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ABSTRACT 

Economic lot scheduling problem (ELSP) is related to lot-sizing and scheduling several 

items in a single production facility. This project addresses the ELSP where multiple 

items have shelf life restrictions and planned backorders. For some products, shelf life 

might be less than the production cycle time, which leads to product spoilage before the 

end of the cycle. In order to achieve a feasible schedule, the production cycle time needs 

to be reduced to less than or equal to the shelf life duration. While the cost-

minimization cycle time causes the spoilage of products, due to shelf life restrictions, 

appropriate decisions can be made based on one of three options: production rate 

reduction, cycle time reduction, or the simultaneous production rate and cycle time 

reduction. For each option, the optimal cycle time and production rate are appraised, 

which satisfy the shelf life constraints. On the other hand, backorders incur shelf life 

constraint alteration, which affects the corresponding inventory models. Accordingly, 

appropriate modifications are applied to the related mathematical inventory models.  

Further, a mixed integer non-linear model for the ELSP is developed which allows each 

product to be produced more than once per cycle. However, production of each item 

more than one time may result in an infeasible schedule due to the overlapping 

production times of various items. To eliminate the production time conflicts, 

adjustments must be made through advancing or delaying the production start time of 

some or all the items. The objective is to find the optimal production rate, lot size, 

production frequency, cycle time, as well as a feasible manufacturing schedule for the 

family of items, in addition to minimizing the total cost including production, setup, 

holding, backordering, and adjustment costs.  

Lot-sizing problems are more complicated in multi-facility systems because of 

interdependency between facilities. Therefore, the multi-item multi-period capacitated 

lot-sizing problem in a multi-stage system composed of multiple suppliers, plants, and 
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distribution centers is addressed in order to investigate the effectiveness of coordinating 

production and distribution planning. Combinations of several functions such as 

purchasing, production, storage, backordering, and transportation between suppliers, 

plants and distribution centers are considered. The objective is to simultaneously 

determine the optimal raw material order quantity, production and inventory levels, and 

the transportation amount so that the demand can be satisfied with the lowest possible 

cost over a given planning horizon without violating the capacity restrictions of the 

plants and suppliers. Transfer decisions between plants are made when demand 

observed at a plant can be satisfied by other production sites to cope with under-

capacity of a given plant. Furthermore, the model also allows for sales at distribution 

centers.  

Numerical examples are presented to illustrate the effectiveness and efficiency of the 

proposed models. Metaheuristic approaches namely genetic algorithm, particle swarm 

optimization, artificial bee colony, simulated annealing, and imperialist competitive 

algorithm are adopted for the optimization procedures. To offer more efficiency, 

Taguchi method is utilized to calibrate the various parameters of the proposed 

algorithms. The statistical optimization results show the efficiency, effectiveness and 

robustness of the applied methods in solving the proposed optimization models.  
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ABSTRAK 

Masalah penjadualan lot ekonomi (ELSP) adalah berkait rapat dengan pensaizan lot dan 

penjadualan beberapa item di dalam sebuah fasiliti pengeluaran tunggal. Projek ini 

menangani ELSP yang mempunyai beberapa item dengan batasan jangka hayat dan 

tunggakan tempahan terancang.  Bagi sesetengah produk, jangka hayatnya mungkin 

kurang daripada tempoh kitaran pengeluarannya, menyebabkan kepada kerosakan 

produk sebelum tiba ke pengakhiran kitaran.  Untuk mencapai penjadualan yang boleh 

dilaksanakan, tempoh kitaran pengeluaran perlu dikurangkan kepada kurang daripada 

atau sama dengan tempoh jangka hayatnya. Sementara tempoh kitaran dengan kos yang 

diminimakan menyebabkan kerosakan produk-produk, dengan melihat kepada batasan 

jangka hayat, keputusan yang sesuai boleh dibuat berdasarkan tiga pilihan: pengurangan 

kadar pengeluaran, pengurangan tempoh kitaran, atau pengurangan kedua-duanya 

sekali.  Bagi setiap pilihan, tempoh kitaran optimum dan kadar pengeluaran dinilai, 

yang mana ianya memenuhi batasan jangka hayat.  Sementara itu, tempahan tertunggak 

mendorong perubahan kepada batasan jangka hayat, yang kemudiannya memberikan 

kesan kepada model inventorinya. Oleh itu, pengubahsuaian yang sewajarnya dibuat 

kepada model inventori matematik yang berkaitan.  

Seterusnya, satu model integer campuran yang bersifat tidak linear bagi ELSP 

dibangunkan untuk membolehkan setiap produk dapat dihasilkan lebih daripada sekali 

bagi setiap kitaran.  Walaubagaimanapun, pengeluaran setiap item lebih daripada sekali 

memungkinkan penjadualan yang tidak dapat dilaksanakan disebabkan adanya 

pertindihan tempoh pengeluaran pelbagai item. Untuk menyingkirkan percanggahan 

tempoh pengeluaran, pelarasan hendaklah dibuat dengan cara mempercepatkan atau 

melambatkan masa permulaan bagi pengeluaran bagi sebahagian item atau kesemuanya 

sekali.  Objektifnya adalah untuk mengoptimumkan kadar pengeluaran, saiz lot, 

kekerapan pengeluaran, tempoh kitaran serta penjadualan pembuatan yang dapat 
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dilaksanakan bagi kelompok item-item, di samping meminimakan kos keseluruhan 

termasuk kos-kos pengeluaran, persediaan, induk, tempahan tertunggak dan kos 

pelarasan. 

Masalah pensaizan lot adalah lebih rumit bagi sistem dengan pelbagai fasiliti 

disebabkan oleh pergantungan antara fasiliti-fasiliti tersebut.  Oleh itu, permasalahan 

pensaizan lot dengan kapasiti pelbagai item dan pelbagai tempoh yang merangkumi 

pelbagai pembekal, loji dan pusat pengedaran diambil perhatian untuk mengkaji 

keberkesanan koordinasi pengeluaran dan rancangan pengedaran.  Kombinasi pelbagai 

fungsi seperti pembelian, pengeluaran, penstoran, tempahan tertunggak dan 

pengangkutan di antara pembekal, loji dan pusat pengedaran diambil kira.  Tujuannya 

adalah untuk menentukan jumlah tempahan bahan mentah yang optimum, tahapan 

pengeluaran, tahapan inventori, dan jumlah pengangkutan supaya permintaan dapat 

dipenuhi dengan kos terendah pada satu-satu ufuk perancangan tanpa melanggar had 

kapasiti loji dan pembekal.  Keputusan pemindahan di antara loji dibuat apabila 

permintaan dalam satu-satu loji dapat dipenuhi di tapak pengeluaran yang lain untuk 

mengatasi permasalahan loji-loji yang berada di bawah kapasiti.  Seterusnya, model 

tersebut juga membenarkan penjualan di pusat-pusat pengedaran.   

Contoh-contoh berangka dipersembahkan untuk memaparkan keberkesanan dan 

kecekapan model yang dicadangkan.  Pendekatan metaheuristik seperti algoritma 

genetik, pengoptimuman kawanan zarah, koloni lebah buatan, simulasi 

penyepuhlindapan dan algoritma kompetitif imperialis digunapakai dalam prosedur 

pengoptimuman.  Untuk meningkatkan keberkesanan, kaedah Taguchi digunakan untuk 

menentukurkan parameter-parameter di dalam algoritma yang dicadangkan.  Keputusan 

pengoptimuman statistikal menunjukkan kecekapan, keberkesanan dan keteguhan 

metod yang digunakan untuk menyelesaikan pengoptimuman model yang dicadangkan.    
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CHAPTER 1:  INTRODUCTION 

1.1 Research Background  

Production planning is the determination, acquisition and arrangement of all facilities 

necessary for future production of products (Wild, 1974). Production planning and 

control is needed to achieve the production objectives with respect to quality, quantity, 

cost and timeliness of delivery. It helps a company to utilize the available resources 

effectively and gain the uninterrupted production flow in order to minimize production 

costs and times, and meet customers varied demands with respect to quality and 

committed delivery schedule (Kumar & Suresh, 2009). 

Planning horizon in production planning can be classified into three periodic ranges: 

long-term (strategic), medium-term (tactical), and short-term (operational) (Bitran & 

Tirupati, 1993). Long-term planning uses aggregated demand forecasts and makes 

strategic decisions such as aggregate resource planning to mainly achieve financial 

targets. Medium-term planning is more detailed and uses partially disaggregated 

demand to often determine material requirements plan and production quantities over 

planning horizon in order to optimize both operational and financial criteria while 

satisfying capacity limitations.  

Short-term planning uses totally disaggregated or actual demands to make day-to-day 

decisions on lot-sizing, scheduling and loading problems (Heizer & Render, 2004; 

Karimi et al., 2003). Lot-sizing models can be classified either as medium-term or 

short-term models based on their level of aggregation and decision horizon (Jans & 

Degraeve, 2008; Clark et al., 2011).  

Lot size refers to the quantity to be ordered or produced. Lot sizes generally vary 

with the type of manufacturing process used. For instance, in job shops, lot sizes tend to 
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be much smaller than line production. If lot sizes become very small, then the need for 

frequent setup of production facilities or placing several orders with suppliers increases. 

This may lead to increased setup or order costs, but reduces inventory buildup and costs 

associated with inventory holding (Swamidass, 2000). On the other hand, a large lot 

size reduces setup or ordering frequency and hence setup or ordering cost, but requires 

holding a larger average inventory, which increases the holding cost.  

Therefore, the aim of lot-sizing is to determine the optimal timing and level of 

production so as to achieve the best plausible trade-off between setup and holding costs 

and satisfy demand over the defined planning horizon (Jans & Degraeve, 2007). A 

manufacturing firm which seeks to compete in the market must make the right decisions 

in terms of lot-sizing that has direct effect on the system performance and productivity. 

This necessitates the formulation and development of appropriate models and solution 

methods for lot-sizing problems.  

Lot-sizing problems can be classified as single stage (with one planning stage), and 

multi-stage (with several planning stages) (Bahl et al., 1987). In single stage systems, 

the final products are made directly from raw materials through a single process with no 

intermediate subassembly (Rizk & Martel, 2001). Demand for a product is obtained 

from customer orders and/or market forecasts. In multi-stage systems, there is a parent-

component relationship between the items. In such production systems, end products are 

assembled from intermediate products (subassemblies), which might in turn require raw 

materials or parts to manufacture. The output of one stage is thus the input for the next 

stage. A stage may also entail an operation such as purchasing of raw materials, 

production of parts, or assembly (Crowston & Wagner, 1971). This research deals with 

both single stage lot-sizing and scheduling problems in single facility systems, and 

multi-stage lot-sizing problems in multi-facility environments.   
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1.2 Single Facility Lot-Sizing Problem 

The most basic and oldest of all mathematical lot-sizing models is the economic 

order quantity (EOQ) model developed by Harris (1913), which considers a single item 

with a constant demand rate, continuous time period, and infinite planning horizon. The 

objective is to obtain the optimal production or order quantity with the lowest cost, 

based on the tradeoff between setup and inventory costs. The economic lot scheduling 

problem (ELSP) can be considered as an extension to multiple items sharing a single 

resource with limited capacities.   

Lot-sizing decision is critical to the efficiency of production and inventory systems. 

In the literature, researchers have been addressing their efforts to research problems on 

the optimal lot-sizing strategies for different decision-making scenarios. The ELSP is 

one of the most representative topics as it combines lot-sizing and production 

scheduling decisions. 

The ELSP is related to lot-sizing and scheduling the production of multiple items on 

a single facility in a cyclic pattern with the aim of meeting demand without backorders 

and minimizing the setup and holding costs (Rogers, 1958). The ELSP typically 

imposes a restriction that one item can be produced at a time, so that the machine has to 

be stopped before commencing the production of a different item. Therefore, a 

production scheduling problem appears due to the need for incorporating the setups and 

production runs of various items (I. Moon et al., 2002b).  

Most studies investigating the different aspects of the ELSP assumed that every 

product is manufactured only one time in the rotational production cycle. Goyal (1994) 

and Viswanathan (1995) implied that manufacturing of every item more than once per 

cycle might be more economical. Although this policy may result in a solution with a 

lower cost, it might however bring about an infeasible production schedule due to the 
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overlapping production time of various items. Therefore, to generate a feasible 

manufacturing schedule, the production cycle of the items requires to be modified in 

order to prevent overlaps in the schedule. Consequently, modifications in the pertinent 

cost function and constraints are necessary.  

In the real world, it often happens that shortages occur in products or spare parts due 

to reasons such as machine failure, insufficient inventory to meet demand, fluctuations 

in demand in excess of inventory or inaccurate demand forecast, low production due to 

inadequate resources, and so forth. It is thus clear that shortage is a natural phenomenon 

which happens in such systems and an accurate model should take this into account. As 

a matter of fact, it is beneficial to concern having shortages when the inventory holding 

cost is high compared with the shortage cost (Aliyu & Andijani, 1999). When demand 

in a period is not fully satisfied, the units of end items in shortage can carry over to 

subsequent periods considered as backordering. 

In industry, items are kept as stock in storage facilities to be consumed during the 

production phase. In literature on inventory systems, product shelf life is often 

considered unlimited. However, some products have limited life-spans during which the 

quality and applicability of such products deteriorate over time (Kazaz & Sloan, 2008). 

By definition, shelf life is the duration for which a product remains unspoiled (Lütke 

Entrup et al., 2005). The wastage and sales rate losses as well as on-hand inventory are 

highly affected by the shelf life specifications. Storing products for longer than 

specified shelf life durations may cause product deterioration or diminution. It might 

also lead to loss of profitable or fruitful lives of manufactured goods in a developing 

market for new and competitive merchandise (Xu & Sarker, 2003).  

In a multifarious product manufacturing environment where lots have diverse sizes 

and production times while sharing a common facility, the main objective is to 
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determine an optimal cycle time in which all the products are manufactured. Once the 

optimum cycle time exceeds the life time restriction for an item, the corresponding 

inventory model needs to be modified to prevent product spoilage. Shelf life restriction 

is examined in such condition by implementing the three options of cycle time 

reduction, production rate reduction, and simultaneous cycle time and production rate 

reduction. Shelf life constraint appends another feature to the ELSP. Moreover, 

considering backorders incur shelf life constraint variation, which affects the 

corresponding inventory models. 

So far, however, there has been little research on the ELSP with multiple products 

having unknown production frequencies, backorders and shelf life constraints. Due to 

nonlinearity and complexity of the ELSP, it is known as NP-hard problem (Hsu, 1983). 

Thus, metaheuristic methods can be used to find the optimal or near optimal solutions 

for the ELSP within a reasonable computation time.  

1.3 Multi-Facility Lot-Sizing Problem 

The multi-plant structure is a complex multi-stage manufacturing system, where each 

plant itself denotes a multi-stage system in which the flow of products may be serial, 

parallel, assembly or general (Billington et al., 1983). In this case, lot-sizing problems 

become more complicated because of the interdependency between plants. If no 

interactions exist between the facilities and transportation costs are not considered, then 

solving a multiple facility problem is equivalent to solving a set of independent single 

facility problems.  

Enterprises are facing highly competitive and fast-changing business environments. 

Traditionally, companies will usually expand the size of and number of production 

plants to cater for the increase in production capacity. However, over-increased capacity 

may results in unwarranted effects such as price reductions of products. To meet 
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customer demands in a timely fashion, companies have used the strategy of outsourcing 

as a method to increase production capacity. (De Kok, 2000; Tukel & Wasti, 2001; 

McCarthy & Anagnostou, 2004; Ruiz-Torres et al., 2006). In a global scale, companies 

cannot compete on their own in the market (Conklin & Perdue, 1994), thus requiring 

support from other partners by developing a multi-plant manufacturing supply chain to 

maximize competitive advantages of supply chain members (Chen, 2010). 

A large integrated company may possess a hierarchy of production plants, in which 

the production and assembly processes for manufacturing a product can be dispersed at 

different plants established in geographically scattered locations (Lin & Chen, 2007). 

Though, once a job is allocated to a plant, it is usually inefficient to transfer it to other 

factories (Chan et al., 2005), unexpected circumstances such as machine breakdowns or 

lack of sufficient operators may vindicate the reallocation of jobs at other plants in real 

time (Alvarez, 2007).  

For many organizations, the shift from the conventional single plant to multi-plant 

manufacturing environment may bring about difficulties in the production planning. 

Thus, the production decisions at plants must be re-coordinated to prevent problems 

such as excessive inventories, ineffective capacity consumptions, and unsatisfactory 

customer services. The move towards incorporated multi-plant configurations would 

bring a wide range of opportunities in terms of cost reduction in manufacturing and 

logistics activities as well as competitive advantages in the global economic arena 

(Alvarez, 2007; Junqueira & Morabito, 2012). In addition, it allows the company to 

establish reliable commitments with customers as efficiently as possible and maximize 

the customer service level. 

Although much consideration has been devoted to develop the mathematical models 

for solving supply chain and production planning problems, specifically in 
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manufacturing and goods distribution, most of these models have considered them as 

discrete problems. In reality, for most manufacturing environments, these problems are 

interconnected. Thus, there is a need for developing an integrated model. In a multi-

plant production system with scattered customers, the assignment of productions to 

plants and plants to customers determines the production and distribution performance. 

Integrating these two functions could lead to significant savings in global costs in 

addition to an enhancement in pertinent service by exploiting scale economies of 

production and transportation, balancing production lots and vehicle loads, and 

decreasing inventory and stock out (Fumero & Vercellis, 1999).  

In a multi-plant scenario, a crucial managerial concern is the determination of 

production quantities (lot size) for each item in each plant and period, such that the total 

costs at all factories are minimized (Bhatnagar et al., 1993). As stated by Nascimento 

and Toledo (2008), the multi-plant capacitated lot-sizing problem (MPCLSP) with 

multiple time periods and products consists of several manufacturing centers that 

produce identical items, and allows the inter-plant transfers of the products. A few 

studies have considered the MPCLSP and limited solution approaches have been 

recommended.  

Florian et al. (1980) proved that the single plant multi-item capacitated lot-sizing 

problem is NP-Hard, so is the respective multi-plant version. Therefore, metaheuristic 

approaches can be used to efficiently tackle such complex problems and offer good 

solutions within a reasonable computation time. 
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1.4 Optimization in Lot-Sizing Problems 

Optimization is the process which is executed iteratively for finding the value of 

variables for which objective function can be either minimized or maximized by 

satisfying some constraints. For a given problem domain, the main goal is to provide the 

mode of obtaining the best value of objective function (Gupta & Jain, 2015). 

The range of techniques that have been applied to tackle combinatorial optimization 

problems can be classified into two general categories, the exact methods and the 

approximate (heuristic) methods. Exact methods seek to solve a problem to guaranteed 

optimality but their execution on large real world problems usually require too much 

computation time. Consequently, resolution by exact methods is not realistic for large-

sized problems, justifying the use of powerful heuristic and metaheuristics methods 

(Dhingra, 2006).  

A heuristic is a problem-dependent algorithm that exploits problem dependent 

information to find a sufficiently good solution (not necessarily optimal) to a specific 

problem (Saka et al., 2013). As such, they usually are adapted to the problem at hand 

and try to take full advantage of the particularities of the problem. However, because 

they are often too greedy, they usually get trapped in a local optimum and thus fail, in 

general, to obtain the global optimum solution.  

Metaheuristics are a class of heuristic techniques that have been successfully applied 

to solve a wide range of combinatorial optimization problems over the years as they 

provide ways to escape the local optimum solutions (Osman & Laporte, 1996; Voß et 

al., 2012). They are also often claimed to be able to solve larger instances of a problem 

and/or to obtain faster results than pure enumerative exact approaches. Moreover, 

metaheuristics are general purpose algorithms that can be applied to almost any type of 

optimization problem (Boussaïd et al., 2013). They do not take advantage of any 
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specificity of the problem, and generally they are not greedy. In fact, they may even 

accept a temporary worsening of the solution (for example, simulated annealing 

technique), which allows them to explore more thoroughly the solution space and thus 

to get a better solution (that sometimes will coincide with the global optimum). 

Although a metaheuristic is a problem-independent technique, it is nonetheless 

necessary to do some fine-tuning of its intrinsic parameters in order to adapt the 

technique to the problem at hand.   

The drawbacks (efficiency and accuracy) of existing numerical methods have 

encouraged researchers to rely on metaheuristic algorithms based on the simulations and 

nature inspired methods to solve engineering optimization problems. Metaheuristic 

algorithms commonly operate by combining rules and randomness to imitate natural 

phenomena (Lee & Geem, 2005). These phenomena may include the biological 

evolutionary process such as genetic algorithm (GA) proposed by Holland (1975), 

animal behavior such as particle swarm optimization (PSO) proposed by Kennedy and 

Eberhart (1995), or the physical annealing which is generally known as simulated 

annealing (SA) proposed by Kirkpatrick et al. (1983). 

There are several advantages of using metaheuristic algorithms such as (Madić et al., 

2013): 

1. Broad applicability: they can be applied to any problems that can be formulated 

as function optimization problems. The problem can be continues or discrete. 

2. Hybridization: they can be combined with more traditional optimization 

techniques. 

3. Ease of implementation: typically easier to understand and implement.  

4. Efficiency and flexibility: they can solve large-sized problems faster. Moreover, 

they are simple to design and implement, and are very flexible.  
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The use of metaheuristics can be justified due to: (i) complexity of the internal 

problem that prevents the application of exact techniques, and (ii) a very large quantity 

of possible solutions that prevent the use of exhaustive algorithms (Gendreau & Potvin, 

2005; Talbi, 2009).  

It is known that the decision making associated with the lot-sizing and scheduling 

problem belongs to the category of combinatorial optimization problems. The difficulty 

to find a general approach for the lot-sizing and scheduling problem is considered in 

complexity theory as a NP-hard problem (França et al., 1997). Therefore, metaheuristic 

solution methods must be developed in order to find near optimal solution by exploring 

the search space efficiently. Metaheuristics has become a great choice for solving NP-

hard problems because of their multi-solution and strong neighborhood search 

capabilities in a reasonable computational time.  

As it has been reported in the literature, three types of metaheuristic-based search 

algorithms namely GA, SA and PSO have been mostly applied in the domain of the lot-

sizing and scheduling optimization problems. However, in recent years there is also an 

increasing trend in the application of newly developed metaheuristic algorithms such as 

artificial bee colony (ABC) and imperialist competitive algorithm (ICA) for solving lot-

sizing and scheduling problems. Therefore, these metaheuristic algorithms are selected 

as they are tested vastly in plenty of combinatorial optimization problems.  

Wolpert and Macready (1997) introduced “No Free Lunch Theory” and concluded 

that every metaheuristic algorithm has different searching abilities and has its own 

advantage to deal with the problem domain. So no single algorithm is able to offer 

satisfactorily results for all problems. In other words, a specific algorithm may show 

very promising results on a set of problems, but may show poor performance on a 

different set of problems (Gupta & Jain, 2015). 
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A classification of different solution methods is shown in Figure 1.1. 
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Figure  1.1: Classification of common search methodologies and common 

metaheuristics 
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1.5 Research Objectives  

The objectives of this research are as follow: 

i. To formulate and develop mathematical models for a combination of economic 

lot scheduling problem, backordering and shelf life by applying three options of 

“production rate reduction”, “cycle time reduction”, and “simultaneous 

production rate and cycle time reduction”. 

ii. To formulate and develop a mathematical model for a multi-product economic 

lot scheduling problem with shelf life restrictions, backordering, and multiple 

setups in a production cycle. 

iii. To formulate and develop a mathematical model for a multi-period multi-

product multi-plant capacitated lot-sizing problem with inter-plant transfers in 

an integrated supply chain network. 

iv. To carry out optimization procedures in order to obtain the optimum or near-

optimum solutions for the proposed models by employing well-known 

metaheuristic algorithms. 

v. To compare the performances of the applied metaheuristic algorithms. 

1.6 Scope of the Research 

This work mainly expands in two directions. The first part of research focuses on the 

modeling of the multi-item lot-sizing and scheduling problem in a single stage single 

facility system with a continuous time scale, deterministic static demand and infinite 

time horizon which is known as the ELSP with integration of multiple setups, 

backordering, and shelf life. The aim is to determine the optimal lot size, production 

rate, production frequency, cycle time, as well as a feasible manufacturing schedule for 

the family of items, and to minimize the total pertinent cost. 
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The second part is concerned with the multi-item lot-sizing problem in a multi-stage 

multi-facility system having a discrete time scale, deterministic dynamic demand and 

finite time horizon. The aim is to find order, production, and shipment quantities in an 

integrated production-distribution network that are optimal from a system’s perspective, 

in addition to minimizing the cost of the whole supply chain.  

Numerical examples are used to illustrate the features and validities of the proposed 

mathematical models. To solve the models, metaheuristic algorithms namely GA, PSO, 

SA, ABC, and ICA are utilized. This research aims at comparing the performance of 

these metaheuristics when applied to the ELSP and MPCLSP. Applied optimizers were 

written and coded in MATLAB software version R2012a (7.14.0.739) and were run on 

a laptop with 2.5-GHz AMD and 4GB RAM.  

1.7 Organization of the Thesis  

Chapter 1 explains the background of the study, problem definition, objectives and 

scope of the research.  

Chapter 2 presents a critical review of available literature on single and multi-level 

lot-sizing problems in single and multi-facility systems.  

Chapter 3 explains the methodology of the research and research frameworks. This 

chapter also provides a brief explanation of various optimization algorithms used in this 

study.  

Chapter 4 indicates examining and comparing three options namely “production rate 

reduction”, “cycle time reduction”, and “simultaneous production rate and cycle time 

reduction” in the ELSP considering shelf life and backordering. 
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Chapter 5 encompasses the proposed model formulation and development for 

optimization of the ELSP with multiple setups, shelf life, and backordering using 

calibrated metaheuristic algorithms. The computational results and comparisons of the 

applied algorithms are also presented. 

Chapter 6 describes the proposed model formulation for optimization of the 

MPCLSP in an integrated supply chain network composed of multiple supplier, plants, 

and distribution centers employing calibrated metaheuristic algorithms. Computational 

experiments are also presented to compare the performance of the applied 

metaheuristics and obtained solutions.  

Chapter 7 provides the final conclusions and gives a brief summary of the study and 

recommendations for future research. 
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CHAPTER 2:  LITERATURE REVIEW 

2.1 Introduction 

In this chapter, the literature related to lot-sizing problems is reviewed. This chapter 

also provides discussions on five areas related to this project: (1) Single facility lot-

sizing problems; (2) Single level lot-sizing problems; (3) Economic lot scheduling 

problems; (4) Multi-level lot-sizing problems; and (5) Multi-facility lot-sizing 

problems.  

2.2 Lot-Sizing  

There are several hierarchical levels of decisions which should be made by a 

manufacturing company with its production-related activities. Strategic decisions have a 

long-term scope and address questions such as what to offer on the market (product 

mix), where to build plants and warehouses (location), or whether to acquire new 

equipment (investment). Tactical decisions cover problems with a medium-range 

impact, such as the design of facilities (layout), contracts with suppliers, and adequate 

workforce levels. As for strategic choices, tactical decisions rely on aggregate data 

which are demand for product families rather than single products and capacities of 

entire production lines rather than particular machines (Lang, 2010). 

A planning horizon of several years for strategic choices and of several months to 

one year for tactical considerations makes it impossible to use detailed information. 

Inputs for such decisions are therefore based on aggregated forecasts with a smaller 

margin of error. As a third level, operational production planning is concerned with the 

short-term implementation and execution of plans to reach the goals previously settled 

on at higher levels. Establishing sequences of operations for each machine and 

determining exact start and end times of operations are carried out at this level. 

Operational decisions use detailed information and a finite time grid.  
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Lot-sizing problems can arise at several points in medium to short-term production 

planning. Determining the production quantities for end products in the course of master 

production scheduling usually covers a time span of several weeks and is based on 

forecasted demand. The lot sizes of end products directly affect the demand for the 

components from which they are assembled. In the course of the subsequent material 

requirements planning, lots for subassemblies and parts, as well as orders for raw 

materials, can be coupled, which thus gives rise to lot-sizing problems farther down the 

product structure. Lot-sizing decisions can also be integrated with sequencing and 

scheduling decisions. The time span considered in such a case is very short, and the 

resulting production plan usually covers about a week period. Figure 2.1 (based on Bahl 

et al., 1987; Tempelmeier, 1997; Lang, 2010) provides a quick overview of production 

planning decisions with an emphasis on lot-sizing. 

Long-term decisions 

Medium-term decisions 

Short-term decisions 

Master Production Schedule 

Material Requirements Planning 

Capacity Requirements Planning 

Lot sizing for end products 

Integrated lot sizing and scheduling 

Aggregation Scope 

None 

High 

Days 

Weeks 

Month 

Years 

Lot sizing for components 

Machine scheduling 

 

Figure  2.1: Lot-sizing decisions in production planning 
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Bahl et al. (1987) classified lot-sizing problems into four categories:  

i. Single level unconstrained resources  

ii. Single level constrained resources  

iii. Multi-level unconstrained resources 

iv. Multi-level constrained resources 

Levels denote the different stages in a bill of material structure where there are 

dependencies of requirements, and constrained resources stand for production capacity 

restrictions (Woarawichai et al., 2010). 

2.3 Characteristics of Lot-Sizing Models 

Lot-sizing models differ in their underlying assumptions and in the details they 

incorporate. Figure 2.2 illustrates a classification of lot-sizing problems in which each 

characteristic strongly impacts the modeling and complexity of the problem.  
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Figure  2.2: A category of lot-sizing problems 

Lot-sizing problems can be characterized by a variety of aspects and classification 

criteria, which are explained in the following subsections. 

2.3.1 Planning Horizon  

A planning horizon is the length of time into the future for which plans are made. 

The length of the horizon can be finite or infinite. A finite planning horizon is typically 

accompanied by a time-varying demand and an infinite planning horizon by a constant 

demand rate. Furthermore, the time horizon can be divided into discrete or continuous 

time periods. 

As defined by Belvaux and Wolsey (2000), lot-sizing problems can be either small 

bucket or big bucket. Big bucket problems allow for the production of many items at the 

same time period without taking into account sequencing issues. Small bucket models 
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considers short time periods in order to be able to model start-ups, switch-offs and/or 

changeovers. The small bucket models are then split further into those in which only 

one item can be setup per period, and those with possibly two setups per period. 

2.3.2 Number of Products 

Single item models consider one type of product at a time. Multi-item models 

consider a number of products simultaneously. These products must have at least one 

interrelating or binding factor such as budget, capacity constraint, or a common setup. 

2.3.3 Number of Levels 

If multiple items are considered, they can either be from a single level of the product 

structure, i.e. multiple independent final products are considered, or they can be on 

different levels, i.e. parent-component relationships between the items are present. In 

such multi-level production systems, end products are assembled from intermediate 

products (sub-assemblies), which might in turn require raw materials or parts for 

production. The output of one stage is thus the input for the next stage.  

2.3.4 Capacity Constraints  

Resources in a manufacturing system contain manpower, equipment, machines, 

budget, and so forth. If the models assume unlimited capacities of resources, they are 

considered as uncapacitated problem. Capacitated models recognize that some resources 

are given in a limited number or amount so that planning and scheduling systems need 

to avoid over utilizing these resources.   

In some cases, it is essential to consider capacity utilization more accurately in order 

to achieve a feasible production plan. For instance, the capacity utilized when a machine 

begins or finishes a production batch, or when a machine shifts from one product to 
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another, may need to be considered. In such cases, models deal with setup times, 

changeover times, or sequencing restrictions. 

2.3.5 Setup Structure 

A particular setup is often necessary to prepare a machine for the production of a 

specific product if this machine produces different types of products. Whenever this 

changeover causes setup times and/or cost, a lot-sizing problem arises.  

Setup times implies the capacity consumed because of cleaning, warming, machine 

adjustments, calibration, inspection, test runs, tool changes, and so forth, when the 

production for a new product begins. Setup times can be included explicitly in a model. 

However, due to the complexity in such a case, they are often incorporated indirectly 

via the setup costs (Jans & Degraeve, 2008). Setup costs and setup times, are generally 

modeled by considering zero-one variables in the mathematical models and make the 

problem solving harder. 

2.3.6 Demand 

Another important characteristic of lot-sizing problem is the nature of demand. Static 

demand models assume that parameter’s value does not vary over the planning horizon, 

while dynamic demand models allow for variation over time. If the demand value is 

known in advance, the demand stream is considered as deterministic. If the demand is 

based on distribution or a measure of uncertainty, it is considered as stochastic. 

Independent demand refers to the demand for a product which is independent of 

demand for other items. Independent demand for end products is triggered by the 

market. Dependent demand for components is triggered by scheduled production on 

superior levels.  
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2.3.7 Inventory Shortage 

Shortage occurs when demand exceeds the available inventory for an item, and can 

be divided into two categories, namely backordering and lost sale. Backordering occurs 

when it is probable to fulfill demand of the current period in the next time period. If 

demand cannot be satisfied at all, lost sale can happen. The combination of 

backordering and lost sale is also plausible. However, both cases incur penalty cost as 

they have a negative impact on customer satisfaction.  

2.3.8 Deterioration  

Another aspect that affects the problem complexity is deterioration or shelf life 

constraint where items can be held only for a limited lifetime. Deterioration refers to a 

process in which inventories undergo a change in storage over time, such that they 

become partially or completely unsuited for consumption and therefore, may impose 

additional costs for inventory storage. Ignoring deterioration of the items may bring 

about misleading replenishment policies and shortage in demand which in turn incurs 

additional shortage cost. 

2.4 Single Facility Problems 

The classical concept of a single facility can be considered as a single machine or 

may be defined as a complete assembly line that would in essence form the whole 

physical plant (Aras & Swanson, 1982). According to Kreipl and Pinedo (2004), a 

short-term detailed scheduling model is generally only concerned with a single facility, 

or, at most, with a single stage. Such a model usually takes more detailed information 

into account than a planning model.  

Based on Bruggeman et al. (1982) and Glock et al. (2014), when there is only a 

single facility or production line, only one product can be in production at a time. For a 

multi-item environment, production needs to be scheduled in such a way that the 
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machine is never required to produce more than a single product at a time. Therefore, to 

generate a feasible manufacturing schedule, the production cycle of the items requires to 

be modified in order to prevent overlaps in the schedule.  

Single facility problems have been reviewed broadly in both single and multi-level 

systems, which are explained as follow.  

2.4.1 Single Level Lot-Sizing Problems  

In single level structures (also known as single stage), demand for an item is obtained 

directly from customer orders and/or market forecasts. Single stage lot-sizing problems 

in procurement/distribution environments typically concern only purchasing and 

holding costs and avoid transportation cost. Anderson et al. (1997) defined single stage 

production systems as those which require one operation for each job involving either a 

single machine, or more than one machine operating in parallel. Nevertheless, each of 

the parallel machines has exactly the same function. 

In the following subsections, the literature related to uncapacitated and capacitated 

single level lot-sizing problems is reviewed.   

2.4.1.1 Uncapacitated Single Item Problem  

The single level single item problems with no capacity constraint were at the advent 

of developments in the lot-sizing and scheduling arena. The EOQ model was introduced 

by Harris (1913), which assumes a constant demand rate for a single item, infinite 

planning horizon, and continuous time scale with the aim of minimizing the sum of 

ordering and inventory holding costs. Wagner and Whitin (WW) (1958) investigated the 

lot-sizing problem for a single item with unlimited capacities over a finite planning 

horizon divided into discrete periods. Demand and costs were accordingly time-varying. 
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Numerous model formulations and solution procedures have been proposed for the 

uncapacitated single item lot-sizing problems.    

Zangwill (1969) improved the WW basic model to include backlogging of demand. 

Approximate solutions to the single item, single stage uncapacitated lot-sizing problem 

were suggested by DeMatteis (1968) and Silver and Meal (1973). The major advantage 

of these approaches is that they are computationally much more efficient than the exact 

solutions. Hax and Candea (1984) extended the EOQ model by allowing backlogging, 

lost sales, and quantity discounts. Fordyce and Webster (1985) modified the WW 

algorithm for situations in which unit cost price is not constant over the planning 

horizon, and included quantity discounts. Lev and Weiss (1990) and Gascon (1995) 

presented solutions for the finite horizon EOQ model where costs are time-dependent.  

Discounts are a primary marketing mechanism for inducing customers to increase the 

size of their purchases. Quantity discounts from suppliers and freight discounts from 

shippers are commonly encountered by organizations. Tersine and Barman (1991) 

structured quantity and freight discounts into the order size decision in a deterministic 

EOQ system. Optimum lot-sizing algorithms were derived for the dual discount 

situations of all-units or incremental quantity discounts and all-weight or incremental 

freight discounts.  

Gupta and Brennan (1992) introduced an easy alternative to the WW backorder 

algorithm. The performance of the model was compared with several of the traditional 

lot-sizing rules (lot for lot, EOQ, period order quantity, least unit cost, least total cost, 

part period algorithm, Silver-Meal algorithm, and WW algorithm) as well as the 

backorder versions of WW and EOQ. It was concluded that the proposed algorithm is 

sufficiently robust and relatively easy to apply. Most of the dynamic lot-sizing models 

assume that production is performed on reliable machines. Kuhn (1997) analyzed the 
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effects of setup recovery with machine breakdowns and corrective maintenance for the 

single item uncapacitated lot-sizing problem. In a first case, the assumption was made 

that the setup is totally lost after a breakdown. In a second case, the costs of resuming 

production of the same item after a breakdown was lower compared to the original setup 

cost.  

Agra and Constantino (1999) examined the single item uncapacitated lot-sizing 

problem with backlogging and start-up costs where WW costs were assumed. 

Hernandez and Suer (1999) presented a GA approach to obtain the order quantities for a 

single item, single level uncapacitated lot-sizing problem. In the experimentation, 

different strategies were presented to evaluate the behavior of the GA under different 

parameters sets. The results showed that the proposed procedure generated satisfactory 

solutions to the considered problem. Richter and Sombrutzki (2000) studied the reverse 

WW dynamic production planning and inventory control model. In such reverse 

(product recovery) models, used products arrive to be stored and to be remanufactured 

at minimum cost. It was assumed that the demand can be met either from newly 

manufactured products or from return products which have been remanufactured.  

Lee et al. (2001) discussed the single item, uncapacitated dynamic lot-sizing problem 

with a demand time window, where for each demand an earliest and latest delivery date 

is specified and the demand can be satisfied in the defined period without penalty. It 

was shown that there exists an optimal solution in which demand is not split, where the 

complete demand for a specific order can be covered by production from the same 

period. Loparic et al. (2001) proposed valid inequalities for solving a variant of the 

single item uncapacitated lot-sizing model of the WW problem involving sales instead 

of fixed demands and lower bounds on the stock variables. Aksen et al. (2003) 

introduced a profit maximization version of the WW model for the deterministic single 
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item uncapacitated lot-sizing problem with lost sales. It was assumed that demand 

cannot be backlogged, and costs and selling prices are time-variant. A forward recursive 

dynamic programming (DP) algorithm was developed to solve the problem optimally.  

Teunter and Flapper (2003) examined a single stage single product production 

system, where produced units can be non-defective, reworkable defective, or non-

reworkable defective. De Toledo and Shiguemoto (2005) proposed an efficient 

implementation of a forward DP algorithm for solving the lot-sizing problems in a 

single production center. Brahimi et al. (2006) reviewed various solution methods for 

solving the single item uncapacitated lot-sizing problem. Chiu (2008) presented a 

simple algebraic method to replace the use of calculus for determining the optimal lot 

size. Gutiérrez et al. (2008) addressed the dynamic lot-sizing problem with time-varying 

storage capacities with the aim of minimizing the total cost including setup, holding, 

and production/ordering costs.  

Gaafar et al. (2009) applied the SA algorithm to find the solution of the deterministic 

dynamic lot-sizing problem with batch ordering and backorders, and compared the 

performance of the proposed SA with GA and modified Silver-Meal heuristic. Results 

indicated that SA algorithm had the best performance, followed by the GA, in terms of 

the frequency of obtaining the optimum solution and the average deviation from the 

optimum solution. It was also shown that SA was the most robust of the investigated 

heuristics as its performance was only affected by the length of the planning horizon. 

Hwang and van den Heuvel (2009) proposed a DP algorithm to optimally solve the 

classical uncapacitated single item lot-sizing problem with lost sales, upper bounds on 

stocks and concave costs. Vargas (2009) presented an algorithm for determining the 

optimal solution for the stochastic version of the WW dynamic lot-sizing problem. 
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Sana (2010) investigated an economic production lot size model in an imperfect 

production system in which the production facility may shift from an “in-control state” 

to an “out-of-control” state at any random time. In long-run process, the process shifts 

from the in-control state to the out-of-control state after certain time due to higher 

production rate and production run time. The proposed model was formulated assuming 

that a certain percent of total product is defective (imperfect), in out-of-control state, 

which varies with production rate and production-run time. The objective was to 

minimize the total cost including manufacturing cost, setup cost, holding cost, and 

reworking cost of imperfect quality products.  

Senyiğit (2010) proposed a heuristic approach to solve the dynamic lot-sizing 

problem with demand and purchasing price uncertainties. Well-known least unit cost 

and Silver-Meal algorithms were also modified for both time-varying purchasing price 

and rolling horizon. The proposed heuristic was basically based on a cost-benefit 

evaluation at decision points. Absi et al. (2011) considered the single item uncapacitated 

lot-sizing problem with production time windows, lost sales, early productions, and 

backlogs. Several properties of the optimal solution for different variants of the problem 

when production time windows are non-customer specific were presented. The DP 

algorithm was used to solve the proposed problem. 

2.4.1.2 Uncapacitated Multi-Item Problem 

The principal concern of this category is to obtain production or order quantity for 

multiple products so as to minimize the long run average cost for the family of items 

and meet demand over the defined horizon. The total cost typically involves 

setup/ordering, inventory, and production/purchasing costs. Based on the absence of 

capacity constraints and parent-component relationships between products, decisions 

can be made for each item independently.  
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However, the existence of joint setup/ordering costs causes the interdependency 

between products which is known as the economic order quantity with joint 

replenishment problem. In a multi-item environment with a joint setup cost structure 

considerable savings may be realized by coordinating the replenishments (Aksoy & 

Erenguc, 1988). In the joint replenishment problem (JRP), major setup occurs if 

production is started, and minor setups are required if the processor switches from one 

item to the next (Graves, 1981). The aim of the model is to find the joint frequency of 

production/order cycles and the frequency of producing/purchasing each product in 

addition to minimizing the total cost. An overview of the JRP and solution methods can 

be found in Goyal and Deshmukh (1992). Later, Goyal and Deshmukh (1993) proposed 

heuristic procedures for solving the JRP. 

Aksoy and Erenguc (1988) differentiated between the deterministic and stochastic 

and between the static and dynamic JRP. They developed a DP approach for small size 

static-dynamic JRP and a heuristic method for large family sizes. Van Eijs et al. (1992) 

distinguished between two different types of strategies, namely direct grouping 

strategies and indirect grouping strategies, for the multi-item inventory systems having 

constant deterministic demand and joint replenishment costs. The performances of the 

strategies were measured as the percentage cost savings of a joint replenishment 

strategy relative to an independent strategy, and were quantified through simulation.  

Federgruen and Tzur (1994) addressed the JRP, where in the presence of joint setup 

costs, dynamic lot-sizing schedules need to be determined for multiple items over a 

finite planning horizon with general time-varying cost and demand. They developed a 

partitioning heuristic for the proposed problem, which partitions the complete horizon 

of periods into several relatively small intervals, and solved the problem via an efficient 

branch and bound method.  
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Hariga (1994) studied the effects of inflation and time value of money on the 

replenishment policies of items with time continuous non-stationary demand over a 

finite planning horizon. He developed the DP models for the commonly used 

replenishment policies in the inventory lot-sizing literature with time-varying demand 

and shortages. The results showed that the initial cycle length is virtually insensitive to 

the type of replenishment policy. They also extended the developed models to more 

practical inventory situations with exponentially deteriorating items and perishable 

products having fixed life time.  

Kirca (1995) considered the multi-item dynamic lot-sizing problem with joint set-up 

costs. A tight formulation of the problem and the dual of the linear relaxation of this 

formulation were presented. A procedure to solve the dual problem was developed, 

where the solution provided a strong lower bound for the proposed problem. The 

computational experiments revealed that the proposed approach outperforms the branch 

and bound algorithm. 

2.4.1.3 Capacitated Single Item Problem 

Capacitated restrictions enhance the complexity of lot-sizing problems. The objective 

of this group of lot-sizing problem is to obtain the optimal production quantity or order 

size for a single product that minimizes the total cost including setup/ordering, 

inventory, and production/purchasing costs, while meeting the known demands and 

satisfying capacity constraints over the planning horizon.  

Lambrecht and Vanderveken (1979) developed a computationally efficient algorithm 

for solving a single item dynamic lot-sizing problem with capacity constraints in order 

to obtain an optimum production schedule that minimizes the total production and 

inventory costs. Reviews of the literature for this class of problem can be found in Drexl 
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and Kimms (1997) and Karimi et al. (2003), who offered overviews of optimal and 

heuristic solution procedures.  

Examples of problems and related modeling approaches for dynamic capacitated lot-

sizing in a single level system with discrete time representation are the ELSP (Rogers, 

1958), continuous setup and lot-sizing problem (CSLP) (Karmarkar & Schrage, 1985), 

capacitated lot-sizing problem (CLSP) (Günther, 1987), discrete lot-sizing and 

scheduling problem (DLSP) (Fleischmann, 1990; Salomon et al., 1991), proportional 

lot-sizing and scheduling problem (PLSP) (Haase, 1994; Drexl & Haase, 1995), and 

capacitated lot-sizing problem with sequence-dependent setups (CLSD) (Haase, 1996). 

The DLSP allows for the production of only one item in each period. The production 

is further assumed to be “all or nothing”, and the total capacity available per period is 

used for the production of the scheduled item. The CSLP is equivalent to the DLSP 

without the “all or nothing” requirement, which can lead to periods with some slack 

capacity. The PLSP goes one step further and allows for the production of a second item 

to avoid excessive idle time on the resource. The CLSD assumes a fixed lead time offset 

of one (macro) period in order to secure a feasible material flow between production 

stages while small bucket models usually only require a micro period as a fixed lead 

time offset. 

Fleischmann and Meyr (1997) integrated all mentioned models (ELSP, CSLP, CLSP, 

DLSP, PLSP, and CLSD) within the general lot-sizing and scheduling problem (GLSP). 

They used a two-fold time structure, where each macro-period is divided into several 

micro-periods of variable length. A complete sequence of items was established. All 

mentioned models commonly consider that setup times can only be considered if they 

do not exceed the length of a period. However, Koçlar and Süral (2005), through a 

simple modification of the GLSP, showed that setup times exceeding the length of a 

29 



period can also be incorporated. The capacitated lot-sizing problem with linked lot sizes 

(CLSPL) (Suerie & Stadtler, 2003), extends the CLSP with the possibility of setup 

carryover. The CLSPL belongs to the class of large bucket problems, which allow many 

setup operations within a single period. 

Florian et al. (1980) and Chen and Thizy (1990) proved that the single item CLSP is 

NP-hard. To deal with the intricacy of the problem and find the optimal solution in 

reasonable amount of time, numerous studies have applied heuristic and metaheuristic 

algorithms. Gavish and Johnson (1990) proposed a fully polynomial approximation 

scheme for solving the single item CLSP. However, their approach is more suitable for 

continuous models. Sandbothe and Thompson (1990) included backordering into the 

single item CLSP, and presented a polynomial algorithm for solving the case of 

constant capacities and a heuristic algorithm for solving the variable production 

capacity.  

Kirca (1990) developed a DP-based algorithm for the single item lot-sizing problem 

with concave costs and arbitrary capacities. The performance of the algorithm was 

compared with the performance of the existing procedures in the literature for the 

general, the constant capacity, and the constant unit cost problems. The computational 

results demonstrated that proposed algorithm is at least three times faster than the other 

procedures for all problem types considered. Chen et al. (1994) developed a DP method 

for the single item capacitated dynamic lot size model with non-negative demands and 

no backlogging. The proposed approach produced the optimal value function in 

piecewise linear segments.  

Chung (1994) studied a deterministic single product capacitated dynamic lot size 

model with linear production and holding costs where the setup costs, unit production 

costs, and capacities are arbitrary functions of the period, and the unit production costs 
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satisfy the constraint. To solve the problem, the DP algorithm was combined with 

branch and bound approach. Lotfi and Yoon (1994) considered a multi-period single 

item production scheduling problem with a deterministic time-varying demand pattern 

and concave cost functions. Optimal production lot sizes were determined subject to 

dynamic production capacity and no backlogs in addition to minimizing the total costs 

of production, setup, and inventory. The proposed algorithm was tested extensively by 

solving several randomly generated problems with varying degrees of complexity, and 

showed quite good performance for practical applications. 

Hindi (1995a)  considered a capacitated single item lot-sizing model where a startup 

cost is incurred for switching the production facility on, and a separate reservation cost 

is incurred for keeping the facility on whether it is used for production or not. A tabu 

search (TS) scheme was developed for solving the problem which was capable of 

reaching the optimal solution for a large number of varied problem instances. Hardin et 

al. (2007) analyzed the quality of lower and upper bounds provided by a range of fast 

algorithms for single item CLSP with time-varying demands. 

Akbalik and Pochet (2009) provided valid inequalities for the single item CLSP with 

step-wise production costs. Constant-sized batch production was carried out with a 

limited production capacity in order to satisfy the customer demand over a finite 

horizon. They suggested a cutting plane algorithm for different classes of the proposed 

valid inequalities. Computational results showed the efficiency of the proposed 

algorithm compared to the existing methods. Hellion et al. (2012) examined the single 

item CLSP with concave production and storage costs, and minimum order quantity. 

They proposed a polynomial time algorithm to solve the problem optimally, and 

computationally tested the algorithm on various instances. 
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2.4.1.4 Capacitated Multi-Item Problem 

The multi-item CLSP is the extension of the WW problem to multiple items and 

consequently limited capacities in each period. The CLSP is referred to as a big bucket 

problem since several items may be produced per period. The aim of the classical single 

level CLSP is to determine the quantities and timing of production batches in order to 

satisfy external requirements while incurring minimum costs. No backlogging is 

allowed and sequencing decisions are not included into this problem. The overall model 

of this category of lot-sizing problem is presented below (Based on Drexl & Kimms, 

1997; Pochet, 2001; Karimi et al., 2003). 

(a) Assumptions of the CLSP  

i. The planning horizon is finite and divided into big time buckets.  

ii. The lots are determined for multiple items without any interrelationships. The 

model thus considers a single production level. 

iii. The external demand for the items is dynamic and deterministic, and has to be 

satisfied immediately and completely.  

iv. The standard model allows no backordering (delaying fulfillment) or lost sales 

(no fulfillment). 

v. There is a single resource with limited capacity that is shared by all items. 

vi. Overtime decisions are not considered in the standard version. 

vii. For every item produced in a given period, one setup takes place. The current 

setup state of the resource has no influence on setting it up for the next item. The 

setups are sequence-independent, postponing the scheduling decision.  

viii. The setup state of the resource at the end of a period does not extend to the 

beginning of the subsequent period. This means that there is no possibility of a 

setup carryover, and not even a partial sequence is established. 
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ix. Setup times are not included as such. Instead of modeling them explicitly, they 

are hidden in the setup costs, represented as opportunity costs accounting for the 

time lost to actual production. 

x. Variable production costs, holding costs and setup costs can either be modeled 

to vary with time, or they can be modeled static throughout the planning 

horizon. The time-invariant production costs and the respective term in the 

objective function can be omitted from the model as the total amount of 

production for each item is predetermined by the sum of its external demand. 

The objective of the CLSP is to minimize all costs incurred throughout the 

planning horizon. 

(b) Indices 

 i index for item (i = 1, … , N)  

t index for period (t = 1, … , T) 

(c) Parameters 

dit External demand for item i in period t 

Ct Available capacity in time units in period t 

Ri Capacity in time units needed to produce one unit of item i  

Oit Variable production cost for one unit of item i in period t 

Sit Setup cost for item i in period t 

Hit Holding cost for one unit of item i in period t 

Mit Upper bound on the production quantity of item i in period t 

(d) Decision Variables 

Qit Production quantity (lot size) of item i in period t 

Iit Inventory level of item i at the end of period t 
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(e) Mathematical Formulation 

Using the above notations, the mathematical model for the CLSP is presented below. 
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The objective function in Eq. (2.1) minimizes the total cost that includes setup, 

production, and inventory costs. Equation (2.2) represents the capacity constraint. The 

overall consumption for production must be lower than or equal to the available 

capacity. Equation (2.3) concerns the inventory balance equation. Equation (2.4) relates 

the binary setup variable Yit to the production variable Qit. It means that when there is 

production in period t, Yit must be equal to 1. In other words, production of an item is 

only possible if the resource has been setup for that item. If no setup takes place (Yit = 

0), no production can take place (i.e. Qit = 0). The upper bound on the production, Mit, 

is either given by the remaining unfulfilled demand or by the available capacity as 
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shown in Eq. (2.5). Equation (2.6) shows that the inventory of item i for period 1 is 

zero. Equation (2.7) indicates that all decision variables are non-negative. Equation 

(2.8) shows Yit is defined as the binary variable.  

Many heuristic techniques have been developed for solving the variations of single 

level CLSP. Dixon and Silver (1981) developed a heuristic for solving the multi-item 

single level lot-sizing problem with limited capacity in a single facility production 

system, where the time required to setup the facility was avoided. The objective was to 

determine lot sizes so that costs are minimized, no backlogging occurs, and capacity is 

not exceeded. The results indicated that the proposed heuristic will usually generate a 

very good solution with a relatively small amount of computational effort.  

Thizy and van Wassenhove (1985) designed a Lagrangian relaxation (LR) approach, 

in which capacity constraints are relaxed, in an attempt to decompose the problem into 

some uncapacitated single item lot-sizing sub-problems, solvable by the WW algorithm. 

The proposed method incorporated a primal partitioning scheme with a network flow 

sub-problem to obtain good feasible solutions. 

A review of the CLSP can be found in Maes and van Wassenhove (1988), which was 

focused on heuristic solution procedures compared in extensive numerical studies. The 

authors classified the existing approaches into single resource and mathematical 

programming-based heuristics. De Souza and Armentano (1994) presented a multi-item 

CLSP with setup times for production of items, which was constrained by a limited 

regular time and a limited overtime as well as a limitation on production level of any 

item in a given period. The proposed problem was tackled by a cross decomposition 

based algorithm, which can provide optimal or near optimal solutions if computation 

time is restricted.  
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Millar and Yang (1994) developed both the LR and Lagrangian decomposition 

approaches to solve the single level CLSP with backordering. Computational analysis 

showed that both algorithms are quite effective, particularly when item setup and unit 

backorder costs are high. Hindi (1995b) addressed the problem of multi-item dynamic 

lot-sizing in the presence of a single capacitated resource. A model based on variable 

redefinition was developed leading to a solution strategy based on a branch and bound 

search with sharp low bounds. The resulting solution scheme was very efficient in terms 

of computation time. The standard CLSP was tackled by Hindi (1996), who combined 

the TS algorithm on the setup pattern for solving a reformulation of the problem as an 

uncapacitated transshipment problem.  

Özdamar and Bozyel (2000) extended the CLSP to include overtime decisions and 

capacity consuming setups with the objective of minimizing inventory holding and 

overtime costs. Heuristic approaches such as hierarchical production planning approach, 

a GA approach based on the transportation-like formulation of the single item 

production planning model with dynamic demand, and a SA algorithm based on shifting 

family lot sizes among consecutive periods were developed to deal with the proposed 

problem. Computational results demonstrated that the SA approach produced high 

quality schedules and was computationally more efficient. 

Özdamar et al. (2002) integrated the GA with TS and SA algorithms (GATA) to 

solve the CLSP with overtime and setup times. It was assumed that setups do not incur 

costs other than lost production capacity and therefore, setups contribute to total costs 

implicitly via overtime costs whenever capacity bottlenecks occur. The proposed GATA 

integrated the powerful characteristics of all three search algorithms, and the results 

demonstrated that GATA outperformed other heuristics reported in Özdamar and 

Bozyel (2000). Xie and Dong (2002) proposed a GA for solving the CLSP by designing 
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a domain-specific encoding scheme for the lot sizes and by providing a heuristic 

shifting procedure as the decoding schedule. They designed the presentation technique 

that encoded only the binary variables for the setup patterns, but derives other decision 

variables by making use of the problem-specific knowledge.  

Hindi et al. (2003) examined the multi-item single level CLSP with setup times. A 

lower bound on the value of the objective function was calculated by the LR approach 

with sub-gradient optimization. During the process, attempts were made to obtain 

feasible solutions through a smoothing heuristic, followed by a local search with a 

variable neighborhood search (VNS). Solutions found were further optimized by 

solving a capacitated transshipment problem.  

Liu et al. (2004) studied single item inventory capacitated lot size model with lost 

sales. Gupta and Magnusson (2005) examined the capacitated lot-sizing and scheduling 

problem with sequence-dependent setup costs and non-zero setup times, with the 

additional feature that setups may be carried over from one period to the next, and that 

setups are preserved over idle periods. They developed a heuristic for solving large 

problem instances, and coupled with a procedure for obtaining a lower bound on the 

optimal solution. It was shown that the heuristic is more effective when there are many 

more products than there are planning periods.  

Song and Chan (2005) investigated a single item lot-sizing problem with 

backlogging on a single machine at a finite production rate. The objective was to 

minimize the total cost of setup, stockholding and backlogging to satisfy a sequence of 

discrete demands. Both varying demands over a finite planning horizon and fixed 

demands at regular intervals over an infinite planning horizon were considered. A DP 

algorithm was proposed for the computation of an optimal production schedule for the 

varying demands case and a simpler one for the fixed demands case. 
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Jodlbauer (2006) developed a non-time discrete approach for an integrated planning 

procedure, and applied to a multi-item capacitated production system with dynamic 

demand. The objective was to minimize the total costs, which consist of holding and 

setup costs for one period. The proposed approach was based on a specific property of 

the setup cost function, which allows for replacement of the integer formulation for the 

number of setup activities in the model.  

Federgruen et al. (2007) developed a progressive interval heuristic for the multi-item 

CLSP with deterministic demand, joint and item-dependent setup cost with the aim of 

finding a lot-sizing strategy that satisfies the demands for all items over the entire 

horizon without backlogging, and minimizing the sum of inventory-carrying costs, 

fixed-order costs, and variable-order costs. Marinelli et al. (2007) proposed a solution 

approach for a capacitated lot-sizing and scheduling real problem with parallel 

machines and shared buffers, arising in a packaging company producing yoghurt. An 

effective two-stage optimization heuristic based on the decomposition of the problem 

into a lot-sizing problem and a scheduling problem was developed. The proposed 

heuristic showed near-optimal solutions, all obtained in a short computation time. 

Jans and Degraeve (2008) presented an overview of developments in the field of 

modeling of the deterministic single level dynamic lot-sizing problems, where focus 

was on the modeling of various industrial extensions rather than the solution 

approaches. Quadt and Kuhn (2008) provided reviews of extensions of the basic CLSP 

including parallel machines, backorders, and setup times, and illustrated model 

formulations for each of the extensions. Absi and Kedad-Sidhoum (2009) addressed a 

multi-item CLSP with setup times, safety stock and demand shortages. It was assumed 

that demand cannot be backlogged, but can be totally or partially lost. A LR procedure 

for the resource capacity constraints and a DP algorithm to solve the induced sub-
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problems were developed. Some experimental results showed the effectiveness of the 

proposed approaches. 

Anily et al. (2009) examined a multi-item lot-sizing problem with joint setup costs 

and constant capacities. Apart from the usual per unit production and storage costs for 

each item, a setup cost was incurred for each batch of production. Computational results 

were presented to test the effectiveness of using the tight linear programs in 

strengthening the basic mixed integer programming formulations of the joint setup 

problem both when the storage cost conditions are satisfied, and also when they are 

violated. 

Pan et al. (2009) addressed the capacitated dynamic lot-sizing problem arising in 

closed-loop supply chain where returned products are collected from customers. It was 

assumed that returned products can either be disposed or be remanufactured to be sold 

as new ones again; hence the market demands can be satisfied by either newly produced 

products or remanufactured ones. The proposed problem was analyzed and solved using 

DP algorithms under different scenarios. It was shown that the problem with only 

disposal or remanufacturing can be converted into a traditional CLSP and be solved by 

a polynomial algorithm if the capacities are constant. A pseudo-polynomial algorithm 

was proposed for the problem with both capacitated disposal and remanufacturing. It 

was indicated that the proposed algorithms perform well when solving problems of 

practical sizes.  

Buschkühl et al. (2010) differentiated solution procedures for the CLSP into 

mathematical programming-based approaches, Lagrangian heuristics, decomposition 

and aggregation heuristics, metaheuristics, and problem specific greedy heuristics. They 

have also discussed both different modeling approaches to the optimization problems 

and different algorithmic solution approaches. Zhang et al. (2012) proposed a LR-based 
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solution approach to solve a mixed integer CLSP in a closed-loop supply chain 

considering setup costs, product returns, and remanufacturing. Numerical experiments 

using synthesized data demonstrated that proposed approach can find quality solutions 

efficiently. 

Ramezanian et al. (2013) presented a mathematical model for integrating lot-sizing 

and scheduling problem in capacitated flow shop environments. Two mixed integer 

programming-based approaches with rolling horizon framework were used to solve the 

proposed model. Mehdizadeh and Fatehi Kivi (2014) proposed a new mixed integer 

programming model for multi-item CLSP with setup times, safety stock and demand 

shortages in closed-loop supply chains. The returned products from customers can 

either be disposed or be remanufactured to be sold as new ones again. Due to the 

complexity of problem, three metaheuristics algorithms namely SA, vibration damping 

optimization algorithm and harmony search algorithm were used to solve the model. 

The results confirmed the efficiency of the harmony search algorithm against the other 

methods. 

Chan et al. (2015) explored the multi-item CLSP by addressing the backlogging and 

associated high penalty costs incurred. At the same time, penalty cost for exceeding the 

resource capacity was also taken into account. To solve this computationally complex 

problem, a less explored algorithm biased random key GA was applied. The results 

showed that the proposed algorithm is an efficient tool to tackle such complex 

problems.  

De Reyck (2015) developed period decompositions for the CLSP with setup times. 

Based on two strong reformulations of the problem, a transformed reformulation and 

valid inequalities were presented that speed up column generation and the LR approach. 

An efficient hybrid scheme was proposed that combines column generation and the LR 
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in a novel way. Computational experiments showed that the proposed solution method 

for finding lower bounds is competitive with the available approaches in the literature.  

Hajipour et al. (2015) considered a multi-item CLSP with setup times, safety stocks, 

and demand shortages plus lost sales and backorder considerations for various 

production methods (i.e., job shop, batch flow, and continuous flow among others). 

Two novel Pareto-based multi-objective metaheuristic algorithms were proposed, 

namely multi-objective vibration damping optimization and multi-objective harmony 

search algorithm. The proposed algorithms were compared with two well-known 

evolutionary algorithms called the non-dominated sorting the GA and multi-objective 

SA to demonstrate the efficiency and effectiveness of the proposed methods. 

Tempelmeier and Hilger (2015) proposed the stochastic dynamic lot-sizing problem 

with multiple items and limited capacity under two types of fill rate constraints. They 

proposed linear programming (LP) models, where the non-linear functions of the 

expected backorders and the expected inventory on hand were approximated by 

piecewise linear functions. The models were solved with a variant of the fix-and-

optimize heuristic.  

2.4.2 Economic Lot Scheduling Problem  

The ELSP is concerned with scheduling the production of multiple items in a single 

facility on a periodical basis with the restriction that one item is produced at a time. The 

objective of the ELSP is to determine the lot size and the schedule of production of each 

product so as to minimize the long run average costs incurred per unit time, namely the 

setup and holding costs (Rogers, 1958). This problem exists in many production 

systems such as metal forming, plastic injection, weaving and assembly lines, etc. 
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Feasible solutions for the ELSP (production schedules and lot sizes) should satisfy 

one by one production (single machine), no shortage, and the capacity constraints. 

Throughout the past half century, a considerable amount of research on this problem has 

been published with several directions of extensions. Subsequently, various heuristic 

approaches have been suggested using any of the basic period (Brander & Forsberg, 

2006; Nilsson & Segerstedt, 2008; Salvietti & Smith, 2008), common cycle (Khoury et 

al., 2001; Torabi et al., 2005; Tang & Teunter, 2006; Teunter et al., 2009), or time-

varying lot size methods (I. Moon et al., 2002b; Giri et al., 2003; Raza et al., 2006).  

Dobson (1987) developed a heuristic for finding feasible schedules for the ELSP 

having the time-varying lot sizes and cycle times. Lopez and Kingsman (1991) provided 

an excellent review for the ELSP and the solution approaches. Zipkin (1991) examined 

a version of the ELSP in which items can be produced several times in different 

amounts during a cycle. It was shown how to compute the optimal lot sizes and cycle 

length, given the sequence of items in a cycle. The proposed procedure was designed to 

be used along with a heuristic for selecting the sequence of items in a cycle. The two 

algorithms together comprised a simple and plausible heuristic for the ELSP as a whole. 

Bourland and Yano (1994) developed an optimization-based model that considers 

capacity slack, safety stock, and overtime explicitly in the ELSP with stochastic 

demand. The objective was to minimize the expected cost per unit time of inventory, 

overtime, and where applicable, setup costs. The solution was a continuous-time 

production plan that consists of a time-dependent inventory trajectory for each of the 

parts, including the placement of planned idle time in the schedule. The results on the 

relative merits of capacity slack and safety stock indicated that capacity slack in the 

form of planned idle time is not a cost-effective hedge against demand uncertainty in 

this context.  
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Gallego and Joneja (1994) extended the traditional model of the ELSP by 

considering various issues associated with the management of the raw materials for 

production of several items. In the presence of setup and holding costs for the raw 

materials, a planning model was formulated which provides a sharp lower bound on the 

cost of any policy for the problem. The solution was used to obtain policies which are 

guaranteed to be very close to optimal in the worst case. It was attempted to obtain good 

feasible schedules for both machine and raw materials. 

Shaw (1998) considered the capacitated ELSP with piecewise linear production costs 

and general holding costs, which is a NP-hard problem but solvable in pseudo-

polynomial time. The computational experiments indicated that the algorithm is capable 

of solving quite large problem instances within a reasonable amount of time. 

Bollapragada and Rao (1999) focused on simultaneous resource allocation, lot-sizing 

and scheduling in a multi-machine deterministic ELSP environment, with the objective 

of minimizing the long-run average cost including the production, setup, inventory, and 

shortage penalty costs.  

Salvietti and Smith (2008) extended the ELSP to include price optimization with the 

objective of maximizing profits. A solution approach based on column generation was 

provided, which is able to produce very close to optimal results with short solution 

times. Bollapragada et al. (2011) investigated a discrete-time dynamic demand ELSP 

for multiple non-identical production lines. In particular, the problem of apportioning 

item production to distinct manufacturing lines with different costs (production, setup 

and inventory) and capabilities was considered. The computational results showed that 

the best of the developed approaches is able to handle the proposed problem 

outperforming general-purpose solvers and other randomized approaches.  
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Zanoni et al. (2012) addressed the multi-product ELSP with manufacturing and 

remanufacturing. It was assumed that manufacturing and remanufacturing operations 

are performed on the same production line, and both have the same quality, thus, they 

fulfill the same demand stream. A simple and easy to implement algorithm was 

proposed to solve the model using a basic period policy by relaxing the constraint of 

common cycle time and a single (re)manufacturing lot for each item in each cycle. 

Numerical examples showed the applicability of the algorithm and the cost savings. 

Adelman and Barz (2013) formulated the ELSP with sequence-dependent setup 

times and costs as a semi-Markov decision process. Using an affine approximation of 

the bias function, a semi-infinite linear program was obtained determining a lower 

bound for the minimum average cost rate. Under a very mild condition, the proposed 

problem was reduced to a relatively small convex quadratically constrained linear 

problem by exploiting the structure of the objective function and the state space. Horng 

and Yang (2013) addressed the stochastic ELSP considering the make-to-stock 

production of multiple standardized products on a single machine with limited capacity, 

possibly random setup times under random demands, and possibly random processing 

times. A method was proposed that combines the ABC algorithm and ordinal 

optimization theory to find a good solution. Test results demonstrated that the proposed 

method is promising in the aspects of solution quality and computational efficiency. 

Abdelsalam and Elassal (2014) extended the work of Ben-Daya et al. (2013) and 

relaxed the assumption of deterministic demand and constant holding and ordering costs 

for the joint ELSP in a three-layer supply chain. Computational intelligent algorithms 

were adopted to solve the proposed mixed integer problem, and performance 

comparisons were conducted to find the best solution. Löhndorf et al. (2014) conducted 

simulation optimization for the stochastic ELSP with sequence-dependent setup 
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times. Salvietti et al. (2014) presented the stochastic version of the ELSP with pricing. 

The control variables of the stochastic problem were the production quantities and cycle 

lengths for each product. A solution method based on simulation, decomposition, and 

column generation was proposed, and tested using a number of designed experiments. 

The method was found to produce very close to optimal solutions quickly. 

The ELSP is categorized as NP-hard (Hsu, 1983), which leads to difficulty of 

checking every feasible schedule in a reasonable amount of computation time. Most 

researchers have focused on the generation of near optimal repetitive schedules. 

Recently, metaheuristic algorithms have been implemented effectively to solve the 

ELSP.  

Khouja et al. (1998) solved the ELSP with consideration of basic period approach 

using the GA, and showed that the GA is preferably appropriate for solving the 

problem. I. Moon et al. (2002b) utilized a hybrid genetic algorithm (HGA) to solve the 

single facility ELSP based on the time-varying lot size method, and compared the 

performance of the HGA with the well-known Dobson’s heuristic (DH) (1987). 

Numerical experiments showed that the proposed algorithm outperformed the DH. Yao 

and Huang (2005) applied the HGA to solve the ELSP with deteriorating items using 

the extended basic period approach under the power-of-two policy.  

Chatfield (2007) developed a genetic lot scheduling procedure to solve the ELSP 

under the extended basic period approach. The procedure was applied to the well-

known Bomberger’s benchmark (1966) problem, and compared with the proposed GA 

by Khouja et al. (1998). It was shown that genetic lot scheduling produces regularly 

lowers cost solutions than the GA method suggested in Khouja et al. (1998). Jenabi et 

al. (2007) solved the ELSP in a flow shop setting utilizing the HGA and SA algorithms. 

Their computational results indicated the superiority of the proposed HGA compared to 

45 



the SA with respect to the solution quality. However, the proposed SA outperformed the 

HGA in terms of the required computation time.  

Chandrasekaran et al. (2007) investigated the ELSP with the time-varying lot size 

approach and sequence-independent/sequence-dependent setup times of parts, and 

applied the GA, SA, and ACO algorithms. The computational performance analyses 

revealed the effectiveness of the proposed metaheuristic methods. Raza and Akgunduz 

(2008) examined the ELSP with time-varying lot size approach, and conducted a 

comparative study of heuristic methods, namely the DH, HGA, TS, SA, and NS on 

Bomberger’s (1966) and Mallya’s (1992) problems. Their results showed that the SA 

outperformed DH, HGA, and NS. The SA algorithm also indicated faster convergence 

than the TS algorithm, but resulted in solutions of a similar quality. 

Sun et al. (2009) solved the ELSP in a multiple identical machines environment 

using the GA under the extended basic period and power-of-two policy. Tasgetiren et al. 

(2011) proposed a discrete ABC algorithm for the ELSP. Bulut et al. (2012) proposed a 

GA for the ELSP under the extended basic period approach and power-of-two policy. 

The experimental results showed that the proposed GA is highly competitive to the best-

performing algorithms from the existing literature. Chung and Chan (2012) proposed a 

two-level GA to determine production frequencies for the ELSP. Kayvanfar and 

Zandieh (2012) solved the ELSP with deteriorating items and shortage using the ICA 

approach.  

Peixin (2012) proposed an improved PSO algorithm for the ELSP under the power-

of-two policy. Tasgetiren et al. (2012) presented a discrete harmony search algorithm 

for the ELSP with power-of-two policy. Ganguly et al. (2013) proposed a hybrid 

discrete differential evolution algorithm for the ELSP with time variant lot-sizing. 

Babaei et al. (2014) studied the capacitated lot-sizing and scheduling problem with 
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sequence-dependent setups, setup carryover, and backlogging, and applied the GA to 

solve the model. To test the accuracy of the algorithm, a lower bound was developed 

and compared against the GA. In computational experiments, proposed GA performed 

extremely well. Bulut and Tasgetiren (2014) applied a discrete ABC algorithm for the 

ELSP with returns under the basic period policy with power-of-two multipliers. It was 

shown that the proposed algorithm performs well under the applied policy and it has the 

potential of improving the best known solutions when the applied policy is relaxed.   

2.4.2.1 Shelf Life  

Many industrial products have very short life cycles as well as shelf life constraints. 

Shelf life is the length of time that a product may be stored without becoming unfit for 

use, consumption, or sale. Shelf life does not only reflect the physical condition of a 

product, it may also reflect the productive or marketable life of a product as well in a 

competitive emerging market.  

Silver (1989) considered the shelf life constraint for a multi-item single facility 

system while disallowing production cost under the postulation that production rate 

variation does not impose any further expenses. Two options of decreasing cycle time 

and production rate were investigated. It was concluded that if the shelf life constraint is 

flawed, it is more cost-efficient to reduce the production rate. Silver (1989) also stated 

that if the production rate decreases, the manufacturing process should be performed for 

a longer period.   

However, Sarker and Babu (1993) implied that associated costs will increase as the 

production time is increased. This means that extra expenses are encountered by the 

manufacturing plant when the production rate increases. Hence, production time cost 

must be taken into account to incorporate the impact of production time length. Sarker 

and Babu (1993) modified the model proposed by Silver (1989) by considering 
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production time cost. They found that when production cost is included in the model, it 

may be more efficient to reduce the cycle time rather than the manufacturing rate. They 

also implied that storage time can be lowered through regular restocking of items, 

subsequently decreasing the inventory maintained in stock. 

Goyal (1994) investigated the results obtained by Sarker and Babu (1993), and 

suggested that their proposed model can be improved by allowing the production of 

items more than one time in a cycle. Viswanathan (1995) stated that although Goyal’s 

suggestion (1994) can incur a lower inventory cost, his method does not assure a 

feasible production schedule. Yan et al. (2013) indicated that advancing or delaying the 

manufacturing start times of some items can lead to a feasible production plan. 

Accordingly, costs associated to the adjustment schedule must be taken into account. 

They suggested a two-stage heuristic algorithm. Initially, their model was simplified by 

omitting the schedule adjustment constraints and costs. Then, in the case of an 

infeasible schedule a modification procedure was employed using a greedy heuristic of 

sequentially selecting the activities, one every time, for either moving forward or 

postponing the manufacturing start time, until a practicable schedule is achieved.  

However, the solution of the large scale proposed ELSP model seems to be out of 

reach using the suggested approach by Yan et al. (2013) due to its complexity and 

computational effort. Furthermore, In Yan et al. (2013), the items’ production 

frequencies were restricted to three in order to make the problem practical, and limit the 

computational effort. Thus, efficient heuristic methods are required to solve the 

proposed model for large problems usually found in real-world situations.  
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Silver (1995) proposed the simultaneous adjustment of “cycle time” and “production 

rate” when the shelf life constraint is violated for one item. It was shown that after 

eliminating the infeasibility, the results obtained through the suggested option can be at 

least as good as adjusting only one of these two parameters. Viswanathan (1995) 

implied that Sarker and Babu’s model (1993) offers a feasible schedule only when all 

the items produced have the same frequency. Goyal (1996) implied that in some 

circumstances the models suggested by Silver (1989, 1995) and Sarker and Babu (1993) 

may result in an infeasible production schedule, since the feasibility condition for the 

cycle time was not considered in their studies.  

Viswanathan and Goyal (1997) improved the model proposed by Silver (1995) by 

determining the optimum cycle time and production rate for a group of items, along 

with binding the shelf life constraint for multiple items. Later, Viswanathan and Goyal 

(2000) enhanced their previous model by considering planned backorders. They 

demonstrated that in models having backorders, some changes in shelf life constraint 

occur. However, Viswanathan and Goyal (2000) did not examine the three options to 

obtain the pertinent cost functions and the optimal cycle time if the shelf life constraint 

is violated.  

Chowdhury and Sarker (2001) addressed the raw material inventory planning for a 

family of items having limitations on the shelf lives of items stored in inventory in 

addition to a generalized manufacturing cost of processes, where the cost of the process 

may increase or reduce, depending on the production system. Viswanathan and Goyal 

(2002) revealed that the model proposed by Chowdhury and Sarker (2001) causes the 

flaw of a shelf life constraint when adjusting both cycle time and production rate. 

Viswanathan and Goyal (2002) modified their model due to such flaw to obtain the 

optimum production rate and cycle time. Gupta and Karimi (2003) studied scheduling a 
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two-stage multi-product process with limited product shelf life in an intermediate 

storage. 

Xu and Sarker (2003) developed a model by considering the effects of production, 

holding, setup, and shortage costs in the inventory system while incorporating the shelf 

life constraint. They examined the three options in order to decide which option offers 

the lowest yearly cost for inventory system operations. However, Xu and Sarker (2003) 

did not assess the feasibility condition for cycle time after adjusting the production rate. 

Evidently, some of the proposed mathematical formulations for calculating the optimal 

cycle time and related costs are inconsistent and inaccurate.  

Sharma (2004) examined a multi-product manufacturing environment by allowing 

shortages to be completely backordered and considering the shelf life constraint for one 

item. Mathematical formulations were provided to obtain the optimum cycle time and 

shortages. Nonetheless, Xu and Sarker (2003) and Sharma (2004) eliminated the effect 

of shortage on the shelf life constraint previously reported by Viswanathan and Goyal 

(2000). Therefore, their proposed models do not offer appropriate solutions when the 

shelf life constraint is violated (Goyal & Viswanathan, 2006). 

Chakravarthy and Daniel (2004) studied an inventory system in which items have 

shelf lives, and demand is according to a Markovian arrival process that can be 

backordered up to a specific level. Soman et al. (2004) applied the basic period 

approach to solve the ELSP with shelf life considerations. Lütke Entrup et al. (2005) 

developed a mixed-integer LP model which incorporates shelf life limitations and 

production planning in addition to scheduling for perishable items. Sharma (2006) 

revised his previous work (Sharma, 2004) by incorporating fractional backordering in a 

multiple item production situation with shelf lives and using the common cycle time 

approach to solve the problem. Gürler and Özkaya (2008) examined perishable products 

50 



by considering a continuous review (s, S) type policy with random shelf life and 

replenishment batch demand. Liu et al. (2008) incorporated shelf life considerations in 

the ELSP and solved the proposed model using the time-varying lot size method.  

2.4.3 Multi-Level Lot-Sizing Problems 

The multi-level (also known as multi-stage) lot-sizing problem is concerned with 

determining the lot size for producing or procuring an item at each level in order to 

satisfy the demand for end items at the right time and if possible at the lowest cost 

(Dellaert et al., 2000). In a multi-stage system, the production of final product requires 

completion of a number of operations or stages. A fixed sequence of operations is 

assumed, so that the output from one stage serves as the input to an immediate 

successor stage.   

End items are made up with a number of intermediate products which, in turn, 

consist of combinations of components (purchased parts and raw materials). Each end 

item is therefore described by a bill of materials, which is the product recipe. When the 

issue of satisfying the demand for end items emanating from customers is considered, 

the right quantity of each sub-component has to be available at the right time. As 

products are associated with holding and setup costs, different inventory policies lead to 

different costs, and determining an optimal policy is the main concern.  

Brüggemann and Jahnke (1994) extended the standard mixed-integer linear model 

formulation for the multi-item discrete lot-sizing and scheduling problem by additional 

partially nonlinear constraints for the case of two-stage batch production, known as 

(MLDLSP). A SA approach was suggested for computing production schedules on both 

stages. Kimms (1996) presented two heuristic approaches to solve a multi-level 

proportional lot-sizing and scheduling problem (MLPLSP). The first one was a variant 

of a so-called randomized regret based heuristic which is assumed to be the fastest 
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available method for this particular class of problems. The second approach was a TS 

technique that was superior with respect to both the run-time performance and the 

average deviation from the optimum objective function values. 

Population-based methods dealing with the multi-level uncapacitated lot-sizing 

problems (MLULSP) were implemented in the following studies. Dellaert and Jeunet 

(2000), Dellaert et al. (2000), and Prasad and Chetty (2001) employed the GAs; Tang 

(2004) and Homberger (2010) applied the SA; Pitakaso et al. (2007), Homberger and 

Gehring (2009), and Buer et al. (2013) employed the ant colony optimization (ACO) 

algorithm; and Han et al. (2009) applied the PSO method with flexible inertial weight.   

An extensive study of stochastic local search procedures, in particular the SA, was 

presented in Jeunet and Jonard (2005), tackling the MLULSP. Berretta et al. (2005) 

enhanced their procedure consisting of a smoothing, improvement and perturbation step 

with elements of the TS and SA methods, which improved the obtained solution quality.  

The multi-level capacitated lot-sizing problem (MLCLSP) is considered as an 

extension of the big bucket single level CLSP. There are constraints that must be taken 

into account such as demand satisfaction, inventory balance, limited capacity of 

resources, and setup time of products. The dynamic MLCLSP was introduced by 

Billington et al. (1983). The problem to determine a feasible solution for a MLCLSP 

with non-zero setup times is NP-complete (Maes et al., 1991), where exact methods fail 

in solving large problem instances. 

Kuik et al. (1993) investigated the multi-level lot-sizing problem for assembly 

production systems with a bottleneck. They developed heuristics based on the LP, and 

compared the performance of these heuristics with the performance of the SA and TS 

algorithms. The results showed that SA and TS perform well compared to pure LP-
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based heuristics, but the effectiveness of the latter heuristics can be improved by 

combining them with elements from SA and TS. Stadtler (1997) reformulated the 

shortest route model to solve the dynamic multi-item MLCLSP. A model formulation 

was also introduced in which finding a tradeoff between model size and tightness of the 

lower bound obtained by the LP relaxation was enabled.  

Özdamar and Barbarosoğlu (1999) addressed the multi-stage capacitated lot-sizing 

and loading problem, in which it deals with the issue of determining the lot sizes of 

items in serially-arranged manufacturing stages and loading them on parallel facilities in 

each stage to satisfy dynamic demand over a given planning horizon. To solve the 

proposed problem, the SA and GA were integrated to enhance their individual 

performances. These global optimization methods were further incorporated into a LR 

scheme, hence creating a hybrid solution methodology. Numerical results confirmed the 

efficiency of integrating the solution techniques. 

Barbarosoğlu and Özdamar (2000) described an analysis of different neighborhood 

transition schemes and their effects on the performance of a general purpose SA 

procedure for solving the dynamic MLCLSP with general product structures. The 

results indicated that the performance of SA was highly dependent on the definition and 

the tightness of the search space. Furthermore, the increase in the number of search 

moves carried out by SA was shown to improve the results significantly with linearly 

increasing computation times. Hung and Chien (2000) compared the performance of the 

SA, TA and GA methods for the MLCLSP with multiple demand classes. Their findings 

showed that the TS and SA performed best in the confirmed order demand class and 

forecast demand class, respectively. 

Özdamar and Barbarosoğlu (2000) examined the multi-item MLCLSP with general 

product structures. The difficulty in solving the MLCLSP is to provide capacity-feasible 
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lot sizes while maintaining the non-negativity of the inventories belonging to the items 

in the lower levels of the product structures. It was attempted to resolve this issue by 

combining the capability of the LR to decompose the hard-to-solve problems into 

smaller sub-problems and the intensive search capability of the SA.  

Chen and Chu (2003) developed a heuristic approach based on combining the LR 

with local search for supply chain planning modeled as multi-item MLCLSP. Numerical 

experiments showed that the proposed approach can find good solutions for problems of 

realistic sizes in a short computation time. Dellaert and Jeunet (2003) provided a 

detailed overview of heuristics for solving the MLULSP with time-invariant cost 

structure in material requirements planning systems. Berretta and Rodrigues (2004) 

developed methods based on evolutionary metaheuristics, more specifically a memetic 

algorithm for solving the MLCLSP. The proposed heuristics were evaluated using 

randomly generated instances and well-known examples in the literature. Pitakaso et al. 

(2006) combined the ACO algorithm with the fix and relax heuristics to solve the 

MLCLSP.  

Inderfurth et al. (2007) studied the problem of scheduling manufacturing of work and 

rework processes on a single facility under deterioration of reworkables. The processing 

of a batch contains two stages, where setup time as well as setup cost are required to 

start batch processing and switch from production to rework. The objective was to find 

batch sizes such that all demands are satisfied and total setup, rework and inventory 

holding cost is minimized. Polynomial time algorithms were presented to solve two 

realistic special cases of this problem.  

Fakhrzad and Zare (2009) examined the lot size determination problems in a 

complex multi-stage production scheduling problems with production capacity 

constraint. By determining the decision variables, machinery production capacity and 
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customer’s demand, an integer linear program was provided with the objective of 

minimizing the total cost of setup, inventory and production. Through combining the 

GA with one of the neighborhood search (NS) techniques, a new approach was 

developed for solving the problem. Mohammadi et al. (2009) considered the problem of 

multi-product multi-level capacitated lot-sizing and sequencing problem with sequence-

dependent setups. A mathematical model was developed to quickly find feasible 

solutions for non-small instances. Hybrid methods that mix rolling-horizon approach 

and heuristic were developed, and accuracy of hybrid methods was tested in order to 

find the trade-offs between objective values and computing times.  

Caserta et al. (2010) presented a metaheuristic called corridor method for solving the 

MLCLSP with setup carryover. The algorithm iteratively built new corridors around the 

best solution found within each corridor and, therefore, explored adjacent portions of 

the search space. The algorithm was tested on instances of a standard benchmark library 

and the reported results showed the robustness and effectiveness of the proposed 

scheme. 

Wu and Shi (2011) demonstrated theoretically the relationships between several 

mathematical formulations for solving the MLCLSP with linked lot sizes in order to 

investigate the comparative efficiencies associated with these models. It was attempted 

to provide the theoretical and numerical results in order to find significant guidelines for 

choosing an effective formulation in different situations. Wu et al. (2011) presented an 

optimization framework for solving MLCLSP with backlogging.  

Ramezanian and Saidi-Mehrabad (2013) addressed the lot-sizing and scheduling 

problem of a flow shop system with capacity constraints, sequence-dependent setups, 

uncertain processing times and uncertain multi-product and multi-period demand. Due 

to the complexity of problem, two MIP-based heuristics with rolling horizon framework 
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named non-permutation heuristic and permutation heuristic were performed to solve the 

model. Also, a hybrid metaheuristic based on a combination of SA, firefly algorithm 

and proposed heuristic for scheduling was developed to solve the problem. 

Computational results on a set of randomly generated instances showed the efficiency 

of the hybrid metaheuristic against exact solution algorithm and heuristics. 

Toledo et al. (2013) applied a hybrid multi-population GA to solve the MLCLSP 

with backlogging. The proposed method combined the multi-population based 

metaheuristic using fix-and-optimize heuristic and mathematical programming 

techniques. The results showed that presented algorithm had a better performance for 

most of the test sets solved compared with those available in literature, especially when 

longer computing time was given. 

Hajipour et al. (2014) investigated a multi-level problem of lot-sizing with capacity 

constraints in a finite planning horizon in order to determine the economical lot size 

value of each product in each period, so that besides fulfilling all the needs of 

customers, the total cost of the system is minimized. A combination of ACO and a 

heuristic method called shifting technique was proposed to solve the problem, and the 

results were compared with TS, SA, and GA. The computational results indicated the 

efficiency of the proposed method in comparison to other metaheuristics. 

Toledo et al. (2014) applied a GA approach embedded with mathematical 

programming techniques to solve a synchronized and integrated two-level lot-sizing and 

scheduling problem motivated by a real-world problem that arises in soft drink 

production. A production process compounded by raw material preparation/storage and 

soft drink bottling was considered. The proposed GA deals with sequencing decisions 

for production lots, so that an exact method can solve a simplified LP model, 

responsible for lot-sizing decisions. The computational results showed that the 
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evolutionary/mathematical programming approach outperforms the literature methods 

in terms of production costs and run times.  

Chen (2015) employed two approaches namely fix-and-optimize and VNS method 

for the dynamic MLCLSP considering both without and with setup carryover. 

Numerical experiments on benchmark instances showed that both applied approaches 

can obtain a better solution for most instances compared with that found by the fix-and-

optimize approach proposed by Helber and Sahling (2010). 

Figure 2.3 illustrates an overview of the mentioned single and multi-level lot-sizing 

models. 
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Figure  2.3: Classification of single and multi-level lot-sizing models 
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2.5 Multi-Facility Problems  

Dantzig (1955) introduced the concept of multi-facility systems in which production 

of items at one facility requires inputs from other facilities. If transportation costs are 

not taken into account in multi-facility models, then the considered system is a multi-

machine or multi-stage single facility system. Due to the complexities of solving multi-

facility problems, the interdependencies between the facilities in the system are often 

not taken into account, and generally multi-facility problems are solved by optimizing 

the costs of each facility individually (Rizk & Martel, 2001).  

Numerous studies investigating the lot-sizing and scheduling problem have 

concentrated on how to effectively schedule production operations within the confines 

of a single production facility. However, from the perspective of minimizing the total 

cost in a supply chain, companies usually acknowledge that the cost of a product is not 

only determined with the amount of factory resources used to convert the raw material 

into a finished product, but also with the amount of resources used to deliver the 

product to the customer. Hence, concentrating only on lot-sizing and scheduling of 

production operations within plants may not be sufficient to obtain the desired low 

levels in the production and logistics costs of the supply chain.  

Supply chain management (SCM) problems are also connected with the solution of 

lot-sizing problems in procurement-production-distribution networks. It helps to find 

the optimal order, production and shipment quantities and minimize the cost including 

purchasing, production and transportation flows for a set of commodities from a set of 

production facilities to a set of customers. Goyal and Deshmukh (1992) reviewed 

models of integrated procurement-production systems, which study combined decisions 

on the optimal procurement lot size of raw material and the optimal production lot size 

of finished products.  
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Since the early 1980s the integration of company-overlapping aspects in terms of 

logistics has become manifest. In this regards, the term SCM was stated for the first 

time by Oliver and Webber (1982). A supply chain is defined as a connected series of 

activities, which is concerned with planning, coordinating and controlling functions 

including procurement of materials, transformation of materials and intermediate 

products into intermediate and finished products, in addition to the distribution of 

finished products to customer (Ganeshan et al., 1999; Goetschalckx, 2011). SCM as 

defined by Vorst (2000) is the integrated planning, coordination and control of all 

material and information flows in the supply chain to deliver superior consumer value at 

lower cost to the supply chain as a whole whilst satisfying requirements of other 

stakeholders in the chain.  

The term supply chain may also imply that only one player is involved at each stage. 

In reality, a manufacturer may receive materials from several suppliers and then supply 

several distributors. Thus, most supply chains are in fact considered as networks. It 

might be more accurate to use the term supply network or supply web in order to 

describe the structure of most supply chains (Chopra & Meindl, 2001), as shown in 

Figure 2.4. Each stage in a supply chain is connected through the flow of products, 

information, and funds. 
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Figure  2.4: Supply chain network (Chopra & Meindl, 2001) 

Improving the cooperation among supply chain partners and efficiently integrate the 

flow of goods, services and information can help the chain lessen extra inventory in the 

system, reduce pertinent costs from the logistic network, and enhance customer service 

level dramatically. In today’s competitive market environment, SCM has been 

promoted as a key strategic component of companies that can help them achieve or 

maintain their competitive edge. 

According to Cooper et al. (1997), SCM as a management philosophy takes a system 

approach to view the supply chain as a single entity. This means that the partnership 

concept is extended into a multi-firm effort to manage the flow of goods from suppliers 

to the ultimate customer. Each firm in the supply chain directly or indirectly affects the 

performance of the other supply chain members, as well as the overall performance of 

the supply chain.  
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Dhaenens-Flipo (2000) presented a hierarchical heuristic which decomposes a multi-

facility multi-item production and distribution problem into several sub-problems, based 

on an analogy of the vehicle routing problem, to determine the plant, production line, 

and production sequence for the items in an integrated way. Dhaenens-Flipo and Finke 

(2001) modeled the multi-facility, multi-item, multi-period production and distribution 

problem in the form of a network flow problem and applied it successfully to a real 

industrial problem. 

As stated by Hwang et al. (2013), the multi-stage lot-sizing problem with production 

capacities deals with a supply chain that consists of a manufacturer with stationary 

production capacity and intermediaries (distribution centers or wholesalers) and a 

retailer to face the deterministic demand. An optimal supply chain plan for this problem 

specifies when and how many units each organization of the supply chain should 

produce or transport to ultimately fulfill the demand at the retailer with the objective of 

minimizing the total supply chain costs. 

The importance of the coordination between production and distribution operations 

have been studied in Chandra and Fisher (1994) and Fumero and Vercellis (1999). It has 

been shown that integrated scheduling of production and distribution operations 

perform substantially better than unsynchronized scheduling of such operations. Hence, 

it is important for the companies to recognize that a reduction in total cost of the supply 

chain and an increase in customer satisfaction can be realized through integrated 

scheduling of production and distribution operations.  

Armentano et al. (2011) studied the problem of integrating production and 

distribution planning with a capacity constrained plant that produces a number of items 

distributed by a fleet of homogenous vehicles to customers having known demand. Two 

TS variants for this problem were proposed, one that involves construction and a short-
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term memory, and one that incorporates a longer term memory used to integrate a path 

relinking procedure to the first variant. Yan et al. (2011) integrated a production-

distribution model for a deteriorating inventory item in a two-echelon supply chain. A 

procedure for determining the optimal supply chain decisions was outlined with the 

objective of minimizing the total system cost.  

Amorim et al. (2012) presented a multi-objective integrated production and 

distribution planning for perishable products having a fixed and a loose shelf life. The 

results showed that the economic benefits derived from using an integrated approach are 

much dependent on the freshness level of products delivered. Pal et al. (2012) presented 

a three-layer multi-item production-inventory model for multiple suppliers and 

retailers.  An integrated profit of the supply chain was optimized by optimal ordering lot 

sizes of the raw materials.  

Ben-Daya et al. (2013) examined the joint economic lot-sizing problem in the 

context of a three-stage supply chain consisting of a single supplier, single manufacturer 

and multi-retailers. The objective was to specify the timings and quantities of inbound 

and outbound logistics for all parties involved such that the chain-wide total ordering, 

setup, raw material and finished product inventory holding costs are minimized. The 

derivative-free methods was employed to derive a near closed form solution for the 

developed model.  

Sarker et al. (2013) examined a tree-type three-echelon production-distribution 

supply chain system with allowable backorder. It was attempted to improve service rate 

by reducing the backorder at the retailer level. A branching search process was utilized 

to obtain the solutions. Chen and Sarker (2014) utilized the ACO algorithm for solving 

an integrated inventory lot-sizing and vehicle-routing model in a multi-supplier single 

assembler system with just-in-time delivery. The results showed that integrated model 
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can reduce the total cost and highlighted the importance of cooperation between 

suppliers and manufacturers in just-in-time production practices. 

Sana et al. (2014) studied the replenishment size/production lot size problem both for 

perfect and imperfect quality products in a three-layer supply chain consisting of 

multiple suppliers, manufacturers and retailers. Further, the expected average profits of 

suppliers, manufacturers and retailers were formulated by trading off setup costs, 

purchasing costs, screening costs, production costs, inventory costs and selling prices. 

In a numerical illustration, the optimal solution of the collaborating system showed a 

better optimal solution than the existing related models in literature.  

Yazdani et al. (2015) improved the mathematical models for the multi-factory 

parallel machine problems, and compared them with the available models in both size 

and computational complexities. They solved the models by the ABC algorithm and 

compared them against the available algorithms on both small and large instances. It 

was shown that proposed metaheuristic performed much more effectively. 

2.5.1 Multi-Plant Systems 

To lower the production cost and meet customer demands in time, companies have to 

examine alternative solutions for their logistics network. One of these solutions can be 

shifting from one plant manufacturing facility to multi-plant enterprise. Bhatnagar et al. 

(1993) distinguished supply chain coordination planning into two broad categories: 

coordination in terms of incorporating decisions of various functions, including 

production planning, distribution, and marketing, and coordination of associating 

decisions within the same operation through several echelons of the corporation. The 

authors refer to the latter level of coordination as “multi-plant coordination”. Each plant 

here refers to a manufacturing facility that is centered around related production 

processes.  
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Shifting from single plant to multi-plant organization can bring several advantages 

such as being proximate to low cost raw materials, closeness to market, flexibility in 

producing various products and specialization in activities, and so forth (Maritan et al., 

2004). However, decision making in multi-plant systems has to attempt towards 

integration of several manufacturing plants’ activities in such a way that they align their 

tasks in direction of improving overall performance of the enterprise. Each plant’s 

internal function is as important as it’s relation with other plants since each plant is a 

part of the network. 

Sambasivan and Schimidt (2002) provided a heuristic approach based on transfers of 

production lots between the periods and the plants to solve the single stage MPCLSP. 

Sambasivan and Yahya (2005) obtained better results for the problem using the LR 

approach. Nascimento et al. (2010) embedded the setup carry-over to the proposed 

MPCLSP, and developed a greedy randomized adaptive search procedure as well as a 

path relinking intensification procedure that outperformed the LR approach proposed by 

Sambasivan and Yahya (2005).  

Lin and Chen (2007) presented a mathematical model for a multi-stage multi-site 

production planning problem in a thin film transistor-liquid crystal display factory, and 

combined two different time scales of daily and monthly time buckets. Guimarães et al. 

(2012) studied a real-case scenario of a beverage industry in order to produce a long-

term plan of assigning and scheduling production lots in a multi-plant environment. 

Martin et al. (1993), Chandra and Fisher (1994), and Thomas and Griffin (1996) 

presented substantiations of the possible economic advantages resulting from 

production-distribution integration. Pirkul and Jayaraman (1998) formulated a mixed 

integer programming model for a multi-commodity, multi-plant capacitated facility 

location problem, which was then solved via the LR approach to minimize the total 
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operating costs for the distribution network. Jolayemi and Olorunniwo (2004) proposed 

a deterministic model for a multi-plant and multi-warehouse problem with extensible 

capacities while permitting subcontracting in the case of unavailable sufficient 

resources.  

Park (2005) presented a heuristic solution to solve a multi-plant, multi-retailer, multi-

item problem over a multi-period horizon. The model addressed the coordination of 

production and distribution planning with the aim of maximizing the total net profit. 

Aghezzaf (2007) discussed the problem of production capacity and warehouse 

management in a supply network in which each plant can be enabled to produce any 

product type through inter-plant mold transfers. 

It is proven that the single plant multi-item capacitated lot-sizing problem is NP-

Hard (Florian et al., 1980; Bitran & Yanasse, 1982), so is the respective multi-plant 

version. Therefore, metaheuristic approaches can be used to efficiently tackle such 

complex problems and offer good solutions within a reasonable computation time. C. 

Moon et al. (2002) proposed a GA for finding high quality approximate solutions in an 

integrated process planning and scheduling model for the multi-plant supply chain. 

Chan et al. (2008) suggested a cooperative multiple PSO procedure to decrease the 

overall tardiness in a multi-plant supply chain scenario, and attempted to resolve the 

production planning and scheduling problem.  

Tseng et al. (2010a, b) applied the GA and PSO to solve an integrated assembly 

sequence planning and plant assignment problem where products are assembled in a 

multi-plant system with the objective of minimizing the total of assembly and multi-

plant costs. Yang et al. (2010) proposed a quasi-transportation problem for multi-plant 

order allocation to minimize the total cost under the capacity load constraint, and solved 

it using the GA. Behnamian and Ghomi (2013) developed a heuristic algorithm and the 
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GA approach for sequencing and scheduling of distributed multi-factory production 

network problem with parallel machine in order to minimize the maximum completion 

time of jobs. 

2.6 Conclusions  

In this chapter, a detailed explanation of some of the issues related to this study, such 

as single and multi-level lot-sizing problems in single facility systems, economic lot 

scheduling problems, and multi-facility lot-sizing problems were given. The current 

literature was reviewed and discussed. Moreover, the characteristic, aspects and 

classification criteria affecting the modeling and complexity of the lot-sizing problems 

were extracted from the literature and categorized.  

Based on the literature review performed in this study, little attention has been 

devoted to economic lot scheduling problem considering multiple setups, shelf life, and 

backordering. Likewise, little attention has been paid to the multi-plant capacitated lot-

sizing problem in integrated production-distribution systems. Therefore, this study 

attempts to address these shortcomings by developing comprehensive mathematical 

models and solution approaches for such problems arising in reality. 
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CHAPTER 3:  METHODOLOGY 

3.1 Introduction 

This chapter explains the methodology used in this research. The research 

frameworks and a brief overview of the applied metaheuristic algorithms are also 

described in this chapter. 

3.2 Research Methodology 

At the first step, a literature review on different aspects of lot-sizing problems in 

single stage single facility and multi-stage multi-facility systems was gathered. Based 

on the literature, the gaps and problems were determined. Next, the objectives and scope 

of the project were identified. The first part of research focuses on modeling the multi-

item lot-sizing and scheduling problem in a single stage single facility system with a 

continuous time scale, deterministic static demand and infinite time horizon which is 

known as ELSP, while considering the effect of shelf life, backordering, and multiple 

production frequencies for each product. The aim is to determine the optimal lot size, 

production rate, production frequency, cycle time, as well as a feasible manufacturing 

schedule for the family of items, and to minimize the total pertinent cost.  

The second research direction emphases on lot-sizing problem in an integrated 

production-distribution system. It focuses on the formulation and modeling the multi-

item capacitated lot-sizing problem in a multi-stage multi-facility system with discrete 

time scale, deterministic dynamic demand and finite time horizon which is known as 

MPCLSP. The objective is to find the optimal order, production, and shipment 

quantities that minimize the cost of the whole supply chain.  

Then, based on parameters and variables affecting the defined problems, the 

objectives and scope of the study, research frameworks were created. Next, 
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mathematical models for the considered systems were developed. Numerical examples 

were selected to test the effectiveness of the proposed models. The proposed 

mathematical models were coded in MATLAB programming software. MATLAB is a 

high performance language for technical computing integrates computation, 

visualization, and programming in an easy-to-use environment where problems and 

solutions are expressed in familiar mathematical notation. MATLAB interface comes 

with abundant help for the user, and simple mechanisms for passing and storing 

commonly used options in configuration/preset files. It is also a comprehensive tool 

designed to develop and solve optimization models faster, easier and more efficient. 

The coded objective functions and constraints were then applied in metaheuristic 

optimizers such as GA, PSO, ABC, SA, and ICA approaches. In the next step, data 

analysis and comparative study were conducted using the obtained statistical results 

such as mean, worst, best and standard deviation. Finally, conclusions present the 

objectives, contributions, and achievements of this research. 

A flow chart that summarizes the overall process of this project is shown in Figure 

3.1. 
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Figure  3.1: Research methodology process 
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3.3 Research Framework 

Based on the characteristics of lot-sizing problem given in Section 2.3, different 

aspects of lot-sizing in both single facility and multi-facility systems are taken into 

consideration. The research framework used in this project is shown in Figure 3.2. 
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Figure  3.2: Research framework 
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3.4 The Proposed ELSP 

The ELSP is concerned with lot-sizing and scheduling several items in a single 

production facility. The facility is such that only one item can be produced at a time and 

the demand rate for each item is constant over the planning horizon. Because scarce 

resources are usually shared in common by several items, the ELSP is a single stage 

multi-item problem. The ELSP is a continuous time model and the planning horizon is 

infinite. To solve the problem, common cycle strategy is used for all products. The 

common cycle approach imposes a condition that products’ cycle times should be of 

equal length, with the cycle time of a product defined in terms of the duration between 

starts of two consecutive runs of the product. 

Generally, the inventory systems assume implicitly unlimited shelf lives for the 

stored items. However, some items can be stored in the inventory only for a certain 

shelf life period which may be shorter than the production cycle time. There has been 

little research on conventional ELSP models including the shelf time factor, although 

many items, especially in the food industries, usually deteriorate or can be held only for 

a limited lifetime. Therefore, the motivation was to devise an effective solution 

approach to solve the ELSP with shelf life. Moreover, the basic ELSP does not allow 

backordering. Hence, the impact of incorporating planned backorders into the system is 

also investigated. Furthermore, the capacity constraint is taken into account to check 

whether or not the available machining time is sufficient for setups and production.  

 While the cost-minimizing cycle time causes the spoilage of an item on account of 

shelf life limitations, the cycle time period must be decreased to less than or equal to the 

shelf life to ensure a feasible schedule. This objective may be achieved by reducing 

either the total cycle time or the production rate, or by using a mix of reduced cycle time 

and production rate. Consequently, the total annual costs for these three options are 
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appraised and compared under specific constraints. The objective is to select the option 

that yields the minimum yearly cost, in addition to obtaining an optimum cycle time that 

satisfies shelf life constraint and accommodates a feasible production schedule.  

The detailed explanations of pertinent mathematical models and three options are 

given in Chapter 4. The framework of the proposed model is shown in Figure 3.3.  
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Figure  3.3: Modified ELSP considering shelf life and backordering  
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Most studies investigating the various aspects of the ELSP assumed that each item is 

manufactured exactly one time in the rotational production cycle. However, 

manufacturing of every item more than once per cycle might be more economical. 

Though this strategy may produce a lower cost, it may cause an infeasible schedule 

because of overlapping production time of several products. The problem of schedule 

infeasibility, when the production of each item more than one time in every cycle is 

permissible, can be tackled by rescheduling the manufacturing start times of some 

items. Therefore, modification in the pertinent cost function and constraints are required 

in order to obtain a feasible schedule and minimize the total cost. 

The ELSP is categorized as NP-hard problem, which leads to difficulty of checking 

every feasible schedule in a reasonable amount of computation time. To deal with this 

intricacy and obtaining optimal or near-optimal results, metaheuristic methods such as 

the GA, PSO, ABC, and SA are utilized. The descriptions of the proposed problem and 

algorithms are explained in detail in Chapter 5. The framework of the proposed model is 

shown in Figure 3.4. 
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Figure  3.4: The proposed ELSP allowing the production of items more than once in a 
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3.5 The Proposed MPCLSP 

The WW model is one of the first models for a dynamic demand problem where a 

finite planning horizon is subdivided into several discrete periods and demand is given 

per period and might change over time. The WW problem is considered as single level 

and single item without capacity constraints. The CLSP can be considered as the 

extension of the WW problem to capacity constraints and multi-item problem where its 

objective is to determine the optimal lot size which minimizes production, setup, and 

inventory costs.  

Multi-facility systems are complex networks in the supply chain, where each facility 

in the network signifies a multi-stage system. Lot-sizing problems, in this situation, are 

complex due to the interdependency existing between different facilities. Therefore, 

further research was carried out to examine the multi-item multi-period CLSP in a 

multi-plant system. Moreover, the combination of several functions such as purchasing, 

production, storage, backordering, and transportation is considered. 

The nature of the multi-plant problem is closely related to the MLCLSP. In the 

MLCLSP, the lot sizes need to be obtained for multi-level production inventory systems 

with capacity constraints on the production facilities. In the multi-plant problem, there 

is no common resource between sites, and therefore, the production is controlled 

independently in each site. The MPCLSP with multiple products and time periods is 

comprised of multiple production centers that manufacture all the same products and 

allow transfers among the plants.  

Since the MPCLSP is considered as NP-hard problem, using the exact methods may 

encounter difficulties for solving medium to large size instances. Furthermore, both 

deterministic and heuristic optimization methods may not be able to solve such problem 

efficiently. Therefore, metaheuristic algorithms as solution methods were adopted to 
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find cost effective and quality solutions for the proposed problem. In this study, 

metaheuristic approaches namely the GA, PSO, ABC and ICA are applied to solve the 

proposed MPCLSP model.  

The description of the proposed MPCLSP and applied algorithms are given in detail 

in Chapter 6. The framework of the proposed model is shown in Figure 3.5.  
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Figure  3.5: The proposed multi-period multi-item MPCLSP 
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3.6 Solution Methods 

Metaheuristic algorithms have been extensively used in solving complex 

optimization problems in various fields of scientific and engineering disciplines, since 

classical and traditional techniques may not efficiently find the global optimum 

solutions.  

In the literature, diverse classes of metaheuristic algorithms inspired by various 

models of biological species or physical phenomena have been developed for solving 

complex optimization problems. A common feature behind such metaheuristic 

algorithms is that they go through three general phases: initiate, neighborhood search, 

and terminate. That is, these algorithms start from one or a population of initial 

incumbent solution(s) and then iteratively search for better solutions from the 

neighborhood of the incumbent solution(s) by following specific mechanisms until the 

terminating condition is met. The specific mechanisms of these algorithms are in fact 

types of NS techniques in analogy with natural phenomena such as biology evolution, 

biological behaviors, metal annealing processes, etc. 

Since the capacitated lot-sizing and scheduling problem is considered as NP-hard in 

nature, a number of widely used metaheuristic methods are selected to solve the 

proposed mathematical problems in this research. The overall procedures of the applied 

algorithms are explained in the following subsections.  

3.6.1 Genetic Algorithm 

The GA is considered as an evolutionary algorithm and a population-based method 

that attempts to finds the optimal or near-optimal solutions through conducting a 

random search. Fundamental of the GA was primarily instated by Holland (1975). The 

GA method has been effectively used for solving continuous and discrete combinatorial 

problems (Mitchell, 1996). Simplicity and capability of finding quick reasonable 
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solutions for intricate searching and optimization problems have brought about a 

growing interest over the GA. This algorithm is based upon “survival of the fittest” 

principles by Darwin Theory of Evolution and simulates the process of natural 

evolution.  

A GA contains a set of individuals that constitute the population. Every individual in 

the population is represented by a particular chromosome which refers to a plausible 

solution to the existing problem. Throughout consecutive repetitions, called generations, 

the chromosomes evolve through reproduction process. During each generation, the 

fitness value of each chromosome is evaluated. Upon the selection of some 

chromosomes from the existing generation as parents, offspring will be produced by 

either crossover or mutation operators. The algorithm will be stopped when a 

termination condition is reached. The overall flowchart of the GA approach is shown in 

Figure 3.6. 
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Figure  3.6: Overall procedure of GA approach (Köksoy & Yalcinoz, 2008) 
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3.6.2 Particle Swarm Optimization 

The PSO algorithm is a population-based evolutionary method which was initially 

introduced by Kennedy and Eberhart (1995). The idea of the procedure was inspired by 

the social behavior of fish schooling or bird flocking choreography. Similar to the GA, 

the PSO begins its search process using a population of individuals positioned on the 

search space, and explores for an optimum solution by updating generations.  

Unlike the GA, PSO has no genetic operators such as crossover and mutation to 

operate the individuals of the population, and the members of the whole population are 

kept during the search process. Instead, it relies on the social behavior of the individuals 

to create new solutions for future generation. The PSO exchanges the information 

among individuals (particles) and the population (swarm). Every particle continuously 

updates its flying path based on its own best previous experience in which the best 

previous position is acquired by all members of particle’s neighborhood. Moreover, in 

the PSO, all particles assume the whole swarm as their neighborhood. Therefore, there 

occurs social sharing of information between particles of a population, and particles 

benefit from the neighboring experience or the experience of the whole swarm in the 

searching procedure (Chen & Lin, 2009). 

In a PSO algorithm, the initial population is initiated randomly with particles and 

evaluated to compute fitness together with finding the particle best (best value of each 

individual so far) and global best (best particle in the whole swarm). Initially, each 

individual with its dimensions and fitness value is assigned to its particle best. On the 

other hand, the best individual among particle best population with its dimension and 

fitness value is assigned to the global best. Then, a loop starts to converge to an 

optimum solution. In the loop, particle and global bests are determined to update the 

velocity first. Then the current position of each particle is updated with the current 
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velocity. Evaluation is again performed to compute the fitness of the particles in the 

swarm. This loop is terminated with a stopping criterion predetermined in advance. The 

overall flowchart of the PSO algorithm is shown in Figure 3.7. 

Setup Parameters

Initial Population

Evaluate Fitness

Update Velocity

Move Positions of Particles

Check Termination
Condition

Start

Check Feasibility of Solutions

Evaluate Fitness

End

Yes

No

 

Figure  3.7: Overall procedure of PSO algorithm (Tseng et al., 2010b) 
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3.6.3 Artificial Bee Colony  

The ABC algorithm was proposed by Karaboga (2005) which mimics the intelligent 

behavior of the honey bee swarm in foraging foods. It is a population-based search 

algorithm suitable for multi-variable and continuous multi-modal optimization 

problems. The ABC algorithm includes four main components, namely food sources, 

employed bees, onlooker bees, and scout bees.  

A food source position represents a possible solution to the problem to be optimized. 

The amount of nectar of a food source corresponds to the quality of the solution 

represented by that food source (Karaboga & Basturk, 2008). A bee which has found a 

food source to exploit is called an employed bee. Onlookers are those waiting in the 

hive to receive the information about the food sources from the employed bees. An 

onlooker bee appraises the food information obtained from employed bees, and chooses 

a food source based on the probability related to their nectars’ amounts. For this purpose 

the greedy selection method is applied, so that if the amount of nectar of a new source is 

higher than the previous one in their memory, onlooker bees update the new position 

and forget the previous one.  

Scouts are the bees which are randomly searching for new food sources around the 

hive. The employed bee whose its food source has been exhausted becomes a scout. In 

the basic ABC process, in every cycle at most one scout goes outside for exploring a 

new food source. After the new position is specified, a new algorithm cycle begins. 

After each cycle, the finest solution will be memorized. The same process iterates until 

the termination condition is reached. The overall flowchart of the ABC algorithm is 

shown in Figure 3.8. 
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Figure  3.8: Overall procedure of the ABC algorithm (Pan et al., 2011) 
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3.6.4 Simulated Annealing 

The SA algorithm is an effective stochastic search method for solving combinatorial 

and global optimization problems proposed by Kirkpatrick et al. (1983). The basic idea 

is inspired from the physical process of cooling molten material to solid form. Based on 

this procedure, the SA explores different areas of the solution space of a problem by 

annealing from a high to a low temperature. During the search process both good 

solutions as well as low quality solutions are accepted with a nonzero probability related 

to the temperature in the cooling schedule at that time. This feature can prevent getting 

trapped in local minima. In the beginning, this probability is large, and it will be 

reduced during the execution with a positive parameter such as temperature (Yaghini & 

Khandaghabadi, 2013) 

The SA approach consists of initial temperature, number of iterations at each 

temperature, temperature reduction function, and final temperature. SA procedure starts 

at an initial temperature specified by user. It must be adequately high to allow the 

process an escape mechanism at early stages of the algorithm procedure. Hence, the SA 

algorithm begins with an initial high temperature where most of the moves are accepted. 

Each iteration consists of generating a random neighbor of the incumbent and 

subjecting it to an acceptance criterion. Cooling schedule determines the functional 

form of the change in temperature required in the SA. The overall flowchart of the SA 

algorithm is shown in Figure 3.9.  
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Figure  3.9: Overall procedure of the SA algorithm (Zhong & Pan, 2007) 
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3.6.5 Imperialist Competitive Algorithm 

The ICA approach is a type of population-based algorithms that is inspired by 

imperialist competition (Atashpaz-Gargari & Lucas, 2007). The ICA defines the term 

‘country’ (Parsapoor & Bilstrup, 2013) to encode the optimization problems. An initial 

population of the ICA is a set of countries, where each country is a vector of the 

optimization parameters. The population is classified into two groups: the colonies and 

the imperialists. The countries that have the higher power are considered as the 

imperialists and start to take possession of the countries with the lower power, which 

are stated as colonies. In this way, each imperialist creates its empire. The steps of 

creating empires are explained as follow: 

i. First, the cost of each country (it is equivalent to the fitness function in the GA) is 

calculated. The countries with minimum values of cost (in minimization problems) 

are chosen as the imperialists. 

ii. The imperialists take procession of the colonies based on the normalized power.  

iii. The normalized cost for each imperialist is calculated.  

iv. After forming the empires, the movement of colonies toward the imperialists is 

started (assimilation operator). If a colony reaches to a higher power than its 

imperialist, the position of the colony and its imperialist must be exchanged 

(evolution operator). 

v. Finally, the imperialists start a competition to take the possession of the weakest 

colonies of the weakest empires. During the competition, the weakest colony from 

the weakest empire is picked and joined to the most powerful imperialist. The 

weakest empires, whose colonies are joined to other empires, will be eliminated. 

The algorithm is converged to a global optimum when there is one empire.  
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The evolutionary operators of the ICA are summarized as follow: 

i. Assimilation operator: This operator updates the cost function of the colonies by 

moving them to their corresponding imperialists. 

ii. Revolution operator: This operator updates the cost function of colonies by 

changing the elements of colonies. The goal of the revolution operator is to change 

some parameters of the individual in order to prevent the algorithm from falling 

into local suboptimal solutions. 

iii. Exchange operator: It updates the position state of colonies and imperialists. 

iv. Competition operator: It updates the position of the colonies by picking it from one 

imperialist and joining it to another. 

The overall flowchart of the ICA approach is shown in Figure 3.10. 
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Figure  3.10: Overall procedure of the ICA approach (Nazari-Shirkouhi et al., 2010) 
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3.7 Conclusions  

In this chapter, the methodology used in the study was explained and illustrated by a 

flowchart. The proposed research frameworks were also demonstrated. The proposed 

frameworks were divided into three main phases, namely the ELSP considering shelf 

life and backordering, the ELSP allowing the production of items more than once in a 

cycle, and MPCLSP in an integrated production-distribution system.  

A brief overview of the mechanisms of a number of metaheuristic approaches, 

namely GA, PSO, ABC, SA, and ICA was also presented, which are used to deal with 

the intricacy of the proposed models and obtain near-optimal to optimal solutions in a 

reasonable computation time.  
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CHAPTER 4:  OPTIMAL CYCLE TIME FOR PRODUCTION-INVENTORY 

SYSTEMS CONSIDERING SHELF LIFE AND BACKORDERING 

4.1 Introduction 

This chapter investigates a manufacturing system considering the production of a 

family of items in a single facility environment. Total backordering is allowed for any 

of the products, and each item has a specified shelf life. Nevertheless, in existing 

literature, when backordering is included, the shelf life constraint variation is not taken 

into account. While the cost-minimizing cycle time causes the spoilage of an item due 

to shelf life limitation, the cycle time period must be decreased to less than or equal to 

the shelf life to ensure a feasible schedule. Therefore, three options namely “cycle time 

reduction,” “production rate reduction” and “cycle time and production rate reduction 

simultaneously” are examined in order to obtain an optimum cycle time that satisfies the 

shelf life constraint. The cost functions for three options are also modified because of 

the shelf life constraint adjustment after considering backordering.  

The rest of this chapter is organized as follows: Section 4.2 presents a detailed 

discussion on the cost functions and problem constraints by examining the three 

mentioned options. Section 4.3 demonstrates numerical examples and reports the 

obtained results. Finally, conclusions are provided in Section 4.4. 

4.2 Problem Description and Mathematical Formulations 

In this study, a single machine is considered that produces N types of items in 

manufacturing cycle time of T. Total backordering is permitted for each item while each 

product has a certain shelf life. The total cost, including setup, holding, production, and 

shortage cost are expressed through mathematical formulation for the cycle time T. 

Using the total cost function under the given constraints, the optimal cycle time and cost 

are obtained while disallowing the shelf life constraint.  
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For the case where the optimum cycle time T causes spoilage of an item, three 

options are investigated: 1) production rate reduction, 2) cycle time reduction, and 3) 

cycle time and production rate reduction simultaneously. Next, the adjusted cycle times 

for the three options are estimated by considering the shelf life constraint. Using the 

adjusted cycle times, the total costs for all options are found and compared in order to 

select the best option that offers the minimum total cost.  

The mathematical model studied throughout this chapter is based on the following 

assumptions and notations: 

(a) Assumptions 

i. There is a constant demand rate for each product. 

ii. The production rate for each product is finite.  

iii. The facility can produce only one item at a time.  

iv. All items are produced on each manufacturing cycle. 

v. Stock is used on a first-in-first-out basis.  

(b) Notations 

For the entire family: 

N  Total number of items 

T Production cycle time (years) 

TO Optimum production cycle time (years) 

O Production cost for operating the machine (including setup times) (dollars/year) 

C Total cost (dollars/year) 

For item i (i = 1, 2, … , N): 

di Demand for item i (units/year)  

pi Production rate for item i (units/year) 
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ri Ratio of demand to production rate for item i 

Ai Setup time (loading and unloading) for item i (years) 

Si Machine setup cost for item i (dollars/unit/year) 

bi Backorder amount for item i (units/year) 

Bi Shortage cost for item i (dollars/unit/year) 

Hi Inventory holding cost for item i (dollars/unit/year) 

Qi Production quantity for item i (units) 

Li Shelf life of item i (years) 

4.2.1 General Cost Function 

The annual setup cost for the products and machines is given by: 
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The annual production cost is given by: 
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The annual holding cost considering backordering is given by: 
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The annual shortage cost for a group of N items is given by: 
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Therefore, the total annual cost C(T) is obtained by: 
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 (4.5)  

By substituting i iQ Td=  and i i id p r=  in Eq. (4.5) followed by a simplification, the 

total yearly cost without the shelf life consideration can be obtained by Eq. (4.6): 
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4.2.2 Ignoring the Shelf Life Constraint 

For a possible solution, the total time for the setup and production to generate N 

items per cycle cannot exceed the cycle time T (Silver, 1989), that is: 
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Equation (4.7) can be rearranged as: 
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It must be noted that 
1

1( )
N

i
i

r
=

− ∑ indicates the long-run proportion time that is available 

for setups. For an infinite horizon problem 
1

1( ) 0
N

i
i

r
=

− >∑  is necessary in order to have a 

feasible solution (I. Moon et al., 2002a). Hence, it is required that: 
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By neglecting the shelf life constraint, solution dC(T)/dT = 0 in Eq. (4.6) yields the 

optimum cycle time TO since C(T) is a convex function of T. Therefore, TO is  obtained 

as follows: 
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The obtained TO in Eq. (4.10) must be greater than the total time available for setup 

and production in a cycle as shown in Eq. (4.8). Otherwise, TO should be considered 

equivalent to
1 1

(1 )
N N

i i
i i

A r
= =

−∑ ∑ . 

By substituting TO from Eq. (4.10) into Eq. (4.6), the optimum yearly cost C(TO) for 

processing the inventory system can be obtained as shown in Eq. (4.11). 

 

1 22

1 1 1

1 1

( )( ) (1 ) 2 ( )
(1 )

N N N
i i i

O i i i i i
i i i i i

N N

i i i
i i

H B bC T H d r S OA
d r

O r H b

= = =

= =

  + 
= − + +    −    

+ −

∑ ∑ ∑

∑ ∑
 (4.11)  

4.2.3 Incorporating the Shelf Life Constraint 

Each product i hypothetically has Li years of shelf life. When the Lj (considered as 

the shelf life of item j) exceeds the cycle time T, the existing inventory model does not 

require modifications. However, when the optimal cycle time exceeds the time 

restriction of shelf life for that item, the inventory model should be reformulated to 

avoid product spoilage. It is assumed that the inventory is used on a first-in-first-out 

basis. Accordingly, item j, which is kept for the maximum length in stock, is produced 

at the later stage of the manufacturing period. Thus, the maximum time for storing 
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product j is equivalent to (1 )j jT d p− . Hence, the constraint for shelf life can be 

written as (1 )j j jT d p L− ≤  (Silver, 1989). That is to say: 

 (1 )
j

j j

L
T

d p
≤

−
 (4.12)  

However, the shelf life constraint alters in the model allowing for backorders 

(Viswanathan & Goyal, 2000).  

4.2.4 Shelf Life Constraint Adjustment with Planned Backorders 

The inventory-time relationship over the manufacture cycle for item j is shown in 

Figure 4.1.  
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Time
Maximum Backorder

bj

t1 t2 t3 t4

T

Inventory

 

Figure  4.1: Inventory level of an item during a production cycle (Viswanathan & 

Goyal, 2000) 

At the commencement of the cycle, there is a backorder of bj  for item j. The total 

production cycle time T consists of four stages as follows: t1, the time in which the 

inventory level is negative because of backorders; t2, the time that inventory level is 
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greater than zero and increasing; t3, the time which production has ended and the 

inventory level is being decreased from the maximum level to zero; and t4, the time that 

inventory level lowers from zero to the total backorder at the end of the cycle. Since the 

demand rate for item j is denoted as dj  and the production rate is denoted as pj, we have: 

 4
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The optimum bj is obtained by equating the first derivative of the total cost given in 

Eq. (4.6) to zero, which gives: 
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The maximum amount of time that an item stays in inventory is equal to t3. 

Therefore, the shelf life constraint for item j becomes as Eq. (4.21). 
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Which it can be re-written as: 
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It can be rearranged again as: 
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In Eq. (4.23), the variable parameters are the production rate pj and cycle time T 

which can be adjusted in order to satisfy the shelf life constraint. Next, the three options 

are examined to adjust these variables individually and simultaneously. Moreover, the 

available related inventory models are modified in order to find a feasible solution 

following shelf life adjustment. 

4.2.5 Option 1: Production Rate Reduction 

The reduction of production rate lowers the average inventory and thus items in the 

inventory are used up at a quicker rate. Hence, products are not kept longer than their 

shelf life duration.  

In this option, the production rate p is adjusted to satisfy the constraint for shelf life 

along with the cycle time T which is considered as a fixed measure (T is the same as the 

optimal cycle time obtained by Eq. (4.10)) as illustrated in Figure 4.2.  
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Figure  4.2: Reduction in the production rate with unchanged cycle time 

Now, having the reduced production rate ( jp′ ), Eq. (4.23) is modified to:  

 
1

( )

(1 )

j j
j

j

j j

H B
L

B
T

d p

+

≤
′−

 (4.24)  

By replacing T with T1 equivalent to ( ) (1 )j j
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where i i ir d p=  and j j jr d p′ ′=  
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The production capacity constraint can be written as: 
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This option is applicable only when the optimum cycle time TO given by Eq. (4.10) 

satisfies Eq. (4.27) as follows: 
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4.2.6 Option 2: Cycle Time Reduction 

In option 2, the cycle time is reduced to the shelf life duration of the item which 

prevents the possibility of product being kept further than its shelf life. As shown in 

Figure 4.3, cycle time T is altered from the optimal cycle time TO in Eq. (4.10) to T2, 

and the production rate pj is kept fixed.  
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Figure  4.3: Modified cycle time with unchanged production rate 
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The adjusted cycle time T2 is given by: 
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By replacing the new cycle time, T2, from Eq. (4.28) into Eq. (4.6), the total cost for 

option 2, C(T2), can be obtained as: 
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The total costs in Eqs. (4.25) and (4.30) must be compared in order to identify which 

option (1 or 2) is more cost-effective. Therefore, the difference in the total yearly 

inventory costs for the two options is given by 1 2( ) ( )C C T C T∆ = − , which can be 

calculated as follows: 
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A positive value for ∆C implies that the cost of option 1 is greater than option 2. 

Hence, it is efficient to use option 2.  
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4.2.7 Option 3: Simultaneous Adjustment of the Production Rate and Cycle Time 

In this option, the production rate p and cycle time T are adjusted simultaneously to 

prevent flawing the shelf life constraint. As shown in Figure 4.4, cycle time and 

production rate are reduced to T3 and jp′′  respectively.  
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Figure  4.4: Simultaneous reduction of cycle time and production rate 

Then the shelf life constraint will be: 
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The reduced cycle time T3 can be outlined in terms of the production rate jp′′  through 

the following equation: 
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Equation (4.33) is equivalent to: 
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where j j jr d p′′ ′′=  

Subsequently, the capacity constraint can be written as: 
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(4.35)  

The constraints represented in Eqs. (4.32) and (4.35) are feasible only when: 
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or: 
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By changing T in Eq. (4.6) to T3 in Eq. (4.33), the total cost is given as: 
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Substituting Eq. (4.34) into Eq. (4.38), we have: 
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 (4.39)  

The objective is to find the optimum T3 that yields the minimum total cost given in 

Eq. (4.39).  

There are two cases for this option that must be examined: 

(a) Case1: 
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In this case, Eq. (4.39) is minimized by selecting the smallest amount of T3. 

Decreasing T3 in Eq. (4.34) means reducing jr′′or increasing the production rate jp′′ . 

When ( )j j
j

j

H B
T L

B
+

= or jr′′= 0, an infinite value of jp′′  is achieved. It should be noted 

that raising pj may incur costs not reflected in the production cost. However, if pj is 

permitted to be only decreased (not raised), then the current production rate of item j is 

at its highest possible level. Therefore, the best solution is to select option 2. 

(b) Case2: 
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For almost all practical purposes, the third option may be more applicable when case 

2 takes place. From Eq. (4.39), it can be seen that the total cost C(T3) is a convex 
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function of T3. Hence, the optimal value for T3 minimizes the total cost that can be 

obtained by solving dC(T3)/dT3 = 0, which is: 

 

1 22
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If * ( )j j
j

j

H B
T L

B
+

≤ , then T* is not applicable as a negative value of jr′′  will be 

obtained given in Eq. (4.34). Under such conditions, due to the convexity of total cost 

C(T3), the lowest acceptable value of T3 can be used ( ( )j j
j

j

H B
L

B
+

), provided that jr′′  is 

allowed to be decreased to a value of 0. If jp′′  cannot be raised from its current value, 

then option 2 must be used. 

Alternatively, if * ( )j j
j

j

H B
T L

B
+

> , then T* is acceptable as it produces a feasible 

value for jp′′ . Otherwise, option 2 must be used again. Furthermore, it should be noted 

that for very small production cost values (not practical in practice), T* can be greater 

than TO, which could cause shelf life violation. 

By substituting Eq. (4.42) into Eq. (4.39), C(T*) will be obtained as: 

1/2

2
*

1 1 1

2

1 1
1

2 ( ) ( )
( ) (1 ) 2 ( )

(1 )

( )
2 2

N N N
j j j i i i

i i i i i
j i ii i i

i j i j

N N
j j j j j j j

i i i
j j ji i

j

OL H B H B b
C T H d r S OA

B d r

H d L H B B b
H b O r O

B d L

= = =
≠ ≠

= =
≠

   
   + +

= − + − +   
−         

+
− + + + +

∑ ∑ ∑

∑ ∑

 (4.43)  

In order to search for the cost minimization of T3, the lower and upper bounds are 

also practical. The upper bound is provided from Eq. (4.37). In Eq. (4.34), as T3 
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decreases, jr′′  decreases (i.e. jp′′  increases). When the maximum feasible production 

rate value is considered as the primary pj, the lower bound will be given as: 

 3

( )
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j j
j

j

j j

H B
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B
T

d p

+

=
−

 (4.44)  

4.3 Numerical Examples and Discussions 

The input data is presented in Table 4.1, which was initially provided by Silver 

(1989) and subsequently used in various literature works (Sarker & Babu, 1993; Silver, 

1995; Viswanathan & Goyal, 2000; Xu & Sarker, 2003; Sharma, 2004). The additional 

data for backorder amounts and shortage cost are taken from Sharma (2004).  

Table  4.1: Input data 

 

Equations (4.10) and (4.11) are used to obtain TO and C(TO) respectively. The results 

are presented in Table 4.2.  

Table  4.2: Optimal cycle time and total cost ignoring the shelf life constraint 

Production Cost ($/year) TO (year) C(TO) ($/year) 
O = 5000 0.1842 7311.05 
O = 2500 0.1820 5236.76 
O = 1000 0.1807 3991.95 
O = 500 0.1803 3576.97 
O = 100 0.1799 3244.98 
O = 0 0.1799 3161.97 

 

Accordingly, TO must satisfy constraint (1) given in Eq. (4.8), i.e.: 

Item i di pi Ai Si Hi bi Bi Li ( ) ( )1i i i
i

i i

H B d
L

B p
+

−  

1 1000 3000 0.0005 70 10 11 100 0.20 0.33 
2 500 2500 0.0010 80 12 5 150 0.11 0.15 
3 700 2500 0.0015 135 15 6 200 0.20 0.30 
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Values of TO show that for all production costs, constraint (1) in Eq. (4.8) is 

satisfied. Moreover, TO must meet the shelf life constraint given in Eq. (4.23). However, 

TO does not satisfy this constraint for item 2 meaning that item 2 violates the shelf life 

condition. Thus, either one of three options must be applied for which item 2 can satisfy 

the constraint for shelf life. 

(a) Option 1: Production Rate Reduction 

Using Eq. (4.24), the new cycle time, T1, is calculated as: 

2 2
2

2
1

2 2

( )

(1 )O

H BL
BT T

d p

+

= =
′−

  

Thus, the new production rate, 2p′ , and the total cost for option 1, C(T1), can be 

calculated using Eqs. (4.24) and (4.25). The results for various production cost values 

are shown in Table 4.3.  

Table  4.3: Reduced production rate and the corresponding cost 

Production Cost ($/year) ′2p (units/year) C(T1) ($/year) 
O = 5000 1409 8006.96 
O = 2500 1439 5530.97 
O = 1000 1459 4063.34 
O = 500 1466 3577.22 
O = 100 1472 3189.46 
O = 0 1473 3092.67 

 

By exchanging p2 with 2p′ , the shelf life constraint is fulfilled for the second item. 

Then the feasibility condition for the cycle time must be examined using Eq. (4.27):  
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Option 1 is feasible as the optimum cycle time TO for all production costs mentioned 

in Table 4.2 satisfies this constraint. 

(b) Option 2: Cycle Time Reduction 

From Eq. (4.28), the adjusted cycle time T2 is obtained as follows: 
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+

=
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In option 2, the total cost C(T2) can be obtained using Eq. (4.30). The results for 

different production costs are shown in Table 4.4. 

Table  4.4: Reduced cycle time and the corresponding cost 

Production Cost ($/year) T2 (year) C(T2) ($/year) 
O = 5000 0.1485 7392.62 
O = 2500 0.1485 5308.78 
O = 1000 0.1485 4058.48 
O = 500 0.1485 3641.71 
O = 100 0.1485 3308.30 
O = 0 0.1485 3224.94 

 

This option is applicable as T2 satisfies the capacity constraint as follows: 
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∑
or 2 0.0161T ≥  years  

The comparisons of total cost values obtained from two options are indicated in 

Table 4.5. Figure 4.5 represents the trend of cost function values found by two options 

for various production cost amounts. 

 

108 



Table  4.5: Comparisons of total costs obtained by option 1 and option 2 

Production Cost ($/year) C(T1) ($/year) C(T2) ($/year) 1 2( ) ( )C C T C T∆ = − ($/year) 
O = 5000 8006.96 7392.62 614.34 
O = 2500 5530.97 5308.78 222.19 
O = 1000 4063.34 4058.48 4.86 
O = 500 3577.22 3641.71 -64.49 
O = 100 3189.46 3308.30 -118.84 
O = 0 3092.67 3224.94 -132.27 

 

 

Figure  4.5: Graphical representation of the performance comparison between options 1 

and 2 in terms of cost function values 

The total cost values in Table 4.5 indicate that decreasing cycle time leads to 

producing lower cost than decreasing production rate due to rather high production cost. 

This conclusion was achieved earlier by Sarker and Babu (1993) and later by Yan et al. 

(2013). Adversely, when machine operating cost decreases, the production rate decline 

produces a lower cost than a cycle time reduction. Sarker and Babu (1993) found 

$8258.12 and $7556.57 for options 1 and 2 respectively when O = $5000.  

Silver (1989) showed that in the absence of production cost (i.e. O = $0), reducing 

the production rate proves to be more economical than cycle time reduction. Silver 

(1989) obtained $3208.01 and $3378.06 for option 1 and option 2 correspondingly, 

which indicates that the cost of option 2 is about 5% higher than the cost obtained by 
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option 1. The model presented in this study offers lower cost for both options compared 

to Silver (1989) (3.60% and 4.53% reductions in cost attained by options 1 and 2 

respectively). 

Clearly, the production cost has significant influence on determining which option to 

be selected. According to Sarker and Babu (1993), the preference toward one of these 

two options depends on various parameters such as setup time, setup cost, production 

cost, holding cost, shortage cost, and shelf time.  

It should be noted that slowing down the production rate decreases inventory levels 

consistent with a Just-in-Time manufacturing philosophy, hence lowers the inventory 

holding cost. However, production rate reduction causes the production to be carried out 

for a longer time. If the production time is raised then all related costs such as labor, 

machine operating and probably some other associated costs are augmented. Hence, 

production rate increase causes some further costs to the manufacturer (Sarker & Babu, 

1993). For this reason, production time cost is taken into account in order to include the 

effect of the length of production time. 

Sharma (2004) inserted shortages into his model, and for production cost of $5000, 

total costs $8232.46 and $7454.20 for options 1 and 2 were obtained respectively. The 

present model produced lower costs after adjustments to the shelf life constraint and 

corresponding mathematical models. 

Models with planned backorders have the total related costs reduced, and the items 

are stored in inventory for a shorter period of time leading to a less restrictive shelf life 

constraint. Furthermore, in this situation, the average inventory level is lower, resulting 

in lower inventory holding costs. Negative inventory known as shortage arises when 

demand is higher than the production capacity and available inventory. Unsatisfied 
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demand can be backordered and fulfilled in the next period. In a highly competitive 

situation in emerging markets, unsatisfied demand will usually be lost. However, this 

lost sale usually happens in retail sales than in manufacturing environment. Hence 

anticipation for penalty for not fulfilling demand in time (i.e., shortage) is vital in 

competitive developing markets (Xu & Sarker, 2003). 

(c) Option 3: Adjustment of Production Rate and Cycle Time Concurrently 

For this option, two cases should be taken into account as shown in Table 4.6. 

Table  4.6: Feasibility assessment of production rate and cycle time reduction 

simultaneously 

 
Production Cost ($/year) 
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O = 5000 267.34 594.00 
O = 2500 259.84 297.00 
O = 1000 255.34 118.80 
O = 500 253.84 59.40 
O = 100 252.64 11.88 

 

Table 4.6 indicates that for O = $5000 and $2500, the inequality below applies: 
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Thus, to obtain the minimum total cost, the smallest possible value of T3 should be 

chosen (i.e. the smallest possible 2r′′ ). If 2r′′  can be decreased to a very small value 

without imposing extra cost, then 2 2
3 2

2

( )H BT L
B
+

= or T3 = 0.1188 years should be used, 

which results in C(T3) = $6716.14 and $5119.67 for O = $5000 and $2500 respectively. 

In this case, the adjusted production rate 2p′′  is infinite. However, if 2r′′  cannot be 

reduced (i.e. the production rate cannot exceed its defined maximum value), then option 

2 should be chosen with T2 = 0.1485 years, p2 = 2500 units/year, and C(T2) = $7392.62 

and $5308.78 for O = $5000 and $2500 respectively.  
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Similarly, in order to find the optimal T3, the lower and upper bounds are applicable. 

The upper bound T3 is given as: 
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The lower bound T3 is: 
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 years 

The search becomes appropriate for 30.1485 0.1888T≤ ≤ . A simple procedure may 

be conducted by reducing T3 from 0.1888 to 0.1485 in a small step, for which the 

optimum T3 will be found. By substituting the input data from Table 1 into Eq. (4.39) 

and considering that O = $5000, C(T3) is given as: 

3 3
3

276.34( ) 7113.33 8197.16C T T
T

= − + +  

In line with the search procedure, T3 = 0.1485 years produces the minimum cost, that 

is C(T3) = $7392.62. In this case, 2p′′ = 2500 units/year, for which the results are similar 

to the findings obtained by option 2 because: 
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For O = $1000, $500 and $100, 
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thus, using Eqs. (4.42) and (4.43), T* and C(T*) can be calculated, and 2p′′  can be 

obtained from Eq. (4.34). The results are shown in Table 4.7.  
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Table  4.7: Simultaneous reduction of the production rate and cycle time and the 

corresponding cost 

Production Cost ($/year) T*
 (year) p′′2  (units/year) C(T*) ($/year) 

O = 1000 0.1621 1873 4049.65 
O = 500 0.1855 1391 3576.15 
O = 100 0.2023 1211 3169.71 
 

As Table 4.7 demonstrates, * 2 2
2

2

( )H BT L
B
+

>  or * 0.1188T >  years; thus T* can be 

used since Eq. (4.34) produces a feasible value for 2p′′ . However, T*
 must satisfy the 

following capacity constraint: 
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For O = $100, T* exceeds 0.1888 years, and it is higher than TO (0.1799 years), 

which leads to shelf life constraint violation. According to Silver (1995), this option is 

not applicable for small production cost values, and either option 1 or 2 must be used. 

Based on the results, if O = $100, option 1 is suitable.  

For O = $1000, the comparisons of total cost values given in Table 4.8 shows that 

option 3 is more cost-effective. The production quantity (Q) in this case is 126, 104, and 

113 units for items 1, 2, and 3 respectively.   

Table  4.8: Comparisons of total costs obtained by three options for production cost 

$1000 

Option P (units/year) T (year) C(T) ($/year)  
1 1459 0.1807 4063.34 
2 2500 0.1485 4058.48 
3 1873 0.1621 4049.65 
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Comparisons of three options for O = $1000 are also presented graphically in Figures 

4.6 to 4.8. 

 

Figure  4.6: Comparisons of production rates obtained by three options for production 

cost $1000 

 

Figure  4.7: Comparisons of cycle times obtained by three options for production cost 

$1000 
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Figure  4.8: Comparisons of total costs obtained by three options for production cost 

$1000 

Silver (1995) examined O = $1000 applying option 3, and obtained T*= 0.158 years, 

2p′′ = 1639 units/year, and C(T*) = $4193.82. Eventually, a lower total cost is obtained 

by option 3 proposed in this work (3.44% cost reduction).  

4.4 Conclusions  

Recently, shelf life during which items remain safe within production plants is being 

increasingly considered in production optimization models. This chapter addressed a 

manufacturing system, whereby multiple items produced in a single facility have shelf 

life restrictions and planned backorders. For some products, shelf life may be lower than 

the production cycle time, which can lead to item spoilage before reaching the end of 

the cycle. In such a case, in order to achieve a feasible schedule, the production cycle 

time needs to be reduced to less than or equal to the shelf life duration. On the other 

hand, backorders incur shelf life constraint alteration, which affects the corresponding 

inventory models. Accordingly, appropriate modifications were applied to the related 

mathematical inventory models.  
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The aim was to determine the optimal cycle time in addition to minimizing the long-

run average costs including production, setup, holding, and shortage costs. While the 

cost-minimization cycle time caused the spoilage of products due to shelf life 

restrictions, appropriate decisions were made based on one of the three options: 

production rate reduction, cycle time reduction, and the simultaneous production rate 

and cycle time reduction. As a result, for each option the optimal cycle time and 

production rate were estimated, which satisfy the shelf life constraints. Numerical 

examples were presented to illustrate the influence of production cost, backorders, and 

shelf life on total annual cost. 

The superiority of this work stems from the integration of the backorders and shelf 

life constraint, and its significant effect on the corresponding inventory models. The 

computational results indicated the dominance of the modified models with respect to 

producing lower total costs compared to other related models existing in the literature. 
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CHAPTER 5:  OPTIMIZATION OF ECONOMIC LOT SCHEDULING 

PROBLEM CONSIDERING MULTIPLE SETUPS, BACKORDERING AND 

SHELF LIFE USING CALIBRATED METAHEURISTIC ALGORITHMS 

5.1 Introduction 

This chapter addresses the optimization of the ELSP, where multiple items are 

produced on a single machine in a cyclical pattern. It is assumed that each item can be 

produced more than once in every cycle, each product has a shelf life restriction, and 

backordering is permitted. The objective is to determine the optimal production rate, 

production quantity, production frequency, cycle time, as well as a feasible 

manufacturing schedule for the family of items, and to minimize the long-run average 

costs. Efficient search procedures are presented to obtain the optimum solutions by 

employing well-known metaheuristic algorithms. 

The rest of this chapter is organized as follows: Section 5.2 presents the proposed 

mixed integer non-linear ELSP model. In Section 5.3, metaheuristic algorithms namely 

the GA, PSO, ABC, and SA are explained to solve the proposed model. Section 5.4 

describes the Taguchi method employed to tune various parameters of the applied 

algorithms. Section 5.5 demonstrates the numerical example and discusses the 

computational results. Finally, conclusions are given in Section 5.6. 

5.2 Problem Description and Mathematical Formulations 

The ELSP in this study is considered in a single machine environment with 

production of N items in the manufacturing cycle time of T, where backordering is 

permitted for any of the items, and each of which has a specified shelf life. Moreover, 

the restricted assumption of production of every item exactly once in a cycle considered 

in previous studies is removed, and it is allowed to produce each item more than once in 

every cycle.   
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The objective is to find the optimal production rate, production frequency, cycle 

time, and batch size of each item as well as a feasible manufacturing schedule for the 

family of items. Furthermore, it is attempted to minimize the long-run average cost 

including setup, production, holding, and backorder costs, in addition to the adjustment 

cost if production time conflicts are occurred between the products in a cycle.  

The mathematical model studied throughout this chapter is based on the following 

assumptions and notations: 

(a) Assumptions 

i. Each item has a deterministic and constant demand. 

ii. Each item has a deterministic and constant setup time. 

iii. The first-in-first-out rule is considered for the inventory transactions. 

(b) Indices 

i Product (i = 1, 2, … , N) 

N Total number of products 

j Batch number (j = 1, 2, …, fi) 

w, w’ Production batch (w, w’ = 1, 2, … , 
1

N

i
i

F f
=

= ∑ ) 

(c) Parameters 

id  Demand rate for item i (units/year) 

max
iP  Maximum possible production rate for item i (units/year) 

min
iR  Ratio of demand to maximum production rate for item i 

iL  Shelf life of item i (years) 

iA  Setup time for item i (years)  
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iS  Setup cost for item i (dollars/unit/year) (machine operating cost is excluded 

during setup) 

iH  Inventory holding cost for item i (dollars/unit/year) 

iB  Backordering cost for item i (dollars/unit/year) 

O  Machine operating cost (dollars/year) 

(d) Variables 

ip  Production rate for item i 

ir  Ratio of demand to production rate for item i 

if  Production frequency for item i per cycle 

 it  Cycle time for item i 

ik  Production start time for item i 

iτ  Production time for item i  

j
iα   Production start time advancement for item i in its jth production batch  

j
iβ  Production start time delay for item i in its jth production batch 

iϑ  Machine time for item i  

iQ  Production batch size of item i 

ib  Amount of item i backordered in each cycle 

im  Maximum backorder level for item i 

T  Entire production cycle time  

( )C T  Total cost for the entire production cycle time  

1  if item is produced in the batch
0   otherwise

th
w
i

i w
ψ




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Using the above notations, the mathematical model for the ELSP with various 

production frequencies, backordering, and shelf life constraints is presented as follows: 

5.2.1 Cost Function 

The annual cost for setting up the machine and products, and production is given by: 

 
1 1

1 1( ) ( )
N N

i
i i

i i i

dS OA O T
T T p= =

+ +∑ ∑  (5.1)  

The annual cost for holding the products with considering backorders, is given by: 

 

2

1

(1 )

2 (1 )

i
i i iN

i

ii
i

i

dH Q b
p

dQ
p

=

 
− − 

 

−
∑  (5.2)  

The annual backordering cost is given by: 

 

2

1 2 (1 )

N
i i

ii
i

i

B b
dQ
p

= −
∑  

(5.3)  

The adjustment cost in case of overlapping production times of items is given by 

(Yan et al., 2013): 

 2 2

1 1 1
( ) ( ) (1 )

2

i if fN
j ji i i

i i i
i j j i

H B dd
p

α β
= = =

 +
+ − 

 
∑ ∑ ∑  (5.4)  

Adding Eqs. (5.1) to (5.4), the total annual cost, C(T), is given by: 

 

2

1 1 1

2
2 2

1 1 1 1

(1 )
1 1( ) ( ) ( )

2 (1 )

( ) ( ) (1 )
22 (1 )

i i

i
i i iN N N

ii
i i

ii i ii
i

i

f fN N
j ji i i i i

i i i
ii i j j i

i
i

dH Q b
pdC T S OA O T dT T p Q

p

B b H B ddd pQ
p

α β

= = =

= = = =

 
− − 

 = + + +
−

 +
+ + + − 

 −

∑ ∑ ∑

∑ ∑ ∑ ∑

 (5.5)  
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Substituting i i iQ t d= , i i id p r= , i iT t f= , and (1 ) i
i i i i

i i

Hb d t r
H B

= −
+

 in Eq. (5.5), 

and then simplifying, the total yearly cost for a group of N items, where there are fi 

production batches for item i, can be obtained by: 

 

2

1

2 2

1 1

(1
1( ) )

2

( ) ( ) (1 )
2

i i

N
i i i

i i i i i i i i i
i i i

f f
j ji i

i i i i
j j

r

r

d H BC T S OA f Ort f t f
T H B

H B d

=

= =

−


= + + + +
 +

+ + −  
  

∑

∑ ∑α β
 (5.6)  

5.2.2 Constraints 

For a feasible solution, the total setup time and production time for N products 

cannot go beyond the cycle time T. Therefore, 

 1

1
1

N

i i
i

N

i
i

f

r

A
T=

=

−

≤
∑

∑
 (5.7)  

1
1

=

− ∑
N

i
i

r  is the long-run proportion of time available for setups. For infinite horizon 

problem, 
1

1 0
=

−
 

> 
 

∑
N

i
i

r  is necessary in order to have a feasible solution.  

Therefore, it is necessary that: 

  
1

1
N

i
i

r
=

<∑  (5.8)  

The adopted production rate for each item should not exceed the maximum possible 

production rate. Hence: 

 max for   1,  2, ... , i ip P i N≤ =  (5.9)  

or,  
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 min for   1,  2, ... , i iR r i N≤ =  (5.10)  

Where min max
i i iR d P=  

It is assumed that:  

 min

1
1

N

i
i

R
=

≤∑  (5.11)  

Otherwise, there would not be any feasible production schedule. 

It is supposed that each item i has a shelf life of Li years, and the inventory is used on 

first-in-first-out basis. Accordingly, item i with the longest keeping period will be 

produced at the later section of the manufacturing cycle. Thus, the maximum time that 

product i is stored is (1 / )i iT d p−  (Silver, 1989). However, the shelf life constraint 

amends in the model allowing the backorders. Thus, the shelf life constraint in this 

condition is:   

 (1 ) for  1i
i i i

i i

t r
B L i N

H B
− ≤ ≤ ≤

+
 (5.12)  

When the optimal cycle time goes beyond the time restriction of life for an item, 

spoilage of the product might occur that in turn leads to a loss to the manufacturer. The 

storage time for an item can be lowered by producing that item more frequently in a 

manufacturing cycle (Goyal, 1994). If item i is produced more than once in a production 

cycle, the shelf life constraint considering the production start time advancement or 

delay for the jth batch of item i (in case of an infeasible schedule) will be changed to: 

 (1 ) for   1,  2, ... , ,    1,  2, ... , j ji
i i i i i i

i i

r
Bt L i N j f

H B
α β− + − ≤ = =

+
 (5.13)  

The required machine time for production of item i in every cycle time ti, iϑ , is the 

total of setup time and production time of that item: 
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 for   1,  2, ... , i i iA i Nϑ τ= + =  (5.14)  

where i
i i

i

dt
p

τ = . 

Since, item i is allowed to be produced more than once every ti years, the machine 

time available for other items in every ti cycle is iit ϑ− . If the required machine time for 

other products exceeds the available time, it causes production times conflicts between 

some or all the items. Therefore, the constraints given in Eqs. (5.15) to (5.21) must be 

met to avoid the schedule infeasibility.  

The production of an item can be commenced only after the completion of 

production of its former batch. Hence: 

1 1

1 11 1 1 1

( 1)

( 1 1)  for 2,...,

J w J w

I w I w

J w J w

I w I w

I w I w

I w I w I w I wr t

k J w t

k J w t w F

( ) ( )

( ) ( )

( − ) ( − )

( − ) ( − )

( ) ( )

( − ) ( − ) ( − ) ( − )

+ ( ) − − + ≥

+ ( − ) − − + + =

α β

α β
 

(5.15)  

Where 
1

N

i
i

F f
=

= ∑
 

In Eq. (5.15), I(w) represents that wth production batch within a manufacturing cycle 

belongs to which item. Therefore: 

 
1

( ) for   1,  2, ... , 
N

w
i

i
I w i w Fψ

=

= =∑  (5.16)  

Where 

 
1  if item  is produced in the  batch
0 otherwise

th
w
i

i w
= 


ψ  (5.17)  

In Eq. (5.15), J(w) shows the item’s batch number. Hence: 

 ( )
1

( ) for   1,  2, ... , 
w

w
I w

w
J w w Fψ ′

′=

= =∑  (5.18)  
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Equation (5.19) shows the total number of batches or production frequency for each 

item in a cycle: 

 
1

for   1,  2, ... , 
F

w
i i

w
f i Nψ

=

= =∑  (5.19)  

To prevent the production of different items from overlap in a cycle, Eq. (5.20) must 

be used: 

 
1

1 for   1,  2, ... , 
N

w
i

i
w Fψ

=

= =∑  (5.20)  

Equation (5.21) restricts the completion time of the last batch so that it cannot go 

beyond the entire production cycle time: 

 ( 1) J F J F

I F I FI F I F I F I Fr tk J F t Tα β( ) ( )

( ) ( )( ) ( ) ( ) ( )+ ( ) − − + + ≤  (5.21)  

It should be noted that for attaining production feasibility an item’s production start 

time can be either advanced or delayed, but both cannot occur. Therefore:    

 . 0 for   1,  2, ... , ,    1,  2, ... , j j
i i ii N j fα β = = =  (5.22)  

The optimum backorder level for each item can be expressed as Eq. (5.23):  

 
(1 ) for   1,  2, ... , i

i i i i
i i

Hm t d r i N
H B

= − =
+

 
(5.23)  

Equation (5.24) can be used to obtain the lot size for each item: 

 for   1,  2, ... , i i iQ d t i N= =  (5.24)  
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Constraints (5.25) are the non-negativity constraints: 

 

0
0            for   1,  2, ... , 

, 0    for   1,  2, ... , ,    1,  2, ... , 
0  integer for   1,  2, ... , 

i
j j

i i i

i

T
r i N

i N j f
f i N

α β

≥
≥ =

≥ = =

> =

 
(5.25)  

5.3 Solution Algorithms  

The formulation given in Section 5.2 is a nonlinear mixed integer problem. These 

characteristics justify the model to be adequately difficult to solve using the exact 

methods. To deal with the intricacy and obtain near-optimal results in a reasonable 

computation time, metaheuristic approaches are widely used for which the GA, PSO, 

ABC, and SA methods are explained in the following subsections. Related codes are 

presented in Appendices A to D.   

5.3.1 GA Approach  

The GA is a type of stochastic optimization method that randomly searches the 

solution space to find a solution (Parsapoor & Bilstrup, 2012). The general steps of the 

GA can be summarized as follow (Gen & Cheng, 2008): 

i. Encoding solutions of problem into chromosomes. 

ii. Creating initial population of solutions randomly. 

iii. Evaluating chromosomes in terms of their fitness in order to select parents.  

iv. Applying genetic operators (crossover and mutation) in order to reproduce new 

chromosomes (offspring). 

v. Evaluating the new population. 

vi. Maintain the best chromosomes among parents and offspring. 

vii. If stopping criteria is met, then stop. Otherwise, go to step iii. 
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The required steps to solve the proposed model by a GA are explained below.  

(a) Initial Conditions 

The initial information required to begin a GA includes: 

1. The number of chromosomes kept in each generation that is named population 

size, and indicated by ‘Npop’. 

2. The probability of operating crossover known as crossover rate represented by 

‘Pc’. 

3. The probability of operating mutation called mutation rate represented by ‘Pm’. 

4. Maximum number of iterations denoted by ‘max iter’.  

Both the crossover and mutation rates alter in the range [0.1, 1]. The computational 

results show that the effect of Pc on the total cost value is positive. Therefore, the 

smaller the crossover probability, the lesser the total cost will be. However, C(T) 

decreases as Pm increases.  

Npop, Pc, and Pm are calibrated using the Taguchi method descried in Section 5.4. 

(b) Chromosome Representation  

One of the most important factors for effective application of the GA is creating an 

appropriate chromosomal structure. A GA starts with encoding the variables of the 

problem as finite-length strings. These strings are called chromosomes. The number of 

genes in a chromosome is equal to decision variables. As proposed model in this study 

is a non-linear problem containing three different types of variables (discrete, 

continuous, and binary), a real number representation is applied to reduce this 

complexity. Matrices X1, X2, and X3 present the general form of chromosomes:  
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 1 2
1

1 2

       ...   
         ...   

 
=  

 

N

N

p p p
X

t t t
 (5.26)  

Matrix X1 contains two rows and N columns. The two elements of each column 

represent the adopted production rate p (integer) and cycle time t (floating point) for 

each item respectively.   
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 
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 
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X

ψ ψ ψ

ψ ψ ψ

ψ ψ ψ

 (5.27)  

X2 is a N F×  matrix of binary values for the variable w
iψ . N shows the total number 

of products, and F indicates the total number of production frequencies for all items. To 

have a feasible schedule for each column only one non-zero value of 1 must be 

generated, and the rest of elements are 0. The mechanism of generating 1 and 0 is 

random (1 and 0 indicate that the item is produced or not during cycle time T). 

Summation of values in each row shows the production frequency for each item.  

When the GA generates a random initial population for variable ψ , the matrix may 

have more than one value of 1 in each column. Therefore, the columns of matrix ψ  

must be rechecked. If the number of value of 1 in per column is greater than one, the 

values of 1 must be changed to 0, and only one value of 1 should be kept. In order to 

decide which of those 1s must be converted to 0, a cost for each element is considered 

in the form of ( )/i iO d p× . The 1s with higher costs will be changed to 0, and only one 

element with the lowest cost is kept. 
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(5.28)  

As products are allowed to have more than one setup per cycle, it might cause an 

infeasible production plan. In order to attain feasibility, the production start time of 

some items can be advanced ( j
iα ) or delayed ( j

iβ ). However, the start time for a 

product can be adjusted by either advancing or delaying, but not both. Matrix X3, 

containing N rows and F columns, represents the chromosome for the floating point 

variables j
iα  and j

iβ .  

(c) Initial Population 

The GA generates a randomly initial population of g chromosomes, where g denotes 

the size of population. Let Xg = {Xg1, Xg2, . . . , Xgd} indicates the gth chromosome in the 

population, and each solution Xg is a D-dimensional vector, where D refers to the 

optimization variables. Then, the GA updates boundaries for each variable using Eq. 

(5.29): 

( ) for 1, 2, ...,  and  1, 2, ... ,   gn n n n popX lb y ub lb g N n D= + × − = =  (5.29)  

Where y is a random number in the range [0, 1], and lbn and ubn are the lower and 

upper bounds for the dimension n, respectively. For the integer variables, Xgn is 

rounded.  

(d) Evaluation and Constraint Handling  

When chromosomes are produced, a fitness value must be assigned to chromosomes 

of each generation in order to evaluate them. This evaluation is achieved by the 
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objective function given in Eq. (5.6) to measure the fitness of each individual in the 

population.  

As shown in subsection 5.2.2, the presented mathematical model contains various 

constraints, which may lead to the production of infeasible chromosomes. In order to 

deal with infeasibility, the penalty policy is applied, which is the transformation of a 

constrained optimization problem into an unconstrained one. It can be attained by 

adding or multiplying a specific amount to/by the objective function value according to 

the amount of obtained constraints’ violations in a solution. When a chromosome is 

feasible, its penalty is set to zero, while in case of infeasibility, the coefficient is 

selected sufficiently large (Pasandideh & Niaki, 2008). Therefore, the fitness function 

for a chromosome will be equal to the sum of the objective function value and penalties 

as shown in Eq. (5.30), where s represents a solution, and C(s) is the objective function 

value for solution s. The penalty policy is employed for all the metaheuristic algorithms 

presented in this research. 

 

( ) ( ) ( )
0 if  is feasible
0 otherwise

= +
=
>

fitness s C s Penalty s
Penalty s
Penalty

 
(5.30)  

(e) Selection 

Selection in a GA determines the evolutionary process flow. In each generation, 

individuals are chosen to reproduce offspring for the new population. Therefore, it 

provides the selection of the individual and the number of its copies which will be 

chosen as parent chromosomes. Usually, the fittest individuals will have a larger 

probability to be selected for the next generation.  

In this research, the ‘‘roulette wheel” method has been applied for the selection 

process. The basic thought behind this method is that every individual is provided an 
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opportunity to become a parent proportional to its fitness value. All individuals have a 

chance of being selected to reproduce the next generation. Clearly, individuals with the 

larger fitness have a higher chance of being selected to form the mating pool for the 

next generation. The selection probability, ag, for individual g with fitness Cg, is 

calculated by Eq. (5.31) (Gen et al., 2008): 

 
1

g
g Npop

g
g

C
a

C
=

=

∑
 

(5.31)  

The selection procedure is based on spinning the wheel Npop times, each time 

selecting a single chromosome for the new process. 

(f) Crossover 

The crossover is the main operator of generating new chromosomes. It applies on 

two parent chromosomes with the predetermined crossover rate (Pc), and produces two 

offspring by mixing the features of parent chromosomes. It causes the offspring to 

inherit favorable genes from parents and creates better chromosomes. In this research, 

the arithmetic crossover operator that linearly combines parent chromosome vector is 

used to produce offspring. The two offspring are obtained using Eqs. (5.32) and (5.33). 

 (1) (1) (2)(1 )offspring y parent y parent= × + − ×  (5.32)  

  (2) (2) (1)(1 )offspring y parent y parent= × + − ×  (5.33)  

Where y is a random number in the range [0, 1]. For variables p and t, the size of 

random numbers must be equal to N, and for variable F, it is equal to one, since F is an 

individual element. For variables ,  ψ α , and β , the random number returns an N×F 

matrix, where here (1) (2)min( , )= F FF offspring offspring , when the produced offsprings for 

variable F have different sizes. For the integer variables, the values of generated 
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offsprings by Eqs. (5.32) and (5.33) are rounded to the nearest integer amount. Figure 

5.1 shows how the crossover operator for the continuous variables ,  , and j j
i i it α β  works. 

 

 

 

 

 

 

Figure  5.1: An example of a crossover operation 

(g) Mutation 

Mutation exerts stochastic change in chromosome genes with probability Pm. It is 

considered as a background operator that keeps genetic diversity within the population. 

Mutation may contribute in preventing the algorithm to get stuck at a local minimum as 

well as reaching an untimely convergence. It ensures that the irreversible loss of genetic 

information does not take place. First, a random number in range [0, 1] is generated. 

Then, if random number is less than 0.5, Eq. (5.33), and if it is greater than 0.5, Eq. 

(5.34) will be used to mutate the selected genes. Suppose a particular gene such as Xk is 

chosen for mutation; then the value of Xk will be changed to the new value X’k using 

Eqs. (5.34) and (5.35): 

 1 (X )
max iter

 ′ = − × − × − 
 

k k k kX X y lbρ  (5.34)  

 1 ( )
max iter

 ′ = + × − × − 
 

k k k kX X y ub Xρ  (5.35)  

y = 0.9 
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Where k is an integer value in range [1, N], lbk and ubk are the lower and upper 

bounds of the specific gene, y is a random variable in the range [0, 1], and ρ  is the 

number of current iteration. For the integer variables, the values obtained by Eqs. (5.34) 

and (5.35) are rounded.  

For the binary variable ψ , an integer number in the range [1, (N×F)] is generated in 

order to select the element of matrix ψ . Then, if the chosen element is 1, it will be 

replaced with 0, and vice versa. For variables α  and β , first, an integer number in the 

range [1, (N×F)] is produced to select the element. Then, a random number in the range 

[0, 1] is generated. If it is less than 0.5, Eq. (5.36), and if it is greater than 0.5, Eq. (5.37) 

will be used to mutate the selected element. 

 1 ( 0)
max iter

 ′ = − × − × − 
 

k k kX X y Xρ  (5.36)  

 1 (1 )
max iter

 ′ = + × − × − 
 

k k kX X y Xρ  (5.37)  

(h) New Population 

Fitness function value of all members, including parents and offspring are assessed in 

this stage. Next, the chromosomes with higher fitness scores are selected to create a new 

population. To attain a better solution, the fittest chromosomes must be maintained at 

the end of this stage. Note that the number of selected chromosomes must be equal to 

Npop. 

(i) Termination 

The selection and reproduction of parents will be continued until the algorithm 

reaches a stopping criterion. The procedure can be ended after a predetermined number 

of iterations, or when no substantial improvement during any iteration is achieved. In 

this study, the procedure terminates when the algorithm reaches the maximum number 
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of iterations which is set to 3000. Moreover, in order to have fair comparisons, the same 

number of iteration is used for all applied optimizers presented in this research.  

5.3.2 PSO Algorithm  

Every particle in the swarm has five individual properties: (i) position, (ii) velocity, 

(iii) objective function value related to the position, (iv) the best position explored so far 

by the particle, and (v) objective function value related to the best position of the 

particle. In any iteration of the PSO, the velocity and position of particles are updated 

according to Eqs. (5.38) and (5.39): 

 ( ) ( )1 1 2 2( 1) ( ) ( ) ( ) ( ) ( )+ = + − + −g g g g g gV k WV k c y k k c y k kλ χ γ χ  (5.38)  

 ( 1) ( ) ( 1)+ = + +g g gk k V kχ χ  (5.39)  

Where g = 1, 2,…, Npop; k denotes the iteration; Vg is the velocity of gth particle, W is 

the inertia weight that controls the impact of the previous velocity of the particle on its 

current velocity, and it plays an important role in balancing global and local search 

ability of PSO; c1 is the cognitive parameter, and c2 is the social parameter; y1 and y2 

are random numbers within the range [0, 1]; gλ  is the own best position found by 

particle g; gχ  is the current value of particle g; and gγ  is global best particle explored 

so far by the whole swarm.  

For each particle in swarm, its fitness value will be evaluated. Then, each particle’s 

fitness evaluation will be compared with the current particle’s own best. If current value 

is better than own best, own best value will be set to the current value, and the own best 

location to the current location. Next, the fitness evaluation with the population’s 

overall previous best will be compared. If the current value is better than global best, 

then global best will be set to the current particle’s array index and value. The new 

velocity of each particle g is calculated using Eq. (5.38), and the position of particle g is 
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updated by Eq. (5.39), which is adding its new velocity to its current position. This 

process continues until stopping condition is satisfied, which is reaching the maximum 

number of iterations equal to 3000.  

5.3.3 ABC Algorithm 

The ABC algorithm was inspired by the honey bee foraging behavior. The ABC 

method includes four main components, namely food sources, employed bees, onlooker 

bees, and scout bees. The main steps of the ABC procedure are described below. 

(a) Initialization of the Parameters 

The main parameters of the ABC algorithm are the colony size (NB), number of food 

sources (NS), number of trials after which a food source is supposed to be discarded 

(limit), and maximum number of cycles of the search process (MCN). Several 

combinations of NB and limit have been implemented by applying Taguchi method 

described in Section 5.4 The number of food sources (NS) is considered as NB/2. MCN 

is set to 3000. 

The first half of the colony consists of the employed artificial bees and the second 

half includes the onlookers. For every food source, there is only one employed bee, i.e. 

the number of employed bees is equal to the number of food sources around the hive 

(Karaboga, 2005).  

(b) Initialization of the Population 

The ABC algorithm generates a randomly initial population of g solutions (g = 1, 2, 

... , NS). Then the algorithm updates boundaries for each variable using Eq. (5.29). After 

initialization, the population of the food source positions is commanded to iterate the 

cycle of search processes for the employed, onlooker and scout bees (cycle = 1, 2, . . . , 

MCN). 
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(c) Employed Bee Phase 

Employed bees exploit the neighborhood of their location to select a random solution 

to be perturbed. In every cycle of the search process, they revise the positions of the 

food source in their memory according to the visual information, and measure the 

nectars’ values (fitness) of the new positions (reformed solutions). Once all the 

employed bees finish the search process, they share the information such as nectar 

amounts of the food source, distance, and their positions with the onlooker bees. Then, 

every employed bee explores its neighbourhood food source (Xg) to generate a new 

food source (Xnew) according to Eq. (5.40): 

( )( ) for 1, 2, ..., ; 1, 2, ... , ;   new n gn gn enX X y X X e NS n D e g= + × − = = ≠

 
(5.40)  

Where Xg is a D-dimensional vector, and D refers to the optimization parameters; 

and y is a uniformly distributed random number in the range [-1, 1]. For the integer 

variables Xnew(n) is rounded. Once Xnew is determined, it will be appraised and compared 

with Xg. If the quality of Xg is worse than Xnew, Xg will be substituted with Xnew; 

otherwise, Xg is kept. This means that a greedy selection process is utilized between the 

new candidate and old solutions. 

(d) Onlooker Bee Phase 

Onlooker bees wait at the dance area around the hive to make decision for selecting 

food sources. The length of a dance is related to the nectar’s quality (fitness value) of 

the food sources currently being utilized by the employed bees. They evaluate the 

nectars’ information acquired from all the employed bees, and select food sources with 

probability related to their nectars’ amounts. Subsequently, they produce new food 

information, discard the one with inferior quality compared to the old one, and share 

their information on the dance area. An onlooker bee appraises the food information 
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obtained from employed bees, and chooses a food source (Xg) based on the probability 

(ag) pertinent to the nectar’s quality. ag is determined using  Eq. (5.41): 
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g
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=

=

∑
 

(5.41)  

Where Cg is the fitness value of the gth food source Xg. Once the onlooker bee has 

chosen its food source, it makes an adjustment on Xg using Eq. (5.40). The same 

process applied on the employed bees for the selection and replacement adjustment is 

also applied on the onlooker bees. If solution Xg cannot be improved, its counter 

holding trials is incremented by one; otherwise, the counter is reset to zero. This process 

is repeated until all onlookers are distributed into food source sites. 

(e) Scout Bee Phase 

Scout bees perform a random search for new food sources, and substitute the 

discarded ones. If a food source (Xg) cannot be further improved by a predetermined 

number of trials (limit), associated employed bee will abandon the food source, and that 

employed bee will become a scout. The counters, which are updated during search, are 

utilized in order to decide if a source is to be abandoned. If the value of the counter is 

greater than the limit, then the source associated with this counter is assumed to be 

exhausted and is abandoned. The food source abandoned by its bee is replaced with a 

new food source discovered by the scout (Akay & Karaboga, 2012).  

The scout randomly generates a food source. Equation (5.29) is used for this purpose. 

In the basic ABC process, during per cycle at most one scout goes outside for exploring 

a new food source. After the new position is specified, a new algorithm cycle begins. 

After each cycle, the finest solution will be memorized. The same processes are iterated 

until the termination condition is reached.  

136 



5.3.4 SA Algorithm   

The SA algorithm is a local search method inspired by the physical annealing process 

studied in statistical mechanics and was initially proposed for combinatorial 

optimization problems. The SA algorithm repeats an iterative neighbor generation 

procedure and follows search directions that aim to improve the objective function value 

towards the global optimum. The main steps of the SA algorithm are described below. 

(a) Initialization 

In this step, the input parameters of the SA algorithm are initialized. The parameters 

are: 

i. Initial Temperature 

The initial temperature (E0) is the starting point of temperature computation in every 

iteration. E0 should be adequately high to escape a premature convergence. Basically, 

the SA algorithm starts with an initial temperature where almost all worsening moves 

are accepted regardless of the objective function value. 

ii. Iteration 

It shows the number of iteration in each temperature. 

iii. Final Temperature 

The temperature is remained fixed once it reaches the lowest temperature limit (Ef).  

(b) Cooling Schedule 

System temperature determines the degree of randomness towards solution, and it is 

reduced with a known plan in accordance with the progress of solution procedure. In 

reality, system temperature is a solution subspace of the problem accepted in each 

iteration. As the algorithm progresses and the temperature decreases, inappropriate 
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solutions have smaller chance of being accepted. Cooling schedule determines the 

functional form of the change in temperature required in the SA.  

A geometric temperature reduction rule, which is the most commonly utilized 

decrement rule, is applied for this study. If the temperature at kth iteration is Ek, then the 

temperature at (k+1)th iteration is given by (Kirkpatrick, 1984): 

 1+ = ×k kE z E  (5.42)  

Where z denotes the cooling factor in the range [0, 1].   

(c) Neighborhood Representation  

The neighborhood search structure is a procedure that generates a new solution that 

slightly changes the current solution. To delineate the neighborhood configuration, the 

following process is used in order to prevent the fast convergence of the SA. The 

number of neighborhood searches in each temperature level (epoch length) is 

considered to be 10. It is the number of solutions which are accessible in an immediate 

move from the current solution. 

Suppose a particular vector such as Xk is selected; then the value of Xk will be 

changed to the new value X’k using Eqs. (5.43) and (5.44).  

 0.1 ( )k k k kX X y X lb′ = − × × −  (5.43)  

 0.1 ( )k k k kX X y ub X′ = + × × −  
(5.44)  

Where k is an integer value in range [1, N], lbk and ubk are the lower and upper 

bounds of the specific vector, and y is a random variable in the range [0, 1]. For the 

integer variables the values obtained by Eqs. (5.43) and (5.44) are rounded.  

For the binary variable ψ , two integer numbers y1 and y2 are generated, where y1 is 

in range [1, ( N F× ) -1] and y2 is in range [y1+1, N F× ] in order to select the elements 
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of matrix ψ . Then, if the elements in the selected columns are 1s, they will be replaced 

with 0s, and vice versa.  

For variablesα  and β , the same integer numbers y1 and y2 are used to select the 

elements. Then the following equations are employed to change the chosen elements: 

 ( )1 2 1 2 1 2( : ) ( : ) ( : )0.1 0y y y y y yX X y X′ = − × × −  (5.45)  

 

 
( )1 2 1 2 1 2( : ) ( : ) ( : )0.1 1y y y y y yX X y X′ = + × × −  (5.46)  

Where y is a random number in the range [0, 1]. The quantity of generated random 

numbers must be equal to 2 1( 1)y y− + . 

For selecting which equation to be used, a random number in the range [0, 1] is 

generated. Then, if random number is less than 0.5, Eqs. (5.43) and (5.45), and if it is 

greater than 0.5, Eqs. (5.44) and (5.46) will be used. 

(d) Main Loop of the SA 

The SA begins with a high temperature and selects initial solutions (s0) randomly. 

Next, a new solution (sn) within the neighbourhood of the current solution (s) is 

computed in each iteration. In the minimization problem, if the value of the objective 

function, C(sn), is smaller than the previous value, C(s), the new solution is accepted. 

Otherwise, the SA algorithm uses a stochastic function given in Eq. (5.47) for accepting 

the new solution in order to prevent the local optimum trap. 

 exp( )= − ∆a C E  (5.47)  

Where ( ) ( )∆ = −nC C s C s , and E is the current state temperature.  
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(e) Termination Condition 

The algorithm ends after a pre-set number of iterations without refining the current 

best solution.  

5.4 Parameter Tuning 

The trial and error method are traditionally used to determine parameters’ values of 

metaheuristic algorithms. However, it cannot determine optimal parameter settings and 

hence cannot solve problems efficiently. This method also consumes a considerable 

amount of time (Lin et al., 2012). In metaheuristic algorithms the parameters are 

controllable factors, the problem being solved is the process input, and the fitness 

function is the process output. Therefore, instead of employing suggested values by 

other researchers or using a trial and error procedure, it seems reasonable to adjust the 

parameters using statistical methods based on a set of experiments such as Taguchi 

method (Sadeghi et al., 2013). 

The motivation to utilize the Taguchi method in this research is that it has been 

recognized as a cost-effective method that can simultaneously scrutinize several factors 

and distinguish quickly the factors with principal impacts on final solution by carrying 

out the minimal number of possible experiments. Taguchi method is a fractional 

factorial experiment as an efficient alternative for full factorial experiments. Taguchi 

divides the factors affecting the performance (response) of a process into two groups: 

noise factors (N) that cannot be controlled and controllable factors (S) such as the 

parameters of a metaheuristic algorithm which can be controlled by designers. Taguchi 

method focuses on the level combinations of the control parameters to minimize the 

effects of the noise factors.  

In Taguchi’s parameter design phase, an experimental design is used to arrange the 

control and noise factors in the inner and outer orthogonal arrays respectively. The 
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orthogonal arrays are used to study a large number of decision variables with a small 

number of experiments. Afterward, the signal-to-noise (S/N) ratio is computed for each 

experimental combination. After the calculation of the S/N ratios, these ratios are 

analyzed to determine the optimal control factor level combination (Mousavi et al., 

2014). Taguchi categorizes objective functions into three groups: First, smaller is better 

for which the objective function is a minimization type. Second, nominal is the best; for 

which the objective function has modest variance around its target. Third, bigger is 

better, where the objective function is a maximization type (Sadeghi et al., 2013).  

Since the objective function of the model of this research is the minimization type, 

‘‘the smaller the better’’ category is appropriate, where S/N is given by Eq. (5.48): 

 2
10

1

110log ( )
n

e
e

S N C
n =

= − ∑  (5.48)  

Where Ce is the objective function value of a given experiment e, and n is the 

number of times the experiment is performed.  

In the Taguchi method, the parameters that might have considerable effects on the 

process output are initially chosen for tuning. The parameters of the GA that require 

calibration are Pc, Pm, and Npop. In the PSO, c1, c2, W, and Npop are the parameters to 

be tuned. In the SA, the parameters to be tuned are E0, Ef, and z. NB and limit are the 

ABC parameters to be calibrated. Afterward, by a trial and error method, the ranges that 

produce satisfactory fitness function are chosen to employ the experiments.  

Table 5.1 shows the algorithms’ parameters, each at three levels with nine 

observations. Figures 5.2 to 5.5 shows the mean S/N ratio plots for different parameter 

levels of the proposed algorithms. According to Figures 5.2 to 5.5, the best parameter 
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levels are the highest mean of S/N values. Table 5.2 shows the optimal levels of the 

parameters for all algorithms. 

Table  5.1: The GA, PSO, ABC, and SA parameters’ levels 

Algorithm Parameters Levels 
1 2 3 

GA 
Pc 0.1 0.2 0.3 
Pm 0.8 0.9 1 
Npop 100 150 200 

PSO 
c1 & c2 0.5,4 4,0.5 4,4 
W 0.55 0.75 0.95 
Npop 100 150 200 

ABC NB 50 100 200 
Limit 2 50 100 

SA 
E0 10 20 30 
Ef 0.01 0.01 0.001 
z 0.85 0.90 0.95 

 

 

Figure  5.2: The mean S/N ratio plot for each level of the factors of the GA approach  
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Figure  5.3: The mean S/N ratio plot for each level of the factors of the PSO algorithm 

 

Figure  5.4: The mean S/N ratio plot for each level of the factors of the ABC algorithm 
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Figure  5.5: The mean S/N ratio plot for each level of the factors of the SA algorithm 

 

Table  5.2: Optimal values of the algorithms’ parameters 

Algorithm Parameters Optimal Values 

GA 
Pc 0.1 
Pm 1 
Npop 200 

PSO 
c1 & c2 4, 0.5 
W 0.95 
Npop 200 

ABC NB 200 
Limit 100 

SA 
E0 20 
Ef 0.001 
z 0.95 

 

5.5 Results and Discussions 

In order to illustrate the performance of the four metaheuristic approaches on the 

proposed ELSP model, a three-product inventory problem is investigated using the data 

given in Table 5.3. Applied optimizers were written and coded in MATLAB 

programming software.  
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Table  5.3: Input data for the ELSP model 

Item i di
 max

iP  Ai Si
 Hi

 Bi
 Li

 

1 1000 3000 0.0005 125 3 5 0.20 
2 400 2500 0.0010 25 25 50 0.11 
3 700 2500 0.0015 75 15 25 0.20 

 

In order to validate the proposed model, three similar models presented by Silver 

(1995), Viswanathan and Goyal (2000), and Yan et al. (2013) were selected. The same 

input data used in the previous models as well as their obtained results for the decision 

variables were tested on the new ELSP model. In addition, for the variables which were 

missing in their studies, the value of zero was assigned. After running the proposed 

ELSP model, the same results for the three objective functions were obtained as 

acquired by the previous offered models. This approach was used to verify the 

correctness of the developed ELSP model. 

In order to compare the performances of the four algorithms, 10 different 

optimization runs have been carried out with the parameters settings given in Table 5.2. 

The statistical optimization results for the ELSP along with the required CPU time for 

machine operating costs of $1000, $750 and $500 using the GA, PSO, ABC, and SA 

methods are reported in Tables 5.4 to 5.6 respectively.  

Table  5.4: Objective function values for machine operating cost $1000 

Problem 
No. 

GA PSO ABC SA  
Fitness 

($) 
CPU 
(s) 

Fitness 
($) 

CPU 
(s) 

Fitness 
($) 

CPU 
(s) 

Fitness 
($) 

CPU 
(s) 

1 2396.73 176.94 2490.24 161.95 2394.06 124.17 2498.21 108.76 
2 2398.66 162.21 2498.24 159.46 2399.17 137.39 2504.15 102.31 
3 2398.84 167.83 2500.24 171.18 2400.73 125.27 2506.99 100.43 
4 2399.24 168.35 2594.25 160.33 2401.22 143.12 2513.32 104.94 
5 2399.35 179.11 2609.94 160.13 2401.73 121.14 2517.9 110.23 
6 2400.75 169.84 2621.92 158.88 2444.51 128.65 2518.36 106.73 
7 2401.02 176.41 2634.34 181.38 2469.86 129.98 2528.85 109.65 
8 2406.10 147.90 2639.11 158.79 2476.08 141.93 2530.66 104.72 
9 2417.43 172.10 2644.21 158.99 2492.79 129.43 2532.44 119.63 

10 2424.24 167.27 2644.23 158.31 2492.87 115.33 2536.62 101.17 
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Table  5.5: Objective function values for machine operating cost $750 

Problem 
No. 

GA PSO ABC SA  
Fitness 

($) 
CPU 
(s) 

Fitness 
($) 

CPU 
(s) 

Fitness 
($) 

CPU 
(s) 

Fitness 
($) 

CPU 
(s) 

1 2243.23 158.99 2138.37 166.37 2038.73 179.59 2238.49 103.29 
2 2295.15 145.05 2237.71 159.27 2137.48 126.90 2275.81 103.76 
3 2298.74 110.71 2305.74 158.54 2142.79 146.28 2301.82 104.53 
4 2300.22 147.02 2305.74 158.99 2167.39 166.39 2306.48 104.49 
5 2303.54 142.34 2308.37 167.42 2172.52 140.82 2328.97 103.41 
6 2306.81 151.67 2328.78 159.66 2192.55 167.53 2336.58 104.86 
7 2314.24 142.64 2365.45 158.64 2193.29 155.43 2341.56 102.97 
8 2343.53 144.17 2432.56 166.25 2222.07 162.86 2353.86 96.92 
9 2377.65 150.14 2432.56 165.81 2228.68 158.49 2376.73 105.36 

10 2390.32 111.38 2603.10 160.33 2300.10 166.13 2435.55 109.21 
 

Table  5.6: Objective function values for machine operating cost $500 

Problem 
No. 

GA PSO ABC SA  
Fitness 

($) 
CPU 
(s) 

Fitness 
($) 

CPU 
(s) 

Fitness 
($) 

CPU 
(s) 

Fitness 
($) 

CPU 
(s) 

1 1839.20 183.57 1862.94 129.48 1822.02 137.63 1877.17 103.57 
2 1845.08 175.29 1862.94 129.44 1824.71 133.10 1879.16 98.89 
3 1846.07 173.45 1865.78 123.34 1830.80 127.20 1880.56 102.53 
4 1854.96 177.88 1869.82 128.96 1831.72 138.68 1888.96 100.97 
5 1858.05 181.62 1878.10 129.34 1837.27 125.17 1892.31 97.12 
6 1859.20 164.85 1880.13 160.20 1851.69 149.43 1898.11 102.32 
7 1869.27 187.43 1881.90 164.11 1856.47 132.57 1900.46 102.34 
8 1884.38 186.49 1887.09 129.58 1867.34 141.26 1902.28 103.26 
9 1895.32 173.80 1892.13 158.04 1887.28 140.43 1904.28 105.64 

10 1896.42 172.92 1901.17 130.01 1899.74 139.81 1908.28 103.56 
 

Furthermore, the data set was also applied on the ELSP models proposed by Silver 

(1995), Viswanathan and Goyal (2000), and Yan et al. (2013) in order to compare the 

performance of the developed model with previous reported models in literature.  Table 

5.7 represents the minimum cost found by each algorithm accompanied with obtained 

results by previous presented models for different values of annual machine operating 

cost.  
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Table  5.7: Comparisons of the best obtained solutions using four optimization engines 

and previous models 

Operating 
Cost GA PSO ABC SA Silver 

(1995) 

Viswanathan 
and  

Goyal  
(2000) 

Yan  
et al. 

(2013) 

O = $1000 $2396.73 $2490.24 $2394.06 $2498.21 $3678 $3091 $2788 
O = $750 $2243.23 $2138.37 $2038.73 $2238.49 $3427 $2884 $2590 
O = $500 $1839.20 $1862.94 $1822.02 $1877.17 $3177 $2666 $2454 
 

Figure 5.6 shows the optimization performance of the four metaheuristic methods for 

the best run compared to the values found by other models in terms of objective 

function values for different machine operating costs. 

 

Figure  5.6: Graphical representation of the performance comparison between the 

applied metaheuristic algorithms and previous methods in terms of objective function 

value 

 

It can be interpreted from Table 5.7 that all metaheuristic methods found the 

minimum total cost among all methods reported in the literature. It is notable that the 

ABC algorithm found the best known solutions, and outperformed the proposed GA, 

SA, and PSO methods for all machine operating costs. The ABC algorithm is also 
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competitive to the GA approach. The ABC obtained approximately 14%, 21%, and 

26% reduction in total cost for machine operating costs $1000, $750, and $500 

respectively compared to the two-stage heuristic algorithm proposed by Yan et al. 

(2013).  

It is evident that if a product is allowed to be produced more than once per cycle a 

lower total cost will be generated. Hence, the results approve the findings pointed out 

earlier by Goyal (1994), Viswanathan (1995), and Yan et al. (2013) regarding obtaining 

a lower cost while production of items more than once in a cycle. Assumption made by 

Silver (1995) and Viswanathan and Goyal (2000) to produce every item exactly once 

per cycle led to higher total costs. However, backordering was ignored in Silver (1995). 

According to Viswanathan and Goyal (2000), incorporating backordering in the model 

generates a lower cost compared to the model ignoring backorders.  

 Figure 5.7 represents the trend of best objective function values obtained by the 

applied metaheuristic algorithms for all machines operating costs. 

      

Figure  5.7: Trend of best objective function values obtained by applied algorithms for 

different machine operating costs 
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Figure 5.8 shows the performance of four metaheuristic approaches in terms of 

objective function values for machine operating cost $1000 in 10 runs. The figure 

shows that the ABC and GA performed better than PSO and SA. 

 

Figure  5.8: Comparison of applied metaheuristics in terms of objective function value 

for machine operating cost $1000 

The computation time (CPU time) of applied metaheuristics for machine operating 

cost $1000 in 10 runs is illustrated in Figure 5.9.  

 

Figure  5.9: Comparison of applied metaheuristics in terms of CPU time for machine 

operating cost $1000 
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As it can be observed, the SA algorithm performed better in terms of CPU time. The 

ABC method stands at second rank in terms of convergence speed. However, GA took 

a longer computation time than the other methods. 

The model’s variables obtained by the ABC method for the best solutions presented 

in Table 5.7 for all machine operating costs are summarized in Table 5.8. 

Table  5.8: Summary of optimization results obtained by the ABC algorithm 

Item i pi
 ri

 fi
 ti

 Qi
 mi

 T 
$1000 

1 3000 0.33 1 0.30 300 75 
0.30 2 2500 0.16 3 0.10 40 11 

3 2500 0.28 2 0.15 105 28 
$750 

1 3000 0.33 2 0.165 165 41 
0.33 2 2500 0.16 3 0.11 44 12 

3 2500 0.28 3 0.11 77 21 
$500 

1 2800 0.36 2 0.20 200 48 
0.40 2 2000 0.20 4 0.10 40 11 

3 2000 0.35 3 0.133 93 23 
 

The results also showed that for each item the storage period has not exceeded than 

its shelf life, which avoids the spoilage of products. 

Sarker and Babu (1993) revealed that when machine operating cost is considered, 

reduction of the cycle time can be more cost effective. Likewise, the results in this 

research indicated that with rather high machine operating cost, decreasing cycle time 

yields a lower cost than decreasing the production rates. Adversely, when the machine 

operating cost decreases, production rate reduction produces a lower cost. For instance, 

when the machine operating cost is $1000, decreasing cycle time yields a lower cost 

than reduction in the production rates. For machine operating cost $500, the production 

rate of item 1 is reduced from 3000 to 2800, and for items 2 and 3, the production rates 

have been diminished from 2500 to 2000; while, cycle time T is increased. It shows that 

production rate reduction generates a lower cost than the cycle time reduction. Silver 
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(1989) declared that if the manufacturing rate is decreased, the production should be 

performed for a longer period. 

Silver (1989) also stated that in the absence of production cost, i.e O = $0, the 

reduction in production rate is more cost-effective than decreasing the cycle time. For 

instance, O = $0 was examined by the ABC method, and the production rate for item 1, 

2, and 3 decreased to 2000, 800, and 1400 respectively. Furthermore, total cost of 

$1040 was obtained, which is much less than the results reported in previous works 

(45% reduction in total cost compared to Yan et al. (2013)). However, as machine 

operating cost $0 is not probable in practice, it is not tested on the problem instances.  

The order of production of items, and their frequency for machine operating costs 

$1000, $750, and $500 obtained by ABC method are shown in matrices X4, X5, and X6 

respectively. 

4

0   1   0   0   0   0
1   0   1   0   1   0
0   0   0   1   0   1

X
 
 =  
  

 

 

 

6

0   1   0   0   0   1   0   0   0 
1   0   0   1   1   0   0   1   0
0   0   1   0   0   0   1   0   1 

X
 
 =  
  

 

As the number of production frequency increases, production time conflicts may 

occur between production start times of some products. If the schedule is feasible, there 

is no need to adjust the production times as there is no overlapping between production 

times of the products. However, if conflicts exist in production times, some adjustments 

5

0   1   0   0   0   1   0   0 
1   0   0   1   0   0   1   0
0   0   1   0   1   0   0   1 

X
 
 =  
  
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are necessary to attain feasibility. Figure 5.10 shows the production schedule over the 

first production cycle for three items with machine operating cost $1000.  

 

Figure  5.10: Production schedule before adjustment for machine operating cost $1000 

It can be seen that the second batch of item 2 has manufacturing time conflict with 

the first batch of item 1, showing the impracticality of the existing schedule. Item 1 has 

to be produced from time 0.016 to 0.115, while second batch of item 2 must be 

produced from 0.1 to 0.116. Therefore, for achieving a feasible schedule, the start time 

for the second batch of item 2 is delayed from 0.1 to 0.115. Moreover, second batch of 

item 3 has to be manufactured during the period 0.281 to 0.323. However, according to 

Eq. (5.21), the last batch cannot surpass the overall cycle time. Hence, production start 

time of the second batch of item 3 is advanced from 0.281 to 0.258.  

The advancement and delay of production start times (time units) in each cycle time 

T for each instance are shown in Tables 5.9 to 5.14. 
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Table  5.9: Production start time advancements for machine operating cost $1000 

α  j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 

i = 1 0 0 0 0 0 0 
i = 2 0 0 0 0 0 0 
i = 3 0 0 0 0 0 0.023 

 

Table  5.10: Production start time delays for machine operating cost $1000 

β  j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 

i = 1 0 0 0 0 0 0 
i = 2 0 0 0.015 0 0 0 
i = 3 0 0 0 0 0 0 

 

Table  5.11: Production start time advancements for machine operating cost $750 

α  j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 

i = 1 0 0 0 0 0 0.0218 0 0 
i = 2 0 0 0 0 0 0 0 0 
i = 3 0 0 0 0 0.0520 0 0 0 

 

Table  5.12: Production start time delays for machine operating cost $750 

β  j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 

i = 1 0 0 0 0 0 0 0 0 
i = 2 0 0 0 0 0 0 0 0 
i = 3 0 0 0 0 0 0 0 0 

 

Table  5.13: Production start time advancements for machine operating cost $500 

α  j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9 

i = 1 0 0 0 0 0 0.0414 0 0 0 
i = 2 0 0 0 0 0.0414 0 0 0 0 
i = 3 0 0 0 0 0 0 0 0 0.0045 

 

Table  5.14: Production start time delays for machine operating cost $500 

β  j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9 

i = 1 0 0 0 0 0 0 0 0 0 
i = 2 0 0 0 0.0385 0 0 0 0 0 
i = 3 0 0 0 0 0 0 0.0255 0 0 

 

Furthermore, to display the convergence of the applied GA, PSO, ABC, and SA  

methods, the graphic illustrations of convergence path corresponding to fitness function 

in terms of the iteration number for machine operating cost $1000 are shown in Figures 

5.11 to 5.14 respectively. 
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Figure  5.11: Convergence path of fitness function for machine operating cost $1000 by 
GA approach 

 

Figure  5.12: Convergence path of fitness function for machine operating cost $1000 by 
PSO algorithm 
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Figure  5.13: Convergence path of fitness function for machine operating cost $1000 by 
ABC algorithm 

 

Figure  5.14: Convergence path of fitness function for machine operating cost $1000 by 
SA algorithm 
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All methods are iterated until the fitness value of the “best-so-far” chromosome 

stabilizes and does not change for many generations. This means the algorithm has 

converged to a solution(s). As it is shown in Figures 5.11 to 5.14, all algorithms reached 

to around $3000 (near optimum point) in almost 200 iterations. However, from iteration 

200 to 500, the cost is decreased to around $2400, which this amount of cost reduction 

has remarkable impact on the profit gained for industries. Therefore, as the problem is 

cost minimization, the iterations have been continued until the search reaches the lowest 

possible cost. The changes in the latest iterations are not noticeable because the scales 

of vertical axis in figures start from a very high value (e.g. 3.5 × 104).  

Furthermore, the time taken to reach the optimal solution depends on the computer 

used. Hence, it is worth to utilize a high performance computer such as parallel 

computers in order to reach better solutions in reasonable computation time. 

To compare the performance of the metaheuristic algorithms statistically, the one-

way analysis of variance (ANOVA) is utilized based on the objective function values of 

10 experiments obtained for machine operating cost $1000. This process is performed 

using Minitab software. Table 5.15 shows the ANOVA results.  

Table  5.15: The ANOVA results for objective function values of machine operating 

cost $1000 

Source Degree of freedom (DF) SS MS F-test p-value 
Optimization Engines 3 204627   68209   43.54 0.000 
Error 36 56398 1567   
Total 39 261025    

 

The p-value is a measure of how unusual the value of the test statistic is given that 

the null hypothesis is true. Here, the hypothesis is there is no difference in the average 

costs of the algorithms. The null hypothesis is rejected when the p-value turns out to be 
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less than a predetermined significance level. The p-value is a number between 0 and 1, 

and for 95% confidence level it is interpreted in the following way: 

i. A small p-value (typically ≤ 0.05) indicates strong evidence against the null 

hypothesis, so the null hypothesis is rejected. 

ii. A large p-value (> 0.05) indicates weak evidence against the null hypothesis, so 

it is failed to reject the null hypothesis. 

iii. p-values very close to the cutoff (0.05) are considered to be marginal (could go 

either way).  

The p-value obtained from the results is 0.000, which indicates the null hypothesis is 

rejected at 95% confidence level, meaning that the mean values of total cost of four 

algorithms are not all the same.  

5.6 Conclusions  

In this chapter, a mixed-integer non-linear model was addressed which considers the 

practical characteristics including backordering, shelf life, and multiple setups for each 

product in a manufacturing cycle. The problem of obtaining the optimum production 

rate, lot size, and production frequency for each item, the optimal production cycle time 

for all the products, in addition to a feasible manufacturing schedule was investigated. 

However, the assumption of production of items more than once in a cycle may cause 

an infeasible schedule due to the overlapping production times of various items. To 

eliminate the production time conflicts and achieve a feasible schedule, the production 

start time of some items was modified by either advancing or delaying. 

The solution of the large scale proposed ELSP model may be out of reach using the 

existing approaches due to the complexity and the required computational efforts 

associated with the model. Thus, efficient heuristic methods are required to solve the 

proposed NP-hard model. Accordingly, effective solution approaches based on real-
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coded GA, PSO, ABC, and SA algorithms for integer, non-integer, and binary variables 

were presented to solve the model. Furthermore, to make the algorithms more effective, 

Taguchi method was employed to tune various parameters of the applied algorithms. 

Each of such methods was applied to a set of problem instances taken from literature 

and the performances were compared against other existing models in the literature. The 

results indicated the efficiency of the applied metaheuristic algorithms in solving the 

proposed model. Comparisons were based on the percentage improvement in the total 

cost. All the applied methods showed an impressive performance and excellent solution 

qualities. The metaheuristic algorithms can also efficiently handle large-sized instances 

in a moderate computation time. Based on the results, the ABC algorithm produced the 

lowest cost, which may indicate its superiority in searching for optimal solutions of 

similar problems.  
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CHAPTER 6:  OPTIMIZATION OF MULTI-PLANT CAPACITATED LOT-

SIZING PROBLEM IN AN INTEGRATED PRODUCTION-DISTRIBUTION 

NETWORK USING CALIBRATED METAHEURISTIC ALGORITHMS 

6.1 Introduction 

In this chapter, the multi-item, multi-period, multi-plant capacitated lot-sizing 

problem with inter-plant interactions, multiple suppliers and distribution centers is 

addressed, which can cover a variety of problems arising in the literature and in 

practice. The fundamental concept is to simultaneously optimize decision variables of 

different functions in a supply chain that have been conventionally optimized 

individually due to the complexity in their integration. The combinations of several 

functions such as purchasing, production, storage, backordering, and transportation are 

considered to evaluate the impact of coordination on the cost performance of a multi-

plant firm. A number of well-known metaheuristic algorithms are utilized to solve the 

proposed model.   

The subsequent sections of this chapter are organized as follow: Section 6.2 presents 

the mathematical formulation for the proposed problem. In Section 6.3, metaheuristic 

algorithms namely the GA, PSO, ABC, and ICA are presented to solve the proposed 

model. Section 6.4 demonstrates the numerical example. Section 6.5 explains the 

parameter calibration procedure using the Taguchi method. In Section 6.6 the 

computational results are discusses. Finally, the conclusions are shared in Section 6.7. 

6.2 Problem Description and Mathematical Formulations 

The considered production and distribution planning problem consists of M 

suppliers, J plants, and W distribution centers, as shown in Figure 6.1. It is assumed that 

production takes place in a multi-plant manufacturing company, where the plants are 

geographically distributed in different locations of a country. Each product is made of K 
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raw materials which are provided by the suppliers. It is designated that for each raw 

material type there is only one particular supplier. Each plant is characterized by its own 

inventory and production capacities. It is possible to store excess production at the plant 

storage which has capacity limit, but no storage is possible for end products at 

distribution centers.  

Any of the products produced in each plant can be transported to any of the 

distribution centers that are located in different areas. Obviously, the demand in a 

distribution centre is served by the closest plant. Transfer decisions between plants are 

made when demand observed at a plant can be satisfied by other production sites to 

cope with under-capacity of that particular plant. It should be noted that the customer 

would pay only for the transportation from the nearest plant. The transportation cost 

from other plants to the plant where demand has been placed, has to be borne by the 

company. 

Since all factories, suppliers and distribution centers are spread out geographically, 

the transportation cost can vary. Homogenous vehicles of a given capacity are stationed 

at each supplier and plant to deliver products from suppliers to plants, between the 

production plants, and from plants to distribution centers. The model is developed with 

the assumption that sales are made at the distribution centers. In addition, backordering 

is allowed when demand at a distribution centre cannot be entirely satisfied. 
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Figure  6.1: A schematic representing the proposed multi-plant problem 

The following notations are used in the development of the mathematical model 

presented in this chapter.  

(a) Indices 

i Product, { }1,2,...,i N∈  

k Raw material, { }1,2,...,k K∈  

v Resource, { }1,2,...,v V∈  

m Supplier, { }1,2,...,m M∈  

j, l ,l’ Plant, { }, , 1,2,...,j l l J′∈  

w Distribution centre, { }1,2,...,w W∈  

t Period, { }1,2,...,t T∈  

(b) Parameters 

diwt Demand of product i at distribution centre w in period t 

Uiwt Selling price of product i at distribution centre w in period t 
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Aijt  Setup time of product i at plant j in period t 

Pijt Production time of product i at plant j in period t 

Fjt   Total available production time at plant j in period t  

xki Amount of raw material k required to produce a unit of product i  

Ekmt Number of raw material k that can be provided by supplier m in period t 

kmjtλ  Percentage of rejected raw material k delivered by supplier m to plant j in period 

t  

Rvij  Amount of resource v required to produce a unit of product i at plant j  

Nvjt Total amount of resource v available at plant j in period t 

kmtπ  Ordering cost of raw material k at supplier m in period t  

kmtτ  Purchasing cost of raw material k at supplier m in period t 

Sijt  Setup cost for product i at plant j in period t 

Oijt  Production cost of product i at plant j in period t 

Hkjt Holding cost of raw material k at plant j in period t 

ijtH ′  Holding cost of product i at plant j in period t 

Biwt  Backordering cost of product i at distribution centre w in period t 

mjϖ  Distance between supplier m and plant j 

jlµ  Distance between plant j and plant l 

jwζ  Distance between plant j and distribution centre w 

kjσ
 

Storage capacity for raw material k at plant j 
  

ijσ ′
 

Storage capacity for item i at plant j  

kς  Vehicle available capacity respect to raw material k  

iς ′  Vehicle available capacity respect to product i  

Fη  Fixed transportation cost of vehicle  
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Vη  Variable transportation cost of vehicle per trip 

kρ  Safety stock coefficient with respect to raw material k  

jε  Performance percentage of available time at plant j  

vjξ  Productivity percentage of resource v at plant j 

δ  A very large number 

δ ′  A very large number 

(c) Decision Variables 

Qijt Quantity of product i produced at plant j in period t 

kmjtα
 

Purchase amount of raw material k shipped from supplier m to plant j in period t 

kjtI
 

Inventory level of raw material k stored at plant j at the end of period t 

ijtI ′  Inventory level of product i stored at plant j at the end of period t  

Cijwt Quantity of product i that is available to be shipped from plant j to distribution 

centre w in period t 

Zijlt Quantity of product i transferred from plant j to plant l in period t 

j
iwtY  Total number of product i shipped from plant j to distribution centre w in period 

t 

biwt 
Shortage amount of product i at distribution centre w in period t  

mjtφ  Number of vehicles required to ship products from supplier m to plant j in period 

t 

jltν  Number of vehicles required to transfer products from plant j to plant l in period 

t 

jwtΩ  Number of vehicles required to ship products from plant j to distribution centre 

w in period t 
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ijtχ 1 If there is a setup for product  at plant  in period 
0 Otherwise

i j t

  

 

kmjtϕ 1 if an order for raw material  is allocated to supplier  at plant  in period 
0 Otherwise

k m j t



 

6.2.1 Cost Function 

(a) Procurement Cost 

 kmjt kmt kmjt kmt
k m j t

ϕ π α τ+∑∑∑∑  (6.1)  

Equation (6.1) shows the total procurement cost. It consists of the ordering cost that 

depends on whether procurement has taken place or not, and the purchasing cost of raw 

materials over the planning horizon.  

(b) Production Cost 

 ijt ijt ijt ijt
i j t

S Q Oχ +∑∑∑  (6.2)  

Equation (6.2) expresses the total production cost. The first term represents the setup 

cost and the second term shows the production cost.  It must be noted that the setup cost 

depends on whether production takes place or not; therefore, binary variable ijtχ  is 

used in expression of setup cost. 

(c) Inventory Cost 

 kjt kjt ijt ijt
k j t i j t

I H I H′ ′+∑∑∑ ∑∑∑  (6.3)  

Equation (6.3) shows the inventory costs of raw materials and finished items in plants. 
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(d) Transportation Cost 

 

F F F
mjt jlt jwt

m j t j l j t j w t

V V V
mj mjt jl jlt jw jwt

m j t j l j t j w t

η φ η ν η

η ϖ φ η µ ν η ζ

≠

≠

+ + Ω +

+ + Ω

∑∑∑ ∑ ∑ ∑ ∑∑∑

∑∑∑ ∑ ∑ ∑ ∑∑∑
 (6.4)  

Equation (6.4) shows the transportation cost between the suppliers and plants, inter-

plants, and from plants to distribution centers. The cost depends on the associated fixed 

and variables costs of vehicles. The movement of a vehicle incurs a fixed cost 

associated to vehicle’s depreciation and insurance, cost of capital, and driver wages, and 

the variable transportation cost relates to the transported item, its quantity, and the path 

taken for each route travelled.  

Without loss of generality, it is assumed that transfer cost from plant j to plant l  is 

smaller than transfer cost from plant j to plant l’ plus transfer cost from plant l’ to plant 

l. 

(e) Shortage Cost 

 iwt iwt
i w t

b B∑∑∑  (6.5)  

Equation (6.5) shows the shortage cost at distribution centre w. Demand at a 

distribution centre during any period can be satisfied by direct transfer of items from the 

nearest plant. If that plant cannot fully satisfy the orders, it can be fulfilled by the 

transfer of items from other production plants to address the under-capacity of a given 

plant. Transfers among plants occur within the same time period. In the case when the 

demand cannot be fulfilled by any other plants, then a shortage would occur, and the 

demand at distribution centre must be satisfied in the next period.  
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(f) Sales Income 

 j
iwt iwt

i w t
Y U∑∑∑  (6.6)  

Equation (6.6) expresses the total income over the planning horizon. The total 

revenue is the total selling income from the sales of products shipped to the distribution 

centers.  

Min kmjt kmt kmjt kmt
k m j t

ijt ijt ijt ijt
i j t

kjt kjt ijt ijt
k j t i j t

F F F
mjt jlt jwt

m j t j l j t j w t

V V V
mj mjt jl jlt jw jwt

m j t j l j t j w t

iwt iwt
i w t

f

S Q O

I H I H

b B

ϕ π α τ

χ

η φ η ν η

η ϖ φ η µ ν η ζ

≠

≠


= +



+ +

′ ′+ +

+ + + Ω

+ + + Ω


+

∑∑∑∑

∑∑∑

∑∑∑ ∑∑∑

∑∑∑ ∑ ∑ ∑ ∑∑∑

∑∑∑ ∑ ∑ ∑ ∑∑∑

∑∑∑

j
iwt iwt

i w t
Y U




− ∑∑∑  

(6.7)  

Equation (6.7) is the objective function of the proposed model, where the sum of 

procurement, production, inventory, shortage, and transportation costs over the time 

horizon should be minimized from which the total sale is deducted. 

6.2.2 Constraints 

(a) Raw Material Purchasing Constraint 

 
 { }( 1)max 0, ( ) , , ,kmjt k ki ijt kj t

i
x Q I k m j tα ρ −= − ∀∑  (6.8)  
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Equation (6.8) shows the required amount of raw material k that plant j must 

purchase from supplier m in period t. If total amount of raw material k used in 

production of all items multiplied by a safety stock coefficient (ρk) is less than the 

existing inventory of raw material k, then the factory does not need to order any raw 

material. The safety stock coefficient is considered to protect the firm in uncertain 

conditions, i.e. if a supplier fails to deliver the raw material at the required time, or the 

supplier’s quality is found to be substandard upon inspection, which would leave the 

plant without the required raw materials.  

(b) Inventory Constraints for Raw Materials 

 
 ( 1) 0 , , 1kj tI k j t− = ∀ =  (6.9)  

Initial inventory level of raw materials is considered to be zero as shown in Eq. (6.9). 

 ( 1) , , ,kjt kj t kmjt kmjt kmjt ki ijt
i

I I x Q k m j t−= + − − ∀∑α λ α  (6.10)  

Equation (6.10) represents the balance equation for the inventory of raw materials at 

plants at the end of period t. It must be noted that there is only one supplier for each 

type of raw material. Furthermore, plants do not pay for the rejected raw materials, and 

their associated cost is paid by the respective supplier. 

(c) Charging Ordering Cost Constraint 

 , , ,kmjt kmjt k m j tα δϕ≤ ∀  (6.11)  

Equation (6.11) describes that a plant cannot place a procurement order without 

charging an ordering cost. kmjtϕ  is a binary variable with value of 1 if an order is 

allocated to supplier m at time t, otherwise, it is 0. The symbol δ  is defined as a 

sufficiently large number to ensure that it is greater than each kmjtα .  
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(d) Supplier Capacity Constraint 

  , ,kmjt kmt
j

E k m tα ≤ ∀∑
 

(6.12)  

Equation (6.12) ensures that the order size of raw materials released for each supplier 

is limited by its capacity. 

(e) Inventory Constraints for Finished Items at Plants 

  ( 1) 0 , , 1ij tI i j t−
′ = ∀ =

  
(6.13)  

Eq. (6.13) shows the initial inventory level of products at the beginning of planning 

horizon. 

 ( 1)   , , ,j
ijt ij t ijt il jt iwt ijlt

l j l j
I I Q Z Y Z i j w t′−

′≠ ≠

′ ′= + + − − ∀∑ ∑  (6.14)  

Equation (6.14) is the inventory balance equation for finished items at plants. 

It is supposed that if during period t there is a transfer into plant j, there cannot be 

any transfer out from plant j to other plants during that period. Hence:  

 
0 , , & ,ijlt il jtZ Z i j l l j t′ ′× = ∀ ≠  

(6.15)  

(f) Setup Forcing Constraint 

 , ,ijt ijtQ i j tδ χ′≤ ∀  (6.16)  

Equation (6.16) forces ijtχ to be nonzero if Qijt is nonzero. Since each ijtχ is constraint 

to be 0 or 1 the only nonzero value is 1. Thus, if there is positive production of product i 

in period t, i.e. 0ijtQ > then 1ijtχ =
 
and the fixed cost of Sijt is charged. The symbol 

δ ′  is defined as a sufficiently large number to ensure that it is greater than each Qijt.  
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(g) Total Available Time Constraint 

 ( ) ,ijt ijt ijt ijt jt j
i

P Q A F j tχ ε+ ≤ ∀∑  (6.17)  

Equation (6.17) limits the production time available at a plant during period t. The 

overall time consumptions for production and setup in each plant for all products must 

be lower than or equal to the available time capacity. It also considers the limitations 

associated with the capacity of available time. 

(h) Resource Constraint 

 , ,vij ij t vjt vj
i

R Q N v j tξ≤ ∀∑  (6.18)  

Equation (6.18)
 
ensures that a manufacturer does not plan beyond the available 

resources (machine or human) of each plant in each period. It also considers resources’ 

productivity.   

(i) Transportation Limitation Constraint 

 1 , , ,ijwt ijlt ijt ijt il jt
l j l j

C Z I Q Z i j w t′−
′≠ ≠

+ ≤ + + ∀∑ ∑  
(6.19)  

Equation (6.19) shows that the number of products available to be transferred from 

plant j to distribution centre w and other plants in period t should not exceed the 

previous period inventory and production quantity in plant j as well as the transferred 

products to plant j in period t.  

 { }( 1)max ( ) ,0 , , ,il jt iw t iwt ijwt
l j

Z b d C i j w t′ −
′≠

≤ + − ∀∑  
(6.20)  

Equation (6.20) restricts the transfer quantity from other plants to plant j during 

period t. It implies that if total amount of item i available at plant j to be transferred to 

distribution centre w in period t is greater than backorder amount from previous period 

and demand at distribution w in period t, then plant j does not need outsourcing. In this 
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condition ijwtC will be equal to j
iwtY . Otherwise, plant j needs to request the shortage 

amount of item i from other plants. 

(j) Vehicles Constraints 

 
 

, ,kmjt
mjt

k k

m j t
α

φ
ς

≤ ∀∑  
(6.21)  

Equation (6.21) calculates the number of vehicles used for transportation of raw 

materials from suppliers to plants. 

 
 

, ,ijl t
jlt

i i

Z
j l j tν

ς
≤ ∀ ≠

′∑  
(6.22)  

 , ,
j

iwt
jwt

i i

Y j w t
ς

≤ Ω ∀
′∑  

(6.23)  

 Equations (6.22) and (6.23) determine the number of vehicles required for delivery 

of products from a plant to other plants and distribution centers respectively. 

(k) Backordering Constraint at Distribution Centers 

  { }( 1)max ( ) ,0 , , ,j
iwt iw t iwt iwtb b d Y i j w t−= + − ∀  (6.24)  

Equation (6.24) limits the backorder quantity in period t by the current demand plus 

the backorder amount from the previous period. The shortage in period t will be zero if 

the amount of demand of item i at distribution centre w in period t plus its previous 

backorder is equal or smaller than total quantity of item i transferred to distribution 

centre w. 

(l) Storage Capacity Constraints 

 , ,kjt kjI k j tσ≤ ∀  
(6.25)  

 , ,ijt ijI i j tσ′ ′≤ ∀  
(6.26)  
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Equations (6.25) and (6.26) determine the upper limit of inventory level for each type 

of raw material and product in plants respectively. 

(m) Non-Negativity and Binary Constraints 

 

{ }

, , , , , , , 0 , , , , , ,
, , 0,integer                       , , , ,

, 0,1                              , , , ,

iwt ijl
j

ijt kmjt kjt ijt iwt

mjt jlt jwt

ijt kmjt

t ijwtQ I I Y k i m j l j w t
m

b Z C
j l j w t

k i m j t

α

φ ν

χ ϕ

′ ≥ ∀ ≠

Ω ≥ ∀ ≠

∈ ∀

 
(6.27)  

Equation (6.27) enforces the restrictions of non-negativity and binary nature on the 

decision variables. 

6.2.3 Assignment of Demand to Plants 

The following procedure is employed to assign demand of each distribution centre to 

the plants. 

i. Supply as much as possible of demand of product i at distribution centre w from 

the nearest plant j as long as there is inventory from previous period and enough 

capacity for production at plant j in period t. This model allows outsourcing 

from other plants only when the demand cannot be met thoroughly at the current 

plant. After the assignment, inventory at plant j is updated. 

ii. If demand of product i in period t is not fully satisfied by plant j, the remaining 

demand will be supplied from the second nearest plant subject to the available 

capacity and inventory at that plant.  

iii. Steps 1 and 2 are repeated until all distribution centers have satisfied their 

demands for all the products. 

iv. If the demand in period t cannot be fully satisfied by the current inventory, 

production, and inter-plant transfers, it will be backordered, but the backorder 

demand must be fulfilled in the next time period.  
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6.3 Solution Algorithms  

The MPCLSP presented in Section 6.2 is a NP-hard problem. To deal with the 

intricacy and obtain near-optimal to optimal solutions in a reasonable computation time, 

metaheuristic approaches are widely used for which the GA, PSO, ABC, and ICA 

approaches are explained in the following subsections. Related codes are presented in 

Appendices E to H.   

6.3.1 GA Approach 

The required steps to solve the proposed model by the GA are explained below.  

(a) Parameters 

The initial information required to begin a GA includes the number of chromosomes 

kept in each generation called population size, ‘Npop’, the probability of operating 

crossover, ‘Pc’, the probability of operating mutation, ‘Pm’, and maximum number of 

generations, ‘max generation’. 

(b) Chromosome Representation 

A GA starts with encoding the variables of the problem as finite-length strings or 

chromosomes. The chromosomes are considered as strings of the quantities of the 

produced items (lot size Q) with N × J × T dimensions where N shows the total number 

of products, J indicates total number of plants, and T denotes total number of periods. 

The representation of a chromosome is illustrated in Figure 6.2. 

Q111 Q112 … Qijt … QNJT-1 QNJT 
 

Figure  6.2: The Structure of a chromosome 
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(c) Initial Population 

The GA generates a randomly initial population of g chromosomes within the 

boundary of the component. Let Qg represent the gth chromosome in the population. 

Then, each chromosome is generated by: 

 [ ]round lb ( , , ), ub ( , , )gQ Q i j t Q i j t=  
(6.28)  

 Where g denotes the size of population (g = 1, 2, … , Npop), and lbQ and ubQ are the 

lower and upper bounds for variable Q respectively. Therefore, Eq. (6.28) produces 

integer random numbers for variable Q within the predetermined limits.   

The population size depends only on the nature of problems and must be balanced 

between time complexity and search space measure. Larger population size may 

increase the probability of finding optimal solution, but would correspondingly increase 

the computation time, in addition to an increase in the number of function evaluations 

(NFEs). The NFEs determines the speed (computational effort) and the robustness of the 

algorithm. Smaller NFEs would result in a shorter time to reach the global optimum 

(Sadollah et al., 2013). 

(d) Selection 

In each generation, a collection of offspring chromosomes is generated through a 

recombination process of parents using the roulette wheel procedure. The selection 

process is based on spinning the roulette wheel Npop times. The following process is 

used to choose two parents:  

i. The fitness value of the population is obtained.  

ii. A particular population member to be a parent with a probability is selected. The 

selection probability, ag, for individual g with objective function value fg, is 

calculated by Eq. (6.29): 
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(6.29)  

iii. Cumulative normalized fitness value for each chromosome is then calculated.  

iv. A real random number r in range [0, 1] is generated. 

v. Two chromosomes are selected whose cumulative probabilities are greater than 

r.  

Although all individuals in the population have a chance of being selected to 

reproduce the next generation, those with higher fitness value are more likely to be 

selected for the mating pool.  

(e) Crossover 

In a crossover process, it is essential to mate pairs of chromosomes to produce 

offspring. This is carried out by a random selection of a pair of chromosomes from the 

generation with probability Pc. The number of chromosomes for carrying out the 

crossover operator is obtained by Eq. (6.30): 

 crossover pop cN N P= ×  
(6.30)  

In this study, the arithmetic crossover operator that linearly combines the parent 

chromosome vector is used to produce offspring based on Eqs. (6.31) and (6.32). 

 (1) (1) (2)(1 )offspring y parent y parent= × + − ×  
(6.31)  

  (2) (2) (1)(1 )offspring y parent y parent= × + − ×  
(6.32)  

Where y is a random vector in range [0, 1], and has a dimension equal to the size of 

the selected part (say the first part) of the chosen parent. Because variable Q is integer, 

the amounts of produced offsprings are rounded. The crossover process will be repeated 

Ncrossover/2 times.  
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(f) Mutation 

The mutation operator injects diversity in the population of solutions by perturbing 

some of them with probability Pm. The solution spaces that are not discovered by the 

crossover operator are found using the mutation operator.  

The expected number of chromosomes which undergoes the mutation operation is 

obtained using Eq. (6.33): 

 mutation pop mN N P= ×  
(6.33)  

The steps involved in the mutation operation are as follow:  

i. An integer random number in range [1, Npop] is generated in order to select a 

chromosome (Qg). The total numbers of elements selected for mutation are 

n .Q N J T= × ×   

ii. Two integer random numbers r1 and r2 are produced in order to select the 

elements of the chromosome for mutation. The considered range for r1 is [1, nQ-

1] and r2 is [r1+1, nQ].  

iii. The value of selected elements of chromosome Qg is changed using Eq. (6.34): 

 ( ) ( ) ( )1 2 1 2 1 2: : distance :g g gQ r r Q r r Q r r′ = +  
(6.34)  

The distance is the amount an element can be changed as shown in Eq. (6.35): 

 ( )distance 0.1 ub lbg g gQ r Q Q= × × −  
(6.35)  

Where r is a random number generated from the continuous uniform distribution 

within the range of [-1, 1]. The size of generated random numbers is to be equal to the 

upper bound Qg. Equation (6.35) causes the value of chosen elements exchange with 

uniform values randomly selected between the upper and lower range. The result 

obtained by Eq. (6.34) is rounded to attain an integer value.  
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However, there is a possibility that the calculated value by Eq. (6.34) exceeds the 

upper and lower bounds of Qg. Therefore:   

 
if ub  then ub  

if lb   then lb  
g g g g

g g g g

Q Q Q Q
Q Q Q Q

′ ′> =
 ′ ′< =

 
(6.36)  

In this study, various combinations of the crossover and mutation rates in the range 

[0.1, 1] are examined. The computational results show that as Pc and Pm increases, the 

total cost will decrease.  

(g) Evaluation and Constraint Handling  

As the chromosomes are produced, a fitness value is assigned to chromosomes of 

each generation for their evaluation. This evaluation is achieved by the objective 

function given in Eq. (6.7) which measures the fitness of each individual in the 

population.  

As shown in subsection 6.2.2, the proposed model contains various constraints, 

which may lead to the production of infeasible chromosomes. In order to deal with 

infeasibility, a penalty value is assigned to chromosomes that are not feasible. It can be 

attained by adding a specific amount to the objective function value according to the 

amount of constraints’ violations obtained in a solution.  

When a chromosome is feasible, its penalty is set to zero, whereas in case of 

infeasibility, the coefficient is selected sufficiently large. Therefore, the fitness function 

for a chromosome will be equal to the sum of the objective function value and penalties 

as shown in Eq. (6.37), where s represents a solution, and f(s) is the objective function 

value for solution s. The penalty policy is employed for all metaheuristic algorithms 

utilized in this research. 
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(6.37)  

(h) New Population 

The fitness function values of all chromosomes are evaluated in this stage. The 

chromosomes with higher fitness scores are then selected to generate a new population. 

Note that the number of chosen chromosomes must be equal to Npop. 

(i) Termination 

The selection and reproduction of parents will be continued until the algorithm 

reaches a stopping criterion. The procedure can be ended after a predetermined number 

of generations, or when no substantial improvement over a successive generation is 

achieved.  

6.3.2 PSO Algorithm  

In any iteration of PSO, the velocity and position of particles are updated according 

to Eqs. (6.38) and (6.39): 

 ( ) ( )( 1)
1 1 2 2

e e e e
g g g g g gV V c y best c y globalω ψ ψ+ = + − + −  

(6.38)  

 ( 1) ( 1)e e e
g g gVψ ψ+ += +  

(6.39)  

Where g = 1, 2,…, Nswarm and e denotes the iteration (e = 1, 2, …, max iteration). Vg 

is the velocity of gth particle.ω is the inertia weight that controls the impact of the 

previous velocity of the particle on its current velocity, which plays an important role in 

balancing global and local search ability of the PSO. Applying a large inertia weight at 

the start of the algorithm and making it decay to a small value through the PSO 

execution makes the algorithm search globally at the beginning of the search, and search 

locally at the end of the execution (Coelho & Sierakowski, 2008). The inertia weight is 
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updated in each iteration by ( 1) (1 )e eω ω β+ = × −  where in this study β  is considered 

0.01.  

c1 is the cognitive parameter, and c2 is the social parameter; y1 and y2 are random 

numbers within the range [0, 1], which should be the same size as Vg; bestg is the best 

searching experience so far by particle g; gψ  is the current position of particle g; and 

globalg is the position in parameter space of the best fitness returned for the entire 

swarm. The search procedure of the PSO is summarized as follows: 

i. Generate an initial population of g particles (solutions) with random positions 

and velocities within the boundary of the component according to Eq. (6.28), 

where g denotes the size of swarm. 

ii. Evaluate the fitness value of each particle in the swarm. 

iii. Compare each particle’s fitness with the current particle’s own best. If current 

value is better than own best, own best value will be set to the current value, and 

the own best location to the current location.  

iv. Compare the fitness value with the population’s overall previous best. If the 

current value is better than global best, then global best will be set to the current 

particle’s array index and value.  

v. Update the velocity of each particle g using Eq. (6.38), and the position of 

particle g using Eq. (6.39). The values obtained by Eq. (6.38) for the velocity is 

rounded to the nearest integer amount. If the value obtained by Eq. (6.39) 

exceeds upper and lower bounds of the particle, Eq. (6.36) is used to set the 

value to its boundaries. 

vi. Terminate the procedure if the termination criterion is satisfied, otherwise go to 

step (ii). 
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6.3.3 ABC Algorithm 

The main steps of the ABC algorithm are as follow. 

(a) Initialization of the Parameters 

The main parameters of the ABC algorithm are the total number of bees (NB), 

number of food sources (NS) which is equal to the number of the employed bees or 

onlooker bees, number of trials after which a food source is supposed to be discarded 

(limit), and maximum number of cycles of the search process (max cycle). NS is 

considered equal to NB/2. 

(b) Initialization of the Population 

The ABC algorithm generates a randomly initial population of g solutions (g = 1, 2, 

... , NS). Each solution is generated using Eq. (6.28). Their fitness is then evaluated, and 

the best fitness is considered as global food source. After initialization, the population 

of the food sources (solutions) is subjected to repeat cycles of the search processes of 

the employed, onlooker and scout bees. 

(c) Employed Bee Phase 

For every food source position, only one employed bee is allocated denoting that the 

number of food source positions around the hive is equal to the number of employed 

bees (Eb). An employed bee makes a modification on the position of the food source in 

its memory and finds a neighboring food source, and then evaluates its nectar amount 

(fitness) of the associated food source.  

In order to determine a neighboring food source position to the previous one in 

memory, the algorithm changes some randomly selected parameter and keeps the 

remaining parameters unchanged. To select a neighborhood an integer random number 

in the range [1, NS] is generated. Within the neighbourhood of every food source site 
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represented by Qg, a new food source Q’g is determined by changing some parameter of 

Qg. Steps of creating a change are given below: 

i. Find the total numbers of parameters that can be selected for change and store it 

in nQ where n .Q N J T= × ×  

ii. Generate an integer random number n in range [ ]0,  round 0.1 1 .n( )Q× +   

iii. Generate two integer random numbers r1 and r2. The considered range for r1 is 

[1, nQ-n] and r2 is r1+n. 

iv. Create the neighbor food source position by adding the difference between the 

selected parameter value and other random solution parameter value to the 

current selected parameter value as shown in Eq. (6.40): 

 ( ) ( ) ( ) ( )1 2 1 2 1 2 1 2: : : :g g g pQ r r Q r r y Q r r Q r r′  = + ×  −   
(6.40)  

Where y is a matrix 1×n+1 containing uniformly distributed real random numbers in 

the range [-1, 1], and { }1,2,..., .bp E p g∈ ∧ ≠ To have an integer value the amount 

produced by Eq. (6.40) is rounded.  

v. If a parameter value produced by Eq. (6.40) exceeds predetermined limit of food 

source, the parameter can be set to an acceptable value. Hence, the value of the 

parameter exceeding its upper and lower bounds is set to its boundaries as 

shown in Eq. (6.36).  

vi. Assign a fitness value to the solution Q’g. Afterwards, a greedy selection is 

applied between Qg and Q’g, and an improved one is chosen based on fitness 

values indicating the nectar amount of the food sources at Qg and Q’g. If the 

fitness of Q’g is equal to or better than Qg, Q’g will be replaced with Qg and will 

become a new member of the population; otherwise Qg is kept. If Qg cannot be 

improved, its counter holding the number of trials is incremented by 1, 

otherwise, the counter is reset to 0. 
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(d) Onlooker Bee Phase 

After all employed bees complete their searches, they share their information related 

to the nectar amounts and the positions of their sources with the onlooker bees on the 

dance area. An onlooker bee evaluates the nectar information taken from all the 

employed bees and chooses a food source Qg depending on its probability value ag 

calculated by Eq. (6.41): 

 
1

g
g NS

g
g

f
a

f
=

=

∑
 

(6.41)  

Where fg is the fitness value of the gth food source. Obviously, the higher the fg, the 

more probability that the gth food source is selected.  

To select a food source a real random number within the range [0, 1] is generated. If 

the cumulative probability ag associated with that source is greater than this random 

number then the onlooker bee produces a modification on the position of this food 

source site using Eq. (6.40).  

To select a neighborhood an integer random number in range [1, NS] is generated. 

After the new food source is evaluated, greedy selection is applied and the onlooker bee 

either memorizes the new position by forgetting the old one or keeps the old one. If 

solution Qg cannot be improved, its counter holding trials is incremented by 1, 

otherwise, the counter is reset to 0. This process is repeated until all onlookers are 

distributed onto food source sites. 

(e) Scout Bee Phase 

In a cycle, a food source that cannot be improved through limit cycle is abandoned. 

In order to select a food source to be abandoned, a control parameter called limit is used. 

If a solution representing a food source is not improved by a predetermined number of 
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trials, then that food source is abandoned by its employed bee and the employed bee is 

converted to a scout. The number of trials for releasing a food source is equal to the 

value of limit. Then a scout bee is employed to search new food source randomly using 

Eq. (6.28) to replace the abandoned one.  

It is supposed that only one source can be exhausted in each cycle, and only one 

employed bee can be a scout. If more than one counter exceeds the limit value, one of 

the maximum ones might be chosen programmatically. After every cycle, the best 

solution is memorized.  

The process is repeated until a termination criterion is reached which can be reaching 

the maximum number of iterations, or when the algorithm does not seem to converge in 

its initial phase. 

6.3.4 ICA Approach 

The ICA approach is a population based evolutionary algorithm, which has been 

used extensively to solve various kinds of combinatorial optimization problems. This 

method is based on socio-political process of imperialistic competition. The main steps 

of the ICA are described below. 

(a) The Initialization Mechanism 

Similar to other optimization methods, the ICA first creates the initial population. 

Each individual of the population is named a ‘country’. The word ‘country’ corresponds 

to the ‘chromosome’ in the GA terminology. This array is shown in Eq. (6.42). 

 1 2country  [ , , , ]NL L L= …  
(6.42)  

Where Ls are the variables to be optimized. The power of a country is inversely 

proportional to its fitness function value which is obtained by evaluation of cost 

function f at variables as shown in Eq. (6.43). 
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 1 2cost (country) ])([ , , , Nf f L L L= = …  
(6.43)  

Equation (6.28) is used to create the initial population of size Ncountry and Eq. (6.7) is 

used to evaluate the fitness of variable. Based on cost values, a certain number of 

countries that have the lowest costs are selected as imperialist (Nimp) and the rest, 

known as colonies (Ncolony = Ncountry – Nimp), are divided among these imperialists. Each 

imperialist and its allocated colonies form an empire.  

(b) Assimilation of Colonies 

The imperialist countries would try to absorb their colonies toward themselves. For 

this purpose the assimilation policy is considered in the ICA. Based on this concept 

each colony moves toward its imperialist by X units as shown in Eq. (6.44).  

 1  e e
g gQ Q X+ = +  

(6.44)  

Where e
gQ  and 1e

gQ +  are the current and new position of gth colony of each empire 

respectively, e is the number of iteration (knows as decade in the ICA), and X is: 

 =X y Dβ × ×  
(6.45)  

Where D is the distance between the initial position of colony and its imperialist (D = 

imp. e
gQ  - colony. e

gQ ). The position of the colony after movement is defined by the 

random parameter y in range [0, 1], which must have the dimension equal to the size of 

D. Parameter 1β >  causes the colony to get closer to its imperialist from different 

directions. 2β =  results in good convergence of countries to the global minimum in 

most of the implementations. If the value of 1e
gQ + exceeds its predetermined limit, it 

must be set to its upper and lower bounds as shown in Eq. (6.36). Then, fitness of 1e
gQ +  

will be evaluated.  
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(c) Revolution 

Revolution is a fundamental change in power or organizational structures that takes 

place in a relatively short period of time. The revolution increases the exploration of the 

algorithm and avoids the early convergence of countries to local minimum with a 

revolution rate. A very high value of revolution rate reduces the exploitation power of 

algorithm as well as the convergence rate (Nazari-Shirkouhi et al., 2010). This 

mechanism is similar to mutation process in the GA for creating diversification in 

solutions.  

Mutation increases the variety in the population, so this operator is used for creating 

a revolution in variables same as the GA. For this purpose random number r in range [0, 

1] is generated. If r is smaller than revolution rate (θ ), a change will be applied on the 

selected colony of the particular imperialist. Steps of creating a change are as follow: 

i. Find the total numbers of elements of the colony that can be chosen for change 

and store it in nQ where n .Q N J T= × ×  

ii. Generate an integer random number n in range [ ]0,  round 0.01 1 .n( )Q× +      

iii. Generate two integer random numbers r1 and r2. The considered range for r1 is 

[1, nQ-n] and r2 is r1+n. 

iv. Create the change using Eq. (6.46): 

 ( ) ( ) ( ) ( )1
1 2 1 2 1 2 1 2: lb : ub : lb :e e e e

g g g gQ r r Q r r y Q r r Q r r+  = −+ ×    
(6.46)  

 Where y is a matrix 1×n+1 containing real random numbers in the range [0, 1], and 

lb e
gQ  and ub e

gQ are the lower and upper bounds of gth colony in decade e. Values 

obtained by Eq. (6.46) are rounded to the nearest integers. Then, fitness of new colony 

is evaluated.    
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(d)  Exchange the Colony with Imperialist 

After moving toward the imperialist, a colony may reach a position with lower cost 

than its imperialist. In this case, the colony will become the imperialist in the current 

empire and vice versa. In the next decades, colonies in the empire will move towards 

the new imperialist. 

(e) Total Power of an Empire   

Based on total power of empires, an imperialistic competition takes place between 

empires. Total power of an empire is mainly affected by the power of its imperialist and 

slightly by its colonies. Hence, total power of an empire is calculated by Eq. (6.47): 

 = (imp )+ mean[ (colony of empire )]g g gTf f fγ ×  
(6.47)  

Where Tfg is the total cost of the gth empire and γ  is a positive number in the range 

of [0, 1]. The small value of γ  makes the total power of the empire to be determined by 

almost only its imperialist and increasing it will enhance the role of the colonies in 

determining the total power of an empire. 

(f) Imperialistic Competition 

Every empire tries to take over the colonies of other empires. The imperialistic 

competition gradually causes reduction in power of weaker empires and growth in 

power of powerful ones. The imperialistic competition is modeled by selecting the 

weakest colonies of the weakest empire in every iteration and making a competition 

among all empires to take over this colony. The likelihood of possession of the colony 

for each empire is proportionate to its total power.  

The normalized total cost of an empire can be obtained by Eq. (6.48): 

 max( ) -g g gNTf Tf Tf ε′= +  
(6.48)  
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ε  is a small number to avoid the value of NTfg  to become exactly zero. NTfg  and Tfg  

are the normalized total cost and total cost of gth empire respectively. Having the 

normalized total cost, the possession probability of gth empire is obtained by Eq. (6.49): 

 
1

imp

g
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g
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=

∑
 

(6.49)  

Powerful empires have higher chance of possessing the colony. To distribute the 

mentioned colony among empires vector c is formed as follows: 

 1 2, ,..., Nimp
c c c c =    

(6.50)  

Then, vector h with uniformly distributed random numbers in range [0, 1] is created 

which has the same size as c: 

 1 2, ,..., Nimp
h h h h =    

(6.51)  

Vector z is formed by subtracting h from c: 

 1 2, ,..., Nimp
z c h z z z = − =    

(6.52)  

Referring to vector z, the mentioned colony is handed to an empire whose 

corresponding index in z is maximum (Atashpaz-Gargari & Lucas, 2007). 

(g) Elimination of Powerless Empires 

Powerless empires will collapse in the imperialistic competition and their colonies 

will be divided among other empires. It is assumed that an empire would collapse and 

be removed when it loses all of its colonies. This process will be continued and causes 

the countries to converge to the global minimum of the cost function. At the end, all the 

empires will collapse except the most powerful one, and all the colonies would be 

handled by this unique empire. At this stage, the imperialist and colonies would have 

the same position and power (Atashpaz-Gargari & Lucas, 2007). 
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6.4 Numerical Example 

A typical company is willing to plan its production and distribution planning. This 

company owns three plants which are spread geographically around a country, and two 

distribution centers located in two different cities. The planning time horizon is assumed 

to be six periods. The number of product families is assumed to be three. There are three 

types of raw materials, each supplied by a different supplier.  

The total available time for each plant is assumed to be 10560 min per period 

( 22 days × 8 hours × 60 minutes ). There are 47, 44 and 30 workers at plant 1, 2 and 3 

respectively, with no hiring and firing of workers during the considered planning 

horizon. Safety stock coefficient for each raw material type is considered 1.5 per period. 

It is supposed that the chance of rejecting each type of raw material by plant 1, 2 and 3 

is 0.02, 0.01, and 0.02 respectively in each period. Performance for total available time 

and worker’s productivity at each plant are assumed to be 85 and 80 percent 

respectively.  

The fixed transportation cost of a vehicle is considered to be $1000 and the variable 

cost is $2 per trip. The capacity of each vehicle is set to be 100 units for each product 

type and 250 units for raw materials. Storage capacity for raw material 1, 2 and 3 in 

each plant is considered to be 4000, 3500, and 3000 units and for product types 1, 2 and 

3 is set to be 4500, 4000 and 3500 units respectively. Supplier capacity to provide each 

raw material type for three plants is assumed to be 15000 units per period. The values 

for the remaining data are presented in Tables 6.1 to 6.9. 
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Table  6.1: Demand 

diwt
 

Product 

Distribution centre 1  Distribution centre 2 

Period t  Period t 

1 2 3 4 5 6  1 2 3 4 5 6 

1 680 600 550 520 650 630  630 550 530 500 550 675 

2 550 530 600 500 600 550  700 680 570 680 530 530 

3 500 700 600 550 590 630  590 680 530 660 540 500 

 

Table  6.2: Selling price ($/unit period) 

Uiwt 

Product 

Distribution centre 1  Distribution centre 2 

Period t  Period t 

1 2 3 4 5 6  1 2 3 4 5 6 

1 53 53 53 53.5 53.5 53.5  51 51 51 51.5 51.5 51.5 

2 55 55 55 55.5 55.5 55.5  52.5 52.5 52.5 53 53 53 

3 57 57 57 57.5 57.5 57.5  53 53 53 53.5 53.5 53.5 

 

Table  6.3: Setup time and production time (min) 

 Aijt  Pijt 

Plant Product i  Product i 
1 2 3  1 2 3 

1 6.06 4.90 5.89  2.48 3.25 4.03 
2 7.18 5.20 5.75  2.77 3.53 4.17 
3 7.73 5.27 6.62  2.84 3.85 4.21 

It is assumed that setup time and production time remain fixed during the planning horizon. 

Table  6.4: Required resource for each product (manpower-min) 

Rvij 

Resource 
Plant 1  Plant 2  Plant 3 

Product i  Product i  Product i 

 1 2 3  1 2 3  1 2 3 

1 13.8 12 9.6  15 13.2 11.2  16.6 15.8 14 

 

Table  6.5: Ordering cost and purchasing cost of raw material ($/unit period) 

 kmtπ   τ kmt  

Supplier  
Raw material k 

 
Raw material k 

1 2 3 1 2 3 
1 0.64 0 0  2.40 0 0 
2 0 0.37 0  0 1.5 0 
3 0 0 0.76  0 0 3.48 

It is assumed that ordering and purchasing costs remain fixed during the planning horizon. 
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Table  6.6: Setup cost and production cost ($/unit period) 

 Sijt  Oijt 
Plant Product i  Product i 

1 2 3  1 2 3 
1 2.55 1.58 3.60  3.50 4.25 6.20 
2 2.50 1.50 3.00  3.77 4.85 6.19 
3 2.80 1.70 3.38  3.80 5.00 6.71 

It is assumed that setup and production costs remain fixed during the planning horizon. 

 

Table  6.7: Raw material and end product inventory costs in plants ($/unit period) 

 kjtH   ijtH ′  

Plant Raw material k  Product i 
1 2 3  1 2 3 

1 3 3 3  4 5 3 
2 2 3 2  3 4 2 
3 4 4 4  5 6 4 

It is assumed that inventory costs remain fixed during the planning horizon. 

Table  6.8: Raw material consumption rate and backordering cost in distribution centers 

($/unit period) 

  xki
  Biwt 

Product Raw material k  Distribution centre w 
1 2 3  1 2 

1 2 1 1  27 26 
2 3 2 2  28 27 
3 1 1 3  29 27 

It is assumed that backordering cost remains fixed during the planning horizon. 

 

Table  6.9: Distances between supply chain entities (km) 

 

6.5 Parameter Calibration 

Since the quality of the solutions obtained by metaheuristic algorithms depends on 

the values of their parameters, Taguchi method is utilized to calibrate the parameters of 

the four proposed algorithms. The objective function of the proposed model is the 

minimization type, therefore, “smaller is better” category of Taguchi method is used, 

where S/N ratio is given by Eq. (6.53) (Phadke, 1989): 

 mjϖ   jlµ   jwζ  

Plant Supplier m  Plant j  Distribution centre w 
 1 2 3  1 2 3  1 2 

1 150 760 670  0 810 555  110 1000 
2 800 850 155  810 0 1220  950 175 
3 415 750 1000  555 1220 0  670 1300 
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Where fe is the objective function value of a given experiment e, and n is the number 

of times the experiment is performed.  

In the Taguchi method, the parameters that have considerable effects on the process 

output are initially chosen for tuning. The parameters that require calibration are Npop, 

Pc, and Pm in the GA, Nswarm, c1, c2, and ω  in the PSO, NB and limit in the ABC, and 

Ncountries, Nimp,θ , andγ  in the ICA. The ranges for the parameters that produce 

satisfactory fitness function values are chosen by trial and error methods. 

Table 6.10 shows the algorithms’ parameters, each at three levels with nine 

observations. Figures 6.3 to 6.6 show the mean S/N ratio plot of the applied algorithms. 

The best parameters’ levels are the highest mean of S/N values. Table 6.11 shows the 

optimal levels of the parameters for all algorithms. 

Table  6.10: The GA, PSO, ABC, and ICA parameters’ levels 

Algorithm Parameters Levels 
1 2 3 

GA 
Npop 50 100 150 
Pc 0.85 0.9 0.95 
Pm 0.70 0.80 0.90 

PSO 

Nswarm 50 100 150 
c1 1 1.5 2 
c2 1 1.5 2 
ω  0.80 1 1.2 

ABC NB 50 100 150 
Limit 10 50 100 

ICA 

Ncountry  50 100 150 
Nimp 5 10 15 
θ  0.10 0.20 0.30 
γ  0.15 0.25 0.35 
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Figure  6.3: The mean S/N ratio plot for each level of the factors of the GA approach 

 
* w stands for ω as indicated in Table 6.10. 

Figure  6.4: The mean S/N ratio plot for each level of the factors of the PSO approach 
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Figure  6.5: The mean S/N ratio plot for each level of the factors of the ABC approach 
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Figure  6.6: The mean S/N ratio plot for each level of the factors for the ICA approach 
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Table  6.11: Optimal values of the algorithms’ parameters 

Algorithm Parameters Optimal values 

GA 

Npop 150 
Pc 0.95 
Pm 0.80 
max generation 200 

PSO 

Nswarm 150 
c1 2 
c2 2 
ω  1 
max iteration 200 

ABC 
NB 150 
Limit 100 
max cycle 200 

 
 
ICA 

Ncountries  150 
Nimp 10 
θ  0.30 
γ  0.25 
max decade 200 

 
 

6.6 Results and Discussions   

The applied optimizers were written and coded in MATLAB software. In order to 

validate the results obtained by all four algorithms and to investigate the performance of 

methods in terms of the solution quality and the required CPU time, 20 independent 

runs were carried out using the parameters settings given in Table 6.11. The objective 

function values for all runs are given in Table 6.12.  
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Table  6.12: Objective function values obtained by applied metaheuristic algorithms 

Run Number GA PSO ABC ICA 
1 848,067.30 849,176.44 858,616.09 855,034.49 
2 850,082.43 854,445.35 859,592.11 857,533.07 
3 852,541.96 855,613.04 862,548.10 858,755.59 
4 853,761.39 865,922.48 863,291.50 860,029.49 
5 854,389.84 867,406.98 864,694.67 861,616.09 
6 855,894.30 869,235.74 865,798.47 862,392.66 
7 857,554.22 870,423.49 866,145.27 863,818.04 
8 858,196.94 871,761.29 867,811.40 869,408.87 
9 859,963.66 872,441.48 868,823.49 870,034.35 

10 863,933.85 876,301.24 869,949.71 871,176.70 
11 864,624.39 877,615.81 871,688.26 872,509.70 
12 865,428.18 878,972.55 872,020.54 873,723.78 
13 868,335.94 881,333.33 876,388.01 874,842.02 
14 868,412.71 883,587.86 878,941.68 875,282.19 
15 871,364.99 883,804.79 879,374.95 876,521.90 
16 872,345.41 884,404.79 879,990.59 877,019.07 
17 873,241.66 885,163.58 883,889.28 878,407.67 
18 876,193.48 887,855.43 886,060.76 880,179.76 
19 876,932.03 888,041.52 890,523.11 883,934.97 
20 877,381.70 896,651.68 891,951.89 886,178.31 

 
As it can be seen in Table 6.12, all methods produced similar results. It approves that 

if the MPCLSP model be solved by any metaheuristic method, similar results will be 

obtained, which it verifies the correctness of the developed model.  

Figure 6.7 shows the performance of four metaheuristic approaches in terms of 

objective function values. It illustrates that for all runs GA performed better for the 

proposed problem.  

 

Figure  6.7: Graphical comparison of applied methods in terms of objective function 

value 
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Furthermore, using the Minitab software one-way ANOVA was conducted to 

compare the performance of the algorithms based on the results obtained for 20 runs. 

Table 6.13 presents the ANOVA results. The p-value of the test-statistics on the 

equality of the mean of the objective function values is 0.004. This means that the null 

hypothesis of the test is rejected at 95% confidence level, i.e. there is difference 

between the mean of objective function values obtained by four algorithms. Figure 6.8 

supports this conclusion as well.   

Table  6.13: One-way ANOVA results for objective function values 

Source Degree of freedom (DF) SS MS F-test p-value 
Optimization Engines 3 1521005841   507001947   4.80   0.004 
Error 76 8029063317   105645570   
Total 79 9550069158    
 

 

Figure  6.8: Box-plot of objective function values 
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The statistical optimization results obtained from four algorithms including the 

worst, mean, best solutions, standard deviation (SD), and NFEs are listed in Table 6.14.  

Table  6.14: Statistical results obtained from four metaheuristic algorithms 

Methods Worst solution Mean solution Best solution SD NFEs 
GA 877381.70 863432.32 848067.30 9380.23 37616 
PSO 896651.68 875007.94 849176.44 12328.95 20550 
ABC 891951.89 872904.99 858616.09 10015.37 29779 
ICA 886178.31 870419.94 855034.49 9071.00 36643 

 

Based on Table 6.14, the GA is found to be superior to other methods and surpassed 

the PSO, ABC, and ICA in terms of function value (accuracy). The GA method has 

found the best solution (848067.30) in 37616 function evaluations (143 generations). 

Although the PSO offered modest solution quality with a smaller number of function 

evaluations (20550), its average cost and SD in 20 experiments are inferior to the other 

methods. The performances of the ABC and ICA are almost similar in terms of 

objective function value.  

The convergence paths of applied methods in terms of best and mean costs for the 

best run are plotted in Figures 6.9 to 6.12. 
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Figure  6.9: The convergence path of fitness function for the best run of the GA 

approach 

 

Figure  6.10: The convergence path of fitness function for the best run of the PSO 
algorithm  
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Figure  6.11: The convergence path of fitness function for the best run of the ABC 
algorithm 

 

Figure  6.12: The convergence path of fitness function for the best run of the ICA 
approach  
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In order to have fair comparisons, the same number of iteration was used for all 

applied optimizers, which was set to 200. As shown in Figures 6.9 to 6.12, there was no 

significant improvement in the fitness function values attained for higher number of 

successive iterations. However, as the problem is cost minimization, it is worth to 

continue the iterations until the search reaches the lowest possible cost. Using the 

parallel computers can reduce the computational time dramatically. 

Figure 6.13 compares the function values for the best run of all methods versus the 

number of iterations. The figure shows that the convergence rate of the GA and PSO is 

almost similar, both converged to near optimum point quickly in the early iterations.  

 

Figure  6.13: Function values versus number of iterations for all applied algorithms 

Based on the results, the GA is subsequently used to find the optimal solution of 

decision variables. The results are reported in Tables 6.15 to 6.23.  

 

 

 

199 



Table  6.15: Purchase amount of raw materials 

Raw 
material 

k 

Supplier 
m 

Plant 
j  

Period t           
1 2 3 4 5 6 
α  α  α  α  α  α  

1  1* 
1 

5145 3427 3477 2351 3173 2155 
2 2 3351 2369 2235 1591 1951 1464 
3 3 4830 3874 3110 2834 2469 2226 
1 1 

2 
5658 3447 3437 3943 3238 2942 

2 2 3779 2302 2321 2624 2097 1943 
3 3 5567 3813 3634 3897 3107 2951 
1 1 

3 
980 572 711 706 366 435 

2 2 647 356 480 472 246 271 
3 3 977 473 801 729 446 365 

*there is only one supplier for each type of raw material, i.e. raw materials 1, 2, and 3 are supplied by suppliers 1, 2, 
and 3 respectively.  
 

Table  6.16: Inventory level of raw materials 

Raw 
material 

k 

Plant 
j  

Period t           
1 2 3 4 5 6 
I I I I I I 

1 
1 

1612 1611 1626 1279 1421 1149 
2 1083 1127 1099 881 924 781 
3 1513 1719 1548 1404 1242 1111 
1 

2 
1773 1671 1634 1780 1608 1458 

2 1222 1152 1135 1227 1087 991 
3 1745 1777 1731 1798 1573 1449 
1 

3 
307 282 317 327 224 211 

2 210 185 217 225 155 139 
3 306 251 335 340 253 199 

 

Table  6.17: Production quantity and inventory level of products 

Plant  
j 

Product 
i 

Period t 
1 2 3 4 5 6 

Q I' Q I' Q I' Q I' Q I' Q I' 

1 
1 651 0 460 0 550 0 487 0 619 0 352 0 
2 545 0 598 0 601 0 371 0 461 0 440 0 
3 493 0 645 0 489 0 564 14 347 0 360 0 

2 
1 583 0 591 41 511 22 541 63 569 82 504 0 
2 670 0 540 0 579 9 671 0 560 30 509 3 
3 596 6 678 4 646 120 623 83 527 70 498 0 

3 
1 123 47 112 19 124 143 112 222 87 278 90 1 
2 99 64 97 89 95 135 111 117 61 39 65 0 
3 110 103 71 119 129 137 125 262 105 138 64 0 
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Table  6.18: Quantity of available products to be shipped from plants to distribution 

centers and total number of products transferred from plants to distribution centers 

Product 
i 

Plant 
j 

Distribution 
center w 

Period t 
1 2 3 4 5 6 
C Y C Y C Y C Y C Y C Y 

1 
1 1 

651 680 460 600 550 550 487 520 619 650 352 630 
2 545 550 530 530 601 650 371 500 461 600 440 550 
3 493 500 645 700 489 600 550 550 361 590 360 630 
1 

2 2 
583 630 550 550 530 530 500 500 550 550 586 675 

2 670 700 540 680 570 570 680 680 530 530 530 530 
3 590 590 680 680 530 530 660 660 540 540 500 500 

 

Table  6.19: Shortage amount before inter-plant transaction 

Plant  
j 

Product  
i 

Period t 
1 2 3 4 5 6 

1 
1 29 140 0 33 31 278 
2 5 0 49 129 139 110 
3 7 55 111 0 229 270 

2 
1 47 0 0 0 0 89 
2 30 140 0 0 0 0 
3 0 0 0 0 0 0 

 

Table  6.20: Quantity of transported products between plants 

Product  
i 

Plant  
j 

Plant 
 l 

Period t 

1 2 3 4 5 6 

1 

1 2 

0 0 0 0 0 0 

2 0 68 0 0 0 0 

3 0 0 0 0 0 0 

1 

2 1 

0 0 0 0 0 0 

2 0 0 0 0 0 6 

3 0 0 0 0 0 68 

1 

3 1 

29 140 0 33 31 278 

2 5 0 49 129 139 104 

3 7 55 111 0 229 202 

1 

3 2 

47 0 0 0 0 89 

2 30 72 0 0 0 0 

3 0 0 0 0 0 0 
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Table  6.21: Number of vehicles required to ship products from suppliers to plants 

Supplier  
m 

Plant 
 j 

Period t 

1 2 3 4 5 6 

1 

1 

21 14 14 10 13 9 

2 14 10 9 7 8 6 

3 20 16 13 12 10 9 

1 

2 

23 14 14 16 13 12 

2 16 10 10 11 9 8 

3 23 16 15 16 13 12 

1 

3 

4 3 3 3 2 2 

2 3 2 2 2 1 2 

3 4 2 4 3 2 2 

 

Table  6.22: Number of vehicles required for inter-plant transportation 

Plant  
j 

Plant 
 l 

Period t 
1 2 3 4 5 6 

1 2 0 1 0 0 0 0 
2 1 0 0 0 0 0 1 

3 
1 1 2 2 2 4 6 
2 1 1 0 0 0 1 

 

Table  6.23: Number of vehicles required to ship products from plants to distribution 

centers 

Plant  
j 

Distribution center 
 w 

Period t 
1 2 3 4 5 6 

1 1 18 19 18 16 19 19 
2 2 20 20 17 19 17 18 

 

Since distribution centre 1 is close to plant 1 and distribution centre 2 is close to 

plant 2, demand at distribution centers 1 and 2 are served by plants 1 and 2 respectively. 

If the demand of an item could not be met completely by the given plant, the rest of 

demand was supplied by another nearby plant. Therefore, when plant 1 experienced 

under-capacity and insufficient inventory problems, it would request plant 3 to transfer 

the rest of demand. If there were not enough end products available at plant 3, the 

request was sent to plant 2. Similarly, plant 2 would request plant 1 to supply unmet 

demands and in the case of inadequate availability of products in plant 1, the request 
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was then sent to plant 3. The results show that after all inter-plant transfers, demand at 

both distribution centers could be entirely met during all periods. 

Based on Table 6.19, the shortage cost incurred for distribution centers 1 and 2 in the 

considered planning horizon is $53507, while the transportation cost is $51430. As 

shortage cost is higher than the transportation and inventory costs, it indicates that 

bearing some inventories or/and outsourcing from other plants is preferable than having 

backorders. The reason lies in the fact that the cost of having backorder is far higher 

than keeping inventory. In addition, meeting demand in a timely fashion increases 

customer satisfaction.  

The results also show that the binary variables ijtχ  and kmjtϕ have value 1 for all 

periods, indicating that the three different products were produced in each of three 

plants and all plants have ordered all types of raw materials throughout the six-period 

planning horizon. 

6.7 Conclusions  

This chapter investigated the effectiveness of coordinating production and 

distribution planning by addressing a multi-item multi-period capacitated lot-sizing 

problem in a multi-stage system composed of multiple suppliers, plants, and distribution 

centers. The combinations of several functions were considered, such as purchasing, 

production, storage, backordering, and transportation. The objective was to 

simultaneously determine the optimal raw material order quantity, production and 

inventory levels, and the transportation amount so that the demand can be satisfied with 

the lowest possible cost over a given planning horizon without violating the capacity 

restrictions of the plants and suppliers. Transfer decisions between plants were made 

when demand observed at a plant was satisfied by other production sites to cope with 

under-capacity of a given plant. Furthermore, sale at distribution centers was allowed. 
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A numerical example was described to demonstrate the validity of the proposed 

model. Efficient search procedures were presented to obtain the optimum solutions by 

employing four well-known metaheuristic algorithms, namely GA, PSO, ABC, and 

ICA. In addition, Taguchi method was utilized to calibrate the various parameters of the 

proposed algorithms. The GA method resulted in the best known solutions and 

generated lower costs, and in general was found to be superior to other three 

optimization approaches. In terms of number of function evaluations (computational 

cost), the PSO was superior to the other methods. The results indicated that the 

proposed model can provide a promising approach to fulfill an efficient production and 

distribution planning in such integrated supply chain situations.  

 

 

 

 

 

 

 

 

 

204 



CHAPTER 7:  CONCLUSIONS 

7.1 Concluding Remarks 

In this research, attempts were made to evaluate the efficiencies and benefits of using 

a number of metaheuristic approaches for solving the lot-sizing and scheduling 

problems. The implications of adding constraints to the economic lot scheduling 

problem were discussed throughout this research. Generally, constraints regarding the 

time-modeling increase the complexity of the problem leading to NP-hard situation 

when such constraints are related to startup times between products. Capacity 

restrictions also add more complexity to the lot-sizing problems.  

Moreover, the capacitated lot-sizing problem was considered in the field of 

integrated supply chain. The efficient management of supply chain has grown in 

importance with the realization that it represents a major opportunity for organizations 

to improve operational performance and overall margins.  

In any manufacturing firm, the inventory management plays an essential role in 

controlling the raw materials, work-in-processes and finished goods. If proper attention 

is not given to choose efficient inventory policies, a significant amount of the 

investment may be blocked in the inventory. Because of the heavy losses due to 

excessive inventory or stockouts, more attention should be given in selecting an 

effective inventory control system.   

In this thesis, mathematical models were formulated and presented for solving the 

single facility multiple item production problem, where products have shelf life 

restrictions and can be backordered. The objective was to obtain the optimum cycle time 

and to minimize the total related cost, including production, setup, holding, and 

backordering costs. For the case where the optimal cycle time violated the shelf life 
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constraint, three adjustment options were investigated: production rate reduction, cycle 

time reduction, and production rate and cycle time reduction simultaneously. It was 

shown that parameters such as production cost, holding cost, setup cost, backorders, and 

shelf life influence the decision making process to select the appropriate option that 

offers the minimum yearly cost, and yields an optimum cycle time that satisfies shelf 

life constraints.  

In general, the production time cost exceeds the setup cost in many manufacturing 

systems. Hence, it can be deduced that lowering cycle time is more cost-effective than 

reducing the production rate. It was also revealed that in some circumstances, the option 

of simultaneous reduction of the cycle time and production rate may offer the minimum 

total cost comparable with adjusting only one of these two factors. Moreover, 

considering planned backorders contributed to the lower total cost rather than models 

with no backorders.  

Thereafter, the scheduling optimization of a family of items for the economic lot 

scheduling problem with shelf life restrictions, backordering, and multiple setups in a 

production cycle was presented. The distinguishing feature of this work, compared to 

previous studies, was allowing production of each item more than once in a cycle, 

which brings about a significant reduction in the long run average cost. However, this 

assumption may lead to an infeasible production schedule. Hence, to eliminate the 

production time conflicts and to achieve feasibility, the schedule was adjusted by 

advancing or delaying production start times of some batches of products. The objective 

was to find the optimum production rate, production frequency, production quantity, 

and cycle time for the family context so that the total cost including setup, holding, 

backordering, and adjustment costs are minimized, and a feasible production schedule is 
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accommodated. It was shown that allowing multiple setups leads to improving 

solutions. 

Then, lot-sizing problem was investigated in a multi-plant environment. A multi-

plant supply chain is one in which a core exists simultaneously within several 

manufacturing plants. Manufacturing facilities of the same supply chain should 

coordinate planning and scheduling tasks and share the flow of information among 

plants, upstream suppliers, and downstream distributors in order to enhance the whole 

chain performance. The vital challenge is to define the interactions between different 

levels of the manufacturing network at the planning and scheduling stage. In an 

extended production network it is more difficult to manage all the necessary interactions 

to ensure that disruptions and changes in one plant are taken into account by other 

plants in order to prevent excessive inventory or stockouts. 

Therefore, a mathematical model was presented for the multi-item multi-period 

capacitated lot-sizing problem for an integrated production and distribution planning in 

a multi-supplier multi-plant multi-distribution centre logistic environment. The products 

were distributed to a number of distribution centers at which the demand for each 

product was known for every period of the planning horizon. The bulk of operational 

constraints were also represented in order to optimize the supply chain such as resource 

utilization, demand fulfillment, production capacity, inventory storage capacity, 

supplier capacity, and vehicle utilization. The goal was to minimize the total cost of the 

supply chain including procurement, production, setup, inventory, backordering, and 

transportation, and to meet demand in time. It was indicated that the proposed model 

can provide a promising approach to fulfill an efficient production and distribution 

planning in such integrated supply chain.  
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Since the proposed models are considered as NP-hard, the exact methods may fail to 

solve them optimally. Hence, well-known metaheuristic algorithms namely genetic 

algorithm, particle swarm optimization, artificial bee colony, simulated annealing, and 

imperialist competitive algorithm were used to find the optimal or near-optimal 

solutions within a moderate computation time. Metaheuristic methods have shown great 

potentials for solving optimization problems as they conduct global stochastic search. 

The reason of applying different algorithms to the proposed mathematical models was 

to validate and to assess the quality of the obtained optimal solutions. It was shown that 

for both ELSP and MPCLSP models, all applied methods obtained similar results, 

which it confirms the correctness of the proposed models. In addition, Taguchi method 

was used to calibrate the parameters of the metaheuristic methods. To compare the 

performance of the proposed algorithms, the one-way ANOVA was conducted. The 

statistical results showed that all presented algorithms can efficiently solve the proposed 

models, while providing promising solutions with respect to solution quality compared 

to those available in the literature. The metaheuristic algorithms can also handle large-

sized instances efficiently in a moderate CPU time. 

However, for the proposed economic lot scheduling problem with multiple setups, 

backordering, and shelf life considerations, ABC algorithm performed better than the 

GA, PSO, and SA algorithms in terms of objective function value. In terms of CPU 

time, SA was superior to the other algorithms. For the proposed multi-plant capacitated 

lot-sizing problem, GA approach offered better results compared to PSO, ABC, and 

ICA approaches in terms of objective function value. However, PSO algorithm offered 

modest solution quality in less number of function evaluations for the proposed 

problem. 
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7.2 Contributions and Applications 

The developed mathematical models for the ELSP and MPCLSP incorporated a 

variety of practical assumptions, and can cover a variety of problems arising in the 

literature and in practice particularly scheduling, production and distribution. 

It is common in industry to produce several products on a single facility (or machine) 

due to economies of scale. Typically, these facilities can only produce one product at a 

time, and have to be stopped and prepared (i.e. setup) at a cost of time and money, 

before the start of the production run of a different product. A production scheduling 

problem arises because of the need to coordinate the setups and the production runs of 

the products. The ELSP is the problem of scheduling production of several products on 

a single facility, so that demands are met without stockouts or backorders, and the long 

run average inventory and setup costs are minimized. This problem occurs in many 

production situations such as: 

i. Metal forming and plastics production lines (press lines, and plastic and metal 

extrusion machines), where each product requires a different die to be set up on 

the machine. 

ii. Assembly lines, which produce several products and/or different product models 

(electric appliances, motor cars, etc.). 

iii. Blending and mixing facilities (for paints, beverages, food, etc.), in which 

different products are poured into different containers. 

iv. Weaving production lines (for textiles, carpets, etc.), in which the main products 

are manufactured in different colors, widths and grades. 

Typically, it is more economical to purchase one high-speed machine capable of 

producing a number of products than to purchase many dedicated machines. 
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The proposed MPCLSP model integrated the manufacturing and goods distribution 

which mostly were considered as discrete problems in the previous studies available in 

literature. However, in reality for most manufacturing environments, these problems are 

interconnected. Shifting from single plant to multi-plant organization offers several 

advantages such as saving on transportation cost and time, improving the customer 

service by locating the plant close to the customer, being close to low cost raw 

materials, flexibility in producing several products and specialization in activities, 

substantial saving in global costs, improvement in relevant service by exploiting scale 

economies of production and transportation, balancing production lots and vehicle 

loads, reducing the inventory and stockouts, and so forth. 

The MPCLSP can be observed in several industries such as automotive factories, 

steel corporations, electric power generating industries, food and chemical process 

industries, and beverage industry, where multiple plants producing the same products 

are located at different geographical locations in a country or scattered around the 

world. 

Moreover, from the metaheuristic viewpoint, the contribution of the thesis was to 

find out how metaheuristics performs for the MPCLSP, as previously they have been 

applied mostly to other production related problems, in particular scheduling, but not to 

this exact lot-sizing problem. The presented algorithms were computationally effective 

and beneficial for obtaining the optimal solution for the proposed lot-sizing problems.  

In any type of industry, the basic goal remains the same: to identify the most cost 

effective or profitable way of getting the right product to the right place at the right time 

in order to satisfy turbulent market demands.  
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7.3 Recommendations for Future Research 

Future research may investigate the possibility of solving the proposed lot-sizing and 

scheduling problems in stochastic manufacturing environments in which the uncertainty 

and dynamic nature of some parameters are taken into account. 

It may also be of interest to incorporate more realistic characteristic to the proposed 

economic lot scheduling problem, such as machine failures in analysis of cyclic 

schedules for products, unequal batches for each product as well as dissimilar 

production cycles. 

Moreover, in the proposed multi-plant capacitated lot-sizing problem, zero lead time 

for production/replenishments was assumed in order to simplify the problem. Further 

research may examine the relationship between lot sizes and lead times. Additionally, 

safety stock for the products can also be integrated to the proposed lot-sizing problem as 

it can have a significant impact on the firm’s performance. 
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APPENDIX 

Appendix A: GA Code for the Proposed ELSP  

%% Parameters setting 
  
load('all.mat')               % Input data to the model 
  
Npop=200;                     % Number of population 
  
Pc=0.1;                       % Percent of crossover 
 
Ncross=2*round(Npop*Pc/2);    % Number of crossover offspring 
  
Pm=1;                         % Percent of mutation 
 
Nmut=round(Npop*Pm);          % Number of mutation offspring 
  
maxiter=3000;                 % Maximum number of generation 
  
%% Initialization 
 
NFE=0;                        % Number of function evaluation  
 
tic                           % Timer 
  
empty.t=[]; 
empty.p=[]; 
empty.fmax=[]; 
empty.W=[]; 
empty.alpha=[]; 
empty.beta=[]; 
empty.cost=[]; 
  
pop=repmat(empty,Npop,1); 
  
for i=1:Npop 
     
pop(i).t=lbt+rand(1,N).*(ubt-lbt); 
pop(i).p=round(lbp+rand(1,N).*(ubp-lbp)); 
pop(i).fmax=round(lbfmax+rand.*(ubfmax-lbfmax)); 
 
v=round(rand(N,pop(i).fmax)); 
pop(i).W=edit_W(v,O,pop(i).p,d,pop(i).fmax,N); 
           
function   W=edit_W(W,O,p,d,fmax,N) 
for i=1:fmax 
   a=W(:,i); 
   a1=find(a==1); 
   if length(a1)>1   
      n=length(a1)-1;  
      a2=(O.*p)./d; 
      a2=a2(a1); 
      [~,index]=sort(a2,'descend');  
      a3=a1(index(1:n)); 
      a(a3)=0;       
      W(:,i)=a; 
   elseif isempty(a1)        
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      a2=(O.*p)./d; 
      [~,index]=sort(a2);      
      a(index(1))=1; 
      W(:,i)=a;      
   end         
end 
W(1:N^2)=0; 
e=randperm(N); 
for i=1:N 
W(i,e(i))=1; 
end 
end 
 
m=randperm(N*pop(i).fmax); 
m1=m(1:round(N*pop(i).fmax/2)); 
m2=m(round(N*pop(i).fmax/2)+1:end); 
alpha=rand(N,pop(i).fmax); 
alpha(m1)=0; 
beta=rand(N,pop(i).fmax); 
beta(m2)=0; 
alpha=reformeralpha(alpha,pop(i).fmax); 
 
function a=reformeralpha(a,m) 
m=round((m*(m-1))/2); 
a1=find(a>0); 
if length(a1)>m 
a2=zeros(size(a)); 
a3=randperm(length(a1),m); 
a2(a1(a3))=a(a1(a3)); 
a=a2; 
end 
end 
 
pop(i).alpha=alpha; 
pop(i).beta=beta; 
  
pop(i).cost=fitness(pop(i),d,N,S,O,A,H,B,l,Rmin); 
end 
  
[value,index]=min([pop.cost]); 
  
gpop=pop(index); 
  
%% Main loop 
 
best=zeros(maxiter,1); 
MEAN=zeros(maxiter,1); 
  
for iter=1:maxiter 
  
% cross over 
crosspop=repmat(empty,Ncross,1); 
crosspop=crossover(crosspop,pop,Ncross,d,N,S,O,A,H,B,L,Rmin);     
 
function   
crosspop=crossover(crosspop,pop,Ncross,d,N,S,O,A,H,B,L,Rmin) 
  
f=[pop.cost]; 
f=max(f)-f+1; 
f=f./sum(f); 
f=cumsum(f); 
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for n=1:2:Ncross 
     
    i1=find(rand<=f,1,'first'); 
    i2=find(rand<=f,1,'first'); 
     
    p1=pop(i1); 
    p2=pop(i2); 
     
    r=rand(1,N); 
    r1=rand; 
     
    o1.t=(r.*p1.t)+((1-r).*p2.t); 
    o2.t=(r.*p2.t)+((1-r).*p1.t); 
     
    o1.p=round(r.*p1.p+(1-r).*p2.p); 
    o2.p=round(r.*p2.p+(1-r).*p1.p); 
     
    o1.fmax=round(r1.*p1.fmax+(1-r1).*p2.fmax); 
    o2.fmax=round(r1.*p2.fmax+(1-r1).*p1.fmax); 
     
    o1.W=p1.W; 
    o2.W=p2.W; 
     
    o1.alpha=p1.alpha; 
    o2.alpha=p2.alpha; 
     
    o1.beta=p1.beta; 
    o2.beta=p2.beta; 
     
    if o1.fmax>p1.fmax 
        o1.W(:,end+1:o1.fmax)=round(rand(N,o1.fmax-p1.fmax)); 
        o1.alpha(:,end+1:o1.fmax)=(rand(N,o1.fmax-p1.fmax)); 
        o1.beta(:,end+1:o1.fmax)=(rand(N,o1.fmax-p1.fmax)); 
    else 
        o1.W=o1.W(:,1:o1.fmax); 
        o1.alpha=o1.alpha(:,1:o1.fmax); 
        o1.beta=o1.beta(:,1:o1.fmax); 
    end 
     
    if  o2.fmax>p2.fmax 
        o2.W(:,end+1:o2.fmax)=round(rand(N,o2.fmax-p2.fmax)); 
        o2.alpha(:,end+1:o2.fmax)=(rand(N,o2.fmax-p2.fmax)); 
        o2.beta(:,end+1:o2.fmax)=(rand(N,o2.fmax-p2.fmax)); 
    else 
        o2.W=o2.W(:,1:o2.fmax); 
        o2.alpha=o2.alpha(:,1:o2.fmax); 
        o2.beta=o2.beta(:,1:o2.fmax); 
    end 
     
    fmax=min([o1.fmax,o2.fmax]); 
    r2=rand(N,fmax); 
     
    o1.W(:,1:fmax)=round(r2.*o1.W(:,1:fmax)+(1-r2).*o2.W(:,1:fmax)); 
    o2.W(:,1:fmax)=round(r2.*o2.W(:,1:fmax)+(1-r2).*o1.W(:,1:fmax)); 
     
    o1.W=edit_W(o1.W,o,o1.p,d,o1.fmax,N); 
    o2.W=edit_W(o2.W,o,o2.p,d,o2.fmax,N); 
     
    o1.alpha(:,1:fmax)=(r2.*o1.alpha(:,1:fmax)+(1-
r2).*o2.alpha(:,1:fmax)); 
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    o2.alpha(:,1:fmax)=(r2.*o2.alpha(:,1:fmax)+(1-
r2).*o1.alpha(:,1:fmax)); 
     
    o1.beta(:,1:fmax)=(r2.*o1.beta(:,1:fmax)+(1-
r2).*o2.beta(:,1:fmax)); 
    o2.beta(:,1:fmax)=(r2.*o2.beta(:,1:fmax)+(1-
r2).*o1.beta(:,1:fmax)); 
     
    [k1]=find(o1.alpha>0); 
    o1.beta(k1)=0; 
     
    [k2]=find(o1.beta>0); 
    o1.alpha(k2)=0; 
     
    [k1]=find(o2.alpha>0); 
    o2.beta(k1)=0; 
     
    [k2]=find(o2.beta>0); 
    o2.alpha(k2)=0; 
     
    o1.alpha=reformeralpha(o1.alpha,o1.fmax); 
    o2.alpha=reformeralpha(o2.alpha,o2.fmax); 
     
    o1.cost=fitness(o1,d,N,S,O,A,H,B,L,Rmin); 
    o2.cost=fitness(o2,d,N,S,O,A,H,B,L,Rmin); 
     
    crosspop(n)=o1; 
    crosspop(n+1)=o2; 
end 
end 
 
% mutation 
mutpop=repmat(empty,Nmut,1);    
mutpop=mutation(mutpop,pop,Nmut,d,N,S,O,A,H,B,L,Rmin,lbt,ubt,lbp,ubp,m
axiter);    
 
function   
mutpop=mutation(mutpop,pop,Nmut,d,N,S,O,A,H,B,L,Rmin,lbt,ubt,lbp,ubp,m
axiter);    
  
npop=length(pop); 
  
for n=1:nmut 
  
   i=randi([1 npop]);  
   p=pop(i);   
   j=randi([1 N]); 
      
   if rand<0.5 
       p.t(j)=p.t(j)-rand*(1-(i/maxiter))*(p.t(j)-lbt(j)); 
       p.p(j)=round(p.p(j)-rand*(1-(i/maxiter))*(p.p(j)-lbp(j)));       
   else 
       p.t(j)=p.t(j)+rand*(1-(i/maxiter))*(ubt(j)-p.t(j)); 
       p.p(j)=round(p.p(j)+rand*(1-(i/maxiter))*(ubp(j)-p.p(j)));       
   end 
    
   j3=randi([1 N*p.fmax]); 
   p.W(j3)=abs(p.W(j3)-1); 
   p.W=edit_W(p.W,O,p.p,d,p.fmax,N);  
  
   if rand<0.5 
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   p.alpha(j3)= p.alpha(j3)-(1-(i/maxiter))*rand.*(p.alpha(j3)-0); 
   p.beta(j3)= p.beta(j3)-(1-(i/maxiter))*rand.*(p.beta(j3)-0); 
   else 
   p.alpha(j3)= p.alpha(j3)+(1-(i/maxiter))*rand.*(1-p.alpha(j3));     
   p.beta(j3)= p.beta(j3)+(1-(i/maxiter))*rand.*(1-p.beta(j3));   
   end 
     
   [k1]=find(p.alpha>0); 
   p.beta(k1)=0; 
    
   [k2]=find(p.beta>0); 
   p.alpha(k2)=0;  
       
   p.cost=fitness(p,d,N,S,O,A,H,B,L,Rmin);   
    
 mutpop(n)=p; 
end 
end 
 
% merged 
 [pop]=[pop;crosspop;mutpop]; 
     
% select 
[valu,index]=sort([pop.cost]); 
     
gpop=pop(index(1)); 
pop=pop(index(1:Npop)); 
        
best(iter)=gpop.cost; 
MEAN(iter)=mean([pop.cost]); 
NFE(iter)=NFE; 
        
disp(['iter   ' num2str(iter) ':    ' ... 
      'Best = ' num2str(best(iter)) '  , ' ... 
      'Mean = ' num2str(MEAN(iter))]);  
 
end 
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Appendix B: PSO Code for the Proposed ELSP 

%% Parameters setting 
  
load('all.mat')               % Input data to the model 
  
Nswarm=200;                   % Swarm size 
 
c1=4;            % Personal learning coefficient 
 
c2=0.5;                % Global learning coefficient 
 
w=0.95;                   % Inertia weight 
 
Beta=0.05;                    % Updating factor for inertia weight  
 
T=3000;                       % Maximum number of iteration 
 
%% Initialization 
  
NFE=0;                        % Number of function evaluation  
 
tic                           % Timer 
 
empty.t=[]; 
empty.p=[]; 
empty.fmax=[]; 
empty.W=[]; 
empty.alpha=[]; 
empty.beta=[]; 
empty.cost=[]; 
  
pop=repmat(empty,Npop,1); 
  
for i=1:Npop 
     
    pop(i).t=lbt+rand(1,N).*(ubt-lbt); 
    pop(i).velt=zeros(1,N); 
     
    pop(i).p=round(lbp+rand(1,N).*(ubp-lbp)); 
    pop(i).velp=zeros(1,N); 
     
    pop(i).fmax=round(lbfmax+rand.*(ubfmax-lbfmax)); 
    pop(i).velfmax=0; 
     
    v=round(rand(N,pop(i).fmax)); 
    pop(i).W=edit_W(v,O,pop(i).p,d,pop(i).fmax,N); 
    pop(i).velW=zeros(N,pop(i).fmax); 
     
    m=randperm(N*pop(i).fmax); 
    m1=m(1:round(N*pop(i).fmax/2)); 
    m2=m(round(N*pop(i).fmax/2)+1:end); 
    alpha=rand(N,pop(i).fmax); 
    alpha(m1)=0; 
    alpha=reformeralpha(alpha,pop(i).fmax); 
    pop(i).velalpha=zeros(N,pop(i).fmax); 
     
    beta=rand(N,pop(i).fmax); 
    beta(m2)=0; 
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    pop(i).alpha=alpha; 
    pop(i).beta=beta; 
    pop(i).velbeta=zeros(N,pop(i).fmax); 
     
    pop(i).cost=fitness(pop(i),d,N,S,O,A,H,B,L,Rmin); 
     
end 
  
[value,index]=min([pop.cost]); 
  
bpop=pop; 
gpop=pop(index); 
  
%% main loop 
best=zeros(T,1); 
MEAN=zeros(T,1); 
  
for t=1:T 
     
    for i=1:Npop 
         
        % t 
        pop(i).velt=w*pop(i).velt... 
            +c1*rand(1,N).*(bpop(i).t-pop(i).t)... 
            +c2*rand(1,N).*(gpop.t-pop(i).t); 
         
        pop(i).t= pop(i).t+ pop(i).velt; 
         
        pop(i).t=max(pop(i).t,lbt); 
        pop(i).t=min(pop(i).t,ubt); 
         
        % p 
        pop(i).velp=w*pop(i).velp... 
            +c1*rand(1,N).*(bpop(i).p-pop(i).p)... 
            +c2*rand(1,N).*(gpop.p-pop(i).p); 
         
        pop(i).p= pop(i).p+ pop(i).velp; 
         
        pop(i).p=max(pop(i).p,lbp); 
        pop(i).p=round(min(pop(i).p,ubp)); 
         
        % fmax 
        pop(i).velfmax=w*pop(i).velfmax... 
            +c1*rand.*(bpop(i).fmax-pop(i).fmax)... 
            +c2*rand.*(gpop.fmax-pop(i).fmax); 
         
        fmax= pop(i).fmax+ pop(i).velfmax; 
         
        fmax=max(fmax,lbfmax); 
        fmax=round(min(fmax,ubfmax)); 
         
        if fmax>pop(i).fmax 
             
            pop(i).W(:,end+1:fmax)=round(rand(N,fmax-pop(i).fmax)); 
            pop(i).alpha(:,end+1:fmax)=(rand(N,fmax-pop(i).fmax)); 
            pop(i).beta(:,end+1:fmax)=(rand(N,fmax-pop(i).fmax)); 
            pop(i).velW(:,end+1:fmax)=round(rand(N,fmax-pop(i).fmax)); 
            pop(i).velalpha(:,end+1:fmax)=(rand(N,fmax-pop(i).fmax)); 
            pop(i).velbeta(:,end+1:fmax)=(rand(N,fmax-pop(i).fmax)); 
        else 
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            pop(i).W=pop(i).W(:,1:fmax); 
            pop(i).alpha=pop(i).alpha(:,1:fmax); 
            pop(i).beta=pop(i).beta(:,1:fmax); 
            pop(i).velW=pop(i).velW(:,1:fmax); 
            pop(i).velalpha=pop(i).velalpha(:,1:fmax); 
            pop(i).velbeta=pop(i).velbeta(:,1:fmax); 
             
        end 
         
        pop(i).fmax=fmax; 
         
        NF=min([pop(i).fmax,bpop(i).fmax,gpop.fmax]); 
         
        % W 
        pop(i).velW(:,1:NF)=w*pop(i).velW(:,1:NF)... 
            +c1*rand(N,NF).*(bpop(i).W(:,1:NF)-pop(i).W(:,1:NF))... 
            +c2*rand(N,NF).*(gpop.W(:,1:NF)-pop(i).W(:,1:NF)); 
         
        pop(i).W= pop(i).W+ pop(i).velW; 
         
        pop(i).W=max(pop(i).W,0); 
        pop(i).W=round(min(pop(i).W,1)); 
         
        pop(i).W=edit_W(pop(i).W,o,pop(i).p,d,pop(i).fmax,N); 
         
        % alpha 
        pop(i).velalpha(:,1:NF)=w*pop(i).velalpha(:,1:NF)... 
            +c1*rand(N,NF).*(bpop(i).alpha(:,1:NF)-
pop(i).alpha(:,1:NF))... 
            +c2*rand(N,NF).*(gpop.alpha(:,1:NF)-pop(i).alpha(:,1:NF)); 
         
        pop(i).alpha= pop(i).alpha+ pop(i).velalpha; 
         
        pop(i).alpha=max(pop(i).alpha,0); 
        pop(i).alpha=(min(pop(i).alpha,1)); 
         
        % beta 
        pop(i).velbeta(:,1:NF)=w*pop(i).velbeta(:,1:NF)... 
            +c1*rand(N,NF).*(bpop(i).beta(:,1:NF)-
pop(i).beta(:,1:NF))... 
            +c2*rand(N,NF).*(gpop.beta(:,1:NF)-pop(i).beta(:,1:NF)); 
         
        pop(i).beta= pop(i).beta+ pop(i).velbeta; 
         
        pop(i).beta=max(pop(i).beta,0); 
        pop(i).beta=(min(pop(i).beta,1)); 
         
        [k1]=find(pop(i).alpha>0); 
        pop(i).beta(k1)=0; 
         
        [k2]=find(pop(i).beta>0); 
        pop(i).alpha(k2)=0; 
         
        pop(i).alpha=reformeralpha(pop(i).alpha,pop(i).fmax); 
         
        pop(i).cost=fitness(pop(i),d,N,S,O,A,H,B,L,Rmin); 
         
        if pop(i).cost<bpop(i).cost 
            bpop(i)=pop(i); 
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            if bpop(i).cost<gpop.cost 
                gpop=bpop(i); 
            end 
        end 
    end 
     
    best(t)=gpop.cost; 
    MEAN(t)=mean([bpop.cost]); 
     
    w=w*(1-Beta); 
     
    disp([' iter     ' num2str(iter) ':    ' ... 
          ' Best =   ' num2str(best(iter)) '  , ' ... 
          ' Mean =   ' num2str(MEAN(iter))]); 
end 
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Appendix C: ABC Code for the Proposed ELSP 

%% Parameters setting 
  
load('all.mat')               % Input data to the model 
  
NB=200;                       % Number of bees 
  
NS=NB/2;                      % Number of source 
  
Limit=100;                    % Number of trials  
 
maxcycle=3000;                % Maximum number of cycle 
 
%%  Initialization 
 
NFE=0;                        % Number of function evaluation  
 
tic                           % Timer 
 
empty.t=[]; 
empty.p=[]; 
empty.fmax=[]; 
empty.W=[]; 
empty.alpha=[]; 
empty.beta=[]; 
empty.cost=[]; 
  
food=repmat(empty,NS,1); 
  
for i=1:NS 
     
    food(i).t=lbt+rand(1,N).*(ubt-lbt); 
    food(i).p=round(lbp+rand(1,N).*(ubp-lbp)); 
    food(i).fmax=round(lbfmax+rand.*(ubfmax-lbfmax)); 
     
    v=round(rand(N,food(i).fmax)); 
    food(i).W=edit_W(v,o,food(i).p,d,food(i).fmax,N); 
     
    m=randperm(N*food(i).fmax); 
    m1=m(1:round(N*food(i).fmax/2)); 
    m2=m(round(N*food(i).fmax/2)+1:end); 
    alpha=rand(N,food(i).fmax); 
    alpha(m1)=0; 
     
    beta=rand(N,food(i).fmax); 
    beta(m2)=0; 
    alpha=reformeralpha(alpha,food(i).fmax); 
     
    food(i).alpha=alpha; 
    food(i).beta=beta; 
     
    food(i).cost=fitness(food(i),d,N,S,O,A,H,B,L,Rmin); 
     
end 
  
[value,index]=min([food.cost]); 
gfood=food(index); 
  

245 



trial=zeros(NS,1); 
  
%% main loop 
tic 
best=zeros(maxcycle,1); 
MEAN=zeros(maxcycle,1); 
  
for cycle=1:maxcycle 
     
    % employed bee 
     
    for i=1:NS 
         
        k=randi([1 NS]); 
         
        while k==i 
            k=randi([1 NS]); 
        end 
         
        nfood=food(i); 
        kfood=food(k); 
         
        
nfood=create_new_food(nfood,kfood,N,lbt,ubt,lbp,ubp,lbfmax,ubfmax,d,S,
O,A,H,B,L,Rmin); 
         
function 
nfood=create_new_food(nfood,kfood,N,lbt,ubt,lbp,ubp,lbfmax,ubfmax,d,S,
O,A,H,B,L,Rmin) 
  
% t 
j=randi([1 N]); 
nfood.t(j)=nfood.t(j)+unifrnd(-1,1)*(nfood.t(j)-kfood.t(j)); 
nfood.t=max(nfood.t,lbt); 
nfood.t=min(nfood.t,ubt); 
  
% p 
j=randi([1 N]); 
nfood.p(j)=nfood.p(j)+unifrnd(-1,1)*(nfood.p(j)-kfood.p(j)); 
nfood.p=max(nfood.p,lbp); 
nfood.p=round(min(nfood.p,ubp)); 
  
% fmax 
fmax=nfood.fmax+unifrnd(-1,1)*(nfood.fmax-kfood.fmax); 
fmax=max(fmax,lbfmax); 
fmax=round(min(fmax,ubfmax)); 
  
if fmax>nfood.fmax 
    nfood.W(:,end+1:fmax)=round(rand(N,fmax-nfood.fmax)); 
    nfood.alpha(:,end+1:fmax)=(rand(N,fmax-nfood.fmax)); 
    nfood.beta(:,end+1:fmax)=(rand(N,fmax-nfood.fmax));     
else    
    nfood.W=nfood.W(:,1:fmax); 
    nfood.alpha=nfood.alpha(:,1:fmax); 
    nfood.beta=nfood.beta(:,1:fmax); 
    nfood.W=nfood.W(:,1:fmax); 
    nfood.alpha=nfood.alpha(:,1:fmax); 
    nfood.beta=nfood.beta(:,1:fmax);   
end 
  
nfood.fmax=fmax; 
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NF=min([nfood.fmax,kfood.fmax]); 
  
% W 
j1=randi([1 N*NF-1]); 
j2=randi([j1+1 N*NF]); 
  
nfood.W(j1:j2)=nfood.W(j1:j2)+unifrnd(-1,1,1,(j2-
j1+1)).*(nfood.W(j1:j2)-kfood.W(j1:j2)); 
nfood.W=max(nfood.W,0); 
nfood.W=round(min(nfood.W,1)); 
  
nfood.W=edit_W(nfood.W,o,nfood.p,d,nfood.fmax,N); 
  
% alpha 
nfood.alpha(j1:j2)=nfood.alpha(j1:j2)+unifrnd(-1,1,1,(j2-
j1+1)).*(nfood.alpha(j1:j2)-kfood.alpha(j1:j2)); 
  
nfood.alpha=max(nfood.alpha,0); 
nfood.alpha=(min(nfood.alpha,1)); 
  
% beta 
nfood.beta(j1:j2)=nfood.beta(j1:j2)+unifrnd(-1,1,1,(j2-
j1+1)).*(nfood.beta(j1:j2)-kfood.beta(j1:j2)); 
  
nfood.beta=max(nfood.beta,0); 
nfood.beta=(min(nfood.beta,1)); 
  
[k1]=find(nfood.alpha>0); 
nfood.beta(k1)=0; 
  
[k2]=find(nfood.beta>0); 
nfood.alpha(k2)=0; 
nfood.alpha=reformeralpha(nfood.alpha,nfood.fmax); 
  
nfood.cost=fitness(nfood,d,N,S,O,A,H,B,L,Rmin); 
end 
 
        if nfood.cost<food(i).cost 
            food(i)=nfood; 
            trial(i)=0; 
        else 
             
            trial(i)=trial(i)+1; 
        end 
         
    end 
     
    % unlooker bee 
    f=[food.cost]; 
    f=max(f)-f+eps; 
    f=f./sum(f); 
    f=cumsum(f); 
     
    for n=1:NS  
        i=find(rand<=f,1,'first');         
        k=randi([1 NS]);      
        while k==i 
            k=randi([1 NS]); 
        end      
        nfood=food(i); 
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        kfood=food(k); 
         
        
nfood=create_new_food(nfood,kfood,N,lbt,ubt,lbp,ubp,lbfmax,ubfmax,d,S,
O,A,H,B,L,Rmin); 
         
        if nfood.cost<food(i).cost 
            food(i)=nfood; 
            trial(i)=0; 
        else           
            trial(i)=trial(i)+1; 
        end 
    end 
     
    %  scout bee 
    g=find(trial>Limit); 
     
    for n=1:length(g) 
         
        i=g(n); 
        food(i).t=lbt+rand(1,N).*(ubt-lbt); 
        food(i).p=round(lbp+rand(1,N).*(ubp-lbp)); 
        food(i).fmax=round(lbfmax+rand.*(ubfmax-lbfmax)); 
         
        v=round(rand(N,food(i).fmax)); 
        food(i).W=edit_W(v,O,food(i).p,d,food(i).fmax,N); 
         
        m=randperm(N*food(i).fmax); 
        m1=m(1:round(N*food(i).fmax/2)); 
        m2=m(round(N*food(i).fmax/2)+1:end); 
        alpha=rand(N,food(i).fmax); 
        alpha(m1)=0; 
         
        beta=rand(N,food(i).fmax); 
        beta(m2)=0; 
        food(i).alpha=alpha; 
        food(i).beta=beta; 
         
        food(i).cost=fitness(food(i),d,N,S,O,A,H,B,L,Rmin); 
        trial(i)=0; 
         
    end 
     
    [value,index]=min([food.cost]); 
     
    if value<gfood.cost 
        gfood=food(index); 
    end 
    best(cycle)=gfood.cost; 
    MEAN(cycle)=mean([food.cost]); 
 
    disp(['cycle = ' num2str(cycle)      ':   ' ... 
          'Best  = ' num2str(gfood.cost) '  , ' ... 
          'Mean  = ' num2str(mean([food.cost]))]);    
 end 
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Appendix D: SA Code for the Proposed ELSP 

load('all.mat')               % Input data to the model 
  
E0=30;                        % Initial temperature  
 
Ef=0.001;                     % Final temperature  
 
Npop=20;                      % Number of population for population-                 

based SA 
  
nn=10;                        % Number of neighbor 
    
z=0.95;                       % Cooling factor 
 
maxiter=3000;                 % Maximum number of iteration   
  
%% Initialization 
  
NFE=0;                        % Number of function evaluation  
 
tic                           % Timer 
 
empty.t=[]; 
empty.p=[]; 
empty.fmax=[]; 
empty.W=[]; 
empty.alpha=[]; 
empty.beta=[]; 
empty.cost=inf; 
  
pop=repmat(empty,Npop,1); 
  
for i=1:npop 
     
    pop(i).t=lbt+rand(1,N).*(ubt-lbt); 
    pop(i).p=round(lbp+rand(1,N).*(ubp-lbp)); 
    pop(i).fmax=round(lbfmax+rand.*(ubfmax-lbfmax)); 
     
    v=round(rand(N,pop(i).fmax)); 
    pop(i).W=edit_W(v,o,pop(i).p,d,pop(i).fmax,N); 
     
    m=randperm(N*pop(i).fmax); 
    m1=m(1:round(N*pop(i).fmax/2)); 
    m2=m(round(N*pop(i).fmax/2)+1:end); 
    alpha=rand(N,pop(i).fmax); 
    alpha(m1)=0; 
    beta=rand(N,pop(i).fmax); 
    beta(m2)=0; 
    alpha=reformeralpha(alpha,pop(i).fmax); 
    pop(i).alpha=alpha; 
    pop(i).beta=beta; 
     
    pop(i).cost=fitness(pop(i),d,N,S,O,A,H,B,L,rmin); 
     
end 
[value,index]=min([pop.cost]); 
gpop=pop(index); 
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%% main loop  
T=T0;  
best=zeros(maxiter,1); 
MEAN=zeros(maxiter,1); 
  
for iter=1:maxiter 
     
    for i=1:Npop 
         
        bnewpop=empty; 
         
        for j=1:nn 
            
newpop=create_neighbor(pop(i),d,N,S,O,a,H,B,L,Rmin,lbt,ubt,lbp,ubp); 
            newpop.cost=fitness(newpop,d,N,S,O,A,H,B,L,Rmin); 
 
function  p=create_neighbor(p,d,N,S,O,A,H,B,L,Rmin,lbt,ubt,lbp,ubp) 
  
j=randi([1 N]); 
  
if rand<0.5 
     
    p.t(j)=p.t(j)-rand*0.1*(p.t(j)-lbt(j)); 
    p.p(j)=round(p.p(j)-rand*0.1*(p.p(j)-lbp(j))); 
else 
    p.t(j)=p.t(j)+rand*0.1*(ubt(j)-p.t(j)); 
    p.p(j)=round(p.p(j)+rand*0.1*(ubp(j)-p.p(j))); 
end 
  
j1=randi([1 N*p.fmax-1]); 
j2=randi([j1+1 N*p.fmax]); 
  
p.W(j1:j2)=abs(p.W(j1:j2)-1); 
p.W=edit_W(p.W,o,p.p,d,p.fmax,N); 
  
if rand<0.5 
    p.alpha(j1:j2)= p.alpha(j1:j2)-0.1*rand(1,(j2-
j1+1)).*(p.alpha(j1:j2)-0); 
    p.beta(j1:j2)= p.beta(j1:j2)-0.1*rand(1,(j2-
j1+1)).*(p.beta(j1:j2)-0); 
     
else 
    p.alpha(j1:j2)= p.alpha(j1:j2)+0.1*rand(1,(j2-j1+1)).*(1-
p.alpha(j1:j2)); 
    p.beta(j1:j2)= p.beta(j1:j2)+0.1*rand(1,(j2-j1+1)).*(1-
p.beta(j1:j2)); 
     
end 
  
[k1]=find(p.alpha>0); 
p.beta(k1)=0; 
  
[k2]=find(p.beta>0); 
p.alpha(k2)=0; 
  
p.alpha=reformeralpha(p.alpha,p.fmax); 
 
end 
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            if newpop.cost<bnewpop.cost 
                bnewpop=newpop; 
            end 
        end 
         
        if bnewpop.cost<pop(i).cost 
            pop(i)=bnewpop; 
        else 
             
            E=bnewpop.cost-pop(i).cost; 
            P=exp(-E/T); 
             
            if rand<=P 
                pop(i)=bnewpop; 
            end 
        end 
    end 
    [value,index]=min([pop.cost]); 
     
    if value<gpop.cost 
        gpop=pop(index); 
    end 
     
    T=T*z; 
     
    best(iter)=gpop.cost; 
    MEAN(iter)=mean([pop.cost]); 
    disp(['iter  = ' num2str(iter)      ':  ' ... 
          'Best  = ' num2str(best(iter)) '  , ' ... 
          'Mean  = ' num2str(MEAN(iter))]);      
      
end 
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Appendix E: GA Code for the Proposed MPCLSP 

%% Parameters setting 
  
load('all.mat')               % Input data to the model 
  
Npop=150;                     % Number of population 
  
Pc=0.95;                      % Percent of crossover 
 
Ncross=2*round(Npop*Pc/2);    % Number of crossover offspring 
  
Pm=0.8;                       % Percent of mutation 
 
Nmut=round(Npop*Pm);          % Number of mutation offspring 
  
max_generation=200;           % Maximum number of generation 
  
%% Initialization 
 
NFE=0;                        % Number of function evaluation  
 
tic                           % Timer 
  
empty.Q=[];                   % Lot size 
  
empty.cost=[]; 
  
pop=repmat(empty,Npop,1); 
  
for ipop=1:Npop 
     
    for i=1:ni 
        for j=1:nj 
            for t=1:nt 
                Q(i,j,t)=randi([lbQ(i,j,t),ubQ(i,j,t)]); 
            end 
        end 
    end 
     
    pop(ipop).Q=Q; 
 
    pop(ipop).cost=fitness(pop(ipop)); 
 
end 
  
[value,index]=min([pop.cost]); 
  
gpop=pop(index); 
  
%% Main loop 
 
Best=zeros(max_generation,1); 
 
Mean=zeros(max_generation,1); 
 
NFE=zeros(max_generation,1); 
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for iter=1:max_generation 
     
    % Cross over 
 
    crosspop=repmat(empty,Ncross,1); 
 
    crosspop=crossover(crosspop,pop,Ncross); 
  

f=[pop.cost]; 
f=max(f)-f+1; 
f=f./sum(f); 
f=cumsum(f); 
  
for n=1:2:Ncross 
     
    i1=find(rand<=f,1,'first'); 
 
    i2=find(rand<=f,1,'first'); 
     
    pQ1=pop(i1).Q; 
 
    pQ2=pop(i2).Q; 
     
    rQ=rand(size(pQ1)); 
  
    o1.Q=round(rQ.*pQ1+(1-rQ).*pQ2); 
 
    o2.Q=round(rQ.*pQ2+(1-rQ).*pQ1); 
       
    crosspop(n).Q=o1.Q; 
     
    crosspop(n).cost=fitness(o1); 
     
    crosspop(n+1).Q=o2.Q; 
  
    crosspop(n+1).cost=fitness(o2);  
     
end 
     

    % Mutation 
 
    mutpop=repmat(empty,Nmut,1); 
 
    mutpop=mutation(mutpop,pop,Nmut); 
     

Npop=length(pop); 
  
for n=1:Nmut 
     
    i1=randi([1 npop]); 
     
    Q=pop(i1).Q; 
    
    nQ=ni*nj*nt; 
 
    j1=randi([1 nQ-1]); 
 
    j2=randi([j1+1 nQ]); 
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    disQ=0.1*unifrnd(-1,1,size(ubQ)).*(ubQ-lbQ); 
 
    Q(j1:j2)=round(Q(j1:j2)+disQ(j1:j2)); 
 
    Q=min(Q,ubQ); 
 
    Q=max(Q,lbQ); 
        
    mutpop(n).Q=Q; 
     
    sol.Q=Q; 
     
    mutpop(n).cost=fitness(sol); 
     
end 

   
    % Merged 
 
    [pop]=[pop;crosspop;mutpop]; 
     
    % Select 
 
    [valu,index]=sort([pop.cost]); 
     
    gpop=pop(index(1)); 
     
    pop=pop(index(1:Npop)); 
     
    Best(iter)=gpop.cost; 
     
    Mean(iter)=Mean([pop.cost]); 
         
    NFE(iter)=NFE; 
        
    disp(['iter   ' num2str(iter) ':    ' ... 
          'Best = ' num2str(Best(iter)) '  , ' ... 
          'Mean = ' num2str(Mean(iter))]);  
 
end 
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Appendix F: PSO Code for the Proposed MPCLSP 

%% Parameters setting 
  
load('all.mat')               % Input data to the model 
  
Nswarm=150;                   % Swarm size 
 
c1=2;            % Personal learning coefficient 
 
c2=2;                % Global learning coefficient 
 
w=1;               % Inertia weight 
 
Beta=0.01;                    % Updating factor for inertia weight  
 
max_iteration=200;            % Maximum number of iteration 
 
%% Initialization 
  
NFE=0;                        % Number of function evaluation  
 
tic                           % Timer 
 
empty.Q=[]; 
  
empty.cost=inf; 
   
particle=repmat(empty,Nswarm,1); 
  
for iparticle=1:Nswarm 
     
    for i=1:ni 
        for j=1:nj 
            for t=1:nt 
                Q(i,j,t)=randi([lbQ(i,j,t),ubQ(i,j,t)]); 
            end 
        end 
    end 
         
    particle(iparticle).Q=Q; 
         
    particle(iparticle).velQ=zeros(size(Q)); 
     
    particle(iparticle).cost=fitness(particle(iparticle)); 
     
end 
  
bparticle=particle; 
  
[value,index]=min([bparticle.cost]); 
  
gparticle=particle(index); 
 
%% Main loop 
  
Best=zeros(max_iteration,1); 
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Mean=zeros(max_iteration,1); 
 
NFE=zeros(max_iteration,1); 
  
for iter=1:max_iteration  
     
    for iparticle=1:Nswarm 
         

    
particle(iparticle)=create_move(particle(iparticle),bparticle(ipar
ticle),gparticle,w,c1,c2); 
 
function   [sol]=create_move(sol,bsol,gsol,w,c1,c2) 
    
Q=sol.Q; 
  
velQ=sol.velQ; 
  
velQ=round(w1*velQ... 
    +c1*rand(size(velQ)).*(bsol.Q-sol.Q)... 
    +c2*rand(size(velQ)).*(gsol.Q-sol.Q)); 
  
Q=Q+velQ; 
  
Q=min(Q,ubQ); 
 
Q=max(Q,lbQ); 
  
sol.Q=Q; 
  
sol.velQ=velQ; 
  
sol.cost=fitness(sol); 
  
end 

            
        if particle(iparticle).cost<bparticle(iparticle).cost 
            bparticle(iparticle)=particle(iparticle); 
 
            if bparticle(iparticle).cost<gparticle.cost 
                gparticle=bparticle(iparticle); 
            end 
 
        end 
                
    end 
      
    Best(iter)=gparticle.cost; 
 
    Mean(iter)=Mean([bparticle.cost]); 
         
    w=w*(1-Beta); 
     
    NFE(iter)=NFE; 
     
    disp([' iter     ' num2str(iter) ':    ' ... 
          ' Best =   ' num2str(Best(iter)) '  , ' ... 
          ' Mean =   ' num2str(Mean(iter))]); 
end 
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Appendix G: ABC Code for the Proposed MPCLSP 

%% Parameters setting 
  
load('all.mat')               % Input data to the model 
  
NB=150;                       % Number of bees 
  
NS=NB/2;                      % Number of source 
  
Limit=100;                    % Number of trials  
 
max_cycle=200;                % Maximum number of cycle 
 
%%  Initialization 
 
NFE=0;                        % Number of function evaluation  
 
tic                           % Timer 
 
empty.Q=[]; 
  
empty.cost=inf; 
  
food=repmat(empty,NS,1); 
  
for ifood=1:NS 
     
    for i=1:ni 
        for j=1:nj 
            for t=1:nt 
                Q(i,j,t)=randi([lbQ(i,j,t),ubQ(i,j,t)]);  
            end 
        end 
    end 
     
    food(ifood).Q=Q; 
     
    food(ifood).cost=fitness(food(ifood)); 
     
end 
  
[value,index]=min([food.cost]); 
 
gfood=food(index); 
  
trial=zeros(NS,1); 
  
%% Main loop 
 
Best=zeros(max_cycle,1); 
 
Mean=zeros(max_cycle,1); 
 
NFE=zeros(max_cycle,1); 
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for cycle=1:max_cycle 
 
    %Employed bee 
     
    for ifood=1:NS 
         
        k=randi([1 NS]);  
         
        while k==ifood 
 
            k=randi([1 NS]); 
 
        end 
         
        [nfood]=create_move(food(ifood),food(k)); 

 
function   [nsol]=create_move(sol,nesol)   
  
Q=sol.Q; 
  
nQ=ni*nj*nt; 
  
n=randi([0 round(0.1*nQ)+1]); 
  
j1=randi([1 nQ-n]); 
 
j2=j1+n; 
  
Q(j1:j2)=round(Q(j1:j2)+unifrnd(-1,1,1,n+1).*(Q(j1:j2) 
nesol.Q(j1:j2))); 
  
Q=min(Q,ubQ); 
 
Q=max(Q,lbQ); 
  
nsol.Q=Q; 
 
nsol.cost=fitness(nsol); 
  
end 

 
        if nfood.cost<food(ifood).cost 
 
            food(ifood)=nfood; 
 
            trial(ifood)=0; 
 
        else 
             
            trial(ifood)=trial(ifood)+1; 
 
        end 
         
    end 
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    %Unlooker bee  
 
    f=[food.cost]; 
    f=max(f)-f+eps; 
    f=f./sum(f); 
    f=cumsum(f); 
 
    for n=1:NS 
         
        ifood=find(rand<=f,1,'first'); 
         
        k=randi([1 NS]); 
         
        while k==ifood 
 
            k=randi([1 NS]); 
 
        end 
         
        [nfood]=create_move(food(ifood),food(k)); 
         
        if nfood.cost<food(ifood).cost 
 
            food(ifood)=nfood; 
 
            trial(ifood)=0; 
 
        else 
             
            trial(ifood)=trial(ifood)+1; 
 
        end 
         
    end 
     
    %Scout bee 
     
    g=find(trial>Limit); 
     
    for n=1:length(g) 
         
        ifood=g(n); 
 
        for i=1:ni 
            for j=1:nj 
                for t=1:nt 
                    Q(i,j,t)=randi([lbQ(i,j,t),ubQ(i,j,t)]);  
                end 
            end 
        end 
                        
        food(ifood).Q=Q; 
         
        food(ifood).cost=fitness(food(ifood)); 
 
        trial(ifood)=0; 
         
    end 
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    [value,index]=min([food.cost]); 
     
    if value<gfood.cost 
 
        gfood=food(index); 
 
    end 
     
    Best(cycle)=gfood.cost; 
 
    Mean(cycle)=Mean([food.cost]); 
     
    NFE(cycle)=NFE; 
 
    disp(['cycle = ' num2str(cycle)      ':   ' ... 
          'Best  = ' num2str(gfood.cost) '  , ' ... 
          'Mean  = ' num2str(Mean([food.cost]))]);    
  
end 
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Appendix H: ICA Code for the Proposed MPCLSP 

%% parameters setting 
 
load('all.mat')               % Input data to the model 
   
Ncolony=150;                  % Number of colonies 
 
Nimp=10;                      % Number of imperialist 
  
Beta=2;    % Assimilation coefficient  
 
Theta=0.3;                    % Revolution rate  
   
Gamma=0.25;                   % Coefficient for total cost of empire  
 
Max_decade=200;    % Maximum number of decades 
 
%% Initialization 
 
NFE=0;                        % Number of function evaluation  
 
tic                           % Timer 
 
create_initial_imperialist 
 
empty.Q=[]; 
  
empty.cost=inf; 
  
colony=repmat(empty,Ncolony,1); 
  
for icolony=1:Ncolony 
     
    for i=1:ni 
        for j=1:nj 
            for t=1:nt 
                Q(i,j,t)=randi([lbQ(i,j,t),ubQ(i,j,t)]); %#ok 
            end 
        end 
    end 
       
    colony(icolony).Q=Q; 
     
    colony(icolony).cost=fitness(colony(icolony)); 
     
end 
  
[value,index]=sort([colony.cost]); 
 
colony=colony(index); 
  
imp=colony(1:nimp); 
  
colony=colony(nimp+1:end); 
  
n=length(colony); 
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k=0; 
j=1; 
for i=1:n 
    k=k+1; 
    imp(k).colony(j)=colony(i); 
    if k==nimp 
        k=0; 
        j=j+1; 
    end 
end 
  
 
[value,index]=min([imp.cost]); 
 
gimp=imp(index); 
  
%% Main loop 
  
Best=zeros(max_decade,1); 
 
Mean=zeros(max_decade,1); 
 
NFE=zeros(max_decade,1); 
   
for decade=1:max_decade 
     
    imp=assimulate(imp,Beta); 
 

function imp=assimulate(imp,Beta) 
  
nimp=length(imp); 
  
for i=1:nimp 
     
    Ncolony=length(imp(i).colony); 
     
    for j=1:Ncolony 
                    

[imp(i).colony(j)]=create_move1(imp(i),imp(i).colony(j),Beta); 
 

function   [colony]=create_move1(imp,colony,Beta)  
  
dQ=imp.Q-colony.Q;   
  
dQ=round(beta*rand(size(dQ)).*dQ); 
 
colony.Q=colony.Q+dQ; 
  
colony.Q=min(colony.Q,ubQ); 
 
colony.Q=max(colony.Q,lbQ); 
  
colony.cost=fitness(colony); 
  
end 

 
    end 
 
end 
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end 
  

    imp=revolution(imp,Theta); 
 

function imp=revolution(imp,Theta) 
  
nimp=length(imp); 
  
for i=1:nimp 
     
    Ncolony=length(imp(i).colony); 
     
    for j=1:Ncolony 
         
        if rand<Theta 
             
          [imp(i).colony(j)]=create_move2(imp(i).colony(j)); 
 

function   [colony]=create_move2(colony)   
  

         nQ=ni*nj*nt; 
 

n=randi([0 round(0.01*nQ)+1]); 
 
j1=randi([1 nQ-n]); 
 
j2=j1+n; 
  
colony.Q(j1:j2)=round(lbQ(j1:j2)+rand(1,n+1).*(ubQ(j1:j
2)-lbQ(j1:j2))); 
  
colony.cost=fitness(colony); 
  
end 

 
        end 
         
    end 
     
end 
  
end 

 
 
    imp=exchange(imp);  
 

function imp=exchange(imp) 
  
nimp=length(imp); 
  
for i=1:nimp 
     
    [value,index]=min([imp(i).colony.cost]); 
     
    if value<imp(i).cost 
         
        bestcolony=imp(i).colony(index); 
         
        imp(i).colony(index).Q=imp(i).Q; 
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        imp(i).colony(index).cost=imp(i).cost; 
         
        imp(i).Q=bestcolony.Q; 
        
        imp(i).cost=bestcolony.cost; 
  
     end 
  
end 

 
    imp=calculated_totalcost(imp,Gamma); 
 

function imp=calculated_totalcost(imp,Gamma) 
  
nimp=length(imp); 
  
for i=1:nimp 
     
imp(i).totalcost=imp(i).cost+Gamma*mean([imp(i).colony.cost]); 
  
end 

 
 
    imp=imperialistic_competative(imp); 
 

function   imp=imperialistic_competative(imp) 
  
nimp=length(imp); 
  
if nimp>=2 
     
    [~,index]=min([imp.totalcost]); 
     
    weakestimp=imp(index); 
     
    [~,index2]=min([weakestimp.colony.cost]); 
     
    weakestcolony=weakestimp.colony(index2); 
     
    imp(index).colony(index2)=[]; 
     
    f=[imp.totalcost]; 
    f=max(f)-f+eps; 
    f=f./sum(f); 
    f=cumsum(f); 
     
    h=find(rand<=f,1,'first'); 
     
    Ncolony=length(imp(h).colony); 
     
    imp(h).colony(Ncolony+1).Q=weakestcolony.Q; 
     
    imp(h).colony(Ncolony+1).cost=weakestcolony.cost; 
     
    if isempty(imp(index).colony) 
         
        imp(index)=[]; 
         
        f=[imp.totalcost]; 
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        f=max(f)-f+eps; 
        f=f./sum(f); 
        f=cumsum(f); 
         
        h=find(rand<=f,1,'first'); 
         
        Ncolony=length(imp(h).colony); 
         
        imp(h).colony(Ncolony+1).Q=weakestimp.Q; 
         
        imp(h).colony(Ncolony+1).cost=weakestimp.cost; 
         
    end 
     
end 
  
end 

 
     
    [value,index]=min([imp.cost]); 
     
    if value<gimp.cost 
 
        gimp=imp(index); 
 
    end 
     
    Best(decade)=gimp.cost; 
 
    Mean(decade)=Mean([imp.cost]); 
     
    NFE(decade)=NFE; 
 
     disp(['decade   ' num2str(decade)          ':   ' ...  
           'Best  =  ' num2str(gimp.cost)       '  , ' ... 
           'Mean  =  ' num2str(Mean([imp.cost]))'  , ' ...   
           'Nimp  =  ' num2str(length(imp))]); 
 
          if length(imp)==1 
 
             break 
 
          end       
 
end 
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