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ABSTRACT 

 

 Pulsed lasers have many practical applications in both communication 

and sensing. This thesis describes in detail the generation of bright pulses and dark 

pulses lasers based on nonlinear polarization rotation (NPR). The passive techniques are 

explored for pulse generation as they are reliable, compact, producing high beam quality 

and do not require an external modulator. Various techniques such as film saturable 

absorber (SAs), fiber SA and NPR techniques are studied to generate pulse. 

Performance of graphene SA in Erbium-doped fiber laser (EDFL) with three different 

gain mediums is successfully demonstrated. Q-switched EDFL are also demonstrated 

using thulium-doped fiber as a SA. NPR technique is adopted in a ring EDFL to 

generate Q-switched with low pump power. Besides the Q-switching operation, NPR 

technique is also explored to generate mode-locked, harmonic mode-locked, and multi-

wavelength mode-locked. On the other hand, nonlinear Schrödinger equation (NLSE) 

dark pulse, cubic-quintic nonlinear Schrödinger equation (CQNLSE) dark pulse and 

domain wall (DW) dark pulse are demonstrated under different EDFL cavities based on 

NPR technique. Furthermore, multi-wavelength dark pulse is achieved using PCF in 

figure-of-eight cavity to slice the dark pulse spectrum. Besides, Q-switched dark pulse 

is achieved in an unstable mode-locking operation, in which the Q-switching operation 

modulated the dark pulses. 
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ABSTRAK 

 

Laser berdenyut mempunyai banyak aplikasi praktikal dalam kedua-dua 

komunikasi dan penderiaan. Tesis ini menerangkan secara terperinci generasi laser 

denyutan terang dan laser denyutan gelap berasas nonlinear polarization rotatation 

(NPR). Teknik-teknik pasif yang diterokai untuk generasi nadi kerana mereka 

dipercayai, padat, menghasilkan kualiti rasuk tinggi dan tidak memerlukan 

peninggirendahan luar. Pelbagai teknik seperti filem saturable absorbers (SAs), serat SA 

dan teknik NPR dikaji untuk menjana denyut. Prestasi graphene SA di Erbium-doped 

fiber laser (EDFL) dengan tiga gain medium yang berbeza berjaya ditunjukkan. Q-

switched EDFL juga menunjukkan menggunakan gentian thulium-doped fiber sebagai 

SA. Teknik NPR diguna pakai dalam EDFL untuk menjana Q-switched dengan kuasa 

pam rendah. Selain operasi Q-switched, teknik NPR juga diteroka untuk menjana mode-

locked, harmonik mode-locked, dan laser pelbagai jarak gelombang mode-locked. 

Sebaliknya, nonlinear Schrödinger equation (NLSE) nadi gelap, Cubic-quintic nonlinear 

Schrödinger equation (CQNLSE) nadi gelap dan domain wall (DW) nadi gelap yang 

ditunjukkan di bawah rongga EDFL berbeza berdasarkan teknik NPR. Tambahan pula, 

pelbagai jarak gelombang nadi gelap dicapai menggunakan PCF dalam rajah-of-lapan 

rongga untuk keping spektrum denyut gelap. Selain itu, Q-switched nadi gelap dicapai 

dalam mode-locked operasi yang tidak stabil, di mana operasi Q-menukar termodulat 

denyutan gelap. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Overview of Pulsed Laser 

 

Pulsed lasers have been of great interest as they have many applications in 

telecommunication, remote sensing, signal processing and medicine. Various laser 

setups are widely studied to generate pulses with different and distinctive pulse 

characteristics. Therefore, each of the laser setup can be customized to suit for different 

applications. For instance, pulsed laser designed with high peak intensity and high pulse 

energy is widely used for micromachining, cutting and drilling which benefits the 

electronic and automotive industries (Nikumb et al., 2005). In the medical field, pulsed 

laser is used in surgeries (Plamann et al., 2010; Serbin et al., 2002). One of the 

applications of pulsed laser is in eye surgery, where the system is known as the laser-

assisted in situ keratomileusis (LASIK) (Kezirian & Stonecipher, 2004; Montés-Micó, 

Rodríguez-Galietero & Alió, 2007). In LASIK surgery, ultra-voilet (UV) laser source is 

used to photo-ablate the corneal tissue rather than mechanical cutting which will 

somehow damage the surface layer or cornea and the surrounding cells. On the other 

hand, pulsed laser is used to mark information such as batch number, manufactured date 

and logo (Noor et al., 1994) in the electronic semiconductor manufacturing industry. 

Furthermore, in telecommunication field, ultra-short optical pulses have been widely 

used in optical transmission technology for achieving a high speed and long distance 

network (Salehi, Weiner, & Heritage, 1990; Mendez et al., 2000). With the 

exponentially growth of information technology in past decade, billions of computers 

are linked and information such as voice, data, image, and video are exchanged. For 
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instance, services such as voice over Internet Protocol (VoIP) are able to allow users to 

communicate in very low cost compare to traditional public switched telephone network 

(PSTN). Nonetheless, the demands of higher data rate transmission are still in a 

tremendously growth as the number and needs of users are increasing. To achieve a 

high capacity transmission, multiplexing with Wavelength Division Multiplexing 

(WDM) and Optical Time Division Multiplexing (OTDM) are effective solutions in 

current technology.  

WDM is a technology by which multiple optical channels can be combined 

together and simultaneously transmitted at different wavelengths through a single 

optical fiber. The broad bandwidth supercontinuum (SC) light source generated by a 

pulsed laser can be sliced into many wavelength channels to serve as a source in WDM 

system (Morioka et al., 1994). The SC light source can be produced by leading the 

pulsed laser output into a nonlinear fiber such as photonic crystal fiber (PCF), highly 

nonlinear fiber (HNLF) and dispersion compensated fiber (DCF) (Hossain, Namihira & 

Razzak, 2012; Mori et al., 1997). Spectrum broadening is formed as a result of 

nonlinear interaction such as self-phase modulation (SPM), cross-phase modulation 

(XPM) and four wave mixing (FWM) in the nonlinear fiber. SC source extending from 

1200 nm up to region above 1750 nm has been obtained from an amplified mode-locked 

pulse of 800 fs in conjunction with 100 m PCF (Shahabuddin et al., 2012). In Dense 

Wavelength Division Multiplexing (DWDM) system, the broad light spectrum can be 

sliced into hundreds or even thousands of wavelengths and each of the wavelengths can 

function as individual channel carrier.  

In OTDM technology, high bit rate data stream is achieved by multiplexing a 

number of low bit rate optical channels in the time domain. Several types of pulsed laser 

sources are widely utilized in OTDM system, which are included mode-locked fiber 

laser in ring cavity, semiconductor mode-locked laser and distributed feedback laser 
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(DFB) with modulator. OTDM system shows a promising potential for next generation 

of telecommunication technology. For instance, ultra-high speed at 1.28 Tb/s in OTDM 

transmission over 70 km had been demonstrated using ultra-short femto-second soliton 

with 10 GHz per channel at the transmitter (Mulvad et al., 2010; Nakazawa, 2000). 

Furthermore, soliton pulses are desirable transmitting sources for ultra-long haul 

transmission and it was successfully implemented and demonstrated in a propagation 

distance up to one million km (Nakazawa et al., 1991). Among the different types of 

pulses, dark pulse can provide better signals for telecommunications. The dark pulses, 

which consist of intensity dips under a continuous beam of laser light, are effectively 

the opposite of the bright bursts in a normal pulsed laser. Dark pulse train can be 

generated with 90 ps pulse width, and just 30% of the normal intensity is needed 

compared to conventional bright pulse (Feng et al., 2010).  

There are various techniques that can be utilized to generate different types of 

pulsed laser to fit into different applications. Generally, these methods can be classified 

into two techniques, which are active and passive pulsing techniques. In active 

techniques, an external modulator is needed to electronically synchronize to the cavity 

repetition rate. In passive technique, the external synchronization is not required, but 

rather adopts an all optical nonlinear process in a laser resonator. The structures of 

active mode-locked lasers are considered complex, complicated and bulky with the 

employment of external modulator, whereas for passive method, the mechanism used is 

by generating saturable absorption action. Saturable absorption can be achieved by real 

saturable absorbers (SAs) or can also exploit the artificial SAs. Real SAs such as 

semiconductors and the newly discovered carbon nanotubes (CNTs) and graphene, 

whereas the most prominent artificial SA is called nonlinear polarization rotation 

(NPR), which is also known as additive pulse mode-locking (APM) (Haus, Ippen & 

Tamura, 1994). The advantages of passive over active mode-locking are for its simple 
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and compact construction, cost efficiency, robustness and ultra-short pulse generation 

(Sotor et al., 2012). This PhD work is intended to explore several passive pulsing 

approaches as well as the formation of different pulse profiles. 

  

1.2 Thesis Objectives  

 

Pulsed lasers are important and widely used in communication and electronics 

industries. This work aim to implement and demonstrate practical pulsed laser based on 

nonlinear effects in optical fibers. To achieve this, several objectives have been outlined 

to guide the research direction toward the goal: 

1. To study various passive techniques to generate pulsed laser. 

2. To demonstrate Q-switched fiber laser using real saturable absorber and artificial 

saturable absorber. 

3. To generate mode-locked fiber laser using NPR technique. 

4. To generate dark pulse using NPR technique. 

 

 

1.3 Thesis Overview 

 

This thesis is organized into six chapters which comprehensively demonstrate 

the generation of pulsed laser based on nonlinear effects. Chapter 1 gives a brief 

description on the recent developments and applications of pulsed lasers. Besides, the 

motivations and objectives of this study are also highlighted. Moreover, an overview 

and the contributions of this thesis to the pool of knowledge are also summarized. 

Chapter 2 provides a detailed theoretical background and fundamental principles on the 

relevant nonlinear effects in the optical fiber that are responsible for the generation of 
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pulsed lasers. Various pulsing operation and pulsing techniques are also reviewed in this 

chapter. 

Chapter 3 demonstrates Q-switched fiber lasers based on real saturable absorber 

and artificial saturable absorber. Real saturable absorbers are included graphene film 

saturable absorber and fiber saturable absorber, whereas the artificial saturable absorber 

is based on NPR techniques. The performances of these lasers are compared in terms of 

threshold pump power, pulse stability, pulse energy and pulse repetition rate and ease of 

implementation. Besides, multi-wavelength Q-switched fiber laser can also be 

implemented via graphene saturable absorber combined with NPR technique. This 

chapter concludes that NPR technique is the simplest and most practical. Therefore, 

NPR technique is chosen for further exploration in realizing mode-locked fiber laser in 

the following chapters.  

Chapter 4 focuses on the generation of mode-locked fiber laser using NPR 

technique. In this chapter, various NPR based fiber lasers are demonstrated using 

dispersion compensation fiber (DCF), single mode fiber (SMF) and photonic crystal 

fiber (PCF) as the nonlinear medium. A new three switchable operation state mode-

locked fiber laser is demonstrated by using DCF. Besides, square pulse mode-locking 

operation is achieved based on a spool of long SMF. Finally, a multi wavelength mode-

locked fiber laser with figure-of-eight cavity is proposed using PCF to slice the mode-

locked spectrum. 

Chapter 5 focuses on generating dark pulses based on NPR techniques. Three 

different types of dark pulses are demonstrated, which are included nonlinear 

Schrödinger equation (NLSE) dark pulse, cubic-quintic nonlinear Schrödinger equation 

(CQNLSE) dark pulse and domain wall (DW) dark pulse. Furthermore, multi-

wavelength dark pulse is achieved using PCF in figure-of-eight cavity to slice the dark 

pulse spectrum. Besides, Q-switched dark pulse is achieved in an unstable mode-
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locking operation, in which the Q-switching operation modulated the dark pulses. 

Finally, chapter 6 summarizes the findings for this PhD work. 

 

 

1.4 Contributions 

 

The major contributions of this research work are summarized below: 

1. Demonstration Q-switched Erbium-doped fiber laser (EDFL) incorporated graphene 

saturable absorber in three different gain media. The performance of three different 

gain media is compared in term of pulse energy, pulse width, pulse repetition rate 

and threshold pump power. 

2. Development of fiber saturable absorber based Q-switched fiber laser. Thulium-

doped fiber laser is used to achieve saturable absorption in a EDFL which operated 

at 1570 nm wavelength. 

3. Demonstration of multi-wavelength Q-switched EDFL in figure-of-eight cavity. 

Graphene saturable absorber is used to generate Q-switched in main loop, whereas 

PCF is incorporated in second loop to slice the Q-switched spectrum into multi-

wavelength operation. 

4. Demonstration various mode-locked operation. Mode-locked in three switchable 

operation, mode-locked square pulse operation and multi-wavelength mode-locked 

operation are implemented in different types of birefringent nonlinear medium. 

5. Development of dark pulse EDFL based on several techniques, which are included 

NLSE dark pulse, CQNLSE dark pulse and DW dark pulse: NLSE dark pulse 

generation is based on Kerr nonlinearities, whereas CQNLSE dark pulse generation 

is based on non-Kerr nonlinearities. Besides, DW dark pulse generation is relied on 

dual wavelength oscillation. 
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6. Demonstration of multi-wavelength dark pulse: Dark pulse spectrum is sliced into 

multi-wavelength operation by using PCF to generate NPR effect in figure-of-eight 

cavity. 

7. Demonstration of Q-switched mode-locking operation in dark regime: Q-switched 

and dark pulse co-existed in the laser cavity. Q-switched operation modulates the 

dark pulse to achieve Q-switched mode-locking operation in dark regime. 
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CHAPTER 2 

LITERATURE REVIEW ON PULSE LASER 

 

2.1 Introduction 

 

The generation of laser in 1960s has intensively enhanced the developments for 

both telecommunication (Aubin et al., 1995) and sensor technology (Giallorenzi et al., 

1982). The invention of low loss silica based optical fibers further initiated a revolution 

in optical fiber communication, and induced the discovery of fiber material and the 

associated nonlinear optical effects. Nonlinear optical effects are one of the interesting 

phenomena in optical fiber transmission system. In recent years, many researches had 

been carried out to study nonlinear optical effects such as Self Phase Modulation (SPM) 

(Agrawal & Olsson, 1989), Cross Phase Modulation (XPM) (Agrawal, 1987), and Four 

Wave Mixing (FWM) (Deng et al.,1999). The broad studies of nonlinear effects has 

further triggered the advancement of knowledge in pulsed fiber laser. Unlike the 

conventional laser which operates in continuous wave (CW), pulsed lasers can generate 

optical pulses based on either Q-switching or mode-locking principles. Basically, pulsed 

laser can operate in two different regimes, which are bright regime and dark regime 

(Sylvestre, 2002). Dark pulses are normally referred to a train of intensity dips in a cw 

background of the laser emission. However, most of the pulsed lasers operate in bright 

regime. 

Up to date, many techniques have been proposed and demonstrated to generate 

pulsed fiber laser based on both active and passive techniques (Keller, 2003). Passive 

techniques use saturable absorber such as graphene (Bao et al., 2009; Luo et al., 2010), 

carbon nanotubes (Set, et al., 2004; Im et al., 2010), solid-state fiber, semiconductor 

saturable absorber mirror (SESAM) (Sutter et al., 1999; Chen et al., 2011) as well as 
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artificial saturable absorber based on nonlinear polarization rotation (NPR) (Kim, Kutz, 

& Muraki, 2000; Liu et al., 2008). Among these passive techniques, NPR has attracted 

the attention from scientists due to low cost and ease of implementation in generation of 

pulsed laser. The NPR effect occurs in nonlinear fiber due to Kerr effect where different 

intensity of light will rotate at different angle. This allows NPR effect to work as an 

artificial saturable absorber to generate pulsed laser.  

The main objective of this research aims to study on various pulsed fiber laser 

generation based on NPR technique. In this chapter, literature reviews on nonlinear 

effects, Q-switching and mode-locking principles, saturable absorbers and dark pulses 

are presented. 

 

2.2 Nonlinearity in Optical Fiber  

 

Lasers nonlinear response is a phenomenon which does not obey the 

superposition principle (Lehmann & Romanini, 1996), or whose output is not directly 

proportional to its input. To visualize the basic idea of nonlinear response, we may 

derive it in mathematics form. Consider in a system, response is given by 

       (2.1) 

where x is the input signal and a1 is the linear gain of the system. An applied field is 

given by 

       (2.2) 

Output is given by 

      (2.3) 

The output is a faithful representation of input within the linear region. When the 

applied field increases and goes beyond the system‟s linear region, the output become 

distorted due to the nonlinear response and can be written as 
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      (2.4) 

 The cubic distortion has been chosen for the assumption since in most of the 

nonlinear optic works, the focus has normally be given to the third order nonlinear 

effect. By substituting equations (2.2) and (2.3) into (2.4), the output become 

     (2.5) 

Trigonometric identity given as 

    (2.6) 

From above equation, it is found that the cubic distortion increases a modified response 

in frequency , and also creates a new signal at frequency 3 . 

In optical fibers, the nonlinear response may occur due to an intense applied 

field. In other word, the nonlinear response in optical fibers relies upon the harmonic 

motion of bound electron affected by the applied field. In linear region, the response of 

total polarization, P due the electric field, E can be described as 

       (2.7) 

where  is permittivity of free space and  is linear susceptibility, and it can be 

shown that 

       (2.8) 

where n is the refractive index of the medium. This describes the linear propagation 

give rise to i) Real part, speed of propagation through the medium, and ii) Imaginary 

part, absorption in the medium. By expanding the polarization in power series in E, it 

gives 

    (2.9) 

where ,  and etc are second and third order nonlinear susceptibilities, 

respectively. The second order susceptibility  is related to the nonlinear effect such 

as second harmonic generation and sum-frequency generation. In most of the situation, 
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optical fiber will not exhibit the second order nonlinear effect due to the immersion 

symmetry molecule characteristic. Obviously, the lowest order nonlinear effect in fiber 

is caused by third order susceptibility . Kerr effect is a change of the refractive 

index changed due to the applied electric field. For Kerr effect in fiber optic, the third 

order susceptibility  is significant. In Sellmeier equation 

     (2.10) 

where  is the th resonance and  is the resonance frequency. Thus, the intensity 

dependence of the refractive index can be expressed as 

     (2.11) 

where  is the optical intensity inside the fiber,  is the nonlinear index coefficient. 

 is related to  by 

      (2.12) 

In this case, refractive index is only affected by  by assuming the optical 

field is linear polarized. Nonlinear refraction is responsible for several nonlinear effect, 

and two most widely studied are self-phase modulation (SPM), cross-phase modulation 

(XPM) and four wave mixing (FWM) (Alfano & Ho, 1988). 

 

2.2.1 Self-Phase Modulation 

 

Self-Phase Modulation (SPM) is a light intensity dependent phenomenon. When 

the light travels in a medium, it will induce a varying of refractive index upon the 

medium. This can be explaining by optical Kerr effect. The variation of the refractive 

index will produce a phase shift in the pulse, and hence lead the change of the frequency 
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spectrum of the pulse (Stolen & Lin, 1987). Normalize amplitude U (z , T) can be 

defined as 

      (2.13) 

where  refer to the fiber losses, and the nonlinear length, LNL can be expressed as 

      (2.14) 

where γ refer to the nonlinearity and  stands for the peak power. By substituting 

 and V remain unchanged along the fiber, a general solution obtain as 

    (2.15) 

where  is the field amplitude when z =0 and the nonlinear phase shift, as 

    (2.16) 

where  is the effective length and define as 

     (2.17) 

From above, it shows that SPM causes the intensity dependent phase shift and 

unchanged upon the pulse shape. The nonlinear phase shift depends on the fiber length, 

L. By assuming α=0 and  =L, the maximum phase shift occur at the center of pulse, 

T=0, which can be express as 

       (2.18) 

Obviously, the nonlinear length is the effective propagation distance when . In 

dispersion case, the pulse broadening is observed in time domain, whereas SPM induces 

spectrum broadening. Hence, the pulse broadening is affected by SPM frequency chirp. 

It can be expressed as 

   (2.19) 
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In Figure 2.1, a pulse (top curve) propagating a nonlinear medium and induce a self 

frequency shifting due to SPM. It shifts to a lower frequency and back to the higher 

frequency. 

 

Figure 2.1: Gaussian pulse for the temporal variation of SPM induce phase shift and 

frequency chirp 

 

2.2.2 Cross-Phase Modulation 

 

Similar with SPM, Cross Phase Modulation (XPM) is another phenomenon due 

to Kerr effect, which involves the intensity dependent refractive index. In SPM, it only 

involves single optical field that is propagating inside the fiber, whereas two or more 

optical field having different wavelengths propagating inside a fiber simultaneously for 

XPM cases. Hence, in XPM cases, the refractive index not only affected by the optical 

field itself, but also affected by the co-propagating optical field (Agrawal, Baldeck, & 

Alfano, 1989). Assume and  are carrier frequencies for two different pulses and E1 

and E2 are corresponding as the amplitudes for  and . By quasi-monochromatic 

approximation, different part of electric field can be expressed as 
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  (2.20) 

Polarization, PNL can be written as 

   

      

   (2.21) 

Notice there‟s two terms oscillating upon the 2 new frequencies,  and 

. This is the origin of the four wave mixing (FWM). The main concern in 

XPM is another 2 terms, which going to affect the refractive index. It can be expressed 

as PNL(wk), k=1,2 

     (2.22) 

By combining the linear part, total induce polarization is 

                  (2.23) 

where 

    (2.24) 

where  is the linear part of the refractive index and  is the different of refractive 

index due to 3
rd

 order of nonlinear effect. By taking approximation of   , 

refractive index for nonlinear part is given as 

    (2.25) 

From above, it shows that the refractive index is depending on both of the optical field 

which co-propagate in the fiber. The intensity dependent nonlinear phase shift as 

  (2.26) 

The first term from equation above is contributed by SPM, whereas the second term is 

contributed by XPM. The factor of 2 upon the XPM shows that XPM is twice as 

effective as SPM in the same intensity. 
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2.2.3 Four-wave Mixing 

 

Four-wave mixing (FWM) is a type of optical Kerr effect. It can occur when two 

or more different wavelength optical fields are launched into a fiber. As discussed in 

XPM, by equation of , there‟s two term oscillating in two new frequencies, 

 and  (Fukuda et al., 2005). This can be visualized in Figure 2.2 in 

case of two optical fields with different wavelength are launched into a fiber. As shown 

in Figure 2.2, as two optical fields with different wavelength,  and  propagate in a 

fiber, two sidebands are generated at  and . Generally, the number 

of sideband generated in the fiber is depended on the number of input optical field 

wavelengths, N. The number of sideband generated, M is given by 

      (2.27) 

 

Figure 2.2: Schematic of FWM in frequency domain 
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2.3 Pulsed Fiber Laser 

 

Pulsed fiber lasers are referring to non CW operation, and optical power appears 

in pulse train and exhibits certain pulse repetition rate and pulse width. Pulsed fiber 

laser have been of great interest as they have many applications in telecommunication, 

remote sensing (Rairoux et al., 2000), signal processing (Stegeman, Hagan, & Torner, 

1996) and medicine. Basically, pulsed laser can be categorized based on some important 

pulse characteristic, such as operation regime, pulse repetition rate, pulsed width and 

pulse energy. Pulsed laser can operate either in bright regime or dark regime based on 

intensity direction of the pulse. Furthermore, bright pulses can classify into Q-switching 

operation and mode-locking operation. The difference between Q-switched and mode-

locked can be observed from pulse width, pulse repetition rate and pulse energy.  

 

2.3.1 Q-switching operation 

 

Q-switched is a technique to achieve high energetic short pulses from a laser by 

modulating the intra-cavity losses (Degnan, 1989). This technique is widely applied for 

the generation of nanosecond pulses of high energy and peak power. The Q-switched 

pulse is normally generated when the laser resonator losses are maintained at a high 

level. Therefore, the lasing cannot be built at that time, and the energy is stored in the 

gain medium. The amount of stored energy is limited only by spontaneous emission. 

Moreover, the stored energy can be a multiple of the saturation energy. When the stored 

energy is saturated, the losses will drop to a low level. Therefore, the power of the laser 

radiation builds up within a short period of time in the laser resonator. The large intra-

cavity power present at that time leads to further depletion of the stored energy after the 

power decays. The energy of the generated pulse is usually higher than the saturation 
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energy of the gain medium and can be as high as in mili joule range even for small size 

lasers. The peak power can be much higher compare to the achievable power in CW 

operation. Throughout the processes, the Q-switched lasers generate stable pulse trains 

via repetitive Q-switching operation. The pulse width achieved with Q-switching is 

typically in the nanosecond range, and usually the pulse repetition rate is higher than the 

resonator round-trip time. For instance, the pulse repetition rate is typically in the range 

from 1–100 kHz. Q-switching operation can achieve by active techniques (Zhang et al., 

1999) or passive techniques (Zhang et al., 2000).  

For active Q-switching, the losses are modulated with an active control element, 

which are included acousto-optic (Jabczynski, Zendzian, & Kwiatkowski, 2006) and 

electro-optic modulator (El-Sherif & King, 2003). The pulse is formed based on 

electronic signal triggered. Commonly, the pulse energy and pulse duration are 

depending on the energy stored in the gain medium. Therefore, the pulse repetition rate, 

pulse energy, and pulse width can be controlled by pump power. In the Q-switching 

operation, the switching time of the modulator is not necessary to be comparable with 

the pulse duration. This can be explained as the resonator needs to take many round 

trips time to form a pulse. If the time to form a pulse takes too long, it may lead to 

multiple pulses or to other instabilities regime. The pulse repetition rate of an actively 

Q-switched laser can be controlled by the pump power. Higher repetition rates exhibits 

inversely proportional relationship to pulse energies. If the gain medium cannot recover 

in time due to very high repetition rates, some pulses may be missing from the pulse 

train. In the case of low pulse repetition rates, it may obtain short high-energy pulses. 

The pulse repetition rate is at least of an order of the resonator round-trip time. 

However, it often substantially longer than round-trip time.  

For passive Q-switching, the losses are automatically modulated with a saturable 

absorber. The pulse is formed when the energy stored in the gain medium has reached 
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the saturation level. The saturable absorbers have its recovery time. If the recovery time 

is longer than the pulse duration, it can avoid unnecessary pulse energy lose. However, 

the recovery time of the absorber should be fast enough to prevent premature lasing 

when the gain recovers. Recovery time should be between the pulse duration and the 

upper-state lifetime of the gain medium. Ideally, a saturable absorber should only 

absorb a minor fraction of the energy of the generated pulses. This can be achieved if 

the saturation energy of the absorber is below the gain medium. However, significant 

non-saturable losses are frequently occurred in practical. Thus, practical limitations such 

as damage thresholds are possible to reduce the saturation energy. Hence, the power 

efficiency may greatly reduce in most of the practical case. Compared with active Q-

switching, passive Q-switching is usually simple and cost-effective. Besides, it is 

suitable to generate high pulse repetition rates. However, the pulse energies are typically 

lower. Moreover, passive technique cannot be triggered externally. Furthermore, pulse 

energy and duration are independent of the pump power. 

 

2.3.2 Mode-locking operation 

 

Mode-locking refers to a process of locking multiple longitudinal modes in a 

laser cavity (Haus, Namihira, & Razzak, 2012). The pulsed radiation can be achieved 

when the phases of different modes are forced to be „locked‟ to one another. Fixing the 

phase relationship of multiple longitudinal modes in the laser cavity causes pulsing 

simply through the periodic constructive interference lined up by the locking of the 

modes at all other points in time. When the phase relationships are fixed together and 

achieve a stable condition, it can be interpreted as the Fourier components of a periodic 

function. The case in which the phases of all the modes oscillating in the laser are 

locked together produces the narrowest pulse. When a single pulse is propagating a ring 
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cavity, the period, T, is T = L/c where L is the length of the cavity and c is the speed of 

light. Similar to Q-switching operation, methods for producing mode-locking in a laser 

may be classified as either active or passive. 

Amplitude modulation and phase modulation are the main techniques to achieve 

active mode-locking (Jeon et al., 1998). However, active mode-locking is not an ideal 

solution for generating pulses with pulse width less than 1 ps. This can be explained by 

the mechanical limitations resulting from using an active modulator (Hudson et al., 

2005). These relatively long pulse durations arise from periodically modulating 

resonator losses or round-trip phase changes at the laser cavity frequency. Various 

techniques had been used as modulators, which included acousto-optic, electro-optic, 

Mach-Zehnder integrated-optic and semiconductor electro-absorption modulators. One 

of the important conditions to achieve the pulse formation is to match between 

frequency of the modulator and cavity‟s repetition rate.  

Passive mode-locking has been widely used to generate the shortest pulses from 

fiber lasers. Typically, passive mode-locking relies on semiconductor based saturable 

absorbers to generate pulse-shaping action. A significant difference between the active 

and passive mode-locking is whereby passive mode-locking does not need on any 

physical modulator changing cavity parameters. Passive techniques are faster as they 

bias the cavity to create pulses as a steady state solution of the laser cavity. The cavity is 

designed to favor the pulse generation over the continuous wave operation. Passive 

mode-locking can be achieved with several techniques such as nonlinear polarization 

rotation (NPR) and by using saturable absorber. The commonly used saturable absorber 

for the mode-locking are included semiconductor saturable absorber mirror (SESAM), 

graphene and carbon nanotube (CNT). 
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2.3.3  Dark pulse operation 

 

Dark pulses are referred to a train of intensity dips in a cw background under a 

laser emission. A mode-locked laser can produce dark pulses, although dark pulse 

operating regime is rare. A similar analogy to a dark pulse in a mode-locked laser is a 

dark soliton. Optical dark solitons are solutions to the nonlinear Schrödinger equation 

(NLSE) (Serkin & Hasegawa, 2000; Blow & Doran, 1985). The existence of dark 

solitons can also be indentified by a complex Ginzburg-Landau equation (CGLE) (Lega 

& Fauve, 1997; Triki et al., 2012). The NLSE describes propagation in nonlinear 

medium such as optical fiber. Dark solitons are revealed to be less affected in the 

presence of fiber loss and to be more stable in the presence of noise. However, 

experimental work on dark solitons has been limited due to difficulty of it generation. 

Several techniques have been proposed and demonstrated to generate a single dark pulse 

or dark pulse train. Most of the techniques are based on external manipulation of laser 

light using pulse-shaping techniques. Methods to generate dark pulse are included 

intensity modulation of a CW laser beam by an electro-optic modulator (Zhao & 

Bourkoff, 1990), nonlinear conversion of a beat frequency signal in a normal dispersion 

decreasing fiber (Pitois, Fatome, & Millot, 2002), electro-optic phase modulation in a 

linear loop mirror (Tang, Shu, & Lee, 2001), and passive filtering of a mode-locked 

bright pulse train with a spatial mask (Haelterman & Emplit, 1993). 

 The fundamental of dark pulse generation can be classified into three 

categories, which are NLSE dark pulse (Tang et al., 2013), Cubic-quintic NLSE 

(CQNLSE) dark pulse (Crosta, Fratalocchi, & Trillo, 2011; Adib, Heidari, & Tayyari, 

2009) and domain wall (DW) dark pulse (Zhang et al., 2011; Zhang et al., 2010). NLSE 

dark pulse is depend on the Kerr nonlinearities in the cavity. Different from NLSE dark 

pulse, CQNLSE dark pulse generation can be generated when the non-Kerr 

nonlinearities dominated the Kerr nonlinearities in the cavity.  On the other hand, DW 
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dark pulse is based on two or more lases in different wavelengths oscillate and causing the 

topological defects in temporal domain.  

 

 

2.4  The Nonlinear Schrodinger Equation 

 

Pulse propagation in a fiber is widely explained by Nonlinear Schrodinger 

Equation (NLSE). The NLSE can be described in variety of different forms, depending 

on which approximations are appropriate. The NLSE can be written as  

                (2.27)                                                                

where  is the complex field envelope, z is the distance,  is the second order 

dispersion and  is the nonlinear coefficient.  is the retarded time and expressed as 

      (2.28)  

where  is the physical time and  is the group velocity. Basically, equation above does 

not provide a complete description for the light propagation in optical fiber. With the 

incorporation of the effect of fiber loss, third order dispersion (TOD) and dispersion, a 

more realistic model of light propagation in optical fiber can be visualized as 

     

   (2.29) 

On the left hand side, the first term is the electric field, which varies with the change of 

fiber length. In the second term,  govern the fiber loss. Third term accounts for first 

order group velocity dispersion (GVD). Fourth term is referring to the second order 

group velocity dispersion. On the right high side of the equation, the first term is 
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referring to SPM. Self-steeping effect is governed by second term. The intra-pulse 

Raman scattering effect is represented in the last term. 

 

2.5 Saturable Absorber 

 

Saturable absorption is a characteristic of materials to absorb light, in which the 

absorption of light exhibits an inversely proportional relationship to the light intensity. 

Most of the materials exhibit certain saturable absorption ability. However, in most of 

the materials, saturable absorption can be observed only with very high optical intensity. 

From solid state theory point of view, atoms in the ground state of a saturable absorber 

material can be excited into an upper energy state with sufficiently high incident light 

intensity. If under a rate that there is insufficient of time for atoms to decay back to the 

ground state before the ground state is depleted, subsequently the saturable absorption 

formed. Saturable absorbers had been widely used to generate pulses in laser cavity. 

Some important characteristic of a saturable absorber are included absorption 

wavelength range, recovery time, saturation intensity and fluence.  

 

2.5.1 Artificial Saturable Absorber with Nonlinear Polarization Rotation 

 

In fiber lasers, nonlinear polarization rotation (NPR) is a technique which had 

been widely used as an artificial saturable absorber (Ippen, 1994 ; Luo et al., 2011). The 

working principle of this technique is based on the fact that the nonlinear medium 

rotates the azimuth of the elliptically polarized light in proportion to the light intensity. 

Different light intensity experience different angles of rotation after propagate through a 

nonlinear medium. Since there is an intensity dependent polarization in the pulse, a 

polarizer converts this into an intensity dependent transmission. This method can be 
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controlled to choose the high intensity parts of the pulse to propagate while suppressing 

the low intensity parts (Matsas et al, 1992).  

The fundamental principle of NPR is rooted upon the principle of the intensity-

dependent nonlinear refractive index which causes a rotation of the polarization of the 

pulses (Salhi, Leblond, & Sanchez, 2003). The amount of rotation is nonlinear in that it 

relies on the change of refractive index according to the light intensity. Figure 2.3 shows 

the basic components that are needed to induce NPR. The basic components are 

included polarization controller (PC), nonlinear medium and polarizer.  

 

 

Figure 2.3: Evolution of non-linear polarization rotation 

 

The oscillation light propagates through a polarization beam splitter (PBS) prism 

or polarizer to become a linearly polarized light. And after the linearly polarized light 

passed through a polarization controller, it will become an ellipse polarized light. The 

ellipse polarized light can be further divided into two mutually perpendicular linear 

polarized lights, which are Ax and Ay. The two beams linear polarized light of Ax and 

Ay propagate in optical fiber. The two polarization direction accumulated different 

nonlinear phase shift due to the nonlinear effects such as SPM and XPM phenomenon. 

In the output the pulse is the synthesis of Ax and Ay which has experienced different 
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nonlinear phase shift (Song, et al., 2009). By controlling the wave plates at the back end 

of the fiber, we can obtain the desired condition that the different power of pulse has 

difference loss when propagate through the PBS. The state-of-polarization of the light 

experienced a rotation as it propagates in a nonlinear medium due to the Kerr effect 

(Xu, et al., 2008). The angle of rotation exhibits directly proportional relationship to the 

light intensity. High intensity light will accumulate different nonlinear phase shift 

compared to the low intensity light (Nelson, et al., 1997). Therefore, with proper 

controlled of the polarization in the cavity, high intensity light will propagate through, 

whereas the low intensity light is blocked. The combination of polarizer and PC acts as 

a polarization dependent loss element. The transmittivity of this structure can be 

represented as:  

 

(2.30) 

where  

 

 

 is the linear phase shift resulting from modal birefringence,  is the nonlinear 

phase shift in which the magnitude is the summation of SPM and XPM. and  are 

the refractive index of the respective fast and slow axes of the optical fiber. L is the 

length of the optical fiber between PC 1 and PC 2, which is approximately equal of the 

laser cavity length. λ is the operating wavelength, is the nonlinear (Kerr) coefficient 

and P is the instantaneous peak power of the input signal.  
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Figure 2.4: Transmittivity of NPR 

 

Fig. 2.5 shows the simplest configuration of a NPR based ring fiber laser, where 

a polarization dependent isolator (PDI) is incorporated in the cavity to function as an 

artificial saturable absorber with the help of two PCs. A piece of Erbium-doped fiber, 

which is pumped by a pump laser via a wavelength division multiplexer (WDM), is 

used as the gain medium to provide lasing at 1550 nm region. The pump laser functions 

to create a population inversion by exciting the Erbium ion from ground state to the 

excited state. The amplified spontaneous emission (ASE) is generated when the Erbium 

ions drop to the ground state to release energy through a spontaneous emission. The 

ASE oscillates in the ring cavity to generate laser. An optical isolator also functions to 

ensure unidirectional operation of the laser. As discussed earlier, PC in combination 

with a polarizer (in this case PDI), are used for achieving NPR for mode-locking pulse 

train generation. 
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Figure 2.5: Basic configuration of NPR in ring cavity 

 

2.5.2 Artificial Saturable Absorber with Nonlinear Optical Loop Mirror 

 

Additive pulse mode-locking (APM) or coupled cavity mode-locking (CCM) 

achieves fast saturable absorber action by exploiting the Kerr effect in an 

interferometric configuration. The principle of APM is pulse shortening by coherent 

addition of two versions of the same pulse, one of which passed through a Kerr 

medium. Fig. 2.6 illustrates the working principle of a typical APM coupled cavity 

laser. The fiber in the feedback cavity acts as the Kerr medium and the coherent 

addition takes place at the output beam splitter. The pulse returning from the feedback 

cavity into the main cavity is constructively/destructively interfering with those pulses 

that are already in the main cavity. By properly adjusting the cavity parameters, it is 

possible to create a situation such that there is constructive interference near the peak of 

the pulses but destructive interference in the wings. This is possible because the peak 

and wings of the pulse acquire a different nonlinear phase shift in the fiber. Thus the 

peak of the circulating pulse can be enhanced while the wings are attenuated, which 
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essentially shortens the pulse. This approach can be realized using two coupled 

resonators such as figure-of-eight lasers.  

 

 

Figure 2.6: Working principle of APM (a) a typical APM coupled cavity laser (b) The 

pulse of main cavity adds to the pulse of the auxiliary cavity to result in a shortened 

pulse at the output of beam splitter. 

 

A fiber Sagnac interferometer can be added into a ring cavity to construct a 

figure-of-eight fiber lasers. There are two main types of Sagnac interferometers; the 

nonlinear-optical loop mirror (NOLM) (Doran & Wood, 1988; Ilday, Wise & 

Sosnowski, 2002) and the nonlinear-amplifying loop mirror (NALM) (Fermanm et al., 

1990). They are employed in numerous applications such as optical switching and 

mode-locking of fiber lasers.  Fig. 2.7 shows a simple NOLM, which consists of a 2x2 

directional fiber coupler with two output ports connected by a length of optical fiber. 

Two PCs can also be incorporated inside the loop to adjust the polarization of the 
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oscillating light, which affects the cavity parameters. The counter propagation of light in 

NOLM is mismatched in intensity by an uneven splitting due to the coupler. With a 

sufficiently high intensity of light, significant differential phased shift will be generated 

between both of the counter propagating fields due to the nonlinear index of the fiber. 

The phase shift in the loop mirror is light intensity dependent. If a certain phase shift is 

attained, the loop mirror will become totally transmissive. Therefore, the increase of 

transmission with the intensity of light causes the NOLM acts as a fast saturable 

absorber.  

 

Figure 2.7: Basic configuration of NOLM 

 

2.5.3 Film Saturable Absorber 

 

Q-switched and mode-locked fiber lasers can be realized by using either passive 

or active techniques. The passive techniques have been intensively investigated in 

recent years using various types of saturable absorbers (SAs) such as single wall carbon 

nanotubes (SWCNTs) (Yu et al., 2014 ; Going et al., 2012), graphene (Baek et al., 

2012), graphene oxide (GO) (Chen et al,. 2014) and reduced graphene oxide (rGO) (Pan 

et al, 2014). SWCNTs are simple and cost effective. However, the operating wavelength 

of lasers employing SWCNTs is determined by diameters of the individual nanotubes 

and this limitation is a constraint on their operation and tenability (Gao et al, 2003). On 
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the other hand, graphene based SAs have shown outstanding potential for both Q-

switching and mode-locking applications due to their high saturable absorption rates 

and ultrafast recovery times (Martinez & Sun, 2013). Many approaches such as aerosol 

spraying (Zhu et al, 2009), chemical vapor deposition (Kong, Cassell, & Dai, 1998) and 

polymer composite methods have been proposed to fabricate SAs using graphene and 

CNT. Among these techniques, the polymer composite methods are the simplest. It is 

required to incorporate a host material to make the SA into film form. Typically, 

polyethylene Oxide (PEO) and polyvinyl alcohol (PVA) polymer are used for the host 

polymer material. Figure 2.8 shows a basic configuration of pulsed laser using film 

saturable. Film saturable absorber can be inserted into the ring cavity by sandwiching it 

between two fiber connectors. In this thesis, various Q-switched fiber lasers are 

demonstrated using a film based SAs. These Q-switched fiber lasers have been of great 

interest as they have many applications in telecommunication, remote sensing, signal 

processing and medicine. Films based saturable absorbers are attractive due to 

compactness, simplicity and flexibility in construction. 

 

Figure 2.8: Basic configuration of film saturable absorber 
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CHAPTER 3 

DEVELOPMENT OF PASSIVE Q-SWITCHED ERBIUM-

DOPED FIBER LASER 

 

 

3.1 Introduction 

 

 Q-switched Erbium-doped fiber lasers (EDFLs) have been of great interest as 

they have many applications in telecommunication, remote sensing, signal processing 

and medicine. They are normally realized by active or passive techniques. Actively Q-

switched techniques usually involve external mechanical devices such as chopper 

wheel, shutter and modulator (Cordova-Plaze, Digonnet, & Shaw, 1987; Eichler et al., 

1996). On the other hand, passively Q-switched techniques are commonly realized with 

saturable absorbers (SAs) (Zhang et al., 1997). In a laser cavity, SA can store energy 

until it reached a saturation level. When SA goes beyond the saturation level, it will 

release the stored energy and form a Q-switched pulse. Compared to active techniques, 

passive Q-switched fiber lasers are more attractive due to compactness, simplicity and 

flexibility in construction. 

 In this thesis, passively Q-switched fiber lasers are demonstrated using various 

SAs. Firstly, the Q-switching operation in EDFL is investigated for three different types 

of gain medium by using a homemade graphene film as a SA. Next, a new approach for 

generating Q-switching pulse train is proposed and demonstrated using a solid state 

Thulium-doped fiber (TDF) as a SA. An artificial SA by nonlinear polarization rotation 

(NPR) technique is also proposed and demonstrated for Q-switching. Finally a multi-

wavelength Q-switched EDFL is demonstrated based on NPR effect using a graphene 

film SA as a Q-switcher. 
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3.2 Q-switched EDFL with graphene based SA 

  

 Graphene based SAs have shown outstanding potential for both Q-switching and 

mode-locking applications due to their high saturable absorption rates and ultrafast 

recovery times (Bonaccorso et al., 2010). Moreover, they are easier to fabricate and less 

complex to operate. Many approaches such as aerosol spraying, chemical vapor 

deposition and polymer composite methods have been proposed to fabricate the 

Graphene based SA (Huang et al., 2012). Among these techniques, the polymer 

composite methods are the simplest. In this section, we experimentally demonstrate the 

generation of Q-switching pulse in EDFL using a graphene embedded in polymer 

composite as SA.  

 

3.2.1 Fabrication and characterization of Graphene based SA 

 

The Polyethylene Oxide (PEO) is used for the host polymer material because it 

can be dispersed easily in water, making the fabrication process easier. Furthermore, it 

has the advantage of a lower melting point as compared to the typically used polyvinyl 

alcohol (PVA) and having no adverse effects. The saturable absorber was made of 

graphene flakes, which were obtained from electrochemical exfoliation process. In this 

process, a constant voltage difference of 20 V was applied to two electrodes (graphite 

rods), which were placed 1 cm apart in an electrolysis cell filled with electrolyte (1% 

SDS in deionized water). Hydroxyl and oxygen radicals were generated from 

electrolysis of water at the electrodes during electrochemical process. Then oxygen 
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radicals started to corrode the graphite anode. This was followed by intercalation of 

anionic surfactant and finally graphene sheets were created in the solution. In our work, 

black sediments (graphene) started to peel off from the anode after several minutes. The 

exfoliation process continued for 2 h until a stable graphene suspension in SDS solution 

was observed. The stable graphene suspension was centrifuged at 3000 rpm for 30 min 

to remove large agglomerates. Afterward, supernatant portion of the suspension was 

decanted. Concentration of centrifuged graphene was estimated from the weight of 

suspension used. To fabricate the composite, 1 g of polyethylene oxide (PEO) (Mw = 

1000000 gmol-1) was dissolved in 120 ml of deionized water. The graphene solution 

obtained from electrochemical exfoliation was then mixed with PEO solution at ratios 

of 1:5 (graphene: PEO) in ml respectively. The solution was dried in petri dish at 56
o
C 

to obtain a film with 50 µm thickness. Raman spectroscopy was performed to confirm 

the presence of graphene layer in fabricated thin film using laser excitation at 532 nm 

(2.33eV) with an exposure time of 10 s. The detector was a charge-coupled device 

(CCD) camera. 

Figure 3.1 shows Raman spectrum of graphene film sandwiched between two 

fiber ferrules. Three prominent peaks are located at approximately 1351 cm
-1

, 1617 cm
-1

 

and 2911 cm
-1

, generally known as D, G and 2D band, respectively. The G band 

contributes to an E2g mode of graphite and is related to the in-plane vibration of sp
2
-

bonded carbon atoms, while D band is associated with vibrations of carbon atoms with 

sp
3
 electronic configuration of disordered graphite. The intensity ratio of the D and G 

bands of graphene sheets is about 1.2, indicating defects in graphene samples. However, 

the amount of structural defects is not large since the D peak is not very broad. Intensity 

ratio between G and 2-D peak can be used to determine the number of graphene layer. It 

was reported that single-layer graphene has a low intensity ratio, usually lower than 0.5 

while multi-layer graphene shows higher intensity ratio (≥1). As indicated in Figure 3.2, 
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we obtained a G/2-D peak ratio of 3.2, which indicates that we had multi-layer graphene 

on the fabricated film. Shape of 2-D peak can also be used to estimate number of 

graphene layers. As graphene layer increases, full-width half maximum (FWHM) of 2-

D peak follows. As also shown in Figure 3.1, FWHM for G and 2D peaks are obtained 

at 39 and 67 cm
-1

, respectively. From the intensity ratio of G and 2-D peaks and their 

FWHM, it can be inferred that number of graphene layers are more than four. Weak 2D 

peak is due to multi-layered graphene, which significantly decreases the relative 

intensity. 

 

Figure 3.1: Raman spectrum of the fabricated SA 

 

3.2.2 Experimental setup 

 

Experimental set-up of proposed EDFL was illustrated in Figure 3.2 where the 

ring resonator consisted of a piece of EDF as the gain medium, wavelength division 

multiplexer (WDM), isolator, a graphene film based SA and 10 dB coupler. The SA was 
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fabricated by cutting a small part of the earlier prepared film (2×2 mm
2
) and 

sandwiching it between two FC/PC fiber connectors, after depositing index-matching 

gel onto the fiber ends. The measured insertion loss and modulation depth of the SA 

were approximately around 2 dB and 2.6 % at 1550 nm. A 1480 nm laser diode was 

used to pump the EDF via the WDM. An isolator was incorporated in the laser cavity to 

ensure unidirectional propagation of oscillating laser. Output of the laser was collected 

from the cavity via a 10 dB coupler which retains 90% of light in the ring cavity to 

oscillate. Optical spectrum analyser (OSA, Yokogawa, AQ6370B) was used for spectral 

analysis of Q-switched EDFL with a spectral resolution of 0.02 nm whereas 

oscilloscope (OSC, Tektronix, TDS 3052C) was used to observe the output pulse train 

of Q-switched operation via a 1GHz bandwidth photo-detector. The performance of the 

laser for three different media was investigated. The media tested were 7 m long 

standard silica EDF with Erbium ion concentration of 400 ppm, 4.5 m long highly 

doped silica EDF with 2000 ppm Erbium ion concentration and 0.5 m long Bismuth 

EDF with Erbium ion concentration of 3000 ppm. 
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Figure 3.2:  Schematic configuration of the Q-switched EDFL 

 

3.2.3 Comparison of Q-switching performance at three different gain media 

 

The Q-switching performance for the three different EDFLs is investigated by 

slowly increasing the 1480 nm pump power until a stable Q-switching pulse train is 

observed after the the pump power exceeds the lasing threshold. Stable and self-starting 

Q-switching operation is obtained at pump power thresholds of 33.7 mW, 98.5 mW and 

59.5 mW for the EDFLs configured with 400 ppm silica EDF, 2000 ppm silica EDF and 

3000 ppm Bismuth EDF, respectively. There is no lasing below the threshold pump 

power. Figure 3.3 shows the output spectra of these lasers at the threshold pump power. 

For 7 m long EDF with 400 ppm concentration, laser exhibits the lowest threshold 

pump power and operates at 1529 nm instead of 1559 nm. This is attributed to the 

length of the fiber which is reasonably short for 400 ppm Erbium concentration which 

resulted in insufficient population inversion for lasing at longer wavelength region. The 
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amount of Erbium ions increase by using higher concentration EDF (2000 ppm and 

3000 ppm) and it absorbs the shorter wavelength photons to increase the population 

inversion at 1559 nm region. Since the loss is lower at longer wavelength region, lasing 

is initiated in this region which has a higher net gain. Output power is highest with 

Bismuth EDF since it provides the highest gain when it is pumped by 1480 nm laser 

diode. Spectral broadening is also observed especially with the silica EDF due to self-

phase modulation (SPM) effect in the ring cavity. 

 

Figure 3.3: Optical spectrum of the Q-switched EDFLs when the pump is fixed at 

threshold power 

 

In a passively Q-switched laser, cavity loss is modulated by the SA whose 

transmission/reflection depends on the light intensity. Basically, pulse is released when 

the cavity energy reaches a certain value determined by the absorber saturation fluence. 

Pulse repetition rate and pulse width therefore depend on the stored energy or pump 

power as described in Q-switching theory. Figures 3.4 and 3.5 show the repetition rate 

and pulse width, respectively against pump power for all three EDFLs. Repetition rate 
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of all Q-switched EDFLs has a monotonically increasing, near-linear relationship with 

pump power. On the other hand, pulse width of all EDFLs is inversely proportional with 

pump power, where the pulse duration becomes shorter as the pump power increases as 

shown in Figure 3.5. For instance, when the pump power is tuned from 59.5 to 107.9 

mW, pulse train repetition rate varies from 22.5 to 57.3 kHz for EDFL configured with 

the Bismuth EDF. Meanwhile, pulse width of Bismuth EDFL drops from 5.01 μs to 

2.48 μs. Pulse width is expected to decrease further if pump power can be augmented 

beyond 107.9 mW as long as it is still kept below the damage threshold of the graphene 

based SA. The shortest pulse width of 2.48 μs is obtained with the EDFL configured 

with 0.5 m long Bismuth EDF. This is attributed to total cavity length used, which is 

shorter than the ones in the other two EDFLs configured with silica EDF. Laser from 

the 2000 ppm silica EDF displays the widest pulse width tunability whereby it can be 

tuned from 12.03 μs to 4.58 μs by varying pump power from 98.5 mW to 125.0 mW.  

 

Figure 3.4: Pulse repetition rate against pump power for the EDFL configured with 

three different EDFs 
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Figure 3.5: Pulse width versus pump power for the EDFL configured with three 

different EDFs 

 

Figures 3.6 (a) - (c) show oscilloscope traces of Q-switched pulse train for 

EDFLs with 400 ppm, 2000 ppm and 3000 ppm EDFs, respectively at its highest 

repetition rates.  There is no distinct amplitude modulation in each Q-switched envelop 

spectrum, which indicates that self-mode locking effect on Q-switching is weak. The 

highest repetition rate of 57.3 kHz is obtained with Bismuth EDF as pump power is 

fixed at 107.9 mW. Figure 3.7 and Figure 3.8 show the average output and pulse energy, 

respectively versus pump power for all EDFLs. As shown in Figure 3.7, the output 

power increases linearly with pump power for all EDFLs.  For instance, the average 

output power of Bismuth EDFL increases from 372 μW to 788 μW as pump power 

increases from 59.5 to 107.9 mW. The slope efficiencies of 0.9%, 0.6% and 0.9% are 

obtained for Q-switched EDFL configured with 400 ppm, 2000 ppm and 3000 ppm, 

respectively. On the other hand, pulse energy shows an increasing trend with pump 

power for EDFL configured with 400 ppm EDF while the pulse energy of the two 
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highly doped EDFs exhibits the opposite trend. It is also observed that pulse energy of 

EDFLs with Erbium concentrations of 400 ppm and 3000 ppm are almost constant and 

difference of the maximum and minimum pulse energy is less than 3 nJ.  For 2000 ppm 

silica EDF, the pulse energy of the Q-switch EDFL drops from 40.69 nJ to 22.74 nJ as 

pump power increases from 98.5 mW to 112 mW. This is predictable due to efficiency 

of this laser is lowest as shown in Figure 3.7. This laser exhibits a slow increasing rate 

of output power against pump power. However, pulse energy is directly proportional to 

the ratio of output power over repetition rate. Thus, this laser shows significantly 

decreasing pulse energy. Pulse energy performance of all tested lasers could be 

improved by reducing insertion loss of SA and optimizing the laser cavity. The 

performances of these lasers are summarized in Table 3.1.   

 

 

(a) 
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(b) 

 

(c) 

Figure 3.6: Pulse train of maximum pulse repetition rate at three different gain medium 

(a) Silica EDF (400 ppm) (b) Silica EDF (2000 ppm) and (c) Bismuth EDF (3000 ppm) 
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Figure 3.7: Output power against pump power for three different gain medium 

 

Figure 3.8: Pulse energy against pump power for three different gain medium 
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Parameters Silica EDF 

(400 ppm) 

Silica EDF 

(2000 ppm) 

Bismuth EDF 

(3000 ppm) 

 

Pump Power (mW) 

 

33.7-75.14 

 

98.5-125 

 

59.5- 107.9 

 

Output Power (μW) 

 

272-648 

 

400-546 

 

372-788 

 

Pulse Energy (nJ) 

 

11.22-14.32 

 

22.74-40.69 

 

13.75-16.55 

 

Pulse Repetition rate( kHz) 

 

24.24-47.93 

 

9.83-24.01 

 

22.5-57.3 

Pulse Width (μs) 6.43-2.98 12.03-4.58 5.01- 2.48 

 

Table 3.1: Summary of laser performance for three different gain media 

 

 

3.3 Q-switched EDFL using a solid state Thulium-doped Fiber SA 

 

 Besides film based graphene SA, modulation of the Q-factor can also be realized 

using solid-state SA fibers. The advantages of the solid-state SA fibers are their ability 

to hold enormous gain excited in the gain fiber from lasing and their high damage 

threshold for high-power Q-switched pulses. Only a few SA fibers have been 

demonstrated in the literature, and most are for Ytterbium-doped fiber lasers (YDFLs) 

(Isomäki & Okhotnikov, 2006). The energy transition 
3
H6 - 

3
F4 of Tm

3+
 has a very 

broad emission wavelength range, from 1.6 to 2.1 µm, and an absorption band from 1.5 

to 1.9 µm. It is reported that the absorption cross section of Tm
3+

 doped fibers (TDFs) 

are larger than the emission cross sections of EDF at 1.6 µm region, suggesting a 

possible realization of a passively Q-switched EDFL using a TDF as a passive SA. In 
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this section, we have successfully demonstrated Q-switched EDFL by using a 2 m long 

TDF as a SA in a ring laser cavity.  

 

3.3.1 Configuration of the proposed Q-switched EDFL using a TDF SA 

 

 The experimental set-up of the proposed Q-switched EDFL is illustrated in Fig. 

3.9, where the ring resonator consists of a 3.5 m long EDF as the gain medium, a WDM, 

3 dB output coupler, polarization controller (PC) and a short piece of TDF as a SA. The 

EDF used has an Erbium ion concentration of 2000 ppm, core diameter of 4 µm, mode 

field diameter of 6 µm and NA of 0.24. A 1480 nm laser diode is used to pump the EDF 

via the WDM. The TDF SA was a 2.0 meter long with an initial absorption loss of 6 dB 

at 1570 nm, numerical aperture of 0.16 and core diameter of 2.9 µm. A PC is used to 

adjust the polarization state of the oscillating light, which in turn controls the operating 

wavelength of the laser. The laser light is extracted from the cavity by a 3 dB fiber 

coupler which retains 50% of the light in the cavity for further oscillation. An OSA with 

wavelength resolution of 0.02 nm is used to capture the output laser spectrum while a 

350 MHz oscilloscope in conjunction with 1 GHz bandwidth photo-detector is used to 

detect the pulse train. 
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Figure 3.9: Schematic configuration of the proposed thulium fiber based Q-switched 

EDFL 

 

3.3.2 Q-switching performance 

 

 The oscillator started to operate at Q-switching regime after reaching the 

launched pump power of 20 mW. Stable self-starting Q-switched pulses were observed 

as shown in Fig. 3.10 by carefully adjusting the PC when the launched pump power was 

varied from 20 to 33.7 mW. However, as the pump power further increases, the pulse 

train becomes unstable and disappears. As shown in Fig. 3.10, the time interval between 

pulse reduces while the pulse amplitude increases as the pump power increases from 20 

to 33.7 mW. The Q-switching pulse generation is due to gain-switching action provided 

by the Thulium ions interaction with the oscillating Erbium laser. The high cavity loss 

induced by Thulium causes large amount of energy is stored in the gain medium. When 

the cavity reached the saturation state, cavity loss rapidly reduce and allow efficient 

extraction of stored energy by the laser pulse. Fig. 3.11 shows the output spectra of the 

EDFL with and without the TDF SA when the pump power is fixed at 33.7 mW. 

Without the TDF SA we observed a stable CW operation of EDFL at 1572 nm. After 
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incorperating a 2 m long TDF inside the cavity, pulsing operation is observed. The 

operating wavelength of the pulsed laser shifts to 1557.6 nm due to the cavity loss 

which increases with the incorporation of TDF. The laser operates at a shorter 

wavelength which has a higher gain to compensate for the loss.  

 

 

Figure 3.10: Q-switched pulse evoluation of the proposed Q-switched EDFL against 

pump power 
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Figure 3.11: Optical spectrum and of the proposed Q-switched EDFL when the pump is 

fixed at 33.7 mW 

 

Figure 3.12 shows how repetition rate and pulse width are related to the pump 

power. The dependence of the pulse repetition rate can be seen to increase almost 

linearly with the pump power, whereas the pulse width decreases also almost linearly 

with the pump power. By raising the pump power into the cavity, it will speed up the 

gain population excitation process to achieve the saturation state. Thus, more pulses 

with narrower pulse width are generated in a same period of time. This agrees well with 

the passive Q-switching theory with the passive SA. The pulse repetition rate of the Q-

switched EDFL can be widely tuned from 3.9 kHz to 12.7 kHz by varying the pump 

power from 20.0 mW to 33.7 mW. On the other hand, the pulse width reduces from 

20.6 μs to 7.4 μs as the pump power increases in the range of Q-switching operation. It 

is observed that the pulse train becomes unstable and disappears as the pump power is 

increased above 33.7 mW. This is due to the TDF SA could not recover in time after a 

pulse and less gain population was excited before the next pulsing. Based on the pulse 

repetition rate at the maximum pump power, the relaxation lifetime (
3
F4) of the thulium 
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fiber should be near and less than 0.079 ms and that was the inversion of the largest 

repetition rate before the disappearing. 

We also measured the average output power and calculated the corresponding 

single-pulse energy. Fig. 3.13 shows the relationship of average output power and pulse 

energy of the Q-switched EDFL against pump power. As shown in the figure, average 

output power almost linearly increased from 180 µW  to 240 µW as the pump power 

increases from 20.0 mW to 33.7 mW.  Besides, pulse energy exhibited decreasing trend 

from 22.8 nJ to 9.4 nJ at the same pump power range. The decrement of pulse energy is 

most probably due to TDF SA does not fully recover in time after a pulse and less gain 

population was excited before the next pulsing. This pulse energy is relatively higher 

with the previously reported carbon nanotubes based Q-switched EDFL. Energy 

characteristics of the laser allow one to apply it for technological processes as marking, 

trimming, micromachining etc. Moreover, it can be used in medicine due to the 

relatively high absorption by biological tissue. It should be noted that the output power 

and energy can be further increased through the optimization of cavity design and SA. 
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Figure 3.12: Repetition rate and pulse width of the proposed Q-switched EDFL against 

the pump power 

 

Figure 3.13: Output power and pulse energy of the proposed Q-switched EDFL against 

the pump power 

 



 

49 

 

3.4 Q-switching pulse generation using nonlinear polarization rotation 

technique 

 

As discussed in the previous sections and many literatures, passive SAs based on 

various materials such as graphene, carbon nanotubes, semiconductor (SESAM) and 

TDF have shown promising result to realize a stable Q-switched fiber laser. However, 

fabrication of these SAs involved complicated chemical processes. Beside these SAs, 

Q-switching pulse can also be realized by using an artificial SA based on nonlinear 

polarization rotation (NPR) technique. Compared to the real SAs, Q-switched fiber 

lasers by NPR are easier to implement as they only use common optical components. 

Recently, photonic crystal fibers (PCFs) have been reported as one of the promising 

nonlinear medium to initiate NPR. The large contrast of refractive index between silica 

and air has cause the nonlinearity of PCFs to easily achieve 10 – 100 times higher 

compare to normal single-mode silica fiber. In this section, a Q-switched EDFL is 

proposed and demonstrated by using the NPR technique with an assistance of 50 m 

PCF. A Q-switching operation in the proposed laser is realized at the threshold power as 

low as 12.1 mW. 

The experimental set-up of the proposed EDFL is illustrated in Fig. 3.13. The 

ring resonator consists of a piece of EDF as the gain medium, WDM, PDI, PC, 50 m 

long PCF and 3 dB couplers. A 1480 nm laser diode is used to pump the 3.5 m long 

EDF with 2000 ppm Erbium concentration via the WDM. A polarization dependent 

isolator (PDI) and PC are incorporated in the laser cavity to ensure unidirectional 

propagation of the oscillating laser. PCF is incorporated into the cavity as the 

birefringent fiber. The combination of PCF-PDI-PC will act as an artificial SA to initial 

Q-switching operation in the cavity. The output of the laser is collected from the cavity 

via a 3 dB coupler which retains 50% of the light in the ring cavity to oscillate. The 
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OSA is used for spectral analysis of the Q-switched EDFL whereas oscilloscope is used 

to observe the output pulse train of the Q-switched operation via a 1 GHz bandwidth 

photo-detector.  

 

Figure 3.14: Schematic configuration of the proposed Q-switched EDFL 

 

In this experiment, Q-switching pulse generation is self-started at a very low 

threshold power of 12.1 mW. However, this pulse starts to disappear as the pump power 

is increased above 15.1 mW. The pulse evolution against pump power is shown in Fig. 

3.15. As shown in the figure, the pulse repetition rate increases with the increment  of 

pump power. Fig. 3.16 shows the output spectrum of the Q-switched EDFL at pump 

power of 12.1 mW. It is shown that Q-switched laser also produces an unstable 

amplitude lines with free spectral range (FSR) of 0.48 nm, which is most probably due 

to the longitudinal modes interference in the laser cavity. FSR of 0.48 nm is determined 

by the length and the effective group indices of the PCF. The unstable multi-wavelength 

generation is due to the intensity dependent loss induced by NPR. The role of PCF is to 
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increase the nonlinear effect as well as to constitute an inline periodic filter with the 

PDI. 

 

Figure 3.15: Pulse evolution of the proposed Q-switched EDFL against pump power 

 

 

Figure 3.16: Optical spectrum for the Q-switched EDFL at threshold pump power 
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Fig. 3.17 shows how an average output power and pulse energy of the Q-

switched EDFL when varied with the pump power. As shown in the figure, average 

output power increases almost linearly increased from 12.5 µW  to 58.0 µW as the 

pump power increases from 12.1 mW to 15.1 mW. The pulse energy also increased 

from 9.0 nJ to 12.4 nJ as the pump power increases from 12.1 mW to 15.1 mW. Fig. 

3.18 shows the relation between repetition rate and pulse width with the pump power. 

Pulse repetition rate can be seen to increase almost linearly with the increment of pump 

power, while the pulse width shows decreasing trend with the pump power. The pulse 

repetition rate of the Q-switched EDFL can be tuned from 1.4 kHz to 4.7 kHz by 

increasing the pump power from 12.1 mW to 15.1 mW. On the other hand, the pulse 

width reduces from 20.6 μs to 5.1 μs as the pump power increases in the range of Q-

switching operation. The combination of PC-PDI-PCF acted as a SA based on the NPR 

effect. With proper adjustment of PC, the cavity loss can reach a higher level. Lasing 

radiation was too weak to pass through the PDI and PCF which act as polarizer in the 

cavity. Hence, a mass of inverted populations was accumulated at the upper energy 

level in the EDF. When the accumulation reached a sufficient level, the lasing radiation 

became strong enough to propagate through the polarizer. Then, the inverted 

populations in EDF exhausted abruptly and cavity loss became too high to allow the 

lasing radiation to propagate through. Therefore, the Q-switched pulse train was formed. 

Erbium ion saturation time can be further decreased with a higher pump power, 

provided that the erbium ion life time is much longer than the round trip time in the 

cavity. As shown in Fig. 3.18, the pulse repetition rate is directly proportional to the 

pump power, which is well agreed with NPR Q-switching theory. Moreover, 

accumulation rate and exhaustion rate of inverted populations in EDF increased with the 

increment of pump power. Hence, pulse width behaves inversely proportion to pump 

power as shown in Fig. 3.18.  
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Figure 3.17: Output power and pulse energy of the proposed Q-switched EDFL against 

pump power 

 

Figure 3.18: Repetition rate and pulse width of the proposed Q-switched EDFL against 

pump power 
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3.5 Multi-wavelength Q-switched Generation With Graphene Based SA 

 

Both multi-wavelength and Q-switched EDFLs have wide applications in optical 

communications, sensors and instrumentations. Multi-wavelength laser can be achieved 

at room temperature by using various methods such as cascaded stimulated Brillouin 

scattering (Fok & Shu, 2006) and four-wave mixing (FWM) (Han et al., 2006). 

Recently, nonlinear polarization rotation (NPR) technique is also proposed for multi-

wavelength generation based on intensity dependent loss in the cavity (Feng, Tam, & 

Wai, 2006). On the other hand, a Q-switched EDFL has been successfully demonstrated 

by using a graphene based SA as described in section 3.2. It was observed that the Q-

switching performance is superior especially in terms of pulse energy with the use of 

highly doped silica-based EDF (2000 ppm) as gain medium compared to that of other 

fibers. In this section, a Q-switched multi-wavelength EDFL is demonstrated by 

integrating a graphene SA in an EDFL cavity comprising an additional nonlinear gain 

medium. The SA is obtained by sandwiching the graphene film between two fiber 

connectors.  50 m long PCF is used as the nonlinear gain medium to activate the NPR 

effect and thus allows the generation of a stable multi-wavelength pulse train. 

The experimental set-up of the proposed multi-wavelength Q-switched EDFL is 

illustrated in Figure 3.19. The ring resonator consists of a 4.5 m long EDF as the gain 

medium, WDM, PDI, PC, 50m long PCF, a graphene-based SA and 10 dB output 

coupler. A 1480 nm laser diode is used to pump the EDF via the WDM. A PDI and PC 

are incorporated in the laser cavity to ensure unidirectional propagation of the 

oscillating laser and to act as a polarizer. A PC was also utilized to tune the polarization 

state of light in the laser cavity. The output of the laser is collected from the cavity via a 

10 dB coupler which retains 90% of the light in the ring cavity to oscillate. The OSA is 
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used for the spectral analysis while the oscilloscope is used to observe the output pulse 

train via a photodetector. 

 

 

Figure 3.19: Schematic configuration of the proposed multi-wavelength Q-switched 

EDFL 

 

To realize the multi-wavelength Q-switched lasing operation, the laser cavity 

must have two important components; interferometer and SA. The interferometer 

functions to generate multiple resonance peaks for multi-wavelength generation while 

SA with a wideband optical absorption range is required to provide saturable 

absorption, which covers all the multi-wavelength region. In this work, a stable multi-

wavelength laser with Q-switching operation was obtained as the pump power reaches 

the threshold pump power of 39.6 mW with a proper tuning of PC. Figures 3.20 (a) and 

(b) show the output optical spectrum and the typical pulse train of the proposed multi-

wavelength Q-switched EDFL respectively, when the pump is fixed at the threshold 
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pump power. As shown in Figure 3.20 (a), the Q-switched laser produces at least 10 

lines with free spectral range (FSR) of 0.46 nm, which is determined by the length and 

the effective group indices of the PCF. At the threshold pump power of 39.6 mW, the 

multi-wavelength laser produces a Q-switched pulse train with repetition rate of 14.6 

kHz and pulse width of 1.52 μs as shown in Figure 3.20 (b). 

 

(a) 

 

(b) 

Figure 3.20: (a) Optical spectrum and (b) typical pulse train of the proposed multi-

wavelength Q-switched EDFL when the pump is fixed at the threshold pump power of 

39.6 mW 
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The multi-wavelength generation can be described as follows. The light is split 

into two orthogonal modes, which experience different nonlinear phase shift as they 

propogates inside the PCF owing to the Kerr effect. Then the polarization orientation of 

the light rotates in the PCF with the angle of rotation is correlative with the light 

intensity. The signal passes through the PDI, which the transmittivity is dependent on 

the rotation of the polarization or the oscillating light intensity. The combination of the 

PCF and PDI functions an intensity equalizer, which produces an intensity dependent 

inhomogeneous loss and thus elleviates the mode-competition. As a result, the balance 

between the inhomogeneous loss induced by NPR and the mode competition effect of 

the EDF can lead to a stable multiwavelength oscillations. When the polarization state is 

selected properly by adjusting the PC, multi-wavelength laser can be easily obtained as 

shown in Figure 3.20.  Figure 3.21 shows the evolution of the output spectra against the 

pump power. As shown in the figure, the number of lines and its peak power increases 

with the pump power. However, the wavelength spacing is maintained at 0.46 nm for all 

pump powers.  
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Figure 3.21: Output spectrum evolution of the proposed multi-wavelength Q-switched 

EDFL against pump power 

 

Figure 3.22 shows the relationship of repetition rate and pulse width to the pump 

power. The dependence of the pulse repetition rate can be seen to increase almost 

linearly with the pump power, while the pulse width decreases also almost linearly with 

the pump power. The pulse repetition rate of the Q-switched EDFL can be tuned from 

14.6 kHz to 16.3 kHz by varying the pump power from 39.6 mW to 46.8 mW. On the 

other hand, the pulse width reduces from 1.5 μs to 1.2 μs as the pump power increases 

from 39.6 mW to 46.8 mW. Figure 3.23 shows how the average output power and pulse 

energy are related with the pump power. As shown in the figure, average output power 

increased from 23.0 µW to 23.5 µW as the pump power increases from 39.6 mW to 

46.8 mW while the pulse energy slightly descrease from 1.57 nJ to 1.43 nJ at the same 

pump power range. These results show that the graphene-based SA functions very well 
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as a typical SA to achieve the Q-switching while the highly nonlinearity of PCF has 

succesfully induced NPR in the cavity to achieve multi-wavelength operation.  

It should be noted that no Q-switched operation occurs without the graphene SA 

connected in the laser cavity. It is clear that the Q-switched operation is mainly induced 

by the SA. By removing the SA from the set-up, an unstable multi-wavelength laser 

with continuous wave operation is observed. Thus, we strongly believed that the 

incorporation of SA also improves the stability of the multi-wavelength lasing due to 

the nonlinearity of graphene-based SA that can induce both NPR and FWM effects in 

the laser cavity. The FWM effect functions to stabilize the multi-wavelength operation. 

The stability of the multi-wavelength laser is also investigated by monitoring the 

spectrum evolution of the laser against time at the threshold pump power of 39.6 mW as 

shown in Figure 3.24. In the experiment, the output spectrum is repeatedly scanned for 

every 5 minutes. As shown in the figure, the multi-wavelength Q-switched EDFL lases 

stably with power fluctuations of less than 1 dB over 20 minutes. It shows the 

combination of PCF with PDI and PC produces a very stable multi-wavelength laser 

based on the NPR mechanism. 
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Figure 3.22: Repetition rate and pulse width of the proposed multi-wavelength Q-

switched EDFL against pump power 

 

Figure 3.23: Output power and pulse energy of the proposed multi-wavelength Q-

switched EDFL against pump power 
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Figure 3.24: Output spectrum evolution of the proposed multi-wavelength Q-switched 

EDFL against time 

 

 

3.6 Summary 

 

In this chapter, three passive techniques for generating Q-switching pulse have 

been evaluated and demonstrated; graphene film based SA, solid state TDF SA and 

NPR. It is found that the NPR based Q-switching operation occurs at a relatively lower 

pump power of around 12 mW compared to other Q-switching techniques. Other 

techniques require higher pump power to initiate Q-switching operation mainly due to 

the device loss. For instance, Q-switched EDFLs based on graphene and solid state TDF 

SA has a threshold pump power in a range of 20 mW and 33 mW respectively. The 

NPR based Q-switched EDFL requires a lower pump power to initiate Q-switching due 
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to the incorporation of high nonlinearly of PCF, which induces sufficient phase shift in 

low pump power.  

NPR technique proved its multi-functional operation to achieve both Q-switched 

and multi-wavelength operation. Furthermore, NPR also offers advantages such as 

tunable saturable absorption strength and ease of implementation with only 

conventional optical fiber components. Even though SAs can produce more stable Q-

switched under laboratory environmental condition, but SAs are easily damage under 

high power operation. Since NPR technique is highly rely on the light polarization in 

the laser cavity, readjustment of polarization state is required in order to maintain the Q-

switched operation whenever there is vibration or temperature fluctuation. However, the 

uncertainty of vibration and temperature fluctuation can be well controlled under 

laboratory environmental condition. Besides the advantages above, NPR technique 

exhibits a high potential to obtain different types of pulsed laser by only changing the 

polarization state. With these crucial advantages, NPR technique is chosen to be the 

most suitable method for further investigation in different type of pulsed laser. Several 

types of pulsed laser such as mode-locked and dark pulse are investigated in the 

following two chapters via NPR method.  
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CHAPTER 4 

DEVELOPMENT OF PASSIVE MODE-LOCKED ERBIUM-

DOPED FIBER LASERS 

 

 

4.1 Introduction 

 

 Passively mode-locked fiber lasers are attractive for many applications because 

of their simplicity, compactness, efficient heat dissipation, and ability to generate high-

quality pulses (Laubereau & Kaiser, 1974). For instance, mode-locked Erbium-doped 

fiber lasers (EDFLs), which are capable of generating ultra-short pulses in the 

telecommunication wavelength of about 1.55 μm, have promising applications in the 

next generation telecommunication systems (Kaiser & Huttl, 2007). Generation of ultra-

short pulses has also attracted considerable attention in other areas of physics such as 

the ultrafast physics and nonlinear optics. The passively mode-locked lasers work by 

inducing a stable phase relationship between the longitudinal modes of the laser cavity. 

Under the optimum fixed-phase condition, interference between these modes produces 

stable ultra-short pulses. Among the different types of passively mode-locked 

techniques, nonlinear polarization rotation (NPR) has gained the significant interests in 

recent years. This is attributed to the NPR implementation, which can easily tune the 

phase shift in a laser cavity and thus different type of fix-phase condition in a laser 

cavity can be easily achieved. 

 In this chapter, several passively mode-locked fiber lasers are demonstrated 

using the NPR technique. At first, the mode-locked EDFL with three switchable 

operation states is proposed and demonstrated. Next, square pulse emission with ultra-

low repetition rate is proposed and demonstrated by using long laser cavity. Finally, a 
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multi-wavelength mode-locked fiber laser is proposed and demonstrated using a figure-

of-eight configuration. 

 

4.2 NPR based mode-locked EDFL with three switchable operation states 

 

 Mode-locked EDFLs normally operates in the negative net cavity dispersion 

regime, where the nonlinear Kerr effect naturally balances the group velocity dispersion 

(GVD) of the cavity. This NPR effect results in the formation of stable soliton pulses 

with sub-picosecond pulse width. Other types of pulses such as stretched pulse (Haus et 

al., 1995), self-similar pulse (Renninger, Chong, & Wise, 2010), and dissipative soliton 

(DS) (Wu et al., 2009) have also been obtained successively in the recent years using 

the NPR technique. DSs have been investigated in large- or all-normal dispersion 

regime previously (Liu, 2009). It was found that the cavity gain and loss play essential 

roles in the formation of DSs, where various operation regimes can be realized by 

controlling both parameters. In this section, we experimentally demonstrate a new NPR 

based mode-locked EDFL which is capable to generate dissipative soliton pulse with 

switchable repetition rate. The EDFL operates in anomalous dispersion region. Three 

switchable operation states are obtained by varying the pump power and without 

disturbing the polarization state. The proposed laser generates nanosecond and 

microsecond pulses, where their energy can be easily amplified by the optical 

amplifiers. Such optical pulses could have many potential applications such as in laser 

range-finder and fiber sensors systems.  
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4.2.1 Experimental setup 

 

The experimental setup of the mode-locked EDFL with switchable repetition 

rate is shown in Figure 4.1. The EDFL uses a ring configuration with a cavity length of 

about 6.9 km. A 3.5 m long EDF with doping concentration of 2000 ppm and group 

velocity dispersion (GVD) parameter of about -21.64 (ps/nm)/km was used as the gain 

fiber. The other fibers in the cavity are a 6.9 km long dispersion compensation fibers 

(DCFs) with GVD of about -4 (ps/nm)/km and a standard SMF, which constituted the 

rest of the ring. The cavity operates in large positive GVD where the net dispersion and 

fundamental repetition rate are estimated at −0.073 ps
2
 and 29.0 kHz, respectively. The 

NPR technique was adopted for achieving the mode locking and thus a fiber pigtailed 

polarization dependent isolator (PDI) together with an inline polarization controller was 

employed to control the polarization of light in the cavity. The PDI is also used to 

ensure the unidirectional operation of the ring. The EDF was pumped by a 1480 nm 

laser diode through a wavelength-division-multiplexing (WDM) coupler. A 3dB fiber 

coupler was used to tap out the laser emission. All the components (isolator, WDM and 

fiber output coupler) in the resonator were made from standard SMF. An optical 

spectrum analyzer (OSA, Yokogawa, AQ6370B) and a 350MHz oscilloscope 

(Tektronix TDS 3052C) together with a 1 GHz photo-detector were used to 

simultaneously monitor the spectrum and output pulse train of the laser.  
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Figure 4.1:  Schematic configuration of the mode-locked EDFL 

 

 

4.2.2 Comparison of the three different mode-locked operation states 

 

A major difference of the current fiber laser from those reported previously is 

that a long cavity was used, which increases the total normal cavity dispersion. Mode 

locking of the laser is always self-started, and depending on the pump strength, various 

modes of laser operation were observed, including fundamental and harmonic 

dissipative soliton. In particular, under low pumping power a stable square pulse 

emission mode was also observed. The square pulse trains is self-started at threshold 

pump power of 17.5 mW and transforms to fundamental dissipative soliton as the pump 

power increases above 34.3 mW. Figure 4.2 shows the typical oscilloscope traces of the 

observed square pulse emission at two different pump power of 17.5 and 34.3 mW. 

Both pulse trains have a repetition rate of 87.0 kHz, which indicates that the laser 

generates a third-order harmonic pulse. Inset of Figure 4.2 illustrates an envelope of a 

single pulse, which shows a rectangular pulse with a steep rising and falling edges. The 
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square (or rectangular) pulse duration increases with the pump strength, while the peak 

of the pulse reduces as the pump power increases. The pulse widths are obtained at 105 

ns and 245 ns with the pump power of 17.5 and 34.3 mW, respectively. At pump power 

of 34.3 mW, the maximum single pulse energy of 11.3 nJ is achieved in our experiment 

without the appearance of pulse breaking. The square pulse operation of the laser can be 

explained as a result of the nonlinear polarization switching in the laser cavity. Due to 

the large nonlinearity of the DCF, the polarization switching threshold of the fiber laser 

is low. Consequently, the laser signal starts to have a square pulse shape for smaller 

peak power than that in a cavity with a smaller nonlinearity.  

 

Figure 4.2: Typical pulse train of the proposed mode-locked EDFL at two different 

pump powers of 17.5 mW and 34.3 mW. Inset shows the corresponding cingle pulse 

envelops 

 

As the pump power is further increased above 48.2 mW, the pulse train switches 

to another stable operation state as shown in Figure 4.3. It operates at fundamental mode 

within a pump power range from 48.2 to 116.7 mW whereby the pulse width and 
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repetition rate of the generated dissipative soliton are maintained at 8.5 μs and 29 kHz 

respectively, throughout the pump power range. It is also observed that the average 

output power of the laser increases from 1.27 mW to 3.84 mW as pump power increases 

from 48.2 mW to 116.7 mW. Besides, pulse energy exhibits increasing trend from 43.5 

nJ to 131.5 nJ in the same pump power range. When the pump power continues to 

increase beyond 116.7 mW, the pulse train experiences unstable oscillation before it 

reaches another stable operation state at pump power of 138.9 mW. Figure 4.4 shows 

the typical pulse train at two different pump powers of 138.9 and 145.0 mW. Within the 

pump power range, the laser operates in harmonic mode with a fixed pulse width and 

pulse repetition rate of 2.8 μs and 58 kHz respectively. As the pump power is increased 

from 138.9 mW to 145 mW, the output power increases from 5.9 mW to 6.2 mW while 

pulse energy improves from 101 nJ to 106.5 nJ. It was shown that the long-cavity laser 

can generate three different pulses in the same laser cavity. The interaction and 

evolution of multiple pulses in mode-locked fiber lasers are attributed to the phase shift, 

which corresponds to the instantaneous frequency at pulse peak to be nonzero.  



 

69 

 

 

Figure 4.3: Typical pulse trains of the mode-locked EDFL at pump powers of 48.2 mW 

and 116.7 mW, which operate at fundamental mode 

 

Figure 4.4: Pulse train obtained from proposed EDFL with pump power of 138.9 mW 

and 145 mW 
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Figure 4.5 shows the output spectrum of the mode-locked EDFL at different 

pump powers. The laser operates at a center wavelength of 1568 nm and the evolution 

of the output spectrum with the pump power can be explained by NPR phenomena. By 

adjusting the PC, the linear polarized light changes to elliptically polarized light. The 

elliptically polarized light splits into two orthogonal modes and experience different 

nonlinear phase shift as it propagates through DCF and EDF owing to Kerr effect. The 

direction of elliptically polarized light rotates due to the intensity difference. Rotated 

degree for central part of noise pulse can be different with leading and trailing edges. 

When it passes through PDI, only the central part can pass through with a low loss, 

whereas the leading and trailing edges are blocked. After many round trips, square pulse 

generation can be observed especially at a lower pump power. The square pulse 

duration increases with the pump strength. As shown in Figure 4.5, the optical spectrum 

has no characteristic sharp spectral edges as that of the dissipative solitons, but 

resembles that of the amplified spontaneous emission (ASE) of the EDF with the 

spectral centre shifted to the longer wavelength side. It is also found that the proposed 

laser here works on the stable operation when the pump power is from 17.5 to 34.3 mW, 

48.2 to 116.7 mW, and 138.9 to 145.0 mW, respectively. In the other regime, the laser 

works unstably. So this laser alternately evolves on the stable and unstable mode-

locking states as a function of the pump strength.   
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Figure 4.5: Optical spectrum of the mode-locked laser at various pump powers 

 

 

4.3 Mode-locked square pulse emission with ultra-low repetition rate 

 

 Resonator with kilo-meters long offers lower fundamental repetition rate in the 

kilo-Hertz and hence allow the deliverance of higher pulse energy. However, there is a 

challenge that needs to be overcome if the oscillator is long. The combined action of 

both Kerr nonlinearity and dispersion generally leads to pulse break up (multi-pulse) 

after the accumulated nonlinear phase has exceeded a certain level.  Pulse breaking 

leads to higher repetition rate and lower pulse energy compared to single pulse 

operation. Apart from the DS with steep spectral edges, a new approach, namely the 

dissipative soliton resonance (DSR) (Chang et al., 2008) has been suggested capable to 

increase the pulse energy from a fiber laser. The formation of DSR is based on certain 

parameters selection within the frame of complex Ginzburg-Landau Equation (CGLE) 

equation where its pulse energy can be increased infinitely. DSR is recognized as square 

pulse with flat top and steep edges and thus its pulse duration is rather broad. In this 
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section, nano-second DSR square pulse generation with an ultra-low repetition rate of 

10.2 kHz is demonstrated by inserting a 20 km long SMF in a simple EDFL‟s ring 

resonator. It is worth noting that although the cavity length is significantly long, the 

fiber laser still operates at its fundamental repetition rate without pulse breaking. By 

manipulating the polarization state in the cavity, the proposed laser can also be adjusted 

to operate in harmonic mode.  

 

4.3.1 Configuration of the proposed mode-locked square pulse EDFL 

 

 The experimental setup of the proposed mode-locked fiber laser is schematically 

shown in Figure 4.6. It uses a 4.5 m long EDF with an erbium concentration of 2000 

ppm, cut-off wavelength of 910 nm, a pump absorption coefficient of 24 dB/m at 980 

nm and a dispersion coefficient of -21.64 ps/nm∙km at λ = 1550 nm, as the gain 

medium. The EDF is pumped with a 1480 nm laser diode through a 1480/1550 nm 

WDM. A PDI is used to ensure unidirectional propagation of light in the cavity and at 

the same time to generate linear light polarization. A PC is employed to adjust the 

polarization of light. A 20 km spool of SMF constitutes the long cavity and also serves 

to increase the nonlinearity and dispersion. The dispersion parameter of the SMF is 17 

ps/nm∙km. 50% of the circulating light is taken out of the cavity via a 3 dB coupler and 

then fed into another 3 dB coupler. The second coupler splits the light for simultaneous 

monitoring, one part into an OSA and the other into an oscilloscope (OSC) and Radio 

Frequency Spectrum Analyzer (RFSA) together with a high speed photo-detector. The 

cavity is operating in a large negative dispersion region due to the long SMF  
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Figure 4.6: Experimental set-up of the proposed DSR laser 

 

4.3.2 Mode-locked square pulse performance 

  

The mode-locked laser is generated based on NPR effect in the ring cavity. The 

polarizing isolator placed besides the PC acts as the mode-locking element in the 

proposed laser. It plays the double role of an isolator and a polarizer such that light 

leaving the isolator is linearly polarized. Consider a linearly polarized pulse just after 

the isolator. The polarization state evolves nonlinearly during the propagation of the 

pulse inside the EDF and SMF due to SPM and cross phase modulation (XPM) effects 

in the ring cavity. The state of polarization is non-uniform across the pulse because of 

the intensity dependence of the nonlinear phase shift. The PC is adjusted so that it forces 

the polarization to be linear in the central part of the pulse. The polarizing isolator lets 

the central intense part of the pulse pass but blocks (absorbs) the low-intensity pulse 

wings. The net result is that the pulse is slightly shortened after one round trip inside the 
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ring cavity, an effect identical to that produced by a fast saturable absorber. In other 

words, the PDI, working together with the birefringence fibers generates an intensity 

dependent loss mechanism in the cavity that contributes to mode-locked square pulse 

generation in the cavity. 

 In this experiment, by careful adjustment of the PC, stable square pulse starts to 

form at pump power of 108 mW. Figure 4.7 shows the optical spectrum of the typical 

square pulse emission from the laser at three different pump powers of 108 mW, 112 

mW and 125 mW. At the maximum pump power of 125 mW, the laser operates at 

1568.7 nm with the peak power of -17.2 dBm and 3 dB bandwidth of about 1 nm. 

Figure 4.8 shows the oscilloscope trace of a square pulse train. The pulse train has an 

ultra-low repetition rate at 10.2 kHz as determined by the cavity length. Figure 4.9 

focuses on a single pulse envelop at two different pump powers. As shown in the figure, 

the square pulse has distinct characteristic of steep leading and trailing edges and its 

pulse width can be tuned by changing the pump power. At 120 mW, the measured pulse 

width is 120.0 ns while at 125 mW pump power, the pulse width increases to 167.7 ns. 

At the maximum pump power, the pulse still has a square shape while keeping the peak 

power almost constant. With the orientations of the wave-plates fixed, it is observed that 

the peak power of the square pulse is maintained while the pulse width increases with 

pump power. The ripple structures on the top of the pulse are probably due to 

insufficient gain to compensate for the loss in the ultra-long cavity. A cleaner square 

pulse structure is expected at higher pump power. 
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Figure 4.7: Optical output spectra of pulse laser at three different pump powers 

 

 

Figure 4.8: Typical pulse train with a fundamental repetition rate at 10.2 kHz 

 



 

76 

 

 

Figure 4.9: Oscilloscope trace of the single square pulse envelop at two different pump 

powers 

 

 As shown in Figure 4.7, the shape and 3 dB bandwidth of the mode-locked 

spectra are almost invariable with pump power. It is believed that the square pulse 

formed here has the characteristic of square shape which undergoes pulse broadening 

with constant peak power and also invariable 3 dB optical bandwidth spectra which 

resembles the DSR theory. The theory of DSR indicates that the pulse energy could be 

boosted up to an infinitely large value while the square pulse duration will broaden with 

increasing pump power while pulse amplitude converges to a given plateau value when 

the cavity parameters are chosen near to the resonance curve.  

The evolution of pulse width with respect to pump power is presented in Figure 

4.10. The pulse width can be tuned from 28.2 ns approximately to 167.7 ns without 

pulse breaking by increasing pump power from 108 mW to 125 mW. The generation of 

square pulse in the long cavity is most probably due to the DSR phenomenon in the 

long cavity laser. After the generation of square pulse, the peak amplitude is kept almost 
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constant and does not increase with pump power anymore. The excess power circulating 

in the cavity now accounts for the increase in the pulse width rather than the peak 

intensity. Due to the increment of pulse width, the pulse energy could be increased 

greatly as opposed to other soliton operation regions. 

 

 

Figure 4.10: Pulse width of the square pulse versus pump power 

 

Figure 4.11 shows the radio frequency (RF) spectrum for both the square and 

harmonic pulse (at pump power of 125 mW), which reveals the repetition rate of 10.2 

kHz and 20.4 kHz respectively. The signal to noise ratio (SNR) is obtained from the 

intensity ratio of the fundamental peak to the pedestal extinction for both pulses are 

estimated to be approximately 42 dB and 44 dB, which indicates the stability of the 

laser. However, the SNR value is lower compared to other mode-locked fiber laser, 

which usually has a SNR of around 50 dB. This is attributed to the cavity length used 

which is significantly longer.  
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(a) 

 

(b) 

Figure 4.11: RF spectrum of the generated pulses: (a) square pulse and (b) harmonic 

pulse 
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The square pulse can be switched to harmonic pulse operating in micro-second 

region by careful adjustment of the PC while maintaining all other cavities‟ parameters. 

Self-starting harmonic mode-locking can be realized by an appropriate adjustment of 

polarization of light and at an adequate pump power. When pump power is raised to 

approximately 100 mW, mode-locked pulse is formed with repetition rate of 10.2 kHz 

which corresponds to the fundamental frequency.  

As the pump power is increased to 108 mW, pulse breaking is observed where 

its repetition rate doubles to 20.4 kHz, representing the second harmonic order pulse. 

Harmonic mode-locking is regarded as a phenomenon when a single circulating pulse 

breaks into multiple pulses with constant temporal spacing. This technique is often 

adopted for high repetition rates in multi-GHz fiber lasers. The typical pulse train of the 

mode-locked fiber laser is shown in Figure 4.12 for two different pump powers of 100 

mW and 108 mW. The attainable pulse widths are 14.2 µs and 8.1 µs at 100 mW and 

108 mW, respectively. The optical spectrum of the harmonic pulse is illustrated in 

Figure 4.13 when the pump power is set at 125 mW. As shown in the figure, the 

harmonic laser operates at 1569.36 nm with peak output power of -18.4 dBm and 3 dB 

bandwidth of 1.7 nm. 
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(a) 

 

(b) 

Figure 4.12: Typical pulse train of the mode-locking pulse at two different pump 

powers: (a) 100 mW and (b) 108 mW 
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Figure 4.13: Output spectrum of the harmonic mode-locked EDFL 

 

Figure 4.14 depicts the relationship between the output power and pump power 

for both DSR and harmonic pulses obtained from the proposed mode-locked EDFL of 

Figure 4.6. The output power is measured at the 50% port of second 3 dB coupler which 

channels the output light into OSA. It is observed that the output power increases 

linearly with pump power for both lasers. As expected, the square pulse recorded higher 

output power compared to harmonic pulse. The output power for square pulse varies 

from 2.19 mW to 2.54 mW as the pump power increases from 108 mW to 125 mW. On 

the other hand for harmonic pulse, the highest measured output power is 2.39 mW at 

125 mW. Figure 4.15 shows how the pulse energy changes with the increment of pump 

power for both lasers. Both square and harmonic pulses exhibit relatively high pulse 

energy in the nano-Joule range due to the long cavity length used in the laser setup. 

Pulse energy of both lasers is found to be increasing with pump power. By increasing 

the pump power from 108 mW to 125 mW, the pulse energy increases in a range of 

215.3 nJ to 249.8 nJ and 0.215 pJ to 0.249 pJ for the square and harmonic pulse, 
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respectively. It is observed that the pulse energy reduces drastically from 188.7 nJ (100 

mW) to 100 nJ (108 mW) as the fundamental pulse breaks into the second harmonic 

order pulse. When the fundamental pulse breaks, the repetition rate doubles from 10.2 

kHz to 20.4 kHz. This will reduce the pulse energy as the pulse energy is inversely 

proportional to repetition rate. Consequently, the pulse energy of square pulse can be 

further increased by optimizing the laser parameters and employing higher pump power. 

 

Figure 4.14: Measured output power for square and harmonic pulse at various pump 

powers 
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Figure 4.15: Pulse energy of produced pulse for square and harmonic pulse 

 

The maximum attainable pulse energy for the square pulse is higher than second 

harmonic pulse by 53.1%. Lower pulse energy is observed for harmonic pulse due to the 

occurrence of pulse breaking phenomena where a single pulse breaks into many pulses; 

two pulses in this experiment. After a single pulse is formed and traverses in the cavity, 

it encounters high nonlinear effects and dispersion, introduced by the long SMF. A 

single pulse will break into many pulses where overtaking of different parts of a pulse 

will lead to optical wave breaking. It can be concluded that a laser should remain single 

pulse operation in order to realize high pulse energy. Square pulse which has steeper 

leading and trailing edges along with flat top in the temporal domain can withstand 

pulse breaking compared to the Gaussian or sech
2
 shape pulse. This can be presumed 

that the square pulse has very low frequency chirps across the central region of pulse 

and has nonlinear pulse chirping at the pulse edges. The nonlinear chirp at the pulse 

edges can resist the dispersion and nonlinearity effects in the cavity and thus can 
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maintain its wave breaking free pulse. Neither square pulse nor harmonic pulse is 

observed when the 20 km long SMF is removed. Without the long SMF, only the 

conventional pulse with Kelly side-bands is obtained. The insertion of 20 km long SMF 

brings the cavity‟s parameter near to the resonance curve, thereby producing wave 

breaking free square pulse. From the experimental results, the laser operates in two 

different operating regimes; harmonic and square pulse by changing the pump power 

and also the polarization of light. The change of light polarization leads to different 

saturable absorption strength and intrinsic spectral filtering which affects the intra-

cavity nonlinear gain and transmittivity. As a result, various kinds of pulse shapes can 

be formed. Both square and harmonic pulses generated by the mode-locked EDFL are 

stable. If there is no perturbation introduced to the laser, both square and harmonic pulse 

EDFL can last several hours under normal laboratory condition. 

 

4.4 Multi-wavelength mode-locked EDFL in figure-of-eight cavity 

 

Both multi-wavelength and mode-locked EDFLs have wide applications in 

optical communications, sensors and instrumentations (Brackett, 1990; Yoo et al., 

2009). There are many different methods that have been proposed to achieve multi-

wavelength lasing at room temperature such as cascaded stimulated Brillouin scattering 

(Ippen & Stolen, 1972), incorporating a semiconductor optical amplifier or raman 

amplifier and four-wave mixing (FWM) ( Harun et al., 2009). Besides the application of 

pulsed laser generation, nonlinear NPR which can induce intensity dependent loss in the 

laser cavity is also widely used for multi-wavelength laser generation. In this section, a 

multi-wavelength mode-locked EDFL is demonstrated using figure-of-eight set up by 

incorporating 50 m long photonic crystal fiber (PCF) and 20 km long SMF. 
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4.4.1 Configuration of the proposed multi-wavelength mode-locked EDFL 

 

The experimental set-up of the proposed multi-wavelength mode-locked EDFL 

is illustrated in Figure 4.16, which the ring resonator consists of a 3.5 m long EDF as 

the linear gain medium, wavelength division multiplexer (WDM), polarization-

dependent isolator (PDI), polarization controller (PC), 50 m long PCF, 20 km long 

SMF, 2 x 2 coupler and 3 dB couplers. The EDF used has an Erbium ion concentration 

of 2000 ppm, core diameter of 4 µm, mode field diameter of 6 µm and NA of 0.24. A 

1480 nm laser diode is used to pump the EDF via the WDM. A PDI and PC are 

incorporated in the laser cavity to ensure unidirectional propagation of the oscillating 

laser and to act as a polarizer. 20 km long SMF is placed between the PDI and PC to 

function as a nonlinear gain medium. The figure-of-eight is achieved by a 2 x 2 coupler 

connected with PCF to form another ring. The output of the laser is collected from the 

cavity via a 3 dB coupler which retains 50% of the light in the ring cavity to oscillate. 

The optical spectrum analyser (OSA, Yokogawa, AQ6370B) is used for the spectral 

analysis of the proposed EDFL with a spectral resolution of 0.02 nm whereas the 

oscilloscope (OSC, Tektronix,TDS 3052C) is used to observe the output pulse train of 

the mode-locked operation via a 1 GHz bandwidth photo-detector. 
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Figure 4.16: Schematic configuration of the proposed multi-wavelength mode-locked 

EDFL 

 

 

4.4.2 Multi-wavelength mode-locked performance 

 

The multi-wavelength mode-locked operation is observed as the pump power is 

fixed within 137 mW to 146 mW. Figures 4.17(a) and (b) show the measured multi-

wavelength output spectrum and typical mode-locked pulse train of the laser 

respectively, at pump power of 146 mW. As shown in Figure 4.17(a), the laser produces 

at least 11 lines with free spectral range (FSR) of 0.47 nm, which is determined by the 

length and the effective group indices of the PCF. The multi-wavelength generation is 

due to the intensity dependent loss induced by the NPR effect in the cavity. The role of 

20 km long of SMF and 20 m of PCF is to increase the nonlinear effect as well as to 

constitute an inline periodic filter with the PDI. The multi-wavelength laser also 
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produces a mode-locked pulse train with repetition rate of 185 kHz and pulse width of 

1.87 μs as shown in Figure 4.17(b). Multi-wavelength generation can be described as 

follows. The light source is split into two orthogonal modes, which experience different 

nonlinear phase shift as they propagate inside SMF and PCF owing to the Kerr effect. 

Then the polarization orientation of light rotates in these fibers with the angle of rotation 

is correlative with light intensity. The signal passes through the PDI, which the 

transmitivity is depended on the rotation of polarization or oscillating light intensity. 

Combination of the nonlinear gain media and PDI functions an intensity equalizer, 

which produces an intensity dependent inhomogeneous loss and thus suppresses the 

mode-competition. As a result, the balance between the inhomogeneous loss induced by 

NPR and the mode competition effect of the EDF can lead to a stable multi-wavelength 

oscillation. Moreover, figure-of-eight set up allows multiple oscillations of light inside 

the PCF, which further enhance the NPR effect in the cavity. If the polarization state is 

selected properly by adjusting the PC, multi-wavelength laser can be easily obtained.  

Figure 4.18 shows the spectrum of the multi-wavelength laser against the pump power. 

As shown in the figure, peak power increases with the pump power from 137 mW to 

146 mW. However, the wavelength spacing is maintained at 0.47 nm throughout the 

multi-wavelength mode-locked tuning range. 
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(a) 

 

(b) 

Figure 4.17: Output of the proposed multi-wavelength mode-locked EDFL at pump 

power of 146 mW: (a) Optical spectrum and (b) typical mode-locked pulse train 
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 As observed from the pulse train chacrateristic, pulse repetition rate doesn‟t 

change with the pump power and is maintained at 185 kHz throughout the experiment, 

which crucially indicates the mode-locking operation. By increasing the pump power 

137 mW to 146 mW, the output power can be increased from 348 µW to 369 µW, 

whereas the pulse width remains at 1.87 µs. By taking average output power divided by 

pulse repetition rate, maximum pulse energy of 2 nJ is obtained at the maximum pump 

power of 146 mW. The mode-locking operation is generated based on the NPR 

phenomena as well. By adjusting the PC, the linear polarized light changes to 

elliptically polarized light. The elliptically polarized light splits into two orthogonal 

modes and experience different nonlinear phase shift as it propagates through SMF and 

EDF owing to Kerr effect. The direction of elliptically polarized light rotates due to the 

intensity difference. Rotated degree for central part of noise pulse can be different with 

leading and trailing edges. When it passes through PDI, only the central part can pass 

through with a low loss, whereas the leading and trailing edges are blocked. After many 

round trips, stable mode-locked pulse can be generated as observed in Figure 4.17(b). 

The stability of the mode-locked is further studied by RF spectrum analyzer. Figure 

4.18 shows the result from RF spectrum, where the SNR is measured to be about 40 dB. 

Besides, the frequency is obtained at around 185 kHz, which is well tally with the pulse 

repetition rate of Figure 4.17(b). 
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Figure 4.18: RF spectrum of the proposed multi-wavelength mode-locked EDFL 

. 

 

4.5 Summary 

 

In this chapter, various types of mode-locking operations have been 

demonstrated based on NPR techniques, which included mode-locked EDFL with three 

switchable operating states, mode-locked square pulse EDFL and multi-wavelength 

mode-locked EDFL. It is found that the NPR based mode-locking operations are highly 

relied on the polarization state. Different mode-locking operation can be generated in a 

same cavity with the change of polarization state as shown in section 4.2 and section 

4.3. Besides, pump power also plays an important role to induce mode-locking 

operation. Different mode-locking states require different threshold pump power. Under 

a sufficiently high pump power, mode-locked experiences pulse breaking process to 

generate square pulse or higher order harmonic mode-locked. Under NPR based mode-

locked, the pulse repetition rate is constrained by the cavity length. Therefore, higher 
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order harmonic mode-locked is a solution to achieve higher pulse repetition rate and 

narrower pulse width mode-locked. On the other hand, the balance between the 

inhomogeneous loss induced by NPR and the mode competition effect leads to stable 

multi-wavelength oscillations. Throughout the experiment, multi-wavelength mode-

locked is not achievable in a single loop cavity such as the set-up in section 4.2 and 

section 4.3. This is because mode-locked and multi-wavelength required different NPR 

mechanism to induce the phenomena. However, in figure-of-eight set-up, the main loop 

induces the mode-locking operation, whereas another loop induces the multi-

wavelength operation to „slice‟ the spectrum of the cavity.  

The results shown in chapter 3 and chapter 4 are all operate in bright pulse 

regime. Besides the bright pulse regime, there is another type of operation regime, 

called dark pulse regime. Dark pulse regime is represented as a narrow intensity dip 

under a strong CW laser emission background. In the following chapter, several types of 

dark pulse lasers are investigated via NPR method.  
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CHAPTER 5 

GENERATION OF DARK PULSES IN ERBIUM-DOPED 

FIBER LASER CAVITY USING NONLINEAR 

POLARIZATION ROTATION APPROACH  

 

5.1 Introduction 

  

 Soliton formation is an attractive topic that has been extensively investigated in 

recent years due to its many applications in optical communications, sensors and 

instrumentations (Buryak et al., 2002). To date, most of the reported works on soliton 

mode-locked lasers are operating under the bright pulse regime. In addition to the bright 

pulse, fiber lasers can also generate the so-called dark solitons that are also a solution of 

the nonlinear Schrödinger equation (NLSE) (Radhakrishnan & Lakshmanan, 1995). 

These solitons can also be theoretically explained by the complex Ginzburg-Landau 

equation (CGLE). The dark pulses can be classified into two types; domain-wall (DW) 

and NLSE depending on their formation mechanisms. The difference between DW and 

NLSE type dark pulses is relied on their spectrum profile. The spectrum of the NLSE 

type dark pulse has only a single peak whereas the DW pulse produces an output 

spectrum with multiple peaks. The generation of DW pulse can be realized in both 

normal and anomalous dispersion while the standard NLSE type dark pulse could only 

be produced by a normal dispersion cavity. However, if the incident light field 

propagates in a medium with strong non-Kerr nonlinearities, it is possible to generate 

another type of dark pulse so-called Cubic-quintic nonlinear Schrödinger equation 

(CQNLSE) (Zhang & Dai, 2005) in anomalous dispersion cavity.  
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 In this chapter, several passively mode-locked Erbium-doped fiber lasers 

(EDFLs) operating in dark pulse regime are demonstrated using NPR technique. At 

first, the generation of three different types of dark pulses; NLSE, DW and CQNLSE 

are demonstrated. Then, a multi-wavelength mode-locked fiber EDFL, which generates 

a dark pulse train is proposed and demonstrated by using long laser cavity. Finally, 

generation of the dark pulse train is demonstrated in Q-switched mode-locked EDFL 

based on NPR technique. 

 

5.2 Harmonic NLSE dark pulse emission in EDFL   

  

 Most of the mode-locked lasers are reported to operate in bright pulse regime. 

However, fiber lasers can also generate the so-called dark pulses (Kivshar & Luther-

Davies, 1998), which are normally referred to a train of intensity dips in a CW 

background of the laser emission. The existence of dark solitons is explained by both 

NLSE and CGLE. In this section, we experimentally demonstrated a NLSE dark pulse 

emission in EDFL cavity based on NPR technique. The operating regime of the 

proposed dark pulse laser can be tuned from fundamental to 5
th
 order harmonic under 

appropriate polarization orientation and pump power.  

 

5.2.1 Experimental setup 

 

The experimental set-up of the proposed EDFL is illustrated in Figure 5.1, which 

comprises of two loops in figure of eight configuration. The main loop consists of a 3.5 

m long EDF as the gain medium, wavelength division multiplexer (WDM), 

polarization-dependent isolator (PDI), polarization controller (PC), 10 km long 
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dispersion shifted fiber (DSF) and two 3 dB couplers. The EDF used has a doping 

concentration of 2000 ppm and group velocity dispersion (GVD) of about -21.64 

ps/nm.km. This fiber was pumped by a 1480 nm laser diode via the WDM. The 

secondary loop consists of a 100 m long highly nonlinear fiber (HNLF), which is 

connected to the main loop by a 3 dB coupler. The HNLF has a dispersion of 0.15 

(ps/nm)/km at 1550nm and effective area of 12.3 µm. A PDI was used in the cavity to 

force a unidirectional operation of the ring, and an in-line PC was inserted in the cavity 

to adjust the linear birefringence of the cavity. A 2 x 2 3 dB fiber coupler was used to 

form a figure-of-eight structure with a piece of HNLF inserted in the new loop.  The 

output of the laser was collected from the cavity via a 3 dB coupler which retained 50% 

of the light in the ring cavity to oscillate. The optical spectrum analyser (OSA, 

Yokogawa, AQ 6370B) was used for spectral analysis of the proposed EDFL with a 

spectral resolution of 0.02 nm whereas the oscilloscope was used to observe the output 

pulse train of the dark pulse emission via a 1 GHz bandwidth photo-detector. 
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Figure 5.1:  Schematic configuration of the proposed dark pulse EDFL 

 

 

5.2.2 NLSE dark pulse performance 

 

By carefully adjusting the PC orientation, dark pulse emission operating in 

fundamental repetition rate of 20 kHz could be observed at pumping threshold power of 

29 mW. The typical pulse train of the fundamental dark pulse is shown in Figure 5.2(a). 

As shown in the figure, the dark pulse was represented as a narrow intensity dip in the 

strong CW laser emission background. When the 10 km DSF was removed from cavity, 

we were still able to observe dark pulse formation. However, the dark pulse train was 

random and unstable. To obtain a stable dark pulse train of laser emission, it was 

necessary to have a sufficient nonlinear gain in the cavity. Therefore, a 10 km DSF is 

incorporated in the proposed laser cavity to provide a nonlinear gain, which is required 

for the NPR process.  
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 In addition, figure-of-eight setup also induced competition between two cavity 

modes and cavity feedback, which played an important role in the stability of the dark 

pulses in the laser. A harmonic dark pulse can also be formed in round trip time (RTT), 

where the harmonic‟s order can be tuned by increasing the pump power as shown in 

Figure 5.2(b)-(e). By carefully adjusting the PC, the operating frequency of the dark 

pulse trains were shifted to 2
nd

 order, 3
rd

 order, 4
th
 order and 5

th
 order harmonic as the 

pump power was increased to 34 mW, 50 mW, 59 mW and 137 mW respectively. The 

2
nd

, 3
rd

, 4
th
 and 5

th
 harmonics correspond to repetition rates of 40 kHz, 60 kHz, 80 kHz 

and 100 kHz, as shown in Figure 5.2(b), (c), (d) and (e) respectively. 

  

 

(a) 

 

(b) 
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(c) 

 

(d) 

 

(e) 

Figure 5.2: Dark pulse emission of the proposed EDFL at different orders of harmonic: 

(a) fundamental, (b) 2
nd

, (c) 3
rd

, (d) 4
th

, and (e) 5
th
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Figure 5.3 shows threshold pump power to achieve different order of harmonics 

and its corressponding output power at the threshold pump power. The fundamental 

repetition rate is observed at 29 mW, whereas the 2
nd

, 3
rd

, 4
th

 and 5
th
 order harmonics 

are obtained at pump power of 34 mW, 50 mW, 59 mW and 137 mW respectively. As 

the pump power is further increased to 150 mW and above, no higher harmonic order is 

observed. This may be caused by the gain limitation which constrained the pulse from 

further breaking beyond the 5
th

 order harmonic. In the presence of relatively high 

pumping power, a single pulse circulating in the cavity can be split into several pulses. 

In such regime, pulses are usually randomly located in the cavity. However, under 

certain conditions they can self-arrange to create a stable and well organized pulse train 

with repetition rates far beyond the fundamental mode spacing. It is observed that the 

harmonic order increased as we increased the pump power. The output power also 

increased from 0.86 mW to 2.86 mW as the harmonic order was changed from the 

fundamental to the 5
th

 order harmonic. This was attributed to the pump power used 

which was larger for the higher harmonic order. 
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Figure 5.3: Threshold pump power and output power at different order harmonic 

 

Figure 5.4 shows the relationship of pulse width and pulse energy against 

harmonic orders. Pulse width of the fundamental, 2
nd

 order, 3
rd

 order, 4
th
 order and 5

th
 

order harmonic are obtained at 6.0 μs, 3.6 μs, 2.6 μs, 2.3 μs, and 2 μs respetively. The 

pulse width reduces with the increment of harmonic order due to the higher pump power 

used to achieve higher harmonic order. On the other hand, the pulse energy at threshold 

pump power of different harmonic order fluctuates between 42.6 nJ to 17.8 nJ as shown 

in Fig. 5.4. Figure 5.5 shows the output spectra of the EDFL at different harmonic 

orders. It is observed that the operating wavelength of the laser is blue-shifted as the 

harmonic order increases. This is attributed to the pump power, which is stronger at 

higher order harmonic and thus the laser operates at a shorter wavelength due to the 

Erbium gain saturation. It is observed that the operating wavelength of the laser shifts 

from 1565 nm to 1560 nm as the operation changes from the fundamental repetition 

rate, to the 5
th 

order harmonic. 
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Figure 5.4: Pulse width and pulse energy against different order harmonic 

 

Figure 5.5: Output spectra of the dark pulse train at different order harmonics 
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5.3 Generation of switchable DW and CQNLSE dark pulse  

 

 The generation of NLSE dark pulse is normally determined by the amount of 

Kerr nonlinearities inside the cavity. However, if the cavity consists of a highly 

nonlinear medium, non-Kerr nonlinearities may dominate the Kerr nonlinearities inside 

the cavity (Yang & Zhang, 2005). Under this circumstance, generation of dark pulse is 

relied on cubic-quantic nonlinearity. Therefore, generation of dark pulse is possible in 

anomalous dispersion cavity. On the other hand, another type of dark pulse in 

anomalous dispersion cavity, called domain. The fundamental of domain wall dark 

pulse is interpreted by topological defects in temporal domain due to mutual coupling of 

two different wavelengths. In this section, a switchable DW and CQNLSE type dark 

pulse is experimentally demonstrated by adjusting the polarization state of the 

oscillating light. The demonstration of DW and CQNLSE type dark pulse emissions are 

based on the same anomalous dispersion laser cavity configuration. 

 

5.3.1 Configuration of the switchable DW and CQNLSE dark pulse EDFL 

  

 The experimental set-up of the proposed EDFL is illustrated in Figure 5.6, which 

is configured with the same EDF and HNLF with the previous laser of Figure 5.1. The 

ring resonator consists of a 3.5 m long EDF, a WDM, a PDI, a PC, a 100 m long HNLF 

and a 95:5 output coupler. The HNLF is used to significantly increase nonlinearity of 

the cavity. The EDF is pumped by a 1480 nm laser diode via the WDM. A standard 

SMF with dispersion of 18 (ps/nm)/km constitutes the rest of the ring. The total cavity 

length is around 130 m. Unidirectional operation of the ring was achieved with the use 

of a PDI while an in-line PC was used to fine-tune the linear birefringence of the cavity. 

The output of the laser is collected from the cavity via a 95:5 coupler which retains 95% 
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of the light in the ring cavity to oscillate. The OSA with a spectral resolution of 0.02 nm 

is used to analyze the spectrum of the proposed EDFL whereas the oscilloscope (OSC) 

is employed in conjunction with a 1 GHz bandwidth photodetector to capture the output 

pulse train of the dark pulse emission. 

 

Figure 5.6: Experimental set-up of the proposed mode-locked EDFL, which capable for 

generating a switchable DW and NLSE dark pulse train 

 

5.3.2 DW dark pulse performance 

 

 In this work, NPR technique is used to generate a pulse train operating in dark 

regime. The proposed laser operates in anomalous dispersion regime and the dark pulse 

emission was considered as topological defects in temporal domain due to mutual 

coupling of two different wavelengths. Under the optimum polarization setting, a DW 

type dark pulse emission could be achieved as pump power is increased above the 

pumping power threshold of 80 mW. The dark pulse train can be sustained until the 

cavity‟s maximum pump power of 140 mW. Figure 5.7 shows the typical dark pulse 
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emission of the proposed laser, which operates at fundamental repetition rate of 1.52 

MHz. As shown in the figure, the dark pulse is represented by a narrow intensity dip, 

which exists in the strong continuous wave (CW) and the pulse width of the dark pulse 

is measured to be about 203 ns. At the maximum pump power of 140 mW, the average 

output power measured is about 3.4 mW, which can be translated to pulse energy of 

2.24 nJ.  

 

 

Figure 5.7: Typical DW dark pulse train at pump power of 140 mW 

 

 Figure 5.8 depicts the output spectrum of the DW dark pulse, which operates at 

1580 nm region. It shows multiple peak wavelengths operation within a broad spectral 

region. The spectral broadening is due to the self-phase modulation (SPM) effect in the 

ring cavity. The laser oscillates simultaneously with multi peak wavelengths in the 

cavity, leading to the emergence of topological defects in temporal domain. This 

phenomena forms dark domain wall pulses, which have an intensity dip on a strong CW 
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background. The stability of DW dark pulse is then investigated by an RF spectrum 

analyzer. As shown in Figure 5.9, the laser operates at fundamental frequency of 1.52 

MHz with SNR of about 28 dB. This indicates the stability of the laser.  

 

Figure 5.8: DW dark pulse spectrum of the proposed EDFL at pump power of 140 mW 
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Figure 5.9: DW dark pulse RF spectrum of the proposed EDFL at pump power of 140 

mW 

 

5.3.3 CQNLSE dark pulse performance 

 

By carefully adjusting the PC, the operating regime of the mode-locked can be 

switched from DW to CQNLSE as the pump power is increased above the threshold 

pump power of 104 mW. The threshold pump power is reasonably higher than that of 

the previous DW dark pulse emission. This is most probably due to the higher loss in 

the cavity when the position of the PC is adjusted into the new position. By varying the 

pump power from 104 mW to the maximum pump power of 140 mW, the CQNLSE 

dark soliton pulse can be observed operating at fundamental pulse repetition rate of 1.52 

MHz as shown in Figure 5.10. The pulse width of CQNLSE dark pulse is about 219 ns, 

which is similar to DW dark pulse. The generation of CQNLSE is possible due to the 

non-Kerr nonlinearities, which is stronger than the Kerr nonlinearities as the laser light 

oscillates through the HNLF. This allows the formation of dark pulse with the assistance 

of higher order of nonlinearity. The output power of CQNLSE dark pulse is measured to 

be about 0.88 mW at the maximum pump power of 140 mW, which is comparatively 

lower than that of DW dark pulse. This indicates a relatively low pulse energy of 0.58 

nJ at pump power of 140 mW. Figure 5.11 decipts the output spectrum of CQNLSE 

dark pulse, which clearly shows Kelly side bands. Unlike multiple peak wavelength 

operation of DW dark pulse, CQNLSE dark pulse exhibits a single peak wavelength at 

1564.5 nm, which is similar to NLSE type dark pulse. This is a significant indication 

that differentiates between DW dark pulse and CQNLSE dark pulse. The cavity loss is 

slightly higher in this laser and thus the operating wavelength shifts to a shorter 

wavelength to acquire more gain to compensate the loss. The SNR of CQNLSE dark 
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pulse is obtained 35 dB, which is higher than the one of DW pulse, as shown in Figure 

5.12. This shows that the generated CQNLSE pulse is more stable than the DW pulse.  

 

 

Figure 5.10: CQNLSE dark pulse train of the proposed EDFL at pump power of 140 

mW 
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Figure 5.11: Output optical spectrum of the CQNLSE dark pulse at pump power of 140 

mW 

 

Figure 5.12: RF spectrum of the CQNLSE dark soliton pulse at pump power of 140 Mw 

 

 

5.4 Multi-wavelength dark pulse EDFL in figure-of-eight cavity 

 

Both multi-wavelength and mode-locked EDFLs have wide applications in 

optical communications, sensors and instrumentations. There are many different 

methods that have been proposed to achieve multi-wavelength lasing at room 

temperature such as cascaded stimulated Brillouin scattering, incorporating a 

semiconductor optical amplifier or raman amplifier and four-wave mixing (FWM). 

Recently, NPR which can induce intensity dependent loss in the laser cavity is also 

widely used for multi-wavelength laser generation. On the other hand, mode-locked 

EDFLs were demonstrated in the previous sections using NPR technique. The NPR 
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based lasers have shown promising results and attracted much attention for their 

advantages such as compactness, low cost, flexibility and simplicity of design. As 

discussed in chapter 4, NPR may not able to induce both multi-wavelength and pulse 

generation in a single loop cavity. In this section, a mode-locked multi-wavelength 

EDFL is demonstrated using figure-of-eight set up by incorporating 50 m long photonic 

crystal fiber (PCF) and 20 km long standard SMF. The proposed EDFL setup is possible 

to induce both multi-wavelength and dark pulse in an EDFL based on NPR mechanism. 

Besides, figure-of-eight also induces higher cavity feedback, which allows the 

generation of higher harmonic order. Under appropriate operation conditions, the 

proposed fiber laser, which is configured with an all-normal dispersion and figure-of-

eight cavity could produce a train of single or multiple dark pulses. 

 

5.4.1 Configuration of the proposed multi-wavelength dark pulse EDFL  

 

The experimental set-up of the proposed EDFL is illustrated in Figure 5.13, 

which the ring resonator consists of a 3.5 m long EDF as the gain medium, WDM, PDI, 

polarization controller (PC), 50 m long PCF, 6.9 km long dispersion compensation fiber 

(DCF) and 3 dB couplers. The EDF used has a doping concentration of 2000 ppm and 

GVD parameter of about -21.64 (ps/nm)/km. This fiber was pumped by a 1480 nm laser 

diode via the WDM. Other fibers in the cavity are a 6.9 km long DCF with GVD of 

about -4 (ps/nm)/km and a standard SMF (18 ps/nm.km), which constituted the rest of 

the ring. The cavity operates in large positive GVD where the net dispersion and 

fundamental repetition rate are estimated as 35.19 ps
2
 and 29.0 kHz, respectively. 

Unidirectional operation of the ring was achieved with the use of a PDI while an in-line 

PC was used to fine-tune the linear birefringence of the cavity. A 2 x 2 3 dB fiber 

coupler was used to form a figure-of-eight structure with a piece of PCF is inserted in 
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the new loop. The output of the laser is collected from the cavity via a 3 dB coupler 

which retains 50% of the light in the ring cavity to oscillate. The OSA with a spectral 

resolution of 0.02 nm is used to analyze the spectrum of the proposed EDFL whereas 

the OSC is employed in conjunction with a 1 GHz bandwidth photodetector to capture 

the output pulse train of the mode-locked operation. 

 

 

Figure 5.13: Schematic configuration of the proposed multi-wavelength mode-locked 

EDFL 

 

5.4.2 Multi-wavelength dark pulse performance 

 

We use the NPR technique for both mode locking and multi-wavelength 

generation in the proposed ring EDFL. Under the optimum polarization setting, a multi-

wavelength laser output could be achieved in the laser as the pump power is increased 

above the pumping power threshold of 24 mW. Figure 5.14 shows evolution of the 
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output spectrum of the multi-wavelength with 1480 nm pump power variation from 24 

mW to 145 mW. It is observed that the number of lines and the peak power increase 

with the pump power. At the maximum pump power of 145 mW, the laser produces at 

least 9 lines with free spectral range (FSR) of 0.47 nm, which is determined by the 

length and the effective group indices of the PCF. It is worth noting that there is no 

multi-wavelength emission when the PCF is removed from the cavity. The multi-

wavelength generation is due to the intensity dependent loss induced by NPR. The role 

of PCF is to increase the nonlinear effect as well as to constitute an inline periodic filter 

with the PDI. 

 

Figure 5.14: Multi-wavelength output spectrum evolution against 1480 nm pump power 

As the pumping power exceeded 133 mW, self-started mode-locked pulse train 

is obtained.  Figures 5.15 and 5.16 show the optical spectrum and the oscilloscope trace 
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of the multi-wavelength laser respectively, at four diffferent orientation of PC. By 

carefully adjusting the PC, dark pulse emission operating in fundamental repetition rate 

of 29 kHz could be observed as shown in Figure 5.16 (a). As seen, in the time domain, 

the dark pulse is represented as a narrow intensity dip in the strong CW laser emission 

background. The full width at the half minimum of the dark pulse is about 2.7 µs. On 

the OSA trace of Figure 5.15(a), the optical spectrum of the dark pulses shows a multi-

wavelength operation within a broad spectral region. The spectral broadening is due to 

the SPM effect in the ring cavity. When the laser oscillates simultaneously at multiple 

wavelengths in the cavity, the laser emission could switch between these wavelengths 

due to their incoherent nonlinear coupling. This phenomena forms vector dark domain 

wall pulses, which have an intensity dip on a strong CW background. 
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(a) 

 

(b) 
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(c) 

 

(d) 

Figure 5.15: Optical spectrum of the proposed multi-wavelength dark pulse EDFL at 

four different orientation of PC when the pump is fixed at 146 mW (a) fundamental (b) 

2
nd

 order (c) 3
rd

 order and (d) 4
th
 order harmonic operation 
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(a) 

 

(b) 

 



 

115 

 

 

(c) 

 

(d) 

Figure 5.16: Dark pulse train of the proposed multi-wavelength dark pulse EDFL at four 

different orientation of PC when the pump is fixed at 146 mW (a) fundamental (b) 2
nd

 

order (c) 3
rd

 order and (d) 4
th

 order harmonic operation 
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 Compared to single bright pulse emission of the laser, the single dark pulse 

emission state was difficult to maintain. This is most probably due to the laser noise 

and/or weak environmental perturbations, which allows new dark pulses to appear 

automatically in the cavity. This causes the laser to operate in a state of multiple dark-

pulse. By carefully adjusting the PC, dark pulse train can be shifted to 2nd order, 3rd 

order and 4th order of dark pulses as shown in Figures 5.16 (b), (c) and (d) respectively. 

Assuming the different rotational angle (Δα) to achieve fundamental repetition rate is 

0˚, dark pulse train can be shifted to 2nd order with Δα less than 15˚ in anti-clockwise 

direction. Besides, from 2nd → 3rd → 4th order harmonic, Δα for each order change are 

also less than 15˚ in anti-clockwise direction. It is observed that the 5th harmonic cannot 

be achieved in the experiment. This is most probably due to the maximum pump power 

limitation, which constraints the pulse from further breaking after the 4
th
 order 

harmonic. Figure 5.17 compares the pulse width and pulse energy for different 

repetition rate of the harmonic operations when the the 1480 nm pump is fixed at 146 

mW. It is found that the pulse width varies from 2.70 μs to 3.11 μs as the repetition rate 

changes from fundamental to 4th order harmonic of 116 kHz. Inset of Figure 5.17 

shows a single dark pulse of 4th order harmonic with pulse width of 2.70 μs. The pump 

to signal efficiency of the cavity is measured at 0.68%. The average output power of the 

laser are obtained at 940 μW, 950 μW, 1000 μW and 1010 μW for fundamental, 2
nd

, 3
rd

 

and 4
th

 order harmonic respectively. Since the pump power is fixed and the order of 

dark pulse is increased, pulse energy experienced a decreasing trend as expected. From 

the results of dividing output power by pulse repetition rate, the pulse energy decreases 

from 32.4 nJ to 8.7 nJ with the pulse breaks from fundamental to 4
th
 order mode-locking 

as shown in Fig. 5.17. The results suggest that the dark pulse formation could be an 

intrinsic feature of the all-normal dispersion cavity. It is found that the figure-of-eight 

setup induced competition between two cavity modes and cavity feedback, leading to 
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the formation of vector dark domain wall solitons. This could have played an important 

role on the stability of the dark pulses in the laser.  

 

Figure 5.17: Pulse width and pulse energy at different orders of harmonic. Inset shows 

single dark pulse at 4th order harmonic 

 

 

5.5 Generation of Q-switched Mode-locked EDFL operating in dark regime 

 

 Basically, mode-locking operation can be classified into two categories, which 

are continuous wave mode-locked (CWML) (French et al., 1993) and Q-switched 

mode-locked (QML) (Zhang et al., 2004). For CWML, the ultra-short pulses can be 

generated for each round trip time in the laser cavity, which typically produces 

megahertz pulse repetition rate. Different from CWML, QML possesses both Q-

switching modulation frequency in kilohertz and frequency relates with the round trip 

time. Compared with CWML, QML lasers possess high peak power and high pulse 

energy over the CWML. These properties are attractive to achieve wavelength 

conversion and super continuum generation (Lin et al., 2007). In this section, we have 
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experimentally demonstrated the emission of Q-switched dark pulse in EDFL based on 

NPR technique. 

 

5.5.1 Experimental setup 

 

The experimental set-up of the proposed QML EDFL is illustrated in Figure 

5.18, which the ring resonator consists of a 3.5 m long EDF as the gain medium, WDM, 

PDI, polarization controller (PC) and 95:5 output coupler. The EDF and pumping 

wavelength are similar with the previous work. A standard SMF with dispersion of 18 

(ps/nm)/km constitutes the rest of the ring. The total cavity length is around 25 m. 

Unidirectional operation of the ring was achieved with the use of a PDI while an in-line 

PC was used to fine-tune the linear birefringence of the cavity. The output of the laser is 

collected from the cavity via a 95:5 coupler which retains 95% of the light in the ring 

cavity to oscillate. The OSA and oscilloscope are used for the spectral and temporal 

analysis, respectively.    

 

Figure 5.18:  Schematic configuration of the proposed QML EDFL emitting dark pulse 
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5.5.2 Q-switched dark pulse performance 

 

At the optimum polarization orientation, Q-switched dark pulse is achieved as 

pump power hits the pumping power threshold of 55 mW. The Q-switching pulse train 

can be sustained up to the pump power of 145 mW. Figure 5.19 shows a typical pulse 

train of the Q-switched dark pulse againsts pump power. In this experiment, we observe 

that the multiple dark pulses are combined to form the Q-switched envelope, which 

operates in dark regime as shown in Figure 5.20. Figure 5.21 shows the output spectrum 

of the Q-switched laser at pump power of 145 mW. As shown in the figure, the laser 

operates at wavelength around 1570 nm. Spectral broadening is also observed due to 

self-phase modulation effect in the cavity. 

  

 

 

Figure 5.19: Emission of Q-switched dark pulse train againsts pump power 
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Figure 5.20: Emission of single Q-switched dark pulse at pump power of 145 mW 

 

 

Figure 5.21: Output spectrum at pump power of 145 mW 
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Even though the Q-switched envelope operates in dark regime, the pulse 

characteristic is still in compliance with the conventional Q-switched operation. Figure 

5.22 shows the repetition rate and pulse width of the Q-switched envelope of the 

proposed EDFL against pump power. Pulse repetition rate is observed to proportionally 

increase with the pump power. Pulse repetition rate increases from 0.96 kHz to 3.26 

kHz by varying the pump power from 55 mW to 145 mW. The dependence of the pulse 

width can be seen to decrease almost linearly with the pump power. Pulse width 

decreases from 211 μs to 86 μs as pump power increases from 55 mW to 145 mW. 

Figure 5.23 shows the relationship of average output power and pulse energy of the Q-

switched dark pulse EDFL with the pump power. As shown in the figure, average 

output power increases almost linearly from 0.46 mW to 1.18 mW as the pump power 

increases from 55 mW to 145 mW. Besides, the pulse energy fluctuates within 333 nJ to 

479 nJ at the same pump power range. 

 

Figure 5.22: Pulse repetition rate and pulse width of the proposed Q-switched dark pulse 

EDFL 
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Figure 5.23: Output power and pulse energy of the proposed Q-switched dark pulse 

EDFL 

 

By zooming to the dark pulses inside the Q-switched envelope, we observe that 

the pulse train consists of two different parts; the first dip and trailing dark pulses as 

shown in the inset of Figure 5.24. The first dip represents the dark square pulse, whose 

pulse width experiences a decreasing trend from 114 μs to 40.5 μs as pump power 

increases from 55 mW to 145 mW. However, the negative peak intensity is 

approximately constant at -96 mV throughout the tuning range of Q-switched dark pulse 

operation as shown in Figure 5.24. For the trailing dark pulses, the repetition rate 

increases from 27.62 kHz to 50 kHz as pump power increases from 55 mW to 145 mW. 

The dark pulse generation inside the Q-switched pulse envelope is most probably due to 

the Q-switching instability effect in the laser cavity. The dark pulse train in the cavity is 

modulated by the Q-switching operation, which is created under a certain polarization 

state based on NPR effect. The dark pulses are then bounded in a Q-switched envelope 

to form a bunch of dark pulse as shown in Figure 5.20. The Q-switched modulation 
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process exhibits similar charateristics as the conventional Q-switching pulse operation, 

which increases in pulse repetition rate and decreases in pulse width as pump power 

increases. Therefore, the dark pulses under the Q-switched envelope are modulated and 

complied to conventional Q-switching pulse operation. Commonly, the Q-switched 

instability or QML cannot sustain under a wide pump power tuning range. It is worthty 

to notice that in this experiment, the pump power tuning range of Q-switched dark pulse 

operation is more than 90 mW. Q-switched modulation process has intensively increase 

the negative peak amplitude and pulse energy for the dark pulse. These properties are 

attractive to achieve wavelength conversion and super continuum generation. 

 

Figure 5.24: Dark square pulse at different pump power, Inset shows single Q-switched 

dark pulse which consists of first dip and trailing dark pulses 
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5.6 Summary 

 

In this chapter, various types of dark pulse operations have been demonstrated 

based on NPR techniques, which included NLSE dark pulse, CQNLSE dark pulse, DW 

dark pulse, multi-wavelength dark pulse and Q-switched dark pulse in EDFL. It is found 

that the NPR based dark pulses are highly relied on the cavity dispersion and 

nonlinearity. For instance, NLSE dark pulse required normal dispersion cavity, DW 

dark pulse required dual wavelength oscillation, and CQNLSE required high 

nonlinearity to dominate the Kerr effect. Similar to mode-locking operation in chapter 4, 

dark pulse generation required a polarization tuning process to achieve a stable pulsing 

in dark regime. Compared to single bright pulse emission of the laser, the single dark 

pulse emission state was difficult to maintain. This is most probably due to the laser 

noise and/or weak environmental perturbations, which allows new dark pulses to appear 

automatically in the cavity. In section 5.2 and section 5.4, harmonic dark pulses are 

achieved in figure-of-eight cavity. This proved that figure-of-eight cavity can enhance 

the cavity feedback and to achieve higher harmonic order as we have observed in 

chapter 4. On the other hand, similar to multi-wavelength mode-locked that 

demonstrated in chapter 4, multi-wavelength dark pulse is achieved in figure-of-cavity. 

Dark pulse induced by NPR is formed in the main loop, whereas PCF in second loop 

„sliced‟ the spectrum into multi-wavelength. Compare to pure dark pulse operation, Q-

switched dark pulse considered as an unstable state, in which both Q-switched and dark 

pulse are co-existed in a same cavity. However, the amplitude of the dark pulse 

increases tremendously with the Q-switched modulation process. This unstable state 

carries an important advantage in certain application such as super continuum 

generation.   
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CHAPTER 6 

CONCLUSION AND FUTURE OUTLOOK 

 

In this final chapter, we will summarize and conclude what has been demonstrated and 

future outlook will be discussed. 

 

6.1 Conclusion 

 

 Pulsed lasers have been of great interest as they have been widely used in 

various fields such as micromachining, medicine and telecommunication. For instance, 

ultra-short optical pulses have high potential applications optical transmission system 

especially for achieving a high speed and long distance network. The generation of 

pulsed laser can be categorized into two techniques; the active and passive techniques. 

Passively mode-locked fiber lasers have become established tools for generating 

nanosecond, picosecond and femtosecond pulses due to their compact design, 

alignment-free waveguide format and low cost. These advantages over their solid-state 

counterparts have driven further interest and more works on this field.  This thesis aims 

to propose and demonstrate both bright pulse and dark pulse train generations in 

Erbium-doped fiber lasers (EDFLs) using passive techniques based on nonlinear 

polarization rotation (NPR) technique. In this work, various techniques such as 

saturable absorbers (SAs) and nonlinear polarization rotation (NPR) techniques have 

been explored to generate the laser pulses.  

 Three passive techniques for generating Q-switching pulse have also been 

evaluated and demonstrated; graphene film based SA, solid state thulium-doped fiber 

(TDF) SA and NPR in Chapter 3. It is found that the NPR based Q-switching operation 
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occurs at a relatively lower pump power of around 12 mW compared to other Q-

switching techniques. Other techniques require higher pump power to initiate Q-

switching operation mainly due to the device loss. For instance, Q-switched EDFLs, 

which were generated using a graphene and solid state TDF  SA have a threshold pump 

power in a range of 20 mW and 33 mW respectively.  NPR technique proved its multi-

functional operation where we have successfully achieved both Q-switched and multi-

wavelength operations in our proposed EDFL. Furthermore, NPR also offers advantages 

such as tunable saturable absorption strength and ease of implementation with only 

conventional optical fiber components. Besides, NPR technique exhibits a high potential 

to obtain different types of pulsed laser by only changing the polarization state. 

Therefore, NPR technique is chosen to be the most suitable method for further 

investigation in different type of pulsed laser. 

In chapter 4, various types of mode-locking operations have been demonstrated 

based on NPR techniques, which included mode-locked EDFL with switchable 

operating states, mode-locked square pulse EDFL and multi-wavelength mode-locked 

EDFL. It is found that the NPR based mode-locking operations are highly relied on the 

polarization state. Therefore, different mode-locking operation can be generated in a 

same cavity with the change of polarization state. On the other hand, pump power is 

another key parameter to induce mode-locking operation based on NPR technique. 

Under a sufficiently high pump power, mode-locked laser experiences pulse breaking 

process to generate square pulse or higher order harmonic mode-locked. The advantages 

of higher order harmonic mode-locked are to achieve higher pulse repetition rate and 

narrower pulse width. On the other hand, the balance between the inhomogeneous loss 

induced by NPR and the mode competition effect can lead stable multi-wavelength 

oscillations. Multi-wavelength and mode-locking operation can be simultaneously 

achieved in a single loop cavity set-up since mode-locking and multi-wavelength 
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operation required different NPR mechanism to induce the phenomena. However, multi-

wavelength and mode-locked are able to co-exist in figure-of-eight set-up; the main 

loop induces the mode-locking operation, whereas another loop induces the multi-

wavelength operation to „slice‟ the spectrum of the cavity.  

 All the pulse train obtained in chapter 3 and chapter 4 are operated in bright 

pulse regime. Besides the bright pulse regime, there is another type of operation regime, 

called dark pulse regime. Dark pulse regime is represented as a narrow intensity dip 

under a strong CW laser emission background. In chapter 5, several types of dark pulse 

lasers are investigated via NPR method, which included NLSE dark pulse, CQNLSE 

dark pulse, DW dark pulse, multi-wavelength dark pulse and Q-switched dark pulse in 

EDFL. It is found that the NPR based dark pulses are highly relied on the cavity 

dispersion and nonlinearity. For instance, NLSE dark pulse required normal dispersion 

cavity, DW dark pulse required dual wavelength oscillation, and CQNLSE required 

high nonlinearity to dominate the Kerr effect. Similar to mode-locked by NPR, dark 

pulse generation required a polarization tuning process to achieve a stable pulsing in 

dark regime. Compared to single bright pulse emission of the laser, the single dark pulse 

emission state was difficult to maintain. This is most probably due to the laser noise 

and/or weak environmental perturbations, which allows new dark pulses to appear 

automatically in the cavity. Besides, harmonic dark pulses are achieved in figure-of-

eight cavity. This further identified that figure-of-eight cavity can enhance the cavity 

feedback and to achieve higher harmonic order as we have observed in bright pulse 

regime. Similar to multi-wavelength mode-locked that demonstrated in bright pulse 

regime, multi-wavelength dark pulse is achieved in figure-of-cavity. Dark pulse induced 

by NPR is formed in the main loop, whereas PCF in second loop „sliced‟ the spectrum 

into multi-wavelength. Compare to pure dark pulse operation, Q-switched dark pulse is 

considered to operate in an unstable state, where both Q-switching and dark pulse are 
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co-existed in the same cavity. However, the amplitude of the dark pulse tremendously 

increases with the Q-switched modulation process. This unstable state carries an 

important advantage in certain applications such as super continuum generation. 

 In summary, various types of bright and dark pulse profiles can be manipulated 

based on the variable saturable absorption strengths of NPR technique. Therefore, 

simple, compact and multi-function pulsed laser can be realized with NPR technique. 

Characteristic of pulsed laser can be controlled to produce different pulse width and 

pulse repetition rate that suit the needs for different applications. From the experiments 

conducted and obtained results, it is proven that NPR is indeed a powerful tool that can 

be exploited for pulsed laser 

 

6.2 Recommendations for Future Works  

 

 Much work has been carried out on the generation of pulsed laser. However, it 

can be further explored in the future. The performance of Q-switched pulse energy can 

be improved, Future study on mode-locked and dark pulse based NPR may also focus 

on higher pulse repetition rate and better signal to noise ratio (SNR). 

 Q-switched pulse energy of EDFL incorporated with SAs can further increase by 

optimizing the gain medium length. Besides, Q-switched EDFL based on NPR can 

incorporates a shorter nonlinear medium to decrease the cavity loss. Pulse width of 

mode-locked EDFL can further be reduced by replacing the birefringence fiber (SMF, 

DSF and DCF) with shorter nonlinear medium. Moreover, pulse width of NPR based 

EDFL can also be made narrower, near transform limit by optimizing the net dispersion 

in the cavity. Width the advancement of ultra-fast laser system, the cavity length can be 

reduced to several meters to allow high pulse repetition rate in high capacity 

telecommunication systems and optical switching devices. Additionally, high pulse 
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repetition rate can also be achieved with a higher pumping power to induce higher 

harmonic order.  

 Future directions can also include comparison of pulse propagation 

characteristics between bright and dark pulses to produce more reliable light source in 

telecommunication field. With this, it is hoped that this work will contribute to the ultra-

fast optics.   
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