 

2009). An attempt was made by van Zyl et al. (2011) to separate the action of endo- and 

exo-acting enzymes. However, certain simplifying assumptions which were made did not 

reflect the depolymerization phenomena mechanistically where the cellulose chains in 

the presence of both endo- and exo-acting enzymes were assumed to be converted to 

cellobiose by the sole action of the latter. Anuradha et al. (1999), in the attempt to model 

the action of exo-acting enzyme (i.e. glucoamylase) on starch, pre-incubated the substrate 

with endo-acting enzyme (i.e. α-amylase) but did not include the kinetics of the latter in 
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the model. As such, these models even though adopting the M-M framework, are at best 

semi-empirical when faced with the complexity of polymeric scission. 

 

Other than the above, consideration of the different structure of substrates will also 

affect the resulting model equations. Such heterogeneity is not uncommon where for 

instance gelatinized starch is composed of linear and branched components while 

cellulose can be divided into crystalline and amorphous regions. To simplify modelling 

efforts, heterogeneity of substrates was ignored in many studies (Anuradha et al., 1999; 

Davis, 2008; Hetényi et al., 2011; Hofvendahl et al., 1999; Jang & Chou, 2013; 

Matsumura & Hirata, 1989; Morales-Rodriguez, Gernaey, et al., 2011; Morales-

Rodriguez, Meyer, et al., 2011; Nakasaki et al., 1988; Podkaminer et al., 2011; Shen & 

Agblevor, 2010; Shen & Agblevor, 2011; Zhang et al., 2009). To include the 

heterogeneity of substrates as part of the model, efforts to do this were done by structuring 

starch into linear vs. branched components (C. G. Lee et al., 1992) or resistant vs. 

susceptible portions (Kroumov et al., 2006; Ochoa et al., 2007). For cellulose this was 

accounted for by structuring cellulose into crystalline vs. amorphous regions (van Zyl et 

al., 2011). 

 

The above summarizes the efforts made in modelling the SSF by integrating the M-M 

type models and the unstructured Monod type kinetics. This framework assumes a 

simplistic response from the microbes towards environmental changes by ignoring the 

intracellular components. To give a more realistic representation of microbial growth in 

SSF cultures, another framework had also been reported in the literature where the M-M 

type models were integrated with the chemically structured model (Shuler & Kargi, 2002) 

for microbial growth which captures the kinetic interaction between different cellular sub-

components. In the work of Kobayashi and Nakamura (2003), a structured model for a 
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recombinant yeast culture was integrated with the M-M type model for the hydrolysis of 

starch by glucoamylase. The enzyme glucoamylase produced by the yeast culture was 

assumed to be induced by starch and repressed by the presence of glucose. This model 

was then adopted in the work of Kobayashi and Nakamura (2004) for an immobilized 

recombinant yeast culture. In another work, compartmental modelling was employed 

where the microbial cells were structured into three, four and eight compartments, each 

compartments containing cell components having similar functions (Arga et al., 2004). 

This form of structured model requires a greater level of mechanistic information which 

may be challenging to obtain. 

 

Another form of structured model for microbial growth kinetics which had been 

integrated with the M-M type model is the cybernetic model developed by Ramkrishna 

and co-workers (D. Ramkrishna & Song, 2012). The approach is based on the argument 

that microbes are inherently able to regulate their own metabolism in fulfilment of a 

certain goal or objective. In the work of Altintas et al. (2002), the version of cybernetic 

model developed by Kompala and Ramkrishna (1986) was used to model the SSF of 

starch by a recombinant yeast which secretes a fusion protein displaying both α-amylase 

and glucoamylase activities. The same process was modelled by Ochoa et al. (2007) using 

the version of cybernetic model proposed by Varner and Ramkrishna (1999b) which 

incorporated more complex pathways. Other authors had also employed the CM 

framework to model the SSF of various starchy and lignocellulosic materials (Chavan et 

al., 2009; Ko et al., 2010; Ganti S. Murthy et al., 2012; Shin et al., 2006).  

 

As evident from the discussion above, two components are essential to describing the 

SSF processes involving natural polymers. The first is the model for polymer scission 

which to date was mainly described by M-M type models. As the development of M-M 
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type models relies on the proposed mechanism of polymer scission, it is impractical to 

outline the mechanism of scission for the entire spectrum of molecules with various chain 

lengths. As such, the models employed are not infrequently an over-simplification of 

reality and at best semi-empirical in nature. Although more rigorous models such as those 

founded upon the subsite theory (Besselink, Baks, Janssen, & Boom, 2008; Marchal, 

Ulijin, de Gooijer, Franke, & Tramper, 2003; Marchal, Zondervan, Bergsma, Beeftink, 

& Tramper, 2001; Wojciechowski, Koziol, & Noworyta, 2001) or the population balance 

technique (Chang et al., 2002; Griggs et al., 2012a, 2012b) had been reported in the 

literature for enzymatic scission, they have yet to be assimilated into the SSF literature. 

The latter is a powerful approach for describing the evolution of polymer distributions 

which will be used in this work to model polymer scission. As for the kinetics of 

fermentation, the complex substrate environment for the fermentation broth requires that 

the model be sufficiently robust to capture the response of the microbes to changing 

substrate environment. As such, the structured model has the advantage over the 

unstructured model for being able to account for these changes through incorporation of 

metabolic details. In the face of inadequate mechanistic details on regulatory processes, 

the CM approach is a potentially powerful framework to model microbial kinetics. The 

PBM and CM approaches will be elaborated further in the following sections. 

 

2.2  Population Balance Modelling (PBM) 

 

As a polymer solution contains a large number of polymers of different sizes which 

cannot be studied individually via the conventional chemical reaction kinetics, the PBM 

technique is the natural approach as it considers the temporal evolution of the polymer 

distribution as part of solution. Assuming that the molar concentration density c(v,t) is a 

continuous function of the degree of polymerization (v) and time (t), the general 
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continuous population balance model for binary scission is given as (D. Ramkrishna, 

2000): 

( ) ( ) ( ) ( ) ( ) ( )
,

2 , , ,
v

c v t
k w b v w c w t dw k v c v t

t

∞∂
= −

∂ ∫   (2.1) 

Here, k(v) is the rate kernel which describes the rate of breaking a polymer with Degree 

of Polymerization, DP = v, and b(v,w) is the stoichiometric kernel relating the formation 

of polymers with DPs of v and w–v from w (McCoy & Wang, 1994). The factor “2” 

accounts for binary scission. The first term on the Right Hand Side (RHS) represents the 

scission of polymers with DP ≥ v to form v whereas the second term on the RHS 

represents the scission of polymers with DP = v to form polymers with DP < v. The 

stoichiometric kernel is defined to satisfy the following constraints following the 

conservation of mass: 

( )
0

, 1
w

b v w dv =∫      (2.2) 

( ) ( ), ,b v w b w v w= −    (2.3) 

Description of depolymerization phenomena using Eq. (2.1) is known as PBM. This 

equation can be solved to obtain various useful quantities such as the molar concentration 

of polymers with various chain lengths, the complete polymer distribution as well as the 

moments of the polymer distribution. As the equation is an integro-differential equation, 

the solution is non-trivial and the various solution methods, e.g. analytical methods, direct 

discretization, method of moments etc., are well documented in the excellent book by D. 

Ramkrishna (2000). In this work, only random and chain-end scission will be covered as 

these are the two common enzymatic scissions encountered. 

 

 

 



18 
 

2.2.1 Random Scission 

 

 

Figure 2.1: Illustration of random scission where the cases 1 to 5 are the equally probable 

products resulting from the scission of a polymer chain with 6 monomer units and 5 bonds. 

 

In the case of random scission, the bonds along a particular polymer chain are 

hydrolyzed at random. Referring to Figure 2.1, for the scission of a polymer chain with 6 

monomer units and 5 bonds, cases 1 to 5 are the equally probable products of scission. 

Since polymer chains are made up of discrete monomers, it is often represented by the 

following discrete Population Balance Equations (PBEs) (Ziff & McGrady, 1985) which 

are expressed in terms of the intrinsic rate of breaking an (i +j)-mer into an i-mer and a j-

mer, i.e. ijF α  (Ziff & McGrady, 1985): 

( ) ( ) ( )
1

, ,
1 1

2
N i

i

j i j i i k i k

j i k

dc t
c t F c t F

dt

−
α α
− −

= + =

= −∑ ∑    (2.4) 

where ,i j i j ijF k bα α α
− =  and 

1

,
1

i

k i k i

k

F k
−

α α
−

=

=∑  Here, the superscript “α” is used to denote random 

scission and ci is the molar concentration density of polymer with DP = i (which can be 

used interchangeably with the molar concentration Ci since ci equals Ci divided by a unit 

DP interval). The stoichiometric kernel for discrete random scission is given as: 
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1

1ijb
j

α =
−

   (2.5) 

This stoichiometric kernel coupled with different forms of rate kernel will result in 

different final expressions of Eq. (2.4). The common power law rate kernels are given as 

( )ˆ 1
n

ik k iα α= −  (n = 0, 1, 2, …) where k̂ α  is a constant. Other forms of rate kernels were 

also reported in the literature (Staggs, 2002, 2005, 2006). In Eq. (2.4), i = 1, 2, 3 … N, 

which corresponds to the DP of the monomer, dimer, trimer up to the largest DP at N. 

Equations (2.4) - (2.5) are the exact representation of discrete random polymer scission 

where scissions of polymer with all chain lengths are accounted for explicitly. Ideally, if 

one were to model random scission using PBM, these equations should be employed as 

they serve as the golden standard for discrete polymer scission. However, the order of N 

is usually large (Staggs, 2002, 2005, 2006), which renders the solution to such a large 

system of differential equations impractical. Particularly for biopolymers such as starch 

or cellulose, values of N spanning the order of thousands are not uncommon (Breuninger, 

Piyachomkwan, & Sriroth, 2009; Griggs et al., 2012a). Although analytical solutions for 

specific cases of discrete random binary scission had been provided by Ziff and McGrady 

(1985) as well as Ziff (1992), these are often restricted to certain rate kernels and initial 

conditions. Moreover, they are also of limited use when multiple complex 

depolymerization phenomena co-exist. 

 

The impracticality of solving the discrete PBEs at realistic/large values of N calls for 

the development of approximate solutions at a more affordable computation cost. This is 

often done through the use of PBE in the continuous domain, given as the following 

alternative form of Eq. (2.1): 

( ) ( ) ( ) ( ) ( )
0

,
2 , , , ,

v

v

c v t
F v w v c w t dw c v t F z v z dz

t

∞ α α∂
= − − −

∂ ∫ ∫   (2.6) 
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where the intrinsic rate of scission was used, i.e. ( ) ( ) ( ), ,F v w v k w b v wα α α− =  and 

( ) ( )
0

,
v

F z v z dz k vα α− =∫ . The continuous equivalent of Eq. (2.5) is: 

( ) 1
,b v w

w

α =    (2.7) 

For the common ( )k vα ’s, e.g. ( ) ˆ nk v k vα α=  (n = 0, 1, 2, …) etc., analytical solutions to 

Eqs. (2.6) – (2.7) (which in some cases were specific for a particular initial condition) 

exist and were given by Ziff and McGrady (1985). However, as alluded to above, 

analytical solutions are often confined to specific forms of rate kernels and initial 

conditions and therefore are of limited general use. Using the continuous model, the 

method of moments can be used to solve for the desired moments of the polymer 

distribution undergoing random scission (M. Kostoglou & Karabelas, 2002, 2004; D. 

Ramkrishna, 2000), thus bypassing the need for solving large scale discrete problems. 

This had been done in the past for applications in which primarily the zeroth and the first 

moments of the polymer distribution (indicating the total molar and mass concentrations 

of the polymer respectively) are variables of interest (Karmore & Madras, 2001; Madras, 

Chung, Smith, & McCoy, 1997; Madras, Smith, & McCoy, 1997; McCoy & Wang, 1994). 

Although the method of moments admits a simple and efficient solution, it is designed 

specifically for the extraction of important properties of the polymer distribution and not 

aimed at extracting the full distribution or the temporal evolution of the molar 

concentration of any given oligomer. The latter is especially important in the case where 

the concentration of oligomers is of commercial significance, thus requiring their 

distribution to be tracked accurately. 

 

Another important class of solution for random scission is the use of numerical 

techniques by means of discretization of the continuous PBE. Other than the obvious use 

of the conventional finite difference, finite element or finite volume techniques, the 
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continuous PBE can also be solved by using the higher order methods based on 

approximating the full polymer distribution with sets of local/global orthogonal functions 

or spline polynomials (Canu, 2005; Eyre, Everson, & Campbell, 1998; Hamilton, Curtis, 

& Ramkrishna, 2003; Liu & Tadé, 2004; Mantzaris, 2005). The higher order methods 

despite being very accurate are computationally demanding (M. Kostoglou & Karabelas, 

2009). For this reason, the so-called sectional method appears as an attractive alternative 

to solving the continuous PBE in that it is a compromise between the very accurate but 

computationally demanding higher order methods and the very efficient but inaccurate 

method of moments. Examples of sectional methods which had been employed to model 

random scission include the cell average technique developed by J. Kumar et al. (2008), 

the extended cell average technique by M. Kostoglou (2007), the method by Hill and Ng 

(1995), and the pivoting techniques by S. Kumar and Ramkrishna (1996a) as well as S. 

Kumar and Ramkrishna (1996b). Among these more recent techniques, the Fixed Pivot 

(FP) technique by S. Kumar and Ramkrishna (1996a) as noted in the extensive study by 

M. Kostoglou and Karabelas (2009) is still the state of the art. Derived from the principle 

of conserving any two chosen integral properties (e.g. zeroth and first moments of the 

distribution) through discretization of the continuous PBE, the FP technique retains the 

design intention of the method of moments and yet is able to predict the temporal 

evolution of polymer distribution to a good degree of accuracy (M. Kostoglou & 

Karabelas, 2009). The FP technique is also known for its ease of use and generality, which 

in contrast to analytical solutions can be amended for engineering purpose to 

accommodate simultaneously occurring complex depolymerization phenomena. As far 

as random scission is concerned, its solution using the aforementioned numerical 

techniques is rather established. 
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Although the continuous PBE can be used to approximate the discrete nature of 

polymeric scission, this is applicable only at large DPs (McCoy & Madras, 2001). 

Therefore, to obtain the solution to polymeric scission with reasonable accuracy over the 

entire DP spectrum, the solution must be formulated to cover both ends of the DP range. 

This can be achieved by employing a discrete-continuous approach where the low DP 

end is discretely formulated while the high DP end is approximated by the continuous 

PBE (Gelbard & Seinfeld, 1979; S. Kumar & Ramkrishna, 1996a). This strategy had been 

employed by S. Kumar and Ramkrishna (1996a) using the FP technique in their attempt 

to solve a simultaneous aggregation and breakup process with a random stoichiometric 

scission kernel, approximating a process with N = 10,000 with as few as 40 – 50 ODEs. 

 

2.2.2  Chain-End Scission 

 

 

Figure 2.2: Illustration of chain-end monomer scission where monomer is removed 

successively from the end of the chain. 



23 
 

Chain-end scission is an important class of polymer degradation whereby a monomer 

or a dimer is removed from the end of the chain (for example, see Figure 2.2). As with 

the solution for random scission of polymers, the benchmark solution for chain-end 

scission is via the discrete form (Kostoglou, 2000). Assuming first order kinetics, the 

temporal evolution of the molar concentration density for every polymer species 

undergoing chain-end monomer scission is given as: 

( ) ( ) ( )1
2 2

3

2
N

j j

j

dc t
k c t k c t

dt

γ γ

=

= +∑    (2.8) 

( ) ( ) ( )1 1 2,3, , 1i

i i i i

dc t
k c t k c t i N

dt

γ γ
+ += − = −…   (2.9) 

( ) ( )N

N N

dc t
k c t

dt

γ= −    (2.10) 

Here, the superscript “γ” is used to denote chain-end scission. From Eq. (2.8), the splitting 

of one dimer unit to two monomer units is accounted for explicitly by the first term on 

the RHS. As with random scission, different rate kernels may be used to suit the specific 

processes described (Griggs et al., 2012a, 2012b; S. Kumar & Ramkrishna, 1996a). 

 

To approximate the discrete model which contains large value of N, the continuous 

model for chain-end scission is given as: 

( ) ( ) ( ) ( ) ( )
0

,
, , , ,

v

m m m m
v

c v t
F v w v c w t dw c v t F z v z dz

t

∞ γ γ∂
= − − −

∂ ∫ ∫   (2.11) 

where ( ) ( ) ( ), ,m m mF v w v k w b w v wγ γ γ− = −  and ( ) ( )
0

,
v

m mF z v z dz k vγ γ− =∫ . Here, the 

subscript “m” denotes monomer, i.e. vm = 1. The stoichiometric kernel for chain-end 

scission is: 

( ) [ ]( ),m mb w v w v w vγ − = δ − −    (2.12) 
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As the enforcement of Dirac delta [ ]( )mv w vδ − −  is selective at v = w – vm and does not 

include the accumulation of monomer, c(v,t) in Eq. (2.11) refers to the molar 

concentration density of the polymer population excluding monomer. The factor “2” 

present in Eqs. (2.1) and (2.6) is omitted for the same reason. Binary scission is thus 

completed by accounting for the accumulation of monomer separately: 

( ) ( ) ( )1 ,
, ,m m

v

c v t
F v w v c w t dw

t

∞ γ∂
= −

∂ ∫    (2.13) 

Here, ( ) ( ) ( ), ,m m mF v w v k w b v wγ γ γ− = , ( ) ( ) ( )1 1, mc v t C t v v= δ −  is the molar 

concentration density of the monomer and the corresponding stoichiometric kernel is: 

( ) ( ),m mb v w v vγ = δ −    (2.14) 

with ( ) ( ), ,m mb w v w b v wγ γ− =  in fulfilment of the symmetry condition. The set of Eqs. 

(2.11) – (2.14) is referred to as the “fundamental continuous model” for chain-end 

scission by McCoy and Madras (2001). The approximation of the discrete model by the 

fundamental continuous model is only valid if the DP of the polymer is very large 

(Kostoglou, 2000; McCoy & Madras, 2001). As with random scission, using the 

fundamental continuous model, the method of moments can be used to solve for the 

desired moments of the polymer distribution undergoing chain-end scission (Madras, 

Smith, & McCoy, 1996a, 1996b; Madras, Smith, et al., 1997; McCoy, 1999, 2001; Wang, 

Smith, & McCoy, 1995). Nonetheless, the method was shown recently to be appropriate 

only for cases where the concentration of dimer is insignificant (Stickel & Griggs, 2012). 

Specifically, feasible solutions using the method of moments can only be attained if the 

depletion of one dimer unit to form two monomer units can be neglected, otherwise it 

would become an ill-posed problem fraught with difficulties (Diemer & Olson, 2002; V. 

John, Angelov, Oncul, & Thevenin, 2007).  
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Due to the ease of mathematical manipulation (McCoy & Madras, 2001), another form 

of continuous model had also appeared in the literature for chain-end scission. 

Specifically, applying the Taylor series expansion on the fundamental continuous model 

resulted in a first order hyperbolic PDE. Truncating after the first order term, Kostoglou 

(2000) gave an analytical treatment of this approximate continuous model and showed 

that it is only valid on the condition that the number-average DP is much larger than one. 

In addition, a discrete-continuous mixed approach (Gelbard & Seinfeld, 1979; S. Kumar 

& Ramkrishna, 1996a) was also proposed where the analytical solution for the larger DPs 

was coupled to a discrete set of equations relating the smaller DPs. The use of discrete 

equations for the smaller DPs thus eliminates the dimer issue alluded to above, as this can 

now be explicitly accounted for. The analytical study by  Kostoglou (2000) gave valuable 

insights on chain-end scission but the results are not easily extensible to include more 

complex depolymerization phenomena, e.g. a combination of random and chain-end 

scission (Griggs et al., 2012a, 2012b). Recently, Stickel and Griggs (2012) extended the 

approximate continuous model by including the second order derivative term of the 

Taylor series expansion and solved the resulting PDE by finite difference. Although good 

agreement to the discrete model was obtained in the polymer distribution, no 

consideration was made to ensure the conservation of moments, which could be the 

primary concern in some applications (S. Kumar & Ramkrishna, 1996a; Madras, Chung, 

et al., 1997; Oyerokun & Vaia, 2012; Rangarajan, Bhattacharyya, & Grulke, 1998; 

Striegel, 2003). 

 

In contrast to random scission where its solution using the sectional techniques had 

been thoroughly explored, e.g. in the studies by Hill and Ng (1995), S. Kumar and 

Ramkrishna (1996a), S. Kumar and Ramkrishna (1996b), J. Kumar et al. (2008) etc., this 

is not so for chain-end scission. Particularly for the popular FP technique, only a glimpse 
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of its performance on chain-end scission could be found in the work of Vanni (2000). In 

that work for modeling aggregation-breakage processes, out of the many stoichiometric 

kernels tested, chain-end scission was included as a limiting case to discriminate the 

performance of the sectional methods (including the FP technique). However, that work 

paid no attention to the dimer issue alluded to above or to extracting the temporal 

evolution of individual oligomer concentration. Detailed guidelines e.g. on meshing or 

the range of applicability, were also absent. As the potential of the FP technique to handle 

chain-end scission appears not to have been thoroughly explored, a part of this work will 

be dedicated to formulate the solution to chain-end scission using the FP framework. 

Success in doing so will enable the simulation of multiple co-existing complex 

depolymerization phenomena using a single solution framework. 

 

2.2.3  Population Balance Modelling of Saccharification Processes 

 

Insofar as the use of PBM have yet to be found in the SSF literature, its employment 

for pure enzymatic scission of natural polymers had been sparingly reported. In the work 

of Chang et al. (2002), a continuous population balance model was developed for the 

hydrolysis of wheat starch by α-amylase. Random scission was assumed with a first order 

rate kernel [ ( ) ( ) ( ) ( )ˆ,
g

k T t k T E t C tα α
α= ; T = temperature, Eα = concentration of 

enzyme exhibiting random scission (α-amylase), Cg = concentration of gelatinized starch] 

and the PBE was solved using the method developed by Hill and Ng (1995) using a 

geometric discretization covering the approximate range of DP from 2 – 9.3×104 with 

110 ODEs. The study was concerned mainly with predicting the performance of a 

viscosity-based device, and thus the validity of the prediction with regards to the 

concentration density as well as the oligomer concentration was not pursued. In another 

study, a discrete population balance model for the action of endo-glucanase in randomly 
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hydrolyzing cellulose was proposed (Hosseini & Shah, 2011b). The discrete rate kernel 

employed was 2ˆ
i ik k v
α α=  where vi is the DP of polymer chains with i number of 

monomers. The maximum DP for the cellulose population was chosen as N = 1200. As 

N here is not very large, the fully discrete PBEs were solved directly. This work was 

extended to include the action of exo-glucanase in their subsequent work (Hosseini & 

Shah, 2011a). Equal reactivity was assumed for the successive removal of cellobiose 

(maximum DP = 4000) from the non-reducing ends of cellulose chains, i.e. ˆ
ik kγ γ= . 

Following this, a model which includes the combined action of endo- and exo-glucanases 

was also proposed. Nevertheless, the resulting model equations were not solved by the 

authors. A continuous model for the combined action of the endo- and exo-glucanases 

was proposed in the work of Griggs et al. (2012a) and Griggs et al. (2012b), each focusing 

on different aspects of the hydrolysis biochemistry. In their studies, equal reactivity was 

assumed for the chain-end scission by exo-glucanase. However, an enzyme complexation 

step was also included in their proposed mechanism and the rate kernel used was 

( ) ˆk v k vγ γ=  due to the hypothesis that the time required to find a reducing end is 

proportional to the chain length. Their formulation for random scission by endo-

glucanase employed a normalized rate kernel of ( ) ( )ˆ
nk v k v Mα α=  where nM  is the 

number-average DP. Central finite difference method was used to solve the resulting 

system of PBEs and the equations involving chain-end scission were formulated using 

the method of Stickel and Griggs (2012). Most of the studies above were mainly 

concerned with predicting the distribution of the polymer populations and the 

concentrations of the oligomers analyzable by current chromatographic techniques were 

not explicitly displayed. In the context of SSF, as microbes are known to metabolize the 

oligomers, further clarification in the PBM framework is needed to establish a linkage 

between the relevant oligomer with the metabolism of microbes. 
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2.3 Cybernetic Modelling (CM) 

 

The cybernetic perspective of microbial growth was first introduced by D. Ramkrishna 

(1983). The framework establishes its premises upon the fact that microbial systems when 

facing diverse environmental changes are capable of regulating their growth processes in 

order to optimize growth. The existence of such regulatory mechanisms was reported as 

early as the year 1942 in the classic study by Monod (1942) where the preferential 

consumption of one sugar over the other by the bacterial culture resulted in a diauxic 

growth pattern. Employing the traditional kinetic framework for modelling biological 

systems, such a complex growth pattern can only be predicted if the substrate preference 

is supplied a priori as an input to the model. Moreover, the incorporation of metabolic 

regulation into the traditional kinetic framework increases the model complexity 

enormously and is often impeded by the scarcity of mechanistic details (D. Ramkrishna 

& Song, 2012). In the face of these challenges, the CM framework has taken another 

route in which metabolic regulation is attached to a goal-seeking behaviour of the 

organism. With this in mind, the CM framework adopts a simpler mathematical 

description of the biological systems which are capable of metabolic regulation by 

associating their response to a certain control policy. 

 

2.3.1 Cybernetic Modelling Equations 

 

Since its first inception, the CM framework has evolved tremendously over the past 

three decades, progressing from the simple microbial growth models built upon gross 

biochemical pathways to its current capability in utilizing larger scale metabolic network 

for metabolic engineering purposes. A comprehensive review of the development of the 

CM framework can be found in the paper by D. Ramkrishna and Song (2012). A 
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simplified representation of the CM machinery is shown in Figure 2.3. The metabolic 

enzymes (ei) play a critical role in the cellular metabolism of different substrates (Ni) 

present in the abiotic phase. Once the substrates enter the biotic phase, they go through a 

series of biochemical conversion with the release of intracellular metabolites (ϕ), in 

which some are ultimately excreted into the external environment as products (P ). 

Meanwhile, cells grow and the biomass (X) increases. The CM framework views the 

levels and activities of the metabolic enzymes as being regulated systemically through 

the cybernetic variables Ui and Vi. Conceptually, one could view Ui as the fractional 

allocation of cellular resources to produce ei, and Vi as the extent ei is activated. The CM 

equations, while present in numerous variants, can be expressed in the following general 

system of nonlinear ODEs: 

( )1
, ,

d

X dt
=

N
NW r V eN

   (2.15) 

( )1
, ,

d

X dt
=

P
NW r V e

P    (2.16) 

( ), ,
d

dt
φ= −µNW r V e

φφφφ
φφφφ    (2.17) 

1 dX

X dt
= µ    (2.18) 

( ) ( )e e

d

dt
= − +µ  

e
+ D U r D I eρ βρ βρ βρ β    (2.19) 

where X is the mass concentration of biomass, μ is the total specific growth rate, and N  

is the concentrations of extracellular substrates, P  is the concentration of extracellular 

products, and φφφφ  is the concentration of intracellular metabolites. The matrices WN , WP  

and φW  contain the stoichiometry of the reactions. The symbol r  is the regulated fluxes 

(or rates defined per unit of biomass), e
ρρρρ  is the constitutive enzyme synthesis rates, e

r  is 

the inducible enzyme synthesis rates, ββββ  is the enzyme degradation rate constants and e  
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is the enzyme levels. Unless dimensionless, units of concentration related terms may be 

expressed either on a molar or a mass basis wherever appropriate. The matrix I  is the 

identity matrix and the operator ( )iD  converts the input vector into a diagonal matrix 

such that: 

( ) ( )

( )

1 1

2 2

1

2

0 0 0 0

0 0
; ;

0 0

0 0 0 0

0 0

0

0

0 0
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U
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where ne is the size of e. 

 

The general form of U and V can be written as (Song et al., 2009): 

k

k

R

+

+
=
∑

R
U    (2.21) 

( )max

+

+
=

R
V

R
   (2.22) 

where
T

1 2 kR R R+ + + + =  ⋯R with ( )max ,0
k k

R R+ = and Rk is the return on investment 

from the k-th alternative. The form of Rk is dependent on the formulation of the metabolic 

objective function (Song et al., 2009). As the ability to reproduce is important for ensuring 

survival, the biomass growth rate had been frequently employed as the objective function 

(Kompala & Ramkrishna, 1986; Kompala, Ramkrishna, & Tsao, 1984). Other choices of 

objective function had also been employed, e.g. the substrate uptake rates (Turner, 

Ramkrishna, & Jansen, 1989). Defining the metabolic objective function over a finite 

time interval (t, t +Δt) as ( ) ( )J J t t J t∆ = + ∆ − , the cells ensure their survival by 

manipulating the cybernetic variables according to the following maximization problem:  
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,

1

 

s.t. 1, 0, 1

max

k k

J

U V

∆

= ≥ ≤

U V

U
   (2.23) 

By setting Δt = 0, the control policy collapse to the classic forms determined by the 

‘Matching and Proportional laws’ (Young & Ramkrishna, 2007). The constraint of 

1
1=U  is due to the fact that U is associated with the fractional allocation of a common 

critical resource for the synthesis of enzymes for different cellular reactions. The elements 

in V need not sum to 1 as they are not viewed based on the sharing of a common resource. 

Although the CM equations given above can be used to predict the effect of multiple 

substrates on microbial growth, the existing framework does not cater explicitly to 

systems where the excretion of the extracellular depolymerases is required to break large 

polymers into consumable substrates. 

 

 

Figure 2.3: Simplified diagram illustrating the different components of the CM 

framework. The biotic phase is represented by the region enclosed within the dashed line. 
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2.3.2 Cybernetic Modelling for SSF Processes 

 

The use of the CM framework to model cellular response to complex nutrient 

environment had been very successful. At its early beginnings, the CM framework 

developed by Kompala and Ramkrishna (1986) was used to predict the growth pattern of 

Klebsiella oxytoca in batch cultures growing on a mixed substrates formed from 

combinations of glucose, xylose, arabinose, lactose and fructose. The more advanced 

developments, e.g. that which is found in the study by Geng et al. (2012), saw the 

enhanced capability of the framework to predict the co-fermentation of a multiple sugar 

mixture by multiple species. The literature on CM had been mainly focused on 

assimilation of sugars which can be directly consumed, e.g. glucose, xylose, mannose etc. 

However, in the case of SSF, the starting raw material is usually natural polymers which 

cannot be directly consumed unless further degraded to smaller products. Thus, a 

mechanism for regulating the levels and activities of the extracellular enzymes necessary 

for degrading the larger substrates must be in place for proper predictions to be made. 

This aspect of SSF was first embedded in the CM framework in the work of Gadgil et al. 

(1996), where the yeast employed was unable to consume melibiose (a di-saccharide) 

directly but that extracellular α-galactosidase must be excreted to hydrolyze melibiose 

into glucose and galactose. The study further assumed that glucose represses the 

production of α-galactosidase only if its concentration exceeds a critical threshold. In 

addition, the concentration of α-galactosidase was assumed to correspond to the key 

enzyme in galactose metabolism. Taking a cue from this study, Altintas et al. (2002) 

employed a similar strategy to model the SSF of starch by a recombinant yeast which 

excretes a fusion protein which exhibits both α-amylase and glucoamylase activity. In 

this case, starch was assumed to be hydrolyzable to form reducing sugars and glucose, 

where the concentration of the extracellular hydrolytic enzyme corresponded to the key 
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enzyme in the metabolism of reducing sugars. Their model predicted a sluggish response 

for starch degradation even after the initial glucose loading had been consumed, which 

implied an unsatisfactory representation of the enzyme induction/repression process. 

Following this, a more expanded pathway for starch degradation and assimilation of the 

corresponding hydrolysates was proposed by Ochoa et al. (2007). Their model was 

constructed based on the cybernetic principles elaborated by Varner and Ramkrishna 

(1999b) and the performance of the model was relatively better than that proposed by 

Altintas et al. (2002). Nonetheless, both the models by Altintas et al. (2002) and Ochoa 

et al. (2007) were not validated for the case where starch is present as the sole initial 

substrate. Other attempts employed the CM framework to model SSF processes in which 

the enzymes required for saccharification were externally dosed and not produced in situ 

by the microbes (Chavan et al., 2009; Ko et al., 2010; Ganti S. Murthy et al., 2012). To 

this end, all the models above were more elaborate in describing the kinetics of 

fermentation while attempting to represent the kinetics of hydrolysis with crude M-M 

type expressions. This study attempts to address this inadequacy by proposing to integrate 

the PBM and the CM principles in a single framework, thus enabling a more fundamental 

analysis of the SSF phenomena.  
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CHAPTER 3 : RESEARCH METHODOLOGY 

 

3.1 Preamble 

 

As the general nature of this work involved detailed mathematical derivations, for ease 

of reading, such materials were placed in their corresponding chapters preceding the 

presentation of the results and discussions. Therefore, this chapter gives only the general 

methodology and line of thought involved in executing the various parts of this work. 

The detailed formulations are found in the respective chapters. All simulations involved 

in this work were programmed using MATLAB® program R2009b. When dealing with a 

system of ODEs, the ‘ode45’ sub-routine was always the the “first preference” as per the 

recommendation from MATLAB (Houcque, 2008). Should the ‘ode45’ become 

inefficient, the sub-routine ‘ode15s’ was used instead. Where appropriate, such 

information will be mentioned. 

 

In addition, three different workstations were used throughout the course of this study, 

namely workstations A, B, and C respectively. Workstation A comprises of an Intel® 

Core™2 Duo CPU T8100 with a clock speed of 2.10 GHz and 3GB of installed memory 

(RAM), whereas workstation B comprises of an Intel® Xeon® Processor W3520 with a 

clock speed of 2.66 GHz and 8GB of RAM. Finally, workstation C comprises of Intel® 

Core™ i7-4700HQ2 CPU with a clock speed of 2.40 GHz and 16GB of RAM. Where the 

specifications of the workstation become important such as when the absolute 

computational time is reported, the particular workstation used will be mentioned. 
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3.2 General Workflow 

 

The general workflow of the research is summarized in Figure 3.1 below. Details of the methodologies employed are presented in the subsequent 

sections. 

  

Figure 3.1: Flowchart of the research workflow
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3.3 Development of the Numerical Technique for Solving Population Balance 

Equations 

 

Two techniques were developed as far as the solution technique for solving PBEs is 

concerned. The first is the development of the FP technique in solving chain-end scission, 

which as alluded to in Section 2.2.2, had not been fully explored previously. Second, the 

FP solution for random scission was combined with the FP solution for chain-end scission 

to enable the solution of simultaneously occurring random and chain-end scissions. 

Detailed formulations regarding the solution of the PBEs using the FP technique are given 

in Chapter 4. Nonetheless, the key methodologies employed are given below. 

 

3.3.1  Identification of the Relevant Stoichiometric Kernels, Rate Kernels and 

Initial Distribution for Solving the PBEs 

 

Regardless of the technique used to solve PBEs, three critical items that are always 

required for solving PBEs are: a) the stoichiometric kernel, b) the rate kernel, and c) the 

initial polymer distribution. Selection of the stoichiometric kernel was done by 

considering two points. First, a survey of the literature concerning the common form of 

enzymatic scissions was done. For the hydrolysis of natural polymers, e.g. starch, 

cellulose etc., two major classes of enzymatic actions were uncovered to be prominent in 

the breakdown of these natural polymers. Briefly, the depolymerases could be generally 

divided into those that are endo-acting as well as those which are exo-acting (Bansal et 

al., 2009; Robyt, 2009). Second, a search in the pertinent population balance literature on 

enzymatic hydrolysis of natural polymers revealed that the action of endo-acting as well 

as the exo-acting enzymes can be appropriately modelled with the random scission kernel 
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and the chain-end scission kernel respectively (Chang et al., 2002; Griggs et al., 2012a, 

2012b; Hosseini & Shah, 2011a, 2011b).  

 

Upon selecting the appropriate stoichiometric kernel, the rate kernel and the initial 

distribution had to be determined in order to solve the PBEs. In the course of developing 

the solution technique, although different forms of rate kernels had been reported in the 

literature (cf. Section 2.2.3) for the hydrolysis of natural polymers, the classic power law 

rate kernels (S. Kumar & Ramkrishna, 1996a) were selected for simplicity as the 

objective here is to mainly develop the solution technique. As for the initial distribution 

of the polymers, two different forms of expressions were used throughout this work. The 

first is a Schulz-Zimm distribution (Dole, 1972), which had been used in the work of 

Chang et al. (2002) to model starch. This distribution is empirical in nature and is 

commonly used for describing condensation polymers with a skewed long tail at the high 

molecular weight end. The Schulz-Zimm distribution is given as: 

( ) ( ) ( )
( ) ( )

1

0
,0

162 18 180

S

N

m h v
c v

v h v dv
=

+ −  ∫
   (3.1) 

where mS(0) is the initial mass concentration (mass/volume) of the polymer, v is the 

continuous DP, N is the maximum DP of the polymer, and the remaining quantities are 

given by: 

( ) ( )
1

1 1
exp

v v
h v

ω−
− −   = − κΓ ω      κ κ   

   (3.2) 

( ) ( )1

0
, , exp

n
w n

w n

M
M M t t dt

M M

∞ ω−ω = κ = − Γ ω = −
− ∫   (3.3) 

In Eqs. (3.3), nM  is the number-average DP, wM  is the weight-average DP and ( )Γ ω  

is the gamma function. Other than the Schulz-Zimm distribution, the other form of initial 

distribution used in this work has the following form: 
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( )
( )

1,0 expinc v
c v vω−

ω

 = − κ Γ ω κ 
   (3.4) 

where cin is a constant. This form of initial distribution is also common in the literature 

(Griggs et al., 2012a, 2012b; Stickel & Griggs, 2012). The distribution function shown in 

Eq. (3.4) is similar to that shown in Eq. (3.2) except that the values of ω and κ in Eq. (3.2) 

were correlated with nM  and wM . 

 

3.3.2 Code Validation 

 

Be it the programming of the fully discrete (exact) or the FP solution, it is important 

to ensure that the code correctly transcribes the system of equations. For the PBEs 

describing pure scission, the mass of the polymers should always be conserved. Therefore, 

to check that the code has been programmed correctly, the temporal evolution of the first 

moment of the polymer distribution can be used. Given that N is the maximum DP of the 

polymer distribution and p+q is the number of discretized grid points (also called pivots), 

the first moment of the distribution can be calculated in the following manner: 

Exact solution: 

( ) ( ) ( )1

1

 = 
N

i i

i

C t y C t
=
∑    (3.5) 

FP solution: 

( ) ( ) ( )1

1

 = 
p q

i i

i

C t x C t
+

=
∑    (3.6) 

In Eqs. (3.5) and (3.6), ( )1
C  represents the first moment of a polymer distribution, yi is 

the DP of the i-th pivot for the exact solution, and xi is the DP of the i-th pivot for the FP 

solution. As will be shown later in Chapter 4, p+q is the total number of pivots for the FP 

solution, which is much smaller than N. If the PBEs had been coded correctly, ( ) ( )1
C t  is 
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a constant. Upon validating that the code has been programmed correctly, the next step 

is the validate the FP solution with the exact solution, as discussed next. 

 

3.3.3 Validation with the Exact (or Fully Discrete) Solution 

 

For benchmarking purposes, the resulting temporal evolutions of the molar 

concentration density, the molar concentrations of selected oligomers as well as selected 

properties of the distribution obtained using the FP technique were compared against 

those of the exact solution. A few of the following quantities were used throughout. First, 

the dimensionless time (θ) is given by: 

99%

t

t
θ =    (3.7) 

where 99%t  is the time required for the molar concentration of the monomer to reach 99% 

of its final value. When comparing the FP solution with the exact solution, it is always 

important to make comparison at the late phase of the reaction, i.e. at θ ≥ 1 as the error 

accrued over time is most significant during this phase. If the FP solution is accurate even 

at θ ≥ 1, one can then conclude that the numerical approximation is appropriate for use 

even at the late phase of reaction where essentially all polymers had been hydrolyzed to 

monomers. 

 

Second, to quantify deviations from the exact solution, the following global error 

indicator was used throughout this study: 

( ) ( )
( )1

1

1

Exact FP
T

j j

g Exact
j j

C t C t

H C t=

−
ε =

+
∑    (3.8) 

where H is the total number of time steps. The benefit of εg is that it will reflect the 

average relative error or the average absolute error depending on the magnitude of 
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( )Exact

jC t . It does not blow up artificially even with very small values of ( )Exact

jC t  often 

encountered here. 

 

Finally, the error in the initial mass of polymers due to discretization was calculated 

as:  

( ) ( ) ( )
1

ˆ ˆ0 0 ; 0 ; 162 18
p q

S S S S i i i i

i

m m m M C M x
+

=

ε = − = = +∑   (3.9) 

In Eq. (3.9), the form of molecular weight (Mi) given is applicable to glucose polymers.  

 

3.4 Development of the Interlinked PBM and CM Framework 

 

The core of this work is to give the general framework for interlinking the PBM and 

CM followed by two case studies to showcase the attractive features of such an approach 

in modelling SSF systems. The first case study involves the growth of a glucoamylase 

producing recombinant yeast on starch. This case study was chosen to mainly introduce 

the general capability of the framework. The second case study involves the growth of an 

α-amylase and glucoamylase producing recombinant yeast and was chosen to show how 

the framework could be used to abstract the very complicated scenario of two 

depolymerases attacking a common polymeric substrate. Discretization of the PBEs 

involved was done through the FP technique formulated in Chapter 4 of this thesis and 

the detailed formulations of the interlinked PBM-CM framework are given in Chapter 5. 

The common methodologies employed are given below.  
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3.4.1  Identification of Relevant Stoichiometric Kernels, Rate Kernels and Initial 

Distribution for Solving PBEs 

 

In line with the discussions in Section 3.3.1, the stoichiometric kernels to be employed 

are none other than those for the random and the chain-end scissions. Therefore, the case 

study examples chosen must appropriately reflect the use of these two stoichiometric 

kernels. As such, referring to Figure 3.1, two case studies were selected, one of which 

involves the growth of a recombinant yeast capable of excreting glucoamylase (chain-

end scission), while the other is capable of excreting both α-amylase (random scission) 

and glucoamylase (chain-end scission).  

 

For the rate kernels, since the biochemistry of enzymatic hydrolysis cannot be 

neglected in this case, the use of the classic power law kernels may not be appropriate. 

As starch was selected as the natural polymer in the case studies, a literature search was 

performed to uncover the possible relations between the length of the polymer chain and 

its corresponding rate of hydrolysis. It turns out that the subsite theory for glucoamylase 

and α-amylase (Hiromi, 1970; Hiromi, Nitta, Numata, & Ono, 1973; Iwasa, Aoshima, 

Hiromi, & Hatano, 1974) is relevant and was thus employed. For the initial distribution 

of starch, the Schulz-Zimm distribution, i.e. Eqs. (3.1) - (3.3), was used primarily because 

it could be used to relate to starch properties such as nM  and wM . 

 

3.4.2 Identification of Model Parameters 

 

The models developed for the case studies were calibrated based on the data reported 

in the literature. Specifically, the data provided by Nakamura et al. (1997) and Ülgen, 

Saygılı, Önsan, and Kırdar (2002) were used for case studies I and II respectively. 
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Extraction of the experimental data was done using the free online application, i.e. 

WebPlotDigitizer developed by Rohatgi (2012). Identification of model parameters was 

generally done through order of magnitude estimation, inference from reported values or 

nonlinear parameter estimation. All nonlinear parameter estimations were done using the 

Genetic Algorithm (GA) (‘ga’ subroutine) from the Genetic Algorithm and Direct Search 

ToolboxTM of MATLAB® R2009b. The population size of the algorithm was chosen as 

five times the number of parameters (Cox, 2005) as increasing it further yielded similar 

results at the expense of much longer computational time. The maximum number of 

generation was set as 200 and the maximum number of stall generations was set as 100. 

The remaining settings were kept as default. 

 

As alluded to above, the determination of the values of some of the model parameters 

requires the use of nonlinear parameter estimation. For those not requiring nonlinear 

parameter estimation, the rationale for their case by case selection will be given in the 

relevant section in Chapter 5. For those requiring nonlinear parameter estimation, all the 

parameters to be estimated were normalized in the following way: 

,min

,max ,min

i i

i

i i

Θ −Θ
Θ =

Θ −Θ
   (3.10) 

where iΘ  is the i-th parameter to be calibrated and ,min ,max,i i
 Θ Θ   is the range of lower 

and upper bounds for iΘ . The nonlinear parameter estimation problem was formulated 

as: 

Subject to 0 1

min optJ

≤ ≤
ΘΘΘΘ

ΘΘΘΘ
   (3.11) 

where Jopt is the objective function and is given as: 

( ) ( )

T
ˆ ˆ1

 = 
max max

i i i i
opt i

i i i i

J W
    − − 
    
τ      

∑
ɶ ɶ

ɶ ɶ

y y y y

y y
   (3.12) 
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Here, i refers to the variables involved in calibration (e.g. biomass, starch etc.), ˆ
iy  is the 

vector of predicted output, i
ɶy  is the vector of experimental observations, τi is the number 

of observations for the variable i and iW  (usually having values between 1 – 10) is the 

weight assigned to the different variables. When 1iW = , the objective function weighs all 

quantities of different scales and different number of points equally. In calculating Jopt, if 

the elements in i
ɶy  do not fall on the same time points as ˆ

iy , the ‘interp1’ sub-routine in 

MATLAB® R2009b was used to interpolate ˆ
iy . 

 

The general workflow for the nonlinear parameter estimation using the GA is given in 

Figure 3.2. In assigning values to model parameters, it is important that the final values 

of the parameters make biological sense. Therefore, appropriate bounds for the model 

parameters, i.e. ,min ,max,i i
 Θ Θ  , should be established. This was done by consulting the 

literature on past similar models which had been developed. As an example, the typical 

value of max,1µ  (maximum specific growth rate on glucose) for yeast lies in the range of 

[0.1, 1] (Altintas et al., 2002; Gadgil et al., 1996; Jang & Chou, 2013; Kobayashi & 

Nakamura, 2003, 2004). Thus, it would be impractical to set the bounds on max,1µ  beyond 

this range. Upon establishing the bounds for the model parameters, the GA was run 

without a known set of initial population and using unity weights in the objective function. 

As the GA is stochastic in nature, this might return different results on every different 

run, and the optimized parameters should be examined manually to ensure that they make 

biological sense. Once a particular set of optimized parameters was deemed ‘biologically 

appropriate’, this set of parameter values was used as the initial population for the next 

calibration procedure using the GA while still maintaining the unity weights on the 

objective function. Apart from examining the value of the objective function, the resulting 

goodness of fit was evaluated by manually scrutinizing the fitted curves as well as by 
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ensuring that the simulated profiles of other unfitted variables are to the best of 

knowledge biological sound. If some fits are relatively poorer than the others, the 

optimization by GA is invoked again by manually adjusting iW . Generally, quantities 

with poorer fits require larger values of iW  than the better ones to increase the sensitivity 

of the optimizer toward the particular variable. The procedure is terminated when good 

fitting is obtained. 
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Figure 3.2: The general workflow of nonlinear parameter estimation using the Genetic 

Algorithm (GA). 
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CHAPTER 4 : MODELLING POLYMERIC SCISSIONS USING THE FIXED 

PIVOT TECHNIQUE 

 

4.1 Modelling Chain-End Scission  

 

As alluded to in Section 2.2.2, the FP technique appears to not have been thoroughly 

explored for solving chain-end scission. This is the aim of Section 4.1 where the FP 

technique was modified to account for chain-end scission in a systematic manner, thus 

paving the way for the ultimate description of simultaneously occurring random and 

chain-end scissions as the ultimate goal of this thesis.  

 

4.1.1 Fully Discrete (Exact) Solution for Chain-End Scission 

 

The fully discrete solution for chain-end scission had been given previously in Section 

2.2.2 by Eqs. (2.8) – (2.10). Nevertheless, as the fully discrete solution is the benchmark 

for validating the accuracy of the FP solution which will hereafter be formulated in the 

following sections, the equations are reproduced here for ease of reference. For a polymer 

with a maximum DP = N, the discrete solution to chain-end scission consists of N ODEs. 

Assuming first order kinetics, the accumulation of the molar concentration of each species 

with time is given as:  

( ) ( ) ( )1
2 2

3

2
N

j j

j

dC t
k C t k C t

dt

γ γ

=

= +∑    (4.1) 

( ) ( ) ( )1 1 2,3, , 1i

i i i i

dC t
k C t k C t i N

dt

γ γ
+ += − = −…   (4.2) 

( ) ( )N

N N

dC t
k C t

dt

γ= −    (4.3) 
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Although the analytical solutions to the above were given by Kostoglou (2000), they 

cannot be readily extended to cases where additional terms exist on the RHS of the ODEs, 

e.g. to account for other concurrent processes such as random scission. 

 

4.1.2  Fixed Pivot Discretization for Chain-End Scission  

 

The continuous PBE for chain-end scission presented in Eqs. (2.11) - (2.12) of Section 

2.2.2 can be rewritten in the following form:  

( ) ( ) [ ]( ) ( ) ( ) ( )
,

, ,m
v

c v t
k w v w v c w t dw k v c v t

t

∞ γ γ∂
= δ − − −

∂ ∫   (4.4) 

Discretizing along the v (or continuous DP) dimension, the FP technique assumes that the 

population of polymers in the i-th interval is concentrated only at a chosen representative 

DP (called the pivot, xi), i.e. 1i i iv x v +< < . The molar concentration density which 

excludes the monomer is thus mathematically expressed by: 

( ) ( ) ( )
2

, i i

i

c v t C t v x
∞

=

= δ −∑    (4.5) 

Here, Ci is the molar concentration for the i-th interval: 

( ) ( )1

,
i

i

v

i
v

C t c v t dv
+

= ∫    (4.6) 

Eq. (4.4) can be recast in terms of the molar concentration by integrating over the i-th 

interval with substitution by Eq. (4.5), giving the following discretized ODE:  

( )idC t
B D

dt

γ γ= −    (4.7) 

where Bγ and Dγ are the birth and death terms respectively: 
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( ) [ ]( ) ( ) ( )

( ) ( ) [ ]( ) ( ) ( )

( ) ( ) [ ]( ) ( ) ( )

1

1

1

2

2

2

,

,

i

i

i

i

i

i

v

m j j
v v

j

x

i m j j
x v

j

x

i m j j
x v

j

B k w v w v C t w x dwdv

K v x k w v w v C t w x dwdv

L v x k w v w v C t w x dwdv

+

+

−

∞∞γ γ

=

∞∞ γ

=

∞∞ γ

=

= δ − − δ −

= δ − − δ −

+ δ − − δ −

∑∫ ∫

∑∫ ∫

∑∫ ∫

  (4.8) 

( ) ( ) ( ) ( )1

2

i

i

v

j j i i
v

j

D k v C t v x dv k C t
+

∞
γ γ γ

=

= δ − =∑∫   (4.9) 

The partitioning of the birth integral from [vi, vi+1] to [xi, xi+1] and [xi−1, xi] in Eq. (4.8) is 

the core of the FP technique, cf. S. Kumar and Ramkrishna (1996a). The fractions of 

polymers assigned to xi from those that fall between [xi, xi+1] and [xi−1, xi], i.e. ( ), iK v x  

and ( ), iL v x  respectively, are derived to ensure that the resulting equations are internally 

consistent with regard to the zeroth and the first moments (cf. Section A.1 of Appendix 

A). These are given as: 

( ) 1

1

, i
i

i i

x v
K v x

x x

+

+

−
=

−
   (4.10) 

( ) 1

1

, i
i

i i

v x
L v x

x x

−

−

−
=

−
   (4.11) 

With these, Eqs. (4.7) – (4.9) simplify to: 

( ) ( ) ( )i

ij j j i i

j i

dC t
n k C t k C t

dt

∞
γ γ γ

=

= −∑    (4.12) 

where ijnγ

 
which represents the fractional allocation of polymers splitting from DP = j 

into i is given as: 

( ) ( )1

1

1 1

1 1

i i

i i

x x
i i

ij j m j m
x x

i i i i

x v v x
n v x v dv v x v dv

x x x x

+

−

γ + −

+ −

   − −
   = δ − − + δ − −      − −   

∫ ∫   (4.13) 

As such, j ≥ i is a basic requirement.  Here, vm = 1 is the DP of the monomer. Equations 

(4.12) – (4.13) form the foundation of Section 4.1.3. 
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4.1.3 Meshing and Implementation 

 

 

Figure 4.1: The discrete-continuous strategy with xi being the pivot encompassed by vi 

and vi+1. The integer p is the number of pivots in the discrete region while q is the number 

of pivots in the continuous region, with xp+q = vp+q+1 = N (N = maximum DP). 

 

To formulate the proposed FP solution for chain-end scission, by taking a cue from 

Gelbard and Seinfeld (1979), S. Kumar and Ramkrishna (1996a), and Kostoglou (2000), 

the DP axis is divided into two regions: the lower region has pivots placed vm apart, while 

the higher region has pivots spaced wider than vm. The latter makes physical sense as vm 

is the smallest scission unit. Essentially it is a discrete-continuous split of the domain. 

This will allow the temporal evolution of small oligomers to be captured exactly, while 

economizing on the number of equations to solve for at the higher DPs. As illustrated in 

Figure 4.1, the number of pivots for the discrete region is p while the number of pivots in 

the continuous region is q (with xp+q = vp+q+1 = N). The value of p (usually small compared 

to N) can be chosen such that it fulfils the requirements of the application considered. The 

continuous region treats the DP as a continuous variable from vp+1 to vp+q+1 (= N). The 

continuous DP is then divided into q DP intervals. Throughout this thesis, a geometric 
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mesh ( )1 1i i i ix x r x x+ − = + −   was employed in the continuous region where 

1

1
1

q
p q pr x x −
+ + =    is the geometric ratio for q pivot points between xp+1 and xp+q. 

Following S. Kumar and Ramkrishna (1996a), here [ ]1 2i i iv x x −= +  is used. Unlike the 

discrete region, there are no restrictions in the position of the pivots in the continuous 

region. This feature of the continuous region allows a coarser mesh to be deployed 

( p q N+ << ) and therefore reduces the number of ODEs to be solved.  

 

By requiring that the smallest gap in the continuous region to exceed vm, i.e. xp+2 – 

xp+1> vm, it follows that 1 1p p mrx x v+ +− >  leading to the following inequality: 

11 m pr v x +> +    (4.14) 

Substituting 
1

1
1

q
p q pr x x −
+ + =    into Eq. (4.14) and simplifying further by taking the 

natural logarithm on both sides of the equation yields: 

1 1

1 ln ln 1p q m

p p

x v
q

x x

+

+ +

     
< + +            

   (4.15) 

Using the relationships of p qx N+ =  and 1p mx p v+ = + , Eq. (4.15) can be rewritten as: 

1 ln ln 1 m

m m

vN
q

p v p v

     
< + +    + +     

   (4.16) 

Equation (4.16) is a useful analytical expression to assist the proper choice of the value 

of q, given those for p, N and vm. 

 

To obtain the final set of equations to be solved, the main task is to obtain Eqs. (4.12) 

– (4.13) for both the discrete and the continuous regions. Proper connection of both 

regions requires that mass is conserved in the final set of equations. For the case i = p+1, 

the corresponding 1,p jnγ
+  is given as: 
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( ) ( )2 1

1

2
1,

2 1 1

p p

p p

x x
p p

p j j m j m
x x

p p p p

x v v x
n v x v dv v x v dv

x x x x

+ +

+

+γ
+

+ + +

   − −
   = δ − − + δ − −      − −      

∫ ∫   (4.17) 

From Eq. (4.17), at j = p+1, the first term on the RHS vanishes because the argument of 

the Dirac delta function v = xp+1 – vm = xp does not fall within the interval of integration 

[xp+1, xp+2]. The second integral on the RHS, on the other hand, has v = xp+1 – vm = xp 

which lies on the lower limit of the integral. This integral can be recast into the following 

form: 

( ) [ ]( ) ( )1
1

; ; ;
b

p

p p
a

p p

v x
f v v a dv a x b x f v

x x
+

+

−
δ − +χ = = =

−∫   (4.18) 

Given that 0 < χ < b – a, the evaluation of Eq. (4.18) is simply ( )f a +χ . When expanded 

using the Taylor series at v = a, this results in: 

( ) ( ) ( ) ( )
2 2

22!

d d
f a f a f a f a

dv dv

χ
+ χ = + χ + +…   (4.19) 

By using a limiting process, it follows that: 

( ) ( ) ( )

( ) ( ) ( ) ( )
2 2

2

0 0

0 2!

lim lim

lim

b

a
f v v a dv f a

d d
f a f a f a f a

dv dv

χ→ χ→

χ→

 δ − + χ = +χ 

 χ
≈ + χ + + = 

 

∫

…
  (4.20) 

Using the results of Eq. (4.20), the second term on the RHS of Eq. (4.17) at j = p+1 also 

vanishes, hence 1, 1 0p pnγ
+ + = . Moving forward to j = p+2, the second term on the RHS of 

Eq. (4.17) vanishes because v = xp+2 – vm>xp+1 does not fall within [xp, xp+1]. For the first 

term, v = xp+2 – vm falls within [xp+1, xp+2], thus 1, 2
2 1

m
p p

p p

v
n

x x

γ
+ +

+ +

=
−

. Beyond j = p+2, 

1, 0p jnγ
+ =  because xj – vm does not fall within either interval of integration.  

 

Using similar arguments, for i ≥ p+2, Eq. (4.13) can be evaluated easily as above 

because the distance between adjoining pivots is greater than vm. For these cases, the only 
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two non-zero entries are ( )11
ii m i i

n v x xγ
−= − −  and ( ), 1 1i i m i i

n v x xγ
+ += − . It can be said that 

the case for i = p+1 at the discrete-continuous border is special because 1, 1 0p pnγ
+ + = . 

Further, at the last pivot i = p+q, clearly the term , 1p q p qnγ
+ + +  is inapplicable. 

 

For i = 2 to p, there are cases where ( )j mv x v δ − −   is non-zero at the upper limit of 

the integral. To illustrate, consider Eq. (4.21) below for i = p:  

( ) ( )1

1

1 1

1 1

p p

p p

x x
p p

pj j m j m
x x

p p p p

x v v x
n v x v dv v x v dv

x x x x

+

−

+ −γ

+ −

   − −
   = δ − − + δ − −      − −      

∫ ∫   (4.21) 

At j = p+1, the first term on the RHS equals unity using the limiting process described 

above. For the second term, v = xp+1 – vm = xp lies on the upper limit of the integral. 

Because the limiting process assumes that (xp + χ) falls within [xp, xp+1], therefore the 

same (xp + χ) must lie outside [xp−1, xp], which causes the second term to vanish. For 

clarity, the following convention is adopted: 

( ) ( ) ( ) ( ) ( ), 0,
a b

b c
f v v b dv f b f v v b dv c b aδ − = δ − = < <∫ ∫   (4.22) 

Using this, the limiting process applied to the Dirac delta function yields identically the 

discrete rate equations. Collating all cases for i = 1 to p+q, the following general set of 

equations is obtained: 

Discrete region: 

( ) ( ) ( )1
2 2

3

2
p q

j j

j

dC t
k C t k C t

dt

+
γ γ

=

= +∑    (4.23) 

( ) ( ) ( )1 1 2,3, , 1i

i i i i

dC t
k C t k C t i p

dt

γ γ
+ += − = −…   (4.24) 

Discrete-continuous boundary: 

( )
( ) ( )1 1         p

p p p p

dC t
k C t k C t

dt

γ γ
+ += −    (4.25) 
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( )
( ) ( )1

2 2 1 1
2 1

  p m
p p p p

p p

dC t v
k C t k C t

dt x x

+ γ γ
+ + + +

+ +

 
= − 

−  
  (4.26) 

Continuous region: 

( ) ( ) ( ) ( )1 1
1 1

1

                                                                               2, 3, , 1

i m m
i i i i i i

i i i i

dC t v v
k C t k C t k C t

dt x x x x

i p p p q

γ γ γ
+ +

+ −

   
= + − −   − −   

= + + + −…

  (4.27) 

( )
( ) ( )

1

1p q m
p q p q p q p q

p q p q

dC t v
k C t k C t

dt x x

+ γ γ
+ + + +

+ + −

 
= − − 

−  
  (4.28) 

Equations (4.23) – (4.28) describe chain-end scission and the system of equations 

constitutes p+q ODEs which is less than N ODEs in the fully discrete solution. 

 

In this formulation, the molar concentration profiles Ci(t) of the experimentally 

detectable oligomers are solved for directly. Where the molar concentration density ci is 

required instead, by applying the mean value theorem on ( ) ( )1

,
i

i

v

i
v

C t c v t dv
+

= ∫ , it can be 

shown that [ ]1i i i ic C v v+= − . In the discrete region, as 1 1i iv v+ − = , i ic C= . Section 4.1.4 

will be devoted to validating the performance of the FP solution against the exact 

solutions given by Eqs. (4.1) – (4.3) in Section 4.1.1.  

 

4.1.4 Case Study on Chain-End Scission 

 

To validate the performance of the proposed solution approach, chain-end scission of 

a polymer with a broad distribution and a large N was studied. Studies of such a system 

are important particularly for the depolymerization of polymers, e.g. the enzymatic 

hydrolysis of starch where glucoamylase removes successive glucose units from the non-

reducing end (Breuninger et al., 2009). Here, the polymer was assumed to be starch with 

the monomer glucose (molecular weight = 180 g/mol) and the subsequent oligomers 
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having molecular weights of 162DP+18 g/mol. As the main objective here is to elucidate 

the efficacy of the FP technique in solving chain-end scission rather than to very 

realistically mimic the intricate biochemical reactions, only linear polymers with simple 

scission kinetics were considered in this illustrative example. As had been adopted in the 

work of Chang et al. (2002), the initial molar concentration density was assumed to follow 

the Schulz-Zimm distribution (Dole, 1972), as given in Eqs. (3.1) - (3.3) in Section 3.3.1. 

The number-average DP ( nM ) and the weight-average DP ( wM ) required in these 

equations can be obtained as: 

( )
( )

( )
0 1

10

,1st moment

0th moment ,

i ii
n

ii

vc v t dv x C
M t

Cc v t dv

∞ ∞

=
∞ ∞

=

= = =∫ ∑
∑∫

  (4.29) 

( )
( )

( )

2 2

0 1

10

,2nd moment

1st moment ,

i ii
w

i ii

v c v t dv x C
M t

x Cvc v t dv

∞ ∞

=
∞ ∞

=

= = =∫ ∑
∑∫

  (4.30) 

In this study, values of the parameters for sweet potato starch (Breuninger et al., 2009) 

were used, as in Table 4.1. To calculate the initial conditions ( ( ) ( )1

0 ,0
i

i

v

i
v

C c v dv
+

= ∫ ) 

which involve integration along the v axis, meshing had to be done on the v axis for both 

the exact and the FP solutions. For this purpose, to obtain the limits of the integral for the 

exact formulation, let y be the discrete DPs for the exact formulation: y1 = 1, y2 = 2, …, 

yN−1 = N−1, yN = N. Following this, v1 = y1 and vN+1 = yN, with those in between calculated 

by [ ]1 2i i iv y y −= + . The FP formulation adopts the same procedure for computing the 

limits of the integral, with v1 = x1 = 1, vp+q+1 = xp+q = N and [ ]1 2i i iv x x −= + . Geometric 

meshing was used in the continuous region for the FP formulation, i.e. 1,p p qx x+ +   .  
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Table 4.1: Values of parameters (Breuninger et al., 2009) used in the case study on chain-

end scission  

Parameter Value Units 

Maximum DP (N) 22496 - 

Initial mass concentration of the polymer (mS(0)) 10 g/L 

Number-average DP ( nM ) 4100 - 

Weight-average DP ( wM ) 5430 - 

 

In the simulations presented in this section, the DP-dependent rate kernel (S. Kumar 

& Ramkrishna, 1996a; Staggs, 2004), i.e. ( ) pk v k vγ γ= , was adopted in both the exact and 

the FP solution, where 1 80pk γ = . The arbitrary value was chosen mainly to have a total 

evolution time of around 1000 time units. In the results that follow, this time span was 

normalized against the time required for 99% monomer production (t99%), i.e. the 

dimensionless time θ = t/t99%. (cf. Section 3.3.3) The total number of equations for the FP 

solution was p+q whereas for the exact solution, N equations were solved. In the FP 

solution, values of p and q are the remaining degrees of freedom. Values of p and q were 

chosen to ensure that the smallest gap in the continuous region exceeds vm according to 

Eq. (4.16). Unless mentioned otherwise, to demonstrate the efficacy of the solution 

approach, values of [p, q] = [100, 500] which totalled less than 3% of the N equations 

used in the exact solution were chosen below. Integration of the ODEs for both the exact 

and the FP formulation in Figures 4.2 – 4.7 was done using the ‘ode45’ subroutine in 

MATLAB® R2009b on the workstation A (cf. Section 3.1 for the specifications of the 

workstation). Example codes for the simulation of chain-end scission using the FP and 

the exact solution are given in Sections A.2 – A.3 of Appendix A. 
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Figure 4.2: Transient of the mass concentration of monomer (glucose) using the exact 

and fixed pivot (FP) solutions for chain-end scission. Here [p, q] = [100, 500], r = 1.0109 

and mS(0) = 10 g/L. The dimensionless time is normalized against the time required for 

99% monomer production. The error in the initial mass due to discretization [ , cf. Eq. 

(3.9)] is 2.61×10−4mS(0). The case of [p, q] = [10, 30] with r = 1.3007 was given as a 

reference to coarsely resolved mesh. 
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total number of pivots can be rationalized because the monomer equation is a mere 

collection of all the breakage terms from the larger polymers.  

 

Figure 4.3 shows the concentration profiles of the DP2 – DP7 oligomers while Figure 

4.4 shows the temporal evolution of the molar concentration density at different 

dimensionless times. The results showed that the transients of the mass concentration of 

oligomers were predicted satisfactorily with reference to the exact solutions, with εg = 

3.9×10−6 (for DP2) and εg = 6.7×10−6 (for DP7) respectively. Since the un-normalized 

concentrations of these oligomers were of ~O(10−3) to ~O(10−4), εg which was of ~O(10−6) 

is satisfactory. The availability of the results in Figure 4.3 complements experimental 

studies because the concentrations of these compounds could be analyzed (Paolucci-

Jeanjean, Belleville, Rios, & Zakhia, 2000; Paolucci-Jeanjean, Belleville, Zakhia, & Rios, 

2000; Steverson, Korus, Admassu, & Heimsch, 1984). Similar performance was also 

observed in the molar concentration density, where even at a dimensionless time beyond 

99% of monomer production (θ > 1), good predictions were observed. 
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Figure 4.3: Transients of the normalized mass concentration of oligomers using the exact 

and the fixed pivot (FP) solutions for chain-end scission. The highest peak corresponds 

to the DP7 oligomer, followed by the DP6 – DP2 oligomers in the order of decreasing 

peak heights. Here [p, q] = [100, 500], r = 1.0109, mS(0) = 10 g/L, and the error in the 

initial mass due to discretization ( ) is 2.61×10−4mS(0). The dimensionless time is 

normalized against the time required for 99% monomer production. 
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Figure 4.4: Transients of the molar concentration density using the exact and the fixed 

pivot (FP) solutions for chain-end scission. The dimensionless time (θ) is normalized 

against the time required for 99% monomer production. Here [p, q] = [100, 500] and r = 

1.0109. The exact solutions fall on the FP solutions for DP = 1.  
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which can be computed from the moments of the polymer distribution as follows: 

( ) ( )
( )

PD w

n

M t
t

M t
=    (4.31) 

Degree of Polymerization

1.0e+0 1.0e+1 1.0e+2 1.0e+3 1.0e+4

M
o

la
r 

C
o

n
ce

n
tr

a
ti

o
n

 

D
e

n
si

ty
 (
µ

m
o

l 
L

-1
 D

P
-1

)

0.0

1.0e-2

2.0e-2

2.0e+4

4.0e+4

6.0e+4

Exact

FP (θ = 0.407)

FP (θ = 0.278)

FP (θ = 0.136)

FP (θ = 0)

Degree of Polymerization

1.0e+0 1.0e+1 1.0e+2 1.0e+3 1.0e+4

M
o

la
r 

C
o

n
ce

n
tr

a
ti

o
n

 

D
e

n
si

ty
 (
µ

m
o

l 
L

-1
 D

P
-1

)

0.0

1.0e+0

2.0e+0

3.0e+0

6.2e+4

6.3e+4

Exact

FP (θ = 1.39)

FP (θ = 1.49)

FP (θ = 1.63)

FP (θ = 1.90)

DP=2

DP=2



60 
 

Figures 4.5 – 4.7 show the evolution of nM , wM  and PD respectively using [p, q] = [100, 

500]. As the FP technique was derived based on the principle of conserving moments, its 

capability in predicting moment-related quantities was also assessed at a very coarse 

mesh of [p, q] = [10, 30]. From the results, the prediction of nM  was fairly accurate even 

at a very coarse mesh. Such a remarkable accuracy in predicting nM  is not surprising, 

considering that it is computed solely from the zeroth and the first moments of the 

distribution, of which clearly the FP technique is capable of conserving. The prediction 

accuracy for wM , however, was more sensitive to the resolution of the mesh, with εg ~ 

O(10–1) at [p, q] = [10, 30]. As the mesh was refined further, εg ~ O(10–3) at [p, q] = [100, 

500]. This observation is understandable because the computation of wM  requires the 

second moment of the distribution, which was not chosen when deriving Eq. (4.13). The 

prediction accuracy for PD followed the same trend as that for wM , as the computation 

of the PD involves the use of the zeroth, the first, and the second moments of the polymer 

distribution. For PD, εg is ~O(10−3) at [p, q] = [100, 500] and εg is ~O(10−1) at [p, q] = 

[10, 30]. Nonetheless, unless at the extreme case of [p, q] = [10, 30] which totalled less 

than 0.2% of N, the ability to predict quantities requiring the second moment using merely 

less than 3% of N at [p, q] = [100, 500] to a good degree of accuracy is remarkable 

considering that the formulation conserves only the zeroth and the first moments. 
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Figure 4.5: Transient of the number-average DP using the exact and the fixed pivot (FP) 

solutions for chain-end scission. Here, r = 1.0109 for [p, q] = [100, 500]. The case of [p, 

q] = [10, 30] with r = 1.3007 was given as a reference to coarsely resolved mesh. The 

dimensionless time is normalized against the time required for 99% monomer production. 
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Figure 4.6: Transient of the weight-average DP using the exact and the fixed pivot (FP) 

solutions for chain-end scission. Here, r = 1.0109 for [p, q] = [100, 500]. The case of [p, 

q] = [10, 30] with r = 1.3007 was given as a reference to coarsely resolved mesh. The 

dimensionless time is normalized against the time required for 99% monomer production. 
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Figure 4.7: Transient of the polydispersity index using the exact and the fixed pivot (FP) 

solutions for chain-end scission. Here [p, q] = [100, 500] and r = 1.0109. The case of [p, 

q] = [10, 30] with r = 1.3007 was given as a reference to coarsely resolved mesh. The 

dimensionless time is normalized against the time required for 99% monomer production. 
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require a corresponding drastic reduction in the value of q to fulfil the constraint, and a 

consequent loss in fidelity in capturing the evolution of the continuous region. For 

approximately p ~ O(102), such loss of accuracy was no longer an issue. The 

computational time for the FP and the exact solutions achieved using workstation B (cf. 

Section 3.1 for the specifications of the workstation) were 

( ) ( )
1.9633.080 10FPt s p q = × +   and ( )

1.9631.403 10Exactt s N = ×    respectively for the 

range of DP studied. Consolidating this information, Figure 4.8 shows the fraction of 

computation time required by the FP solution as a function of (p+q)/N. A power law 

expression of ( )
1.96

2.195FP Exactt t p q N= × +    was obtained. The scatter was mainly 

due to variability clocked by repeated runs of the FP solutions, all of which completed 

within seconds or less. It is noteworthy that even at the largest p+q tested, the 

computational time required by the FP technique was still below 1% of that required by 

the exact simulation.  
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Figure 4.8: Fraction of time required to produce the fixed pivot solution vs. the fraction 

of pivots used. Here, tFP is the time required to obtain the fixed pivot solution, tExact is the 

time required to obtain the exact solution. 
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merely 0.02 % (≈ 9.4 s) of the duration (≈ 16 hrs) required by the exact case. Thus, the 

benefits of the FP technique are evident when solving large problems.   

 

 

Figure 4.9: Effect of increasing the size of the exact problem according to N = k × 22496 

(k = 1.0, 1.5, 2.0, 2.5) while retaining the initial polydispersity index at 1.32 as well as 

using [p, q] = [100, 500] for the fixed pivot (FP) solution. The geometric ratios employed 

were r = 1.0109, 1.0117, 1.0123, and 1.0128 in the order of increasing k. The molar 

concentration density is shown for the dimensionless time, θ = 1.08. Here, mS(0) = 10 g/L 

and the errors in the initial mass due to discretization ( S
ε ) were 2.6×10−4mS(0), 

1.7×10−4mS(0), 1.2×10−4mS(0), and 0.95×10−4mS(0)  in the increasing order of k. 
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Figure 4.10: Performance of the fixed pivot (FP) solution in solving a relatively large 

chain-end scission problem, i.e. N = 224,960, by using < 1% of the number of equations 

employed by the exact solution. Here, the initial polydispersity index was 1.32, [p, q] = 

[256, 1744], r = 1.0039, mS(0) = 100 g/L and the error in the initial mass due to 

discretization ( S
ε ) was 0.26×10−4mS(0). The molar concentration density is shown for the 

dimensionless time, θ = 1.08 when slightly more than 99% of the monomers had been 

formed.  Here tFP and tExact are respectively the time required to produce the FP and the 

exact solutions. 
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In general, if geometric meshing is used, 1 1

1 2 1 2

i i i i

i i i i

x x v v
r

x x v v

− −

− − − −

− −
= =

− −
. Using this 

relationship and rewriting Eq. (4.32) in terms of ci (the average molar concentration 

density) as shown below, a more compact expression results in Eq. (4.34): 

( ) ( )
( )( ) ( ) ( )

( ) ( ) ( )( )
( ) ( )

( ) ( ) ( )

1 1 2 1 1
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1 1 1 1
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k c t r v v k c t v v
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x x r x x
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x x

γ γ
+ + + + +

+
+ −

γ γ
+ + + +

+ +

γ γ
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+
+

 − −       − = −     − −  

 − −       = − 
− −  

 − 
= −  

−  

  (4.33) 

( ) ( ) ( )1 1

1

i i i i i

m

i i

dc t k c t k c t
rv

dt x x

γ γ
+ +

+

 −
∴ =  

− 
   (4.34) 

Four observations can be gained from Eq. (4.34). First, if r = vm = 1, giving an arithmetic 

series with xi+1 – xi = 1, the equation reduces as required to the exact solution, i.e. 

( ) ( ) ( )1 1i i i i idc t dt k c t k c tγ γ
+ += − . In the common case with vm = 1, the departure of the 

value of r from unity could then be interpreted as the extent of deviation from the exact 

formulation. Therefore, unlike other forms of depolymerization, e.g. continuous random 

scission, where values of r as large as 2 – 3 had been used (S. Kumar & Ramkrishna, 

1996a), the same luxury cannot be afforded by the kernel of the chain-end scission. 

Fortunately, values of 
1

1
1

q
p q pr x x −
+ + =    being greater and close to 1 are frequently 

encountered because  is usually large. For instance, r = 1.0109 for the results 

presented in Figures. 4.2 – 4.7 for [p, q] = [100, 500]. 

 

Second, under a specific form of discretization, Eq. (4.34) corroborates the 

approximate continuous model for chain-end scission using the first order Taylor series 

expansion (Kostoglou, 2000): 

1q −
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( ) ( ) ( )
,

,m

c v t
v k v c v t

t v

γ∂ ∂
 =  ∂ ∂

   (4.35) 

Approximating Eq. (4.35) by the finite forward difference method and employing a 

change of variable from v to x via [ ]1 2i i iv x x −= +  as shown in Eq. (4.36) yields Eq. 

(4.37): 
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  (4.36) 
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i i i i i

m

i i
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γ γ
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If r = 1, i.e. arithmetic meshing, Eq. (4.34) and Eq. (4.37) coincide. In other words, 

although derived from a different standpoint, the FP equations for chain-end scission can 

be solved with the same performance as that for Eq. (4.35) as discretized above.  

 

The third observation pertains to the limitation of the FP technique in modelling chain-

end scission. The fact that Eq. (4.34) is a two-point finite difference approximation to the 

slope poses accuracy problems when dealing with polymers which exhibit narrow 

distributions. To illustrate, the FP technique was implemented on the same example 

problem used in Stickel and Griggs (2012). In the example, chain-end scission was 

modelled using the continuous distribution kinetics on the initial distribution given by Eq. 

(3.4). The values of cin, ω and κ were given as 100, 400 and 1.5 respectively. Integration 

of the ODEs for both th exact and the FP formulation was similarly done using the ‘ode45’ 

subroutine on the workstation A and the example codes for simulating the FP and exact 

solutions are given in Sections A.4 – A.5 of Appendix A. Figure 4.11 shows the results 
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of the simulation. In this case, arithmetic meshing in the continuous region ensures more 

closely spaced pivots to capture the sharp changes in the molecular distribution. A 

common difference (or distance between pivots) of 1.5 was used in the continuous region, 

resulting in [p, q] = [10, 545]. With such a fine mesh, i.e. ≈ 67% of the N = 827 equations 

used for the exact case, the results showed that as time progressed, over-predictions were 

observed near the base of the peak whereas under-predictions were observed near the 

peak.  

 

 

Figure 4.11: Temporal evolution of the molar concentration density using the fixed pivot 

(FP) and the exact solutions for chain-end scission. The highest peak corresponds to t = 

0 time units, followed by t = 144, 300, 456, and 600 time units in the order of decreasing 

peak heights. Here, [p, q] = [10, 545] where p and q are the number of pivots for the 

discrete and continuous region respectively. 
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Such observations can be explained using the illustrations in Figure 4.12. For 

simplicity, ( ) 1k vγ =  was employed following Stickel and Griggs (2012). For a non-

constant ( )k vγ  (not shown), the same trend was also observed where over-predictions 

occurred near the base of the peak and under-predictions occurred near the peak. Figure 

4.12a represents the left part of the peak where the slope of the molar concentration 

density is increasing (
2

2
0

d c

dx
> ). Let the quantity 1

1
1

i i
i i

i i

c c
c c

x x

+
+

+

−
= −

−
 (with 1 1

i i
x x+ − = ) 

represent the exact solution for idc

dt
 at a particular instance. With a coarser mesh, a finite 

difference formula spanning a larger range in x will be used to approximate idc

dt
 at xi. 

Had the molar concentration density increased linearly along the v axis, this exact solution 

would be retained at a coarser mesh as 
*

1 1
*

1 1

i i i i

i i i i

c c c c

x x x x

+ +

+ +

− −
=

− −
. However, because the molar 

concentration density increases instead, i.e. at *
1ix + , the corresponding molar 

concentration density is 1îc + , having 
*

1 1
* *

1 1

ˆ
i i i i

i i i i

c c c c

x x x x

+ +

+ +

− −
>

− −
 resulted in an over-prediction of 

dt

dc i  at xi over time. The opposite happens after the inflection point towards the peak, 

where the molar concentration density tapers off, i.e. 
2

2
0

d c

dx
<  (Figure 4.12b). In this case, 

*
1 1

* *
1 1

ˆ
i i i i

i i i i

c c c c

x x x x

+ +

+ +

− −
<

− −
, resulting in under-predictions. Similar interpretation extends to the 

right of the peak: before the inflection point in Figure 4.12c, 
*

1 1
* *

1 1

î i i i

i i i i

c c c c

x x x x

+ +

+ +

− −
>

− −
 

resulting in a more negative rate than the exact solution whereas after the inflection point 

in Figure 4.12d, 
*

1 1
* *

1 1

î i i i

i i i i

c c c c

x x x x

+ +

+ +

− −
<

− −
, resulting in a less negative rate compared to the 
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exact solution. In short, the FP solution will over-predict ci when 
2

2
0

d c

dx
> and under-

predict otherwise. The discrepancies are magnified chiefly by steep gradients. Mesh 

refinement improves the solution but then not much reduction in the number of equations 

can be gained. A more intelligent approach is having selective concentration of the mesh 

at regions with a steep distribution, as done in the moving pivot method (S. Kumar & 

Ramkrishna, 1996b) and its extension (Attarakih, Bart, & Faqir, 2003). However, at 

present evidence for this specific case is not available in the literature. Another alternative 

is the solution obtained by discretizing and solving the PDE given by Stickel and Griggs 

(2012) which was shown to attain a good degree of accuracy. Although not explicitly 

reported in their work, the discretization involving a second order derivative will require 

care in mesh size, time stepping and the choice of solvers to ensure numerical stability 

when dealing with such a steep distribution. Despite the inaccuracies in the concentration 

distributions, the FP technique with an arithmetic mesh (r = 1) was able to predict the 

transients of the zeroth and the first moments of the distribution with εg < 0.01 using only 

21 pivot points. In some cases moments are of greater interest than the complete 

distribution (Madras, Smith, et al., 1997; Oyerokun & Vaia, 2012; Rangarajan et al., 1998; 

Striegel, 2003). Thus, depending on the information required, users encountering a 

narrow initial polymer distribution may choose between these alternatives. Nevertheless, 

for solving chain-end scission problems involving broad distributions typical of natural 

polymers, the FP technique appeared to be very efficient. 
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Figure 4.12: Illustrating the limitation of the fixed pivot technique in modelling chain-

end scission for steep distributions. Here vm = 1, xi is the pivot for the i-th interval, and ci 

is the molar concentration density. The symbol *
1ic +  represents the linearly extrapolated 

concentration while 1îc +  represents the actual concentration at *
1ix + .  

 

4.1.6  Guidelines for Meshing 

 

Finally, based on the case study presented in Section 4.1.4, the following meshing 

guidelines are proposed for modelling chain-end scission with the FP technique, 

assuming that values of N and vm are typically known:  

(a) Choose p+q ~ O(10−2N).  Then choose the value of p such that the constraint of Eq. 

(4.16) is fulfilled. There is a lower limit for p below which q becomes too large, 

causing pivots to be spaced closer than vm. To facilitate this, Figure 4.13 can be 
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conveniently used to ensure that p ≥ pmin. For more advanced users, the MATLAB 

script file for calculating pmin is given in Section A.6 of Appendix A. 

(b) For values of p+q and N not covered in Figure 4.13, first choose p = 50 ~ 100 and 

calculate q using Eq. (4.16). If the resulting p+q ~ O(10−2N), proceed to solve the 

system of differential equations. Otherwise, select a different value of p and repeat 

the procedure until the desired p+q is found.  

 

The meshing guidelines above are to ensure that the continuous region is sufficiently 

resolved, while at the same time the discrete region is sufficiently wide to meet the 

requirements of the application, e.g. to enable comparison with experimental 

measurement of oligomer concentrations. For chain-end scission, typically resolving the 

continuous region is the deciding factor. The resolution of the discrete region becomes 

important only when random scission is involved, as will be shown later in Section 4.3.  
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Figure 4.13: Minimum value of p (pmin) at a selected value of p+q for a given N (solid 

line), with vm = 1. The dashed lines correspond to (p+q)/N. 

 

4.2  Modelling Simultaneous Random and Chain-End Scissions 

 

As alluded to in the literature survey (Section 2.2.1), the FP solution for PBEs with the 

uniform random scission kernel using a discrete-continuous split of the DP domain had 

been attempted (S. Kumar & Ramkrishna, 1996a). However, as the FP framework for 
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chain-end scission had not been fully established prior to this, modelling of simultaneous 

random and chain-end scissions within a unified FP framework had not been attempted. 

Establishment of such a framework is important in working towards the ultimate goal of 

predicting simultaneous random and chain-end scissions for enzymatic depolymerization. 

 

4.2.1 Fully Discrete (Exact) Solution for Simultaneous Random and Chain-End 

Scissions 

 

Referring to Eqs. (2.4) - (2.5) of Section 2.2.1, the fully discrete PBE for random 

scission with a uniform scission kernel and first order kinetics can be compactly rewritten 

in the following form: 

Pure random scission: 

( ) ( )1

2

2
2,3, ,

1

N

j j

j

dC t
k C t i N

dt j

α

=

 
= = − 
∑ …   (4.38) 

( ) ( ) ( )
1

2
2,3, , 1

1

N
i

j j i i

j i

dC t
k C t k C t i N

dt j

α α

= +

 
= − = − − 
∑ …   (4.39) 

( ) ( )N

N N

dC t
k C t

dt

α= −    (4.40) 

For ease of reading, the equations for chain-end scission are reproduced below: 

Pure chain-end scission: 

( ) ( ) ( )1
2 2

3

2
N

j j

j

dC t
k C t k C t

dt

γ γ

=

= +∑    (4.41) 

( ) ( ) ( )1 1 2,3, , 1i

i i i i

dC t
k C t k C t i N

dt

γ γ
+ += − = −…   (4.42) 

( ) ( )N

N N

dC t
k C t

dt

γ= −    (4.43) 
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As opposed to the equations for chain-end scission, where only polymers with DP = i+1 

contribute to the birth term of DP = i, for random scission the birth term of DP = i is 

essentially a recipient of all breakages occurring from DP = i+1 and beyond.  

 

Having now established the fully discrete solution for both chain-end and random 

scissions, the fully discrete solution for simultaneously occurring random and chain-end 

scissions is given simply as:  

Simultaneous random and chain-end scissions: 

( ) ( ) ( ) ( )1
2 2

3 2

2
2 2,3, ,

1

N N

j j j j

j j

dC t
k C t k C t k C t i N

dt j

γ γ α

= =

 
= + + = − 

∑ ∑ …   (4.44) 

( ) ( ) ( ) ( ) ( )1 1
1

2
2,3, , 1

1

N
i

i i j j i i i i

j i

dC t
k C t k C t k C t k C t i N

dt j

γ α γ α
+ +

= +

 
= + − − = − − 

∑ …   (4.45) 

( ) ( ) ( )N

N N N N

dC t
k C t k C t

dt

γ α= − −    (4.46) 

The integration of Eqs. (4.44) - (4.46) by using commercial ODE solvers intended for 

general usage is inefficient at large values of N. However, as these equations are the 

golden standard for solving simultaneous random and chain-end scissions, the ability to 

solve them within a reasonable amount of time is important. This is dealt with in the next 

section. 

 

4.2.2 Computing the Exact Solution for the Purpose of Validation 

 

In general, Eqs. (4.44) - (4.46) form a linear system of ODEs which can be written in 

the following form: 

( ) ( )
d t

t
dt

=
C

ZC    (4.47) 



78 
 

where [ ]T
1 2 3 NC C C C= ⋯C  and Z is the upper triangular coefficient matrix 

given by: 

( )

( )

( )

( )

2 2 3 3 4 4 5 5 1 1

2 2 3 3 4 5 1

3 3 4 4 5

4 4 5 5

5 5 1

1 1

2 2 2 2
0 2 2

3 4 2 1
2 2 2 2

0
3 4 2 1

2 2

3 4
2

4
2

2
2 2

2 1

N N N N

N N

N

N N N

k k k k k k k k k k k k
N N

k k k k k k k k
N N

k k k k k

k k k k
=

k k k
N

k k k
N N

γ α γ α γ α γ α γ α γ α
− −

γ α γ α α α α α
−

γ α γ α α

γ α γ α

γ α α
−

γ α α
− −

+ + + + + +
− −

− + +
− −

− + +

− + +

− +
−

+
− −

0

⋯

⋯

⋮ ⋯ ⋮ ⋮

⋮ ⋱ ⋮ ⋮

⋮ ⋱ ⋮

⋮ ⋱

Z

====

( )

( )
1 1

2

1

0 0 0

N N N N

N N

k k k k
N

k k

γ α γ α
− −

γ α

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 − + + −
 

− +  

⋮

⋯ ⋯ ⋯ ⋯

  (4.48) 

 

Compared to the case of pure chain-end scission, i.e. by removing all the terms with 

the superscript ‘α’ in Eq. (4.48), the coefficient matrix Z involving random scission 

contains more non-zero entries. Particularly when the value of N is large, e.g. ~ O(104) 

and beyond, the integration of Eqs. (4.44) - (4.46) by commercial integrators using the 

default settings is inefficient. Although commercial implicit solvers (e.g. the ‘ode15s’ 

subroutine in MATLAB® 2009b) may have the option of receiving the Jacobian matrix 

(which equals Z in this case) as an input to speed up computation, in general a system 

involving random scission will require more computational time than a corresponding 

system for chain-end scission because more equations are solved by the solver at each 

integration step. In addition, as PBEs with a random scission kernel may exhibit solutions 

with distinct time scales (e.g. CN may increase and disappear rapidly at the onset of 

simulation but the accumulation of C5 may only be significant towards the end of the 

simulation etc.) resulting in a very stiff system of ODEs, the use of explicit solvers (e.g. 

the ‘ode45’ subroutine in MATLAB® 2009b) would be inefficient. Because the validation 



79 
 

of the FP solution (presented later in Section 4.2.3) with the exact solution is a critical 

step to enable confident usage of the FP technique, here the linear structure of Eqs. (4.44) 

- (4.46) and the fact that Z is upper triangular are exploited to enable the system of ODEs 

to be solved more efficiently using a generic commercial ODE solver on a typical 

workstation.  

 

To begin, the basic idea here is to break the system of ODEs into smaller pieces which 

are more tractable by the ODE solver. This can be done by introducing partitions into the 

system of ODEs as shown here: 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

1,1 1,2 1, 1 1,1 1

2,2 2,3 2, 1 2,2 2

2, 2 2, 1 2,

1, 1 1,1 1

,

w w

w w

w w w w w w

w w w ww w

w w
w w

t t

t t

d

dt

t t

t t

−

−

− − − − −

− − −− −

    
    
    
    
    =     
    
    
    
        

0

⋯ ⋯

⋯

⋱ ⋮ ⋮⋮ ⋮

⋮ ⋮

G F F FC C

G F F FC C

G F F

G FC C

C CG

====

(4.49) 

where ( )
( ) ( ) ( )

T

1 1 1 2 1

i

S i S i S i S
C C C− + − + − +
   =   ⋯C  and i = 1, 2, …, w. Here, w is an 

integer which represents the total number of partitions for the molar concentration vector 

which can be obtained as w = N/S with S being the size of the individual partition. The 

constant square matrices ( ),i i
G  as well as ( ),i j

F  ( 1,2, ,i w= … , 1, 2, ,j i i w= + + … ) are 

given as: 

( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( )

1 1, 1 1 1 1, 1 2 1 1, 1 3 1 1, 1 1 1 1, 1

1 2, 1 2 1 2, 1 3 1 2, 1 1 1 2, 1

1 3, 1 3 1 3, 1 1 1 3, 1,

1 1,

S i S i S i S i S i S i S i S i S S i S i S

S i S i S i S i S i S i S S i S i S

S i S i S i S i S S i S i Si i

S i S S i

Z Z Z Z Z

Z Z Z Z

Z Z Z

Z

− + − + − + − + − + − + − + − + − − + − +

− + − + − + − + − + − + − − + − +

− + − + − + − + − − + − +

− + − −

=

0

⋯

⋯

⋯

⋱ ⋮ ⋮
G

==== ( )

( ) ( )

1 1

1 , 1

S

S i S S i S
Z

+ −

− + − +

 
 
 
 
 
 
 
 
 
  

⋮

  

  (4.50) 
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( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 1, 1 1 1 1, 1 2 1 1, 1

1 2, 1 1 1 2, 1 2 1 2, 1,

1 , 1 1 1 , 1 2 1 , 1

S i S j S i S j S i S j S

S i S j S i S j S i S j Si j

S i S S j S i S S j S i S S j S

Z Z Z

Z Z Z

Z Z Z

− + − + − + − + − + − +

− + − + − + − + − + − +

− + − + − + − + − + − +

 
 
 

=  
 
 
 

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

F  (4.51) 

As the square matrices ( ),i i
G  and ( ),i j

F  are stationary in time, it follows that the molar 

concentration vector can be computed iteratively using backward substitution. Beginning 

at i = w, the following ODE can be readily integrated by numerical solvers: 

( ) ( ) ( ) ( ) ( ),w w w wd
t t

dt
=C G C    (4.52) 

Because of the nature of numerical ODE solvers, solution of Eq. (4.52) yields discrete 

data points. For the sake of discussion, the resulting solution is referred to as ( ) ( )w

k
tC  (k 

= 0, 1, 2, …) where tk is the time at which the solution is evaluated and the step size taken 

by the solver is 1k kt t t+∆ = − . Having obtained 
( ) ( )w

ktC , it is retained for the next 

calculation loop to compute 
( ) ( )1w

kt
−

C . At i = w – 1: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1, 1 1 1,w w w w w w wd
t t t

dt

− − − − −= +C G C F C   (4.53) 

Now that 
( ) ( )w

ktC  is readily available, when dealing with Eq. (4.53), the ODE solver 

need not solve for 
( ) ( )w

ktC  again, but that the second term on the RHS, i.e. 

( ) ( ) ( )1,w w w
t

−
F C , can be approximated by linearly interpolating the 

( ) ( )w

ktC  retained from 

the previous calculation loop. Similar procedure is repeated for the computation of 

( ) ( ) ( ) ( ) ( ) ( )2 3 1, , ,w w

k k kt t t
− −

…C C C . In short, the following ODE is numerically solved in 

an iterative fashion for i = w to 1: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), ,

1

w
i i i i i j j

j i

d
t t t

dt = +

= + ∑C G C F C    (4.54) 
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where 
( ) ( )j

tC  is approximated by interpolating the 
( ) ( )j

ktC  brought forward from the 

previous computation loops. In contrast to solving the full sized system where the ODE 

solver is forced to take the same number of integration steps for DP = 1 to DP = N, the 

procedure described here allows every smaller problem to be integrated with different 

number of time steps. As the stiffness of the smaller system of ODEs is much lesser than 

that of the full sized system of ODEs (due to the grouping of polymers which evolve at 

similar time scales), allowing each smaller system to be solved at different number of 

time steps is much more efficient. To summarize, the procedure is given graphically in 

Figure 4.14. 

 

 

Figure 4.14: Illustrating the iterative procedure for obtaining 
( ) ( )i

ktC , i = 1 to w. 
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A numerical demonstration of the reasons for the efficacy of the proposed method will 

be given in a case study in Section 4.2.4.  

 

4.2.3 Fixed Pivot Discretization for Simultaneous Random and Chain-End 

Scissions 

 

To allow the prediction of simultaneously occurring random and chain-end scissions 

using the FP technique, the key is to superimpose the equations for random and chain-

end scissions on the same mesh, i.e. by partitioning the DP axis into p pivot points in the 

discrete region and q pivot points in the continuous region with their values being 

constrained by Eq. (4.16). As derived in detail in Section B.1 of Appendix B, for pure 

random scission [Eqs. (4.38) - (4.40)], the FP approximation for the fully discrete 

solution with such a mesh is as follows: 

Pure random Scission: 

Discrete region: 

( ) ( )1

2

2

1

p q

j j

j j

dC t
k C t

dt x

+
α

=

 
=  

−  
∑    (4.55) 

( ) ( ) ( )
1

2
2,3, , 1

1

p q
i

j j i i

j i j

dC t
k C t k C t i p

dt x

+
α α

= +

 
= − = − 

−  
∑ …   (4.56) 

Discrete-continuous boundary: 

( )
( ) ( )

1

2

1

p q
p

j j p p

j p j

dC t
k C t k C t

dt x

+
α α

= +

 
= − 

−  
∑    (4.57) 

( )
( ) ( )1 2 1

1 1
2 1

p q
p p p

j j p p

j p j

dC t x x
k C t k C t

dt x

+
+ + +α α

+ +
= +

 −
= − 

−  
∑   (4.58) 
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Continuous region: 

( ) ( ) ( ) ( )1 1 1

11 1 1

                                                                                   2, 3, , 1

p q
i i i i i i i

i i j j i i

j ii j j

dC t x x x x x x
k C t k C t k C t

dt x x x

i p p p q

+
α α α− + −

= +

  − − −
= + + −  − − −    

= + + + −

∑

…

  (4.59) 

( )
( ) ( )1

1
p q p q p q

p q p q p q p q

p q

dC t x x
k C t k C t

dt x

+ + + − α α
+ + + +

+

 −
= − 

−  
  (4.60) 

 

Having established the above, it follows that the FP approximation for the 

simultaneous random and chain-end scissions is the result of superimposing Eqs. (4.23) 

- (4.28) (for chain-end scission) and Eqs. (4.55) - (4.60) (for random scission), as shown 

below: 

Simultaneous random and chain-end scissions: 

Discrete region: 

( ) ( ) ( ) ( )1
2 2

3 2

2
2

1

p q p q

j j j j

j j j

dC t
k C t k C t k C t

dt x

+ +
γ γ α

= =

 
= + +  

−  
∑ ∑   (4.61) 

( ) ( ) ( ) ( ) ( )1 1
1

2
2,3, , 1

1

p q
i

i i j j i i i i

j i j

dC t
k C t k C t k C t k C t i p

dt x

+
γ α γ α
+ +

= +

 
= + − − = − 

−  
∑ …   (4.62) 

Discrete-continuous boundary: 

( )
( ) ( ) ( ) ( )1 1

1

2

1

p q
p

p p j j p p p p

j p j

dC t
k C t k C t k C t k C t

dt x

+
γ α γ α
+ +

= +

 
= + − − 

−  
∑   (4.63) 

( )
( ) ( )

( ) ( )

1 2 1
2 2

22 1

1 1 1 1

1

p q
p p pm

p p j j

j pp p j

p p p p

dC t x xv
k C t k C t

dt x x x

k C t k C t

+
+ + +γ α

+ +
= ++ +

γ α
+ + + +

   −
= +   

− −      

− −

∑
  (4.64) 
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Continuous region: 

( ) ( ) ( ) ( )

( ) ( ) ( )

1
1 1

1 1

1 1

1

1
1

            
1 1

                                               

i m m i i
i i i i i i

i i i i i

p q

i i i i
j j i i i i

j i j j

dC t v v x x
k C t k C t k C t

dt x x x x x

x x x x
k C t k C t k C t

x x

γ γ α−
+ +

+ −

+
α γ α+ −

= +

     −
= + − +     − − −     

 − −
+ + − − 

− −  
∑

                                    2, 3, , 1i p p p q= + + + −…

  (4.65) 

( )
( ) ( )

( ) ( )

1

1

1
1

p q p q p qm
p q p q p q p q

p q p q p q

p q p q p q p q

dC t x xv
k C t k C t

dt x x x

k C t k C t

+ + + −γ α
+ + + +

+ + − +

γ α
+ + + +

   −
= − +   

− −      

− −

  (4.66) 

As ultimately it is the desired outcome of this study to predict the enzymatic 

depolymerization phenomena involving random and chain-end scissions, the set of Eqs. 

(4.61) - (4.66) is the critical workhorse for the efficient solution of PBEs. Section 4.2.4 

will be devoted to validating the performance of the FP solution against the exact 

solutions given by Eqs. (4.44) – (4.46) in Section 4.2.1.  

 

4.2.4 Case Study on Simultaneously Occurring Random and Chain-End Scissions 

 

For the purpose of validation, the polymer system described in Section 4.1.4 for chain-

end scission was used here. Recalling briefly, the initial condition is specified by Eqs. 

(3.1) - (3.3), where N = 22496, mS(0) = 10 g/L, 4100nM = , and 5430wM = . Here, 

the DP-dependent rate kernel (S. Kumar & Ramkrishna, 1996a; Staggs, 2004) for chain-

end scission used previously (i.e. ( ) pk v k vγ γ= ) was retained. For random scission, the 

appropriate power law rate kernel is of the form of ( ) ( )1pk v k vα α= −  according to S. 

Kumar and Ramkrishna (1996a). As practiced previously, the values of pk γ  and pkα   were 

chosen arbitrarily as 1/80 and 1/200 respectively such that a total evolution time of around 

600 was achieved. Since the ultimate goal here is to validate the efficacy of the FP 

technique in solving simultaneous random and chain-end scissions, the optimal time 
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duration for solving the fully discrete PBEs via the procedure presented in Section 4.2.2 

is relatively unimportant as long as the exact solution can be obtained in a reasonable 

amount of time. For the case study described here, since the exact solution can be obtained 

in less than 10 minutes by dividing the molar concentration vector into w = 19 partitions 

with each partition having a size of S = 1184, these values were used in all the following 

simulations. From the previous results presented for chain-end scission, values of [p, q] 

= [100, 500] which totalled less than 3% of the N equations used in the exact solution 

were found to be adequate, and thus retained here. Because it was found during 

preliminary simulations that the use of ‘ode45’ sub-routine was relatively inefficient, the 

‘ode15s’ subroutine of MATLAB® 2009b was used here and all computations in this case 

study were done on workstation C. Example codes for the simulation of simultaneous 

random and chain-end scissions using the FP and the exact solution are given in Appendix 

C. 

 

Before examining the FP solution with the exact solution, the cause of the improved 

efficiency in solving the fully discrete PBEs is shown briefly. A useful indicator for the 

stiffness of a linear ODE system is the stiffness ratio (Aiken, 1985), defined as: 

( )
( )

max
Stiffness ratio 

min
i

i

=
λλλλ

λλλλ
   (4.67) 

where i
λλλλ  is the vector of eigenvalues for ( ),i i

G . The minimum value of the stiffness ratio 

is one and the stiffness of a system of ODEs increases with the increasing magnitude of 

the stiffness ratio. As ( )1,1
11 0G =  and consequently an eigenvalue of zero exists, the 

stiffness ratio for partition 1 was calculated by omitting the zero eigenvalue (otherwise 

stiffness ratio = ∞). Likewise, for the full sized system, the zero eigenvalue due to 11 0Z =  

was similarly omitted. Figure 4.15 shows the stiffness ratio for the i-th ODE system (i = 

1 to w) for a total number of partitions w = 19 and S = 1184. From the figure, the stiffness 
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ratio decreases as the value of i increases, i.e. the stiffness of the system of ODEs 

increases from that for describing ( )w
d dtC  to that for ( )1d dtC . By breaking the original 

system of ODEs into smaller sub-problems, the stiffness ratio for each individual problem 

(i ≥ 2) is at least three orders of magnitude smaller than the stiffness ratio for the full sized 

system of ODEs. Even at i = 1, the stiffness ratio is still lesser than a tenth of that for the 

full sized system. On closer examination, most of the stiffness ratio are between the 

values of 1 to 2, which implies that the values of the maximum and the minimum 

eigenvalues are not far apart. In this case where there are no degenerate eigenvalues, i.e. 

the diagonal elements of ( ),i i
G  are all dissimilar, the close distance between the maximum 

and the minimum eigenvalues suggests that each smaller sub-system evolves at a similar 

time scale. As opposed to solving the full sized system of N = 22946 ODEs, which is 

infeasible even for a single run, the divide-and-conquer method proposed here took only 

10 minutes to solve the case study.  
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Figure 4.15: Stiffness ratio (= ( ) ( )max mini iλ λλ λλ λλ λ ) evaluated from  i = 1 to w, where λi 

is the vector of eigenvalues for ( ),i i
G , w is the total number of partitions for the molar 

concentration vector, and S is the size of each partitioned molar concentration vector.  

 

As was done previously for chain-end scission, it is a good practice to always verify 

that the conservation of mass is obeyed via the monomer equation. Figure 4.16 shows the 

transient for the mass concentration of monomer glucose for the case of simultaneous 

random and chain-end scissions using the exact and the FP solutions. From the figure, a 

final mass concentration of glucose = 1.11mS(0) was observed for both solutions, 

indicating that mass was indeed conserved. Not only that, the FP solution also correctly 

predicted the transient of the monomer concentration prior to achieving steady state. Here, 

the error indicator εg [Eq. (3.8)] is ~O(10–3). Although the error accrued here is larger 

than that for pure chain-end scission, i.e. εg ~O(10–6) described previously, it is 

nonetheless still negligible compared to the order of magnitude of the monomer 

concentration. 
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Figure 4.16: Transient of the mass concentration of monomer (glucose) using the exact 

and fixed pivot (FP) solutions for simultaneous random and chain-end scissions. Here [p, 

q] = [100, 500], r = 1.0109 and mS(0) = 10 g/L. The dimensionless time is normalized 

against the time required for 99% monomer production and the error in the initial mass 

due to discretization [ , cf. Eq. (3.9)] is 2.61×10−4mS(0).  

 

The concentration profiles of the corresponding DP2 – DP7 oligomers are shown in 

Figure 4.17. The results show that the transients of the mass concentration of oligomers 

for simultaneous random and chain-end scissions were predicted well with reference to 

the exact solutions, with εg = 1.5×10–4 and 3.9×10–5 for DP2 and DP7 respectively. As 

opposed to pure chain-end scission where the concentrations of these oligomers do not 

build up significantly until the late phase of the reaction, in this case the co-existence of 

random scission resulted in the accumulation of these oligomers even at the onset of 

simulation. This relatively larger built-up of DP2 – DP7 oligomers, i.e. ~O(10–2) to 
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~O(10–1), is much larger than εg and therefore εg of ~O(10–5) to ~O(10–4) is relatively 

insignificant as far as the accuracy of the solution is concerned.  

 

 

Figure 4.17: Transients of the normalized mass concentration of oligomers using the 

exact and the fixed pivot (FP) solutions for simultaneous random and chain-end scissions. 

The highest peak corresponds to the DP2 oligomer, followed by the DP3 – DP7 oligomers 

in the order of decreasing peak heights. Here [p, q] = [100, 500], r = 1.0109, mS(0) = 10 

g/L, and the error in the initial mass due to discretization ( S
ε ) is 2.61×10−4mS(0). The 

dimensionless time is normalized against the time required for 99% monomer production. 

 

Figure 4.18 further shows the temporal evolution of the molar concentration density 

at different dimensionless times. Again, accurate predictions were obtained by the FP 

solution at both the early and the late phase of reactions. Particularly at θ > 1 where more 

than 99% monomer had been produced, the accuracy attained is remarkable. As 
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solution for random scission is a very challenging problem due to the discontinuous 

kernel (see Section B.1 of Appendix B) used in formulating the FP solution. This study 

stretches the limit of the FP technique by successfully simulating simultaneously 

occurring random and chain-end scissions to a good degree of accuracy. 

 

 

 

 

 



91 
 

 

Figure 4.18: Transients of the molar concentration density using the exact and the fixed 

pivot (FP) solutions for simultaneous random and chain-end scissions. The dimensionless 

time (θ) is normalized against the time required for 99% monomer production. Here [p, 

q] = [100, 500] and r = 1.0109. The exact solutions fall on the FP solutions for DP = 1.  

 

Although the results presented thus far are sufficient to demonstrate the efficacy of the 

FP technique in predicting simultaneous random and chain-end scissions and can be 

confidently employed for modelling the transient of various polymer species in the SSF 
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processes (which will be presented in the next chapter), the following results are 

presented for the sake of completeness. The FP and exact solutions for the temporal 

evolutions of the number-average DP ( nM , Eq. (4.29)), weight-average DP ( wM , Eq. 

(4.30)) and polydispersity index (PD, Eq. (4.31)) for simultaneous random and chain-end 

scissions are shown in Figures 4.19 – 4.21. From the figures, all these moment-related 

quantities were predicted accurately, with εg = 3.3×10–4 (for ), εg = 7.2×10–4 (for 

wM ), and εg = 3.1×10–4 (for PD). As had been elaborated previously for chain-end 

scission, the results obtained here are not surprising, as the FP technique had been known 

to be effective in conserving moments. 

 

 

Figure 4.19: Transient of the number-average DP using the exact and the fixed pivot (FP) 

solutions for simultaneous random and chain-end scissions. Here, r = 1.0109 for [p, q] = 

[100, 500]. The dimensionless time is normalized against the time required for 99% 

monomer production. 
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Figure 4.20: Transient of the weight-average DP using the exact and the fixed pivot (FP) 

solutions for simultaneous random and chain-end scissions. Here, r = 1.0109 for [p, q] = 

[100, 500]. The dimensionless time is normalized against the time required for 99% 

monomer production. 
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Figure 4.21: Transient of the polydispersity index using the exact and the fixed pivot (FP) 

solutions for simultaneous random and chain-end scissions. Here [p, q] = [100, 500] and 

r = 1.0109. The dimensionless time is normalized against the time required for 99% 

monomer production. 
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exact case. As random and chain-end scissions are the typically encountered enzymatic 

depolymerization phenomena, the FP implementation as established in this chapter, with 

its speed and accuracy in simulating both simultaneously, becomes a key tool for studying 

such systems. 

 

 

Figure 4.22: Performance of the fixed pivot (FP) solution in solving a relatively large 

simultaneous random and chain-end scissions problem, i.e. N = 224,960, by using < 1% 

of the number of equations employed by the exact solution. Here, the initial polydispersity 

index was 1.32, [p, q] = [256, 1744], r = 1.0039, mS(0) = 100 g/L and the error in the 

initial mass due to discretization ( ) was 0.26×10−4mS(0). The molar concentration 

density is shown for the dimensionless time, θ = 1.23 when more than 99% of the 

monomers had been formed. Here tFP and tExact are respectively the time required to 

produce the FP and the exact solutions. The exact solutions fall on the FP solutions for 

DP = 1.  
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4.3 Observations of the FP Method for Solving Random Scission 

 

In Section 4.1.5, the observations of the FP method in solving chain-end scission had 

been presented. Although Section 4.2 mainly concerns the solution of simultaneously 

occurring random and chain-end scissions, in order to observe the effect of having 

random scission as part of the problem formulation, the following discussion will be 

dedicated to studying only the random scission. From the FP equation for pure random 

scission [Eq. (4.59)], the rate of change in the concentration of the polymer at the i-th 

pivot can be re-written as follows: 

( ) ( ) ( )1 1 1

1

1

1 1 1

p q
i i i i i i

j j i i

j i j j i

dC t x x x x x
k C t k C t

dt x x x

+
α α+ − −

= +

   − − −
= + −   − − −    
∑   (4.68) 

As shown in Section B.2 of Appendix B, this equation can be simplified to the following 

form: 

( ) ( )
( )

( ) ( )
1 12

1
1 1

1 1

1

1 1

i pj p j pp q
pi

p j j i ii p
j i j p

r xdc t r r
x k c t k c t

dt x r x

− − +− − −+
+α α

+ − +
= + +

   −−
= −   

− −      
∑   (4.69) 

 

From Eq. (4.69), in the limit where r approaches that of an arithmetic mesh (with the 

pivots being spaced 1 unit apart), the equation should approximate the exact form. 

However, as the formulae of  was used in the formulation, the limit of r = 1 

(which was used in Section 4.1.5) which will result in the erroneous expression of 

‘ 1i ix x+ = ’ cannot be used here as this limit is applicable when only 1

1 2

i i

i i

x x
r

x x

−

− −

−
=

−
 is used. 

By using this ‘interval’ definition, r in such a case would be able to represent both 

geometric meshing (r > 1) as well as the exact meshing (r = 1). From Section B.2 of 

Appendix B, Eq. (4.68) cannot be simplified to Eq. (4.69) by invoking 1

1 2

i i

i i

x x
r

x x

−

− −

−
=

−
 

alone, but that the definition of  is also necessary. Since it is not possible here 

1i ix rx+ =

1i ix rx+ =
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to avoid using the conventional definition of r, i.e.  where r > 1, a new limit 

which approximates the exact solution is required. Since the distance between xp+2 – xp+1 

was established to be at least vm = 1 unit apart in Section 4.1.3, it follows that xp+2 – xp+1 

≥ vm, leading to the following inequality for r: 

1
1

1
r

p
≥ +

+
   (4.70) 

Thus, ( )1 1 1r p= + +  could serve as an approximation to arithmetic meshing. This can 

be validated by the following proof. If the new limit is capable of approximating the 

arithmetic mesh, substituting this r into 1
1

q

p q px r x−
+ +=  should yield p+q. Let 1r u= +  

where ( ) 1
1u p

−
= + , it follows that: 

( )

( ) ( )
( )

1
1

1 1
1

1

1

1 ( 1)

1 1 O

O

(   >> 1 and ignoring the 2 terms )

q

p q p

q

p

m

m

x r x

u u x p

q u u u

p q u

p q p m

−
+ +

− −
+

−

−

=

= + = +

 = + − + 

= + +

≈ + ≥

∵

∵

  (4.71) 

In the above, the binomial theorem was used to expand the term ( ) 1
1

q
u

−
+ . From the proof, 

the new limit for r approximates well to the arithmetic mesh at large values of p.  

 

Next, Eq. (4.69) can be re-written in the following manner: 

( ) ( ) ( ) ( ) ( )
1

p q
i

j j i i

j i

dc t
f r k c t g r k c t

dt

+
α α

= +

= −∑    (4.72) 

where f(r) and g(r) are defined as: 

( ) ( )
2

1
1

j p j p

j

r r
f r p

x

− − − −
= +  
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   (4.73) 

   (4.74) 

1i ix rx+ =

( )
( ) ( )
( ) ( )

1 1

1

1 1

1 1

i p

i p

r p
g r

r p

− − +

− +

+ −
=

+ −
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Expanding f(r) and g(r) around the limit of arithmetic mesh by re-writing 

( ) *1r u r= + +ε =  where ( ) 1
1u p

−
= +  and using the binomial theorem, the equations 

below can be obtained : 

( ) ( )

( ) ( ){ }
( ) ( ) [ ]( )
( )( ) [ ]( )

( ) [ ]( ){ }

*

1
2

1

1

1 1
1

1 O

1 1 2 O
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1

j p j p

j

m

m
j

m

j

f r f

u
u u

x

j p u u
u

x j p u u

u
u u

x

−
− − −

−

−

= ε

 
= + + ε − + + ε        −  

  + − + ε + + ε    
=    

−       − + − − + ε + + ε
  

 
= + ε + + ε 

−  

  (4.75) 
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 + − − + ε + + ε −
 =
 + − − + ε + + ε −
 

+ − − + ε + + ε
=

+ − − + ε + + ε

  (4.76) 

In the above, m ≥ 2. 

 

Finally, Eqs. (4.72) - (4.74) can be re-written in the following form by using the results 

of Eqs. (4.75) - (4.76): 

( ) ( ) ( ) ( ) ( )
1

p q
i

j j i i

j i

dc t
f k c t g k c t

dt

+
α α

= +

= ε − ε∑    (4.77) 

( ) ( ) [ ]( ){ } ( )
1

1
2 O ; 2; 1

1

m

j

u
f u u m u p

x

−
− 

ε = + ε + + ε ≥ = + 
−  

  (4.78) 
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( ) ( ) [ ]( )

( )
1 1

1

1 1

2 O
; 2; 1

1 O

m

m

p u i p u u u
g m u p

p u i p u u u

− −

−

− −

+ − − + ε + + ε
ε = ≥ = +

+ − − + ε + + ε
  (4.79) 
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Three observations could be gleaned from Eqs. (4.77) - (4.79) regarding the use of the 

FP technique in solving PBEs which involve random scission. First, when 0ε →  

(approaching the arithmetic mesh), and ignoring the higher order terms involving m ≥ 2 

because p >> 1, the equations simplify to: 

( ) ( ) ( )
1

2 2

1 1

N
i

j j i i

j i j

dc t i
k c t k c t

dt x i

α α

= +

  − = −   − −   
∑   (4.80) 

At large values of i, ( ) ( )2 1 1i i− − ≈  and thus Eq. (4.80) collapses to the exact solution 

for pure random scission. Therefore, the departure of r from that which approximates the 

arithmetic mesh could then be seen as the extent of deviation from the exact solution. 

Fortunately, the values of r resulting from the proposed meshing strategy in Section 4.1.3 

is always close to the limit of the arithmetic mesh because  in  is 

usually large. For instance, r = 1.0109 for the results presented in Figures. 4.16 – 4.21 for 

[p, q] = [100, 500] and the limit to arithmetic mesh is ( )1 1 1 1.0099r p= + + = .  

 

Second, at small values of i, the FP technique tends to under-estimate the death term, 

i.e. ( ) ( )2 1 1i i− − < , even when r approximates that of the arithmetic mesh. This is the 

inherent nature of the FP approximation for random scission, where the birth term tends 

to receive more than what the death term is giving out, resulting in an over-prediction in 

the final mass of the population. This over-prediction is more so evident when r departs 

from the limit of arithmetic mesh. As proven in Section B.3 of Appendix B, this is because 

( )g ε  [Eq. (4.79)] decreases further from unity and ( )f ε  [Eq. (4.78)] increases further 

from ( )2 1jx −  as r deviates from the limit of arithmetic mesh. 

 

Finally, as alluded to previously, the value of p has an effect on the accuracy of the 

solution. Referring to Eqs. (4.77) - (4.79), regardless of the extent of the departure of r 

1q −
1

1
1

q
p q pr x x −
+ + =  
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from the arithmetic mesh, a large value of p generally improves the accuracy of the 

solution by minimizing ( )u +ε . To further illustrate, the FP technique for pure random 

scission was implemented on the same example problem by Stickel and Griggs (2012) 

described in Section 4.1.5 with an initial distribution as shown in Eq. (3.4) with cin, ω and 

κ given as 100, 400 and 1.5 respectively. Example codes for this simulation using the FP 

and the exact solution are given in Sections B.4 – B.5 of Appendix B. Figure 4.23 shows 

the results of the simulation. Continuing the previous practice, the pivots were spaced 

evenly in the continuous region with p+q = 555. The common difference for [p, q] = [10, 

545] is 1.5 whereas that for [p, q] = [100, 455] is 1.6. Such closely spaced pivots are 

employed here to highlight the effect of p on the accuracy of the solution. From the results, 

within a constant p+q, a larger value of p greatly improves the solution accuracy. As 

expected, at a low value of p = 10, the over-predictions observed were significant. For 

DP2, increasing the value of p reduced εg by two orders of magnitude, i.e. from ~ O(10–

1) to ~O(10–3), whereas for DP7, the reduction achieved was one order of magnitude, i.e. 

from ~ O(10–2) to ~O(10–3). Although DP2 – DP7 do not belong to the continuous region, 

they nonetheless still contain the birth terms of which their departure from the exact 

solution is as elaborated in the foregoing discussion. The results here are important in that 

by merely increasing the number of pivots in the discrete region while conserving the 

total number of pivots (and hence the computational burden incurred), the accuracy of 

the solution can be significantly improved. 
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Figure 4.23: Temporal evolution of molar concentration of the DP2 – DP7 oligomers 

using the fixed pivot (FP) and the exact solutions for random scission. The dimensionless 

time θ = 1 corresponds to the time when more than 99% monomer had been formed. Here, 

[p, q] = [10, 545] and [p, q] = [100, 455] were used where p and q are the number of 

pivots for the discrete and continuous region respectively. 

 

Based on the above, when random scission is involved, one additional point to 

consider during meshing is that the value of p could be used to improve the accuracy of 

the solution. From Eqs. (4.77) - (4.79), a rule-of-thumb guide for choosing the value for 

p can be established by inspecting ( )f ε  at ε = 0. The rationale for doing so is that should 

the deviation from the exact solution at this best case be large, that particular value of p 

is inappropriate. In addition, ( )g ε  is not examined here because at the discrete region, 

the death term is exactly ( )i ik c tα−  and thus only ( )f ε  projects the effect of meshing at 

the continuous region on the smaller oligomers of interest in the discrete region. At the 
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limit of the arithmetic mesh, ( ) ( )1

0

2 1
O

1 1
lim m

j j

f u
x x

−

ε→
ε = +

− −
 where m ≥ 2. Thus, the 

source of the over-prediction originates from the terms involving m ≥ 2 because the first 

order term is the exact solution. Using only the m = 2 term and given ( ) 1
1u p

−
= + , this 

source of over-prediction in the formulation ( predε ) is of the order of u: 

1

1pred
p

ε
+

∼    (4.81) 

 

Using Eq. (4.81), the value of p can be chosen such that the value of predε  is small. For 

example, throughout Figures 4.16 – 4.21, the value of predε  ~ O(10–3) for p = 100. 

Practically, within the constraint of ( ) ( ){ }1 ln ln 1m m mq N p v v p v   < + + + +     

established in Section 4.1.3, typically values of ( )2O 10pred

−ε ≤ , i.e. p = 50 ~ 100, is a 

good starting point. Assuming that values of N and vm are typically known, the revised 

meshing guidelines are: 

 (a) Choose p+q ~ O(10−2N).  Then choose the value of p such that the constraints of 

( ) ( ){ }1 ln ln 1m m mq N p v v p v   < + + + +     and ( ) ( )1 21 O 10
− −+ ≤p  are fulfilled. 

There is a lower limit for p below which q becomes too large, causing pivots to be 

spaced closer than vm. To facilitate this, Figure 4.13 in Section 4.1.6 can be 

conveniently used to ensure that p ≥ pmin.  

(b) For values of p+q and N not covered in Figure 4.13, first choose p such that 

( ) ( )1 21 O 10p
− −+ ≤  and calculate q using the constraint in (a). If the resulting p+q ~ 

O(10−2N), proceed to solve the system of differential equations. Otherwise, select a 

different value of p and repeat the procedure until the desired p+q is found.  
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4.3 Concluding Remarks 

 

Chain-end and random scissions as modeled by PBM can be efficiently and accurately 

solved with the FP technique via a judicious choice of mesh parameters to partition the 

computational domain into a discrete and a continuous region. For chain-end scission, 

except for unnaturally narrow distributions of the polymer sizes, good approximation was 

obtained with the number of equations not exceeding a few percent of the exact case, at 

a fraction of the time required for the exact case. When deployed together with random 

scission, except for the inherent tendency to over-predict at small number of pivots in the 

discrete region, similar performance was demonstrated by the FP technique when 

benchmarked against the exact solution which was solved at an improved efficiency. The 

formulation here readily provides the concentration profiles of the oligomers, a 

convenience that is particularly significant when only these are analyzable by existing 

experimental techniques. As far as enzymatic depolymerization is concerned, the current 

formulation covers the commonly encountered depolymerization phenomena, a tool that 

is indispensable for the study of related systems.  
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CHAPTER 5 : INTERLINKED POPULATION BALANCE AND CYBERNETIC 

MODELLING FRAMEWORK 

 

In the previous chapter, the numerical techniques necessary for solving PBEs had been 

fully established and shown to very appropriate for simulating the profiles of various 

oligomers commonly found in polymeric fermentation systems. This is an important 

groundwork for the materials which will be presented in this chapter, which is to lay out 

the general framework for interlinking the PBM and the CM methodologies. Section 5.1 

is devoted to such a purpose, followed by a demonstration of the capability of the resulting 

framework by two case studies in Sections 5.2 and 5.3 respectively.  

 

5.1 Theoretical Framework 

 

The general idea of the linkage between the PBM and the CM components had been 

elaborated in Figure 1.1 of Section 1.1. In this section, the theoretical framework for the 

interlinked model will be established. For compactness, equations presented in this 

section are written as vector equations. Unless specifically denoted as constants, all 

variables are functions of time. For Sections 5.1.1 – 5.1.3, the equations presented are 

general and do not refer to a particular mode of enzymatic scission. For the case studies, 

however, the convention of using the superscripts ‘α’ and ‘γ’ to distinguish between the 

quantities associated with enzymes which exhibit random and chain-end scissions 

respectively is adopted.  

 

 

 



105 
 

5.1.1 Population Balance Modelling for Enzymatic Scission  

 

In general, an enzymatic depolymerization process may contain multiple enzymes 

which can act on multiple substrates in the broth. Typical of all enzymatic processes, the 

formation of enzyme-substrate complexes precedes the enzymatic scission. As polymers 

are generally long chain macromolecules, a possibility exists where multiple enzymes 

bind with different parts of the chain (Griggs et al., 2012a), resulting in numerous 

different complexes in the reaction broth. To represent the molar concentrations of 

different species in the broth, all substrate-related terms (including the complexes) are 

collected in a vector S . The molar concentrations of all the free (or unbounded) enzymes 

are collated in a vector E. This is further clarified in Table 5.1 for one possible scenario 

of enzyme complex formation between two substrates and two enzymes.  
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Table 5.1: The components of and E for one possible scenario of enzyme complex 

formation between two substrates of different chain length and two different enzymes. 

The number of enzymes and substrates are generally not restricted to two.  

 E 

 Free 
substrates 

 

Enzyme 1 

 

 

 

Enzyme 2 

    Free enzymes 

 

 

 

Bounded 
substrates 

 

 

 

 

 

 

For a broth containing a polymer with a maximum DP equals N and extracellular 

depolymerases, the PBEs describing the temporal evolution of all the polymer species, 

written together with the enzyme balance equation can be expressed in the following form: 

( ) ( )
Enzymatic Generation Enzymatic Scission

, , , ,
d

dt
= −
	
�
� 	
�
�

S
S Sf E k g E k    (5.1) 

( )0 ;= − = SE E G G T    (5.2) 

Here, k is the vector of rate constants, ( )0E  is the vector of the initial enzyme loading, 

and G  is the sum of the molar concentrations of all of the enzyme complexes. The matrix 

T , which is stationary in time, extracts enzyme-bounded substrates from S .  

 

S

S
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The generation term in Eq. (5.1) represents the enzymatic scission of larger polymers 

with DP > i to form DP = i, while the scission term caters to the scission of the current 

polymer with DP = i to smaller ones with DP < i. As the value of N (i.e. DP of the largest 

polymer) can be very large (which is not uncommon for natural polymers), solving Eqs. 

(5.1) - (5.2) can be computationally expensive. Amongst the many methods to solve PBEs 

(D. Ramkrishna, 2000), the Fixed Pivot (FP) technique established in Chapter 4 was used 

in the current framework to drastically reduce the number of ODEs to be solved. 

Recalling briefly, the strategy involves the partitioning of the DP domain into a discrete 

region for the smaller oligomers and a continuous region for the larger oligomers. This 

reduction is done by replacing the first term on the RHS of Eq. (5.1) with ( ), , ,Sf E k n  

where constants 
ijn  represents the fractional allocation of polymers splitting from DP = j 

into i by conserving the zeroth and the first moments of the distribution. The general 

expression for 
ijn  is given as: 

( ) ( )1

1

1 1

1 1

, ,
i i

i i

x x
i i

ij j j
x x

i i i i

x v v x
n b v x dv b v x dv

x x x x

+

−

+ −

+ −

   − −
= +   − −   
∫ ∫   (5.3) 

where v is the continuous DP, x is the pivot DP and ( ), jb v x  is the stoichiometric kernel 

relating the formation of polymers with DPs of v and xj – v from xj (D. Ramkrishna, 2000). 

On applying this approximation, the sizes of S  and T  are reduced. Useful properties of 

the polymer distribution which can be extracted from the PBEs are the moments of the 

polymer distribution, with the ξ-th moment given as: 

( ) T

1 21
; ;p qx x x

ξ ξ ξ ξ
+ = = = ⋯S SHL H L F   (5.4) 

The matrix F  (stationary in time) operates on S  such that the i-th element of vector L  

contains the sum of all species with DP = i. Here, p and q are the meshing parameters 

representing the number of pivots in the discrete and continuous regions respectively (cf. 

Section 4.1.3). Since mass should be conserved, the first moment of the distribution (ξ = 
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1) is a constant. The PBE presented here can be used to model a pure enzymatic system 

where the involvement of microbes is not present. Example implementations for specific 

mechanisms of scission are given in the Appendix D. In the presence of microbes, an 

additional set of equations for microbial kinetics is required, as discussed next. 

 

5.1.2 Cybernetic Modelling 

 

As the CM framework developed by Ramkrishna and co-workers (D. Ramkrishna & 

Song, 2012; Song et al., 2009) had been presented in Section 2.3, it shall not be re-

elaborated here. Nonetheless, the equations are re-produced here to facilitate the 

discussions in the subsequent sections. Briefly the CM equations are: 

   (5.5) 

   (5.6) 

   (5.7) 

   (5.8) 

   (5.9) 

where X is the mass concentration of biomass, μ is the total specific growth rate, and  

is the concentrations of extracellular substrates,  is the concentration of extracellular 

products, and  is the concentration of intracellular metabolites. The matrices ,  

and  contain the stoichiometry of the reactions. The symbol  is the regulated fluxes 

(or rates defined per unit of biomass),  is the constitutive enzyme synthesis rates,  is 

the inducible enzyme synthesis rates,  is the enzyme degradation rate constants and  

( )1
, ,

d

X dt
=

N
NW r V eN

( )1
, ,

d

X dt
=

P
NW r V e

P

( ), ,
d

dt
φ= −µNW r V e

φφφφ
φφφφ

1 dX

X dt
= µ

( ) ( )e e

d

dt
= − +µ  

e
+ D U r D I eρ βρ βρ βρ β

N

P

φφφφ W
N

W
P

φW r

eρρρρ er

ββββ e
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is the enzyme levels. Unless dimensionless, units of concentration related terms may be 

expressed either on a molar or a mass basis wherever appropriate. The matrix  is the 

identity matrix and the operator  converts the input vector into a diagonal matrix 

such that: 

  (5.10) 

where ne is the size of e. The general form of U and V can be written as (Song et al., 

2009): 

1
; 1, 0k

k

k

U
R

+

+
= = ≥
∑

R
U U    (5.11) 

( )
; 1

max
kV

+

+
= ≤

R
V

R
   (5.12) 

where with and Rk is the return on investment 

from the k-th alternative. To further clarify the construction of the CM equations, an 

example is given in Section E.1 of Appendix E. As alluded to previously in Section 2.3.1, 

although the CM equations given above can be used to predict the effect of multiple 

substrates on microbial growth, the existing framework does not cater explicitly to 

systems where the excretion of the extracellular depolymerases is required to break large 

polymers into consumable substrates. 

 

 

I
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2 2
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0 0 0 0
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; ;

0 0

0 0 0 0
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   

β      

 
 
 =
 
 
  

⋯ ⋯

⋱ ⋮ ⋱ ⋮

⋮ ⋱ ⋱ ⋮ ⋱ ⋱

⋯ ⋯

⋯

⋱ ⋮

⋮ ⋱ ⋱

⋯
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T

1 2 kR R R+ + + + =  ⋯R ( )max ,0k kR R+ =
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5.1.3  Interlinked Population Balance and Cybernetic Framework 

 

As alluded to previously in Section 1.1, to connect the population balance and the 

cybernetic framework, the PBE must be modified to include a term for substrate uptake 

by the microbes. This is done by rewriting the PBE in Section 5.1.1: 

( ) ( ) ( )
Enzymatic Generation Enzymatic Scission Microbial Uptake

, , , , , , ,
d

X
dt

= − −
	

�

� 	
�
� 	


�


�N

S
S S Nf E k n g E k W r V e   (5.13) 

For simplicity, it is assumed that ⊂N S , i.e. all the carbon and energy sources are part 

of the polymeric substrates. The free extracellular depolymerization enzymes (E) is now 

dependent on the output of CM. This is the second critical link which in the past was 

barely addressed. In several studies which employed the simplistic M-M kinetics for 

hydrolysis and the CM framework for microbial growth (Altintas et al., 2002; Ochoa et 

al., 2007), the rate of enzymatic scission was assumed to be a function of the 

dimensionless intrinsic enzyme level. This obscures the underlying molecular nature of 

the enzymatic action, e.g. the binding of one extracellular enzyme molecule with one 

substrate molecule. Accounting for the enzyme-substrate interaction on a molar basis is 

more convenient for the establishment of the PBM and CM linkage because the PBM 

framework concerns the temporal evolution of the number of polymer molecules.  

 

Extracellular enzymes, like their intracellular counterparts, are subjected to cellular 

regulation according to the mechanism of induction/repression (Kobayashi & Nakamura, 

2003, 2004; Nakamura et al., 1997), of which their synthesis first occur in the biotic phase 

prior to being excreted into the abiotic phase. As the synthesis of both intra- and extra-

cellular enzymes are the result of an optimal allocation of a common pool of critical 

resources, construction of their respective enzyme synthesis equation should adhere to 

identical CM principles. For simplicity, the enzymes produced within the cells are 
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assumed to be excreted instantaneously into the external broth and do not accumulate 

appreciably within the cells, thereby allowing the contention with only their external 

concentrations. The rate equations for both intra- and extracellular enzyme synthesis are 

given respectively as: 

( ) ( )e e e e

d

dt
= − +µ  ρ βρ βρ βρ β

e
+ D U r D I e    (5.14) 

( ) ( )
0

0
E E E E

d
X X

dt
= −ρ βρ βρ βρ β

E
+ D U r D E    (5.15) 

where the subscript ‘E’ is used to distinguish between the parameters for the extracellular 

enzymes from that of the intracellular enzymes (subscript ‘e’). The form of Eq. (5.15) is 

derived in Section F.1 of Appendix F. Here, 
0

E  represents the total molar concentrations 

of extracellular enzymes at a particular instance. As only the free enzymes are capable of 

forming new complexes with the substrates, the molar concentration of the free 

extracellular enzymes must be obtained from enzyme balance: 

0 ;= − = SE E G G T    (5.16) 

Note that the total enzyme concentration in Eq. (5.16) evolves with time while for pure 

enzymatic scission, the total enzyme concentration (i.e. the initial enzyme loading) in Eq. 

(5.2) is a constant (normally temporal degradation is ignored).  

 

Differing from the traditional CM which makes no distinction between the 

intracellular and extracellular enzymes, in Eqs. (5.14) and (5.15) the cybernetic variable 

U  must account also for the induction/repression of extracellular enzymes. U is 

partitioned into intracellular ( eU ) and extracellular ( EU ) parts, i.e. [ ]Te E=U U U , 

given as: 

1
; ; 1e E

e E

k k

k k

R R

+ +

+ +
= = =
∑ ∑

R R
U U U    (5.17) 
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where the return on investment 
T

e E

+ + + =  R R R . This formulates the excretion of the 

extracellular enzymes as part of the cellular response for ensuring its survival, which in 

tandem to the synthesis of intracellular metabolic enzymes, requires the maximization of 

a common metabolic objective function.  

 

On the other hand, it is reasonable to assume that the activities of the depolymerization 

enzymes, once excreted into the external broth, are not regulated by the microbes. Thus 

only the intracellular metabolic enzymes are regulated via the cybernetic variable V: 

( )max
e

e

+

+
=

R
V

R
   (5.18) 

 

The remaining equations for product formation, accumulation of intracellular 

metabolites, and biomass growth remain unchanged as compared to the standard CM 

formulation: 

( )1
, ,

d

X dt
= P

P
NW r V e    (5.19) 

( ), ,
d

dt
φ= −µN

φφφφ
φφφφW r V e    (5.20) 

1 dX

X dt
= µ    (5.21) 
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Figure 5.1: Simplified diagram illustrating the different components of the interlinked 

PBM and CM framework where the shaded region (excluding the excretion of 

extracellular depolymerase) is the standard CM framework. In this illustration, for 

simplicity the cell is assumed to excrete only one form of depolymerase for the interlinked 

framework.  

 

Equations (5.13) - (5.21) represent the general framework for interlinking the PBM 

and the CM equations along with the pictorial illustration shown in Fig. 5.1. Regardless 

of their respective variants, as long as the withdrawal of nutrients by the microbes and 

the excretion of extracellular enzymes are pertinent, the framework is applicable. The 

applicability of the framework will be demonstrated through two case studies in the 

following sections. The first case study concerns the growth of a glucoamylase producing 

recombinant S. cerevisiae on starch while the second case study will showcase how the 

framework could be used to model the growth of another genetically engineered S. 

cerevisiae which could excrete two different forms of depolymerases simultaneously.  
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5.2  Case Study I: Growth of A Glucoamylase Producing Recombinant S. 

cerevisiae on Starch 

 

5.2.1. Model Formulation 

 

In the work of Nakamura et al. (1997), a recombinant yeast, i.e. S. cerevisiae SR93, 

was constructed by integrating a glucoamylase producing gene (STA1) originating from 

Saccharomyces diastaticus into the chromosome of S. cerevisiae SH1089. In the presence 

of starch, the yeast produces glucoamylase which releases successive glucose units from 

the non-reducing ends of starch molecules. Although starch consists of a mixture of linear 

(amylose) and branched (amylopectin) components, Chang et al. (2002) pointed out that 

the effect of molecular branching on the overall rate of hydrolysis is not significant. This 

was validated by experimental observations that starch in general contains a low 

proportion of branching, i.e. approximately 5% within a starch molecule, and that there 

is minor difference in the rates of hydrolysis between the branched and unbranched 

molecules (Dean III & Rollings, 1992). As the variations in the kinetics of hydrolysis 

caused by the branching effect can also be accommodated by the adjustment of the kinetic 

parameters without changing the reaction mechanisms, for simplicity starch was 

modelled here as a linear population of polymers. The hydrolysis mechanism is given as: 

( ) ( ) ( ) ( ), ,

,

1 1 ; 2
a i c i

b i

k k

k
E P i E P i E P i P iγ γ γ

γ γ

γ+ → + − + ≥


⇀↽


   (5.22) 

( ) ( ),1

,1

1 1
a

b

k

k
E P E Pγ γ

γ

γ+ 


⇀↽


    (5.23) 

where P(i) is the polymer with DP = i. As glucoamylase does not exhibit single chain 

attack or multiple attack patterns (Robyt, 2009), upon successful bond scission, P(i – 1) 

and P(1) leave the enzyme active site, resulting in the recovery of the free enzyme. From 

the mechanism, the reduction of the number of vacant active sites of glucoamylase by 
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P(1) (which traditionally is interpreted as the inhibition of enzyme action by glucose) is 

represented by Eq. (5.23). For the inhibition of enzyme action by starch, it was reported 

in the study by Miranda and Murado (1991) that this is the result of mass transfer 

limitation in the viscous broth. For simplicity,  this was not considered here. 

 

Furthermore, it is known that yeast does not consume starch directly, but that only the 

small sugars resulting from the breakdown of starch are consumed to produce ethanol 

under anaerobic conditions. Among the starch hydrolysates, yeast utilizes glucose (DP1), 

maltose (DP2), and maltotriose (DP3) in this approximate sequence (Batistote, Cruz, & 

Ernandes, 2006). Although yeast could consume ethanol during low sugar condition 

(Thomson et al., 2005), this was not observed in the study by Nakamura et al. (1997). For 

the purpose of illustrating the framework, the CM framework of Kompala and 

Ramkrishna (1986) is adopted here. Their model, although simplistic from the viewpoint 

of microbial metabolism, demonstrated the cybernetic principles and became the 

foundation for the subsequent development of more sophisticated variants. Metabolic 

burden, defined as the hurting of the normal metabolic functioning of the host cell by 

genetic manipulation (Glick, 1995), was not considered in the following formulation for 

simplicity. According to their framework, the assimilation of substrate P(i) (i = 1 to 3) is 

catalysed by a key intracellular metabolic enzyme ei: 

( ) ( )1
i

ie
B P i Y B+ → + + ⋯    (5.24) 

where B is the biomass and Yi is the yield of biomass from the utilization of substrate i. 

The key enzyme ei is induced in the presence of P(i) according to: 

'i
ieB e B→ +    (5.25) 

In the above, 'B  is the biomass excluding the key enzyme. The accumulation of biomass 

(X, [g-DW/L]), which is a result of the utilization of the three sugars, can be written as: 
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3

,
1

; X i i

i

dX
X r V

dt =

= µ µ =∑    (5.26) 

The specific rate of biomass growth on sugar i ( ,X ir , [g/g-DW/h]) is dependent on the 

total amount of sugar i in the broth and is known to be inhibited by the presence of ethanol 

(Kobayashi & Nakamura, 2003, 2004; Nakamura et al., 1997): 

{ }
{ } [ ]{ }

max, max, ,

,

,

; 1 to 3
1

i i i i i B i

X i

i i i B i EtOH

e e M C C
r i

K M C C A K

γ

γ

  µ +   = =
 + + + 

  (5.27) 

In Eqs. (5.26) - (5.27), Mi [g/mol] (i = 1, 2, 3) is the molecular weight of glucose, maltose, 

and maltotriose respectively, i
C  and ,B iC γ  are the respective molar concentrations of 

unbounded and bounded sugar i, max,iµ  [h–1] and Ki [g/L] are the maximum specific 

growth rate and saturation constant of sugar i, A [g/L] is the mass concentration of ethanol, 

KETOH [g/L] is the constant of ethanol inhibition on growth, and max,i ie e  is the relative 

level of enzyme i. Note that the effect of inhibition by ethanol was assumed to be identical 

between the different sugars to avoid excessive parameterization. 

 

As the production of ethanol is growth associated (Bailey & Ollis, 1986; Kobayashi & 

Nakamura, 2003, 2004; Shuler & Kargi, 2002), its accumulation is expressed as: 

3

,
1

EtOH

i
X i i

i i

YdA
r V X

dt Y=

 
=  

 
∑    (5.28) 

Here, Yi [g/g] and EtOH

iY  [g/g] are the biomass and ethanol yields from the utilization of 

sugar i. As the cybernetic model used here excluded the detailed pathways (Kompala & 

Ramkrishna, 1986), the intracellular metabolites (φφφφ ) were not modelled, thus omitting 

Eq. (5.20). The levels of intracellular metabolic enzymes for the assimilation of glucose, 

maltose, and maltotriose are given as: 
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{ }, ,

, , , ,
max, max, max, , ,

; ; 1 to 3
e i i i B i

i i i
e i e i e i e i

i i i e i i i B i

k M C Ce e ed
r U r i

dt e e e K M C C

γ

γ

 +       = −β −µ = =     
 + +            

  (5.29) 

In this case, max,i ie e  is dimensionless where max,ie  [g/g-DW] is the maximum level of ei 

[g/g-DW] and ,e ik  [h–1] as well as ,e iK  [g/L] are the kinetic constants for enzyme 

synthesis. Here, the expression of , max, ,e i i e ik = µ +β  employed by several authors (Altintas 

et al., 2002; Kroumov et al., 2006; Ochoa et al., 2007) was not used following the reasons 

presented in Section E.2 of Appendix E. 

 

For the critical link between the PBM and the CM equations, i.e. the temporal 

evolution of glucoamylase, it is known that glucoamylase production is induced by 

saccharides other than glucose, particularly starch (Kobayashi & Nakamura, 2003, 2004; 

Nakamura et al., 1997). Therefore, the rate of glucoamylase synthesis ( ,Er γ , [g/g-DW/h]) 

is formulated as a function of the mass concentration of DP ≥ 2.  While DP = 2 does not 

represent starch, the model must be capable of handling the situation when only dimeric 

sugars are present, leading to synthesis of glucoamylase. Hence, the following expression 

is proposed followed by its corresponding enzyme balance equation:  

0 , ,
20 0

, , , ,

, ,
2

1
;

p q

E j j B j

j

E E E EtOH E p q

E j j B j

j

k M C C
dE

r U X E A E r
dt M

K M C C

+
γ

γ
≥γ η

γ γ γ γ γ γ +
γγ

γ
≥

 + 
= −β −β =

 + + 

∑

∑
  (5.30) 

0
,

1

p q

B j

j

E E C
+

γ
γ γ

=

= −∑    (5.31) 

Here, Mγ [g/mol] refers to the molecular weight of glucoamylase, whereas ,Ek γ  [h–1] and 

,EK γ  [g/L] are the kinetic constants of extracellular glucoamylase synthesis, and ,E γβ  [h–

1] is the deactivation rate constant. As the existing glucoamylase within the broth is 

inhibited by ethanol (Nakamura et al., 1997), an ethanol inhibition term was also added 
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where βEtOH is the ethanol deactivation rate constant and η is the order of ethanol 

inhibition on glucoamylase production. For both the synthesis of intra- and extracellular 

enzymes, the constitutive term is omitted ( e
= 0ρρρρ  and ρE = 0) following Kompala and 

Ramkrishna (1986).  

 

The cybernetic variables for controlling the synthesis of intra- and extracellular 

enzymes, used in Eqs. (5.29) - (5.30), are given as: 

,
, ,3 3

, ,
1 1

; ; 1 to 3X i

e i E

X j X j

j j

r Xr X
U U i

r X r X r X r X

γ
γ

γ γ
= =

= = =
+ +∑ ∑

  (5.32) 

Here, the return on investment for allocating cellular resources to synthesize ei was taken 

to be the rate of biomass growth (Kompala & Ramkrishna, 1986) resulting from the 

utilization of sugar i. In addition, cellular resources are also allocated to synthesize 

glucoamylase. Although glucoamylase is not directly responsible for metabolizing DP ≥ 

2 (primarily starch) in the biotic phase, in the absence of small sugars, glucoamylase is 

synthesized to produce consumable nutrients such as glucose from the larger saccharides. 

Therefore, yeast can be assumed to “grow” indirectly on starch by excreting 

glucoamylase, having a growth rate rγX [g L–1/h] similar to ,X ir X  [g L–1/h] and is 

dependent on the concentrations of all species capable of inducing the production of 

glucoamylase: 

[ ] ( ){ }

0
,

2

, 1 1 ,1
2

1 1

p q

j j B j

j

p q

j j B j EtOH B I

j

M E X M C C

r

K M C C A K M C C K

+
γ

γ γ γ
≥

γ +
γ γ γ

γ
≥

   µ +   
=
 

   + + + + +    
 

∑

∑
  (5.33) 

The form of the rate rγ has a glucose inhibition term ( IK γ  [g/L] being the inhibition 

constant) and its form is further deliberated in Section F.2 of Appendix F. For the 

cybernetic variable which controls the activities of the enzymes (used in Eqs. (5.26) 
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and(5.28)), only the intracellular enzymes are regulated, hence rγ is excluded from the 

expression: 

( )
,

,1 ,2 ,3

; 1 to 3
max , ,

X i

i

X X X

r X
V i

r X r X r X
= =    (5.34) 

 

Establishing the above, and referring to the hydrolysis mechanisms given in Eqs. (5.22) 

- (5.23), the material balance equations for glucose, maltose, maltotriose and those 

represented by i = 4 to p+q are given as: 

,1 ,1 ,2 ,2 , ,1 ,1 1
3 1 ,1 1

,1 ,1 ,1 1
,1 1

1
2 1

0

p q

b B c B c j B j a
j X

B b B

a

k C k C k CC k E Cd
Y r V X

C k Cdt M
k E C

+
γ γ γ γ γ γ γ

γ
=γ γ γ

γ
γ

   + +       = − −              

∑
  (5.35) 

2 ,2 ,2 ,3 ,3 ,2 2
2 ,2 2

,2 ,2 2 ,2 ,2 ,2 ,2 2

1
1

0

b B c B a

X

B a b B c B

C k C k C k E Cd
Y r V X

C k E C k C k Cdt M

γ γ γ γ γ
γ

γ γ γ γ γ γ
γ

 
   +   = − −      +        

  (5.36) 

3 ,3 ,3 ,4 ,4 ,3 3
3 ,3 3

,3 ,3 3 ,3 ,3 ,3 ,3 3

1
1

0

b B c B a

X

B a b B c B

C k C k C k E Cd
Y r V X

C k E C k C k Cdt M

γ γ γ γ γ
γ

γ γ γ γ γ γ
γ

 
   +   = − −      +        

  (5.37) 

, , , 1 , 1 ,

, , , , , ,

; 4 to i b i B i c i B i a i i

B i a i i b i B i c i B i

C k C k C k E Cd
i p

C k E C k C k Cdt

γ γ γ γ γ
+ + γ

γ γ γ γ γ γ
γ

   + 
= − =     +     

  (5.38) 

1 , 1 , 1 1, 2 , 2 , 2 , 1 1

, 1 , 1 1 , 1 , 1 , 1 , 1

p b p B p p p c p B p a p p

B p a p p b p B p c p B p

C k C n k C k E Cd

C k E C k C k Cdt

γ γ γ γ γ γ
+ + + + + + + + γ +

γ γ γ γ γ γ
+ + γ + + + + +

   + 
= −     +        

  (5.39) 
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a i i

k C n k CC k E Cd
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+
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 
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∑
  (5.40) 

, , , , , ,

, , , , , ,

p q b p q B p q p q p q c p q B p q a p q p q

B p q a p q p q b p q B p q c p q B p q

C k C n k C k E Cd

C k E C k C k Cdt

γ γ γ γ γ γ
+ + + + + + + + γ +

γ γ γ γ γ γ
+ + γ + + + + +

   + 
= −     +        

  (5.41) 

In the above, it was assumed that bounded sugars cannot be assimilated by yeast. 

Therefore, the withdrawal of nutrients was only enforced on the free sugars.  If future 

discoveries suggest otherwise, it is straight forward to add more consumption terms to 
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the bounded sugars. The form of Eqs. (5.35) - (5.41) is a result of the FP approximation 

for chain-end scission developed in Section 4.1 where 
ij

nγ  is reproduced here as: 

( ) ( )1

1

1 1

1 1

i i

i i

x x
i i

ij j m j m
x x

i i i i

x v v x
n v x v dv v x v dv

x x x x

+

−

γ + −

+ −

   − −
   = δ − − + δ − −      − −   

∫ ∫   (5.42) 

Recalling briefly, here v is the continuous DP, x is the pivot DP, and vm = 1 is the DP of 

the monomer. 

 

Given the necessary initial conditions and parameter values, Eqs. (5.26) - (5.42)

constitute an example system of the interlinked population balance and cybernetic 

modelling framework. A critical component of the model system is the kinetic parameters, 

particularly those for the hydrolysis of starch as ,a i
k γ , ,b i

k γ  and ,c i
k γ  are known to be DP-

dependent, which makes the individual attainment of their values impractical. As far as 

PBM for enzymatic scission is concerned, the common power law expressions had been 

used to correlate the rate constants with the DP (Griggs et al., 2012a, 2012b; Hosseini & 

Shah, 2011a, 2011b). These are simplistic kernels which do not relate to the biochemistry 

of enzymatic hydrolysis. To model the kinetics of hydrolysis by glucoamylase, the subsite 

theory (Hiromi, 1970; Hiromi et al., 1973) was adapted in this work (cf. Section G.1 of 

Appendix G for a summary of the theory). According to this theory, the active site of 

glucoamylase consists of a tandem array of subsites, each capable of binding to a glucose 

residue. Although different origins of glucoamylase may contain slightly different 

number of subsites, the generally encountered value is seven (Fagerstrӧm, 1991). This 

value was adopted here because the subsite of glucoamylase from S. cerevisiae (var. 

diastaticus) had not been mapped in the literature. As larger polymers possess higher 

propensities to collide with glucoamylase molecules, it was assumed that ,a i
k γ  [L/mol/h] 

increases linearly with the size of the substrate: 

,
ˆ ; 1 to 

a i a i
k k x i p qγ γ= = +    (5.43) 
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where ˆ
ak γ  [L mol–1 h–1 DP–1] is a constant. With the assumption of rapid equilibrium for 

the formation of enzyme complexes, the M-M parameter , , ,m i b i a i
K k kγ γ γ= . Thus, ,b i

k γ  [1/h] 

(i = 1 to p+q) can be determined from ,m i
K γ  calculated from the subsite theory:  

1
occ.

, , , , , ,
1 ,

; ; 0.0175exp
m

N

n
b i m i a i m i J i J i

J n J i

A
k K k K K K

RT

γ −
γ

γ γ γ γ γ γ

=

   
= = =   

    
∑ ∑   (5.44) 

Here, ,J i
K γ  [mol/L] is the association constants of the i-mer substrate in a binding mode J 

(which may either be productive or non-productive) and mN
γ  is the total number of 

subsites of the glucoamylase. In addition, nA
γ  [kcal/mol] is the subsite affinity of the n-th 

subsite of glucoamylase, expressed in free energy units, 
occ.

n

∑  implies that the sum is taken 

for the occupied subsites, and R [kcal/K/mol] as well as T [K] are the universal gas 

constant and absolute temperature respectively. Using the original subsite theory, ,c i
k γ  

[1/h] increases linearly at the lower DP region and reaches a plateau towards the higher 

DP region. As this trend had thus far only been validated for short chain oligomers, an 

empirical expression that retains the approximate shape of the original expression for ,c i
k γ  

[1/h] from the theory was used to increase the fitting capability: 

, , , ,
ˆ ; 2 to ;

ˆ
i

c i c a i b i c i

c i

x
k k i p q k k k

K x

γ γ γ γ γ
γγ

 
= + δ = + > >> 

+ 
  (5.45) 

where ˆ
ck γ  [1/h], ˆ

cK γ  [DP] and γδ  [1/h] are constants. 

 

5.2.2 Parameter Identification and Initial Conditions 

 

Identification of the parameters was done in several ways, as summarized in Table 5.2. 

As only the order of magnitude of ,m i
K γ  matters, in the absence of the subsite map for S. 
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cerevisiae (var. diastaticus) at 303 K (Nakamura et al., 1997), the values of the subsite 

affinities reported by Hiromi et al. (1973) for glucoamylase produced by Rhizopus 

delemar at 298K were used, cf. Section G.3 of Appendix G. Preliminary studies also 

indicated that the model outcome was relatively insensitive to the exact values of ,a i
k γ  and 

,b i
k γ  provided that the constraint , , ,a i b i c i

k k kγ γ γ> >>  is fulfilled. Among the parameters 

tabulated, 18 of them were determined by calibration using the GA (cf. Section 3.4.2). 

The population size of the algorithm was chosen as five times the number of parameters 

(Cox, 2005) while the remaining settings were kept as default. Calibration was 

simultaneously done for five variables, namely the biomass, starch, glucose, ethanol, and 

glucoamylase concentrations. Here, starch was assumed to be polymers larger than the 

size of dextrin, i.e. starch was taken to be the total mass of all polymers with DP > 40 

(Kearsley & Dziedzic, 1995). The objective function for minimization (Jopt) with GA was 

formulated as shown in Eq. (3.12) of Section 3.4.2. Here, i = biomass, glucose, starch, 

ethanol and glucoamylase. The objective function was formulated to weigh all quantities 

of different scales and different number of points equally by setting 1iW = . Integration 

of the ODEs was done using the ‘ode15s’ sub-routine using a simulation time span (= 

200 h) which bracketed the experimental data. The optimization was performed on the 

workstation C (cf. Section 3.1). The time required on average for one complete run is 

approximately 27 h and the final Jopt was 0.1113. 
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Table 5.2: Values of model parameters used in case study I where the specified initial 

ranges for calibration using the Genetic Algorithm (GA) were deduced by bracketing the 

extreme values reported by several similar studies in the literature (Altintas et al., 2002; 

Gadgil et al., 1996; Jang & Chou, 2013; Kobayashi & Nakamura, 2003, 2004; Ochoa et 

al., 2007). Calibration was done using the data reported by Nakamura et al. (1997). 

Parameter Unit Value Remark 

max,1µ  h–1 0.512 Calibrated using GA within [0.1, 1] 

max,2µ  h–1 max,10.88µ  
Calculated from max,1µ  and max,2µ  

reported by Y.-S. Lee, Lee, Chang, 
and Chang (1995) 

max,3µ  h–1 max,20.88µ  
Following after the identification of 

max,2µ  

γµ  h–1 0.336 Calibrated using GA within [0.1, 1] 

K1 g L–1 0.200 
Calibrated using GA within  
[0.001, 0.2] 

K2 g L–1 3K1 
Calculated from K1 and K2 reported 
by Y.-S. Lee et al. (1995) 

K3 g L–1 3K2 
Following after the identification of 
K2 

K γ  g L–1 3.00 Calibrated using GA within [0.1, 3] 

KEtOH g L–1 1.06 Calibrated using GA within [1, 15] 

IK
γ
 g L–1 0.293 Calibrated using GA within [0.1, 0.9] 

1Y  g-DW (g-DP1)–1 0.431 Calibrated using GA within [0.1, 0.5] 

2Y  g-DW (g-DP2)–1 0.95Y1 
Calculated from Y1 and Y2 reported by 
Y.-S. Lee et al. (1995) 

3Y  g-DW (g-DP3)–1 0.95Y2 
Following after the identification of 
Y2 

1
EtOHY  g-EtOH (g-DP1)–1 0.426 Calibrated using GA within [0.1, 0.5] 

2
EtOHY  g-EtOH (g-DP2)–1 11.05 EtOHY  

Calculated from 1
EtOHY  and 2

EtOHY  

reported by Y.-S. Lee et al. (1995) 
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Table 5.2 continued 

Parameter Unit Value Remark 

3
EtOHY  g-EtOH (g-DP3)–1 21.05 EtOHY  

Following after the identification of 

2
EtOHY  

,1ek  h–1 9.22×10–2 
Calibrated using GA within  
[0.01, 0.2] 

,2ek  h–1 ,1ek  Assumed equal to ,1ek  for simplicity 

,3ek  h–1 ,1ek  Assumed equal to ,1ek  for simplicity 

,1eK  g L–1 0.931 Calibrated using GA within [0.1, 1] 

,2eK  g L–1 ,13 eK  
Calculated from ,1eK  and ,2eK  

reported by Y.-S. Lee et al. (1995) 

,3eK  g L–1 ,23 eK  
Following after the identification of 

,2eK   

,1eβ  h–1 1.24×10–2 
Calibrated using GA within  
[1×10–4, 5×10–2] 

,2eβ  h–1 ,1eβ  Following Kompala and Ramkrishna 
(1986) 

,3eβ  h–1 ,1eβ  Following Kompala and Ramkrishna 
(1986) 

M γ  g mol–1 3.00×105 
Value reported by Adam, Latorre‐
García, and Polaina (2004) for  
S. cerevisiae (var. diastaticus) 

,Ek γ  h–1 0.248 Calibrated using GA within [0.1, 1] 

,EK γ  g L–1 2.28 Calibrated using GA within [0.1, 3] 

,E γβ  h–1 1.36×10–3 
Calibrated using GA within  
[1×10–4, 5×10–3] 

EtOH
β  Lη g–η h–1 1.93×10–4 

Calibrated using GA within  
[1×10–5, 2×10–4] 

η - 2.00 
Value reported by Kobayashi and 
Nakamura (2003) 
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Table 5.2 continued 

Parameter Unit Value Remark 

ˆ
ak γ  L mol–1 h–1 DP–1 5.00×106 

Chosen so that , , 1
c i b i

k kγ γ <<  within 

the calibration ranges for ˆ
ck γ , ˆ

cK γ , 

and γδ  

ˆ
ck γ  h–1 724 Calibrated using GA within [1, 1500] 

ˆ
cK γ  DP 955 Calibrated using GA within [1, 5000] 

γδ   h–1 196 Calibrated using GA within [0.1, 200] 

 

Table 5.3 gives the initial conditions of the model. The glucoamylase produced by the 

recombinant strain reported by Nakamura et al. (1997) was unique in that it could not 

break the α-1,6-glucoside bond of amylopectin in starch and thus 40% of the initial starch 

loading of 50 g/L remained un-degraded. As such, cell growth stopped as soon as the 30 

g/L of the degradable portion was utilized. Since the experimental data was offset by 20 

g/L to minimize confusion, the initial starch loading in the simulation was 

correspondingly selected as mS(0) = 30 g/L to match. Moreover, in their subsequent work 

(Kobayashi & Nakamura, 2003) for an identical process, the DP of the starch used was 

reported as 160. As starch in general does not possess a constant molecular weight, it was 

assumed that this reported value referred to the number-average DP ( nM ). In addition, 

as soluble starch was employed by the authors, a relatively narrow distribution with a 

polydispersity index ( PD 1.32w nM M= = ) commonly found in the starch literature 

(Breuninger et al., 2009) was used to characterize the initial distribution in Table 5.3. 

Meshing was done according to the guidelines established in Section 4.1 for chain-end 

scission where the values of the meshing parameters p and q were chosen to be [p, q] = 

[51, 149]. This value of p is the minimum required for a total number of pivots = 200. An 

example code for the simulation is given in Appendix H. 
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Table 5.3: Initial conditions used in case study I. For the population balance component, 

the symbol mS(0) is the initial mass concentration of starch, nM  is the number-average 

DP, and wM  is the weight-average DP. 

Variable Unit Value Remark 

PBM component (i = 1 to p+q): 

( )0iC  mol L–1 ( )1

,0
i

i

v

v
c v dv

+

∫  

Initial distribution given by Eqs. (3.1) - 
(3.3) in Section 3.3.1, where: mS(0) = 30 

g/L, nM  = 160, wM  = 212 

( ), 0B iC γ  mol L–1 0 No bounded species at time = 0 

CM component: 

( )0X   g L–1 0.1 
Given by Nakamura et al. (1997) and 
Kobayashi and Nakamura (2003) 

( )0A   g L–1 0 No ethanol at time = 0 

( )1 max,10e e   - 0.95 
Assumed at a high level because yeast was 
pre-grown on glucose (Nakamura et al., 
1997) 

( )2 max,20e e  - 0.1 
Assumed at a low level because yeast was 
pre-grown on glucose (Nakamura et al., 
1997) 

( )3 max,30e e  - 0.1 
Assumed at a low level because yeast was 
pre-grown on glucose (Nakamura et al., 
1997) 

( )0 0M Eγ γ   g L–1 0.01 
Assumed at a low level because yeast was 
pre-grown on glucose (Nakamura et al., 
1997) 

 

5.2.3 Simulation Results 

 

The transients of various important quantities in the fermentation broth for both the 

calibrated model and the experimental data (Nakamura et al., 1997) are shown in Figure 

5.2. A number of observations and subtle points are worth mentioning. As yeast was pre-

cultured on glucose, the rate of biomass growth at the initial phase was slow as cellular 

resources were reallocated to the synthesis of glucoamylase. As time progressed, the rate 

of biomass growth and ethanol production increased due to the availability of glucose 
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from the hydrolysis of starch. Remarkably, the concentration of glucoamylase could be 

modelled explicitly, in contrast to previous similar work which obscured the exact 

quantity of the extracellular enzyme, adopting only its relative intracellular levels 

(Altintas et al., 2002; Gadgil et al., 1996; Ochoa et al., 2007). The tailing off of 

glucoamylase beyond 100 h was most likely due to denaturation. Moreover, unlike 

Kobayashi and Nakamura (2003) who did not showcase the glucose fit against their 

experimental data, the glucose profile from the interlinked PCM-CM model agreed fairly 

well with the experimental data. A dual-peak profile was predicted by the interlinked 

model. Although this was not clearly reflected by the under-sampled experimental data, 

the second peak was most likely due to the steep decline in the concentration of starch 

around 60 h as a result of the accumulation of glucoamylase in the broth. While the 

experimental concentrations of maltose (DP2) and maltotriose (DP3) in the broth were 

not reported, with the interlinked PBM-CM model, these could be readily predicted. They 

peaked only when the bulk of starch had been hydrolyzed, and were about two orders of 

magnitude lower than that of glucose. This is expected for chain-end scission, as it takes 

time for the large starch molecules to be trimmed down to dimers and trimers. Beyond 

100 h, the SSF process was essentially completed. Considering the challenges in 

obtaining reliable data from bioreactors, the overall quality of fit of the model output to 

experimental data is very satisfactory.  The relatively poorer fit to the starch profile could 

be attributed to the absence of resistant starch portion in the formulation of starch 

(Polakovič & Bryjak, 2004), which if present could delay the action of glucoamylase, 

causing starch to deplete at a slower rate towards the later phase. 
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Figure 5.2: Transients of various quantities in the fermentation broth where model 

predictions are represented by lines and experimental data are represented by symbols. 

Here, starch (30 g/L) is the sole initial substrate. 
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Figure 5.3 depicts the temporal evolution of the molar concentration densities of the 

broth. Such detailed information is a characteristic of the PBM component of the model. 

From the figure, two key observations could be gleaned. First, the larger the molecular 

size, the more slowly the molar concentration densities changed with time. This is 

expected as it would take a longer time for longer polymers to be shortened significantly 

by cutting one monomer at a time. The second observation is that the absolute magnitudes 

of the molar concentration densities differed greatly. That for glucose was orders of 

magnitude larger from the rest despite being utilized concurrently by yeast. This is 

corroborated by the biomass and glucose profiles in Figure 5.2 before 50 h, which show 

steeper glucose build-up relative to biomass. Such response can be modified by adjusting 

the relative abundance of starch to yeast and / or the rate of glucose uptake by the yeast. 

Seen from another angle, the transient of the number-average DP 

( , ,
1 1

p q p q

n j j B j j B j

j j

M x C C C C
+ +

γ γ

= =

   = + +   ∑ ∑  ) was reduced significantly by the sharp rise in 

the number of glucose molecules. In contrast, since the removal of glucose units from 

larger chains did not reduce the molecular weight of the polymer significantly, the 

weight-average DP ( 2
, ,

1 1

p q p q

w j j B j j j B j

j j

M x C C x C C
+ +

γ γ

= =

   = + +   ∑ ∑ ) displayed a slower 

decrease over time. Thus, a signature characteristic of chain-scission action on starch is 

an initial increase in the PD w nM M=  followed by an eventual decrease when the bulk 

of the starch is converted to glucose. As these polymer properties are associated with the 

viscosity of the broth which may form a major concern in the design and operation of the 

bioreactor, results here facilitate its extraction, e.g. through the Mark-Houwink equation 

(Hiemenz & Lodge, 2007). Certainly, if the starch has a different initial molecular size 

distribution, the viscosity and the time to reach a set value will be different. Despite this, 

the qualitative nature of the temporal evolution of the various polysaccharide molecules 

is expected to be similar. 
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Figure 5.3: Transients of polymer properties corresponding to the system described in 

Figure 5.2. For the molar concentration density, the triangular symbol represents the 

concentration density of glucose where the lowest point corresponds to time = 10 h, 

followed by time = 20 h to time = 50 h in the order of increasing density values.  

 

Using the calibrated model, how yeast would behave was further explored. Although 

conclusive pronouncement on the model predictions beyond the operating conditions by 
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5.4 shows the model predictions on the effect of adding glucose, or maltose to the starch-
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of glucose at the onset of fermentation promoted the rapid growth of biomass. For as long 
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because the yeast was pre-cultured on glucose. In both cases, the excretion of 

glucoamylase was not repressed due to the absence of glucose. None of the cases 

exhibited the classic diauxic growth pattern (Kompala & Ramkrishna, 1986; Monod, 

1942) where the biomass would show two distinct exponential growth phases, one for 

glucose followed by another for the less preferred sugar. This was chiefly due to the 

continuous supply of glucose by the action of extracellular glucoamylase and the 

concomitant depletion of the other sugar via scission. 
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Figure 5.4: Transients of various quantities in the fermentation broth when 3 g of glucose 

(dashed line), or 3 g of maltose (dashed-double-dotted line) was added in addition to 30 

g of starch at time = 0 h. The profile for 30 g starch (solid line) as the sole substrate is 

given as reference. 
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Curiously, although the initial presence of glucose in the fermentation broth repressed 

the synthesis of glucoamylase which is critical for the hydrolysis of starch, Figure 5.4 

suggests that overall, the addition of glucose hastened starch hydrolysis. One plausible 

explanation is that as a result of the initial rapid growth on glucose, more cells were 

available to produce glucoamylase when the repressive effect of glucose disappeared, 

resulting in a significant increase in the concentration of glucoamylase within a short time 

window. This is corroborated by the biomass and the glucoamylase profiles. Such early 

abundance of glucose was not available when only starch or maltose-starch was present, 

as it took nearly 50h for the glucose concentrations to peak. Consequently, biomass 

accumulated more sluggishly, with the corresponding lower secretions of glucoamylase 

as glucose was being depleted. 

 

The presence of a cybernetic component avails insights beyond the macroscopic 

parameters above. When maltose and starch are present, the glucose-nursed yeast is 

forced to shift resources to generate the key enzymes for maltose consumption, while at 

the same time explore the surrounding for potential glucose availability by secreting some 

glucoamylase. Such behaviour can be seen in Figure 5.5, which shows a precipitous drop 

in 1 max,1e e  together with a rise in 2 max,2e e  and ,EU γ , with V2 kept at the highest level for 

about 8 h to maximize the assimilation of maltose. Due to the action of glucoamylase on 

starch, glucose became abundant soon after. Since glucose remains the most favored 

substrate, the yeast began to redeploy resources to generate enzymes to grow on glucose, 

as seen in the U-turn in the 1 max,1e e  profile and a rapid rise of ,1eU  and V1, with the 

concomitant decline in the maltose counterparts. As this switch from maltose to glucose 

uptake occurred rapidly, the level of 2 max,2e e  only reached a low peak value. Further, as 

the glucose production rate was much faster than its consumption, the yeast throttled the 

secretion of glucoamylase, resulting in ,EU γ  showing a maximum. Considering that the 
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glucoamylase action could not produce any maltotriose (except in the very last stages), 

the corresponding enzyme for maltotriose utilization was virtually absent and the biomass 

growth on it completely repressed. 

 

 

Figure 5.5: Transients of the level of key metabolic enzymes, plus the cybernetic 

variables U and V corresponding to the maltose-starch mixture presented in Figure 5.4. 
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Figure 5.6 shows the various quantities in the fermentation broth when a considerable 

amount of maltotriose (30 g) was added to 30 g of starch. In general, the ethanol and 

glucoamylase profiles were similar to the maltose-starch example discussed previously. 

However, differing from the maltose-starch example, starch was hydrolyzed slowly at the 

initial phase, an observation which was counter-intuitive as there was no sign of 

glucoamylase repression in this case. On closer examination, this was due to two reasons. 

First, the presence of a large amount of maltotriose competed for the availability of 

glucoamylase, which in turn reduced the amount of free enzymes available to hydrolyze 

starch. Second, in the chain-end scission of large starch molecules, the resulting larger 

counterparts are still counted as starch. The ability to capture this slow depletion of starch 

is a notable feature. 

 

For the remaining sub-figures, as expected, the yeast would initially suppress enzymes 

for glucose assimilation, produce enzymes to grow on maltotriose, while at the same time 

secrete glucoamylase to probe the surrounding. When glucose appeared, the yeast quickly 

switched back to growing on it, as indicated by the rapid rise of V1 after a mere 10 h, 

together with Ue,1 as well as 1 max,1e e  after 30 h. Nevertheless, up to about 60 h, due to 

the relative abundance of maltotriose compared to glucose, levels of 3 max,3e e , Ue,3 and 

V3 remained noticeable. Interestingly however, within the first 100 h when maltose was 

present and at times dominant, the corresponding counterparts for maltose were at much 

lower levels. These observations hint that the optimum strategy of the yeast is to tackle 

the generally most abundant substrate (maltotriose), grow on the most preferred substrate 

(glucose) when it becomes available, and ignore the rest. The implication to industrial 

production is that a significant build-up of a commercially desirable intermediate could 

be possible if the microbes are kept busy metabolizing other substrates. 
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Figure 5.6: Transients of various quantities in the fermentation broth when 30 g of 

maltotriose was added to 30 g of starch at time = 0 h.  
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As alluded to previously, the addition of glucose seemed to contribute to an overall 

increase in the pace of hydrolysis for yeast pre-cultured on glucose. Figure 5.7 examines 

this further by probing the molar concentration density of the sugars subjected to various 

initial substrates after 80 h. The figure affirms that the extent of hydrolysis for the 

glucose-starch initial substrate surpassed that of the other cases. Such an observation was 

also congruent with the experimental data reported by Altintas et al. (2002) for a similar 

process. In applications, this efficient breakdown of starch by the addition of glucose to 

the broth would hasten the abundant supply of nutrients to the fermenting organism, 

which could promote more timely release of growth-associated products.  

 

 

Figure 5.7: Effect of various mixture of initial substrates on the molar concentration 

density at 80 h. 
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containing broth at 78 h, about 14% reduction in the fermentation time compared to the 

other cases. While adding maltose had a marginal effect in shortening the time to attain 

maximum ethanol concentration, the addition of maltotriose did not. As such, when yeast 

is pre-cultured on glucose, to expedite the production of ethanol, it is advantageous for 

the initial broth to contain glucose. This raises the natural question of whether the 

conclusion would remain had the yeast been pre-cultured on maltose or maltotriose. 

Model prediction (details not shown) was affirmative. This can be rationalized as follows: 

Firstly, if left to its own, a pre-culture broth with maltose or maltotriose will become a 

glucose broth, as both sugars will induce the excretion of glucoamylase. Secondly, 

suppose during pre-culture, the glucose level is somehow kept low, and the levels of 

enzymes for maltose and maltotriose are relatively higher than that for glucose. The 

introduction of such yeast into a glucose-starch broth will repress enzymes for maltose 

and maltotriose. Although switching back to glucose-based growth incurs some delay, 

having glucose readily available bypasses the need to wait for glucoamylase generation 

and action. Thus, regardless of the pre-culture medium for the yeast, the overall effect is 

the hastened production of ethanol by adding some glucose to starch. In practical 

implementations, the starch could be pre-treated before being introduced into the 

fermentation broth as a substrate. To investigate whether there is an optimum dosage of 

glucose, Figure 5.8b plots the productivity of ethanol as predicted by the interlinked 

PBM-CM model against the initial glucose dosage. For fairness, the definition of 

productivity has been normalized against the initial substrate level and the duration to 

reach peak ethanol concentration. It turns out that a fairly sharp maximum exists at 

approximately 7 g of glucose for 30 g of starch. As the effects of the initial substrate 

quantity had been accounted for, the decline in productivity at a higher glucose dosage is 

chiefly due to a longer fermentation time, most likely due to product inhibition built into 

the growth model of the yeast. 
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Figure 5.8: Illustrating (a) the ethanol production with various mixtures of initial 

substrate and (b) the productivity of ethanol as a function of glucose addition, where A is 

the concentration of ethanol (subscripts ‘p’ and ‘0’ denoting the peak and initial values 

respectively), 1
eqm  is the total mass of substrate in the form of glucose equivalent (1 g 

starch = 1.11 g glucose), and tp is the time required to achieve peak ethanol concentration.  
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5.3  Case Study II: Growth of A Glucoamylase and α-amylase Producing 

Recombinant S. cerevisiae on Starch 

 

5.3.1 Model Formulation 

 

In the work of De Moraes, Astolfi-Filho, and Oliver (1995), a recombinant yeast, i.e. 

S. cerevisiae YPG/AB, capable of expressing both Bacillus subtilis α-amylase and 

Aspergillus awamori glucoamylase as separate poly-peptides was constructed. The 

performance of this yeast strain in converting starch to alcohol in anaerobic SSF 

environment was further investigated by Ülgen et al. (2002). To model this SSF system 

using the interlinked PBM-CM framework, the major differences between the current and 

the previous case study are: a) the excretion of two different extracellular depolymerases 

must now be accounted for in the CM component, and consequently b) the two different 

enzymatic actions on starch must now be reflected in the PBM component, with α-

amylase being capable of randomly splitting starch into smaller molecules while 

glucoamylase releases successive glucose units from the non-reducing ends of starch 

molecules. Following the previous case study, starch was also modelled here as a linear 

population of polymers. The hydrolysis mechanisms, involving both α-amylase and 

glucoamylase, are postulated as: 

Hydrolysis by α-amylase: 

( ) ( ) ( ) ( ), ,

,
; 2; 1 to 1

a i c i

b i

k k

k
E P i E P i E P i j P j i j iα α α

α α

α+ → + − + ≥ = −


⇀↽


   (5.46) 

( ) ( ),1

,1

1 1
a

b

k

k
E P E Pα α

α

α+ 


⇀↽


    (5.47) 

Hydrolysis by glucoamylase: 

( ) ( ) ( ) ( ), ,

,

1 1 ; 2
a i c i

b i

k k

k
E P i E P i E P i P iγ γ γ

γ γ

γ+ → + − + ≥


⇀↽


   (5.48) 
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( ) ( ),1

,1

1 1
a

b

k

k
E P E Pγ γ

γ

γ+ 


⇀↽


    (5.49) 

where P(i) is the polymer with DP = i. Glucoamylase, following the previous case study, 

does not exhibit single chain attack or multiple attack patterns (Robyt, 2009). Although 

α-amylases from different origins had been reported to exhibit multiple attack pattern 

(Kondo, Nakatani, Hiromi, & Matsuno, 1978; Robyt, 2009; Robyt & French, 1967), this 

was reported by Kondo, Nakatani, Matsuno, and Hiromi (1980) to be negligible for α-

amylase originating from B. subtilis. Thus, the free glucoamylase and α-amylase are 

recovered upon successful bond scission. For simplicity, it was assumed that both 

glucoamylase and α-amylase interact independently with the substrates and that they do 

not simultaneously bind to the same substrate molecule. As described in Section 5.2.1, 

the inhibition of enzyme action by glucose is implied in Eqs. (5.47) and (5.49). Similarly, 

inhibition of enzyme action by starch was not considered here for simplicity. 

 

For the purpose of illustration, the CM framework of Kompala and Ramkrishna (1986) 

as well as the main assumptions about yeast are retained. Briefly, yeast preferentially 

metabolizes the DP1 – DP3 sugars in this approximate sequence to produce ethanol and 

that ethanol consumption during low sugar condition by yeast is ignored as observed in 

the data by Ülgen et al. (2002).  Thus, as far as the growth of biomass (X), production of 

ethanol (A), and the synthesis of intracellular metabolic enzymes (ei) are concerned, the 

form of equations in general do not change. However, because cellular death was reported 

in the work of Ülgen et al. (2002), a term for cellular death is included in the equation for 

biomass growth. In addition, because two different depolymerases are now involved, the 

total amount of DP = i at any time would include the free sugar plus two different types 

of bounded sugar, i.e. those bounded by α-amylase and glucoamylase respectively. The 

rate of change in these quantities is briefly given as:  
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where Kd [h–1] is rate constant for cellular death, and ,B iCα  [mol/L] as well as ,B iC γ [mol/L] 

are the molar concentration of substrates i bounded by α-amylase and glucoamylase 

respectively. 

 

For S. cerevisiae YPG/AB, it was observed that the excretion of glucoamylase was 

promoted by the abundance of starch and repressed by glucose (Ülgen et al., 2002). This 

is not surprising, as this is the general observation in the literature concerning microbes 

capable of excreting depolymerases (Kobayashi & Nakamura, 2003, 2004; Koutinas, 

Wang, Kookos, & Webb, 2003; Nakamura et al., 1997). Similar observations were also 

reported for the excretion of α-amylase in the literature (Rothstein, Devlin, & Cate, 1986). 

For the yeast strain considered here, this was corroborated by the observation that when 

glucose was depleted, the effect of repression by glucose vanished which consequently 

caused the concentration of α-amylase to increase (Ülgen et al., 2002). Although the yeast 

obtained the capability to excrete these enzymes through genetic manipulation, the 

excretion of these depolymerases similarly utilizes cellular resources (Varner & 

Ramkrishna, 1999a).  Therefore, to capture the regulation of these enzymes using a 

lumped CM, the following formulation is naturally the simplest approach. As the model 

must be able to handle the situation where dimeric sugars are also capable of inducing 

the synthesis of the depolymerases, the rate of glucoamylase and α-amylase synthesis 
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( ,Er α  and ,Er γ  [g/g-DW/h]) is formulated as a function of the mass concentration of DP ≥ 

2. The rate of change in the molar concentration of both enzymes with their corresponding 

enzyme balances can then be written as: 
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Note that because two enzymes are now involved, for each enzyme a separate enzyme 

balance must be written. In addition, as it was reported that the accumulation of ethanol 

exerts an inhibition effect only on the glucoamylase within the broth (but not α-amylase) 

(Ülgen et al., 2002), only Eq. (5.54) contains the deactivation term by ethanol. For both 

the synthesis of intra- and extracellular enzymes, the constitutive term is omitted ( e
= 0ρρρρ  

and ρρρρE = 0) following Kompala and Ramkrishna (1986).  

 

The cybernetic variables for controlling the synthesis of intra- and extracellular 

enzymes, used in Eqs. (5.52) - (5.54), are given as Eq. (5.57) and Eq. (5.58) respectively: 
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Here, yeast is assumed to “grow” indirectly on starch by excreting both α-amylase and 

glucoamylase, having growth rates of rαX [g L–1/h] and rγX [g L–1/h] respectively: 
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The form of the rate rα and rγ are as deliberated in Section F.2 of Appendix F. Here, 

repression by glucose is achieved by having the inhibition terms of IK α  [g/L] and IK γ  

[g/L]. As for the cybernetic variable which controls the activities of the enzymes (used in 

Eqs. (5.50) - (5.51)), they remain the same as shown in the previous case study because 

the activity of extracellular enzymes is assumed to be unregulated: 

( )
,

,1 ,2 ,3

; 1 to 3
max , ,

X i

i

X X X

r X
V i

r X r X r X
= =    (5.61) 

 

Establishing the above, and referring to the hydrolysis mechanisms given in Eqs. (5.46) 

- (5.49), the material balance equations for glucose, maltose, maltotriose and those 

represented by i = 4 to p+q are given as: 
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In the above, yeast, following the previous case study, was assumed to only metabolize 

the free sugars. The expressions for ijnα  and ijnγ  used above are given as: 
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where for j = i, the first integral on the RHS of Eqs. (5.69) - (5.70) is omitted because the 

scission of polymers with the size of xi produces only smaller polymers with the size of 

≤ xi (S. Kumar & Ramkrishna, 1996a). 

 

Equations (5.50) - (5.70) constitute the model equations necessary to describe the SSF 

of starch by a strain capable of excreting two different forms of depolymerases. The rate 

kernels for both α-amylase and glucoamylase were based on the subsite theory, as had 

been done in case study I (cf. Sections G.1 – G.2 of Appendix G for the subsite theory 

for glucoamylase and α-amylase). From the literature, α-amylase from B. subtilis 

possesses eight subsites ( 8mN α = ) in which the catalytic site is situated between the sixth 

and the seventh subsite (Iwasa et al., 1974). On the other hand, for glucoamylase from A. 

awamori, the total number of subsites was reported to be seven ( 7mN γ = ) (Sierks, 1988). 

The kinetic parameters for hydrolysis are given by the following expressions: 

For α-amylase: 
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For glucoamylase: 
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Rationale for using the forms of expressions above are as given in the previous case study. 

 

5.3.2 Parameter Identification and Initial Conditions 

 

Identification of the parameters was done in several ways, as summarized in Table 5.4. 

Since S. cerevisiae YPG/AB excretes α-amylase from B. subtilis and glucoamylase from 

A. awamori, in the absence of the subsite map at 303 K, the subsite affinities for α-

amylase from B. subtilis at 298 K (Iwasa et al., 1974) and glucoamylase from A. awamori 

at 323 K (Sierks, 1988) were used here, cf. Section G.3 of Appendix G. Among the 

parameters tabulated, 32 of them were determined by calibration using the GA. The 

population size of the algorithm was chosen as five times the number of parameters (Cox, 

2005) while the remaining settings were kept as default. Calibration was simultaneously 

done for five variables, namely the biomass, starch, glucose, ethanol, and reducing sugar 

concentrations. Here, starch was assumed to be polymers larger than the size of dextrin, 

i.e. starch was taken to be the total mass of all polymers with DP > 40 (Kearsley & 

Dziedzic, 1995). The concentration of reducing sugar (RS, [g/L]) was calculated by the 

following expression: 

( ) ( )1 , ,
40

RS  = 
j

j B j B j

x

t M C C Cα γ

≤

+ +∑    (5.77) 

As every polymer chain possesses only one reducing end which could react with the 3,5 

- dinitrosalicylic acid (DNS) reagent (Bernfeld, 1955) and that glucose is used for the 

preparation of the standard curve in the DNS method for reducing sugar assay, essentially 

every polymer molecule detectable by the DNS method should be counted as one glucose 
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molecule; hence the multiplication by the molecular weight of glucose. As the size of the 

optimization problem using the GA is large (i.e. 32 parameters to be calibrated), [p, q] = 

[10, 50] was used to reduce the computational time incurred for calibration. The integrity 

of the optimized parameters was examined by refining the mesh and re-evaluating the 

objective function, as discussed in the next paragraph. The time required on average for 

one complete run is approximately 54 h. During the calibration stages, larger weight, i.e. 

1iW > , was imposed on the biomass concentration to improve the overall fit. The final 

Jopt (Eq. (3.12) of Section 3.4.2), calculated at 1iW =  is 0.0917. 

 

Table 5.4: Values of model parameters used in case study II where the specified initial 

ranges for calibration using the Genetic Algorithm (GA) were deduced by bracketing the 

extreme values reported by several similar studies in the literature (Altintas et al., 2002; 

Birol, Önsan, Kırdar, & Oliver, 1998; Gadgil et al., 1996; Jang & Chou, 2013; Kobayashi 

& Nakamura, 2003, 2004; Ochoa et al., 2007). Calibration was done using the data 

reported by Ülgen et al. (2002). 

Parameter Unit Value Remark 

max,1µ   h–1 0.787 Calibrated using GA within [0.1, 1] 

max,2µ  h–1 max,10.88µ  
Calculated from max,1µ  and max,2µ  

reported by Y.-S. Lee et al. (1995) 

max,3µ  h–1 max,20.88µ  
Following after the identification of 

max,2µ  

αµ  h–1 0.433 Calibrated using GA within [0.1, 1] 

γµ  h–1 0.419 Calibrated using GA within [0.1, 1] 

K1 g L–1 1.22 
Calibrated using GA within  
[0.01, 1.5] 

K2 g L–1 3K1 
Calculated from K1 and K2 reported 
by Y.-S. Lee et al. (1995) 

K3 g L–1 3K2 
Following after the identification of 
K2 
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Table 5.4 continued 

Parameter Unit Value Remark 

Kα   g L–1 2.66 
Calibrated using GA within  
[0.001, 15] 

K γ  g L–1 13.9 
Calibrated using GA within  
[0.001, 15] 

KEtOH g L–1 7.00 Calibrated using GA within [1, 15] 

IK α  g L–1 4.23 Calibrated using GA within [0.01, 15] 

IK γ  g L–1 14.6 Calibrated using GA within [0.01, 15] 

1Y  g-DW (g-DP1)–1 0.127 
Calibrated using GA within  
[0.01, 0.15] 

2Y  g-DW (g-DP2)–1 0.95Y1 
Calculated from Y1 and Y2 reported by 
Y.-S. Lee et al. (1995) 

3Y  g-DW (g-DP3)–1 0.95Y2 
Following after the identification of 
Y2 

1
EtOHY  g-EtOH (g-DP1)–1 0.430 

Calibrated using GA within  
[0.01, 0.5] 

2
EtOHY  g-EtOH (g-DP2)–1 11.05 EtOHY  

Calculated from 1
EtOHY  and 2

EtOHY  

reported by Y.-S. Lee et al. (1995) 

3
EtOHY  g-EtOH (g-DP3)–1 21.05 EtOHY  

Following after the identification of 

2
EtOHY  

,1ek  h–1 0.800 Calibrated using GA within [0.01, 1] 

,2ek  h–1 0.703 Calibrated using GA within [0.01, 1] 

,3ek  h–1 0.619 Calibrated using GA within [0.01, 1] 

,1eK  g L–1 3.20 
Calibrated using GA within  
[0.01, 15] 

,2eK  g L–1 ,13 eK  Calibrated using GA within  
[0.01, 15] 

,3eK  g L–1 ,23 eK  Calibrated using GA within  
[0.01, 15] 

,1eβ  h–1 1.00×10–2 
Calibrated using GA within  
[1×10–4, 5×10–2] 

,2eβ  h–1 ,1eβ  Following Kompala and Ramkrishna 
(1986) 

,3eβ  h–1 ,1eβ  Following Kompala and Ramkrishna 
(1986) 

Mα  g mol–1 47000 
Value reported by Detera and 
Friedberg (1979) for B. subtilis  
α-amylase 
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Table 5.4 continued 

Parameter Unit Value Remark 

M γ  g mol–1 83870 

Value reported by Fierobe, 
Mirgorodskaya, Frandsen, Roepstorff, 
and Svensson (1997) for S. cerevisiae 
expressing A. awamori glucoamylase 

,Ek α  h–1 0.818 Calibrated using GA within [0.1, 1] 

,Ek γ  h–1 0.447 Calibrated using GA within [0.1, 1] 

,EK α  g L–1 1.64 
Calibrated using GA within  
[0.001, 15] 

,EK γ  g L–1 10.4 
Calibrated using GA within  
[0.001, 15] 

,E αβ  h–1 0.385 
Calibrated using GA within  
[1×10–4, 5×10–1] 

,E γβ  h–1 2.80×10–2 
Calibrated using GA within  
[1×10–4, 5×10–1] 

EtOH
β  Lη g–η h–1 2.18×10–2 

Calibrated using GA within  
[1×10–4, 5×10–2] 

η - 2.00 
Value reported by Kobayashi and 
Nakamura (2003) 

ˆ
akα  L mol–1 h–1 DP–1 5.00×106 

Chosen so that , , 1c i b ik kα α <<  within 

the calibration ranges for ˆ
ckα , ˆ

cK α , 

and αδ  

ˆ
ak γ  L mol–1 h–1 DP–1 5.00×106 

Chosen so that , , 1c i b ik kγ γ <<  within 

the calibration ranges for ˆ
ck γ , ˆ

cK γ , 

and γδ  

ˆ
ckα  h–1 644 Calibrated using GA within [1, 1500] 

ˆ
ck γ  h–1 734 Calibrated using GA within [1, 1500] 

ˆ
cK α  DP 10472 

Calibrated using GA within  
[1, 20×103] 

ˆ
cK γ  DP 49.8 Calibrated using GA within [1, 5000] 

αδ  h–1 6.42 Calibrated using GA within [0.1, 200] 

γδ  h–1 18.1 Calibrated using GA within [0.1, 200] 

Kd h–1 1.12×10–2 
Calibrated using GA within  
[1×10–4, 5×10–2] 
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Table 5.5 gives the initial conditions of the model. In the work of Ülgen et al. (2002), 

soluble starch was used. Since no further particulars about the starch employed was given, 

the number-average DP, 160nM =  and a polydispersity index ( PD 1.32w nM M= = ) as 

used in case study I were retained here for simplicity. Moreover, the soluble starch was 

autoclaved at 121°C for 45 mins, and thus 1.68 g/L of reducing sugar was initially present. 

Since the initial concentration of glucose was reported to be 0.79 g/L, for simplicity the 

remaining amount of reducing sugar (0.89 g/L) was assumed to be the DP2 sugar. 

According to the principle employed in Eq. (5.77), this exact amount of the DP2 sugar 

was calculated to be 1.69 g/L. Meshing was done according to the guidelines established 

in Section 4.2 for simultaneous random and chain-end scissions. Upon obtaining the 

optimized parameters as described above, the model was re-run using a finer mesh, i.e. 

[p, q] = [51, 149] where the value of p is the minimum required for a total number of 

pivots = 200. In order to ascertain that the coarser mesh employed during calibration did 

not affect the integrity of the calibrated parameters, the objective function Jopt for the new 

mesh was examined and found to be generally indifferent to the choice of [p, q] i.e. the 

new Jopt = 0.0920 vs. the old Jopt = 0.0917 (less than 0.5% deviation). An example code 

for the simulation is given in Appendix I. 
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Table 5.5: Initial conditions used in case study II. For the population balance component, 

the symbol mS(0) is the initial mass concentration of starch, nM  is the number-average 

DP, and wM  is the weight-average DP. 

Variable Unit Value Remark 

PBM component (i = 1 to p+q): 

( )1 0C  mol L–1 ( )1 10m M  Initial distribution given by Eqs. (3.1) - 
(3.3) in Section 3.3.1, where mS(0) = 38.4 

g/L, nM  = 160, wM  = 212, 

( )1 0 0.79 g/Lm = , ( )2 0 1.69 g/Lm = , and 

( )1

,0 0
i

i

v

v
c v dv

+

≈∫  for i = 1 to 2. 

( )2 0C  mol L–1 ( )2 20m M  

( )0iC  mol L–1 
( )1

,0
i

i

v

v
c v dv

+

∫  

i = 3 to p+q 

( ), 0B iCα  mol L–1 0 No bounded species at time = 0 

( ), 0B iC γ  mol L–1 0 No bounded species at time = 0 

CM component: 

( )0X   g L–1 0.1 Given by Ülgen et al. (2002) 

( )0A   g L–1 0 No ethanol at time = 0 

( )1 max,10e e   - 0.9 
Assumed at a high level because yeast was 
pre-grown on glucose (Ülgen et al., 2002) 

( )2 max,20e e  - 0.1 
Assumed at a low level because yeast was 
pre-grown on glucose (Ülgen et al., 2002) 

( )3 max,30e e  - 0.1 
Assumed at a low level because yeast was 
pre-grown on glucose (Ülgen et al., 2002) 

( )0 0M Eα α   g L–1 1.42×10–1 

Calibrated using GA within a low 
concentration range [1×10–5, 0.15] because 
yeast was pre-grown on glucose (Ülgen et 
al., 2002) 

( )0 0M Eγ γ   g L–1 4.21×10–2 

Calibrated using GA within a low 
concentration range [1×10–5, 0.15] because 
yeast was pre-grown on glucose (Ülgen et 
al., 2002) 

 

5.3.3 Simulation Results 

 

The transients of various important quantities in the fermentation broth for both the 

calibrated model and the experimental data (Ülgen et al., 2002) are shown in Figure 5.9. 
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In general, the model predictions agreed well with the experimental data. The typical 

profiles encountered in fermentation studies for biomass, ethanol, and starch 

concentrations were predicted by the model. One notable feature of the interlinked PBM-

CM framework is the ability to model the transient of the concentration of the reducing 

sugar systematically. In the past where CM was employed to model SSF (Altintas et al., 

2002; Ochoa et al., 2007), reducing sugar was modelled as a lumped entity and the 

resulting fit was not benchmarked against any form of experimental data. Here, because 

of the ability to account for the complete polymer distribution, the notion of reducing 

sugar has a more solid definition (Saqib & Whitney, 2011), and is even amenable for the 

particular type of experimental procedure employed, c.f. Eq. (5.77) for the definition of 

reducing sugar obtained through the DNS procedure. For systems involving α-amylase 

where glucose is not the main product, the ability to model the transient of reducing sugar 

in the broth is important to observe the dynamics of hydrolysis by α-amylase (Birol et al., 

1998). From the figure, although the experimental data for both glucose and reducing 

sugar are slightly noisy, the general trend of the dynamic profiles was captured 

satisfactorily. 
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Figure 5.9: Transients of various quantities in the fermentation broth where model 

predictions are represented by lines and experimental data (Ülgen et al., 2002) are 

represented by symbols. Here, starch (38.4 g/L), glucose (0.79 g/L) and maltose (1.69 

g/L) are initially present. Soluble starch with [ ], , , 160,212,878,1.325
n w

M M N PD  =   

was used here. 

 

Although the model was not rigorously calibrated, i.e. only a single set of experimental 

data as shown in Figure 5.9 was used for calibration, several informative features could 

nonetheless be gleaned from the predicted transients of the concentrations of α-amylase 

and glucoamylase. First, α-amylase was produced in small amounts during the first 50 h 

of the fermentation and remained relatively constant until the stationary phase where its 

concentration then increased rapidly. In the work of Ülgen et al. (2002), while the authors 
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mentioned that the measurement of the activity of the depolymerases may be inaccurate 

due to the compounding effects of both α-amylase and glucoamylase, the general trend 

displayed for α-amylase was coherent with the prediction in Figure 5.9 in that the activity 

of α-amylase also increased towards the stationary phase. Furthermore, in a similar work 

by Birol, Kirdar, and Önsan (2002), this trend for α-amylase excretion was also observed. 

As a result of this rapid increment in the concentration of α-amylase in the stationary 

phase, the concentration of reducing sugar exhibited a second peak between 60 to 80 h. 

During this phase, the consumable sugars which constitute the category of reducing sugar 

consisted of primarily the DP2 and DP3 sugars as glucose was depleted rapidly by the 

large amount of biomass present. Second, the concentration of glucoamylase as predicted 

by the interlinked model increased during the exponential phase of the yeast growth and 

was deactivated at high ethanol concentration. Such a prediction is again congruent with 

the general observation encountered in the studies by Ülgen et al. (2002) and Birol et al. 

(2002). This low/negligible concentration of glucoamylase beyond 60 h also caused 

glucose to not accumulate during this time period.  
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Figure 5.10: Transients of the level of key metabolic enzymes, plus the cybernetic 

variables U and V corresponding to the simulation presented in Figure 5.9. 

 

Figure 5.10 shows the corresponding level of key metabolic enzymes and the 

cybernetic variables U and V for the results presented in Figure 5.9. Upon further 

examination, these figures seem to suggest that yeast manages the excretion of α-amylase 

and glucoamylase within the fermentation broth according to a particular strategy. At the 

initial phase, both α-amylase and glucoamylase were excreted by yeast in small amounts 

where cellular resources during this phase were increased gradually for inducing their 
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production (see profiles of ,EU α  and ,EU γ ). Although the production of these two 

enzymes are generally repressed by glucose, the initial amount of glucose present was 

not sufficiently significant to initiate a complete repression of their production. The role 

of α-amylase when confronting starch is to break the polymers such that more non-

reducing ends are available for glucoamylase attack (Fujii & Kawamura, 1985). As only 

a small amount of α-amylase is required to liquefy starch, its production was soon after 

repressed (albeit not completely to sustain its presence in the broth) while yeast focused 

on producing more glucoamylase which is directly responsible for generating the 

preferred substrate, i.e. glucose. Because the extent of glucose repression on 

glucoamylase production is lesser than that for α-amylase (Ülgen et al., 2002), the 

production of glucoamylase continued despite the rise of glucose level until the 

concentration of glucose peaked at approximately 30 h. The rise of glucose level also 

consequently caused the cells to channel more resources for the production of the key 

enzyme for metabolizing glucose. Soon after the concentration of ethanol reached a 

significant level beyond 43 h, the concentration of glucoamylase declined rapidly because 

of the deactivation by ethanol. Deactivation of α-amylase by ethanol does not occur 

according to Ülgen et al. (2002). The decline in the concentration of glucoamylase by 

ethanol deactivation was accompanied by a rapid decline in ,EU γ  as cells find it infeasible 

to continue the induction of glucoamylase synthesis. Under such circumstance where the 

main enzyme for generating the preferred substrate (glucose) is not available, the next 

best strategy to generate glucose is by inducing the production of α-amylase. The model 

prediction validates this point, where a major portion of the cellular resources was 

allocated for the induction of α-amylase, i.e. ,EU α  is large. From the profiles for the 

cybernetic variable V, yeast fully activated the key metabolic enzyme for the consumption 

of the DP2 sugar beyond 85 h. Even though V2 is large, growth on the DP2 sugar was still 

inefficient due to the low level of 2 max,2e e . Because glucose was also produced by α-
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amylase (albeit not in very large quantities and thus did not accumulate due to rapid 

consumption), V1 was not fully repressed. The foregoing observations seem to suggest 

that the yeast’s strategy for managing the excretion of α-amylase and glucoamylase is to 

optimize the generation of glucose. Regardless of whether other nutrients (i.e. the DP2 

and DP3 sugars) could be used to support growth, the yeast’s main priority would be to 

allocate cellular resources towards this goal. Considering that the model was not 

rigorously calibrated, the capability of the framework to yield such informative 

predictions is remarkable.  

 

 

Figure 5.11: Transients of various quantities in the fermentation broth when only α-

amylase is produced by the yeast. Soluble starch with , , ,
n w

M M N PD    = 

[ ]160,212,878,1.325  was used here. 
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Figure 5.12: Transients of the level of key metabolic enzymes, plus the cybernetic 

variables U and V corresponding to the simulation presented in Figure 5.11 

 

The results above seem to suggest that both α-amylase and glucoamylase were 

required for the efficient SSF of starch. To further validate this observation, it is desirable 

to observe whether having yeast to excrete only either α-amylase or glucoamylase is a 

sub-optimal strategy for SSF. First, the simulation was re-run by knocking out the ability 

of the yeast to excrete glucoamylase, i.e. by removing the respective terms in the 

equations. Thus, in this case, the yeast strain only excretes α-amylase. Figures 5.11 – 5.12 
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show the transients of the various quantities in the fermentation broth and the level of key 

metabolic enzymes plus the cybernetic variables U and V. From the figures, it is apparent 

that without glucoamylase, the generation of glucose was severely retarded. This could 

be due to two reasons. First, although the hydrolysis of starch by α-amylase also releases 

glucose, the amount released was immediately consumed by the yeast and thus it did not 

accumulate in the broth. Second, the amount of α-amylase excreted by the yeast was 

insufficient to actually produce a significant amount of glucose in the broth. Even though 

the cells under such a glucose deficient environment decided to allocate almost all of their 

resources for the production of α-amylase (high ,EU α ), the concentration of α-amylase 

was not high within the broth because the amount of biomass present was insufficient to 

promote the release of a larger amount of α-amylase. Such a slow biomass growth was 

due to the inefficient growth on primarily the DP2 sugar in a glucose deficient 

environment. In principle, had the yeast been suitably acclimatized, it might have a 

different set of system parameters that enabled it to grow more efficiently on the DP2 and 

DP3 sugars. For the current glucose-addicted strain, this was not the case, and the SSF 

process would be inefficient without glucoamylase producing capabilities. 
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Figure 5.13: Transients of various quantities in the fermentation broth when only 

glucoamylase is produced by the yeast. Soluble starch with , , ,
n w

M M N PD    = 

[ ]160,212,878,1.325  was used here. 
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Figure 5.14: Transients of the level of key metabolic enzymes, plus the cybernetic 

variables U and V corresponding to the simulation presented in Figure 5.13 

 

Figures 5.13 – 5.14 show the model predictions when the yeast excretes only 

glucoamylase within the broth. On first glance, it may seem that having yeast to solely 

excrete glucoamylase might be a viable SSF strategy. Because of the action of 

glucoamylase, the amount of glucose was sufficient during the first 40 h to promote 

efficient growth of biomass. At the initial period, ,EU γ  increased to induce the production 

of glucoamylase. When the concentration of glucose in the broth reached a significant 
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level at approximately 10 h, the synthesis of glucoamylase was repressed and the 

synthesis of 1 max,1e e  was induced thereafter. After glucose was depleted from the broth 

beyond 50 h, the cells started to induce the production of the key enzyme for metabolizing 

the DP2 sugar and began to grow on this sugar as inferred from the increasing value of 

V2. As the growth on the DP2 sugar was inefficient due to the relatively low level of 

2 max,2e e , its effect on the fermentation was not noticeable because the SSF is essentially 

completed during that time period. One point to note here is that similar to the case 

presented in Figures 5.11 – 5.12, the yeast’s strategy for survival is always to excrete the 

depolymerization enzyme for the generation of consumable substrates. The current 

results raise the natural question of whether there is a need at all for the excretion of α-

amylase, since Figures 5.13 – 5.14 seem to suggest that glucoamylase alone is sufficient 

for the SSF of starch. The following discussion addresses this issue. 

 

To investigate whether having the yeast to excrete only glucoamylase could possibly 

be the best strategy for SSF, Figure 5.15 shows the transients of various quantities in the 

fermentation broth for the SSF of starch with different distribution. Other than that used 

previously, i.e. , , ,
n w

M M N PD    = [ ]160,212,878,1.325  (denoted as starch C), the 

polymer with , , ,
n w

M M N PD    = [ ]10000,10100,22496,1.01  represents a hypothetical 

starch with a narrow distribution (referred to as starch A) while the polymer with 

, , ,
n w

M M N PD    = [ ]4100,5430,22496,1.324  represents the sweet potato starch 

(Breuninger et al., 2009) (referred to as starch B here). From the figure, clearly the 

differences in the distribution of starch affect the performance of the SSF when yeast is 

capable of only excreting glucoamylase. For starch C, i.e. soluble starch which is starch 

that had been partially hydrolyzed, SSF is efficient because there are sufficient non-

reducing ends for the glucoamylase to act on to produce glucose for efficient growth and 
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fermentation. However, when starch with a larger N and larger average DPs was used (i.e. 

starch A or B), the depletion of starch was drastically slower. This could be rationalized 

because the starch now contains more larger molecules, and in the chain-end scission of 

large starch molecules, the resulting larger counterparts are still counted as starch. From 

the figure also, the depletion of starch A was slower than that for starch B. This is because 

the bulk of the polymer mass for starch A is situated at a higher average ( 10100wM = ) 

than that for starch B ( 5430wM = ), and therefore glucoamylase took more time to 

hydrolyze starch A until the molecules were no longer counted as starch. Because of the 

slower depletion of starches A and B, other quantities in the fermentation broth were also 

consequently affected. For starches A and B, having more large molecules (within a fixed 

total mass) reduces the number of non-reducing ends for glucoamylase attack. Hence the 

generation of glucose was sluggish and consequently the growth of biomass and ethanol 

production were slow. Moreover, as chain-end scission produces primarily glucose, the 

concentrations of other sugars in the broth were low and the reducing sugar in this case 

comprised mainly of glucose. The results here show that having the yeast to excrete 

glucoamylase alone may not always be adequate because the performance of the SSF in 

such a case would be affected by the type of starch employed.  
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Figure 5.15: Transients of various quantities in the fermentation broth when only 

glucoamylase is produced by the yeast. Here, dashed lines represent the results for starch 

A with , , ,
n w

M M N PD    = [ ]10000,10100,22496,1.01 , dashed double dotted lines 

represent the results for starch B with , , ,
n w

M M N PD    = [ ]4100,5430,22496,1.324 , 

while solid lines represent the results for starch C with , , ,
n w

M M N PD    = 

[ ]160,212,878,1.325 . 
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Finally, the SSF of starch with different distribution by the yeast which excretes both 

α-amylase and glucoamylase is shown in Figure 5.16. From the figure, despite the 

differences in the starch employed, surprisingly the resulting SSF profiles are generally 

indifferent. This implies that the presence of α-amylase is critical in the SSF of starch to 

neutralize the effect of different starch distributions and to generate sufficient non-

reducing ends for glucoamylase to produce glucose. For pure enzymatic hydrolysis of 

starch using a mixture of α-amylase and glucoamylase, such a synergy between both 

enzymes had been observed in the literature (Fujii, Homma, & Taniguchi, 1988; Fujii & 

Kawamura, 1985). In fact, the results from Wong, Robertson, Lee, and Wagschal (2007) 

showed that the conversion profiles (in terms of glucose production) for the hydrolysis of 

corn starch and wheat starch by a combination of purified α-amylase and glucoamylase 

were dynamically similar, thus further corroborating the predictions. The generally 

indifferent SSF profiles further suggest that the yeast strain indeed has an optimal strategy 

for managing the excretion and the consumption machineries. Apparently the excretion 

and the consumption machineries of the yeast strain had been “ecologically tuned” to 

ensure optimum survival in responding to changes not only in the consumable substrates 

(DP1 – DP3), but also in the type of starch employed. Since α-amylase hydrolyzes starch 

randomly, the accumulation of the DP2 sugar in the broth is an indication of the 

generation of non-reducing ends (i.e. substrates for glucoamylase attack) due to 

hydrolysis by α-amylase. In this case, yeast cleverly utilizes its cellular resources by 

secreting a ‘sufficient’ amount of α-amylase at the first 50 h of fermentation such that the 

DP2 sugar (and hence the substrates for glucoamylase) is always in excess in the broth 

for all starches. Had lesser α-amylase been produced, there could have been insufficient 

substrates for glucoamylase attack (e.g. for starches A and B), resulting in the slower 

generation of glucose. On the other hand, within a finite pool of cellular resources, had 

more α-amylase been produced during this phase (and thus lesser of other enzymes, e.g. 
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glucoamylase, is produced), the reduced amount of glucoamylase would similarly limit 

the production of glucose and this would imply a wastage of cellular resources. It is 

indeed a pleasant surprise that the interlinked PBM-CM model is able to quantitatively 

demonstrate the synergistic benefits of dual enzyme secretion. With more experimental 

data, it is believed that the interlinked model could extract deeper insights from the 

complex SSF process. 
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Figure 5.16: Transients of various quantities in the fermentation broth when the yeast is 

capable of excreting both α-amylase and glucoamylase. Here, dashed lines represent the 

results for starch A with , , ,
n w

M M N PD    = [ ]10000,10100,22496,1.01 , dashed double 

dotted lines represent the results for starch B with , , ,
n w

M M N PD    = 

[ ]4100,5430,22496,1.324 , while solid lines represent the results for starch C with 

, , ,
n w

M M N PD    = [ ]160,212,878,1.325 .  
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5.4 Concluding Remarks 

 

The proposed methodology here is general and could be used to interlink the PBM and 

the CM to the preferred respective level of details, therefore presenting itself as a 

powerful tool for the systematic modelling of the interaction between the microbes and 

the environment containing complex substrates. It should be emphasized that the findings 

of the two case studies are dependent upon (i) the quality of the experimental data used 

for calibration, and (ii) the fidelity of abstracting both the enzymatic scission and the 

microbial assimilation of the resulting simple sugars. Robust experimental data on SSF 

with temporal evolution of the molecular distributions are a rare find, and certainly 

greater efforts are due. To facilitate model fine-tuning as raised in the second point, Table 

5.6 summarizes the key assumptions that were made to construct the interlinked PBM 

and CM framework. If one desires further sophistication to the model (e.g. motivated by 

experimental discoveries), the simplifications outlined here can be altered accordingly 

without compromising the interlinking framework. Despite the relative simplicity of 

these assumptions, the case studies revealed that the proposed models exhibited features 

which could not be attained by the traditional approach of modelling SSF processes. As 

a result of the synergy between the PBM and the CM framework, the essential details of 

polymeric scission and cellular metabolism can be captured. Important properties of the 

polymer distribution, which are often critical to the design and operation of bioreactors 

with polymeric broths are also readily available.  

 

 

 

 



171 
 

Table 5.6: Key assumptions that can be relaxed without compromising the interlinked 

PBM and CM framework  

No. Assumption 

1 All the carbon and energy sources are part of the 
polymeric substrates, i.e. ⊂N S  

2 Extracellular enzymes produced within the cells 
do not accumulate appreciably and are excreted 
instantaneously 

3 Activities of the extracellular enzymes are not 
regulated 

4 Starch is a linear population of polymers with DP 
greater than that of dextrin 

5 Bounded sugars cannot be assimilated by yeast 
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CHAPTER 6 : CONCLUSIONS, THESIS AND RECOMMENDATION 

 

6.1 Conclusions and Thesis 

 

The ultimate aim of this work is to develop an interlinked PBM and CM framework for 

the SSF of natural polymers. To accomplish this, the necessary numerical techniques for 

solving PBEs were first established prior to laying out the framework for interlinking the 

PBM and the CM components. To systematically achieve the ultimate aim of this thesis, 

two research objectives were formulated and met, as summarized below: 

 

a) The first objective is to select or modify a potential numerical technique for 

approximating and solving PBEs for both chain-end and random scission as well as 

their combination thereof and also to explore the inherent characteristics of the 

resulting formulation.  

 

Together with newly proposed guidelines to treat the lower molecular size range as 

a discrete domain in conjunction with a continuous domain in the upper ranges, the 

modified FP technique not only retains its original strengths in simulating both chain-

end and random scission, but also captures accurately and efficiently the distribution 

of oligomers including monomers. From the results of the benchmarking process, the 

FP technique (implemented through the same discrete-continuous meshing strategy) 

was shown to be adept in predicting the simultaneously occurring random and chain-

end scissions at only a fraction of the computational expense, even for problems with 

the size of N up to ~O(105). As had been done for chain-end scission, observations 

of the performance of the FP technique for random scission were also deliberated 
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and finally, the meshing guidelines for chain-end scission were revised accordingly 

for simulations which involve random scission. 

 

b) The second objective is to interlink the PBM and CM for modelling the batch growth 

of a microbial strain capable of simultaneously hydrolyzing a natural polymer and 

fermenting the resulting smaller saccharides. In addition, the resulting model should 

be used to analyze the growth of microbes on complex nutrients resulting from the 

individual or the combined actions of enzymes exhibiting random and chain-end 

scission behaviour.  

 

This objective was achieved in that the general linkage between the PBM and the 

CM components was established in this study. A notable feature is the flexible 

linkage, which allows the individual PBM and CM models to be independently 

modified to the desired levels of detail. A more general treatment of the secretion of 

extracellular enzyme(s) was also proposed in the CM model. Through two case 

studies involving (i) chain-end and (ii) mixed chain-end and random scission 

enzymes, the calibrated interlinked model captured features not attainable by existing 

approaches. Other than being capable of capturing the effect of various enzymatic 

actions on the temporal evolution of the polymer distribution and how the microbes 

respond to the diverse oligomer environment due to the breakdown of starch, the 

interlinked PBM-CM model was able to do more. Specifically, in case study II the 

model was able to reveal that the excretion and the consumption machineries of the 

yeast strain had been “ecologically tuned” to ensure its optimum survival in 

responding to changes not only in the consumable substrates (DP1 – DP3) as 

advocated in the traditional CM framework but also the changes in the type of starch 

employed.  
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The evidence throughout this work supports the thesis that it is crucial to capture both 

the distribution of polymers as well as the regulatory nature of microbial metabolism 

when abstracting the dynamic complexities of the SSF of natural polymers. One 

possibility of achieving this is through the interlinking of the PBM and the CM 

components. 

 

6.2 Recommendations and Future Work 

 

Based on ideas developed in this work, several future extensions are possible: 

a) Instead of using the FP technique for simulating chain-end monomer scission, the 

formulation can be altered to capture the removal of an n-mer (n = 2, 3, …) from the 

end of a polymer chain. As it is important to maintain continuity between the discrete 

and the continuous region, the joint between the two regions for the case of vm ≥ 2 is 

currently unclear. This ability to simulate the removal of an n-mer from the end of a 

polymer chain is especially important as some exo-acting depolymerase (e.g. 

cellobiohydrolase I) had been reported to remove a dimer unit from the end of the 

polymer chain (Griggs et al., 2012a). 

b) The mixed scission models, suitably calibrated, can be used to study the optimum 

dosage required of the respective enzymes to achieve an intended blend of different 

sugars. 

c) Increased sophistication of the respective PBM and CM components can be used to 

expand the amount of information at the molecular level which can be gleaned from 

the framework. 

d) The interlinked PBM-CM framework should also be extended to deal with mixed 

microbial cultures. Such a mixed culture is not uncommon in SSF where one microbe 
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is responsible for excreting depolymerization enzymes while the other ferments the 

depolymerized components into desired products (Nakamura et al., 1997). 

e) A combination of some/all of the above can done to further explore the potential of 

the framework. Moreover, instead of a pure starch system, the interlinked PBM-CM 

framework can be used to explore the effect of having multiple polymeric substrates 

(e.g. starch-cellulose mixture) on the dynamics of fermentation. 

f) Experimental investigations should be carried out to further validate the predictions 

from the interlinked model. One example is the effect of different starch distributions 

on the excretion and consumption behaviour of the microbes. This could only be 

probed by careful experimental studies. 
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APPENDIX A: MODELLING CHAIN-END SCISSION 

 

A.1 Theoretical Preliminaries of The Fixed Pivot Technique (S. Kumar and 

Ramkrishna, 1996a) 

 

 

Figure A.1: Discretizing the DP axis into different intervals enclosed by [vi, vi+1] where 

xi is the representative pivot for the i-th interval and ( )1 2i i iv x x −= + .  

 

Consider the following continuous PBE for breakage: 

( ) ( ) ( ) ( ) ( ) ( )
,

, , ,
v

c v t
k w b v w c w t dw k v c v t

t

∞∂
= −

∂ ∫   (A.1) 

The sectional method for solving PBE begins by discretizing the v-axis into intervals 

enclosed by [vi, vi+1], as illustrated in Figure A.1. In the FP technique, a fixed 

representative size is chosen for each interval and is referred to as the pivot point (xi). 

Within a particular interval, it is assumed that the molar concentration density is 

concentrated at the pivot point and is zero elsewhere, i.e. ( ) ( ) ( )
1

, j j

j

c v t C t v x
∞

=

= δ −∑ . If 

a polymer of size v falls between [xi, xi+1], because the polymer does not fall exactly at 

the pivots xi or xi+1, the FP technique assumes that such a polymer be assigned to xi and 
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xi+1 such that two integral properties of interest for the polymer populations be preserved. 

This is done by assigning fractions ( ), iK v x  and ( )1, iL v x +  to the polymer populations at 

xi and xi+1. For the preservation of two polymer properties ( )1f v  and ( )2f v , the 

fractional assignment can be written as: 

( ) ( ) ( ) ( ) ( )1 1 1 1 1, ,i i i iK v x f x L v x f x f v+ ++ =    (A.2) 

( ) ( ) ( ) ( ) ( )2 1 2 1 2, ,i i i iK v x f x L v x f x f v+ ++ =    (A.3) 

Solving for fractions ( ), iK v x  and ( )1, iL v x + : 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 2 1 2 1

1 1 2 1 2 1

, i i

i

i i i i

f x f v f v f x
K v x

f x f x f x f x

+ +

+ +

−
=

−
   (A.4) 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 2 1 2
1

1 2 1 1 1 2

, i i

i

i i i i

f x f v f v f x
L v x

f x f x f x f x
+

+ +

−
=

−
   (A.5) 

  

The molar concentration of the i-th pivot can then be obtained by integrating the molar 

concentration density over the interval [vi, vi+1]: 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1

, , , ,
i i i

i i i

v v v
i

v v v v

dC t
c v t dv k w b v w c w t dwdv k v c v t dv

dt t

+ + +∞∂
= = −
∂ ∫ ∫ ∫ ∫   (A.6) 

The FP procedure rewrites Eq. (A.6) in the following form: 

( )idC t
B D

dt
= −    (A.7) 

where the death term, D is given by: 

( ) ( ) ( ) ( )1

1

i

i

v

j j i i
v

j

D k v C t v x dv k C t
+

∞

=

= δ − =∑∫   (A.8) 

As the death term for idC dt  does not interact with other intervals, there is no need for 

fractional assignments elaborated above. 
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For the birth term, because of the inter-interval interaction, i.e. by receiving from the 

scission of larger polymers, here the fractional assignment as discussed above comes into 

play. As only polymers that fall within [vi, vi+1] matters, these are covered by the pivot 

intervals of [xi–1, xi] and [xi, xi+1]. Therefore, applying the principles shown in Eqs. (A.2) 

– (A.5), the following fractional assignments arise: ( )1, iK v x − , ( ), iL v x , ( ), iK v x , and 

( )1, iL v x + . Since the current task is to write the birth term (B) for xi, polymers that fall 

within the intervals of [xi–1, xi] and [xi, xi+1] are respectively assigned to xi through 

( ), iL v x  and ( ), iK v x . Therefore, the birth term B can then be obtained in the following 

manner: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
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  (A.9) 

Using the relationship given by Eqs. (A.4) – (A.5), B now becomes: 

( )ij j j
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      ,

i

i

i

i

x
i i

ij j
x

i i i i

x
i i

j
x

i i i i

f x f v f v f x
n b v x dv

f x f x f x f x

f x f v f v f x
b v x dv

f x f x f x f x

+

−

+ +

+ +

− −

− −

 −
=   − 

 −
+   − 

∫

∫
  (A.11) 
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Given that the two integral properties of interest are ( )1f v vπ=  and ( )2f v vζ= , nij 

becomes: 

( ) ( )1

1

1 1 1 1

1 1 1 1

, ,
i i

i i

x x
i i i i

ij j j
x x

i i i i i i i i

x v v x x v v x
n b v x dv b v x dv

x x x x x x x x

+

−

π ζ π ζ π ζ π ζ
+ + − −
π ζ π ζ π ζ π ζ
+ + − −

   − −
= +   − −   
∫ ∫    (A.12) 

For the conservation of the zeroth and the first moments, i.e. π = 0, ζ = 1, nij collapse to: 

( ) ( )1

1

1 1

1 1

, ,
i i

i i

x x
i i

ij j j
x x

i i i i

x v v x
n b v x dv b v x dv

x x x x

+

−

+ −

+ −

   − −
= +   − −   
∫ ∫   (A.13) 

 

Thus, the FP discretization scheme which conserves the zeroth and the first moments 

for general breakage is summarized as: 

( ) ( ) ( ) ( ) ( )1

1

1 1

1 1

, ,
i i

i i

x x
i i i

j j j j i i
x x

j i i i i i

dC t x v v x
b v x dv b v x dv k C t k C t

dt x x x x

+

−

∞
+ −

= + −

    − −
= + −    − −    
∑ ∫ ∫

  (A.14) 

where the first integral term vanishes for j = i (polymers with size xi can only break into 

smaller sizes) and the second integral term vanishes for i = 1 (the smallest polymer size 

is the monomer). 
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A.2 MATLAB Code for The Simulation of Chain-End Scission using The Fixed 

Pivot Technique 
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A.3 MATLAB Code for The Simulation of Chain-End Scission using The Exact 

Solution 
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A.4 MATLAB Code for The Simulation of Chain-End Scission on Stickel’s 

Example (Stickel and Griggs,2012) using The Fixed Pivot Technique 

 

 



206 
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A.5 MATLAB Code for The Simulation of Chain-End Scission on Stickel’s 

Example (Stickel and Griggs, 2012) using The Exact Solution 
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A.6 MATLAB Code for Calculating pmin 
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APPENDIX B: MODELLING RANDOM SCISSION 

 

B.1 Deriving The Fixed Pivot Equations for Discrete Random Scission 

 

The fully discrete (or exact) PBEs for pure random scission are given by Eqs. (4.38) - 

(4.40) in Section 4.2.1. In the work of S. Kumar and Ramkrishna (1996a), the relevant 

kernel necessary for the approximation of discrete random scission using the FP 

technique had been identified. To fill in the missing details in the original paper (S. Kumar 

& Ramkrishna, 1996a), this appendix derives the FP equations for random scission using 

the reported kernel. According to their work, the stoichiometric kernel for random 

scission is: 

( ) ( )2
, 1,2,3,

1
mv iv

b v w i
w

α δ −
= =

−
…    (B.1) 

where vm = 1 is the DP of the monomer. Substituting this into Eq. (A.14) in Appendix A, 

the FP equation for random scission is: 

( ) ( ) ( )
p q

i

ij j j i i

j i

dC t
n k C t k C t

dt

+
α α α

=

= −∑    (B.2) 

( ) ( )1

1

1 1

1 1

2 2

1 1

i i

i i

x x
i i

ij
x x

i i j i i j

v i v ix v v x
n dv dv

x x x x x x

+

−

α + −

+ −

   δ − δ −   − −
= +      − − − −         
∫ ∫   (B.3) 

The following evaluates ( )idC t dt  for different i’s. 

 

When i = 1, the death term as well as the second integral of 1, jnα  is zero. The remaining 

terms in 1, jnα  can be evaluated using the limiting process presented in Section 4.1.3 as: 
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( )

( )

2

1

2
1,

2 1

2

2 1

2

2 1

0

0

2
1

1

1 2

1

1 2

1

2

1

lim

lim

x

j
x

j

j

j

j

x v
n v dv

x x x

x

x x x

x

x x x

x

α

χ→

χ→

  −
= δ − + χ      − −  

   − + χ 
=    

− −      

  −
=   − −    

=
−

∫

  (B.4) 

Since x1 = 1, for i = 1, the resulting FP equation is: 

( ) ( )1

2

2

1

p q

j j

j j

dC t
k C t

dt x

+
α

=

 
=  

−  
∑    (B.5) 

 

For i = 2 to p (i.e. the discrete region), at j = i, the first integral vanishes because 

polymers do not grow in size during a pure depolymerization phenomena. Moreover, 

because of the limiting process, the second integral of ijnα  will always be zero, and thus 

the following equation is obtained: 

1

1

0

2

1
ij i

i i j

j i

n x i
j i

x x x

α
+

+

=


 =  −
>   − −    

   (B.6) 

Again, since xi = i in the discrete region, the resulting FP equation is: 

( ) ( ) ( )
1

2
2,3, ,

1

p q
i

j j i i

j i j

dC t
k C t k C t i p

dt x

+
α α

= +

 
= − = 

−  
∑ …   (B.7) 

 

Next, moving to i = p+1, xp+1 is situated at the border between the discrete and the 

continuous region. Because of this, it is reasonable to assume that a transition from the 

discontinuous to a fully continuous kernel is involved. Therefore, 1,p jnα
+  assumes the 

following form: 
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[ ]( )2 1

1

2
1,

2 1 1

2 12

1 1

p p

p p

x x
p p

p j
x x

p p j p p j

v px v v x
n dv dv

x x x x x x

+ +

+

+α
+

+ + +

       δ − +− −
= +         − − − −          
∫ ∫   (B.8) 

where to the right of xp+1, a continuous random scission kernel is used whereas the 

discontinuous Dirac delta kernel is retained to the left of xp+1. Similarly, at j = p+1, the 

first integral vanishes while the second integral is always zero using the limiting process. 

This results in: 

2 11,

0 1

1
1

p pp j

j

j p

x xn
j p

x

α
+ ++

= +


−=  > + −

   (B.9) 

The corresponding FP equation is then given as: 

( )
( ) ( )1 2 1

1 1
2 1

p q
p p p

j j p p

j p j

dC t x x
k C t k C t

dt x

+
+ + + α α

+ +
= +

 −
= − 

−  
∑   (B.10) 

 

Finally, at i = p+2 to p+q, the continuum approximation fully holds, and thus ijnα  can 

be written as: 

1

1

1 1

1 1

2 2

1 1

i i

i i

x x
i i

ij
x x

i i j i i j

x v v x
n dv dv

x x x x x x

+

−

α + −

+ −

      − −
= +      − − − −         
∫ ∫   (B.11) 

Evaluation of this using similar rationale as presented above results in: 

1

1 1

1

1 1

i i

i

ij

i i i i

j j

x x
j i

x
n

x x x x
j i

x x

−

α

+ −

− = −
=  − − + >
 − −

   (B.12) 

The FP equation (for i = p+2 to p+q) is thus given as: 

( ) ( ) ( ) ( )1 1 1

11 1 1

p q
i i i i i i i

i i j j i i

j ii j j

dC t x x x x x x
k C t k C t k C t

dt x x x

+
α α α− + −

= +

  − − −
= + + −  − − −    

∑   (B.13) 

 

Equations (B.5), (B.7), (B.10), and (B.13) thus represent the FP equations for random 

scission, and they form the basis for the discussion presented in Section 4.2.3. 
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B.2 Simplifying The Fixed Pivot Expression for Random Scission 

 

From the FP equation for pure random scission [Eq. (4.59), Section 4.2.3], the rate of 

change in the concentration of the polymer at the i-th pivot can be re-written as follows: 

( ) ( ) ( )1 1 1

1

1

1 1 1

p q
i i i i i i

j j i i

j i j j i

dC t x x x x x
k C t k C t

dt x x x

+
α α+ − −

= +

   − − −
= + −   − − −    
∑   (B.14) 

Expanding the summation term, and with , the above 

expression can be written in terms of ci (the average molar concentration density) as 

shown below: 

( ) ( ) ( )

( ) ( )

( ) ( )

( )

1 1
1 1 1

1 1

21 1
2 2 1

2 2

1 1
1

1
1

1 1

1 1

1 1

1

1

i i i i i
i i i i

i i

i i i i
i i i i

i i

p q ii i i i
p q p q i i

p q p q

i
i i i

i

dC t x x x x
k c t r v v

dt x x

x x x x
k c t r v v

x x

x x x x
k c t r v v

x x

x
k c t v

x

α+ −
+ + +

+ +

α+ −
+ + +

+ +

α + −+ −
+ + +

+ +

α−
+

 − −
= + − − − 

 − −
+ + − + − − 

 − −
+ + − 

− −  

 −
− − − 

…

( )iv

  (B.15) 

Dividing both sides of the equation with (vi+1 – vi), the following equation is obtained: 

 

( ) ( ) ( )

( ) ( )

21 1 1 1
1 1 2 2

1 1 2 2

1 1 1

1 1 1 1

1

1 1 1

i i i i i i i i i
i i i i

i i i i

p q i i i i i i
p q p q i i

p q p q i

dc t x x x x x x x x
r k c t r k c t

dt x x x x

x x x x x
r k c t k c t

x x x

α α+ − + −
+ + + +

+ + + +

+ − α α+ − −
+ +

+ +

   − − − −
= + + + +   − − − −   

   − − −
+ + −   − − −    

…

 (B.16) 

 

Equation (B.16) can be further simplified by using the relationship 

( )1 1i i i ix x x x r− +− = −  to yield: 

1 1

1 2 1 2

i i i i

i i i i

x x v v
r

x x v v

− −

− − − −

− −
= =

− −
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( ) ( )

( ) ( ) ( ) ( )

( ) ( )
( )

( ) ( ) ( ) ( )

1 1 2 2
1 2

1
1

1

1 1
1

1

1 1

1 1 1

11

1

1 1

1 1

i i i i

i ii i
i i i i

ip q i

p q p q

p q

p q
j i i

i i j j

j i j i

r r
k c t r k c t

x xdc t x
x x k c t

dt xr
r k c t

x

r x
x x r k c t

x x

α α
+ + + +

+ + α−
+

+ − − α
+ +

+

+
− + α −

+
= +

 + +   
+ +    − −      − 

= − −   − +   +   −   

 +  −
= − −  − −   

∑

…

( )i ik c tα



 

  (B.17) 

Because Eq. (B.17) cannot be further simplified by solely using the expression 

( ) ( )1 1i i i ir x x x x+ −= − − , the expression 1i ix rx+ =  for a geometric mesh has to be 

invoked. Therefore, ( )1 1
1 1

i p

i p
x r x

+ − +
+ += , ( )1

1
i p

i p
x r x

− +
+=  and ( )1 1

1 1
i p

i p
x r x

− − +
− += . 

Substituting these in Eq. (B.17) and further simplifying results in: 

( ) ( )
( )

( ) ( )
1 12

1
1 1

1 1

1

1 1

i pj p j pp q
pi

p j j i ii p
j i j p

r xdc t r r
x k c t k c t

dt x r x

− − +− − −+
+α α

+ − +
= + +

   −−
= −   

− −      
∑   (B.18) 

This is Eq. (4.69) in Section 4.3. 

 

B.3 Proof that the Fixed Pivot Technique Over-Predicts for Random Scission 

 

To facilitate the following proof, the FP equation for random scission presented in 

Section 4.3 is reproduced here below with the m ≥ 2 terms written in full: 

( ) ( ) ( ) ( ) ( )
1

p q
i

j j i i

j i

dc t
f k c t g k c t

dt

+
α α

= +

= ε − ε∑    (B.19) 

( ) ( )
( ) ( ) ( )

( ) ( )
( )

1

2

2 !
2

1 ! 1 !

2 1 m

mj

j pu
f u u

j p m

x j p m m

− ∞

=

    − −    ε = + ε + + ε    
−

− −

− − −    

+

    
∑   (B.20) 

( )
( ) ( ) ( )

( )
( )

( )( ) ( )( )
( ) ( )

( )

1 1

2

1 1

2

2 !
2

2 ! !

1 2 !
1

1 2 ! !

m

m

m

m

i p
p u i p u u u

i p m m
g

i p i p
p u i p u u u

i p m i p m m

∞
− −

=

∞
− −

=

− −
+ − − + ε + + ε

− − −
ε =

− − − −
+ − − + ε + + ε

− − − − − −

∑

∑
  (B.21) 
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where ( ) 1
1u p

−
= + . 

 

To prove that ( )g ε  always decreases further from unity, the expression can be re-

written as: 

( )
( )

( )
( )

( )

( )
( )

1

1

1

1

2 !
;

1 2 ! !

1

m

m

m
m

m

m

m

p u u
i p

g
i p i p m m

p u u
i p m

∞
−

=
∞

−

=

+ Ω + ε
− −

ε = Ω =
− − − − −

+ Ω + ε
− − −

∑

∑
  (B.22) 

Since 
( )

( )
1

1
1

i p

i p m

− −
>

− − −
, the denominator of ( )g ε  is always larger than the numerator, 

and thus ( )g ε  decreases further from unity as ε increases.  

 

To prove that ( )f ε  increases further from ( )2 1
j

x −  as r deviates from the limit of 

arithmetic mesh, the proof is deduced from the following expressions: 

( ) ( ) ( ) ( )

( )
( ) ( )

( )

1 1

2

2 ;
1 1

2 !

! 1 !

2 1 m

mj j

m

m

u u
f u

x x

j p
u

j p m

j p m

m

− − ∞

=

− − +
   

ε = + ε + Ω      − −      

 − −
Ω = + ε 

− − − 

∑ ɶ

ɶ

  (B.23) 

In Eq. (B.23), the first term on the RHS of ( )f ε  is always greater or equal to ( )2 1
j

x −  

because 0ε ≥  (due to the constraint 1r u≥ + ). Thus, as long as the second term remains 

positive, ( ) ( )2 1
j

f xε > − . Therefore, the task here is to show that ( ) ( )2 1j p m− − +  in 

the second term is always positive as 0mΩ >ɶ . From Eq. (4.75) in Section 4.3, binomial 

expansion of the second term on the RHS requires that the value of m ≤ j – p – 2. In 

addition, the most narrow distance between j and p occurs at j = p+2. With these, it 

follows that: 
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( ) ( ) ( ) ( )

( )
( )

2 1 2 2 1

1

2 1

3 0

j p m j p j p

j p

p p

− − + = − − − − +

= − +

= + − +

= >

  (B.24) 

Hence, it is shown that the second term on the RHS of Eq. (B.23) is always positive, and 

as ε increases, ( )f ε  departs further from ( )2 1
j

x − . 
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B.4 MATLAB Code for The Simulation of Random Scission on Stickel’s 

Example (Stickel and Griggs, 2012) Using The Fixed Pivot Technique 
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B.5 MATLAB Code for The Simulation of Random Scission on Stickel’s 

Example (Stickel and Griggs, 2012) Using The Exact Solution 
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APPENDIX C: MODELLING SIMULTANEOUS RANDOM AND CHAIN-END 

SCISSION 

 

C.1 MATLAB Code for The Simulation of Simultaneous Random and Chain-

End Scissions Using The Fixed Pivot Technique 
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C.2 MATLAB Code for The Simulation of Simultaneous Random and Chain-

End Scissions Using The Exact Solution 
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APPENDIX D: EXAMPLES OF PBM IMPLEMENTATION ON ENZYMATIC 

HYDROLYSIS 

 

The specific form of PBEs in Section 5.1.1 to be solved is dependent on the 

mechanisms of enzyme-substrate interaction assumed. To illustrate, consider a single 

enzyme system with the following enzyme-substrate interactions that leads to chain-end 

scission: 

Case A: 

( ) ( ) ( ), 1 1 ; 3c i
k

E P i E P i P iγ γ

γ

+ → + − + ≥    (D.1) 

( ) ( ),22 2 1c
k

E P E Pγ γ

γ

+ → +    (D.2) 

Case B: 

( ) ( ) ( ) ( ), ,

,

1 1 ; 2a i c i

b i

k k

k
E P i E P i E P i P iγ γ γ

γ γ

γ+ → − + ≥


⇀↽


   (D.3) 

( ) ( ),1

,1

1 1a

b

k

k
E P E Pγ γ

γ

γ+ 


⇀↽


    (D.4) 

where Eγ represents an enzyme that exhibits chain-end scission, P(i) is a polymer 

population with DP = i, ( )E P iγ  is the enzyme bounded P(i), and ,a ik γ , ,b ik γ , ,c ik γ  (i.e. 

elements of the vector k) are the rate constants for DP = i. In Case A, an irreversible 

scission mechanism is assumed by ignoring the formation of enzyme complexes and the 

cleaved components are released into the broth resulting in the recovery of the free 

enzyme. For Case B, bond scission occurs following the reversible formation of an 

enzyme-substrate complex and the enzyme exhibits a multiple attack pattern (Kurasin & 

Valjamae, 2011) where the bounded polymer is not released until fully cleaved into the 

monomer. Both mechanisms are reflected in the following different sets of PBEs, with 
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iC  and ,B iC γ  being the molar concentration of the free and the bounded species 

respectively: 

Case A: 

1
,2 2 ,

3

Enzymatic Generation

2
p q

c c j j

j

dC
k E C k E C

dt

+
γ γ

γ γ
=

= +∑
	



�



�

   (D.5) 

1

, ,

Enzymatic Scission
Enzymatic Generation

; 2 to 
i

i
ij c j j c i i

j i

dC
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( )0E Eγ γ=    (D.7) 

Case B: 

1
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( ) ,
1

0
p q

B j

j

E E C
+

γ
γ γ

=

= −∑    (D.12) 

In the above, 0iinγ =  for i = 2 to p+1, , 1 1i inγ
+ =  for i = 2 to p, and , 1 0p q p qnγ

+ + + =  according 

to the results established in Chapter 4. The remaining ijnγ ’s are given by: 

( ) ( )1

1

1 1

1 1

i i

i i

x x
i i

ij j m j m
x x

i i i i

x v v x
n v x v dv v x v dv

x x x x

+

−

γ + −

+ −

   − −
   = δ − − + δ − −      − −   

∫ ∫   (D.13) 
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APPENDIX E: KINETICS OF MICROBIAL FERMENTATION 

 

E.1 Examples of Kompala’s Cybernetic Model Written in The General Form 

  

The form of CM framework given in Section 5.1.2 is a general one represented by 

vector and matrix notations. The more recent variants of the cybernetic models were all 

given in this form (D. Ramkrishna & Song, 2012; Song et al., 2009; Song & Ramkrishna, 

2011) due to the relatively more elaborate structure. The earlier versions of cybernetic 

models, however, can also be recast into this general form. For illustration, the cybernetic 

model developed by Kompala and Ramkrishna (1986), in the general form, is as follow: 

 

Biomass growth: 

( )

1 ,1
max,

2 ,2 max,

,1

,

0 0

01
; ; ;
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0 0
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X i
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⋱ ⋮
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Depletion of nutrients: 
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Synthesis of key metabolic enzymes: 

( ) ( )

( )
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Cybernetic variables: 

( ) ( )

, ,

, ,

, ,

,1 , ,1 ,

; 1 to 
max , , max , ,

X i X i

i

X j X j

j j

X i X i

i

X X j X X j

r X r
U

r X r

r X r
V i n

r X r X r r
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= = =

∑ ∑

… …
N

  (E.4) 

 

Here, n
N

 is the number of consumable substrates. Their simple model focused mainly 

on the prediction of cell growth and substrate depletion profiles, therefore the 

concentrations of intracellular and extracellular metabolites were not accounted for. In 

addition, the constitutive rate of enzyme synthesis vanished in Eq. (E.3), i.e. , 0e iρ = .  
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E.2 Rationale for Not Equating = +
max,
µ βµ βµ βµ β

e,i i e,i
k  

 

In the paper by Kompala and Ramkrishna (1986), the rate constant for the synthesis of 

enzyme was given as , max, ,e i i e ik =µ +β . This form of expression had been used 

subsequently by other authors (Altintas et al., 2002; Kroumov et al., 2006; Ochoa et al., 

2007). This appendix attempts to show that this form of expression should only be used 

under specific assumptions. Consider the enzyme equation of the form displayed by Eq. 

(5.29) in Section 5.1.3: 

( ) ( ) ( ) ( )
( )

,
, , , ,

max, max, ,

; e i i ii i

e i e i e i e i

i i e i i i

k M C te t e td
r U t r

dt e e K M C t

   
 = − µ +β =     +      

  (E.5) 

where for simplicity, only free substrates are considered here. When max,i ie e= , Eq. (E.5) 

becomes: 

( )
( )

( ),
,

,

0 e i i i

e i

e i i i

k M C t
t

K M C t
 = − µ +β +

   (E.6) 

The cybernetic variable for the induction of enzyme synthesis, , 1e iU =  in this case 

because otherwise max,ie  would not be achieved. Following this, Eq. (E.6) can be re-

arranged as follows: 

( )
( )

( ),
,

,

e i i i

e i

e i i i

k M C t
t

K M C t
−µ =β

+
   (E.7) 

As ( ) ( ) ( )1t X t dX t dtµ =        , and using the relationship ( ) ( ) ,X j j

j

dX t dt X t r V= ∑ , it 

follows that: 

( )
( )

( )
( )

( )
( )

, max, max,
, ,

,

;  and 1 and 0e i i i i i i i i i

e i X i i j i

e i i i i i i i i i

k M C t M C t M C t
r V V

K M C t K M C t K M C t
≠

µ µ
− = β = = =

+ + +
∵  (E.8) 

Here, 1iV =  and 0j iV ≠ =  following the rationale given for , 1e iU =  above. Referring to 

Eq. (E.8), if ,e i iK K= , then: 
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( )
( ) , max, ,

i i

e i i e i

i i i

M C t
k

K M C t
 −µ = β +

   (E.9) 

From Eq. (E.9), if the value of ( )i i iK M C t≪ , then , max, ,e i i e ik =µ +β . The assumption of 

,e i iK K=  was used in the work of Kompala and Ramkrishna (1986) for simplicity. 

However, unless confirmed experimentally, it is probable that their values may differ. In 

this case, it would be more appropriate to retain ,e ik  as it is in Eq. (E.5) and to avoid 

correlating it to max,iµ  and ,e iβ . 
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APPENDIX F: EXTRACELLULAR DEPOLYMERASE PRODUCTION 

 

F.1 Derivation of The Extracellular Enzyme Production Equation 

 

Given that mE is the mass concentration of an extracellular enzyme within the broth 

and X is the mass concentration of the biomass in the reactor, the material balance for the 

mass of extracellular enzyme within the broth can be written as: 

( ) ( ) ( )
( )

E

R E R e e e e

m td
V m t V X t rU

dt X t

 
= ρ + −β    

 
  (F.1) 

where VR is the volume of the reactor, ρe is the rate of constitutive enzyme synthesis, re 

is the inducible rate of enzyme synthesis, Ue is the cybernetic variable for inducing the 

production of the enzyme, and βe is the deactivation rate constant. Assuming that VR is a 

constant, Eq. (F.1) becomes: 

( ) ( ) ( ) ( )E

e e e e E

dm t
X t rU X t m t

dt
= ρ + −β    (F.2) 

This is the equation for describing the rate of change in the mass concentration of an 

extracellular enzyme within the broth. Given that ME is the molecular weight of the 

enzyme, Eq. (F.2) can be re-written in terms of 0E , i.e. the molar concentration of the 

enzyme within the broth: 

( ) ( ) ( ) ( )
0

0 ; ;e e
E E E E E E

E E

dE t r
X t r U X t E t r

dt M M

ρ
= ρ + −β ρ = =   (F.3) 

The form of Eq. (F.3) is essentially that displayed by Eq. (5.15) in Section 5.1.3 where 

the subscript ‘e’ is changed to ‘E’ to reflect its extracellular representation. Since 

extracellular enzymes are excreted from within the cells, it should be fairly easy to 

correspondingly derive the concentration of the enzyme within the cells prior to its 
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excretion. Ignoring the effect of mass transfer, the concentration of an enzyme within the 

cells can be written as: 

( )
( )

( )
( ) ( )

( )

( )
( ) ( )

( )
( )

( )

1 1

1 1

E E

E

E E

m t dm td d
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dt X t dt X t X t dt

m t dX t dm t

X t X t dt X t dt

   
= +   

   

= − +

  (F.4) 

Substituting Eq. (F.2) into the second term on the RHS of Eq. (F.4) results in the following 

expression: 

( ) ( ) ( )
( )

( ) ( ) ( )
( )

1
; ; E

e e e e

de t dX t m t
rU e t e t

dt X t dt X t
= ρ + − β +µ µ = =   (F.5) 

This is essentially Eq. (5.14) in Section 5.1.3.  

 

F.2 Formulation for rj (j = γ or α)  

 

In Sections 5.2.1 and 5.3.1, yeast was assumed to “grow” indirectly on starch by 

excreting either glucoamylase (γ) or both α-amylase (α) and glucoamylase (γ), having a 

growth rate (rjX, j = γ or α). A plausible expression for rj will be proposed here. Assuming 

that the i-mer can only form one type of enzyme complex, thereby resulting in the 

expression of only iC  and ,
m

B iC  (m = all depolymerases, e.g. m = α, γ if both α-amylase 

and glucoamylase are present) in the broth, the traditional way of writing the rate of 

biomass growth ,X ir X  [g/L/h] on i with the necessary inhibition terms is as follows: 

( )

max, ,
max,

,

, ,

; all depolymerases

1

mi
i i i B i

mi

X i

m

i i i B i k INH k

m k

e
M C C X

e
r X m

K M C C I K

    
µ +    

   = =
  

+ + +  
  

∑

∑ ∏
  (F.6) 

where Ik is the mass concentration of the inhibiting k species and ,INH kK  is the 

corresponding constant of inhibition. If the microbe could also grow on substrates i+1, 
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i+2, … etc., one could sum up individual rates expressed by Eq. (F.6). A cruder 

approximation assumes that the kinetic parameters and relative enzyme concentrations 

are similar, thus allowing the substrate concentration terms to be replaced by summations. 

To extend Eq. (F.6) to starch, the latter is a more pragmatic approach as otherwise a large 

number of parameters are involved. Further, in the “growth” on starch, both ethanol and 

glucose are considered to be the inhibiting substances. Based on these considerations and 

simplifications, rjX (j = γ or α) could be written as: 

[ ]
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, 1 1 ,1
2

1 1

p q
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j i i B i
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e
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=
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∑ ∑

∑ ∑ ∑
  (F.7) 

Further, according to Kompala and Ramkrishna (1986), max, max,j j jeµ = µ . Substituting this 

into Eq. (F.7) yields: 
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∑ ∑ ∑
  (F.8) 

Since ejX [g/L] is the concentration of depolymerase in the broth, Eq. (F.8) can be 

simplified to yield: 
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  (F.9) 

This is the form of Eq. (5.33) in Section 5.2.1 and Eqs. (5.59) - (5.60) in Section 5.3.1. 

 

  



238 
 

APPENDIX G: SUBSITE THEORY 

 

G.1 Subsite Theory for Glucoamylase 

 

 

Figure G1: Different modes of binding between a DP6 oligosaccharide with the subsites 

of glucoamylase. The position of the non-reducing end is given by d. 

 

The subsite theory for glucoamylase was developed by Hiromi (1970). Referring to 

Figure G1, the catalytic site of glucoamylase is situated between the first and the second 

subsite, where only binding mode V produces glucose and is referred to as the productive 

complex. The rest of the binding modes do not produce glucose and are referred as non-

productive complexes. According to the subsite theory, the macroscopic M-M parameters, 

i.e. ,c ik γ  and ,m iK γ  in , ,i c i i m i i
dC dt k E C K Cγ γ

γ  − = +  , for the hydrolysis of a 

maltooligosaccharide by glucoamylase can be calculated using the following expressions 

(Hiromi, 1970; Hiromi et al., 1973): 
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( ) occ.

, , , ,
1, ,

2 ln 55.51
; exp exp

1000

mN

n
P i Q i J i J i

P Q J nm i J i

A
K K K K

K R RT

γ
γ

γ γ γ γ
γ

=

   
= + = = −   

  
∑ ∑ ∑ ∑   (G.1) 

, int , ,c i P i J i

P J

k k K Kγ γ γ γ= ∑ ∑    (G.2) 

where ,P iK γ  and ,Q iK γ  (generally represented by ,J iK γ [mol/L]) are the association 

constants of the i-mer substrate in a binding mode specified by the subscript P 

(productive), Q (non-productive), or J (either productive or non-productive) and mN γ  is 

the total number of subsites of the glucoamylase. Here, nAγ  [kcal/mole] is the subsite 

affinity of the n-th subsite for glucoamylase, expressed in free energy units, and 
occ.

n

∑  

implies that the sum is taken for the occupied subsites. In addition, R [kcal/K/mol] and T 

[K] are the universal gas constant and the absolute temperature respectively whereas intk γ  

[1/h] is the intrinsic rate of scission for the productive complex. In other words, given the 

number of subsites and the subsite affinities, ,m iK γ  and ,c ik γ  can be calculated theoretically. 
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G.2 Subsite Theory for α-amylase 

 

 

Figure G2: Different modes of binding between a DP6 oligosaccharide with the subsites 

of α-amylase.  

 

The subsite theory for depolymerase was developed by Hiromi (1970) and 

implemented by Iwasa et al. (1974) on α-amylase. Referring to Figure G2, the catalytic 

site of α-amylase is situated between the sixth and the seventh subsite, where only binding 

modes I – III produce bond cleavage and are referred to as the productive complexes. The 

rest of the binding modes do not produce bond cleavage and are referred as non-

productive complexes. According to the subsite theory, the macroscopic M-M parameters, 

i.e. ,c ikα  and ,m iK α  in , ,i c i i m i i
dC dt k E C K Cα α

α  − = +  , for the hydrolysis of a 

maltooligosaccharide by α-amylase can be calculated using the following expressions 

(Iwasa et al., 1974): 

( ) occ.

, , , ,
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; exp exp

1000

mN

n
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, int , ,c i P i J i

P J

k k K Kα α α α= ∑ ∑    (G.4) 
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where ,P iK α  and ,Q iK α  (generally represented by ,J iK α [mol/L]) are the association 

constants of the i-mer substrate in a binding mode specified by the subscript P 

(productive), Q (non-productive), or J (either productive or non-productive) and mN α  is 

the total number of subsites of the α-amylase. Here, nAα  [kcal/mole] is the subsite affinity 

of the n-th subsite for α-amylase, expressed in free energy units, and 
occ.

n

∑  implies that the 

sum is taken for the occupied subsites. In addition, R [kcal/K/mol] and T [K] are the 

universal gas constant and the absolute temperature respectively whereas intkα  [1/h] is the 

intrinsic rate of scission for the productive complex. In other words, given the number of 

subsites and the subsite affinities, ,m iK α  and ,c ikα  can be calculated theoretically. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



242 
 

G.3 Subsite Affinity Maps 

 

Values of Subsite Affinities used in Case Study I (Section 5.2): 

 

Table G1: Values of subsite affinities at 25 °C and pH 4.5 for glucoamylase from R. 

delemar given by Hiromi et al. (1973). The catalytic site is situated between the first and 

the second subsite. 

Subsite Subsite affinity (kcal/mol) 

1 0.00 

2 4.85 

3 1.59 

4 0.43 

5 0.22 

6 0.11 

7 0.10 
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Values of Subsite Affinities used in Case Study II (Section 5.3): 

 

Table G2: Values of subsite affinities for α-amylase at 25 °C and pH 5.85 from B. subtilis 

given by Iwasa et al. (1974). For the subsites adjacent to the catalytic site, i.e. subsites 6 

and 7, the authors reported that the total subsite affinity = –3.1 kcal/mol. Thus, the values 

shown here were calculated by assuming the subsite affinity for subsite 7 = 3.1 kcal/mol 

(as reported by Marchal et al. (2003)). 

Subsite Subsite affinity (kcal/mol) 

1 1.1 

2 2.4 

3 0.0 

4 0.6 

5 2.4 

6 –6.2 

7 3.1 

8 1.2 
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Table G3: Values of subsite affinities for glucoamylase at 50 °C and pH 4.4 from A. 

awamori given by Sierks (1988). The catalytic site is situated between the first and the 

second subsite. 

Subsite Subsite affinity (kcal/mol) 

1 –0.53 

2 5.11 

3 1.50 

4 0.43 

5 0.38 

6 0.24 

7 0.072 
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APPENDIX H: MATLAB CODE FOR THE SIMULATION OF THE SSF OF A 

GLUCOAMYLASE PRODUCING RECOMBINANT YEAST 

 

The following gives the MATLAB code for Case Study I of Chapter 5: 
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APPENDIX I: MATLAB CODE FOR THE SIMULATION OF THE SSF OF AN 

Α-AMYLASE AND GLUCOAMYLASE PRODUCING RECOMBINANT YEAST 

 

The following gives the MATLAB code for Case Study II of Chapter 5: 
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