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ABSTRACT

Human motion analysis is one of the most active researches in computer vision so-

ciety nowadays due to its wide spectrum of applications. Current researchers have been

focused on implementing sophisticated algorithms with the goal to achieve good recogni-

tion rate but such work are limited to some constraints or assumptions. As a consequence,

these systems are impractical to deploy in real-world environment due to the abounded

uncertainties in the human motion analysis pipeline such as human size variation, view-

point variation, and classification ambiguity. Failing in handling these uncertainties could

affect the overall system performance. In this thesis, fuzzy qualitative reasoning is studied

to address the above uncertainties.

Human modelling is the enabling step in the human motion analysis system where

the identified person from a video camera will be projected and represented in a better

model to ease the latter processes such as feature extraction. Improper care on the varia-

tion of human size and camera positions from the ground might results in a defect human

model such as inconsistent human size, and odd human shape. Such defects will hinder

the feature extraction process and the error in this step might be cumulated in the rest of

the pipeline and deteriorate the overall system performance. In this thesis, fuzzy qualita-

tive Poisson human model is proposed to generalize the human model in terms of sizes

and camera viewpoints.

Besides that, to recognize an action with independent to the human viewpoint is

a great challenge in human motion analysis, but remains unsolved due to its inherent

difficulty. Most state-of-the-art methods are found to be impractical where multi camera

system is required to serve the purpose. In this context, view specific action recognition

framework is proposed to capture and construct the view specific action model for the

objective to achieve view invariant human action recognition within single camera. In the
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framework, a novel human contour namely fuzzy qualitative human contour is proposed

for view estimation which helps in the construction of the view specific action model.

Action recognition is the final step in the human motion analysis pipeline where the

aim is to infer the action or activity from the video. However, classification ambiguity

could abounded in this step such as the confusion in viewpoint, action, and scene context

due to some similarity factors. These cases are denoted as non-mutually cases in the thesis

as their results could not be fully distinguished from the others. Hence, a crisp or binary

classifier may not be so effective to deduce the final output for these cases. As a solution,

fuzzy qualitative rank classifier is proposed to model the non-mutually exclusive case

in the training step and infer with the multi-label and ranking result. This is intuitively

reflecting how human decision is made towards the ambiguous case. In addition, dynamic

fuzzy qualitative rank classifier is proposed as the extension to overcome the heuristic

method in the learning step.

In summary, the collective impact of the above contributions will constitute to achieve

a more practical and feasible framework towards the human motion analysis applications.

Particular video surveillance system that ensure the public safety and lead to a better and

safer society.
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ABSTRAK

Analisa gerakan manusia adalah salah satu daripada penyelidikan-penyelidikan yang

aktif dalam cabang visi komputer pada masa kini kerana ia memanfaatkan banyak ap-

likasi. Penyelidikan terkini lebih cenderung untuk melaksanakan algoritma yang lebih

canggih dengan matlamat untuk mencapai kadar pengiktirafan yang tinggi tetapi terhad

kepada beberapa kekangan atau andaian. Akibatnya, sistem-sistem ini adalah tidak prak-

tikal untuk dipasang dalam persekitaran dunia yang sebenar disebabkan oleh ketitakten-

tuan berlaku dalam prosess analisi gerakan manusia seperti variasi saiz manusia, peruba-

han sudut pandangan, dan kekaburan dalam klasifikasi. Gagal untuk menangani ketidak-

tentuan ini boleh menjejaskan prestasi sistem secara keseluruhan. Penaakulan kualitatif

kabur dikaji untuk menangani ketidaktentuan di atas.

Pemodelan Manusia merupakan langkah yang pertama dalam analisa gerakan manu-

sia. Manusia yang diambil daripada kamera video akan diunjurkan dan diwakili dengan

model yang lebih baik untuk memudahkan proses kemudian seperti pengekstrakan ciri-

ciri pergerakan. Perlaksanaan yang tidak betul terhadap variasi dalam saiz dan sudut

pandangan kamera dari tanah mungkin menyebabkan kecacatan dalam model manusia

seperti saiz manusia yang tidak konsisten, dan bentuk manusia yang ganjil. Kecacatan itu

akan menghalang proses pengekstrakan ciri-ciri dan kesilapan dalam langkah ini mungkin

menjejaskan prestasi sistem secara keseluruhan. Dalam tesis ini, “Fuzzy Qualitative Pois-

son Human Model” dicadangkan untuk mengumumkan model manusia dari segi saiz dan

sudut pandangan kamera.

Selain itu, untuk mengiktiraf tindakan dengan bebas kepada pandangan manusia

adalah satu cabaran yang besar dalam analisis pergerakan manusia, tetapi tetap tidak da-

pat diselesaikan kerana kesukaran yang wujud itu. Kebanyakan negeri-of-the-art kaedah

yang didapati tidak praktikal di mana sistem multi kamera dikehendaki berkhidmat mak-

v



sud itu. Dalam konteks ini, view specific action recognition framework dicadangkan un-

tuk mencapai prestasi analisis pergerakan manusia yang tidak tersekat dengan perubahan

sudut pandangan dengan menggunakan kamera tunggal sahaja. Dalam rangka kerja ini,

kontur manusia iaitu “Fuzzy Qualitative Human Contour” dicadangkan untuk anggaran

pandangan yang akan membantu dalam pembinaan model tindakan tertentu.

Pengelasan tindakan manusia adalah langkah terakhir dalam analisis pergerakan

manusia di mana tujuannya adalah untuk membuat kesimpulan tentang tindakan atau ak-

tiviti daripada video. Walaubagaimanapun, kekaburan didapati berlaku dalam langkah

ini seperti kekeliruan dalam sudut pandangan, tindakan, dan konteks pemandangan. Ini

disebabkan oleh beberapa faktor pengeliruan. Kes-kes ini ditandakan sebagai kes “non-

mutually exclusive” dalam tesis ini kerana keputusan mereka tidak dapat dibezakan sepenuh-

nya daripada yang lain. Oleh itu, pengelas binari mungkin tidak begitu berkesan untuk

menyimpulkan kes-kes ini. Sebagai penyelesaian, fuzzy qualitative rank classifier di-

cadangkan untuk model kes tidak saling eksklusif dalam langkah latihan dan membuat

kesimpulan dengan multi-label dan keputusan ranking yang mencerminkan bagaimana

keputusan manusia dibuat. Di samping itu, dynamic fuzzy qualitative rank classifier di-

cadangkan sebagai lanjutan untuk mengatasi kaedah heuristik dalam langkah pembela-

jaran.

Ringkasannya, kesan kolektif sumbangan di atas akan mencapai rangka kerja yang

lebih praktikal dan boleh dilaksanakan terhadap aplikasi analisis pergerakan manusia,

khususnya dalam sistem pengawasan video yang memastikan keselamatan awam dan

membawa kepada masyarakat persekitaran yang lebih baik dan lebih selamat.
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CHAPTER 1: INTRODUCTION

HMA has been actively emerging over the years owing to the advancement of video

camera technologies and the availability of sophisticated computer vision algorithms in

the public domain. It is a popular research since decades due to the high demand in many

areas such as surveillance systems (Haering et al., 2008; Hu, Tan, et al., 2004; I. S. Kim et

al., 2010; Ko, 2008; Popoola & Wang, 2012), healthcare systems (Anderson et al., 2006;

Anderson, Luke, et al., 2009b), human computer interaction (Jaimes & Sebe, 2007), sport

analysis (Efros et al., 2003; Loy et al., 2004; Sullivan & Shah, 2008), and others. The

objective of the system is to analyse and interpret the human behaviour over time from a

video camera. In particular, actions such as fighting and falling can be detected from a

video surveillance system. Ideally, the system should trigger an alarm to the respective

unit when abnormal behaviour is detected. For instance, as illustrated in Figure 1.1, the

Madrid, London and Boston marathon bombing tragedies, happened in 2004, 2005 and

2013, respectively, would not have been worse if an intelligent video surveillance system

capable of automatically detecting abnormal human behavior was installed in the public

areas.

Figure 1.1: (a) Madrid train bombings: On March 11 2004, Madrid commuter rail
network was attacked and the explosions killed 191 people, injuring 1,800 others, (b)
London bombings: July 7 2005 London bombings were a series of coordinated sui-
cide attacks in the central London, which targeted civilians using the public transport
system during the morning rush hour, (c) Boston Marathon bombings: On April
15 2013, two pressure cooker bombs exploded during the Boston Marathon, killing 3
people and injuring 264. Information source: http://en.wikipedia.org/, Image source:
http://images.google.com.
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To achieve this, the robustness of the intelligent video surveillance system is a vital

concern. False alarm may lead to severe lost between the vendor, user, and the citizen

in term of benefit and man power, to have a few. As a result, most of the researchers

in this area have tried their best to implement sophisticated HMA algorithms in order to

achieve good recognition rate. Because of this, a vast number of research were dedicated

to deal with the aforementioned situations which were extensively reviewed in the rele-

vant survey papers (Aggarwal & Ryoo, 2011; Ji & Liu, 2010; Moeslund & Granum, 2001;

Poppe, 2010). However most of these solutions are still limited to constraints or assump-

tions pointed out in Moeslund et al. (2006). For instance, static background, fixed motion

pattern, no occlusion and the subject must face the camera at all the time. Unfortunately

these systems are impractical to deploy in a real world environment as human in front

of the camera can be in various sizes, various viewpoints, and different background con-

ditions. These uncertainties might affect the decision making process (the classification

task) and deteriorate the overall system performance.

1.1 Uncertainties in Human Motion Analysis

There are several uncertainties in vision-based HMA that are worth studying in order to

enhance the current state-of-the-art solutions. Failure in handling them may lead to poor

system performance.

1.1.1 Body Size Variation

The variations in human body size can be categorized into natural and synthetic causes.

In specific, natural cause can be explained in term of the biological aspect of a person

such as their gender and age (Figure 1.2). By assuming that a person is standing in front

of a camera at a fixed position, generally, a male is bigger in size than a female (Figure

1.2(a) and 1.2(b)), and an adult is bigger than a child (Figure 1.2(c)). As for the synthetic
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(a) Female (b) Male

(c) Age (d) Camera

Figure 1.2: 1.2(a) and 1.2(b) represent the weight and height growth chart for female
and male. The graphs show that male’s growth are bigger in size in term of weight and
height compared to that of a female. (Source: Centers for Disease Control and Prevention,
http://www.cdc.gov/growthcharts/reports.htm). 1.2(c) depicted the size of human accord-
ing to the ages (Source: http://images.google.com). Lastly, 1.2(d) illustrated that different
size of human when they are approaching or leaving the camera (Source: CAVIAR Video
Sequence Ground Truth, http://homepages.inf.ed.ac.uk/rbf/CAVIAR/gt.htm).
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reason, it is related to the distance of the person from the camera. A person appears to

be bigger in size when he/she approaches the camera, and gradually becomes smaller if

he/she moves away from the camera (Figure 1.2(d)).

Such variations are commonly captured in the screen and appear in the video. With-

out generalization on the size variation, it might affect the projection of the human to

build an appropriate human model for further processing. This will limit the system to

be size dependent (Cucchiara et al., 2005; Juang & Chang, 2007). Apart from this, naive

normalization process such as using bounding box and blob. may result in inappropriate

body anatomy representation. In specific, the human body parts could be arbitrary in the

projection space like the inconsistency of hand location for different human size, and it

could be a tedious job to localize them manually. This problem affects the extraction of

robust features which serve as the prerequisite for motion tracking and action recognition.

In the end, the cumulated errors may deteriorate the overall system performance.

1.1.2 Viewpoint Variation

(a) ϕ angle (b) Θ angle

Figure 1.3: The position of the camera with respect to the viewing object can be parame-
terized as the combination of two angles (latitude,ϕ and longitude,Θ).

In a real-world environment, human are not restricted to perform an action at a fixed

position, such as always facing the camera. A sophisticated HMA system should be able

to take into account the variation in camera viewpoints.
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(a) ϕ angle

(b) Θ angle

Figure 1.4: The effect of ϕ and Θ angles in camera viewpoint variation. 1.4(a) shows
the examples of a person capture from different camera positions from the ground (ϕ
angle). 1.4(b) illustrates that motion history image of ‘wave hand’ action from different
viewpoints. It can be noticed that the motion patterns are differed from each other in
different Θ viewpoint and thus makes view invariant action recognition a daunting task.
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In fact, the position of the camera with respect to the viewing object can be pa-

rameterized as the combination of two angles, which are the latitude,ϕ and longitude,Θ

(Rogez et al., 2014) as depicted in Figure 1.3. The ϕ angle represents different camera

positions from the ground while the Θ angles denotes different viewpoints captured from

the horizontal positions. Example image frames obtained from these types of angles are

shown in Figure 1.4. Conventional HMA approaches performed in the way that human

is assumed to be always facing the camera which is not practical (Holte et al., 2011; Ji &

Liu, 2010). Besides that, the camera may not always set up at a fixed position when instal-

lation is done in different environments such as railway station, inside the building or on

the street. In specific, they might be set up with different ϕ angles. If this is not carefully

handled in the system, such displacements could affect the overall system performance in

interpreting the human action (Lewandowski, Makris, & Nebel, 2010).

1.1.3 Classification Ambiguity

One of the main reasons that cause the difficulty in achieving good recognition rate in

HMA is the ambiguity in classification task. Ambiguity here is defined as the vagueness to

accurately recognize an action from the input video due to the similarity factors amongst

different actions. Technically, the similarity factors could be in terms of visual-able (e.g.

movement of leg) or non visual-able (e.g. space time interest point) features. This is

also the reason that researchers in this domain use confusion matrix to tabulate their

recognition results as one action might confused with the others due to some the similarity

factors. For examples, Figure 1.5 shows the confusion matrices of the action recognition

which are adopted from Schuldt et al. (2004) and Y. Yang et al. (2008).

From Figure 1.5, one can notice that there are confusion between “Walk”, “Jog”, and

“Run” actions in Figure 1.5(a) as some portions of the recognition rate are scatter among

the other two answers instead of the correct one. This is similar to “wave” and “scratch
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(b) Y. Yang et al. (2008)

Figure 1.5: Confusion matrices between actions.
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(a) Images from left to right are representing “Walk”, “Jog”, and “Run” actions respectively

(b) Images from left to right are representing “wave” and “scratch head” actions respec-
tively

Figure 1.6: Confusion on the actions. It is noticeable that the characteristics for the
actions in 1.6(a) and 1.6(b) are so similar to each others, and thus ambiguity in decision
making can happen.

head” actions in Figure 1.5(b). This is a difficult situation as illustrated in Figure 1.6

where even human is having difficulty to correctly tells the correct answer for the action

being performed by visual inspection. The reasons are, most of the visible characteristics

to differentiate the actions are too similar. Consequently in these scenarios, human tends

to provide ambiguous answer instead of a binary (yes / no) one, for examples, “it should

be”, “ it maybe”, “I think” where these answers reflected the uncertainty. With this, it

implies that the binary classification brutally forced the classification output to belong to

solely one class with no tolerance to the uncertainty is not an effective solution.

1.2 Problems Formulation

The aforementioned uncertainties could have attached to the general HMA pipeline (Ag-

garwal & Ryoo, 2011; Ji & Liu, 2010; Moeslund et al., 2006; L. Wang et al., 2003) as

illustrated in Figure 1.7 which will affect the performance of each step. In the worst case,
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the cumulated errors will deteriorate the overall system accuracy.

Figure 1.7: Uncertainties that attached to the HMA pipeline.

First, failed in handling the different human size will caused improper projection

of human model in the human detection and modeling step. This will affect the feature

extraction process due to the incorrect positioned human plane. Most of the researches

limit the system to be size dependent (Cucchiara et al., 2005; Juang & Chang, 2007) or

extensive training is needed to support the different human size (Dalal & Triggs, 2005)

which can be a tedious and time consuming task.

Apart from that, view invariant (viewpoint independent) is the current research trend

in vision-based HMA with a few recent published surveys (Holte et al., 2011; Ji & Liu,

2010; Weinland et al., 2011). The aim is to track and model the human motion in a way

that no restriction on the human position in front of the camera. To achieve this, many

conventional approaches assume that the subjects are always performing an action in a

position of frontal-parallel to the camera; and thus builds a 3D action model (Ahmad

& Lee, 2006; Anderson, Luke, et al., 2009b; Weinland et al., 2007, 2006) for capturing

the actions from different viewpoints or by analysing the multi-view geometry (Ashraf

et al., 2013; Yilma & Shah, 2005) as an action template for recognition purpose. This

9



assumption has few limitations. First of all, in a real-world environment, subjects are

not always facing frontal-parallel to the cameras. Secondly, it is unusual to find a multi

cameras system in public space that has many overlapping regions. Authorities always

tend to cover as much areas as possible with a limited number of cameras for cost effective

and limited space. The existence of a region that overlaps with multiple cameras, from

different viewing angles and the appearance of a subject performing an action that is

frontal-parallel to the cameras are very limited too. Therefore, the approaches that use

multiple cameras might not be practical in a real-world environment. Despite of this,

the state-of-the-art approach that overcomes the problem by using single camera in view

invariant HMA (Lewandowski, Makris, & Nebel, 2010) has a drawback in dealing with

the variant in camera positions where extensive training is needed to cope with every

camera displacement especially the φ angles.

Last but not least, the classification ambiguity could happened in the last step of

HMA pipeline which is the classification step to determine the action or behaviour of

the human subject(s). Dilemma happened when there are similar actions but different

class such as “Walk”, “Jog”, and “Run”. All these actions have the similar characteristic

and thus caused the confusion in the classification. Besides that, a surge of interest has

sparked in HMA that takes into account the existence of scene context (Ikizler-Cinbis

& Sclaroff, 2010; Marszalek et al., 2009). This is because the scenery information is

proven to be effective as an extra cue to infer human activity in view independent manner.

Nevertheless, by looking into these works (Ikizler-Cinbis & Sclaroff, 2010; Marszalek et

al., 2009), the source of uncertainties are still apparent in their approaches that may cause

bottleneck in achieving better recognition rate. For instance, the ambiguity in the actions

and the scene images might cause confusion in the classification tasks. Due to these

ambiguities, conventional inference methods in HMA and even in scene understanding

that brutally force the output to be solely belongs to one class may not be a good option.
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1.3 Objectives

Based on the introduction and the problem statements, the uncertainties (human size vari-

ation, viewpoint variation, and classification ambiguity) exist in HMA and the current

state-of-the-art methods are still infeasible to deal with them. The objective of this thesis

is to propose a framework that is capable of modelling the uncertainties in a single under-

lying framework and implement a mechanism to better interpret the ambiguous output.

In order to achieve this, first, fuzzy approaches are studied to understand the feasi-

bility to address the uncertainties in HMA. In the mean time, to discover the benefits of

fuzzy qualitative reasoning over the ordinary fuzzy approaches and the motivation to use

it in addressing the uncertainties.

Secondly, this thesis propose and examine the effectiveness of view specific action

recognition framework in addressing the size and viewpoint variation. This framework is

capable to generalize the different human sizes and φ angles from the acquired image and

perform action recognition independent to the subject’s viewpoint.

Besides that, this thesis also intents to propose a better classification method to in-

terpret the ambiguous cases. This work involves the validation of the existence of non-

mutually exclusive cases in the real-world problem that caused the ambiguity. Last but not

least, to integrate all the above solutions into a single underlying framework and evaluate

the performance in HMA.

1.4 Contributions

The main aim of this thesis is to study the potential of fuzzy approaches, in particular the

fuzzy qualitative reasoning to address the uncertainties in HMA due to its feasibility in

modelling the uncertainties (will explain more in the literature review). With the purpose

to understand the topic thoroughly, extensive study had been done on the conventional

11



HMA compared to fuzzy HMA with the corresponding review paper is accepted in Pattern

Recognition (2015). Technically in this thesis, two main contributions to address the

uncertainties are shown in Figure 1.8.

Figure 1.8: Problems to be addressed and the propose solutions.

Contribution 1: In order to achieve the human size and view invariant capability in the

single camera system, view specific action recognition framework is introduced in this

work as depicted in Figure 1.9. In the process cycle, two main components are necessary

in the propose framework, which are the view estimation module and the View Specific

Action Model (VSAM). The former is to estimate the viewpoint of a person in front of

the camera and the latter is the collection of action models constructed from different

viewpoints. The estimated viewpoint will then use to trigger the corresponding VSAM

for the inference process.

In the pipeline, a novel representation of human model is proposed namely the Fuzzy

Qualitative Poisson-normalized Human Model (FQ-PHM). This is build with the aid of

the Poisson solution (Gorelick et al., 2006a,b) and the Fuzzy Quantity Space (FQS) (Liu

et al., 2009). The FQ-PHM is a generalized human model in terms of the human size,

body anatomy, and the camera position (Φ angle). Extra merit is given to the FQ-PHM as

it allows the extraction of proposed human contour called the Fuzzy Qualitative Human

Contour (FQHC) that is proven as an effective feature for view estimation. Furthermore,

view specific action recognition framework showed that some actions are better recog-
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Figure 1.9: Overall framework of the view specific action recognition framework.

nized in certain viewpoints, this is worth to study in depth to enhance the current state-of-

the-art methods. This work was accepted in Neural Computing and Applications (2015),

and the IEEE International Conference on Fuzzy System (FUZZ-IEEE 2013), Hyderabad,

India.

Contribution 2: Sometimes classification result can be ambiguous in HMA and scene

context that being used as extra cue for HMA (Ikizler-Cinbis & Sclaroff, 2010; Marszalek

et al., 2009). Such ambiguous cases are technically known as the non-mutually exclusive

cases in this thesis. It can be noticed in HMA, confusion always exist between actions

that have similar pattern such as “running”, “walking” and “jogging”. This is similarly in

scene understanding where a scene image can be confused between several scene classes

when they possess the common characteristics (Boutell et al., 2004; M.-L. Zhang & Zhou,

2007). In order to verify this, an online survey was conducted and participated by a group

of people in the range of 12 to 60 years old from different backgrounds such as jobs,

environments and countries. The task is to select the image class label that best reflects
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the given scene image without prior knowledge of what the ground truth (the answer

defined by the researcher) is. Surprisingly the results is in line with the problem statement

where non-mutually exclusive case does exists. Thus, binary classification methods are

found not so effective to deal with non-mutually exclusive cases. Such finding raises

the awareness of computer vision community regarding this very important, but largely

neglected issue.

With this in mind, the Fuzzy Qualitative Rank Classifier (FQRC) is proposed to

model the non-mutually exclusive case, and develop an inference method that outputs

multi-label result with ranking ability instead of crisp or binary result. To the extend,

DFQRC is proposed over ordinary FQRC by endowing the capability to learn the model

adaptively in the training phase. Qualitative and quantitative evaluations showed the ef-

fectiveness and the efficiency of the proposed FQRC and DFQRC in modelling the am-

biguity. The ranking inference mechanism is proven close to human reasoning. The pro-

posed works were respectively accepted in IEEE Transactions on Fuzzy Systems (2015)

and the IEEE International Conference on Fuzzy System (FUZZ-IEEE 2012), Brisbane,

Australia.

1.5 Outline

This chapter provides an overview of the works presented in this thesis with emphasize

on the problem statements, objectives and the contributions. Following are the rest of the

chapters with brief introduction.

Chapter 2 presents the background studies on the current trends in HMA that lead

to the problem statements. In additions, fuzzy human motion analysis is reviewed thor-

oughly to understand the effectiveness of fuzzy approaches that contributed to modeling

the uncertainties in HMA. Nonetheless, it includes the revisit of the FQS with respect to

fuzzy qualitative reasoning and 4-tuple membership number representation which were
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adopted in the proposed solutions.

Chapter 3 introduces the view specific action recognition framework. The solution

in this chapter first uses the view estimation module to estimate the viewpoint of subject

in the image frames, then the VSAM is constructed for view independent action recog-

nition purpose. In the view estimation module, a new representation of human model

called the FQ-PHM is built with the aid of Poisson solution and the FQS. It achieved the

generalization over the human size, body anatomy and camera positions. A novel human

contour descriptor, FQHC which can be extracted from the FQ-PHM is proposed and is

experimentally proven to works effectively in the view estimation task.

Chapter 4 describe the motivation of study about non-mutually exclusive (ambigu-

ous) cases and the existence of non-mutually case is validated with an online survey. It is

conducted by using the popular scene images. To the extend, FQRC is proposed to model

the non-mutually exclusive case and output the multi-label ranking result. The architec-

ture of the training step to generate the Fuzzy Qualitative Trained Model (FQTM) and the

inference method are explained.

Chapter 5 proposes the extension of FQRC namely DFQRC to overcome the heuris-

tic training in the FQRC. This is done by adaptively learn the 4-tuple fuzzy numbers to

build the FQTM in the training step. Comprehensive experiments have been done us-

ing DFQRC in scene understanding to evaluate the performance of the DFQRC over the

FQRC. In addition, qualitative and quantitative results have proved its effectiveness and

efficiency compared to the state-of-the-art methods. Last but not least, it was applied in

HMA and produced promising results.

Chapter 6 concludes the works and provides the suggestions for future work.
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CHAPTER 2: LITERATURE REVIEW

In the literature review, the transition of conventional HMA to fuzzy HMA is studied.

In the studies, the intention of adopting fuzzy approach to address the uncertainties that

abounded in HMA has been review critically in regards of Low-level (LoL), Mid-level

(MiL), and High-level (HiL) which reflecting the HMA pipeline. The motivation of se-

lecting fuzzy qualitative reasoning in the propose framework is identified and a brief

explanation to the approach is included. In overall, the review is conducted as Figure 2.1.

Figure 2.1: The flow of the literature review.

2.1 Human Motion Analysis

HMA in computer vision has been studied extensively for decades due to the demand

and promising growth in high specification of camera technology. The importance and

popularity of the HMA system has led to several surveys in the literature, as indicated

in Table 2.1. One of the earliest surveys was by Aggarwal et al. (1994), focused on
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various methods employed in the analysis of the human body motion, which is in non-

rigid form. Cédras & Shah (1995) gave an overview on the motion extraction methods

using the motion capture systems and focused on action recognition, individual body

parts recognition, and body configuration estimation. Aggarwal & Cai (1997) used the

same taxonomy as in the survey by Cédras & Shah (1995), but engaging different labels

for the three classes, that is further dividing the classes into subclasses yielding a more

comprehensive taxonomy. Gavrila (1999) gave an overview on the applications of visual

analysis of human movements, and their taxonomy covered the 2D and 3D approaches

with and without the explicit shape models.

As the works in this area prosper, public datasets start to gain importance in the vi-

sion community to meet different research challenges. The KTH (Schuldt et al., 2004)

and the Weizmann (Blank et al., 2005; Zelnik-Manor & Irani, 2001) datasets were the

most popular human actions datasets introduced in the early stages. However, neither of

the datasets represent the human actions in a real-world environment. In general, each

action is performed in a simple manner with just a single actor, static background and

fixed viewpoint. KTH however considered a few complex situations such as different

lighting conditions, but it is still far away from the real-world complex scenarios. There-

fore, other datasets were created such as the CAVIAR, ETISEO, CASIA Action, MSR

Action, HOLLYWOOD, UCF datasets, Olympic Sports and HMDB51, BEHAVE, TV

Human Interaction, UT-Tower, UT-Interaction, etc. Please refer to Chaquet et al. (2013)

for a complete list of the currently available datasets in HMA.

Due to the advancement of the technology, using networks of multiple cameras for

monitoring public places such as airports, shopping malls, etc. were emerged. Aggarwal

& Cai (1997); Gavrila (1999); Holte et al. (2011); Hu, Tan, et al. (2004); Ji & Liu (2010);

Moeslund et al. (2006); Poppe (2010); L. Wang et al. (2003); Weinland et al. (2011)

moved ahead to survey on the representation and recognition of the human actions in
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multiple-views aspect. Various new datasets were created exclusively for this purpose

such as the IXMAS, i3DPost, MuHAVi, VideoWeb and CASIA Action. Last but not

the least, Aggarwal & Ryoo (2011); Cristani et al. (2013); Gavrila (1999); Hu, Tan, et al.

(2004); Moeslund & Granum (2001); Turaga et al. (2008); L. Wang et al. (2003) surveyed

on the various applications of HMA such as the smart surveillance and advanced user

interface for human-computer interaction. For the convenience of the readers, the surveys

papers and their focuses are summarized in Table 2.1 and 2.2.

Based on the survey, vision-based HMA can be categorized into two main categories

which are view-dependent and view-independent approaches (Holte et al., 2011; Ji & Liu,

2010). The former require the subject to fixed his/her viewpoint in front of the camera

while the latter is free from this restriction during the image acquiring process.

Most of the works fall into the former category which assumed that all the actions

are performed at a fixed viewpoint (Bobick & Davis, 2001; Chan & Liu, 2009; Gorelick

et al., 2007; Laptev, 2005). From the study, the pioneer work in space time approach is

by Bobick & Davis (2001) where they use temporal information to build two dimensional

binary foreground images called Motion-energy image (MEI) and the scalar values of

foreground images called Motion-history image (MHI) to represent an action. Template

matching is then applied to the pair of MEI and MHI and provides promising results in

recognition of a series of ballet actions. Besides that, Gorelick et al. (2007) proposed an

approach that utilizes the Poisson solution to estimate the moving torso and protruding

limbs for action recognition. Nonetheless, Bregonzio et al. (2009); Laptev (2005); Scov-

anner et al. (2007) extended the idea of spatial interest points into spatio-temporal domain

where a descriptor composed of space time information is built to classify an event. How-

ever, the aforementioned works is suffered from the limitation of viewpoint where they

assumed that a subject will always performs in a static viewpoint.

While in the second category, many works focused on multi-camera approaches to
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Table 2.1: Summarization of the survey papers on HMA.
Paper Author Title Description Year

Aggarwal et al. (1994) J.K. Aggarwal, Q. Cai,
W. Liao & B. Sabata

Articulated and elastic non-rigid motion:
a review

The earliest survey on HMA, focusing on various methods used
in the articulated and non-rigid motion.

1994

Cédras & Shah (1995) C. Cedras & M. Shah Motion-based recognition: a survey An overview on various methods for motion extraction: action
recognition, body parts recognition and body configuration esti-
mation.

1995

Aggarwal & Cai (1997) J.K. Aggarwal & Q. Cai Human motion analysis: a review Focus on motion analysis of human body parts, tracking moving
human from a single view or multiple camera perspectives, and
recognizing human activities from video.

1997

Gavrila (1999) D.M. Gavrila The visual analysis of human movement:
a survey

Discussed various methodologies grouped into 2D approaches
with or without explicit shape models as well as 3D approaches.

1999

Pentland (2000) A. Pentland Looking at people: sensing for ubiquitous
and wearable computing

Reviewed the state-of-the-art of "looking at people" focusing on
person identification and surveillance monitoring.

2000

Moeslund & Granum (2001) T.B. Moeslund & E.
Granum

A survey of computer vision-based hu-
man motion capture

Overview on the taxonomy of system functionalities: initializa-
tion, tracking, pose estimation and recognition.

2001

L. Wang et al. (2003) L. Wang, W. Hu & T.
Tan

Recent Developments in Human Motion
Analysis

Focus on three major issues: human detection, tracking and activ-
ity understanding.

2003

Hu, Tan, et al. (2004) W. Hu, T. Tan, L. Wang
& S. Maybank

A survey on visual surveillance of object
motion and behaviors

Reviewed recent developments in visual surveillance of object
motion and behaviors in dynamic scenes and analyzed possible
research directions.

2004

Moeslund et al. (2006) T. B. Moeslund, A.
Hilton, & V. Kruger

A survey of advances in vision-based hu-
man motion capture and analysis

Discuss recent trends in video-based human motion capture and
analysis.

2006

Poppe (2007) R. Poppe Vision-based human motion analysis: An
overview

HMA with two phases: modelling (concerned with construction
of the likelihood function) and estimation (finding the most likely
pose given the likelihood surface).

2007

Turaga et al. (2008) P. Turaga, R. Chel-
lappa, V. Subrahmanian
& O. Udrea

Machine recognition of human activities:
A survey

Addressed the problem of representation, recognition and learn-
ing of human activities from video and related applications.

2008

Ji & Liu (2010) X. Ji & H. Liu Advances in view-invariant human mo-
tion analysis: A review

Emphasized on the recognition of poses and actions. Three ma-
jor issues were addressed: human detection, view-invariant pose
representation and estimation, and behavior understanding.

2010

Poppe (2010) R. Poppe A survey on vision-based human action
recognition

Overview on current advances in vision-based human action
recognition, addressing challenges faced due to variations in mo-
tion performance, recording settings and inter-personal differ-
ences. Also, discussed shortcomings of the state-of-the-art and
outline promising directions of research.

2010

Candamo et al. (2010) J. Candamo, M. Shreve,
D. Goldgof, D. Sapper,
& R. Kasturi

Understanding transit scenes: A sur-
vey on human behavior-recognition algo-
rithms

Reviewed automatic behavior recognition techniques, focusing on
human activity surveillance in transit applications context.

2010

Aggarwal & Ryoo (2011) J. K. Aggarwal & M. S.
Ryoo

Human activity analysis: A review Discussed methodologies developed for simple human actions as
well as high-level activities.

2011

Weinland et al. (2011) D. Weinland, R. Ron-
fard & E. Boyer

A survey of vision-based methods for
action representation, segmentation and
recognition

Concentrated on the approaches that aim at classification of full-
body motions: kicking, punching and waving, and further catego-
rized them according to spatial and temporal structure of actions,
action segmentation from an input stream of visual data and view-
invariant representation of actions.

2011

Holte et al. (2011) M.B. Holte, T.B. Moes-
lund, C. Tran & M.M.
Trivedi

Human action recognition using multiple
views: A comparative perspective on re-
cent developments

Presented a review and comparative study of recent multi-view
2D and 3D approaches for HMA.

2011

Lara & Labrador (2013) O. Lara & M. Labrador A survey on human activity recognition
using wearable sensors

Surveys human activity recognition based on wearable sensors.
28 systems were qualitatively evaluated in terms of recognition
performance, energy consumption, and flexibility etc.

2013

L. Chen et al. (2013) L. Chen, H. Wei & J.
Ferryman

A survey of human motion analysis using
depth imagery

Reviewed the research on the use of depth imagery for analyzing
human activity (e.g. the Microsoft Kinect). Also listed publicly
available datasets that include depth imagery.

2013

Cristani et al. (2013) M. Cristani, R.
Raghavendra, A.
Del Bue & V. Murino

Human behavior analysis in video
surveillance: A social signal processing
perspective

Analyzed the social signal processing perspective of the auto-
mated surveillance of human activities such as face expressions
and gazing, body posture and gestures, vocal characteristics etc.

2013

Chaquet et al. (2013) J. M. Chaquet, E.
J. Carmona & A.
F.-Caballero

A survey of video datasets for human ac-
tion and activity recognition

Provide a complete description of the most important public
datasets for video-based human activity and action recognition.

2013
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Table 2.2: Criterion on which the previous survey papers on HMA emphasized on (1994-
2013). Note that those criterion without a ‘tick’ means the topic is not discussed com-
prehensively in the corresponding survey paper, but might be touched indirectly in the
contents.

Year Paper Human Detection Tracking Behavior Understanding Multi-view Feature extraction Datasets Application

1994 Aggarwal et al. (1994) - X X - X - -

1995 Cédras & Shah (1995) - X X - X - -

1997 Aggarwal & Cai (1997) X X X X X - -

1999 Gavrila (1999) X X X X X - X

2000 Pentland (2000) X X X - X - -

2001 Moeslund & Granum (2001) X X X - X - X

2003 L. Wang et al. (2003) X X X X - - X

2004 Hu, Tan, et al. (2004) X X X X - - X

2006 Moeslund et al. (2006) X X X X - - -

2007 Poppe (2007) X X - - X - -

2008 Turaga et al. (2008) X - X - X - X

2010 Ji & Liu (2010) X - X X - X -

2010 Poppe (2010) - - X X X X -

2010 Candamo et al. (2010) X X X - - - -

2011 Aggarwal & Ryoo (2011) - - X - X X X

2011 Weinland et al. (2011) X - X X X X -

2011 Holte et al. (2011) - - X X X X -

2013 Lara & Labrador (2013) - - X - X X -

2013 L. Chen et al. (2013) X X X - - X -

2013 Cristani et al. (2013) X X X - - - X

2013 Chaquet et al. (2013) - - - - - X -

achieve view independent action recognition (Ahmad & Lee, 2006; Anderson, Luke, et

al., 2009b; Ashraf et al., 2013; Weinland et al., 2007, 2006; Yilma & Shah, 2005). The

drawback of using multi-camera approach is, it is only applicable to closed controlled

environment such as a calibrated space or room, and these system may be impractical to

deploy in an open environment such as airport or street. In these multi-camera methods,

2D models are extended into 3D models to reconstruct the human shape in a volumet-

ric space. For examples, Anderson, Luke, et al. (2009b) built a 3D representation of

human using multiple cameras and called voxel person. The features such as the voxel

person’s centroid; eigen-based height; and the similarity of voxel person’s primary orien-

tation and the ground plane normal are then extracted from the voxel person to infer the
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falling activity. On the other hand, Weinland et al. (2007) proposed a new framework that

model actions using 3D occupancy grids, which are built from multiple viewpoints in an

exemplar-based HMM. For recognition, the 3D exemplars are used to produce 2D image

information for matching purpose.

On the other hand, the epipolar geometry between two views (Kimura & Saito, 2001)

is also a popular method to analyse the body posture from multiple cameras at different

viewing angle. For example, Ashraf et al. (2013) utilized the epipolar geometry to obtain

a fundamental matrix between two fixed cameras and the concept of fundamental ratios

is investigated which are invariant to camera intrinsic parameters in view invariant action

recognition (Ashraf et al., 2013). Besides that, Yilma & Shah (2005) proposed the exten-

sion of the standard epipolar geometry to support dynamic scenes where the cameras are

movable to study the action. Although the above mentioned approaches achieved signif-

icant results in view independent action recognition, multi-camera approaches are only

applicable to closed-controlled environment and it is impractical and expensive to deploy

in a real-world environment.

This problem is addressed by Lewandowski, Makris, & Nebel (2010) where they em-

phasize the importance for implementing view independent action recognition with sin-

gle camera. In their work, a torus-like descriptor Lewandowski, Makris, & Nebel (2010)

is proposed which takes advantage of Temporal Laplacian Eigenmaps (Lewandowski,

Martinez-del Rincon, et al., 2010) and the Decomposable Generative Model (Lee & El-

gammal, 2007) to recognize action in view invariant manner. However, their approach

faces the difficulty in dealing with the variant in camera positions, which is the φ angle

(please refer to section 1.1.2). Consequently, extensive training is needed to cope with

that.

Apart from the above mentioned works, there is a raise in the interest for the combi-

nation of scene context in HMA (Ikizler-Cinbis & Sclaroff, 2010; Marszalek et al., 2009)
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Figure 2.2: Summary of HMA and its respective categories and limitations.

recently. The scenery information was proven to be effective as an extra cue to infer an ac-

tivity in view independent manner. Nonetheless, the source of uncertainty exists in these

approaches and causes the bottleneck in achieving good performance. This is mainly due

to the ambiguity among the actions and the scene images. It implies that the final result

could be non-mutually exclusive where the testing sample could belongs to more than one

action or image classes. This indicates that the conventional crisp or binary classifier (K-

Nearest Neighbour, Support Vector Machine, etc. ) may not effective in this ambiguous

case because they brutally force an output to belongs to solely one class. The summary

of all these problems and its respective limitations are shown in Figure 2.2.

Fuzzy set theory (Zadeh, 1965) which endowed with the capability of modelling the

uncertainties has lead HMA to a new research direction in fuzzy HMA to deal with the

above limitations. In this literature review, a detailed review of the works in fuzzy HMA

will be presented in the next section with respect to how fuzzy approaches deal with the

uncertainties abounded in the HMA system.
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2.2 Fuzzy Human Motion Analysis

Various uncertainties can happens in almost every computer vision application (Hunts-

berger et al., 1986) especially when dealing with the real-world problems such as HMA

system (Chan et al., 2011). Apparently, failed in handling these uncertainties can cause

catastrophe such as system failure or bad performance. In order to solve this, many re-

searchers have focused to apply fuzzy approaches in HMA. This is because fuzzy set

theory is endowed with the capability to model the uncertainties.

Fuzzy set theory since its inception in 1965 (Zadeh, 1965), has played an important

role in handling uncertainties and is successfully integrated into various applications, for

example the subway system in Sendai, Japan; washing machine; digital camera and so

on. Fuzzy set is used to represent a class of object with the membership grade (Zadeh,

1965). More often than not, in our nature surrounding, there are objects which generally

hard to be distinguish distinctly with neither ’Yes’ or ’No’. In other word, crisp or binary

answer. Instead, fuzzy set is used to measure the degree of the belonging of that object

to the related classes with interval 0 to 1. The flexibility of the sets theory also empow-

ers the use of set operations to optimize the meaning of fuzzy sets such as intersection,

union, complement, and many other advance operations for fuzzy relation (Zadeh, 1988).

With the advancement in fuzzy set theory, various fuzzy approaches have been proposed

which significantly contributes to the HMA such as type-1 and type-2 Fuzzy Inference

System (FIS) (Karnik et al., 1999; Mendel & John, 2002; Zadeh, 1988), fuzzy clustering

(Krishnapuram & Keller, 1993; Pal et al., 2005), and fuzzy qualitative reasoning (Shen &

Leitch, 1993; Shen et al., 1993), etc.

In this literature, the focus will be primarily on the solutions that utilized the fuzzy

approaches towards HMA. Particularly regarding the early years of the fuzzy set oriented

approaches for HMA, individuating how the fuzzy set may improve the HMA, envisaging
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Figure 2.3: Overall taxonomy of the review in fuzzy HMA. It is organized according
to the pipeline of HMA from Low-level to High-level with subcategories of the fuzzy
approaches that have been employed in the literature.

and delineating the future perspectives. This is in contrast to the past research works

where stochastic solutions were the predominant discussions.

For simplicity, the review is categorized into three broad levels which are important

to achieve a successive HMA system. The respective uncertainties abounded in each of

these level of processing is discussed with the corresponding fuzzy solution. The three

broad levels are: LoL, MiL, and HiL HMA, as depicted in Figure 2.3. The LoL HMA is

the background foreground subtraction which contributes in the pre-processing of the raw

images to discover the areas of interest such as the human region. MiL HMA is the object

tracking. In this level, it serves as the means to prepare data for human pose estimation

and activity recognition. HiL HMA is the behavior understanding where the objective

is to correctly classify the human motion patterns into activity categories; for example,

walking, running, wave hands and so on.
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2.2.1 Low-level

In HMA, by ignoring the image acquiring stage, the foremost task will be the low-level

vision which is also considers the human detection step that includes motion segmentation

and object classification. Human detection is the initial step in almost every low-level

vision-based HMA system before the higher level processing steps such as tracking and

behavior understanding can be performed. Technically, human detection aims at locating

and segmenting the human regions from the other subjects in the image. This process

usually involves the motion segmentation followed by the object classification.

2.2.1 (a) Motion segmentation

Motion segmentation aims at separating the moving objects from the natural scenes. The

extracted motion regions are vital for the next level of processing, e.g. it relaxes the track-

ing complexity as only the pixels with changes are considered in the process. However,

some critical situations in the real-world environment such as the illumination changes,

dynamic scene movements (e.g. rainy weather, waving tree, rippling water and so on),

camera jittering, and shadow effects make it a daunting task.

Background subtraction is one of the popular motion segmentation algorithms that

has received much attention in the HMA system. This is due to the usefulness of its output

that is capable of preserving the shape information, as well as helps in extracting motion

and contour information (Bobick & Davis, 2001; Lewandowski, Makris, & Nebel, 2010;

Weinland et al., 2006). In general, background subtraction is to differentiate between

the image regions which have significantly different characteristics from the background

image (normally denoted as the background model). A good background subtraction al-

gorithm comprises of a background model that is robust to the environmental changes, but

sensitive to identify all the moving objects of interest. There are some fuzzy approaches
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that endowed this capability in the background subtraction which will be discussed as

follows.

Fuzzy integral

Information fusion from a variety of sources is the most straightforward and effective

approach to increase the classification confidence, as well as removing the ambiguity and

resolving the conflicts in different decisions. Rationally in background modeling, the

combination of several measuring criteria (also known as the features or attributes) can

strengthen the pixel’s classification as background or foreground. However the basic

mathematical operators used for aggregation such as the minimum, maximum, average,

median, ‘AND’, and ‘OR’ operators provide crisp decisions and utilize only a single

feature that tends to result in false positive (H. Zhang & Xu, 2006). In contrast, the fuzzy

integrals take into account the importance of the coalition of any subset of the criteria

(El Baf et al., 2008b).

Figure 2.4: Comparison between the Sugeno and the Choquet fuzzy integral methods for
background subtraction El Baf et al. (2008b). First row: The original image. Second row:
the output from the Sugeno fuzzy integral on the left and the Choquet fuzzy integral on
the right.
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In general, the fuzzy integral is a non-linear function that is defined with respect

to the fuzzy measure such as a belief or a plausibility measure (Tahani & Keller, 1990),

and is employed in the aggregation step. As the fuzzy measure in the fuzzy integral is

defined on a set of criteria, it provides precious information about the importance and rel-

evance of the criteria to the discriminative classes. Thus it achieves feature selection with

better classification results. H. Zhang & Xu (2006) proposed to use the Sugeno integral

(Marichal, 2000) to fuse color and texture features in their works for better classification

of the pixel that belongs to either background or foreground, while Balcilar & Sonmez

(2013); El Baf et al. (2008a,b) improved the work by replacing the Sugeno integral with

the Choquet integral (Murofushi & Sugeno, 1989). The main reason is that the Cho-

quet integral which was adapted for cardinal aggregation, was found to be more suitable

than the Sugeno integral that assumed the measurement scale to be ordinal (Narukawa

& Murofushi, 2004; Sugeno & Kwon, 1995). The corresponding results for the com-

parison between the Sugeno integral and the Choquet integral are shown in Figure 2.4.

The background modeling process using the fusion of color and texture features have

shown to achieve better detection of the moving targets against cluttered backgrounds,

backgrounds with little movements, shadow effects as well as illumination changes.

Type-2 Gaussian mixture model

The studies on the background subtraction (Cheung & Kamath, 2004; Piccardi,

2004) have shown that the Gaussian Mixture Model (GMM) is one of the popular ap-

proaches used in modeling the dynamic background scene. It solves the limitation in the

unimodal model (single Gaussian) which is unable to handle the dynamic backgrounds

such as waving tree and water rippling. The expectation-maximization algorithm is nor-

mally used in the initialization step of the GMM to estimate the parameters from a training

sequence using the Maximum-likelihood (ML) criterion. However, due to insufficient or
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noisy training data, the GMM may not be able to accurately reflect the underlying distri-

bution of the observations. This is because exact numbers must be used in the likelihood

computation and unfortunately, these parameters are bounded by uncertainty. In order to

take into account the uncertainty, the fuzzy set theory was explored.

Figure 2.5: Example of the type-2 fuzzy membership function of the Gaussian model
with (a) uncertain mean, µ and (b) uncertain standard deviation, σ , having uniform pos-
sibilities. The shaded region is the Footprint of Uncertainty (FOU). The thick solid and
dashed lines denote the lower and upper membership functions Zeng et al. (2008).

However, there has been an argument that type-1 fuzzy set, which is an ordinary

fuzzy set (Zadeh, 1965), has limited capability in modeling the uncertainty. This is be-

cause the membership function for the type-1 fuzzy set is not associated with uncertainty.

Therefore, type-2 fuzzy sets (Mendel & John, 2002) emerged from the type-1 fuzzy set

by generalizing it to handle more uncertainty in the underlying fuzzy membership func-

tion. As a whole, the type-2 fuzzy membership function is itself a fuzzy set and referring

to Figure 2.5, it can be noticed that the uncertainty in the fuzzy membership function is

represented in the shaded area known as the Footprint of Uncertainty (FOU). With the

capability of type-2 fuzzy set to handle higher dimensions of uncertainty, it was adopted

in Zeng et al. (2008) to represent the multivariate Gaussian with an uncertain mean vector
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or a covariance matrix. In more detail, it was assumed that the mean and the standard

deviation vary within the intervals with uniform possibilities (Figure 2.5), instead of crisp

values as in the conventional GMM.

Several works (Bouwmans et al., 2009; El Baf et al., 2008c, 2009) have been reported

that utilized the type-2 fuzzy GMM to deal with insufficient or noisy data, and resulted

in better background subtraction model. In the later stage, Zhao et al. (2012) made an

improvement on these works with the inclusion of spatial-temporal constraints into the

type-2 fuzzy GMM by using the Markov Random Field.

Hybrid technique

Although the fuzzy approaches provide superior performance in background sub-

traction, most of these approaches have a common problem, that is how to optimize the

parameters in their algorithms. These parameters can be the intrinsic parameters such

as the interval values of the membership function, or the threshold value for the infer-

ence step. Optimizing these parameters usually increases the overall system performance.

However, such steps require human intervention (El Baf et al., 2008a,b; H. Zhang & Xu,

2006). For example, the trial and error process to determine a classification threshold

value is a tedious job, computationally expensive and subjective (Sigari et al., 2008).

Fortunately, such limitations can be handled by using hybrid techniques, i.e. the

combination of fuzzy approaches with machine learning methods. Lin et al. (2000) ap-

plied neural fuzzy framework to estimate the image motion. The back-propagation learn-

ing rule from a five-layered neural fuzzy network was used to choose the best mem-

bership functions so that the system is able to adapt to different environments involving

occlusions, specularity, shadowing, transparency and so on. Besides that, Maddalena

& Petrosino (2010) introduced a spatial coherence variant incorporated with the self-

organizing neural network to formulate a fuzzy model to enhance the robustness against
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false detection in the background subtraction algorithm. Z. Li et al. (2012) used both the

particle swarm optimization and the kernel least mean square to update the system param-

eters of a fuzzy model, and Calvo-Gallego et al. (2013) employed a tuning process using

the Marquardt-Levenberg algorithm within a fuzzy system to fine-tune the membership

function. In order to determine the appropriate threshold value for the classification task,

Shakeri et al. (2008) proposed a novel fuzzy-cellular method that helps in dynamically

learning the optimal threshold value.

2.2.1 (b) Object classification

The outcome from the motion segmentation usually results in a rough estimation of the

moving targets in a natural scene. These moving targets in a natural scene can be shadow,

vehicle, flying bird and so on. Before the region is further processed at the next level,

it is very important to verify and refine the interest object by eliminating the unintended

objects. In this section, we discuss some fuzzy approaches that are beneficial in the human

object classification.

Type-1 fuzzy inference system

Figure 2.6: Type-1 Fuzzy Inference System (Mendel et al., 2006).

The Type-1 Fuzzy Inference System (FIS) (Yager & Zadeh, 1992) is a complete

fuzzy decision making system that utilizes the fuzzy set theory. It has been successfully
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applied in numerous applications for commercial and research purposes. Its popularity

is due to the capability to model the uncertainty and the sophisticated inference mecha-

nism that greatly compromises the vague, noisy, missing, and ill-defined data in the data

acquisition step. Figure 2.6 shows the overall framework of a typical Type-1 FIS, where

it includes three important steps: fuzzification, inference, and defuzzification. The fuzzi-

fication step maps the crisp input data from a set of sensors (features or attributes) to

the membership functions to generate the fuzzy input sets with linguistic support (Zadeh,

1988). Then, the fuzzy input sets go through the inference steps with the support from a

set of fuzzy rules to infer the fuzzy output sets. Finally, the fuzzy output sets are defuzzi-

fied into the crisp outputs.

(a)

(b)

Figure 2.7: (a) Example of the membership function for the distance feature where µ(x)
denotes the membership value, and x is the distance value. (b) The fuzzy rules for the
fuzzy input for three features (Distance, ρ; Angle, Θ and Cord to Arc Ratio, ζ ), and its
corresponding fuzzy output (VL=Very low, L=Low, M=Med, H=High, VH=Very High)
Mahapatra et al. (2013).

In human detection, the FIS is an effective and direct approach to distinguish be-

tween the human and non-human with different features (Chowdhury & Tripathy, 2014;

Mahapatra et al., 2013; See et al., 2005). As an example, Mahapatra et al. (2013) ex-

31



tracted three features from the contours of the segmented region, such as the distance to

the centroid, angle, and cord to arc ratio, and input them into the FIS. The corresponding

fuzzy membership function and a set of fuzzy rules were used to infer the fuzzy output

as depicted in Figure 2.7. The fuzzy outputs (VL, L, M, H, VH) were then defuzzified

into the crisp outputs, and used to perform human classification. For example, if the crisp

output is found to be less than the threshold value, then it is recognized as a human and

vice versa.

Besides that, X. Chen, He, Anderson, et al. (2006); X. Chen, He, Keller, et al. (2006)

studied in depth about the problems encountered in the human classification tasks, such

as the situations where the unintended objects are attached to the classified human region.

This problem often occurs in the silhouette based classification output. In general, silhou-

ette is the binary representation of the segmented regions from the background subtraction

techniques, where in HMA, human silhouette has proved its sufficiency to describe the

activities captured by the video (Bobick & Davis, 2001; Lewandowski, Makris, & Nebel,

2010; Weinland et al., 2006). For example. a chair that is being moved by a person can

be misclassified as a part of the segmented region, and included as part of the silhou-

ette image. In order to solve this, X. Chen, He, Anderson, et al. (2006); X. Chen, He,

Keller, et al. (2006) applied the FIS to perform an adaptive silhouette extraction in the

complex and dynamic environments. In their works, they used multiple features such as

the sum of absolute difference (SAD), fraction of neighbor blocks, and distance between

blocks and human body centroid. A set of fuzzy rules were generated, for instance, “IF

SAD is SMALL, AND the fraction of neighboring silhouette blocks belong to the human

body is LARGE, AND the distance from the centroid is SMALL, THEN the new block

is more likely to be a human silhouette block”. Depending upon the application, the FIS

is capable of modeling different sources of features by generating the appropriate fuzzy

membership functions and the fuzzy rules.
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Type-2 fuzzy inference system

Figure 2.8: Type-2 Fuzzy Inference System Mendel et al. (2006).

To a certain extent, the overall performance of the system from X. Chen, He, An-

derson, et al. (2006); X. Chen, He, Keller, et al. (2006) may be degraded due to the

misclassification of the objects in the proposed type-1 FIS. Taking this into account, Yao

et al. (2012) employed the interval type-2 FIS (Liang & Mendel, 2000) which is capable

of handling higher uncertainty levels present in the real world dynamic environments.

In general, as aforementioned, the type-2 FIS differs from the type-1 FIS in terms of

the type-2 FIS offers the capability to support higher dimensions of uncertainty. The main

focus in the type-2 FIS is the membership function that is used to represent the input data,

where the membership function itself is a fuzzy set with FOU bounded in an ordinary

membership function. In consequences, the input data is first fuzzified into type-2 input

fuzzy sets, and then go through the inference process where the rules can be similar as

the type-1 FIS. Before the defuzzification step takes place, the type-2 output fuzzy sets

must be reduced from type-2 to type-1 output fuzzy set. This is processed by using a

type-reducer, as depicted in Figure 2.8.

Using the same features as X. Chen, He, Anderson, et al. (2006); X. Chen, He,

Keller, et al. (2006), Yao et al. (2012) proposed to fuzzify the input feature values into

the type-2 fuzzy sets using the singleton fuzzification method (Karnik & Mendel, 1998).

Consequently, it produces the interval type-2 membership functions for the inference pro-
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Figure 2.9: Background subtraction on the image of a person raising a book. (a) Extracted
silhouette by using the GMM, but is unable to eliminate the unintended object (book).
(b) Extracted silhouette after using type-1 FIS to detach the book from the human, but
degraded as a result X. Chen, He, Anderson, et al. (2006); X. Chen, He, Keller, et al.
(2006). (c) Extracted silhouette after using type-2 FIS where the result is much smoother.

cess. Their approach was tested on a set of images captured from the real world environ-

ment that contains single person, multi-person and the crowded scenes, respectively. The

ground truth data was captured from the cameras deployed around their laboratory (i.e.

a smart living room) to analyze people’s regular activities. Their proposed work showed

that the type-2 FIS provides much better results as compared to the type-1 FIS (Figure

2.9). The summary of the works using the fuzzy approaches to solve the uncertainties in

LoL HMA is presented in Table 2.3.
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Table 2.3: Summarization of research works in LoL HMA using the Fuzzy approaches.

LoL processing
Problem statements /

Authors Why fuzzy? Approach
Sources of Uncertainty

Motion segmentation Critical situations such as illumination
changes, dynamic scene movements,
camera jittering, and shadow effects con-
fuse the pixels belonging to the back-
ground model or the foreground object.

Balcilar & Sonmez (2013); El Baf
et al. (2008a,b); H. Zhang & Xu
(2006)

Information fusion from a variety of
sources using the fuzzy aggregation
method relaxes the crisp decision prob-
lem that causes confusion in the specific
class.

Fuzzy integral

Insufficient and noisy training data do not
accurately reflect the distribution in an or-
dinary Gaussian Mixture Model (GMM)
background modelling process.

Bouwmans et al. (2009); El Baf et
al. (2008c, 2009); Zhao et al. (2012)

The uncertainty in GMM is bounded with
interval mean and standard deviation in-
stead of the crisp values. Type-2 fuzzy set
is utilized to handle higher dimensions of
uncertainty within the type-1 membership
itself.

Type-2 Fuzzy GMM

Difficulty in determining the optimum
parameters in the fuzzy system such as
the membership function or the threshold
value for the decision making process in
the background subtraction algorithms.

Calvo-Gallego et al. (2013); Z. Li et
al. (2012); Lin et al. (2000); Mad-
dalena & Petrosino (2010); Shakeri
et al. (2008)

Integration of the machine learning tech-
niques with the fuzzy approaches allow
the system to learn the optimum parame-
ters that leads to better overall system per-
formance and the feasibility to adapt to
various situations depending on the task
in hand.

Hybrid technique

Object classification The confusion between the human and
non-human objects, and the unintended
objects attached to the human region
causes the uncertainty in the classification
tasks.

X. Chen, He, Anderson, et al.
(2006); X. Chen, He, Keller, et
al. (2006); Chowdhury & Tripathy
(2014); Mahapatra et al. (2013);
See et al. (2005)

Type-1 FIS is able to model the uncer-
tainty in the features data as the member-
ship function, and perform inference us-
ing the fuzzy rules to achieve better clas-
sification results.

Type-1 FIS

The insufficiency of the type-1 FIS causes
the misclassification of the objects and the
degradation in the silhouette extraction.

Yao et al. (2012) Type-2 fuzzy set offers the capability to
support higher dimensions of uncertainty
where in this case, the smoother classifi-
cation results can be obtained.

Type-2 FIS

2.2.2 Mid-level

Once we have successfully located the human in the frame, the next step is to track the

human movements over time for the higher level interpretation. Tracking is a crucial step

in HMA as it forms the basis for data preparation for HiL HMA tasks such as action

recognition, anomaly event detection and so on. The aim of the tracking algorithm is to

reliably track the object of interest such as the human body from a sequence of images,

and it can be categorized either the model based or the non-model based motion tracking.

2.2.2 (a) Model based tracking

In the model based human motion tracking, the human body models such as the stick

figures, 2D and 3D motion description models are adopted to model the complex, non-

rigid structure of the human body (Guo et al., 1994; Iwai et al., 1999; Ju et al., 1996;

Kakadiaris & Metaxas, 1996; Leung & Yang, 1995; Niyogi & Adelson, 1994; Rehg &

Kanade, 1995; Rohr, 1994; Silaghi et al., 1998; Wachter & Nagel, 1997). Readers can
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refer to Aggarwal & Cai (1997); Gavrila (1999); Moeslund & Granum (2001); L. Wang

et al. (2003) for the detailed reviews. The stick figure model represents the human body

as a combination of sticks or line segments connected by the joints (Guo et al., 1994; Iwai

et al., 1999; Leung & Yang, 1995; Silaghi et al., 1998), while the 2D models represents

the human body using 2D ribbons or blobs (Ju et al., 1996; Leung & Yang, 1995; Niyogi

& Adelson, 1994). 3D models are used to depict the human body structure in a more

detailed manner using cones, cylinders, spheres, ellipses etc. (Kakadiaris & Metaxas,

1996; Rehg & Kanade, 1995; Rohr, 1994; Wachter & Nagel, 1997).

However, tracking human in video sequences is not an easy task. The human body

has a complex non-rigid structure consisting of a number of joints (e.g. the leg is con-

nected to the foot by the ankle joint) and each body part can therefore move in a high

degree of freedom around its corresponding joints. This often results in self-occlusions

of the body parts. 3D models are able to handle such scenarios, but there are other factors

that can affect the tracking performance such as the monotone clothes, cluttered back-

ground and changing brightness Ning et al. (2004). Therefore, the fuzzy approaches such

as the fuzzy qualitative kinematics, the fuzzy voxel person, and the fuzzy shape estima-

tion are explored in the model based human motion tracking algorithms to handle the

uncertainties.

Fuzzy qualitative kinematics

A variety of works in the model based human motion tracking have employed the

kinematic chain (Guo et al., 1994; Iwai et al., 1999; Ju et al., 1996; Kakadiaris & Metaxas,

1996; Leung & Yang, 1995; Niyogi & Adelson, 1994; Rehg & Kanade, 1995; Rohr, 1994;

Silaghi et al., 1998; Wachter & Nagel, 1997). Bregler et al. Bregler et al. (2004) demon-

strated a comprehensive visual motion estimation technique using the kinematic chain in

a complex video sequence, as depicted in Figure 2.10. However, the crisp representation
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(a)

(b)

Figure 2.10: (a) Kinematic chain defined by twist (Bregler et al., 2004), and (b) The
estimated kinematic chain on the human body while performing the walking action.

of the kinematic chain has a limitation. It suffers from the precision problem (Liu, 2008)

and the cumulative errors can directly affect the performance of the higher level tasks.

Therefore, a better strategy is required to model the kinematic chain, and to this end, the

fuzzy qualitative kinematics has been proposed.

To begin with, the fuzzy qualitative reasoning (Chan et al., 2011; Shen & Leitch,

1993) is a form of approximate reasoning that can be defined as the fusion between the

fuzzy set theory (Zadeh, 1965) and the qualitative reasoning (Kuipers, 1986). The qualita-

tive reasoning operates with the symbolic ‘quantities’, while the fuzzy reasoning reasons

with the fuzzy intervals of varying precisions, providing a means to handle the uncertainty

in a natural way. Therefore, the fuzzy qualitative reasoning incorporates the advantages

of both the approaches to alleviate the hard boundary or the crisp values of the ordinary
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(a)

(b)

Figure 2.11: (a) Description of the Cartesian translation and the orientation in the conven-
tional unit circle replaced by the fuzzy quantity space. (b) Element of the fuzzy quantity
space for every variable (translation (X , Y ), and orientation θ ) in the fuzzy qualitative unit
circle is a finite and convex discretization of the real number line Chan & Liu (2009).

measurement space. For instance, Liu et al. (2009) applied this in the Fuzzy Qualitative

Trigonometry (Figure 2.11) where the ordinary Cartesian space and the unit circle are

substituted with the combination of membership functions yielding the fuzzy qualitative

coordinate and the fuzzy qualitative unit circle. Extension from this, a fuzzy qualitative

representation of the robot kinematics (Liu, 2008; Liu et al., 2008a) was proposed. The

work presented a derivative extension to the Fuzzy Qualitative Trigonometry Liu et al.

(2009). Motivated by these approaches, Chan et al. (2008) proposed a data quantization
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process based on the Fuzzy Qualitative Trigonometry to model the uncertainties during

the kinematic chain tracking process; and subsequently constructed a generic activity

representation model.

Fuzzy voxel person

Figure 2.12: Voxel person constructed using multiple cameras from different viewpoints
of the silhouette images that resolved the occlusion problem in the single camera system.
However, due to the location of the cameras and the person’s positions, the information
gathered using the crisp voxel person model can be imprecise and inaccurate. Therefore,
the fuzzy voxel person representation was proposed Anderson, Luke III, et al. (2009).

As aforementioned, the 3D models provide more useful information than the 2D

models as the features (height, centroid, orientation, etc.) in the 3D space are camera-view

independent. Inspired by this, Anderson, Luke, et al. (2009a,b) demonstrated a method to

construct a 3D human model in voxel (volume element) space using the human silhouette

images called the voxel person (Figure 2.12). However, due to the location of the cameras

and the object’s positions, the gathered information using the crisp voxel person model

can be sometimes imprecise and inaccurate. The crisp technique works well if and only

if there are sufficient number of cameras. But unfortunately, it is hard to find more than

a couple of cameras in the same area due to the high cost involved and the limited space

area.
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Figure 2.13: The proposed fuzzy voxel person to obtain an improved crisp object. Red
areas are the improved voxel person and the blue areas are the rest of the original crisp
voxel person Anderson, Luke III, et al. (2009). This picture is best viewed in colors.

Therefore, fuzzy voxel person was utilized in Anderson, Luke III, et al. (2009) by

employing only a few cameras and a minimal prior knowledge about the object. The FIS

was used to determine the membership degree of the voxel person, reflecting how likely

it belongs to the actual object. Extreme body joints viewing conditions were taken into

account and it was observed that the fuzzy acquired results were much better than the crisp

approach, both qualitatively (as shown in Figure 2.13) as well as quantitatively (Anderson,

Luke III, et al., 2009). This concept of the fuzzy voxel person was incorporated in a

number of works (Anderson, Luke, et al., 2009a,b).

Fuzzy shape estimation

The regions of interest extracted from the background subtraction algorithm are nor-

mally represented using different shape models, such as ribbons and blobs for 2D images,

while cones, cylinders, spheres, ellipses etc. for the 3D images. Here, we will concentrate

mainly on the blob representation. For a tracking system with reliance on the shape esti-

mation, problems arise due to imperfect image segmentation techniques. This is because

of the image irregularities, shadows, occlusions, etc. that results in multiple blobs genera-

tion for a single object. Besides that, in the multiple objects tracking, recovering from the
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overlapping regions is a big challenge. In order to solve this, García et al. (2002); Garcia

et al. (2011) applied FIS to update both the trajectories and the shape estimated for the

targets with a set of image regions. These image regions are represented using the blobs

extracted from each frame. Following the general steps of the FIS, heuristic features were

extracted from the detected blobs, and used as inputs to the FIS to assess the confidence

values assigned to each blob to update the estimators describing the targets’ shape and

the tracks. With this, the tracking can be locked if the confidence of the target shape is

low. This is to prevent the tracking to deviate from the real path caused by the cumulated

errors such as the uncertain shape. The tracking resumes once the confidence of the object

shape is high.

2.2.2 (b) Non-model based tracking

In non-model based tracking, the objects detected are represented using the random dis-

persed points instead of the rigid shape models (e.g. stick figure, blob, cylinder, etc.).

The association amongst the points that contribute to the motion tracking are based on the

hypothesis which takes into account the object’s characteristics and behavior. This is a

complex problem to be formulated because of the presence of occlusions, misdetections,

new object entries etc. that may lead to permanent tracking error. Fuzzy approaches such

as the fuzzy Kalman filter, fuzzy particle filter, fuzzy optical flow and fuzzy clustering

are widely employed in the non-model based object tracking, where they explicitly take

into account the uncertainties to establish the point correspondence between the object

motions.

Fuzzy Kalman filter

Kalman filter, the popular optimal estimator capable of operating recursively on the

streams of noisy input data (Kalman, 1960), is a popular choice for tracking a moving
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object. It has been successfully applied in several previous works on the human motion

tracking (Kakadiaris & Metaxas, 1996; Kohler, 1997; Marins et al., 2001; G. F. Welch,

2009; Yun et al., 2005; Yun & Bachmann, 2006). There are three basic steps involved in

the Kalman filtering for human motion tracking: initialization, prediction and correction

(G. Welch & Bishop, 1995). Often the complex dynamic trajectories due to the changes

in the acceleration of human motion are not feasible to be modeled by the linear systems.

Therefore, instead of the basic Kalman filters, the Extended Kalman filters are used which

are capable of modeling the non-linear states. However, all these Kalman filtering algo-

rithms suffer from the divergence problem if the theoretical behavior of a filter and its

actual behavior do not agree. The divergence due to modeling errors is a critical issue in

the Kalman filtering process.

In order to solve this, the FIS was adopted in the Kalman filtering (G. Chen et al.,

1998; Kobayashi et al., 1998; Sasiadek & Khe, 2001; Sasiadek & Wang, 1999; Sasiadek

et al., 2000; Senthil et al., 2006) to detect the bias of measurements and prevent the

divergence. The new Kalman filter is called as the fuzzy adaptive Kalman filter. Takagi-

Sugeno fuzzy model is used to detect the divergence and the uncertainty of the parameters

in the Kalman filter such as the covariance and the mean value are modeled as membership

function with the corresponding fuzzy rules for inference. To this extent, P. Angelov et

al. (2008) proposed the evolving Takagi-Sugeno fuzzy model (P. Angelov & Filev, 2005;

P. P. Angelov & Filev, 2004) which can be seen as the fuzzy weighted mixture of the

Kalman filter for object tracking in the video streams, and the performance is better than

the ordinary Kalman Filter.

Fuzzy particle filter

Similar to the Kalman filters, particle filters offer a good way to track the state of

a dynamic HMA system. In general, if one has a model of how the system changes
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with time, and possible observations made in particular states, the particle filters can be

employed for tracking. However, as compared to the Kalman filters, the particle filters

offer a better tracking mechanism as they provide multiple predictions or hypothesis (i.e.

as many as hypothesis as the number of particles) to recover from the lost tracks, which

helps to overcome the problems related to the complex human motion. One must note

that there is a tradeoff between system precision and computational cost in the particle

filter framework, i.e. more number of particles improves the system precision, but also

increases the computational cost and vice versa.

As a remedy to the above mentioned problems, a new sequential fuzzy simulation

based particle filter was proposed in H. Wu et al. (2008) to estimate the state of a dynamic

system with noises described as fuzzy variables using the possibility theory. In most of

the current particle filtering algorithms, the uncertainty of the tracking process and the

measurement of noises are expressed by the probability distributions, which are some-

times hard to construct due to the lack of statistical data. Therefore, it is more suitable

to compute the possibility measure using the fuzzy set theory for modeling the uncertain

variables with imprecise knowledge. H. Wu et al. (2008) found that their proposed fuzzy

logic based particle filter outperforms the traditional particle filter even when the number

of particles is small. Another variant of this work is Yoon et al. (2013), where an adaptive

model is implemented in the fuzzy particle filter with the capability to adjust the number

of particles by using the result from the measurement step, and improve the speed of an

object tracking algorithm. Apart from that, Chan & Liu (2009); Chan et al. (2008) han-

dled the tradeoff between the system precision and the computational cost by employing

data quantization process that utilizes the Fuzzy Quantity Space (Liu et al., 2009). In

general, the work quantize the particles into finite fuzzy qualitative states. As such, the

system able to model the offset of the tracking errors, while retaining the precision when

relatively low number of particles are selected to perform the tracking task. Last but not
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the least, the FIS has also contributed in the particle filters (Kamel & Badawy, 2005;

Y.-J. Kim et al., 2007) and achieved better accuracy with lower computational cost.

Fuzzy optical flow

Optical flow (Beauchemin & Barron, 1995; Horn & Schunck, 1981) is another pop-

ular motion tracking algorithm. It is an efficient technique for approximating the object

motion in two consecutive video frames by computing the intensity variations between

them. However, the removal of the incoherent optical flow field is still a great challenge.

This is because the incoherent regions can be treated as random noises in the optical flow

field due to the sources of disturbances in a natural scene (e.g. dynamic background).

Fuzzy hostility index was introduced in Bhattacharyya & Maulik (2013); Bhattacharyya

et al. (2009) to overcome this issue and thus improving the time efficiency of the flow

computation. The fuzzy hostility index (Bhattacharyya et al., 2007) measures the amount

of homogeneity or heterogeneity of the neighborhood pixel in the optical flow field. The

more homogeneous is the neighborhood of a pixel, the less is the pixel hostile to its

neighbor. This implies that a denser neighborhood indicates a more coherent optical flow

neighborhood region. To deal with the uncertain conditions, soft computing is applied

where the hostility index computed from the neighborhood pixels is represented as a

fuzzy set, where the membership values lie between 0 and 1. This method has shown the

capability to track fast moving objects from the video sequences efficiently.

Fuzzy clustering

Clustering is an unsupervised machine learning solution that learns the unlabeled

data by grouping the similar ones into the corresponding groups autonomously. Inspired

from this, multi-object cluster trackings (Heisele et al., 1997; Pece, 2002) were introduced

with the belief that the moving targets always produce a particular cluster of pixels with
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similar characteristics in the feature space, and the distribution of these clusters changes

only little between the consecutive frames. Xie et al. (2004) proposed a fast fuzzy c-means

(FCM) clustering tracking method which offers a solution towards the high complexity

and the computational cost involved in the conventional methods on multi-object track-

ing, and also the hard clustering algorithms such as the k-means that causes failure in the

case of severe occlusions and pervasive disturbances. FCM is also recognized as the soft

clustering algorithm where it applies data partition to allocate each sample data into more

than one clusters with the corresponding membership values which is more meaningful

and stable than the hard clustering algorithms. In Xie et al. (2004), the component quan-

tization filtering was incorporated with FCM to provide faster processing speed. Table

2.4 summarizes the intuition of using the fuzzy approaches in MiL HMA.
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Table 2.4: Summarization of research works in MiL HMA using the Fuzzy approaches.

MiL processing
Problem statements /

Authors Why fuzzy? Approach
Sources of Uncertainty

Model based tracking Crisp representation of the kinematic
chain suffers from the precision problem,
and the cumulative errors can directly af-
fect the performance of the tracking pro-
cess.

Chan & Liu (2009); Chan et al.
(2008); Liu et al. (2008a,b, 2009)

Integration of the fuzzy set theory and
the fuzzy qualitative reasoning in the
kinematic chain representation provides
a means of handling the uncertainty in a
natural way. Fuzzy qualitative kinemat-
ics solves the precision problem by elim-
inating the hard boundary problem in the
measurement space that can tolerate the
offset errors.

Fuzzy qualitative kinematics

Due to the location of cameras and ob-
ject’s positions, the information gathered
using crisp voxel person model can be im-
precise and inaccurate. Crisp approach
works fine in multi-camera environment,
but it is not feasible due to high cost and
limited space.

Anderson, Luke, et al. (2009a,b);
Anderson, Luke III, et al. (2009)

Fuzzy voxel person is able to model dif-
ferent types of uncertainties associated
with the construction of the voxel person
by using the membership functions, em-
ploying only a few cameras and a minimal
prior knowledge about the object.

Fuzzy voxel person

In shape based (blob) tracking, the imper-
fect image segmentation techniques result
in multiple blobs generation for a single
object because of the image irregularities,
shadows, occlusions, etc. While in the
multiple object tracking, recovering from
the overlapping regions is a big challenge.

García et al. (2002); Garcia et al.
(2011)

FIS is applied to perform the fuzzy shape
estimation to achieve a better tracking
performance by taking into account the
uncertainty in shape estimation. If the
shape is uncertain, the tracking will be
locked and it will be recovered once the
confidence becomes higher. This is to
prevent the tracking errors caused by the
uncertain shapes.

Fuzzy shape estimation

Non-model based tracking Conventional Kalman filter algorithms
suffer from the divergence problem and it
is difficult to model the complex dynamic
trajectories.

Aggarwal & Cai (1997); G. Chen et
al. (1998); Gavrila (1999); Hu, Tan,
et al. (2004); I. S. Kim et al. (2010);
Ko (2008); Kobayashi et al. (1998)

Fuzzy Kalman filters are capable of solv-
ing the divergence problem by incorporat-
ing the FIS, and are more robust against
the streams of random noisy data inputs.

Fuzzy Kalman filter

Particle filters suffer from the tradeoff
between the accuracy and computational
cost as its performance usually relies on
the number of particles. This means more
number of particles will improve the ac-
curacy, but at the same time increases the
computational cost.

Chan & Liu (2009); Chan et al.
(2008); Kamel & Badawy (2005);
Y.-J. Kim et al. (2007); H. Wu et al.
(2008); Yoon et al. (2013)

The fuzzy particle filter effectively han-
dles the system complexity by compro-
mising the low number of particles that
were used while retaining the tracking
performance.

Fuzzy particle filter

Random noises in optical flow field due
to the sources of disturbances in a natural
scene (e.g. dynamic background) affects
the tracking performance.

Bhattacharyya & Maulik (2013);
Bhattacharyya et al. (2009)

Fuzzy hostility index is used in the optical
flow to filter the incoherent optical flow
field containing random noises in an effi-
cient manner.

Fuzzy optical flow

In the conventional methods for multi-
object tracking, hard clustering tracking
algorithms such as the K-means are used,
and involve high complexity and compu-
tational cost. Also, they fail in the case
of severe occlusions and pervasive distur-
bances.

Xie et al. (2004) FCM tracking algorithm offers more
meaningful and stable performance by us-
ing soft computing techniques. The in-
tegration of component quantization fil-
tering with FCM tracking algorithm pro-
vides faster processing speed.

Fuzzy clustering

2.2.3 High-level

The final aim of the HMA system is to perform the human behavior understanding. This

level can be extended into several processes, for examples, gesture recognition, describ-

ing an activity, and reacting to an event. All these processes are usually incorporated

into a real-time system to assist humans in specific tasks such as surveillance purposes,

industrial applications, human-computer interaction, military action and robotics mission

(Aggarwal & Ryoo, 2011; Cristani et al., 2013; Gavrila, 1999; Hu, Tan, et al., 2004;

Moeslund & Granum, 2001; Turaga et al., 2008; L. Wang et al., 2003). LoL and MiL

HMA serve as the preliminary steps for this level. In HiL, this review is regarding the
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feasibility of the fuzzy approaches to achieve better performance with emphasis on: (a)

hand gesture recognition, (b) activity recognition, (c) style invariant action recognition,

(d) multi-view action recognition, and (e) anomaly event detection.

2.2.3 (a) Hand gesture recognition

Gesture recognition aims at recognizing meaningful expressions of the human motion,

involving the hands, arms, face, head, or body. The applications of gesture recognition

are manifold (Lyons et al., 1999), ranging from the sign language to medical rehabilita-

tion and virtual reality. The importance of gesture recognition lies in building efficient

and intelligent human-computer interaction applications (Y. Wu & Huang, 1999) where

one can control the system from a distance for a specific task, i.e. without any cursor

movements or screen touching. Besides that, nowadays, there exists successful commer-

cialized gesture recognition devices such as the Kinect: a vision-based motion sensing

device, capable of inferring the human activities. Unfortunately, in a gesture recognition

system, the complex backgrounds, dynamic lighting conditions and sometimes the de-

formable human limb shapes can lead to high level of uncertainties and ambiguities in

recognizing the human gestures. Also, “pure” gestures are seldom elicited, as people typ-

ically demonstrate “blends” of these gestures (Mitra & Acharya, 2007). Among all the

solutions, the fuzzy clustering algorithms and the integration of fuzzy approaches with

machine learning methods are often incorporated to deal with such difficult situations and

achieve better system performance. In this section, we review the relevant works with

emphasis on the hand gesture recognition.

Fuzzy clustering

Among the well-known clustering techniques are K-means, GMM, hierarchical model,

and FCM. However, in the probabilistic based clustering algorithms (e.g. K-means,
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GMM, and hierarchical model), the data allocation to each cluster is done in a crisp

manner, that is each data element can belong to exactly one cluster. In contrast, the fuzzy

clustering algorithm (e.g. FCM), soft computing is applied in the sense that the data par-

tition alleviates the data allocation where each data can belong to more than one clusters

and associated with a set of membership values. This solution works better in the chal-

lenging environments such as the complex backgrounds, dynamic lighting conditions, and

the deformable hand shapes with real-time computational speeds (X. Li, 2003; Verma &

Dev, 2009; J. Wachs et al., 2002; J. P. Wachs et al., 2005).

Using the FCM, J. Wachs et al. (2002); J. P. Wachs et al. (2005) worked on a fast re-

spond telerobotic gesture-based user interface system. The nature of FCM in relaxing the

hard decision allowed the use of smaller portions of the training set and thus shorter train-

ing time was required. Empirically, it has proved to be sufficiently reliable and efficient in

the recognition tasks with the achievement on high accuracy and real-time performance.

X. Li (2003) further improved the work by J. Wachs et al. (2002) in the skin segmentation

problem using the color space to solve the skin color variation. Besides spatial informa-

tion, temporal information is also important in the gesture inference process. In Verma &

Dev (2009), the spatial information of hand gesture using the FCM was trained in order to

determine the partitioning of the trajectory points into a number of clusters with the fuzzy

pseudo-boundaries. In general, each trajectory point belongs to each cluster specified by a

membership degree. Then, the temporal data is obtained through the transitions between

the states (cluster of trajectory points) of a series of finite state machines to recognize the

gesture motion.

Hybrid technique

A few works (Al-Jarrah & Halawani, 2001; Binh & Ejima, 2005; Várkonyi-Kóczy &

Tusor, 2011) on fusing the fuzzy approaches with machine learning solutions have been
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reported in the gesture recognition. Al-Jarrah & Halawani (2001) used the adaptive neuro-

fuzzy inference system to recognize the gestures in Arabic sign language. This work was

motivated by the transformation of human knowledge into a FIS, but does not produce the

exact desired response due to the heuristic or non-sophisticated membership functions and

the fuzzy rules generation. Thus, there was a need to fine-tune the parameters in the FIS

to enhance its performance, and the adaptive neuro-fuzzy inference system provided this

flexibility by applying a learning procedure using a set of training data.

Binh & Ejima (2005) introduced a new approach towards gesture recognition based

on the idea of incorporating the fuzzy ARTMAP (Carpenter et al., 1992) in the feature

recognition neural network (Hussain & Kabuka, 1994). The proposed method reduced the

system complexity and performed in real-time manner. Nonetheless, Várkonyi-Kóczy &

Tusor (2011) presented an approach with several novelties and advantages as compared to

other hybrid solutions. They introduced a new fuzzy hand-posture model using a modified

circular fuzzy neural network architecture to efficiently recognize the hand posture. As

a result, the robustness and reliability of the hand-gesture identification was improved,

and the complexity and training time involved in the neural networks was significantly

reduced.

2.2.3 (b) Activity recognition

Activity recognition is an important task in the HiL HMA systems. The goal of activity

recognition is to autonomously analyze and interpret the ongoing human activities and

their context from the video data. For example, in the surveillance systems for detecting

suspicious actions, or in sports analysis for monitoring the correctness of the athletes’

postures. In recent times, the fuzzy approaches such as type-1 FIS, fuzzy HMM, and

hybrid techniques have proved to be beneficial in the human activity recognition, with

capability of modeling the uncertainty in the feature data. Nonetheless, Fuzzy Vector

49



Quantization (FVQ) and Qualitative Normalized Template (QNT) provide the capability

to handle the complex human activities occurring in our daily life such as walking fol-

lowed by running, then running followed by jumping, or a hugging activity where two or

more people are involved. In this section, the applications of these fuzzy approaches in

the activity recognition will be discussed.

Type-1 fuzzy inference system

The FIS can be efficiently used to distinguish the human motion patterns and recog-

nize the human activities with its capability of modeling the uncertainty and the fusion

of different features in the classification process. In the literature of activity recognition,

there exists some works (Le Yaouanc & Poli, 2012; Yao et al., 2014) that employed the

FIS to classify different human activities.

Both Le Yaouanc & Poli (2012); Yao et al. (2014) took into account the uncertainties

in both the spatial and temporal features for efficient human behavior recognition. Their

method aims at handling high uncertainty levels and the complexities occurring in the real

world applications. Le Yaouanc & Poli (2012) used the spatial and temporal geometry

features to study the importance of the spatio-temporal relations such as ‘IsMoving’, ‘Is-

ComingCloseTo’, ‘IsGoingAway’, ‘IsGoingAlong’ with the objective to provide a qualita-

tive interpretation of the behavior of an entity (e.g. a human) in real-time. Another work

Yao et al. (2014) adopted the spatio-temporal features such as the silhouette slices and

the movement speed in video sequences as the inputs to the FIS. Extra merit in this work

is that they learn the membership functions of the FIS using the FCM which prevents the

intervention of human in generating the fuzzy membership function heuristically.

Hybrid technique

Owing to the demands of the development of enhanced video surveillance systems
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that can automatically understand the human behaviors and identify dangerous activi-

ties, Acampora et al. (2012) introduced a semantic human behavioral analysis system

based on the hybridization of the neuro-fuzzy approach. In their method, the kinematic

data obtained from the tracking algorithm is translated into several semantic labels that

characterizes the behaviors of various actors in a scene. To achieve this, the behavioral

semantic rules were defined using the theory of time delay neural networks and the fuzzy

logic, to identify a human behavior analyzing both the temporal and the contextual fea-

tures. This means that they analyze how a human activity changes with respect to time

along with how it is related to the contexts surrounding the human. Their hybrid method

outperformed other approaches and showed high level of scalability and robustness.

Another work Hosseini & Eftekhari-Moghadam (2013) presented a fuzzy rule-based

reasoning approach for event detection and annotation of broadcast soccer video, inte-

grating the Decision Tree with the FIS. A flexible system was designed using the fuzzy

rules, that can be used with least reliance on the predefined feature sequences and domain

knowledge. The FIS was designed as a classifier taking into account the information from

a set of audio-visual features as its crisp inputs and generate the semantic concepts cor-

responding to the events occurred. From the fuzzification of the feature vectors derived

from the training data, a set of tuples were created, and using the Decision Tree, the hid-

den knowledge among these tuples as well as the correlation between the features and

the related events were extracted. Then, traversing each path from the root to the leaf

nodes of the Decision Tree, a set of fuzzy rules were generated which were inserted in the

knowledge base of the FIS and the occurred events were predicted from the input video

(i.e. soccer video) with good accuracy.

Fuzzy vector quantization

In order to learn the complex actions, Gkalelis et al. (2008) represented the human
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Figure 2.14: Movements of running (top) and walking (bottom) activities, as well as the
associated dynemes which are learned from the FCM Gkalelis et al. (2008).

movements as a combination of the smallest constructive unit of human motion patterns

called the dyneme (Figure 2.14). It is the basic movement patterns of a continuous action.

In the bottom of action hierarchy, dyneme is defined as the smallest constructive unit of

human motion; while one level above is the movement which is perceived as a sequence

of dynemes with clearly defined temporal boundaries and conceptual meaning. Dyneme

can be learned in an unsupervised manner and in Gkalelis et al. (2008), the FCM was

chosen. Then, fuzzy vector quantization (FVQ) Karayiannis & Pai (1995) as a function

that regulates the transition between the crisp and the soft decisions was employed to map

an input posture vector into the dyneme space. Finally, each movement was represented

as a fuzzy motion model by computing the arithmetic mean of the comprising postures

of a movement in the dyneme space. Their algorithm provides good classification rates

and exhibits adequate robustness against partial occlusions, different styles of movement

execution, viewpoint changes, gentle clothing conditions and other challenging factors.

Qualitative normalized template

Utilizing the concept of fuzzy qualitative robot kinematics (Liu, 2008; Liu et al.,

2008a), Chan & Liu (2009) and (Chan et al., 2008) built a generative action template,

called the Qualitative normalized template (QNT) to perform the human action recogni-
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Figure 2.15: Visualization of the QNT model: each of the five activities (walking, run-
ning, jogging, one-hand waving (wave1) and two-hands waving(wave2)) from eight sub-
jects (a)-(h) in the quantity space Chan & Liu (2009).

tion. First of all, the training data that represents a typical activity is acquired by tracking

the human anatomical landmarks in the image sequences. In their work, a data quantiza-

tion process was employed to handle the tradeoffs between the tracking precision and the

computational cost. Then, the QNT as illustrated in Figure 2.15 was constructed accord-

ing to the fuzzy qualitative robot kinematics framework (Liu, 2008; Liu et al., 2008a).

An empirical comparison with the conventional hidden Markov model (HMM) and fuzzy

HMM using both the KTH and the Weizmannn datasets has shown the effectiveness of

the proposed solution (Chan & Liu, 2009).

Fuzzy Hidden Markov Model

Hidden Markov model (HMM) (Elliott et al., 1995) is the statistical Markov model

with the state being not directly visible, but the output that is dependent on the state is

visible. HMM have been widely employed in the human action recognition (Bobick &

Wilson, 1995; Campbell & Bobick, 1995; Oliver et al., 2000; Wilson & Bobick, 1999;

Yamato et al., 1992). These works have well demonstrated the modeling and recognition

of the complex human activities using HMM. In the training stage of HMM, expectation

maximization algorithm is adopted. However, in the conventional HMM, each obser-
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vation vector is assigned only to one cluster. Mozafari et al. (2012) pointed out that

assigning different observation vectors to the same cluster is possible and if their obser-

vation probabilities become the same, consequently, the classification performance may

decrease. Therefore, HMM was extended to fuzzy HMM where in the training stage, the

distance from each observation vector to each cluster center is computed and the inverse

of the distance is considered as the membership degree of the observation vector to the

cluster. Mozafari et al. (2012) utilized this concept for human action recognition and

the experiment results demonstrate the effectiveness of the fuzzy HMM in human action

recognition, with good recognition accuracy for the similar actions such as “walk” and

“run”.

2.2.3 (c) Style invariant action recognition

A robust action recognition algorithm must be capable of recognizing the actions per-

formed by different person in different styles. Commonly, different person have different

styles of executing the same action which can be categorized according to the physical

differences (such as human appearances, sizes, postures, etc.) and the dynamic differ-

ences (speed, motion pattern, etc.). In order to model such variations, several notable

works have been reported incorporating the fuzzy approaches.

Fuzzy vector quantization

Iosifidis et al. (2011) adopted the concept of FVQ and the dyneme, and proposed a

novel person specific activity recognition framework to cope with the style invariant prob-

lem. The method is mainly divided into two parts: firstly, the ID of the person is iden-

tified, and secondly, the activity is inferred from the person specific fuzzy motion model

(Gkalelis et al., 2008). It was found that the different styles in action execution endowed

the capability to distinguish one person from the another. Therefore, Iosifidis, Tefas, &
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Pitas (2012a) developed an activity-related biometric authentication system by utilizing

the information of different styles by different people. Improvement was made in the

computation of the cumulative fuzzy distances between the vectors and the dynemes that

outperforms L1, L2, and Mahalanobis distances which were used previously in Gkalelis

et al. (2008).

2.2.3 (d) Multi-view action recognition

The capability of multi-view action recognition is emerging as an important aspect for

advanced HMA systems. In the real world environment, human are free to perform an

action at any angle with no restriction of being frontal parallel to the camera and most of

the previous works treat it as a constraint or limitation in their system. This problem has

received increasing attention in the HMA research and some of the notable works have

been reported (Ji & Liu, 2010; Lewandowski, Makris, & Nebel, 2010; Weinland et al.,

2006). Besides that, fuzzy approaches such as the FVQ, and fuzzy qualitative reasoning

are also applied in the study of multi-view action recognition which will be discussed in

the following subsections.

Fuzzy vector quantization

Figure 2.16: (a) A converging eight-view camera setup and its capture volume, and (b) an
eight-view video frame Iosifidis, Tefas, Nikolaidis, & Pitas (2012).
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Iosifidis, Tefas, Nikolaidis, & Pitas (2012); Iosifidis, Tefas, & Pitas (2012a); Iosifidis

et al. (2013) extended Gkalelis et al. (2008) to support multi-view action recognition. The

motion patterns obtained from different cameras, as in Figure 2.16, were clustered to de-

termine the number of multi-view posture primitives called the multi-view dynemes. Sim-

ilar to Gkalelis et al. (2008), FVQ was utilized to map every multi-view posture pattern to

create the multi-view dyneme space. This new multi-view fuzzy movement representa-

tion is motion speed and duration invariant which generalizes over variations within one

class and distinguishes between the actions of different classes. In the recognition step,

Fourier view invariant posture representation was used to solve the camera viewpoint

identification problem before the action classification was performed. Nonetheless, they

tackled the problem of interaction recognition i.e. human action recognition involving

two persons (Iosifidis, Tefas, & Pitas, 2012b).

2.2.3 (e) Anomaly event detection

Anomaly detection refers to the problem of finding patterns in the input data that do

not conform to the expected behavior. In our daily life, anomaly detection is important

to infer the abnormal behavior of a person, such as an action or an activity that is not

following the routine or deviated from the normal behavior (Hu, Tan, et al., 2004; Kratz

& Nishino, 2009; S. Wu et al., 2010). For example, in the healthcare domain to prevent

unfavorable events from occurring such as the risk of falling down of the patients, and in

the surveillance systems, to automatically detect the crime activities.

Type-1 fuzzy inference system

As humans gain more knowledge, they are able to make better decisions; similarly

if the FIS is provided with sophisticated knowledge (i.e. fuzzy rules), it can deal with

the real world problems in a better manner. FIS has been employed in various works

56



for anomaly event detection such as the elderly fall detection in Anderson et al. (2006);

Anderson, Luke, et al. (2009a,b), to address the deficiencies and the inherent uncertainty

related to modeling and inferring the human activities. The works emphasized that the

non-interpretable likelihood value or the ad-hoc training of the activity models in the con-

ventional approaches is impractical in the area of human action recognition. Therefore, a

confidence value (fuzzy membership degree) that can be reliably used to reject unknown

activities is more convenient.

Anderson, Luke, et al. (2009b) proposed a novel fuzzy rule based method for mon-

itoring the wellness of the elderly people from the video. In this paper, the knowledge

base (fuzzy rules as depicted in Figure 2.17) was designed under the supervision of nurses

for the recognition of falls of the elderly people. Under this framework, the rules can be

easily modified, added or deleted, based on the knowledge about the cognitive and func-

tional abilities of the patients. This work was an extension of Anderson, Luke, et al.

(2009a) where the linguistic summarizations of the human states (three states: upright,

on-the-ground and in-between) based on the voxel person and the FIS were extracted,

extended using a hierarchy of the FIS and the linguistic summarization for the inference

of the patients’ activities. Their technique works well for fall detection, but the question

is if this framework can be extended to different activities. The answer is yes where, An-

derson et al. (2008) extended the work to support the additional common elderly activities

such as standing, walking, motionless-on-the-chair, and lying-motionless-on-the-couch,

with the inclusion of the knowledge about the real world for the identification of the vox-

els that corresponds to the wall, floor, ceiling, or other static objects or surfaces. Two

new states were included to recognize these activities i.e. on-the-chair and on-the couch.

These states were different from the previous three states (upright, on-the-ground and

in-between) as they were based on the voxel person interacting with a static object in

the scene. Further, the fuzzy rules were extended to six new fuzzy rules designed for
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identifying on-the-chair and on-the-couch activities.

Figure 2.17: Rule table of the human states (Upright, In Between, On the Ground) with
V=Very low, L=Low, M=Medium, and H=high which are used to infer the human activi-
ties Anderson, Luke, et al. (2009b).

Fuzzy one class support vector machine

The fuzzy one class support vector machine (FOCSVM) is an efficient algorithm

often used in fall detection systems to distinguish a falling from other activities such

as walking, bending, sitting or lying. Yu et al. (2011) proposed a robust fall detection

system using FOCSVM with novel 3D features. In their method, a voxel person was first

computed, then the video features obtained from the variation of a persons’ 3D angle

and centroid information were extracted from the sequences of voxel persons which were

used to train the FOCSVM classifier. As compared to the traditional one class support

vector machine, FOCSVM obtained more accurate fall detection result with tight decision

boundaries under a training dataset with outliers. The success of the proposed method is

evident from the experiments on the real video sequences, with less non-fall samples

being misclassified as falls by the classifier with imperfect training data.
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Fuzzy clustering

In order to perform fall detection in multiple camera framework, fuzzy clustering

algorithms (e.g. FCM, Gustafson and Kessel Clustering, or Gath and Geva Clustering)

along with the fuzzy K-nearest neighbor algorithms were employed in Wongkhuenkaew

et al. (2013). In particular, Hu moment invariant features were computed from the 2D

silhouette images and principal component analysis was utilized to select the principal

components. The fuzzy clustering algorithms were used to generate the multi-prototype

that represent the action classes such as standing or walking, sitting or bending, lying

and lying forward. Fuzzy K-nearest neighbor was then used to deduce the corresponding

action classes. For example, if the detected action was “lying” or “lying forward”, it was

considered as the falling activity.

Hybrid technique

A hybrid model of the FIS and the Fuzzy Associative Memory (FAM) was incor-

porated in Z. Wang & Zhang (2008), which basically receives an input and assigns a

degree of belongingness to a set of rules. Z. Wang & Zhang (2008) considered the angles

of human limbs as the inputs to the FAM with three rules defining the abnormal move-

ment types. FAM then assigns a degree of membership to each rule and determines the

anomalous or normal events based on a specific threshold. Juang & Chang (2007) also

used the neural fuzzy network hybrid model, compensating the lacking of the learning

ability of the fuzzy approaches to recognize human poses (e.g. standing, bending, sitting,

and lying). Their system with simple fuzzy rules is capable of detecting the emergencies

caused by the accidental falls or when a person remains in the lying posture for a period

of time. The works evidently show the flexibility of the fuzzy approaches in the alteration

or extension of its knowledge base to adapt to newly encountered real world problems.

Hu, Xie, et al. (2004) proposed fuzzy self-organizing neural network (fuzzy SOM)
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Table 2.5: Summarization of research works in HiL HMA using the Fuzzy approaches.

HiL processing
Problem statements /

Authors Why fuzzy? Approach
Sources of Uncertainty

Hand gesture recognition Complex backgrounds, dynamic lighting
conditions and sometimes deformable hu-
man limbs’ shape leads to ineffective
clustering outcome with the conventional
crisp clustering algorithms.

X. Li (2003); Verma & Dev (2009);
J. Wachs et al. (2002); J. P. Wachs
et al. (2005)

FCM relaxes the learning and recognition
of gesture by using soft computing tech-
nique. This reduces the errors caused by
the crisp decisions and increases the sys-
tem efficiency.

Fuzzy clustering

Difficulty in determining the optimum
parameters in the fuzzy system such as
membership function or the threshold
value for the decision making in gesture
recognition algorithms.

Al-Jarrah & Halawani (2001); Binh
& Ejima (2005); Várkonyi-Kóczy
& Tusor (2011)

Integration of the fuzzy approaches with
machine learning algorithms help in
learning the important parameters for the
fuzzy system adaptively based on the
training data.

Hybrid technique

Activity recognition The uncertainty in the feature data affects
the performance of human activity recog-
nition.

Le Yaouanc & Poli (2012); Yao et
al. (2014)

FIS effectively distinguishes the human
motion patterns and activity recognition
with its flexibility in customizing the
membership functions and the fuzzy rules
with tolerance to the vague feature data.

Type-1 FIS

Difficult to determine the optimum mem-
bership functions and the fuzzy rules in
the FIS for human activity recognition.

Acampora et al. (2012); Hosseini &
Eftekhari-Moghadam (2013)

Integration of fuzzy logic with machine
learning techniques allows the generation
of the optimum membership function and
fuzzy rules to infer the human behavior.

Hybrid technique

Solving continuous human movements or
complex activities over time is a difficult
problem. For instance, walk then run.
Most of the state-of-the-art methods as-
sumed the activity to be uniform and sim-
ple.

Gkalelis et al. (2008) Fuzzy Vector Quantisation (FVQ) incor-
porated with FCM is used to model the
human movements and provides the flex-
ibility to support complex continuous ac-
tions.

FVQ

The usage of sophisticated tracking algo-
rithms in the action recognition suffers
from the tradeoff between the computa-
tional cost and accuracy.

Chan & Liu (2009); Chan et al.
(2008, 2010)

Qualitative Normalized Template (QNT)
relaxes the complexity of the representa-
tion of the human joints that uses sophis-
ticated tracking algorithms, achieving the
efficiency and robustness in complex ac-
tivity recognition.

QNT

Conventional Hidden Markov Model
(HMM) is unable to model the uncertain-
ties in the training stage which reduces
the classification performance.

Mozafari et al. (2012) Fuzzy HMM models apply soft comput-
ing in the training stage which effectively
increases the performance in the classifi-
cation of similar actions such as “walk”
and “run”.

Fuzzy HMM

Style invariant action recognition A similar action can be performed with
different styles by different person that
causes difficulty in the learning and
recognition process.

Iosifidis et al. (2011); Iosifidis,
Tefas, & Pitas (2012a)

Style invariant action recognition can be
achieved by using person specific fuzzy
movement model which is trained using
FVQ.

FVQ

Multi-view action recognition Humans are not restricted to perform an
action at a fixed angle from the camera.

Iosifidis, Tefas, Nikolaidis, & Pitas
(2012); Iosifidis, Tefas, & Pitas
(2012a,b); Iosifidis et al. (2013)

Multi-view posture patterns are generated
by utilizing FVQ to build a multi-view
fuzzy motion model in order to support
view invariant human action recognition.

FVQ

Anomaly event detection The difficulty of extension of a frame-
work to deal with new issues and support
new activities.

Anderson et al. (2006, 2008); An-
derson, Luke, et al. (2009a,b)

FIS is flexible in customization where the
knowledge base (fuzzy rules) can be mod-
ified, added, or removed to adapt to vari-
ous situations such as falling activities.

Type-1 FIS

The imperfect training data (e.g. some
samples would be outliers) affect the clas-
sification performance in the fall detec-
tion system.

Yu et al. (2011) FOCSVM is used to reflect the impor-
tance of every training sample, by assign-
ing each training data with the member-
ship degree. With this, a good accuracy
and decision boundaries are obtained un-
der a training dataset with outliers.

FOCSVM

Most of the existing elderly fall detection
systems are performed in the single cam-
era environment which provides limited
information for the inference process.

Wongkhuenkaew et al. (2013) Fuzzy clustering algorithms (e.g. FCM,
Gustafson and Kessel Clustering, or Gath
and Geva Clustering) incorporated with
Hu moment invariant features and princi-
ple component analysis were employed to
learn the multi-prototype action classes in
the multiple camera environment.

Fuzzy clustering

Difficulty in determining the optimum pa-
rameters in the fuzzy system.

Hu, Xie, et al. (2004); Juang &
Chang (2007); Z. Wang & Zhang
(2008)

Integration of the fuzzy approaches with
machine learning algorithms allows the
learning of optimum fuzzy membership
functions and fuzzy rules that can adapt
to newly encountered problems.

Hybrid technique
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to learn the activity patterns for anomaly detection in visual surveillance. Their method

aims at automatically constructing the activity patterns by self-organizing learning in-

stead of predefining them manually. Traditionally, individual flow vectors were used as

inputs to the neural networks. In the proposed method, whole trajectory was taken as

an input, simplifying the structure of the neural networks to a great extent. Fuzzy SOM

further improved the learning speed and accuracy of the anomaly detection problem, as

demonstrated with the support of experimental results. To understand better, a summary

of research works in HiL HMA using the fuzzy approaches is shown in Table 2.5.

2.3 Motivation to the propose works

First, the practice of using multi-camera approaches in view independent HMA as men-

tioned in the literature (section 2.1) is a popular issue. Motivated from this, view specific

action recognition framework that uses single camera is proposed. In the framework,

fuzzy qualitative reasoning is adopted to cope with the size and viewpoint variations in

the processing pipeline. According to Rudoy & Zelnik-Manor (2012), the information of

the viewpoint of a person is very important as the pattern of similar action performed from

different viewpoints are vary. They verified this by showing that the better viewpoints are

those where the action is easy to recognize and conclude that the selection of viewpoint

does improve the action recognition rate. This is the inspiration to attempt the action

analysis from different viewpoints to achieve view invariant human action recognition.

Secondly, although there are numerous works proposed in the fuzzy HMA (section

2.2), most of the works are still focusing on the crisp or binary outcome where the de-

fuzzification step is still mandatory in their works. Sometimes it might not be the best

solution due to the reason that ambiguity might abounded in the final output. This is be-

cause uncertainties exist in most of the real-world applications as mentioned in chapter 1

that causes the confusion in final classification task. Human action recognition and scene
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Figure 2.18: Fuzzy qualitative reasoning to address the uncertainties.

understanding are fall into this category. With this, brutally force an output to be one of

the possible class might deteriorate the system performance. Such circumstance lead us

to propose the use of fuzzy qualitative reasoning instead of the others fuzzy approaches.

Figure 2.18 shows the corresponding fuzzy qualitative approach that proposed to deal

with each uncertainty respectively.

2.4 Fuzzy Quantity Reasoning

From numbers of fuzzy approaches that had been applied to improve the performance in

HMA, fuzzy qualitative reasoning is the state-of-the-art approach recently. A brief revisit

of FQS which is built from this theory will be explained here as this thesis utilized FQS

in many ways such as to build FQ-PHM for feature extraction, the implementation of

FQRC and DFQRC. In general, FQS is introduced by Liu et al. (2009) to replace the

conventional Cartesian space into the fuzzy qualitative Cartesian space. This is motivated

by the fuzzy qualitative reasoning that proposed by Shen & Leitch (1993).

A FQS is generated by a finite discrimination of the underlying range of each variable

of a system being modelled. The FQS will have the desirable properties of finiteness and
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coverage, as long as the system contains a finite number of variables. Granularity in the

FQS is obtained by the arbitrariness of the discrimination of the numeric ranges of system

variables that are assumed to be of interest. Hence, a subset of a numeric range can be

translated to one qualitative value according to what is needed in a particular modelling

process, such that the extensions of a single qualitative intention may be rather different.

The adoption of fuzzy subsets has a direct distinct advantage over the traditional crisp

representations when considering granularity.

In fact, if one intends to describe the qualitative values of system variables only in

terms of the crisp subsets of the underlying real range of the variables, the mapping from

the real range to a quantity space will result in the search for the limits of the real num-

bers served as the boundaries between (dis-jointly) adjacent qualitative values within the

quantity space. This usually incurs severe difficulties in determining these limits (Shen &

Leitch, 1993). The fuzzy representation of qualitative values is more general than ordi-

nary (crisp) interval representations, since it can represent not only the information stated

by a well-determined real interval but also the knowledge embedded in the soft bound-

aries of the interval. Thus, FQS removes, or largely weakens (if not completely resolv-

ing), the boundary interpretation problem, achieved through the description of a gradual

rather than an abrupt change in the degree of membership of which a physical quantity is

mapped onto a particular qualitative value. It is, therefore, closer to the common sense

intuition of the description of a qualitative value. The interval values are denoted as a

fuzzy tuple.

2.4.1 Fuzzy Tuple

This definition on a FQS is given in a general form such that the operations performed

within such a quantity space, consisting of normal and convex fuzzy numbers with arbi-

trary forms of distribution. As a matter of fact, operations on fuzzy qualitative values are
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based upon the extension principle outlined in Shen & Leitch (1993). This principle is in-

voked every time an arithmetic operation is performed and requires expensive calculation.

Also, the computational implementation of the calculation with arbitrary membership dis-

tributions of fuzzy numbers can only be done in a discrete domain obtained by sampling

the original continuous distribution. The use of the extension principle with sampled

membership distributions generates a considerable increase in the discrete samples of the

result, and furthermore, only some of the resulting samples are correct. Fortunately, more

efficient ways to characterise fuzzy numbers have been developed. This utilises a para-

metric approximation of the membership function where the membership distribution of

a normal convex fuzzy number is approximated by the 4-tuple number, [a b α β ].

An example of fuzzy tuple is shown in Figure 2.19, and defined as,

µA (x) =



0 x < a− τ

τ−1 (x−a+ τ) x ∈ [a− τ,a]

1 x ∈ [a,b]

β−1 (b+β − x) x ∈ [b,b+β ]

0 x > b+β

(2.1)

A FQS formed in this way makes it possible to build a bridge between ‘sets’ and

‘value’ because representation allows a real number, a real interval, a fuzzy number, and

a fuzzy interval to be uniformly described. Thus, the qualitative category representation

and the ordinal representation can be combined in a natural way. For example, the real

number 4 can be denoted by a real interval [4 4], which in turn, can be represented by a

4-tuple fuzzy number [4 4 0 0], whilst this fuzzy number is a special fuzzy subset of the

real line.

Similarly, the real interval [3.8, 4] can be represented by the fuzzy description [3.8
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4 0 0], and the strict fuzzy number ‘approximately 4’ may be expressed by [4 4 3

3]. In this way, when there does exist a precise qualitatively distinct landmark value, this

value can also be represented in the form of a 4-tuple fuzzy number. Furthermore, even

if the landmarks are only partially known, say, in terms of the lower and upper (exact)

boundaries of the range within which a landmark value falls, such knowledge can still be

encoded by the 4-tuple version of a real interval as shown in Figure 2.19.

Figure 2.19: 4-tuple fuzzy quantity space.

2.4.2 Construction of Fuzzy Quantity Space

In the recent trends, 4-tuple fuzzy numbers have been utilized in constructing the fuzzy

quantity space (Liu et al., 2009) that endowed with the capability to model the uncertain-

ties. As mentioned in (Liu et al., 2009), fuzzy quantity space is replacing the conventional

Cartesian space into fuzzy qualitative Cartesian space and has been contributed in many

ways towards motion analysis (Chan & Liu, 2009; Chan et al., 2010; Liu et al., 2008b) to

alleviate the discrete representation which capable of modelling the uncertainties found in

respective works. Here, a brief explanation on the construction of FQS will be described

in terms of its architecture and the advantages. To begin with, let’s denote FQS with Q
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which is composed from an orientation component Qo and the translation component Qt ,

Q = {Qo,Qt} (2.2)

where,

Qo = {QSo(θm)}, where m = 1,2,3, · · · ,M

Qt = {QSt(ln)}, where n = 1,2,3, · · · ,N
(2.3)

QSo(θm) denotes the state of an angle m, QSt(ln) denotes the state of a distance ln , M

and N are the number of the elements of the two components. Figure 2.20 shows some

examples of the Qo and Qt with different number of the respective components. The

position measurement of P(QSo(θm),QSt(ln)) is determined by both the characteristics

of the fuzzy tuple of QSo(θm) and QSt(ln). For example, an origin is represented as

P0 = (X0,Y0) = ([0 0 0 0], [0 0 0 0]).

Due to the capability of FQS to model the crisp values in a more general bounded

fuzzy interval, the FQS is used to the FQ-PHM in this work. Each measurement of the

human model is normalized into the qualitative states which benefits the extraction of the

features in a finite well-determined interval manner. Besides that, it is also empower the

modelling of ambiguous case, in specific, the modelling of the data distribution in non-

mutually exclusive manner for FQRC and DFQRC to obtained a generative model that

captured the ambiguity in classification task.
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(a) N = 4, M = 4

(b) N = 10, M = 36

(c) N = 20, M = 60

Figure 2.20: Examples of the fuzzy quantity space with different number of components
N and M.
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CHAPTER 3: VIEW SPECIFIC HUMAN ACTION RECOGNITION

3.1 Introduction

Humans are not restricted to perform an action at a fixed camera viewpoint which means

a human subject can be in vary size or viewpoints. This caused the difficulties in HMA

as the uncertainties could abounded in the image acquired from the video camera such

as different human sizes and viewpoints. As a recall, such uncertainties could hinder the

human detection and modeling and motion tracking step in the HMA pipeline (please

refer to Figure 1.7).

In general, human detection and modelling is the first step in HMA pipeline with

the objective to project the human segment discovered from the image frame into a more

meaningful representation. The intention is to obtain a generalized human model which

in ideal case it will normalized over the uncertain situations and provides the feasibility in

feature extraction task. This is a vital process to minimize the errors in the next process-

ing steps which is the motion tracking. Based on the literature review, conventionally,

skeleton, bounding box, blob, cylinder, or cone are used to represent the human body

(Aggarwal & Cai, 1997; Aggarwal & Ryoo, 2011). However, due to the uncertainties

that are abounded in this modelling step, particularly the human size and the viewpoint, a

more sophisticated human model that is capable of model these uncertainties is required.

In motion tracking, view invariant is the current trend as human subject that acquire

from the video camera can be from different angles, and the algorithm that is capable of

obtaining the motion information from different angles is required and more practical.

However, most state-of-the-art view-invariant research (Ahmad & Lee, 2006; Holte et al.,

2011; Ji & Liu, 2010; Weinland et al., 2007, 2006; Yilma & Shah, 2005) are found devi-

ated from the practical solution where the acquiring of data from various viewpoint angles
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is still mandatory in the real time processing. These works assumed that the subjects al-

ways perform actions in a position of the frontal-parallel to the camera; and require to

build a 3D action model for action recognition purpose. This assumption has a few limi-

tations. First of all, in a real-world environment, subjects are not always frontal-parallel

with respect to each of the cameras. Secondly, finding a multiple cameras system in the

public space that covers many overlapping regions is uncommon. Therefore, the 3D ac-

tion model built based on the assumption above may not be very practical in a real-world

environment.

Figure 3.1: The overall flow to construct view specific action recognition framework.

Given the problems above, hence, there is a need to implement a HMA system for

multiple views within a single camera to achieve view invariant action recognition. As

a solution, a view specific action recognition framework is proposed where the action

models learned from different viewpoints are used for the recognition task within a single

camera system. What makes this work different from the previous one is, the action

model is first build from the different viewpoints with the extracted features instead of

correlating the information from multiple cameras in the processing. To achieve this,

view estimation module and VSAM are two important components. In this framework,

FQ-PHM is constructed as a solution for the modelling problem. In addition, FQHC
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can be extracted from FQ-PHM to learn and helps to construct the VSAM for the use of

performing action recognition in view independent manner. The overview of the flow to

construct view specific action recognition framework is presented in Figure 3.1.

3.2 Proposed Viewpoint Estimation Module

Viewpoint estimation module is an important component in the proposed view specific ac-

tion recognition framework to identify the viewpoint of the subject in front of the camera.

This information is then used to construct the corresponding VSAM for action recogni-

tion task. This approach eliminates the require of multiple camera installed in the specific

area. To achieve this, a human contour descriptor namely FQHC is extracted from the FQ-

PHM which is generalized over variation of size, body anatomy, and camera positions to

learn the person viewpoints at the initial stage.

3.2.1 Fuzzy Qualitative Poisson-normalized Human Model

It is a difficult task to locate and project the person from the image frame to another

desire space without knowing the intrinsic parameters for camera calibration. This space

could be in any form that build with the intention to represent the human segment in a

more meaningful manner for a specific task, such as feature extraction. However, due to

the variations in human size and the camera positions, for instance the ϕ angle, this may

hinder the process of generating a sophisticated human model and extraction of the robust

features. Besides that, without a proper human model, the system is commonly consumed

high computational cost in the processing as it requires extensive training to sustain for

all the aforementioned variations (Dalal & Triggs, 2005; Lewandowski, Makris, & Nebel,

2010).

As a solution, human modelling is performed after the human segment is identi-

fied in an image frame. There are many ways to do it as mentioned in the literature
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Figure 3.2: The overall pipeline to generate FQ-PHM.

(skeleton, bounding box, blob, cylinder, or cone), but most of these methods constrained

by some limitations such as fixed human sizes or fixed camera positions. For exam-

ples, Lewandowski, Makris, & Nebel (2010) is limited to a fixed ϕ angle, and similarly

to works using Histograms of Oriented Gradients (HOG) for human detection (Dalal &

Triggs, 2005). To the extend, extensive training is required to obtain a sophisticated

trained model to cope with these variations where collecting the training images for each

variation is a very tedious and time consuming job. Instead, FQ-PHM is proposed to cope

with these uncertainties at initial stage before the feature extraction step is conducted.

The final goal is to achieve a generalized human model that will eliminates as much as

possible the variations between the human subjects in terms of size , body anatomy, and

camera positions. To achieve this, the FQ-PHM is proposed to normalize the human

segment into the FQS with helps of Poisson solution (Gorelick et al., 2006a). The over-

all pipeline to generate FQ-PHM is showed in Figure 3.2. This is the prerequisite for

extracting the FQHC to perform viewpoint estimation.

3.2.1 (a) Poisson annotated human model

The conventional way of performing normalization on a human segment is commonly

based, solely on the longest measurement of the body and represent it with bounding box,
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blob, cylinder, etc. (Aggarwal & Cai, 1997; Aggarwal & Ryoo, 2011). However, these

works did not consider the uncertainties caused by the human size variation such as the

body anatomy. This is because, humans are different from one and another not only on

their overall body size, but also their body parts. For example, some people may have

longer upper body and longer legs. Overlook on this variation might results in inappro-

priate body modelling that might causes bad performance in latter feature extraction step,

in particularly for those features that related to the body parts. In order to obtain a more

appropriate human model, Poisson solution (Gorelick et al., 2006a) is applied to locate a

reference points, r on the human body which is used as an indicator to precisely normalize

the other body parts into the FQS. The normalized human model with r is generalized in

terms of the position of body landmarks. For example, the upper body and the lower body

of a person is always located in fixed qualitative states once the human size is normalized

into the FQS. Ideally, they will never over go each other in the FQS and the desire feature

can be extracted from this human model correctly.

To begin with, given a human silhouette, S, r(x,y) is obtained by

r(x,y) = max(U(x,y))+C (3.1)

with U(x,y) ∈ S is computed by solving a Poisson equation of the form ∆U(x,y) = −1,

where the Laplacian of U is defined as ∆U = Uxx +Uyy subject to Dirichlet boundary

conditions U(x,y) = 0 at the bounding contour ∂S. C is the constant or function that

determine the part of the human body, for instance, human lower torso part is chosen in

here which is empirically defined with

C = y+(3∗ (L/5)) (3.2)

where L is the vertical length of the human body in the image. Such definition of C
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Figure 3.3: The lower part of torso estimated using (3.1) and denoted as a black dot. It is
proven that the proposed method works on human with variation of sizes, body anatomy,
and postures where the black dot precisely located at their lower torso part (this image is
best view with colour).

is adopted because from human inspection, the lower torso part is commonly located at

the 3/5 of the overall body length. The effectiveness of this computation to locate the

reference point is shown with some examples in Figure 3.3.

The principle that empowers the notation of this r point originates from the Poisson

solution, U that was proposed by Gorelick et al. (2007, 2006a,b). The value of U in-

creases quadratically as it approach to the centre which is the nature of Poisson equation

(Gorelick et al., 2006a). The level sets of U represent smoother versions of the bounding

contour with the external protrusions, (where in human context, it refer to the limbs and

head) disappearing at relatively low values of U . This is different from the distance trans-

form, which smoothens the shape near concavities while introducing discontinuities near

convex sections of the contour. Also unlike the distance transform in which every value

is determined by a single contour point (the nearest), the values assigned by the Poisson

equation take into account many points on the boundaries and so they reflect more global

properties of the silhouette. In human representation, this is giving prudent information

as ideally the highest value from the Poisson solution is at the middle of the torso part

(Figure 3.4(a)). This is because in general, the torso is the largest part of human body.

However, the highest value of Poisson solution is not directly used in the context.
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(a) max(U(x,y)) (b) Conventional mid-point (c) r(x,y)

Figure 3.4: Comparison of the methods used to perform segmentation of body parts.
3.4(a) uses maximum value of Poisson solution, max(U(x,y)) while 3.4(b) uses conven-
tional mid-point computation for body parts segmentation which are found to be inap-
propriate as portion of the hand is cross over the lower body segment. 3.4(c) precisely
segment the upper body and lower body as well as the left and right of the body portion.

The reason can be observed from Figure 3.4(a) where the use of max(U(x,y)) results in

inappropriate body segmentation. This is because the hand is partly crossover the lower

body segment. Thus, lower torso part is chosen in this context because it is a feasible

landmark to appropriately separate the body into top and bottom parts, and as well left

and right parts. This eases the process to extract the features that rely on the body parts

such as the limbs.

Based on Figure 3.3, the reference point is able to correctly separate the body parts

and it is invariant to different size, height, and the posture of the human body. Extra

merit for this Poisson normalized human model is it endowed the capability to normalize

the human body that is capable of precisely locates the specific body parts. Despite of

this, it is insufficient for an effective human modelling as the human representation is still

affected with the variation in size. For the normalization and modelling part, the Poisson

annotated human silhouette S′ is then mapped into the FQS.

3.2.1 (b) Fuzzy quantity space mapping

Once the reference points r of a human in an image frame is identified, the next step is to

represent this human segment into the FQS which is generalized over different body sizes

and camera positions. In this thesis, FQS is adopted to represent the human segment and
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called the FQ-PHM. S′ is map into the FQS with the reference point r(x,y) as the origin

point, Po in the FQS. To begin with, the conventional Cartesian space and unit circle are

being replaced by fuzzy qualitative quantity spaces with a limit of N and M components.

lim
n→N

Ct(n) = QS(qpl)

lim
m→M

Co(m) = QS(qpθ )

(3.3)

where n is the number of qualitative state that resides in the x and y translation, while

m is the number of qualitative state that resides on the orientation in the FQS (i.e., N

and M respectively represent the number of translation and orientation states employed

in the quantity spaces to represent the FQS). As n→ N and m→M, the limits of Ct(n)

and Co(m) will approach to a set of N qualitative state for a translation component and a

set of M qualitative state for an orientation component. Note that the range of N and M

are application dependent and user defined. Empirically in the construction of FQ-PHM,

N = 10 and M = 36 are selected to build the FQS as shown in Figure 3.5. The partition

of the qualitative states, qp in the translation and orientation components are constructed

as


qpn

l |qpn
l ∈ [0, ln1 , ln2, · · · , ln(N−1),lN ]

qpm
θ
|qpm

θ
∈ [0,θm1,θm2 , · · · ,θm(M−1),2π]

(3.4)

where

qpn
l =

lN
N , qpm

θ
= 2π

M ,

0≤ qp1
l ≤ qp2

l ≤ ·· · ≤ qpN−1
l ≤ lN ,

0≤ qp1
θ
≤ qp2

θ
≤ ·· · ≤ qpM−1

θ
≤ 2π.

(3.5)

Furthermore, Poisson annotated human silhouette is normalized within the boundary with
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Figure 3.5: Fuzzy quantity space with resolution N = 10 and M = 36.

[-1 1] with respect to each qualitative state,


QS(qpl) = qpl|qpl ∈

[
qln1
ql ,

qln2
ql , · · · ,

qlnN−1
ql ,1

]
QS(qpθ ) = qpθ |qpθ ∈

[
qθm1
2π

,
qθm2
2π

, · · · , qθmM−1
2π

,1
] (3.6)

where x−y translation states qpl are normalized by the body length ql and the orientation

states are normalized into 2π .

The outcome of this step is the fuzzy qualitative human model with each component

of the body is bounded within the Qo and Qt that generalized over the body size, body

anatomy and camera positions (ϕ angle). Some examples of the output are visualized in

Figure 3.6. The usefulness of doing this are; (1) It is possible to precisely locates the body

parts with fuzzy qualitative states and invariant to the aforementioned uncertainties (body

size, body anatomy and camera ϕ angle) , (2) It can be use to extract the feature in fuzzy

qualitative manner as to proposed FQHC.
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(a) The corresponding FQ-PHM for human silhouette of different size

(b) The corresponding FQ-PHM for human image of different ϕ angle

Figure 3.6: One can notice that the size and the position of the body parts are almost
similar for all the human subjects once they are being normalized onto the FQS with r as
the origin. Thus, it is a human model that generalized over the human size and ϕ angle.

3.2.2 Fuzzy Qualitative Human Contour

Many years of study on human vision in various domains including cognitive science,

neuropsychology, and neurophysiology showed a consensus among researchers that a hu-

man recognizes an object based on its appearance such as contour, texture, and colour

information (Mel, 1997). Numbers of researches in computer vision are inspired by this

finding with the notable work in human detection where the HOG descriptor is introduced

by Dalal & Triggs (2005). This is because HOG is capable of representing human appear-

ance and shape of an image which is described by the distribution of intensity gradients
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or edge directions. Specifically, more weightage is on the human parts that show suffi-

cient displacement such as shoulder to distinguish human from other objects. However,

without generalization over the body size and body anatomy, HOG is found to be not so

effective in viewpoint learning as shown in the experiment results (section 3.2.3). As a

solution, FQHC is extracted from the proposed FQ-PHM. As an overview, FQHC is ex-

tracted by utilizing the distance measure from r towards human edges as demonstrated in

Figure 3.7.

(a) (b)

Figure 3.7: (a)In the left image, the distance from the ref-point to the outer edge is com-
puted. The distance is organized according to clockwise direction as shown in the right
image. (b)The example of the human contour descriptor by averaging the distance in each
orientation states of the FQS, QSo(θm).

First, a set of edge pixels, e j of the human body is obtained for every qualitative

states in Qo and denoted as EQSo(θm)

EQSo(θm) = {e1,e2, · · · ,eJ} ∈ QSo(θm) (3.7)

Note that, the edge pixels can be easily obtained by extracting the outer pixels of the

silhouette image. In this work, the FQHC is constructed by computing the average of the

distances from the r towards the sets of edge pixels that are bounded in the corresponding
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fuzzy qualitative orientation state, QSo,

ĒQSo(θm) =
1∣∣EQSo(θm)

∣∣ J

∑
j=1

∥∥e j− r
∥∥2 (3.8)

then, a descriptor for the human contour designated as d is constructed by concatenate

the ĒQSo(θm) for all qualitative states,

d = {ĒQSo(θ1), ĒQSo(θ2), · · · , ĒQSo(θM)} (3.9)

following the clockwise direction as shown in the right image of Figure 3.7(a). The

dimension of d is determined by the number of the orientation component, M in the Qo.

Algorithm 1 FUZZY QUALITATIVE HUMAN CONTOUR EXTRACTION

Require: An input image
Step 1: Silhouette extraction. Perform silhouette extraction to obtain binary repre-
sentation of human body, S.
Step 2: Apply Poisson solution. Apply (3.1) towards the human silhouette to obtain
reference point, r.
Step 3: Normalize onto the FQS. Normalize the Poison annotated human silhouette
S′ into the FQS with the range of [−1 1] with r as the origin (3.6).
Step 4: Extract human contour descriptor.
for all QSo(θm) such that 1≤ m≤M do

for all e j such that 1≤ j ≤ J do
Compute average of the distances, ĒQSo(θm) from r to e j
as (3.8)

end for
end for
return FQHC descriptor, d

There are reasons to use distance averaging within bounded qualitative state. First

is to create a vector descriptor with fix dimension. By comparing it with directly use all

the edge pixels from the human silhouette, the feature vector can be in various dimen-

sionalities due to the different number of edge pixels for different human subject and the

feature extraction process can be infeasible. Secondly, the averaging of the edge pixels

within the qualitative state can smoothen the inconsistency of some edge pixels due to the

noises. This is because the borderline edge pixels can belongs to two qualitative states at
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the same time, and thus the crossover edge pixels in both qualitative states can alleviate

the abrupt change in the human contour extraction. The extracted FQHC can then use to

perform view estimation in the view specific action recognition framework and helps in

the construction of VSAM. For ease understanding, the steps for the extraction of FQHC

are summarized in Algorithm 1.

3.2.3 Robustness of Fuzzy Qualitative Human Contour

In order to validate the robustness of the proposed FQHC, the clustering algorithm is

applied to evaluate the performance of FQHC in distinguishing between several human

viewpoints. At the same time, the performance is compared with the HOG.

3.2.3 (a) Predefined viewpoints

Figure 3.8: Definition of viewpoints, from left to right, ‘horizontal view, v1’, ‘diagonal
view, v2’ and ‘vertical view, v3’.

In this thesis, the scope is narrowed to three predefined dominant viewpoints which

are the most common viewpoints that will be encountered from a video camera. They

are vertical, v1, diagonal, v2, and horizontal, v3, views as depicted in Figure 3.8. These

dominant viewpoints are composed of a set of different atomic viewpoints and designated
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as v1 = {1,5}; v2 = {2,4,6,8}; v3 = {3,7} with refer to Figure 3.9. According to Rogez

et al. (2014), these viewpoints are sufficient for to analyse human actions from different

angles.

Figure 3.9: Definition of of atomic viewpoints from 1 to 8.

3.2.3 (b) Dataset

In the experiments, the INRIA Xmas Motion Acquisition Sequences (IXMAS) multiview

dataset (Weinland et al., 2007) for view-invariant human action recognition is used. The

dataset consists of 13 daily-live motions performed, each three times, by 11 actors and

captured by five cameras. In this testing, first three frames of every motion video in

IXMAS dataset are retrieved for viewpoint clustering purpose. This is because in the

video sequence, the subject are still remain at the initial standing position at the beginning

of each video frames except for the “get up” action as the subject is initially sitting on the

ground. In that case, the last three frames were used.
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3.2.3 (c) Ground truth

IXMAS dataset is taken from multiple cameras environment where the cameras are cal-

ibrated at the positions of approximately 45◦ gap in Θ angle between each camera. This

means that each of the camera viewpoint is capable of providing the information of re-

spective viewpoints in v1, v2, and v3. For example, if the subject captured by camera 1

is in v1, camera 2 will be v2 of the subject, camera 3 will be v3 of the subject and finally

camera 4 will be categorized back to v1 again. With this, the ground truth are be obtained

easily by human inspection and will be used for evaluation purpose.

Figure 3.10: Examples of top view, v4.

Note that special case which is the top view camera (camera 5) in the IXMAS dataset

is included in this testing only for robustness test and denoted as v4 (Figure 3.10). How-

ever, v4 is not included in the consideration for viewpoint estimation in the overall pro-

posed framework as this viewpoint is beyond the scope of this thesis. The proposed

framework will fail to recognize an action as the human model obtain from v4 as it is

deviated too much from a normal human pose. This is because the ϕ angle is too high

and only limited part of the body is visible from the image frame as shown in Figure 3.10.

The ground truth for v4 is directly adopted from the original labeling (Weinland et al.,

2006).
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Figure 3.11: Examples of fuzzy qualitative human contour descriptors for different view-
points.

3.2.3 (d) Clustering of FQHC

In order to validate the robustness of the extracted FQHC in distinguishing different hu-

man viewpoints, clustering algorithm is employed to learn the FQHC and automatically

group them into the respective viewpoint cluster. Based on the observation in Figure 3.11,

one can notice that the human contour descriptors are different between the viewpoints.

From this observation, it is presumable that FQHC possess the capability to differentiate

different human viewpoints, and thus clustering algorithm is used to test their discrimina-

tive strength.

In this validation, each cluster means the different viewpoints. In a simplified man-

ner, the cluster is denoted as the set of viewpoints that defined previously which are v1 to

v4. Therefore, the number of cluster here is K = 4 corresponding to each type of view-

points V = {v1,v2, · · · ,vK}. With the collection of the FQHC descriptors extracted from

all the training samples d = {d1,d2, · · · ,dT}, they are input into the clustering algorithms

and the outcomes are expected to be similar to Figure 3.12 where each of d is correctly

assigned to their respective viewpoint cluster.

The main objective of this testing is to evaluate the capability of the FQHC descrip-

tors which are extracted from the FQ-PHM in distinguishing one viewpoint from another.
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Figure 3.12: Expecting outcome for the viewpoint clustering.

This is an important criteria as it will be the prerequisite for the viewpoint estimation

module in the proposed view specific action recognition framework. The performance of

FQHC is also compared with the HOG descriptor (Dalal & Triggs, 2005) and the results

are being evaluated in terms of precision and recall using K-means (KM) and Fuzzy c-

means (FCM) clustering algorithms (Xu et al., 2005). The average testing results of the

20 trials are reported in Table 3.1.

Table 3.1: Precision (Ps) and Recall (Rc) for the clustering results.

v1 v2 v3 v4
Ps Rc Ps Rc Ps Rc Ps Rc

FQHC_KM 0.92 0.74 0.57 0.57 0.58 0.72 1.00 0.99
FQHC_FCM 0.83 0.87 0.65 0.58 0.66 0.72 1.00 0.99

HOG_KM 0.67 0.82 0.54 0.36 0.64 0.58 0.91 1.00
HOG_FCM Fail Fail Fail Fail Fail Fail Fail Fail

According to Table 3.1, the precision and recall for v1 and v4 achieved high precision

and recall but v2 and v3 showed fair results due to the confusion between the diagonal and

vertical views as demonstrated in Fig. 3.13(a). The human contour descriptors for v2 and
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v3 are similar to each other and this is acceptable as in the real environment, human has

the difficulty to distinguish them too.

Figure 3.13: The examples of the viewpoint confusion with its ground truth denoted as
GT and the computational result denoted as CR. One can notice that the right image in
(a), the CR is conflict with GT where the computer incorrectly group it as v3. While in
(b), the right image is incorrectly grouped as v1. In despite, this is acceptable due to the
ambiguity abounded in the processing.

Apart from this, due to the randomness of initialization in clustering algorithm, it

may lead to undesirable clustering outcome. For example, the “fail” cases in Table 3.1

occur because these descriptors are unable to form the expected clusters to represent each

viewpoint in 20 trials. However, this can be a good evaluation criterion to determine the

discriminative strength of a descriptor. In common practise, the lower the error rate of the

clustering performance implies the better the discriminative strength of the descriptors.

Table 3.2 shows the error rates of the testing.

Table 3.2: Error rate of the clustering.

Error rate
FQ-PHM_KM 0.2

FQ-PHM_FCM 0.3
HOG_KM 0.8

HOG_FCM 1.0

Human contour descriptor extracted from the FQ-PHM performed well with KM and

FCM with low error rate but HOG receive high error rate in KM and even failed to perform

clustering with FCM as shown in Table 3.1 and 3.2. From these results, one can conclude
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that, the proposed FQHC has better reliability to represent a viewpoint compared to the

HOG.

3.3 View Specific Action Model (VSAM)

Another important component in the proposed view specific action recognition frame-

work is the VSAM. It can be learned through desire machine learning technique with

appropriate motion features but subject to the specific viewpoints as defined in section

3.2.3 (a). It is obviously that the prior information of the subject viewpoint is the prior-

ity during the training of the VSAM, manually human annotation can be done by visual

inspection to obtain these prior information but it is a tedious job and impractical. An

alternative approach is to apply the viewpoint estimation module which utilized the pro-

posed FQHC. The comparison between the performance of using the VSAM generated

from human annotation and viewpoint estimation algorithm is discussed in the experi-

ment.

3.4 Experiments and Discussions

In this section, the experiments are conducted to evaluate the performance of the proposed

viewpoint estimation algorithm and also the feasibility of action recognition using the

view specific action recognition framework. IXMAS dataset (Weinland et al., 2006) is

again used in these experiments.

3.4.1 Viewpoint Estimation

The previous validation in section 3.2.3 (d) had showed the robustness of FQHC in repre-

senting the viewpoints but in a fixed camera position. As an extension, this experiment is

conducted to observe the effectiveness of using FQHC to perform viewpoint estimation

on different camera positions. In more specific, the camera positions are denoted as Cam
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Figure 3.14: Image from left to right representing Cam 1, Cam 2, Cam 3, and Cam 4
respectively with all these camera are set up at different ϕ angle.

1 to Cam 4 as depicted in Figure 3.14. These cameras (i.e, Cam 1 to Cam 4) respectively

represents different ϕ angle but each of them covered v1 to v3 in capturing the human

action. In viewpoint estimation, the first three frames of the video sequence are chosen

for the purpose as the subjects are all in the initial standing position. Note that, viewpoint

estimation is just normal classification tasks based on the learned viewpoint clusters in

this context.

Table 3.3: Accuracy of view estimation (for check watch action).

Feature Cam 1 Cam 2 Cam 3 Cam 4 Average
HOG 0.67 0.67 0.61 0.53 0.62

FQHC 0.75 0.81 0.58 0.78 0.73

Based on table 3.3, it is observable that the average performance of FQHC in view-

point estimation is better than HOG. The effectiveness of FQ-PHM in normalizing the ϕ

angle has greatly enhanced the viewpoint estimation performance in Cam 1, Cam 2, and

Cam 4. However, the accuracy for Cam 3 is low, but still comparable with HOG at only

3% difference. This is because the intensity of ϕ angle in Cam 3 is higher compared to

the other Cam that may potentially cause huge distortion in the human modelling process.

Besides that, the confusion matrix of the viewpoint recognition output using the FQHC

to estimate v1, v2, and v3 is illustrated in Figure 3.15.

From the confusion matrix, one can notice that v1 is confuse with v2 but almost dis-

tinguished itself with v3 which is reasonable in the sense that v1 and v3 are practically two

very different viewpoints at a huge gap. On the other hand, v2 is having vast confusion
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Figure 3.15: Confusion matrix between v1, v2, and v3.

between v1 and v3 as v2 is act as the intermediate stage for the transition from v1 to v3.

Thus, ambiguous situation such as Figure 3.13 could happen between the slight changes

during the transition of v1 or v3 into v2 and thus yield such confusions. From this exper-

iment, one can concludes that, a binary classifier may not be so effective in this case and

a sophisticated classifier that is able to model this ambiguity could be a better solution.

3.4.2 Action Recognition

The final objective of the view specific action recognition framework is to recognize an

action with independent to the viewpoints. The experiments in this section discuss the

effectiveness of the proposed framework from viewpoint detection to action recognition

using the VSAM. Spatio-temporal bag of features (Laptev et al., 2008) is employed to

extract the motion features with respect to the three viewpoints (v1, v3 and v2) to build the

VSAM which will be used in the experiments.

3.4.2 (a) Comparison with human annotation on viewpoint estimation

As mentioned earlier, the viewpoint of an subject can be manually annotated by human.

However, this is a tedious job and thus becomes impractical for HMA system. Thus,

automated viewpoint estimation algorithm is proposed. The performance of utilizing
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Figure 3.16: Comparison of human action recognition rate by using the view specific
action model trained from human annotated viewpoints and view estimation algorithm
with fuzzy qualitative human contour.

FQHC in viewpoint estimation algorithm is compared to the human annotated viewpoints

(by directly look up from the ground truth) in generating the VSAM. The performances

are evaluated through the action recognition task in specific viewpoints.

Based on Figure 3.16, the overall performance in action recognition using the pro-

posed viewpoint estimation algorithm in generating VSAM is comparable with the VSAM

generated by human annotation. This had proved that the viewpoint estimation algorithm

is capable of generating the decision which is close to the human decision and thus, it is

feasible be used in the proposed framework.

3.4.2 (b) Effectiveness of view specific action recognition framework

In order to justify the effectiveness of the view specific action recognition framework,

action recognition is performed and the results for each specific viewpoint are showed in

Figure 3.17. The results convey the message that some of the actions can be recognized

better in certain viewpoint. For examples, there are huge different in the recognition rate
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for “cross arm”, “scratch head”, and “point” actions in v1 compared to the v2 and v3. This

is reasonable as these three actions have significant difference when observe from v1. In

v2 and v3 the characteristic of these actions could be similar and become confusing. Such

situation will affect the action recognition result. Similarly for the “wave” action, it is

found to be better recognize in v3 compared to the other viewpoints.

On the other hand, the actions that involved the displacement together with the

change of viewpoints will remain high recognition rate across v1 to v3 such as “turn

around” and “walk” actions as these actions are similar throughout all viewpoints. Nonethe-

less, although the view specific action recognition framework can eliminate some of the

confusion in certain actions, the ambiguity of certain actions still exist as reflected by the

confusion matrix in Figure 3.17. For instances, from the overall performance as depicted

in Figure 3.17(d), “check watch”, “cross arm”, “scratch head”, “wave”, “punch”, and

“point” actions are still confused among each others. As a reminder that, the effective-

ness of the proposed framework is also depend on the chosen feature. The features that

are good in characterizing the action between each viewpoints will indirectly enhance the

performance of the framework.

3.5 Summary

In this chapter, the view specific action recognition framework is introduced. In view

estimation module, the FQ-PHM is proposed with its advantage in generating a human

model that generalized over the human body size, body anatomy and camera positions. To

the extend, the FQHC can be extracted from the FQ-PHM and is verified as a better human

contour descriptor compare to HOG to perform viewpoint estimation. Besides that, the

overall result in action recognition from different viewpoints showed the effectiveness of

view specific action recognition framework but ambiguity still existed in the final result.

As a solution, FQRC is introduced in the next chapter to overcome this.
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(b) Accuracy on v2
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(d) Average accuracy on all views

Figure 3.17: Comparison between action recognition rate from different viewpoints.
Higher grayscale intensity means higher recognition rate towards the respective action
in the confusion matrix.
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CHAPTER 4: FUZZY QUALITATIVE RANK CLASSIFIER

4.1 Introduction

One of the biggest challenges in real world decision making process is to cope with the

uncertainty which causes the ambiguity in decision making process. How do humans

deal with this growing confusion? In computer vision, this is an important and yet dif-

ficult image understanding problem due to their variability, confusion, and uncertainty

in classification tasks. As a recall that action recognition and viewpoint estimation are

suffered from the ambiguous issue as referring to Figure 1.6 and 3.13 respectively. The

human action can be ambiguous in the way that it confused with other actions that have

similar factors. While the viewpoint estimation confused itself with another during the

slight transition between viewpoints. Both cases are very hard to be distinguished even

by human visual inspection.

Besides that, as mentioned in the literature, a surge of interest has sparked in activity

recognition recently that takes into account the existence of scene context (Ikizler-Cinbis

& Sclaroff, 2010; Marszalek et al., 2009) to enhance the HMA system in view indepen-

dent manner. It provides prudent information to infer an action with the hypothesis where

certain activity occurs with high chances only at certain scenes such as swimming at the

coast, walking at the city, and climbing at the mountain scene. Nonetheless, scene images

itself can be ambiguous too, for example in Figure 4.1, the Figure 4.1(b) is a Coast scene

or a Mountain scene? And thus, instead of HMA, Scene understanding act as the inter-

mediate to study in this context and devise a feasible solution that is capable of modelling

these ambiguous cases.

An online survey was conducted towards the public to validate the finding on the

subjective human decision making due to the ambiguous case. The survey includes the
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(a) Coast (b) ? (c) Mountain

Figure 4.1: Example of ambiguous scene between Coast and Mountain.

people from different ages and background on a set of scene dataset. Interestingly, the

outcome of the survey showed that different people tend to give different answer for the

same scene image. This has reflected that the scene images can be ambiguous and the

conventional crisp or binary classifier is not a good option to deal with this. Techni-

cally, the ambiguity in decision making is denoted as “non-mutually exclusive” case in

this thesis as these images couldn’t distinguish itself from another, instead, they share

common characteristics. In this chapter, the objective is to deal with the non-mutually

exclusive scenario in decision making. As a result, FQRC is proposed to model the non-

mutually exclusive case by generating the FQTM and perform inference in multi-label

ranking manner.

4.2 Online Survey

Psychological and metaphysical (Forguson & Gopnik, 1998) proved that there is an influ-

ence of human factors (background, experience, age, etc.) in decision making. In here,

the objective is to show that the research in ambiguous case is subjective to human de-

cision and thus these input images are indeed non-mutually exclusive. For this purpose,

an online survey was created with a fair number of scene images, randomly chosen from

the OSR scene dataset (Oliva & Torralba, 2001). The online survey was made available

for a month and participated by a group of people in the range of 12 to 60 years old from
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different backgrounds and countries. Their task is selecting a class that best reflects the

given scene accordingly without prior knowledge of what the ground truth is.

Some examples of the results from the survey are shown in Figure 4.2. For the

complete survey result, interested reader is encouraged to refer to the corresponding web-

page1. Based on the Figure 4.2, one can clearly notice that there is a variation of an

answer (scene class) for each scene image. For instance, in Figure 4.2(a), although the

favorite selection is “Highway” class, the second choice which is “Insidecity” class still

occupies noticeable distribution. In qualitative point of view, this observation is valid as

the scene image comprises of many buildings to form the city view. Similarly in Figure

4.2(h), the dominant choice is “Forest” class while the second choice of “Mountain” class

is still valid.

Nevertheless, one should not overpass the minority choices. For example, in Figure

4.2(g), the dominant selection is a “Mountain” class. However, there are minority par-

ticipants who selected “Coast”, “Opencountry” and “Forest”, respectively. Even though

these choices are minority, the selections are still valid as it could be noticed that similar

appearance between those selected scenes.

1http://web.fsktm.um.edu.my/∼cschan/project2.htm
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Besides that, one could observe that the best result from the histogram of Figure

4.2(a,b,c,e,f,g,h,i) agreed with the ground truth with an exception case Figure 4.2(c). In

particular, the image seems to be “Opencountry” more than “Insidecity”. This is a very

interesting outcome to show that human are bias in identifying a scene image. In sum-

mary, the survey shown that assuming scene images are mutually exclusive. With this,

simplifying the classification problems (uncertainty, complexity, volatility and ambiguity)

to a binary classification task is impractical as it does not reflect how human reasoning

is performed in reality. This is similar to the ambiguous case in HMA such as the action

recognition and viewpoint estimation problems as discussed in Chapter 3.

4.3 Motivation of Study Non-mutually Exclusive Case in Classification

In general, the task of a classifier (denoted as a function f ) is to find a way, which,

based on the observations, assigns a sample, x ∈X to a specified class label, y ∈ (Y ⊆

{1,2, . . . ,K}), where X is the input space, Y is the output space and K is the number

of classes label. The task is to estimate a function ( f ∈ F ) : x→ y, where F is the

function space. A function f is independent and identically distributed, generated using

the input-output pairs according to an unknown distribution P(x,y) so that f can classify

unseen samples (x,y),

(x1,y1), . . . ,(xN,yN) ∈ (X ×Y )N (4.1)

The best function f , which one can obtain is the one that minimizes the bound of

error represented by a risk function (4.2). However, one must note that, the risk R( f ) is

unable to directly computed since the probability of P(x,y) is unknown.

R( f ) =
∫

loss( f (x),y)P(x,y) (4.2)
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In a non-mutually exclusive case, (4.2) is much difficult to achieve since the respec-

tive images are non-mutually exclusive due to the inconsistent of human decision, where

different people tend to provide different answers. Theoretically, the importance of the

non-mutually exclusive data can be derived from the inequality Chernoff bound (Cher-

noff, 1952):

P

{∣∣∣∣∣ 1
N

N

∑
i=1

xi−E[x]

∣∣∣∣∣≥ ε

}
≤ 2exp(−2Nε

2) (4.3)

This theorem states that the probability of sample mean differ by more than ε from the

expected mean is bounded by the exponential that depends on the number of samples

N. Note that if more data is available, the probability of deviation error will converge

to zero. However, this is not true because of uniform convergence of function space F

(von Luxburg & Schölkopf, 2008). Using the risk function (4.2) one can represent the

inequality (4.3) as follows,

P
{∣∣Remp( f )−R( f )

∣∣≥ ε
}
≤ 2exp(−2Nε

2) (4.4)

where Remp( f ) and R( f ) are the empirical and actual risk, respectively. Inequality (4.4)

shows that for a certain function f it is highly probable that the empirical error provides

good estimates of the actual risk. Luxburg and Scholkopf von Luxburg & Schölkopf

(2008) stated that the empirical risk Remp( f ) can be inaccurate when N→ ∞ since Cher-

noff bound only holds for a fixed function f which does not depend on the training data.

But in contrary, f does depend on training data. Therefore, they came up with the uniform

convergence and obtained the following inequality:

P

{
sup
f∈F

∣∣Remp( f )−R( f )
∣∣≥ ε

}
≤ 2exp(−2Nε

2) (4.5)
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Suppose to have finitely g functions, F = { f1, f2, . . . , fg} and C i =
∣∣Remp( fi)−R( fi)

∣∣≥
ε , then using the union bound, (4.5) can be represented as:

P

{
sup
f∈F

∣∣Remp( f )−R( f )
∣∣≥ ε

}

= P(C 1∨C 2∨·· ·∨C g)

=
g

∑
i=1

P(C i)−
{
D2 +D3 + · · ·+Dg}

≤ 2gexp(−2Nε
2)︸ ︷︷ ︸

1st term

−bound(D2 +D3 + · · ·+Dg)︸ ︷︷ ︸
2nd term

(4.6)

where D i is the sum of the probabilities of every combination of i event, e.g, Dg =P(C 1∧

C 2∧·· ·∧C g). This leads to a bound which states that the probability that empirical risk

is close to the actual risk is upper bounded by two terms. The first term is the error bound

because of the mutually exclusive data and the second term is due to the non-mutually

exclusive data. Most of the conventional classification methods, however, only utilize

the mutually exclusive part. In contrast, the proposed methods - FQRC models both the

mutually and non-mutually exclusive parts.

4.4 Implementation of Fuzzy Qualitative Rank Classifier (FQRC)

The aim of the FQRC is to model the non-mutually exclusive data which result in a trained

model namely the Fuzzy Qualitative Trained Model (FQTM) in the training step. This

model is then used as the classifier to infer the testing samples and result in a multi-label

ranking output instead of crisp or binary classification result. To begin with, the FQRC

utilized the FQS to build the Two Dimensional Fuzzy Qualitative State (2D-FQstate).

With this, it learns the feature distribution in fuzzy qualitative manner that capture the

characteristic of non-mutually exclusive.
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4.4.1 2D Fuzzy Qualitative State

A 2D-FQstate is denoted as QST (i,j) which can be composed from two qualitative states

with one along the x translation component Qt
x and another one along the y translation

component Qt
y in the FQS. x and y axis can respectively represents the scale of feature or

attribute values in the training. Figure 4.3 shows an example of a 2D-FQstate.

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

x

y

Figure 4.3: An illustration of 2D-FQstate in a fuzzy quantity space.

4.4.2 Training

In order to build a FQTM from a set of training data, T = {Tx,Ty}, the feature values of

the training data Tx and Ty must be first normalized into the range of [-1 1]. Secondly,

these normalized training data, T ′ are mapped into the FQS in order to build the FQTM

(T ′ 7→ FQS). In this context, let’s assume that a total of I×J 2D-FQstate are built in the

FQS. The FQTM can be represented as:

FQTM = {QST (1,1),QST (1,3), · · · ,QST (2,2), · · · ,QST (I,J)} (4.7)
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In training the model, a weight function w is defined as:

wk =
Lk

∑
K
k=1 Lk

(4.8)

where Lk is the occurrence number of T ′ of a particular subject class, k in a 2D-FQstate.

Therefore, in each 2D-FQstates in the trained model, there is a weight corresponding to

each class,

QST (i,j) = {w1,w2, · · · ,wK} (4.9)

where K is the total number of class in the classification task. For example, if K = 3, each

2D-FQstate in the FQTM will be represented as QST (i, j) = {w1,w2,w3} and ∑w = 1.

The advantage of this approach is that the final output of FQTM is capable of modelling

the non-mutually exclusive data. For illustration purpose, a simple FQTM with mutually-

exclusive class, K = 3 is shown in Figure 4.4.
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Figure 4.4: An example of fuzzy qualitative trained model with K = 3.
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Figure 4.5: Fuzzy Qualitative Partition.

4.4.3 Inference

In the classification stage, let’s denote d = (dx,dy) as a normalized testing data repre-

sented with two feature values, dx and dx. In order to choose the most likely 2D-FQstate

that d belongs to, Fuzzy Qualitative Partition (FQP) is introduced in the inference pro-

cess. FQP consists of nine partitions derived from the 2D-FQstate (Table 4.2) where each

partition has different degree of membership, µ , with the calculation is as Table 4.1.

Table 4.1: Notation of the FQP.

x1 6 dx 6 x2 x2 6 dx 6 x3 x3 6 dx 6 x4

y3 6 dy 6 y4 P(11) P(12) P(13)

y2 6 dy 6 y3 P(21) P(22) P(23)

y1 6 dy 6 y2 P(31) P(32) P(33)

For example, the FQP gives the intuition of: P(22) denote the FQP where both the

degree of membership of the x and y axis are 1. P(12),P(21),P(32),P(23) denote the FQP in
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which either degree of membership of the x or y axis is 1. P(11),P(13),P(31),P(33) denote

the FQP in which neither degree of membership of the x or y axis is 1.

Table 4.2: The µ calculation in FQP.

x1 6 dx 6 x2 x2 6 dx 6 x3 x3 6 dx 6 x4

y3 6 dy 6 y4
dx−x1
x2−x1

× y4−dy
y4−y3

1× y4−dy
y4−y3

x4−dx
x4−x3

× y4−dy
y4−y3

y2 6 dy 6 y3
dx−x1
x2−x1

×1 1×1 x4−dx
x4−x3

×1

y1 6 dy 6 y2
dx−x1
x2−x1

× dy−y1
y2−y1

1× dy−y1
y2−y1

x4−dx
x4−x3

× dy−y1
y2−y1

However, there are cases where d will fall into more than one 2D-FQstates, this is

denoted as l > 1 where l = {1,2,4}. This will happen when d falls into the FQP as below:

• d belongs to two 2D-FQstates, l = 2 when it falls into P(12),P(21),P(32), and P(23).

• d belongs to four 2D-FQstates, l = 4 when it falls into P(11),P(13),P(31), and P(33).

In order to choose the most possible 2D-FQstate where d belongs, a degree of mem-

bership for each 2D-FQstate corresponds to d, µd is calculated based on Table 4.2. From

the calculation of µd, the 2D-FQstate that holds the highest degree of membership towards

d, QST d will be selected,

QST d = max{µQST 1

d ,µQST 2

d , · · · ,µQST l

d } (4.10)

In the end, the corresponding weights, w are output as the ranking result to d.

QST d = {w1,w2,w3} (4.11)
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For example, (4.11) shows that d is holding the weights, w1 that belongs to Class 1, w2

that belongs to Class 2, and w3 which belongs to Class 3. This is the advantage of the

proposed approach that any possible class that d could belongs to is taking into account.

This is in contrast with the conventional crisp or binary classification solutions where they

assumed that one sample can only classified into one class.

4.5 Experiments and Discussions

In order to test the effectiveness and the robustness of the proposed FQRC, scene under-

standing is applied in advance instead of HMA as the ground truth is available from the

survey. The Outdoor Scene Recognition (OSR) Dataset (Oliva & Torralba, 2001) is used

as it is the most popular scene dataset and features (GIST) are provided. A total of four

classes of the scenes are used throughout the experiments which are “Insidecity”, “Coast”,

“Opencountry”, and “Forest”. Examples of those scenes are shown in Figure 4.6. These

four classes of the scenes are chosen in the experiments because each of them has their

own unique characteristics that corresponds to the degree of “Openness” (exposure of the

open space) and the degree of “Naturalness” (coverage of natural substances) (Oliva &

Torralba, 2001). For example, the coast scenes have high value of Openness while the

forest scenes have low value of Openness. Figure 4.7 shows the original distribution of

the four classes of the scenes that correspond to the degree of the attributes (also known

as features). The attributes (i.e.: degree of “Openness” and degree of “Naturalness”) in-

troduced by Oliva & Torralba (2001) are called the spatial envelope properties. The score

of each scene image corresponds to each attribute are then further processed by Parikh &

Grauman (2011) which also will be used in this experiments. The source of these attribute

values are publicly available at http://ttic.uchicago.edu/ dparikh/relative.html.

In this experiment, the Insidecity scenes and Opencountry scenes from the OSR

scene dataset are chosen for the evaluation purpose. This is because from these two scene
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(a) Examples of the Insidecity scene

(b) Examples of the Coast scene

(c) Examples of the Opencountry scene

(d) Examples of the Forest scene

Figure 4.6: Examples of the scenes from four classes (Oliva & Torralba, 2001).

classes, some of the scene images have possess the characteristic of other classes that

caused the ambiguous in classification. Thus they are more suitable to be tested in the

experiment to meet the objective. ‘Leave-one-out’ method is used for the classification

task where each of the scene images will be classified into the four scene classes. Fig-

ure 4.8 illustrates the “Insidecity” scenes and Table 4.3 presents the classification results.

Similarly, Figure 4.9 illustrates the “Opencountry” scenes and Table 4.4 presents the clas-

sification results.

From the results (Table 4.3-4.4), it shows the effectiveness and robustness of the pro-
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Figure 4.7: The distribution of four classes of scenes correspond to the degree of the
attributes. One can notice that some of the scene images are crossover in term of the
attribute distribution. This means that these scene images are not mutually-exclusive and
potentially ambiguous to the other scene images.

(a) (b) (c) (d)

(e) (f) (g)

Figure 4.8: Examples of Insidecity annotated scenes (Oliva & Torralba, 2001).

posed approach. For example, the proposed method confidently classified both the Figure

4.8(a), 4.8(b) and Figure 4.9(a) as “Insidecity” or “Opencountry” class respectively with

w = 1. This is because Figure 4.8(a) and 4.8(b) have low degree of Openness and low

degree of Naturalness which are the characteristics of “Insidecity” scenes. Figure 4.8(c)
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Table 4.3: Inference outputs for the Insidecity scenes.

Scene Weight, w

(Figure) Insidecity Coast Opencountry Forest

4.8(a) 1 0 0 0

4.8(b) 1 0 0 0

4.8(c) 0.7273 0.2727 0 0

4.8(d) 0.7273 0.2727 0 0

4.8(e) 0.1250 0 0.1250 0.7500

4.8(f) 0.8235 0 0 0.1765

4.8(g) 0.8235 0 0 0.1765

and 4.8(d) being classified as the combination of “Insidecity” class and also “Coast” class

because they have the characteristics of “Coast” scenes which are high degree of Open-

ness and high degree of Naturalness. Figure 4.9(b) to 4.9(d) show the combination of

“Coast” class and “Opencountry” class, respectively. On the other hand, Figure 4.8(e) to

4.8(g) hold the degrees that belong to insidecity class and also “Forest” class because of

the low degree of Openness and the high degree of Naturalness is detected from those

scenes and these are the characteristics of the “Forest” scenes. However, they do not hold

the degree to the “Coast” class because their degree of Openness does not reach the level

as a “Coast” scenes.

4.5.1 System Accuracy

This section is to test the accuracy of the proposed approach at classifying the scene

images. The ground truth for this is provided by the (OSR) Dataset Oliva & Torralba

(2001). The results are based on the average outcome from 20 iterations with 70% of

training data and 30% of testing data. In addition, the effectiveness of using different

resolution of FQS are tested with N = {4,8,12,16}. Figure 4.10 shows the examples of

the FQTM built from different resolutions of the FQS and the corresponding results are
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(a) (b) (c) (d)

(e) (f) (g)

Figure 4.9: Examples of Opencountry annotated scenes (Oliva & Torralba, 2001).

Table 4.4: Inference outputs for the Opencountry scenes.

Scene Weight, w

(Figure) Insidecity Coast Opencountry Forest

4.9(a) 0 0 1 0

4.9(b) 0 0.1111 0.8889 0

4.9(c) 0 0.0435 0.9130 0.0435

4.9(d) 0 0.3387 0.6613 0

4.9(e) 0 0 0.6471 0.3529

4.9(f) 0 0 0.0233 0.9767

4.9(g) 0 0.0435 0.3913 0.5652

shown in Figure 4.11.

From the results, one can observe that, in general, the proposed approach has achieved

stable accuracy for different FQS resolutions. The average accuracy (%) is 80.5±2.5 and

it is found that N = 8 holds the best accuracy. The poorest result is when N = 4 where our

proposed approach results in the confusion between "Opencountry" and "Coast" scenes.

This is because these two scenes are quite similar to each other and thus many crossover
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(a) N = 4

(b) N = 8
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(c) N = 12

(d) N = 16

Figure 4.10: Examples of fuzzy qualitative trained model with different N.
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(a) N = 4

(b) N = 8

(c) N = 12

(d) N = 16

Figure 4.11: Confusion matrix of crisp classification results for different N.
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data in the FQTM. Too large the resolution will lead to ineffective classification and thus

big confusion happened with another scene classes.

4.5.2 Comparison with K-nearest Neighbour

The performance of the proposed method using different portion of training data (70%,

50%, and 30%) is tested and compared to crisp classifier, K-nearest Neighbour (KNN).

For fair comparison, the crisp classification result of the FQRC is obtain by selecting the

scene class that has the highest weight, w from the ranking result. Based on Table 4.5,

first of all it shows that the results are inline with KNN and this proves that the proposed

method is capable of performing crisp classification. However, FQRC is better than KNN

in terms that it does not assume that scene classes are mutually exclusive. Secondly, the

classification results does not effected much by the size of training data as the accuracy

different by using 30% and 70% of the training data is only ±4%.

Table 4.5: Comparison with KNN based on different % of training data.

Training data Accuracy for FQS (%) Accuracy for KNN (%)

(%) Insidecity Coast Opencountry Forest Insidecity Coast Opencountry Forest

70 0.89 0.76 0.73 0.92 0.89 0.70 0.65 0.92

50 0.88 0.77 0.69 0.91 0.91 0.70 0.67 0.91

30 0.87 0.77 0.69 0.89 0.89 0.70 0.70 0.91

4.6 Summary

In this chapter, the online survey has validated that scene images are non-mutually exclu-

sive and the conventional crisp classification methods might not work effectively on this

ambiguous case. The proposed FQRC has been discussed and showed its effectiveness in
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modelling the non-mutually exclusive data, particularly in scene images. However, there

are two limitations in the proposed methods: 1) Choosing the optimal N in construct-

ing the FQS by trial and error is not practical as it is a tedious and time consuming job;

and 2) It is unable to support multi-dimension classification which means that the cur-

rent method only able to perform classification with maximum two feature dimensions.

A more sophisticated FQRC method is proposed in the next chapter to overcome these

limitations namely the DFQRC.
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CHAPTER 5: DYNAMIC FUZZY QUALITATIVE RANK CLASSIFIER

5.1 Introduction

As mentioned in chapter 4 where there are situations with the decisions are ambiguous

and these phenomena are denoted as non-mutually exclusive case in the thesis. HMA and

scene understanding are in this category and conventional crisp or binary classification

methods are less effective in modelling these ambiguous cases. This is because, the crisp

or binary classifier tends to ignore or overlook the possible class that also described the

ambiguous sample. This is deviated from how human reasoning is done and it might

deteriorate the overall system performance.

This notion became popular among researchers where instead of single label, multi-

label classification framework is proposed. The notable pioneer works are by Boutell et al.

(2004); M.-L. Zhang & Zhou (2007) in scene understanding. However, these approaches

are not practical due to: firstly, the work requires human intervention to manually annotate

the multi-label training data which is a tedious job. Secondly it leads to a large number

of classes with the sparse number of sample (Tsoumakas & Katakis, 2007) which the

annotated image’s classes are potentially bias to inconsistently human decision (Forguson

& Gopnik, 1998). Thus, FQRC is proposed in chapter 4 which is capable of modelling

the non-mutually exclusive data that addresses the above shortcomings.

However, FQRC requires to find the appropriate resolution (N) to build the FQS. In

specific, the model parameters are chosen manually based on prior information and in a

trial-and-error manner. This is a heuristic and time consuming approach. Besides that, the

FQRC do not support multi-dimension classification tasks. In order to cope with these,

DFQRC is proposed. It is capable to learn the fuzzy tuple adaptively with the training

data to build the FQTM. Furthermore, it is proved in the experiments that DFQRC is
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more effective and efficient for inference process.

5.2 Implementation of Dynamic Fuzzy Qualitative Rank Classifier (DFQRC)

Similarly to FQRC, the aim of the DFQRC is to model the non-mutually exclusive data.

However, in this extension, the training step is done without heuristic methods or trial and

error. Instead, the algorithm learns the 4-tuple fuzzy number (Shen & Leitch, 1993) from

the training data adaptively which contributes to achieve a more sophisticated FQTM that

is capable of inferring the multi-label ranking output which is close to how human makes

decision.

5.2.1 Learning 4-tuple Fuzzy Number

According to Chan & Liu (2009); Chan et al. (2008, 2007); Liu et al. (2008a,b, 2009);

Shen & Leitch (1993), 4-tuple fuzzy number is a better qualitative representation as the

representation has high resolution and good flexibility. In this work, the objective is to

dynamically learn the best composition of 4-tuple fuzzy number in the FQS that best

represent the FQTM from the training data. This is to avoid trial and errors in choosing

the suitable resolution of FQS in the FQRC as presented in previous chapter. In this work,

the learning of the 4-tuple number is proposed by utilizing the histogram approach. As

for the learning outcome, the dominant region of the 4-tuple fuzzy number indicates the

mutually exclusive part, while the intersection between 4-tuple fuzzy number indicates

the non-mutually exclusive part, as shown in Figure 5.1.

Let’s denote the 4-tuple fuzzy number here as m = [a b α β ] with the condition

a < b and ab > 0. The final output of FQTM will be J×K matrix containing 4-tuple

fuzzy number for each feature, j and class, k as in (5.1). Those 4-tuple fuzzy number

are represented in the form as m jk = [a b α β ] jk. One can notice that in the FQRC,

the FQTM is utilizing multiple 4-tuple numbers in Qt
x and Qt

y that representing the 2D-
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FQstate to build the FQTM. This is contradict to DFQRC where the learning module

output only one 4-tuple fuzzy number for each feature. Such representation allows to

perform multi-dimension classification compare to the previous FQRC where it is only

limited to two dimensions. Furthermore this representation is opposed to Boutell et al.

(2004); M.-L. Zhang & Zhou (2007) in scene understanding where human intervention

in manually annotates the training data is not required. Here, the training data is modeled

as (5.1).

FQTM =



m11 m12 · · · m1K

m21 m22 · · · m2K

...
... . . . ...

mJ1 mJ2 · · · mJK


(5.1)

Figure 5.1: Parametric representation of a histogram, x is the feature value, n denotes
the occurrence of training data from its respective bin n1,n2, . . . ,nB. a and b represent the
lower and upper bound of µ̄ , while a−α and b+β represent the minimum and maximum
of x value. The dominant region (mutually exclusive) is the area of [a,b]. The intersection
area (non-mutually exclusive) is the areas of [a−α,a] and [b,b+β ].

The representation in (5.1) is to conserve the appropriate membership function, m, of
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each respective feature (row) for each class (column). In order to learn the 4-tuple fuzzy

number, histogram representation was chosen. As illustrated in Figure 5.1, The histogram

consists of tabular frequencies, shown as adjacent rectangles, erected over discrete inter-

vals (bins), with an area equal to the frequency of the observations in the interval. The

height of a rectangle is the frequency density over the interval, i.e., the frequency divided

by the width of the interval. The total area of the histogram is equal to the number of data.

More specifically, a histogram is a function that counts the number of observations,

n, that fall into each of the disjoint categories (known as bins), whereas the graph of a

histogram is merely one way to represent a histogram. Thus, if let N be the total number

of observations and B be the number of bins, then N =
B
∑

i=1
ni. In the proposed method,

for every feature and class label, x jk = {x jk
i }Ni=1, a histogram is created to obtain the m jk.

The histogram is utilized in representing the occurrence of the training data to the

corresponding feature values with a desire bin width. There is no "best" number of bins,

and different bin sizes would reveal different features of the data. There are a few theo-

reticians have attempted to determine an optimal number of bins (Dalal & Triggs, 2005;

Shimazaki & Shinomoto, 2007; Wand, 1997), but these methods generally make strong

assumptions about the shape of distribution. Depending on the actual data distribution

and the goals of analysis, different bin number may be appropriate. An experiment is

usually needed for this purpose. To find the bin width, v,

⌈
v=
∧x−∨x

B

⌉
(5.2)

where d•e indicates the ceiling function and B = 50 is the total number of bins chosen

empirically in this framework. The occurrence of the training data is counted in each bin

and yield a feature vector of N= {n1,n2, · · · ,nB}. With this, the dominant region, µ̄ can
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be located by,

µ̄ =
∑

B
i=1ni

b
(5.3)

where b denoted the total number of bin which satisfy n> 0.

The dominant region (mutually exclusive) is defined as the region where the distri-

bution of training data is higher than µ̄ . This region is marked with the membership value

equals to 1. By referring to Figure 5.1, the parameters of a and b of m can be determined

as the lower and upper bound of the area that possess membership value equals to 1. The

intersection region (non-mutually exclusive) a−α and b+ β can be determined as the

lower and upper bound of the area that possess membership value equals to 0 respec-

tively. Algorithm 2 summarizes the learning process with a set of training image, I with

K classes.

Algorithm 2 LEARNING FQTM
Require: A training dataset

Step 1: Grouping images Group every image to its respective class label, I→{Ik}K
k=1.

Step 2: Acquiring the feature values for all Ik, perform preprocessing to obtain xk

where J features are acquired. Then compute x jk = {x jk
i }N

i=1.
Step 3: Learning Model
for all j such that 1≤ j ≤ J do

for all k such that 1≤ k ≤ K do
Build a histogram of x jk
Compute µ̄ with (5.3)
Obtain m jk = [a b α β ] jk based on µ̄

end for
end for
return FQTM

5.2.2 Inference

The goal here is to relax the mutually-exclusive assumption on the training data and clas-

sify a testing sample into their possibility classes and therefore, one testing sample can

belong to multiple classes. This is unlike the conventional classification method or fuzzy
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inference engine that the defuzzification step eventually derives a crisp decision and as

well it is different from the previous FQRC in the way to perform inference.

Given a testing sample and its respective feature values x, the membership value µ

of feature j belong to class k can be approximated by (5.4).

µ jk(x j) =



0, x j < a−α

α−1 (x j−a+α
)
, a−α 6 x j < a

1, a 6 x j 6 b

β−1 (b+β − x j
)
, b < x j 6 b+β

0, x j > b+β

(5.4)

where the parameter a,b,α, and β are retrieved from m jk of the FQTM. The product, ρk

of the membership values of all the features for each class, k is computed using

ρk =
J

∏
j=1

µ jk(x j) (5.5)

Finally, the ρk is normalized and denote as rk,

rk =
ρk

∑ρ
=

∏
J
j=1 µ jk(x j)

Z
(5.6)

where Z = ∑ρ act as the normalizer. The intuition to use the product of membership val-

ues of all the features for each class, ρk is to calculate the confident value of them. This

is the core to relate the inference mechanism closer to the principle of human reasoning

and relax the non-mutually exclusive cases. If the feature of a testing data is dominantly

belonged to a certain class, k (which means the membership value of that particular at-

tribute, µ jk = 1), and similarly for the other features, at the end of the ρk computation,

the testing sample that belongs to that particular class is a definite because the product
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between values 1 is equal to 1. On the other hand, if the uncertainties for the feature

(membership value of the feature µ jk < 1) are cumulated, the confident value decreases.

In mathematical view, the products between values of less than 1 will eventually produce

smaller value.

5.2.3 Example

An example on a scene image is presented here using the proposed DFQRC. Figure 5.2

shows an example walk-through of the inference process with a testing image, s (Figure

5.5(g)) and a learnt FQTM. Let’s denote the feature values of the testing image as “Nat-

uralness”, x1 = −0.1545 and “Openness”, x2 = −1.7597, respectively. For simplicity,

only two features are used in this example but not limited to. This is because the pro-

posed method can support multi-dimension classification task. By employing the learnt

FQTM, ρk is computed as to (5.5) and rk as (5.6).

In the inference process, r1 = 0.5561, r2 = 0.0264, r3 = 0.0000 and r4 = 0.4175 are

obtained respectively. Each of these values represents that the scene s has the confident

value r1 belongs to “Insidecity”, r2 belongs to Coast, r3 belongs to “Opencountry”, and r4

belongs to Forest where ∑r = 1. Based on human perspective, this result is reasonable as

in the scene image, there are characteristics of “Incidecity” and “Forest”. For examples,

there are buildings, vehicles, as well as trees. Therefore, in the inference process, high

degree of memberships of the features values from both classes is observed and thus infer

a high value for r1 and r4. While, on the other hand, it possesses almost zero for r2 and

zero for r3 because of low or zero value determined from the respective attribute values.

As discussed, most state-of-the-art approaches assumed that action class (Aggarwal

& Ryoo, 2011; Ji & Liu, 2010; Moeslund & Granum, 2001; Poppe, 2010) and scene

images (Bosch et al., 2006; Fei-Fei & Perona, 2005; Oliva & Torralba, 2001; Vogel &

Schiele, 2007) are mutually-exclusive. Therefore, different strategies to build a sophis-
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(a) Degree of Naturalness (b) Degree of Openness

Figure 5.2: The degree of membership, µ , of the attributes (‘Natural’ on the left, ‘Open’
on the right) for the respective classes.
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ticated binary classifier (inference engine) were proposed in those state-of-the-art ap-

proaches. As opposed to these solutions, this work argued that there are cases either

in action recognition or scene understanding could be non-mutually exclusive. Hence,

DFQRC provides the learning scheme and inference engine that contributed in such a

way that the training model captured the non-mutually exclusive characteristic of the data

and the multi-label or ranking interpretation replaces the binary decision. Nevertheless,

a comprehensive study of the intuition of using the 4-tuple membership function in the

proposed DFQRC to solve the non-mutually exclusive problem is provided in Appendix

1.

5.3 Experiments and Discussions

Before applying to HMA, the performance of the propose DFQRC is evaluated with two

public scene image datasets - the Outdoor Scene Recognition (OSR) dataset (Oliva & Tor-

ralba, 2001) and the Multi-Label Scene (MLS) dataset (Boutell et al., 2004; M.-L. Zhang

& Zhou, 2007) with the reason that multi-label groundtruth is available partly for the OSR

dataset from the online survey while the MLS dataset were manually annotated by three

human observers. These are necessary to test the effectiveness of the proposed DFQRC

in multi-label and ranking classification tasks.

The OSR dataset contains 2688 colour scene images, 256x256 pixels from a total

of 8 outdoor scene classes (“Tallbuilding, T”, “Insidecity, I”, “Street, S”, “Highway, H”,

“Coast, C”, “Opencounty, O”, “Mountain, M” and “Forest, F”). Figure 4.6 illustrates

example of the OSR dataset and is publicly available1. In the meantime, MLS dataset

contains a total of 2407 scene images with 15 (6 base + 9 multi-label) classes.

In the feature extraction stage for the OSR dataset, six different features which are

also called attributes have been employed to represent the scene images. The six at-

1http://people.csail.mit.edu/torralba/code/spatialenvelope
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tributes as introduced in Parikh & Grauman (2011) are the measurement on naturalness,

openness, perspective, large objects, diagonal plane and close-depth of the scene images.

Note that, an alternative representation such as other feature extraction methods can be

employed as the front-end instead of the attributes. Since the focus in this study is the

introduction of fuzzy qualitative approach to perform classification, any existing feature

representation for images can be employed as the input to the system. In the meantime,

for MLS dataset, the precomputed 294 dimensions feature vectors, R294 are employed as

proposed by Boutell et al. (2004); M.-L. Zhang & Zhou (2007). Finally, in OSR dataset,

‘leave-one-out’ mechanism is used in the experiment. While for the MLS dataset, the

distribution of training and testing data is according to the setting in (Boutell et al., 2004;

M.-L. Zhang & Zhou, 2007).

Overall, the experiments are divided into five sections where each of them is tested

on different perspectives of the proposed DFQRC. The bin number, B of the histogram is

empirically set as 50.

5.3.1 Effectiveness

This experiment is to show the correctness of the propose DFQRC in handling non-

mutually exclusive data and the inconsistency of human decision making process. Let’s

denote Yd as the set of result value for scenery image d from the survey and Wd be the set

of predicted label from the DFQRC. The results are compared in the following aspects:

5.3.1 (a) Qualitative Observation

The corresponding results from the online survey and DFQRC are illustrated in Figure

5.3. Based on the figure, one can notice that the outcomes from both solutions are almost

similar in terms of the ranking and the voting distributions. For instance, in Figure 5.3(d),

majority of the participants have chosen “Tallbuilding” (84.2%) and follow by “Insid-
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(a) Scene image 1
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(b) Result of online survey, Yd
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(c) Result of FQRC, Wd

(d) Scene image 2
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(e) Result of online survey, Yd
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(f) Result of FQRC, Wd

(g) Scene image 3
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(h) Result of online survey, Yd
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(i) Result of FQRC, Wd

Figure 5.3: Examples of the comparison between the results of online survey and FQRC
(‘Tallbuilding, T’, ‘Insidecity, I’, ‘Street, S’, ‘Highway, H’, ‘Coast, C’, ‘Opencounty, O’,
‘Mountain, M’ and ‘Forest, F’). These results had shown that our proposed approach is
very close to the human reasoning in scene understanding.

ecity” (15.4%). This is close to the reading computed from FQRC where “Tallbuilding”

is 76% and “Insidecity” hold 22.7%.

However, it is reasonable that to obtain exactly the same values to the online sur-

vey results is almost impossible due to the subjective human decision. Surprisingly, the

ranking of the distribution in the online survey is very close to the result computed from

DFQRC. For example, in Figure 5.3(d), by considering only the ‘hit’ labels for both re-

sults (“Tallbuilding, C” and “Insidecity, I”), the order of the distribution for DFQRC com-

puted result is T more than I which is similar to the survey results although the values are
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not exactly the same.

Based on this observation, a preliminary conclusion can be drawn that the proposed

approach is able to emulate human reasoning in classifying scene images. To further val-

idate this, quantitative evaluation is conducted in the following context.

5.3.1 (b) Quantitative Evaluation

In order to show that DFQRC is able to model how human makes decisions, a quantita-

tive evaluation is performed by using several evaluation criteria which are α-Evaluation,

Cosine similarity measure, and error rate calculation.

α-Evaluation. Evaluation of multi-label classification results is more complicated

compared to that of binary classification because a result can be fully correct, partly cor-

rect, or fully incorrect. By using the example given by Boutell et al. (2004), let’s assume

a set of classes c1,c2,c3 and c4. By taking an example of testing sample with its ground

truth that belongs to classes c1 and c2, the different output results can be interpreted as

below:

• c1, c2 (fully correct),

• c1 (partly correct),

• c1, c3 (partly correct),

• c1, c3, c4 (partly correct),

• c3, c4, (fully incorrect)
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Herein, to measure the degree of correctness of those possible results with their

proposed α-Evaluation. The score is predicted by the following formula:

score(W b
d ) =

(
1− |βMd + γQd|

|Y b
d ∪W b

d |

)α

(5.7)

where Y b
d is the set of ground truth labels for the image sample d ∈D in binary form (Yd >

0) and W b
d is the set of prediction labels from the DFQRC in binary form (Wd > 0). Also,

Md = Y b
d −W b

d (missed labels) and Qd = W b
d −Y b

d (false positive labels). In here, α,β

and γ are constraint parameters as explained in Boutell et al. (2004). In the evaluation,

α = 0.5,β = 1 and γ = 1 are selected and the accuracy rate of D is computed with,

accuracyD =
1
|D| ∑

d∈D
score(W b

d ) (5.8)

where higher accuracy reflects better reliability of the DFQRC because the ‘hit’ label (i.e:

label with distribution more than zero) is almost similar to the survey results.

Cosine similarity measure. Cosine similarity measure is use to investigate the

similarity of the histogram obtained from the survey and the DFQRC, respectively, by

matching the pattern of the distributions. First, the cosine distance (5.9) of the histogram

distributions of each scene image is computed.

distance(Wd) = cosΘ =
Yd ·Wd

‖Yd‖‖Wd‖
(5.9)

Then, the average value of the similarity value for D is computed as (5.10) to evaluate the

overall performance.

similarityD =
1
|D| ∑

d∈D
(1−distance(Wd)) (5.10)
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where larger value of similarityD indicates higher similarity.

Error rate calculation. In this evaluation criteria, how much the computed result

from the DFQRC is deviated from the survey results is investigated. To begin with, the

error vector by subtracting both of the histogram distributions is obtained,

err(Wd) = |Wd−Yd| (5.11)

Then, the mean and standard deviation of the error vector is computed to observe the

range of error as shown in Figure 5.4.
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Figure 5.4: Error bar of DFQRC results compared to the online survey results for each
scene image.

For the overall judgment in error rate, the average standard deviation of the error

values obtained from the scene images is computed. Smaller value indicates less deviation

of the DFQRC results from the online survey results.

All the three evaluation criteria are tested by comparing with the online survey results

(with and without α-cut) using the proposed DFQRC. The results are shown in Table 5.1.
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Table 5.1: Quantitative Evaluation of DFQRC compared to online survey results.

Scene α-evaluation similarity error

(accuracy) (Average)

Without α-cut 0.75 0.72 0.13

With α-cut (1%) 0.79 0.72 0.13

From the results in Table 5.1, one could observe acceptable output from these three evalu-

ation criteria. The accuracy is above 70%, which indicates that the computational results

using the DFQRC is close to human reasoning in decision making where the ‘hit’ label

is highly matched with the answer from the survey. The high similarity from the results

shows that the proposed approach is able to provide an outcome similar to a human deci-

sion in terms of voting distribution and ranking.

Based on the qualitative and quantitative results, it is clarified that the scene images

are non-mutually exclusive and the state-of-the-art approaches that used binary classifier

to deduce an unknown image to a specific class is not practical. Besides that, DFQRC has

proven its effectiveness as a remedy for this situation based on the evaluation by utilizing

the online survey results.

5.3.2 Feasibility

In this experiment, the feasibility of the proposed DFQRC is clarified in terms of the capa-

bility in performing multi-label, multi-class, multi-dimension and ranking classification

tasks. The explanation for each of the capabilities is as below:

• Multi-label - the classification outputs are associated with a set of labels

• Multi-class - the classifier that supports more than two classes, K > 2 in a single

classification task

• Multi-dimension - the classifier that supports more than two features, J > 2 in a

single classification task
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• Ranking - higher interpretation of the classification results by reordering the infer-

ence outcome.

Table 5.2: Comparison of the DFQRC with the other classifiers in terms of scene under-
standing.

Classifier Multi-label Multi-class Multi-dimension Ranking

KNN - X - -

SVM - - X -

Platt et al. (2000) - X X -

Boutell et al. (2004) X X X -

FQRC X X X X

Table 5.2 shows how the FQRC distinguishes itself from the other classifiers and

each of the capabilities have been clarified with the succeeding experiments in the fol-

lowing sections.

5.3.2 (a) DFQRC with 2 attributes and 4 scene classes (Multi-label & Multi-class)

From the comparison results show in Table 5.3, it can be observed that one drawback of

the FQRC is it provides similar results on certain images, which is absurd as all the cor-

responding images are so different from each other and imply that each of the images has

its own value of attributes, which should be different from other images. DFQRC, in con-

trast, is able to model this behavior and provides an output that is closer to human thinking

and decision. Apart from that, the confident values inferred from DFQRC are more rea-

sonable compared to FQRC. For example, in Figure 5.5(e), from human perspective of

view, one will consider that the confident level of this image belonged to “Insidecity” is

higher than the “Forest”. Such improvement is endowed by the proposed 4-tuple fuzzy

membership learning algorithm.
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(a) (b) (c) (d) (e) (f) (g)

Figure 5.5: Example of images of Insidecity.

Table 5.3: Inference output with two attributes and four classes for the scene images in
Figure 5.5.

Scene
DFQRC FQRC

(Figure) Insidecity Coast Opencountry Forest Insidecity Coast Opencountry Forest

5.5(a) 0.9280 0 0 0.0720 1 0 0 0

5.5(b) 1 0 0 0 1 0 0 0

5.5(c) 0.5068 0.1587 0.3344 0 0.7273 0.2727 0 0

5.5(d) 0.6845 0 0.3155 0 0.7273 0.2727 0 0

5.5(e) 0.5296 0.0483 0 0.4221 0.1250 0 0.1250 0.7500

5.5(f) 0.5872 0.0146 0.007 0.3911 0.8235 0 0 0.1765

5.5(g) 0.5561 0.0264 0 0.4175 0.8235 0 0 0.1765

5.3.2 (b) DFQRC with 6 attributes and 4 scene classes (Multi-dimension)

In this testing, the proposed DFQRC shows its strength in performing multi-dimensional

classification compare to FQRC where 6 attributes instead of 2 are employed to perform

the classification tasks. The 6 attributes are the score values of ‘Naturalness’, ‘Openness’,

‘Perspective’, ‘Size-Large’, ‘Diagonal-Plane’, and ‘Depth-Close’, respectively. Using the

similar testing images as in Figure 5.5, the classification results from the DFQRC are

shown in Table 5.4.

Table 5.4: Inference output with six attributes and four classes for the scene images in
Figure 5.5.

Scene (Figure) Insidecity Coast Opencountry Forest

5.5(a) 1 0 0 0

5.5(b) 1 0 0 0

5.5(c) 0.6722 0.1001 0.2277 0

5.5(d) 0.9179 0 0.0821 0

5.5(e) 0.5188 0 0 0.4812

5.5(f) 0.8411 0 0.0013 0.1575

5.5(g) 0.5936 0 0 0.4064
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By comparing the result between Table 5.3 and 5.4, it can be observed that the result

using six attributes are more reasonable than two attributes, especially in Figure 5.5(a),

5.5(e), 5.5(f), and 5.5(g), respectively. In the case of Figure 5.5(e), with using six at-

tributes instead of two, the result improved in the way that the noise was eliminated which

is the “Coast” class that should never been an option for this particular image. However,

the values of confident of Figure 5.5(e) in “Insidecity” and “Forest” have change signif-

icantly. In spite of, the confident level of “Insidecity” is still more than “Forest” which

matched to the subjective judgment.

Slight changes in these results were incurred as a resultant from the additional of

the number of attributes into the classification framework. In fact, more attributes tend

to increase the uniqueness of one class from another and this has indirectly increased the

discriminative strength of the classifier. However, it is almost impossible to find the op-

timum attributes (or features) that are best to distinguish one class from another classes

especially in non-mutually exclusive cases. Furthermore, using excessive attributes in the

algorithm will increase the computational cost. Therefore, the proposed DFQRC consid-

ers a more generative way that provides a good tradeoff between the multi-dimensional

classification capability and the performance of the classification task.

5.3.2 (c) DFQRC in ranking (Ranking ability)

The goal of this experiment is to show the effectiveness of the proposed DFQRC in higher

interpretation such as the ranking interpretation by classifying the possibility of an un-

known image into the eight learned scene classes with the correct ordering.

Table 5.5 shows the sub-sample results using randomly selected scene images from

the “Insidecity” class. The visual appearances of these images are illustrated in Figure

5.5. Herein, it is noticeable that the DFQRC is able to correctly classify each image which

has the possibility (confident value, rk) in “Insidecity” class. This is true as the bench-

131



Table 5.5: Inference output with 6 attributes and 8 classes of Figure 5.5.

Scene (Figure) Tallbuilding Insidecity Street Highway Coast Opencountry Mountain Forest

5.5(a) 0.4562 0.4562 0.0876 0 0 0 0 0

5.5(b) 0.7644 0.2356 0 0 0 0 0 0

5.5(c) 0 0.3339 0.0308 0.4725 0.0497 0.1131 0 0

5.5(d) 0 0.5880 0.0499 0.3094 0 0.0526 0 0

5.5(e) 0.0726 0.2631 0.4202 0 0 0 0 0.2440

5.5(f) 0.1412 0.3456 0.4361 0 0 0.0005 0.0119 0.0647

5.5(g) 0.0811 0.2826 0.4183 0 0 0 0.0245 0.1935

marking for these sub-sample images is selected from the “Insidecity” class. Nonetheless,

this approach also discovered that each of these images can have possibility belongs to

other classes. For instance, it is discovered that Figure 5.5(a) has the possibility as “Tall-

building” and “Street” class.

5.3.3 Comparison to State-of-the-art Binary Classifiers in Single Label Classifica-
tion Task

One of the strengths of the proposed DFQRC is, it provides the feasibility to perform

single-label classification task like the other binary classifiers with comparable result. To

verify this, DFQRC is tested against the state-of-the-art binary classifiers such as KNN,

Directed Acyclic Graph SVM (DAGSVM) (Platt et al., 2000), and Fuzzy least squares

SVM (LSSVM) (Tsujinishi & Abe, 2003). In the DFQRC, max aggregation method

(max(r)) is employed to obtain the class with maximum confident value as the binary

classification results.

For simplicity, the classification task is conducted with two attributes and four classes

for all classifiers. In the configuration of each classifier in the comparison, conventional

KNN is used with the empirical chosen parameter K = 5. As for DAGSVM (Platt et al.,

2000) and LSSVM (Tsujinishi & Abe, 2003), DAGSVM runs with RBF as kernel and

margin parameter, C = 100 using SMO training while LSSVM is implemented based on

the linear SVM with C = 2000 and incorporates with the least square solution.
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Figure 5.6: ROC comparison between DFQRC and the other binary classifiers.

The F − score (Figure 5.7) is calculated to show the accuracy of the classification

task by comparing our DFQRC and three other classifiers. In information retrieval litera-

tures, the F− score is often used for evaluating this quantity:

F− score =
2Ψη

ρ +η
. (5.12)

The recall, η and the precision, Ψ measure the configuration errors between the

ground truth and the classification result. For a good inference quality, both the recall and

precision should have high values. The ROC graphs show in Figure 5.6 is to evaluate the
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sensitivity of the classifiers while Figure 5.7 illustrates the F-score for each classification

task. From both figures, it can be observed that the proposed method is comparable

with the KNN, DAGSVM, and LSSVM. In overall, DFQRC outperforms other binary

classifiers but is slightly inefficient as compared to DAGSVM.

Figure 5.7: Comparison of F-score between the classifiers. Class 1 (Insidecity), Class 2
(Coast), Class 3 (Opencountry), and Class 4 (Forest).

One of the main reasons is DAGSVM used an efficient data structure to express the

decision node in the graph, and an improved decision algorithm is used to find the class

of each test sample and thus makes the decision more accurate compared to other binary

classifiers. In short, DAGSVM is a discriminative classifier that was implemented and

trained to distinguish distinctly amongst the data where there is no crossover tolerance in

the data distribution. This is in contrary to the DFQRC as a generative classifier to relief

the ignorance of non-mutually exclusive data. This is the reason why DAGSVM should

be better in compared to DFQRC as a binary classifier. However, here, in this context,
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the objective is to show that one of the strengths of DFQRC is the capability to perform

single-label classification task while playing the role of ranking classifier, which yields

comparable results with the other state-of-the-art binary classifiers.

5.3.4 Comparison to State-of-the-art Multi-label Classifiers

In order to show the effectiveness and efficiency of the proposed method in multi-label

classification task, in this experiment, DFQRC is compared with the state-of-the-art multi-

label scene classification approaches (Boutell et al., 2004; M.-L. Zhang & Zhou, 2007).

This comparison is performed with MLS dataset. The comparison is done on two aspects:

computational complexity and accuracy.

5.3.4 (a) Computational complexity

First, the complexity of the DFQRC compared to the approaches proposed by Boutell et

al. (2004) and M.-L. Zhang & Zhou (2007) by using Big O notation is conducted with

the results presented in Table 5.6. In this context, N denotes the number of classes, M

is the number of features, and T is the number of data. The complexity of M.-L. Zhang

& Zhou (2007) approach in the training phase consists of three parts; prior, conditional

probability, and the main function of training, while Boutell et al. (2004) required to train

a classifier for every base class. These greatly increase the computational cost compare

to the DFQRC.

Table 5.6: Complexity of DFQRC compared to the state-of-the-arts.

Method
Part

Training Phase Testing Phase

M.-L. Zhang & Zhou (2007) O(N)+O(T )+(O(3T N)+O(N)) O(2N)

Boutell et al. (2004) O(NT 3) O(N)

DFQRC O(NM) O(NM)
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In order to verify the complexity of these methods, the computational time compari-

son is done with the results are showed in Table 5.7. From the result, it is noticeable that,

DFQRC used the shortest time to train the model which is almost six times faster than

M.-L. Zhang & Zhou (2007) and 227 times faster than Boutell et al. (2004). However,

the inference takes a longer time compared to both methods. This is because DFQRC re-

trieves the fuzzy membership values by considering all the 4-tuple membership functions

that corresponds to all features for every class. This also means that with a reduction in

terms of the number of features, it is possible to obtain faster computational speed. The

computational time for the testing is done by using all testing data, so it is acceptable

as one testing data can be processed with an average of 3 milliseconds. Nonetheless,

M.-L. Zhang & Zhou (2007) suffered from finding the optimal number of nearest neigh-

bor involved in the classification step. This had directly affected the performance of the

classification.

Table 5.7: Computational time of DFQRC compared to Boutell et al. (2004) and M.-
L. Zhang & Zhou (2007) on MLS dataset.

Method
Computational time (s)

Training Testing Overall

M.-L. Zhang & Zhou (2007) 0.9363 0.5662 1.5025

Boutell et al. (2004) 37.8859 0.3725 38.2584

DFQRC 0.1666 3.9479 4.1145

5.3.4 (b) Accuracy

For fair comparison, instead of employing all the scene data from the MLS scene dataset,

only the multi-label class scene data is selected for this testing. It means that, those testing

data that are categorized as base class in Boutell et al. (2004) according to the ground truth

were eliminated and only the test data in multi-label class were used. This explains why
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the results are different from Boutell et al. (2004). Again, it should be pointed out that

the intention of this work is focused on the multi-label scene classification.

Table 5.8: α-Evaluation of DFQRC compared to M.-L. Zhang & Zhou (2007) and Boutell
et al. (2004).

Method
α-evaluation

α = 0 α = 0.5 α = 1 α = 2

M.-L. Zhang & Zhou (2007) 1 0.54 0.39 0.20

Boutell et al. (2004) 1 0.69 0.49 0.27

DFQRC 1 0.69 0.54 0.37

Based on Boutell et al. (2004), α is the forgiveness rate which determines how much

to forgive the errors made in predicting labels. Small value of α is more aggressive (tend

to forgive error) while a high value is conservative (penalizing error strictly). In relation

to the multi-label classification, α = ∞ with a score = 1 occurs only when the prediction

is fully correct (all hit and no missed) or 0 otherwise. On the other hand, when α = 0, the

score will be always = 1 unless the answer is fully incorrect (all missed). From Table 5.8,

one can observe that the DFQRC outperforms the two other methods with better accuracy

in the α-evaluation.

In summary, through a series of comprehensive experiments on different perspec-

tives, the proposed DFQRC has performed well in all the evaluations. For examples,

the result obtained from DFQRC is comparable to the human decision as compared to

the online survey in scene understanding that presented in Chapter 4. In conjunction,

DFQRC has proved its capability in performing single label, multi-label, multi-class,

multi-dimension, and ranking classification tasks. In addition, it outperformed the state-

of-the-arts single label and multi-label approaches. After all the validation that have been

done towards the proposed DFQRC, it is convincing that DFQRC is capable of modelling

the ambiguous cases. It is then further applied in action recognition to test its effective-

ness.
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5.4 Application in Human Motion Analysis

This testing is to evaluate the performance of DFQRC in addressing the ambiguity of

view estimation and action recognition in terms of multi-label and ranking classification.

5.4.1 View Estimation

In view estimation, human viewpoint can be ambiguous where they tend to be confused

between other viewpoints (i.e: v1, v2, and v3 as defined in Chapter 3), especially during

the transition from one viewpoint to another. In this testing, DFQRC is use to model the

viewpoints of the “turn around” action in IXMAS dataset. Some qualitative results are

illustrated in Figure 5.8 with the corresponding turning graphs. The first row shows the

original image of the person at the corresponding frame, while the second row shows the

view estimation results using the proposed FQHC and compared to the usage of HOG at

third row.

From Figure 5.8, instead of crisp classification result, the ranking corresponds to the

three viewpoints (v1, v2, and v3) are given. Different camera positions in terms of ϕ an-

gle are tested. Although there are noises (inconsistency in turning pattern), the proposed

method is still able to model the turning activity especially the transition from one view-

point to another. These transitions proved that uncertainty exist in view estimation and

that is why the previous crisp classification could not perform well. By using DFQRC,

the person’s viewpoint can be learned and infer as ranking outputs. By comparing FQHC

and HOG features in modelling the turning activity, again, FQHC achieve more reason-

able results where the viewpoints are correctly inferred using FQHC while HOG missed

out most of the viewpoints as refer to Figure 5.8.
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(a) Camera position 1

(b) Camera position 2
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(c) Camera position 3

(d) Camera position 4

Figure 5.8: Comparison between FQHC (second row) and HOG (third row) in viewpoint
estimation using DFQRC.
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5.4.2 Action Recognition

The aim of the thesis is to build an action recognition system that is robust over the afore-

mentioned uncertainties. In the process pipeline, the uncertainties on different sizes and

viewpoints (ϕ angle) were addressed with the view specific action recognition framework

that utilized the FQ-PHM. However, ambiguity is still exist in the final action recognition

result which means that some of the action are non-mutually exclusive such as walking,

jogging, and running which cannot be deduce with crisp or binary classification method.

Instead, DFQRC is used to model the non-mutually case and generate ranking and multi-

label output. The proposed DFQRC do not ignore any of the possibility of the classes that

a testing subject could belongs to. Putting them together, the results of action recognition

in ranking interpretation and multi-label classification output is conducted as follow.

5.4.2 (a) Ranking interpretation

In the ranking interpretation, both the uncertainties of viewpoint and action in classifica-

tion process are taken into account. The former is the ambiguity of the subject viewpoints

in a frame while the latter is the ambiguity of the subject action. In this testing, the rank-

ing of the viewpoints as previous testing is denoted as W; while the action ranking is

obtained by utilizing the output from the spatio-temporal bag of features and denoted as

A. By taking both information, the correlation R is defined as:

R=
Wv1 ·Av1 +Wv2 ·Av2 +Wv3 ·Av3

Z
. (5.13)

where Z = ∑(Wv1 ·Av1 +Wv2 ·Av2 +Wv3 ·Av3). With this, the final result to infer the

action of the subject is obtained in a ranking manner. Figure 5.9 to 5.12 show the exam-

ples of ranking output from IXMAS dataset. The action are denoted as “a - check watch,

b - cross arms, c - scratch head, d - sit down, e - get up, f - turn around, g - walk, h - wave,
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(a) Ground truth = Check watch action
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(b) Multi-label (viewpoints)

(c) Major confusion: Cross arm action

Figure 5.9: Ranking result for “Check watch” action at Cam 1.
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(a) Ground truth = Punch action
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(b) Corresponding ranking

(c) Major confusion: Point action

Figure 5.10: Ranking result for “Punch” action at Cam 2.
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(a) Ground truth = Wave action
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(b) Corresponding ranking

(c) Major confusion: Scratch head action

Figure 5.11: Ranking result for “Wave” action at Cam 3.
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(a) Ground truth = Walking
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(b) Corresponding ranking

(c) Major confusion: Turning activity

Figure 5.12: Ranking result for “Walking” action at Cam 4.
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i - punch, j - kick, k - point, l - pick up”.

In each example, the ranking result represents the action of a subjects with different

values of confident in all 12 actions in IXMAS dataset (a to l). First, it is noticeable from

the examples where the action with highest confident value is matched with the ground

truth. Secondly, the confusion between the actions can be noticed from the ranking result.

For instance, the “check watch” action is confuse with “cross arm” action in Figure 5.9.

This is reasonable, as from human inspection, both actions are very similar, this is am-

biguous to human as well if decision need to be made based on the image frame in Figure

5.9(c). This implies that the feature extracted for both actions could be similar and thus

confusion in classification could happen.

Apart from these, note that Figure 5.9 to 5.12 show the examples taken from different

camera positions (ϕ and Θ angles). Nonetheless, the system is resulting in reasonable

ranking outputs as these uncertainties have been cope with the proposed view specific

action recognition framework.

5.4.2 (b) Multi-label action recognition

The usage of multi-label classification is to compromise the uncertainty in action recog-

nition pipeline, for instance the viewpoint and action ambiguity. In multi-label classi-

fication, the result is inferred base on the “hit or miss” concept. In specific, to obtain

multi-label classification result, the ranking output computed by DFQRC is declared as

“hit” when the ranking value for the possible class that matched with the ground truth is

more than zero, and “miss” when it is equal to zero. In mathematics expression, it can

be obtained with the summation of the dot product between the ranking result Yd and the
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ground truth GT .

result =


hit, ∑Yd ·GT > 0

miss, ∑Yd ·GT = 0
(5.14)

As a simple examples, let’s assume that Yd = [0.2 0 0 0.8 0] and the GT = [0 1 0 0 0]

with respect to five classes, the result will be “miss” as the ∑Yd ·GT = 0. On the other

hand if Yd = [0.2 0.8 0 0 0], the result will be “hit” as ∑Yd ·GT = 0.8 which is more than 0.

The overall action recognition result by using multi-label on viewpoints, and multi-label

on viewpoints with action are showed in Figure 5.13 with comparison to the result that

uses single label classification result. One can observe that the multi-label classification

result with only viewpoints, and the multi-label classification with viewpoints + action

are gradually improving the recognition accuracy compared to the single label classifica-

tion method. This proved that the uncertainties in each criteria (viewpoint and action) is

affecting the overall action recognition performance due to the confusion or ambiguity.

These results conveyed an important message where the human viewpoint ans action

could be non-mutually exclusive due to the ambiguity that abounded. Instead, multi-

label and ranking interpretation are more appropriate to infer such cases instead of binary

classification result. The reasoning behind is it does not ignore any of the possible class

that are feasible to label the testing subject. This is contradict with the other state-of-

the-art methods (Ahmad & Lee, 2006; Anderson, Luke, et al., 2009b; Ashraf et al., 2013;

Lewandowski, Makris, & Nebel, 2010; Weinland et al., 2007, 2006; Yilma & Shah, 2005)

where a crisp or binary answer is mandatory.
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(b) Multi-label in viewpoints
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(c) Multi-label in viewpoints and actions

Figure 5.13: Comparison between action recognition rate using binary classification and
multi-label classifications.
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5.5 Summary

In this chapter, DFQRC is proposed as the extension of FQRC that is able to learn the 4-

tuple fuzzy number adaptively from the training data. From the experiments, surprisingly

DFQRC is capable of producing the ranking results that is similar to human decision.

Apart from that, DFQRC is equipped with the ability to perform multi-label, multi-class,

multi-dimension and ranking classification tasks. In addition, it outperformed the state-

of-the-art methods in multi-label scene classification task. Last but not least, it showed

the effectiveness to apply in the HMA, where in specific, the viewpoints estimation and

action recognition task with reasonable outcomes.
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CHAPTER 6: CONCLUSIONS

6.1 Summary

This thesis was set out to explore the uncertainties abounded in the HMA system that

hinder the effort to build a practical HMA system which is feasible to deploy in real

world environment. So far, most studies have been focused on algorithms that are lim-

ited with some constraints and assumptions which are impractical solutions as they might

be over-fitted the constrained pre-collected dataset. Specifically, the thesis is driven to-

wards solving three uncertainties in HMA which are the human size variation, viewpoint

variation, and classification ambiguity in conjunction with the two main contributions

which are the view specific action recognition framework and the fuzzy qualitative rank

classifier.

With reflect to the objective (section 1.3), an extensive literature review has been

done to study the feasibility of fuzzy approaches in addressing the uncertainties in HMA

system. From the study, the fuzzy qualitative reasoning had been identified with better ca-

pability to model the uncertainties compared to the others and thus is chosen to implement

the proposed solutions in this thesis.

A part from this, view specific action recognition had also proved its capability in

achieving promising performance in view independent HMA. In the framework, the view

estimation module that comprise of the proposed FQ-PHM and the FQHC have been eval-

uated and outperform the state-of-the-art human contour descriptor HOG in the robust-

ness test and HMA performance. It serve the purposes that the human model is invariant

to size, body anatomy, and camera positions which is vital to the proposed framework.

In addition, the proposed view specific action recognition framework is a view invariant

human action recognition framework that uses only single camera which is an advantage
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over the state-of-the-art works that required multiple cameras. Another important find-

ing in this research is, some actions are better recognized in certain viewpoints. This

is providentially benefit to the vision-based HMA system where features investigation

towards each viewpoint on specific action could be a possible extension to enhance the

performance in view invariant HMA framework.

The second argument in the thesis is regarding the classification ambiguity where

the final classification results might be confused with other possible classes. These sce-

narios are not so effective to be interpreted with crisp or binary answers as both might be

correct. A validity test with online survey had proven the existence of such cases and it

is designated as “non-mutually exclusive” case in the thesis. It is important to raise the

awareness in the research community regarding this very important, but largely neglected

issue. This thesis had studied the ambiguous case in HMA such as the confusions in

view estimation and action recognition and as well as in the scene understanding. This

is because scene context itself could be an extra cue in human action interpretation and

regretfully to be ignored. As a solution, FQRC had been proposed to address the ambigu-

ous results with first model the uncertainties in the early stage to construct the FQTM

and output the multi-label ranking result at the inference stage. In addition, DFQRC was

proposed to overcome the infeasibility of FQRC by introducing the adaptive model in

FQTM learning. The effectiveness and efficiency of FQRC and DFQRC had been tested

extensively and theirs capability in addressing the ambiguous cases had been confirmed

and outperformed the state-of-the-art methods. Most importantly, it provides promising

results in view estimation, action recognition, and scene understanding.

6.2 Limitations

Due to the narrowed scope of this thesis, the current works is limited to the human actions

that are available in the testing datasets. The core of this thesis is to research on the
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methods that are better in addressing the aforementioned uncertainties. And thus, current

testing dataset is sufficient to achieve the objective. This indicates that more works can

be done to realize the proposed framework into the real-world applications with some of

them are listed in the future works.

6.3 Future Works

Although the results presented here have demonstrated the effectiveness of the proposed

approaches in dealing with different uncertainties, the works provide basis for further

research in several areas.

6.3.1 Expand the actions

The current framework is constrained to limited actions in the testing dataset. This is

because the scope of this thesis is mainly focus on the validation of the proposed methods

and evaluate the performance of the framework. Many works need to be done in ex-

panding the action bank especially in creating the VSAM to support more actions. Such

extension is application based where it helps in the realization of the proposed framework

to works in the real-world environment.

6.3.2 Early Event Detection

Apart from that, fuzzy qualitative approaches being successful in handling the uncertain-

ties in various HMA applications as highlighted in chapter 2, can be very well explored

to be potentially applied in highly complex HMA applications such as human activity

forecasting (Kitani et al., 2012) and early detection of crimes (Hoai & De la Torre, 2012;

Ryoo, 2011). There do not exist literature on the fuzzy capability in handling the un-

certainties arising in such scenarios, which have high quotient of importance as they are

focusing on forecasting an event or early detecting crimes from happening. Therefore,
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even the minutest level of uncertainty is required to be taken care of for reliable deci-

sion making. Fuzzy qualitative reasoning with its capability in handling the uncertain

situations can substantially benefit in performing these complex tasks.

6.3.3 Human Activity Recognition in Still Images

Another interesting area to be explored as part of the future works is the recognition of

human activities using still image. The work has received much attention in the recent

past in the computer vision community (Delaitre et al., 2010; Desai et al., 2010; Gupta et

al., 2009; Maji et al., 2011; Prest et al., 2012; W. Yang et al., 2010; Yao & Fei-Fei, 2010).

In this research topic, most of the works considered it to be same as an image classification

problem. Lately, several researchers are trying to obtain a thorough understanding of the

human poses, the objects, and the interactions between them in a still images to infer the

activities. For example, Yao & Fei-Fei (2012) proposed a method to recognize the human-

object interactions in still images by explicitly modelling the mutual context between the

human poses and the objects, so that each can facilitate the recognition of the other. Their

mutual context model outperform the state-of-the-art in object detection, human pose

estimation, as well as the recognition of human-object interaction activities. However

limited information that can be extracted from the still image may induce the ambiguity

in the classification task. This can be a potential area to explore by utilizing the proposed

method in handling the uncertainties, incomplete data or vague information in regards

with the human-object interactions, or human-scene context in still images.
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INTUITION OF USING FUZZY MEMBERSHIP

In this section, The intuitive idea of using 4-tuples fuzzy membership function in the

proposed framework is discussed. If loss function is defined as,

`( fi(x),y) =


0 if y = max

k∈{1,...,K}
ri(x)

1 otherwise

(1)

where ri(x) = {ri
1, . . . ,r

i
K|ri

k ∈ [0,1]} is the output of the inference of function i, the scalar

output ri
k is defined in (5.6) and ∑

K
k=1 ri

k = 1. Suppose to have finitely g functions, then,

the objective is to find a function f ∗(x) that minimize the loss function,

f ∗(x) = arg min
y∈{1,...,K}

g

∑
i=1

`( fi(x),y) (2)

In order to get the interpretation of (2) we will use the concept of maximum entropy.

In information theory, the principle of maximum entropy is to minimize the amount of

prior information built into the distribution. More specifically, the structure of maximum

entropy problem is to find a probability assignment (or membership function µ jk ∈ [0,1])

which avoid bias agreeing with any given information. In this case, while looking at (2),

the membership function µ jk captures such prior information. Inspired by Miyamoto and

Umayahara Miyamoto & Umayahara (1998), the maximum entropy is utilized to get the

interpretation of 4-tuples fuzzy number. For simplicity we omit i, and the objective of

maximum entropy,

max−∑
j
∑
k

µ jk log µ jk (3)

Subject to the constraint ∑k
∏ j µ jk

Z = 1 and f ∗(x) = c, where c is a constant. Then
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using Lagrange multipliers,

J =−∑
j
∑
k

µ jk log µ jk +λ1

(
1−∑

k

∏ j µ jk

Z

)

+λ2(c− f ∗(x))

(4)

For simplicity, µ jk is treated as a fixed length vector since x is assumed to be discrete,

then yield,

∂J

∂ µ jk
=−1− log µ jk−

λ1

Z
−λ2

∂ f ∗(x)
∂ µ jk

(5)

By setting ∂J
∂ µ jk

= 0 and get µ jk yields,

µ jk = exp
(
−
(

1+
λ1

Z
+λ2

∂ f ∗(x)
∂ µ jk

))
(6)

Actually this result is similar when minimize or maximize the objective function of,

min/max−∑
j
∑
k

µ jk log µ jk−λ2 f ∗(x) (7)

with subject to the constraint ∑k
∏ j µ jk

Z = 1. After taking min-max sign change and make

the constant λ = 1/λ2 for brevity, the following objective is obtained,

min f ∗(x)−λ ∑
j
∑
k

µ jk log µ jk

subject to∑
k

∏ j µ jk

Z
= 1

(8)

If compare (8) with the formula of a classifier with regularization, f +λR, the 4-

tuples membership function implicitly models the regularization. In details, the 4-tuples

membership function with µ jk = 1 (mutually exclusive part) models the classifier while

the transition of membership function [0,1] (non-mutually exclusive part) implicitly mod-

els the regularization.
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