UNIVERSITY MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate : NG CHO PING (I.C/Passport No: 880825-10-5439)

Registration/Matric No : HGA 110007

Name of Degree : MASTER OF PHILOSOPHY

Title of Project Paper/Research Report/Dissertation/Thesis ("This Work"):

EFFECTS OF *HABBATUS SAUDA* (*NIGELLA SATIVA*) OIL ON SPERM AND TESTIS PARAMETERS OF NICOTINE TREATED RATS

Field of study : LIVE SCIENCES (BIOLOGY)

I do solemnly and sincerely declare that:

- (1) I am the sole author/writer of this work;
- (2) This work is original;
- (3) Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the work and its authorship has been acknowledged in this work;
- (4) I do not have any actual knowledge nor do I ought reasonably to know that the making of this work constitutes an infringement of any copyright work;
- (5) I hereby assign all and every rights in the copyright to this work to the University of Malaya ("UM"), who henceforth shall be owner of the copyright in this work and that any reproduction or use in any form or by any means whatsoever is prohibited without the written consent of UM having been first had and obtained;
- (6) I am fully aware that if in the course of making this work I have infringed any copyright whether intentionally or otherwise, I may be subject to legal action or any action as may be determined by UM.

Candidate's Signature

Subscribed and solemnly declared before,

Witness's Signature

Name : Designation : Date

Date

ABSTRACT

Nicotine is considered as one of the most toxic substances that can be found in tobacco smoke. Besides being used as a natural insecticide, nicotine is pharmacologically active and has a negative impact on the reproductive system and fertility of males. In contrast, Nigella sativa seeds and oil have a lot of positive properties, such as antipyretic, analgesic, antihypertensive and antineoplastic. This study was carried out to investigate the potential protective effect of Nigella sativa (habbatus sauda) oil on nicotine treated male rat reproductive system. Forty-five Sprague-Dawley male rats (7-9 weeks old, 200-250g) were randomly divided into 5 groups; Nicotine (N) (0.5mg/100g), Nicotine Control (NC) (saline, 0.1ml/100g), habbatus sauda oil (HS) (6.0µl/100g), habbatus sauda Control (HSC) (corn oil, 0.1ml/100g) and nicotine-habbatus sauda (NHS) $(0.5 \text{mg}/100 \text{g BW} \text{ nicotine and } 6.0 \mu \text{l}/100 \text{g habbatus sauda})$ groups and treated for 100 days. Sperm parameters, seminiferous tubules measurements, blood hormonal level and body weight increment were evaluated. Rats in NHS group $(1.29\pm0.04 \text{ x } 10^6 \text{ sperm/ml})$ showed significantly higher sperm motility compared to N group $(1.04\pm0.04 \times 10^6)$ sperm/ml). The HS group (90.69±0.01 %) had the highest percentage of normal sperm followed by NHS (88.52±0.02 %) and N (82.05±0.02 %) groups (p<0.05). Percentage of live sperm for NHS group (95.96±0.01 %) was significantly higher than N group (93.45±0.01 %) but significantly lower than HS group (96.80±0.00 %) (p<0.05). The NHS group showed significantly smaller diameter of seminiferous tubules $(245.42\pm1.34\mu m)$ compared to N group $(247.12\pm1.59\mu m)$ and HS group (249.95±1.37µm). Comparison on lumen diameter showed that N group had significantly wider lumen (100.74 \pm 1.75µm) compared to NHS (67.41 \pm 1.92µm) and HS (66.65±1.57µm) groups. Width of spermatogonia layer of NHS group (16.12±0.24µm) was significantly lower compared to HS (17.59±0.25 µm) and N (19.51±0.29µm) groups. The NHS group $(35.94\pm0.39\mu\text{m})$ had significantly widest spermatocytes layer followed by HS $(34.56\pm0.40\mu\text{m})$ and N $(32.56\pm0.41\mu\text{m})$ groups (p<0.05). Both HS $(38.05\pm0.61\mu\text{m})$ and NHS $(37.84\pm1.22\mu\text{m})$ groups had significantly wider spermatid and sperm layer compared to N group $(21.51\pm0.51\mu\text{m})$. Treatments did not significantly affect blood hormonal level (testosterone, LH and FSH) and body weight increment pre and post treatment (p \ge 0.05). This study suggests that *Nigella sativa* (*habbatus sauda*) oil possessed protective effects against detrimental nicotinic effects on sperm quality and testis parameters of male rats.

ABSTRAK

Nikotin dianggap sebagai salah satu bahan paling toksik yang boleh ditemui dalam asap tembakau. Selain digunakan sebagai racun serangga semulajadi, nikotin adalah aktif secara farmakologi dan mempunyai kesan negatif terhadap sistem pembiakan serta kesuburan lelaki. Sebaliknya, biji dan minyak Nigella sativa mempunyai banyak ciriciri positif seperti antipiretik, analgesik, anti-hipertensi dan antineoplastik. Kajian ini dijalankan bagi mengkaji potensi kesan perlindungan minyak Nigella sativa (habbatus sauda) terhadap sistem pembiakan tikus jantan yang diberikan nikotin. Empat puluh lima ekor tikus jantan Sprague-Dawley (berumur 7-9 minggu, 200-250g) dibahagikan secara rawak kepada kumpulan: nikotin (N) (0.5mg/100g), kawalan nikotin (NC) (salina, 0.1ml/100g), habbatus sauda (HS) (6.0µl/100g), kawalan habbatus sauda (HSC) (minyak jagung, 0.1ml/100g) dan nikotin-habbatus sauda (NHS) (0.5mg/100g nikotin dan 6.0µl/100g habbatus sauda) dan dirawat selama 100 hari. Parameter sperma, ukuran tubul seminiferus, tahap hormon darah dan penambahan berat badan tikus telah dinilai. Tikus dalam kumpulan NHS (1.29±0.04 x 10⁶ sperma/ml) menunjukkan motiliti sperma bersignifikan lebih tinggi berbanding dengan kumpulan N (1.04±0.04x 10⁶ sperma/ml). Kumpulan HS (90.69±0.01 %) mempunyai peratusan tertinggi morfologi sperma normal diikuti oleh kumpulan-kumpulan HS (88.52±0.02 %) dan N (82.05±0.02 %) (p<0.05). Peratusan sperma hidup bagi kumpulan NHS (95.96±0.01 %) adalah bersignifikasi lebih tinggi daripada kumpulan N (93.45±0.01 %) tetapi bersignifikasi lebih rendah daripada kumpulan HS (96.80±0.00 %) (p<0.05). Kumpulan NHS (245.42±1.34µm) menunjukkan diameter yang lebih kecil secara signifikan berbanding kumpulan N (247.12±1.59µm) dan kumpulan HS (249.95±1.37µm). Perbandingan diameter lumen menunjukkan bahawa kumpulan N (100.74±1.75µm) mempunyai lumen yang lebih lebar secara signifikan berbanding dengan kumpulan

NHS (67.41±1.92µm) dan HS (66.65±1.57µm). Kelebaran lapisan spermatogonia bagi kumpulan NHS (16.12±0.24µm) adalah secara signifikannya lebih rendah berbanding dengan kumpulan-kumpulan HS (17.59±0.25µm) dan N (19.51±0.29µm). Kumpulan NHS (35.94±0.39µm) mempunyai kelebaran lapisan spermatid yang signifikan diikuti oleh kumpulan-kumpulan HS (34.56±0.40µm) dan N (32.56±0.41µm) (p<0.05). Keduadua kumpulan HS (38.05±0.61µm) dan NHS (37.84±1.22µm) mempunyai kelebaran lapisan spermatid dan sperma yang signifikan berbanding dengan kumpulan N (21.51±0.51µm). Rawatan-rawatan tidak mempengaruhi secara signifikan aras hormon darah (testosteron, LH dan FSH) dan peningkatan berat badan sebelum dan selepas rawatan (p≥0.05). Kajian ini mencadangkan bahawa minyak *Nigella sativa (habbatus sauda*) mempunyai kesan perlindungan terhadap kesan kerosakan nikotin kepada kualiti sperma dan parameter testis tikus jantan.

ACKNOWLEDGEMENTS

First of all, I would like to express my sincere gratitude to Dr. Noor Hashida Hashim, supervisor and Associate Professor Dr. Durriyyah Sharifah Hasan Adli, cosupervisor for my project, for providing me an opportunity to carry out my research project and also for their guidance from the beginning of this study until the completion of this thesis.

I am also indebted to the members from Animal Reproductive Research Group and NeuroRG for their guidance and help throughout the experiment. Special thanks to Miss Noor Hafiza Rozali, Miss Lina Samsudin and Mr. Khairul Azali Sahak for their continuous assistance when various experiments were carried out throughout the whole treatment duration. I would also like to thank staffs from microtechnique laboratory for their advices and supervision while histological works were carried out.

Last but not least, my profound gratitude to my father (Mr. Ng Sing Chin), mother (Mrs. Kwong Kek Liang), wife (Mrs. Dora Siaw) and other family members for their support throughout the whole process of this study.

Sincerely,

Cho Ping

TABLE OF CONTENTS

	Page
ORIGINAL LITERARY WORK DECLARATION	ii
ABSTRACT	iii
ABSTRAK	V
ACKNOWLEDGEMENTS	vii
TABLE OF CONTENTS	viii
LIST OF TABLES	xiii
LIST OF FIGURES	XV
LIST OF SYMBOLS AND ABBREVIATIONS	xviii
CHAPTER 1: INTRODUCTION	1
1.1 Global Infertility Scenario	1
1.2 Fertility in Malaysia	2
1.3 Etiology of Male Infertility	3
1.4 Treatment for Male Infertility	4
1.5 Alternative Treatment for Male Infertility	6
1.6 Objectives	7
CHAPTER 2: LITERATURE REVIEW	8
2.1 Male Reproductive System	8
2.1.1 Scrotum	8
2.1.2 Testes	9
2.1.3 Epididymis	9
2.1.4 Spermatic cord and ductus deferens	10
2.1.5 Ejaculatory duct	10
2.1.6 Seminal vesicles	10
2.1.7 Urethra	11
2.1.8 Penis	11

2.1.9 Accessory sex glands	12
2.1.10 Semen	12
2.2 Spermatogenesis	13
2.3 Sperm	16
2.3.1 Sperm head	18
2.3.2 Mid-piece	18
2.3.3 Flagellum/Tail	18
2.4 Sperm Parameters	19
2.4.1 Sperm motility	19
2.4.2 Sperm morphology	20
2.4.3 Sperm vitality	21
2.5 Nicotine	22
2.5.1 Nicotine and infertility	23
2.5.2 Nicotine and body weight	26
2.5.3 Nicotine and blood hormonal level	28
2.6 Habbatus sauda (Nigella sativa)	29
2.6.1 Habbatus sauda and fertility	31
2.6.2 Habbatus sauda and body weight	32
2.6.3 Habbatus sauda and blood hormonal level	33
CHAPTER 3: MATERIALS AND METHODS	35
3.1 Animal Maintenance	35
3.2 Treatment Solution Preparation	36
3.2.1 Habbatus sauda preparation	36
3.2.2 Corn oil preparation	37
3.2.3 Nicotine preparation	37
3.2.4 Saline preparation	38
3.3 Treatment Groups	38

3.3.1 Oral gavage	41
3.3.2 Intramuscular injection	41
3.4 Rat Dissection	41
3.5 Enzyme-linked Immunosorbent Assay (ELISA)	42
3.5.1 Testosterone level evaluation	43
3.5.2 Luteinising hormone (LH) level evaluation	44
3.5.3 Follicle stimulating hormone (FSH) level evaluation	44
3.6 Sperm Parameters	46
3.6.1 Sperm motility	48
3.6.2 Sperm morphology and vitality	50
3.7 Testis Morphology and Histology	51
3.7.1 Fixation	52
3.7.2 Dehydration	53
3.7.3 Clearing	54
3.7.4 Infiltration	54
3.7.5 Embedding	55
3.7.6 Sectioning and affixing of tissue sections onto slides	56
3.7.7 Haematoxylin and eosin (H&E) staining technique	56
3.7.8 Permanent mounting of coverslips using Canada balsam	59
3.7.9 Testis histological features analysis	60
3.8 Statistical Analysis	60
CHAPTER 4: RESULTS	61
4.1 Body Weight Increment of Rats	61
4.2 Blood Hormonal Level Analysis	61
4.2.1 Effects of treatments on concentration of testosterone	62

4.2.2 Effects of treatments on concentration of	
Luteinising Hormone (LH)	62
4.2.3 Effects of treatments on concentration of	
Follicle Stimulating Hormone (FSH)	62
4.3 Sperm Parameters	63
4.3.1 Effects of treatments on sperm motility	63
4.3.2 Effects of treatments on sperm morphology	64
4.3.3 Effects of treatments on sperm vitality	68
4.4 Testis Histological Features	69
4.4.1 Effects of treatments on diameter of seminiferous	
tubules and lumen	70
4.4.2 Effects of treatments on width of spermatogonia,	
spermatocytes and spermatid-spermatozoa layers	72
CHAPTER 5: DISCUSSION	
5.1 Effects of Treatments on Body Weight Increment	78
5.2 Effects of Treatments on Testosterone, Luteinising Hormone	
(LH) and Follicle Stimulating Hormone (FSH)	80
5.3 Effects of Treatments on Sperm Parameters	84
5.4 Effects of Treatments on Histological Parameters of	
Seminiferous Tubule	93
5.5 Future Studies	97
CHAPTER 6: CONCLUSION	100
6.1 Effects of Nicotine on Sperm Parameters, Testis Histological	
Features, Blood Hormonal Level and Body Weight Increment	100

6.2 Effects of Habbatus sauda on Sperm Parameters, Testis	
Histological Features, Blood Hormonal Level and Body Weight	
Increment	101
6.3 Effects of Co-administration of Nicotine and Habbatus sauda	
on Sperm Parameters, Testis Histological Features, Blood	
Hormonal Level and Body Weight Increment	101
REFERENCES	103
APPENDICES	135
LIST OF PUBLICATIONS AND PAPERS PRESENTED	

LIST OF TABLES

Table		Page
2.1	Comparison of features of testis development and	
	spermatogenesis in rodents and humans	15
3.1	Treatment groups, number of rats and treatment solution	
	concentration	39
3.2	Guidelines on counting sperm using haemocytometer	48
4.1	Mean square from analyses of variance for body weight	
	increment of rats	61
4.2	Mean square from analyses of variance for testosterone	
	level of rats	62
4.3	Mean square from analyses of variance for LH level of rats	62
4.4	Mean square from analyses of variance for FSH level of rats	63
4.5	Mean square from analyses of variance for sperm motility	
	of treated rats	64
4.6	Sperm motility of treated rats	64
4.7	Mean square from analyses of variance for sperm morphology	
	of treated rats	66
4.8	Sperm morphology of treated rats	67
4.9	Mean square from analyses of variance for sperm vitality	
	of treated rats	69
4.10	Sperm vitality of treated rats	69
4.11	Mean square from analyses of variance for diameter of	
	seminiferous tubules and lumen of treated rats	71
4.12	Lumen diameter of seminiferous tubules of treated rats	71

4.13 Mean square from analyses of variance for width of spermatogonia,	,
spermatocytes and spermatid-spermatozoa layers of treated rats	73
4.14 Width of spermatogonia, spermatocytes and spermatid-spermatozoa	a
layers of treated rats	74

LIST OF FIGURES

Figure		Page
2.1	The distribution of regions on a falciform-shaped mouse sperm	
	and human sperm	17
3.1	Rats were kept in separate cages at the animal house	35
3.2	(a) Pure habbatus sauda oil and (b) diluted habbatus sauda oil	36
3.3	Pure nicotine (L-Nicotine, 99+ %, CAS RN: 54-11-5)	37
3.4	Flowchart for body weight increment of rats	40
3.5	Intramuscular injection performed on rats	41
3.6	Collected blood was transferred into centrifuge tube and centrifuged	
	for blood serum prior to storage in deep freezer at -20° C	42
3.7	Flowchart for blood hormone analysis of rats	43
3.8	Microtiter plate being inserted into microtiter plate reader	45
3.9	Absorbance (OD) value determination at a specified wavelength	
	using microtiter plate reader	45
3.10	Flowchart for sperm parameter evaluation of rats	47
3.11	An aliquot of 40µl sperm suspension was pipetted onto	
	haemocytometer	49
3.12	Small squares, 25 in each counting chambers of a haemocytometer	49
3.13	Sperm suspension, $50\mu l$ was mixed with $50\mu l$ of eosin-nigrosin	
	stain before $15\mu l$ of the stained sperm mixture being smeared on a	
	clean glass slide	50
3.14	Flowchart for testis histological features analysis of rats	51
3.15	The testes were fixed in Bouin solution for two days	52
3.16	Fixed testes were trimmed prior to immersion in 70 % alcohol solution	53

3.17	The dehydration process of tissue sample in a series of alcohol solution	
	with increasing concentration	53
3.18	Tissue samples being immersed in toluene (I) and toluene (II) for one	
	hour each	54
3.19	Tissue sample being infiltrated with melted paraffin I, II and III	55
3.20	Tissue sample was adjusted during embedding before being allowed	
	to solidify in water at room temperature for overnight	55
3.21	(a) Tissue sections were sectioned using rotary microtome,	
	(b) tissue sections were affixed on clean glass slides and placed on	
	slide warmer.	56
3.22	Tissue sections affixed to the glass slides were placed in a staining	
	rack and immersed in a series of solutions in H&E staining procedure	57
3.23	Steps and solutions in H&E staining technique	58
3.24	Stained tissue sections were covered by coverslips mounted using	
	Canada balsam	59
3.25	Measurements of a seminiferous tubule using Image Analyzer	
	Software	60
4.1	Sperm at 200X magnification for (a) head defect and	
	(b) normal and tail defect	67
4.2	Seminiferous tubule at 40X magnification for (a) N (nicotine),	
	(b) NC (nicotine control), (c) HS (habbatus sauda),	
	(d) HSC (habbatus sauda control), and	
	(e) NHS (nicotine-habbatus sauda) groups	75

- 4.3 Seminiferous tubule at 100X magnification for (a) N (nicotine),
 - (b) NC (nicotine control), (c) HS (habbatus sauda),
 - (d) HSC (habbatus sauda control), and
 - (e) NHS (nicotine-habbatus sauda) groups
- 4.4 Seminiferous tubule at 200X magnification for (a) N (nicotine),
 - (b) NC (nicotine control), (c) HS (habbatus sauda),
 - (d) HSC (habbatus sauda control), and
 - (e) NHS (nicotine-*habbatus sauda*) groups 77

76

LIST OF SYMBOLS AND ABBREVIATIONS

ABP	Androgen binding protein
ACTH	Adrenocorticotrophin
AI	artificial insemination
ANOVA	analysis of variance
ATP	Adenosine triphosphate
ART	Assisted reproductive technologies
ASRM	American Society for Reproductive Medicine
AVP	Arginine vasopressin
BSA	Bovine serum albumin
CASA	Computer assisted semen analysis
CDC	Centers for Disease Control and Prevention
cm	centimeter
cm ³	cubic centimeter
CO_2	carbon dioxide
d.f	degrees of freedom
DHA	docosahexaenoic acid
DNA	deoxyribonucleic acid
Duncan-MRT	Duncan Multiple Range Test
ELISA	enzyme-linked immunosorbent assay
FSH	Follicle stimulating hormone
g	gram
GH	Growth hormone
GI	Glycemic index
GRH	Gonadothropin releasing hormone
HCl	hydrochloric acid
H_2O_2	hydrogen peroxide

HS	habbatus sauda
HSC	habbatus sauda control
H&E	Haematoxylin and eosin
ICSI	Intracytoplasmic sperm injection
i.m	Intramuscular
IVF	In vitro fertilization
kg	kilogram
L	Lumen
LC	Leydig cell
LH	Luteinising hormone
LN_2	liquid nitrogen
LSD	Least significant difference
LPO	Lipid peroxidation
mg	milligram
mIU	milli-international units
ml	milliliter
mm	millimeter
Ν	Nicotine
NaCl	sodium chloride
NC	Nicotine control
ng	nanogram
NHS	Nicotine-habbatus sauda
NPY	Neuropeptide Y
OAT	Oligoasthenoteratozoospermia
OD	Absorbance
POMC	Pro-opiomelanocortin
PUFA	Polyunsaturated fatty acids
RIA	Radioimmunoassay

ROS	Reactive oxygen species
rpm	revolution per minute
SC	Spermatogenic cells
SE	standard error
SHBG	sex-hormone-binding globulin
SPSS	Statistical Package for the Social Sciences
ST	Seminiferous tubule
TMB	3,3',5,5'-tetramethylbenzidine
TSH	Thyroid stimulating hormone
TQ	Thymoquinone
ТҮН	Toyoda Yokoyama Hosi
UM IACUC	Institutional Animal Care and Use Committee, University of Malaya
WHO	World health organisation
μl	microliter
μm	micrometer