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ABSTRACT 

 

 This study is on circular statistics that is also known as directional statistics. 

Directional statistics is a branch of statistics which deal with the data in angle form in 

which the method of analysis is different from linear data. For example, the distribution 

analogues to the normal distribution in linear data is known as circular normal 

distribution. This study comprises of four parts. The first part of the study focuses on 

the efficient approximation for the concentration parameter in von Mises distribution. 

Here, a new method of approximating the concentration parameter is proposed, and the 

performance of the proposed method is studied via simulation study. 

 The second part of the study is on the confidence intervals (CI) for the 

concentration parameter in von Mises distribution. Several methods in constructing the 

CI for the concentration parameter are proposed including CI based on circular 

population, CI based on the asymptotic distribution of  ̂ , CI based on the distribution of 

𝜃̅ and 𝑅̅ and also CI based on bootstrap-t method. All proposed methods are validated 

via simulation study and the performance indicator such as an expected length and its 

coverage probability are evaluated. 

 The third part of the study is on the derivation of the circular distance for 

circular data. From this derivation, we construct the CI for the concentration parameter. 

Three different methods will be considered in proposing the new CI including mean, 

median and percentile. The simulation studies carried out to assess the performance of 

each proposed method.   

 The final part of this study is an analysis of missing values for circular variables. 

Missing values is a common problem that occurs in data collection. By ignoring the 
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existence of missing values, leads to the biasness and lack of efficiency of a statistics. In 

this study, three imputation methods are considered namely expectation-maximization 

(EM) algorithm and data augmentation (DA) algorithm. All proposed methods are 

compared to the conventional methods. The analyses are conducted by doing the 

simulation studies by varying the value of the concentration parameter. All the proposed 

methods from this study are illustrated using the real data consisting of data in angle 

form found in the literature. 
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ABSTRAK 

Kajian ini adalah mengenai statistik membulat atau lebih dikenali dengan 

statistik berarah. Statistik berarah adalah suatu cabang bidang yang menggunakan data 

dalam ukuran sudut dan dengan itu kita memerlukan kaedah yang berlainan dalam 

menjalankan analisis data tersebut. Kajian ini terbahagi kepada empat bahagian utama. 

Dalam kajian ini, taburan von Mises akan digunakan sebagai taburan utama dalam 

melakukan perbincangan kajian. Taburan von Mises juga dikenali sebagai taburan 

normal membulat dan ia merupakan taburan yang menyerupai taburan normal seperti 

yang biasa digunakan dalam statistik linear. Bahagian pertama akan memberi focus 

kepada penganggaran untuk parameter menumpu dalan taburan von Mises. Dalam 

bahagian ini, kaedah penganggaran terbaru untuk parameter menumpu akan 

dicadangkan dan diikuti dengan kajian simulasi bagi menilai ketepatan prosedur yang 

telah dicadangkan. 

Bahagian kedua akan membincangkan tentang selang keyakinan (SK) untuk 

parameter menumpu bagi taburan von Mises. Beberapa kaedah untuk menghasilkan 

selang keyakinan (SK) akan dicadangkan termasuk SK berdasarkan populasi membulat,  

SK berdasarkan taburan asimptotik  ̂   matrix maklumat Fisher, SK berdasarkan taburan 

𝜃̅ dan 𝑅̅ dan SK berdasarkan kaedah bootstrap-t. Semua kaedah yang telah dicadangkan 

akan disahkan melalui kajian simulasi dan penilaian bagi saiz selang dan 

kebarangkalian menumpu akan dinilai. 

 Bahagian ketiga kajian adalah untuk menghasilkn jarak membulat bagi data 

membulat. Berdasarkan penghasilan ini, didapati kita juga berjaya untuk menghasilkan 

SK bagi parameter menumpu.Tiga kaedah yang berbeza akan diperkenalkan untuk 
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menghasilkan SK termasuk min, median dan persentil. Kajian simulasi akan dilakukan 

bagi menilai ketepatan kaedah yang telah dicadangkan. 

 Bahagian terakhir dalam kajian ini adalah analisis data lenyap bagi pemboleh 

ubah membulat.  Data lenyap merupakan suatu permasalahan biasa dalam pegumpulan 

data. Dengan hanya mengabaikan kewujudan data yang lenyap atau hilang akan 

membawa kepada bias dan menyebabkan ia menjadi kurang signifikan secara statistik. 

Dalam kajian ini, tiga kaedah imputasi akan dicadangkan termasuk ‘expectation 

maximization’ (EM) dan ‘data augmentation’ (DA). Semua kaedah yang dicadangkan 

akan dibandingkan dengan kaedah konvensional yang biasa digunakan. Untuk 

menentukan kaedah terbaik, analisis dibuat melalui kajian simulasi dengan 

mempelbagaikan nilai parameter menumpu. Akhir sekali, semua kaedah yang telah 

dicadangkan akan diilustrasi dengan menggunakan data sebenar dalam bentuk sudut 

yang diperolehi melalui kajian kesusasteraan. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 

 

ACKNOWLEDGEMENTS 

 

 Alhamdulillah, praise to Allah because I have successfully completed this 

research. I would like to express my sincere appreciation to my supervisors Prof. Madya 

Dr. Yong Zulina Zubairi and Prof. Dr. Abdul Ghapor Hussin for their good 

supervisions, continuous support and encouraging advices throughout the process in 

completing this research. Thank you very much for being very helpful and supportive.  

 A special thanks to my parents and husband for being very supportive and 

understanding throughout the process of completing this research. Without their love 

and support, it could be very tough journey for me to complete this thesis. Thank you 

for being there with me all the time. 

I deeply thank all my colleague and my dearest friends who always being very 

supportive and helpful. Thank you for the motivation and advices throughout the 

completion of my study and thesis. We have shared the moment ups and downs together 

in the journey of completing this study. Without all the positive vibes from everyone of 

them, it might be very hard to endure some difficult times through this journey. 

Lastly, I would like to thank all visiting lectures that gave comments and help 

me to improve my research. And, not forgotten, I also would like to thank the 

University of Malaya and Ministry of Education for providing the scholarship for my 

study. 

 

 

 

 



viii 

 

TABLE OF CONTENTS 

 

ABSTRACT iii 

ABSTRAK v 

ACKNOWLEDGEMENTS vii 

TABLE OF CONTENTS viii 

LIST OF FIGURES xii 

LIST OF TABLES xiii 

LIST OF APPENDICES xvi 

CHAPTER 1: INTRODUCTION 

1.1 Background 1 

1.2  Problem Statement 5 

    1.3     Limitation of the Study              6 

    1.4     Objective                                      6 

CHAPTER 2: LITERATURE REVIEW  

2.1 Introduction 7 

2.2 Circular Statistics 7 

2.2.1  Numerical Statistics 8 

2.2.2  Graphical representation 13 

2.3 Circular Distribution 14 

2.3.1 Uniform Distribution 15 

2.3.2 Von Mises Distribution 15 

2.3.3 Wrapped Normal Distribution 17 

2.3.4 Wrapped Cauchy Distribution 17 

2.4 Confidence Intervals 18 

2.4.1  Bootstrap Method 19 

2.4.2  Confidence Intervals for Parameter in Circular distribution 22 



ix 

 

2.5  Missing Values 27 

2.5.1 Traditional Approaches in Handling the Missing Values Problems. 28 

2.5.2 Modern Techniques in Handling the Missing Values Problem. 32 

2.6 Methodology 37 

2.6.1  Source of Data 38 

2.6.2 Software 39 

2.6.3 Flow Chart of Research Design of the Study 40 

CHAPTER 3: IMPROVED EFFICIENT APPROXIMATION OF 

CONCENTRATION PARAMETER FOR VON MISES DISTRIBUTION  

3.1 Introduction 43 

3.2 Background 43 

3.2.1  Parameter Estimation of the Von Mises Distribution 45 

3.2.2  Approximation for the Von Mises Concentration Parameter 47 

3.3 Proposed Method for Concentration Parameter 48 

3.4  Simulation Study 51 

3.5  Illustrative Examples 57 

3.6 Discussion 59 

CHAPTER 4: CONFIDENCE INTERVALS FOR LARGE CONCENTRATION 

PARAMETER IN VON MISES DISTRIBUTION  

4.1 Introduction 60 

4.2 Background 60 

4.3   Methods in Approximating Confidence Intervals (CI) 62 

4.3.1 Percentile bootstrap 63 

4.3.2 New Proposed Methods for Confidence Intervals for Concentration 

Parameter 65 

4.4 Simulation Study 72 

4.5 Illustrative Example 79 

4.6 Discussion 80 



x 

 

CHAPTER 5: A NEW STATISTIC BASED ON CIRCULAR DISTANCE  

5.1 Introduction 82 

5.2 Approximation to Chi Squared Distribution 82 

5.3  Simulation of the Approximated Chi-Squared Distribution 86 

5.4 Estimation of Confidence Intervals (CI) for Concentration Parameter,   88 

5.4.1 Method 1: Mean 89 

5.4.2 Method 2: Median 89 

5.4.3 Method 3: Percentile 90 

5.5 Simulation Study 91 

5.5.1 Confidence Intervals based on percentile 91 

5.5.2 Confidence Intervals of Concentration Parameter,  based on        

Mean, Median and Percentile 95 

5.6  Illustrative Example 99 

5.7  Discussion 100 

CHAPTER 6: ANALYSIS OF MISSING VALUES FOR CIRCULAR   

VARIABLE  

6.1 Introduction 101 

6.2 Background 101 

6.3 Data Imputation of Missing Values for circular data 103 

6.3.1 Circular Mean 104 

6.3.2  EM algorithm 105 

6.3.3 Data Augmentation (DA) algorithm 108 

6.4  Simulation Studies 112 

6.5  Illustrative Example 131 

6.6  Discussion 133 

CHAPTER 7: CONCLUSIONS  

7.1  Summary 135 

7.2 Contributions 137 



xi 

 

7.3 Further Research 138 

REFERENCES 139 

LIST OF PUBLICATIONS 149 

LIST OF ORAL PRESENTATIONS 150 

Appendix A. Wind direction data recorded at maximum wind speed at Kuala 

Terengganu  151 

Appendix B. Wind direction data recorded using HF radar and anchored buoy. 152 

Appendix C. Programming Script: Simulation study for estimation of     

concentration parameter using different methods. 154 

Appendix D. Programming Script: Estimation of concentration parameter using 

different methods. 155 

Appendix E. Programming Script: Confidence Interval for concentration                 

parameter.  157 

Appendix F. Programming Script: CI based on a new statistic 160 

Appendix G. Programming Script: Calculating the CI based on a new statistic    

(mean, median and percentile) 162 

Appendix H. Programming Script: Analysis of missing values for circular data 164 

 

 

 

 

 

 

 

 

 

 



xii 

 

LIST OF FIGURES 

 

  Page 

Figure 1.1 Arithmetic mean pointing the wrong way 3 

Figure 2.1 Flow chart of research design of the study 40 

Figure 3.1 Circular plot for residuals 58 

Figure 4.1 Coverage probability versus concentration parameter for    

n = 30 

74 

Figure 4.2 Coverage probability versus concentration parameter for    

n = 50 

74 

Figure 4.3 Coverage probability versus concentration parameter for    

n = 100 

75 

Figure 4.4 Expected length versus concentration parameter for n = 30 77 

Figure 4.5 Expected length versus concentration parameter for n = 50 77 

Figure 4.6 Expected length versus concentration parameter for            

n = 100 

78 

 

 

 

 

 

 

 

 

 



xiii 

 

LIST OF TABLES 

 

  Page 

Table 3.1 Numerical approximation of  A   50 

Table 3.2 

Simulation results for various value of parameter 

concentration,   and n =  30 53 

Table 3.3 
Simulation results for various value of parameter 

concentration,   and  n =  50 
55 

Table 3.4 
Simulation results for various value of parameter 

concentration,   and  n =  100 
56 

Table 3.5 Estimation of   using the new proposed method 58 

Table 4.1 
Coverage probability for various value of   for each 

sample size,  n = 30, 50 and 100. 
73 

Table 4.2 
Expected  length for various value of   for each sample 

size, n = 30, 50 and 100. 
76 

Table 4.3 
Confidence intervals for wind direction data recorded at 

maximum wind speed at Kuala Terengganu 
80 

Table 5.1 
The percentage of samples correctly approximated by the 

Chi-Squared distribution with df  1n . 
86 

Table 5.2 
Coverage probability for each percentage value for CI 

based on percentile 
92 

Table 5.3 
Expected length for each percentage value for CI based on 

percentile 
93 

Table 5.4 Coverage probability for various value of   for each 96 



xiv 

 

sample size, n = 30, 50, 70 and 100 at 0.05  . 

Table 5.5 

Expected length for various value of   for each sample 

size, n = 30, 50, 70 and 100 at 0.05  . 97 

Table 5.6 

Confidence intervals for simulated based on new statistic 

for circular distance 99 

Table 6.1 (a) 
Simulation results for mean direction for sample size,       

n = 30 
115 

Table 6.1 (b) 
Simulation results of circular distance for mean direction 

for sample size, n = 30 
116 

Table 6.2 (a) 
Simulation results of circular mean for mean direction for 

sample size, n = 50 
117 

Table 6.2 (b) 
Simulation results of circular distance for mean direction 

for sample size, n = 50 
118 

Table 6.3 (a) 
Simulation results of circular mean for mean direction for 

sample size, n = 100 
119 

Table 6.3 (b) 
Simulation results of circular distance for mean direction 

for sample size, n = 100 
120 

Table 6.4 (a) 

Simulation results of mean for concentration parameter, 

   for sample size,  n = 30 121 

Table 6.4 (b) 
Simulation results of EB for concentration parameter,   

for sample size,  n = 30. 
122 

Table 6.4 (c) 

Simulation results of ERMSE for concentration 

parameter,    for sample size, n = 30 123 

Table 6.5 (a) Simulation results of mean for concentration parameter, 124 



xv 

 

   for sample size,  n = 50 

Table 6.5 (b) 
Simulation results of EB for concentration parameter,   

for sample size,  n = 50 
125 

Table 6.5 (c) 

Simulation results of ERMSE for concentration 

parameter,    for sample size, n = 50 126 

Table 6.6 (a) 

Simulation results of mean for concentration parameter, 

   for sample size,  n = 100 127 

Table 6.6 (b) 
Simulation results of EB for concentration parameter,   

for sample size,  n = 100 
128 

Table 6.6 (c) 

Simulation results of ERMSE for concentration 

parameter,    for sample size, n = 100 129 

Table 6.7 

Table 6.7: Parameter estimation based on imputation 

method 132 

Table 6.8 
Table 6.8: Circular distance and estimate bias calculated 

using imputation method 
132 

 

 

 

 

 

 



xvi 

 

LIST OF APPENDICES 

 

  Page 

Appendix A 
Wind direction data recorded at maximum wind 

speed at Kuala Terengganu 
150 

Appendix B 
Wind direction data recorded using HF radar and 

anchored buoy 
151 

Appendix C 

Programming Script: Simulation study for 

estimation of concentration parameter using 

different methods 

153 

Appendix D 
Programming Script: Estimation of concentration 

parameter using different methods. 
154 

Appendix E 
Programming Script: Confidence Interval for 

concentration parameter 
156 

Appendix F Programming Script: CI based on a new statistic  159 

Appendix G 
Programming Script: Calculating the CI based on 

a new statistic (mean, median and percentile) 
161 

Appendix H 
Programming Script: Analysis of missing values 

for circular data 
163 



1 

 

CHAPTER 1  

INTRODUCTION 

 

1.1 Background 

 

 The early studies of circular or directional data date back to the mid of the 

century in the field of astronomy where it was hypothesised that direction of stars were 

uniformly distributed (Watson, 1983). Books on methods of analysing circular data in 

the biological field were published include Batschelet (1981), Zar (1984), Upton and 

Fingleton (1989) and Cabrera et al. (1991). 

 In the last 20 years, vigorous development of statistical methods for analysing 

circular data can be observed in the general statistical methodology with wide 

application in various fields.  

Circular data, however, are somewhat different from linear data due to the different 

topologies of the circle and the straight line. Angles are recorded in the range (0°, 360°] 

degree or [0,2𝜋) radian, then the directions close to the opposite end points are near 

neighbour in a circular metric but maximally distant in linear metric. The statistical 

theories for line and circle are very different from one to another because the circle is a 

closed curve but the line is not. In real life, this kind of data can be easily found in the 

area of study such as: 

i. Meteorology: wind and wave directions (Mardia, 1972; Bowers & Mould, 

2000; Caires & Wyatt, 2003; Hussin et al., 2004; Jammalamadaka & Lund, 
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2006; Gatto & Jamalamadaka, 2007; Hassan et al., 2010a and Kamisan et al., 

2010) 

ii. Medical sciences: the incidence of onsets of a particular disease at various times 

of the year (Mardia & Jupp 2000). 

iii. Biology: bird orientation (Mardia, 1972), animal navigation (Batschelet, 1981) 

iv. Geology: Azimuths of cross-beds in the upper Kamthi River (Sen Gupta & Rao, 

1966) 

v. Geography: the direction of the earthquake (Rivest, 1997) 

vi. Physics: interference among oscillations with random phases (Beckmann, 1959) 

vii. Astronomy: orbit plane that can be regarded as a point on the sphere (as 

discussed in Watson, 1970)  

viii. Criminology: time pattern in crime incidence (Brunsdon & Corcoran, 2005) 

The circular data cannot be treated as linear data due to its topology. Thus, the 

needs for statistical analysis as well as making statistical interpretation of this data are 

really indispensable. For example, as shown in Figure 1.1 for the measurements of wind 

direction data, the calculated arithmetic mean for 1° and 359° using conventional linear 

techniques is 180°. On the other hand, by using circular statistics, the mean direction 

should be 0°. The calculation of the mean direction can be done using the following 

formula that is totally different from the linear concept.  

Circular Mean, 

1

1

1

tan 0, 0,

ˆ tan 0,

tan 2 0, 0,

S
S C

C

S
C

C

S
S C

C

 









  
  

 
  

    
 

  
    

 

 

where  cos jC x  and  sin jS x . 
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Figure 1.1: Arithmetic mean pointing the wrong way 

Here, misinterpretation has occurred by someone making their interpretation 

without having any idea about the circular data. Making this such interpretation will 

lead to unbiased and misconception in our analysis. As a consequence, a lot of concepts 

applied in linear statistics are not quite developed for circular statistics.  

 The von Mises distribution is often used as the basis for parametric statistics 

inference and will be used in this study. The von Mises distribution, which is also 

known as the circular normal distribution, is an analogy to the normal distribution in 

linear data. This study focuses on the estimation of the concentration parameter in von 

Mises distribution. In this study, we develop an efficient method to approximate the 

concentration parameter.  Later on, we continue with the approximation of the 

confidence intervals for the concentration parameter. The study of confidence intervals 

(CI) for parameter in various distributions has gained a lot of attention recently. As for 

circular data, few studies were done including by Stephen (1969), Fisher (1993), 

Khanabsakdi (1995 – 1996), Mardia and Jupp (2000) and Jammalamadaka (2001). 

 In this study, our focus is to find the CI for the concentration parameter in von 

Mises distribution. A few methods are developed to achieve this objective. The study 

begins with the approximation method based on circular population, and this is followed 

by CI based on the asymptotic distribution of  ̂ , CI based on the distribution of 𝜃̅ and 𝑅̅ 

and also CI based on bootstrap-t method. All these methods will be used to construct an 

180° 0° 

1° 

359° 
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efficient CI for the concentration parameter in von Mises distribution. All proposed 

methods are validated via simulation study and its expected length as well as the 

coverage probability will be assessed. 

Finally, the study also addresses the analysis of missing values for circular data. 

Missing values is a common problem in data analysis. Deleting or ignoring all missing 

values, may lead to a lack of statistical power. A few imputation methods have been 

developed for linear data case, but for circular case, method for handling missing values 

are still limited. Thus, in this study, two imputation methods are proposed to handle the 

problem of missing values in circular variables. These two methods are the expectation-

maximization (EM) and the data augmentation (DA) algorithm. The analyses are carried 

out on data that follow von Mises distribution, and the performances of the proposed 

methods are compared with the conventional method which is the mean imputation 

method. The biasness are calculated to assess the performance of the proposed method 

and to identify the most feasible method. Finally, all the proposed methods will be 

illustrated using real data sets. 
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1.2  Problem Statement 

• The von Mises distribution has two parameters namely the concentration 

parameter and the circular mean. In estimating the parameter, maximum 

likelihood estimation (MLE) is often used. For the concentration parameter, the 

solution of the MLE, however, is analytically intractable because of the presence 

of modified Bessel functions  0I  ,  1I  , ...  (Mardia, 1972; Batschelet, 1981 

and Fisher, 1993). From the literature, the estimations of concentration 

parameter are given either for small and large concentration parameter only. 

Therefore, a new and efficient approximation of concentration parameter which 

applicable for both small and large concentration parameter is needed.   

• Most study apply only on simple analysis which is descriptive statistics. The 

study on inferential statistics, for example, the confidence intervals that can be 

used in hypothesis testing are relatively few. In circular data, confidence 

intervals are mostly developed for parameter mean direction only. Therefore, it 

is necessary to obtain methods for constructing the confidence intervals for 

concentration parameter.  

• Most researchers approach the problem in missing values by deleting or just 

ignoring them, this may lead to a lack of statistical power. Furthermore, the 

work on missing values for circular variables are relatively few. Therefore, it is 

deemed necessary to have methods of addressing the missing value problem for 

circular data.  
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1.3  Limitation of the Study 

In this study, the simulation study was carried out using varies sample size range 

from 10 up to 500. However, we publish the simulation results up to 100 only. This is 

because for large sample size, the results always converge beyond the sample size 100. 

We did not consider the sample size which is more than 500 because of we have 

limitation in terms of computational time and limited availability of high performance 

computer to analyse such large data.  

 

1.4  Objective 

 

The main objective of the study is to propose an efficient confidence intervals 

for the concentration parameter for the von Mises distribution. The followings are the 

specific objectives of the study: 

i. To develop an efficient method of approximating the concentration 

parameter in von Mises distribution. 

ii. To propose new methods of constructing the confidence intervals for the 

concentration parameter in von Mises distribution. 

iii. To propose a new statistic based on circular distance.  

iv. To construct the confidence intervals using a new statistic based on circular 

distance. 

v. To formulate a feasible method of imputing missing values for circular 

variables. 
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CHAPTER 2  

LITERATURE REVIEW 

 

2.1 Introduction 

 

This chapter presents the literature review that has led to this study.  In Section 

2.2, a brief explanation of circular statistics and other studies on circular data are 

discussed as well as its characteristics. Types of circular distributions are discussed in 

Section 2.3. The studies on confidence intervals for parameter in circular distribution 

and related studies are discussed in Section 2.4. In Section 2.5, a review of the methods 

that are used in handling the missing values for linear data, as well as circular data, are 

given. The details of the source of data and software used in the study are discussed in 

Section 2.6 under methodology. 

 

2.2 Circular Statistics 

 

Circular data can be defined as the data distributed on the circumference of the 

circle. This type of data arises in many fields such as earth sciences, meteorology, 

biology, physics, psychology, image analysis, medicine and astronomy (Mardia & Jupp, 

2000). Many examples of circular data were given in the previous chapter. Further 

reading on circular data can be found in Mardia (1972), Batschelet (1981), Fisher 

(1993), Mardia and Jupp (2000) and Jammalamadaka and SenGupta (2001).  
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2.2.1  Numerical Statistics 

 

Let i  where 1, ,i n  be observations from a random circular sample of size 

n. Thus, the descriptive statistics for circular data are described as follows.     

i. Mean Direction 

Each observation of i  is considered as a unit vector and the corresponding 

values of cos i  and sin i  are calculated. The resultant length which denoted by 

R is then given by 

 2 2R C S  , (2.1) 

where 
1

cos
n

i

i

C 


  and 
1

sin
n

i

i

S 


 . Thus, the mean direction, denoted by  , 

is given by 

 

1

1

tan if 0

tan if 0

S
C

C

S
C

C









  
 

  
 

      

. (2.2) 

 

ii. Median Direction 

Mardia and Jupp (2000) defined the median as any point   where half of the 

data lie in the arc  ,   , and the other half of points are nearer to   than 

  . On the other hand, Fisher (1993) defined the median direction as the 
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observation   that minimise the summation of circular distances to all 

observations, 

  
1

n

i

i

d     


   . (2.3) 

 

iii. Mean Resultant Length 

Mean resultant length denoted by R  is defined as the length of the centre of the 

vector z C iS  . R  is useful for unimodal data to measure on how 

concentrated the data is towards the centre. Mean resultant length is given by 

 
R

R
n

  where 0 1R  . (2.4) 

The data is said to have small dispersion and more concentrated towards the 

centre if the value of R  is close to 1. 

 

iv. Sample Circular Variance 

Sample circular variance, denoted by V, is given by 

 1V R  , where 0 1V  . (2.5) 

The smaller the circular variance the more concentrated the samples. However, 

this measure is rarely used in circular statistics in comparison to the measure of 

the concentration parameter. 
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v. Sample Circular Standard Deviation 

Sample circular standard deviation, denoted by v, is given by 

  2log 1v V    where V = sample circular variance. (2.6) 

 

vi. Concentration Parameter  

Concentration parameter, denoted by  , is the standard measure of dispersion 

for circular data. Best and Fisher (1981) defined the estimate for the 

concentration parameter obtained by the maximum likelihood method and it is 

given as follow 

 

5
3

3 2

5
2 , 0.53

6

0.43
0.4 1.39 , 0.53 0.85

1

1
, 0.85

4 3

R
R R R

R R
R

R
R R R




  




     



  

, (2.7) 

where R  is mean resultant length. The value of   lies in the range of  0, . 

The large value of   indicates that the observations are highly concentrated in 

the direction of the mean direction  . If   is close to 0, it shows that the 

observations are uniformly distributed around the unit circle.  

 

Unlike the linear data, circular data cannot be analysed directly using the default 

and built-in function available in many software. Hence, several researchers have 

developed statistical packages that can be used in that available software. They have 

written special programs in few commercial software that later on can easily be used by 
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another researcher. Cox (2001) has developed the programming in Stata that can be 

used in analysing circular data. Using the package by Cox (2001), the data are assumed 

recorded in degrees from North. The package consists of four different categories 

namely utilities, summary statistics and significance tests, univariate graphics and 

bivariate relationships. Hence, using circular statistics package by Cox (2001) in Stata, 

the researcher can obtain the descriptive statistics, graphical representation as well as 

finding the correlation between variables. 

Jones (2006) used MATLAB to analysed the directional data. For this purpose, 

he developed the programs namely Vector_Stats. Specifically, this programs can cater 

only for two-dimensional directional data such as directions of cross beds. Vector_Stats 

in MATLAB can be used to calculate the descriptive statistics and generate plots for 

directional data. The program also provides analysis for single-sample inference on 

distribution and parameters such as the test of uniformity. 

Later on, Berens (2009) developed a MATLAB toolbox for circular statistics 

namely CircStat. This package includes the descriptive statistics, inferential statistics 

and measure of association. Apart from that, this toolbox also provides an analysis for 

data which the underlying distribution is von Mises distribution since this is the most 

common distribution for circular data. By having this package, the statistical analysis of 

circular data can be done using MATLAB easily. As for illustration purpose, Berens 

shows an application on how descriptive statistics can be calculated using neuroscience 

data. 

Lund and Agostinelli were the first who have written programs that is called 

CircStats package that can be used in analysing directional data in 2007 and later the 

latest version in 2012 (Lund & Agostinelli, 2012). This package is compatible to use in 
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R and the S-Plus language. It offers a wide range of circular statistical analysis 

including the descriptive statistics, graphical representations and inferential statistic. 

The programs written in this package are based on the description in Jammalamadaka 

and SenGupta (2001). 

Apart of developing the package that compatible in analysing the circular data, 

there are few other software that offer basic statistical analysis for this type of data. 

Here, we reviewed the studies that have been done using certain softwares to analyse 

data. Hussin et al. (2006) carried out the circular data analysis using AXIS software 

(Handeson & Seaby, 2002). AXIS software is an exploratory software that is designed 

specifically for the directional data. The study focused on how the analysis can be done 

using the software itself. The analysis included basic summary statistics, circular plot, 

testing for uniformity or randomness and the comparison between samples. As for 

illustration purpose, they analysed two different Malaysian wind data set namely 

Southwest and Northeast.  

ORIANA (Kovach Computing Services, 2009) is one of the commercial 

softwares that offers a basic analysis of circular data. This kind of software is user-

friendly as it does not need ones to do the programming in order to carry out the 

analysis. ORIANA can be used to display the basic summary statistics and it can be 

very useful for the circular graphical representation as it offers a number of circular 

plots such as rose diagram, circular histogram, raw data plot and arrow data plot. 

Testing for uniformity and comparisons between samples also can be done using 

ORIANA. Hassan et al. (2009) has carried out the analysis of Malaysian wind data 

using ORIANA and discussed the features that are available to be used for circular 

statistical analysis.    
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From the studies that were described previously, it showed that this study has 

gained prior attention from researchers in various fields. This is due to the importance 

and the wide application of the circular data in many fields such as astronomy, geology, 

zoology, neuroscience and medical research. 

 

2.2.2  Graphical representation 

 

The graphical representations are often used, to summarise the data and to 

explore the circular samples. It also useful for the purpose of detecting outliers in 

circular sample. Below are types of graphical representation that are available for 

circular samples:  

 

i. Q-Q Plot 

Q-Q plot allows us to compare the distribution of two samples. For circular data, 

the Q-Q plot can be obtained using ORIANA software and using the CircStats 

package in R or S-Plus.   

 

ii. Spoke Plot 

 Spoke plot is one of the graphical representation that is specifically useful for 

circular data. Zubairi et al. (2008) used the MATLAB software to develop this 

plot. This plot is useful for getting a general pattern of the linear relationship 

between two circular variables as well as calculating the linear correlation. It 

consists of inner, i  and outer, i  rings where 0 , 360 , 1,2,i i i     in 
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which lines are used to connect the pairs of points  ,i i  . As an illustration of 

this plot, three different Malaysian wind data sets were used, and the correlation, 

as well as its linear relationship, were calculated in their study.   

 

iii. Circular Boxplot 

Boxplot is a common plot in real line data set and has been widely used in 

exploratory data analysis. Boxplot is useful to identify the existence of outliers 

in the sample. This type of boxplot, however, is not suitable for circular data due 

to a different topology of the circular data itself. Therefore, Abuzaid et al. 

(2012) has developed the circular version of boxplot namely as circular boxplot. 

In order to develop the circular boxplot, median direction, quartile of circular 

variables and circular interquartile range and fences are calculated.  

 

2.3 Circular Distribution 

 

A circular distribution is a probability distribution that the total probability is 

concentrated on the circumference of a unit circle. Each point located on the 

circumference represents a direction. The circular variables,   is measured in radian 

and in the range of  0,2  or  ,  .  
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2.3.1 Uniform Distribution 

 

The uniform distribution which denoted as cU  is a basic distribution on the 

circle. In this distribution, all directions are equally likely. The probability density 

function (pdf) is given by: 

 
 

1

2
f 


 , where  0 2   . 

(2.8) 

 While the distribution function is given by 

  
2

F





 , where  0 2   . (2.9) 

  For circular uniform distribution, the mean direction,   is undefined and having mean 

resultant equal to 0. This distribution plays an important role in circular analysis 

because they represent the state of ‘no mean direction’ (Jammalamadaka & SenGupta, 

2001). 

 

2.3.2 Von Mises Distribution 

 

In modelling the circular data, the widely used distribution on the circle is the 

von Mises distribution. This distribution is also known as the circular normal 

distribution, and it is an analogue to the normal distribution on the real line. The von 

Mises distribution is denoted by  ,VM    where   is the mean direction while   is 
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the concentration parameter. The probability density function of von Mises distribution 

(Mardia & Jupp, 2000) is given by 

 

 
 

  
0

1
exp cos

2
f

I
   

 
  , 0 2   , 0   , 

(2.10) 

where 0I  denotes the modified Bessel function of the first kind and order 0 and can be 

defined as:  

 
   

2

0

0

1
exp cos

2
I d



   


  . 
(2.11) 

Von Mises distribution is the most common distribution considered for 

unimodal samples for circular data. Some of its density properties are: 

i. it is symmetrical about the mean direction   

ii. it has a mode at   

iii. it has anti mode at    . 

The limiting forms for this distribution as given by Fisher (1993),  

i. as 0  , the distribution will converge to the uniform distribution, 
cU   

ii. as   , the distribution tends to the point distribution concentrated in the 

direction of  . 
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2.3.3 Wrapped Normal Distribution 

 

The wrapped normal distribution can be obtained by wrapping a normal 

distribution around a unit circle. This distribution is a symmetric unimodal two 

parameter distribution. The wrapped normal distribution is denoted by  ,WN    where 

  is the mean direction while   is the mean resultant length. The probability density 

function is given by: 

    
2

1

1
1 2 cos

2

p

p

f    






 
   

 
 , 0 2   , 0 1  . 

(

(2.12) 

If   f  is obtained by wrapping a normal distribution with variance 2 , then 

 
21

2e





 , or 2 2log   . (2.13) 

The limiting forms for this distribution as given by Fisher (1993),  

i. as 0  , the distribution will converge to the uniform distribution, 
cU   

ii. as 1  , the distribution tends to the point distribution concentrated in the 

direction of  . 

 

2.3.4 Wrapped Cauchy Distribution 

 

The wrapped Cauchy distribution can be obtained by wrapping the Cauchy 

distribution on a real line with a density  
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  
 

22

1
f




   

 
 
   

,    (2.14) 

around the circle. This distribution is a symmetric unimodal two parameter distribution. 

The wrapped Cauchy distribution is denoted by  ,WC    where   is the mean 

direction while   is the mean resultant length. The probability density function is 

given by 

  
 

2

2

1 1

2 1 2 cos
f




    

 
      

, 0 2   , 0 1  . (2.15) 

The limiting forms for this distribution as given by Fisher (1993),  

i. as 0  , the distribution will converge to the uniform distribution, 
cU  

ii. as 1  , the distribution tends to the point distribution concentrated in the 

direction of  . 

 

2.4 Confidence Intervals 

 

  Confidence intervals can be defined as an interval estimate of the point estimate 

or the parameter itself. As in Efron and Tibshirani (1993), knowing the interval estimate 

with its point estimate can say what the best guess is for  , and how far in error that 

guess might be. In the perspective of linear statistics, this area has gained prior attention 

from many researchers. Many new and integrated approaches were developed to obtain 

an efficient approximation for confidence intervals based on different methods such as 
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confidence interval based on hypothesis testing, confidence interval based on bootstrap 

method which include percentile bootstrap, bootstrap-t and iterated bootstrap. 

 Expected length and coverage are usually used to assess the superiority of the 

proposed methods to approximate the confidence intervals. Expected length is defined 

as the class size of the estimated intervals. The coverage probability is the proportion of 

times that the estimated intervals cover the true parameter. Nominal coverage also 

known as target value is the confidence level that we consider when approximating the 

confidence intervals. Coverage error that is defined as the absolute difference between 

the nominal and actual coverage probability, is often used to assess the superiority of 

confidence intervals. The reliability of confidence interval is determined by its coverage 

(Letson & McCullogh, 1998). A good confidence interval should have a coverage 

probability that is close to a target value (nominal coverage) as well as having small 

coverage error. In the next section, the bootstrap method, a method that is widely used 

in constructing the confidence interval will be discussed. 

 

2.4.1  Bootstrap Method 

 

Bootstrap method was proposed by Efron (see Efron, 1979, 1987 and Efron & 

Tibshirani, 1993) and has gained so much attention and acceptance from researchers in 

various fields of study. The bootstrap method is procedures that create a number of sub-

samples from a pre-observed data set by a simple random sampling with replacement. 

The sub-samples is then to be used in investigating the nature of the population without 

having any assumption about them. For the past few years, many studies have been 

developed on the bootstrap technique and confidence intervals in various research areas 
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(see Hall, 1986, 1987, 1988; Hall & Martin, 1988; DiCiccio & Efron, 1996; Letson & 

McCullogh, 1998; Polansky, 2000). This computer-based method is very useful in 

estimating the standard error and bias as well as approximating confidence intervals and 

other statistical measures (see Efron & Tibshirani, 1986).  

How many bootstrap replications need to be considered in order to get a good 

estimation always becomes a question among researchers. Efron (1979) gives nB n  

as the possible bootstrap replication. To estimate the standard error, 25 to 250 bootstrap 

replications usually considered. But, for another estimate such as confidence intervals, 

number of bootstrap replication will be increased. Bootstrap replications are dependent 

upon the value of X  if 100n   and the bootstrap replications is taken to be 10000B   

(Efron, 1979). As for circular distribution, Fisher (1993) takes number of bootstrap 

replication, B = 200 to approximate the confidence intervals for the mean direction.  

In conclusion, Efron and Tibshirani (1993) gives rules of thumb in determining 

how many replications should be considered when doing the resampling: 

i. Small number of bootstrap replication, for example, B = 25, is usually 

informative. B = 50 is considered as enough to give a good estimator of 

standard error. 

ii. Very seldom B > 200  bootstrap replications needed in estimating a 

standard error. The number of replications generally in the range of 25 to 

2000. 

Efron and Tibshirani (1993) and Chernick (1999) give a comprehensive 

explanation on constructing the confidence interval based on several bootstrap methods. 

In this subsection, some reviews on confidence intervals based on various types of the 
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bootstrap method that motivate the study on confidence intervals in circular distribution 

are discussed. 

Porter et al. (1997) and Polansky (2000) studied on bootstrap-t (see Efron, 1982) 

confidence intervals for small sample size. Porter et al. (1997) applied the non-

parametric bootstrap t method to construct the confidence intervals for the mean 

parameter of an unknown distribution. The non parametric bootstrap is a distribution-

free method where the original sample of size n is resampled N times with replacement. 

The study showed that the bootstrap-t is superior to the other method considered which 

is the Student’s-t. The superiority of the method is assessed by the coverage probability 

of each method. The Student’s-t gives a coverage probability that is less than the 

nominal as opposed to bootstrap-t which has a better coverage probability.  

Letson and McCullogh (1998) discussed on different types of the bootstrap 

method in approximating confidence interval. Five different types of bootstrap 

techniques are considered which include single and double bootstrap. The performance 

of each method is assessed by its coverage error. Coverage error is defined as the 

absolute difference between the nominal coverage (target value) and the actual coverage 

(coverage probability). Shi’s double bootstrap method is said to be superior because it 

gives good coverage in comparison to single bootstrapping methods. 

Besides that, Polansky (2000) carried out the study on stabilizing the end points 

of bootstrap-t intervals, as well as its coverage error. This study was done for small 

sample size. The objective of his study is to improve the stability of the bootstrap-t 

method and preserve the coverage error. This is because the bootstrap-t is known to 

have a good coverage error. This method is said to be better as opposed to the 
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estimated-variance-stabilizing method by Tibshirani (1988) which only reduces the 

expected length but increases the coverage error.  

In directional data, the bootstrap method in approximating the confidence 

intervals for parameter in circular distribution was developed by Ducharme (1985), 

Fisher and Hall (1992) and Fisher (1993). The details on confidence intervals for 

parameter in circular distribution will be discussed in the next subsection. 

 

2.4.2  Confidence Intervals for Parameter in Circular distribution 

 

 In this subsection, the review on confidence intervals for parameter in circular 

distribution will be discussed. As explained in the previous subsection, the von Mises 

distribution is the most common distribution occurs in circular data, and it has two 

parameters namely the mean direction and concentration parameters.  

 Firstly, a review on confidence intervals for the mean direction will be 

discussed. Batschelet (1981) in his book has given the calculation of confidence 

intervals for mean angle with the samples were drawn from a von Mises distribution. 

For this purpose, calculation of mean vector length r and mean angle of the sample   

are required. The angle of deviation   will be determined based on r and the sample 

size n which can be referred from the chart given by Stephen (1962a & 1962b) and 

Brown and Mewaldt (1968). From their study, a  100 1 %  confidence interval for 

the mean is  ,     .    
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 A Monte Carlo simulations study was carried out by Ducharme et al. (1985) to 

compare the performances of the bootstrap method with the other methods. A total of 

six different methods and non-parametric confidence cones for the mean direction based 

on the bootstrap method have been considered. As for performance indicator, coverage 

probabilities were assessed to compare the superiority of the method. Samples were 

drawn from different distributions, and they are considering bootstrap replication which 

is B = 200.  

 Upton (1986) has given the approximation for confidence interval for the mean 

direction in von Mises distribution. Two proposed methods in approximating 

 100 1 %  of CI were discussed and conclude that the new methods are preferred for 

smaller value of n and R . The methods of approximation  100 1 %  of CI for the 

mean direction are given as follows: 

 

i. Likelihood-based, 0.9R   

 

 22 2

4
ˆ arccos

n R nZ

n Z

R





  
  
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  
  
   

  

 

ii. Likelihood-based, 0.9R   
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ˆ arccos

Z
n n R

n

R





   
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   
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  
    
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where Z  is the  point of a 
2

1  distribution. 

  

 Fisher (1993) described the steps for finding the confidence intervals for the 

mean direction based on the bootstrap method. He suggested three different techniques 

to determine the final confidence intervals for the mean direction. The basic method 

(Technique 1) to obtain a  100 1 %  confidence interval for the unknown mean 

direction as given by Fisher    

i. calculate 
*ˆ

b b    ,  b     , 1, ,b B  

ii. sort into increasing order to obtain    1 B
    

iii. let l = integer part of 
1 1

2 2
B

 
 

 
 and 1m B  . Thus, the confidence 

intervals for   will be given as: 

    1
,

l m
   


  . 

 Zar (1999) has given calculations for confidence intervals for the mean 

direction. He considered two cases as follow 

i. for 0.9R   and 
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ii. for 0.9R   

 
2

,12 2 exp

arccos

n

n
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d
R


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 
 
  

. 

where nR R N  . Considering both cases, the  100 1 %  confidence interval 

for the mean direction is given by  ,d d   .  

 On the other hand, Jammalamadaka and SenGupta (2001) discussed on the 

construction of confidence intervals for the mean direction based on circular ‘standard 

error’ of the MLE for ̂  in von Mises distribution. This method is applicable for large 

samples where ˆ

1
ˆ

ˆnR



  . Hence, a  100 1 %  confidence interval for the mean 

direction is given by 

ˆ ˆ

2 2

ˆ ˆ ˆ ˆarcsin , arcsin        
    

     
     

. 

Otieno and Anderson-Cook (2006b) discussed on three different bootstrap 

methods (Fisher & Hall, 1989) to estimate the confidence intervals for the preferred 

direction for a single population. The preferred direction that were used are the mean 

direction, the median direction and the Hodges-Lehman estimate (Otieno & Anderson-

Cook, 2006a). A comparison study was carried out using three different types of the 

bootstrap technique and the performance of the methods were assessed by their 

coverage probability and expected length.      
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As for the concentration parameter in von Mises distribution, an early study was 

carried out by Stephens (1969), where several approximation of confidence for small 

concentration parameter were proposed. Apart from that, Batschelet (1981) has 

discussed on the confidence interval for the concentration parameter based on the chart 

given in Stephen (1962a & 1962b) and Brown and Mewaldt (1968).     

 Confidence intervals for the concentration parameter based on percentile 

bootstrap method can be found in Fisher and Hall (1992) and Fisher (1993). Steps on 

percentile bootstrap will be discussed in Chapter 4, and this method is used in the 

comparison study with our proposed methods.  

 Khanabsakdi (1995) proposed confidence intervals for the concentration 

parameter based on chi-squared variable. A  100 1 %  confidence intervals for 

circular variance is given by 

2 2
2

2 2

, 1 ,
2 2

ns ns

 
 


 



   

 The lower and upper limits of the population circular variance are then to be 

transformed to lower and upper limits of the concentration parameter. This 

transformation is obtained using the relation between length of the sample mean vector 

r, sample circular standard deviation s (Batschelet, 1981) and the concentration 

parameter,  . Comparison with the Stephen’s formula has been carried out, and it 

showed that the method is more efficient than the previous one. However, this method 

is said to be applicable only when the data is highly concentrated.  
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2.5  Missing Values  

 

Missing values is one of the problems that always occur in data analysis. This 

problem must be taken seriously because by ignoring or deleting the missing values that 

exist in our data will affect the statistical power and may lead to the biasness (Little & 

Rubin, 2002; Tsikriktsis, 2005). Nowadays, the studies of missing data were extensively 

done by researchers from various fields such as medical (Enders, 2006), environmental 

(Norazian et al., 2008) and psychology (Baraldi & Enders, 2010) due to the importance 

of obtaining the complete data analysis.     

There are several classifications of missing values. These classifications 

influence the optimal strategy for working with missing values. Little and Rubin (2002) 

gave the classification of missing values as follows.  

 

i. Missing completely at random (MCAR) 

MCAR occurs when the probability of missing data on a variable X is 

unrelated to the other measured variables and the values of X itself. MCAR is 

said to be not really suitable in practice because of the strict assumption that 

requires the missingness to be unrelated to the study variables (Raghunathan, 

2004) 

 

ii. Missing at random (MAR) 

MAR occurs when the missingness is related to the other measured variable 

in the analysis, but not to the underlying values of incomplete variable. MAR 

is described as systematic missingness where the tendency for missing data is 
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correlated with other study-related variables in the analysis. This type of 

missingness is said to be most likely happen in real practice as it requires less 

stringent assumption about the reason for missing data (Baraldi & Enders, 

2010).     

 

iii. Missing not at random (MNAR) 

The data is said to be MNAR if the probability of missing data is 

systematically related to the hypothetical values that are missing. It also can 

be described as the data that are missing based on the would-be values of the 

missing observations. 

In the next subsection, the reviews on methods of handling the missing data are 

discussed. Further reading on missing data analysis can be found in Schafer (1997), 

Allison (2002), Little and Rubin (2002) and Baraldi and Enders (2010).     

 

2.5.1 Traditional Approaches in Handling the Missing Values Problems. 

 

Many extensive studies have been done in handling the data set with missing 

values problems. Before begin with the analysis, one should understand the nature of 

the missingness that occurs in the data. This is important in order to choose the best 

technique that can be applied in analysing such data. In this section, some reviews on 

traditional approaches in handling missing values problems are discussed.  

The most common traditional approaches are deletion and replacement 

procedures (Peugh & Enders, 2004). The easiest way to handle missing values is by 
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deleting those observations with missing values and consequently lead up to ‘complete’ 

analysis. This is the default method that is usually used in most statistical and computer 

analysis package including SPSS, S-Plus, R and SAS. Despite simple and easy, this 

approach will decrease the sample size of the data and at the same time can reduced the 

power of statistics (Little & Rubin, 2002).  

There are two types of deletion techniques. The first technique is the listwise 

deletion that also known as the complete-case analysis or case-wise deletion. Many 

reviews on this technique from the past researchers in various fields including Kim and 

Curry (1977), Tsikriktsis (2005), Peugh and Enders (2004) and Baraldi and Enders 

(2010). This type of approach tend to be the choice among the researcher because of the 

simplicity of the method itself whereby it produce the complete data set and the 

statistical analysis can be done by using standard analysis techniques (Baraldi & Enders, 

2010). As stated in Kim and Curry (1977), this method eliminates from further analysis 

all cases with any missing data. As a result, it gives a large effect in the data where 

randomly deleting 10% of the data from each variable in a matrix out of five variables 

can easily cause an elimination of 59% of cases from analysis. In addition, by using 

listwise deletion it gives a conservative estimate of the parameters and lead to 

conservative results. By reducing the sample size, it may decrease the statistical power. 

Hence, this will lead to lack of statistically significant (Tsikriktsis, 2005; Baraldi & 

Enders, 2010). By using this method, the data are assumed as MCAR, which missingnes 

is unrelated to all measured variable. 

The second technique in deletion procedure is pairwise deletion that is also 

known as available-case analysis. Pairwise deletion is an alternative approach over the 

listwise deletion especially for linear models. According to Allison (2002), pairwise 

deletion is more efficient than listwise deletion because more data are considered in 
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producing the estimates. Similarly, Baraldi and Enders (2010) stated that this pairwise 

deletion is an improvement over listwise deletion whereby it minimizes the number of 

cases discarded during the analysis. Monte Carlo studies have shown that listwise 

deletion gives less accurate estimates of population parameters such as correlations. 

Pairwise deletion is consistently more accurate than listwise deletion though the 

differences can sometimes be small (Hippel, 2004; Acock, 2005; Tsikriktsis, 2005). 

Other conventional or traditional methods that were always applied by 

researchers are simple replacement procedure or also known as single imputation 

method. There are few types of single imputation method including mean imputation, 

regression imputation, hot deck imputation and many more. The method of imputation 

uses the idea of fills in the missing values with some possible value. The most common 

single imputation method is mean imputation. Usually, this type of imputation is simply 

can be applied while doing the analysis using most of the available statistical softwares 

such as SPSS, R and S-Plus.  

In mean imputation method (Winkler & McCarthy, 2005; Tsikriktsis, 2005; 

Saunders et al., 2006, Baraldi & Enders, 2010; Hassan et al., 2010b), all missing values 

will be replaced with the mean of all available observations. Norazian et al. (2008) 

applied two different types of mean imputation methods namely mean-before-after 

method and mean-before method. It was found that mean-before-after gives the best 

result for predicting missing values. The idea of using the mean substitution may be 

based on the fact that the mean is a reasonable guess of a value for a randomly selected 

observation from a normal distribution. However, with missing values that are not 

strictly random, the mean substitution may be a poor guess. According to Acock (2005), 

mean substitution is especially problematic when there are many missing values. For 

example, if 30% of the respondents do not answer the question, it means that there are 
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30% of missing values. If a mean sample is substituted for each of them, then 30% of 

the sample has zero variance on that data. In this method, any type of missingness 

(regardless of whether data are MCAR, MAR or MNAR) will lead to biasness of any 

parameter except the mean (Peugh & Enders, 2004). 

The second approach in replacement procedure is known as hot-deck imputation 

(Tsikriktsis, 2005; Saunders et al., 2005). By using this imputation method, we will 

replace a missing value with the actual score from a similar case in the data set. In this 

procedure, a correlation matrix is used to determine the most highly correlated 

variables. Hot deck imputation works very well in the large samples whereby a similar 

case is easily to identify. However, in order to apply this method, the programming 

must be written because it is not one of the built-in function in the most common 

statistical software.  

Another method of replacement procedure is regression imputation. Other 

studies discussed on regression imputation include Hippel (2004), Tsikriktsis (2005), 

Winkler and McCarthy (2005), Saunders et al. (2006) and Baraldi and Enders (2010). 

Regression imputation used the idea of substitutes missing values with predicted scores 

from a regression equation. In comparison to the previous techniques discussed, 

regression imputation uses the most sources of information to predict the missing values 

and provide better estimation for missing values. The steps in this approach involve 

estimating the relationship between the variables, and then uses the regression 

coefficients to estimate the missing value. The underlying assumption of regression 

imputation is the existence of a linear relationship between the predictors and the 

missing variable. Despite the strategy of using information from the complete variables 

is good. However, this imputation method also produced biased parameter estimates 

(Baraldi & Enders, 2010). Apart from that, as in Winkler and McCarthy (2005) and 
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Saunders et al. (2006), the problem might occur during the regression imputation. This 

is because of the difficulty to work out with the equation and also the correlation 

between the variables may be weak or different relationship may exist. However, this 

method is easy to apply to linear data since it is already defaults in certain statistical 

software packages. 

Both imputation techniques that are the mean imputation and regression 

imputation seems to be much better rather than the deletion process. However, they are 

still lead to biasness because they fail to account for the variability that is present in the 

hypothetical data values (Baraldi & Enders, 2010). Hence, the researcher makes an 

attempt to introduce the modern missing techniques in order to provide better estimates 

as well as reduced the biasness in estimating the parameter for missing value cases. In 

the next subsection, the modern missing values techniques will be reviewed. 

 

2.5.2 Modern Techniques in Handling the Missing Values Problem. 

 

Apart of traditional approaches, there are a few modern approaches, and some of 

them are integrated from the traditional approach. Multiple imputation and maximum 

likelihood can be considered as the modern techniques in handling the missing values 

problem. Baraldi and Enders (2010) gives a good introduction to modern approaches 

that can be used for missing data analysis.    

Multiple imputation is done by creating several copies of data set, and each of 

them consists of different imputed values. Many studies were applied the multiple 

imputation techniques in handling the missing data previously including Acock (2005), 
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Schafer and Schenker (2000), Kofman and Sharpe (2000), Barzi and Woodward (2003),  

Junninen et al. (2004), Sartori et al. (2004),  Enders (2006), Tsechansky and Provost 

(2007), Baraldi and Enders (2010), Johnson and Young (2011). Generally, the multiple 

imputation is done using three steps or phases as follows: 

i. Imputation phase  

In this stage, specified number of data sets are generated where each of 

them consists different estimate of the missing values. According to Graham 

et al. (2007), 20 data sets are a good rule of thumb to be followed. 

 

ii. Analysis phase 

In this phase, the complete data sets are obtained. Hence, statistical analysis 

will be carried out using the same techniques.  

 

iii. Pooling phase 

Pooling phase is where all parameter estimates yield from different data sets 

will be gathered. Pooled parameter estimates were calculated by taking the 

average over all estimates. Rubin (1987) has given the formula on pooling 

the parameter estimates and standard errors. 

 

 Baraldi and Enders (2010) illustrated the multiple imputation in their study and 

concluded that this modern technique show some improvement in comparison to 

traditional approaches. Further details on multiple imputation can be found in Rubin 

(1987), Schafer (1997), Sinharay et al. (2001), Allison (2002) and Little & Rubin 

(2002). 
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Expectation-Maximization (EM) is the algorithm that can be used in maximizing 

the likelihood of a variety of missing data models. EM algorithm was first introduced by 

Dempster et al. (1977). In simplest way, this algorithm can be defined as ‘fill in’ the 

missing data based on the initial estimate, re-estimate the parameter based on available 

data and then fill in again iteratively till the estimates converge. It can be done in single 

imputation or integrated to get the better estimate by performing the multiple 

imputation. EM using the maximum likelihood approach where a new data set was 

created in which all missing values are imputed with maximum likelihood values. There 

are two steps in EM algorithm: 

 

i. Expectation (E-step)  

The E-step of EM is replacing the missing values observations, misX  which 

require the estimation of 
)(t  to obtain complete data, when obsX  is given.  

ii. Maximization (M-step)  

In this step, 
( 1)t 

 is re-estimated by maximum likelihood based on obsX  and 

)(t  obtained in Step (1).  

Steps (i) – (ii) will be repeated iteratively until ( )t  and ( 1)t    satisfied the 

convergence criteria and converge to a local maximum of the likelihood 

function. 

 

By using EM single imputation, it tends to underestimate the standard error and 

thus lead to inaccurate estimation (Schafer, 1997). Otherwise, multiple estimation 
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allows pooling of the parameter estimates to obtain improved parameter estimates 

where it gives a different solution for each imputation. The steps in doing multiple 

imputation using EM algorithm can be found in Little and Rubin (2002), Sartori et al. 

(2004) and Acock (2005). 

According to Barzi and Woodward (2004), from different imputation they used 

in their study, Expectation Maximization (EM) method is the most appealing because it 

allows any type and number of variables as well as gives the most reliable variance of 

estimate. EM is known to yield estimates with theoretical properties that the other 

imputation methods do not provide when the missing at random assumption is satisfied. 

EM requires specifying a joint probability distribution for the variable to be imputed 

and the predictor variables, and it provides maximum likelihood estimates in the 

presence of missing data. However, as the percentage of missing values over than 60%, 

there is no imputation method can be used to get a better estimation. 

Junninen et al. (2004) compared of several techniques that can be used in 

handling missing values problems. Different methods were described in the study 

namely the regression based imputation, self-organizing map, multiple imputation and a 

hybrid model. The performance indicator was calculated to evaluate the accuracy of 

each method. Based on the results, he concluded that the method improved by a hybrid 

approach and multiple imputation method can be the chosen as the best methods. 

Another modern technique that can be considered is data augmentation (DA) 

algorithm. DA algorithm was first proposed by Taner and Wong (1987). There are two 

steps in this method namely I-step and P-step. Briefly, the steps are described below:  
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i. Imputation (I-step)  

Given a current guess of a parameter as  t , draw independent q values of misX  

 ( 1) ( 1) ( 1) ( 1)

1 2, , ,t t t t

mis mis mis misqX x x x     

generated from the conditional predictive distribution of misX  

 ( 1) ( )~ | ,t t

mis mis obsX P X X  . 

 

ii. Posterior (P-step):  

Draw new values of   

 )1()1(
2

)1(
1

)1(

0
,,,   t

n
ttt    

which is calculated from the conditional distribution of obsX  and 
( 1)t

misX 
  

( 1) ( 1)~ ( | , )t t

obs misP X X  
. 

Steps (i) – (ii) will be repeated from the initial value 
(0)  for a value of t  

  ( ) ( ), : 1,2,t t

misX t   

 

DA algorithm also can be applied in order to carry out the multiple imputation. 

I-step will be carried out in Imputation Phase to generate few different imputed values. 

Baraldi and Enders (2010) have carried out the multiple imputation using DA algorithm, 

and it showed that the estimates are better in comparison with the traditional method. As 
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for linear data analysis, statistical analysis can be done via selected software that offers 

this type of analysis such as S-Plus and R.  

In circular or directional statistic field, there is still limited software that 

available for analysing such data. Hence, the programming needs to be written in order 

to do the statistical analysis for missing values with this kind of data. In this study, our 

objective is to propose the methods that can be used in handling the missing values 

problems for circular data. Three different techniques which include the conventional, 

as well as the modern techniques, will be discussed, and the performance of each 

method will be evaluated. 

 

2.6 Methodology 

 

 This study can be divided into four parts. The first part begins with the 

development of a new estimation for the concentration parameters in the von Mises 

distribution. It is continued with proposals of a new approximation for confidence 

intervals (CI) for the concentration parameter. In the second part of the study, 

formulation of the four different proposed methods is given. Simulation studies are 

carried out to evaluate the performance of each proposed method and later on some 

illustrations of the proposed method is given by applying the method on real data sets. 

This is followed by the third part, in which a new measurement of circular distance is 

derived. This statistics is then used in the approximation for chi-squared distribution. 

Based on circular distance, a new CI is derived, and simulation study is performed to 

measure the performance of the three proposed methods. The final part of this study 

focuses on how to handle the missing values problem that occurs in univariate circular 
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data. Three imputation methods are considered in the study, and the performance are 

assessed via simulation study. 

 

2.6.1  Source of Data 

 

 As illustrations of the proposed methods, a real data set obtained from 

Meteorological Service Department is used. Also, secondary data found in the literature 

are also used. Following are the descriptions of the data used. A list of the data sets can 

be found in the Appendix A and B respectively. 

i. Kuala Terengganu (Wind direction data) 

 Daily wind direction data (in radian) recorded at maximum wind speed (in 

m/s) were considered. The data were collected at an altitude of 2.8 m to 40.1 

m in the year 2004. A total of 50 measurements were recorded for the annual 

northeast monsoon in Kuala Terengganu station. All measurements were 

obtained from the Malaysian Meteorology Service Department.  

ii. Humberside Coast (Wind and wave direction data) 

 In addition to the local data, the study utilises the data set collected along the 

Holderness Coastline, which is the Humberside coast of the North Sea, 

United Kingdom in October 1994. There were 85 measurements recorded 

over a period 22.7 days. For this purpose, four different data were recorded: 

a. wind and wave direction measured by HF radar.  

b. wind and wave direction measured by anchored wave buoy. 
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2.6.2 Software 

 

In this study, several mathematical and statistical softwares were used.  S-Plus is 

the main software used in this study. S-plus was first developed in the mid-1970s. Since 

then, it has undergone many changes. S-Plus language is designed to be flexible, and it 

is an interactive software for data analysis. In this study, programming are developed in 

S-Plus for analysis purposes and in carrying out the simulation studies were carried out 

to assess the accuracy of the proposed methods. 

Another software that is used in this study is ORIANA software, one of the 

softwares designed specifically for circular data. ORIANA was first introduced on 31st 

December 2003 and the latest version of ORIANA 4.0 is updated on 16th May 2012. It 

can perform the basic statistics such as circular mean, median, mean vector length, 

concentration parameter, circular variance, standard deviation and also the confidence 

intervals for the mean. In addition, ORIANA is able to display several types of 

graphical representations such as rose diagram, linear histogram, raw data plot and 

many more. Distribution plots for comparing the data to certain distribution, scatter plot 

for preliminary data analysis and Q-Q plot in order to compare the distributions of two 

samples are also available. In this study, ORIANA is used to plot the circular data 

graphically.  

The study also utilises Minitab to obtain a plot of linear graphical 

representations. Minitab is a statistical package developed by researchers in 1972 and 

widely use for statistical data analysis. In this study, Minitab version 16 is used. 
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2.6.3 Flow Chart of Research Design of the Study 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Flow chart of research design of the study 
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The study begins with the development of a new efficient approximation for the 

concentration parameter in von Mises distribution. New approximation methods based 

on modified Bessel function are proposed. The simulation studies are carried out to 

assess the performance of the proposed method with other methods. In the later part of 

the section, the new proposed method is then illustrated using real data set found in the 

literature. 

Confidence intervals (CI) for concentration parameter in von Mises distribution 

are considered in the following section. Four different methods in approximating CI are 

proposed. To assess the accuracy of the proposed methods, a simulation study using S-

Plus is carried out. Expected length and coverage probability are used to assess the 

performance of each method. Again, a simulation study is carried out in order to check 

on the performance and stability of each method. As for graphical presentation, two 

different softwares namely ORIANA and Minitab are used. ORIANA is used in plotting 

any graphical representation related to circular data while Minitab is used in plotting 

linear graphical representations. 

In the next section, an approximation for circular distance is proposed. Based on 

the circular distance itself, a new CI is derived. Simulation study is carried out to 

identify the best percentile to get the most efficient CI for concentration parameter. 

 The last part of this study focuses on the analysis of missing values for circular 

data. This type of analysis has been well developed for the linear data, but there is 

somewhat limited study of circular data due to the complexity of the circular data itself. 

The analysis can be complicated by the fact of the characteristic of circular data itself. 

Thus, specific tools must be used to handle the analysis of the data. The analysis focuses 

on the appropriate procedure to deal with missing values. In this study, a few imputation 

methods for circular data are considered. The first method is known as the circular 

Expectation-Maximization (EM) algorithm and the second method is data augmentation 
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(DA) algorithm. Both methods are compared with the current method that is the circular 

mean. Simulation studies will be carried out to assess the performance of each method 

and the findings from each study are discussed. Finally, all proposed methods are 

illustrated using the wind and wave direction data.  
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CHAPTER 3  

IMPROVED EFFICIENT APPROXIMATION OF 

CONCENTRATION PARAMETER FOR VON MISES 

DISTRIBUTION 

 

3.1 Introduction 

 

This chapter discusses a few improved approximation methods of the 

concentration parameter for von Mises distribution. In Section 3.2, a brief introduction 

of the parameter estimation for von Mises distribution is given. Details of the proposed 

approximation methods are given in Section 3.3. To assess the accuracy of the proposed 

approximation methods, simulation studies are carried out in Section 3.4. In Section 3.5, 

the proposed method is illustrated using the wind direction data. Finally, discussion and 

conclusion of the whole chapter are given in Section 3.6.    

 

3.2 Background 

 

 For directional data, the distribution that is often used to describe its physical 

properties is the von Mises distribution and is named after the Austrian mathematician 

Richard Edler von Mises (1883-1953). As a continuous probability distribution, the von 

Mises is analogous to the normal distribution for linear data and has some similar 

characteristics with the normal distribution. Thus, the von Mises is also known as the 
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circular normal distribution. The von Mises distribution has two parameters namely the 

concentration parameter and the circular mean. In estimating the parameter, maximum 

likelihood estimation (MLE) is often used. For the concentration parameter, the solution 

of the MLE, however, is analytically intractable because of the presence of modified 

Bessel functions  0I  ,  1I  , ...  (Mardia, 1972; Batschelet, 1981 and Fisher, 1993). 

Thus, some approximations are applied instead.  

A circular random variable θ follows the von Mises distribution, denoted by 

 0 ,VM   , with probability density function given by  

      
1

0 0 0; , 2 ( ) exp cos(g I       


  , (3.1) 

where 0   00 2    is the mean direction and   is known as the concentration 

parameter. Also,  0I    denotes the modified Bessel function of the first kind and order 

zero of  . The Bessel functions are solutions of a second-order differential equation 

known as the Bessel’s differential equation and the probability density can also be 

expressed as a series of Bessel functions (Abramowitz & Stegun, 1974).  

Some of the recent works on the von Mises distribution include a  restricted 

maximum likelihood estimators (MLE) based on the assumption of large concentration 

parameters and when it is known apriori that the concentration parameters are subjected 

to a simple order restriction (Dobson, 1978). Best and Fisher (1981) provided an 

iterative algorithm using fixed points to obtain the MLE for   in the von Mises-Fisher 

distribution and recently, Gatto (2008) extended the generalised von Mises in which 

Matlab was used to handle the computational aspects of the parameter estimation using 

MLE and trigonometric method of moments.   
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In this chapter, an improved efficient approximation of   obtained from the 

MLE is proposed. Unlike other estimations that have been shown to be only applicable 

to either large or small  , the proposed approximation is found to be suitable for all 

values of  . The improved approximation is obtained by solving the piecewise 

polynomial functions involving the ratio of modified Bessel functions.  

 

3.2.1  Parameter Estimation of the Von Mises Distribution 

 

As mentioned earlier, this distribution has two parameters namely the circular 

mean and concentration parameter. Suppose 1, , n    is a random sample from 

 0 ,VM   ,  the MLE of the mean direction,   is given by  

 

 
 
 

1

1

1

tan / , 0, 0

tan / , 0

tan / 2 , 0, 0

S C S C

S C C
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 









  


  
   

, (3.2) 

where cos iC    and sin iS  . 

The MLE for  , denoted by ̂  is given by the solution of   

    
1

2 2 2ˆA R C S    , (3.3) 
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where R  is the mean resultant length and   1

0

( )

( )

I
A

I





 , where 0I  and 1I  are the 

modified Bessel function of the first kind of order zero and one respectively. Further, 

the variance of ̂  is given by 

  
 

 

1

2
ˆ

ˆ ˆvar 1
ˆ

A
n A


 





    
      

     

. (3.4) 

The parameter estimate  1ˆ A R  , however, cannot be simply evaluated. This 

is due to the presence of the modified Bessel functions in the formulation. Instead, an 

approximation of 1A  is used. The approximation can be obtained using iterative 

procedures in which the early version includes a tabulation of certain values of 1A  as 

described in Amos (1974). 

From there on, several approximation of 
1A   have been proposed in the 

literature. Among the approximation methods are Amos (1974), Mardia and Zemroch 

(1974), Dobson (1978), Best and Fisher (1981) and Hussin and Mohamed (2008). Some 

can be quite complicated in its derivation using sophisticated computer programme and 

algorithms, while some are simple and easy to derive. In this study, our objective is to 

propose an improve approximation for concentration parameter as we consider both 

small and large values of  . In the next section, discussion will be on the current 

method that will be used in the comparison study. 
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3.2.2  Approximation for the Von Mises Concentration Parameter 

As mentioned in the previous section, several approximations for  1A x
 for all 

x in  0,1  can be found in the literature. In an early study, Amos (1974) proved  
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and hence 
1( )A x

 is approximately given by  
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Later on, Mardia  and  Zemroch (1975) provided a computer algorithm for 

calculating  1A x
 together with the tables which was obtained iteratively. Meanwhile, 

by using the power series for the Bessel function  0I x  and  1I x , Dobson (1974)  gave 

the approximation of  1A x
 as follows 

 )(xf
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, (3.7) 

and has shown that the approximation gives less maximum relative error compared to 

Amos’s approximation.  Further, an improved approximation for  1A x
 was given by 

Best and Fisher (1981) which is   
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in which tabulated values are given in Fisher (1993).    

In the following section, an improvement of the approximation by identifying a 

threshold for value of  A  will be described in which the formulation as given by 

Fisher (1993) can be applied. 

 

3.3 Proposed Method for Concentration Parameter 

 

In this section, a new method of approximating the concentration parameter is 

proposed. This new method is developed based on modified Bessel Functions. Later, 

this new method will be validated via simulation studies with tabulated values of the 

concentration parameter and sample sizes. 

By definition,  
 

 
1

0

I
A t

I





    and from the power series for the Bessel function 

 0I   and  1I  , it is found that for small   (Jammalamadaka & SenGupta, 2001),  

 
2 41 1
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 

    
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, (3.9) 
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while for large  , 

 
2 3

1 1 1
( ) 1 ...

2 8 8
lA 

  
     . (3.10) 

In order to find   such that  sA   and  lA   are close to each other, it is 

necessary that 
 
 

1




l

s

A

A
. In our case, we will consider the first term of  sA 

 
and the 

first two terms of  lA   only for the purpose of simplicity of the calculation. 

Thus, 

 
 

 
2 1

1
1

2

s

l

A

A

k





 



 or 
2 2 1 0    . (3.11) 

Hence, 2 2 0      or 1 1     for small value of   where  0,1    

The above results indicate that the threshold value is in the interval [0, 2]. In 

order to find the threshold value, a simulation study is performed for various κ values 

that lies within the interval [0, 2]. The values of ts and tl where  s sA t   and 

 l lA t    are obtained where the difference between   sA 
 
and  lA 

 
is the 

smallest. 

From Table 3.1, it can be seen that 0 1.55  , where  0 0.5918l lA t     and 

 0 0.6355s sA t  
 
give the smallest value of absolute difference of the computed 

values of 
lt  

and 
st . By taking the average of lt  

and st , we obtain a threshold value of 

approximately 0.6137.  
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Table 3.1: Numerical approximation of  A  .  

   l lA t    s sA t      l sA A   

1.40 
0.5335 0.5845 0.0510 

1.45 0.5547 0.6012 0.0465 

1.50 0.5741 0.6182 0.0441 

1.55 0.5918 0.6355 0.0436 

1.60 0.6082 0.6532 0.0451 

1.65 0.6232 0.6716 0.0484 

1.70 0.6372 0.6908 0.0537 

Hence, we propose, 
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where, 
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and 

   2 3

1 1 1
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2 8 8
lA 

  
     . (3.10) 

For 0.6137t  , 

 
2 41 1
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 
 or 5 36 48 96 0t      . (3.13) 
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The solutions of the polynomial in (3.13) comprise of a real root and four 

complex roots. It can be obtained numerically from several mathematical packages. As 

an example, by using S-Plus, the polyroot function using the command line  

polyroot(c(-96*t,48,0,-6,0,1)) 

would give the desired solution. This command line will give five roots that consist of 

four complex roots and one real root in which the real root is the estimated value of the 

concentration parameter.  

For 0.6137t  , we obtain 

 
2 3

1 1 1
1

2 8 8
t

  
     or   3 28 8 4 1 0t         (3.14) 

Similarly, the solution to the cubic polynomial in (3.14) can be obtained using SPlus 

with the command line  

polyroot(c(1,1,4,(8*t–8)). 

This command line will result in giving two complex roots and one real root which 

corresponds to the value of the concentration parameter. 

 

3.4  Simulation Study 

 

Computer programs were written using S-Plus to carry out the simulation study 

to assess the efficiency of the four different methods of approximating the concentration 

parameter as in (3.6 – 3.8) and the new proposed method as in (3.12). Circular samples 
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of length n = 30, 50 and 100 were generated from the von Mises distribution with mean 

0 and   = 0.5, 1.0, 1.5, 2.0, 4.0, 6.0, 8.0 and 10.0 respectively. Let s be the number of 

simulations and the following computations were obtained from the simulation study. 

Performance measures used in the study are given as follows. 

i. Mean,  j
s

 ˆ
1

ˆ , 

ii.  Absolute Relative Estimated Bias (AREB) = %100
ˆ














 




, 

iii.  Estimated Standard Errors (SE) =   


2
ˆˆ

1

1
 j

s
, 

iv. Estimated Root Mean Square Errors (RMSE) =   
2

ˆ
1

 j
s

.  

The simulation results with s = 5000 for various true values of concentration 

parameter and n = 30, 50 and 100 are shown in Tables 3.2, 3.3 and 3.4 respectively.  

The values of mean, absolute relative estimated bias (AREB), estimated standard error 

(SE) and estimated root mean square error (RMSE) were computed for all the Amos’s 

(3.6), Dobson's (3.7), Best and Fisher's (3.8) and the new proposed method. When 

considering mean alone, Tables 3.2 to 3.4 show that the estimated mean obtained using 

the proposed method is close to the true mean for most of the given   values as 

compared the other three methods.  
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Table 3.2: Simulation results for various value of parameter concentration,   and 

30n    

Performance Indicator 
Concentration 

parameter,   
New̂  Amos̂  Best and Fisher̂  Dobson̂  

Mean 

 

0.5 0.5950 0.5525 0.5956 0.5954 

1.0 1.0568 1.0357 1.0776 1.0736 

1.5 1.4620 1.6048 1.6036 1.5982 

2.0 2.1175 2.2066 2.1300 2.1261 

4.0 4.3814 4.8218 4.4030 4.3922 

6.0 6.5931 7.1735 6.6005 6.5977 

8.0 8.8172 9.4770 8.8211 8.8197 

10.0 11.0779 11.7895 11.0804 11.0795 

Absolute Relative 

Estimate Bias  

(AREB) 

 

0.5 0.1899 0.1051 0.1913 0.1908 

1.0 0.0568 0.0357 0.0776 0.0736 

1.5 0.0254 0.0698 0.0690 0.0655 

2.0 0.0587 0.1033 0.0650 0.0630 

4.0 0.0954 0.2055 0.1007 0.0981 

6.0 0.0988 0.1956 0.1001 0.0996 

8.0 0.1021 0.1846 0.1026 0.1025 

10.0 0.1078 0.1790 0.1080 0.1080 

Estimate Standard Error 

(SE) 

 

0.5 0.2568 0.2519 0.2589 0.2582 

1.0 0.2868 0.3429 0.3258 0.3219 

1.5 0.2740 0.4604 0.4099 0.4143 

2.0 0.4825 0.6081 0.5190 0.5110 

4.0 1.1833 1.3090 1.1692 1.1776 

6.0 1.7931 1.9080 1.7889 1.7906 

8.0 2.3841 2.4865 2.3820 2.3827 

10.0 3.0345 3.1253 3.0332 3.0337 

Estimate Root Mean 

Square Error 

(ERMSE) 

0.5 0.2728 0.2545 0.2750 0.2742 

1.0 0.2919 0.3434 0.3340 0.3294 

1.5 0.2500 0.4685 0.4186 0.4219 

2.0 0.4941 0.6379 0.5333 0.5244 

4.0 1.2239 1.5005 1.2191 1.2228 

6.0 1.8679 2.1852 1.8669 1.8674 

8.0 2.4948 2.8321 2.4944 2.4946 

10.0 3.1993 3.5474 3.1991 3.1992 



54 

 

To compare the performance of each method in the simulation studies, the value 

of the performance measure of AREB is used. From the simulation results in Tables 3.2, 

3.3 and 3.4, generally it is observed that the measures of AREB for the proposed 

method are closer to zero for most of the values of   as compared to the other 

estimates. However, it can be seen that for n = 30 and 50, and for very small values of 

 , that is, for 1.0  , the approximations by Amos seem to show the smallest AREB 

value among the four approximation methods. Nevertheless, as size increases, 

specifically when n = 100 (see Table 3.4), the Amos method is only good for   = 0.5. It 

can be inferred that for large values of  , which is for   > 1.0, the proposed method is 

consistently better than the other estimates with the smallest AREB when the sample 

size is n ≤ 50.  

 As the sample size increases to 100, the proposed method seems to give the best 

estimate with the inclusive value of   = 1. Thus, it can be deduced that for sample size 

is n ≤ 50 and   > 1.0, the proposed method is the best and as the sample size increase 

to 100 the proposed method is even better with a bigger range of values of  , that is,  

  ≥ 1.0. 

 

 

 

 

 

 



55 

 

Table 3.3: Simulation results for various value of parameter concentration,   and 

50n  . 

Performance Indicator 

Concentration 

parameter,   
New̂  Amos̂  Best and Fisher̂  Dobson̂  

Mean 

 

0.5 0.5525 0.5096 0.5526 0.5526 

1.0 1.0409 1.0050 1.0513 1.0478 

1.5 1.4520 1.5496 1.5577 1.5506 

2.0 2.0594 2.1413 2.0763 2.0773 

4.0 4.1747 4.6051 4.1959 4.1856 

6.0 6.3509 6.9265 6.3582 6.3555 

8.0 8.4384 9.0931 8.4424 8.4410 

10.0 10.5931 11.3004 10.5956 10.5947 

Absolute Relative 

Estimate Bias 

 

0.5 0.1050 0.0191 0.1051 0.1051 

1.0 0.0409 0.0050 0.0513 0.0478 

1.5 0.0320 0.0331 0.0385 0.0337 

2.0 0.0297 0.0707 0.0382 0.0387 

4.0 0.0437 0.1513 0.0490 0.0464 

6.0 0.0585 0.1544 0.0597 0.0593 

8.0 0.0548 0.1366 0.0553 0.0551 

10.0 0.0593 0.1300 0.0596 0.0595 

Estimate Standard Error 

 

0.5 0.2031 0.1960 0.2033 0.2032 

1.0 0.2282 0.2572 0.2459 0.2404 

1.5 0.2144 0.3356 0.3021 0.3114 

2.0 0.3493 0.4483 0.3817 0.3730 

4.0 0.8341 0.9501 0.8208 0.8288 

6.0 1.3271 1.4410 1.3235 1.3249 

8.0 1.7397 1.8442 1.7379 1.7386 

10.0 2.1748 2.2700 2.1737 2.1741 

Estimate Root Mean 

Square Error 

0.5 0.2089 0.1929 0.2091 0.2090 

1.0 0.2308 0.2544 0.2497 0.2439 

1.5 0.2030 0.3370 0.3042 0.3128 

2.0 0.3523 0.4666 0.3883 0.3801 

4.0 0.8227 1.0647 0.8170 0.8213 

6.0 1.3408 1.6389 1.3400 1.3404 

8.0 1.7614 2.0657 1.7610 1.7612 

10.0 2.2286 2.5457 2.2284 2.2285 
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Table 3.4: Simulation results for various value of parameter concentration,    and 

100n   

Performance Indicator 
Concentration 

parameter,   
New̂  Amos̂  Best and Fisher̂  Dobson̂  

Mean 

 

0.5 0.5279 0.4848 0.5279 0.5279 

1.0 1.0146 0.9684 1.0183 1.0171 

1.5 1.5055 1.5063 1.5216 1.5072 

2.0 2.0139 2.0893 2.0337 2.0443 

4.0 4.0653 4.4907 4.0855 4.0763 

6.0 6.1628 6.7345 6.1701 6.1674 

8.0 8.2637 8.9170 8.2677 8.2663 

10.0 10.3072 11.0122 10.3097 10.3089 

Absolute Relative 

Estimate Bias 

 

0.5 0.0559 0.0304 0.0558 0.0558 

1.0 0.0146 0.0316 0.0183 0.0171 

1.5 0.0036 0.0042 0.0144 0.0048 

2.0 0.0070 0.0446 0.0168 0.0221 

4.0 0.0163 0.1227 0.0214 0.0191 

6.0 0.0271 0.1224 0.0284 0.0279 

8.0 0.0330 0.1146 0.0335 0.0333 

10.0 0.0307 0.1012 0.0310 0.0309 

Estimate Standard Error 

 

0.5 0.1472 0.1423 0.1472 0.1472 

1.0 0.1639 0.1788 0.1698 0.1671 

1.5 0.2177 0.2263 0.2045 0.2140 

2.0 0.2343 0.3040 0.2590 0.2493 

4.0 0.5945 0.7062 0.5831 0.5898 

6.0 0.8990 1.0198 0.8960 0.8971 

8.0 1.2223 1.3372 1.2207 1.2212 

10.0 1.5120 1.6191 1.5111 1.5114 

Estimate Root Mean 

Square Error 

0.5 0.1482 0.1380 0.1482 0.1482 

1.0 0.1628 0.1766 0.1688 0.1661 

1.5 0.2176 0.2263 0.2052 0.2140 

2.0 0.2301 0.3118 0.2586 0.2509 

4.0 0.5584 0.7808 0.5529 0.5569 

6.0 0.8674 1.1563 0.8668 0.8670 

8.0 1.2040 1.5178 1.2038 1.2039 

10.0 1.5008 1.8085 1.5007 1.5007 
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Another measure of the performance, namely the measures of SE and RMSE are 

used. From Tables 3.2 to 3.4, we can see that the values of SE and RMSE for new 

proposed method are generally consistent for most of the tabulated   values. Amos 

estimates give the smallest SE and RMSE for small value of  , which   is for   ≤ 

1.0, but become large as compared to other methods for   > 1.0. Consistent with the 

earlier measure of AREB, it can be deduced that Amos estimate gives the best estimate 

for small   (i.e. for   ≤ 1.0) but perform poorly for   > 1.0. This suggests the 

superiority of the new proposed method as compared to the other two methods.  

Using the measures of SE and RMSE, we note that the new proposed method gives 

almost similar value as compared to Best and Fisher’s as well as Dobson’s method. 

However, those measures did not elicit the superiority of the new proposed over the 

other two methods.   

 

3.5  Illustrative Examples 

 

As an illustration of the applicability of the proposed method, a bivariate data set 

was considered. The data was collected from along the Holderness Coastline, which is 

the Humberside Coast of the North Sea, United Kingdom in October 1994. A total of 85 

measurements of wind direction using HF radar (x) and anchored buoy (y) were 

recorded over a period of 22.7 days. The data was fitted using the simple linear 

regression model proposed by Downs and Mardia (2002), and the model is given as 

below: 

 
1

ˆ 1.253 2arctan 0.906 tan 1.141
2

i iy x
 

   
 

. 
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Our particular interest is on the estimation of the concentration parameter for the 

circular residuals, ˆ
i i iy y    based on the fitted model.  

 

Table 3.5: Estimation of   using the new proposed method 

Data New̂  Amos̂  Best and Fisher̂  Dobson̂  

Concentration 

parameter 
7.442 8.073 7.447 7.445 

 

 From Table 3.5, the estimated value of the concentration parameter for the 

residuals is high, and it can be proved using the circular plot as shown in Figure 3.1. 

Higher concentration parameter implies that the circular residuals are highly 

concentrated among each other as can be seen from Figure 3.1 where majority of the 

data are scattered around (-45o, 45o) with only a few observations fall outside the range. 

The results give almost the similar pattern as obtained in the simulation studies in 

Section 3.4. 

+ 0

90

180

270

 

Figure 3.1: Circular plot for residuals 
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3.6 Discussion 

 

This study is to propose an improved estimate of the concentration parameter,   

for the von Mises distribution that is applicable for both small and large values of  . 

Based on the MLE, the estimate of   is a piecewise function that involves a solution to 

a polynomial function that can be easily solved using S-Plus. To evaluate the 

performance of the proposed estimate, simulation studies were carried out to compare 

the three different approximation methods of concentration parameter  , namely, the 

Dobson's method, Best & Fisher's method and Amos’s method. Generally, it appears 

that, for both small and large values of  , the proposed method shows a better 

performance than the Amos’s, Dobson's and Best & Fisher's methods except for when 

1  .  The proposed method of approximation exhibits the least absolute relative bias 

for most of the   values. The superiority of the proposed method is also observed with 

general consistent values of estimated SE and RMSE in comparison to the other 

methods considered. Unlike the Amos’s method which is restrictive to small values of 

  ( 1   for n ≤ 50), the proposed method seems to be applicable to both small and 

large values of   ( 1   for large sample size n = 100).   
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CHAPTER 4  

CONFIDENCE INTERVALS FOR LARGE CONCENTRATION 

PARAMETER IN VON MISES DISTRIBUTION 

 

4.1 Introduction 

 

This chapter discusses on the approximation for confidence intervals (CI) of the 

concentration parameter for von Mises distribution. Section 4.2 commences with a brief 

introduction about the CI for parameter in circular distribution, in particular, the von 

Mises distribution. Details on the proposed approximation methods are given in Section 

4.3. Four proposed method, as well as the current method by Fisher, are described. To 

assess the performance of the methods considered, simulation studies are carried out in 

Section 4.4. In Section 4.5, the proposed method is illustrated using the wind direction 

data. Finally, discussion and conclusion of the whole chapter are given in Section 4.6.    

 

4.2 Background 

 

This section is an extension of the previous study discussed in Chapter 3 where 

the new approximation for the concentration parameter was proposed. In this chapter, 

our particular interest is to find efficient confidence intervals (CI) for large 

concentration parameter,   i.e 2   (Mardia & Jupp, 2000) where the distribution 

becomes very concentrated around the angle   with   being the measure of the 
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concentration. As   increases, the distribution of θ approaches a normal distribution 

with mean   and variance 
1


. As    approaches 0, the distribution tends to converge 

to a uniform distribution (Fisher, 1993; Mardia & Jupp, 2000). 

  Confidence intervals can be defined as an interval estimate of the point estimator 

or the parameter itself. As in Efron and Tibshirani (1993), knowing the interval estimate 

with its point estimate we can obtain the ‘best guess’ of the parameter and how far in 

error that guess might be. In the perspective of linear statistics, this area has gained 

great attention from many researchers. Many new and integrated approaches were 

developed to obtain an efficient approximation for CI based on different methods such 

as CI based on hypothesis testing and bootstrap, which include percentile bootstrap, 

bootstrap-t and iterated bootstrap. Few studies related to this topic can be found in Hall 

(1986, 1988), Porter et al. (1997), Polansky (2000), Sun and Wong (2007) and 

Asgharzadeh and Abdi (2011).  

 In circular statistics, some works were done in finding the CI for parameters in 

the unimodal distribution. Initially, Ducharme (1985) proposed the confidence cones for 

the mean directional vector by the bootstrap method for F-distribution on a p-

dimensional sphere. Later on, Fisher and Hall (1989) came out with an alternative 

bootstrap algorithm to improve the method proposed by Ducharme (1985). In this work, 

they introduced a new approach that is based on pivotal statistics, and it is said to have a 

smaller coverage error as compared to non-pivotal statistics. For von Mises distribution, 

the CI for the mean direction based on the bootstrap method is discussed in Fisher 

(1993). Jammalamadaka and SenGupta (2001) discussed on the construction of CI for 

the mean direction based on circular ‘standard error’ of the MLE for the mean direction. 
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Details on confidence intervals for parameter in von Mises distribution were given in 

Section 2.4.2. 

 As for the concentration parameter in von Mises distribution, to our knowledge, 

works on the efficient CI are relatively few. An early study was carried out by Stephen 

(1969), where several approximations of CI for small concentration parameter are 

proposed. Steps for CI based on percentile bootstrap method can be found in Fisher 

(1993). Later on, Khanabsakdi (1995) proposed a new CI for the concentration 

parameter based on the Chi-square approximation and comparison with the previous 

method by Stephens showed that the new method is better than the previous one. Details 

on the four new proposed methods of approximating CI for the concentration parameter 

will be discussed in the next section. Also, the current method using the percentile 

bootstrap by Fisher (1993) is described. 

 

4.3   Methods in Approximating Confidence Intervals (CI) 

 

 In this study, we have proposed four new methods of obtaining CI for the 

concentration parameter where 2   due to its wide application in the real problem. 

The four methods considered are listed as below: 

 

i. CI based on circular variance population which will be referred to as 

Method 1 
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ii. CI based on the asymptotic distribution of  ̂   which will be referred to as 

Method 2 

iii. CI based on the distribution of the mean direction,   and mean resultant 

length, R  which will be referred to as Method 3 

iv. CI based on bootstrap-t method which will be referred to as Method 4 

 In addition to the four methods, a current method based on percentile bootstrap 

(Fisher, 1993) will also be considered and used in the study. The performance of all the 

methods considered will be measured using the measurements of expected length and 

coverage probability.  

 

4.3.1 Percentile bootstrap 

 Bootstrap method is one of the resampling techniques which has gained much 

attention in the past few years. Several bootstrap methods can be found in the literature; 

some of the widely used methods are percentile bootstrap, bootstrap-t, bias-corrected 

and accelerated bootstrap (BCA) and also calibration bootstrap. Efron and Tibshirani 

(1993) and Chernick (1999) gave a comprehensive review on constructing the CI based 

on several bootstrap methods including the percentile method. Other studies that 

discussed on the bootstrap method and CI can be found in Hall (1986), Porter et al. 

(1997) and Polansky (2000).  

 Percentile bootstrap is the simplest bootstrap method in approximating the 

confidence intervals. In circular statistics, Fisher (1993) described the percentile 

bootstrap method to approximate the CI for the concentration parameter. The following 

steps are carried out for simulation purpose: 
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Step 1: Resampling 

Simulate n values 
* *

1 , , n    from  ˆˆ ,VM   , where 
*, 1,2, ,i i n   

 
and 

0 2    .  

 

Step 2: Bootstrap parameter estimate 

The bootstrap parameter estimates for the bootstrap samples from Step 1 are 

obtained and labelled as 
*

1̂ . 

 

Step 3: Repetition 

Steps 1 and 2 are repeated to obtain B bootstrap estimates 
* *

1̂
ˆ, , B   of the 

concentration parameter. 

 

Step 4: Confidence intervals 

i. To get a CI for  , arrange the bootstrap estimates, 
* *

1̂
ˆ, , B   in 

increasing order: 

   
**

1
ˆˆ

B  . 

ii. CI for   is given as: 

     **

1
ˆ,ˆ

ml   , (4.1) 
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    where l = integer part of 
1 1

2 2
B

 
 

 
  and m = B – 1. 

 

4.3.2 New Proposed Methods for Confidence Intervals for Concentration 

Parameter 

In this section, four different methods in approximating the confidence interval 

(CI) for large concentration parameter are constructed.   

 

(i)  Method 1: CI Based on Circular Variance Population 

The CI of concentration parameter κ may be obtained by considering the 

wrapping of the normal distribution  2,N    around the circle which gives the 

wrapped normal distribution given by   ,WN A  , where  
2

exp
2

A



 

  
 

 or 

  2 2ln A    and the sample circular standard deviation, v  is given by 

  
1

22ln 1v V    (Fisher, 1993). However, 1V R  , hence the sample circular 

standard deviation can be written as   

 

   
1

22ln 1 1v R     

  
1

22ln R  .

 

(4.2) 

By using the standard result, the  100 1 %  CI for the variance, 2  is given by 
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   2 2

2

2 2

1, 1,1
2 2

1 1

n n

n v n v

 


 

  

 
  . 

(4.3) 

Rewriting (4.2) and using   2 2ln A   , equation (4.3) can be written as  

 

 
  

 2 2

2 2

1, 1,1
2 2

1 1
2ln

n n

n v n v
A

 


 

  

 
   . 

(4.4) 

Alternatively, we may write 

 
 

 
 2 2

2 2

1,1 1,
2 2

1 1
exp exp

2 2
n n

n v n v
A

 


 

  

   
    

      
   
   

. (4.5) 

    1 1A Y A Z   . (4.6) 

Thus, we may obtain the lower value, L
 
as well as the upper value, U  such 

that  Pr 1L U      
 
where  1

L A Y    and  1

U A Z   respectively. The 

values of  1A Y

 
and  1A Z

 
in (4.6) may be estimated using the polyroot function in S-

Plus as described in Hassan et.al (2012).  

 

(ii) Method 2: CI based on the asymptotic distribution of  ̂   

Another procedure for finding the CI for   is based on the normal distribution 

for the distribution of ̂  which is normally distributed with mean and variance given as 

below (Jamalamadaka & SenGupta, 2001), 
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2

1
ˆ ~ ,

1
ˆ

N
R

n R

 



 
 
 
  

   
  

. (4.7) 

Hence, the 95% CI can be obtained by, 

 ˆ ˆB B       ,  (4.8) 

where 
1

2
2

1.96

1
ˆ

B

R
n R





  
   

  

. 

 

(iii) Method 3: CI Based on Distribution of Mean Direction,   and Mean 

Resultant Length, R  

We also propose CI of large   based on the distribution of the mean direction, 

  and mean resultant length, R . Let   be a circular random variable from  0,VM  , 

then for large   and following Hendricks et al. (1996), 

    2

12 1 cos ~n A     as n  . (4.9) 

Alternatively, if we substitute with cos
C

R
  , then we have  

 
 

  2

12 ~
A

n R C
R

 
  as n  . (4.10) 

We note that, 
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 

 
 

 
 

 2 1 2 1 2
A A A

n C n R n R C
R R R

     
     . (4.11) 

Following the Cochran’s theorem (see Stuart & Ord, 1991), we have 

 
  2

12 1 ~ n

A
n R

R

 
   and random variables 

 
 2 1

A
n R

R

 
  and 

 
 2

A
n R C

R

 
  are approximately independent for large  . Further, from the 

decomposition in (4.11) we have, 

 
 

  22 1 ~ n

A
n C

R

 
 . (4.12) 

In practice, the asymptotic result (4.12) is not adequate for moderately large values of 

  (Mardia & Jupp, 2000). One way of improving the approximate (4.12) is to multiply 

 
 2 1

A
n C

R

 


 
by a suitable constant so that its mean is approximately exactly the 

limiting value n. Following the idea of Stephens (1969) and Mardia and Jupp (2000), 

where   is the average of 1  and 2  such that, 

 
 12 1n C

E n
R

 
  
  

, (4.13) 

and 

 

            

2

2

2

2 1








. (4.14) 

Hence, by solving for   and averaging (4.13) and (4.14), we have, 
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 

   

22

3 2

2

16 8 8 21 4
2

2 2 1 8 2

32 4 8 4 6

16 12 2

n n n

n n

n n n n

n n n

 


 

  

 

    
  

   

    


 

. (4.15) 

 

Thus, the decomposition (4.11) can be improved to, 

      
2 2 2

1 1
n n n

C R R C
R R R

  
     , (4.16) 

which gives, 

   2

1

2
1 ~ n

n
R

R


  . (4.17) 

From (4.16) we have  1 1Pr 2 1A B      ,  

Thus,  

 
   3 2

2

32 4 8 4 61 1

16 12 2

n n n n

A n n n B

  

 

    
 

 
. (4.18) 

Case 1  

The lower limit for new confidence intervals is given as below 

 
   3 2

2

32 4 8 4 61

16 12 2

n n n n

A n n n

  

 

    


  , 
(4.19) 

      3 232 4 8 16 4 6 12 2 0nA nA A n A nA n nA n          
. 

(4.20) 
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Case 2  

The upper limit for new confidence intervals is given as below 

 
   3 2

2

32 4 8 4 6 1

16 12 2

n n n n

n n n B

  

 

    


  , 
(4.21) 

      3 232 4 8 16 4 6 12 2 0nB nB B n B nB n nB n          
, (4.22) 

where 
 

 

2

1 ,1
2

1

n

n R
A

R 
 


  and 

 

 

2

1 ,
2

1

n

n R
B

R 



 . 

The lower in (4.20) and upper limit in (4.22) can be obtained using the ‘polyroot 

function’ in S-Plus in order to estimate  100 1 %  of confidence interval for  . 

 

(iv)  Method 4: CI Based on Bootstrap-t Method 

From the literature, for large sample size, it has been shown that bootstrap-t 

gives a narrower expected length with smaller coverage error over bootstrap percentile 

and BCA method (Hall, 1988 and Porter et al. 1997). In this study, a new bootstrap-t 

method for constructing the confidence intervals for the concentration parameter is 

proposed. The simulation studies will be done using the steps described as follows: 

 

Step 1: Resampling 

Simulate n values 
* *

1 , , n    from  ˆˆ ,VM   . 
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Step 2: Bootstrap parameter estimate 

i. The bootstrap estimate for the bootstrap sample from Step 1 is obtained and 

labelled as 
*

1̂ . 

ii. Calculate the standard error (SE) for the estimated bootstrap parameter and 

label as 
*

1Ŝ  where  
2

1
ˆvar

1
ˆ

R
n R






 
  

 

. 

iii. Calculate the t-value given by 

*

1

*

1*

1 ˆ

ˆˆ

S
t

 
  where 

*

1Ŝ  is the estimate of the SE of *̂ based on the data in the 

first bootstrap sample. 

 

Step 3: Repetition 

Steps 1 and 2 are repeated to obtain B bootstrap t-values 
**

1 ,, Btt   of the 

concentration parameter. 

 

Step 4: Confidence intervals 

i. For i = 1, …, B,  
1

* 2 2 2
i i iR C S  , 

*ˆ
i , 

*ˆ
iS  and  

*

it  are calculated. 

ii. To get a CI for  , arrange the t-values, 
**

1 ,, Btt   in increasing order: 

   
**

1 Btt  .  

iii. The  100 1 %  CI for   will be given as, 



72 

 

  StSt *

)(

*

)1(
ˆ,ˆ

    . (4.23) 

where 
*

)1( t  is 1  percentile of 
*

bt  values, 
*

)(t  is   percentile of 
*

bt  

values and S is estimated standard error for ̂ . 

 

4.4 Simulation Study 

 

Simulation studies were carried out for three different sample sizes, n = 30, 50 

and 100 respectively with various values of concentration parameter, namely   = 2, 4, 

6 and 8 for the confidence level, α = 0.05. Without loss of generality, the mean direction 

will be taken as 0 during the simulation study. Let m be the number of simulations, and 

the following computation were obtained. We define 

i. Coverage Probability = 
q

m
, where q = number of true value that falls in the 

CI and m = number of simulation. 

ii. Expected Length = Upper limit – Lower limit. 

 

Coverage probability can be defined as the proportion of a number that the CI 

contains the true value. In other words, the coverage probability is the actual probability 

that the interval contains the true concentration parameter for each method. The 

simulation studies were repeated for 5000 times and have been done at 95% of 

confidence level. Hence, the good indicator should give a coverage probability close to 

0.95 which we refer to as nominal coverage probability or target value. Tables 4.1 and 



73 

 

4.2 showed the coverage probability and expected length respectively obtained from the 

simulation studies for different sample size and concentration parameter.  

Table 4.1: Coverage probability for various value of   for each sample size,           

n = 30, 50 and 100. 

Sample size, 

n 

Concentration 

parameter 

Percentile 

Bootstrap 

By Fisher 

Method 

1 

Method 

2 

Method 

3 

Method 

4 

  

30 

  

  

2 0.902 0.842 0.961 0.741 0.935 

4 0.897 0.932 0.958 0.882 0.946 

6 0.895 0.940 0.959 0.917 0.945 

8 0.883 0.941 0.960 0.926 0.944 

  

50 

  

  

2 0.919 0.889 0.956 0.694 0.935 

4 0.920 0.926 0.952 0.885 0.946 

6 0.912 0.939 0.958 0.919 0.950 

8 0.908 0.941 0.951 0.922 0.943 

  

100 

  

  

2 0.930 0.914 0.971 0.594 0.939 

4 0.929 0.929 0.952 0.862 0.949 

6 0.926 0.933 0.951 0.909 0.947 

8 0.921 0.943 0.956 0.928 0.943 
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Figure 4.1: Coverage probability versus concentration parameter for n = 30 
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Figure 4.2: Coverage probability versus concentration parameter for n = 50 
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Figure 4.3: Coverage probability versus concentration parameter for n = 100 

 

From the results obtained and displayed in Table 4.1, it can be seen that the 

coverage probability approaches to the target value as the value of concentration 

parameter increases for Method 1 to Method 4. Method 2 (CI based on the asymptotic 

distribution of ̂ ) gives consistently higher coverage probability than the target values 

for all different values of the concentration parameter. It can be seen that both Method 2 

(CI based on the asymptotic distribution of ̂ ) and Method 4 (CI based on bootstrap-t 

method) have values close to the target value and Method 3 (CI based on distribution of 

mean direction and mean resultant length) gives lower coverage probability than the 

target value. The coverage probability by Fisher has the poorest performance with 

consistently having the lowest coverage probability. Therefore, by considering the 

coverage probability as the performance indicator, Method 4 (CI Based on Bootstrap-t 

Method) and Method 2 (CI based on asymptotic distribution of ̂ ) are the best as they 

give good coverage probability. This is followed by Method 1 and then Method 3.  
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Figures 4.1, 4.2 and 4.3 represent the coverage probability plot for each sample 

size. The thick pink line shows the target value (0.95) and can be labelled as a reference 

line for the other plots. From the results obtained and plots in Figures 4.1 to 4.3, looking 

at Method 1, it can be seen that the coverage probability become much closer to the 

target value as the value of concentration parameter increases. On the other hand, 

Method 2 gives consistently higher coverage probability than the target values for all 

different values of the concentration parameter. In which the plots are always above the 

reference line. Apart from that, Method 2 and Method 4 seems to give the values that 

are close to the target value in comparison to other values including the current method 

itself. We note that Method 3 gives quite poor coverage probability especially for κ ≤ 4. 

Table 4.2: Expected  length for various value of   for each sample size, n = 30, 50 

and 100. 

Sample 

size, n 

Concentration 

parameter 

Percentile 

Bootstrap 

By Fisher 

Method 

1 

Method 

2 

Method 

3 

Method 

4 

  

30 

  

  

2 2.185 1.561 1.974 1.339 1.851 

4 4.752 3.851 4.168 3.531 4.028 

6 7.477 6.194 6.455 5.779 6.316 

8 10.186 8.555 8.774 8.050 8.593 

  

50 

  

  

2 1.529 1.143 1.471 0.996 1.404 

4 3.280 2.851 3.111 2.649 3.025 

6 5.146 4.572 4.797 4.322 4.720 

8 6.934 6.237 6.439 5.946 6.341 

  

100 

  

  

2 1.005 0.777 1.010 0.683 0.980 

4 2.125 1.941 2.132 1.821 2.082 

6 3.344 3.112 3.283 2.970 3.247 

8 4.523 4.272 4.430 4.113 4.378 
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Figure 4.4: Expected length versus concentration parameter for n = 30 
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Figure 4.5: Expected length versus concentration parameter for n = 50 
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Figure 4.6: Expected length versus concentration parameter for n = 100 

 

For further evaluation, we also consider the expected length for each method. 

Expected length can be defined as class size for each CI. Smaller values of expected 

length imply better approximation of CI as opposed to a wider length which represents a 

less efficient of the considered method. From Table 4.2, as the value of κ increases, it 

can be seen that the expected length for each method increases as well. It also shows 

that large concentration parameter results in larger expected length. It also noted that an 

increase of sample size results in a decrease of the expected length. In comparison of 

five methods, all the four proposed methods consistently give smaller length in 

comparison to the current method which is percentile bootstrap by Fisher (1993). 

Among the proposed method, Method 1 (CI based on circular variance population) and 

Method 4 (CI based on bootstrap-t method) give almost similar values of expected 

length. Method 2 (CI based on the asymptotic distribution of ̂ ) seems to give a large 
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expected length. From the results of the simulation study, it can be inferred that Method 

3 is the superior method based on the performance of expected length. 

For easy understanding, we can refer to Figures 4.4, 4.5 and 4.6 which represent 

the expected length for various values of the concentration parameter for sample size of 

30, 50 and 100 respectively. It can be seen obviously that the current method (black 

line) lies above the rest of plots. As explained based on the results in Table 4.2, the blue 

line (Method 3) which represents the narrow length is always at the bottom of the other 

plots. 

 

4.5 Illustrative Example 

 

 As an illustration of the proposed method, daily wind direction data (in radian) 

recorded at maximum wind speed (in m/s) was considered. Details of this data can be 

found in Section 2.6. Table 4.3 shows the concentration parameter and its upper and 

lower limit as well as their expected length for the five different methods including the 

current methods.  
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Table 4.3: Confidence intervals for wind direction data recorded at maximum 

wind speed at Kuala Terengganu 

Data 

Percentile 

Bootstrap 

By Fisher 

Method 1 Method 2 Method 3 Method 4 

Upper limit 3.380 3.027 2.749 2.838 2.678 

Lower limit 7.342 6.026 6.003 5.630 5.891 

Expected 

length 
3.962 2.999 3.254 2.792 3.213 

 

 

The concentration parameter calculated for the data is 4.931. Table 4.3 shows 

the upper and lower limit as well as their expected length for five different methods 

considered. It can be seen that the results obtained is consistent with the findings in the 

simulation studies. With reference to expected length, Method 3 (CI Based on 

Distribution of Mean Direction and Resultant Length) gives the smallest expected 

length in comparison to other methods. It also shows that the current method, namely 

the percentile bootstrap method gives the largest expected length of all the five methods 

considered. All these results seem to be similar with the findings from simulation 

studies. 

 

4.6 Discussion 

 

Several improved methods have been proposed for obtaining the CI of the 

concentration parameter for data with moderately large   values in this study. All of 

the four methods proposed seems to perform relatively better than the existing method 
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by Fisher. Method 2 is superior in terms of simplicity in obtaining the CI, Method 4 is 

superior in terms of coverage probability and Method 3 is superior in terms of expected 

length. 

 Based on the performance using coverage probability, two methods namely 

Method 2 and Method 4 are both superior, Method 2 is appealing due to its simplicity in 

terms of calculating the CI. Yet, it is based on the asymptotic or limiting properties to 

the normal distribution. Method 4, however, preserves the original distribution, namely 

the von Mises distribution in obtaining the CI. Furthermore, based on the expected 

length, Method 4 performs much better than Method 2. 

 Alternatively, CI obtained by using the limiting property to the chi-square 

distribution namely Method 3 seems to do well in terms of the expected length. 

However, its performance seems to be somewhat average when coverage probability is 

concerned. Thus, this study provides several viable and improved methods of obtaining 

CI of the concentration parameter for data with high   values. 

In conclusion, several methods of obtaining CI for the concentration parameter 

for data with large values of   are proposed. The proposed methods are viable and are 

improvements of the existing method by Fisher. 
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CHAPTER 5  

A NEW STATISTIC BASED ON CIRCULAR DISTANCE 

 

5.1 Introduction 

 

This chapter proposes a new statistic for the von Mises distribution based on the 

circular distance between two observations. Sections 5.2 and 5.3 describes the proposed 

statistic and approximations to Chi-Squared distribution is discussed. This is followed 

by Section 5.4 which presents new confidence intervals based on the statistic that have 

been proposed in the previous section. Three different methods to estimate confidence 

intervals are discussed in this section. The simulation studies are carried out in Section 

5.5 to assess the performance of the proposed method. In Section 5.6, the proposed 

method is illustrated using the wind direction data. Finally, discussion and conclusion of 

the whole chapter are given in Section 5.7.    

 

5.2 Approximation to Chi Squared Distribution 

 

In this section, we proposed a new statistic for a sample from von Mises 

distribution with large concentration parameter   which can be approximated by Chi-

squared distribution. Supposed 1, , n   are i.i.d circular sample located on the 
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circumference of a unit circle. Rao (1969) defined the circular distance between i  and 

j  as 

  1 cosij i jd     . (5.1) 

On the other hand, Jammalamadaka and Sen Gupta (2001) gave an alternative 

definition at circular distance between two points i  and j  such that 

 ij i j         (5.2) 

to ensure that ij  will take the smallest angle between i  and j . The results of a new 

statistic are given here.  

 

Proposition 1 

 Suppose 1, , n   be i.i.d observation from a von Mises distribution with mean 

direction,   and concentration parameter  . Then for nj ,,1  , 

 
2

1cos sin ~j j j nG n C S    
      as   , (5.3) 

where 



n

i

iC
1

cos and 



n

i

iS
1

sin . 
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Proof 

Suppose 1, , n   is a random variable from  ,VM   . For any observation i  and 

large  , it is shown by Jammalamadaka and SenGupta (2001) that, 

    0,1d

i N     as   . 
(5.4) 

Since i  and j  
are independent observations, then 

    0,1
2

d

i j N


   . (5.5) 

From the properties of the standard normal distribution, this can be approximated to 

Chi-squared distribution and it is given by 

  
2

2

1
2

d

i j


    . (5.6) 

For large value of the concentration parameter, the distribution of von Mises 

distribution is said to be more concentrated. This highly concentrated distribution will 

lead to shorter circular distance between two points. From the second Taylor series 

expression, we have  

 
2

1cos
2

   or 


cos1
2

2

 . (5.7) 

Substitute for ji   , we have, 
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 
 

2

1 cos
2

         1 cos cos sin sin .

i j

i j

i j i j

 
 

   


  

  

 
 

(5.8) 

Hence, by substituting (5.8) in (5.6), we have  

   2

11 cos cos sin sin ~i j i j       . (5.9) 

Further due to independent of i  and j , for ji  , 

   2

1~sinsincoscos1 



  n

ji

jiji  . (5.10) 

or 

   2

11 cos cos sin sin ~j i j i n

i j i j

n      

 

 
   

 
  . (5.11) 

However, let 



n

ji

ji

n

i

iC  coscoscos
1

 and 



n

ji

ji

n

i

iS  sinsinsin
1

. 

Thus,  

 

 1 cos cos sin sinj i j i

i j i j

n    
 

 
   

 
   

     1 cos cos sin sinj j j jn C S          
 

 

2 21 cos cos sin sinj j j jn C S            .  
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cos sinj jn C S        

 

(5.12) 

Hence, 

    
2

1~sincos  njjj SCnG  . 
(5.13) 

 In the following section, results of the Monte Carlo simulation studies are given 

for various values of the concentration parameter   and sample size. 

 

5.3  Simulation of the Approximated Chi-Squared Distribution 

 

 The proposed statistic in (5.13) can be used to approximate the sample from von 

Mises to Chi-squared distribution for large concentration parameter,  . For this 

purpose, the Kolmogorov-Smirnov test is used to identify the suitable samples size as 

well as the concentration parameter that can be approximated. In this case, the sample 

sizes that will be considered are 10, 20, 30, 50, 70 and 100 respectively with 

concentration parameters 2, 4, 6, 8 and 10 respectively. Table 5.1 gives the percentage 

of the transformed sample values that follow Chi-Squared distribution with df (n - 1) as 

given in (5.3). 
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Table 5.1: The percentage of samples correctly approximated by the Chi-Squared 

distribution with df  1n . 

Concentration 

parameter, κ 

Sample size, n 

10 20 30 50 70 100 

2 53.2 64.4 82.1 99.0 100.0 100.0 

4 49.8 67.0 85.9 99.9 100.0 100.0 

6 50.0 67.0 89.0 99.8 100.0 100.0 

8 49.7 70.8 90.3 100.0 100.0 100.0 

10 48.4 69.8 90.9 100.0 100.0 100.0 

 

 

From Table 5.1, the following results can be observed: 

i. For 10n , the percentage is a decreasing function for all κ . 

ii. For the range 5020  n , the percentage is an increasing function for all κ, 

while constant for 10070  n . 

iii. For any κ considered in the table and 50n , more than 99% of the sample 

can be approximated to Chi-Squared distribution with df (n – 1). 

 

Based on these simulation studies, we may conclude that for any sample of size 

greater than 30 and 2   can be approximated by Chi-Squared distribution with 

 1n  degree of freedom. In the following section, we describe the derivation of 

confidence intervals based on the new proposed statistic. 
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5.4 Estimation of Confidence Intervals (CI) for Concentration Parameter,   

 

In this section, we propose the estimation of the confidence intervals of the 

concentration parameter based on the new proposed statistic. 

Recall that    
2

1~sincos  njjj SCnG   as in (5.13). Hence, 

 100 1 %  confidence intervals of   is given by  

 

   jj

n

jj

n

SCnSCn 









sincossincos

2

2
1,1

2

2
,1

























. (5.14) 

Alternatively, 

 

2 2

1, 1,1
2 2

n n

j jA A

 
 



   
     

     , 
(5.15) 

where cos sinj j jA n C S      . 

From (5.15), we will have a set of lower limits, 1 , ,L L

n   and upper limits, 

1 , ,U U

n    respectively. In the following subsection, we consider three methods of 

estimating the confidence intervals based on the proposed statistic. 

In the next subsection, three different methods namely mean, median and 

percentile will be considered. 
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5.4.1 Method 1: Mean  

 

In this method, the mean for all pairs of confidence intervals will be taken as the 

final confidence interval. It can be obtained as below: 

Lower limit = 
1

1 n
L

j

jn




 . 

Upper limit =
1

1 n
U

j

jn




 . 

Hence, the proposed  100 1 %  confidence intervals is given by 

     ( ) ,L U

mean j jCI mean mean  . (5.16) 

5.4.2 Method 2: Median 

 

The second method of estimating the confidence intervals is by considering the 

median for each set of lower and upper limit respectively. Suppose,   

Lower limit =  L

jmed   and upper limit =  U

jmed   

Hence, the  1 100%  confidence intervals is given by 

       CI ,L U

j jmed
med med  . (5.17) 
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5.4.3 Method 3: Percentile 

 

The third proposed method of CI is based on percentile. In order to get the 

confidence intervals based on percentile for each set of lower and upper limit 

respectively, three steps must be followed. The simulation study will be carried out to 

identify the most potential percentile that can be used as the CI. This can be done by 

considering the coverage probability and expected length of the concentration 

parameter. In order to obtain the final CI, these following steps must be followed: 

 

Step 1: All values of the concentration parameter in lower limit and upper limit sets are 

sorted in ascending order. It then will be divided into various percentages for 

further evaluation. 

Step 2: From the results, the most potential cut of point of percentile that will produce 

 1 100%  of target values is noted. We note that for 0.05   or the 95% 

target values lie between 30th to 50th percentile. 

Step 3: Finally, each new percentage in Step 2 will be examined to assess how well they 

produce the target value of 0.95 or 95% of CI.  

 

 Details description on identifying the most potential percentage to approximate 

the CI will be discussed in the simulation study in the subsequent section.  
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5.5 Simulation Study 

 

Simulation studies were carried out to measure the performance of the proposed 

method for estimating confidence intervals of  . The performance indicators used are 

coverage probability and expected length. Let m be the number of simulation and the 

following were calculated. 

i. Coverage Probability = q

m
, where q = number of true value falls in the CI . 

ii. Expected Length = Upper limit – Lower limit. 

 

The simulation studies were repeated for 5000 times. The first part of the 

simulation study is on identifying the feasible percentile when CI is constructed using 

percentiles method. This is followed by another simulation study in which performance 

of all the proposed methods are assessed. 

 

5.5.1 Confidence Intervals based on percentile 

 

As mentioned earlier, simulation studies were performed to identify the feasible 

percentile that contains the best CI or the one that gives the best coverage probability 

using the steps as described in Section 5.4.3. For this simulation studies, different 

samples from von Mises distribution with n = 30, 50, 70 and 100 with concentration 

parameters, 2,4,6,8 and10   will be used. This choice of parameter is based on the 
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results obtained in Table 5.1. Without loss of generality, the mean direction will be 

taken as 0 in this simulation study. 

Table 5.2: Coverage probability for each percentage value for CI based on 

percentile 

Sample 

size , n 

κ 

Percentile 

10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

30 

2 0.234 0.774 0.966 0.962 0.920 0.846 0.752 0.676 0.622 0.596 

4 0.234 0.712 0.944 0.944 0.870 0.798 0.676 0.556 0.498 0.458 

6 0.212 0.700 0.912 0.932 0.840 0.748 0.654 0.538 0.448 0.406 

8 0.220 0.708 0.918 0.930 0.856 0.758 0.630 0.512 0.420 0.382 

10 0.258 0.728 0.928 0.924 0.856 0.736 0.620 0.488 0.394 0.332 

50 

2 0.090 0.660 0.952 0.956 0.862 0.738 0.596 0.478 0.412 0.376 

4 0.098 0.660 0.934 0.924 0.786 0.596 0.398 0.260 0.198 0.164 

6 0.112 0.636 0.934 0.920 0.756 0.550 0.356 0.234 0.156 0.120 

8 0.096 0.614 0.926 0.910 0.782 0.566 0.334 0.208 0.138 0.108 

10 0.114 0.580 0.924 0.904 0.762 0.554 0.348 0.208 0.142 0.112 

70 

2 0.032 0.566 0.956 0.940 0.814 0.576 0.410 0.284 0.218 0.176 

4 0.038 0.514 0.924 0.902 0.736 0.440 0.232 0.122 0.068 0.056 

6 0.058 0.562 0.918 0.886 0.648 0.368 0.164 0.088 0.052 0.040 

8 0.066 0.566 0.918 0.888 0.622 0.314 0.138 0.058 0.026 0.022 

10 0.040 0.526 0.918 0.902 0.656 0.344 0.166 0.078 0.032 0.030 

100 

2 0.010 0.422 0.950 0.936 0.728 0.414 0.230 0.130 0.072 0.050 

4 0.014 0.430 0.904 0.878 0.578 0.252 0.088 0.038 0.028 0.026 

6 0.008 0.470 0.918 0.842 0.506 0.196 0.058 0.014 0.002 0.000 

8 0.012 0.480 0.912 0.834 0.488 0.196 0.054 0.008 0.000 0.000 

10 0.016 0.434 0.928 0.836 0.472 0.170 0.042 0.008 0.002 0.002 
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Table 5.2 and 5.3 showed the coverage probability and expected length 

respectively calculated from the simulation studies for various intervals considered with 

different sample size and concentration parameter. Coverage probability can be defined 

as the proportion of a number that the CI contains the true value. In other words, the 

coverage probability is the actual probability that the interval contains the true 

concentration parameter. The simulation studies have been done at 95% of confidence 

level. Thus, using the measure of performance of coverage probability, values of 

coverage probability close to 0.95 is indicative of a good performance and will be 

referred to as nominal coverage probability or good target value. 

Table 5.3: Expected length for each percentage value for CI based on 

percentile 

Sample  

size, n 
κ 

Percentile 

10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

 

 

30 

 

 

2 1.124 1.555 1.938 2.286 2.602 2.895 3.148 3.341 3.476 3.548 

4 2.246 3.186 4.007 4.810 5.588 6.332 6.985 7.508 7.879 8.058 

6 3.289 4.659 5.897 7.147 8.323 9.498 10.513 11.355 11.927 12.210 

8 4.400 6.313 7.995 9.718 11.358 12.950 14.323 15.472 16.312 16.740 

10 5.442 7.767 9.914 12.057 14.137 15.990 17.772 19.212 20.244 20.794 

 

 

50 

 

 

2 0.873 1.221 1.518 1.778 2.030 2.246 2.429 2.576 2.671 2.717 

4 1.742 2.418 3.071 3.680 4.262 4.799 5.277 5.660 5.923 6.043 

6 2.584 3.639 4.615 5.588 6.491 7.345 8.119 8.737 9.175 9.376 

8 3.442 4.870 6.174 7.434 8.692 9.869 10.952 11.781 12.378 12.649 

10 4.305 6.068 7.711 9.266 10.856 12.386 13.777 14.854 15.612 15.962 

 

 

70 

 

 

2 0.741 1.029 1.272 1.494 1.704 1.886 2.040 2.161 2.239 2.272 

4 1.479 2.065 2.591 3.099 3.597 4.049 4.447 4.764 4.984 5.076 

6 2.174 3.048 3.854 4.659 5.423 6.141 6.769 7.280 7.625 7.774 

8 2.878 4.010 5.070 6.113 7.137 8.131 8.983 9.701 10.173 10.383 

10 3.646 5.119 6.466 7.818 9.165 10.419 11.516 12.418 13.034 13.299 

 

 

100 

 

 

2 0.621 0.848 1.055 1.239 1.413 1.565 1.690 1.786 1.848 1.874 

4 1.214 1.678 2.116 2.535 2.940 3.306 3.619 3.871 4.041 4.111 

6 1.819 2.553 3.240 3.885 4.509 5.108 5.640 6.059 6.329 6.437 

8 2.431 3.411 4.313 5.200 6.073 6.886 7.609 8.202 8.577 8.743 

10 3.020 4.249 5.398 6.523 7.611 8.630 9.552 10.312 10.803 11.008 
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For further evaluation, we also consider the expected length for each method. 

Expected length can be defined as class size for each CI. Smaller values of expected 

length imply better estimation of CI as opposed to wider length which represents the 

less efficient of the proposed method.  The following tables show the simulation results 

to determine the most potential percentile for the CI.  

From Table 5.2, it can be seen that the for any fixed n and  , coverage 

probability increases steadily as the value of percentile increase and reaches almost the 

target value of 0.95 for 30th, 40th and 50th percentile respectively then further 

decreases from 60th percentile till 100th percentile onwards. It also can be observed 

that, as the sample size increase, the coverage probability also decreases. For different 

values of the concentration parameter and sample size, it can be seen that the coverage 

probability are stable for each percentage values. As explained in Section 5.4.3, our 

main purpose is to identify the most potential percentile which gives the closest value to 

our 95% target value. It can be seen clearly that 30th to 50th percentile give the values 

that are close to 0.95. Hence, these particular percentiles are chosen to be used in 

estimating the confidence intervals of the concentration parameter,  .    

Apart from assessing the coverage probability, the expected lengths also have 

been considered. From Table 5.3, for any fixed n and  , the expected length is an 

increasing function of the percentile. For any fixed  , the expected length decreases as 

sample size increases. For any fixed n, the expected length increases as the 

concentration parameter value increases. Here, we take note of the behavior of expected 

lengths for the range of 30th to 50th percentile of the concentration parameter,  .    
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For further evaluation, the intervals are further subdivided into various small 

intervals that lead to new, and these new percentiles will be compared with another 

method namely mean and median as discussed in Sections 5.3.1 and 5.3.2 respectively.  

  

5.5.2 Confidence Intervals of Concentration Parameter,  based on Mean, 

Median and Percentile 

 

The second part of the simulation study is to compare the performance of the 

three proposed methods of obtaining the CI. For the comparison study, new simulation 

studies were carried out for different sample size, namely n = 30, 50 and 100 with 

various value of concentration parameter,   = 2.0, 4.0, 6.0, 8.0 and 10.0 respectively 

for the confidence level at α = 0.05. The samples were drawn from von Mises 

distribution and without loss of generality, the mean direction will be taken as 0 during 

the simulation study. The purpose of this simulation studies is to find the most efficient 

CI for the concentration parameter,  . As for performance indicator, the coverage 

probability and the expected length will be used. The simulation results are given in the 

following tables.  

Tables 5.4 and 5.5 show the coverage probability and the expected length 

respectively obtained from the simulation studies at 0.05  . For the display and 

analysis purpose, we only include the 30th, 34th and 38th percentile as these percentile 

values give better coverage probabilities which they are close to target value in 

comparison to other percentiles in the range of 30th to 50th percentile. Hence, the 

results from these percentiles will be used as the comparison with the mean and median 

method.  
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Table 5.4: Coverage probability for various value of   for each sample size,  

n = 30, 50, 70 and 100 at 0.05  . 

Sample size, n 
Concentration 

parameter, κ 
Mean Median 

Percentile 

30% 34% 38% 

  

  

30 

  

  

2 0.945 0.913 0.954 0.968 0.969 

4 0.904 0.862 0.927 0.945 0.948 

6 0.884 0.841 0.919 0.939 0.941 

8 0.880 0.833 0.921 0.938 0.940 

10 0.876 0.831 0.911 0.932 0.936 

  

  

50 

  

  

2 0.919 0.856 0.954 0.970 0.965 

4 0.844 0.765 0.923 0.943 0.934 

6 0.819 0.739 0.925 0.943 0.927 

8 0.805 0.725 0.917 0.939 0.925 

10 0.799 0.726 0.915 0.936 0.917 

70 

2 0.896 0.804 0.950 0.970 0.958 

4 0.796 0.689 0.918 0.946 0.922 

6 0.747 0.632 0.918 0.936 0.904 

8 0.726 0.621 0.915 0.936 0.899 

10 0.723 0.618 0.914 0.934 0.895 

  

  

100 

  

  

2 0.852 0.706 0.943 0.971 0.954 

4 0.713 0.564 0.916 0.946 0.913 

6 0.646 0.499 0.923 0.936 0.890 

8 0.622 0.478 0.914 0.929 0.880 

10 0.606 0.476 0.911 0.931 0.877 
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Table 5.5: Expected length for various value of   for each sample size, n = 30, 50, 

70 and 100 at 0.05  . 

Sample size, n 
Concentration 

parameter,   
Mean Median 

Percentile 

30% 34% 38% 

  

  

30 

  

  

2 2.528 2.700 1.967 2.089 2.208 

4 5.405 5.708 4.004 4.277 4.550 

6 8.315 8.741 6.052 6.475 6.895 

8 11.177 11.747 8.089 8.657 9.234 

10 14.048 14.739 10.129 10.849 11.560 

  

  

50 

  

  

2 1.912 2.045 1.508 1.618 1.723 

4 4.080 4.313 3.064 3.308 3.552 

6 6.263 6.592 4.629 5.011 5.392 

8 8.429 8.859 6.192 6.707 7.224 

10 10.569 11.090 7.730 8.382 9.030 

70 

2 
1.592 1.704 1.263 1.362 1.457 

4 
3.391 3.588 2.562 2.781 2.999 

6 
5.234 5.519 3.893 4.237 4.578 

8 
7.041 7.405 5.197 5.664 6.127 

10 
8.814 9.266 6.494 7.070 7.653 

  

  

100 

  

  

2 1.324 1.417 1.053 1.129 1.203 

4 2.811 2.975 2.135 2.306 2.473 

6 4.330 4.568 3.238 3.504 3.770 

8 5.833 6.138 4.325 4.685 5.046 

10 7.317 7.690 5.405 5.863 6.312 

 

Table 5.4 shows the coverage probability for all three different methods namely 

mean, median and percentile for different sample size and concentration parameter. For 

any fixed  , it can be seen that the coverage probability decreases as the sample size 

increases for all the three different methods considered. The coverage probability is also 

a decreasing function of the concentration parameter for any fixed value of sample size. 

It is noted that the median gives the poorest performance in which the coverage 
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probability is far from the target values in comparison to the other methods. The results 

indicate that percentile method is the best method because the coverage probabilities are 

consistently close to the target values. From three different percentiles considered in this 

study, it can be seen that for 2  , 30th percentile gives the coverage probability that is 

close to the target value. For 30n , the coverage probability for 34th and 38th 

percentile give almost similar values and close to the target value. For all sample sizes 

and   , it is noted that 34th percentile consistently gives the best coverage probability 

with values close to the target value in comparison to other percentiles as well as the 

mean and median. Hence, it can be said that, using the coverage probability as the 

performance indicator, percentile method is superior to the mean and median. The best 

percentile to be used is at 34th for all   while for 2 , the percentile at 30th may be 

considered to be good as well. 

 Table 5.5 shows the expected length obtained from the simulation studies. It can 

be observed that the median gives the widest length in comparison to the other methods. 

For any fixed n, the expected length is an increasing function of the concentration 

parameter, and for any fixed  , it is a decreasing function of the sample size. In 

addition, it can be seen that percentile method gives the narrowest expected length as 

compared to the other methods. Hence, it also can be concluded that percentile method 

is the superior method as compared to the other methods using expected length as the 

performance indicator.  

Thus, using both measures of performance namely coverage probability and 

expected length, it can be concluded that 34th percentile gives the most efficient CI in 

comparison to all methods as it give good coverage probability as well narrow expected 

length. 
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5.6  Illustrative Example 

 

As an illustration of the proposed method, two simulated data set will be 

considered. The data were generated at two different sample sizes which are n = 50 and 

70 with mean direction 0 and the concentration parameter, 6  . The upper and lower 

limits, as well as its expected length, are recorded in the following table.  

Table 5.6: Confidence intervals for simulated based on new statistic for circular 

distance 

Sample size, n  
CI based on 

Mean 

CI based on 

Median 

CI based on 

Percentile at 

0.34 

50 

Upper limit 4.876 5.016 3.879 

Lower limit 10.850 11.164 8.632 

Expected length 5.975 6.147 4.753 

70 

Upper limit 5.059 5.342 4.286 

Lower limit 9.907 10.462 8.393 

Expected length 4.848 5.120 4.108 

 

 Table 5.6 shows the upper and lower limits and the expected length for both 

simulated data. The value of expected length obtained based on 34th percentile is the 

smallest among three methods. It can be seen that the CI based on median gives the 

widest length in comparison to other methods. These results support the findings from 

the simulation studies where CI based on percentile will give better estimate than other 

methods. Considering both data, it can be concluded that CI based on percentile gives a 

precise of the CI for the concentration parameter.  
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5.7  Discussion 

 

A new statistics based on the circular distance for a sample from von Mises 

distribution was proposed in this chapter. Based on the statistic proposed, new 

approaches to approximate the CI for the concentration parameter are developed. These 

three methods are CI based on mean, median and percentile. For CI based on percentile, 

three steps must be followed before a final percentile that gives the most efficient CI is 

obtained. Based on the simulation study, it is observed that the range of percentile that 

gives values that are close to the target value, 0.95 is from 30th to 50th percentile. A 

second simulation study was further carried out to assess the performance of each 

proposed method. From the simulation studies, it can be seen that the CI based on 

percentile consistently gives good coverage probability as well as the smallest expected 

length. The superiority of the CI obtained using percentile is also illustrated using real 

data sets. Hence, it can be concluded that the method based on percentile is the best to 

approximate the CI for the concentration parameter based on circular distance. 

 In summary, the contribution of a new statistics developed in this study is 

illustrated by the construction of new CI. All the three proposed methods of obtaining 

CI provide alternate approaches and are appealing due to the simplicity of getting the 

CI. However, based on simulation studies, CI based on percentile is the most superior of 

the three proposed method. Nevertheless, the three methods of constructing CI provides 

an alternative approach and have great potential for improvement in further works.  
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CHAPTER 6  

ANALYSIS OF MISSING VALUES FOR CIRCULAR VARIABLES 

 

6.1 Introduction 

  

This chapter discusses on the analysis of missing values for circular data. It 

commences with a brief background discussion on missing values in Section 6.2. In 

Section 6.3, imputation methods of missing values for circular data are presented. To 

assess the accuracy of the methods considered, simulation studies are carried out in 

Section 6.4. In Section 6.5, the proposed data imputation method is illustrated using the 

Malaysian wind direction data. Finally, discussion and conclusion of the whole chapter 

are given in Section 6.6.    

 

6.2 Background  

 

Missing values is a common problem in data analysis. This kind of problems has 

been addressed as many in various research fields. As described in the literature review 

(Chapter 2), the missing values can be classified as missing completely at random 

(MCAR), missing at random (MAR), and missing not at random (MNAR). In this study, 

all missing values are treated under MAR case because it has wide application in 

practical life and require less assumption. Furthermore, MCAR is not a reasonable 
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assumption for missing data in many real situations (Little & Rubin, 2002; 

Raghunathan, 2004) 

Many integrated approaches have been developed in handling missing values 

which can be classified as the traditional and modern approaches. Traditional 

approaches include listwise deletion, pairwise deletion and simple replacement 

procedures. On the other hand, several modern approaches are applied where some of 

them are integrated from the traditional approach. Imputation is one of the modern 

approaches and it is a class of methods by which estimation of the missing value of its 

distribution is used to generate predictions from a given model (Tsechansky & Provost, 

2007).  

In most common cases, deletion is the simplest way to deal with missing values. 

By deletion, it will lead to a complete data set and the usual analysis can be done. 

However, this approach decreases the sample size of data and at the same time will 

reduce the power of statistics which in turn, results in biased estimates when the 

excluded group is a selective subsample from the study population (Barzi & Woodward, 

2004). Therefore, new integrated methods are needed in order to overcome this 

problem. The most popular methods that normally used is the replacement procedure. 

Replacement procedure (Tsikriktis, 2005) includes mean substitution, hot-deck  

imputation and  regression imputation. The simplest replacement method is by using 

mean substitution where all the missing values are replaced with the mean of available 

observations.  

As discussed in the literature review previously, numerous methods have been 

developed to handle missing values for linear data. For circular data, however, we found 

that it is somewhat limited. This is might be due to the complexity and topology of the 
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circular data itself as well as limited statistical software available to analyse such data.  

Hence, in this study we focus on handling the occurrence of missing data in univariate 

data with von Mises distribution. Von Mises has been extensively studied, and many 

inference techniques have been developed. Thus, this model usually considered for 

circular data in most applied problem (Jamalamadaka & SenGupta, 2001).     

In the following section, three widely used methods of data imputation for 

circular data are considered. They are the mean, EM algorithm and DA algorithm. Mean 

imputation is chosen over the traditional approach as comparison method because of its 

simplicity as well as the most reliable method to be applied in this distribution. Apart 

from the traditional approach, modern approach in particular EM and DA are 

considered as these methods are proven to be excellent methods for handling missing 

data in various situation (Allison, 2002). 

Using the simulation study, the performance of the considered methods will be 

measured using several indicators namely circular distance for parameter mean direction 

and bias as well as estimated root mean square error (ERMSE) for concentration 

parameter.  

 

6.3 Data Imputation of Missing Values for circular data 

 

As mentioned earlier, the study of missing values is confined to univariate 

circular variables, namely variables from the von Mises distribution. Here, several 

imputation methods are described namely the by circular mean, Expectation-

Maximization (EM) algorithm and data augmentation (DA) algorithm. 
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6.3.1 Circular Mean 

 

 Imputation by circular mean is a common method used when some observations 

are missing. In this method, all missing values are replaced with the circular mean 

calculated from the available data. The steps in carrying out the imputation procedure 

are described as follows: 

1. Generate a random number from von Mises distribution  ~ ,0,X VM n    

where n is number of sample size. 

2. Distribute q missing values, misX  in data set 

 

 

 

 

3. Calculating the initial parameter based on available non-missing data. 

Mean direction,  
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where
1

cos( )
n

i

i q

C x
 

   and 
1

cos( )
n

i

i q

C x
 

  .   

 

4. The first cycle of complete data can be obtained by imputing the missing values 

with the initial circular mean obtained in Step (3) and the new parameter which 

is mean direction and concentration parameter is calculated. 

)0(
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6.3.2  EM algorithm 

 

As an alternative to the conventional method, we also applied a common modern 

approach of imputing the missing values in von Mises distribution namely the EM 

algorithm. EM algorithm was first introduced by Dempster et al. (1977). In simplest 

way, this algorithm can be defined as ‘fill in’ the missing data based on the initial 

estimate, re-estimate the parameter based on available data and then fill in again 

iteratively till the estimates converge. A brief explanation and examples of EM 

algorithm in a linear case can be found in the literature review in Section 2.5.  

There are two steps in the EM algorithm which can be called as Expectation or 

E-step and Maximization or M-step (Dempster et al., 1977). The general steps used in 

EM in this study are described as follows: 
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Step 1: Expectation or E-step 

The E-step of EM is replacing the missing values observations, misX  which 

require the estimation of 
)(t  to obtain complete data, when obsX  is given.  

 

Step 2: Maximization or M-step 

In this step, 
( 1)t 

 is re-estimated by maximum likelihood based on obsX  and 

)(t  obtained in Step (1).  

Steps (1) – (2) will be repeated iteratively until ( )t  and ( 1)t    satisfied our 

convergence criteria and converge to a local maximum of the likelihood 

function. 

 

In this particular study, the EM algorithm was performed by using the following 

steps: 

i. E-Step 

In this step, the expectation value is calculated from the non-missing 

values. This value is then used to impute all missing values. For example, the 

initial mean will be calculated as in (6.1). 

Hence, the first cycle of complete data set is obtained by imputing an 

initial circular mean calculated using (6.1) 
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Thus, this E-step can be generalised as follow: 
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j = 1 ,..., q   

 

ii. M-Step 

After doing an imputation, the new complete data set will be obtained. The 

estimation of the new parameter will be calculated, and the steps will be 

repeated iteratively until the convergence criteria satisfied to get the final 

estimate. 
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6.3.3 Data Augmentation (DA) algorithm 

 

Another method of imputing missing values that are considered in this study is 

(DA) algorithm. DA algorithm was first proposed by Taner and Wong (1987). There are 

two steps in this method namely I-step and P-step. Briefly, the steps are described 

below:  
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Step 1: Imputation or I-step 

Given a current guess of a parameter as  t , draw independent q values of 

misX  

  ( 1) ( 1) ( 1) ( 1)

1 2, , ,t t t t

mis mis mis misqX x x x    , (6.4) 

generated from the conditional predictive distribution of misX  

  ( 1) ( )~ | ,t t

mis mis obsX P X X  . (6.5) 

 

Step 2: Posterior or P-step 

Draw new values of   

  )1()1(
2

)1(
1

)1(

0
,,,   t

n
ttt   , (6.6) 

which is calculated from the conditional distribution of obsX  and 
( 1)t

misX 
  

 
( 1) ( 1)~ ( | , )t t

obs misP X X  
. (6.7) 

Steps (1) – (2) will be repeated from the initial value (0)  for a value of t  

   ( ) ( ), : 1,2,t t

misX t  , (6.8) 
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which have ( , | )obs misP X X  as its stationary distribution (Schafer, 2010). Steps 

(1) – (2) will be repeated until ( )t  and ( 1)t   converge to our pre-set 

convergence criteria. 

DA algorithm is somewhat similar to EM algorithm where E-step of EM 

calculates the expected complete-data while I-step in DA simulates a random draw of 

the complete data (Schafer, 1997). Discussion on DA algorithm and its application in 

missing values data analysis can be found in Section 2.4.  

In this study, these following steps are used. 

 

i. I-step 

In I-step, q number of missing values will be generated using the initial 

parameter. Those generated data is then to be used in replacing the missing 

values to get the complete data set. For example, the first new complete data set 

can be obtained as follows. These values are then to be used to impute the 

missing values in the data set. 

      1 0 0ˆˆ~ , ,Y VM q   , q = number of missing values 
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Thus, I-step in DA algorithm can be generalised as follows 
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where  j = 1, ... , q. 

 

ii. P-step 

In P-step, the estimation of new parameter estimates will be calculated based on 

the completed data set obtained from I-step. The new parameter estimate 

obtained from complete data set is then to be used again for re-generating new 

imputed values using I-step. These two steps will be repeated until the 

convergence criteria satisfied to get the final estimate. Our P-step can be 

generalised as follow: 
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6.4  Simulation Studies 

 

Simulation studies were carried out in order to evaluate the performance for each 

proposed method. In this study, our particular interest is in investigating the estimation 

of parameter in von Mises distribution,  and   after doing the imputation methods 

mentioned earlier. For this purpose, programmes are written using S-Plus. Three 

different method considered will be referred to as Method 1 (circular mean), Method 2 

(EM algorithm) and Method 3 (DA algorithm). For each sample, we randomly assign 

5%, 10%, 15%, 20%, 30% and 40% of the missing values, respectively. The simulation 

studies are repeated for 5000 times, and the values of X have been drawn from 

 ~ 0,X VM   where   = 2, 4, 6 and 8 with different sample sizes, n = 30, 50 and 100.  

As for the performance measures, the circular mean and circular distance (d) 

were calculated for parameter   since this parameter is in circular form. For 
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concentration parameter  , the mean, estimate bias (EB), and estimate root mean 

square error (ERMSE) were calculated.  

 

Circular mean for the mean direction is calculated using the following formulae: 
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where  ˆcos jC   and  ˆsin jS  . 

 

Circular distance is the smaller measurements of the two arclengths between the 

points along the circumference. The value of circular distance is in the range between 

 0, . A smaller value of circular distance obtained shows a better estimation. 

 Circular Distance, ˆd        . (6.12) 

For concentration parameter, the mean of  is obtained from the simulation 

study and given by  

 Mean, 
1

ˆ ˆ
simu

j   , (6.13) 

where simu = number of simulation. 
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 The mean is then to be used in calculating the estimate bias (EB). The EB is the 

absolute difference between the estimated parameter that we obtained from the 

complete data set and the data after imputing the missing values. The EB can be defined 

as: 

 Estimated Bias, ˆEB    . (6.14) 

Estimated Root Mean Square Errors (ERMSE) is the one that frequently used 

measure of the difference between values predicted by a model and the values observed. 

In this study, the ERMSE is calculated by 

  
21

ˆERMSE
simu

j   . (6.15) 

 

Tables 6.1 – 6.3 show the simulation results of the mean direction obtained for 

three different sample sizes, 30, 50 and 100 respectively using all three methods 

considered. Method 1 refers to the imputation by the conventional method using circular 

mean, Method 2 is imputation by EM algorithm while Method 3 is by DA algorithm. 

The simulation studies were carried out using the steps as described in Section 6.3.  
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Table 6.1 (a): Simulation results for mean direction for sample size, n = 30 

Performance 

Indicator 

Concentration 

Parameter 

 

Percentage of  

missing values 

 

Method 1 Method 2 Method 3 

Circular Mean 

2 

5% 0.016 6.281 6.281 

10% 0.027 0.001 0.001 

15% 0.037 0.004 0.001 

20% 0.051 0.004 0.004 

30% 0.071 0.006 0.007 

40% 0.083 0.000 0.001 

4 

5% 0.014 6.282 6.283 

10% 0.023 0.002 0.002 

15% 0.028 6.282 6.282 

20% 0.041 0.001 0.000 

30% 0.058 0.000 6.283 

40% 0.074 0.002 0.003 

6 

5% 0.043 0.001 0.002 

10% 0.022 0.001 0.001 

15% 0.029 0.002 0.002 

20% 0.041 0.002 0.002 

30% 0.056 0.001 0.001 

40% 0.069 6.282 6.282 

8 

5% 0.014 0.000 0.000 

10% 0.021 0.001 0.000 

15% 0.027 0.001 0.001 

20% 0.038 6.282 6.282 

30% 0.055 6.283 6.283 

40% 0.070 0.001 0.001 
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Table 6.1 (b): Simulation results of circular distance for mean direction for sample 

size, n = 30 

Performance 

Indicator 

Concentration 

Parameter 

 

Percentage of  

missing values 

 

Method 1 Method 2 Method 3 

Circular Distance 

2 

5% 0.016 0.002 0.003 

10% 0.027 0.001 0.001 

15% 0.037 0.004 0.001 

20% 0.051 0.004 0.004 

30% 0.071 0.006 0.007 

40% 0.083 0.000 0.001 

4 

5% 0.014 0.001 0.000 

10% 0.023 0.002 0.002 

15% 0.028 0.001 0.002 

20% 0.041 0.001 0.000 

30% 0.058 0.000 0.000 

40% 0.074 0.002 0.003 

6 

5% 0.043 0.001 0.002 

10% 0.022 0.001 0.001 

15% 0.029 0.002 0.002 

20% 0.041 0.002 0.002 

30% 0.056 0.001 0.001 

40% 0.069 0.001 0.001 

8 

5% 0.014 0.000 0.000 

10% 0.021 0.001 0.000 

15% 0.027 0.001 0.001 

20% 0.038 0.001 0.001 

30% 0.055 0.000 0.000 

40% 0.070 0.001 0.001 

From Table 6.1, using the measure of circular distance for mean direction, it is 

found that as percentage of missing observation increase, the circular mean gets bigger 

using Method 1 and deviates from the true value of 0. For Methods 2 and 3, the circular 

mean remain about the true value as percentage of missing values increase. Using the 

measure of circular distance, we note that for both Methods 2 and 3 the circular distance 

remains relatively small as percentage of missing values increase. The results are 
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consistent for all different values of concentration parameter for each percentage of 

missing values. Thus, based on the measure of circular distance, it can be said that 

Method 2 and Method 3 are both superior for sample size of 30. 

Table 6.2 (a): Simulation results of circular mean for mean direction for sample 

size, n = 50 

Performance 

Indicator 

Concentration 

Parameter 

 

Percentage 

 

Method 1 Method 2 Method 3 

Circular Mean 

2 

5% 0.012 0.001 0.001 

10% 0.025 6.281 6.281 

15% 0.040 0.001 6.283 

20% 0.047 6.282 6.282 

30% 0.068 0.001 6.283 

40% 0.083 0.001 6.283 

4 

5% 0.009 6.283 6.283 

10% 0.020 6.281 6.282 

15% 0.034 0.001 0.001 

20% 0.042 0.001 0.002 

30% 0.058 0.000 0.000 

40% 0.073 0.001 6.283 

6 

5% 0.008 6.283 6.283 

10% 0.020 6.282 6.282 

15% 0.032 0.000 0.000 

20% 0.039 6.283 6.283 

30% 0.055 6.283 0.000 

40% 0.071 0.000 6.283 

8 

5% 0.008 0.000 0.000 

10% 0.019 6.282 6.282 

15% 0.031 6.283 6.283 

20% 0.038 0.000 0.001 

30% 0.055 0.000 6.283 

40% 0.068 6.282 6.281 

 

Table 6.2 and 6.3 show the simulation results for sample size of 50 and 100 

respectively. The results exhibit the same pattern as in 𝑛 = 30, where in general, the 
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mean values are closer to the true parameter. New means obtained by imputation using 

Method 2 and Method 3 are closer to the true values in comparison to current method 

namely Method 1. Similarly, as seen earlier from Table 6.1, the results for circular 

distance are consistently small for both proposed methods. These results give the same 

pattern for all values of concentration parameter for each percentage of missing values. 

Table 6.2 (b): Simulation results of circular distance for mean direction for sample 

size, n = 50 

Performance 

Indicator 

Concentration 

Parameter 

 

Percentage 

 

Method 1 Method 2 Method 3 

Circular Distance 

2 

5% 0.012 0.001 0.001 

10% 0.025 0.002 0.002 

15% 0.040 0.001 0.000 

20% 0.047 0.001 0.001 

30% 0.068 0.001 0.000 

40% 0.083 0.001 0.000 

4 

5% 0.009 0.000 0.000 

10% 0.020 0.002 0.001 

15% 0.034 0.001 0.001 

20% 0.042 0.001 0.002 

30% 0.058 0.000 0.000 

40% 0.073 0.001 0.000 

6 

5% 0.008 0.001 0.001 

10% 0.020 0.001 0.001 

15% 0.032 0.000 0.000 

20% 0.039 0.000 0.000 

30% 0.055 0.001 0.000 

40% 0.071 0.000 0.000 

8 

5% 0.008 0.000 0.000 

10% 0.019 0.001 0.001 

15% 0.031 0.000 0.000 

20% 0.038 0.000 0.001 

30% 0.055 0.000 0.000 

40% 0.068 0.001 0.002 
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Table 6.3 (a): Simulation results of circular mean for mean direction for sample 

size, n = 100 

Performance 

Indicator 
Concentration 

Parameter 

 

Percentage 

 

Method 1 Method 2 Method 3 

Circular Mean 

2 

5% 0.013 6.283 6.283 

10% 0.027 0.001 0.001 

15% 0.038 0.000 0.001 

20% 0.048 6.283 6.283 

30% 0.064 6.280 6.280 

40% 0.082 6.283 6.283 

4 

5% 0.012 0.001 0.001 

10% 0.022 6.283 6.283 

15% 0.031 6.282 6.283 

20% 0.041 0.000 0.001 

30% 0.057 6.283 0.000 

40% 0.072 6.282 6.282 

6 

5% 0.011 0.001 0.001 

10% 0.020 6.282 6.282 

15% 0.030 6.283 6.283 

20% 0.041 0.002 0.002 

30% 0.056 0.001 0.001 

40% 0.070 0.000 0.001 

8 

5% 0.010 6.283 0.000 

10% 0.021 0.001 0.001 

15% 0.030 6.283 6.283 

20% 0.038 0.000 0.000 

30% 0.055 0.000 0.000 

40% 0.069 0.001 0.001 
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Table 6.3 (b): Simulation results of circular distance for mean direction for sample 

size, n = 100 

Performance 

Indicator 
Concentration 

Parameter 

 

Percentage 

 

Method 1 Method 2 Method 3 

Circular Distance 

2 

5% 0.013 0.001 0.000 

10% 0.027 0.001 0.001 

15% 0.038 0.000 0.001 

20% 0.048 0.000 0.000 

30% 0.064 0.004 0.003 

40% 0.082 0.000 0.000 

4 

5% 0.012 0.001 0.001 

10% 0.022 0.000 0.000 

15% 0.031 0.001 0.000 

20% 0.041 0.000 0.001 

30% 0.057 0.000 0.000 

40% 0.072 0.001 0.002 

6 

5% 0.011 0.001 0.001 

10% 0.020 0.001 0.001 

15% 0.030 0.000 0.000 

20% 0.041 0.002 0.002 

30% 0.056 0.001 0.001 

40% 0.070 0.000 0.001 

8 

5% 0.010 0.000 0.000 

10% 0.021 0.001 0.001 

15% 0.030 0.000 0.000 

20% 0.038 0.000 0.000 

30% 0.055 0.000 0.000 

40% 0.069 0.001 0.001 

Tables 6.4- 6.6 show the simulation results for estimations of the concentration 

parameter after imputation have been done. Table 6.4 shows the results for sample size 

of 30. New means, estimate bias (EB) and estimate root mean square error (ERMSE) 

were calculated in order to evaluate the performance of each proposed method. In 

general, as the percentage of missing values increases, the EB and ERMSE values also 
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increase. Also, when the value of the concentration parameter become larger, it results 

in the increment of the EB and ERMSE values. 

Table 6.4 (a): Simulation results of mean for concentration parameter,    for 

sample size,  n = 30 

Performance 

Indicator 

Concentration 

Parameter 
Percentage 

 

Method 1 

 

Method 2 Method 3 

Mean 

2 

5% 2.278 2.294 2.165 

10% 2.363 2.388 2.196 

15% 2.429 2.461 2.194 

20% 2.558 2.607 2.196 

30% 2.815 2.894 2.246 

40% 3.108 3.231 2.296 

4 

5% 4.651 4.712 4.450 

10% 4.794 4.889 4.486 

15% 4.893 5.020 4.468 

20% 5.200 5.399 4.549 

30% 5.717 6.044 4.631 

40% 6.311 6.768 4.762 

6 

5% 6.686 6.985 5.784 

10% 7.154 7.359 6.733 

15% 7.397 7.676 6.815 

20% 7.742 8.174 6.849 

30% 8.517 9.207 7.020 

40% 9.291 10.312 7.182 

8 

5% 9.219 9.458 8.909 

10% 9.472 9.835 8.996 

15% 9.766 10.258 9.096 

20% 10.249 11.014 9.181 

30% 11.182 12.410 9.429 

40% 12.102 13.757 9.555 

As we compare the three methods, using the measure of EB and ERMSE, 

Method 3 that is the imputation using DA algorithm, is the most superior method. It is 

consistently give the smallest ERMSE and EB as the percentage of missing values 

increase. Both methods 1 and 2 do not perform really well. Thus, from Tables 6.4, for 
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the concentration parameter we can conclude that Method 3 is the best method out of all 

three methods considered. 

Table 6.4 (b): Simulation results of EB for concentration parameter,   for sample 

size,  n = 30 

Performance 

Indicator 

Concentration 

Parameter 
Percentage 

 

Method 1 

 

Method 2 Method 3 

Estimate Bias 

(EB) 

2 

5% 0.278 0.294 0.165 

10% 0.363 0.388 0.196 

15% 0.429 0.461 0.194 

20% 0.558 0.607 0.196 

30% 0.815 0.894 0.246 

40% 1.108 1.231 0.296 

4 

5% 0.651 0.712 0.450 

10% 0.794 0.889 0.486 

15% 0.893 1.020 0.468 

20% 1.200 1.399 0.549 

30% 1.717 2.044 0.631 

40% 2.311 2.768 0.762 

6 

5% 0.686 0.985 0.216 

10% 1.154 1.359 0.733 

15% 1.397 1.676 0.815 

20% 1.742 2.174 0.849 

30% 2.517 3.207 1.020 

40% 3.291 4.312 1.182 

8 

5% 1.219 1.458 0.909 

10% 1.472 1.835 0.996 

15% 1.766 2.258 1.096 

20% 2.249 3.014 1.181 

30% 3.182 4.410 1.429 

40% 4.102 5.757 1.555 
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Table 6.4 (c): Simulation results of ERMSE for concentration parameter,    for 

sample size, n = 30 

Performance 

Indicator 

Concentration 

Parameter 
Percentage 

 

Method 1 

 

Method 2 Method 3 

Estimate Root 

Mean Square 

Error (ERMSE) 

2 

5% 0.629 0.645 0.584 

10% 0.698 0.721 0.618 

15% 0.754 0.788 0.636 

20% 0.871 0.923 0.662 

30% 1.139 1.233 0.764 

40% 1.462 1.608 0.857 

4 

5% 1.415 1.475 1.315 

10% 1.579 1.682 1.417 

15% 1.646 1.790 1.419 

20% 1.922 2.145 1.519 

30% 2.454 2.839 1.678 

40% 3.150 3.702 1.953 

6 

5% 2.245 2.517 2.171 

10% 2.230 2.435 2.038 

15% 2.545 2.839 2.254 

20% 2.884 3.374 2.406 

30% 3.651 4.432 2.642 

40% 4.487 5.735 3.017 

8 

5% 2.824 3.065 2.739 

10% 3.006 3.380 2.835 

15% 3.282 3.801 2.983 

20% 3.726 4.562 3.196 

30% 4.648 6.075 3.606 

40% 5.740 7.648 3.960 
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Table 6.5 (a): Simulation results of mean for concentration parameter,   for 

sample size,   n = 50 

Performance 

Indicator 

Concentration 

Parameter 
Percentage 

 

Method 1 

 

Method 2 Method 3 

Mean 

2 

5% 2.163 2.170 2.096 

10% 2.259 2.278 2.084 

15% 2.394 2.423 2.108 

20% 2.492 2.531 2.130 

30% 2.699 2.757 2.124 

40% 2.970 3.056 2.166 

4 

5% 4.358 4.388 4.238 

10% 4.569 4.647 4.268 

15% 4.805 4.928 4.282 

20% 4.976 5.131 4.305 

30% 5.445 5.700 4.354 

40% 5.964 6.319 4.414 

6 

5% 6.569 6.638 6.403 

10% 6.857 7.032 6.419 

15% 7.184 7.467 6.450 

20% 7.474 7.839 6.530 

30% 8.088 8.660 6.568 

40% 8.876 9.681 6.693 

8 

5% 8.703 8.824 8.501 

10% 9.102 9.413 8.567 

15% 9.490 9.990 8.603 

20% 9.807 10.443 8.664 

30% 10.653 11.650 8.813 

40% 11.555 12.962 8.922 
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Table 6.5 (b): Simulation results for concentration parameter,   for sample size,  

n = 50 

Performance 

Indicator 

Concentration 

Parameter 
Percentage 

 

Method 1 

 

Method 2 Method 3 

Estimate Bias 

(EB) 

2 

5% 0.163 0.170 0.096 

10% 0.259 0.278 0.084 

15% 0.394 0.423 0.108 

20% 0.492 0.531 0.130 

30% 0.699 0.757 0.124 

40% 0.970 1.056 0.166 

4 

5% 0.358 0.388 0.238 

10% 0.569 0.647 0.268 

15% 0.805 0.928 0.282 

20% 0.976 1.131 0.305 

30% 1.445 1.700 0.354 

40% 1.964 2.319 0.414 

6 

5% 0.569 0.638 0.403 

10% 0.857 1.032 0.419 

15% 1.184 1.467 0.450 

20% 1.474 1.839 0.530 

30% 2.088 2.660 0.568 

40% 2.876 3.681 0.693 

8 

5% 0.703 0.824 0.501 

10% 1.102 1.413 0.567 

15% 1.490 1.990 0.603 

20% 1.807 2.443 0.664 

30% 2.653 3.650 0.813 

40% 3.555 4.962 0.922 
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Table 6.5 (c): Simulation results of ERMSE for concentration parameter,   for 

sample size,   n = 50 

Performance 

Indicator 

Concentration 

Parameter 
Percentage 

 

Method 1 

 

Method 2 Method 3 

Estimate Root 

Mean Square 

Error (ERMSE) 

2 

5% 0.441 0.446 0.420 

10% 0.493 0.509 0.424 

15% 0.605 0.632 0.457 

20% 0.699 0.737 0.493 

30% 0.889 0.949 0.512 

40% 1.170 1.263 0.572 

4 

5% 0.931 0.955 0.885 

10% 1.112 1.187 0.971 

15% 1.284 1.409 0.989 

20% 1.448 1.602 1.019 

30% 1.897 2.176 1.142 

40% 2.454 2.839 1.261 

6 

5% 1.464 1.519 1.402 

10% 1.705 1.868 1.515 

15% 1.943 2.221 1.578 

20% 2.215 2.582 1.675 

30% 2.807 3.415 1.798 

40% 3.617 4.485 1.991 

8 

5% 1.902 1.998 1.843 

10% 2.207 2.488 1.991 

15% 2.526 2.999 2.090 

20% 2.770 3.408 2.172 

30% 3.628 4.674 2.468 

40% 4.522 6.030 2.664 
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Table 6.6 (a): Simulation results of mean for concentration parameter,   for 

sample size,  n = 100 

Performance 

Indicator 

Concentration 

Parameter 
Percentage 

 

Method 1 

 

Method 2 Method 3 

Mean 

2 

5% 2.130 2.137 2.043 

10% 2.217 2.232 2.039 

15% 2.313 2.335 2.045 

20% 2.419 2.449 2.052 

30% 2.628 2.675 2.058 

40% 2.862 2.924 2.065 

4 

5% 4.242 4.273 4.088 

10% 4.437 4.501 4.117 

15% 4.587 4.683 4.094 

20% 4.800 4.931 4.119 

30% 5.237 5.447 4.145 

40% 5.718 6.013 4.176 

6 

5% 6.421 6.496 6.203 

10% 6.640 6.791 6.184 

15% 6.917 7.148 6.211 

20% 7.214 7.522 6.237 

30% 7.849 8.339 6.287 

40% 8.509 9.185 6.299 

8 

5% 8.523 8.658 8.257 

10% 8.833 9.105 8.289 

15% 9.164 9.579 8.299 

20% 9.504 10.062 8.320 

30% 10.306 11.174 8.400 

40% 11.179 12.387 8.475 
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Table 6.6 (b): Simulation results of estimate bias for concentration parameter,   

for sample size,  n = 100 

Performance 

Indicator 

Concentration 

Parameter 
Percentage 

 

Method 1 

 

Method 2 Method 3 

Estimate Bias 

(EB) 

2 

5% 0.130 0.137 0.043 

10% 0.217 0.232 0.039 

15% 0.313 0.335 0.045 

20% 0.419 0.449 0.052 

30% 0.628 0.675 0.058 

40% 0.862 0.924 0.065 

4 

5% 0.242 0.273 0.088 

10% 0.437 0.501 0.117 

15% 0.587 0.683 0.094 

20% 0.800 0.931 0.119 

30% 1.237 1.447 0.145 

40% 1.718 2.013 0.176 

6 

5% 0.421 0.496 0.203 

10% 0.640 0.791 0.184 

15% 0.917 1.148 0.211 

20% 1.214 1.522 0.237 

30% 1.849 2.339 0.287 

40% 2.509 3.185 0.299 

8 

5% 0.523 0.658 0.257 

10% 0.833 1.105 0.289 

15% 1.164 1.579 0.299 

20% 1.504 2.062 0.320 

30% 2.306 3.174 0.400 

40% 3.179 4.387 0.475 
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Table 6.6 (c): Simulation results of ERMSE for concentration parameter,   for 

sample size,  n = 100 

Performance 

Indicator 

Concentration 

Parameter 
Percentage 

 

Method 1 

 

Method 2 Method 3 

Estimate Root 

Mean Square 

Error (ERMSE) 

2 

5% 0.297 0.302 0.271 

10% 0.357 0.369 0.286 

15% 0.436 0.456 0.303 

20% 0.530 0.559 0.316 

30% 0.726 0.773 0.342 

40% 0.957 1.020 0.360 

4 

5% 0.630 0.651 0.575 

10% 0.765 0.818 0.616 

15% 0.890 0.976 0.629 

20% 1.072 1.198 0.672 

30% 1.497 1.709 0.737 

40% 1.965 2.268 0.786 

6 

5% 0.988 1.041 0.914 

10% 1.142 1.269 0.951 

15% 1.375 1.586 1.009 

20% 1.624 1.920 1.054 

30% 2.217 2.712 1.136 

40% 2.880 3.575 1.232 

8 

5% 1.330 1.424 1.255 

10% 1.538 1.767 1.326 

15% 1.779 2.156 1.361 

20% 2.074 2.602 1.417 

30% 2.822 3.689 1.554 

40% 3.664 4.912 1.685 

 

Tables 6.5 and 6.6 show the simulation results for sample size of 50 and 100 

respectively. Similar to the previous results of n = 30, the simulation results also exhibit 

the same pattern. In general, an increment in the percentage of missing values being 

imputed using the proposed method has led to a divergence of new mean as well as 

having larger value of EB and ERMSE for all three methods. It also noted that, the 

larger the concentration parameter, the higher are the EB and ERMSE values. This is 



130 

 

true for all the concentration parameter values. Small values of EB and ERMSE are 

observed for smaller percentage of missing values such as 5%, 10%, 15% and 20%. 

However, it is worthwhile to observe that the new means are comparatively far from the 

initial values if the percentage of missing values are too high especially when it reached 

40% level. At this percentage level, it tends to produce quite high value of EB and 

ERMSE. Thus, it can be inferred that when the percentage of missing values reach more 

than 40%, the proposed method are no longer suitable to be implemented in the 

analysis. 

In conclusion, from Table 6.1-6.3, it can be said, both proposed methods which 

are Method 2 and Method 3 perform better than Method 1. It can be seen that 

imputation methods by Method 2 and Method 3 give an estimated parameter which is 

close to its true value and has shorter circular distance. In contrast, imputation by 

circular mean gives poor performance as the difference of the new means with the true 

values gets larger with an increase in the percentage of missing values. 

Thus, based on all simulation results displayed in Tables 6.1 to 6.6, a few 

conclusions can be drawn. As mentioned earlier, for parameter mean direction, both 

proposed methods which are Method 2 and Method 3 give the best performance based 

on the calculated values of circular distance. Both proposed methods seem to give very 

consistent values for all different values of the concentration parameter and sample sizes 

at a different level of percentage of missing data. Unlike Method 2 and Method 3, 

Method 1 gives a poor estimate by exhibiting comparatively higher value of circular 

distance for each sample size and concentration parameter. Hence, in perspective of the 

mean direction, it can be said that Method 2 and Method 3 can be used to impute the 

data with missing values if our objective is to estimate the parameter mean direction 

only. 
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However, if our objective is to estimate both parameters in von Mises 

distribution, we have to consider the results obtained in Tables 6.4 to 6.6. Considering 

all three methods of estimating the parameter after doing an imputation, it can be seen 

that Method 3 gives the best estimate. Method 3 gives consistently small values of EB 

and ERMSE while estimating the concentration parameter and also giving short circular 

distance in estimating the mean direction. Thus, from this simulation studies, it can be 

concluded that Method 3 that is DA algorithm is the best method to impute the missing 

values distributed with von Mises distribution. 

 

6.5  Illustrative Example 

 

As an illustration of the proposed method, a bivariate data set was considered. A 

sample size of 85 observations is considered. The data was fitted using the simple linear 

regression model proposed by Downs and Mardia (2002), and the model is given as 

below: 

 
1

ˆ 1.253 2arctan 0.906 tan 1.141
2

i iy x
 

   
 

 

The circular residuals for the fitted model are calculated by: 

ˆ
i i iy y    

In this section, our particular interest is in testing the superiority of the 

imputation methods in the circular residuals data. The new parameter estimation after 

imputation method is calculated using three methods considered.  
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Table 6.7: Parameter estimation based on imputation method 

 

Percentage Mean Direction Concentration Parameter 

Method 1 Method 2 Method 3 Method 1 Method 2 Method 3 

5% 0.146 0.154 0.159 7.786 7.846 7.483 

10% 0.139 0.155 0.152 7.882 8.001 6.877 

15% 0.128 0.153 0.161 8.172 8.362 6.726 

20% 0.121 0.154 0.187 8.366 8.617 6.731 

30% 0.097 0.133 0.106 9.485 9.777 6.322 

40% 0.091 0.146 0.168 17.775 19.395 14.050 

 

Table 6.8: Circular distance and estimate bias calculated using imputation method 

 

Percentage Circular Distance (CD) Estimated Bias (EB) 

Method 1 Method 2 Method 3 Method 1 Method 2 Method 3 

5% 0.007 0.000 0.005 0.344 0.404 0.041 

10% 0.014 0.001 0.001 0.44 0.559 0.565 

15% 0.025 0.001 0.007 0.73 0.92 0.716 

20% 0.032 0.001 0.034 0.924 1.175 0.711 

30% 0.056 0.020 0.048 2.043 2.335 1.12 

40% 0.062 0.008 0.015 10.333 11.953 6.608 

 

 The initial mean direction for the residuals data is 0.153 while the concentration 

parameter is 7.442. Table 6.7 shows the new mean direction and concentration 

parameter estimated using the considered methods. The missingness was tested at six 

different percentages as what we have done in simulation studies. As for performance 

indicator, CD was calculated to measure the biasness for the mean direction while 

absolute EB is calculated for the concentration parameter. From Table 6.8, it can be 

seen that the value of the CD calculated for Method 2 and Method 3 are small up to 

20% of missing values in comparison to Method 1. These results are similar to the ones 
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obtained in the simulation studies. The value of EB also seems to exhibit the same 

pattern as simulation results in Section 6.4. Method 1 and Method 3 give small EB as 

compared to Method 2. Thus, in conclusion, by considering both parameters, Method 3 

is the best imputation method in handling missing values for circular data with von 

Mises distribution. 

 

6.6  Discussion 

 

Three different methods have been considered in handling the missing values for 

circular data. In this chapter, we focus on circular variables distributed with von Mises 

distribution. Method 1, which is imputation by circular mean, is the common method 

and has been widely used for handling missing data in linear data, as well as few studies 

in circular. Method 2 and Method 3 namely EM algorithm and DA algorithm 

respectively are the method that have been used in linear study and here investigate the 

applicability of both algorithms in circular data for the purpose of improving the method 

of handling missing values. 

From simulation studies shown in Section 6.4, a few conclusions can be drawn. 

Based on circular distance, both Method 2 and Method 3 are superior in which both 

methods give very small value of circular distance which imply that the new estimates 

are close to the initial parameter mean direction. However, if we consider the estimate 

bias which related to concentration parameter, Method 3 gives the smallest bias. Thus, 

considering both parameters, it can be said that Method 3 is the best method as it gives 

small values of circular distance as well as estimate bias. 
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All the methods considered have been illustrated using real data set found in the 

literature. The illustration results also supported the results obtained from simulation 

studies where the superior method is Method 3 if we consider both the mean direction 

and concentration parameter.  
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CHAPTER 7  

CONCLUSIONS 

 

7.1  Summary 

 

In this chapter, we will summarise all findings that we obtained from this study. 

Four topics related to von Mises distribution are discussed. In the first part of the study, 

it focuses on the efficient approximation for the concentration parameter in von Mises 

distribution. Our purpose is to propose an improved estimate of the concentration 

parameter,   for the von Mises distribution which is applicable for both small and large 

values of   In this study, our proposed method will be compared with three different 

methods namely, the Dobson's method, Best & Fisher's method and Amos’s method. 

From the simulation studies, it can be observed that, for both small and large values of 

 , the proposed method shows a better performance than the Amos’s, Dobson's and 

Best & Fisher's methods except for when 1  . This can be seen from the least 

absolute relative bias for most of the   values as well as smaller values of estimated SE 

and RMSE in comparison to the other methods considered. Unlike the Amos’s method 

which is restrictive to small values of   ( 1   for n ≤ 50), the proposed method seems 

to be applicable to both small and large values of   ( 1  for large sample size n = 

100).   

In the second part of this study, our focus is on constructing the confidence 

intervals (CI) for the concentration parameter,   in von Mises distribution. Four 

improved methods in obtaining the CI of the concentration parameter for data with 
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moderately large   values were proposed. The following are the methods that we 

considered 

i. CI based on circular variance population which will be referred to as 

Method 1 

ii. CI based on the asymptotic distribution of  ̂   which will be referred to as 

Method 2 

iii. CI based on the distribution of mean direction and mean resultant length 

which will be referred to as Method 3 

iv. CI based on bootstrap-t method which will be referred to as Method 4 

 

In addition to the four methods, a current method based on percentile bootstrap 

by Fisher is also considered. From the simulation study, it is noted that all of the four 

proposed methods seems to perform relatively better than the existing method by Fisher. 

Method 2 is superior in terms of simplicity in obtaining the CI, Method 4 is superior in 

terms of coverage probability and Method 3 is superior in terms of expected length. All 

proposed methods  

In the third part of the study, the objective is to propose a new statistic based on 

circular distance in von Mises distribution. The proposed statistics that we obtained can 

be used in approximating a sample from von Mises distribution to Chi-squared 

distribution. Apart from that, the statistics based on circular distance is used in 

constructing new CI for the concentration parameter. In this study, three different 

methods are considered namely mean, median and percentile. From the simulation 

study, we noted that the range of percentile that gives values that are close to 0.95 is 

from 30th to 50th percentile. Another simulation study is performed to assess the 

performance of all proposed methods. From the simulation, it can be concluded that the 
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CI based on percentile consistently gives good coverage probability as well as the 

smallest expected length. 

In the final part of this study, we consider several imputation methods when 

there are with missing values problem in the circular data set. In this study, the data are 

in circular form and distributed with von Mises distribution. Three different methods 

have been considered namely Method 1, which is imputation by circular mean, Method 

2 and Method 3, which is EM algorithm and DA algorithm respectively. From the 

simulation studies, by assessing the performance indicator, a few conclusions can be 

drawn. Based on circular distance, both Method 2 and Method 3 are superior in which 

both methods give very small value which imply that the new estimates are close to the 

initial parameter mean direction. However, if we consider the estimate bias which 

related to concentration parameter, Method 3 gives the smallest bias. Thus, considering 

both parameters, it can be said that Method 3 is the best method as it gives small values 

of circular distance as well as estimate bias. 

 

7.2 Contributions 

 

This particular study has contributed and benefited to circular data analysis in the 

following ways: 

 

i. We have proposed a new approach to approximate the concentration parameter 

in von Mises which applicable for both small and large values.  

ii. We have developed four different methods of constructing the CI for large 

concentration parameter in von Mises distribution. 
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iii. We have proposed a new statistic based on circular distance in von Mises 

distribution 

iv. We have shown that, the new statistic based on circular distance can be used to 

approximate a sample from von Mises to Chi-squared distribution 

v. We have developed the CI for the concentration parameter using the statistic 

based on circular distance that we obtained 

vi. We have identified two feasible methods in handling the missing problem in 

circular data distributed with von Mises distribution. 

 

7.3 Further Research 

 

Apart from the contributions that have been obtained from this study, there are 

various possibilities for further research in this related area. Some suggestions that 

might be considered for future studies are as follows:   

 

i. consider other circular distribution in approximating the confidence intervals 

for the parameter 

ii. consider outliers while approximating the confidence intervals 

iii. develop the method of identifying outlier using a new statistic based on circular 

distance 

iv. extend the circular distribution or circular model that can be considered in 

handling the missing data problems 

v. extend to another imputation method in handling the missing values 

vi. consider the robustness for each method proposed 
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Appendix A. Wind direction data recorded at maximum wind speed at Kuala 

Terengganu 

Obs. Number 
Wind direction 

(radian) 
 

Obs. Number 
Wind direction 

(radian) 

1 1.571  26 1.396 

2 1.571  27 0.873 

3 0.698  28 6.283 

4 0.873  29 1.571 

5 1.222  30 1.047 

6 5.411  31 1.047 

7 1.047  32 6.109 

8 0.698  33 5.934 

9 1.222  34 0.698 

10 6.283  35 0.349 

11 1.047  36 1.047 

12 1.047  37 0.698 

13 0.698  38 0.873 

14 0.349  39 0.873 

15 1.047  40 0.873 

16 1.047  41 1.396 

17 1.047  42 0.698 

18 1.047  43 1.047 

19 1.047  44 0.873 

20 0.524  45 0.873 

21 1.047  46 1.047 

22 0.175  47 0.873 

23 6.109  48 0.873 

24 5.934  49 1.047 

25 0.524  50 0.873 
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Appendix B. Wind direction data recorded using HF radar and anchored buoy. 

Obs. Number HF Radar (radian) 
Anchored Buoy 

(radian) 

1 0.790 1.154 

2 0.715 1.154 

3 0.975 1.007 

4 0.970 1.178 

5 0.993 0.859 

6 0.902 1.007 

7 0.943 1.056 

8 1.728 1.400 

9 1.445 1.497 

10 1.679 1.693 

11 1.703 2.012 

12 1.862 1.792 

13 1.726 1.766 

14 1.790 1.669 

15 1.831 1.400 

16 1.719 1.400 

17 1.646 1.375 

18 1.622 1.056 

19 1.342 1.178 

20 1.176 1.276 

21 1.325 1.693 

22 1.103 1.325 

23 6.131 6.062 

24 5.719 5.988 

25 5.713 5.988 

26 5.487 5.498 

27 5.742 5.276 

28 5.728 5.302 

29 5.610 5.620 

30 5.463 5.744 

31 5.427 5.644 

32 5.418 5.669 

33 5.406 5.744 

34 5.472 5.547 

35 5.401 5.498 

36 5.420 5.400 

37 5.276 5.449 

38 1.728 4.786 

39 5.512 5.449 

40 5.486 5.178 

41 5.444 5.620 

42 5.518 5.130 
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43 5.505 4.541 

44 5.558 5.571 

45 5.420 5.620 

46 5.398 5.473 

47 5.334 5.327 

48 5.418 4.835 

49 5.418 5.032 

50 5.338 5.842 

51 5.470 5.571 

52 5.455 5.522 

53 5.555 5.473 

54 5.462 5.522 

55 5.401 5.522 

56 5.316 5.376 

57 5.439 5.081 

58 5.408 5.473 

59 5.431 5.449 

60 5.473 5.915 

61 5.460 5.351 

62 5.364 5.571 

63 5.444 5.376 

64 5.350 5.327 

65 5.202 4.983 

66 5.161 4.786 

67 5.062 4.908 

68 5.145 4.517 

69 5.212 4.835 

70 5.238 4.417 

71 5.238 4.417 

72 4.970 5.007 

73 4.947 5.473 

74 4.887 5.400 

75 4.872 4.859 

76 4.589 4.859 

77 4.510 4.761 

78 4.319 4.639 

79 4.427 4.664 

80 4.436 4.664 

81 4.451 4.074 

82 3.840 4.295 

83 3.819 4.098 

84 4.159 4.173 

85 3.987 4.122 
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Appendix C. Programming Script: Simulation study for estimation of 

concentration parameter using different methods. 

 

#SKEn50k0.5s5000=simu.kap.est(50,0,0.5,5000) 

#kapT(0,2,20) 

#kap.EST(20,0,2) 

  

 simu.kap.est=function(n,mu,kp,simu){ 

 

  kappaEst=matrix(0,nrow=simu,ncol=4) 

  for(i in 1:simu){ 

  kappaEst[i,]=kap.EST(n,mu,kp)$kapp 

 

 } 

  dimnames(kappaEst)=list(NULL,c("new 

technique","amos","fisher","dobson")) 

   

  meanKappa=colMeans(kappaEst) 

  EstBias_meanKappa-kp 

  AREB_((abs(EstBias))/kp) 

  ESE_((1/(simu-1))*(colSums((kappaEst-meanKappa)^2)))^(1/2) 

  ERMSE_((1/simu)*(colSums((kappaEst-kp)^2)))^(1/2) 

  output_rbind(meanKappa,EstBias,AREB,ESE,ERMSE) 

   

 list(result=output,kappaEst=kappaEst) 

 } 
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Appendix D. Programming Script: Estimation of concentration parameter using 

different methods. 

 

#kap.EST(20,0,2) 

  

 kap.EST=function(n,mu,kp){ 

  

 theta = rvm(n,mu,kp) 

  

 C=(1/n) * sum(cos(theta)) 

 S=(1/n) * sum(sin(theta)) 

 r=(C^2 + S^2)^(1/2) 

 

 if(kp<2){ 

 kp.s=polyroot(c(-96*r,48,0,-6,0,1)) 

 kap.n=kapT(kp.s) 

 } 

  

 else if(kp>=2){ 

 kp.s=polyroot(c(1,1,4,8*r-8)) 

 kap.n=kapT(kp.s) 

 } 

 kap.a=(r/(1 - r^2)) * ((1/2) + ((1.46 * (1 - r^2)) + (1/4))^(1/2)) 

  

 m1=CirMe(theta) 

 K_sum(cos(theta-m1)) 

 w_K/n 

 

 if(w<0.53){ 

  kap.f=2*w+w^3+(5/6)*w^5 

 } 

 else if(w>=0.53&&w<0.85){ 

  kap.f=(-0.4)+1.39*w+0.43/(1-w) 

 } 

 else if(w>=0.85){ 

  kap.f=1/(w^3-4*w^2+3*w) 

 } 

  

 if(w<0.65){ 

  kap.d=2*w+w^3+(5/6)*w^5 

 } 
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 else if(w>=0.65){ 

  kap.d=(9-8*w+3*(w^2))/(8*(1-w)) 

 } 

  

 a0 <- 1 

 a1 <- 1 

 a2 <- 4 

 a3 <- 8 * r - 8 

 p <- (3 * a3 * a1 - (a2^2))/(3 * (a3^2)) 

 q <- (2 * (a2^3) - 9 * a1 * a2 * a3 + 27 * a0 * (a3^2))/(27 * 

(a3^3)) 

 p1 <- (3 * (r - 1) - 2)/(24 * ((r - 1)^2)) 

 q1 <- (4 - 9 * (r - 1) + 54 * ((r - 1)^2))/(432 * ((r - 1)^3)) 

 D <- ((p/3)^3) + ((q/2)^2) 

 kap.n1=( - (q/2) + D^(1/2))^(1/3) + ( - (q/2) - D^(1/2))^(1/3) - 

1/(6 * (r - 1)) 

  

  

 output1=cbind(kap.n,kap.a,kap.c,kap.f,kap.d,kap.n1) 

 output2=cbind(kap.n,kap.a,kap.c,kap.d) 

 

 list(all.kapp=output1,kapp=output2,kp.s=kp.s) 

  

 } 

 

 

#kapT(0,2,20) 

  

 kapT=function(kp.s){ 

 n=length(kp.s) 

 ab=Mod(kp.s) 

 kpp=Re(kp.s) 

 ac=cbind(ab,kpp) 

 ad=ab-kpp 

 for(i in 1:n){ 

  if(ad[i]==0) {rt=kpp[i]} 

}  

rt 

} 
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Appendix E. Programming Script: Confidence Interval for concentration 

parameter. 

 

Real.CI=function(theta,B,ky.1,ky.2,alp){ 

  

 n=length(theta) 

  

 #estimation of parameter 

 mu.1=CirMe(theta) 

 kp.1=est.kappa(theta) 

  

 S1=matrix(0,nrow=B,ncol=n) 

 S3=matrix(0,nrow=B) 

 S5=matrix(0,nrow=B) 

 Cs=matrix(0,nrow=B) 

 Ss=matrix(0,nrow=B) 

 Rbars=matrix(0,nrow=B) 

 SEr=matrix(0,nrow=B) 

 tt=matrix(0,nrow=B) 

 

  for(i1 in 1:B){ 

  S1[i1,]=rvm(n,mu.1,kp.1) 

  S3[i1]=est.kappa(S1[i1,]) 

   

  Cs[i1]=(1/n)*sum(cos(S1[i1,])) 

  Ss[i1]=(1/n)*sum(sin(S1[i1,])) 

  Rbars[i1]=((Cs[i1])^2+(Ss[i1])^2)^(1/2) 

  SEr[i1]=(1/n)*((1-Rbars[i1]/S3[i1]-(Rbars[i1])^2)^(-1/2)) 

   

  tt[i1]=(S3[i1]-kp.1)/SEr[i1] 

 } 

   

 S4=sort(S3) 

 ac=as.integer((1/2)*B*alp+(1/2)) 

 am=B-ac 

 a2=ac 

 a3=(1/2)*B*alp+(1/2) 

  

 kLow=S4[ac+1] 

 kUpp=S4[am] 

 L.bFisher=kUpp-kLow 
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# upper n lower limit based on another method 

 

 cc=B*(alp/2) 

 kLo=S4[cc] 

 kUp=S4[B+1-cc] 

 L.Fam=kUp-kLo 

 

 tt0=sort(tt) 

 t01=tt0[B*(1-alp/2)] 

 t02=tt0[B*(alp/2)] 

  

 C=(1/n)*sum(cos(theta)) 

 S=(1/n)*sum(sin(theta)) 

 Rbar=(C^2 + S^2)^(1/2) 

 

 sE=(1/n)*((1-Rbar/kp.1-(Rbar)^2)^(-1/2)) 

 

 tLow=kp.1-t01*sE 

 tUpp=kp.1-t02*sE 

 L.bootT=tUpp-tLow 

  

 v=(-2*log(Rbar))^(1/2) 

 k1=((n-1)*(v^2))/ky.1 

 k2=((n -1)*(v^2))/ky.2 

 R1=exp(-k1/2) 

 R2=exp(-k2/2) 

 

 if(Rbar<0.6137){ 

 kp.s=polyroot(c(-96*Rbar,48,0,-6,0,1)) 

 kapp=kapT(kp.s) 

  

 nCI1=kapT(polyroot(c(-96*R1,48,0,-6,0,1))) 

 nCI2=kapT(polyroot(c(-96*R2,48,0,-6,0,1))) 

  

 sE=sqrt(n*(1-(Rbar/kapp)-Rbar^2)) 

 n2.CI1=(-1.96/sE)+kapp 

 n2.CI2=(1.96/sE)+kapp 

 

 if(n2.CI1<0){n3.CI1=0 } 

  else{n3.CI1=n2.CI1} 
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 } 

   

 else if(Rbar>=0.6137){ 

 kp.s=polyroot(c(1,1,4,8*Rbar-8)) 

 kapp=kapT(kp.s) 

  

 nCI1=kapT(polyroot(c(1,1,4,8*R1-8))) 

 nCI2=kapT(polyroot(c(1,1,4,8*R2-8))) 

  

 sE=sqrt(n*(1-(Rbar/kapp)-Rbar^2)) 

 n2.CI1=(-1.96/sE)+kapp 

 n2.CI2=(1.96/sE)+kapp 

 

 if(n2.CI1<0){n3.CI1=0 } 

  else{n3.CI1=n2.CI1} 

 } 

 

 A=(n*(1-Rbar))/(Rbar*ky.1) 

 B=(n*(1-Rbar))/(Rbar*ky.2) 

  

 N3.CI1=kapT(polyroot(c(-(n*A+2*n),(4*A-6*n*A-12*n),(4*n*A+8*A-

16*n),32*n*A))) 

 N3.CI2=kapT(polyroot(c(-(n*B+2*n),(4*B-6*n*B-12*n),(4*n*B+8*A-

16*n),32*n*B))) 

 

 L.pop=nCI2-nCI1 

 L.norm=n2.CI2-n3.CI1 

 L.tbar=N3.CI2-N3.CI1 

 

 

 Res=cbind(mu.1,kp.1,kapp,L.bFisher,L.Fam,L.bootT,L.stephen,L.pop,L.

norm,L.tbar, 

 kLow,kUpp,kLo,kUp,tLow,tUpp,sCI1,sCI2,nCI1,nCI2,n3.CI1,n2.CI2,N3.CI

1,N3.CI2) 

 

list(Result=Res) 

 

} 
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Appendix F.  Programming Script: CI based on a new statistic  

 

 

simu.CI.sort=function(n,mu,kp,ch1,ch2,simu) 

{ 

 covP = matrix(0, nrow = simu, ncol = 10) 

 expL = matrix(0, nrow = simu, ncol = 10) 

 

 #simulation  

 for(i in 1:simu) { 

  covP[i,]=CI.to.sort(n,mu,kp,ch1,ch2)$cp 

  expL[i,]=CI.to.sort(n,mu,kp,ch1,ch2)$EL 

   } 

  

 dimnames(covP)=list(NULL,c("p.1","p.2","p.3","p.4","p.5","p.6","p.7

","p.8","p.9","p.10")) 

 dimnames(expL)=list(NULL,c("p.1","p.2","p.3","p.4","p.5","p.6","p.7

","p.8","p.9","p.10")) 

 

 #calculation of perf indicator 

 CovP=colMeans(covP) 

 ExpL=colMeans(expL) 

   

 list(CovP=CovP,ExpL=ExpL,covP=covP,expL=expL) 

 

} 

 

 

## ----------------------- CI sort based on percentile --------------- 

 

 

CI.to.sort=function(n,mu,kp,ch1,ch2){ 

 count=0 

 #set.seed(40) 

 theta=rvm(n,mu,kp) 

 C=sum(cos(theta)) 

 S=sum(sin(theta)) 

 A3=matrix(0,nrow=n) 

  

 for(j in 1:n){ 
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 A3[j]=n-C*cos(theta[j])-S*sin(theta[j]) 

 kLow=ch1/A3 

 kUpp=ch2/A3 

 

} 

 

data=cbind(kLow,kUpp) 

ExpL=data[,2]-data[,1] 

nData=cbind(data,ExpL) 

dimnames(nData)=list(NULL,c("Low","Upp","ExpL")) 

 

#sort each column 

a1=sort(data[,1]) 

a2=sort(data[,2]) 

a3=cbind(a1,a2) 

 

b1=sort.col(nData,"@ALL","Low",T) 

b2=sort.col(nData,"@ALL","Upp",T) 

b3=sort.col(nData,"@ALL","ExpL",T) 

 

d=matrix(0,ncol=10) 

cp=matrix(0,ncol=10) 

EL=matrix(0,ncol=10) 

 

for(i in 1:10){ 

d[i]=i*(n/10) 

 

## counting 

 if(kp<b3[d[i],2]&&kp>b3[d[i],1]) { 

  cp[i]=1 

 } 

 else { 

  cp[i]=0 

  count=count + 1 

 } 

EL[i]=b3[d[i],3] 

} 

 

list(d=d,cp=cp,EL=EL,nData=nData,a3=a3,b3=b3) 

#list(d=d,cp=cp,data=data,nData=nData,a3=a3,b1=b1,b2=b2,b3=b3) 

} 
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Appendix G. Programming Script: Calculating the CI based on a new statistic 

(mean, median and percentile)  

 

CI.sort.real=function(n,mu,kp,ch1,ch2,Qr){ 

 set.seed(40) 

 count=0 

 

 theta=rvm(n,mu,kp) 

 C=sum(cos(theta)) 

 S=sum(sin(theta)) 

 n=length(theta) 

 kp=est.kappa(theta) 

 

 A3=matrix(0,nrow=n) 

  

 for(i1 in 1:n){ 

  

 A3[i1]=n-C*cos(theta[i1])-S*sin(theta[i1]) 

 kLow=ch1/A3 

 kUpp=ch2/A3 

 Gj=A3*kp 

} 

 

ExpL=kUpp-kLow 

nData=cbind(kLow,kUpp,ExpL) 

dimnames(nData)=list(NULL,c("Low","Upp","ExpL")) 

 

#sort each column 

a1=sort(kLow) 

a2=sort(kUpp) 

a3=a2-a1 

a4=cbind(a1,a2,a3) 

c1=colMeans(a1) 

c2=colMeans(a2) 

ELmean=c2-c1 

d1=colMedians(kLow) 

d2=colMedians(kUpp) 

ELmed=d2-d1 

 

a5=a1[(0.3*n):(0.5*n)] 

a6=a2[(0.3*n):(0.5*n)] 



163 

 

a7=a3[(0.3*n):(0.5*n)] 

a8=cbind(a5,a6,a7) 

 

n2=length(a5) 

d=matrix(0,ncol=6) 

cp=matrix(0,ncol=6) 

EL=matrix(0,ncol=6) 

 

for(i2 in 1:6){ 

d[i2]=round(1+(i2-1)*Qr) 

 

if(kp<a6[d[i2]]&&kp>a5[d[i2]]) { 

  cp[i2]=1 

 } 

 else { 

  cp[i2]=0 

  count=count + 1 

 } 

 

EL[i2]=a7[d[i2]] 

 

res1=rbind(kp,c1,c2,ELmean,d1,d2,ELmed) 

res2=rbind(cp,EL) 

 

plot(Gj) 

list(Gj=Gj,a5=a5,a4=a4,a8=a8,d=d,res1=res1,res2=res2) 

 

} 
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Appendix H. Programming Script: Analysis of missing values for circular data 

 

 

mV3.Real=function(data,mIni,kIni,Per,cycle){ 

 #set.seed(30) 

 n=length(data) 

 data=as.matrix(data) 

 d2=ContiNAmulti(data,Per) #distribute NA 

 d3=na.exclude(d2) #data after excluding all NAs 

  

 # parameter after excluding all NAs 

 mu.1=CirMe(d3) 

 kp.1=est.kappa(d3) 

 

 mu1=matrix(0,nrow=cycle) 

 kp1=matrix(0,nrow=cycle) 

 nDr1=matrix(0,nrow=n, ncol=cycle) 

 

 mu1[1]=mIni 

 kp1[1]=kIni 

  

 #replace the NA in dataset 

 nDr1[,1]=replace(d2,is.na(d2),mu1[1]) 

 

for(j1 in 2:cycle){ 

  

 mu1[j1]=CirMe(nDr1[,j1-1]) 

 kp1[j1]=est.kappa(nDr1[,j1-1]) 

  

 #replace the NA in dataset 

 nDr1[,j1]=replace(d2,is.na(d2),mu1[j1]) 

  

 final=j1 

if((abs(kp1[j1]-kp1[j1-1])&&(pi-(abs(pi-abs(mu1[j1]-mu1[j1-

1])))))<=0.0001) 

 break 

 

  

}  
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 mu2=matrix(0,nrow=cycle) 

 kp2=matrix(0,nrow=cycle) 

 nDr2=matrix(0,nrow=n, ncol=cycle) 

  

 mu2[1]=mIni 

 kp2[1]=kIni 

  

 #identify the number of NAs and their location 

 g=length(which.na(d2[,1])) 

 

 gr=matrix(0,nrow=g, ncol=cycle) 

 

 #generate value for imputation 

 gr[,1]=as.matrix(rvm(g,mu2[1],kp2[1])) 

 

 #replace the NA in dataset 

 nDr2[,1]=replace(d2,is.na(d2),gr[,1]) 

 

for(j2 in 2:cycle){ 

  

 mu2[j2]=CirMe(nDr2[,j2-1]) 

 kp2[j2]=est.kappa(nDr2[,j2-1]) 

  

 #generate value for imputation 

 gr[,j2]=as.matrix(rvm(g,mu2[j2],kp2[j2])) 

 

 #replace the NA in dataset 

 nDr2[,j2]=replace(d2,is.na(d2),gr[,j2]) 

  

}  

 d=cbind(data,d2) 

 para1=cbind(mu1,kp1,mu2,kp2) 

 #para2=cbind(mu2,kp2) 

 

par.est=cbind(final,mu1[2],kp1[2],mu1[final],kp1[final],mu2[cycle],kp2

[cycle]) 

 

list(par.est=par.est,para1=para1) 

  

} 

 


