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ABSTRACT 

Medical diagnosis is the procedure of identifying a disease by critical analysis of its 

symptoms and is often aided by a series of laboratory tests of varying complexity. Accurate 

medical diagnosis is essential in order to provide the most effective treatment option.  

The work presented in this thesis is focused on processing of peripheral blood smear 

images of patients suffering from leukemia based on blast cells morphology. 

Leukemia, a blood cancer, is one of the commonest malignancies affecting both adults and 

children. It is a disease in which digital image processing and machine learning techniques 

can play a prominent role in its diagnostic process. 

Leukemia is classified as either acute or chronic based on the rapidity of the disease 

progression. Acute leukemia can be further classified to acute lymphoblastic leukemia 

(ALL) and acute myeloid leukemia (AML) based on the cell lineage. The treatment 

protocol is allocated based on the leukemia type. Fortunately, leukemia like many other 

cancer types are curable and patient survival and treatment can be improved, subject to 

accurate diagnosis.  In particular, this research focuses on Acute Leukemia, which can be of 

two distinct types (ALL, AML), with the main objective to develop a methodology to detect 

and classify Acute Leukemia blast cells into one of the above types based on image 

processing and machine learning techniques using peripheral blood smear images. 

The methodology presented in this research consisted of several stages namely, image 

acquisition, image segmentation, feature extraction/selection and, classification. 

The data was collected from two different sources, University of Malaya Medical Center 

(UMMC), Malaysia and M. Tettamanti Research Center for childhood leukemia and 

hematological diseases, Italy. 
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The image segmentation addressed several key issues in blast cells segmentation including, 

the blast cell localization, sub-imaging, color variation and segregation of touching cells. 

This stage was accomplished using several image processing techniques including, color 

transformation, mathematical morphology, thresholding, and watershed segmentation. The 

seeded region growing was used to further segment the blast cell into nucleus and 

cytoplasm, respectively. This combination resulted in a new algorithm we named CBCSA. 

Based on the Relative Ultimate Measurement Accuracy for Area, the proposed algorithm 

was able to achieve an accuracy of 96% and 94% in the extraction of the blast cell region 

and the nuclear region, respectively.  

Various types of features were employed to address the blast cell’s morphology, including 

shape, texture and color. In total, 601 features were extracted from each blast cell, and its 

nucleus:  31of these were shape-based features, while 534 were texture-based features and 

36 were color-based features. 

Artificial Neural Network and Support Vector Machine were used to classify blast cells 

into either ALL or AML according to the extracted features. As a result, an accuracy rate of 

96.93% was achieved in the classification of blasts cells. 

The resulting system will subsequently act as a second reader after the manual screening of 

peripheral blood smears. It is believed that this system would increase the diagnostic 

accuracy and consistency of the hematologist and laboratory practitioner in the daily 

diagnostic routine. 
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ABSTRAK 

Diagnosis perubatan adalah prosedur mengenal pasti gejala penyakit dengan analisis 

kritikal dan sering dibantu oleh satu siri ujian makmal dengan tahap kerumitan yang 

berbeza-beza. Diagnosis perubatan yang tepat adalah penting untuk menyediakan pilihan 

rawatan yang paling berkesan. Kerja-kerja yang dibentangkan di dalam tesis ini memberi 

tumpuan kepada pemprosesan imej periferi smear darah pesakit yang menghidap leukemia 

berdasarkan morfologi sel letupan. Leukemia, iaitu kanser darah, adalah salah satu penyakit 

berbahaya yang memberi kesan pada orang dewasa dan kanak-kanak. Pemprosesan imej 

digital dan teknik pembelajaran mesin  boleh memainkan peranan penting dalam proses 

mengenalpasti punca penyakit penyakit ini. Leukemia diklasifikasikan sebagai sama ada 

akut atau kronik berdasarkan kepantasan penyakit berkenaan berkembang. Leukemia akut 

boleh diklasifikasikan secara lanjut kepada Leukemia Akut Lymphoblastic (ALL) dan 

Leukemia Mieloid Akut (AML) berdasarkan pada keturunan sel. Protokol rawatan ini 

diperuntukkan berdasarkan jenis leukemia. Mujurlah Leukemia juga seperti kanser-kanser 

yang lain yang mana boleh diubati dan boleh diperbaiki  kelangsungan hidup pesakit dan 

serta rawatannya tertakluk kepada ketepatan diagnosis. Kajian ini secara khususnya 

memberi tumpuan kepada Leukemia akut, yang boleh menjadi dua jenis yang berbeza 

(ALL, AML), dengan objektif utama untuk membentuk suatu kaedah untuk mengesan dan 

membahagilan sel letupan Leukemia Akut ke dalam salah satu jenis di atas berdasarkan 

pemprosesan imej dan teknik pembelajaran mesin menggunakan imej periferi smear darah. 

Kaedah yang dikemukakan dalam kajian ini terdiri daripada beberapa peringkat iaitu, imej 

pengambilalihan, segmentasi imej, ciri pengekstrakan / pemilihan dan klasifikasi. Data 

diperolehi daripada dua sumber yang berbeza, Pusat Perubatan Universiti Malaya (PPUM), 

Malaysia dan Pusat Penyelidikan M. Tettamanti untuk Leukemia Kanak-Kanak dan 
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Hematologi Penyakit, Itali. Laporan segmen imej mengemukakan beberapa isu-isu utama 

dalam segmentasi sel-sel letupan termasuk, penyetempatan letupan sel, sub-pengimejan, 

variasi warna dan pembahagian sentuhan sel-sel. Peringkat ini telah dicapai dengan 

menggunakan teknik pemprosesan imej termasuklah; warna transformasi, morfologi 

matematik, ambang, dan segmentasi titik. Yang pilihan rantau berkembang digunakan 

untuk segmen selanjutnya sel letupan ke dalam nukleus dan sitoplasma. Gabungan ini 

menghasilkan algoritma baru yang dinamakan CBCSA. Berdasarkan Pengukuran relatif 

utama ketepatan bagi kawasan, algoritma yang dicadangkan telah berjaya mencapai 

ketepatan 96% dan 94% dalam pengekstrakan rantau sel letupan dan rantau nuklear 

masing-masing. Pelbagai jenis ciri-ciri telah digunakan untuk menangani morfologi sel 

letupan, termasuk bentuk, tekstur dan warna. Secara keseluruhannya, 601 ciri ini dipetik 

daripada setiap sel letupan, dan yang nukleus; 31 adalah berdasarkan ciri-bentuk, manakala 

534 adalah berdasarkan ciri-tekstur dan 36 adalah berdasarkan ciri-warna. Rangkaian 

Neural Buatan dan sokongan Mesin Vektor telah digunakan bagi mengkelaskan sel letupan 

ke dalam sama ada ALL atau AML menurut ciri-ciri yang diekstrak. Hasilnya, kadar 

ketepatan 96,93% telah dicapai dalam klasifikasi sel letupan. Sistem yang terhasil 

kemudiannya akan bertindak sebagai pembaca kedua selepas pemeriksaan calitan darah 

periferi secara manual. Adalah diharapkan bahawa sistem ini akan meningkatkan ketepatan 

diagnostik  para pengamal perubatan dan penyelidik di makmal dalam rutin diagnostik 

harian secara konsisten. 
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CHAPTER 1 

INTRODUCTION 

1.1 Preliminary Background 

In recent years, image recognition applications have become extremely widespread. They 

have become tremendously important in several life sectors such as medicine, engineering 

and science. Vision is the most advanced sense of man’s life. However, computerized 

systems, through the concept of image processing, and machine learning (ML), provides 

the ability to acquire information about the problem under study in a way that is tough for a 

human being to obtain. In other words, this information could sometimes be 

undistinguishable by human vision (Fabijańska & Sankowski, 2009). 

The contribution of image processing and machine learning techniques to the field of 

medicine has been done through the digitized medical images where many phenomena can 

be analyzed and studied with the aid of the computer. Exponential progress in research and 

development in the field of image analysis has contributed significantly to the field of 

medicine. Medical images are considered as a vital tool utilized for the diagnosis and 

analysis of many diseases, for instance, breast, chest, abdominal illnesses, blood disorder 

etc. The digital format of the medical images provide an opportunity for further analysis 

that may lead to a more accurate diagnosis and hence, an optimized patient management. 

Such images can also be used for research and teaching purposes.  The digital medical 

images that are used in this work are microscopic Peripheral Blood (PB) smear images 

(Please Refer to Section 2.5.2). The analysis of blood components and its changes is one of 

the regular diagnostic tests in clinical routine practice.  

This research is an attempt to apply digital image processing and ML techniques in the area 

of medical image analysis and recognition, in particular, Hematology.  
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The focus of this work is on developing a methodology to diagnose and classify acute 

leukemia, based on cell morphology, into either Acute Lymphoblastic Leukemia (ALL) or 

Acute Meyloid Leukemia (AML). 

The PB has been chosen for this research over the Bone Marrow (BM) sample for a number 

of reasons including: 

1) The initial leukemia diagnostic process is performed based on the microscope 

morphological examination of PB slides. Further laboratory tests will be done 

based on the outcome of the initial diagnosis. 

2)  The PB is usually used for a periodic treatment evaluation, since it is much easier, 

more economical and less painful to get blood from the vein rather than from the 

BM. 

Leukemia is a blood cancer which affects the White Blood Cells (WBCs); it is one of the 

most dangerous diseases causing fatality among people, particularly in developed countries 

(Kothari, R. et al., 1996). Blood is a suspension of millions of cells in a clear liquid. There 

are three basic types of blood cells namely Red Blood Cells (RBCs/Erythrocytes) (which 

are responsible for transporting oxygen), White Blood Cells (WBCs/Leukocytes) 

(responsible for fighting infections) and platelets (specialized cells responsible for blood 

clotting). They are all made in the factory of blood known as the Bone Marrow (some types 

of WBCs are also made in the lymph glands) and once they are mature, they are released 

into the blood stream. In the case of leukemia, WBCs become cancerous for reasons that 

are still not well understood (Lavelle, 2004). 

Leukemia arises in one of the types of WBCs. They may arise in lymphoblasts, which are 

lymphoid cells in the early stage of development, resulting in a rapid-onset of illness 

termed Acute Lymphoblastic Leukemia (ALL).  
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Alternatively, when the neoplasm (abnormal rapid reproduction of a cell) (Ciesla, 2007) 

involves mature cells, it is termed Chronic Lymphocytic Leukemia (CLL) and is usually 

more indolent. In the World Health Organization (WHO) classification, CLL is part of 

Non-Hodgkin Lymphoma (NHL) (Swerdlow et al., 2008). Leukemia may also be 

granulocytic in origin, occurring in either young myeloblastic cells resulting in Acute 

Myeloid Leukemia (AML), or in the mature granulocytes resulting in Chronic Myeloid 

Leukemia (CML). In chapter two, different medical/cellular terms and a full description of 

blood components will be discussed, in addition, a full description of leukemia 

characteristics, diagnosis methods, and treatment will be covered.  

According to statistics by the American Cancer Society (ACS), leukemia is considered as 

one of the most common types of cancer, especially in children (American Cancer Society, 

2013).  New Leukemia cases are diagnosed in about 29,000 adults and 2000 children each 

year in the United States. 

Leukemia affects people of all ages. Approximately 85% of leukemia in children is of the 

acute type. Based on a study carried out by ACS, it has been reported that leukemia is the 

second leading death in children aged 1 to 14 years old, after accidents (American Cancer 

Society, 2013). 

According to the (American childhood cancer organization, 2012), the following graph in 

Figure 1.1, illustrates the distribution of the more common childhood cancers for children 

from birth to 14 years old in the United States. 
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Figure 1.1:  Most Common Childhood Cancer in the United States  

As this research is conducted in Malaysia, some local statistics about cancer in general and 

about leukemia in particular is introduced. 

Nearly 70,000 new cancer cases were diagnosed among Malaysians in Peninsular Malaysia 

between 2003 and 2005, according to a report released in early 2008 on the incidence of the 

disease in West Malaysia. The Cancer Incidence in Peninsular Malaysia 2003-2005 report, 

published by (Lim et al., 2008), stated that a total of 67,792 new cases were diagnosed 

among 29,596 males (43.7 per cent) and 38,196 females (56.3 per cent). The annual crude 

rate for males was 100.2 per cent per 100,000 population, and 132.1 per cent per 100,000 

for females. Table 1.1 shows the cancer incidence per 100,000 by gender in peninsular 

Malaysia (Lim et al., 2008). 

Table 1.1 Cancer Incidence per 100,000 population (CR) and Age-Standardize incidence 
(ASR), by gender, Peninsular Malaysia 2003-2005 

Gender No. % CR ASR 
Male 29596 43.7 100.2 136.9 

Female 38196 56.3 132.1 156.4 
Both Genders 67792 100 116.0 145.6 

 
The National Cancer Registry report published in 2008 (Lim et al., 2008), categorized the 

most common types of cancer in Malaysia according to the gender.  In male, the 

commonest cancers are (from most frequent to least frequent): large bowel, lung, 
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nasopharyngeal cancer, prostate gland, leukemia, lymphoma, stomach, liver, bladder and 

other skin cancers. (Please Refer to Figure 1.2) 

 

Figure 1.2: The Most Common Types of Cancer in Malaysia in Male 

In Female, the commonest cancers are (from most frequent to least frequent): breast, cervix, 

large bowel, ovary, leukemia, lung, lymphoma, corpus uteri, thyroid gland and stomach. 

(Please Refer to Figure 1.3) 

 

Figure 1.3: The Most Common Types of Cancer in Malaysia in Women 

Surprisingly, it was found that leukemia was high in the rank among Malay male cancers, 

though the fact was consistent with the Kelantan Cancer Registry Report 1999-2003, which 
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found that leukemia is the third most frequent type of cancer among all males, and second 

highest among Malay males. In contrast, in the Penang Cancer Registry of the same period, 

leukemia was found to be the 8th most common cancer among males and females. Table 1.2 

shows the leukemia cancer incidence per 100,000 by ethnicity and gender in peninsular 

Malaysia (Lim et al., 2008). 

 
Table 1.2: Leukemia Cancer Incidence per 100,000 population (CR) and 

Age-standardized incidence (ASR), by ethnicity and gender, Peninsular Malaysia 2003-
2005 

 Male  Female  
Ethnic group No. % CR ASR No. % CR ASR 

Malay 220 67.9 3.6 4 111 55.5 1.8 2 
Chinese 86 26.5 3.2 3.3 72 36 2.8 2.6 
Indian 18 5.6 2 2.2 17 8.5 1.9 1.9 

 
In the last 40 years, survival rates in leukemia have substantially increased because of the 

improvements in diagnosis and treatment.  In the year 1960, the overall 5-year survival rate 

for all leukemia was about 14%. However, it is now increased to 70% (Johnson, 2010). 

Thus, diagnosing the correct type of leukemia is vitally important, since this identifies the 

treatment options to be given (National Cancer Registry, 2008). 

 
1.2 Problem Background and Problem Statements  

Leukemia is the cancer of the BM and the WBCs. Although leukemia is considered as a 

dangerous type of cancer, the recent advances and development in the diagnostic tools and 

treatment options have resulted in a cure rate of almost 70% (Priya Johnson, 2010). 

Generally speaking, there are two types of leukemia; namely acute leukemia and chronic 

leukemia. Acute leukemia is clinically and biologically different from chronic leukemia. 

Acute leukemia is characterized by its rapid and aggressive proliferation of immature cells, 

namely, the blast cells. On the other hand, chronic leukemia progresses slowly over the 

course of many years.  

http://www.buzzle.com/authors.asp?author=26540�
http://www.buzzle.com/authors.asp?author=26540�
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Chronic leukemia is sometimes monitored over a period of time before treatment is 

considered in order to ensure maximum effectiveness of the therapy. On the other hand, 

acute leukemia must be treated immediately (Boundless 2013) otherwise, if left untreated; 

it can result in death in a matter of a few weeks (Silverstein et al., 2006). 

Acute leukemia is a group of heterogeneous diseases that affects all ages (Döhner et al., 

2010, Gökbuget & Hoelzer, 2009). The most widely used protocols for acute leukemia 

classification are the French-American-British (FAB) and the World Health Organization 

(WHO) classification (Tkachuk et al., 2007).   

Basically, both classification protocols categorize acute leukemia as Acute Lymphoblastic 

Leukemia (ALL) and Acute Myeloid Leukemia (AML), based on the precursor of the blast 

cell (Please Refer to Section 2.3). Acute leukemia is very aggressive and requires 

immediate treatment to be given. Moreover, the treatment of ALL is different from that of 

AML. Therefore, it is critically important to determine whether the cell of origin is 

lymphoid or myeloid as quickly as possible, in order to administer the correct therapy early 

(Riley & Ben-Ezra, 1999).  For this reason, we consider acute leukemia as the current focus 

of this research.  

Clinically, various laboratory tests are used in the diagnosis and differentiation of acute 

leukemia such as the microscopic morphological examination of PB slides and BM 

aspiration. The BM is also subjected to immunophenotyping and cytogenetic analysis 

(Please Refer to Section 2.5.4 and 2.5.5). Microscopic morphological examination of the 

PB smear is often the first step in the diagnostic process, despite the existence of other 

advanced diagnostic procedures such as flow cytometry, immunophenotyping, and 

cytogenetic analysis. This is because PB smear examination is considered as the most 

economical procedure for initial screening of acute leukemia (Angulo et al., 2006) and it is 
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usually carried out before exposing the patient to any painful or invasive procedures such as 

BM biopsy. Another benefit of the PB smear morphological examination in the diagnosis 

of leukemia is to suggest a likely diagnosis or range of diagnoses, to indicate which more 

appropriate additional tests are required, and therefore, avoiding sophisticated and 

unnecessary tests that are difficult to interpret such as immunophenotyping. Hence, a PB 

smear screening is of particular importance because it facilitates a rapid diagnosis and 

specific treatment (Bain, 2005). However, the downside of this procedure includes labor-

intensive laboratory routines. In addition, it is subject to human error, inter-observer 

variation (the diagnosis disagreement among different observers) and requires highly 

trained experts (Scotti, 2005; Le et al., 2008; Briggs et al., 2009; Mohapatra et al., 2013). 

Despite the recent momentous improvements in Hematology instruments such as 

hematology analyzers, these devices can only identify the various types of normal 

leukocytes circulating into the blood stream without being able to classify abnormal cells, 

(Bain, 2005; Briggs et al., 2009). 

More recently an automated microscope known as CellaVision DM96 (CellaVision AB, 

Lund, Sweden) was introduced. This instrument scans stained blood slides, identifies 

potential WBCs and then takes digital images at high magnification. The WBC images are 

then classified by an artificial neural network based on a database of cells. The user either 

validates the cell classification if the DM96 has correctly identified the WBCs or manually 

reclassifies the WBCs in the correct category in case the DM96 misclassify them. 

A number of recent studies which investigated the use of DM96 showed that the DM96 was 

able to detect blast cells. However, according to study carried out by (Billard et al., 2010), 

the DM96 was only able to classify 74% of the ALL and 73% of the AML, reflecting a high 

proportion of cells misclassified by the DM96.  
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There was still an overestimation of lymphocytes and an underestimation of blast cells.  It 

was recommended from these studies that, laboratory staff should rely upon conventional 

microscopy in the initial leukemia diagnostic process. Hence, classification of immature 

and abnormal cells, such as blast cells and atypical lymphocytes, using such analyzers is 

still unreliable (Billard et al., 2010; Briggs et al., 2009; Cornet et al., 2008). 

Computer-aided microscopic morphological examination using image processing and 

machine learning techniques substantially reduces the time as compared to the manual 

procedure as it allows scanning larger number of PB slides (Escalante et al., 2012);  it also 

increases the accuracy of the result by eliminating human error, such as error resulting from 

repetition, fatigue, lack of experience, etc. The computer-aided PB screening for the 

purpose of acute leukemia diagnosis and classification consists of the following stages after 

image acquisition: blast cells localization and segmentation, feature extraction/selection, 

and finally, blast cells classification. This research deals with acute leukemia diagnosis and 

classification. Thus, all the stages mentioned earlier are included.     

From the technical point of view, isolating the cells of interest (blast cells) from the stained 

blood image background is a key issue in building a computer aided system for 

hematological malignancy classification. The PB segmentation is crucially important since 

the accuracy of the succeeding steps, namely, feature extraction and classification 

are totally dependent on the accurate segmentation of the cells of interest (Liao, Q. & Deng, 

Y. 2002, Joshi, M. & Karode, A. 2013). Thus, the segmentation stage is considered as the 

most challenging and difficult problem due to the following reasons: 

1. The complex nature of the cells presented in the PB slides (Liao & Deng, 2002). This 

complexity comes from the diversity in cell shape, size and appearance.  
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2. Individual cell localization and extraction into a sub-image. Sub-images containing 

single nucleus per image are essential for feature extraction (Mohapatra, 2011). 

Accurate cell localization and extraction is affected by the indistinct boundaries 

between the cell of interest and the background in many cases (Nee el at., 2012). 

 
3. It is almost impossible to obtain the same imaging quality during the acquisition stage 

(Markiewicz et al., 2005), as this is dependent on the different levels of illumination, 

lights, staining procedure, and the proficiency of the laboratory staff who prepare the 

PB smear.  

4. Adjacency and superimposition of cells. It is usually challenging to obtain satisfactory 

segmentation results, especially during the separation of touching or overlapping cells 

(He & Liao, 2008). 

Assuming that all the blast cells are segmented properly, it is a very important to extract 

proper diagnostic features (Duda., et al, 2012) that describe the blasts through a numerical 

value. Blast cells are classified as either lymphoid or myeloid based on these features. 

There are various methods that can be used to generate features for acute leukemia 

classification. Usually, the features come under three groups, namely, shape, texture, and 

color (Sinha & Ramakrishnan, 2003). Hundreds of features can be extracted from these 

three groups. However, not all of them are useful for the classification process. Different 

blood cells could have similar feature values, for instance, two different cells could have 

the same area size and thus giving no contribution to the classification process. Thus, the 

key point is to determine the optimal set of discriminative features, which may lead to the 

most efficient recognition results (Osowski et al., 2009). 
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Based on the intensive literature review conducted (Please Refer to Chapter 3), it has been 

found that there is only small number of scientific work that focused on the problem of 

acute leukemia diagnosis and classification. Although a number of researchers have 

attempted to look into this problem, such as (Scotti, 2006; Scotti, 2005; Markiewicz  et al., 

2005; Supardi et al., 2012; Nasir et al., 2013), there is still a great need for more efforts and 

research in this field. Since any image analysis system consists of three main stages, 

namely, segmentation, feature extraction and classification, some researches such as 

(Sadeghian et al., 2009; Patil et al., 2012; Nee et al., 2012; Madhloom et al., 2012) focused 

on only one stage namely segmentation. A number of other researchers, including the 

studies done by (Piuri & Scotti, 2004; Theera-Umpon  & Dhompongsa, 2007; Rezatofighi 

& Soltanian-Zadeh,  2011) focused on differential blood counting of WBCs but not 

leukemia, while others focused only on ALL such as the work by (Scotti, 2005). Chapter 3 

will discuss the strengths and weaknesses of the most recent researches that have been 

conducted in this area.  

 
1.3 Objectives of the Research  

This research focuses on developing a diagnostic methodology for acute leukemia blast 

cells using image processing and ML techniques on PB smear images. In this thesis, we 

first discuss the relevant image processing and ML techniques in order to identify the most 

suitable approach for the acute leukemia diagnostic process. The aim of this research is to 

utilize image processing and ML techniques in order to increase the accuracy of diagnosing 

acute leukemia for the optimal classification of ALL and AML. The following objectives 

have been formulated in order to attain the aim of this research. 

1. To apply an image processing algorithm for localization and segmentation of acute 

leukemia blast cells. 
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2.  To apply ML techniques to select the optimum set of features extracted from blast 

cell images in order to correctly classify acute leukemia into either ALL or AML.  

3. To evaluate the performance of the proposed approach using real-world PB smears 

images. 

 
1.4 Research Questions  

In order to set the direction of this research, the following research questions have been 

drawn up:  

a) What are the key points we should include in the proposed segmentation algorithm to 

solve the issues presented in the existing algorithms? 

b) Can the proposed segmentation algorithm extract the blast cells accurately? 

c) How can unique or discriminative features be extracted from the blast cells?   

d) What are the techniques needed to be integrated in the proposed approach so that it can 

classify acute leukemia blast cells more accurately? 

e) How can the problems associated with the current methods of diagnosis be solved by 

the proposed algorithm?  

f) What are the benefits of using a computer-aided diagnosis system over the current 

available methods? 

g) What evaluation metrics should be performed to confirm the proposed approach can 

segment and classify acute leukemia blast cells with good accuracy? 
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1.5 Relationship between Research Objectives and Research Questions 

Research questions are sketched to provide the direction of the research. Table 1.3 

illustrates the correlation between research objectives and research questions. 

Table 1.3: The Relationships between Research Objectives and Research Questions 
Objectives Research Questions 

1. To apply an image processing algorithm for 
localization and segmentation of acute 
leukemia blast cells. 
 

a) What are the key points we should include 
in the proposed algorithm to solve the issues 
presented in the existing algorithms? 

b) Can the proposed segmentation algorithm 
extract the blast cells accurately? 

 
2. To apply ML techniques to select the 

optimum set of features extracted from blast 
cell images in order to correctly classify acute 
leukemia into either ALL or AML. 

c) How can unique or discriminative features be 
extracted from the blast cells?   

d) What are the techniques needed to be 
integrated in the proposed approach so it can 
classify acute leukemia blast cells more 
accurately? 

e) How can the problems associated with current 
methods of diagnosis be solved by the 
proposed algorithm?  

3. To evaluate the performance of the proposed 
approach using a real-world PB smears 
images. 
 

f) What are the benefits of using a computer-
aided diagnosis system over the current 
available methods? 

g) What evaluation metrics should be performed 
to confirm the proposed approach can 
segment and classify acute leukemia blast 
cells with good accuracy? 

 

1.6 Research Contribution    

In a real-life scenario, a hematologist or laboratory practitioner uses the microscopic 

morphological examination of PB smear to detect blast cells and determine its type. In 

many cases, even a skillful operator finds it difficult to manually distinguish the various 

types of blast cells based on morphology (Please Refer to Table 2.5 and 2.6)  (Kawthalkar, 

2012). Moreover, the error rate in the manual recognition of blast cells is between 30%-

40% depending on the operator’s experience (Reta et al., 2010).  

As mentioned earlier, the goal of this research is to utilize image processing and ML 

techniques in order to increase the accuracy of diagnosing acute leukemia for the optimal 

classification of ALL and AML.  
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In order to achieve the intended goal, the research is carried out in four main stages, 

namely, 1) image acquisition, 2) image segmentation, 3) feature extraction and selection, 

and finally, 4) classification. These form the four main modules of a typical architecture of 

a Computer-Aided Diagnosis (CAD) system. 

 This research extends the work of earlier researchers and makes several key contributions 

as follows:   

• Segmentation of blast cells from other blood components such as RBCs, platelets 

and plasma as well as segmenting single blast cell into nucleus and cytoplasm.    

• An extensive color-channel analysis to determine the most suitable color space and 

color channels that can lead to the best segmentation quality. For this purpose, two 

different datasets of PB images are included. 

• Objective evaluation of the blast cell segmentation method in PB images against a 

ground truth of manually segmented PB image. The proposed segmentation 

algorithm achieves remarkable results of approximately 96% in blast cell extraction 

and 94% in nucleus/cytoplasm separation.   

• Comparative study with two state-of-the-art blast cell segmentation methods, which 

shows the superiority of the proposed method. 

• Guided generation of three different types of features based on shape, texture and 

color information extracted from the blast cell and its nucleus. 

• The proposed approach achieves remarkable results of 96% accuracy in classifying 

acute leukemia blast cells using two classification engines, namely, the Artificial 

Neural Network (ANN) and the Support Vector Machine (SVM). The results are 

remarkably comparable with and outperform the majority of the state-of-the-art 

methods presented in the literature. 
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Furthermore, the proposed research outcomes add considerable improvements in the daily 

routine of the medical laboratory in terms of productivity and quality assurance. It also 

allows the hematologist or laboratory practitioner to allocate the blast cells 

automatically where each cell can be reviewed individually on the screen. This feature will 

reduce the time spent searching for the cells of interest in the whole PB smear. It 

tremendously reduces the burden of manual screening of PB slides. Moreover, images can 

be saved for future assessment and comparison. An added advantage is that this system can 

contribute to the education and training of new laboratory practitioners and act as an 

efficient learning tool. 

Apart from facilitating the laboratory daily routine, the proposed system provides the 

specialist with substantial assistance when detecting and classifying blast cells. As the 

initial symptoms of acute leukemia are vague and could resemble other benign diseases 

such as a viral infection, most patients initially seek medical attention through their general 

practitioner. The proposed system can be used to alert primary healthcare physicians and 

general practitioners, who may unwittingly see patients with acute leukemia at the initial 

presentation. In Malaysia, a country of 13 states and 30 million people, there exist only four 

tertiary-referral centers for childhood cancer with less than 30 trained pediatric hemato-

oncologists. Hence having a tool to facilitate the initial screening of children suspected of 

having acute leukemia would be beneficial to clinicians and laboratories located outside of 

major hospitals. 
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1.7 Research Methodology and Proposed Approach 

The proposed methodology is carried out systematically to solve the research problem and 

answers the research questions by logically adopting various stages.  It also defines the way 

in which the data are collected for the research.  The diagnosis and classification of acute 

leukemia generally consist of several stages, these include: image acquisition, image 

segmentation, feature extraction, feature selection and classification. Figure 1.4 is a 

diagrammatic representation of the proposed research. The first stage of the research is 

image acquisition, which is an essential step for the diagnosis of acute leukemia. A 

prerequisite to efficiently diagnose acute leukemia is to set up a standard methodical 

procedure under which a large collection of good quality, crisp and well contrasted PB 

images could be captured.  In this research, we collaborated with a highly qualified 

hematologist, from the University of Malaya Medical Center (UMMC), Kuala Lumpur, 

Malaysia, in order to establish such a standard and consistent image acquisition procedure. 

In this context, every advice from the hematologist has been taken into consideration, in 

order to acquire images under standard magnification and lighting conditions so that the 

captured images function as good-quality input data to the diagnostic system. 
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Figure 1.4: Systematic diagram of the proposed research 
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The second stage of the research is image segmentation. The purpose of the image 

segmentation stage is to separate the blast cells from the other surrounding blood 

components such as RBCs, platelets and blood plasma. Furthermore, each blast cell is 

segmented into the nucleus and the cytoplasm. This stage produces two outputs: (i) a sub-

image(s) of the blast cell(s) extracted and placed on a white background, (ii) a nucleus sub-

image extracted from the blast cell sub-image. The determined blast cell and its nucleus are 

the regions of interest (ROI) to be analyzed in the succeeding stages of the research. After 

the segmentation algorithm proposed in this research have been developed and 

methodically tested on an adequately large set of PB images, another data-acquisition 

challenge of this stage, is to obtain a gold standard. The gold standard is the reference 

manually segmented image needed in order to verify and evaluate the performance of the 

proposed segmentation algorithm. It was prepared for each image in the dataset by 

arranging a number of meetings with the hematologist at the UMMC and manually 

segmenting the blast cells from the acquired PB images using Adobe Photoshop. All the 

gold standard images were verified by the hematologist from UMMC. Please Refer to 

Section 4.2.3 for more information about the gold standard images. 

The purpose of the next stage namely, feature extraction stage is to extract several 

features or measurements from the blast cell and its components such as shape, texture and 

color.  These features are later employed as input to the classification engine. Based on 

the input feature vector, the classifier determines whether the blast cell is ALL or AML. 

In many computer vision researches, an intermediary stage is firmly set in place between 

feature extraction and classification; this is known as feature selection.  
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The key role of feature selection is to find the optimum subset of features, which gives the 

highest discrimination power when utilized by the classification engine. (Please Refer to 

Sections 3.4 and 4.4) 

 
1.8 Thesis Overview    

This thesis is logically structured into eight chapters comprising of this introduction chapter 

and seven further chapters as follows:  

 
Chapter 2 “Leukemia” provides background information about healthy blood cells, and 

leukemia blast cells. It addresses the four main types of leukemia, including ALL, AML, 

CLL and CML. The thesis concentrates on both ALL and AML.  

Moreover, this chapter discusses the current leukemia diagnostic methods used in daily 

routine. It also demonstrates in detail the two leukemia classification system, namely, FAB 

and WHO. Towards the end of this chapter, a brief enlightenment on leukemia treatment 

options and prognosis is provided.    

 
Chapter 3 “Background and Literature Review” Throughout this chapter, the key 

techniques and algorithms that are used in this research to develop the computer-aided 

diagnostic system are highlighted and explained. This chapter also presents a survey of 

existing studies on computer-based leukemia diagnostic systems. These studies cover all 

main components of such systems such as segmentation, feature extraction, feature 

selection and classification.  

 
Chapter 4 “Research Methodology” describes the requirements for designing the proposed 

acute leukemia diagnosis approach using PB images. First, the design of a proposed 

approach is introduced. The requirements of image acquisition are then explained.  
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The requirements of image processing and image segmentation are also discussed, followed 

by the feature extraction and feature selection processes. The chapter further elaborates on 

the requirements for classification and recognition of acute leukemia blast cells. Finally, the 

performance of measurements used to evaluate and test the proposed approach, is 

elucidated. 

 
Chapter 5 “Peripheral Blood Smear image Segmentation” presents two proposed 

methods for blast cells segmentation in PB images; Blast cells Localization (BCL) and 

Completed Blast Cells Segmentation Algorithm (CBCSA), the latter being an enhancement 

of the former. As a requirement for performing segmentation, both proposed methods apply 

color-space analysis to determine the most effective and discriminative color channels for 

detecting blast cells in PB images.  

The BCL focuses on separating the blast cells from the background components, whereas 

the CBCSA introduces further improvement by addressing various issues presented in PB 

images segmentation, such as color variation, segregating touching cells and 

nucleus/cytoplasm separation. Various stages of the development process are covered and 

the outcome details of each stage are presented. 

 
Chapter 6   “Feature Extraction, Selection and Classification” presents the proposed 

feature extraction method which combines features derived from shape, textural, and color 

properties of the blast cells. The textural features are derived using first order and second 

order statistics represented by histogram statistics and Gray Level Co- occurrence Matrix 

(GLCM) statistics respectively; and the shape features are derived from shape indices, 

whereas color features are derived from histogram statistics. The chapter then discusses the 

process of feature selection by applying the sequential feature selection (SFS) method. 



21 
 

Moreover, the application of the two different techniques for classification of acute 

leukemia blast cells is discussed, namely, the Artificial Neural Network (ANN) and 

Support Vector Machine (SVM), which are commonly used in blood cells classification 

related studies. 

 
Chapter 7 “Results and Discussion” This chapter presents the discussion and the results of 

the experiments carried out. The chapter demonstrates how the results of the proposed 

approach resolve the problems mentioned in the problem statements (Please Refer to 

Section 1.2). 

 
Chapter 8 “Conclusion and Future Work” concludes and summarizes the research 

contributions made. The achievements and objectives of the research with respect to the 

experimental results obtained are highlighted along with the key findings and significance 

of the research. This chapter also discusses the impact and significance of the proposed 

approach to the hematology community in particular, and to society in general.  
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CHAPTER 2 

LEUKEMIA 

2.1 Introduction  

Leukemia is a group of heterogeneous blood-related cancers, differing in its aetiology, 

pathogenesis, prognosis and response to treatment (Bain, 2010). Leukemia is considered as 

a serious issue in modern society, as it affects both children and adults and even sometimes 

infants under the age of 12 months. In children, leukemia is considered as the most 

common type of cancer, while, in adults, the World Health Organization report shows that 

leukemia is one of the top 15 most common types of cancer (Kampen, 2012).  To better 

understand leukemia, the next sections are dedicated to the discussion of the blood cells 

lineage, types of leukemia, diagnostic methods currently in use, treatments options as well 

as prognostic factors.  

 
2.2 Blood and its Components 

Blood is a red colored, life-sustaining fluid which circulates through the heart and blood 

vessels (Veins and Arteries) as shown in Figure 2.1. Blood is vital for life. Blood flows 

throughout the human body carrying oxygen and nutrients to the tissues and delivers 

leftover products of metabolism to the lungs, liver and kidneys, where they are then 

removed from the body (Bain, 2008).  Blood comprises of four major elements namely 

plasma, red blood cells (RBC), white blood cells (WBC) and platelets (Starr et al., 2007; 

Ciesla, 2007).  Table 2.1 demonstrates the four major components of blood.  
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Figure 2.1 Blood Flow System in Human Body (Healthwise Staff, 2014) 

 
 
 
 
 
 

Arteries (Red) 
Veins (Blue) 

Heart 
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Table 2.1: The Four Major Components of Blood 
Blood Element Description 

Erythrocytes: Red Blood Cells (RBCs) RBCs are responsible for carrying oxygen from lungs 

to the body tissues and organs and bringing back 

carbon dioxide to the lung (Paul, 2006). 

Leukocytes: White Blood Cells (WBCs) WBCs are part of the immune system where they 

defend the body against both infections and foreign 

bodies. (Brooks, 2008). 

Thrombocytes: Platelets Platelets are responsible for aiding in the blood 

clotting and subsequent wound healing, which occur at 

a site of injury  

(Manfred et al., 1999) 

Plasma Blood plasma carries many important substances 

such as nutrients, waste, gases, and antibodies. 

(Aehlert & Vroman, 2011) 
 

All blood cells originate from the BM, growing from the hematopoietic stem cells 

(lymphoid and myeloid) (Ciesla, 2007). Figure 2.2 shows the maturation path of different 

blood cells originating from the haematopoietic stem cells including the lymphoid and 

myeloid stem cells. 

http://en.wikipedia.org/wiki/Immune_system�
http://en.wikipedia.org/wiki/Infectious_disease�
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Figure 2.2:  Blood Cell lineage and maturation chart (Lofsness. 2008) 

 

2.2.1 White Blood Cells (Leukocytes) 

Normally, WBCs are larger in size than RBCs and platelets (Zamani & Safabakhsh, 2006). 

However, WBCs are the least numerous component of blood cells where each micro liter of 

blood contains approximately 5000-10000 WBCs (Esteridge et al.,  2000) as opposed to 

150,000 platelets in the same volume.  WBCs are a component of the immune system and 

provide the first greatest defense against both infections and foreign bodies. (Brooks, 

2008). 

The human blood comprises of five types of WBCs namely basophil, eosinophil, 

neutrophil, monocyte, and lymphocytes as shown in Table 2.2. In healthy human 

blood, each type of WBC has a specific percentage of WBCs as follows: neutrophils 50-
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70%, eosinophils 1-4%, basophils 0-1%, monocytes 2-8%, lymphocytes 20.40%.  

Calculating the percentage of different type of WBC is known as differential blood count 

(Rl Bijlani & Manjunatha, M. 2010, GK & Pravati, 2006).  Section 2.5.1 provides more 

details about differential blood count.  

Table 2.2: White Blood Cells (Basophil, Eosinophil, Neutrophil , Monocyte, Lymphocytes) 
(Hoffbrand & Moss, 2011, Hoffbrand et al., 2001) 

WBCs Type Description 
 

Basophil  

   

Basophil cells are only seen in normal peripheral blood. They 
have many dark cytoplasmics granules, which overlie the 
nucleus and contain heparin and histamine. 

 

Eosinophil  

 

Eosinophils are similar to neutrophils in size, nuclear 
morphology, chromatin pattern and nuclear/cytoplasm ratio. 
The main difference between them is the presence of uniform, 
coarse and red granules in the cytoplasm of eosinophils. They 
provide defense against parasites and help the removal of fibrin 
formed during inflammation.  

Neutrophil 

 

This cell has a nucleus characteristic consisting of between two 
and five lobes, and a pale cytoplasm. The granules are divided into 
primary, which appear at the promyelocyte stage and secondary 
which appear at the myelocyte stage and predominant in the 
mature neutrophil. The lifespan of neutrophils in the blood is only 
about 10h.  

Monocyte 

  

These are usually larger than other PB leucocytes. The main 
function of monocytes is the defense against bacteria, fungi, 
viruses, and foreign bodies 

Lymphocyte 

 

These are the immunologically competent cells which assist the 
phagocytes in the defense of the body against infection and 
other foreign invasion. Two unique features characteristic of the 
immune system are the ability to generate antigenic specificity 
and the phenomenon of immunological memory.  
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2.3 Types of Leukemia  

Figure 2.2 shows the maturation process of the various blood cells and stages of maturation 

before becoming adult cells and are released into the bloodstream. In the case of leukemia, 

an interruption in the WBC maturation process occurs where the immature cells (blasts) 

remain immature, cannot carry out normal function, multiply continuously and eventually 

invade the BM, replacing all the normal cells.  

Leukemia is generally divided into two types known as acute leukemia or chronic leukemia 

depending on how quickly the immature cells (blasts) proliferate (Bain, 2010). Leukemia 

can be further grouped based on the type of cell that predominates in the PB and the BM 

defined according to cell lineage as either myeloid or lymphoid (Please Refer to Figure 2.2) 

(Ciesla, 2007).   

Hence, there are four types of leukemia, namely, acute lymphoblastic leukemia (ALL), 

acute myeloid leukemia (AML), chronic lymphocytic leukemia (CLL) and chronic myeloid 

leukemia (CML). (Edward, 2002; Bain, 2003; Bain, 2006; Norman,  2009). Table 2.3 

exhibits the four types of leukemia.  
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Table 2.3: The Four Main Types of Leukemia (Hoffbrand et al., 2001) 
Progression Stem 

Cell  
Type Description 

Acute 
L

ym
ph

oi
d 

Acute Lymphocytic Leukemia 
(ALL) 

The most common type of leukemia in 

young children. This disease also affects 

adults, especially over the age of 65.  

M
ye

lo
id

 

Acute Myeloid Leukemia 
(AML) 

It develops in both adults and children. 

Chronic 

L
ym

ph
oi

d 

Chronic Lymphocytic Leukemia 
(CLL) (Theml, et al, 2004) 

It occurs mainly in adults and  almost never 

seen in children 

M
ye

lo
id

 

Chronic Myeloid Leukemia 
(CML) 

(Mcgauflin., et al, 2005) 

Most commonly it affects adults over the 

age of 55. It sometimes occurs in younger 

adults, but it is rare in children.  
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2.4 Initial Symptoms of Leukemia  

Leukemia may present in various ways. Many times, the symptoms are non-specific and 

these include fever, weight loss and loss of appetite. Occasionally, there are symptoms 

which are related to BM insufficiency e.g. pallor and bruising.  

Figure 2.3 shows the common symptoms of acute and chronic leukemia that could affect 

the, muscles, skin, lungs, bones and joints and spleen (Pauline, 2013). These signs and 

symptoms are not specific for leukemia and often, when full constellation is absent, can be 

mistaken for other benign disorders e.g. viral infection. 

 
Figure 2.3: Common Symptoms of Leukemia (Häggström, 2009) 

 

2.5 Laboratory Diagnosis of Acute Leukemia 

Diagnosis of acute leukemia requires several laboratory tests. Normally, the doctor will go 

through the medical history to check out how long the symptoms have been present. The 

patient will go through a routine physical examination to detect abnormalities such as 

enlarged lymph nodes, and areas of bleeding. If the doctor suspects acute leukemia, 

microscopic morphological examination of the PB will be requested (Please Refer to 

Section 2.5.2).  

Common Symptoms of  
Leukemia

Psychological 
- Fatigue 
- Loss of appetite 
Lymph nodes 

- Swelling 

Spleen and/or liver 
- Enlargement 

Skin 
- Night Sweats 
- Easy bleeding and 

bruising 
- Purplish patches or 

spots 

Systemic 
- Weight loss 
- Fever 
- Frequent infections 

Lungs 
- Easy shortness of 

breath 

Muscular 
- Weakness 

Bones or joints 

- Pain or tenderness 



30 
 

Based on the results of the microscopic morphological examination, BM examination with 

additional laboratory tests such as BM aspirate morphological examination, 

immunophenotyping, and cytogenetics analysis (Please Refer to Sections 2.5.3, 2.5.4, and 

2.5.5 respectively) would be necessary. (American Cancer Society, 2012). 

Figure 2.4 presents the key steps that are required to be taken by a hematologist in order to 

diagnose a patient with acute leukemia. Table 2.4 provides a more detailed clarification of 

each step in Figure 2.4. 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Steps to Confirm Acute Leukemia Diagnosis (Part A) 

 

 

 

 

 

 

Yes 

1: Patient Admitted to 
Hospital 

2: Doctor Rule the Signs 
and Symptoms  

3: Medical History and 
Physical Examination   

4: Complete Blood Count 
with Differential    

5: 
Abnormal 

Count 

No 6: Patient Can Go Home 

7: Morphological Blood 
Smear Examination 

A 
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Figure 2.4: Steps to Confirm Acute Leukemia Diagnosis (Part B) 

 
 
 
 
 
 

No 

Yes 

No 

Yes 

8: Blast 
Cell 

Presented 

9: Patient Can Go Home   

11: Lymphoid     

13: Hematologist Proceeds 
with other Laboratory Tests   

14: Bone Marrow Aspirate    

15: Count Blast Cells     

16: Blast 
Cells > 

30% 
17: Patient Can Go Home  

18: Acute Leukemia 
Diagnosis Confirmed      

20: Other Laboratory Test (immunophenotyping, 
Cytogenetic, Molecular Studies, etc.)      

A 

10: Determine 
Blast cells type 12: Myeloid    

No 
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Table 2.4: Description of each step in the acute leukemia diagnosis process 
Step Description 

1 Patient admitted to the hospital  

2 Doctor will ask about the symptoms that the patient suffer from  

3 Doctor will check the medical history of the patient to see for how the patient has 
been suffering from the presented symptoms. 
At this step the doctor will examine the patient physically looking for any other 
signs such as enlarge lymph nodes, area of bleeding, skin rushes, etc.   

4 

 

 

 

A Complete Blood Count with Differential is required to check if blood count 
abnormality exists. The count of white blood cells, red blood cell, platelets will 
be checked. In healthy human being the percentage of WBCs is as follow:  

• Neutrophils 50-70% 
• Eosinophils 1-4% 
• Basophils 0-1%, 
• Monocytes 2-8% 
• Lymphocytes 20.40%.  

The blood count is usually performed by the Hematology Analyzer and the blood 
sample is taken from the vein.  

5 The blood count is performed by the Hematology Analyzer, and the count of the 
five types of WBCs is checked ( Please Refer to Table 2.2 (a-b))  

6 If the blood count reveals no evidence of leukemia and the blood count gives 
normal cells counting, other type of sickness needs to be investigated and 
probably the patient can go home.   

7 In case of clinical suspicions and/or Hematology analyzer indicate some 
abnormalities in blood count, a PB smear is prepared and the slide is referred to a 
hematologist or laboratory practitioner for microscope morphological 
examination of PB smear.  

8 The microscope morphological examination is performed to check if any blast 
cells are present in the smear. 

9 If the blood count reveals no evidence of blasts in the PBF, other type of sickness 
need to be investigated and probably the patient can go home.   

10 If blast cells are present in PB smear, the blast cells lineage should be determined 

11 Lymphoid: Planning and management for ALL treatment 

12 Myeloid: Planning and management for AML treatment 

13 Based on the result of PB smear morphological examination, doctor proceeds 
with other laboratory test to confirm the initial diagnosis. 

14 Bone Marrow biopsy is taken from the patient  

15 Count the percentage of blast cells in the bone marrow 

16 To confirm the presence of leukemia, blasts should account for about 30% of 
cells, based on the WHO classification. Less than 5% is considered normal. 

17 If the percentage of the blasts cells is within the normal value recommended by  
WHO, other types of sickness need to be investigated and probably the patient 
can go home.   

18 If the percentage of the Blast cells are more than 30%, the diagnosis is confirm 
and then the type of acute leukemia is determined in order to give the right 
treatment.  

19 Other Laboratory tests are required (immunophenotyping, Cytogenetic, 
Molecular Studies, etc.)      
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2.5.1 Complete Blood Count (CBC) 

CBC is one of the most valuable laboratory tests used in daily medical practice. It measures 

the cellular components of blood such as WBCs, RBCs, platelets, hemoglobin, differential 

WBC count, etc. (Sormunen, 2009). In many laboratories, CBC is carried out using an 

automated machine, namely, the hematology analyzer (Das, 2013). Figure 2.5 shows a 

picture of the automatic hematology analyzer from Sysmex (Diamond Diagnostics, 2013). 

Automatic hematology analyzers utilize the “flow cytometry" principle which forces the 

blood samples to flow through a small aperture using a specific pressure and aperture setup. 

The cells and particles in the blood sample pass the aperture one by one. As cells flow 

through the aperture, several types of signals are recorded and then digitized for 

transformation, counting, histogram accumulation and further analysis (Qian, 2004). Pulse 

signal are also recorded, in which the number of pulses manifests the number of blood cells 

in a sample volume of blood, and the magnitude of each pulse manifests the size of each 

blood cell. However, sometimes automated counters are inadequate for counting very low 

numbers of white cells (Bain, 2006). 

 
Figure 2.5: Sysmex KX21N hematology analyzer (Diamond Diagnostics, 2013) 
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One of the major drawbacks of automated cell counters is that they produce very limited 

information related to cell morphology (the shape, structure, form, and size of cells). 

Furthermore, they are unable to reliably classify blast cells. However, when abnormalities 

are present in the blood sample, results are automatically flagged. In this case, a 

microscopic morphological examination (Please Refer to Section 2.5.2) of the pathological 

cells is required (Ceelie et al., 2007). 

 
2.5.2 Peripheral Blood Smear Morphological Examination  

Microscopic morphological examination of stained PB and BM aspirate smears remains 

fundamental to the diagnoses of acute leukemia, and provides information for the 

separation of ALL and AML. Morphological examination of PB smear under the 

microscope has a major contribution to the diagnosis of almost any disease.  

Morphological Examination of the PB smear is considered inexpensive. It is a very 

powerful diagnostic tool in both children and adults. It provides fast and reliable access to 

information about a variety of hematologic disorders. The smear offers a window into the 

functional status of the BM. Review of the smear is a prominent adjunct to other clinical 

data; in some cases, the PB smear alone is sufficient to establish a diagnosis (Bain, 2005). 

Figure 2.6 illustrates the process of acquiring the blood sample from a patient and preparing 

the PB smear, later the PB smear is given to hematologist for microscopic morphological 

examination.  Generally, the blood samples for acute leukemia diagnosis are taken from the 

vein. A drop of blood is placed on a glass microscope slide which is stained with a dye 

(Riley et al., 2012).   
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Figure 2.6: Illustration of PB smear preparation and examination 

There are several different stains used in the preparation of a PB smear. Although, there is 

diversity amongst laboratories around the world, most stains used are based on the 

Romanowsky stain, developed by the Russian protozoologist in the late 19th century 

(Wittekind, 1979). Romanowsky used a mixture of old methylene blue and eosin to stain 

the nucleus of a malarial parasite purple and the cytoplasm blue. Subsequently, Giemsa 

modified the stain, combining methylene azure and eosin. The stain most commonly used 

in the UK is a combination of Giemsa’s stain with May-Grünwald stain (eosin methylene 

blue); it is therefore designated the May-Grünwald–Giemsa (MGG) stain which is the same 

staining methods used in Malaysia. The stain most commonly used in North America is 

Wright’s stain, which contains methylene blue and eosin; the methylene blue has been 

heated, or ‘polychromed’, to produce analogues of methylene blue. Sometimes this is 

combined with Giemsa’s stain to give a Wright–Giemsa stain, which is generally held to 

give superior results (Bain, 2006).  

Microscopic morphological examination provides a direct visualization to certain WBC 

features such as cell size, shape, nucleus chromatin structure,  where the hematologists can 

use these features to distinguish between normal WBCs (Please Refer to Table 2.2 (a-b)) 
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and blast cells (Please Refer to Table 2.5 , 2.6). Furthermore, these morphological features 

can be used to classify blast cells into either ALL or AML. 

Manual microscopic morphological examination of PB smear may be greatly hampered by 

the following drawbacks: 

• Poorly prepared or stained blood smears.  

• Time consumption. Even though the PB smear examination is performed by an 

experienced specialist, it cannot be considered as a rapid process, where the 

operator has to do a careful study on the blast cells morphology (size, shape, 

nucleus chromatin structure) in order to come out with correct diagnosis and 

ensure that the right treatment will be given. 

• The procedure is open to human error.  

The need for microscopic morphological examination of PB smear may outstrip the 

availability of trained personnel to interpret them; hence leading to backlog and delay. 

The contribution of the microscopic morphological examination of PB smear can be 

summarized as follows:  

• It gives information about the patient condition where the count of each WBC type 

can indicate certain condition. For example, a blast cell count that is more than 30% 

indicates that the patient has leukemia (Sheikh et al., 1996).  

• It provides data for selection of further pertinent tests in order to establish a 

diagnosis. For example, if blast cells are found in the PB smear, then the physician 

may need to do a cytogenetic test in order to estimate the patient’s prognosis 

(Sheikh et al., 1996).   
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• It acts as a guide to therapy. In leukemia patients, the PB smear has to be examined 

on the 8th day of therapy where the numbers of circulating blast cells are 

determined. The patient with more than 1000 lymphoblasts per Microliter are 

regarded as “poor-risk” and will receive more intensive chemotherapy whereas 

those who are found to have less than 1000 lymphoblasts per Microliter of 

circulating blasts are considered “good-risk” and will have less intensive therapy 

(Ariffin, 2012, Madhloom et al., 2012b). 

• It is used as an indicator of harmful effects of chemotherapy and radiotherapy. 

Chemotherapy may lead to the destruction of healthy cells such as RBCs. For that 

reason, the physician should carefully monitor this condition through a PB smear 

morphological examination (Abou-Alfa & DeMatteo, 2011). 

 
2.5.3 Bone Marrow Aspirate Morphological Examination  

BM is a special fatty tissue containing stem cells (Please Refer to Figure 2.2), located 

inside a few large bones. These stem cells can transform into WBCs, RBCs and platelets 

that have various roles. Inside this special tissue, immature stems cells reside, along with 

extra iron. Stem cells remain undifferentiated until abnormal, weakened, or damaged cells 

need to be replaced. This is the only process through which cells get replaced to maintain a 

healthy body (Orazi et al., 2006). Figure 2.7 shows an example of BM cells corresponding 

to AML. Figure 2.8, graphically depicts the process of taking a BM sample. 
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Figure 2.7: Bone Marrow sample (Ichihashi, et al, 2013) 

 
 

 
Figure 2.8: Blood taken from Bone Marrow (Dugdale,. 2010). 
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2.5.4 Immunophenotyping  

Immunophenotyping is the process used to identify cells, based on the types of antigens or 

markers on the surface of the cell. By choosing appropriate antigens, the differentiation of 

leukemia cells can be determined (Wang, 2014).  Immunophenotyping is performed using 

sophisticated medical equipment named flow cytometer. Flow cytometric techniques are 

expensive and require the expertise of highly trained personnel. In resource-limited 

countries ready access to technical support and quality assurance programs for flow 

cytometry are often not readily available (Zijenah et al, 2006). Nevertheless, the modern 

standard of care requires all acute leukemia cases to undergo immunophenotyping for 

proper classification (Jaroszeski & Heller, 1998). 

 
2.5.5 Cytogenetics 

In addition to morphological examination and immunological tests, cytogenetics analysis is 

another type of laboratory test used for leukemia diagnosis (Reaman, 2011). 

Cytogenetic examination is usually performed by examining chromosomes (pieces of 

DNA) under a high-powered microscope to detect any changes. Normal human cells 

contain 23 pairs of a chromosome, each of which are of a certain size and stains a specific 

way. In some types of leukemia, chromosome changes may be seen.  For instance, 

sometimes two chromosomes swap some of their genetic material, leaving one longer than 

normal and one shorter than normal. This change is called a translocation, and can usually 

be seen under a microscope. Recognizing these translocations can help identify certain 

types of ALL and AML and can help determine the prognosis (outlook) (American Cancer 

Societry, 2012). More details regarding the classification of acute leukemia is described in 

the next section.  
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2.6 Classification of Acute Leukemia  

The current acute leukemia classification systems are based on cytomorphology, 

cytochemistry, immunophenotyping, immunogenetics and molecular cytogenetics. 

However, the initial classification of acute leukemia is generally performed based on 

morphology (Szczepański et al, 2003). Although the best criteria for categorizing a case of 

acute leukemia as myeloid or lymphoid may be disputed, the importance of such 

categorization is beyond doubt. Not only does the natural history differ but the best current 

modes of treatment are still sufficiently different for an incorrect categorization to 

adversely affect prognosis (Bain, 1991). 

Currently, there are two classification systems which use laboratory hematology to 

categorize acute leukemia into either lymphoid or myeloid. The following sections describe 

the characteristics of each classification type. 

 
2.6.1 The French-American-British (FAB) Classification System  

The FAB Cooperative Group has defined standardized criteria to establish the nature of 

acute leukemia and to categorize it into further subtypes. The FAB classification is solely 

based on morphological and cytochemical criteria of both PB and BM smears (Bennett et 

al., 1976, 1980, 1981, 1985,1985a, 1991). 

The development of the FAB classification of acute leukemia by a collaborating group of 

French, American and British hematologists was a major advance in leukemia 

classification, permitting a uniform classification of these diseases over two decades.  

The FAB classification categorizes ALL into three subtypes (L1-L2-L3) and categorizes 

AML into eight subtypes (M0-M1-M2-M3-M4-M5-M6-M7). Table 2.5 and 2.6 summarize 

the morphological features of cells belonging to both types (ALL, AML) respectively 

(Cairo & Perkins, 2012; Erber, 2010; Tkachuk et al., 2007; Schrier, 2007).  
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Table 2.5: Morphological features of ALL subtypes based on FAB classification system 
Acute Lymphoblastic Leukemia (ALL) 

 
Morphology  Classification 

 
Description Nucleus  Chromatin Cytoplasm 

 

L1 Small blasts with 
little cytoplasm, little 
cell-to-cell variation  

Round, 
homogenous  

Slightly 
reticulated with 
perinucleolar 

clumping 

Scant blue 

 

L2 Larger cells with 
greater amount of 
cytoplasm, greater 

cell-to-cell variation; 
irregular nuclei with 

multiple nucleoli  

Irregular, 
inhomogeneous 

Fine Moderate 
pale 

 

L3 Large cells, strongly 
basophilic cytoplasm; 
often with vacuoles; 

nucleoli often 
multiple  

Round to oval, 
homogenous 

Coarse with clear 
parachromatin 

Moderate 
blue 

prominently 
vacuolated 

 
 

Table 2.6: Morphological features of AML subtypes based on FAB classification system  
Acute Myeloid Leukemia (AML) 

 
Morphology Classification 

 
Description Nucleus  Chromatin Cytoplasm 

 

M0 Undifferentiated 
acute myeloblastic 

leukemia 

Round to oval Fine to coarse Scant non-
granulated 

 

M1 Acute myelocytic 
leukemia: cells very 
undifferentiated with 

only occasional 
granules 

Round to oval Fine Scant, 
variably 

granulated 

 

M2 Acute myelocytic 
leukemia: cells more 
differentiated with 
granules, and often 

with Auer rods 

Round to oval Fine Moderate 
azurophilic, 

granules 
with or 

without auer 
rods 

 

M3 Acute promyelocytic 
leukemia: 

hypergranular 
promyelocytes 

Round to 
indented to 

lobed 

Fine Prominent  
azurophilic, 

granules 
and/or 

multiple 
auer rods 
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M4 Acute 
myelomonocytic 
leukemia: both 
monocytes and 

myelocytes 
predominate 

Round to 
indented folded 

Fine Moderate 
blue to gray, 

may be 
granulated 

 

M5 Acute monocytic 
leukemia: monoblasts 

with relatively 
agranular cytoplasm 

Round to 
indented folded 

Variable lacy or 
ropy 

Scant to 
moderate 
gray-blue, 
dustlike 
lavender 
granules 

 

M6 
 

Erythroleukemia: red 
blood cell precursors 

predominate, but 
myeloid blasts may 

also be seen 

Single to bizarre Open 
megaloblastoid 

Abundant 
red to blue 

 

M7 Megakaryocytic 
leukemia: extremely 
variable morphology; 

may be diagnosed 
with monoclonal 

antibodies to platelets 

Round to oval Slightly to 
moderately 
reticulated 

Scant to 
moderate 
gray-blue 

with 
blebbing 

 
 
2.6.2 The World Health Organization (WHO) Classification System  

Cytology and cytochemistry are fundamental to the acute leukemia diagnosis process but 

important and often essential information is also gained from immunophenotyping, 

cytogenetic analysis and molecular genetic (DNA or RNA) analysis. (Bain B.J., 2008). 

Recently, the World Health Organization (WHO), in conjunction with the Society for 

Hematopathology and the European Association of Hematopathology, published a new 

classification system for acute leukemia. The concepts that underlie this classification were 

derived from numerous published clinical and scientific studies and from the experience of 

more than 100 pathologists, clinicians, and scientists from around the world who 

collaborated to develop this consensus classification (Harris et al., 1999).   

As mentioned earlier in section 2.6.1, the FAB classification system evaluates the blast 

cells mainly based on the morphological characteristics. On the other hand, the WHO 

classification system requires the additional evaluation of the blast cells based on molecular 

analysis and flow cytometry (Harris, 1999; Sachdeva et al., 2006;  Falini et al., 2010; 
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Angelescu et al., 2012). Table 2.7 and Table 2.8 summarize the new classification of ALL 

and AML respectively as proposed by WHO. 

Table 2.7: WHO classification system of ALL 
Precursor B-cell ALL/LBL 
         Cytogenetic subgroups 

t(9;22)(q34,q11),BCR/ABL 
t(v;11q23);MLL rearranged 
t(1;19)(q23;p13);PBX1/E2A 
t(12;21)(p13;q22);TEL/AML1 
Hypodiploid 
Hyperdiploid, >50 

Precursor T-cell ALL/LBL 
Mature B-cell leukemia/lymphoma 

 
 

Table 2.8: WHO Classification System of AML 
Acute Myeloid Leukemia (AML) and Related Precursor Neoplasm 
AML with recurrent genetic abnormalities 
AML with t(8:21)(q22;22q); RUNX!-RUNX1T1 
AML with inv(16)(p13.1q22)or t(16;16)(p13.1;q22);CBFB-MYH11 
Acute promyelocytic leukemia with t(15;17)(q22;q12);PML-RARA 
AML with t(9;11)(p22;q23);MLLT3-MLL 
AML with inv(3)(q21q26.2) or t(3;3)(q21;q26.2);RPN1-EVI1 
AML with mutated NPM1 
AML with mutated CEBPA 
AML with myelodysplasia-related changes 
Therapy-related myeloid neoplasms 
Myeloid sarcoma 
Myeloid proliferations related to Down syndrome  
Transient abnormal myelopoiesis 
Myeloid leukemia associated with Down syndrome 
Blastic plasmacytoid denderitic cell neoplasm 
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2.7 Leukemia Treatment Options 

The treatment options of acute leukemia are dependent on several important factors. The 

most significant is the type or subtype of acute leukemia. Additional to this, there are other 

factors that should be taken into consideration to establish a treatment plan including 

cytogentic abnormalities of the blasts as well as clinical features e.g. the patient’s age and 

involvement of the central nervous system (CNS) (Pui, 2003). The mainstay of treatment is 

chemotherapy and in some protocols, children with CNS diseases are given cranial 

irradiation. 

 
2.8 Leukemia Prognosis 

Webster’s new world medical dictionary defines prognosis as the likelihood of cure 

(WebMD, 2008). Prognosis also refers to the likely course and outcome of a disease (Celik 

et al., 2006). 

Physicians normally use the 5-year survival rates to measure disease outcome. Survival 

rates include patients who survive 5 years after diagnosis, whether in remission, i.e. in a 

state during which the symptoms of the disease are abated. 

Common factors in acute leukemia prognosis are as follow: 

1. Age of the patient 

2. Gender 

3. WBCs count at presentation  

4. Cancer spread to other body organs such as brain  

5. Morphological, immunological, and genetic subtypes 

6. Initial response to the treatment  

7. Cytogenetic abnormalities  
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ALL is the most common form of cancer in children, one-fourth of all cancers in children 

belong to this type. It has a high incidence rate among adults, older than 45 years in age. 

Chemotherapy is the established treatment method for this disease.  In the absence of 

chemotherapy and other cancer cure methods such as radiation therapy, a patient with ALL 

could survive for 4 months at the most. However, thanks to modern treatment methods, 

about 80% of the affected children are completely cured (Tecklin, 2008). Adults have been 

seen to have a 40% chance of complete cure (Greer et al., 2013). Acute leukemia prognosis 

will vary, depending on the disease progression, but children in the age group of 3 to 7 

seem to have the highest chance of complete recovery (Pilgrim, 2010). 

In contrast, AML is rare in children and is characterized by poorer outcomes. The 5-years 

event-free survival of childhood AML has been reported to be between 50-60% (Pui, 2012). 

Patients with AML require more intensive chemotherapy compared to those with ALL; 

however the treatment duration is shorter.  

 
2.9  Summary 

This chapter discussed blood and leukemia. General information about the blood 

components and the role of each component was initially presented. Next, the background 

study regarding leukemia and its types were discussed. The symptoms of leukemia and the 

current diagnosis methods in details with the advantages and disadvantages were 

subsequently presented together with the two acute leukemia classification systems (FAB 

and WHO). Towards the end of this chapter, the treatment options of leukemia and the 

prognosis was discussed.   
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CHAPTER 3 

BACKGROUND AND LITERATURE REVIEW 

3.1 Introduction  

The purpose of this chapter is to highlight the key techniques and algorithms used in this 

research. The fundamental concepts of digital image processing and ML techniques used in 

acute leukemia diagnosis applications are also discussed. This is followed by a review of 

similar works in the area, including works that involved image processing and ML based 

methods. 

 
3.2 Fundamental of Image Processing  

In order to adequately grasp the methods discussed in this thesis, the concept of digital 

image processing is certainly needed. Particular emphasis is granted to image segmentation 

techniques. 

 
3.2.1 Representation of Microscopy Blood Digital Images  

Generally, digital image is defined as a discrete two-dimensional function ݂ሺݔ,  ݔ ሻ whereݕ

and ݕ are spatial coordinates. The value of  ݂ at any coordinates ሺݔ,  ሻ is called pictureݕ

element (pixels). The amplitude of each pixel represents the intensity at that particular pixel 

(Gonzalez R et al, 2003).  The resolution of a digital image is determined by the number of 

pixels in the image. In digital image, the spatial coordinate  ݂ሺ0,0ሻ represents the top left 

corner of the image and the spatial coordinate ݂ሺݔ െ 1, ݕ െ 1ሻ represents the bottom right 

corner. Figure 3.1 shows a sample of microscopic PB image on a grid highlighted with the 

top left corner and the bottom right corner. 

 



47 
 

Figure 3.1: Representation of Microscopic PB digital image 

Basically, there are several types of digital images. The most frequently used types are 

Color, Grayscale and Binary (Umbaugh, 1998).  

A Binary image consists of two pixels color either black where the pixel value is 0 or white 

where the pixel value is 1. The pixels having the value of 0 represent the background while 

the pixels having the value of 1 represent the foreground. A group of connected foreground 

pixels forms an object in the binary image (Wu et at., 2010). Figure 3.2 (a) shows the Mona 

Lisa image in binary format.  On the other hand, Grayscale image measures the light 

intensity of brightness of an object shown at coordinates ሺݔ,  ሻ  of the image and isݕ

represented by a number called “gray level”. The gray level range can be between 0-

255.The higher the gray level value the brighter the image will be at coordinate pointሺݔ,  .ሻݕ

The maximum value on the range of gray level represents a completely bright pixel while a 

pixel within the gray level 0 is completely dark (black). The pixels that are neither dark nor 

bright get a gray level value between 0 and the maximum value of brightness (255).  
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Figure 3.2 (b) depicts the Mona Lisa image in grayscale format (Najarian & Splinter., 2012, 

Gonzalez & Woods., 2002).  

A color image has three values per pixels and they measure the intensity and chrominance 

of light. Each pixel of this plane is considered as a 3-D vector ݔ ൌ ሼݔோ, ,ீݔ  ஻ሽ. Figure 3.2ݔ

(c) shows the Mona Lisa image in color format. Color image can be modeled as three-

channel grayscale image, where each band of data corresponds to a different color. The 

most common color spaces are the RGB (Red, Green, Blue), HSV (Hue, Saturation, Value), 

and the Lab (Luminance, chromatic components) (Jayaraman et al., 2011). 

(a) (b) (c) 

Figure 3.2: Digital image types (a) Binary image (b) Grayscale image (c) Color image 
(Mona Liza, 2012) 

 
3.2.2 Color Spaces in Microscopic Blood Images 

Most of the medical imagining technologies developed at the early stages of the 20th 

century produce grayscale images such as  Computed Tomography (CT), Magnetic 

Resonance Imaging (MRI) and X-rays. Consequently, the color features are neglected in 

medical image processing applications. Nowadays, there are many medical instruments that 

produce a medical imaging with color information such as microscopy. Although, color is 

an effective feature that often eases the process of ROI detection and extraction in an 

image (Gonzalez et al., 2008). However, as compared to the grayscale image processing, 

the color image processing could be considered as a new area.  
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For that reason, colored medical image processing present new challenges for researchers 

where most of the techniques developed for binary image are often unsuitable for color 

image.  A color space is an abstract mathematical model describing the way color can be 

represented as tuples of numbers, typically as three components (Pise et al., 2010). The 

careful selection of appropriate color space is significantly important for the performance of 

image segmentation (Tian et al., 2010).  Skarbek et al. (1994) concluded that a highly 

efficient segmentation result can be obtained from color images rather than grayscale 

images. Given that, color images contain rich details, and it can provide a better description 

and differentiation among various image regions as compared to grayscale image (Kumar et 

al., 2006).  PB images are usually captured in RGB color space, however, many works in 

the literature discovered that other color spaces such as HSV, Lab (Madhloom et al., 2012; 

Harun et al., 2010; Mohapatra et al., 2013) could be more useful than RGB in the extraction 

of blast cells. In the following sections, the most usable color spaces in blast cell detection 

process are discussed.   

 
3.2.2.1 RGB Color Space 

RGB is a convenient color model for computer graphics because the human visual system 

works in a way that is similar (though not quite identical) to an RGB color space (Soloman, 

2009). It can be represented by a combination of three colors namely Red, Green, and Blue. 

Most of the cameras and emissive color displays represent pixels as a triple of intensities of 

the primary colors in the RGB color space. Hence, The RGB color space takes the form of 

cube of unit length as shown in Figure 3.3. 
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Figure 3.3: RGB Cube (Bourke, 1995) 

The disadvantage of the RGB representation is that the channels are much correlated, as all 

of them include a representation of light (Jack, 2005; Tsagaris & Anastassopoulos, 2004), 

such as when the intensity of the light source is changed, then the three RGB components 

will simultaneously change. (Haifeng & Lanlan, 2010). 

 
3.2.2.2 HSV Color Space  

The HSV color model represents every color in three components namely Hue (H), 

Saturation   (S), Value (V). It strongly represents colors in a way that is very similar to how 

the human eye senses color. The HSV is a very popular color space because it separates the 

pure color aspects from the brightness. Figure 3.4 depicts the HSV color space hexcone, 

where the Hue band is the angle around the vertical axis corresponding to the spectral 

frequency and it is arranged on a circle encoded from 0 o to 360 o. Saturation expresses how 

pure the color is, the more saturated a color is, the more vibrant and rich it will appear and 

it is represented by the distance from the central axis. While the Value represents the 

distance along the vertical axis, and denotes the color brightness. 
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Figure 3.4: HSV Color Space (Intel Developer Zone, 2012) 

The advantage of HSV over the RGB is that it appears more intuitive about color in terms 

of brightness and spectral name rather than the mixture coefficients of  R, G, and B (Smith, 

1978; Jack, 2001; Rüger. 2010).   

 
3.2.2.3 Lab Color Space 

Currently, the Lab color space is considered as one of the most popular uniform color 

spaces (Forsyth & Ponce, 2003). As shown in Figure 3.5, the Lab color space consists of 

three color components. The ࡸ represents lightness and it can take a value from 0 (black) to 

100 (white). The ࢇ value represents the variation from –  (redness) ࢇto ൅ (greenness) ࢇ

while the ࢈ value represents the variation from –࢈ (blueness) to ൅࢈ (yellowness) (Sahin & 

Sumnu, 2006). 

 

Figure 3.5: Lab color space (COLORROTATE, 2012) 
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The advantage of using the Lab color space is that it yields perceptually uniform spacing of 

colors, as the Lab is linear with visual perception, while the RGB is none linear. Another 

advantage is that the luminance factor L of the Lab color space could be discarded, as the 

luminance should be nearly constant for all pixels in the image. This could reduce the 

dimension of the data from 3 to 2, reducing data size and computation time (Sigurdsson et 

al., 2003). More details about the conversion from RGB to Lab color space can be found in 

(Hagen et al., 2008). 

 
3.2.3 Image Segmentation 

Image segmentation is the process of partitioning an image into disjoint and homogeneous 

meaningful regions with respect to some characteristics such as color, texture, etc. (Sonka 

et al., 2014). Errors in the segmentation process almost certainly lead to inaccuracies in any 

subsequent analysis (Wu et al., 2010). Image segmentation is a mandatory step in the 

development of any computer vision system (Pandey & Singh, 2010). Correspondingly, it 

is the primary step that significantly contributes to the analysis and evaluation of medical 

images in a computer-based diagnostic system (Arslan et al., 2014).  The purpose of 

segmentation is to detect the border of the blast cells, in order to separate them from the 

background components such as plasma and RBCs. It is considered as the most difficult 

stage in the development of a computer-based acute leukemia diagnosis (Mao-jun, et al., 

2008; Rezatofighi & Soltanian-Zadeh; 2011, Patil, et al., 2012). The accuracy of the 

detected blast cells is crucial, as exclusion of any part of the blast cell may lead to loss 

of shape, color, and texture-based information. As shown in Table 2.5 and Table 2.6, the 

shape and the structural properties of the blast cells have great diagnostic importance; this 

is because blast cells from ALL type are different in shape than AML (Cairo & Perkins, 

2012).  
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There are numerous factors that make the blast cells segmentation a challenging process 

such as: Low contrast between the blast cells and the surrounding background, irregularity 

and blurriness of the blast cells border, image artifacts such as excessive stain, microscope 

illumination, touching cells, color variation, etc. 

Various image features such as color, gray level intensity, shape, and texture can be used to 

perform blast cells segmentation. Hence several approaches have been developed for blast 

cells extraction using PB images. Existing blast cells segmentation algorithms can be 

categorized into the following set of techniques: (1) Pixels-based threshold, which involves 

the determination of one or more threshold values that separate the ROI as a foreground 

and the rest regions as background, used in works by (Scotti, 2005; Sadeghian, et al, 2009; 

Nasir, et al., 2009; Aimi Salihah et al., 2010; Harun, et al., 2010; Halim, et al., 2011; 

Madhloom et al., 2012) (2) Edge-Based methods, which apply edge operators to determine 

the edges between the background and foreground regions applied by (Scotii, 2005; 

Sadeghian et al., 2009) (3) Region-Based methods which use region-merging and region-

splitting algorithms to group the pixels into homogeneous regions (Osowski et al., 2004; 

2009; Markiewicz et al., 2005; Siroic et al., 2007) (4) color-clustering methods which 

partition the color space into homogeneous regions using unsupervised clustering 

algorithms, applied by (Sabino et al., 2003; Mohaptra, et al., 2010; 2010b, 2011, 2011b, 

2011c, 2013). (5) Morphological methods which use a predetermined seed and apply 

dilation, erosion or combination of both in order to detect the ROI, used in works by  

(Scotti, 2005; Khashman, & Al-Zgoul; 2009, Madhloom  et al., 2012). (6) Active-contour 

methods such as snakes which use curve evolution techniques to determine the contours of 

the shape, as applied in the works by (Sadeghian  et al., 2009). It can be seen that most of 

the previous works can be listed under several segmentation techniques.  
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This fact indicates that many of the previous studies have combined the results of different 

segmentation techniques. For example, Scotii (2005) developed a blast cell segmentation 

algorithm combining edge detection and mathematical morphology applied on grayscale 

PB images to extract leukocytes and pixel-based threshold to separate the nucleus from the 

cytoplasm.  

In our early investigation, we combined mathematical morphology and pixels-based 

threshold applied on HSV color space to extract lymphoblast the from PB images that 

contain many blast cells (Madhloom et al., 2012). More details about the segmentation 

techniques used in the literature for the purpose of blast cells segmentation are discussed 

intensively in Section 3.4.2 of this chapter.  

 
3.2.3.1 Selected Image Segmentation Techniques  

Blast cells segmentation can be typically performed using various segmentation methods.  

This section discusses the segmentation techniques applied in this research for the purpose 

of blast cells segmentation.  

 
3.2.3.1.1 Otsu Threshold  

Otsu method is one of the most significant techniques for pixels-based threshold invented 

in 1979 by Nobuyuki Otsu (Otsu, 1979). It assumes that the image has two classes ሼܥଵ,  ଶሽܥ

of pixels, namely, foreground and background then select the global optimal threshold by 

maximizing the between-class variance. Let ܫ be an image represented with ܩ gray 

levelsሾ0,1,2,… , ܩ െ 1ሿ.  The number of pixels at gray level ݅ denoted by ݊௜  and the total 

number of pixels is represented by ܰ ൌ ݊ଵ ൅ ݊ଶ ൅ڮ൅ ݊ீ. The probability of gray level ݅ 

is denoted by (Otsu, 1979): 
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௜ܲ ൌ
݊௜
ܰ , ௜ܲ ൒ 0 ,෍ ௜ܲ ൌ 1

ீ

௜ୀଵ

 (3.1)

Figure 3.6 depicts a typical histogram of a bi-level image, where the image has two classes 

ሼܥଵሽ  with gray level ሾ0,1, … , ܶሿ and ሼܥଶሽ with gray levelሾܶ ൅ 1, ܶ ൅ 2,… , ܩ െ 1ሿ.  

 
Figure 3.6: Typical histogram of a bi-level image 

The gray level probability distributions of ሼܥଵሽ and ሼܥଶሽ can be obtain by equation 3.2 and 

3.3 respectively 

߱ଵ ൌ Prሺܥଵሻ ൌ෍ ௜ܲ

்

௜ୀ଴

 (3.2)

߱ଶ ൌ Prሺܥଶሻ ൌ ෍ ௜ܲ

ீିଵ

௜ୀ்ାଵ

 (3.3)

Then the means of the two classes can be calculated by equation 3.4 and 3.5 respectively 

ଵߤ ൌ෍݅ ௜ܲ / ߱ଵ

்

௜ୀ଴

 (3.4)

ଶߤ ൌ ෍ ݅ ௜ܲ / ߱ଶ

ீିଵ

௜ୀ்ାଵ

 (3.5)

The total mean of the gray level is denoted by  
்ߤ ൌ ߱ଵߤଵ ൅ ߱ଶߤଶ (3.6)

The class variances are 

ଵଶߪ ൌ෍ሺ݅ െ ଵሻଶߤ
்

௜ୀ଴
௜ܲ/߱ଵ (3.7)

ଶଶߪ ൌ ෍ ሺ݅ െ ଶሻଶߤ
ீିଵ

௜ୀ்ାଵ
௜ܲ/߱ଶ (3.8)

The within-class variance is  

௪௜௧௛௜௡ଶߪ ൌ ෍߱௞

ெ

௄ୀଵ

௞ଶ (3.9)ߪ
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The between class variance is  
 

஻௘௧௪௘௘௡ଶߪ ൌ ߱ଵሺߤଵ െ ሻଶ்ߤ ൅ ߱ଶሺߤଶ െ ሻଶ  (3.10)்ߤ
 
The total variance of gray level is  
 

௢௧௔௟ଶ்ߪ ൌ ௪௜௧௛௜௡ଶߪ ൅ ஻௘௧௪௘௘௡ଶߪ  (3.11)
 

Otsu method (Otsu, 1979) chooses the optimal threshold ܶ by maximizing the between-

class variance, which is equivalent to minimizing the within-class variance, since the total 

variance (the sum of the within-class variance and the between-class variance) is constant 

for different partitions (Otsu, 1979). 

ܶ ൌ ݃ݎܽ ቄ max
଴ஸ்ஸீିଵ

ሼߪ஻௘௧௪௘௘௡ଶ ሺܶሻሽቅ ൌ ݃ݎܽ ቄ min
଴ஸ்ஸீିଵ

ሼߪ௪௜௧௛௜௡ଶ ሺܶሻሽቅ (3.12)

 
3.2.3.1.2 Seeded Region Growing (SRG) 

In 1994 Adams and Bischof introduced segmentation algorithm which is robust, rapid and 

free of tuning parameters known as Seeded Region Growing (SRG) (Adams & Bischof, 

1994).    

The essential idea behind SRG is that, the observation of the pixels belonging to one 

element of the object can possess similar properties, such as, the gray level value. Therefore 

if the considered pixel has gray level value that is near the common gray value of the 

region, this pixel can be associated into this region.  

SRG is an iterative process initiated in a pixel from the set of seeds   ଵܵ, ܵଶ, … , ܵ௡. Pixels at 

the seed's border are subsequently labeled whether or not they are part of the same region 

as the seeds (Hirschmugl et al., 2007). The seeds are either chosen automatically based on 

some feature presented in the image or interactively according to the user opinion.   

The SRG process develops inductively from the choice of seeds selected, known as, the 

initial state of the sets    ଵܵ, ܵଶ, … , ܵ௡.  
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In SRG, each step of the process performs addition of one pixel to any on the above sets. 

Then considering the state of the set   ௜ܵ after ݉ steps, let  ܶ be the set of all unallocated 

pixels (none labeled), bordering at least one of the regions   ௜ܵ such that (Adams & Bischof, 

1994): 

ܶ ൌ  ൜ݔ ב ራ ௜ܵ | ܰሺݔሻሩራ ௜ܵ ് ߶
௡

௜ୀଵ

௡

௜ୀଵ
ൠ  (3.13) 

 
Where ܰሺݔሻ is the second-order neighborhood of the pixel of interest ݔ as shown in Figure 
3.7 

ሺݔ െ 1, ݕ െ 1) ሺݔ, ݕ െ 1) ሺݔ ൅ 1, ݕ െ 1) 

ሺݔ െ 1, ,ݔሺ (ݕ ݔሺ (ݕ ൅ 1,  (ݕ

ሺݔ െ 1, ݕ ൅ 1) ሺݔ, ݕ ൅ 1) ሺݔ ൅ 1, ݕ ൅ 1) 

Figure 3.7: The second-order neighborhood ܰሺݔ, ,ݔሻ of current testing pixel at ሺݕ  ሻݕ

If for, ݔ א ܶ  we have that ܰሺݔሻ meet just one of the  ௜ܵ, then we can define ߮ሺݔሻ א

ሼ1,2, … , ݊ሽ to be that index such that ܰሺݔ, ሻ ځ ܵఝሺ௫ሻ  ്  ߶  and ߜሺݔሻ is a measure of how 

ሺݔሻ is different from the region it joins. The simplest definition of  ߜሺݔሻ is (Adams & 

Bischof, 1994):   

ሻݔሺߜ ൌ ቚሺ݃ሺݔሻ െ ݉݁ܽ݊ ௬א ௌ೔ሺೣሻሾ݃ሺݕሻሿቚ  (3.14) 

Where ݃ሺݔሻ is the gray level intensity of the image pixel ݔ. If  ܰሺݔሻ meets two or more of 

the  ௜ܵ, ߮ሺݔሻ is taken to be the value of ݅ such that ܰሺݔሻ meets   ௜ܵ and ߜሺݔሻ is also 

minimized. In these circumstances, it is desirable to classify the pixel ݔ as the boundary 

pixel and append it to set ܤ, which is a set of already-found boundary pixels.  
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We then take ݖ א ܶ such that (Adams & Bischof, 1994):  

ሻݖሺߜ ൌ ݉݅݊௫்א ሼߜሺݔሻሽ (3.15) 

And append ݖ to  ௜ܵሺݖሻ. This process completes step ݉ ൅ 1. This entire process is iteratively 

repeated until all pixels are allocated. In SRG, the process starts with each   ௜ܵ  being one of 

the seed sets. Thus, the definition of ߜሺݔሻ in equation (3.13) and (3.14) ensures that the 

final segmentation is as homogenous as possible.  

Practically, the criteria to choose the seed depends on the nature of the problem. For 

instance, if the targeted region needs to be detected using infrared images, the brightest 

pixels are chosen. The pixels homogeneity can be traced based on any characteristic of the 

ROI in the image such as texture, color, average intensity, etc. 

 
3.2.3.1.3 Mathematical Morphology  

Mathematical morphology is a non-linear process, which is considered as the basic 

foundation for many image processing algorithms. It can be used to investigate the 

geometrical structure in image by manipulating the original image with another image 

known as Structuring Element (SE) (Serra, 1982; Shih et al., 1995). 

It has been proven that this technique is very useful for the analysis of biological and 

medical images (Wu et al., 1995).  This processing technique has also proves to be a 

powerful tool for many computer-vision tasks in binary and gray scale images, such as 

image enhancement, noise suppression, edge detection, skeletonization, etc.  (Ortiz et al., 

2002). 

Mathematical Morphology is based on simple mathematical concepts from set theory. 

Morphological operators are originally developed for binary images. However, it can also 

be used for gray level images.   
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It views binary images as assets of its foreground (1-valued) pixels, and set operations such 

as set union and intersection can be applied directly to sets of binary image (Gonzalez et al., 

2004). The two fundamental mathematical morphology operators are Dilation and Erosion. 

Dilation is used to grow or thicken regions in a binary image, while in the gray level image; 

Dilation is used to brighten small dark areas, and to remove small dark "holes". According 

to (Gonzalez et al., 2004), Dilation on an image ܫ by a structure element ܵܧ is denoted by 

ܫ ْ   :and it is represented by the following Equation ܧܵ

ܫ ْ ܧܵ ൌ ቄݖ | ൫ܵܧ෢൯
௭
ת ܫ ്  ቅ׎ (3.16) 

Where ܵܧ෢   is the reflection of  ܵܧ. It means that dilation of  ܫ by ܵܧ is done by reflecting 

 On the other hand, erosion is used to shrink or thins .ݖ by ܫ over ܧܵ and then shifting ܧܵ

region in binary image, while in a gray level image, erosion darkens small bright areas, and 

remove very small bright areas like noise spikes or small spurs. Erosion is represented by 

the following Equation (Gonzalez et al., 2004): 

ܫ ٓ ܧܵ ൌ ሼݖ | ሺܵܧሻ௭ ك ሽܫ (3.17) 

 
The two basic morphological processes can be combined together to produce two more 

interesting operators, namely, Opening and Closing. The morphological opening (equation 

3.18) is simply an erosion of  ܫ by ܵܧ followed by dilation of the result by ܵܧ (Gonzalez et 

al., 2004).  

ܫ ל ܧܵ ൌ ሺ ܫ ٓ ሻْܧܵ ܧܵ (3.18) 

 
Morphological opening is generally used to smooth region boundaries, break thin 

connection, and remove thin protrusions in images. On the other hand, morphological 

closing (equation 3.19) is performed by dilating ܫ by ܵܧ and then eroding the result by ܵܧ 

(Gonzalez et al., 2004). 

ܫ ܧܵ     ൌ ሺ ܫ ْ ሻٓܧܵ ܧܵ (3.19) 
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 Unlike opening, morphological closing tends to join narrow breaks, fill long thin gulfs, and 

fill holes smaller than ܵܧ (Gonzalez & Woods, 2002; Gonzalez et al., 2004). 

 
3.2.3.1.4 Watershed Segmentation  

One of the most challenging problems in microbiological image processing is separating 

touching cells (Wilkinson & Schut, 1998). There are a number of factors that can lead to 

this type of problem during the process of PB smear preparation such as (i) the size of the 

drop of blood, (ii) the angle of the spreader slide and (iii) the speed at which the smear is 

made (Estridge & Reynolds, 2011). 

The method that is usually preferred for separating touching, but mostly convex, features in 

an image is known as the watershed segmentation (Beucher & Lantejoul, 1979; Lantejoul & 

Beucher, 1981; Sun & Luo, 2009). 

The watershed transform can be classified as a region-based segmentation approach. The 

intuitive idea underlying this method comes from geography: it is that of a landscape or 

topographic relief which is flooded by water, watersheds being the dividing lines of the 

domains of attraction of rain falling over the region. An alternative approach is to imagine 

the landscape being immersed in a lake, with holes pierced in local minima. Basins (also 

called `catchment basins') will fill up with water starting at these local minima, and, at 

points where water coming from different basins would meet, dams are built. When the 

water level has reached the highest peak in the landscape, the process is stopped. As a 

result, the landscape is partitioned into regions or basins separated by dams, called 

watershed lines or simply watersheds. A simulation of the watershed transform is shown is 

Figure 3.8. 
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Figure 3.8 Simulation of the watershed transform. (a) Input image. (b) Punched holes at 
minima and initial flooding. (c) A dam is built when waters from different minima are 

about to merge. (d) Final flooding, with three watershed lines and four catchment basins. 
(Wu et at., 2010) 

 
 
Advantages of the watershed transform include the fact that it is a fast, simple and intuitive 

method. More importantly, it is able to produce a complete division of the image in 

separated regions even if the contrast is poor, thus there is no need to carry out any post-

processing work, such as contour joining, thus the watershed segmentation technique has 

been widely used in medical image segmentation (Ng et al., 2008), such as the 

segmentation of blood cell images (Nemane & Chakkarwar,  2012; Sharif et al., 2012) , 

MRI brain images (Ng et al., 2006), Pap smear images (Plissiti et al., 2010; Orozco-

Monteagudo et al, 2013), Colonoscopy images (Hwang et al., 2007) and many others.  

 
3.3 Feature Extraction and Analysis  

A major issue in any pattern classification system is the extraction of proper features that 

effectively differentiate various patterns (Osowski et al., 2009).  In the last few decades, 

various feature extraction schemes were developed. Usually in feature extraction, the visual 

information of an image is analyzed in order to produce features such as shape, texture and 

color as summarized in Figure 3.9.  

 

 

 

(a) (b) (c) (d) 
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Figure 3.9: Image features description  

It is widely agreed that there is no general powerful set of features that is suitable for 

different applications (Esposito & Malerba, 2001).  Determining which features are the 

most effective is, of course, directly dependant on the application and the problem under 

study. Nevertheless, to improve the accuracy of detection, one or more features are often 

combined (Akilandeswari et al., 2012). 

For the problem of acute leukemia diagnosis and classification as discussed in Chapter 2, 

acute leukemia is categorized into two main types (ALL and AML). According to the FAB 

classification, each acute leukemia type is classified based on certain morphological 

characteristics as illustrated in Table 2.5 and Table 2.6.  Finding a quantitative 

measurement that can mimic the visual features used by hematologist to distinguish 

between the two types is not straightforward. It requires the use of various kinds of features 

such as shape, texture and color. However, it is worth mentioning that the usefulness of 

various feature sets cannot be assessed without considering the entire system, hence, it is 

necessary to try various kind of features that seem to be close to those that human experts 

would choose and select the best set of features based on the performance evaluation at the 

system level. Subsequently, in this research, three sets of features were used, namely, 

Shape Texture Color 
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shape, texture and color. The following sections discuss the theoretical details regarding 

each feature group.  

 
3.3.1 Shape-Based Features  

Shape is a prominent visual feature; it is considered as one of the fundamental features for 

object recognition. However, shape description is a very tough task, because it is difficult to 

define relevant shape features, and measure the similarity between look alike shapes. 

Furthermore, shape is often affected by noise, defection and occlusion (Zhang & Lu, 2004).  

Shape representation and description techniques are divided into two major categories 

namely Boundary-based representation and Region-based representation. Figure 3.10 

shows the hierarchy of shape categories.  

 

 

 

 

 

 

 

Figure 3.10: Classification of shape representation and description techniques. 

Boundary-based approach exploits only the contour information of the ROI, and completely 

ignores the interior details such as, perimeter, circularity, eccentricity, etc. On the other 

hand; the Region-based approach takes into account the interior details as well as the 

boundary details of the ROI such as, area size, major and minor axis length (Pavlidis,  

1978).  

Shape 

Boundary Region 

Global Structural Global Structural 

• Perimeter 
• Compactness 

• Chain code • Area  
• Eccentricity  

• Convex Hull 
• Media Axis 

Such as:
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Under each class, the different methods are further divided into global approaches and 

structural approaches. This sub-class is based on whether the shape is represented as a 

whole or represented by segments/sections (primitives) (Zhang & Lu, 2004).  

Although such features are rarely decisive for discrimination purposes, they are useful in 

distinguishing between various types of cells (Rodenacker  & Bengtsson, 2003). The reader 

is referred to (Costa & Cesar, 2000) for further information on shape and size features. The 

blast cells are different in size, shape, the amount of cytoplasm, shape and amount of 

nucleus and the constituent in the cytoplasm (Ismail et al., 2010).  In this research, the focus 

has been given to a set of shape features from both categories mentioned earlier in order to 

find out how much these shape features can contribute to the problem of acute leukemia 

blast cells recognition.  

 
3.3.2 Texture-Based Features 

Texture refers to the arrangement of the basic constituents of a material. In digital image 

the texture is depicted by the interrelationships between spatial arrangements of the image 

pixels. They are seen as changes in intensity patterns, or the gray tones (Osowski et al., 

2004). There are two main types of texture, namely, tactile textures and visual textures. 

Tactile textures are related to the sense of touch such as, the feeling when we touch smooth 

or rough surface. The visual textures describe the visual perception that texture gives to a 

human viewer, and they are related to local spatial variations in terms of color, orientation 

and intensity in an image (Wilson & Moore, 2010). Figure 3.11 illustrates some patterns of 

different texture features.   
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Rock (Visual and Tactile) 

 
Wood (Visual) 

 
Brick (Visual and Tactile) 

 
Water (Visual) 

 
Metal (Visual and Tactile) 

 
Flowers (Visual) 

Figure 3.11: Samples of textures 

Tuceryan & Jain (1993) divided texture feature extraction techniques into four main 

categories, namely: structural, model, transform, and statistical. In this research, two 

statistical based feature extraction methods are used namely, Histogram-based statistics and 

Gray Level Co-occurrence Matrix (GLCM). 

Statistical-based methods represent texture indirectly by the non-deterministic properties 

that govern the distribution and relationship between the gray levels of an image. By 

computing local features at each point in the image and deriving a set of statistics from the 

distribution of the local features, statistical methods can be used to analyze the spatial 

distribution of gray values. Based on the number of pixels defining the local feature, 

statistical methods can be classified into first-order (one pixel), second-order (pair of 

pixels) and higher-order (three or more pixels) statistics. The difference between these 

classes is that, the first-order statistics estimate properties (e.g. average and variance) of 

individual pixel values by waiving the spatial interaction between image pixels, but in the 

second-order and higher-order, statistics estimate properties of two or more pixel values 

occurring at specific locations relative to each other.  
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The most popular second-order statistical features for texture analysis are derived from the 

co-occurrence matrix (Haralick,1979). Methods based on second-order statistics (i.e. 

statistics given by pairs of pixels) have been shown to achieve higher discrimination rates 

than the power spectrum (transform-based) and structural methods (Weszka 1976; 

Castellano  et al., 2004). 

Generally speaking, medical images hold a significant amount of texture information which 

could be useful for clinical diagnosis. Texture information has been successfully used in the 

classification of various pathological tissues such as liver, thyroid, breasts, kidneys, 

prostate, heart, brain, lungs as well as in acute leukemia classification. (Bernasconi et al., 

2001; Bonilha et al., 2003; Chen et al., 2002; Caselato et al., 2003; James et al., 2001; Ji et 

al., 2000; Sinha et al., 1997; Osowski et al, 2009; Mohapatra., et al, 2013). 

Statistical-based methods are the most widely used texture-based analysis in medical 

images (Holli, et al, 2010). Moreover, Statistical-based methods prove to be superior and 

have achieved higher discrimination indexes compared to other texture analysis approaches 

such as structural or transform methods (Castellano et al., 2004). Therefore, in this 

research, two different statistical-based methods are selected for texture feature extraction, 

namely Histogram-based approach and Gray level Co-occurrence Matrix (GLCM). The 

next sections describe the theoretical background related to the selected texture analysis 

methods. 

 
3.3.2.1 Histogram-Based Approach 

The histogram ሼ݄ሽ of an image is calculated based on the frequency occurrence of each 

individual gray-level intensity value in the image. Therefore, the histogram contains the 

first-order statistical information about the image (Srinivasan & Shobha, 2008; Selvarajah  

& Kodituwakku, 2011).   
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Figure 3.12 (a-b) depict a histogram of an image with 16 gray level intensity values.  The 

indices of the histogram element ݅ ൌ ሺ0…15ሻ represent gray level intensity values. Each 

bin of the histogram represents the number of pixels at a particular intensity value. For 

instance, the gray level ݅ ൌ 2 in Figure 3.12 (a) contains 10 pixels as shown in Figure 3.12 

(b). Other bins can be obtained from the histogram as shown in Figure 12 (a-b).  

 
 

Figure 3.12: Histogram of image with 16 gray-level intensity (a) Histogram bins  
(b) Number of pixels in each gray level intensity (Burger & Burge, 2009) 

 
Several texture features can be extracted based on the histogram statistics such as mean, 

standard deviation, average energy, entropy, skewness and kurtosis (Suematsu et al., 2002). 

The mean describes the average level intensity of the image, whereas the standard deviation 

measures the dispersion of the histogram. The skewness and the kurtosis measure the 

dissymmetry and flatness of the gray level distribution (Díaz & Manzanera, 2011).  The 

entropy is a measure of uniformity of the distribution, while the energy value measures how 

the pixels are distributed along the gray level range, histogram with many gray levels will 

have lower energy and vice versa (Marques, 2011).  The texture features extracted from 

image histogram were proved to be very useful in many medical applications, especially in 

cancer diagnoses such as cervical cancer (Downey et al., 2013) breast cancer (Nithya & 

(a) 

(b)
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Santhi, 2011), lung cancer (Shah et al., 2005), and acute leukemia (Nasir et al., 2013). The 

texture features based on the image histogram can be computed as shown in Table 3.1.   

Table 3.1: Texture features extracted from gray level histogram 
No. Histogram Feature Equation Equation 

No. 
1. 

Mean ߤ ൌ ෍ ݅ ݄ሺ݅ሻ
ேିଵ

௜ୀ଴

 
(3.20) 

2. 
Standard deviation ߪ ൌ ෍ሺ݅ ሺ݄ሻሻଶߤ ݄ሺ݅ሻ

ேିଵ

௜ୀ଴

 
(3.21) 

3. 
Energy ݁݊݃ ൌ ෍݄ଶ ሺ݅ሻ

ேିଵ

௜ୀ଴

 
(3.22) 

4.  
Entropy 

 
 

ݐ݊݁ ൌ െ෍ ଶ݃݋݈ ሺ݄ሺ݅ሻሻ
ேିଵ

௜ୀ଴

݄ሺ݅ሻ 

(3.23) 

5. Skewness 
 
 

ଷߤ ൌ
∑ ሺ݅ െ ሻଶߤ ݄ሺ݅ሻேିଵ
௜ୀ଴

ଷߪ  
(3.24) 

6. Kurtosis 
 
 

ସߤ ൌ
∑ ሺ݅ െ ሻସߤ ݄ሺ݅ሻேିଵ
௜ୀ଴

ସߪ െ 3 
(3.25) 

 

3.3.2.2 Gray Level Co-occurrence Matrix (GLCM) 

Gray Level Co-occurrence Matrix (GLCM) (Haralick et al., 1973) is one of the most 

powerful and popular statistical texture analysis methods for extracting texture information 

from an image (Nikoo et al., 2011; Kumar, 2008). The GLCM is computed based on the 

estimation of second-order joint conditional probability density functions ܲሺ݅, ݆: ݀,  ሻ. Asߠ

illustrated in Figure 3.13, each ܲሺ݅, ݆: ݀,  ሻ is the probability that two neighboring pixelsߠ

with grey levels ݅ and ݆ occur for a given distance ݀ and direction ߠ. This yields a matrix of 

dimensions equal to the gray levels in the image, for each distance and orientation ሺ݀,  .ሻߠ

Hence, the parameters required for computing GLCM are, the number of gray levels ௚ܰ, 

the distance between Pixels ሺ݀ሻ and the angle ሺߠሻ. 

The number of gray levels is an important factor in computing the GLCM to represent a set 

of textures.  
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The more levels are included in the GLCM, the more is the computational cost of the 

texture statistics. The quantization merges similar gray levels within the image and thus 

reduces the noise-induced effects to some degree (Soh & Tsatsoulis, 1999). This is 

important to remark because if the texture patterns come from noise or artifacts, then the 

texture data could not be represented adequately by the GLCM. The distance ሺ݀ሻ is used to 

specify the distance between pair of pixels. Normally the pair of pixels and neighbors; 

however, the matrix could also be computed for non-consecutive pixels. Similar to the 

distance parameter, the direction of the analysis is also another important parameter. The 

most common directions are  0ל90 ,ל45, ל and 135ל.  

 

Figure 3.13: Spatial relationships of pixels defined by offsets, where ݀ is the distance from 
the pixel of interest (Image Processing Toolbox (R2014b)) 

 
Figure 3.13 demonstrates the spatial relationship of pixels with respect to the distance ሺ݀ሻ 

and the angle ሺߠሻ. Figure 3.14 illustrates the way how the GLCM is computed, where the 

matrix on the left side of the figure is the input image and matrix ܥ on the right side is the 

GLCM.  
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Figure 3.14: Illustration of the GLCM computation process (Image Processing Toolbox 

(R2014b)) 

 
As an example, consider the computation of the first two value of Matrix ܥ in Figure 3.14. 

The element (1,1) contain the value 1 because there is only one occurrence in the input 

image where two horizontally adjacent pixels have the value 1 and 1, respectively. In a 

similar way, the element (1,2) in Matrix ܥ contains the value 2 as there are only two 

occurrences where two horizontally adjacent pixels in the input image have the value 1 and 

2, respectively. Through this process, the input image will be completely scanned for other 

occurrences of pixels ሺ݅, ݆ሻ and the sum are placed in the corresponding element in the co-

occurrence matrix. (Haralick et al., 1973) illustrated the applications of textural features 

based on GLCM on three different kinds of image data: photomicrographs of different 

kinds of sandstones (Haralick & Shanmugam, 1973) panchromatic aerial photographs of 

land-use categories, and earth resources technology satellite (ERTS) multispectral imagery 

containing land-used categories. Fourteen texture features were extracted in Haralick study 

namely: 1) Angular Second Moment, 2) Contrast, 3) Correlation, 4) Sum of Square 

Variance, 5) Inverse Difference Moment, 6) Sum Average, 7) Sum Variance, 8) Sum 

Entropy, 9) Entropy, 10) Difference Variance, 11) Difference Entropy, 12) Information 

Measure of Correlation I, 13) Information Measure of Correlation II and 14) Maximum 

Correlation Coefficient.  
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In more recent studies such as the work by (Soh & Tsatsoulis, 1999) who tried to classify 

seven different sea ice textural contexts based on synthetic aperture radar (SAR) imagery, 

concluded that, not all of the Haralick features could give the best classification result 

where only four features were used. However, (Soh & Tsatsoulis, 1999) proposed six new 

texture features based on GLCM which were found to be more useful for classification, 

namely,  1) Autocorrelation, 2) Cluster Prominence, 3) Cluster Shade, 4) Dissimilarity, 5) 

Homogeneity, and 6) Maximum Probability. Later (Clasui, 2002), who also addressed the 

problem of sea ice textual classification, suggested some improvement on one of the 

Haralick features. This is the Inverse Difference Moments where (Clasui, 2002) derived 

two new features from the Inverse Difference Moments, namely, 1) Inverse Difference 

Normalized and 2) Inverse Difference Moment Normalized.  

The Matlab image Processing Toolbox provides a function, namely graycoprops which can 

be used to calculate four different GLCM feature, namely, 1) contrast, 2) correlation, 3) 

Homogeneity and 4) Energy. It is noticed that the computational procedure of the Contrast 

and Energy in the Matlab Image Processing Toolbox is similar to the ones found in 

(Haralick, 1973). However, the other two features (Correlation and Homogeneity) are 

calculated differently. The computation of all the GLCM texture features proposed by 

(Haralick, 1973; Soh & Tsatsoulis, 1999; Clasui, 2002 and Matlab Documentation, 2014) is 

shown in Table 3.2. 
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Table 3.2: GLCM Texture Features 
No. Ref.  GLCM Feature Equation Equation 

No. 
1. 

(H
ar

al
ic

k 
et

 a
l,1

97
3)

 

Angular Second Moment 

 
෍ ෍ ሼ݌ሺ݅, ݆ሻሽଶ

௝௜
 

 

(3.26) 

2. 

 
 

Contrast 

 
෍ ෍ |݅ െ ݆|ଶ ݌ሺ݅, ݆ሻ

௝௜
 

(3.27) 

3. 

Correlation 

 

෍ ෍
ሺ݅, ݆ሻ݌ሺ݅, ݆ሻ െ ௬ߤ௫ߤ

௬௝௜ߪ௫ߪ
 

Where ߤ௫, ߤ௬, ߪ௫, and  ߪ௬ are the means and 
standard deviation of ݌௫ and ݌௬, the partial 
probability density function  

(3.28) 

4. 
Sum of Square Variance 

 

 
෍ ෍ ሺ݅ െ ሻଶߤ ,ሺ݅݌ ݆ሻ

௝௜
 

 

(3.29) 

5.  
Inverse Difference 

Moment 

 

෍ ෍
,ሺ݅݌ ݆ሻ

1 ൅ ሺ݅ െ ݆ሻଶ௝௜
 

 

(3.30) 

6.   

Sum Average 
 

 

෍ ௫ା௬ሺ݅ሻ݌݅
ଶே೒

௜ୀଶ
 

Where ݔ and ݕ are the coordinates (row and 
column) of any entry in the co-occurrence 
matrix and ݌௫ା௬ሺ݅ሻ is the probability of co-
occurrence matrix coordinates summing to 
ݔ ൅ ݕ

(3.31) 

7.    
Sum Entropy 

(S_ent) 

 

െ෍ ௫ା௬ሺ݅ሻ݌ ݃݋݈ ሼ݌௫ା௬ሺ݅ሻሽ
ଶே೒

௜ୀଶ
 

 

(3.32) 

8.  
Sum Variance 

 

 

෍ ሺ݅ െ ሻଶݐ݊݁_ܵ ௫ା௬ሺ݅ሻ݌
ଶே೒

௜ୀଶ
 

 

(3.33) 

9.   
 

Entropy 
 
 
 
 

 
෍ ෍ ,ሺ݅݌ ݆ሻ log  ሺ݌ሺ݅, ݆ሻሻ

௝௜
 

 

(3.34) 

10. 
Difference Variance 

 

 

෍ ݅ଶ
ே೒ିଵ

௜ୀ଴
 ௫ା௬ሺ݅ሻ݌

 

(3.35) 
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11.  
Difference Entropy 

 

 

െ෍ ௫ି௬ሺ݅ሻ݌ log൛݌௫ି௬ሺ݅ሻൟ
ே೒ିଵ

௜ୀ଴
 

 

(3.36) 

12. 

 
Information Measure of 

Correlation I 
 

 
ܻܺܪ െ 1ܻܺܪ
maxሼܻܪ,ܺܪሽ

 

Where ܺܪ and  ܻܪ  are the entropies of ݌௫ and 
 :௬ such that݌

ܻܺܪ ൌ െ෍ ෍ ,ሺ݅݌ ݆ሻ logሺ݌ሺ݅, ݆ሻሻ
௝௜

 

1ܻܺܪ ൌ െ෍ ෍ ,ሺ݅݌ ݆ሻ log൛݌௫ሺ݅ሻ ݌௬ሺ݆ሻൟ
௝௜

 

2ܻܺܪ ൌ െ෍ ෍ ௬ሺ݆ሻൟ݌ ௫ሺ݅ሻ݌௬ሺ݆ሻlog൛݌௫ሺ݅ሻ݌
௝௜

 

 
 

(3.37) 

13.  Information Measure of 
Correlation II 

 
ሺ1 െ ݌ݔ݁ ሾെ2ሺ2ܻܺܪ െ  ሿሻଵ/ଶܻܺܪ

(3.38) 

14.  

 
Maximum Correlation 

Coefficient 

 
ඥܵ݁ܿ݀݊݋ ݐݏ݁݃ݎܽܮ  ܳ ݂݋ ݁ݑ݈ܽݒ݊݁݃݅݁

Where  

ܳሺ݅, ݆ሻ ൌ෍
,ሺ݅݌ ݇ሻ݌ሺ݆, ݇ሻ
௬ሺ݇ሻ௞݌௫ሺ݅ሻ݌

 

 

(3.39) 

15. 

(S
oh

 &
 T

sa
ts

ou
lis

, 1
99

9)
 

Autocorrelation 
 

 
෍ ෍ ሺ݆݅ሻ݌ሺ݅, ݆ሻ

௝௜
 

Where ݌ሺ݅, ݆ሻ represents the number of 
occurrences of gray levels (݅ and ݆) 

(3.40) 

16. 

Cluster Prominence 
 

 
෍ ෍ ሺ݅ ൅ ݆ െ ௫ߤ െ ,ሺ݅݌ ௬ሻସߤ ݆ሻ

௝௜
 

Where ݌ሺ݅, ݆ሻ is the ሺ݅, ݆ሻ௧௛ entry in a normalized 
GLCM. The mean for rows and columns of the 
matrix are:  

௫ߤ ൌ෍ ෍ ݅  · ,ሺ݅݌ ݆ሻ
௝௜

 

௬ߤ ൌ෍ ෍ ݆ · ,ሺ݅݌ ݆ሻ
௝௜

 

(3.41) 

17. 
Cluster Shade 

 

 
෍ ෍ ሺ݅ ൅ ݆ െ ௫ߤ െ ,ሺ݅݌ ௬ሻଷߤ ݆ሻ

௝௜
 

 

(3.42) 

18. Dissimilarity 
 
 

෍ ෍ |݅ െ ݆| · ,ሺ݅݌ ݆ሻ
௝௜

 
(3.43) 

19. 
Homogeneity 

 

 

෍ ෍
1

1൅ ሺ݅ െ ݆ሻଶ௝௜
,ሺ݅݌ ݆ሻ 

 

(3.44) 

20. Maximum Probability 
 
 

ܺܣܯ ,ሺ݅݌ ݆ሻ 
 

(3.45) 
݅, ݆



74 
 

21. 

(C
la

us
i, 

20
02

) 

Inverse Difference 
Normalized 

 
෍ ෍

,ሺ݅݌ ݆ሻ
1 ൅ |݅ െ ݆|ଶ/ ௚ܰ ௝௜

 
(3.46) 

22. Inverse Difference 
Moment Normalized 

 
෍ ෍

,ሺ݅݌ ݆ሻ
1 ൅ ሺ݅ െ ݆ሻଶ/ ௚ܰ ௝௜

 
(3.47) 

23.  
 

M
at

la
b 

 
 

Homogeneity 
 
 
 

 

෍ ෍
1

1൅ |݅ െ ݆|௝௜
,ሺ݅݌  ݆ሻ 

 

(3.48) 

24.  

Correlation 

 

෍ ෍
൫݅ െ ௫ሻߤ ሺ݆ െ ,ሺ݅݌ ௬൯ߤ ݆ሻ

௬௝௜ߪ௫ߪ
 

 

(3.49) 

 

Countless number of works in the literature used the GLCM for the purpose of texture 

feature extraction. Computer-based cancer diagnosis is one of the active areas that exploit 

GLCM features. An example of this is the work carried out by (Yang  et al., 2012) where 

GLCM was used to extract sonographic texture features from ultrasound images for parotid 

gland injury detection which is one of the most common side effects of head-and-neck 

cancer radiotherapy. The author observed that GLCM features can significantly 

differentiate between normal parotid gland and postradiotherapy parotid glands. GLCM 

was also successfully used for colon cancer detection by classifying cancer and non-cancer 

Colonic histopathology images (Jiao et al., 2013).  The work by (Nithya & Santhi, 2011) 

highlighted the effectiveness of the GLCM features in distinguishing between normal 

mammogram images and malignant ones for breast cancer detection. Hematological 

malignancy detection is another domain where GLCM was successfully implemented, such 

as, the work by (Madhloom et al., 2012b) where GLCM features were used along with 

shape features to differentiate between ALL and normal lymphocytes,  
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3.3.3 Color-Based Features  

Color features describe the color distribution of the images, which are the most 

discriminative features of blood and bone marrow cells (Díaz, & Manzanera, 2011). 

Since any pixel in a colored image can be described by three components in a certain color 

space such as the Red, the Green, and the Blue channels of the RGB color space. Hence, a 

histogram of each color channel can be defined, such that, three different histograms can be 

produced, each of which belongs to a different color channel. Hence, the same features 

extracted from gray level histogram (Please Refer to Section 3.3.2.1) can be used to extract 

color features (Reta et al, 2010; Nandagopalan et al., 2010). 

 
3.4 Feature Selection  

A general practice in pattern classification is to extract a feature set as large as possible in 

order to cover all aspects of the phenomenon under analysis. This practice is widely 

acceptable. However, large number of feature can lead to problems (Kuncheva, 2004). This 

is where feature selection comes into the picture. Feature selection (also known as variable 

selection, attribute selection or subset selection) is the process of choosing a powerful 

subset of features that can efficiently classify the target classes (Li et al., 2007; Guyon & 

Elissee, 2003; Liu & Yu, 2005).  

In most of the cases in pattern recognition, many of the features can be irrelevant or 

redundant; however, if no feature selection is performed on the dataset, these features 

would be included in the dataset yielding a low classifier performance. Besides that, a high 

dimensionality of features makes the classification task a difficult problem, because of the 

effect known as, the curse of dimensionality (Bellman et al., 1961). There are several 

advantages of feature selection: (1) dimensionality reduction in order to reduce the 

computational cost; (2) reduction of noise in order to improve the classification accuracy; 
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(3) more interpretable features or characteristics that can help identify and monitor the 

phenomenon under study (Ding & Peng, 2005).  

Feature selection techniques are grouped into three different categories, namely, filter 

methods, wrapper methods and embedded methods. This categorization is formed based 

on how the feature selection search is combined with the construction of the classification 

engine (Jain et al, 2000; Guyon & Elissee, 2003; Saeys et al., 2007).  

Filter methods do not take into account the properties of the classifier, as it performs 

statistical tests to rank the features. Feature set is arranged based on the score, and then 

low-scoring features are removed (Saeys et al., 2007, Guyon & Elissee, 2003).  

Filter methods ignore feature dependencies; this may lead to worse classification 

performance when compared to other types of feature selection techniques such as wrapper 

or embedded methods (Saeys et al., 2007). 

The second feature selection approach is wrapper, in this method; the feature selection 

process is wrapped around the learning algorithm. It searches the usefulness of different 

feature sets by judging the estimated accuracy of the learning algorithm. Various search 

methods can be used in this process, such as exhaustive search which is generally searched 

over all feature sets. However, this method is intractable due to the exponentially large 

number of possible sets. Alternatively, some other search methods employ a variety of 

heuristics such as forward search and backward search. 

Advantages of wrapper approaches include the interaction between feature subset search 

and model selection, and the ability to take into account feature dependencies. On the other 

hand, these techniques are classifier dependent and more computationally intensive than 

filter methods (Jain et al, 2000; Guyon & Elissee, 2003; Saeys et al., 2007).   
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The third class of feature selection techniques is embedded methods. Embedded methods 

are carried out by combining the learning part and the feature selection part. It directly uses 

the parameters of a classifier rather than using the classifier as a black box to estimate the 

classification accuracy. Just like wrapper methods, embedded methods are also classifier 

dependent (Guyon & Elissee, 2003; Saeys et al., 2007). 

 
3.5 Pattern Classification  

Pattern classification is the process of classifying input patterns (e.g. blast cells) to one of a 

predefined set of classes (e.g. ALL, AML) based on the features which have been extracted 

in the feature extraction stage (e.g. Shape, Texture, Color) (Patel & Marwala, 2006).   

There are several different methods to create a pattern classifier; the two most popular 

classifiers are, namely, Artificial Neural Network and Support Vector Machine (Cristianini 

& Shawe-Taylor, 2000; Yao et al., 2001) which are described in the next subsections.  

 
3.5.1 Artificial Neural Network   

Artificial Neural Network (ANN) is an information-processing system that attempts to 

imitate biological neural networks (Sivanandam & Deepa, 2006). The neural network 

was invented in order to overcome the technical limitation of the computer's ability to 

perform certain tasks. These tasks, such as, reading a handwritten document or recognizing 

a face, may seem simple for human beings, but are difficult for even the most advanced 

computers (Abdul-Kareem et al., 2000) 

The applications of ANN in biomedicine have gained a tremendous interest from many 

researchers because of its ability to perform non-liner data processing with relatively simple 

algorithm (Cohen & Hudson, 1999).  
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ANN is composed of large number of highly interconnected processing elements namely 

neurons, working together to solve a specific problem (Deepa, 2006). Figure 3.15 

diagrammatically depicts a common ANN hierarchal architecture composed of several 

layers. The layers are connected and the neurons are organized along these layers. The 

network is linked to the outside environment through the neurons of the input and output 

layers. 

 
Figure 3.15:  Neural Network (Verma and Blumenstein, 2008) 

 

An artificial neuron is the basic component and fundamental unit that performs a simple 

mathematical operation on its inputs and imitates the functions of a biological neuron and 

its unique process of learning (Hayati & Shirvany, 2007). An artificial neuron receives 

multiple inputs and calculates its output which corresponds to the impulse frequency of a 

real neuron.  

ANN performs its processing by accepting inputs, ݔ, which are then multiplied by a set of 

weights, ݓ. The neurons then, nonlinearly transform the sum of the weighted inputs, by 

means of an activation function into an output value ݕ, as illustrated in Equation 3.50.  

Figure 3.16 shows the basic architecture of an artificial neuron.  
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Figure 3.16: Basic Architecture of Artificial Neuron (Negnevitsky 2005) 
 

ݕ ൌ෍ ௜ݓ ௜ݔ ൅ ܾ
ௗ

௜ୀଵ
  (3.50) 

 
The output of a neuron ݕ, thus, depends on the neuron’s input and on its activation 

function. Sometimes a bias ܾ is also added to the network. The bias is then regarded as a 

weight, with a constant input of 1 (Fausett, 1994; Negnevitsky, 2005). There are many 

kinds of neuron activation functions, such as the logistic function, the hyperbolic-tangent 

function the sigmoid function, etc.  of which the sigmoid function is the most widely used 

(Zhen-Zhen & Su-Yu, 2012). 

 
3.5.1.1 Multilayer Perceptron Feed-Forward Neural Network 

Various ANN architectures are used for classification or prediction purpose. However one 

of the most common is the multilayer perceptron feed-forward neural network (MLP-NN). 

In a MLP-NN, the connections between neurons in each layer are unidirectional where the 

information being processed pass through the input layer, to the hidden layer(s), and then to 

the output layer. An example of a MLP-NN with two hidden layers is shown in Figure 3.17. 
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Figure 3.17: MLP-NN with Two Hidden Layers (Negnevitsky 2005) 

There are several works implemented the MLP-NN for the purpose of blast cells 

classification, such as the works by (Scotti, 2005, Mohapatra, et al., 2013).   

The design of the typical MLP-NN consists of, an input, at least one hidden layer, and an 

output. Theoretically, there is no specific limit on the number of hidden layers. 

However, in most cases, one or two hidden layers are adequate (Bishop, 1995). 

MLP-NN commonly uses the Back-Propagation (BP) (Jiang et al., 2010) supervised 

learning rule to dynamically alter the weights and bias values for each neuron in the 

network. Back-propagation learning method is implemented through the delta rule, which is 

a gradient descent learning regulation for updating the weights of the artificial neurons in a 

single-layer perceptron. For a neuron j with activation function g(x) the delta rule 

for weight ݓ௝௜ is given by Equation 3.51 (Sivanandam & Deepa, 2006). 

௝௜ݓ∆ ൌ ן ൫ݐ௝ െ ௝൯ݕ ݃൫ ௝݄൯ ௜ݔ   (3.51) 

Where, ߙ is a small constant, called, the learning rate, ݃ሺݔሻ is neurons starting or activation 

function, ݐ௜ is the target output, ݄௜ is the sum of the product of the weight ݓ௝௜ and ݔ௜  , ݕ௝  is 

the actual output, ݔ௜ is the ݅௧௛ inputs. It holds that  ௝݄ ൌ  ௜ݔ∑ ௝ݕ ௝௜  andݓ ൌ ݃ሺ݄௜ሻ.  

O
ut

pu
t S

ig
na

l 

In
pu

t S
ig

na
l 

Input 
Layer 

Output 
Layer 

First 
Hidden 
Layer 

Second 
Hidden 
Layer 

http://en.wikipedia.org/wiki/Gradient_descent�
http://en.wikipedia.org/wiki/Perceptron�


81 
 

The training of a MLP-NN with back-propagation is an iterative process carried out in two 

phases. In the first phase, the input is propagated forward to the output unit where the error 

of the network is measured. The error ݁ is usually defined as the square difference between 

the output and the target as illustrated in Equation 3.52 (Henseler, 1995, (Sivanandam & 

Deepa, 2006). 

݁ ൌ෍ሺݐ௝ െ ,௝ሻଶݕ for each of the output pattern
௝

  (3.52) 

 

In the second phase, the error is propagated backward through the network, and used for 

adapting the connection.  On the other hand, the testing process is carried out by giving new 

unseen input features to a trained network and eventually obtaining the target output.  

The MLP-NN architecture is particularly suitable for applications in medical imaging 

where the inputs and outputs are numerical and pairs of input/output vectors provide a clear 

basis for training in a supervised manner (Jiang et al., 2010). It is claimed to be the most 

common, most competent, and the most efficient model (Fausett, 1994). 

There are several MLP-NN parameters that need to be optimized, in order to obtain the 

most suitable network structure, which can give the best testing performance of the 

phenomenon under study, such as, the number of hidden layers, the number of neurons in 

each hidden layer, the number of training cycles (epochs) and the learning rate. These 

parameters are discussed in more details in Chapter 4 Section 4.5. The final MLP-NN 

architecture used in this research to classify blasts cells is presented in Chapter 7 Section 

7.5.  

 
 
 
 
 



82 
 

3.5.2 Support Vector Machine 

The Support Vector Machine (SVM) introduced by Vladimir Vapnik and colleagues 

(Vapnik, 1995) is a powerful solution to the classification problems (Osowski et al., 2009). 

The main advantage of the SVM network used as a classifier is its very good generalization 

ability and extremely powerful learning procedure, leading to the global minimum of the 

defined error function (Schölkopf  & Smola, 2002; Smola, & Schölkopf,  2004;  Vapnik, 

1998).  

SVM has been in a variety of applications, including e-mail spam classification (Drucker et 

al, 1999), gene data expression (Brown et al., 2000), handwriting recognition (Kaensar, 

2013), and blood cell recognition (Osowski et al., 2009). 

The SVM data classification is done by constructing an N-Dimensional hyper plane that 

classifies the data points into distinct categories. The selection of the optimal hyper plane is 

performed based on largest separation, or margin between the two classes, i.e. the hyper 

plan which maximizes its distance from the nearest data point should be chosen. This type 

of hyper plane is known as the Maximum-Margin Hyper plane (MMH) (Vapnik 1998; 

Cristianini & Shawe-Taylor, 2000). Figure 3.18 illustrates this theory in classification of 

data in 2-D space.  

 

Figure 3.18: Optimal Separating Hyperplane 
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The red colored circles symbolize data points belonging to class 0, and the blue colored 

triangles symbolize samples belonging to class 1. In 2-D space, the separating margins are 

straight lines. In Figure 3.18, there is more than one line to separate the two classes of data, 

however the bold green line (hyper plane) is considered as the optimum. The optimal hyper 

plane is the one which leads to the maximum distance between the two set of samples. This 

hyper plane is considered as the MMH. The formula of a hyper plane is given by Equation 

3.53 (Vapnik 1998). 

ሺݔ்ݓሻ ൅ ܾ ൌ 0  (3.53) 

Where  "ݔ"  is a point in n-dimensional space and  "ݓ"  and  "ܾ"  are the coefficients of a 

hyper plane. In a binary classification problem, the decision function is denoted by 

Equation 3.54 (Vapnik 1998). 

݂݅ ሺݔ்ݓ௜ሻ ൅ ܾ ൐ 0 ݄݊݁ݐ ௜ݕ ൌ 1 

݂݅ ሺݔ்ݓ௜ሻ ൅ ܾ ൏ 0 ݄݊݁ݐ ௜ݕ ൌ െ1 

(3.54) 

 

Where ݅ ൌ 1,2, … ݈ "݈" indicates the number of classes. If ݈ =2, then, it is a binary 

classification problem where ݕ௜ represents the class label and ݔ௜ is the data vector. 

Therefore, a SVM classifier design is equivalent to finding the MMH or finding the values 

of ݓ and  ܾ  . It has been shown by (Burges, 1998; Vapnik 1998; Cristianini & Shawe-

Taylor, 2000), that the coefficients ݓ and  ܾ  can be obtained by minimizing the following 

optimization problem, which is referred to as a first SVM formulation. 

min
w, b

1
2
 ݓ்ݓ

subject to   ݕ௜ ሺݔ்ݓ௜ሻ ൅ ܾ ൒ 1 ݅ ൌ 1,… ݈. 

(3.55) 

 

 
This type of mathematical problem is called an optimization problem, and it is 

effectively solved by using the method of Lagrange’s multipliers (Vapnik, 2000) which 

provide a practical approach for finding the maxima and minima of function with subject to 
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constraints. A Constraint is a condition that the solution to an optimization problem must 

satisfy. The Lagrange multiplier method defines a function, named the Lagrange function, 

by taking the partial derivative of this function and equalizing it to zero, producing a 

solution to the optimization problem. The value of  ݓ can be obtained by following this 

procedure. Once  ݓ is obtained and substituting that value in the equation of a hyper plane 

(Equation 3.53) gives the value for ܾ 

In most of the classification cases, the data may not be separated linearly.  In that case, 

finding the values of  ݓ and ܾ is not straight forward (Hsu et al., 2003). For obtaining these 

values, we artificially add dimensions to the vectors so that they are linearly separable. This 

is done by mapping each point in N-dimension to higher dimensional space. Hence, a new 

optimization problem needs to be solved namely a standard SVM problem (Burges, 1998, 

Bottou & Lin, 2007). 

min
w, b, ξ

1
2 ݓ்ݓ ൅ ܥ ෍ξ௜

௟

௜ୀଵ

 

݋ݐ ݐ݆ܾܿ݁ݑݏ ்ݓ௜ሺݕ ߶ሺݔ௜ሻ ൅ ܾ ሻ ൒ 1 െ ξ௜  

   ξ௜ ൒ 0, ݅ ൌ 1,… , ݈.  

(3.56) 

 

 
There are several differences in the second optimization problem compared to the first. 

Firstly ݔ௜ in the constraint term is replaced by ߶ሺݔ௜ሻ which is the mapped values of ݔ in the 

higher dimension. Secondly, an error term (ξ) and penalty parameter ܥ is introduced which 

corresponds to training errors. These errors are obtained when data is mapped to higher 

dimension, we want the error to be zero which happens only in the infinite dimension and 

since this is not possible, we tend to settle down by setting a large value for the parameter ܥ 

and the summation of error term is set to a value which tends to zero such that the 

inequality in the constraint term is similar to the first SVM problem. While mapping the 

data into an infinite space, the dimension of ݓ tends to infinity. 
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 This makes the optimization problem very complicated and difficult to solve. In order to 

solve this problem, the coefficient ݓ is represented as a linear combination of training 

vectors which is represented in Equation 3.57 (Bottou & Lin, 2007). 

ݓ ൌ ෍ߙ௜ ௜ݕ ߶ሺݔ௜ሻ
௟

௜ୀଵ

 
(3.57) 

 
This problem is referred to as the Dual optimization problem and ߙ is the dual parameter 

which has to be found (Bottou & Lin, 2007). 

min
α

1
2
ߙ்ܳߙ െ  ߙ்݁

0  ݋ݐ ݐ݆ܾܿ݁ݑݏ ൑  ௜ߙ ൑ ,ܥ ݅ ൌ 1,… , ݈ 

ߙ்ݕ ൌ 0, 

௜௝ܳ ݁ݎ݄݁ݓ ൌ ௜ሻ்ݔ௝߶ሺݕ௜ݕ ߶൫ݔ௝൯ ܽ݊݀ ݁ ൌ ሾ1,…1ሿ் 

(3.58) 

 

 
A finite number of variables will be obtained from solving the Dual problem rather than 

solving the primal problem.  

This is considered an advantage of the Dual problem. The primary aim in the Dual problem 

is to determine the value of alpha (α). Since it is derived from the primal problem, a 

solution to either one determines a solution to both. But the ܳ௜௝ term in the Dual problem 

has an inner product which is very difficult to obtain in higher dimensional space. So in 

order to make the computation easy Kernel Functions are introduced. 

Kernel functions operate with the values in the regional space and obtain the results in 

much fewer operations than the direct inner product. This is called the kernel trick. 

Therefore, wherever an inner product is used in the optimization problem, it is replaced by 

a kernel function. Some of the well known SVM Kernel functions are Polynomial, Radial 

Basis Function, and Sigmoidal (Hsu et al., 2003). 

 
 
 



86 
 

3.6 Review of Computer-Based Acute Leukemia Diagnosis and Classification  

Microscopic morphological examination of the PB smear is often the first step in the 

sequence of the leukemia diagnostic process (Mohaptra et al., 2013), despite the existence 

of other advanced diagnostic procedures such as flow cytometry, immunophenotyping, and 

cytogenetic analysis 

However, this diagnostic procedure is still challenging and its accuracy is limited where the 

accuracy of the manual procedure is estimated to be about 60%-70% (Nasir et al., 2013).  

Moreover, this diagnostic procedure is inherently subjective and suffers from inter-observer 

variability. This issue highlights the demand for receiving an in vivo second opinion which 

(i) increases the diagnostic accuracy, thus saving more lives, and (ii) decreases the number 

of false diagnosis, hence reducing the medical and emotional cost imposed on individuals 

by unnecessary laboratory tests such as bone marrow biopsy.   

Image processing and ML techniques have been applied by many researchers to solve this 

problem. A computer-based acute leukemia diagnosis provides a quantitative and objective 

evaluation of the blast cells versus the subjective manual procedure.  

It allows for reproducible diagnosis by diminishing the inter-observer variability. It also 

automates the analysis, and thereby reduces the amount of repetitive and tedious tasks to be 

done by the hematologist or laboratory practitioner.  

Due to improvements in microscopy imaging technology and image processing techniques 

and owing to the morphological differences between blast cells, which makes it an 

ingratiating problem to work on, there has been a significant increase in interest in the 

development of computer-based acute leukemia diagnostic system. The next sub-sections 

gives a critical description of the most relevant methods in the literature applied for acute 

leukemia diagnosis and classification based on morphological characteristics of blast cells.  
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3.6.1 Peripheral Blood Image Acquisition  

Image acquisition is basically considered as the initial stage of any image recognition 

system (Mora-González et al., 2011). Acquiring image with high resolution, clarity, accuracy 

and proper illumination intensity is considered as a complicated task due to the complex 

setting of the video camera and the microscope, for medical and non-medical people 

(Madhloom et al, 2012). 

Up to the early nineties, most microscopic applications that needed image acquisition was 

with the use of an analog video camera, often simply closed circuit TV cameras with 

support of a frame grabber to digitize the image (Rajendran et al., 2008). 

Nowadays, these analog cameras have been replaced with digital ones, called CCD (charge-

coupled device) camera that is mounted on the microscope. Figure 3.19 shows an example 

of a modern microscope with a mounted digital camera attached to a computer. 

 

Figure 3.19: Microscope with a digital camera (Zephyris, 2007) 

The basic microscopic system used in clinical laboratory is the light microscope (Estridge 

& Reynolds, 2011) in which visible light passes directly through the lenses and specimen. 

A light microscope has at least three objective lenses. In general, these lenses magnify an 

object 10, 40 and 100 times, respectively (Pommerville, 2009).  

Digital Camera 

Microscope 
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A proper visual analysis requires that the image of the blood smear is captured with a 100x 

objective lens (Díaz & Manzanera, 2011). 

In order to capture high-quality blood smear images, there are several factors that need to 

be considered, such as well-prepared blood smear (Rodak et al., 2007), balancing 

illumination (Sadeghian et al., 2009), and the optimal assessment area of the blood smear 

where the images should be captured from (Rodak et al., 2007). 

Many previous works in the literature (Osowski et al., 2004; Markiewicz  et al., 2005; 

Markiewicz & Osowski 2006; Siroic, et al., 2007; Osowski et al., 2009; Sadeghian et al., 

2009; Mohapatra et al., 2013) did not discuss the characteristics of the blood images 

acquisition process. This could be due to the reason that the researchers obtained the data 

sets of blood images from the medical center as digital images without being involved in 

the acquisition process. Meanwhile, other researchers discussed the details regarding the 

equipment and the setting used during the blood smear image acquisition process.  

Table 3.3 summarizes the characteristics of blood smear acquisition process used by a 

number of researchers in the literature. Six different points are highlighted in the table, 

namely, the camera type, the microscope type, the lens objective, the image format, the 

color depth and the resolution. 
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Table 3.3: Summary of the acquisition process characteristics reported in the literature 
Author Camera 

Type 
Microscope 

Type 
Lens 

Objective 
Image 

Format 
Color 
Depth 

Resolution

Sabino, et al., 
2003,2004 

Kodak 
DC290 

Zeiss 100x ------ 24 720x480 

Putzu & Ruberto, 
2013, 2013a, 

2013b, Labati, et 
al., 2011, Scotti, 

2005, 2006 

Cannon 
PowerShot 

G5 

------ 30x-50x JPG 24 2592 × 1944 

Mohaptra & 
Patra, 2010, 

Mohaptra, et al., 
2011, 2011b, 

2013 

------ Carl Zeiss 100x ------ 24 1024x1024 

Nee et al., 2012; 
Huey Nee et al., 

2012 

Luminera 
Infinity 2 

Leica 100x ------ 24 ------ 

Madhloom, et al., 
2012, 2012b 

Olympus 
UC30 

Olympus 40x JPG 24 2080×1544 

Nasir et al., 2013 Luminera 
Infinity 2 

Leica 40x BMP 24 800x600 

 
As seen in Table 3.3, most of these previous works shared a number of common acquisition 

characteristics such as using a light microscope and CCD camera which produce 24-bits 

color images. However, other characteristics such as camera type, lens objective and image 

resolution were different. The difference in image acquisition setup could lead to some 

variability in the appearances of blood images; therefore understanding acquisition 

conditions is tremendously important to diagnose acute leukemia. As a conclusion, better 

understanding of the blood image acquisition process contribute strongly to the success of 

the overall diagnostic system as the images will go through several processing steps in 

order to attain the intended results (Díaz & Manzanera, 2011).  

However, if the images have not been acquired with a proper level of clarity (clarity here 

means, the absence of blurriness, balanced illumination, suitable microscopic 

magnification), then the intended results may not be achievable, even with the help of some 

form of image enhancement.  
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In this research, we have applied high-resolution PB images obtained from University 

Malaya Medical Center, Kuala Lumpur, Malaysia captured using Olympus UC30 camera. 

At a later stage of the work, we have also used images from other resources (Labati et al., 

2011), whose contributions are gratefully acknowledged. 

 
3.6.2 Blast Cells Segmentation  

Image segmentation is used to detect the blast cells region, in order to separate them from 

the background components such as plasma and RBCs. It is considered as the most difficult 

stage in the acute leukemia diagnostic system (Mao-jun, et al, 2008; Rezatofighi & 

Soltanian-Zadeh, 2011; Patil et al., 2012). In this section, the most-recent techniques 

relevant to blast cells segmentation are discussed. There are three major blast cells 

segmentation problems that are not completely solved by the algorithms presented in the 

literature; these problems are as follow:  

1. Localization of the blast cells in the PB image and extracting each into a single sub-

image. 

2. Adjacency and overlapping between cells. 

3. Adaptation to color, illumination, staining variation.  

Finding solutions to these problems are significant yet challenging. The blood smear 

consists of various types of cells such as leukocyte, erythrocytes and platelets in addition to 

the abnormal cells (blasts). Identifying a blast cell and cropping it into a sub-image is a 

desirable step (Mohaptra et al., 2013) where each blast cell can be separately evaluated in 

order to classify it into either ALL or AML (Problem1). Heterogeneous distribution of cells 

in PB smear is a common problem originating from the PB smear preparation procedure 

(Nee et al., 2012).  
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Since the quality of cells distribution cannot be guaranteed, the segmentation algorithm 

should remove the clustered cells adjacent to the cell of interest, otherwise the adjacent 

cell(s) and the cell of interest will be considered as one object. Hence, wrong features could 

be extracted (Problem2) (He & Liao, 2008). Blast cells segmentation algorithm should be 

impervious to color variation in the blood smear; the segmentation algorithm should be able 

extract a complete blast cell with its internal components (nucleus and cytoplasm) from 

blood smears stained with different staining procedure such as Wright-Giemsa, May-

Grünwald, Leishman's stain, etc. The segmentation algorithm should also be impervious to 

blood images acquired using different types of acquisition equipment (Problem3) 

(Markiewicz et al., 2005).  

Based on the literature review, existing blast cells segmentation algorithms can be generally 

categorized into six different approaches according to their underlying techniques. (1) 

Pixel-based Threshold approaches, (2)Edge-based approaches, (3) Region-based 

approaches, (4) Color-Clustering approaches, (5)Mathematical Morphology approach, (6) 

Active-contour based approach. However, most of the proposed algorithms in the literature 

combined several techniques in order to extract blast cells from the image.   

A two-step semi-automatic segmentation algorithm was proposed by (Sabino et al., 2003, 

2004, Ushizima, et al., 2005) to segment leukocytes and one type of leukemic cell namely 

CLL (Chronic Lymphocytic Leukemia). The Green channel threshold was used to localize 

the nucleus and to crop a sub-image, and then the Bayesian Supervised Learning Algorithm 

based on the RGB color pixels was used to group the pixels into four distinct regions, 

namely the nucleus, the cytoplasm, the erythrocytes, and the plasma.  
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The segmentation was sensitive to light variations and it was often limited to a subset of 

images with similar staining properties. Besides that, using the nucleus bounding box to 

crop a single cell sub-image could produce an incomplete cell, where some part of the 

cytoplasm could be missed.   

(Osowski et al., 2004) used the watershed algorithm to segment blast cells in bone marrow 

aspirate images.  The watershed was applied on the original image after it was converted to 

gray level then to binary image and then processed with morphological closing and erosion. 

As stated by the (Osowski et al., 2004), this method was inaccurate in separating a 

complete blast cell from the background, especially at the border of the cytoplasm. This 

could be due to the similarities in gray level values between the erythrocytes adjacent to the 

cytoplasm of the blast cell. Later, the same method presented by (Osowski et al., 2004) was 

adopted in other works, such as the works by (Markiewicz et al., 2005; Markiewicz & 

Osowski 2006; Siroic, et al., 2007; Osowski,et al., 2009). Canny edge detection combined 

with mathematical morphology operator (i.e. dilation and erosion) was used in the work by 

(Scotti, 2005) to localize a single lymphoblast cell from a gray scale blood smear image. 

Edge detection needs some subsequent edge linking in order to close the contour of regions; 

however, this is a very difficult process as it is not clear which edges are of interest and 

which are not (Zhang et al., 2004).  It has been assumed by (Scotti, 2005) that the edge size 

can fall in a specific range so morphological dilation can be used to link the edges. 

However, if the edge value is not within the assumed range, wrong cell detection can 

occurr. Later, (Scotti, 2005) proposed to use the Otsu Threshold (Ostu, 1979) to separate 

the nucleus region from the cytoplasm region.  
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Some other researchers implemented their segmentation algorithms directly on a manually 

cropped sub-image that contained only a single blast cell such as the work by (Khashman & 

Al-Zgou 2009; Sadeghian, et al., 2009) . The purpose of this was mainly to separate the 

nucleus region from the cytoplasm region. In the work presented by (Khashman & Al-Zgou 

2009), a pixel-based threshold with a fix range of threshold was used to separate the 

nucleus from the cytoplasm, while in the work by (Sadeghian, et al., 2009), the sub-image 

was firstly processed with canny edge detection, followed by a gradient vector flow (GVF) 

active contour to detect the nucleus, and finally, the Zack threshold was employed to define 

the cytoplasm component.  

(Reta et al., 2010) introduced a segmentation algorithm to segment five types of acute 

leukemia blast cells, including ALL (L1-L2) and AML (M2-M3-M5). The Lab color space 

and the 2-D wold decomposition texture model were used. The color and texture 

information were modeled by using the Markov Random Field in order to obtain the 

regions of cell elements. A rule based classifier with respect to color and shape properties 

were used to separate the nucleus from the cytoplasm.  A cell overlapping separation 

algorithm was also proposed using a linear interpolation in the polar space to provide a 

conical shape. However, this overlapping separation algorithm produces some edges 

discontinuities where edge linking is a very difficult process as it is not clear which edges 

are of interest and which are not (Zhang et al., 2004). 

The blast cell segmentation algorithms used a fixed threshold value to extract the blast cell 

from the blood smear image, such as the works by (Patil, et al., 2012; Aimi Salihah, et al., 

2009; Aimi Salihah, et al., 2010; Harun et al., 2010; Halim, et al, 2011; Halim, et al., 

2011b). Unfortunately, the segmentation performance as a result of manually selected 

threshold deteriorates, since the blood smear image could be acquired from different 
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sources; therefore, a fixed threshold value could not suitably segment every image.  All of 

these approaches that used a fixed threshold value were not able to extract a complete blast 

cell as the cytoplasm region was always missing. 

In our early work (Madhloom et al., 2012), we proposed a new method that integrated color 

features with the morphological reconstruction to localize and isolate lymphoblast cells. 

Based on the results obtained from our work, this method was able to localize the complete 

lymphoblast cells; however, the adjacency problem was not addressed. Besides that, this 

approach did not further segment the nucleus region from the cytoplasm region.  

(Nee et al., 2012; Huey Nee et al., 2012) adopted the same morphological reconstruction 

process presented in the work by (Madhloom et al., 2012). (Nee et al., 2012; Huey Nee et 

al., 2012) proposed a color segmentation methodology for three type of AML (M2-M5-

M6). The saturation band of the HSV color space was used to construct a mask and marker 

from the original image, and then the morphological reconstruction was used to retrieve the 

cell. A binary image was produced from the morphological reconstruction using Otsu’s 

global threshold (Otsu, 1979), then watershed transform was applied to the resultant binary 

image construction supported by a copy of the saturation gradient magnitude image to 

generate the ridge line. This approach failed to localize a complete blast cell, especially, 

blast cells with indistinct boundaries between the nucleus and the cytoplasm. 

Some other researchers used an unsupervised clustering segmentation approach, such as K-

mean clustering and fuzzy c-mean. Within this context, (Mohapatra & Patra,2010; 

Mohapatra, et al., 2011) presented a segmentation algorithm to segment two types of blood 

cells, namely Lymphocyte and Lymphoblast.  

The blood smear image are clustered based on Lab color space into four distinctive regions, 

namely erythrocyte, nucleus, cytoplasm and plasma.  
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Only the nucleus cluster was retained in order to extract a sub-image of the nucleus for 

further processing. The nuclei sub-images were cropped based on the smallest bounding 

box. Later, (Mohapatra et al., 2010; Mohapatra, et al., 2011b) repeated the same clustering 

approach; however, this time the fuzzy c-mean clustering approach was used instead of the 

K-mean clustering. (Mohapatra et al., 2011c) used a rough K-mean clustering to divide the 

image of blood smear into four different regions, where the rough K-mean clustering 

showed better performance than both K-mean and fuzzy c-mean clustering.  

A two step clustering approach was proposed by (Mohapatra  et al., 2013).  In the first step, 

the blood smear image segmented using K-mean clustering based on RGB color space to 

indentify the nucleus region, then a sub-image of the whole cell is cropped based on the 

nucleus bounding box. Later, the cropped sub-image is segmented into three different 

regions namely nucleus, cytoplasm and background.  

Unsupervised clustering segmentation approaches separate distinct regions in the image 

based on the color or intensity. This method works fine when a prominent difference in the 

color or intensity between regions is exists. However, it performs poorly when similar color 

is presented between different regions in the image, for instance the similarity in brightness 

between erythrocytes and cytoplasm (Won et al., 2005). For that reason, it has been 

observed by (Mohapatra & Patra, 2010; Mohapatra, et al., 2011) that the cytoplasm and the 

erythrocytes are classified into same cluster. This situation can also occur in clumped 

(overlapping) cells, where clustering approaches are not able to separate them.  

A WBC identification algorithm was proposed in the work by (Putzu & Ruberto, 2013; 

Putzu & Ruberto, 2013a; Putzu & Ruberto, 2013b).  

The algorithm included three stages, namely, leukocytes Identification, separation of 

grouped leukocytes, and nucleus/cytoplasm selection.  
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The leukocytes identification was performed using the Zack threshold applied on the ࢅ 

component of the CMYK color model. This was followed by the watershed algorithm in 

order to separate the leukocytes clusters. Threshold-based operation using Otsu method was 

applied on each leukocyte sub-image. The threshold-based operation was performed on an 

intensity image which resulted from the combination of the green component of the RGB 

color space and the ࢇ component of the Lab color space. The algorithm was tested on the 

ALL-IDB1 database (Labati et al., 2011), which is the same as Dataset-B used here in this 

research (Please Refer to Section 4.2.2). The test was carried out with a sample of 33 PB 

images contained 267 cells. The algorithm was able to identify 245 cells out 267 with an 

average accuracy of 92%. 

A new algorithm for segmentation of both healthy WBC and acute lymphoblastic leukemia 

blast cell using both peripheral blood and bone marrow images was proposed in the work 

by (Arslan et al., 2014). This algorithm modeled the WBCs based on color and shape 

characteristics by defining two transformations and introduced an efficient use of these 

transformations in a marker-controlled watershed algorithm. This was followed by a post-

processing step to eliminate false white blood cells. The algorithm was tested on 650 

WBCs. Although, the algorithm was able to segment a total number of 637 cells out of 650, 

however, in some cases, the algorithm was unable to remove some of the false positives 

objects that show similar coloration and shape with lymphoblast, such as, RBCs or dead 

cells.  

Table 3.4 summarizes the characteristics of each methods presented in the literature and 

how they deal with the three problems highlighted earlier in this section.  

From Table 3.4 it can be noted that there is no blood segmentation algorithm that 

completely addresses the three issues. 
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Table 3.4 Review of Previous Segmentation Algorithms  
Author Segmentation 

Method 
Problem 

1 
Problem 

2 
Problem 

3 
Quantitative 

Accuracy Rate 
Remarks 

Sabino, et al., 
2003 Pixel-Based 

Threshold, 
Bayesian 

Supervised 
Learning 

Algorithm 

Yes No No 
No 

Quantitative 
Evaluation 

Sensible to light 
variations, limited to 
a subset of images 
with similar staining 
properties. 
The training set size 
should be increased 
to produce better 
segmentation result. 

Sabino, et al., 
2004 

Ushizima, et 
al., 2005 

Osowski,et al., 
2004 

Watershed No Yes No 
No 

Quantitative 
Evaluation 

Inaccuracies were 
visible, especially at 

the border of 
cytoplasm. 

Markiewicz, et 
al., 2005 

Markiewicz & 
Osowski 2006 
Siroic, et al., 

2007 
Osowski,et al., 

2009 

Scotti, 2005 

Edge Detection, 
Mathematical 
Morphology, 
Pixel-Base 
Threshold 

Yes No No 
No 

Quantitative 
Evaluation 

In some images the 
nucleus area was 

overestimated 

Khashman 
& Al-Zgou, 

2009 

Bimodal 
Threshold 

Mathematical 
Morphology 

No No No 
Average  

accuracy was 
98.33% 

Sub-image cropped 
manually and 

threshold range value 
was fixed 

Sadeghian, 
et al., 2009 

Edge Detection 
active contour 
Zack threshold 

No No No 
92% Nucleus 
and 78% for 
Cytoplasm 

Sub-image cropped 
manually 

 
Aimi 

Salihah, et 
al., 2009 

Pixel-Based 
Threshold No No No 

No 
Quantitative 
Evaluation 

The threshold value 
was selected 

manually 
Aimi 

Salihah, et 
al., 2010 

Pixel-Based 
Threshold No No No 

No 
Quantitative 
Evaluation 

The threshold value 
was selected 

manually 
Harun, et al.,  

2010 Pixel-Based 
Threshold No No No 

No 
Quantitative 
Evaluation 

The threshold value 
was selected 

manually 
Halim, et al., 

2011 Pixel-Based 
Threshold No No No 

No 
Quantitative 
Evaluation 

Threshold value has 
a fix range 

Inaccuracies in 
cytoplasm extraction 

Halim, et al., 
2011b 
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Reta, et al., 
2010 

Markov 
Random Field 

Rule Based 
classifier 

No Yes No 

95.87% 
Nucleus 

95.75% Whole 
Cell 

Fix Range thresholds 
for the rule-based 
classification. 
Edges discontinuities 
produced by 
overlapping 
segmentation 
algorithm. 

Mohapatra & 
Patra, 
2010 

 
 
 

K-mean 
Clustering 

 
 

Yes No Yes 
No 

Quantitative 
Evaluation 

Only Nucleus 
Extraction Mohapatra et 

al.,  
2011 

Mohapatra et 
al.,  

2010 Fuzzy C-Mean 
Clustering Yes No Yes 

No 
Quantitative 
Evaluation 

Only Nucleus 
Extraction Mohapatra, et 

al.,  
2011b 

Mohapatra et 
al.,  

2011c 
Rough K-mean 

Clustering Yes No Yes 
No 

Quantitative 
Evaluation 

Completed cell sub-
image was estimated 
based on the nucleus 

only 
(Nee et al., 
2012, Huey 
Nee et al., 

2012) 

Mathematical 
Morphology and 

Watershed 
No Yes No 

94.5% in the 
whole cell 
extraction. 

Uncompleted 
localization 

Cytoplasm  missing 

Patil, et al., 
2012 Pixel-Based 

Threshold No No No 
No 

Quantitative 
Evaluation 

Uncompleted 
localization 

Cytoplasm  missing 
Madhloom, et 

al., 
2012 

Threshold and 
Mathematical 

Morphologicall
y 

Yes No No 
90-95% in the 

whole cell 
extraction. 

Fix threshold used to 
produce the  Mask 

image 

Mohapatra, et 
al.,  

2013 

K-Mean 
Clustering 

Shadowed C-
Mean Clustering 

Yes No Yes 
No 

Quantitative 
Evaluation 

Only Lymphocyte 
and Lymphoblast are 

considered in the 
experiment 

Khot, et al., 
2013 

Mathematical 
Morphologicall

y 
 

No No No 
No 

Quantitative 
Evaluation 

Uncompleted 
localization 

Cytoplasm  missing 

Putzu & 
Ruberto, 2013  Color 

Transformation 
Threshold-

Based operation 
Watershed 
Transform 

 

Yes Yes No 

245 cells out 
of 267 

correctly 
identified with 

an average 
accuracy of 

92%. 
 

Only Leukocyte and 
Lymphoblast are 
considered in the 

experiment. 
Generates incorrect 

results with the 
Presence of holes in 
the whole leukocyte. 

Putzu & 
Ruberto, 

2013a 
Putzu & 
Ruberto, 
2013b 

   



99 
 

Arslan et al., 
2014 

Color 
Transformation 

and marker-
controlled 
watershed 

Yes Yes No 

637 cells out 
of 650 

detected 
correctly  

Only Leukocyte and 
Lymphoblast are 
considered in the 

experiment. 
Unable to remove 
some of the false 

positives objects that 
show similar 

coloration and shape 
with lymphoblast 

 
Many of the previous researches did not focus on finding a proper algorithm to localize the 

blast cells for the purpose of sub-imaging. Besides that, the problem of overlapping cells 

did not get enough attention, where most of the methods were based on the assumption that 

the cells are well spread and are well distributed in the blood smear. Also, the problems of 

color, light and appearance variations of the blood smear image were not fully discussed. 

Furthermore, most of the previous blast cells segmentation algorithms were tested on a 

single dataset acquired using a particular type of camera and microscope without validating 

the algorithm on a different dataset of images acquired from different sources to test the 

robustness of the algorithm.   

 
3.6.3 Feature Extraction, Selection and Classification  

Feature extraction is the process of extracting certain characteristic attributes and 

generating a set of meaningful descriptors from an image. The purpose of the feature 

extraction stage is to extract various features from a given blood image which best 

characterizes a given blood cell. 

This section discusses the most related publications in the literature from the perspective of 

the three different processes, namely feature extraction, feature selection and classification. 

The reason why all this processes are discussed together is because the performance of 

feature extraction and selection cannot be tested alone without considering the 

classification accuracy.   
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We only included the previous researches that reported these three stages together. As 

discussed earlier, the research aims to classify acute leukemia blasts into either ALL or 

AML using peripheral blood smear images. To our knowledge, this is the first attempt to 

classify acute leukemia blast cells based on peripheral blood smear images. Most of the 

works in the literature are not very relevant to the work introduced in this thesis. Some of 

the researchers tried to distinguish between acute leukemia blast cells and healthy WBCs 

such as the works by (Mohaptra et al., 2010, 2011, 2013; Madhukar et al, 2012; Madhloom  

et al., 2012; Kizrak & Ozena, 2012; Halim, et al., 2011; Nasir et al, 2011). While other 

established an approach to classify one of the acute leukemia types (i.e. AML) into their 

sub-types such as the work by (Osowski et al., 2004; Markiewicz et al., 2005; Scotti, 2005; 

Markiewicz & Osowski, 2006; Siroic et al., 2007; Osowski  et al., 2009; Ismail el al., 

2010).  There are very few attempts reported in the literature on acute leukemia 

classification. However, in all these attempts, BM smear images were used such as the 

work by (Nasir et al., 2013; Supardi et al., 2012; Harun et al., 2011; Reta  et al.,  2010).  

Although, all of the proposed approaches have been carried out using images acquired from 

bone marrow. However, in a study carried out by (Weinkanff et al., 1999) it was found that 

there are no differences in morphological features, cytochemistry or immunophenotyping 

between blasts cells in PB and BM sample. Moreover, examination of stained PB smears 

by microscopy remains the main way of leukemia diagnosis (Angulo., et al, 2006). Using 

PB smear in leukemia diagnosis has clinical, cost and emotional benefits where it is much 

easier to draw blood from the vein than from the bone marrow, particularly, when dealing 

with a very ill or very young patient. In some clinical situation, the laboratory technologist 

is often ask to render a complete diagnostic and prognostic work up of leukemia on a PB 

sample due to poor specimen quality or blast yield in bone marrow sample.  
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Clinically, the reason behind using PB smears instead of BM is not only the desire to spare 

the patient an invasive and painful procedure, but also an intuitive assumption that the PB 

and BM blast cells in the same patient at a given point of time are identical (Almarzooqi et 

al., 2011). 

Table 3.5 summarizes the extracted features used before for the purpose of blast cell 

recognition.   

(Sabino et al., 2004) established an approach to classify normal leucocytes and CLL. A 

combination of 62 features was extracted from each cell nucleus and cytoplasm including 

simple shape features such as area, perimeter, etc., texture (5 GLCM) and color (first-order 

histogram features based on RGB color space). The 12 best features were selected using 

wrapper techniques, namely, the Sequential Forward Selection (SFS). The method was 

tested on 718 sample using Naïve Bayes classifiers and the accuracy reported was 89.07%. 

Later, (Ushizima et al., 2005) repeated the same procedure as in the work by (Sabino et al., 

2004). However, the data was classified with SVM. The obtained result showed that SVM 

outperformed Naïve Bayes at 95.14% average accuracy.  

A classification approach based on SVM used for the distinguishing between different 

myelogenous blast cells in BM images, taking into consideration different maturation levels 

of the myelogenous blast cells was proposed in the work by(Osowski et al., 2004; 

Markiewicz et al., 2005; Markiewicz & Osowski 2006; Siroic et al., 2007; Osowski et al., 

2009 ). Various features were extracted from each blast cell, such as geometrical, texture 

and color statistics based on the RGB color histogram. The main focus was on comparing 

several feature selection approaches. (Osowski et al., 2004), evaluated two filter approaches 

(correlation analysis, mean and variance measures), to select the best 70 features from a set 

of 99 features in order to distinguish 12 classes of myelogenous blast cells.   
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(Markiewicz et al., 2005) used a wrapper of linear support vector machine (SVM) for 

selecting features from a vector of 87 dimensions, in order to distinguish 10 classes of 

myelogenous blast. Later, Markiewicz et al., (2006) compared two filter approaches 

(correlation analysis, mean and variance measures) and one wrapper of linear support 

vector machine (SVM) for selecting features from a vector of 164 dimensions. The best 

approach was the correlation between the feature and the class as well as the linear SVM 

ranking.  A feature selection approach based on genetic algorithm was proposed in the 

works by (Siroic et al., 2007; Osowiski et al., 2009). In this approach, each set of possible 

features was represented as chromosomes. Genetic operators such as mutation and 

crossover were applied in order to find the best solution(s) according to a fitness function 

which was defined as the classification error on the validation data set. The reported results 

showed that, features selected using this approach, obtained a better classification 

performance compared to wrapper feature selection based on the linear SVM. 

Scotti (2005) evaluated three different classifiers, namely the K-nearest neighbors (KNN), 

the feed-forward neural network (FFNN) and the Naïve Bayes for the classification of ALL. 

23 simple shape features were extracted from each cell such as, area, perimeter, circularity, 

etc., and the mean and the standard deviation of the gray level image as a texture features. 

The best three features were selected using a wrapper technique, namely the sequential 

forward selection. The reported results showed that, the best classification performance was 

obtained using the FFNN.    

Reta et al., (2010) presented a methodology to classify acute leukemia blast cells into ALL 

and AML based on blast cell morphology. Five different classifiers (KNN, Random Forest, 

Simple Logistic, Sequential Minimal Optimization, and Random Committee) available in 

Weka data mining software (Hall et al., 2009) were evaluated based on 27 features using 
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simple shape feature, first-order statistics based on gray level, and RGB color histogram. 

Among all the five classifiers, the best classification accuracy of 92.20% was obtained 

using the Sequential Minimal Optimization.  

The SVM was applied to distinguish between ALL and healthy Lymphocyte using PB 

images in the works by (Mohapatra & Patra, 2010; Mohapatra et al., 2010; Mohapatra et al 

2011b). Various features were extracted from the cell nucleus such as fractal dimension, 

contour signature, simple shape features, first-order statistics, GLCM and mean color value 

based on RGB and HSV color spaces. The SVM showed a high classification performance 

with over 90 % true positive accuracy. Later, (Mohapatra et al., 2013) applied an ensemble 

classification approach evaluated with k-fold validation which gave 94.73% accuracy.    
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Table 3.5: Review of previous feature extraction, selection and classification methods with 
their reported results 

- NS=Not Specified  
Author(s) Blood Cells 

Types 
No.  
of 

Features 

Features Extraction 
Techniques 

Feature 
Selection 

Classification  
Technique 

Reported 
Result  

Shape Texture Color 
Sabino et al 

2004 PB (5 
normal Cell 
and CLL) 

62 √ 
(12) 

√ 
(15) 

√ 
(36) 

Sequential 
Forward 
Selection  

(12) 

Naïve Bayes 89.07% 

Ushizima, et 
al., 2005 

SVM 95.14% 

Osowski., S 
et al ,2004 

BM 
AML  (12) 

 99 √ 
(11) 

√ 
(52) 

√ 
(36) 

Correlation 
analysis 
Mean-

variance 
analysis 
(70) 

SVM 88.4% on 
testing 

data 

Markiewicz 
et al., 2005 

BM 
AML 

17 Types 87 √ 
(19) 

√ 
(44) 

√ 
(24) 

30 of the 
best features 

ranked by 
the SVM 

SVM 81.29% 

Scotti F, 
2005 

PB  
ALL vs 

Lymphocyte 
(260) 

23 √ 
(21) 

√ 
 (2) 

× 
(0) 

Sequential 
Forward 
Selection  

(3) 

 
Linear Bayes  

KNN 
FF-NN 

10-fold 
CV 

99.96% 
99.97% 
99.98% 

Markiewicz 
and Osowski 

2006 

BM 
AML 

10 Types 
(1850) 164 √ 

(35) 
√ 

(105) 
√ 

(24) 

analysis of 
variance 
and means 
Correlation 
Analysis, 
Linear SVM 

SVM >80% 

Siroic et al 
2007 

BM 
AML 

9 Types 158 √ 
(NS) 

√ 
(NS) 

√ 
(NS) 

Genetic 
Algorithm 

SVM 
Ranking 

SVM GA 
86.84%   
SVM 

ranking 
80.9%  

Osowski., S 
et al ,2009 

BM 
AML 

11 Types 
(1717) 

 

164 √ 
(31) 

 

√ 
(106) 

 

√ 
(27) 

 

Genetic 
Algorithm 

SVM 
Ranking 

SVM 83.2% GA 
77.5% 
SVM 

ranking 
72.5% 
with no 
ranking 

Reta  et al  
2010 

BM 
ALL (L1,L2) 

AML 
(M2,M3,M5

) 
633 Sample 

27 √ 
(17) 

√ 
(5) 

√ 
(5) 

No Feature 
Selection 

SMO 
SL 

K-NN 
RF 
RC 

92.20% 
with SMO 
 

Mohapatra 
and Patra 

2010 

PB 
ALL vs 

Lymphocyte 
108 

17 √ 
(8) 

 

√ 
(7) 

 

√ 
(2) 

 

No Feature 
Selection 

SVM 95% 

Mohapatra et 
al.,  2010 

PB 
ALL vs 

Lymphocyte 
108 

14 √ 
(8) 

 

√ 
(4) 

 

√ 
(2) 

 

No Feature 
Selection 

SVM 95% 
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Mohapatra et 
al 2011b 

PB 
ALL vs 

Lymphocyte 
108 

15 √ 
(9) 

 

√ 
(4) 

 

√ 
(2) 

 

No Feature 
Selection 

SVM 93% 

Harun, N. H 
et al 2011 

BM 
ALL ,AML 

6 √ 
(6) 

× 
(0) 

× 
(0) 

No Feature 
Selection 

Hybrid Multi-
Layer 

Perceptron 
Trained with 
modifier RBF 

97.4% 

Nasir et al, 
2011 

BM 
acute 

leukemia 
(ALL vs 
AML) 

32 √ 
(24) 

 

× 
(0) 

√ 
(8) 

 
 
 

No Feature 
Selection 

Neural 
Network  

Trained with 
(LM and BR) 

LM 94.39 
BR 94.51 

Halim, N. H. 
A, et al, 

2011 

BM 
WBC vs 

acute 
leukemia 

 

32 √ 
(24) 

 
 

× 
(0) 

√ 
(8) 

 
 

No Feature 
Selection 

Neural 
Network  

Trained with 
(SCG and 

FAM) 

SCG 94.5 
FAM 
90.27 

Madhukar et 
al, 2012b 

PB 
AML vs 
WBCs 
(50) 

Not 
Specified 

√ 
(NS) 

√ 
(NS) 

× 
(0) 

No Feature 
Selection 

SVM 93.5% 

Kizrak M.A 
and Ozena 
F., 2012 

PB 
ALL vs 
WBCs 

7 × 
(0) 

√ 
(NS) 

× 
(0) 

No Feature 
Selection 

Kernel Ridge 
Regression 

96.43% 

Supardi et al, 
2012 

ALL vs 
AML 
1500 

samples 
750 ALL 
and 750 

AML 

12 √ 
(NS) 

× 
(0) 

√ 
(NS) 

No Feature 
Selection 

KNN, k=4 
Cosine distance 

86% 

Madhloom  
et al., 2012 

PB 
ALL vs 

Lymphocyte 
(260) cells 

30 √ 
(15) 

 

√ 
(15) 

 

× 
(0) 

Fisher’s 
Discriminati

on 
Ratio (7) 

Exhaustive 
search 

(3) 

K-NN 92.5% 

Nasir et al., 
2013 

BM 
ALL vs 
AML 
500 

200 ALL 
and 300 

AML 
40x 

1683 cells 

42 √ 
(30) 

 

× 
(0) 

√ 
(12) 

 

No Feature 
Selection 

MLP_BR 
MLP_LM 

SFAM 

95.70% 
95.55% 
92.43% 

Mohapatra, 
et al., 2013 

PB  
ALL vs 
Normal 

Lymphocyte
s 
 

44 √ 
(34) 

√ 
(15) 

 

√ 
(12) 

T-Test NB 
KNN 
MLP 

RBFN 
SVM 

Ensemble 

k-fold 
cross-

validation 
94.73 
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Summary 

This chapter discussed the background literature on the digital Image processing, including, 

color spaces, and image segmentation. An extensive discussion regarding feature extraction 

was provided, given that the work presented here exploits feature extraction for the 

identification of acute leukemia blast cells. This chapter provided an introduction to a 

number of other concepts relevant to this thesis. This includes discussion of feature 

selection and classification techniques including, Artificial Neural Network and Support 

Vector Machine. We also looked into existing solutions of acute leukemia diagnostic 

systems which have been previously developed in order to assist and facilitate 

hematologists for the accurate diagnosis of the disease.  
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CHAPTER 4 

RESEARCH METHODOLOGY 

4.1 Introduction  

The proposed acute leukemia diagnostic methodology contains several phases with primary 

emphasis on detecting, segmenting, and then classifying acute leukemia blast cells. The PB 

images are first obtained as inputs to the diagnostic process and then analyzed through the 

proposed acute leukemia diagnostic phases. The phases that form the acute leukemia 

diagnostic methodology are shown in Figure 4.1 (a-c). The first step is image acquisition, 

followed by the image processing phase. Within the image processing phase, the ROI is 

first segmented, this is followed by analysis and classification of the blast cells. Lastly, the 

performance of the whole process is evaluated. In order to model the implementation and 

evaluation of the proposed methodology, a computer-aided diagnosis for acute leukemia 

system (CAD-AL) is developed. The processes embedded within the research are discussed 

in the following sections. 

 

 

 

 

 

 

 

 

Figure 4.1 (a): The Proposed Acute Leukemia Diagnostic Methodology Phases (Image 
Acquisition) 
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Figure 4.1(b): The Proposed Acute Leukemia Diagnostic Methodology Phases 
(Segmentation, Feature Extraction, and Selection) 
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Figure 4.1(c): The Proposed Acute Leukemia Diagnostic Methodology Phases (Blast Cells 
Classification) 
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4.2 Data Acquisition  

The initial stage of the proposed CAD-AL system is the PB images acquisition. The main 

focus of this stage is to acquire a dataset of images with high resolution, clarity, accuracy 

and proper brightness. This process is considered a complicated task for both medical and 

non-medical people due to the complex setting of the video camera and the microscope. In 

this research, two datasets were used, namely, Dataset-A and Dataset-B.  

Dataset-A was obtained from local Malaysian patients where the image acquisition process 

took some time depending on the availability of the PB smears. However, in the later stages 

of the work, and for the purpose of validating the proposed segmentation algorithm on 

foreign data, we obtained images from other sources (Dataset-B) (Labati, et al.,2011) , 

whose contributions are gratefully appreciated. It is worth mentioning that, the collection of 

images from distinctive sources has been advantageous, as testing the performance of blast 

cells extraction with images collected from various sources and obtaining highly accurate 

results, is regarded as an indication of the robustness and reliability of the proposed 

approach in the real-world application (Díaz & Manzanera, 2011). We are, for this reason 

thankful for the contribution of Labati, et al., for the provision of Dataset-B 

The most common type of microscope used in laboratory hematology is the light 

microscope (Stevens, 1997). A light microscope usually has at least three objective lenses 

namely the low power, the high power and the oil immersion lenses. In general, these 

lenses magnify object 10, 40 and 100 times, respectively (Pommerville, 2009).  A proper 

visual analysis of blood smear requires the images to be captured with a 100x objective lens 

(Díaz  &  Manzanera, 2011). Besides that, there are other factors that can affect the 

acquisition of clear blood smear images such as poorly prepared stained blood smear, 

imbalance illumination (Sadegian et al.,2009) and choosing the optimal assessment area 

(Angulo & Flandrin, 2003). These factors, affect the performance of the subsequent stages. 
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4.2.1 Dataset-A 

Dataset-A was acquired from the University of Malaya Medical Center (UMMC) located in 

Kuala Lumpur, Malaysia. It comprises of PB images taken from local patients treated at the 

Department of Pediatric Oncology at the (UMMC) Faculty of Medicine, University of 

Malaya. Before capturing the images, each smear was obtained from patients who have 

been diagnosed with acute leukemia (lymphoid or myeloid). In each case we had the result 

of the morphological examination available together with the acute leukemia sub-types. 

The process was performed with the help of the domain expert, who assisted us in choosing 

samples to be digitized, based on her experience. The acquisition characteristics of Dataset-

A are summarized in Table 4.1.  

Table 4.1: Acquisition Characteristics of Dataset-A 
Image Acquisition Characteristics 

Camera: Olympus UC30 
Microscope : Olympus CX31 

Magnification of the microscope: 1000x 
Image format: JPG 

Color: 24-bits RGB color 
Resolution: 2080×1544 

Staining Method: MGG 
 
The PB smears were then digitized using the Olympus UC 30 digital camera mounted on 

the Olympus CX31 light microscope, where the camera was connected to a PC using a 

Firewire cable.  

The Olympus UC 30 camera is a 3.2 mega pixels digital color camera with a charge 

coupled device (CCD) chip. The live frame rate is 7.0 frames per second at 2080×1544, 

which is the resolution used for the images in this research. All the PB smears had been 

stained with May– Grünwald–Giemsa (MGG) stains. This staining method contains 

EOSIN-METHYLENE blue (May-Grunewald) & AZURE-EOSIN-METHYLENE blue 

(Giemsa) giving a dark blue-purple leukocyte nuclei, light cytoplasm and blue or light-

orange cytoplasmic granules appearances.  
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Figure 4.2 shows the equipment used to capture the images for this research, where the 

camera and the microscope were assembled together and attached to an LCD monitor. 

Figure 4.3 and 4.4 show the Olympus UC 30 camera and the Olympus CX31 light 

microscope, respectively.    

 
Figure 4.2: Equipment Used for Dataset-A Image Acquisition 

 
Figure 4.3: Olympus UC30 Digital Camera 

 

 
Figure 4.4: Olympus CX31 Optical Microscope 
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The process that was used to obtain an image of PB smear was as follows. First, the smears 

were cleaned from any dust or dirt particles with a wiping tissue and then placed on the 

microscope specimen stage. The smear was then observed using a 10x or 40x lens to find 

the working area, i.e. the well spread part of the smear by navigating through the smear 

using the mechanical stage knobs while looking through the ocular.  

Later, the 100x lens with immersion oil was used to look for cells of interest within the 

selected area. When the cells of interest were located, a digital image was captured. This 

process was repeated as necessary depending on the number of cells of interest found in 

each area. This process was also repeated to collect images from all different sub-types of 

acute leukemia (Lymphoid and Myeloid). Table 4.2 demonstrates the number of images 

captured and the number of blasts cells corresponding to each acute leukemia type. 

Table 4.2: Number of Images and Blast Cells (Dataset-A) 
Acute Leukemia ALL AML 

Sub-type 
 

L1-L2 L3 M1 M2 M3 M4 M5 M7 

Number of Images 207 62 17 170 149 86 125 175 

Number of Blast 
Cells 

260 65 17 194 187   191 190 199 

Total Number of 
Blast Cells 

325 978 

 

The distribution presented in Table 4.2 shows the number of images captured during the 

duration of the research. The number of captured images was solely dependent on the 

availability of the PB smears provided by UMMC.  Due to time limitation and the lack of 

sufficient data, two sub-types of AML namely M0 and M6 were not included in the 

research. Some sample images from Dataset-A are shown in Figure 4.5. 
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Figure 4.5: Sample Images from Dataset-A 

Dataset-A is considered the main dataset where the segmentation, feature extraction and 

classification steps were performed. However, the collection of the Dataset-A PB samples 

was started after the acquisition of the Initial-Dataset. The Initial-Dataset consisted of 100 

ALL (L1-L2) PB samples, which had similar specifications to Dataset-A except the 

magnification of the microscope used here was 400x. The Initial-Dataset was used in the 

development of the blast cell localization algorithm (BCL) (Please Refer Section 5.2).  
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After obtaining the initial results produced by the BCL, it was eventually discovered that 

for better PB smear image analysis, PB images should be captured at 1000x microscopic 

magnification, as the 1000x gives purer PB images and better outlines the boundaries of the 

blood components as well as the boundaries between the blast cell's nucleus and 

cytoplasm, particularly when compared to the 400x magnification.  

 
4.2.2 Dataset-B 

Dataset-B was obtained from an accredited image repository. It is composed of 108 images 

collected during September, 2005. All the samples of the dataset were collected by experts 

of the M. Tettamanti Research Center for childhood leukemia and hematological diseases, 

Monza, Italy (Labati et al., 2011). The acquisition characteristics of Dataset-B are 

summarized in Table 4.3. 

Table 4.3: Acquisition Characteristics of Dataset-B 
Image Acquisition Characteristics 

Camera: Canon PowerShot G5 
Microscope : ------------------------ 

Magnification of the microscope: 300x-500x 
Image format: JPG 

Color: 24-bits RGB color 
Resolution: 2592 x 1944 

Staining Method: ------------------------ 
 
The images of this dataset were captured with an optical laboratory microscope coupled 

with a Canon PowerShot G5 camera. All images were in JPG format with a 24 bit color 

depth, and a resolution of 2592 x 1944. The images were taken with different microscopic 

magnification ranging from 300x to 500x. The dataset was used for the purpose of cell 

segmentation and classification by many researchers such as (Scotti, 2005; Scotti, 2006, 

Madhukar, 2012; Putzu & Ruberto, 2013; 2013a, 2013b) and is available online at 

(http://www.dti.unimi.it/fscotti/all/). Figure 4.6 shows sample images taken from Dataset-

B. 
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Figure 4.6: Sample Images from Dataset-B 

 
4.2.3 Gold Standard  

For the purpose of validating and testing the performance of the proposed segmentation 

algorithm, a gold standard dataset was obtained. This dataset comprised of manually 

segmented cells where the border of the cells of interest and their internal parts were 

manually drawn for all the images in Dataset-A and Dataset-B using a photo editing 

software. 

By considering the nature of the blast cells as well as the inter-observer variability 

(differences in diagnosis results among different observers), each cell of interest was 

extracted manually from the PB smear image. This was further segmented in order to 

extract its internal parts i.e the nucleus and cytoplasm. This process was carried out under 

direct supervision of a domain expert from the UMMC. Figure 4.7 (a) shows an original 

sample image, while Figure 4.7 (b) shows the same image with a manual highlight of the 

whole cell and Figure 4.7 (c) the manual highlights of the nucleus.  
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Figure 4.7: Sample of Gold Standard Images (a) original image (b) manual highlights of the 
blast (c) manual highlights of the nucleus 

 
4.3 Image Segmentation  

PB images are the output of the image acquisition stage; this stage is followed by the image 

segmentation stage. Referring to Figure 4.1 (b), the PB smear image segmentation 

comprises of several stages. Firstly, the images were subjected to some pre-processing steps 

in order to overcome the defects that may arise during the image acquisition stage such as 

noise reduction, stabilizing the color variation, illumination imbalance and lower uniform 

luminous intensity.  

(a) 

(b) 

(c) 
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Therefore, pre-processing steps are needed to address the image flaws and to prepare the 

data for further analysis. Contrast enhancement can be used to reduce the effects of color 

and illumination variability and make the color of different components of the PB image 

more prominent. Color model transformation is also another way of highlighting the ROI 

while suppressing the other parts of the image such as the transformation of the RGB color 

into HSV or Lab.  As a prerequisite step for extracting the blast cells from the obtained 

images, the location of each blast cell in the image should be identified, and made more 

noticeable than the other parts of the PB image, such as the Erythrocytes and plasma. 

Furthermore, each located blast cell should be separated from the other components that are 

in direct contact with it, such as Erythrocytes, Leucocytes or other blast cells.  Through this 

step, the border of the blast cells can be identified, and each cell can then be cropped based 

on its bounding box into a sub-image that contains only a single blast cell on a white 

background. Sub-imaging is a desirable step since each blast cell has to be individually 

evaluated in order to differentiate Lymphoblast from Myeloblast and vice versa. Moreover, 

sub-imaging makes the process of separating the nucleus from the cytoplasm easier. 

Several image processing techniques namely contrast enhancement, color transformation, 

mathematical morphology, watershed segmentation and seeded region growing were 

combined together to form an automated algorithm that reduce the effects of images 

acquisition and result in the extraction of  the cells of interest from their internal 

components. Section 5.2 and 5.3 discuss these proposed segmentation algorithms in details.  
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4.4 Feature Extraction and Selection 

Given that the cells of interest have been appropriately segmented, a set of features i.e. blast 

cell measurements, are extracted. Acute leukemia blasts will be classified based on these 

features. It is widely agreed that there is no general powerful set of features that is 

appropriate for many different applications (Esposito & Malerba, 2001). Effective features, 

are solely dependent on the application and the purpose of the study. To have an optimal set 

of features for the problem of acute leukemia blasts classification, we need to carefully 

choose the features as proper feature extraction is essential for the later recognition stage 

(Lai et al., 2008). This is because such features should represent the unique morphological 

characteristics of blast cells as much as possible. 

The features that domain experts use to manually recognize various types of cells are rather 

obvious and even straightforward for themselves. However, it is very difficult to devise 

equivalent measures for a computer vision application. Nevertheless, there are some 

apparent differences between Lymphoblast and Myeloblast. Examples of such differences 

include having a relatively larger nucleus and less cytoplasm in Lymphoblasts than in 

Myeloblasts and having a greater proportion of the area of the nucleus occupied by 

heterochromatin in Lymphoblasts than in Myeloblasts (Ochiai & Eguchi, 1986).  However, 

in some cases, blast cells which belong to the same class could exhibit significant 

morphologic variation (Estey et al., 2007).  To overcome this issue, the morphological 

characteristics in terms of similarities and differences between the acute leukemia types, 

based on the FAB classification (Table 2.5 and Table 2.6), have been studied intensively by 

arranging a number of meetings with a domain expert from the UMMC. Hence, a wide 

range of features were extracted from each blast cell including shape, texture and color 

features.  
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Shape features were used to study the geometrical differences between the blast cells in 

each acute leukemia type and their nuclei characteristics such as, the ratio of the blast cell 

area to the area of its nucleus, and other features such as perimeter, blast cell circularity, 

etc. Texture and color feature extraction techniques were used to address the characteristics 

of the nuclear chromatin texture and color characteristics. Two types of texture analysis 

techniques were used namely first-order statistics, represented by histogram statistics and, 

second-order statistics represented by GLCM.   

Color features are also a very useful and distinguishing characteristic of an object. There 

are several color spaces that are appropriate for different applications. For this work, two 

different color spaces were considered. These are the RGB and the HSV.   

After the full feature set had been constructed, the optimal subset of features was extracted. 

The philosophy behind feature selection is that not all features are useful for learning. 

Hence, the aim was to select a subset of the most informative or the discriminative features 

from the original feature set (Gu et al., 2011). Although, some researchers argue that the 

feature selection step is optional, this step is significant as it helps in obtaining optimal 

accuracy (Chu et al., 2012). On the other hand, keeping redundant or insignificant features 

could potentially cause confusion during the recognition process (Lai et al., 2008). 

In this research, a wrapper feature selection technique namely sequential feature selection 

(SFS) (Kohavi & John, 1997) was used. For that reason, filter methods and embedded 

methods are outside the scope of this thesis.   

 The SFS works in an iterative manner starting with an empty feature subset, which then 

evaluates all possible single-feature expansions of the current subset. The feature that leads 

to the best score of the criterion function is added permanently. The search terminates when 

there is no single-feature expansion that improves the score.  
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Similar to Kohavi and John (1997), the improvement is defined as an accuracy 

enhancement of at least ߝ when compared to the current score.  

SFS remains as one of the widely adopted supervised feature selection technique. This is 

because SFS is easy to implement and usually produce quite effective results (Ren et al., 

2008; Marcano et al., 2010). 

The pseudo code for SFS is shown below. 

Purpose 1: Selecting the best  discriminative subset of features from the set of extracted features 
Input 2: 

3: 
The set of extracted features ܨ ൌ ሼ ଵ݂, ଶ݂, ଷ݂, … , ௡݂ሽ
The used criteria function ܬሺ. ሻ

Output 4: The selected subset 
Procedure 5: 

6: 
7: 
8: 
9: 
10: 
11: 
12: 
13: 

18B࢚࢔ࢋ࢛࢘࢘࡯ൌሼࣘሽ
19Bࢊࢋ࢚ࢉࢋ࢒ࢋࡿൌ࢒࢒࢛ࡺ 
ࢋ࢛࢚࢘ࢇࢋࢌ ࢒࢒ࢇ ࢘࢕ࡲ  ࢌ ב      ࢚࢔ࢋ࢛࢘࢘࡯
 ࢚࢔ࢋ࢛࢘࢘࡯ሺࡶ ࢌ࢏         ׫ ሻࢌ ൐    ሻ݀݁ݐሺ݈ܵ݁݁ܿܬ
ࢊࢋ࢚ࢉࢋ࢒ࢋࡿ                 ൌ ሺ࢚࢔ࢋ࢛࢘࢘࡯  ׫  ሻࢌ
࢚࢔ࢋ࢛࢘࢘࡯                 ൌ            ࢊࢋ࢚ࢉࢋ࢒ࢋࡿ
                ࢋ࢙࢒ࢋ            
    ࢑ࢇࢋ࢘࢈               
࢔࢛࢚࢘ࢋ࢘                               ࢊࢋ࢚ࢉࢋ࢒ࢋࡿ

 

SFS is still popular due to its superior results, and researchers use it in many real-world 

problems such as blood cells recognition (Rezatofighi et al., 2011, Piuri and Scotti, 2004) 

and leukemia classification (Sabino , et al., 2004, Scotti, 2005), solar power prediction 

(Hossain, et al., 2013), breast cancer diagnosis using digital mammography (Luo & Cheng, 

2012), classification of liver tissue (Gletsos et al., 2003), prostate cancer classification and 

diagnosis using multispectral imagery (Bouatmane, et al., 2011)  among others.  

Our goal for using the feature selection process is not limited to maximize the classification 

accuracy, but is also to identify the most relevant features that carry a clinical significance. 

Such features can help in improving the subjective manual diagnosis as the specialist can 

objectively focus more on the most relevant features.  
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4.5 Classification  

The next stage of the diagnostic process is passing the best subset of features onto a 

classifier that analyzes the quantified characteristics and determines the class of each blast 

cell. In this research and as shown in Figure 4.1 (c), two of the most popular classifiers are 

used namely the Multi-layer perceptron (MLP) and the SVM. These have proven 

outstanding classification performance in practice (Cristianini & Shawe-Taylor, 2000, Yao 

et al., 2001). Moreover, based on the literature (Ushizima, et al., 2005, Osowski., S et al 

,2009, Nasir et al., 2013, Mohapatra, et al., 2013) these two classifiers are the most usable 

types of classification engines applied to the problem of blood cell classification in general.  

There are two processes involved in defining the method of classification; these include the 

training and the testing of the proposed classifier. During the training process, the 

algorithm, the parameter and feature boundaries of the classifier are optimized. The training 

process is very important in the classification stage; its purpose is to describe the 

characteristics of the classification categories. On the other hand, testing process is used to 

classify unseen cases based on the previously determined training parameters and feature 

boundaries. It usually requires the use of other independent data for testing; this is to avoid 

bias in the classification accuracy (Demir & Yener, 2005).   

The Rapidminer application was used for the blast cells classification process. Rapidminer 

is a data analysis software tool which implements a set of machine learning algorithms for 

data mining tasks (Shafait et al., 2010). 
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4.6 Parameters Selection  

The accuracy achieved by most learning methods strongly depends on the choice of 

parameters that enable the learners to adapt to the problem-specific characteristics of the 

training data. Thereby, parameters often experience high interdependencies (e.g. kernel 

parameters and regularization constant for SVMs). Hence, finding the optimal parameter 

configurations is critical for the results of the induction process (Cherkassky & Ma, 2004, 

Rocha, 2008). 

In order to identify the most suitable parameter configurations, algorithms should be 

applied in a way that allows for an unattended optimization to the problem at hand. These 

algorithms must train several hypotheses with various parameter configurations by 

choosing the value of each parameter within a user-defined range and evaluating each 

configuration on a separate validation set or by a cross-validation procedure (Rocha, 2008). 

John (1994) investigated the possibility of applying k-fold cross-validation for the 

optimization of an inducer’s parameters. Parameter configurations should be selected in 

order to optimize the adopted generalization performance measure. The parameter selection 

process is often called “model selection”, as each parameter configuration results in another 

model or hypothesis. 

 
4.6.1 MLP-NN Parameters Optimization  

In order to get the best fit MLP architecture, several parameters, that are required to be 

tuned or optimized, exist. These include, the number of hidden layers, the number of 

neurons, the activation function, the learning rate, and the training cycle (epoch) (Dheeba & 

Selvi, 2011). As depicted in Figure 3.17, a multi-layer feed-forward neural network consists 

of one input layer, one output layer and two hidden layers.  
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The number of input and output layers is fixed to one, and the hidden layer is of a variable 

size.  However, expanding the number of hidden layers may result in over-fitting the data. 

This explains why one hidden layer is usually adequate (Günther & Fritsch, 2010).  The 

number of neurons in the input and output layers are easily identified based on the number 

of input patterns and the number of output classes, respectively. A different number of 

hidden neurons are required to be tested for getting the best architecture. The quantity of 

hidden neurons can greatly affect the learning ability of the neural network (Theodoridis et 

al., 2010).  

The activation function is used to calculate the output response of a neuron (Jayaraman et 

al., 2011). There are several activation functions. However, in a study conducted by 

(Shenouda, 2006) to compare the performance of various activation functions namely 

Sigmoid, Tangent, Linear and Gaussian Radial Basis Function (RBF) on 10 different public 

datasets (medical and non-medical), the results showed that the sigmoid activation function 

outperformed other activation functions. 

Regarding the learning rate, it has been stated by (Abdul Kareem, 2002) that the learning 

rate should be small enough to guarantee smooth convergence of the model. Nonetheless, 

very small learning rate may lead to very slow convergence rate. 

Unfortunately, there is no precise rule or mathematical definition for selecting a particular 

value of these parameters. Normally, the setting of the parameters is done empirically (Sun, 

2011). 

There are various heuristic rules and common practices for selecting the parameters 

(Walczak & Cerpa, 1999), but the selection process remains an art rather than a science, 

and varies from problem to problem (Shamsuddin et al., 2008). 
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4.6.2 SVM Parameters Optimization  

In this work, SVM with RBF kernel was used. This kernel nonlinearly maps samples into a 

higher dimensional space so unlike the linear kernel, it can handle the case when the 

relationship between class labels and attributes is nonlinear. Furthermore, the linear kernel 

is a special case of RBF (Keerthi & Lin., 2003), since the linear kernel with a penalty 

parameter ܥ has the same performance as the RBF kernel with some parametersሺܥ,   . ሻߛ

In addition, the sigmoid kernel behaves like RBF for certain parameters (Lin & Lin, 2003). 

Another reason for choosing the RBF kernel is, the number of hyperparameters which 

influences the complexity of the model selection. The polynomial kernel has more 

hyperparameters than the RBF kernel. 

Discovering appropriate values for SVM hyperparameters ሺܥ,  ሻ  can dramatically improveߛ

the classification accuracy (Deepajothi & Selvarajan, S. 2013).  

Intuitively the ߛ parameter defines the distance that a single training example can reach, 

with low values meaning ‘far’ and high values meaning ‘close’. The ܥ parameter trades off 

training examples misclassification against decision surface simplicity. A low ܥ ensures a 

smooth decision surface whereas a high ܥ attempts to classify training examples correctly 

(Deepajothi & Selvarajan, 2013). In this research, experiments were undertaken to evaluate 

SVM performance through variations of the pair ሺܥ,    ሻߛ

 
4.7 Imbalance Data 

Imbalance data means that classes are not equally represented in the training data. This 

issue is an intrinsic property of medical data as disease cases are rare (Mennicke et al., 

2009). In our situation, the reason for the imbalance data is the lack of occurrences of ALL 

cases during the life time of the research.  
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Imbalance data has a serious impact on the classifiers performance (Chawla et al., 2011). 

Learning algorithms that do not consider class-imbalance tend to be overwhelmed by the 

majority class and tend to ignore the minority class. In a real world application; the ratio of 

minority to majority sample can be significantly low as 1:100, 1:1000 or 1:10000 (Chawla 

et al., 2004, Chawla et al., 2011).  Misclassifying a minority class is usually more serious 

than misclassifying a majority class. For example, approving a fraudulent credit card 

application is more costly than declining a credible one (Liu et al., 2009). In our situation, 

as both of the samples are leukemia cases, the degree of accuracy is very important as each 

acute leukemia type (ALL, AML) requires different treatment pathway.   

One of the solutions to tackle the problem of imbalance data is the sampling technique. 

This approach alters the distribution of the classes to ensure that more balanced data are 

obtained. This can be done either by over sampling or by down sampling and sometimes 

both (Batuwita & Palade, 2013).  

Down sampling removes a number of observations from the majority class. It aims to attain 

the equal number of samples from the majority and the minority classes. This method has 

some drawbacks because it can eliminate some useful information. On the other hand, over 

sampling increases the number of samples in the minority class by replicating them and 

hence, reaching an equivalent number to the majority class samples. 

Both down sampling and oversampling approaches have been shown to improve classifier 

performance over imbalanced data sets. However, it was shown by (Japkowicz & Stephen., 

2002)  that, oversampling is lot more useful than down sampling. The performance of 

oversampling algorithms was shown to improve classifier performance dramatically even 

for complex data sets  
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The Synthetic Minority Oversampling Technique (SMOTE) (Chawla et al., 2011) is an 

approach used to form new minority class examples by interpolating between several 

minority classes examples that lie together. It has been shown that SMOTE is very 

successful in dealing with imbalance data sets (Barua et al., 2011).  This method used the k-

nearest neighbors and it is based on the distance measure. Consequently, it may not work 

well on a very high dimensional datasets like gene expression datasets due to the curse of 

dimensionality.  

In this research, the oversampling technique was adopted in order to increase the number of 

samples in the minority class and reduce the effect of imbalanced classes. 

 
4.8 Evaluation Measures  
 
4.8.1 Blast Cells Segmentation Evaluation  

To achieve the fourth objective of this research, the proposed approach was tested and 

assessed against some metrics.  First, the proposed PB image segmentation algorithm was 

empirically tested. In order to assess the quality of the computer generated segmentation, 

one manually generated segmentation, namely, the gold standard or ground truth is required 

in order to compare it with the computer generated one. One of the key challenges for the 

evaluation of automated image segmentation methods is the lack of a gold standard against 

which segmentation methods could be compared (Babalola et al., 2008). For that reason, 

most researches followed the most common method for segmentation quality assessment 

which is the visual inspection made by the domain expert. The disadvantage of such 

method is that visual or qualitative evaluation is inherently subjective (hence their 

namesake). Subjective evaluation scores may vary significantly from one human evaluator 

to another, because each evaluator has his/her own distinct standards for assessing the 

quality of a segmented image.  
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Furthermore, the results of the evaluation can depend upon the order in which evaluators 

observe them. Subjective evaluation is a very tedious and time-consuming process, and 

intrinsically, such methods cannot be used in a real-time system to rank the performance of 

segmentation algorithms or even different parameterizations of a single segmentation 

algorithm (Zhang et al., 2008).  

In this research, well-known objective image segmentation evaluation protocols, that 

ranked high in Zhang’s survey (Zhang, 1996), were employed namely the Relative Ultimate 

Measurement Accuracy (ܴܷܣܯ) and the Misclassification Error (ܧܯ).  

The ܴܷܣܯ protocol uses the spatial feature disparity between the gold standard and the 

computer generated segmented image, where the feature for example can be the size of the 

area, the length of perimeter, etc. This protocol is very effective, since the main intention is 

to extract a completed blast cell from a PB smear image. This metric can be used to 

accurately compare the extracted cell to the gold standard image.  

The ܴܷܣܯ protocol is defined as follows. Let ܩ ௙ܵ represent the feature value extracted 

from the gold standard image and ௙ܵ represent the feature value measured from the 

Computer-based segmented image, then the ܴܷܣܯ protocol is defined as (Zhang, 1996): 

௙ܣܯܷܴ ൌ
ܩ| ௙ܵ െ ௙ܵ|

ܩ ௙ܵ
ൈ 100 (4.1) 

 
On the other hand, the ܧܯ gives the percentage of background pixels wrongly assigned to 

foreground and conversly, the number of foreground pixels wrongly assigned to the 

background and which has often been used as a performance metric for image segmentation 

(Zhang et al., 2008). For the two class segmentation as in our case which consist of the 

forground and the background, ܧܯ is defined as in Equation 4.2 (Shaikh et al., 2011): 
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ܧܯ ൌ 1 െ
หܤ௚ ת ௦หܤ ൅ หܨ௚ ת ௦หܨ

|௚ܤ| ൅ |௚ܨ|
 (4.2) 

 

Where ܤ௚ is the background of the ground truth image, ܤ௦ is the background of the 

segmented image , ܨ௚ is the foreground of the ground truth image, ܨ௦ is the foreground of 

the segmented image, while the domenator |ܤ௚| ൅   ௚| represents the number of pixels inܨ|

the ground truth image.  

 
4.8.2 Classification Performance Measures  

Generally speaking, classification problems are evaluated using a matrix known as  the 

confusion matrix. The confusion matrix contains the numbers of correctly and incorrectly 

classified samples for each class. Table 4.4 shows a confusion matrix containing two 

classes (Positive and Negative) which is suitable for a binary classification problem (Costa 

et al., 2007). 

          Table 4.4: Confusion Matrix 
 Predicted Class 

True Class Positive Negative 
Positive True Positive (TP) False Negative (FN) 
Negative False Positive (FP) True Negative (TN) 

 
In general, True Positive (TP), False Positive (FP), True Negative (TN) and False Negative 

(FN) are computed for all outputs in the “classifier testing set" through testing the classifier. 

FP is the proportion of non-targeting output classified incorrectly as targeting output.  

On the other hand, TP is the proportion of targeting output classified correctly as targeting 

output. TN is the proportion of non-targeting output classified correctly as non-targeting 

output while FN is the proportion of targeting output classified incorrectly as non-targeting 

output. TN and FN are the complements of FP and TP, respectively.  
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It should be noted that when the results of TP and TN are 100%, an ideal ratio is obtained, 

while the ideal ratio of FN and FP will be 0%. Five metrics are used to evaluate the 

performance of the targeting output classifier. The first metric is called sensitivity which 

describes the rate of the TP (Sovierzosk et al., 2010), it is the proportion of examples 

belonging to the positive class which were correctly predicted as positive (Costa et al., 

2007). Sensitivity is defined as in Equation 4.3 

ݕݐ݅ݒ݅ݐ݅ݏ݊݁ܵ ൌ
ܶܲ

ሺܶܲ ൅  ሻ (4.3)ܰܨ

The second metric is called specificity, this refers to the rate of TN (Sovierzosk et al., 

2010). A clear figure of the percentage of negative examples correctly predicted as negative 

can be obtained using this metric (Costa et al., 2007). Specificity is defined as in Equation 

4.4 

ݕݐ݂݅ܿ݅݅ܿ݁݌ܵ ൌ
ܶܰ

ሺܶܰ ൅  ሻ (4.4)ܲܨ

The third metric, known as the geometric mean (G-mean), was proposed by (Kubat & 

Matwin, 1997) and has been used by several researchers for evaluating the classifiers on 

imbalance data sets (Bekkar et al., 2013). G-mean indicates the balance between the 

classification performances of the majority and the minority classes. This metric takes into 

account both specificity and sensitivity, as shown in Equation 4.5 

ܩ െ݉݁ܽ݊ ൌ ඥspecificity ൈ sensitivity  (4.5) 

The specificity, sensitivity and G-mean are used when the performance of both classes are 

of concern and are expected to be high concurrently (Nguyen et al., 2009).  

The last two metrics are precision and accuracy. Precision shows how consistent the results 

can be reproduced, while accuracy reflects the overall correctness of the classifier. 

Precision and accuracy are defined using Equation 4.6 and 4.7, respectively.    
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݊݋݅ݏ݅ܿ݁ݎܲ ൌ
ܶܲ

ሺܶܲ ൅  ሻ (4.6)ܲܨ

ݕܿܽݎݑܿܿܣ ൌ
ሺܶܲ ൅ ܶܰሻ

ሺܶܲ ൅ ܰܨ ൅ ܲܨ ൅ ܶܰሻ 
(4.7) 

Another very useful evaluation measure used for making a decision about the optimum 

models is the ROC (Receiver Operating Characteristics), which relates sensitivity and 

specificity (Ballabio & Todeschini., 2009). The area under the ROC curve (AUC) is often 

taken as a comprehensive scalar indicator of the model performance. An AUC value of 0.5 

suggests a poorly performing model with random sample assignment, while an AUC value 

of 1 indicates a model of maximum efficiency (Truchon & Bayly, 2007).  

 
4.9 Summary 

This chapter fully describes the design process and the reasoning behind the requirements 

of each design step. In Section 4.2, details of the acquisition process were illustrated, with 

full description of the acquisition equipment and the number of acquired samples. Later, in 

Section 4.3 the requirements of the segmentation phase were identified and justified. This 

was followed by Section 4.4, which explained the features that should be extracted from 

each blast cell and the process of selecting the optimal set of features. The requirements 

analysis for obtaining the best classification model was discussed in details in Section 4.5 

and 4.6, respectively. Section 4.7 elaborated on the problem of imbalance data and 

provided solutions for this problem. Finally, the evaluation criteria for both segmentation 

and classification were discussed in Section 4.8.  
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CHAPTER 5 

PERIPHERAL BLOOD SMEAR IMAGE SEGMENTATION 

5.1 Introduction  

Blast cell segmentation is a fundamental step in the development of the CAD-AL. It 

involves separating the blast cells from the background components and further segmenting 

the blast into the nucleus and cytoplasm. The accuracy of detecting the blast cell is essential 

for accurate implementation of the subsequent stages of the system, i.e., feature extraction 

and classification, since diagnostic features such as area, perimeter, major axis length, etc., 

are strongly dependent on the segmentation result. In addition, the nucleus, which is part of 

the detected blast cell, reveals information about chromatin density patterns and color. 

Therefore, excluding any portion of the blast cell may result in significant information 

being overlooked, and increase the possibility of a false diagnosis. Extracting blast cells 

from PB smear image is challenging (Mao-jun, et al., 2008; Rezatofighi & Soltanian-

Zadeh, 2011; Patil, et al., 2012) due to a number of reasons:  (1) The blood smear image 

contains a mixture of many blood components. (2) The adjacency of cells, e.g. Erythrocytes 

adjacent to blast cells, blast cells adjacent to each other. (3) The color variation which can 

result in increased fuzziness around the borders of the blast cells and the surrounding 

objects and between the nucleus and the cytoplasm. In Section 5.2 of this chapter, a novel 

blast cell extraction method, based on color space transformation and mathematical 

morphology analysis, is discussed. The method first determines the most effective and 

discriminative color channels in PB images that can highlight the cells of interest, followed 

by morphological operations to extract the blast cells. In Section 5.3, the proposed blast cell 

extraction method is improved by proposing new modules, namely, erythrocytes removal, 

touching cells segregation and nucleus/cytoplasm separation.  
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 5.2 Blast Cells Localization  

This section proposes an automatic segmentation algorithm namely; Blast Cell Localization 

(BCL), based on color space transformation and mathematical morphology operations. 

The ultimate aim of this algorithm is to localize the blast cells and extract them into sub-

images, where each sub-image contains a single blast cell placed on a white 

background. The localization and sub-imaging process makes the process of nucleus and 

cytoplasm separation simpler and more efficient, since each sub-image will contain only 

two regions (nucleus and cytoplasm). This step can be done through two stages (1) Remove 

most of the blood components such as Erythrocytes, Platelets etc. and retain only the blast 

cells on a white background. (2) Extract and place each blast cell into a small sub-image to 

be used for the subsequent steps, i.e., nucleus and cytoplasm separation. The two stages are 

shown in Figure 5.1.  

 

 

 

 

 

 

 

 

 

 

 
 

 
Figure 5.1: Blast Cell Extraction Flowchart (Part A) 
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Figure 5.1: Blast Cell Extraction Flowchart (Part B) 
 

5.2.1 Color Transformation  

All the digital PB smear images acquired for this research are in the RGB color space. As a 

preprocessing step, the RGB images were converted to another color space namely the 

HSV color space. Although the HSV color space strongly represents the colors in a similar 

way as how the human eye senses color, this was not the major reason behind selecting it 

here. The main reason was that the HSV color space highlights the cell of interest and 

makes it more prominent than the other components; hence, this makes the localization 

process more efficient. Figure 5.2 (a) shows an original sample of a PB image in RGB color 

space while Figure 5.2 (b-d) shows its HSV counterpart, Saturation band and Hue band 

respectively.  

 

 

 

 

Calculate the four points of the minimum bounding box 

Compute the upper left corner of sub-image 

Compute the width and the height of the sub-image 

Crop the sub-image (upper left corner, width, height) 

For each Localized Cell 
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a 

 
b 

 
c 

 
d 

Figure 5.2: PB Image Color Transformation (a) Original RGB Image, (b) Original HSV 
Image, (c) Saturation Band, (d) Hue Band 

 

The Hue and the Saturation channels were extracted from the HSV image as shown in 

Figure 5.2 (c) and (d), respectively. These two channels were pre-processed to be used as a 

Mask and Marker for the morphological reconstruction process. The hue band is considered 

as the shade of the color while the saturation band can be described as the color purity or 

the degree of white in the color tone. More hue means more saturation and a deeper or more 

intense version of the color. 

The Saturation image shows the nucleus of the cell of interest as the brightest object in the 

image due to the blood staining which highlights the nucleus with a dark purple color.  
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This feature can be used as a starting point to extract the cell of interest. In the Hue band 

image, all the cells are uniformly highlighted and the difference in intensity is prominent 

between the foreground and the background as shown in Figure 5.2 (d). This attribute 

acquired from the Hue band image is tremendously useful for the subsequent step, namely 

blast cells localization.  

 
5.2.2 Mask and Marker Preparation  

Two grayscale images were extracted from the original HSV image. The Saturation image 

was represented as “S” and the Hue image was represented as “H”. To prepare the images 

for binary morphological operations such as erosion, dilation, etc., the images had to be 

converted into binary format. For this purpose, the two images “S” and “H” were converted 

into binary format using a simple global threshold operation with threshold value of 0.5. 

The reason behind choosing 0.5 as a threshold value is that it will not cause any effect on 

the Hue image “H”, this means that the full size of the cells will be retained. This is 

because the Hue channel image produces a bimodal histogram. Figure 5.3 illustrates the 

histogram of the “H” image. In Figure 5.2 (d), it can be seen that the image pixels are 

distributed in a bimodal form. The histogram area surrounded by the green color frame in 

Figure 5.3, represents the foreground i.e. all the blood components, whereas the area 

surrounded by the yellow box represents the background. 

 
Figure 5.3: Histogram of the Hue channel image in Figure 5.2 (d) 

 Background Foreground 
All the blood components 
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The same threshold value was used for the “S” image, although its histogram was not 

bimodal. However, the binary version of the “S” image will be used as a Marker, so it 

would not matter if part of the cell of interest is lost after the threshold process. The most 

important point here is that this operation will keep at least one pixel from the cell of 

interest to be used later as a seed point for the morphological reconstruction. The use of this 

threshold value will guarantee that at least one pixel of the nucleus will be retained.  This is 

because the pixels of the blast cells nuclei appear as the brightest component in the image 

i.e, the nuclei pixels value are higher than 0.5 where all these pixels take the value of 1 after 

the threshold process.  Figure 5.4 (a-b) shows the binary images of the “S” and “H” images, 

respectively. 

(a) (b) 
Figure 5.4: Mask and Marker Preparation(a) Binary version of “S” image presented in 

Figure 5.2(c), (b) Binary version of “H” image presented in Figure 5.2(d) 
 
Now the two new binary images in Figure 5.4 (a-b) represented by bwS and bwH need to 

be prepared for the morphological reconstruction process. A morphological opening was 

performed on the bwH image in Figure 5.4 (b) by using a disk shape structuring element 

(SE) with the size of 15 pixels. Morphological opening (Equation 3.18) was achieved by 

first eroding (Equation 3.17) the image bwH by SE where the image pixels that were 

smaller than the SE were corroded, then dilating (Equation 3.16) the result by the same SE.  



138 
 

Morphological opening was performed in order to smoothen the contour of the cells as well 

as to segregate the cells that were attached to each other by a thin connection.  

On the other hand, the bwS image was eroded with the same size of SE used earlier for the 

morphological opening. The erosion process applied to bwS removes all objects in the 

image that are smaller than the SE such as the remaining parts of erythrocytes and platelets 

and retains only a portion of the cells of interest to be used as a Marker. The size of the SE 

used for the opening and erosion operation is a crucial parameter as a big size SE may 

remove even the cell of interest from the bwS image. It has been proven experimentally 

here after trying different SE sizes, ranging from 3 to 20, the most suitable size of SE for 

both morphological operations  (opening and erosion) was disk shaped SE with a 15 pixels 

radius. Figure 5.5 and Figure 5.6 shows the bwH and bwS after morphological opening 

(Mask) and erosion (Marker), respectively.  

 
Figure 5.5: The bwH Image after Morphological Opening (Mask) 
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Figure 5.6: The bwS Image after Morphological Erosion (Marker) 

 

5.2.3 Blast Cells Reconstruction  

After the Mask and the Marker had been prepared, morphological reconstruction was used 

to reconstruct the cell of interest from the Mask image based on the Marker image. The 

cornerstone concept behind the morphological reconstruction is to make repeated dilations 

of an image, called the Marker image, until the contour of the Marker image fits under a 

second image, namely, the Mask. The following morphological reconstruction algorithm 

was applied to retrieve all the blast cells.  

 ݐܽ݁݌ܴ݁                                  

௄ାଵݎ݁݇ݎܽܯ                                          ൌ ሺݎ݁݇ݎܽܯ௄   ۩ ځ    ܧܵ       (݇ݏܽܯ    

݈݅ݐܷ݊                                    ௄ାଵݎ݁݇ݎܽܯ ൌ  ௄ݎ݁݇ݎܽܯ

 

The process of reconstructing the blast cells using the Mask constrained by the Marker is 

illustrated diagrammatically in Figure 5.7. 
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Figure 5.7: Illustration of the blast cells reconstruction from Marker and Mask 

 
The shape of the SE that was used for the purpose of reconstruction was a square shape SE 

with 3×3 pixel size. The selection of the SE size and shape in the reconstruction process 

was not as crucial as with the morphological opening and erosion that were used for the 

perpetration of the Marker and Mask. This is because the reconstruction process would 

not affect the final result as all the pixels outside the contour of the Mask would be 

removed by the intersection operation. Figure 5.8 shows the result of the reconstructed blast 

cells  

 
Figure 5.8: Reconstructed blast cells 
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The result of the reconstructed blast cells image can be used as a mask to restore all the 

blast cells from the original image with all the other components cleared. Figure 5.9 shows 

the localized cells of interest retrieved on a white background image.  

Figure 5.9: The Localized blast cells with the original RGB pixels 

5.2.4 Sub-Imaging  

Most of the PB images contain more than one blast cell per image. Nonetheless, each blast 

cell must be extracted into a single sub-image. This is desirable, since each blast cell has to 

be evaluated separately for the purpose of differentiating Lymphoblast from Myeloblast 

and vice versa. For this reason, a procedure to crop a sub-image of each blast cell was 

prepared.  

Now, every blast cell in Figure 5.9 could be extracted separately using shape features such 

as area size, axis length and centroid.  

Every blast cell in the resulting binary image (Figure 5.8) was labeled with a different 

number. For instance, Figure 5.8 shows 7 blast cells; each one was labeled with a different 

number such that all the pixels for the first blast cell were labeled with 1’s, the pixels of the 

second blast cell were labeled with 2’s and the third with 3’s and so on as shown in Figure 
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5.10. An important step in this operation was to create a label matrix that could be used for 

distinguishing every blast cell in the image. 

 
Figure 5.10: Label Matrix where each blast cell are labeled with different number 

 
The first step in the sub-imaging process was to find the center point of each blast cell in 

the binary image. The center point of the blast cell would be the center point of the sub-

image that would contain a single blast cell and the width of the sub-image would be 

double the axis length (AL) of the blast cell. The reason behind doubling the width of the 

sub-image was to ensure that enough room was kept for further processing of each sub-

image. For example, if the fitting bounding box was used, in some cases a portion of other 

blast cell which is very near to the cell of interest would be cropped inside the bounding 

box, this portion needed to be removed for instance, by using morphological clear border, 

otherwise it would be considered in the feature extraction stage. When using the fitting 

bounding box, the cell of interest would still be touching the border, and when clearing the 

objects that were in touch with the sub-image border, the cell of interest could be removed 

from the sub-image. That is why enough room around the four directions of the blast cells 

was retained.  
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The cropping of blast cells sub-images was carried out based on the following algorithm. 
Purpose 1: Cropping sub-images for each blast cell. 
Input 2: 

3: 
Function  fn(i,j) represent a label matrix of  size R x C  image 
(Original_ localized) Image of the localized blast Cells with original RGB Pixels 

Output 4: Sub-images of each blast cell 
Procedure 5: For each object in the label matrix image. 
 6:   Find the center point  of each WBC ሺݔ௖,  ௖ሻ using Equation 5.1 and 5.2ݕ
 7: For counter=1  nth object number 
௡ݔ                          :8 

௖ ൌ ଵ
஺೙

∑ ∑ ,௡ሺ݅ݔ ݆ሻ஼ିଵ
௝ୀ଴

ோିଵ
௜ୀ଴  ……(5.1) 

௡ݕ                :9 
௖ ൌ ଵ

஺೙
∑ ∑ ,௡ሺ݅ݕ ݆ሻ஼ିଵ

௝ୀ଴
ோିଵ
௜ୀ଴  ……(5.2) 

 10:      End For 
  Where n  is the nth object, An is the area of the nth object and it can be found using 
Equation (5.3) 
௡ܣ                          ൌ ∑ ∑ ௡݂ሺ݅, ݆ሻ஼ିଵ

௝ୀ଴
ோିଵ
௜ୀ଴  ………..(5.3) 

 11:     Find the horizontal and vertical  Axis Length ሺܸܮܣ ܽ݊݀   ሻ of the WBCܮܣܪ
 12:    If VALn > HALn then 
 13:        (Axis length)  ALn = VALn 
 14:    Else 
 15:         (Axis length) ALn= HALn 
 16:    Endif  
 17:    (The upper Left Corner point) uln= ሺ൫ݔ௡

௖ െ ሺܮܣ כ 2ሻ൯, ሺݕ௡
௖ െ ሺܮܣ כ 2ሻሻሻ 

 18:    (The Width of the sub image) wn = ሺ2 כ  ሻܮܣ
 19: End For 
 20: For each object in the image 
 21:       From the image (Original_ localized), Crop the (sub-image)n (uln,wn) 
 22: End For 
 

Figure 5.11 illustrates the sub-imaging procedure 

Figure 5.11: Illustration of sub-imaging procedure 
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In Figure 5.11, the red colored point in the center of the last blast cell is considered the 

center pointሺܺ௡, ௡ܻሻ, and the yellow line represents the distance from the center of the blast 

cell to the top left corner which was found based on the Axis Length ሺܮܣሻ of the blast cell 

itself. The ܮܣ is of variable distance and based on the size of the blast cell. The blue line 

represents the width of the sub-image, and finally the black lines represent the lines that 

complete the sub-image rectangle. If another blast cell falls in the same sub-image, part of 

it will touch the border of the sub-image. In this case all the object’s pixels that are 

touching the border of the image can be removed. This is achieved by clearing the border 

object, by using an application of a mathematical morphology that removes all connected 

components of a binary image that touch any image border 

The algorithm shown in Section 5.2 was implemented mainly for blast cells’ localization 

and sub-imaging. This algorithm was produced during the early stage of this research when 

the dataset of images was not yet complete. However, this algorithm did not address a 

number of important issues in blast cell segmentation such as segregating touching cells 

and nucleus/cytoplasm separation. The next section discusses improvements to this 

algorithm where issues such as color variation, touching cells, nucleus/cytoplasm 

separation are considered. 

 
5.3 A Completed Blast Cell Segmentation Algorithm (CBCSA) 

The segmentation method discussed in this section is an advanced alternative to the BCL 

method that was presented in Section 5.2. This method consists of three main modules 

namely the Erythrocytes Removal and Background Suppression, Blast Cell Reconstruction 

and the Nucleus/ Cytoplasm Separation module.  Figure 5.12 shows the sequence of the 

three main modules.  
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Figure 5.12: Stages of the Completed Blast Cells Segmentation Algorithm (CBCSA) 
 
As the image acquisition process continued, more complex PB images were acquired. The 

complexity here comes in terms of the color uniformity and the homogeneity of the cells 

distribution in the blood smear. These two problems actually result from the camera and 

microscope settings that was used as well as from the blood smear preparation procedure. 

This type of complexity appears with some of the new images acquired with a 1000x 

magnification in Dataset-A (Figure 4.5) and also in Dataset-B (Figure 4.6), which is 

considered a foreign Dataset.   

5.3.1 Erythrocytes Removal  

In the localization algorithm presented in Section 5.2, the binary version of the Hue 

channel image, namely the bwH, was used as a Mask (Figure 5.5) in the blast cell 

reconstruction process. In the bwH image, all the erythrocytes and blast cells were 

presented. Using the bwH as a Mask works very well when the cells distribution is 

uniform, in other words, the cells are far away from each other. However, this could cause 

some problem in cases where the Erythrocytes are touching the cells of interest since the 

Erythrocytes may be reconstructed together with the cell of interest. In order to tackle this 

problem, a new module namely the “Erythrocytes Removal” was introduced to prepare the 

Mask image.    

 
RBC’s Removal and Background Suppression 

Blast Cell Reconstruction  

Nucleus and Cytoplasm Separation 
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The main target of this module is to remove most of the erythrocytes from the peripheral 

blood image, while highlighting the blast cells and making it more prominent. This module 

also focuses on enhancing the color distribution of all the blood components presented in 

the image so that the borders between all the cells become clearer and sharper. This module 

involves several image processing steps combined in an appropriate sequence to fulfill the 

required target. Figure 5.13 demonstrates the key steps involved in this module. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.13: Flowchart of Erythrocytes Removal Process 
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First, the original image color was enhanced using color contrast stretching. This step was 

applied to reduce the noise generated during the acquisition process such as illumination 

variation and to make the color of the erythrocytes highly different from the blast cell 

cytoplasm. 

 The original RGB image was decomposed into its original three bands namely Red, Green 

and Blue. Then, the Intensity of each band was adjusted by mapping the image intensity 

value to a new range such that 1% of the image data was saturated at low and high 

intensities. After that, the enhanced images were combined to form a new RGB color image 

with color contrast enhanced, as shown in Figure 5.14. 

 
a 

 
b 

Figure 5.14: Color Contrast Enhancement (a) Original image, (b) Enhanced image 

 
The enhanced image was then transformed to the Lab color space. In the Lab color system, 

the ࡸ represented lightness and it can take a value from 0 (black) to 100 (white). The ࢇ 

value has a variation from –  value has the ࢈ while the (redness) ࢇto ൅ (greenness) ࢇ

variation from –  channel ࢈ The .(Sahin & Sumnu, 2006) (yellowness) ࢈to ൅ (blueness) ࢈

from the Lab color space was then extracted. In fact, it has been observed that the ࢈ 

channel makes the Erythrocytes appear more vivid as compared to the nucleus and 

cytoplasm of the blast cell. This is because yellow is present in the Erythrocytes, where it is 

almost absent in the blast cells.  
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The median filter was applied to the ࢈ channel image to enhance the pixels, which are 

likely to be affected by noise and also to reduce the pixels discontinuities in the blast cell 

region especially in the nucleus region (the region surrounded with red color borders in 

Figure 5.15 (a-b)) due to the non-homogeneous nuclear chromatic pattern. The non-

homogeneous nuclear chromatic pattern makes some of the pixels in the nuclear region 

have a high intensity value similar to the Erythrocytes pixels, where these pixels could be 

retained after applying the threshold process. Figure 5.15 (a-b) shows the ࢈ channel image 

and the smoothed ࢈ channel image after applying the median filter, respectively. 

a b 
Figure 5.15: Extracted ࢈ channel image before and after applying median filter. (a) ࢈ 

channel image, (b) Smoothed ࢈ channel image with median filter 

To obtain the Erythrocytes binary image, Otsu threshold was used. Figure 5.16 shows the 

histogram of the smoothed ࢈ channel image depicted in Figure 5.15(b).  
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Figure 5.16: Histogram of the smoothed ࢈ channel image 

As shown in Figure 5.16, the histogram is divided into three distinctive areas namely blasts 

in the yellow rectangle, background plasma in the red rectangle and Erythrocytes in the 

green rectangle. The Otsu method chooses the threshold value in the valley between two 

overlapping peaks which falls between the background and the Erythrocytes (Please Refer 

to Figure 5.16). In this case, the chosen threshold value is 149, this means that the pixels 

below the selected threshold are turn into black and the pixels value above 149 are turned 

into white. Figure 5.17 shows the binary image of the highlighted Erythrocytes 

 
Figure 5.17: Binary image of highlighted Erythrocytes 

The binary image in Figure 5.17 was used as a mask to remove all the Erythrocytes from 

the original image.  

 
Background 

Erythrocytes 

Blasts 

Threshold 
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a b c 
Figure 5.18: Final steps to prepare the Mask image. (a) Original image after subtracting 

Erythrocytes, (b) Hue channel of (a), (c) Final Mask image 
 
Figure 5.18(a) shows the original image after removing almost all the Erythrocytes. Two 

components remain in the image, namely the blast cells and the background plasma. In 

order to remove the plasma part from the image, the image was transformed into a HSV 

color space and the Hue channel was extracted (Figure 5.18 (b)). The Hue channel was 

used because it can perfectly discriminate between the blast cells and the plasma. Here, all 

the cellular pixels were highlighted as a foreground and the plasma pixels as a background. 

To produce the final Mask image, a threshold was applied on the Hue channel image, and 

then the result was processed with morphological holes filling and morphological opening. 

This was done in order to close any holes caused by the threshold process and to clear the 

image from small particles as well as to smoothen the blast cells contours. The final Mask 

image is shown in Figure 5.18 (c).  

 
5.3.2 Segregating Touching Cells  

The problem of adjacent blast cells is actually present in many of the blood smear images 

of leukemia patients. For better leukemia cell classification, each blast cell should be 

separated individually in order to extract a group of features from each cell for subsequent 

classification. To solve this problem, the watershed algorithm implemented in the public 

domain software for image analysis, ImageJ (NIH, Bethesda, Maryland, USA; 

http://rsb.info.nih.gov/ij/) was used. 

http://rsb.info.nih.gov/ij/�
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The watershed was applied on the binary Mask image presented in Figure 5.18 (c). In the 

Mask image, two gray levels were included (black and white). To make the Mask image 

suitable for watershed transform, a distance transform image was needed. For this purpose, 

the Euclidean distance transform was used. The aim of this was to process the binary image 

where the distance from every pixel of the object component to the nearest background 

pixel was computed in order to identify the Ultimate Eroded Points (UEPs). The UEPs was 

considered as a marker of each blast cell in the image (catchment basins maxima).  

At a later stage of this research (Please Refer to Section 7.3), the marker-controlled 

watershed was used. We propose to use the identified nuclear region obtained from the 

binary version of the saturation channel (Please Refer to Figure 5.6) as a marker (catchment 

basin maxima) to force the watershed algorithm to use these markers in order to reduce the 

over-segmentation (under-segmentation) effects. Figure 5.19 shows the distance map of the 

Mask image while Figure 5.20 shows a 3-D representation of the distance map.  

 
Figure 5.19: Distance map of the Mask image 
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Figure 5.20: 3-D representation of the distance map 

By analogy, the water is immersed in the catchment basin in a bottom-up approach, i.e. the 

water flow into the valley from the local maxima points filling each catchment basin. When 

the basin is about to overflow, a dam is built on its neighboring ridge line such as the red 

line in Figure 5.20. The final result of the segregated touching blasts is shown in Figure 

5.21.  

 
Figure 5.21: Segregated touching blast cells 

 UEP

UEP
UEP
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During the acquisition process, the camera was unable to cover the whole blood smear area 

and some blast cells were connected to the border of the acquired image and hence, might 

not be completely visible. These cells had to be removed from the image since they were 

incomplete and could negatively impact the feature extraction phase. To maintain only the 

full sized cells, the morphological border clearing was employed. 

 
5.3.3 Marker Image Preparation  

As mentioned earlier, the morphological reconstruction process requires two main input 

images namely, the Mask and Marker. The preparation of the Mask image was described 

in detail in Section (5.3.1) of this chapter. The Marker image was prepared in a similar 

way to the proposed BCL method presented in Section (5.2.2). Here, the original image was 

transformed into a HSV color space in order to extract the Saturation channel. The 

Saturation channel image was then converted into a binary image. After that, morphological 

erosion was applied in order to remove small particles and retain only marker pixels which 

belong to the blast cell’s nucleus.  

After the preparation of the Mask and Marker images, the morphological reconstruction 

was applied to localize the completed blast cells as shown in Figure 5.22. 

 

Figure 5.22: The Localized Blast cells 
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 To extract each blast cell into a single sub-image, the sub-imaging process was carried out 

in the same manner as discussed in Section (5.2.4). 

 
5.3.4 Nucleus/Cytoplasm Separation 

After extracting each blast cell into a single sub-image, the nucleus was separated from the 

cytoplasm for further analysis. The blast cells are characterized by immature nuclear 

chromatin pattern (Rubin et al., 2008).  It has been observed, from all the extracted blast 

cell’s sub-images, that the presence of condensed and smudged nuclear chromatin pattern 

varies from one blast cell to another. The variability in nuclear chromatin pattern makes the 

separation process much more challenging. Figure 5.23 shows a blast cell sub-image 

extracted using the proposed extraction algorithm presented in Section 5.3 with less 

condensed nuclear chromatin and blur nuclear-cytoplasmic margin in some areas.  

 

Figure 5.23: Single blast cell sub-image 
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To address the problem of nucleus/ cytoplasm separation, the approach presented in Figure 

5.24 was proposed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

Figure 5.24: Nucleus/Cytoplasm Separation Steps. 
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The proposed Nucleus/Cytoplasm separation process was mainly based on the Seeded 

Region Growing (SRG) algorithm (Adams & Bischof, 1994). The input sub-image consists 

of two main regions; these include the nucleus and cytoplasm. The proposed approach 

involves, first segmenting the nuclear region, and then subtracting it from the original 

image in order to only retain the cytoplasm.  

As mentioned earlier, the saturation channel of the HSV color space causes the nuclear 

region to appear as the brightest region in the image. Hence, the input sub-image was 

converted into HSV color space in order to extract the saturation channel (Figure 5.25 (a)). 

In order to make the nuclear region’s pixels more homogenous, a copy of the saturation 

image was enhanced with histogram equalization (Figure 5.25 (b)). Later, both the original 

saturation image and the enhanced one were added together as shown in Figure 5.25 (c).   

a 
 

b c 
Figure 5.25: Production of homogenous nucleus. (a) Saturation channel, (b) Saturation 

channel after histogram equalization, (c) Resulting image after arithmetic addition of  (a) 
and (b). 

The seeded region was generated automatically by converting the image presented in 

Figure 5.25(c) into a binary image, as shown in Figure 5.26 (a) and then  shrinking it using 

morphological erosion to guarantee that the seeded region is part of the nuclear region (5.26 

(b)). 
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a 

 
b 

Figure 5.26: Generating the seeded region. (a) Binary version of image presented in Figure 
5.25(c), (b) Seeded region 

The seeded region was iteratively grown by comparing all the unlabeled neighboring pixels 

to the growing region. The region’s mean intensity was used as a measure of homogeneity 

between the unlabeled neighboring pixels and the grown region pixels. If the difference 

between the unlabeled pixels intensity and the mean intensity of the grown region was 

below a certain threshold, the unlabeled pixels were assigned to the grown region. The final 

result of the grown nuclear region is shown in Figure 5.27 where the outline of the grown 

nuclear region is highlighted with blue color borders.    

 

Figure 5.27: The grown nucleus region 
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5.4 Summary 

This chapter presented two methods for localizing and segmenting acute leukemia blast 

cells in PB images. In Section 5.2 of this chapter, blast cells localization (BCL) method, 

based on color space analysis and mathematical morphology operations, was proposed. The 

method first determined the most effective and discriminative color channels that were able 

to discriminate blast cells from other blood components. It then applied a mathematical 

morphology operation to pre-process and extract the cells of interest. After that, a sub-

imaging algorithm was followed in order to extract each blast cell individually. 

Section 5.3 described the improvements that were carried out on the BCL algorithm (Please 

Refer to Section 5.2) by addressing a number of issues presented in PB image segmentation 

such as color variation, segregating touching cells and nucleus/cytoplasm separation. 

Various stages of the developmental process were covered and the details of the outcome of 

each stage were presented. The implementation process was long due to the complexity of 

the process, but was completed successfully, thanks to careful planning. 
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CHAPTER 6 

FEATURE EXTRACTION, SELECTION AND BLAST CELL 
CLASSIFCATION 

 
6.1 Introduction  

Due to the technological advancements in microscopic imaging and image-processing 

techniques in the recent years, there has been a momentous increase of interest in 

computer-aided diagnosis of acute leukemia (Madhloom et al., 2012b). This new tool seeks 

to remove subjectivity and confusion from the diagnostic routine and provides a reliable 

second opinion to Hematologists and laboratory technologists. However, based on the 

literature review presented in chapter 3, it is acknowledged that a number of 

improvements are required for the computer-based algorithms to be routinely adopted in the 

diagnostic process. Figure 6.1 shows the proposed methodology stages, namely, image 

acquisition, segmentation (which was discussed in chapter 4 and 5 respectively), feature 

extraction, feature selection, and classification. This chapter presents a complete 

description of the experimental steps that were carried out during the implementation of the 

last three stages (highlighted in Figure 6.1). 

 

 

 
Figure 6.1: The proposed methodology stages with emphasis on feature extraction, 

selection and classification 
 
6.2 Feature Extraction  

As discussed earlier in chapter 4, there is no general powerful set of features that is 

appropriate for all computer vision applications. Feature extraction was used to extract the 

features in a similar manner to those visually detected by a domain expert that accurately 

characterizes a blast cell.  

Image 
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The feature extraction methodology of many acute leukemia diagnostic systems has been 

largely based on the morphological characteristics of blast cells presented in the FAB 

classification scheme (Please Refer to Table 2.5 and Table 2.6).  

In this research, we propose a new feature extraction method, which combines distinctive 

types of features including novel ones and a number of others which is adopted from 

existing studies. In the proposed feature extraction process, three different types of 

features were extracted and combined, comprising of shape, texture and color features.    

 
6.2.1 Shape Features 

In clinical diagnostic approaches, domain experts look for the visual differences within the 

blast cell taking into consideration the morphological and geometrical changes in the 

appearance of the blast cells.  The shape features is a set of scalars that are produced to 

describe a given shape property such as size, axis length, convex area, etc. The shape 

descriptor attempts to quantify the geometrical appearances of blast cells in ways that agree 

with the domain expert’s perception. A good and accurate object classification based on 

shape features, requires the classification process to group objects with similar shapes from 

a set of images. In this research, the shape features were extracted from a completed blast 

cell as well as from its nucleus. On the other hand, cytoplasm features were not used as 

stand- alone features since most of the cytoplasm features are already included in the blast 

cell. Moreover, stand-alone cytoplasm features are not relevant to the classification of the 

blast cells (Reta et a., 2010). In order to extract meaningful shape characteristics of the blast 

cells and its nucleus, a total of 15 simple shape descriptors as well as one ratio feature were 

used. Although, these features are considered primitive descriptors of an object, they are 

simple and generally applicable. Furthermore, these features can reflect the semantic 

meaning of the blast cell in a similar manner to the domain experts’.  
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Such features included the size of the blast cell or its nucleus, the regularity of the shape; 

whether it looks like a circle or look like an oval; the length and width of the cell, and other 

features as discussed in this chapter. Figure 6.2 depicts the graphical representation of some 

of the simple shape features used in this research.   

 

 
a 

 
b  c 

d   
e  f 

 

g 

 

Figure 6.2: Graphical representation of simple shape features. (a) Original blast cell, (b) 
Area, (c) Rectangular bounding box, (d) Convex Hull (e) circularity, (f) perimeter,  

(g) minimum bounding ellipse 
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The following shape-based features were extracted from each blast cell and its nucleus:  

 Area  (A):  represented by the number of pixels in the ROI. This feature was used to 
quantify the size of the ROI. Figure 6.2 (b) shows the area of the blast cell as all 
the pixels are highlighted with red color. 

 
Eccentricity  (ECC):  Figure 6.2 (c) shows the minimal bounding box of a blast cell 

sample. The Eccentricity represents the ratio of the length L and width W of the 
minimal bounding box of the ROI, that is, it measures the degree in which the blast 
cell and its nucleus resemble an ellipse.  

 
Elongation (Elo): Another measure which can be calculated from the bounding box is 

elongation. It describes the extent of elongation of the blast cell and its nucleus.  
 
Convex Area (Cov­A): The convex area is represented by the smallest convex polygon 

namely convex hull (Figure 6.2 (d)) that can contain the ROI. This feature is useful 
when measuring the area of the ROI without considering any irregularities in the 
ROI’s boundary.    

 
Solidity (Sol): describes the extent to which the ROI is convex or concave. It can be 

computed as the ratio of the A to Conv-A, where the solidity of a convex ROI is 
always 1.  

 
Circularity (Cir): Circularity as the ratio of the perimeter squared to the area. This 

measure describes how much the ROI is similar to a circle and it reflects the 
complexity of the object boundary (Figure 6.2 (e)). 

Perimeter  (P): Number of boundary pixels that belong to an object. This measure 
quantifies the distance of the outside boundary of the blast cell or its nucleus 
(Figure 6.2 (f)).  

 
Rectangularity (Rec): Rectangularity is represented as the ratio of the ROI’s area to the 

area of its minimum bounding box. This measure describes how much the ROI is 
similar to a rectangle. 

Equivalent-Diameter (Equiv-D): Diameter of the circle having the same area as the 
ROI.  

 
Best-fit-Ellipse (BFE): the BFE was used to extract more irregularity features from the 

blast cell and its nucleus such as (1) area, (2) major and (3) minor axis length, (4) 
diameter, (5) eccentricity and (6) perimeter. These measures are very important in 
quantifying the degree of regularity since the degree of regularity of the blast cells 
and its nucleus varies between the two acute leukemia types especially for the 
nucleus part (Figure 6.2 (g)).  
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Ratio Cell/Nuclues (RC/N): The ratio of the whole blast cell to its nucleus is represented 
by the ratio of the nucleus area size to the whole blast cell area size. In clinical 
diagnosis, this feature is considered a major difference between a lymphoblast and 
a myeloblast. The nucleus area of the lymphoblast usually occupies more space 
than the myeloblast’s nucleus (Dunn & Pallister, 1998).  

 
In total, 15 shape-based features were extracted from the binary image of each blast cell 

and its nucleus together with the ratio between the cell and its nucleus. Thus, the shape 

features vector consists of 31 features for each blast cell.  

 
6.2.2 Texture Features 

Another very important feature which is used to differentiate between the ALL and AML is 

the “nucleus chromatin structure”. In general, the nuclear chromatin in ALL is more 

condensed than in AML (Kumar et al., 2007). In order to capture the features of the nucleus 

chromatin pattern, two types of texture features were used namely the Histogram-based 

features and the GLCM features. Both of these texture features were extracted from the 

grayscale image of the nucleus.  

 
6.2.2.1 Histogram-Based Features  

In this simplest form of texture feature, the features are extracted from the gray-level 

histogram of an image (Please Refer to Section 3.3.2.1). Figure 6.3 (a) and Figure 6.4 (a) 

show two samples of an ALL and AML nuclei, respectively.  

 
a 

 
b 

Figure 6.3: Histogram-based features (ALL). (a) Original ALL sample, (b) Grayscale image 
of the ALL sample 
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c 

Figure 6.3: Histogram-based features (ALL) (c) Histogram of the grayscale ALL Sample 
 

 
a 

 
b 

 
c 

Figure 6.4 Histogram-based features (AML). (a) Original AML sample, (b) Grayscale 
image of the AML sample, (c) Histogram of the grayscale AML Sample 
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The histogram-based features were extracted from the nucleus grayscale image. A sample 

of the ALL nucleus in a grayscale format is shown in Figure 6.3 (b), while Figure 6.4 (b) 

shows the sample of AML nucleus in grayscale format. Figure 6.3 (c) and Figure 6.4(c) 

show the histogram of the ALL and AML nuclei, respectively. It can be observed from the 

histograms of both acute leukemia samples that there is a clear difference in the nuclear 

chromatic pattern. To capture the differences between the ALL and the AML histograms, 6 

histogram-based features were extracted from the histogram of the grayscale image for each 

nucleus sub-image, taking into consideration to remove the white background pixels before 

calculating the histogram statistics. The 6 histogram-based features are tabulated in Table 

6.1 below.  

Table 6.1: Histogram-based features extracted from blast cell nucleus 
No. Histogram Feature Equation No. 

1. Mean (3.20) 

2. Standard deviation (3.21) 

3. Energy (3.22) 

4. Entropy (3.23) 

5. Skewness (3.24) 

6. Kurtosis (3.25) 

 

6.2.2.2 GLCM Features  

GLCM features are known to be the most common and successful techniques for texture 

analysis. The theoretical background of GLCM is illustrated in Section 3.3.2.2, whereas 

Table 3.2 rows 1-14 presents the standard GLCM texture descriptors proposed by (Haralick 

et al. 1979). 

In this research, apart from using the standard GLCM texture descriptors discussed by 

(Haralick, 1973), other recent GLCM texture descriptors discussed by (Clausi, 2002; Soh & 
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Tsatsoulis 1999) and the MATLAB Image Processing Toolbox were adopted and used for 

texture features computation of the nuclear chromatin structure. These features are 

tabulated in Tables 6.2 through 6.5, respectively.  

Table 6.2: GLCM texture features from (Haralick, 1973) 
No. GLCM Feature Equation  

No. 
1. Angular Second Moment (3.26) 

2. Contrast (3.27) 

3. Correlation (3.28) 

4. Sum of Square Variance (3.29) 

5.   Sum Average (3.31) 

6.   Sum Entropy (3.32) 

7.  Sum Variance (3.33) 

8.  Entropy (3.34) 

9. Difference Variance (3.35) 

10. Difference Entropy (3.36) 

11. Information Measure of Correlation I (3.37) 

12.  Information Measure of Correlation II (3.38) 

 

Table 6.3: GLCM texture features from Soh & Tsatsoulis (1999) 
No. GLCM Feature Equation  

No. 
1. Autocorrelation 

 
(3.40) 

2. Cluster Prominence 
 

(3.41) 

3. Cluster Shade 
 

(3.42) 

4. Dissimilarity 
 

(3.43) 

5. Homogeneity 
 

(3.44) 

6. Maximum Probability 
 

(3.45) 
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Table 6.4: GLCM texture features from Clausi (2002) 
No. GLCM Feature Equation  

No. 
1. Inverse Difference Normalized 

 
(3.46) 

2. Inverse Difference Moment Normalized 
 

(3.47) 

 
Table 6.5: GLCM texture features from MATLAB Image Processing Toolbox 

No. GLCM Feature Equation  
No. 

1.  Homogeneity (3.48) 

2.  Correlation 
 

(3.49) 

 

Based on Haralick GLCM features, a total of 12 distinctive features were employed (Table 

6.2). However two features were omitted from the original 14 Haralick features namely the 

inverse difference moment and the maximum correlation coefficient. The inverse difference 

moment was not considered in this research as this feature is already similar to the 

Homogeneity feature calculated in (Soh & Tsatsoulis 1999) method. On the other hand, it 

has been found in the literature (Désir et al., 2010, Markey et al., 1999) that the maximum 

correlation coefficient is computationally expensive. For this reason the maximum 

correlation coefficient was not considered.    

Besides the Haralick features, a total of 6 GLCM texture feature descriptors shown in Table 

6.3 (Clausi, 2002) and 2 (Soh & Tsatsoulis, 1999) shown in Table 6.4 were adopted for 

texture feature extraction. These texture descriptors are more recently proposed in the 

literature and have indicated more promising results in pattern classification problems using 

textures. The graycoprops function in the MATLAB calculates the statistics specified from 

GLCMs, which has four texture descriptors, namely: contrast, correlation, energy and 

homogeneity.  
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It is noticed that the calculation formulae of the Contrast and Energy texture descriptors in 

the MATLAB Image Processing Toolbox are similar to the ones proposed by Haralick 

(1973). Thus, only the two texture descriptors implemented in the MATLAB Image 

Processing Toolbox, namely correlation and homogeneity, were applied in this research as 

shown in Table 6.5. 

In total, 22 GLCM texture descriptors were identified in this research, which are shown in 

Tables 6.2, 6.3, 6.4 and 6.5. The GLCM computational parameters: Number of grey levels, 

Distance between pixels and Angle (Please Refer Section 3.3.2.2) used for texture feature 

extraction are discussed as follows: 

(a) Number of gray Levels 

In this research, we considered the ability of the GLCM features to classify nucleus 

chromatin structure using six different gray-levels quantization. This is important 

since different quantization levels might produce different results. Hence, the 

objective of using different quantization levels is to investigate the behavior of 22 

co-occurrence features, as a function of six gray-levels quantization that are powers-

of-two (8, 16, 32, 64, 128, and 256 levels), to classify acute leukemia blast cells 

based on the nucleus chromatic structures. Figure 6.5 shows samples of a nucleus 

sub-image quantized to 8, 16, 32, 64, 128, and 256 levels respectively. 

 
8 

 
16 

 
32 

 
64   

128 
 

256 
Figure 6.5: The effect of gray level quantization on nucleus chromatic pattern 
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To our knowledge, this approach of co-occurrence statistical features applied to the 

blast cell’s nucleus images is original.  

(b) Distance Between Pixels 

GLCMs are constructed by identifying neighboring pairs of image cells with a 

distance ݀ from each other and incrementing the matrix position corresponding to 

the grey level intensity of both cells, as shown in Figure 3.13. In this research, the 

value of ݀ is chosen as ݀ ൌ 1, in order to represent the distance between the pixel of 

interest and the neighboring pixels in each ROI. 

(c) Angle 

As indicated in Figure 3.13, the most common GLCM directions for a given 

distance ݀ are: ሺ0ל, ݀ሻ , ܲሺ45ל, ݀ሻ, ܲሺ90ל, ݀ሻ, ܲሺ135ל, ݀ሻ. In this research, all four 

directions were used.  

The total number of GLCM texture features computed using the GLCM parameters 

mentioned above, are listed in Table 6.6. For each nucleus sub-image, 528 feature values 

were computed using the 22 GLCM texture features as listed in Table 6.2 to Table 6.5. This 

means that, for each GLCM matrix calculated for the four directions based on specific 

quantization, 88 feature values were calculated. 

Table 6.6: GLCM texture features calculated for each nucleus sub-image 
GLCM Parameters Parameters Value 

GLCM Texture Features (Table 6.2, 6.3, 6.4 and 6.5) 22 

GLCM directions (0ל45 ,ל, ,ל90  4 (ל135

Distance ሺ݀ ൌ 1ሻ 1 

Gray-Levels Quantization (8,16,32,64,128,256) 6 

Total number of GLCM features calculated for each nucleus sub-image 528 
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6.2.3 Color Features 

The simplest and most frequently used representation of color content is the color 

histogram. It represents the joint probability of the intensities of the three color channels 

and captures the global color distribution of an image.  Here, color features were derived 

from the two different color spaces namely RGB and HSV. Each color image was 

decomposed into its three distinctive color channels including the red, green, and blue 

channels in the RGB and hue, saturation, value in the HSV. The histogram was calculated 

from each color band image. A total of 6 features, tabulated in Table 6.1 were derived from 

each generated histogram in the same way as in Section 6.2.2.1. In total, 36 color features 

were extracted for each nucleus sub-image.  

 
6.3 Feature Selection 

Various types of features were employed to address the blast cell’s morphology, including 

shape, texture and color. In total, 601 features were extracted from each blast cell, and its 

nucleus:  31of these were shape-based features, while 534 were texture-based features and 

36 were color-based features.  As discussed in Section 4.4 of this thesis, for feature 

selection, SFS wrapper technique was used by employing a 10-fold cross-validation with a 

Naive Bayes learner to evaluate feature sets. Naive Bayes algorithm was adopted as a 

learner because of its robust performance with respect to irrelevant features (Kohavi and 

John., 1997). 
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6.4 Blast Cells Classification  

6.4.1 Data Normalization 

The main advantage of using scaling is to avoid attributes in greater numeric ranges 

dominating those in smaller numeric ranges. Another advantage is to avoid numerical 

difficulties during the calculation (Hsu et al., 2003).  For that purpose and prior to the 

development of the classification engines, the optimal subset of features obtained were 

normalized in the range between 0 and 1.  

 
6.4.2 Training and Testing Data Separation 

To implement the two selected classifiers (MLP-NN and SVM), the normalized data needs 

to be separated into two distinct sets, i.e. the training set and the testing set. As illustrated in 

Chapter 4 Table 4.2, the total number of blast cells obtained from the acquired PB images 

was 1303, out of which 987 are AML samples and the remaining 325 are ALL samples.  

It is worth mentioning that the acute leukemia classification was performed based on the 

two main types, the ALL and the AML, and not on the subtypes level. This is because acute 

leukemia subtypes are important for the disease prognosis (Cairo & Perkins,  2012), and the 

subtypes under the same group have similar treatment options except for the M3 subtype of 

AML. Recent studies in molecular biology have discovered that this subtype requires 

different treatment options than the other AML subtypes (Abdul-Hamid, 2011). However, 

differentiating between the M3 and other AML subtypes is beyond the scope of this 

research and could be addressed in future work.  

In order to split the feature data into the training and the testing sets, the Holdout method 

was used. In this method the samples were randomly divided, two-thirds (70 percent) of the 

samples from both classes were allocated to the training set and the remaining one-third (30 
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percent) of the samples were allocated to the testing set. The specifications of the samples 

in the training and the testing sets are indicated in Table 6.7. 

Table 6.7: Ratio of samples used for training and testing 
Class Number of Samples Training Set Testing Set 
ALL 325 227 98 
AML 978 685 293 
Total 1303 912 391 

 
The dataset shows a degree of imbalanced distribution in the number of samples from both 

types of acute leukemia, i.e. there were more AML samples than ALLs’. The ALL 

(minority class) to the AML (majority class) ratio is approximately 1:3, this ratio is not 

considered to be tremendously significant (Chawla et al., 2011).  At a later stage of this 

research, an oversampling technique, (namely, SMOTE) was used to balance the ratio of 

the data samples.  

 
6.4.3 MLP-NN Optimization, Training and Testing 

In the MLP-NN design process, there were several critical parameters that need to be 

determined properly, i.e. the learning rate, the number of hidden layer, the number of 

neurons in the hidden layer, the activation function, and the number of epochs. In general, 

the performance of the ANN would be very poor, if these parameters were not chosen 

correctly. As discussed in Chapter 4 Section 4.6.1 of this thesis, the number of the MLP-

NN input nodes depends directly on the number of the input features. While the number of 

the output nodes was set to two outputs (ALL and AML). Meanwhile, a MLP-NN trained 

with back-propagation was employed. The number of hidden layers was set to one and the 

sigmoid activation function was used throughout the model. On the other hand, there were 

still other parameters, namely, the learning rate, the number of neurons in the hidden layer 

and the training cycle (epoch) that was needed to be chosen properly. The validation 

training effect was compared on different network architecture using trial and error.  
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Three different learning rates were tested, these included, 0.001, 0.01 and 0.1. Moreover, a 

total of six different numbers of nodes in the hidden layer (H) were experimented. These 

included, H = 2, 4, 6, 8, 10, 12. A maximum training cycle (epoch) of 1200, taking into 

consideration the validation accuracy at every hundred training cycle, were experimented 

with. A total number of 18 different network architectures were tested. The results of the 

experiments showed that the best performance was obtained at a learning rate of 0.01 with 

four nodes in the hidden layer (Please Refer to Section 7.5). 

To build an appropriate MLP-NN model using back-propagation algorithm, the available 

data was divided into three portions. One approach that can be used to avoid over-fitting, is 

the K-fold cross-validation technique. In order to select the best model architecture, the 

method of 10-fold cross validation was used. 

Figure 6.6: MLP-NN model optimization, Training and Testing process 

As shown in Figure 6.6, we ran 18 sets of 10-fold cross validation experiments each with a 

different set of parameters.  
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The accuracy results of the 18 different models were then evaluated and compared. The 

model that produced the maximum accuracy was selected as the best architecture. The best 

model architecture was then trained with the whole training set (912 samples) and tested 

with an unseen data using the testing set (391 samples). For each model, the training 

parameters were selected, then the training set (912 samples) was iteratively divided into 10 

folds; one fold was selected and removed from the dataset. For each model, the network 

was trained on 9 folds, and the accuracy of the model was calculated on the removed fold. 

This process was repeated for each fold and the calculated accuracy across the whole 

training set was averaged.  

 
6.4.4 SVM Optimization, Training and Testing  

Based on the SVM requirement analysis discussed in Chapter 4 Section 4.6.2, SVM 

classifier with the RBF kernel was used in order to classify acute leukemia blasts. 

Meanwhile, there were two important parameters in RBF kernel, namely the  ܥ and ߛ. 

These needed to be determined in order to construct the SVM classifier with an optimum 

balance between its memorization and generalization capability. 

The flow chart presented in Figure 6.7 describes the whole process of acute leukemia blast 

cells classification using the optimal SVM classification engine. The algorithm started by 

splitting the dataset into training and testing sets (Please Refer to Table 6.7). The training 

set was used in the process of finding the best  ሺܥ,  ሻ combination, and was also used toߛ

train the final SVM model with the best hyper-parameter found. The test set was used to 

evaluate the model performance. The test set was considered as an unseen data and was not 

used as part of the SVM training process. Nonetheless, the SVM training and testing 

process is more or less straightforward, however, the main issue is to find the best hyper-
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parameter  ሺܥ,  ሻ pair which can be used to minimize the classification error on the unseenߛ

testing set.   

In order to optimize the SVM hyper-parameter, the Grid Search method proposed by (Hsu 

et al., 2003) was used. Although, the grid search is considered exhaustive and time 

consuming compared to the other techniques such as the heuristics method, however, the 

computational cost required by the grid search is not significantly higher than that by 

advance techniques since the search is carried out for only two parameters (Hsu et al., 

2003). Moreover, the grid search is still labeled as the most reliable parameter search 

approach (Zhuang & Dai.,  2006). 

As recommended by (Hsu et al. 2003), an exponentially growing sequences of parameters 

-were used to identify the optimum parameter values with respect to the best 10 ߛ and ܥ

fold cross validation accuracy. 

In this trial and error procedure, 88 sequences of parameters in the range 

ܥ ൌ ሼ2ିହ, 2ିସ, … , 2ଵହሽ  and ߛ ൌ ሼ2ିଵଵ, 2ିଵ଴, … , 2ଷሽ were evaluated. The grid search was 

evaluated on each  ሺܥ,  ሻ pair based the SVM classification performance using the 10 foldߛ

cross-validation approach. The training data was randomly divided into 10 disjoint sets or 

folds. Each fold was taken from the training data and employed as a test fold for validation 

purposes. The model was trained with 9 folds, and then the performance measure was 

computed on the 10th fold. This process was repeated for each testing (validation) fold. 

Later, the 10 performance measures were averaged so that a single estimated performance 

measure could be obtained. The 10 fold cross-validation process was repeated with 

each  ሺܥ, ,ܥሻ  pair for 88 times.  The hyper-parameter  ሺߛ  ሻ corresponding to the highestߛ

average performance was adopted. Consequently, the elected hyper-parameters were used 

to train the SVM classification engine using the completed training set.  
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Nevertheless, during the training process, the values of the selected hyper-parameters were 

tuned manually within the range of the selected hyper-parameters bounds to investigate if 

the classification error can be further minimized. The SVM hyper-parameter search and the 

SVM classification engine were implemented in the open source data mining software, 

namely Rapidminer 5.3 , based on the most widely used and cited SVM package, i.e. the 

LibSVM which was proposed in the work of (Chang & Lin 2011). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                   Figure 6.7: SVM model optimization, Training and Testing process 
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Split data into Training and Testing sets  
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Hyper-parameter Optimization Steps (Grid Search) 

1. Select Hyper-parameters values ሺܥ,  ሻߛ
2. Random split the Training Set (T*) into Training (T) 

and Validation (V). 
3. Train the SVM on (T) for the selected Hyper-

parameters values.  
4. Compute the accuracy of the trained model on (V). 
5. Repeat Step 2 to 4 for 10 fold cross-validation.  
6. Compute the average accuracy obtained from 10 fold 

cross-validation. 
7. Repeat Step 1  to  5 for all ሺܥ,  ሻ combinationsߛ
8. Based on the best average accuracy obtained from the 

10-fold cross-validation, select the Hyper-parameter 
and train the SVM on (T*) dataset.  

Trained SVM Model 

Calculate Performance on Testing set (unseen data) 

Record the model performance accuracy

Stop 
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6.4.5 Dataset Balancing  

Most classification exercises assume that training samples are evenly distributed among 

different categories. However, in practical applications, datasets often exist in an 

imbalanced form. Although the dataset used in this work was not significantly imbalanced 

(Chawla et al., 2011) where the minority: majority ratio of our dataset was approximately 

1:3. However, oversampling the training dataset can consistently provide an improvement 

in the classification of test data. Moreover, it provides a more stable classifier in case of 

imbalanced classes. The oversampling technique, namely the Synthetic Minority Over-

sampling Technique (SMOTE), was adopted to oversample the minority (ALL) class by 

introducing synthetic samples. SMOTE was solely applied on the ALL class in order to 

increase the sample size and to attain an acceptable number of samples in the majority 

(AML) class. In some cases, SMOTE technique produces an intersection between the 

classes’ boundary, which in turn makes some samples of the majority class resides in the 

decision region of the minority class. In order to avoid the intersection between the ALL 

and AML samples created by the oversampling technique, the ALL samples were 

oversampled at different ratios such that the ALL were oversampled at 50%, 100% and 

200%, respectively. 

 
6.5 Summary 

In this chapter, the final steps and implementation methods for classification of acute 

leukemia blast cell images were presented. Three different types of features were extracted 

from each blast cell and its nucleus. In total, 601 features were extracted, as follow: 31 

shape-based features, 534 texture-based features and 36 color-based features. The SFS 

wrapper technique with the 10-fold cross-validation technique was employed to select the 

optimal set of features.  
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Two different classifiers, namely MLP-NN trained by back-propagation algorithm and the 

SVM were used to classify the acute leukemia blast cells. Intensive experiments to optimize 

the input parameters for both classifiers were carried out in order to choose the best 

classification model. Although the dataset is not severely imbalanced, the oversampling 

technique namely SMOTE was adopted for the purpose of studying the effect of 

oversampling the minority (ALL) class at three different rates on the test data.  

One of the main contributions of this study is that it proposes a methodology that can assist 

the hematologists’ in diagnosing cases of acute leukemia, by providing a computerized 

approach of image processing for classifying of blast cells. 
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CHAPETR 7 

RESULTS AND DISCUSSION  

 
7.1 Introduction 

In this chapter, we discuss the evaluation results of the implemented CAD-AL, focusing on 

how the results resolve the problems mentioned in Chapter 1. A diagrammatic view of the 

test and evaluation results of the proposed CAD-AL is depicted in Figure 7.1. 

 

 

 

 

 

Figure 7.1: Overview of the test and evaluation results of the proposed CAD-AL 
 
 

Figure 7.1: Overview of Test Results and Evaluation of the Proposed CAD-AL 
 

7. 2 Test and Evaluation Results of the Proposed Blast Cells Segmentation Algorithms 

The test and evaluation results of the proposed segmentation algorithms are presented in 

two parts, Blast cell localization (BCL) and the completed blast cell segmentation 

algorithm (CBCSA). The results from both algorithms are described in Sections 7.2.1 and 

7.2.2, respectively. 

 
7.2.1   Test and Evaluation Results of the Blast Cell localization algorithm 

The BCL algorithm presented in Section 5.2 is considered as the starting point towards a 

more sophisticated algorithm namely the CBCSA (Please Refer to Section 5.3).  

 Test and Evaluation Results of the Proposed CAD-AL 

Test and Evaluation Results of the 
Proposed Segmentation Algorithm 

 
• Evaluation of results related to the 

proposed segmentation algorithm 
• Discussion of results related to the 

proposed segmentation algorithm  
• Comparison between the proposed blast 

cells segmentation algorithm and other 
relevant approaches from the literature. 
 

Test and Evaluation Results of the 
Proposed Blast Cells Classification 

 
• Evaluation and discussion of the results 

related to feature extraction and selection. 
• Discussion of results related to ANN and 

SVM training stage.  
• Evaluation and discussion of results related 

to ANN and SVM testing stage. 
•  Comparison of test results between ANN 

and SVM classifiers. 
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This algorithm was the result of the initial experimentation on the blast cell segmentation 

stage carried out at the early stages of the work. The development of the blast cells 

localization (BCL) started right after acquiring the first batch of the PB images. This batch 

consisted of a 100 ALL images that contained 180 expert labelled Lymphoblast cells 

(Initial-Dataset). These 100 ALL images were used to test the performance of the 

localization algorithm. The localization algorithm was able to detect all of the 180 

Lymphoblast cells with 100% accuracy. Samples of the localization results can be visually 

observed in Figure 7.2, 7.3 and 7.4, respectively. These figures below show the original PB 

image (right) with the processed PB image (left) where the red line represents the 

boundaries of each localized blast cell.  

Figure 7.2: Localization of blast cells using BCL algorithm (example 1) 
 

Figure 7.3: Localization of blast cells using BCL algorithm (example 2) 
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Figure 7.4: Localization of blast cells using BCL algorithm (example 3) 
 

In order to measure the accuracy of the proposed BCL algorithm in a quantitative manner, a 

global quantitative method was used. For the purpose of evaluation, the ground truth (GT) 

of all of the 180 lymphoblast cells were localized and segmented manually by a 

hematologist as described in Section 4.2.3. The performance of the localization algorithm 

was evaluated by comparing the percentage of the mis-segmented pixels between the 

proposed localization algorithm and the ground truth.   Table 7.1 shows the final result of 

the evaluation and how it compares to the results of the manual segmentation done by the 

expert. Table 7.1 only shows part of the testing results, namely, the number of pixels that 

are classified as cellular in the manual and the proposed method, as well as the error rate 

and the accuracy rate. The test results show an accuracy rate of 90-95% in restoring the 

Lymphoblast pixels from the original image. The main sources of error in the proposed 

BCL algorithm were the color inconsistency presented in the acquired PB images as well as 

the presence of other blood components that were directly touching the Lymphoblast cells. 

In other words, the difference in color between the other components (erythrocytes and 

plasma) and the Lymphoblast cells were hardly detected  
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Table 7.1: Evaluation of the proposed BCL Algorithm 
   Proposed localization algorithm Ground Truth 

 

No. of cellular  
pixels =12062 

  

No. of cellular  
pixels =11136 

Error Rate =7.677,  Accuracy Rate=92.323 

  

No. of cellular  
pixels =12640 

  

No. of cellular  
pixels =11998 

Error Rate =5.079,  Accuracy Rate=94.921 

  

No. of cellular  
pixels =10218 

  

No. of cellular  
pixels =9532 

Error Rate =6.714,  Accuracy Rate=93.286 

  

No. of cellular  
pixels =10591 

  

No. of cellular  
pixels =10103 

Error Rate =4.608,  Accuracy Rate=95.392 

  

No. of cellular  
pixels =11899 

  

No. of cellular  
pixels =10931 

Error Rate =8.135,  Accuracy Rate=91.865 

  

No. of cellular  
pixels =9238 

  

No. of cellular  
pixels =8473 

Error Rate =8.281,  Accuracy Rate=91.719 

  

No. of cellular  
pixels =7431 

  

No. of cellular  
pixels =6729 

Error Rate =9.447,  Accuracy Rate=90.553 
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7.2.1.1 Discussion of the Results Related to the Blast Cell Localization  

In this research, two blast cells localization approaches have been proposed. The first 

approach, namely, the BCL was developed during the initial experimentation carried out at 

the early stage of this work. This approach was tested on a 100 ALL PB images acquired 

with a 400x microscope magnification which contained 180 labeled lymphoblast cells. The 

main goal was to clean up the PB image from the other blood components such as 

Erythrocytes, Platelets and Plasma while retaining only the blast cells on a white 

background.  As shown in Figure 7.2, 7.3 and 7.4, the BCL was able to successfully 

identify and localize all the Lymphoblast cells in the test PB images. Overall, the BCL was 

able to detect all the 180 labeled Lymphoblast cells, and this finding was correlated with 

the results obtained from observations performed by the domain expert on the whole set of 

images. All the 180 localized cells were quantified based on the number of pixels 

successfully extracted and the results were compared against the ground truth obtained 

through manual quantification. In every case, the BCL algorithm results were able to match 

the ground truth with an accuracy of 90-95%. The difference in the number of pixels that 

was considered ‘cellular’ in the proposed method was due to the color inconsistency and 

blurriness, especially at the border between the Lymphoblast and the Plasma. A possible 

explanation for blurriness could be due to the low magnification power used to acquire the 

PB images.   Normally a PB image shows a mixture of complex components, which have 

different intensities, chrominance, and boundary sharpness between all these blood 

components, which vary from one image to another.  For that reason, the localization 

accuracy also varied based on each image scenario. Nevertheless, the localization accuracy 

was never below 90%. These findings suggest that the acquisition of PB images with a 

higher microscopic magnification power may give a better blast cell extraction results. 
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These findings led us to capture a new set of images comprising of 991 PB images, which 

we named as Dataset-A. 

 
7.2.2   Test and Evaluation Results of the CBCSA  

Image segmentation of PB images is the foundation for the CAD-AL. Therefore, in this 

research, an image segmentation based approach was performed. Although the statistical 

results of the BCL algorithm was fairly high, with a minimum segmentation accuracy rate 

of 90% when compared to the ground truth, we acknowledged that the BCL algorithm 

could not handle some of the newly acquired PB images from Dataset-A. This was due to 

the fact that many of the PB images in Dataset-A had color, illumination and staining 

variability, in addition to cells touching each other due to the heterogeneous cells 

distributions. To overcome these challenges, a new segmentation approach namely, 

CBCSA was developed (Please Refer to Section 5.3). The CBCSA was intensively tested 

on two different datasets of PB images (Dataset-A and Dataset-B) acquired from different 

sources with different specifications. Dataset-A was acquired from UMMC, Kuala Lumpur, 

Malaysia which consisted of 991 PB images with 1303 labeled blast cells, whereas 

Dataset-B was acquired from  M. Tettamanti Research Center for childhood leukemia and 

hematological diseases, Monza, Italy (Labati et al., 2011) and consisted of 108 PB images 

with 267 labeled blast cells. To visualize the subjective performance of the CBCSA results, 

Figure 7.5 and 7.6 show the CBCSA results of ALL and AML PB samples from Dataset-A, 

respectively. Figure 7.7 shows the segmentation results of the ALL PB sample from 

Dataset-B. Each one these three figures is divided into six different parts. Part (a) shows 

the original sample whereas part (b) depicts the CBCSA blast cells localization 

results where each blast cell contour is highlighted with red color.  
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Columns (c) and (d) exhibit, the manually extracted blast cell regions and their 

corresponding manually extracted nuclei (Ground-Truth).  While, columns (e) and (f) 

exhibit the CBCSA segmentation results of blast cell regions and their corresponding 

segmented nuclei.  

The three figures illustrate three different scenarios; Figure 7.5 (a) shows an ALL PB 

sample with four solitary blast cells. Figure 7.6 (a) shows a more complex blast cells 

distribution as the blast cells are touching each other.  Although, both PB samples shown in 

Figures 7.5 and 7.6 were taken from the same dataset (Dataset-A), it can be seen that both 

samples were different in terms of color and illumination, this is because these two samples 

were acquired from two different PB slides. We found that the condition of the PB images 

does not solely depend on the acquisition parameter, but it also relies on the quality of the 

staining procedure. Nevertheless, it can be seen in Figure 7.5 (b) and 7.6 (b) that the 

proposed CBCSA can overcome this variability. Besides, the CBCSA has the ability to split 

touching blast cells individually. Figure 7.7 shows a PB image sample taken from the 

foreign dataset namely Dataset-B, where the acquisition specification and PB slides of this 

dataset was totally different from the local dataset (Dataset-A).  The PB image in Figure 

7.7 (a) contains 22 blast cells; however, only 5 of these blast cells were numbered for 

illustration purposes. These 5 blast cells were selected in order to highlight the performance 

of the CBCSA in splitting the touching cells. As shown in Figure 7.7 (b) the cells labeled 

with the numbers (1-2) and (3-4-5) are touching each other.  The boundaries of these blast 

cells are highlighted with a red color line in the processed image as shown in Figure 7.7 (b). 

The PB image presented in Figure 7.7 shows an even more complex scenario with smaller 

blast cells than what was depicted in Figures 7.5 and Figure 7.6.   
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The complexity of the image and size of the blast cells was attributed to the low microscope 

magnification power used to acquire the image. Moreover, the number of blast cells 

touching each other is higher than the PB image in Figure 7.6. 

 

 
Figure 7.5: Experimental results of the proposed segmentation approach for ALL PB 

sample (a) original image (b) blast cells localized using CBCSA (c) Ground-truth of blast 
region (d) Ground-truth of nucleus region (e) Blast region obtained using the CBCSA (f) 

Nucleus region obtained using the proposed CBCSA approach 

(a) (b) 

(c) (d) (e) (f) 
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Figure 7.6: Experimental results of the proposed segmentation approach for AML PB 

sample (a) original image (b) blast cells localized using CBCSA (c) Ground-truth of blast 
region (d) Ground-truth of nucleus region (e) Blast region obtained using the CBCSA 

approach (f) Nucleus region obtained using the CBCSA approach 
 
 
 

(a) (b) 

(c) (d) (e) (f) 
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Two Touching Blasts 
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Figure 7.7: Experimental results of the proposed segmentation approach for ALL PB 

sample from Dataset-B where cells (1-2) and (3-4-5) are touching each other (a) original 
image (b) localized blast cells using CBCSA (c) Ground-truth of blast region (d) Ground-

truth of nucleus region (e) Blast region obtained using CBCSA (f) Nucleus region obtained 
using CBCSA 
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The segmentation results presented in Figure 7.7 (b) corroborate the findings that the 

performance of the proposed CBCSA is invariant to color; illumination, staining and 

microscope magnification as well as having the ability to completely split the touching 

cells.    

To visually compare each individual extracted blast cell region and its interrelated nuclear 

region against the ground truth in each Figure above, columns (c) and (d) were used to 

depict the manually extracted blast cell region and its nuclear region’s border, respectively 

while columns (e) and (f) were used to depict the blast cells regions and its nuclear region’s 

border extracted using the proposed CBCSA. Each row in column (c, d, e, f) are numbered 

according to the label given to each blast cell in part (b) of each Figure. Due to space 

limitation, only the results of five of the localized blast cells in Figure 7.7 were illustrated 

here for visual comparison. These blast cells were highlighted (Please Refer to Figure 7.7 

(b)) with a white solid dot and extracted individually.  

As the visual comparison between the segmented images produced by the CBCSA and the 

ground truth was not an objective nor a precise evaluation, we employed two well-known 

image segmentation evaluation protocols, that were highly ranked in Zhang’s survey 

(Zhang,1996) namely the ࡭ࡹࢁࡾ and the ࡱࡹ (Please Refer to Section 4.8.1) to evaluate 

our segmentation algorithm. The main goal of the CBCSA was to segment the blast cell and 

its nucleus in order to produce a maximum accuracy rate in terms of the segmented regional 

size. Hence, two features, namely the area (A) and the perimeter (P) of the segmented 

region were used in ࡭ࡹࢁࡾ (represented as ࡭࡭ࡹࢁࡾ and ࡼ࡭ࡹࢁࡾ), these two features were 

directly related to the size of the tested region. In ME, the numbers of the mis-segmented 

(cellular pixels classified as a background and vise versa) pixels in the tested region were 

compared to its manually segmented ground truth.  
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The differences between the ground truth and the outcome of the cells after using CBCSA 

for the blast cells (c-e) and the nuclear regions (d-f) in Figures 7.5, 7.6 and 7.7 were 

calculated using the ࡭ࡹࢁࡾ and ࡱࡹ. These are shown in Tables 7.2, 7.3 and 7.4, 

respectively. 

The quantitative evaluation of ࡭ࡹࢁࡾ and  ࡱࡹ are inversely proportional to the 

segmentation quality, meaning that the smaller the value the better the result. Hence, a 

value of 0 will result if both the manual and the segmented cell are completely identical, 

and a value of 100 will result if the segmented region is not detected. 

Table 7.2: The difference between GT and the results of CBCSA for blast cells of Figure 
7.5.  

Cell 
Number 

Blast region    Nucleus Region 

௉ሺ%ሻܣܯܷܴ ஺ሺ%ሻܣܯܷܴ ሺ%ሻܧܯ ௉ሺ%ሻܣܯܷܴ ஺ሺ%ሻܣܯܷܴ  ሺ%ሻܧܯ

1 4.65 1.48 3.46 3.70 0.54 2.59
2 6.00 2.02 5.45 0.15 1.40 3.16
3 2.89 0.05 4.70 5.82 1.48 4.05
4 1.42 3.19 5.64 4.76 1.45 6.62

 
Table 7.3: The difference between GT and the results of CBCSA for blast cells of Figure 

7.6.  
Cell 
Number 

Blast region    Nucleus Region 

௉ሺ%ሻܣܯܷܴ ஺ሺ%ሻܣܯܷܴ ሺ%ሻܧܯ ௉ሺ%ሻܣܯܷܴ ஺ሺ%ሻܣܯܷܴ  ሺ%ሻܧܯ
1 3.33 1.26 2.50 0.98 0.58 0.81
2 0.21 1.49 2.11 0.61 4.91 1.00
3 1.55 0.61 1.47 0.61 6.50 2.33
4 0.23 0.62 2.06 1.64 1.76 1.20
5 0.14 1.13 4.03 2.08 1.27 2.92

 
Table 7.4: The difference between GT and the results of CBCSA for blast cells of Figure 

7.7.  
Cell 
Number 

Blast region    Nucleus Region 

௉ሺ%ሻܣܯܷܴ ஺ሺ%ሻܣܯܷܴ ሺ%ሻܧܯ ஺ሺ%ሻܣܯܷܴ  ሺ%ሻܧܯ ௉ሺ%ሻܣܯܷܴ

1 9.52 9.36 7.39 5.65 5.99 5.74
2 4.43 4.23 5.99 7.39 3.85 7.06
3 3.47 2.81 4.41 6.86 4.41 7.97
4 2.97 5.26 4.14 3.72 1.21 4.32
5 1.69 5.41 5.37 5.69 2.84 5.79
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This research involved 9 different blast cell subtypes (ALL: L1-L2-L3, AML: M1-M2-M3-

M4-M5-M7). Thus, the difference between the ground truth and the result of CBCSA for 

all images from both datasets (A and B) was first computed for each blast cell subtype and 

its nucleus and then averaged over all the blast cells from each subtype. Later, the overall 

difference was obtained by averaging the results of all subtypes. The standard deviation 

was also computed because a systematic error with a small standard deviation is considered 

less harmful than an error with a large standard deviation. The final mean and standard 

deviation for the difference of each blast type and subtype are presented in Table 7.5. 

Table 7.5: Mean േ standard deviation for difference (%) between GT and CBCSA 
segmentation results for all sub-images extracted from Dataset-A and Dataset-B 

Blast Cells Types Blast Region    Nucleus Region 

 ஺ሺ%ሻܣܯܷܴ
ࣆ േ  ࣌

௉ሺ%ሻܣܯܷܴ
ࣆ േ ࣌

ሺ%ሻܧܯ
ࣆ േ ࣌  ஺ሺ%ሻܣܯܷܴ 

ࣆ േ ࣌
௉ሺ%ሻܣܯܷܴ

ࣆ േ  ࣌
ሺ%ሻܧܯ
ࣆ േ ࣌

ALL(L1-L2) 

   
   

   
   

   
   

   
   

   
  (

D
at

as
et

-A
)  

   
 

3.50 േ 4.31 2.86 േ 2.85 3.35 േ 3.47  3.02 േ 3.82 3.19 േ 2.42 3.20 േ 3.60 

ALL (L3) 3.19 േ 2.31 1.82 േ 1.94 2.96 േ 1.55 8.80 േ 9.51 3.82 േ7.22 4.70 േ 3.85 

Overall 
(ALL) 
ࣆ േ  ࣌

3.35 േ 0.22 2.34 േ 0.74 3.16 േ 0.27  5.91 േ 4.08  3.51 േ 0.45  3.95 േ 1.05 

AML(M1) 4.43 േ 3.38  1.95 േ 1.31 5.30 േ 2.70   3.74 േ2.24  3.17 േ1.55 4.85 േ 2.72

AML(M2) 4.12 േ 2.53  1.50 േ 2.33 3.59 േ 2.58 3.00 േ 2.81 2.25 േ 2.74 3.82 േ 2.50 

AML(M3) 6.54 േ 3.97  2.43 േ 3.77 3.98 േ1.89 4.22 േ 4.93 2.92 േ 5.26 3.55 േ 2.91 

AML(M4) 1.31 േ 1.15  0.96 േ 0.75 1.93 േ 0.92 2.54 േ 4.67 2.80 േ 2.12 1.99 േ 2.06 

AML(M5) 3.73 േ 2.59  1.35 േ 1.95 2.71 േ 2.08 2.78 േ 3.80 3.27 േ 1.75 2.76 േ 2.57 

AML(M7) 8.33 േ 8.30  3.32 േ3.93 4.93 േ 4.22 5.68 േ 7.57 4.63 േ 4.59 4.93 േ 4.78 

Overall 
(AML) 
ࣆ േ  ࣌

 4.74 േ 2.42 1.92 േ 0.85  3.74 േ 1.28    3.66 േ1.17  3.17 േ 0.79  3.65 േ 1.15 

ALL 
ࣆ േ  ࣌

 (D
at

as
et

-
B

) 3.46 േ2.03  2.27 േ 2.05  4.14 േ1.54   
 7.19 േ 4.46  6.77 േ 3.53  5.28 േ 1.59 

Overall  
(Dataset-A 

and 
Dataset-B) 

ࣆ േ   ࣌

3.97 േ 0.98 2.18 േ 0.22  3.76 േ0.52   5.59 േ 1.78  4.48 േ 1.98  4.29 േ0.86 
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7.2.2.1 Discussion of Results Related to the CBCSA 
 
The CBCSA performance test was conducted on two different dataset of images namely 

Dataset-A and Dataset-B.  Dataset-A consisted of 991 high-resolution PB images (1303 

blast cells) collected from the UMMC, Kuala Lumpur, Malaysia (Please Refer to Table 

4.2). Whereas Dataset-B contained 108 PB images, 48 of which contained blast cells and 

the total number of labeled blast cells were 267. The ground truth of each blast cell was 

drawn manually under the supervision of the domain expert in UMMC (Prof. Hany 

Ariffin). It is worth mentioning that testing the CBCSA segmentation performance using 

PB images from different sources is beneficial. Testing a segmentation algorithm with 

images collected from different sources while obtaining highly accurate results, indicates 

that the performance of the segmentation algorithm is robust and reliable in the real-world 

application scenario. 

Samples of the CBCSA experimentation results are visually presented in Figure 7.5, 7.6 

and 7.7.  The difference between the ground truth and the segmentation results of the 

localized blast cells and their nuclei of Figure 7.5, 7.6 and 7.7 are presented in Table 7.2, 

7.3 and 7.4, respectively. The mean and standard deviation of the segmentation results of 

all the blast cells in Dataset-A and Dataset-B are given in Table 7.5.  

The CBCSA shows good segmentation results, allowing the extraction of almost 1566 

complete blast cells with their respective nuclei from 1024 different PB images at average 

error rate (࡭࡭ࡹࢁࡾ) of 3.97% and 5.59% for the blast cell and the nucleus region 

respectively.   

Considering the quantitative results presented in Table 7.2 which belong to the ALL sample 

presented in Figure 7.5 (a) and the results in Table 7.3, which belong to the AML sample 

presented in Figure 7.6 (a), it can be noted that the difference between the blast cell’s 
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regions and the nuclear regions using ࡭ࡹࢁࡾ and ࡱࡹ was generally higher in the ALL 

(maximum error rate 4.65%) than in the AML (maximum error rate 3.33%) sample.  

This can happen when the Lymphoblast has a relatively high ratio of cytoplasm adjacent to 

the plasma. In general, in most of the ALL PB images, the intensity contrast between the 

cytoplasm and the plasma is low. Nevertheless, this is not always the case as Lymphoblast 

cells have a larger nuclear region adjoined to the plasma compared to the cytoplasm region, 

where the intensity contrast between the nuclear region and the plasma is high. For that 

reason, the extraction of the blast cell’s region in ALL samples shows better results than in 

the AML samples (Cell number 2 in Figure 7.5 (b) with maximum error rate at 0.15) when 

most of the Lymphoblast boundary is occupied with nucleus. Touching cells are presented 

in the PB images as shown in Figures 7.6 (a) and 7.7(a). Figures 7.6 (b) and 7.7 (b) 

illustrate how the CBCSA can efficiently separate these touching cells with a high degree of 

accuracy such as cells number 2 and 4 in Figure 7.6 (b) where the maximum error rate 

according to ࡭࡭ࡹࢁࡾ was at 0.21% and 0.23% respectively . As shown in Table 7.3, which 

reflects the difference rate of the blast cells extracted of Figure 7.6, it can be seen that the 

maximum difference rate for the blast cell’s region based on ࡭࡭ࡹࢁࡾ is 3.33% for the blast 

cell labeled with number (1) while the highest difference rate based on ࡱࡹ is 4.03% for the 

blast cell labeled with number (5). Table 7.4 demonstrates the extraction difference rate of 

5 blast cells (highlighted with white solid dots in the center) in Figure 7.7 (b).  It shows a 

higher difference rate for the blast cell’s region based on  ࡭࡭ࡹࢁࡾ and ࡱࡹ as compared to 

both samples of Figure 7.5(a) and 7.6 (a).  

The difference rates produced by comparing the CBCSA against the ground truth using two 

segmentation evaluation metrics namely ࡭ࡹࢁࡾ  and ࡱࡹ are presented in Table 7.5. The 

blast cells in Dataset-A consisted of two acute leukemia types namely ALL and AML.  
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The blast cells from each type were further categorized by the domain expert in UMMC, 

Kuala Lumpur, Malaysia according to their subtypes (Please Refer Table 4.2) where each 

one of these acute leukemia subtypes was acquired from different PB slide. This is because 

an acute leukemia patient is usually diagnosed with one acute leukemia type and one 

subtype under the main type. Dataset-B contained only one type of blast cells, namely, the 

ALL without any categorization of the subtype’s details (Labati, et al., 2011).  

The main objective was to test the robustness of the proposed CBCSA, using two 

distinctive datasets acquired under different conditions. All the PB images in Dataset-A 

were captured using the same acquisition criteria. The segmentation results obtained by 

testing the CBCSA performance on Dataset-A was detailed to the subtype’s level. The 

main intention was to get a clear figure of the segmentation accuracy not only for PB 

images collected  using different acquisition criteria, but also for PB images collected from 

different PB slides using the same acquisition criteria, considering that there were many 

factors that could affect the quality of the acquired images such as storage time of the slide, 

staining quality, the quality of the PB smear preparation using the manual push-pull method 

with a spreader slide performed by a laboratory technologist.  Moreover, the blast cells 

belonging to each acute leukemia subtype has different characteristics in terms of shape, 

texture, color, nucleus chromatic density, etc. (Please Refer Table 2.5 and Table 2.6). 

As shown in Table 7.5, the CBCSA properly extracted the blast cell’s region of the three 

ALL subtypes (L1-L2-L3), and the average extraction discrepancies in ࡼ࡭ࡹࢁࡾ ,࡭࡭ࡹࢁࡾ 

and ࡱࡹ on 269 PB images containing 325 labeled blast cells were 3.35%, 2.34% and 

3.16%, respectively. This is because the region that is adjacent to the surrounding blood 

components such as erythrocytes and plasma is mostly the nucleus, and the nucleus 

intensity contrast is significantly different from other adjoining blood components. 



195 
 

However, the average difference rate of ALL (L1-L2-L3) nuclear regions in ࡭࡭ࡹࢁࡾ, 

 were reduced to 5.91%, 3.51% and 3.95%, respectively. This was mainly ࡱࡹ and ࡼ࡭ࡹࢁࡾ

caused by the deep-blue color cytoplasm of the (L3) subtype which is analogous to the 

color of the nucleus in many of the L3 samples (Estey et al., 2007).  

Regarding the AML (Dataset-A) blast cells extraction, there are a few discussable points 

that can be inferred from Table 7.5. The overall average difference for the AML blast cell’s 

region in ࡼ࡭ࡹࢁࡾ ,࡭࡭ࡹࢁࡾ and ࡱࡹ were 4.74%, 1.92%, and 3.74% respectively. 

Generally, the result of the blast cell’s region segmentation accuracy for the AML class was 

lower than that of the ALL class. The main reason was considerably related to the 

segmentation of the two AML subtypes namely M3 and M7 where the difference rate in 

 for both were above 6%.  As shown in Figure 7.8 (a) the Erythrocytes color is ࡭࡭ࡹࢁࡾ 

analogous to the M3 cytoplasm color. This is because the M3 cytoplasm region was stained 

as bright pink or red (Abdul-Hamid, 2011). In some other cases the M3 cytoplasm had a 

vitreous color as illustrated in Figure 7.8 (b). These two situations presented in Figure 7.8 

(a-b) lead to low image gradient values along the cell edges. Therefore, the segmentation 

error for these AML subtypes was larger than the others. In fact, an effective separation 

between the WBC in general and adjacent Erythrocytes is the main problem for most 

segmentation methods (Bergen et al., 2008).  This finding was highlighted in the works of 

(Won, 2005) and (Bergen et al., 2008) who found that the similarity in color and 

illumination of the touched Erythrocytes with the cytoplasm in the leukocyte (healthy 

WBC) makes their separation rather difficult. However, to our knowledge, this finding has 

not been previously addressed by many works which dealt with blast cell (unhealthy WBC) 

segmentation. 
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Figure 7.8: Blast region segmentation difficulties in AML. (a) Erythrocytes color is 
analogues to M3 cytoplasm color, (b) M3 blast with vitreous cytoplasm, (c) M7 with 

protrusion cytoplasm. 
 
Concerning  AML (M7), this subtype shows protrusion or budding (“blebs”) at the edge of 

the cytoplasm (Abdul-Hamid, 2011) as shown in Figure 7.8 (c). This cytoplasmic 

protrusion has not been detected properly. This is mainly caused by the smoothing process 

carried out using the median filter applied on the b channel image as well as by applying 

the morphological opening operation on the binary version of the Hue channel for the 

purpose of smoothing the blast cells contour and removing pixels that caused two objects to 

be touched by a thin connection (Please Refer to Section 5.3.1). However, these two 

smoothing operations contributed to the segmentation of the other blast cell subtypes 

tremendously. On the other hand, the CBCSA segmented the nuclear region of AML blast 

cells with high accuracy as all the AML subtypes had considerably distinguishable intensity 

contrasts between the nucleus and the cytoplasm, which can be easily be detected using the 

SRG algorithm. However, the M7 nuclear region showed lower segmentation accuracy than 

other AML subtypes. A possible explanation for this might be that the M7 is a 

Lymphoblast-like (National Cancer Institute, 2014) and some of the M7 blast cells have a 

dark cytoplasm region such as that in the ALL (L3), which make the separation between the 

nucleus and cytoplasm of this subtype difficult and error prone. Nevertheless, the overall 

average difference rate of the AML nuclear region in  ࡼ࡭ࡹࢁࡾ ,࡭࡭ࡹࢁࡾ and ࡱࡹ were 

only 3.66%, 3.17% and 3.65%, respectively. These results are quite promising.  

a b c 

Erythrocytes color is 
analogues to cytoplasm color 

Vitreous 
cytoplasm 

cytoplasmic 
protrusion 
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Table 7.5 also reports the CBCSA performance on the blast cells from Dataset-B. As 

mentioned earlier, Dataset-B contained only the ALL blast cells without subtypes. The 

difference rate of the ALL blast cell’s region from Dataset-B is quite comparable to that of 

Dataset-A. However, the nuclear region segmentation accuracy for the ALL in Dataset-B 

was lower than that of both types of blast cells in Dataset-A. This was mainly due to the 

low microscope magnification power used to acquire Dataset-B images, where the cellular 

details were not adequately distinguishable. As the magnification power decreases, the field 

of view appears bigger; however, the blood cells become smaller causing a decrease in the 

cellular details. The lower magnification objective lens is used for low-power observations, 

whereas the high magnification power enables cellular details to be observed (Adds & 

Larkcom, 1999).   

The overall average difference rate of the proposed CBCSA applied on 1024 high-cell 

population PB images acquired from two different sources, was rather encouraging as the 

proposed algorithm was able to localize approximately all the blast cells presented. The 

overall average segmentation accuracy (100-extrcation discrepancy) of all the localized 

blast cells from both datasets in   ࡭࡭ࡹࢁࡾ and  ࡱࡹ for the blast cells and the nuclear 

region were as high as 96% and 94%, respectively.  

The segmentation results and the related findings obtained by the proposed CBCSA 

answered the questions (b, e and g) posed in Section 1.4 clearly. The main three problems 

mentioned in Section 3.6.2 were properly addressed by the proposed CBCSA, and the 

presented results corroborated that CBCSA can efficiently segment blast cells regardless of 

the PB image variation in term of color, illumination, staining quality and also shape, 

texture, color of the blast cells.   
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Several points are inferred from the whole segmentation process as follow: 

• It has been stated by (Díaz, & Manzanera, 2011) that for proper visual analysis of 

blood smear; images must be captured using a high microscopic magnification 

power. The current research found that high microscopic magnification power is not 

only beneficial for visual analysis, but also for image analysis. This finding 

confirms the association between high magnification power used to capture the 

images and the image segmentation accuracy. 

 
• Variegation of the color, illumination and staining quality, in PB images and the 

diversity found in the shape, texture and color of the blast cells and its internal 

components makes blood image segmentation a challenging process. For that reason 

a direct segmentation technique is not adequate when segmenting acute leukemia 

blast cells. 

• With proper choice of color channels, the proposed method can produce results that 

are highly accordant with those manually segmented by the domain expert. 

• The localization and sub-imaging is highly desirable for better segmentation of the 

blast cell’s internal components (i.e nucleus and cytoplasm). 

• The success of segregating touching and overlapping blast cells is highly dependent 

on the overlapping degree. It has been found that watershed segmentation with 

distance transform can split adjacent blast cells overlapped with low to medium 

degree. However, a more sophisticated method is needed to split the blast cells that 

overlapped with high degree (Please Refer to Figure 7.11 (d-e)) such as marker-

controlled watershed. More details about this point will be given in the next section.  
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7. 3 Comparison with Other Blast Cell Segmentation Methods 

We have shown in Table 7.5 that the developed segmentation algorithm produced robust, 

reliable and accurate results in comparison with the ground truth images segmented 

manually by domain expert from UMMC, Kuala Lumpur, Malaysia. The domain expert 

usually performs the manual morphological examination of the PB slide under the 

microscope. The results demonstrate that the proposed method, in spite of its simplicity, 

with a proper choice of suggested color channels is highly competitive with other well-

known blast cells segmentation methods such as the works by (Putzu & Ruberto, 2013; 

Putzu & Ruberto, 2013a; Putzu & Ruberto, 2013b; Reta et al., 2010, Escalante et al, 2012; 

Sadeghian et al., 2009; Scotti, 2005). The proposed segmentation algorithm (CBCSA) 

addresses three main problems related to blast cells segmentation. These problems are (1) 

the localization and sub-imaging, (2) the segregation of touching cells and (3) diversity in 

color, illumination, staining variation. To our knowledge, most of the blast segmentation 

methodologies presented in the literature (Mohaptra et al., 2013; Escalante et al., 2012; 

Madhloom et al., 2012, Nee et al., 2012; Huey Nee 2012; Reta et al., 2010;  Sadeghian et 

al., 2009) did not address these three problems simultaneously. Many researchers 

implemented their segmentation method directly on manually cropped sub-images which 

contained a single blast cell such as the work by (Reta et al., 2010; Escalante et al, 2012; 

Sadeghian et al., 2009). On the other hand, some other researchers proposed a solution to 

localize and crop each blast cell presented in high-cell population blood images such as the 

work by (Mohaptra et al., 2013; Madhloom et al, 2012). However, the problem of splitting 

touching cells was not considered. Only a few methods have reported both problems (1 and 

2) such as the work by (Nee et al., 2012; Huey Nee et al., 2012).  
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Nevertheless, these methods proposed by (Nee et al., 2012; Huey Nee 2012) failed to 

completely localize blast cells causing inaccuracies in retaining the cytoplasm region and in 

some cases the whole cytoplasm region was missing. To our knowledge, none of the 

methods presented in the literature (Putzu & Ruberto, 2013; Putzu & Ruberto, 2013a; Putzu 

& Ruberto, 2013b; Mohaptra et al. 2013, Madhloom et al, 2012, Escalante et al, 2012, Nee 

et al., 2012; Huey Nee 2012; Reta et al., 2010, Sadeghian et al., 2009) considered validating 

the accuracy of their proposed segmentation methods on a second dataset of images that 

was acquired under different conditions from the main datasets. This could be because of 

the lack of medical data which is an intrinsic problem in research involving medical data 

(Mennicke et al., 2009) in the real-world scenario. Moreover, most of the previously 

proposed segmentation algorithms were not tested quantitatively against ground truth 

images segmented manually by a domain expert as the lack of a ground truth which require 

a domain expert to be involved is another intrinsic problem in research involving medical 

data (Babalola et al., 2008) in the real-world scenario.   

The proposed segmentation method is compared with two state-of-the-art blast cell 

segmentation methods proposed by (Putzu & Ruberto, 2013; Putzu & Ruberto, 2013a; 

Putzu & Ruberto, 2013b) and (Scotti, 2005). The localization and segregation of touching 

blast cells are only compared with (Putzu & Ruberto, 2013) as the method presented by 

(Scotti, 2005) did not provide a solution to the issue of splitting the touching blast cells. 

However, the performance of nucleus/cytoplasm separation algorithm presented in the 

current research is compared with both. The reason for choosing these two methods as a 

benchmark is that, both of these methods used the same dataset reported in (Labati et al., 

2011), which is  available online at (http://www.dti.unimi.it/fscotti/all/) named as Dataset-

B in our research.  

http://www.dti.unimi.it/fscotti/all/�
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We used this dataset for the purpose of testing the robustness and reliability of our 

proposed method. Besides, the method proposed by (Putzu & Ruberto, 2013) provided a 

scheme for localization and sub-imaging, splitting the touching blast cells as well as 

nucleus and cytoplasm separation. These reasons make the work by (Putzu & Ruberto, 

2013) a good benchmark to be compared with. The performance of the benchmark (Putzu 

& Ruberto, 2013) method was tested with the first 33 PB images from Dataset-B which 

contained 267 labeled cells. The performance was reported based on the ability to localize 

and count the number of cells presented in the PB images. Some of these images had a 

high-cell population with many clumped blast cells such as Image005 which contained 24 

ALL blast cells. We performed the same operation using the proposed CBCSA on these 33 

PB images. The performance comparison between the CBCSA and the benchmark is 

reported in Table 7.6. 
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Table 7.6: Performance comparison between the proposed CBCSA and the benchmark 
(Putzu & Ruberto, 2013) 

 
 
 
 
 
Image No.  

 
 
 

Number of 
Manually localized 

cells 

(Putzu, & 
Ruberto, 2013) 

 
 

Number of 
localized cells 

Proposed 
CBCSA  

 
 

Number of 
localized cells 

((Putzu & 
Ruberto, 
2013)) 

 
Accuracy (%) 

Proposed 
CBCSA 

 
 

 Accuracy 
(%) 

Image001  9  5  9  55  100 
Image002   10  10  10  100  100 
Image003   12  11  12  91  100 
Image004   7  4  7  57  100 
Image005   24  19  23  79  95 
Image006   18  18  18  100  100 
Image007   7  7  7  100  100 
Image008   17  16  17  94  100 
Image009   7  7  7  100  100 
Image010   12  12  12  100  100 
Image011   15  12  15  80  100 
Image012   12  12  12  100  100 
Image013   10  7  10  70  100 
Image014   5  3  5  60  100 
Image015   17  17  17  100  100 
Image016   16  16  16   100    100
Image017   3  3  3   100    100
Image018   8  8  8   100    100
Image019   12  12  9   100    75
Image020   2  2  2   100    100
Image021   3  3  3   100    100
Image022   5  5  5   100    100
Image023   6  6  6   100    100
Image024   4  4  4   100    100
Image025   3  3  3   100    100
Image026   5  5  5   100    100
Image027   3  3  3   100    100
Image028   2  2  2   100    100
Image029   4  4  4   100    100
Image030   3  3  3   100    100
Image031   2  2  2   100    100
Image032   2  2  2   100    100
Image033  2  2  2   100    100

Total no. of  
localized cells 

      267       245       263  

Overall 
Accuracy 

        92%          
99% 
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From 267 labeled cells, the proposed CBCSA was able to locate 263 cells resulting in an 

accuracy rate of 99% whereas the benchmark was only able to locale 245 cells with an 

accuracy rate of 92%. 

The total number of the missing cells by the CBCSA was four; one cell was from Image005 

(Figure 7.9 (a-b)) and the other three from Image019 ((Figure 7.10 (a-b)).  

 

(a) (b) 
Figure 7.9: Segmentation result of Image005 (a) Original image, (b) Segmented image with 

blast cells border overlaid by red line 
 

(a) (b) 
Figure 7.10: Segmentation result of Image019 (a) Original image, (b) Segmented image 

with blast cells border overlaid by red line 

Missed Cell 

Missed Cells 
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The cell in Image005 was missed (Please Refer to Figure 7.9 (a-b)) because it was very 

close to the image border, while the other three cells in Image019 were missed (Please 

Refer to Figure 7.10 (a-b)) because they overlapped with a high degree, such as in the 

scenario presented in Figure 7.11 (d-e) and the watershed transform based on the distance 

transform was not able to completely separate them. The touching cells can present in 

various forms such as chain, cluster or ring of touching cells as shown in Figure 7.11 (a-c). 

In these cases, the overlapping degree is low meaning that the cells form a concave region 

where they overlap. Using the distance transform, the connected set of central pixels 

(marker) can be easily found for each cell. Here is where the water starts to enter and rise as 

the distance from these central pixels to the pixels at the edge are the maxima of the 

distance transform. However, if the cells form clumps or rings and the internal holes are 

filled as shown in Figure 7.11 (d-e), the watershed transform will not be able to separate the 

cells properly as the maximum distance is greater than central pixels of the cells.  For this 

reason, the watershed transform produces over-segmented or under-segmented regions as in 

the case of Image019. Other methods such as concavity analysis, which was used in the 

work of (Reta et al., 2010) may not give a proper splitting solution for scenarios such as of 

Figure 7.11 (d-e), as the concavity analysis requires that the individual cells are convex and 

that they form a concave region where they overlap (Bailey, 1992).  
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(a) 

 
(b) 

 
(c) 

 
(d) (e) 

Figure 7.11: Various scenarios of touching (overlapping) cells. (a) Chain of cells, (b) 
Cluster, (c) Ring, (d) Cluster with filled holes, (e) Ring with filled holes. 

 

In our work, there were 228 identified touching cells with different overlapping scenarios. 

We compared the watershed based on the distance transform with a marker-controlled 

watershed, as we proposed to use the nuclear region as a marker instead of the distance 

transform regional maxima where this approach can tremendously reduce the over-

segmentation (under-segmentation) (Felkel et al, 2001). As shown in Table 7.7, we found 

that the marker-controlled watershed based on nucleus marker outperformed the watershed 

based on the distance transform and produced only 2 under-segmented cells out of 228. 

This is because the nuclei used as markers are themselves overlapped as shown in Figure 

7.12 (a).  However, the watershed based on the distance transform produced 9 over-

segmented and 6-undersegmented cells.  

Table 7.7: Evaluation of Touching Blast Cells Segmentation Results 
Experiment Name Watershed Based on Distance 

Transform 
Marker-Controlled  

Watershed 
Number of manually counted cells  228 
Correct  213ሺ93.4%ሻ  226ሺ99.1%ሻ 
Missed  15ሺ6.6%ሻ  2 ሺ0.9%ሻ 
Over segmented  9ሺ3.94%ሻ  0ሺ0.0%ሻ 
Under segmented  6ሺ2.63%ሻ  2ሺ0.9%ሻ 
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Moreover, the marker-controlled watershed produced imprecise boundaries between 

overlapping cells mainly at the internal region, as shown in Figure 7.12 (b).  There are 

many factors affecting the success of marker-controlled watershed segmentation results, 

such as the proper preparation of the marker size and the correlation between the image 

patterns, where the watershed transform was applied on and the desired object boundaries.  

Figure 7.12: Sample result of marker-controlled watershed segmentation. (a) nucleus used 
as a marker, (b) watershed segmentation boundaries superimposed on the original image 

 
The proposed nucleus/cytoplasm separation algorithm which is part of the CBCSA (Please 

Refer Section 5.3.4) was then compared with two adaptive methods presented in (Putzu & 

Ruberto, 2013) and (Scotti, 2005). Both of these methods were based on image 

thresholding using the Otsu threshold (Otsu, 1979). Figure 7.13 shows the nucleus 

segmentation results obtained by (Putzu & Ruberto, 2013), (Scotti, 2005) and the proposed 

SRG method using Saturation color channel with a combination of image arithmetic and 

morphological erosion to produce the seeded region. Figure 7.13 shows that the proposed 

CBCSA performs better than the other methods. Furthermore, the results obtained using the 

threshold-based segmentation requires some post-processing work in order to delete noisy 

regions and to fill holes.  
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In some other cases, the threshold-based segmentation fails to detect the nuclear region 

such as the blast cell presented in Figure 7.13(row 2). This result may be due to the fact that 

the cytoplasm region is as dark as the nuclear region.    

Original Blast Cell Proposed CBCSA (Putzu & Ruberto, 
2013) 

(Scotti, 2005) 

1 

    

2 

    

3 

    

4 

    

5 

    

Figure 7.13: Comparison of nucleus segmentation results 
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Unlike healthy WBCs, the blast cells are characterized by an immature nuclear chromatin 

pattern (Rubin et al., 2008). As shown in our earlier work (Madhloom et al., 2010) the 

nucleus of healthy WBCs can be easily segmented using the threshold-based segmentation 

approach as the nucleus of healthy WBC is dense and homogenous (Gk & Pravati,  2006). 

However, this immaturity characteristic yields a nucleus with a non-uniform and non-

homogeneous texture and color. Consequently, some of the nuclear pixels will be above the 

selected threshold and others will be below it, which may yield inconsistent results. The 

performance of the threshold-based segmentation drastically deteriorates for images with 

blurred object boundaries since they neglect the spatial information (Wang et al., 2013). 

Other methods such as the Clustering-based approach used in the work by (Mohaptra et al., 

2013) and edge detection used in (Sadeghian et al., 2009) confronted similar difficulties as 

the threshold-based segmentation since these approaches also neglected the spatial 

information. Clustering-based approach assumes that the distinct regions in the image can 

be clustered based on the color or the intensity properties. This assumption is true when the 

image presents a prominent difference in the color or intensity between the regions. 

However, it performs poorly when a similar color is presented between different regions in 

the image, such as the blast cell shown in Figure 7.13 (row 2). Besides, clustering-based 

approaches encounter a great difficulty in deciding the suitable number of clusters of the 

image (Shafeeq & Hareesha, 2012). On the other hand,  based on the experiments carried 

out in this research, it has been observed  that boundaries between the nuclear region, and 

the cytoplasm region for many blast cell subtypes are blurred and smudged, where these 

features often deteriorate the performance of the edge detection based approach. 

Furthermore, the edge detection needs some subsequent edge pixels linking in order to 

close the contour of the detected regions. 
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Many of the segmentation algorithms presented in the literature such as the works by 

(Mohaptra et al., 2013; Sadeghian et al., 2009; Osowski et al., 2009) attempted to segment 

the blast cells from the blood image, while all the blood components such as erythrocytes, 

platelets and plasma were still presented in the image. This approach makes the 

segmentation process tremendously difficult as a lot of interference can come from all these 

blood components. However, in this research, we cleaned up the blood image from all 

unnecessary components and retained only the blast cells on an empty white background. 

This proposed approach made the subsequent step such as splitting the touching cells and 

nucleus/cytoplasm separation much easier. For instance, the cropped sub-image contains 

only a single blast cell as a foreground while the background is empty, so there is no need 

to clean up the sub-image again from other presented components. This feature makes the 

nucleus/cytoplasm separation process more objective because once the nuclear region is 

separated, then the cytoplasm region will be found. 

The b color channel was used to identify the erythrocytes while the Hue channel was 

employed to identify the plasma. In a number of occasions, these two color channels cannot 

fully guarantee that the erythrocytes and the plasma are completely removed from the PB 

image. This is where the morphological reconstruction comes into the picture in order to 

reconstruct only the blast cells based on their nuclei, which were used as Markers to 

remove all the debris left from the erythrocytes and the plasma. From the results presented 

earlier, it has been found that the proposed method is robust and reliable in the real-world 

scenario of PB images. 
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7.4 Results and Discussion Related to Feature Extraction and Selection  

The use of relevant features to characterize an output class is essential for any classification 

problem. In this study, three types of features were extracted from 1303 blast cells, which 

belong to Dataset-A namely shape, texture and color. The blast cells from Dataset-B were 

not used in the feature extraction and classification stages. This is because of the low 

magnification power used during image acquisition as well as the blurriness of the PB 

images from Database-B, which make their quality quite inferior when compared to 

Dataset-A. This difference in the quality can produce a huge variation in the extracted 

features. For that reason, Dataset-B was not used to predict the classification performance 

of acute leukemia.  

 As discussed earlier in Section 6.2, a total number of 601 features were extracted from 

each segmented blast cell region and the corresponding nucleus, divided into: 31 shape-

based features, 534 texture-based features and 36 color-based features. Figure 7.14 

illustrates the results related to the selection of the optimal subset of features using the SFS 

algorithm. As discussed in Section 4.4 and as can be seen from the results shown in Figure 

7.14, the SFS algorithm started with an empty set of features and then began to incorporate 

the features into larger and larger subsets. As indicated in Figure 7.14, at first, the overall 

evaluation accuracy of the induction algorithm increased. This meant that the features that 

were added to the optimal subset improved the performance of the induction algorithm, and 

then the accuracy rate remained almost unchanged as the number of the selected features 

reached 14.  When more than 18 features were selected, the overall accuracy rate started to 

decrease. It can be seen that the overall accuracy rate did not increase substantially after the 

addition of the 19th feature.  Based on these, only the top 18 features were selected and 

utilized to construct the MLP-NN and the SVM classification model.  
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Figure 7.14: SFS Performance 

 
The 18 optimal features which were used to classify blast cells into either ALL or AML are 
summarized into mean and standard deviation as shown in Tables 7.8. 
 

Table 7.8: Morphological features extracted from blast cell region and nucleus region of 
ALL and AML 

Feature 
Index 

Feature Name ALL 
ߤ  േ  ߪ

AML 
ߤ  േ  ߪ

F1 Nucleus Eccentricity 
 

0.496 േ 0.194 0.581 േ 0.199 

F2 Nucleus Perimeter 
 

0.292 േ 0.164 0.287 േ 0.095 

F3 Nucleus elliptical area 
 

0.500 േ 0.192 0.580 േ 0.199 

F4 Ratio between nucleus and the whole cell 
 

0.716 േ 0.246 0.502 േ 0.180 

F5 Histogram Standard Deviation 
 

0.361 േ 0.197 0.294 േ 0.139 

F6 GLCM_Difference Variance 
(Quantization=8,distance=1,Angle=0) 
 

0.374 േ 0.177 0.177 േ 0.089 

F7 GLCM_Information measure of correlation1 
(Quantization=8,distance=1,Angle=0) 
 

0.267 േ 0.164 0.214 േ0.115 

F8 GLCM_Cluster Shade 
(Quantization=64,distance=1,Angle=0) 
 

0.206 േ 0.239 0.126 േ 0.045 

F9 GLCM_Correlation 
(Quantization=128,distance=1,Angle=45) 
 

0.680 േ 0.178 0.873 േ 0.133 

F10 GLCM_Inverse Difference Moment Normalized 
(Quantization=128,distance=1,Angle=0) 
 

0.734 േ 0.210 0.890 േ 0.060 

Number of Selected Features 
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F11 GLCM_Inverse Difference Moment Normalized 
(Quantization=128,distance=1,Angle=45) 
 

0.743 േ 0.232 0.871 േ 0.071 

F12 GLCM_Correlation 
(Quantization=256,distance=1,Angle=90) 
 

0.681 േ 0.177 0.871 േ 0.135 

F13 GLCM_Cluster Shade 
(Quantization=256,distance=1,Angle=135) 
 

0.190 േ0.218 0.129 േ 0.045 

F14 Red_Entropy 
 

0.437 േ 0.226 0.624 േ 0.123 

F15 Blue_Mean 
 

0.297 േ 0.162 0.482 േ 0.199 

F16 Blue_Entropy 
 

0.427 േ 0.246 0.445 േ0.158 

F17 Hue_Mean 
 

0.700 േ 0.195 0.592 േ 0.211 

F18 Value_Skew 
 

0.429 േ 0.178 0.550 േ 0.129 

 
The feature selection result indicates that all the three types of the extracted features namely 

shape, texture and color are important to differentiate between the two acute leukemia types 

(ALL and AML).  It can be seen from Table 7.8 that the set of optimal features (18 features) 

comprises of four shape features, nine texture features and five color features. Three out of 

the four selected shape features are directly related to the nuclear region’s shape, while the 

forth is related to the ratio size between the nuclear region and the whole blast cell region, 

This emphasizes the importance of the nucleus shape features in the performance of the 

classification algorithm. This finding indicates that the nuclear region’s shape features 

exhibit higher discrimination power between ALL and AML. Moreover, it has been found 

that the color characteristic of the abnormality of the nuclear chromatin causes an increase 

in the staining capacity of nuclei. Such modification in the DNA content of the nuclei is 

visible in the form of change in the color intensity in both ALL and AML. However, this 

DNA modification and hence, the chromatic color changes affects the ALL and the AML 

differently. These modified features demonstrated a tremendous difference between both 

types of acute leukemia when they were extracted from several color channels, namely, red, 

blue, hue and value color channels.  
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The nuclear chromatin distribution pattern, which can be captured in the form of texture, 

describes the DNA organization structure in the blast cell’s nucleus and is an essential 

diagnostic feature used to differentiate between ALL and AML. The GLCM was used to 

compute the statistical and spatial distribution of each blast cell’s nuclear chromatin. In this 

research, a total number of 22 nucleus texture features were extracted from the GLCM 

(regarding four orientations and one distance) (Please Refer to Section 6.2.2.2) and were 

assessed to distinguish between ALL and AML. The GLCM features were calculated using 

six different gray-levels quantization: 8, 16, 32, 64, 128, and 256. The goal was to 

investigate the effects and contribution of these 22 GLCM features in the differentiation 

between ALL and AML when calculated at different quantization levels. Surprisingly, 

during the feature selection process, it has been found that the GLCM feature extracted 

from gray-level quantization 8, 64, 128 and 256 have been included in the optimal set of 

features (Please Refer Table 7.8). The performance of the GLCM features using different 

gray-level quantization was used to diagnose various diseases such as breast cancer (Gomez 

et al., 2012) and glaucoma (Karthikeyan & Rengarajan, 2014). In this research, we found 

that the GLCM features extracted from gray-level quantization 16 and 32 had no 

contribution to the differentiation between the two acute leukemia types. However, to our 

knowledge, extracting 22 GLCM features using different gray-level quantization for the 

purpose of acute leukemia diagnosis has not been investigated before. Most of the works 

done in the past, investigated only the performance of a subset of GLCM features using the 

highest gray-level (256)  such as the works carried out by (Reta et al., 2010; Mohapatra & 

Patra, 2010; Mohapatra  et al., 2010b; Mohapatra et al., 2011b; 2013; Madhloom  et al., 

2012b; and Putzu & Ruberto, 2013). A possible explanation for this is that, these previous 

researchers assumed that a higher gray-level quantization can provide more information, 
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which can lead to a better classification performance using the GLCM statistics. Similarly, 

a lower gray-level quantization would result in the loss of information and a poorer 

classification. However, this is not always the case for many GLCM statistics, as shown in 

Table 7.8; some of the GLCM statistics demonstrated a high discrimination power between 

ALL and AML such as F6 and F7 at low gray-level quantization. In terms of selecting 

appropriate GLCM features, the results in this research seemed to support Clausi’s (2002) 

observation, namely, that some GLCM features can produce high discrimination power 

between classes using high gray-level quantization, while some others can show high 

discrimination power using low gray-level quantization. 

 
7.5 Experimentation Result of the MLP-NN Architecture Selection 
 
One of the major difficulties with MLPs lies in the selection of the optimal network 

architecture for a given problem (Andersen & Martinez, 1999).  The results of the MLP-NN 

can vary significantly due to the infinite number of possibilities of the network’s 

architecture. As explained in Section 6.4.3, a single hidden layer structure was chosen for 

this experiment, while the number of input neurons was decided to be 18 (derived from the 

feature selection stage), and the number of output classes was set to 2 which corresponded 

to 2 output classes as either ALL or AML.  Various number of hidden layer neurons were 

tested (2, 4, 6,8,10, and 12). The neurons on each network layer used the sigmoid activation 

functions. Three different learning rates were used (0.001, 0.01, and 0.1). Each network 

step was trained with a 10-fold cross validation and the accuracy was recorded at every 

hundred epochs with a maximum number of 1200 epochs.  
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Figure 7.15 compares the cross-validation accuracy achieved using three different learning 

rates with different numbers of hidden nodes. The results indicate that the best MLP-NN 

model was obtained using the learning rate 0.01 and four hidden neurons in the hidden 

layer. Figure 7.16 compares the best cross-validation accuracy achieved using three 

learning rates with four hidden neurons and different numbers of training cycles (epoch). 

The results presented in Figure 7.16 show that the best cross-validation accuracy rate was 

achieved when the learning rate was 0.01 and at 800 epochs.    

Figure 7.15: Validation Accuracy versus hidden nodes for three different learning rates 

A
cc

ur
ac

y 

Number of Hidden Nodes  



216 
 

 

Figure 7.16: Validation Accuacy versus number of training cyles (epochs) for three 
different leaning rates and four hidden nodes  

The final MLP-NN model parameters setting is tabulated in Table 7.9, whereas Figure 7.17 

depicts the graphical representation of the chosen MLP-NN model. Experimentally, the 

MLP-NN model with a single hidden layer and the parameters given in Table 7.9 has 

yielded the highest accuracy results. This conclusion about the design is illustrated in the 

results shown in Figure 7.15 and 7.16. The chosen MLP-NN model was then trained with 

the full training dataset (912 samples) and then a blind test (391 samples) was performed on 

the testing dataset. The training and testing dataset distribution are given in Table 6.7. 
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Table 7.9: MLP-NN final Parameters setting  
Name of Parameter Input Layer Hidden Layer Output Layer 

Number of Nodes 18 4 2 

Training Function gradient descent (MLP-Backpropagation Algorithm) 

Learning Rate 0.01 

Number of Epochs 800 

Performance 
Function 

MSE (Mean Square Error) 

Transfer Function  ------ 
 

Sigmoid 
 

Sigmoid 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

 

Figure 7.17: Graphical representation of the selected MLP-NN Architecture 
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7.6 Experimentation Result of the SVM Hyper-Parameters Selection 

In this research, the SVM with the RBF kernel was used to classify acute leukemia blast 

cells. Based on the experiment described in Section 6.4.4, the RBF kernal hyper-parameters 

were experimentally tuned using a grid search with a 10-fold cross validation approach. A 

total number of 88 different cross-validation experiments were performed on various 

combination of ܥ and ߛ values. It was observed that the cross validation accuracy decreased 

as the value of  ܥ (error penalty) increased to more than 8. Some experiments failed to 

converge for large values of (512 < ܥ) ܥ. The optimum value of ܥ ൌ 8 was subsequently 

chosen.  

As shown in Figure 7.18, we found that ܥ ൌ 8 kept the cross validation error small, while at 

the same time generalized well on the test set. The performance of the RBF kernel largely 

depended on the value of ߛ which was the radius of the RBF kernel. Moreover, the value of 

ܥ was found to be best in combination with 0.125=ߛ ൌ 8. As indicated in Figure 7.18, the 

highest cross-validation accuracy and testing accuracy (Accuracy values highlighted with 

red color in Figure 7.18) were obtained at ሺܥ, ,ሻ  equal to ሺ8ߛ 0.125ሻ.  
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Figure 7.18: Validation and testing accuracy using SVM with various combination of  ܥ 
and  ߛ 

 
7.7 Results and Discussion of Acute Leukemia Classification 

In order to meet the objectives of this research outlined in Section 1.3, several experiments 

were carried out to test the performance of the two classification techniques, namely the 

MLP-NN and the SVM. As presented in Section 7.5 and 7.6, respectively. The best MLP-

NN and SVM models were chosen for subsequent experiments. The highest cross-

validation performance of the MLP-NN was obtained at four hidden neurons, 0.01 learning 

rate and 800 epochs, whereas the best SVM model trained with RBF kernel was obtained at 

ሺܥ, ,ሻ equal to ሺ8ߛ 0.125ሻ.   
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To test the performance of the selected MLP-NN and SVM models for classifying acute 

leukemia types (ALL versus AML) in an unbiased way, the full training set (912 samples) 

and the test set (391 samples) earlier presented in Table 6.7, were used. The test set (blind 

test set) was considered as an unseen independent dataset where it was not used during the 

model selection process. Furthermore, each blast cell feature vector consisted of 18 features 

founded using SFS (Please Refer Table 7.8). It is worth mentioning that all the extracted 

features were calculated using the blast cell region and the nuclear region segmented using 

the proposed CBCSA. On the other hand, in order to assess the effectiveness of the selected 

feature, another classification experiment was carried out using the full feature set (without 

feature selection). The classification performance results of both MLP-NN and SVM tested 

on 391 samples (ALL=98, AML=293) with and without feature selection are tabulated in 

Tables 7.10 and 7.11, respectively. The classification performance results of ALL and AML 

are reported using the metrics presented in Section 4.8.2. 

Table 7.10: Classification performance using the MLP-NN as the learning machine 
Classification Performance Metrics MLP-NN 

with FS 
MLP-NN 

Without FS 
TPs 291 203 

FPs 24 2 

FNs 2 90 

TNs 74 96 

Precision 92.38% 99.02% 

Sensitivity 99.32% 69.28% 

Specificity 75.51% 97.96% 

Accuracy 93.35% 76.47 

AUC 0.973 0.979 

G-Mean 86.6 82.3 
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Table 7.11: Classification performance using the SVM as the learning machine 
Classification Performance Metrics SVM 

with FS 
SVM 

Without FS 
TPs 293 268 

FPs 25 26 

FNs 0 25 

TNs 73 72 

Precision 92.14% 91.16 

Sensitivity 100.00% 91.47 

Specificity 74.49% 73.47 

Accuracy 93.61% 86.96 

AUC 0.981 0.906 

G-Mean 86.3 81.8 

 

The testing results of the MLP-NN trained with 18 selected features (Please Refer to Table 

7.10) shows that 291 out of the total 293 AML samples are correctly classified, whereas 74 

out of 98 ALL samples are successfully recognized. This experiment gives a classification 

accuracy of 93.35%. On the other hand, the testing results of the MLP-NN trained with the 

full set of features shows that 203 out of the total 293 AML samples are classified correctly, 

whereas 96 out of 98 ALL samples are classified with an accuracy of 76.47%.  

The classification results tabulated in Table 7.11 indicate that the SVM classifier, trained 

with 18 selected features, was able to classify all the AML samples accurately, whereas 

only 73 out of 98 ALL samples were properly recognized achieving an overall accuracy of 

93.61%. However, the classification performance of the SVM classifier, trained with the 

full feature set, achieved a lower accuracy rate of 86.96% in comparison to the results 

obtained by the SVM trained after feature selection.  

Based on these findings, we can conclude that both classification engines obtain better 

classification performance when they are trained and tested after performing the feature 

selection step.   
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A possible explanation for this is that the dataset, with the full set of features, contains 

many uninformative and irrelevant features which could degrade the classification engine’s 

performance. This finding indicates that the feature selection step can dramatically improve 

the classification accuracy by eliminating all the irrelevant non-useful features. These 

findings are consistent with those of (Osowski et al., 2009; Siroic et al., 2007) who 

conducted a similar experiment to classify 11 types of blast cells taken from the BM with 

and without feature selection using the SVM classification engine. They concluded that the 

feature selection step can highly improve the classification perfomrance. 

Both the MLP-NN and the SVM tested, with the optimal set of features, demonstrated a 

highly comparable results as both achived an accuracy of  approximatly 93%. Moreover, 

both classifiers obtained an acceptable range of AUC (AUC > 0.9), as many researchers 

have shown that the acceptable range of the AUC value should be 0.8 or higher (Speight & 

Hammond, 1998; Ohno-Machado, 2000; Abdul-Kareem, 2002).  

The current research does not justify the conclusion that the SVM outperforms ANN in 

general. This is probably because, in the experiments carried out, the architecture of the 

feed forward back-propagation neural network had been optimized in terms of hidden 

neurons, learning rate and number of training cycles before comparing it to the performance 

of standard SVM with RBF kernel implementation. Nevertheless, our results indicate that 

solutions obtained by SVM training seem to be more robust with a smaller standard error as 

compared to MLP-NN training. The robustness of SVM over the MLP-NN is clearly shown 

when testing the performance of the SVM classifier with the full set features, as the 

difference between the SVM’s performance for full set features and that with feature 

selection is minimal when compared to the MLP-NN’s performance for the full set features 

and with feature selection.  
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Although the classification results, obtained from testing the SVM classifier with the full 

feature set, is not higher than testing it after feature selection. However, the results 

emphasize the efficiency of the SVM classifier when dealing with a very large number of 

features (in our case 601 features), due to the exploitation of kernel functions, which is the 

attraction of SVM classifier. One of the main advantages of SVM is “sparseness of the 

solution”. This means that an SVM classifier depends only on the support vectors, and the 

classifier’s function is not influenced by the whole data set, as in the case of many neural 

network systems (Byvatov et al., 2003).  

We also observed from the results in Tables 7.10 and 7.11, respectively that both classifiers 

tested with optimal feature set (18 features) produced a high FPs rate (ALL classified as 

AML) at 24 and 25, respectively. This indicates that both classifiers wrongly recognized the 

FPs (ALL samples) as AML samples. The high FPs rates are reflected in the sensitivity and 

specificity values as it can be noted that the difference between sensitivity and specificity is 

high.  

Clinically, a high difference between sensitivity and specificity could be acceptable when 

classifying for instance, cells from a leukemic patient versus cells from a healthy person. In 

this case, high FPs or high difference between sensitivity and specificity will mean a 

healthy person will be identified as a leukemic patient. This is less dangerous than 

identifying a leukemic patient as a healthy person. A healthy person who has been 

identified as a leukemic patient could undergo further investigations and ultimately no 

pathology will be found. This kind of situation exists with some cancer screening tests such 

as the cervical smear testing (Lalkhen & Mccluskey, 2008).   
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On the other hand, in this particular research, both types of classes used (ALL and AML) 

were of leukemic (unhealthy) cases. Since each type of acute leukemia requires a different 

type of treatment, it is important to classify both classes accurately. 

There are two possible explanations for the high difference between sensitivity and 

specificity in our research. Firstly, it could be explained by the high morphological 

similarity between the two acute leukemia blast cells. For example, the high morphological 

similarity between the (ALL) and the AML (M7) (National Cancer Institute, 2014).  

Secondly, this result may be explained by the fact that the dataset in use is unevenly 

distributed, where there are more AML samples than ALL ones, and hence, the bigger class 

(AML) dominates the smaller class (ALL)  and causes confusion in the performance of both 

classifiers (MLP-NN and SVM). Nevertheless, our dataset in not significantly imbalanced 

as the ratio of the minority to the majority class is approximately 1:3. In the work by 

(Chawla et al., 2004) the significant imbalance ratio between the majority and the minority 

classes was defined to be as low as 1:100, 1:1000 or 1:10000.  However, this small 

imbalance ratio can still affect the classification performance. 

The G-mean value was used as an indicator to deal with the problem of imbalanced data 

because of its independency from the sample distribution between classes (Barandela et al., 

2003; Kubat & Matwin, 1997). The G-mean is commonly utilized when the performance of 

each class is of concern and expected to be high simultaneously (Sun et al., 2006; Yuan & 

Liu, 2012).  

Both the MLP-NN and the SVM produced almost the same G-mean value of 86%. 

Normally, a classification model that is constructed from an imbalanced dataset tends to 

draw the boundaries between classes away from the ideal place and towards the minority 

side. Thus, the model is likely to classify some ALL blasts (minority) into the AML blasts 
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(majority) class, leading to disparity between specificity and sensitivity values. Based on 

the obtained G-mean value, the imbalanced data issue was further investigated in order to 

reduce the difference between sensitivity and specificity while increasing the G-mean and 

the accuracy rate simultaneously. For this purpose, the oversampling technique, namely 

Synthetic Minority Over-sampling Technique (SMOTE), was adopted.  

It is also worth mentioning that during the intial experimentation of acute leukemia 

classification, it was observed that the sequence of steps carried out starting from feature 

selection, model selection, rebalancing the training data and then classification resulted in 

the best classification performance. We noticed that oversampling the training data before 

feature selection produced inferior classification performance. Furthuremore,  It was also 

observed that rebalancing the training data set before model optimization produced the 

same set of paramters for both the MLP-NN and the SVM. This is because the degree of 

imbalance in our dataset was small.  

 
7.8 Results and Discussion of Acute Leukemia Classification After Oversampling 

The oversampling technique, namely the Synthetic Minority Over-sampling Technique 

(SMOTE), was adopted to oversample the minority (ALL) class by introducing new 

synthetic samples. In some cases, SMOTE technique produces an intersection between the 

classes boundary. In order to avoid this, we sought to oversample the minority class at 

different rates such that the ALL samples were oversampled at 50%, 100% and 200%, 

respectively. Six experiments were conducted and the training set was rebalanced at each 

oversampling rate. Subsequently, the classifiers (MLP-NN and SVM) were constructed 

with the rebalanced training set and tested with the blind test set.  
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The testing results of the MLP-NN and the SVM at the three defined oversampling rates are 

presented separately in Tables 7.12 and Table 7.13 to give the reader a better idea of the 

performance about each classifier. 

Table 7.12: Classification performance using the MLP-NN at three different oversampling 
rates 

Classification 
Performance Metrics 

MLP-NN 
(original-

imbalance) 

MLP-NN 
(balance at 50%) 

MLP-NN 
(balance at 100%) 

MLP-NN 
(balance at 

200%) 
TPs 291 291 290 285 

FPs 24 16 10 11 

FNs 2 2 3 8 

TNs 74 82 88 87 

Precision 92.38% 94.79% 96.67% 96.28% 

Sensitivity 99.32% 99.32% 98.98% 97.27% 

Specificity 75.51% 83.67% 89.80% 88.78% 

Accuracy 93.35% 95.40% 96.68% 95.14% 

AUC  0.973 0.980 0.979 0.970 

G-Mean 86.6 91.15 94.27 92.92 

 

Table 7.13: Classification performance using the SVM at three different oversampling rates 
Classification 

Performance Metrics 
SVM 

(Original-
imbalance)

SVM 
(balance at 50%) 

SVM 
(balance at 100%) 

SVM 
(balance at 200%) 

TPs 293 289 293 288 

FPs 25 12 12 10 

FNs 0 4 0 5 

TNs 73 86 86 88 

Precision 92.14% 96.01% 96.07% 96.64% 

Sensitivity 100.00% 98.63% 100.00% 98.29% 

Specificity 74.49% 87.76% 87.76% 89.80% 

Accuracy 93.61% 95.91% 96.93% 96.16% 

AUC  0.981 0.979 0.987 0.978 

G-Mean 86.3 93.03 93.68 93.94 
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Analyzing the results of MLP-NN presented in Table 7.12, it is apparent that oversampling 

the training data with SMOTE produced a better classification results when compared to 

the original dataset. However, the classification results at different oversampling rates 

showed that the best results were achieved when the training dataset was oversampled at 

100% rate. It can be seen that the difference between sensitivity and specificity was 

improved by around 14%, whereas the G-mean and accuracy were increased by nearly 7% 

and 3%, respectively.    

In addition, we observed  that oversampling the training set at 50% was not sufficient to 

significantly reduce the FPs samples, whereas it can be seen that oversampling the training 

data at 100% improved the classification accuracy. However, at this rate, the effects of 

intersection between the classes boundary started to appear as the TPs samples were 

reduced by one. This issue appeared more seriously when rebalancing the training dataset at 

200% as the number of FNs samples increased to eight. This indicated that the intersection 

between the classes boundary became highly overlapped.  

SVM classification results demonstrated almost the same behavior as the MLP-NN where 

the best classification performance was obtained when the training dataset was rebalanced 

at 100%.  It can be seen that the oversampling technique (SMOTE) improved the difference 

between sensitivity and specificity by around 13%, while the G-mean and accuracy were 

increased by approximately 7% and 3%, respectively, for both the SVM and the MLP-NN.  

(Akbani et al.,2004) argued that the SVM has the ability to give more accurate results on 

moderately imbalanced data. The reason is that only the Support Vectors (SVs) are used for 

the classification and many majority samples which are far from the decision boundary can 

be removed without affecting classification. 
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In a previous comparison of the SVM to several machine learning methods carried out by 

(Burbidge et al., 2001) to classify drug/non-drug samples, it was observed that an SVM 

classifier outperformed other classification methods such as the ANN and the Nearest 

Neighbor. Another study carried out by (Mohaptra et al., 2013) to classify lymphoblasts 

and lymphocyte showed that the SVM obtained better classification results when compared 

to other classification methods.  However (Burbidge et al., 2001; Gazzah & Amara, 2008) 

showed that the performance of a specially designed and structurally optimized neural 

network was comparable to the SVM model. This observation is supported by the finding 

in our research as both results obtained from the SVM and the well optimized MLP-NN 

architecture for classifying  acute leukemia blast cells were comparable in overall accuracy 

and produced almost similar results, although not identical sets of correctly and 

misclassified blast cells. 
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7.9 Comparison between the Proposed Acute Leukemia Classification Approach and 
Other Approaches in the Literature. 
 

The problem of acute leukemia classification based on the blast cell morphology has been 

addressed by several recent research works in the literature as shown earlier in Table 3.6.  

A comparison of the proposed acute leukemia classification approach with other relevant 

methods, in terms of accuracy is shown in Table 7.14. 

Table 7.14: Performance comparision between  the proposed method and other state-of-the-
art methods 

Reference Subtypes Included Classifier Performance 
Accuracy 

Reta et al., 2010 ALL(L1,L2) 
AML (M2, M3,M5) 

SVM by Sequential Minimal 
Optimization 

92% 

Halim et al., 2011 ALL AML 
Number of subtypes are not 

reported 

MLP- Scaled Conjugate Gradient 
Fuzzy ARTMAP Network 

     94.51% 
 

        90.27% 
Harun et al., 2011 ALL(L1) 

AML(M1) 
Hybrid Multilayered Perceptron 

Network 
    97.72% 

Supardi  e tal., 
2012 

ALL AML 
Number of subtypes are not 

reported 

K-Nearest Neighbor 86% 

Escalante et al., 
2012 

ALL(L1,L2) 
AML (M2, M3,M5) 

Ensemble particle swarm model 
selection (Best-per-iteration) 

96.66 

Nasir et al., 2013 ALL, AML 
Number of subtypes are not 

reported

MLP‐Bayesian Regulation 
MLP-Levenberg Marquardt 
Simplified Fuzzy ARTMAP 

95.70% 
95.55% 
92.43%

Proposed Method ALL (L1,L2,L3) 
AML(M1,M2.M3,M4.M5,M7) 

MLP-NN 
SVM 

96.63% 
96.93% 

 
It can be noted from Table 7.14 that the proposed approach included nine different acute 

leukemia subtypes including the L3 and M7 which were segmented with higher error rate at 

6%  due to its complex apperance compared to the other subtypes (Please Refer to Table 

7.5), resulted in a more complex dataset compared to the ones reported in Table 7.14. 

Nevertheless, the accuracy obtained using the proposed method was as high as 96%, this 

outperforms most of the other reported methods.  

Most of the studies reported in Table 7.14 used BM samples. However, in this research, all 

the image samples were taken from the PB. The clinical advantage of using the PB smear 
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rather than BM is that the microscopic morphological examination of the PB sample is 

often the first step in the diagnostic process of Leukemia.  

This diagnostic procedure is still considered the most economical procedure for initial 

screening of acute leukemia (Angulo et al., 2006). Thus, the initial diagnosis usually starts 

by examining the PB smear, and prior to exposing the patient to more invasive procedures, 

such as BM biopsy. Hence, a PB smear screening is of particular importance because it 

facilitates rapid diagnosis and specifies treatment (Bain, 2005). Besides, the PB smear 

screening can be done at any general clinic or medical laboratory.  

The clinical impact of our work is that it will hopefully aid primary care physicians and 

general practitioners who are usually the first contact of the leukemia patients. As leukemia 

is cancer of both the adults and children, and in Malaysia, a country of 13 states of 30 

million people, there are only four tertiary-referral centers for childhood cancer and less 

than 30 trained pediatric hemato-oncologists. Hence, having a tool to facilitate the initial 

screening of children suspected of having acute leukemia would be very beneficial to 

clinicians and laboratories located outside of major hospitals. 

 Accurate cancer classification is important in order to save the human’s life. Despite using 

common diagnostic tools, most researchers nowadays are interested in using ML 

classification techniques to classify cancer. This research was conducted in order to 

compare the performance of two ML classification techniques, which were the SVM and 

the MLP-NN in classifying acute leukemia blast cells. Both techniques can be used 

effectively in acute leukemia classification. 
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7.10 Summary  

In this chapter, we presented the testing and evaluation of the CAD-AL. The CAD-AL 

covered the main diagnostic components of segmentation, feature extraction, feature 

selection and classification. Two segmentation methods were proposed namely BCL and 

CBCSA. The CBCSA is an advance and robust segmentation algorithm which was tested 

and evaluated using two different datasets of PB images acquired from two different 

sources. The feature extraction stage involved a generation of categorized features, 

extracted from (i) shape-based techniques, (ii) texture-based technique and (iii) color-based 

technique. The feature selection showed that all the three categories of features are useful 

for the classification of acute leukemia blast cells.  

A comprehensive set of experiments was conducted in this study to obtain the best 

parameters setting for both the MLP-NN and the SVM.   

Furthermore, two classifiers; namely, the Support Vector Machine, and the Multi-layer 

Perceptron were employed in this research. The results showed that both classifiers were 

highly effective in the classification of acute leukemia blast cells using the optimal set of 

features. 

The SMOTE approach was also used to provide an improvement in the classification of the 

imbalanced class datasets. At 100% oversampling, the minority and majority classes were 

optimally recognized by both classification techniques and the intersections between the 

classes regions were avoided. 
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CHAPTER EIGHT 

CONCLUSION AND FUTURE WORK 

 
8.1 Conclusion  

Acute leukemia is a group of heterogeneous deadly diseases that affects all ages, and its 

accurate diagnosis is remarkably important for the reduction of its morbidity and mortality. 

Despite recent developments in technology and investigation modalities such as flow 

cytometry and cytogenetics, the clinical diagnosis of acute leukemia remains challenging 

and suffers from inherent subjectivity, particularly for primary healthcare practitioners, who 

are the initial contact point for hematology patients. As a result, CAD-AL has become a 

major research focus in recent years (Cornet et al., 2008) with the aim of assisting general 

practitioners and clinical laboratory practitioners in Leukemia diagnosis, through the 

provision of quantitative reproducible analysis of the PB smear. CAD-AL can play a useful 

role in producing quantitative results, recording patient follow-ups, and monitoring 

therapeutic progress. However, this type of CAD system has not been practically adopted 

yet and the work for such a diagnostic system is still in progress. For that to happen, a 

diagnostic system with higher accuracy and reliability compared to what has been achieved 

so far, is needed.   

This research presents new acute leukemia methodology, with the aim of improving some 

of the existing methods and developing new techniques to facilitate an accurate and reliable 

acute leukemia classification. The proposed methodology involves several stages including 

image acquisition, image segmentation, feature extraction, feature selection, and 

classification. In this chapter we conclude the thesis by explaining the contributions of this 

research with respect to each stage of the proposed methodology. This is followed by a 

number of recommendations for future work on this topic. 
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In this research we proposed a new methodology and subsequently developed a system that 

segments and classifies acute leukemia blast cells in PB smear images. A graphical 

illustration of the segmentation and classification process is given in Figure 1.4 and 4.1 (a-

c).  The modeling and development of the proposed system is presented in Chapter 5 and 6. 

The proposed system involved four main stages namely: the image acquisition stage, the 

segmentation stage, the feature extraction/selection stage and classification stage. The most 

difficult and challenging part was the PB image segmentation which was further divided 

into two parts: the single blast cell localization and extraction, and the nucleus/cytoplasm 

separation. A segmentation algorithm called CBCSA was developed in order to extract a 

single blast cell from the high-cell population PB image and to separate the nucleus region 

form the cytoplasm region. Various image processing techniques were combined to localize 

a single blast cell such as color space analysis, image thresholding, mathematical 

morphology and watershed, while SRG was used to separate the nucleus from the 

cytoplasm. We used two different datasets of PB images acquired from two different 

sources to test the robustness of the proposed algorithm. The segmentation results presented 

in Section 7.2.2 (Table 7.2, 7.3, 7.4 and 7.5) showed several key advantages of the 

proposed CBCSA such as the robustness and accuracy of the algorithm in comparison to 

the manually segmented blast cells performed by a clinical expert. The results are very 

promising, and should open new paths for leukemia diagnosis. In addition, the present 

algorithm can also be used to detect normal WBC, including lymphocytes, indicating that it 

can be used for differential blood count systems. 

601 blast cell related features from three different categories namely, shape, texture and 

color were extracted and evaluated in various experiments.  
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18 features were subsequently selected (Please Refer to Table 7.8) based on their 

performance using SFS. These 18 features were then used to classify blasts cells into ALL 

or AML using SVMs and MLP-NN.  

The parameters of both classifiers were tuned using a 10-fold cross validation, the model 

produced the highest accuracy on validation set was constructed and trained with the full 

training set and tested on an unseen test set.  The experimental results presented in Section 

7.7 (in Table 7.10 and 7.11) indicated that SVM and MLP-NN achieved high accuracy of 

93.61% and 93.35% respectively, in classifying acute leukemia blasts. Furthermore, it has 

been concluded that the results obtained, using specially designed and structurally 

optimized neural network were comparable to the SVM model, where both provided almost 

comparable classification performance.  

 
8.2 Main Contribution  

The key contributions of this thesis are summarized below: 

a. Color-channels analysis for blast cells detection in PB microscopic images 

Color information plays a significant role in PB image segmentation. Variegation in 

the color of various blood components and the diversity found in the staining 

quality of different PB slides make blast cell localization and extraction a 

challenging process. Although numerous blood cell segmentation methods have 

been developed, only a few studies focused on determining the most effective color 

space and color channels which can highly differentiate between various blood 

components.  In this research, we proposed a comprehensive color channel analysis 

procedure, which showed that (1) the enhancement of the original RGB image using 

color contrast stretching makes the blood components (RBC, nucleus, cytoplasm, 

plasma) highly different from each other in terms of color (as illustrated in Figure 
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5.14 (b)). (2) The ࢈ channel of the Lab color space effectively highlights almost all 

the erythrocytes in the PB image which can then be easily removed using optimal 

threshold  (as illustrated in Figure 5.15-5.17). (3) The HSV color space was found 

to be very efficient in highlighting the plasma background through the Hue channel 

(as shown in Figure 5.18 (b-c)), while the Saturation channel was found to be the 

optimal color channel that was used to highlight the initial seed points of the blast 

cell nucleus.  The determined color channels were the main building block for the 

blast cells detection and extraction since it provided a remarkable added value to the 

final segmentation result. 

b- Blast cells localization and extraction in PB images. 

The goal of the localization and extraction process is to separate each blast cell from 

the background components such as erythrocytes, platelets and plasma. It is 

considered a fundamental step towards the development of the CAD-AL, and its 

accuracy is essential for precise implementation of the subsequent steps.  In various 

methods available in the literature (Please Refer to Table 3.4), the idea was to 

initially identify the nuclei which are the most prominent regions in the PB image, 

(due to the blood staining which highlight the nucleus with dark purple color) and 

then to detect the entire cell membrane such as in the work of (Mohapatra et al., 

2013, Sadeghian et al., 2009). However, the proposed CBCSA first cleans up the PB 

image from all the unwanted blood components such as erythrocytes and plasma by 

applying Otsu’s global histogram thresholding on the optimal color channels 

derived from the above-mentioned color spaces analysis process. This is followed 

by the application of morphological reconstruction to reconstruct a completed blast 

cell (Please Refer to Section 5.2.3) and watershed transform to separate touching 
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blast cells. This method resulted in blast cell localization and extraction with a 

maximum error of approximately 4% when compared to the ground truth (Please 

Refer to Table 7.5).  

c- Nucleus region segmentation using SRG. 

The accuracy of blast cell nucleus segmentation is remarkably important for acute 

leukemia blast cells classification. This is because the nucleus region carries 

invaluable characteristics of blast cell such as nuclear shape and chromatin pattern 

(Rubin et al., 2008).  It has been shown in our earlier work (Madhloom et al., 2010) 

that the nucleus of healthy WBC can be easily segmented using a combination of 

arithmetic operation and automatic thresholding. However, due to the 

inhomogeneous nature of the blast cell nucleus chromatic pattern, it has been 

concluded that segmentation techniques that do not consider spatial information 

such as thresholding could not produce satisfactory results. For that reason, in this 

research, the SRG was used to separate the nucleus region from the cytoplasm 

region. This method resulted in nucleus region extraction with a maximum average 

error of approximately 5.59% according to the ܴܷܣܯ஺ metric (Please Refer to 

Table 7.5).  

d- GLCM feature extraction for blast cell nucleus with various quantization levels 

In a CAD-AL, feature extraction is applied to extract the features that accurately 

characterize a blast cell.  These features, which are extracted from the ROI 

determined through the segmentation process, are similar to those visually detected 

by the hematologist in their clinical practice. By studying the morphological 

examination of the PB smear under the microscope as well as consulting the 

hematologist from UMMC, a comprehensive feature extraction strategy was 
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developed. The proposed method captures features regarding (1) the characteristics 

of the external attribute of the blast cell and its corresponding nucleus such as shape 

and border characteristics (F1-F4 Table 7.8) and (2) the color and texture 

characteristics of the nucleus chromatin pattern (F5,F14-18 Table 7.8).  

 In this research, 22 GLCM texture features were extracted from the blast cell 

nucleus based on six different gray-level quantization (Please Refer to Table 6.2, 

6.3,6,4 and 6.5). To our knowledge, this approach has not been investigated before 

in any CAD-AL. 

Experimental results demonstrated that some GLCM features (F6-F13 Table 7.8) 

can produce high discrimination power between ALL and AML using high gray-

level quantization, while some others can show high discrimination power using 

low gray-level quantization. It can be concluded that GLCM features extracted 

using different quantization levels prominently contribute to the final optimal 

feature set (Please Refer to Table 7.8).  

e- Machine learning approach to classify acute leukemia blast into ALL and AML from PB 
images 

Feature selection is the process of eliminating irrelevant, redundant, or noisy 

features from the initial feature set created during the feature extraction step. In 

this research the Sequential forward selection (SFS) method which has the ability 

to consider features dependency was used.  SFS has been successfully applied in 

various applications, yet to the best of our knowledge it has not been applied in 

previous acute leukemia studies. In the literature, there has not yet been a clear 

agreement on which feature sets are the most suitable for this task. However, this 

research has established that the three extracted categories of features, namely 

shape, texture and color are important for the final classification of acute leukemia 
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blast cells. Furthermore, it has been observed that the number of features used is 

also crucial for the classification accuracy. As shown in Table 7.10 and 7.11, the 

classification accuracy improved by 17% and 7% for both MLP-NN and SVM 

respectively, after performing feature selection.  

This highlights the importance of the feature selection. Hence, feature selection 

not only improves the classification complexity by minimizing the utilized number 

of features, but also enhances the classification accuracy. 

The secondary contribution of this research provides the basis for conducting a comparative 

analysis between different ML classification technologies, such as MLP-NN and SVM. It 

has been concluded that a well optimized MLP-NN architecture can produce comparable 

results to SVM classifiers. This indicates that both classifiers have a good generalization 

capability for the classification of ALL and AML. 

In addition to the above novel contributions, the current research found that high 

microscopic magnification power such as 1000x (used to capture PB images in Dataset-A) 

is not only beneficial for blood smear visual analysis (Díaz,  and  Manzanera., 2011),  but 

also for blood smear image analysis. Lower magnification power such as 300x-500x (used 

to capture images in Dataset-B) makes blood cells look smaller, which in turn, reduces the 

appearance of cellular details. As an example lower magnification power reduces the 

appearance of the boundaries between the nucleus and the cytoplasm and hence, affects the 

nucleus region segmentation accuracy. Table 7.5 demonstrates that the nucleus region 

segmentation accuracy obtained from Dataset-A is higher than that obtained from Dataset-

B. This finding confirms the association between high magnification power, used to capture 

the images, and the image segmentation accuracy. 
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8.3 Achievement of Research Objectives 

As discussed in Section 1.3, the goal of this research is to increase the diagnostic accuracy 

of image processing and machine learning techniques for optimum classification between 

ALL and AML as well as the reproducibility of PB smear morphological examination. In 

order to achieve this goal, a new acute leukemia diagnostic methodology was carefully 

analyzed and designed, as shown in Figure 4.1 (a-c).  The research objectives outlined in 

Section 1.3 are discussed as follows: 

1- A new acute leukemia diagnostic methodology was carefully analyzed and designed 

as shown in Figure 4.1 (a-c), taking into consideration the current problems which 

are mainly related to the segmentation stage such as color variation in PB image, 

cell localization, and separation of touching and overlapping cells. This point 

complies with the first objective of the research.  

2- The optimal selected feature set constructed using the SFS (Please Refer to Table 

7.8) has shown to reduce the classification error for both classifiers (MLP-NN and 

SVM) when compared to the use of the full feature set for classification. This 

complies with the second objective of the research.    

3- A reliable and robust blast cells segmentation algorithm, namely, CBCSA (Please 

Refer to Section 5.3) was developed to localize and extract blast cells and their 

nuclei with high accuracy (Please Refer to Table 7.5).  The performance of the 

proposed CBCSA was tested on two distinctive datasets collected from different 

sources namely, Dataset-A and Dataset-B. Moreover, the proposed feature set has 

shown to be very useful for the differentiation of acute leukemia blast cells. The 

classification performance of the proposed feature set was evaluated using two 
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classifiers called MLP-NN and SVM. This point complies with the first, second, 

and the third objectives of the research.   

  
8.4 Impact and Significance to the Medical Field 

The proposed methodology (Please Refer to Figure 4.1 (a-c)) can be implemented as an 

intelligent image based diagnostic system (CAD-AL) to assist laboratory practitioners, 

primary care physicians, as well as hematologists in their daily practice by acting as a 

second reader. This issue highlights the demand for receiving a non-invasive in vivo second 

opinion, which increases the diagnostic accuracy and decreases the human error rate. The 

implementation of such a system in real-world practice can lead to the following 

advantages: 

1.  It saves more lives and reduces financial and emotional costs imposed on patients, 

such as eliminating the need for performing unnecessary bone marrow biopsy 

procedures. 

2. It is highly desirable and advantageous for hematologists to have a diagnostic 

system which could provide quantitative and objective evaluation of acute leukemia 

blast cells.  

3.  CAD-AL would allow for reproducible diagnosis by diminishing the inter-observer 

variability that could be found in the diagnosis of acute leukemia.  

4.  It reduces the amount of repetitive and tedious work done by physicians allowing 

the inspection of more PB slides and reporting the findings in a shorter time frame. 

This would be very useful for people who need regular follow-ups, thus saving time 

and cost of multiple travels, particularly for those who live in rural areas.  

5. CAD-AL can also be used for educational purposes where the trainee can use the 

CAD-AL to validate his/her findings. 
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Despite the existence of highly accurate leukemia diagnostic methods such as flow 

cytometry and cytogenetics, these technologies are very expensive and only a few hospitals 

(in developing countries) can afford to buy them. Besides, these equipment need highly 

trained laboratory personnel and, often, an exchange of information among the clinicians 

(Anlike etal., 2013). Therefore, a computer based morphological blood analysis method for 

acute leukemia identification offers a better tradeoff between low cost and accuracy, and 

we believe it may have a broad impact. In a real world scenario, for example, in Malaysia, a 

country comprising of 13 different states with an approximate population of 30 million, 

there are only four tertiary-referral centers for childhood cancer and less than 30 trained 

pediatric hemato-oncologists. Hence, having a CAD-AL system that facilitates the counting 

and classification of blast cells of children having acute leukemia, would be beneficial to 

clinicians and laboratories in terms of speeding up the process and verifying the results, 

especially if it is done by a junior personnel.  

 
8.5 Future Expansion and Recommendations 

Throughout the thesis, we have presented new ideas and approaches to address the key 

components of an acute leukemia diagnostic process using image processing and ML 

techniques. We now canvass several possible directions that can be pursued to further 

advance the state of this research. The following are some suggestions that may serve as the 

foundation for future research. 

 
1- The proposed methodology achieved an acceptable segmentation and classification 

accuracy of over 90%, as indicated in Chapter 7. However, it is still required to 

improve the system by extensively testing it on a larger number of PB images with 

different conditions, i.e., on thousands of PB images acquired with different staining 
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methods and different microscopic and camera settings. This would require a well-

organized participation of several medical centers. The CAD-AL should be tailored 

to satisfy the needs of: (i) expert users, including hematologists, who may seek a 

quantitative analysis of a given PB slide as a second opinion to their clinical 

diagnosis, and (ii) non-expert users, including general practitioners or laboratory 

practitioners, who may need to increase the accuracy of their diagnosis and gain 

more confidence in leukemia diagnosis.   

 
2- This research uses GLCM texture features for quantifying the nucleus chromatic 

pattern. The reason behind using GLCM in this research is attributed to the recent 

success of GLCM in blood cells analysis. However, this does not mean that 

amongst the texture based techniques, only GLCM can provide good computation 

results. Thus, other texture based techniques can be evaluated in this research to 

perform a comparative study. The following texture analysis techniques have gained 

recent success in pattern classification problems and can be considered:  

(a) Local binary patterns 

(b) Tamura Texture features 

(c) Gray Level Run Length Matrix (GLRLM)  

A comparative study evaluating other texture feature estimation approaches will 

benefit this research, with a possibility of further improving the performance and 

accuracy of the developed system. 

 
3- Leukemia diagnosis using morphological examination of PB smear under the 

microscope is still considered the most economical procedure for initial screening of 

acute leukemia (Angulo., et al, 2006).  
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One of the main goals of this research is to provide a reliable and accurate 

computer-based diagnostic system for acute leukemia using PB smear images. 

However, it is worthwhile to further extent the proposed methodology to be used for 

morphological examination of both PB images and BM images.  

 
8.6 Summary  

In this research, we have focused on a new methodology for acute leukemia diagnosis and 

classification using image processing and ML techniques. The proposed methodology 

involved four main stages starting with image acquisition, image segmentation, feature 

extraction/selection and finally classification. We subsequently developed a system, which 

we named CAD-AL (computer-aided diagnosis for acute leukemia) to perform this 

diagnostic procedure. In this chapter, we concluded this thesis by highlighting our major 

contributions and discussing the achievement of the research objectives with respect to the 

experimental results obtained along with the key findings and significance of the research. 

In addition, this chapter discusses the impact and significance of our research to the 

hematology community in particular, and to the society in general. Furthermore, a number 

of future activities to extend the work are highlighted in this chapter. 
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