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ABSTRACT 

Hydroxyapatite (HA) has received wide attention in orthopedics, due to its 

biocompatibility and osseointegration ability. Despite these advantages, the poor 

mechanical properties of HA often results in rapid wear and premature fracture of 

implant. Hence, there is a need to improve the mechanical properties of HA without 

compromising its biocompatibility. The aim of the current research is to explore the 

potential of metal ion doping and graphene nanosheets (GNS) as reinforcement to HA 

for orthopedic implants. HA/reduce graphene oxide (rGO) and Ni doped HA/Graphene 

nano platelet (GNP) are synthesized by hydrothermal and chemical precipitation and 

characterized by XRD, FT-IR, EDAX, FESEM and Raman spectroscopy. HA/reduce 

graphene oxide (rGO) and Ni doped HA/ Graphene nanoplatelet (GNP) powder are 

solidified by hot iso-static pressing, and investigated for their mechanical and biological 

behavior. In this aspect, rGO, GNP and metal ions reinforcement improve the 

mechanical properties of HA for free standing composites. In case of nHA/rGO, the 

fracture toughness and modulus elasticity improves 40% and 86% by wt.%1.5 GNS and 

hardness increases 32% by wt.%1.0 GNP in compare to HA. In another case (HA-

Ni/GNP), microhardness, fracture toughness and elastic modulus of 6%Ni doped HA 

were improved 55% , 60% and 121% in 6% doping of Ni and also 75%, 164% and 85% 

in 1.5Ni6, respectively.  Both cases have demonstrated a positive influence on the 

proliferation, differentiation and matrix mineralization activities of osteoblasts, during 

in-vitro biocompatibility studies in presence of GNS.  
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ABSTRAK 

Hydroxyapatite (HA) telah mendapat perhatian yang luas dalam ortopedik, kerana 

kemampuannya biocompatibility dan osseointegration itu. Walaupun kelebihan ini, 

sifat-sifat mekanikal miskin HA sering menyebabkan haus pesat dan patah pramatang 

implan. Oleh itu, terdapat keperluan untuk meningkatkan sifat mekanik HA tanpa 

menjejaskan biocompatibility itu. Tujuan kajian semasa adalah untuk meneroka potensi 

ion logam doping dan nanosheets graphene (GNS) sebagai tetulang kepada HA untuk 

implan ortopedik. HA/mengurangkan graphene oksida (rGO) dan Ni didopkan 

HA/graphene nano platelet (GNP) yang disintesis oleh hidroterma dan pemendakan 

kimia dan ciri-ciri XRD, FT-IR, EDAX, FESEM dan spektroskopi Raman. HA / 

mengurangkan graphene oksida (rGO) dan Ni didopkan HA/graphene nano platelet 

(GNP) serbuk yang digabungkan dengan panas iso-statik menekan, dan disiasat bagi 

kelakuan mekanikal dan biologi mereka. Dalam aspek ini, rGO, GNP dan ion logam 

tetulang meningkatkan sifat mekanik komposit HA untuk berdiri bebas. Dalam kes 

nHA/rGO, keliatan patah dan keanjalan modulus meningkatkan 40% dan 86% oleh 

berat.% 1,5 GNP dan kekerasan meningkat 32% oleh berat.% 1,0 GNS dalam ke HA. 

Dalam kes yang lain (HA-Ni/GNP), microhardness, patah kekuatan dan modulus elastik 

6% Ni didopkan HA telah meningkat 55%, 60% dan 121% dalam 6% doping Ni dan 

juga 75%, 164% dan 85% dalam 1.5Ni6 masing-masing. Kedua-dua kes telah 

menunjukkan pengaruh yang positif ke atas percambahan, pembezaan dan matriks 

mineral aktiviti osteoblas, semasa dalam vitro kajian biocompatibility di hadapan GNS.  
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1 CHAPTER I:  INTRODUCTION 

1.1 Background of Study 

With societal development and improved living conditions, individuals focus on 

medical care and rehabilitation. Injuries to human hard tissue system account for more 

than one million surgeries annually. As such, demands for biomaterials to rehabilitate 

bone defects caused by damage, infection, or tumors, as well as osteoporosis and 

osteomalacia caused by aging, have increased. Global Information reported that 

orthopedic biomaterial device markets, which are among the major biomaterial-

providing regions, generated approximately $115.4 billion in 2008; this amount is 

predicted to increase to $252.7 billion in 2014. This finding indicates that demands for 

diverse orthopedic biomaterials has increased by 18% to 20% per year (Moussy, 2010). 

Therefore, the quality and quantity of hard tissue rehabilitation materials should be 

improved. Bone graft materials with good mechanical properties and appropriate 

biological properties should also be developed to successfully perform bone 

replacement surgery. Alternative materials for bone graft are categorized into natural 

materials (autografts, allografts, and xenografts) and artificial bone (metals, ceramics, 

and polymers). 

The human skeletal system is composed of a diverse hierarchical architecture of 

various tissues and cellular components. For example, bone is an inorganic–organic 

composite consisting of collagen proteins and hydroxyapatite (HA) (Oryan et al., 2014; 

Scaglione & Quarto, 2009; Vertenten et al., 2010). In case of severe injuries to the 

skeletal system, bone grafts are required to repair damage. In bone repair, natural 

materials, such as autografts, are preferred bone grafts. In autografts, bone is harvested 

from a different body part of a patient. Autografts are also regarded as one of the safest 

grafts because these materials pose low risk of disease transmission; low risk is 
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observed because autografts contain a high amount of a patient’s bone-growing cells 

and proteins. However, autografts are limited by insufficient available tissues, 

additional costs, and intensive surgical procedures. In contrast to autografts, allografts 

involve the use of another individual’s bone skeleton as bone implant. Similar to 

autografts, allografts consist of a natural bone structure and exhibit high bioactivity. 

Despite these advantages, allografts induce antigenicity and pathogen transmission 

between a bone provider and a patient. In some cases, patients have to wait for a bone 

source. In addition to autografts and allografts, xenografts are biomaterials used for 

transplantation; unlike autografts and allografts, xenografts are transplanted from a 

donor to a recipient of different species (e.g., baboon to human). Although allografts 

and xenografts provide several benefits, these materials trigger immune response and 

promote disease transmission. Another large family of bone graft alternatives includes 

synthesized materials. These materials have been used to produce artificial materials 

that behave similarly to native autografts.  

Materials science and biomedical science focus on creating new biomaterials. 

New materials have been developed to rehabilitate bone defects. These biomaterials 

should exhibit biocompatibility and mimic natural bone properties, such as matching 

functional and mechanical behaviors with a damaged tissue to be replaced. A stable 

bond between an implant and a natural bone should also be established. Numerous 

implant materials, generally composed of metals, polymers, ceramics, and their 

composites, have been evaluated for biomedical applications to treat bone defects. 

These implants are classified into three categories based on in-vivo responses:             

(1) bioinert implants that do not exhibit interaction between implants and bone; (2) 

bioactive implants that interact chemically with bone after these materials are implanted 

for a particular range of time; and (3) bioresorbable implants that are gradually resorbed 

and completely replaced with new bone ingrowths (Carta et al., 2005; Yelten et al., 
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2012). Although these materials have been clinically applied, these materials present 

many disadvantages. Metals and polymers were the first biomaterials used to replace 

hard tissues. Common metals for clinical applications include stainless steel and 

titanium, as well as its alloys. Some hip joints, bone fixing plates, and bolts are 

composed of these metals. However, stress shielding occurs when these metals are used 

to replace hard tissues, particularly under load bearing conditions. A tissue bearing 

overload or underload usually degrades; as a consequence, implantation fails. Metallic 

materials cannot also bond well to natural bones. Fibrous tissue is formed around metal 

implants, and bonding strength is low; thus, poor stress-transforming conditions occur. 

Some harmful metal elements are released into the body because of metal corrosion and 

wear in the internal environment of a human body. By contrast, polymer materials can 

be easily formed; some of these materials, such as polylactic acid (PLA), polyglycolic 

acid (PGA), and poly (lactic-co-glycolic) acid (PLGA), are biocompatible and 

biodegradable. Nevertheless, the degradation rate of these materials is not equivalent to 

the growth rate of new bone (Burdick & Mauck, 2011; Yaszemski, 2013). Realizing that 

bone consists of a large amount of inorganic components, researchers have used various 

synthetic ceramic materials as bone substitutes for more than 30 years. Alumina and 

zirconia are the first ceramics introduced to biomedical applications because these 

materials exhibit excellent corrosion resistance, high wear resistance, and high strength 

(De Aza et al., 2002). Despite these excellent properties, these materials are bio-inert; 

therefore, these materials cannot bind directly to tissues. Instead, a fibrous membrane 

forms around implanted materials (Manicone et al., 2007). 

Calcium phosphates are of great interest in interdisciplinary sciences 

encompassing chemistry, biology, medicine, and geology. Calcium phosphates are 

mostly classified as resorbable biomaterials. As such, these biomaterials dissolve under 
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physiological conditions. In general, the solubility trend of calcium phosphate materials 

is as follows: 

CaHPO4 (DCP) > Ca4(PO4)2 (TTCP) > Ca3(PO4)2 (TCP) > Ca5(PO4)3(OH) (HA) 

HA is thermodynamically stable at body temperature because HA is relatively 

insoluble (HA; Ksp = 2.34 × 10
59

) under physiological conditions (Dorozhkin, 2013; Y. 

Yang et al., 2011). This compound is chemically similar to the mineral component of 

bones and hard tissues in mammals. HA is one of few materials classified as bioactive; 

as such, this material supports bone ingrowth and osseointegration when HA is used in 

orthopedic, dental, and maxillofacial applications. The bioactivity and osteoconductivity 

of HA provide a suitable condition for new bone growth and integration (Dorozhkin, 

2013; Oh et al., 2006). Thus, HA is extensively investigated and clinically used as a 

freestanding implant, coating on metallic implants, and reinforcement in polymer 

scaffold materials for tissue regeneration (Hong et al., 2005; Pielichowska & Blazewicz, 

2010; Shepperd & Apthorp, 2005). However, freestanding HA implant or HA coatings 

exhibit several disadvantages, such as poor fracture toughness (KIC) and wear resistance 

(Y. Chen et al., 2007; Y. Gu et al., 2004; Yu et al., 2003). KIC of dense HA (1 MPa·m
0.5

) 

is significantly lower than the minimum reported KIC of cortical bone (2 MPa·m
0.5

) (Tan 

et al., 2011). Bones are load-bearing parts of a living body. These tissues should possess 

good KIC to prevent cracking and fracture when high and cyclic loading is applied 

during limb movement and actions. Therefore, KIC of HA should be improved when 

bone is replaced with an implant or coating. Poor KIC also results in low wear resistance 

of HA because wear volume loss in ceramics is directly related to KIC (Coathup et al., 

2005; Lahiri, Benaduce, et al., 2011).  

One of the possible solutions is HA reinforcement with a second-phase material 

that can help improve mechanical and biological properties of HA. Considering the 
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biocompatibility of a composite structure, an ideal reinforcement material should be 

able to significantly increase mechanical properties with a low content of reinforced 

phase. Low content of reinforcement phase ensures that minimum amount of foreign 

element is introduced to the internal environment of a living body. HA integrates with 

bones because this substance contains similar chemical composition to the mineral 

component of bones. Thus, reinforcement phase should possess excellent elastic 

modulus (E) and strength; with excellent E and strength, minimum content of 

reinforcement phase can significantly increase KIC of HA. 

1.2 Motivation 

Bone injuries aggravated by malformations, disease, developmental deformity, 

trauma, or adverse effects from medical treatments have increased the demand of 

improved bone implant materials (L. L. Hench & Polak, 2002). Affected bones are 

repaired using surgical techniques with autogenous grafts, allogenous grafts, internal 

and external fixation devices, electrical stimuli, and replacement implants. Several 

implant materials, such as metals, polymers, ceramics, and composites, have been 

evaluated and applied in biomedical industries. Among these materials, synthetic HA 

ceramics have been widely utilized as an implant material because the composition of 

this material is similar to inorganic ingredients of bones (Best et al., 2008). Compared 

with natural bone, synthetic HA exhibits poor mechanical properties, such as low 

strength and toughness (D.-M. Liu et al., 2001). Therefore, synthetic HA has been used 

as an implant and coating on metals, such as stainless steel and titanium, as well as its 

alloys (Geetha et al., 2009). Inferior osteogenic capacity and poor mechanical strength 

cause slow bone growth on or through implant surfaces, thereby delaying recovery. 

Decreased osteogenic capacity and mechanical properties of synthetic HA are attributed 

to subtle but significant chemical differences, such as those observed in trace elements, 
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including Mg
2+

, Sr
2+

, Zn
2+

, F
−
, and CO3

2−
 (Bandyopadhyay et al., 2006; Young, 1974). 

This result suggests that adding trace elements, as well as changing surface property that 

favors interaction between a graft material and a natural bone, can be performed to 

improve the osteogenic capacity and mechanical properties of synthetic HA. In addition, 

a graphene nanosheet (GNS), with excellent stiffness and strength has been considered 

as a potential reinforcement to HA because this material has overcome limitations 

related to mechanical and biological properties. GNS possesses Young’s modulus of up 

to 1 TPa and intrinsic strength of approximately 130 GPa (C. Lee et al., 2008). Studies 

on GNS-reinforced ceramic/polymer matrix composites have successfully demonstrated 

that this material can improve structural properties, such as strength, E, and wear 

resistance (Y. Fan et al., 2010; X. Wang et al., 2012). In addition to E, KIC of any 

ceramic-based composite system can be enhanced by GNS through energy absorption 

via crack deflection and crack bridging (J. Liu et al., 2013; J. Liu et al., 2012; Kai Wang 

et al., 2011). GNS can also enhance mechanical properties, including wear resistance 

and KIC. This study aimed to develop techniques for doping metal ions and creating 

composites with GNS to improve the mechanical and biological properties of HA. 

1.3 Objective of Study 

This project aimed to develop biocomposites with mechanical strength similar to 

that of natural bone and superior bioproperties; these biocomposites could be used as 

bone rehabilitation materials in orthopedic applications. HA is the main mineral 

composition of natural bone; this component exhibits excellent bioproperties. As such, 

HA was selected to fabricate ceramic composites. Ceramics sintered with nano-sized 

HA particles display superior mechanical and biological properties. Therefore, nano-

sized HA particles were prepared to produce ceramic matrix. The small grain size of 

ceramic provides greater toughness than the sintered material from conventional micro-
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sized HA particles. Biocompatible reinforcements, such as graphene and metal ion-

doped materials, with unique reinforcing ability were used to enhance the mechanical 

strength of HA ceramics. Multi-phase reinforcing effects of graphene and metal ion-

doped were considered. Different reinforcing phases and reinforcing mechanisms were 

also investigated. Mechanical reinforcing mechanisms and biological concerns were 

considered to develop a series of new bioceramic composites for orthopedic 

applications. 

This study aims to achieve the following specific objectives: 

 To perform different methods to synthesize nano-sized HA particles, which are 

similar to those in natural bone; with different morphology are expected to be 

achieved. 

 To investigate the reinforcing effects of graphene and metal-ion doped materials 

and the influence of filling percentages on the mechanical strength of fabricated 

composites.  

 To evaluate in-vitro the biocompatibility of composites through proliferation, 

viability, and cytotoxicity assays using a bone cell. 

Figure 1.1 summarizes the experiments conducted in this study. 

In this project, HA-graphene and HA-metal ion doped-graphene composites are 

designed and fabricated. The mechanical strength and biological properties of HA 

composite ceramic is improved by combining the reinforcing effects of graphene and 

metal-ion doped materials. 
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1.4 Organization of This Thesis 

This thesis is divided into five chapters as follows: 

Chapter One highlights the background of the study and the problems existing in this 

area, which served as the motivation of this project. Chapter One also presents the 

objective of this study.  

Chapter Two provides a literature review, which discusses the properties of HA, 

fabrication methods of HA particles and composites, properties of graphene, and 

treatment methods of biocomposites. 

Chapter Three describes the methodology used in this project. A reinforcement 

method with nanoparticle and phase-transformation reinforcements of HA, as well as 

graphene and metal ion-doped material reinforcements, was developed and designed to 

enhance mechanical properties of HA composites. The fabrication, characterization, and 

details of composite material synthesis are also described in this chapter. 

Chapter Four introduces and discusses the testing methods of the mechanical and 

bioactivity of HA composites. The growth status of cells and a new apatite layer on the 

sample surface are examined in this chapter. 

Chapter Five presents comprehensive conclusions and recommendations for further 

studies. The originality of this project is also summarized in this chapter. 
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Figure 1.1 Flow chart of the research plan. 
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2 Chapter II: LITERATURE REVIEW 

2.1 Overview of Bioceramics  

Bioceramics have been widely used in orthopedic applications in the past few 

decades because these materials exhibit biocompatibility, superior corrosion resistance, 

excellent chemical stability, mechanical strength, and non-toxicity under physiological 

conditions (L. Hench, 1993; Lacefield et al., 1993). Bioceramics can be categorized into 

three parts according to their bioactivity after implantation: bioinert, biodegradable, and 

bioactive (L. L. Hench et al., 1993). Bioinert ceramics are stable; no chemical reaction 

or biodegradation occurs during long-term implantation. In general, a fibrous tissue is 

formed between a natural bone and a bioinert implant; therefore, bonding strength with 

a natural bone is weak. Bioinert ceramics are widely used because these materials 

exhibit superior mechanical strength, wear resistance, modest KIC, and excellent 

corrosion resistance compared with the two other types. Alumina and zirconia are 

typical bioinert ceramics used in orthopedic applications, such as hip prostheses, dental 

implants, and joint prostheses. Biodegradable ceramics degrade gradually in a physical 

environment. These materials can act as support for the growth of new bone during 

rehabilitation and stimulate immature bone formation. β-Tricalcium phosphate (β-TCP) 

is a typical biodegradable ceramic, which has been successfully used since 1920 (Albee, 

1920; Hulbert et al., 1982). Biodegradable ceramics cannot be used in orthopedic 

applications because these materials exhibit low mechanical strength. 

Over the last two decades, bioactive ceramics can directly bond to natural bone 

without forming fibrous tissues around bioactive implants. Thus, bioactive ceramics 

have been extensively investigated. HA [Ca10(PO4)6(OH)2], which is the main mineral 

constituent of human and animal hard tissues, is a typical bioactive ceramic (Bonner et 

al., 2001; L. L. Hench & Ethridge, 1972; Suchanek et al., 1996). This compound can 
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induce new bone generation and support bone growth; as a result, a strong chemical 

bond is formed between HA implants and natural bone. The bonding strength of the 

interface between HA implants, and bone is 5 or 7 times as much as that between other 

bioinert ceramics and natural bone. The bonding strength of the interface is very high; 

therefore, fractures are usually generated in HA or natural bone but not at the interface 

(Okumura et al., 1991). Moreover, the bonding zone between HA and natural bone 

exhibits a high-gradient Young’s modulus (L. Hench, 1993), which compensates the 

difference in Young’s modulus between HA implant and natural bone. Therefore, load 

can be effectively transferred between HA implant and natural bone. Several typical 

mechanical strength values of these bioceramics are listed in Table 2.1.  

Table 2.1 Mechanical properties of bioceramics (B. Chen et al., 2008; Yoshida et al., 

2006)  

 Bioinert ceramics Bioactive ceramics Biodegradable ceramics 

Al2O3 ZrO2 HA β-TCP 
Flexural strength 

(MPa) 

595 1000 60-90 36-47 

Fracture toughness 

(MPa.m1/2) 

4-6 7 0.60-0.95 0.40-0.80 

Young`s modulus 

(GPa) 

380-420 150-200 40-120 33-90 

2.2 Calcium Phosphates (CP) 

Calcium phosphates (CPs) are some of the most extensively investigated 

bioceramics. These materials are first used in clinical applications as fillers of bone 

defects in the 1920s and first incorporated in dentistry and orthopedics in the 1980s 

(Bohner, 2000). Various types of CP materials include HA, β-TCP, α-TCP, and 

tetracalcium phosphate (TTCP), among others. These materials differ from one another 

in terms of Ca/P molar ratio. Table 2.2 lists several calcium phosphates according to 

Ca/P molar ratio. This ratio is an important parameter that determines the acidity and 

solubility of CPs. A low Ca/P molar ratio corresponds to highly acidic and water-

soluble CPs. For example, monocalcium phosphate monohydrate is highly soluble; 
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TTCP is unstable under aqueous conditions. HA, TCP, hydrated dicalcium phosphate 

(DCP), and anhydrous calcium phosphate are soluble in-vivo (R. Z. LeGeros & 

LeGeros, 1993; Ravaglioli & Krajewski, 1992). Although CP compositions have been 

considered, HA with a Ca/P molar ratio of 1.67 has been extensively investigated 

(Gauthier et al., 2001; Osborn & Newesely, 1980) because HA contains a chemical 

composition and structure comparable with those of natural bone mineral (De Jong, 

1926).  

Considering natural bone composition, which is approximately 70% HA by 

weight and 50% HA by volume, researchers also used HA as a bone substitute material. 

CPs are compounds of great interest in interdisciplinary sciences encompassing 

chemistry, biology, medicine, and geology. Most CPs are classified as resorbable 

biomaterials. Thus, these compounds dissolve under physiological conditions. The 

solubility trend of CP materials is as follows: 

CaHPO4 (DCP) > Ca4 (PO4)2 (TTCP) > Ca3(PO4)2 (TCP)» Ca5(PO4)3 (OH) (HA) 

HA is thermodynamically stable at body temperature because HA is relatively 

insoluble (Ksp = 2.34 × 10
59

) under physiological conditions. HA is chemically similar 

to the mineral component of bones and hard tissues in mammals. This compound is a 

bioactive material, indicating that HA supports bone ingrowth and osseointegration 

when this material is used in orthopedic, dental, and maxillofacial applications 

(Dorozhkin, 2013). 
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Table 2.2 Various calcium phosphates with their respective Ca/P molar ratios      

(Dorozhkin, 2010) 

Ca/P Compound Formula 

0.5 Calcium metaphosphate (α,β,γ) Ca(PO3)2 

0.5 
Monocalcium phosphate monohydrate 

(MCPM) 

Ca(H2PO4)2.H2O 

0.5 Monocalcium phosphate anhydrous (MCPA) Ca(H2PO4)2 

0.67 Tetracalcium dihydrogen phosphate (TDHP) Ca4H2P6O20 

0.7 Heptacalcium phosphate (HCP) Ca7(P5O16)2 

1.0 
Dicalcium phosphate dehydrate (DCPD), 

mineral brushite 

CaHPO4.2H2O 

1.0 
Dicalcium phosphate anhydrous (DCPA), 

mineral monetite 

CaHPO4 

1.33 Octacalcium phosphate (OCP) Ca8(HPO4)2(PO4)4.5H2O 

1.5 α-Tricalcium phosphate (α-TCP) α-Ca3(PO4)2 

1.5 β-Tricalcium phosphate (β-TCP) β- Ca3(PO4)2 

1.2-2.2 Amorphous calcium phosphate (ACP) Ca10-xH2x(PO4)6(OH)2 

1.5-1.67 
Calcium-deficient hydroxyapatite (CDHA) 

e
 Ca10-x(HPO4)x(PO4)6x(OH)2_x

f
  

(0 < x < 1) 

1.67 Hydroxyapatite (HA or OHAp) Ca10(PO4)6(OH)2 

1.67 Fluorapatite (FA or FAp) Ca10(PO4)6F2 

2.0 
Tetracalcium phosphate (TTCP),  mineral 

hilgenstockite 

Ca4(PO4)2O 

e
 Occasionally, is named as precipitated HA. 

f
 In the case x=1 (the boundary condition with Ca/P=1.5), the chemical formula of CDHA looks as 

follows: Ca9(HPO4)(PO4)5(OH). 

2.2.1 Hydroxyapatite (HA) 

HA is the main component of teeth and bone minerals; this component represents 

a large proportion of the elementary composition of the human body. The chemical 

formula of HA is [Ca10(PO4)6(OH)2], indicating that HA is a basic calcium phosphate 

with Ca/P ratio of 1.67. This compound is medically and dentally applied as artificial 

bone, bone filler, bone formation promoter, bioelectrode, drug delivery carrier, dental 

and bone cements, root canal filler, and dental implants (Aoki, 1994). HA is a highly 

biocompatible, bioactive ceramic with osteoconductive properties; as a result, a strong 

chemical bond is formed with bone and bone tissue (Blokhuis et al., 2000; Ghanaati et 

al., 2012). Previous studies showed the high degree of biocompatibility and bioactivity 

of HA (Jansen et al., 1993; Martin et al., 1993). Although, HA is a very desirable 

material for biomedical applications because of high biocompatibility and bioactivity, 

some of the mechanical properties of HA greatly limit its applications.  
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Table 2.3 Properties of HA and cortical Bone (Hench et al., 1993) 

Mechanical and physical properties Hydroxyapatite Natural Bone 

Young`s modulus (GPa) 40-120 7-30 

Compressive strength (MPa) 300 10-230 

Bending strength (MPa) 110-200 200 

Fracture toughness (MPa.m
1/2

) <1 2-12 

Poisson`s 0.27 0.30 

If mechanical properties of HA can be enhanced to achieve similar properties to 

those of natural bone, potential applications of HA in orthopedics and in other fields of 

medicine would likely increase. Bone in-growth in HA is excellent, as previously 

mentioned. The modulus of this material is greater than that of bone, but HA does not 

provide the degree of stress shielding similar to that of metallic implants with much 

higher moduli. The compressive strength in a dense form is comparable at 300 MPa, but 

the bending strength of approximately 112 MPa is set as cut, and 196 MPa polished to a 

surface finish of 1 pm is not at par (Thomas et al., 1980). KIC of HA is <1 MPa·m
1/2

,
 

whereas KIC of bone is 2 MPa·m
1/2

 to 12 MPa·m
1/2 

depending on bone type, location, 

and age. To enhance the reliability of HA in bone replacement applications, researchers 

should set KIC of at least 2 MPa·m
1/2

. The comparative data of HA and natural bone are 

shown in Table 2.3. 
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2.2.1.1 Structure of Hydroxyapatite 

 

Figure 2.1 HA structure - formation of pseudo-one-dimensional OH channels (a) OH 

dipoles form chains along crystallographic c-axes, (b) view on the OH channels from 

the plane cross section. PO4 group is shown as tetrahedral, (c) simplified unit cell 

structure of HA showing that OH groups are aligned along columnar C directions 

(Nakamura et al., 2001; Terra et al., 2002) 

The most common bioactive ceramic material is HA [Ca10(PO4)6(OH)2], which 

contains similar composition to bone and teeth. Between the two known crystal forms of 

HA, namely, monoclinic (space group P21/b) and hexagonal (space group P63/m) 

phases, only the hexagonal phase is of practical importance because the monoclinic 

form is destabilized by the presence of even small amounts of foreign ions (Elliott, 

1994; Gras et al., 2014). a and c lattice parameters of HA are 0.9418 and 0.6884 nm, 

respectively (Ellis et al., 2006). PO4
3−

 group forms a regular tetrahedron with a central 

P
5+

 ion and O
2−

 ions in the four corners (Figure 2.1). OH
−
 groups are also ionically 

bonded. HA lattice contains two types of calcium positions, namely, columnar and 
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hexagonal (Terra et al., 2002). Four “columnar calcium” ions occupy [1/3, 2/3, 0] and 

[1/3. 2/3, 1/2] lattice points.  

 “Hexagonal calcium” ions are located on planes parallel to the basal plane at c = 

1/4 and c = 3/4. Six (PO4
3−

) groups are located on these planes. A significant property of 

HA is the presence of hydroxyl [OH
−
] groups, which are located in columns parallel to 

the c axis. This phenomenon may be viewed as passing through the centers of triangles 

formed by “hexagonal calcium” ions (Elliott, 1994). Successive “hexagonal calcium” 

triangles are rotated at 60°, as indicated by green shade in Figure 1.2. OH
−
 ions are 

aligned in columns parallel to the c-axis, along with Ca
2+

 and (PO4
3−

) ions, and form 

OH
−
 ion chain. In the hexagonal phase, OH dipoles in the same columnar channel may 

be oriented differently (disordered column model). These dipoles may be oriented 

similar to a specific column, but orientation is independent of the orientation in 

neighboring columns (ordered column model of a hexagonal phase). 

2.3 Carbon Nano-Structures (CNS) 

CNS are some of the most important members of the nanotechnology family of 

materials. The discovery and emergence of CNS have affected and reshaped various 

aspects of nanotechnology. These structures have stimulated and contributed to 

significant developments in physics, electronics, optics, mechanics, biology, and 

medicine. Carbon nanoscience has rapidly emerged as a new discipline that employs 

properties of carbon at a nanoscale (Shenderova et al., 2002). These carbon entities 

include zero-dimensional structures (i.e., fullerenes, particulate diamond, and carbon 

black), one-dimensional (1D) structures (i.e., nanotubes or nanofibers and diamond 

nanorods), two-dimensional (2D) structures (i.e., graphene, graphite sheets, and 

diamond nanoplatelets), and three-dimensional (3D) structures [i.e., nanocrystalline 
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diamond (NCD) films, nanostructured diamond-like carbon films, and fullerite] (Y. Hu 

et al., 2006). CNS have been extensively investigated in biology and medicine. 

With extraordinary properties, fullerenes and carbon nanotubes (CNTs) have 

been examined for numerous therapeutic and pharmaceutical purposes since the mid-

1990s (Shenderova et al., 2002). Other CNS, such as NCD, have been commonly used 

because various fabrication and modification techniques have greatly developed. 

However, CNS in orthopedic applications remains unclear. For instance, the first 

practical study on carbon nanofibers (CNFs) and CNTs to support osteoblast (bone-

forming cell) functions necessary to improve orthopedic implant applications was 

performed by Webster et al. in 2002 (Elias et al., 2002). In this study, osteoblast 

proliferation was enhanced. Intracellular protein synthesis, alkaline phosphatase 

activity, and calcium-containing mineral deposition on nano-diameter CNF are 

compared with those of conventional micron-diameter carbon fibers and implanted 

titanium (L. Yang et al., 2011). However, studies on the use of CNS, specifically 

graphene, in orthopedic medical device applications have grown exponentially 

(Janković et al., 2014; Lahiri et al., 2012; Lv Zhang et al., 2013). Graphene exhibits 

excellent mechanical properties (e.g., Young’s modulus or E) because of sp
2

 carbon-

bonding network. Single-layer graphene theoretically yields Young’s modulus (E) of 

1.02 TPa (ν = 0.149), which is experimentally validated for a defect-free graphene sheet 

(flat-shaped structure) with a fracture strength of 42 N·m
−1

 (C. Lee et al., 2008).  

The measured mechanical properties of graphene nano platelets (GNPs; Young’s 

modulus, ultimate tensile strength, KIC, fracture energy, and resistance to fatigue crack 

propagation) indicate that GNPs significantly outperform CNT additives. Young’s 

modulus of graphene nanocomposite was 31% greater than pure epoxy, with 3% 

increase in single-walled CNTs. The tensile strength of baseline epoxy was enhanced by 



18 

40% with GNPs compared with that of another substance with 14% improvement in 

multi-walled CNTs. KIC of mode I of the nanocomposite with GNPs showed 53% 

increase based on epoxy compared with 20% improvement in multi-walled CNTs. The 

superiority of GNPs to CNTs in terms of mechanical property enhancement may be 

related to a high specific surface area, enhanced nanofiller matrix adhesion/interlocking 

arising from a wrinkled (rough) surface, and 2D (planar) geometry of GNPs (Rafiee et 

al., 2009). 

2.3.1 Graphene Oxide (GO) 

GO is a compound of carbon, oxygen, and hydrogen at variable ratios with a 

single-atomic layer, which is synthesized by exfoliating graphite with strong oxidizers. 

The bulk product is a brownish/yellowish solid material that retains the layer structure 

of graphite but with larger and irregular spacing. GO does not require post-production 

functionalization because this material can be structurally visualized as a graphene 

sheet; the basal plane of this material is decorated by oxygen-containing groups, such as 

hydroxyl, carboxyl, and epoxide groups (Figure 2.2). GO is hydrophilic, and this 

material can be dissolved and dispersed in deionized water (DI), N-Methylpyrrolidinone 

(NMP), Dimethylformamide (DMF), Tetrahydrofuran (THF), and other solvents that 

behave similar to water because these groups exhibit high affinity to water molecules. 

GO is a poor conductor, but light, heat, or chemical reduction treatment can restore 

most properties of pure graphene (Dreyer et al., 2010; W. Hu et al., 2010; J. Kim et al., 

2010; Y. Zhu et al., 2010).  
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Figure 2.2 Structure of GO with the omission of minor groups (carboxyl, carbonyl, 

ester, etc.) on the periphery of the carbon plane of the graphitic platelets of GO. 

2.3.2 Reduced Graphene Oxide (rGO) 

GO is prepared by exfoliating graphite oxide obtained through graphite oxidation 

in the presence of strong acids and oxidants. One of the most attractive properties of GO 

is that this material can be (partly) reduced to graphene-like sheets by removing 

oxygen-containing groups; as a result, a conjugated structure is recovered. Reduced GO 

(rGO) sheets are usually considered as a type of chemically derived graphene (Pei & 

Cheng, 2012). The reduction of GO, which is one of the most common chemically 

converted graphenes, is performed via chemical methods by using different reductants, 

such as hydrazine (Tung et al., 2008), dimethyl hydrazine (Stankovich, Dikin, et al., 

2006), hydroquinone (G. Wang et al., 2008), sodium borohydride (Si & Samulski, 

2008), hydroiodic acid (Pham et al., 2011), sulfur-containing compounds (W. Chen, L. 

Yan, & P. Bangal, 2010), ascorbic acid (J. Zhang et al., 2010), and vitamin C (Gao et 

al., 2010). Among these reductants, hydrazine is widely used because this substance is 

an effective reducing agent suitable to reduce GO in various media (Dang et al., 2012). 

However, reduction is very slow, toxic, and dangerously unstable. A green chemistry 

route of graphene reduction should be investigated. GO reduction has been performed 

under various conditions, such as alkaline condition, ultraviolet-assisted methods, and 
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hydrothermal methods (W. Chen, L. Yan, & P. R. Bangal, 2010). Hydrothermal 

technique is a green method because no hazardous reductants are used (Nethravathi & 

Rajamathi, 2008; G. Wang et al., 2009; Y. Zhou et al., 2009). 

2.3.3 Graphene Nanoplatelet (GNP) 

Graphite is a layered compound comprising a series of stacked parallel graphene 

layers. In a basal plane, each carbon atom is sp
2
 hybridized and covalently bonded to 

three other substances, forming continuous hexagons. The fourth hybridized valence 

electron is paired with another delocalized electron of the adjacent plane by a much 

weaker van der Waals force (Pierson, 1993). Delocalized electrons can move readily 

from one side of the plane to the other side but cannot easily move from one layer to 

another. Consequently, graphite is highly anisotropic. Table 2.4 summarizes the major 

properties of graphite. 

Table 2.4 Physical properties of graphite 

Properties Basal Plane Interlayer 

Specific gravity (g cm-3) 2.26 

Thermal conductivity (w m-1k-1) 390 2 

Electrical conductivity (S cm-1) 4000 3.3 

Young`s modulus (GPa) 1060 36.5 

Graphene layers in a graphite flake can be readily separated to form thin 

graphene nanoplatelets (GNPs) through intercalation and exfoliation because of a 

unique layered structure (Viculis et al., 2005). GNPs are multi-layer particles consisting 

of 10 to 30 sheets of graphene, but these particles retained much of single-layer 

properties. GNPs can be produced in bulk quantities through the following: (i) 

mechanical peeling; (ii) substrate-based methods, such as epitaxial growth and chemical 

vapor deposition (CVD); (iii) solution-based reduction of GO; and (iv) direct exfoliation 

of graphite in selected solvents (Novoselov et al., 2004; Alfonso Reina et al., 2008; 
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Stankovich, Dikin, et al., 2006; Sutter et al., 2008). Platelet primarily refers to the 

multiple-layer structure of graphene sheets. The use of GNPs is desirable because these 

materials are cheaper and easier to produce than single-layer graphene or CNTs (Nieto 

et al., 2012). Moreover, GNPs exhibit exceptional functionalities, high mechanical 

strength (1 TPa in Young’s modulus and 130 GPa in ultimate strength), and chemical 

stability because of several parameters, such as abundance, cost effectiveness, and high 

specific surface area, which carries high levels of transferring stress across an interface; 

thus, reinforcement is enhanced. GNPs are platelet-like graphite nanocrystals with 

multiple graphene layers (C. Lee et al., 2008; Shen et al., 2013). 

2.4 Synthesis of HA 

The synthesis of HA particles is usually the first step to fabricate HA implants. 

HA synthesis is dependent on physical requirements, including crystallinity, particle 

size, specific surface area, and morphological characteristics, of the resulting HA 

powder. Various methods, such as sol–gel (Fathi & Hanifi, 2007; Feng et al., 2005), 

hydrothermal (J. Liu et al., 2003; H.-b. Zhang et al., 2009), mechanochemical (B Nasiri-

Tabrizi et al., 2009; C. Silva et al., 2003), spray-drying (Nandiyanto & Okuyama, 2011; 

R. Sun et al., 2009), sonochemical (Cao et al., 2005; Poinern et al., 2009), and co-

precipitation (V. V. Silva et al., 2001; L. Zhang et al., 2005) methods, have been 

developed to prepare HA particles.  

Calcium HA ceramic is usually prepared from apatites obtained through 

precipitation or hydrolysis under basic conditions and subsequently sintered at 950 °C to 

1300 °C (Bonel et al., 1988). Precipitation can be obtained via either of the following 

reactions: 

Ca(NO3)2 + NH4H2PO4 + NH4OH → Ca10(PO4)6(OH)2 
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Ca(CH3COO)2 + NH4H2PO4 + NH4OH → Ca10(PO4)6(OH)2 

Ca(OH)2 + H3(PO4)2 + NH4OH → Ca10(PO4)6(OH)2 

HA ceramic may also be prepared by sintering the products of dicalcium phosphate 

dihydrate (DCPD, CaHPO4∙2H2O), dicalcium phosphate anhydrous (DCPA, CaHPO4), 

or octacalcium phosphate [OCP, Ca8H2(PO4)6∙5H2O] hydrolysis in basic solutions or 

CaCO3 in phosphate solutions (R. LeGeros, 1988), as in the following reactions. 

CaHPO4 or CaHPO4.2H2O + NH4OH → Ca10(PO4)6(OH)2 

CaCO3 + NH4H2PO4 → Ca10(PO4)6(OH)2 

The critical control of reaction pH and reactant concentration is required to 

obtain HA. In this study, two methods are used to synthesize HA, namely, low-

temperature (aqueous precipitation) and high-temperature (hydrothermal) techniques. 

2.4.1 Wet Chemical Precipitation Method 

Conventional wet chemical precipitation methods are among the most common 

approaches because these methods are simple, available, and inexpensive raw materials. 

Combined with low reaction temperatures, this process leads to minimal operational 

costs. Wet chemical precipitation is essential for manufacturing applications because of 

scalability. Precipitation method involves mixing reactants in the presence of water at 

controlled temperature, atmosphere, and pH; this method allows the resulting precipitate 

to age under continuous stirring for 12 h. Once aged, the precipitate is thoroughly 

washed, filtered, and dried. Super saturation is key to precipitation. A solution is 

defined as supersaturated when this solution contains more solute than the desired 

amount that should be present at equilibrium. Nucleation and crystal growth occur once 

a solution is supersaturated. This phenomenon occurs when phosphate solution is 
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titrated in a calcium solution, thereby forming a suspension of precipitated particles. HA 

powders can result in powder with deviations from stoichiometry (i.e., Ca/P ≠ 1.67), 

along with additional secondary phase. Experimental parameters, such as reactant 

concentration, reaction temperature, reaction atmosphere, and reaction pH, should be 

carefully controlled to avoid the formation of secondary phases during aqueous 

precipitation. In precipitation, pH is a very important factor to control the properties of 

precipitates during HA nanoparticle synthesis. The major precipitates in a solution are 

HA, TCP, DCPA, DCPD, and OCP. The ionization equations of these chemicals in a 

solution are as follows: 

HA: 5𝐶𝑎2+ + 3𝑃𝑂4
3− + 𝑂𝐻− ↔  𝐶𝑎5(𝑃𝑂4)3𝑂𝐻 

TCP: 3𝐶𝑎2+ + 2𝑃𝑂4
3− ↔  𝐶𝑎3(𝑃𝑂4)2 

OCP: 8𝐶𝑎2+ + 6𝑃𝑂4
3− + 2𝐻+ + 5𝐻2𝑂 ↔  𝐶𝑎8𝐻2(𝑃𝑂4)6. 2𝐻2𝑂 

DCPA: 𝐶𝑎2+ + 𝐻𝑃𝑂4
2− ↔  𝐶𝑎𝐻𝑃𝑂4 

DCPD: 𝐶𝑎2+ + 𝐻𝑃𝑂4
2−+ 2𝐻2𝑂 ↔  𝐶𝑎𝐻𝑃𝑂4. 2𝐻2𝑂 

These equations show that a high pH favors HA nanoparticle precipitation. At 

pH > 8, the solubility of HA nanoparticles is much lower than that of DCPA, DCPD, 

OCP, and TCP. At pH > 8, the nucleation rate of HA particles increases as pH increases. 

Crystals nucleate in a short period, and competition among these crystals restricts HA 

crystal growth, which favors nanoparticle production. In this experiment, pH was 

controlled between 9 and 11 by adding ammonia (Koutsopoulos, 2002; C. Liu et al., 

2001; Mobasherpour et al., 2007; P. Wang et al., 2010). 
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2.4.2 Hydrothermal Method 

Hydrothermal method is used to synthesize materials at high temperature and 

high pressure by using chemical supersaturated solutions (J. Liu et al., 2003). 

Hydrothermal processing involves the use of a solvent (with precursor soluble ions), 

which is heated in a sealed vessel. The main solvent in this process is water. Solvent 

temperature can be increased to above boiling point because autogenous pressure in a 

sealed vessel exceeds ambient pressure. Variations in solvent and reactant properties 

(e.g., solubility) at increased temperature indicate that experimental variables can be 

controlled to a high degree. With this characteristic, reactions become more predictable 

because crystal nucleation, growth, and aging can be regulated. Calcination is not 

required in this method. In low-temperature methods, such as wet chemical precipitation 

and sol–gel synthesis, post-heat treatment is required to crystallize HA, whereas 

crystalline HA can be produced in one step via hydrothermal and solvothermal 

syntheses. Yields approaching 100%, relatively low-cost reagents, and short reaction 

times have also been reported for these processes. Furthermore, HA nanotube, 

microtube, and nanorod with a micro length are formed (Chandanshive et al., 2013; C. 

Chen et al., 2011; D. K. Lee et al., 2011; Lester et al., 2013; J. Liu et al., 2003; M.-G. 

Ma et al., 2008).    

2.5 Synthesis of Graphene Nano-Sheet (GNS) 

Graphene synthesis can be conducted via four different methods: (1) CVD 

(Eizenberg & Blakely, 1979); (2) scotch tape method involving graphene sheets that are 

mechanically exfoliated from highly oriented graphite flakes (Novoselov et al., 2004); 

(3) epitaxial growth of graphene films on an electrical insulating substrate (e.g., Si) 

(Berger et al., 2006); and (4) chemical reduction of GO derivatives from natural 

graphite flakes (Stankovich, Piner, et al., 2006). These methods have been described in 
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several studies since this material was discovered. In the early 1970s, the pioneers of 

monolayer graphite production through CVD were surface scientists and chemists. In 

the 1950s and 1960s, extensive studies on aqueous suspensions of monolayer graphite 

oxide sheets were conducted by (Hans-Peter Boehm et al., 1962). Graphite oxide, which 

can be used to extract GO sheets through oxidation of natural graphite flakes, was 

identified as early as the 19th century (Staudenmaier, 1898); Brodie, 1860; Hummers & 

Offeman, 1958). Ultrasonication, a recently discovered process, can be utilized to 

exfoliate graphite flakes and generate aqueous suspensions of oxidized graphene sheets 

with a broad range of physical and mechanical properties (Park & Ruoff, 2009) 

2.5.1 Graphene Oxide  

Despite the relative novelty of graphene as a material of much interest and great 

potential (Park & Ruoff, 2009; Tung et al., 2008), GO was used in previous studies of 

graphite chemistry (Hanns-Peter Boehm & Stumpp, 2007). Brodie, a British chemist, 

was the first to explore the structure of graphite by investigating the reactivity of 

graphite flake. In one of the reactions, potassium chlorate (KClO3) is added to graphite 

slurry in fuming nitric acid (HNO3) (Brodie, 1859). Brodie determined that the resulting 

material is composed of carbon, hydrogen, and oxygen, resulting in an increased overall 

mass of graphite flake. Almost 40 years after Brodie’s discovery of the feasibility of 

graphite oxidation, Staudenmaier (Staudenmaier, 1898) improved KClO3-fuming HNO3 

preparation by adding chlorate in multiple aliquots during the reaction; KClO3-fuming 

HNO3 preparation is also improved by adding concentrated sulfuric acid to increase 

mixture acidity, in contrast to single addition performed by Brodie. This slight change 

in procedure resulted in an overall extent of oxidation similar to Brodie’s multiple 

oxidation approach; however, this procedure was performed more practically in a single 

reaction vessel. Almost 60 years after Staudenmaier’s study, Hummers and Offeman 
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developed an alternate oxidation method by reacting graphite with a mixture of 

potassium permanganate (KMnO4) and concentrated sulfuric acid (H2SO4); as a result, 

similar oxidation levels have been achieved (Scheme 2.1) (Hummers Jr & Offeman, 

1958). Although slightly modified versions have been developed, the three previously 

described methods are the primary routes of GO formation. 

𝐾𝑀𝑛𝑂4 + 3𝐻2𝑆𝑂4 → 𝐾+ + 𝑀𝑛𝑂3
+ + 𝐻3𝑂+ + 3𝐻𝑆𝑂4

− 

𝑀𝑛𝑂3
+ + 𝑀𝑛𝑂4

− → 𝑀𝑛2𝑂7 

Scheme 2.1 Formation of dimanganeseheptoxide (Mn2O7 from KMnO4) in the presence 

of strong acid. 

2.6 Synthesis of Composite  

Single-phase ceramics cannot satisfy the requirements in many application 

conditions. These ceramics have either low bioactivity or low mechanical strength. 

Composite materials with properties of each constituted phase should be developed as a 

good approach to enhance the quality of bone rehabilitation materials. The properties of 

composite materials can be controlled by adjusting their composition and the 

percentages of their constituted phases. Table 2.5 lists the mechanical properties of HA 

and cortical bone. If the mechanical properties of HA could be enhanced, the use of this 

material in orthopedics is feasible. HA is used as a rehabilitating material of human hard 

tissue and drug-releasing agent because of excellent biocompatibility and bioactivity. 

However, low strength and inherent brittleness of this material limits its application to 

non-load-bearing conditions. 
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Table 2.5 Typical mechanical properties of HA and cortical bone (Hench et al 1993; 

Murugan and Ramakrishna 2005; Chen et al 2008) 

Mechanical Properties Hydroxyapatite Cortical bone 

Young`s Modulus (GPa) 40-120 7-30 

Compressive strength (MPa) 300 10-230 

Flexural strength (MPa) 60-90 50-150 

Fracture toughness (MPa.m
1/2

) <1 2-12 

A composite technique was applied to improve the mechanical strength of HA 

without impeding the biocompatibility and bioactivity of this material for biomedical 

applications. Composite materials exhibit distinct properties of each constitutive phase. 

The properties of composite materials can be adjusted to satisfy specific requirements 

by deriving and applying an appropriate processing technology. Various methods, such 

as refining HA particle microstructure and incorporating reinforcement phases, have 

been conducted to improve KIC and flexural strength of HA ceramics. HA composites 

are classified as follows: 

1. HA-ceramic composite (HA-Al2O3, HA-ZrO2, and HA-bioglass) (Cholewa-Kowalska 

et al., 2009; Curran et al., 2009; Sona Kim et al., 2002; J. Li et al., 1995; Quan et al., 

2008; Ravarian et al., 2010). 

2. HA-polymer composite (HA-PLLA, PGA, and PPF) (Isago et al., 2014; Muguruma, 

2010; Takayama et al., 2012; X. Zhou et al., 2008). 

3. HA-carbon nanostructure composite (HA-CNT and HA-GNS) (Fan et al., 2014; 

Safavi & Sorouri, 2013; W. Wang et al., 2012; A. White et al., 2011; Lv Zhang et al., 

2013). 
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4. HA doped with metal ions (HA/Ag
+
, Na

+
, Zn

2+
, Ni

2+
, Sr

2+
, La

3+
, Y

3+
, Ta

5+
, Nb

5+
) 

(Dasgupta et al., 2010; Guerra‐López et al., 2001; Jadalannagari et al., 2014; Hejun Li et 

al., 2012; Ligot et al., 2012; Nathanael et al., 2011; Roy et al., 2011; Stanić et al., 2011).  

These composites exhibit distinct advantages and disadvantages. For instance, 

the flexural strength stability of HA ceramic composite, such as Al2O3, is poor, although 

the flexural strength and KIC of composites have been improved significantly. This 

drawback is caused by differences in thermal expansion coefficients of HA and Al2O3; 

as a result, multiple microcracking occurs after sintering occurs, and flexural strength 

of composites weakens (Champion et al., 1996). In HA carbon nanostructure 

composites, such as CNT, CNTs in CP, especially HA, have been applied because these 

materials exhibit unique mechanical properties; toughness and elastic strength of HA 

composites have also been improved. However, the widespread use of CNT as fillers is 

reduced by several issues, such as high cost and heterogeneous dispersion throughout 

the matrix, which can affect mechanical properties and cytotoxic response in an organic 

environment. For metal ion-doped HA, stoichiometric HA displays limited reactivity in 

in-vitro (Ducheyne et al., 1993) and in-vivo (Schepers et al., 1991) experiments, 

resulting in prolonged recovery time (Salgado et al., 2004). Low osteogenic capacity 

and mechanical properties of synthetic HA are caused by the absence of trace elements 

in natural bone structure (Bandyopadhyay et al., 2006). Therefore, these elements are 

incorporated in synthetic HA to improve mechanical and biological properties of 

synthetic HA. 

2.6.1 Synthesis of Ions Doped HA 

Doping is a very important concept in materials science. In doping, elements 

(e.g., atoms, ions, and molecules) are deliberately introduced to a specific material to 

improve material properties. Impure products are formed when foreign elements are 
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found in a material but not formed via a controlled procedure. Accidental impurities are 

good dopants because these substances enhance material properties or develop new 

properties. Thus, material doping is a very crucial issue to produce functional materials. 

A dopant contains lower concentration than the main elements of a material, and this 

concentration typically ranges from a few ppm to a few percent values (Nedelec et al., 

2008). 

In synthetic HA, trace elements, such as anions (F− and CO3
2−) and cations (Ag

+
, 

Sr
2+

, Y
3+

, and Ta
5+

), are implicated in the improvement of structural stability and 

biological and mechanical performances of bone (Basar et al., 2010; Elena Landi et al., 

2004; Ligot et al., 2012; Mardziah et al., 2009; Stanić et al., 2011). Doping of cations 

results in alterations in structure, microstructure, and surface properties of HA. The 

valency of dopants can be increased, resulting in enhanced bioactivity of doped HA. A 

desired level of bioactivity, biocompatibility, solubility, and adsorption properties can 

be achieved by controlling ions that substitute Ca
2+

, PO4
3−, and OH− in the HA lattice 

structure. However, elements with high valency have been used to dope HA. Ion 

dopants are synthesized using several methods. Wet chemical precipitation 

(Paluszkiewicz et al., 2010; Ren et al., 2010; J. L. Xu & K. A. Khor, 2007), sol–gel (K. 

Cheng, Zhang, & Weng, 2005; K. Cheng, Zhang, Weng, et al., 2005; Kalita & Bhatt, 

2007; Mardziah et al., 2009; Miao et al., 2005), and hydrothermal (Aminian et al., 2011; 

F. Chen, P. Huang, et al., 2011; Nathanael et al., 2011; Sato et al., 2006) methods have 

been applied using different chemical precursors. For instance, (Nedelec et al., 2008) 

considered numerous advantages of sol–gel method to prepare and dope ions. Sol–gel 

process provides materials with good chemical homogeneity, which is a very crucial 

characteristic. Homogeneous doping produces materials with homogeneous properties, 

which are a fundamental characteristic of large-scale production and low doping levels. 

In doping, sol–gel chemistry provides another advantage; in particular, doping is highly 
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versatile, which causes variation in doping ion type and concentration. However, wet 

chemical precipitation is commonly used to synthesize monovalent, bivalent, trivalent, 

and pentavalent ions. Wet chemical precipitation involves the use of different sources of 

reagents to synthesize doped HA.  

2.6.2 Synthesis of HA/Graphene Composite 

Homogeneous distribution and efficient use of the secondary phase are some of 

the major challenges in composite systems. GNS is a nanoscale material. GNS 

agglomerates because of a high surface energy when this material is added to 

composites as a reinforcing phase; as a result, this process negatively influences the 

reinforcing ability of composite materials (Nieto et al., 2012). Several modifications in 

composite processing techniques have been proposed to improve the dispersing 

properties of GNS in HA. These techniques and their modifications are discussed in the 

following subsections. The main goals of these methods are as follows: 

(i) To ensure good dispersion and avoid agglomeration of GNS in the HA matrix and  

(ii) to provide good interaction of GNS with HA at the interface to ensure good bonding 

in a composite. 

(a) Synthesis of Composite by Chemical Precipitation and Hydrothermal Method 

The chemical precipitation of HA on a GNS surface is generally performed by 

dispersing GNS in a chemical bath where HA is precipitated. HA-coated GNS ensures 

that HA and GNS are uniformly distributed. GNS is suspended in calcium 

nitrate/chloride/hydroxide/carbonate bath and then stirred. Afterward, diamonium 

hydrogen phosphate/phosphoric acid is added dropwise to the bath with vigorous 

agitation to form HA precipitate on the surface of the suspended GNS. pH (>10) and 
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precipitation parameters, such as temperature, should be optimized to ensure that HA 

phase precipitates and CaHPO4·2H2O or Ca3(PO4)2 phases are not formed. GNS is also 

uniformly distributed in HA precipitate in a powder form via chemical precipitation (M. 

Li, Wang, et al., 2013; Y. Liu et al., 2014; Neelgund et al., 2013; Núñez et al., 2014; 

Oyefusi et al., 2014). HA precipitate formed on the GNS surface through chemical 

precipitation contains an amorphous structure that requires posttreatment to transform 

into a crystalline structure. HA/GNS is formed via hydrothermal method to obtain the 

crystalline structure of HA composite. In this method, GNS agglomeration is prevented 

using DMF and cetyltrimethylammonium bromide (CTAB) as surfactants to promote 

good dispersion of GNS under controlled pH of approximately 5 (Fan et al., 2014; Qi et 

al., 2015). Figure 2.3 shows the GNS/HA composite produced through precipitation and 

hydrothermal methods. 

 

Figure 2.3 GNS/HA composite by (a) hydrothermal (b) chemical precipitation method. 

(b) Mechanical Mixing Methods 

In mechanical processing of composite powder, HA is physically mixed with 

GNS via mechanical forces. These techniques are also associated with chemical mixing 

routes to enhance GNS dispersion. Mechanical mixing can be divided into three parts, 

namely, (i) ball milling, (ii) ultrasonication, and (iii) stirring. Ball milling is one of the 

commonly used techniques to disperse GNS in HA to prepare composite powders and 
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fabricate coatings and sintered parts. HA composite synthesized by mixing through 

ultrasonication is more effective in dispersion than that produced through ball milling 

(K. Sun et al., 2004). 

 

Figure 2.4 Distribution of GNS in HA powder mixed using (a) ultrasonication (b) ball-

milling. 

Ultrasonication is performed to prepare HA composite precursor by using 

ambient temperature coating technique, namely, electrophoresis (Janković et al., 2014; 

M. Li et al., 2014; M. Li, Liu, et al., 2013). Ultrasonication bath is also used to mix 

GNS with HA to uniformly disperse GNS in precursor and coating stages (Lv Zhang et 

al., 2013; J. Zhu et al., 2011). Ball milling is performed to mix 2.5wt% GNS in BCP 

powders to prepare composites via sintering, hot pressing, and spark plasma sintering 

(SPS) routes (Yan Zhao et al., 2013). However, studies have not specifically mentioned 

the effectiveness of ball milling to disperse GNS in HA. Figure 2.4 presents uniformly 

distributed GNS in HA powder mixed through ultrasonication and ball milling.  

Surfactant used to disperse GNS 

A surfactant plays an important role to disperse particles to produce a composite. 

Nanoparticles exhibit a high surface energy because these particles lack coordinate 

atoms, and high van der Waals forces induce agglomeration. In a study on different 

surfactants used to disperse GNS, anionic surfactants, such as sodium dodecyl sulfate, 
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sodium dodecyl benzene sulfonate, and CTAB, enhance GNS dispersion in DI water 

(Fan et al., 2014; Y. H. Meng et al., 2006; Walker et al., 2011; Lv Zhang et al., 2013; 

Yan Zhao et al., 2013). A surfactant facilitates the dispersal of nanomaterials because 

surfactants exhibit unique properties. A surfactant contains a water-soluble 

(hydrophilic) end and a water-insoluble (hydrophobic) end. The hydrophobic end of a 

surfactant attaches to the particle surface, and the hydrophilic end extends to water. An 

electric layer forms on the particle surface because of the attached surfactant. The 

electrostatic effect of the charges on a particle surface prevents agglomeration. CTAB, 

which is an ionic surfactant, was selected in this experiment because CTAB contains a 

tetrahedral structure similar to that of phosphate anions in HA. Structural similarity 

causes CTAB to attach to a specific side of HA, which influences particle growth 

direction. 

2.7 Thermal Heating Process and Consolidation of Composite Structure  

HA composites are sintered; as a result, dense solid shapes used in orthopedic 

applications are formed to produce HA powder. In sintering, HA powder is subjected to 

mechanical compaction and firing until individual particles are combined through 

diffusion. Compaction and firing, along with chemical and morphological 

characteristics of starting powder, determine the microstructure of a solid material. The 

primary considerations during consolidation at high temperature include the control of 

porosity, maintenance of good dispersion of powder fillers, and simultaneous 

minimizing of the chemical dissociation of HA to other phases (TCP and CaO). The 

chemical composition and microstructure are basic aspects governing the mechanical 

properties of ceramics (Juang and Hon, 1996; Tuan and Guo, 2004; Pramanik et al., 

2007; Rahaman, 2007; Zhang et al., 2007). HA composites are combined by sintering 

after powder is subjected to compaction; this process can be performed through uniaxial 
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and isostatic pressing. A wide range of sintering temperature from 1050 °C to 1200 °C 

with a dwell time of 1 h to 3 h is used to consolidate HA/GNS. However, high 

temperature and prolonged heat treatment enhance the density and crystallinity of HA 

but increase the probability of HA dissociation. A previous study showed that the 

density of HA/GNS composite is lower than HA under similar sintering conditions. This 

finding shows that GNS hold the grains of the matrix apart and prevent closure of pores. 

However, several sintering methods, such as pressure-less, hot-isostatic/hot-press, 

microwave, and vacuum sintering, as well as SPS, have been proposed for ceramic 

densification.  

In HA/GNS composites, several sintering methods have been performed to 

consolidate samples. Zhao et al. reported that BCP/GNS composites are fabricated by 

hot pressing (HP) screened powders at 1150 °C in a multipurpose high-temperature 

furnace at a pressure of 30 MPa in an argon atmosphere for 1 h. The GNS contents in 

the composites were 0, 0.5, 1.0, 1.5, 2.0, and 2.5wt%. Composites with different 

amounts of GNS exhibit almost the same grain size. In other studies, SPS technique has 

been used. The use of SPS to produce HA-based composites is advantageous because 

fine grain structure is retained and HA dissociation is reduced. SPS is a very promising 

technique to process nanostructured materials because this technique retains fine grain 

size after sintering is completed. This process is more applicable for ceramics because 

grain size refinement can simultaneously increase hardness and KIC of the ceramic 

structure as a consequence of the deflection of a propagating crack and changes in a 

cracking mode from transgranular to intergranular. In SPS of HA/GNS, temperatures 

are set in the range of 900 °C to 1150 C and pressure is set at 40 MPa in vacuum or 

argon. Systematic studies on the determination of ideal SPS temperature for HA/GNS 

system have revealed that 1100 C as optimum sintering temperature. Temperatures 
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lower than 1100 °C cause poor consolidation with abundant residual pores, whereas 

temperatures higher than 1100 °C results in excessive grain growth.  

2.8 Physical Properties of Composite 

Diverse factors affect HA decomposition. The main factor is the stability of HA 

structure against sintering temperature. The decomposition temperature of HA can be 

significantly decreased by reducing water partial pressure in sintering atmosphere, 

lowering Ca/P ratio, and sintering with particulate additives. Dehydroxylation and 

decomposition are two steps of HA thermal decomposition. At temperatures > 900 C in 

air and 850 C in water-free atmosphere, dehydroxylation to oxyhydroxyapatite (OHA) 

is accomplished (Ruys et al., 1995; P. E. Wang & Chaki, 1993; J. Zhou et al., 1993). 

Further dissociation of HA at higher temperatures (1200 °C–1450 C) is dependent on 

Ca/P ratio, which is 1.67. At Ca/P < 1.67, HA dissociates into β-TCP (or into α-TCP at 

high temperatures) and TCP. HA dissociates to CaO when Ca/P > 1.67 (Ruys et al., 

1995; A. A. White et al., 2007).  

Ca10(PO4)6(OH)2 > Ca10(PO4)6(OH)2-2xOx + xH2O gas   (OHA) 

Ca10(PO4)6(OH)2 > 2Ca3(PO4)2 + Ca4P2O9 + H2O gas   (TCP) 

The dissociation of HA into TCP or other phases elicits two major effects on the 

consolidated structure. (1) The dissociated phases cause problems in densification, 

thereby significantly reducing structural strength. (ii) The phases formed by dissociation 

of HA leads to a considerable increase in the dissolution rate at physiological pH, as 

confirmed by in-vitro tests (Jarcho et al., 1976; Radin & Ducheyne, 1992; Ruys et al., 

1995). HA dissociates inside a living body, and this process is unsuitable for orthopedic 

applications. Similar problems are also observed in HA/GNS composite systems. 

Moreover, H2O formed by HA dihydroxylation at high temperature can react with GNS 
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to cause damage to nanosheets. Problems regarding HA phase transformation are 

largely associated with high-temperature synthesis routes. Phase dissociation is mainly 

detected by analyzing X-ray diffraction (XRD) pattern of a composite structure. JCPDS 

PDF No. 09-0432 is used to detect the characteristic diffraction peaks from HA. The 

presence of dissociated phases is also detected by referring to the JCPDS database, e.g., 

PDF No. 070-2065 for β-TCP and PDF No. 029-0359 for α-TCP. The reference XRD 

data of GNS are available in JCPDS PDF No. 23-0064 for graphite. Zhang et al. 

revealed the effect of 1.0 wt% GNS on minor dissociation of HA into α-TCP caused by 

rapid processing conditions and low sintering temperature (1150 C) during SPS (L. 

Zhang et al., 2013). Zhao presented the XRD patterns of GNP/BCP composites after 

hot-pressed sintering is performed. Patterns are similar; this result indicates that GNP 

incorporation does not affect the stability of HA and β-TCP (Y. Zhao et al., 2013).  

 Kadir reported the XRD patterns of Zn–Ag/HA samples in metal-ion doped HA. 

In the XRD of 2.5 wt% Zn substitution, a peak related to Zn containing β-TCP was 

identified, indicating that a small amount of β-TCP may have been formed along with 

HA as a result of Zn addition. Zn content further increases from 2.5 wt% to 5 wt%; as a 

result, the intensity of HA peaks evidently decreases, but the intensity of Zn-TCP peaks 

increases. The formation of TCP is due to the difference in sizes of Ca (0.99 Å) and Zn 

(0.83 Å) ions, thereby distorting crystal structures (Kadir et al., 2013).  investigated the 

additional phase (CaO) during the synthesis of HA co-doped with zinc and fluoride. The 

presence of CaO in Zn
2+

-doped samples is attributed to the replacement of Ca
2+

 ion by 

Zn
2+

 ion in HA; Ca
2+

 ions detached from the HA structure to form CaO. The XRD 

spectra of fluoridated samples showed that the CaO phase disappears in 5F and Zn
2+

–F
−
 

co-doped samples. This phenomenon is possibly because F
−
 enhances the stability of 

HA structure (Uysal et al., 2013). 
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2.9 Mechanical Properties of Composites 

In spite of HA exhibits excellent bioactivities, the mechanical properties of this 

substance are poor. The compressive strength of HA can reach as high as 500 MPa, 

which is three to six times higher than that of cortical bone (90 MPa to 160 MPa). 

However, KIC of HA (1.1 MPa·m
0.5

 to 1.2 MPa·m
0.5

) is lower than that of human bone 

(2 MPa·m
0.5

 to 20 MPa·m
0.5

). Therefore, bulk HA cannot be used as load-bearing 

implants. Various techniques are used to obtain high mechanical properties of HA 

materials. Sintering conditions can be altered and composites can be fabricated by 

adding additives; these processes are two major methods to improve the mechanical 

properties of bulk HA ceramics. This study mainly aims to use GNS and add metal ion 

dopants to HA to improve the overall mechanical properties of the composite. In GNS, a 

high specific surface area of these nanostructures can form and wrap around a HA grain, 

resulting in increased contact area with the matrix. Therefore, bonding strength between 

GNS and HA grain can be significantly enhanced; high amounts of energy are required 

to remove nanofillers from a HA matrix. The rough and wrinkled surface of GNS also 

helps enhance mechanical interlocking; as a result, load-transfer efficiency between HA 

matrix and GNS is increased (Lv Zhang et al., 2013). The following subsections present 

a comprehensive summary of the effect of GNS and metal ion addition on KIC, E, and 

hardness of composites. 

2.9.1 Fracture Toughness 

Bones are the load bearing parts of a living body. Thus, they need to possess 

good fracture toughness (KIC) to prevent cracking and fracture on the application of high 

and cyclic loading during limb movement and actions. Fracture toughness of dense HA 

(1 MPa.m
1/2

) is significantly lower than the minimum reported value for cortical bone (2 

MPa.m
1/2

) (A. A. White et al., 2007). Thus, to replace bone as an implant, fracture 
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toughness of HA needs to be improved. GNS and ion doped HA have been explored as 

additives for improving the fracture toughness of HA based composite parts. The role of 

GNS in improving the fracture toughness of the composite system can be explained 

using four main toughening mechanisms (i) crack deflection; (ii) graphene pull-out and 

(iii) crack branching (iv) crack bridging. 

 (i) Crack Deflection: When a crack propagates through the matrix and reaches a GNS 

across its path, the crack gets deflected and absorbs some energy resulting in toughening 

of the matrix.  

(ii) GNS Pull-out: Pulling out of GNS from the ceramic matrix can dissipate energy due 

to binding and friction and subsequently, leads to toughening.  

(iii) Crack branching: Crack branching toughening mechanism was observed in 

Polycrystalline-graphene composites. Crack branching is very frequently observed 

toughening mechanisms in all the investigated composites. The origin of this 

mechanism is the interaction of the propagating crack and GNS with smaller size. The 

length of the secondary cracks is several microns and the frequency of occurrence of 

this mechanism is very high.  

(iv) Crack Bridging: GNS can act as bridges and restrict the widening of the cracks. 

GNS bridges require more energy for opening up of the cracks and cause toughening.  
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Figure 2.5 Toughening mechanisms in HA/GNS composites: (a), (b) crack deflection 

and bridging, (c) crack bridging, and (d) rGO Pull-out 

Indentation-based technique is primarily used to measure KIC. KIC depends on 

several factors, including processing route, powder morphological characteristic, and 

structural type, that is, freestanding or coating (Balani et al., 2009; Y. Meng et al., 

2009). Thus, the percentage of improvement in KIC of a HA/GNS system is calculated 

with reference to KIC of a HA structure (without GNS) reported in the same study. The 

highest improvement in KIC of 80% was obtained by (Lv Zhang et al., 2013) with 1.0 

wt% GNS addition on the sample sintered by SPS. Liu et al. demonstrated that HA/rGO 

nanocomposites can be synthesized via a liquid precipitation approach followed by SPS 

consolidation. KIC of HA/rGO composites reached 3.94 MPa·m
0.5

, indicating a 203% 

increase compared with that of pure HA. Crack deflection, crack tip shielding, and crack 

bridging at HA/rGO interfaces are considered as major strengthening regimes in 

composites (Y. Liu et al., 2013b). Zhao et al. showed that the mechanical properties of 
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GNP/BCP composite measured along the direction parallel to the hot-pressing (HP) 

direction are higher than those measured along the perpendicular direction. Parallel to 

the HP direction, the composite containing 1.5 wt% GNPs exhibited maximum bending 

strength and KIC of 151.82 MPa and 1.74 MPa·m
0.5

, respectively, which are 

approximately 55% and 76% higher than the corresponding values from monolithic 

BCP (Yan Zhao et al., 2013). Mehrali et al. investigated the effect of GNS on an 

increase in KIC of calcium silicate fabricated by hot isostatic pressing (HIP) method with 

the addition of the maximum amount of GNS (1.5%) (Mehrali et al., 2014a, 2014b). 

Sintering in the presence of any gas is detrimental for HA-based systems. A HA surface 

can absorb gas that deteriorates the densification of HA; therefore, sintering in vacuum 

produces the greatest densification. Thus, KIC in this study was improved by 650%, 

showing a cumulative effect of CNT reinforcement and enhanced densification in the 

absence of gas. In-depth studies have shown that KIC improves by more than 100%; the 

effect of uniform dispersion on GNS becomes evident (A. Li et al., 2007).  

Miranzo et al. reported that the mixing of SiC/GNS and additive powders, 

performed through attrition milling in ethanol by using Si3N4 grinding media, and 

powder compositions are sintered through SPS (Miranzo et al., 2013). Fan et al. 

prepared fully dense Al2O3/GNP composites through SPS. GNPs after ball milling are 

2.5 nm to 20 nm in thickness and homogeneously dispersed in a ceramic matrix (Y. Fan 

et al., 2010). Wang et al. confirmed the effect of GNS dispersion on KIC of hot-pressed 

Al2O3/GNS composite. The results indicated that KIC of GNP/Al2O3 composite 

improved by 53%, which was attributed to pulling out and bridging of nanosheets (Kai 

Wang et al., 2011). Centeno et al. described the production of Al2O3/GNP composites 

through SPS at a very low graphene loading (0.22 wt%). The presence of graphene 

enhanced KIC of raw alumina by almost 50%; crack bridging was found as the main 

reinforcement mechanism (Centeno et al., 2013). Liu et al. investigated the effects of 
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GNPs on the microstructure and mechanical properties of Al2O3-based ceramic 

composites prepared through SPS. Mixing was followed by ball milling in a planetary 

ball mill. KIC of GNP-reinforced Al2O3 ceramic composites increases by 27.20%, which 

was higher than that of monolithic Al2O3 samples with toughening mechanisms, such as 

pull-out and crack deflection, induced by GNPs (J. Liu et al., 2013). Walker et al. found 

that KIC of ceramic GNP homogeneously dispersed with Si3N4 fabricated through SPS 

increases by 235% (from 2.8 MPa·m
0.5 

to 6.6 MPa·m
0.5

) at 1.5% GNP volume fraction. 

Novel toughening mechanisms have shown that GNP wrap and anchor around 

individual ceramic grains to resist sheet pull-out (Walker et al., 2011).  Dusza et al. 

investigated the influence of the addition of various GNPs as filler on microstructure 

development and on KIC of Si3N4/GNP composites fabricated through ball milling 

dispersion and HIP sintering. Single and overlapped GNPs are located at the boundaries 

of Si3N4, hindered grain growth, and changed grain shape. Composites exhibited 

significantly higher KIC than monolithic Si3N4, with the highest KIC of 9.9 MPa·m
0.5 

for 

the composite containing the smallest GNPs.  

The main toughening mechanisms attributed to the presence of GNPs and 

responsible for the enhanced KIC are crack deflection, crack branching, and crack 

bridging (Ján Dusza et al., 2012). Ramirez et al. reported the two types of Si3N4 

composites containing graphene nanostructures by using two different graphene 

sources, namely, pure GNPs and GO layers, produced through SPS. The maximum 

toughness with 4 vol% of rGO indicated a toughening enhancement of 135% compared 

with a similar Si3N4. For composites with thicker GNPs, only 40% increase in 

toughness was observed. A large difference in maximum toughness accomplished in 

both types of composites was attributed to the variations in the characteristics of 

graphene/Si3N4 interface and to the extent of monolayer graphene exfoliation (Ramirez 

et al., 2014). Govindaraajan et al. reported the preparation of GNP with ZrB2 ultra-high 
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temperature ceramic composites reinforced using 2, 4, and 6 vol% GNP by colloidal 

processing. The investigations were the effect of GNP reinforcement on densification 

behavior, microstructure, and mechanical properties toughening of composites through 

GNP pull-out, crack deflection, and crack bridging (Govindaraajan B 

Yadhukulakrishnan et al., 2013)). Porwal et al. reported well dispersed and fully dense 

silica-GONP composite powders prepared using a colloidal processing route followed 

by SPS densification. The present result showed that KIC of composites increased 

linearly as GONP concentration increased and reached 0.9 MPa·m
0.5

 for 2.5 vol% 

loading. Various toughening mechanisms, namely, GONP necking, GONP pull-out, 

crack bridging, crack deflection, and crack branching, have been observed (Porwal et 

al., 2013).  

Shin et al. obtained fully dense yttria-stabilized zirconia ceramics reinforced with 

rGO fabricated through SPS. KIC significantly improved by 134% accompanied with the 

toughening mechanisms of pull-out and crack bridging (Shin & Hong, 2014). In metal-

ion doped HA, only one case has been investigated to determine the effect of metal ion 

dopant on KIC of a composite. Basar et al. reported KIC of pure and yttrium and fluoride 

co-doped HA compared with sintering temperature. KIC obtained at various 

temperatures and doping amounts range between 1.0 and 2.1 MPa·m
0.5

. The maximum 

KIC of 2.1 MPa·m
0.5 

was measured for 2.5YFHA sintered at 1100 °C. The lowest KIC of 

1.0 MPa·m
0.5 

was calculated for 5YFHA sintered at 900 °C. The sample doped with 

2.5% Y
3+

 and 2.5% F
−

 ions exhibited the optimum KIC (Basar et al., 2010). 

2.9.2 Elastic Modulus 

E of human cortical bone ranges from 15 GPa to 25 GPa (Rho et al., 1997), but E 

of consolidated monolithic HA is much higher (100 GPa) (Ravaglioli & Krajewski, 

1992). E mismatch at the bone–implant interface may pose a risk of fracture or 
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delamination of implant. However, the osseointegration ability of HA creates a strong 

bond at HA–bone interface, thereby reducing the probability of delamination and 

fracture. In contrast to KIC, E of HA should not be improved to match that of the bone. 

However, an increase in E directly influences the improvement in KIC of ceramic-based 

composite systems. KIC of a brittle ceramic system is mainly estimated from indentation 

cracking by using Anstis’ equation (Anstis et al., 1981), median crack equation by Lawn 

et al. (Lawn et al., 1980), or Evans’ relationship (Evan & Charles, 1976) as follows: 

Anstis’ Equation: 𝐾𝐼𝐶 = 0.016 (
𝐸

𝐻
)

0.5 𝑃

𝐶1.5 

Median Crack Equation: 𝐾𝐼𝐶 = 0.018 (
𝐸

𝐻
)

0.5

(
𝑎

𝐶1.5) 

Evans and Charles Equation: 𝐾𝐼𝐶 = 0.16𝐻𝑎0.5 (
𝑐

𝑎
)

−1.5

 , 𝑊ℎ𝑒𝑟𝑒 𝑐/𝑎 ≥ 3  

where, KIC: is the fracture toughness,  

E: is the elastic modulus,  

H: is the hardness,  

a: is the half diagonal length of indent and  

c: is the radial crack length.  

An increase in E is advantageous for enhanced KIC, which is necessary to apply 

HA/GNS in orthopedics. E of an HA/GNS system is improved because of high E of 

GNS (1 TPa) (Shen et al., 2013) and good bonding at the HA/GNS interface. Upon 

application of stress on HA/GNS, a matrix initially deforms because of lower E. If HA 

matrix exhibits a strong interfacial bonding with stiffer GNS, stress can be effectively 

transferred from the matrix to the reinforcement. GNS can absorb much higher stress 

than HA to produce a similar amount of elastic strain. Thus, the resultant elastic strain 
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generated in the composite structure is reduced compared with HA for the same applied 

stress; as a result, the effective E of HA/GNS is increased. E increases to 70% with a 

GNS content ranging from 0.25wt% to 2.5wt%. Homogeneous dispersion of GNS and 

good HA/GNS interfacial bonding play a key role in increasing E of the composite. 

Zhang et al. measured E of 1.0 wt% HA/GNS composite and determined 40% of 

improvement compared with pure HA (Lv Zhang et al., 2013). Li et al. prepared 

GO/HA and CS-GO/HA nanocomposites and found that E of nanocomposites increases 

because of the reinforcing effects of GO on HA from 5.55 GPa to 19.09 GPa compared 

with HA (M. Li et al., 2014). Janković et al. reported the electrophoretic deposition of 

HA/GNS composite on Ti as E increases by approximately 50% compared with pure 

HA coating (Janković et al., 2014).  

In another case, Liu et al. showed that E of HA-rGO SPS pellets increases as a 

function of rGO content and rGO content in composites increases. E of HA/rGO 

composite is enhanced by 47.6%(Y. Liu et al., 2013b). Mehrali et al. reported that E 

elasticities of CS/rGO and GNP composite in calcium silicate increase by 52% and 

11%, respectively, compared with that of pure CS. In metal ion-doped HA, the effect of 

different ions on E of composites has been investigated (Mehrali et al., 2014a, 2014b). 

Yatongchai et al. investigated the effects of two strontium (Sr) additions, particularly 

5% and 10% of total Ca content, on phase assemblage and Weibull statistics of HA and 

compared the results with those of undoped HA (Yatongchai et al., 2013). Yatongchai et 

al. further reported that Weibull modulus is relatively independent of the porosity of 

undoped HA samples. In addition, 5% Sr-HA samples showed a slight increase in 

Weibull modulus with porosity, indicating a possible relationship between these 

parameters. However, 10% Sr-HA samples showed the highest Weibull modulus with 

approximately 15 at all sintering temperatures (Yatongchai et al., 2013). Xu et al. found 

that E of sintered spray-dried HA increases as the amount of doping silica increases 
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from 1 wt% to 5 wt%. E also increases by approximately 15% from 84 GPa to 100 GPa 

compared with that of HA without silica (approximately 89 GPa) (J. Xu & K. A. Khor, 

2007).  

2.9.3 Hardness 

The addition of carbon nanomaterials (CNMs), such as CNT and GNS, 

influences the hardness of HA-based composite. The higher stiffness of CNM provides 

a strengthening effect on HA matrix, which hampers plastic deformation. A significant 

reduction in pile up at the edge of nano-indents as CNM content increases corresponds 

to enhanced resistance to plastic deformation (Y. Chen et al., 2006). Grain boundary 

pinning and structure refinement by CNM also help enhance hardness and KIC (J. Wang 

& Shaw, 2009; Xu et al., 2009). Vickers’ hardness measurement and instrumental 

nanoindentation technique have been performed to quantify the hardness of HA/CNM 

composite. Absolute hardness values differ between nanoindentation and Vickers’ 

experiments because of great differences in applied load, tip geometry, and 

measurement length scale (Lahiri, Singh, et al., 2011). Microindentation test uses a 

larger volume of an indenter and a higher volume fraction of GNS than nanoindentation 

test (Mehrali et al., 2014b).  

Zhang et. al reported that Vickers’ hardness of 1.0 wt% GNS/HA composite in 

HA/GNS improves by 30% compared with pure HA because of good bonding strength 

between GNS and HA grain, which significantly enhances hardness (Lv Zhang et al., 

2013). Wang et al. found that the hardness of HA increases from 367.59 ± 25.76 MPa to 

624.32 ± 11.77 MPa compared with HA because GO matrix strongly interacts with HA 

nanoparticles. The addition of GNS improves the hardness of HA because of matrix 

strengthening and grain size refinement; both of these processes hinder plastic 

deformation. Zhao et al. found that the hardness of BCP/GNP along the direction 
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parallel to the HP direction is higher than that measured along the perpendicular 

direction. Zhao et al. reported that hardness decreases as GNP increases (M. Li, Wang, 

et al., 2013). Mehrali et al. reported an increase in hardness in lower GNS content in 

other cases, such as CS/GNS composites, because of matrix strengthening and grain size 

refinement; these processes prevent plastic deformation (Mehrali et al., 2014a, 2014b). 

Thus, the addition of GNS beyond ineffectively enhances hardness of a composite 

structure. Similar to E, agglomeration and weak interface cause a slight increase or 

decrease in hardness with GNS addition (Centeno et al., 2013). Kalita et al. performed 

Vickers’ hardness test on metal ion-doped HA, particularly pure and doped 

nanocrystalline-sintered HA structures. The results of our hardness test showed that the 

surface hardness of nanocrystalline HA ceramics is influenced by the presence of 

magnesium and zinc as dopants during powder synthesis. Furthermore, 20% and 6% 

improvement of the aforementioned composition because of an increase in the density 

of the sintered ceramics (Kalita & Bhatt, 2007).  

Basar et al. reported the effect of co-substitutions of Y
3+

 (2.5, 5, and 7.5 mol%) 

and F
−
 (2.5 mol%) ion-doped HA on microhardness. In addition, 7.5YFHA sintered at 

1300 °C yielded the highest microhardness of 5.9 GPa; by contrast, pure HA exhibited 

microhardness of 4.5 GPa. Furthermore, 7.5YFHA with the highest density (96.6%) 

exhibited the greatest microhardness with a grain size smaller than those of the other 

HA samples (Basar et al., 2010). Curran et al. found that the hardness of microwave-

sintered (MS) and conventional-sintered (CS) Sr-HA samples increased as Sr content 

increased (Curran et al., 2009).  They reported that differences in relative densities and 

grain sizes between MS and CS samples may elicit a regulatory effect on differences 

between hardness values of the two samples. The hardness values of both samples were 

dependent on the level of open (surface) porosity because hardness technique is a 

surface technique; surface porosity is effectively filled because an indenter affects the 
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surface. In MS samples, grain size also determines hardness; therefore, an increase in 

grain size causes an increase in hardness. Xu et al. investigated the effect of silica-doped 

HA on the decrease in hardness of bulk samples compared with pure HA. The relatively 

low hardness obtained from doped samples was mainly attributed to low bulk density of 

materials. Pore formation and phase transformation of HA into β-TCP mainly contribute 

to reduced densities (J. Xu & K. A. Khor, 2007). Joshy et al. reported that hardness 

increases gradually as the amount of incorporated La
3+

 ions in L5HA (50 mM La
3+

) 

increases by 14% (Ahymah Joshy et al., 2011). 

2.10 Biological Properties of Composites 

2.10.1 In-vitro Bioactivity 

The ability of apatite to precipitate on any surface during stimulated body fluid 

(SBF) immersion is a preliminary indicator of the capability of this substance to be 

integrated with new bone in-vivo. The suitability of SBF immersion test as an indicator 

of biocompatibility can be justified through a statement by Kokubo, who invented SBF, 

and Takadama, who conducted an “examination of apatite formation on a material in 

SBF used to predict in-vivo bone bioactivity of a material, and the number of animals 

used and the duration of animal experiments can be reduced remarkably by using this 

method” (Kokubo & Takadama, 2006). New bone integration on an orthopedic surface 

is closely related and governed by osteoblast attachment, proliferation, and 

differentiation, which predict the mineralization of apatite on an orthopedic surface (Pan 

et al., 2010). Thus, the behavior of an osteoblast is also crucial to determine the 

biocompatibility of an orthopedic surface along with apatite formability. Studies have 

shown that GNS composite surfaces are suitable for apatite precipitation. Mineralization 

proceeds in three stages: (1) dissolution-controlled stage, (2) precipitation-controlled 

stage, and (3) bone-like apatite formation. In the first stage, dissolution of phosphate 
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and calcium ions occurs. However, the process and kinetics of HA deposition on 

composites are affected by surface area and negative surface charges. In HA/GNS 

composite, apatite precipitation ability of HA/GNS composite surfaces has also been 

investigated. Janković et al. reported a seven-day incubation period for newly formed 

apatite layer containing plate-shaped HA crystals on HA/Gr composite surface coating 

on Ti when this material is immersed in standard SBF. They found that the 

morphological characteristic of mineralization product varies remarkably with the 

incorporation of Gr into the HA matrix. Curled, plate-shaped apatite evidently forms on 

HA/Gr composite coating (Janković et al., 2015).   

Fan et al. demonstrated that a thick and dense apatite layer gradually forms on 

the surface of coated HA/GNS immersed in SBF for 7 d. They revealed a slower initial 

precipitation rate in the presence of GNS; this parameter subsequently increases with 

various morphological characteristics from granular to plate-like form (Fan et al., 2014). 

Zhang et al. found that apatite layer on 1.0wt% GNS/HA composite is thicker than that 

on pure HA after 7 d of immersion in SBF. The results indicated that the mineralization 

area on pure HA is mainly localized near and/or inside pores; by contrast, mineral 

deposit ultimately influences the whole surface of a GNS/HA composite (L. Zhang et 

al., 2013). Conversely, the morphological characteristic of a mineralization product 

varies remarkably when GNS incorporated into a HA matrix. Short needle-shaped 

apatite is formed on pure HA sample, whereas curled sheet-shaped apatite is formed on 

GNS/HA composites. These findings sufficiently indicate that incorporation of GNSs 

into HA matrix facilitates the formation of bone-like apatite on GNS/HA composites. 

In-vitro studies on HA/GNS systems have shown that the presence of GNS in HA is 

biocompatible and advantageous in some aspects. Joshy et al. investigated the 

bioactivity of La-doped HA as a metal ion-doped HA by immersing pellets in SBF 

solution. After pellets are immersed in SBF, the formation of platy apatite crystals of 
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HA is transformed to spherical apatite deposition because of bioactivity(Ahymah Joshy 

et al., 2011). Medvecký et al. reported that the total Mn content of up to 0.25 wt% in 

HA prepared by precipitation does not influence the growth rate of HA particles in SBF 

solutions. However, a high Mn concentration on the surface of HA particles after ion 

exchange rapidly reduces the growth rate of HA in SBF solutions (Medvecký et al., 

2006). Cox et al. indicated the presence of apatite growth on the surface of all 

substituted (Sr, Mg, and Zn) and pure HA samples immersed in SBF for 28 d; a positive 

result indicates bioactivity (Cox et al., 2014). Therefore, interferometry results may not 

be directly correlated with increased apatite growth because of a combination of factors 

that may influence surface roughness of substrates; as such, these results cannot be 

reliably used as a quantitative tool. Moreover, the formation of bone-apatite observed on 

AgHA coating during immersion in SBF suggested a favorable biological response of 

AgHA. The presence of Ag ions do not affect the interaction of ions in SBF to form bone-

apatite onto AgHA (Y. Chen et al., 2010; Noda et al., 2009).  

2.10.2 In-vitro Biocompatibility 

Zhu et al. performed the first study on osteoblast cell growth on spark plasma-

sintered HA/2 wt% GNS sample. Cell culture and MTT assay results demonstrated that 

GN addition impeded osteoblast cell adhesion and proliferation on HA (J. Zhu et al., 

2011). Ma et al. reported that the cytocompatibility of as-prepared PLA/HA/GO fibrous 

membrane may be estimated by culturing MC3T3-E1 cells and determining the 

corresponding cell adhesion and differentiation capability. They confirmed that 

PLA/HA/GO nanocomposite fibrous membrane created an appropriate environment of 

the seeding and proliferation of MC3T3-E1 cells (H. Ma et al., 2012). Zhang et al. 

found that osteoblasts uniformly covered the surface of GNS/HA composites as a 

confluent layer compared with separate islands formed on pure HA surface. Osteoblasts 
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on the surface of each sample are elongated and flat with a good spread; this finding 

strongly indicates that the added graphene nanosheets elicited a slight negative effect on 

osteoblasts spreading on HA sample because these materials exhibit excellent 

biocompatibility. The difference in the number of adherent osteoblasts illustrated that 

nanosheets provide composites with an optimal surface for osteoblast adhesion. The 

added nanosheets can be detected by osteoblasts as extra suitable locations for adhesion; 

as a result, osteoblast adhesion on GNS/HA composites (L. Zhang et al., 2013). Li et al. 

investigated the in-vitro cytotoxicity of the prepared nanocomposites (GO/HA and CS-

GO/HA) through a CCK-8 assay on murine fibroblast L-929 and human osteoblast-like 

MG-63 cell lines. Both nanocomposites yielded high cell proliferation rates of both cell 

lines; CS-GO/HA could provide significantly higher cell viability and alkaline 

phosphatase activity than GO/HA composite (M. Li, Wang, et al., 2013).  

Liu et al. also reported the enhanced proliferation of osteoblast cells on rGO-

containing HA composites. In ALP activity, ALP expression level on HA/1.0 wt% rGO 

composites is approximately twice that on pure HA. The proliferation and attachment of 

osteoblast cells on the surface of HA/GNS composite coating are also reported. The 

presence of GNS in HA improves bone cell proliferation. Viability assessment also 

reveals that the percentage of live cells increases in the presence of GNS (Y. Liu et al., 

2013a). Li et al. reported that the presence of GO fillers can promote the proliferation of 

L929 cells and MG63 cells in 2GO/HA-coated samples compared with 5GO/HA-coated 

samples. Superior (approximately 95% cell viability of 2 wt% GO/HA) or comparable 

(80% to 90% cell viability of 5wt% GO/HA) in-vitro biocompatibility is observed 

compared with HA-coated and uncoated Ti substrate (M. Li et al., 2014). Liu et al. 

found that the filopodia of osteoblast cells likely move to and become anchored by 

GNS. This phenomenon presumably accounts for the enhanced spreading and 

subsequent proliferation of cells on GN-containing coatings (Y. Liu et al., 2014). Fan et 
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al. found that GNS/HA nanorod composite containing 40 wt% HA showed higher 

osseointegration ability with surrounding tissues, better biocompatibility, and more 

superior bone cellular proliferation induction compared with pure GO and HA (Fan et 

al., 2014). The following factors possibly enhance proliferation and viability of 

osteoblast on HA/GNS composite surface:  

(i) attachment of proteins on a GNS surface from a cell culture medium;  

(ii) unique porous structure and high surface area of GNS;  

(iii) higher porosity content of HA/GNS composite; and  

(iv) bioactive nature of GNS. 

In metal ion-doped HA, bioactivity and biocompatibility of HA doped with metal 

ions are enhanced compared with those of pure HA. The potential of Zn-substituted HA 

as a material to reduce resorptive activity; thus, long-term bonding of implant to bone is 

observed. ZnHA inhibits osteoclast-like cell formation. In this study, osteoclast 

formation and resorption are reduced, suggesting that ZnHA may be a beneficial 

alternative to unsubstituted HA as an implant coating (Kalita & Bhatt, 2007; Shepherd 

et al., 2014; Thian et al., 2013). Other studies have also reported that Sr concentrations 

in the range of 3 to 7 atom% significantly stimulate osteoblast activity and 

differentiation, as shown by increased ALP, CICP, and OC production compared with 

pure HA. Cell culture test results indicated that Sr/HA shows good biocompatibility 

with human osteoblasts. Compared with HA, Sr/HA promotes OPC1 cell attachment 

and proliferation; Sr/HA elicits no deleterious effects on ECM formation and 

mineralization. Sr doped HA can be employed to prepare biomaterials that can promote 

osseointegration and bone regeneration, as well as prevention and repair local bone loss 

(Capuccini et al., 2009; Elena Landi et al., 2007; Xue et al., 2006). (Basar et al., 2010) 

also investigated the effect of Y
3+

 and F
− 

co-doping on pure HA on cell proliferation. 
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Basar et al. found that cells highly adhere and proliferate on large grain-sized pure HAs 

or when these cells are doped with 2.5% or 5% yttrium and 2.5% fluoride (Basar et al., 

2010).  
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3 CHAPTER III: MATERIALS, METHODS AND PROCEDURES  

This chapter provides a detailed account of the synthesis methods of HA and its 

composites as well as its characterization for physical, mechanical and biological 

properties. 

3.1 Synthesis of Graphene Oxide 

The graphite flakes used in this project were purchased from Ashbury Inc. The 

sulfuric acid (H2SO4, 98%), phosphoric acid (H3PO4, 98%), potassium permanganate 

(KMnO4, 99.9%), hydrogen peroxide (H2O2, 30%) and hydrochloric acid (HCl, 37%) 

were purchased from Merck (Malaysia). All of the aqueous solutions were prepared 

using double distilled water (ddH2O). The GO was prepared from the graphite flakes 

using a simplified Hummers’ method (Lim et al., 2011). Initially, 360 mL of H2SO4 and 

40 mL H3PO4 were added to a beaker containing 3 g of graphite at room temperature. 

Then, 18 g of KMnO4 was gradually added to the mixture. The mixture was stirred for 

three days to ensure the complete oxidation of the graphite. Finally, the suspension was 

cooled and diluted with 400 mL of ice water. Afterwards, H2O2 (30%) was added until 

the gas evolution ceased. This is performed to ensure the reduction of the residual 

permanganate into soluble manganese ions. After the synthesis, the GO suspension was 

washed with dilute 1 M HCl and ddH2O repeatedly until a pH of 5 was reached. The 

resulting product was separated from the mixture by using a centrifuge spinning at 

11000 rpm. Figure 3.1shows the flowchart synthesis of graphene oxide as follows: 
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Figure 3.1 Flow chart of synthesis of Graphene oxide 

3.2 Synthesis of Composite Powders 

Ethylene glycol (EG, 68%), isopropyl alcohol (60%) and Ammonium hydroxide 

(NH4OH, 28%) were purchased from Merck (Malaysia). Calcium nitrate tetrahydrate 

Ca(NO3).4H2O, Calcium chloride (CaCl2), nickel (II) nitrate hexahydrate 

Ni(NO3)2.6H2O  and ammonium dihydrogen orthophosphate (NH4H2PO4.6H2O) were 
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all purchased from Sigma Aldrich (Malaysia). The N,N-Dimethylformamide (DMF, 

99.99%) was purchased from J. T. Baker Company. Cetyl trimethyl ammonium 

bromide (CTAB) was selected as the dispersion media. Graphene nanoplatelets (GNP) 

were obtained from XG Sciences, Lansing, MI, USA. All the chemicals were of 

analytical grade and used without further purification. All of the aqueous solutions were 

prepared using ddH2O.  

3.2.1 Synthesis of Nanotube Hydroxyapatite (nHA)-Reduced Graphene Oxide 

(rGO) Composite 

The nHA was synthesized using the method described by Feng Chen et al. (F. 

Chen, Y.-J. Zhu, et al., 2011). To synthesize the nHA-rGO composites, 8.2 mg of GO 

was dissolved in 10 mL water using ultrasonication for 1 h to obtain a yellow-brown 

uniformly dispersed solution. Initially, 3.33 mL of 0.24 M CaCl2 was dissolved in 3.33 

mL of EG. Afterwards, 0.82 mg mL
-1

 of the GO suspension was added drop-wise into 

the solution via magnetic stirring for 60 min to obtain a homogenous dispersion. 

Similarly, 3.33 mL of 0.2 M NH4H2PO4 was dissolved in another beaker with 3.33 mL 

of EG. The second solution was added drop-wise into the first solution and stirred for 

another 30 min. Finally, 27 mL of DMF was added to the mixture at a rate of 4 mL min
-

1
. The final suspension was transferred to a 50 mL Teflon-lined stainless steel autoclave 

for hydrothermal reaction at 200 ºC for 24 h. It was expected that the concurrent 

reduction of GO to rGO and in-situ synthesis of the nHA-rGO composite may be 

achieved during the hydrothermal process. The as-synthesized nHA-rGO samples with 

0.0, 0.5, 1.0 and 1.5 wt% rGO, named HG-0, HG-1, HG -2 and HG-3 were separated by 

spinning in a centrifuge, washed five times with ddH2O and dried in a vacuum oven at 

60 ºC for 24 h. 



56 

3.2.2 Synthesis of Ni-doped HA with Graphene Nanoplatelets (GNPs) Composite 

Ni-doped HA (0, 3 and 6 wt%) was synthesized at room temperature using the 

continuous precipitation method. The desired amounts of Ca(NO3).4H2O and 

Ni(NO3)2.6H2O were mixed to produce the nitrate solution. This step was followed by 

the drop-wise addition of (NH4)H2PO4 solution to the nitrate solution under vigorous 

magnetic stirring. The pH of the solutions was adjusted with the addition of NH4OH to 

10 and 11 for (NH4)H2PO4 and nitrate solution, respectively. The suspension was 

allowed to settle for 24 h to remove the supernatant. The precipitate was filtered and 

washed six times with doubly deionized water (DDI). The obtained powder was dried at 

100 °C for 24 h and calcined at 900 °C for 1 h.  Finally, the powder was ball milled at 

300 rpm in a planetary ball mill (PM 100, Retsch, UK) for 2 h to produce the fine 

powder. The respective compounds were labeled HA, Ni3 and Ni6. The appropriate 

quantities of Ni6 powders and GNPs were separately dispersed in DDI with 1 wt% 

CTAB and 1h sonication. To fabricate the composites, dispersions of GNPs and 

powders with concentrations of 0.5 wt%, 1 wt%, 1.5 wt% and 2 wt% GNPs were 

prepared by sonication for 1 h followed by planetary ball milling with a zirconia ball 

and a rotational speed of 400 rpm for 15 h to obtain a good degree of mixing. The 

milled slurry mixture was dried in an oven at 90 °C for 24 h. 

3.2.3 Free Standing HA and its Composite Synthesis: Hot Iso-Static Pressing 

(HIP) 

The green samples were uni-axially pressed at 250 MPa into discs using a 5 mm 

diameter steel die. The HIP was performed at 1150 ℃ in a high purity argon gas 

atmosphere at 160 MPa for 1 h. The heating and cooling rates did not exceed 5°C min
-1

. 

The dimensions of the sintered samples were 5 mm in diameter and 3 mm in thickness. 

Finally, the sintered samples were molded with epoxy before mechanical property 
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testing. The surfaces of the sintered samples were polished in a single direction with 

600, 1200 and 2000 grit SiC paper. The final polishing was performed with 9, 3 and 0.5 

µm polishing compounds to obtain a consistent surface roughness for all of the samples. 

3.3 Physical and Chemical Characterization 

The relative density for each composition was measured using Archimedean’s 

method using 3.16 g cm
-3

, 3.07 g cm
-3

 and 2.2 g cm
-3

 for HA, β-TCP and GNPs, 

respectively. The surface morphologies of the disc compacts were characterized using 

field-emission scanning electron microscopy (FESEM, FEI Quanta 200F). Energy 

dispersive X-ray spectroscopy (EDS) with an EDS system attached to the FESEM 

instrument was used to investigate the elemental composition of the samples. Fourier-

transform infrared spectroscopy (FT-IR) was performed using a Perkin Elmer System 

series 2000 spectrophotometer (USA) with a frequency range of 400-4000 cm
-1

. An X-

ray diffractometer (PANalytical Empyrean) with CuKα (λ=1.54178 Å) radiation was 

used for the phase analysis of the samples. Raman spectroscopy (Renishaw in Via 

Raman Microscope) was performed to characterize the composite samples using 514-

nm laser excitation, 0.8-mW laser power and 20-μm spot sizes.  

3.4 Mechanical Characterization 

The analysis of the mechanical properties of the sintered samples was carried out 

using the indentation method. A nano-mechanical test system (Micro materials Ltd. 

Wrexham, U.K.) was used to evaluate the mechanical properties (particularly the 

modulus of elasticity) of the prepared samples through nano-indentation experiments. 

The samples subjected to nano-indentation tests were 5 mm in diameter and 3 mm in 

thickness. A maximum load of 10 mN was applied to the samples using a Berkovich 

diamond tip (radius of 20 nm) in load control mode with a dwell time of 10 s and 
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indentation velocity of 3 nm s
-1

. A Vicker`s micro-indentation instrument (AVK-C2, 

Mitutoyo, Kawasaki, Japan) was used to determine the hardness of the samples by 

applying a 1 kg force for 10 s on the polished pellets. The indentation fracture toughness 

of the samples was calculated using diagonal crack lengths produced at the indentation 

corners from the micro-indentation tests. Fracture toughness values were evaluated by 

the Antis`s equation:  

𝐾𝐼𝐶 = 0.016 (
𝐸

𝐻
)

0.5

(
𝑃

𝐶1.5
) 

where E is the elastic modulus  obtained from nano-indentation test, H is the 

Vickers hardness (GPa), P is the applied load (N) and c is the diagonal crack length (m). 

The fracture toughness and hardness values are averaged for three samples with five 

indents per sample. 

3.5 Biological Characterization 

3.5.1 Mineralization in Simulated Body Fluid (SBF) 

The bioactivity of the sintered samples (with a thickness of 3 mm and a diameter 

of 5 mm) was evaluated by examining the formation of bone-like apatite on the samples 

in simulated body fluid (SBF) solution. The sintered samples were soaked in SBF with 

pH (7.4) and ion concentrations (Na
+
 142.0, K

+
 5.0, Mg

2+
 1.5, Ca

2+
 2.5, Cl

-
 147.8, 

HCO3
-
 4.2, HPO

2-
4 1.0, SO

2-
4 0.5 mM) nearly identical to those in human blood plasma. 

As brief, the SBF was prepared by dissolving reagent-grade mixtures of CaCl2, K2HPO4 

.3H2O, KCl, NaCl, MgCl2.H2O, NaHCO3 and Na2SO4 in distilled water and buffering at 

pH 7.4 with tris(hydroxymethyl)aminomethane and hydrochloric acid (HCl). The as 

sintered samples were soaked in SBF at 37 °C in a humidified atmosphere containing 

5% CO2 for 7 days at a surface-area-to volume ratio of 0.1 cm
2
/mL. The SBF solution 

was renewed once in 2 days. After 7 days, they were removed from SBF, gently rinsed 
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with distilled water, and dried in vacuum at 80 °C. Changes in the surface morphologies 

of samples after soaking in the SBF were characterized by FESEM equipped with EDX. 

3.5.2 In-vitro Bone Cell-Material Interactions 

The in-vitro cytotoxicity behavior and biocompatibility of the doped, undoped 

HA and composite samples were evaluated after 1, 3, and 5 days of incubation using 

human osteoblast cell lines (hFOB 1.19SV40 transfected osteoblast) that were provided 

by the American Type Culture Collection (ATCC, Rockville, MD). The cells used were 

derived from an immortalized osteoblastic cell line, established from DME/F12 solution 

(Hyclone, Utah, USA) supplemented with a 10% human fetal bovine serum (Gibco, 

NY, USA), 100 U mL
-1

 penicillin and 100 μg mL
-1

 streptomycin in 5% CO2 and 95% 

air atmosphere at 37 °C in an incubator. All the samples were sterilized by autoclaving 

at 121 °C and 15 atm for 15 min before the cell culture experiment. The cells were then 

seeded onto samples and placed into the wells of a 24-well plate. The initial cell density 

was 1×10
4
 cells mL

-1
. 

3.5.3 Cell Proliferation Using MTT Assay 

The methyl thiazole tetrasodium (MTT) assay (Sigma, St. Louis, MO, USA) was 

performed for 1, 3 and 5 days of incubation to determine the hFOB cell proliferation. 

Triplicate samples per group were evaluated, and three data points were measured from 

each sample. An MTT solution of 5 mg ml
-1

 was prepared by dissolving MTT in PBS 

and was filter-sterilized using a filter paper with a 0.2-μm pore size and stored at 4 °C. 

Then, 20 μl of the MTT solution was added to each sample in the 24-well plates. The 

cells were then incubated for 4 h at 37 °C in a humid atmosphere with a CO2 

concentration of 5%. After 4 h of incubation, 100 μl of solubilization/stopping solution 

was added to each well. Blank and control groups were established to calibrate the 
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cellular survival rate. Only the culture media were added in the blank group, whereas 

cells and culture media without samples were added in the control group. The optical 

density (OD) was measured using a 96-well plate reader (TECAN, Mannendorf, 

Switzerland) and read by a plate reader at 570 nm. Triplicate samples were used in all 

the experiments to ensure reproducibility. The data from the MTT assay are presented 

as means or plotted as ± SD. Statistical analysis was performed on the MTT assay 

results using one-way analysis of variance (ANOVA) and a Tukey-Kramer post hoc test 

using SPSS 19.0; a p-value less than 0.05 was considered significant. 

3.5.4 Cell Morphology 

The cell morphology was assessed using FESEM observation after 1, 3 and 5 

days of incubation. Cultured samples for SEM observation were rinsed with 0.1 M 

phosphate-buffered saline (PBS) and fixed with 4% glutaraldehyde for 2 h at room 

temperature. The drying procedure was as follows: the fixed samples were dehydrated 

in an ethanol series 40%, 50%, 60%, 70%, 80%, 90% and 100% three times followed by 

the addition of 0.5 mL of hexamethyldisilane (HMDS) to each well to maintain the 

original morphology of the cell. The dried samples were then platinum coated and 

examined under a FESEM. 

3.5.5 Confocal Laser Scanning Microscopy 

The samples were washed with 1×PBS before staining with 100 μg/ml acridine 

orange (Sigma Aldrich) for 5 min at room temperature. Excess stain was removed by 

washing twice with 1×PBS for 10 min. The stained cells were then analyzed using 

confocal microscopy (Leica TCS-SP5 II, Leica Microsystem and Mannheim, Germany), 

and the images were processed with Leica LAS AF software. 
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4 CHAPTER IV: RESULTS AND DISSCUSIONS 

4.1 Mechanical Properties and Biomedical Applications of a Nano-tube 

Hydroxyapatite-reduced Graphene Oxide Composite 

4.1.1 Microstructural and Physical Properties 

Figure 4.1 shows the hydrothermal formation mechanism of the nHA-rGO 

composite. In the first step, a carboxyl (-COOH or COO
-
) group on the surface of the 

GO strongly absorbs Ca
2+

 ions by an electrostatic interaction. This phenomenon 

increases the rate of HA nucleation on the surface of GO. The existence of EG can 

initially decrease the diffusion of Ca
2+

 and HPO4
2-

 ions at room temperature. However, 

as the temperature increases, the viscosity of the EG rapidly decreases and may 

facilitate anisotropic growth on the HA nano-sheet. This is notable because under 

hydrothermal conditions at 200°C for 24 h, nano-sheets of HA and GO can be converted 

to sheets with brush-like ends. The evolution process from the brush-like ends to HA 

nano-wires or nano-tubes may be explained by a dissolution/re-precipitation process 

under hydrothermal conditions. At this early stage, the brush-like ends are partially 

dissolved in the solution and may create a primary HA nano-crystal under hydrothermal 

conditions.  

Other researchers believe that this self-assembly process is the reason that 

assembled nano-tubes or nano-wires have been observed in HA during the nucleation of 

a primary nano-crystal. In this case, it is notable that the DMF also alleviates the 

agglomeration of the rGO nano-sheets (Shah et al., 2013). The process is described by 

the following relations: 

Nanosheet brush-like + OH- → Ca2++ PO43- + H2O, 

5Ca2++ 3PO43- + OH- → Ca5(PO4)3OH 
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Figure 4.1 The proposed in situ-synthesis mechanism for the nHA-rGO composites in 

solvo-thermal processing. 

Figure 4.2 shows the FESEM images of the samples created using the 

hydrothermal method. As observed in Figure 4.2a, the rGO nano-sheet is very thin with 

some wrinkles and folding (Yang et al., 2012; L. Zhang et al., 2013). The morphology 

of the nHA is shown in in Figure 4.2b with the preferred c-axis growth orientation of 

the nano-tubes on the hexagonal HA with an average length that is shorter than 15 μm. 

This is similar to the natural HA in bone and enamel tissue. These nano-tubes self-

assemble in an array and even exhibit fabric-like features.  
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Figure 4.2 FESEM images of the GO (a), HG-0 (b), HG-3 (c and d) and EDAX 

spectrum of HG-3 (e). 

The HG-3 composite is shown in Figure 4.2(c and d). The rGO is curled and 

corrugated on the nHA, forming uniform and smooth surface structures. Figure 4.2d 

shows a high resolution FESEM image of an individual nHA with an rGO sheet. The 

wrinkled surface of the rGO is clearly discernible in the image. Figure 4.2e shows 

results from the energy-dispersive X-ray spectrometry (EDX) that was performed on the 

composite, where the atomic Ca to P ratio is approximately 1.58, which is consistent 

with the stoichiometric ratio for the nHA. 
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The XRD patterns for the GO, rGO, HG-0 powder and sintered HG-3 are shown in 

Figure 4.3. The XRD patterns for the GO and rGO (Figure 4.3(a and b)) show related 

peaks that were centered at 9.85º and 24.72º and 43.54º. The XRD pattern for the GO 

shows an intense and sharp diffraction peak at 2θ = 9.85º that is attributed to the (001) 

lattice plane, which corresponds to a d-spacing of 0.83 nm. This is consistent with the 

lamellar structure of the GO. Comparatively, the diffractogram of the rGO shows the 

disappearance of this strong peak and the appearance of a broad (002) peak at 24.85º, 

which corresponds to a d-spacing of 0.35 nm, indicating the successful reduction of the 

GO. Figure 4.3(c and d) shows the XRD patterns for the synthesized HG-0 and sintered 

HG-3. The major peaks in two patterns are from hydroxyapatite (JCPDS PDF 09-0432) 

which contains sharp and strong peaks due to the high degree of crystallinity of the 

powder and composite after HIP. According to phase transformation of HA, the 

consideration of two major phases (β-TCP and α-TCP) is significant. The two highest 

peaks of β-TCP (JCPDS PDF 070-2065) appears at 2θ= 27.77° and 2θ=31.02° are 

absent after consolidification, whereas, the third highest peak at 2θ=34.33° overlaps 

with the peak of HG-0 (2θ=34.3°). On the other hand, the highest peaks of α-TCP 

(JCPDS PDF 029-0359) at 2θ=30.71° is absent and the second and third highest peaks 

(2θ=28.89° and 2θ=34.21°) overlap with peaks of HG-0 (2θ=28.93° and 2θ=34.3°) 

(Lahiri et al., 2010; L. Zhang et al., 2013). 
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Figure 4.3 X-ray diffraction patterns for the synthesized GO (a), rGO (b), HG-0 powder 

(c) and sintered HG-3 (d). 

 Hence, the presence of β-TCP and α-TCP cannot be concluded. These 

observations prove that HA does not dissociate into TCP during HIP processing. 

Previous studies on HIP processing of HA and HA composites report only a partial 

decomposition of HA to TCP. They mentioned that the decomposition was enhanced 

with the presence of minute impurities or non-stoichiometric compositions in the HA 

powders. The excellent compositional homogeneity and phase purity associated with 

nanocrystalline HA stabilized the samples against decomposition at high temperature 

(Ahn et al., 2001; Ergun, 2011; Raksujarit et al., 2010; Sadeghian et al., 2006).  

Moreover, there are no traces of the graphite peaks due to the presence of strong HA 

peaks in the vicinity and their small content GO, whereas their presence can be 
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confirmed by FESEM, which demonstrates that the incorporation of the rGO has no 

influence on the stability of the nHA. Moreover, the lack of rGO peaks is most likely 

relevant to the layered structure of the rGO with irregular arrays of atoms in three 

dimensions. (Y. Liu et al., 2013a).  

 

Figure 4.4 FT-IR spectra of the HG-3 powder and insets: GO (a), HG-0 powder (b) and 

sintered HG-3 (c). 

Figure 4.4 and insets a, b, and c show the FTIR spectra of the GO, HG-0 and 

sintered HG-3. The mutual absorbance bands at approximately 3399 cm
-1

 are assigned 

to hydroxyl group (OH
-
) stretching. The position of the characteristic bands at 1026, 

979, 923, and 562 cm
-1

 in the FTIR are attributed to the stretching and bending of 

phosphate (Y. Liu et al., 2013a). The band at 923 cm
-1

 is assigned to the acidic 

phosphate group (HPO4
2-

) due to P-O(H) stretching vibrations. The band located at 

approximately 562 cm
-1 

is attributed to P-O bending (ʋ4PO4). From the insets of Figure 

4.4(a, b and c), the bands at 1750 cm
-1

 and 1641 cm
-1

 are assigned to the stretching 

vibrations of the carboxyl group (COOH) on the edge of the basal planes or the 

conjugated carbonyl groups (C=O) and the sp
2
 hybridized C=C vibration stretching, 
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respectively (M. Li, Wang, et al., 2013). The absorption bands of the methylene groups 

(CH2), which are inherent in the rGO, are present at approximately 2907 cm
-1

 and 2931 

cm
-1

. The peak at 1425 cm
-1

 is attributed to the deformation of the O-H (K. Wang et al., 

2011). In contrast, the peaks at 1750 cm
-1

 and 1425 cm
-1

 in the FTIR spectrum of the 

HG-3 composite are no longer visible, which points to the reduction of GO. 

The high temperatures required during sintering make it necessary to check on 

the survival of rGO structure in the final samples. Raman spectroscopy is a very 

powerful tool and permits a relatively easy and effective approach for investigating the 

crystalline quality and structural changes resulting from the GO to rGO transformation. 

This is performed by monitoring the relative intensities of the D and G peaks, which are 

characteristic of the sp
2
 and sp

3
 bonds in the hexagonal carbon structure and represent 

the in-plane stretching and breathing modes, respectively. The 2D (Ǵ) peaks are 

attributed to their respective higher order modes originating from a double resonance 

process (Miranzo et al., 2013; Govindaraajan B Yadhukulakrishnan et al., 2013). Figure 

4.5 and Table 4.1 show the Raman spectra and all related values, respectively. The 

existence of the G and 2D peaks before and after sintering the bulk samples confirms 

the presence of rGO in the samples. The position of the G and 2D peaks are affected by 

several factors: (i) the densities of the defects in the rGO during the sintering process, 

(ii) the residual thermal stress evolution during the cooling step and (iii) the reduction in 

the number of graphene layers (rGO) (Ferrari et al., 2006; Ferrari & Robertson, 2000; 

Tsoukleri et al., 2009; G. B. Yadhukulakrishnan et al., 2012). 
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Table 4.1 Peak position of the D and G bands and intensity ratios of ID/IG and I2D/IG. 

 

 

Figure 4.5 Raman spectra of the GO (a), HG-3 before sintering (BS) (b) and HG-3 after 

sintering (AS) (c). 

As shown in Figure 4.5a, the two typical GO peaks are found at 1360 cm
-1

 and 

1595 cm
-1

, which correspond to the D and G bands, respectively. With the reduction of 

the GO, the D and G bands shift to lower wave-numbers of 1352 cm
-1

 and 1593 cm
-1

, 

respectively. The presence of the 2D peak at approximately 2718 cm
-1 

(as observed in 

Figure 4.5b) shows an increase in the number of layers in the rGO compared to the GO. 

The ratio of I2D/IG and the Full Width Half Maximum (FWHM) of the 2D peak are 

sensitive to the layers of graphene. From Figure 4.5(b and c), the I2D/IG intensity ratio 

decreased from 0.29 to 0.14, and the 2D peak is narrower, sharper and shifts to higher 

Sample D band G band 2G band ID/IG I2D/IG 

Raman shift  Raman shift Raman shift 

Graphene oxide 1360  1595 ------ 0.788 ------ 

Unsintered HG-3 1352  1593 2718 0.944 0.295 

Sintered HG-3 1358  1602 2738 1.15 0.14 
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wavenumbers compared to samples examined prior to sintering, confirming an increase 

in the number of graphene layers (H. Fan et al., 2010; Ferrari et al., 2006; Ni et al., 

2008; A. Reina et al., 2009; Y. Zhang et al., 2013). This result strongly shows that the 

thinning rGO agglomerating into a few layers of graphene takes place during the HIP 

process (L. Zhang et al., 2013). Furthermore, the ID/IG ratio is the index of the degree of 

crystallization or the surface defect density present in the GO and the rGO. However, 

the major evidence is the degree of disorder in the rGO compared to the GO, which is 

observed from the intensity ratio of the D and G bands (ID/IG) (Kosma et al., 2013). As 

observed in Figure 4.5(a and b), the ratio for the rGO increases from 0.788 to 0.944 

compared to the GO, implying that the thermal reduction created a large number of sp
2
 

bonds and structural defects in the graphene lattice (Stankovich et al., 2007). The 

spectra of the bulk composite (HG-3) after sintering is shown in Figure 4.5c. The carbon 

peaks in the rGO were retained, inferring that no chemical reaction occurred during the 

HIP process. The lower relative intensity of the D (1358 cm
-1

) to G (1602 cm
-1

) band 

implies that the obtained rGO is mainly composed of well-crystallized graphite 

(Haipeng Li et al., 2010). The ID/IG ratio for the un-sintered samples is 0.944, whereas 

the ratio for the sintered samples is 1.15, suggesting that the damage and defects 

performed to the rGO is due to the high pressure and temperature during the sintering 

process (M. Cheng et al., 2012; Gupta et al., 2013). Moreover, the intensity of the D 

band in the sintered sample is less than in the un-sintered sample, which shows that 

some structural transformation occurred in the sintered samples (Afzal et al., 2013).  

Figure 4.5b shows the spectrum of the HG-3 before sintering, indicating the 

existence of the HA phase. The broad and sharp peak with a low intensity at 

approximately 425 cm
-1

 and 958  cm
-1

 and a FWHM of approximately 18 cm
-1

 is due to 

the O-P-O bending modes (ϑ2) and the P-O stretching mode (ϑ1) of the PO4 group in the 

HA, respectively (Antonakos et al., 2007; Sungjin Kim & Park, 2010; Lobo et al., 
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2010). Only after sintering (Figure 4.5c) does the HA high crystalline phase appear. As 

is observed, the characteristic peaks of the HA at 430, 639, 830, 961, 1078 and 1115 

cm
-1

 are all present. All these peaks indicate the stretching of different bonds in the 

PO4
3-

 ions. The higher crystalline degree for the HA (specifically in the 961 cm
-1

 band) 

is evident due to the lower band FWHM of 12.3 cm
-1

. However, other bands of lower 

intensities are observed at approximately 430, 639 and 830 cm
-1

. The strongest and 

sharpest peak at 961 cm
-1

 corresponds to the symmetrical stretching of the tetrahedral 

oxygen atoms, surrounding the phosphorus atom. This peak is the strongest evidence for 

the presence of HA and is unique and different from the peaks from other calcium 

phosphate materials (Afzal et al., 2013). The 1078 cm
-1

 peak that is assigned to the 

apatitic phosphate groups is observed only in high quality crystalline stoichiometric HA. 

The Raman band recorded at 1040-1045 cm
-1

 taken from a sample of human bone 

formed ex-vivo is assigned to P-O stretching (Lobo et al., 2010).  

4.1.2 Mechanical Properties 

Figure 4.6 shows the FESEM of the fracture surface morphology of the sintered 

samples with different ratios of rGO additions. In these micrographs, not only the 

overall distribution but also the local contacts between the matrix and the rGO additions 

can be observed. These figures show rGO nano-sheets of different sizes that are 

homogeneously dispersed with no clustering or agglomeration in the HA grains (Figure 

4.6(c-h)). Several factors determine the reinforcing efficiency of the nano-scale fillers in 

a ceramic: (1) the inherent mechanical properties of the filler material, (2) the efficiency 

of the load transfer at the interface of the matrix and filler and (3) the dispersion level of 

the nano-scale fillers in the ceramic matrix (J. Liu et al., 2013).  
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Figure 4.6 FESEM and high magnification micrograph of fracture surfaces for the 

sintered samples: HG-0 (a and b), HG-1 (c and d), HG-2 (e and f) and HG-3 (g and h). 

When consolidation occurs, the graphene nano-sheets are either bent or 

embedded between the HA grains due to the force applied by the matrix grains 

surrounding the rGO nano-sheets or are distributed in the grain boundary with a rough 

and wrinkled surface texture. The close contact between the grains and the nano-sheets 
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causes more binding between the matrix grains and the graphene, causing increased 

contact area and mechanical interlocking, leading to enhanced load transfer efficiency 

between the HA matrix and the rGO.  

 

Figure 4.7 FESEM images of the fracture surface for the sintered HG-3 composite. A 

large rGO sheet is visible and is indicated by a white arrows (a) and a high 

magnification image of a rGO nanosheet (b). 

This effect plays a significant role in enhancing the mechanical properties of the 

composites. Moreover, the FESEM micrographs (Figure 4.7(a and b)) obviously show 

the rGO pulling out at the grain boundary on the fractured surface of the sintered 

composite samples. These effects are the result of an increase in bonding strength 

between the rGO and the HA grain that requires more energy to cause the nano-filler to 

pull out from the HA matrix (L. Zhang et al., 2013). The absorption of more fracture 

energy during the protrusion of the rGO further delays the rupture and increases the 

strength of the bulk composite structure (Lahiri et al., 2013; L. Zhang et al., 2013). We 

expect that the energy required to pull out a sheet is greater than that of a single-walled 

or multi-walled nano-tube or nano-fiber due to “sheet wrapping” around the matrix 

grain boundaries and the increased contact area with the matrix, especially in the HIP 

composites (Kvetková et al., 2013). Moreover, the added rGO seems to increase the 

porosity of the composite. From the results in Table 4.2 and Figure 4.6, the addition of 

the rGO affects the density of the composites, and the increase in the amount of the rGO 
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slightly decreases the relative density of the composite from 96.7% to 93.23%, which 

may lead to the deterioration of the mechanical properties.  

Table 4.2 Relative density and mechanical properties of the composites. 

rGO    

(wt%) 

Relative density 

(%) 

Microhardness 

(Hv) 

Elastic modulus 

(GPa) 

Fracture toughness 

(MPa m
0.5

) 

0 98.12±0.21 322±8 87±8.34 0.81±0.05 

0.5 96.76±0.33 363±5 93±4.23 0.95±0.03 

1 94.85±0.28 425±4 111±6.41 1.31±0.07 

1.5 93.23±0.24 381±7 123±3.86 1.51±0.05 

A summary of relative density and mechanical properties (hardness, elastic 

modulus and fracture toughness) of the composites is shown in Table 4.2. 

Microhardness values for the composites decrease at only 1 wt% rGO compared to the 

other samples examined. These results show that even low concentrations of rGO have a 

significant influence on the bulk mechanical properties. The decrease in the hardness of 

composite for high filler loading fractions (HG-3) is dependent on the residual porosity 

present around the rGO after the sintering process (Kvetková et al., 2012; Kvetková et 

al., 2013; J. Zhu et al., 2011). It is clear that the fracture toughness and elastic modulus 

are greatly dependent on the amount of rGO in the composite. The composite containing 

1.5 wt% rGO shows a maximum fracture toughness and elastic modulus of 1.51 MPa 

m
0.5

 and 123 GPa, approximately 86% and 40% higher than pure nHA, respectively. 

The enhancement in the elastic modulus of the composite is due to three significant 

factors: (i) the higher E value associated with rGO reinforcement (ii) the homogeneous 

distribution of the nano-sheets in the matrix and (iii) a strong HA/rGO interface (Lahiri 

et al., 2010). From the fracture toughness results, the nano-sheets are more effective at 

toughening the HA prepared by the HIP process, even at very low weight percentages. 

Our results are comparable with those from other works using different sintering 

process. Liu et al. (Y. Liu et al., 2013a) examined the mechanical properties of a 0.1 and 

1 wt% rGO-HA composite that was consolidated using SPS and reported that the 
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hardness, elastic modulus and fracture toughness values improved by 26%, 48% and 

203% compared to a pure HA pellet, respectively. The mechanical properties in the 

present study are dependent on the sintering process. Zhao et al. (Y. Zhao et al., 2013) 

used a hot pressing method and found the hardness decreased with an increase in the 

GNP, whereas the fracture toughness improved 75% compared to pure HA. For the SPS 

sintering procedure, Zhang et al. (L. Zhang et al., 2013) identified improved hardness, 

elastic modulus and fracture toughness of 43%, 31% and 82%, respectively, compared 

with pure HA. 

To assist in providing a detailed understanding about the improved fracture 

toughness at different weight percentages of rGO, Figure 4.7 and Figure 4.8 show the 

high specific area of the rGO, which is located at the intergranular region and provides a 

higher resistance to crack propagation compared to pure HA. Fractographic examination 

of the striation lines and fracture surfaces show signs of various toughening mechanisms 

resulting from the presence of rGO. Figure 4.8 shows the observed toughening 

mechanisms, such as crack branching (Figure 4.8b), crack bridging (Figure 4.8(c and 

f)), pull out (Figure 4.8(d and f)), and crack deflection (Figure 4.8e) in ceramic 

composites reinforced with rGO and identified from microhardness indentations. In this 

case, notwithstanding the fact that the rGO was annihilated during the 

grinding/polishing procedure, the effectiveness of the toughening mechanisms resulting 

from the rGO addition is still clearly visible.  

Crack branching is a toughening mechanism that is frequently observed in all of 

the investigated composites. The origin of this mechanism is the interaction of the 

propagating crack and the rGO of a different size. The lengths of the cracks are several 

microns, and the frequency of occurrence of this mechanism is quite high (Figure 4.8b).  
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Figure 4.8 Characteristic toughening mechanisms at a striation line in the HG-3 

composite: vicker`s indentation craters (a) and radial cracks: crack branching (b), crack 

bridging (c and f), pull out (d and f), crack deflection (e). 

Characteristic crack bridging is visible in Figure 4.8(c and f) on the striation line 

with a plane of the rGO nano-sheets. A similar bridging/pullout mechanism is illustrated 

in Figure 4.7 and Figure 4.8(d and f), where the rGO bridges the propagated crack and 

pulls out in the bridging zone of the crack far behind the crack tip. We frequently 

observe similar pull outs in the rGO nano-sheets, which are tucked and wrapped around 

the matrix grains in the rGO and HIP systems. As shown in Figure 4.8e, when a crack 
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propagates and interacts with an rGO nano-sheet, it is arrested and deflected in-plane. It 

is believed that such a crack deflection mechanism creates a more tortuous path to 

release stress, which helps increase the fracture toughness. All the toughening 

mechanisms encountered in this study are similar to those reported by other researchers 

(J. Dusza et al., 2012; Kvetková et al., 2012; Kvetková et al., 2013; J. Liu et al., 2012; 

Walker et al., 2011; Govindaraajan B Yadhukulakrishnan et al., 2013) 

4.1.3 Biological Properties 

Apart from the mechanical characteristics, the non-toxicity and good 

biocompatibility found in the nHA-rGO composites are vital for potential clinical 

applications. The biological performance of the composites was initially reviewed in a 

cell culture test in this study. As acknowledged, biomaterials were used to promote new 

tissue formation by providing active surface sites for direct cellular attachment, 

migration and proliferation. In this context, the composites designed here should 

promote adhesion and proliferation of osteoblasts to ensure successful results for use in 

orthopedics.  

Typical morphologies in the HOFB human osteoblastic cells adhered on the 

surfaces of the sintered HA, nHA and composites for the nHA-rGO specimens after 

culturing for 1 day are shown in Figure 4.9(a–e), respectively. In the FESEM images, 

osteoblastic cells are polygonal and contain widespread forms of fine filopedia in each 

group. After 1 day of cultivation, osteoblast cells are attached and then flattened on the 

specimen surfaces. This behavior is more pronounced for the sintered HG-3 composite. 

Further increases in the culture time from to 3 and 5 days show that the density of the 

adhered cells increases dramatically. The cells proliferate and anchor on the specimen 

surfaces through the fine filopodia at the leading edges. Figure 4.10(a-c) shows typical 
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examples (HG-3) of the cell migration by extension of the filopodia on the specimen 

surfaces for different culture times.  

 

Figure 4.9 Morphology of the osteoblasts cultured on the surfaces of the sintered HA 

(a), HG-0 (b), HG-1 (c), HG-2 (d) and HG-3 (e) 

 

Figure 4.10 Confocal microscopy images of live (green) osteoblast cells cultured on the 

surface of the sintered HG-3 sample at 1 day (a), 3 days (b) and 5 days (c). 

An MTT assay is a commonly used practice to assess the viability of biological 

cells by a reaction with a chemical reagent. Viable cells reduce the MTT reagent to form 

a colored formazan salt. Thus, water-soluble MTT is converted by mitochondrial 

dehydrogenases in living cells to a water-insoluble formazan product. The precipitated 

formazan is dissolved in a solution of SDS in diluted HCl acid to yield a colored 

solution. The optical absorbance of the colored solution is measured with a detector at 

570 nm. The intensity of the color produced is directly related to the number of viable 
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cells. The MTT assay results from the sintered specimens are shown in Figure 4.11. The 

MTT assay shows that the cell viability increases with increasing time when the 

osteoblast cells were co-cultured with HA, nHA and nHA-rGO, indicating that nano-

tube hydroxyapatite affected the cell proliferation. It is clear that the HG-0 and its 

composites may improve the viability and enhanced proliferation of the osteoblasts. 

Moreover, the HG-3 composite exhibits the highest optical absorbance after 1, 3 and 5 

days in the culture. This implies that the HG-3 composite exhibits excellent bio-

compatibility.  

 

Figure 4.11 Proliferation of the osteoblasts on the surface of the sintered samples: HA, 

HG-0, HG-1, HG-2 and HG-3 for 1 day, 3 days and 5 days. 

Additionally, a comparison of the absorbance values of the HA and nHA shows 

that the morphology and crystalline degree of synthesized powder has an important 

effect on the osteoblast viability (F. Chen et al., 2010; X. Liu et al., 2012). Liu et al. 

considered the cell responses from nano-rod HA of different diameters, lengths and 

crystalline degrees. They reported that the nano-rod with higher a crystalline degree and 

larger diameter and length yielded a better biological response at promoting cell growth, 

inhibiting cell apoptosis and increasing active cell morphology. Chen et al. performed 

cell viability tests on the as-prepared HA samples with different morphologies at HA 

concentrations in the range of 10-100 mg mL
-1

. They reported that the as-prepared HA 
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nano-wire/nano-tube ordered arrays and fabrics exhibit similar structures as natural hard 

tissues and may be useful in biomedical research areas. 

4.2 Characterization of Nickel-doped Biphasic Calcium Phosphate/Graphene 

Nanoplatelet Composites for Biomedical Application 

4.2.1 Physical and Chemical Properties  

Figure 4.12(a and b) present the XRD profiles of the samples with different 

degrees of Ni substitution before and after calcination at 900 °C for 1 h. From Figure 

4.12a, some distinct features can be recognized upon increasing the Ni content from 0 to 

6%. First, the intensity of the HA characteristic peaks decreased significantly. This 

behavior is believed to be caused by the amorphization of the product. Second, peak 

broadening increases with the increase of Ni substitution because of the structural 

evolution (crystallite refinement and lattice strain increase). This result indicates that the 

synthesized powders are nanocrystalline in nature.  

 

Figure 4.12 XRD profiles of Ni0, Ni3 and Ni6 (a) before and (b) after calcination and 

of (c) Ni0, Ni6 and 1.5Ni6 after sintering.   

As observed in Figure 4.12b, high-crystalline Ni-doped-HA nanopowders were 

formed, and no phase transformation or decomposition occurred after the calcination at 

900 °C for 1 h. It is apparent that the characteristic peaks of the calcined samples were 
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more intense than those of the as-prepared powders. This finding suggests that the 

fraction of the crystalline phase increased after the thermal treatment. According to 

Figure 4.12c, a highly crystalline structure of monolithic HA was formed in the absence 

of nickel after the sintering process. With the addition of 6%Ni, the decomposition of 

HA to β-TCP and CaO was identified according to the following reaction:     

Ca10-xNix(PO4)6(OH)2→ 3Ca3-x/3Ni x/3(PO4)2 + CaO + H2O 

In the presence of 1.5% GNPs (1.5Ni6), HA significantly decomposed to β-TCP 

due to the high thermal conductivity of the GNPs. In general, HA is a non-conducting 

ceramic that exhibits poor thermal (1.25 W m
-1

 K
-1

) and electrical (7×10
-7

 S cm
-1

) 

conductivity (Y. Liu et al., 2013a). However, due to the presence of GNPs in the 

composite, a thermal gradient was created between the GNPs and HA, which results in a 

severe decomposition. Therefore, the phase percentage of HA decreased to 14%, while 

the percentage of β-TCP increased to 86%. The measurement of structural features such 

as crystallite size, volume fraction of grain boundary and crystallinity degree of the 

modified HA is essential because the phase composition and transformation are 

dependent on these parameters. The average crystalline size of the nanopowders was 

determined using the Debye-Scherrer equation. In accordance with Figure 4.13a, with 

an increase of the Ni content from 0 to 6%, the crystallite size of the Ni-doped HA 

decreased drastically from 24±1 to 11±1 nm. After the calcination process at 900 °C for 

1 h, the crystallite size of pure HA increased notably to 56±3 nm. A similar trend was 

observed in the presence of Ni, where the crystallite size of HA increased to 45±2 and 

39±2 nm when the Ni content increased from 3 to 6 %, respectively.  

If a crystallite is a sphere of diameter D surrounded by a shell of grain boundary 

with thickness t, the volume fraction of the grain boundary (f) may be estimated using 

the following formula (F. Sun & Froes, 2002): 
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The f values were determined by substituting the experimental crystallite size obtained 

by XRD into D with the assumption that t = 1 nm.  

From the obtained data, the f values ranged from 5±1 to 23±1 %. However, the 

volume fraction of grain boundary in the presence of 3 and 6 % Ni was higher than the 

pure HA (Figure 4.13b). After the calcinations process, the value of f decreased 

dramatically for all the samples due to the HA crystal growth during the thermal 

treatment. This finding suggests that the substitution of an appropriate amount of Ni in 

the HA lattice can lead to the formation of modified HA with a fine-grained structure. 

The crystallinity degree of the specimens was determined from the XRD profiles using 

the following equation (E Landi et al., 2000):  
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where Xc is the crystallinity degree, I300 is the intensity of the (300) peak, and V112/300 is 

the intensity of the shoulder between the (112) and (300) diffraction peaks. 

 

Figure 4.13 (a) Crystallite size, (b) volume fraction of grain boundaries and (c) crystallinity degree of 

the modified HA. 

In the absence of Ni (pure HA), the crystallinity degree of HA was 

approximately 30±2 % (Figure 4.13c). This value decreased to 14±1 and 4±1 % when 
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the Ni content increased to 3 and 6 %, respectively. This finding indicates that the 

addition of Ni can affect the fraction of crystalline phase in the HA-based ceramics. 

During the calcination process, the crystallization of HA was dominant; therefore, the 

crystallinity degree increased sharply to 94±5 % for pure HA and to 88±4 and 64±3 % 

for the modified-HA with 3 and 6 % Ni, respectively. Indeed, apatites with higher 

crystallinity degree exhibit little or no activity toward bioresorption and are insoluble in 

physiological environment (Seckler et al., 1999). Therefore, all the calcined samples, 

especially pure HA and 3%Ni substituted-HA, can be expected to exhibit greater 

chemical stability, which could be applicable in bone-tissue engineering.  For 1.5Ni6, 

severe HA decomposition was observed, which caused a drastic reduction in the 

crystallinity degree up to 6±1 %. 

The lattice constants (a, b, and c) and unit cell volume of HA as a function of Ni 

content are summarized in Table 4.3. For the standard HA (JCPDS#24-0033), the 

aaxis and caxis values are 9.4320 and 6.8810 Å, respectively. In addition, the unit 

cell volume of HA is 530.14 Å
3
. The calculated data indicates that these values 

fluctuated during the ion-exchange and calcination treatments. In the absence of Ni, the 

aaxis and caxis values were approximately 9.43264 and 6.89774 Å, respectively. In 

this case, HA exhibited a unit cell volume of approximately 531.501 Å
3
. With the 

addition of 3 % Ni, a reduction in the lattice constants occurred, and consequently, the 

unit cell volume reached 529.583 Å
3
. A further increase in the Ni content to 6 % led to a 

significant diminution in the unit cell volume of HA (V = 528.303 Å
3
). These 

differences in the unit cell dimensions can most likely be attributed to the lattice 

distortion of HA during the ion-substitution process. 
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Table 4.3 Lattice constants (a, b, and c ) and unit cell volume of HA as a function of Ni 

content 

Composition Calcination a = b (Å) c (Å) V (Å
3
) 

HA – 9.43264 6.89774 531.501 

HA 900 °C, 1h 9.42975 6.88974 530.559 

HA–3% Ni (Ni3) – 9.42893 6.87826 529.583 

HA–3% Ni (Ni3) 900 °C, 1h 9.42202 6.89076 529.768 

HA–6% Ni (Ni6) – 9.41932 6.87564 528.303 

HA–6% Ni (Ni6) 900 °C, 1h 9.42029 6.89120 529.607 

It is apparent from Table 4.3 that the lattice parameters in the Ni-doped HA 

decreased significantly compared with undoped HA. This result is attributed to the 

replacement of the smaller Ni
2+

 (ionic radius 0.069 nm) with the relatively larger Ca
2+

 

(ionic radius 0.099 nm) during the substitution process(Singh, 2007). This phenomenon 

in turn is responsible for the changes in the crystallite size, which is in good agreement 

with the presented data in Figure 4.12a, which indicates that the crystallite size of the 

product decreased with increasing Ni content from 0 to 6 %. During the calcination 

process at 900 °C for 1 h, the recovery of the HA lattice occurred, and therefore, the unit 

cell volume values increased slightly and were close to the standard HA. Overall, these 

results confirmed the substitution of Ni in the HA lattice. 

 

Figure 4.14 EDS analysis of the as-prepared powders: (a) pure HA and (b) 3%Ni-doped 

HA. 
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The EDS analysis was performed for several specimens, and typical results have been 

selected and presented in Figure 4.14. For more accurate results, EDS spectra were 

recorded over three different points on the specimens. The evaluation of the elemental 

constituents of pure HA revealed peaks belonging to calcium, phosphorus and oxygen. 

The EDS spectra were mainly used to determine the percentage of Ni in the HA lattice 

for Ni-doped HA. The average value of the tested areas indicated that the weight 

percentage of Ni was approximately 2.46 wt%, which was slightly lower than the ideal 

value (3%) but within a reasonable range. This result confirms the presence of Ni in the 

HA lattice, which was not apparent in XRD profiles. From the EDS spectra, pure HA 

had a Ca/P ratio of approximately 1.77. In the presence of various percentages of Ni 

substitution, this ratio changed and reached approximately 1.62 in 3%Ni-doped HA.  In 

addition, the (Ca+Ni)/P ratio was approximately 1.73 when the Ni content reached 3%. 

These findings suggest that the values for HA and Ni-doped HA crystals are closer to 

the expected value for the molar ratio of calcium to phosphorus in the stoichiometric 

HA (Ca/P = 1.67). It is noteworthy that no chemically stable impurity was detected as a 

product of the subsequent milling. 
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Figure 4.15 FT-IR spectra of the as-prepared powders: (a) pure HA, (b) Ni6 and (c) 

1.5Ni6. 

Figure 4.15 presents the FT-IR spectra of pure HA, Ni6 and 1.5Ni6. The 

functional groups of HA, such as PO4
3

, OH

 and CO3

2
, were detected in the 4000-400 

cm
1

 region in the FT-IR spectra (Kannan et al., 2011; Kaygili et al., 2014; Yajing et al., 

2014; N. Zhang et al., 2014). The characteristic bands are assigned here: 

(a) Two bands belonging to the vibration of the adsorbed water in HA appear at 

3600–2600 and 1800–1666 cm
–1 

(Kaygili et al., 2014). 
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(b) For the pure HA, the bands at 1089 and 1018 cm
–1

 are attributed to ν3 PO4; the 

band at 960 cm
–1

 is attributed to ν1 PO4, and the peaks at 599 and 558 cm
–1

 are 

attributed to ν4 PO4 (Kannan et al., 2011; N. Zhang et al., 2014). These bands 

were slightly shifted due to the substitution of Ni in the HA lattice as well as the 

addition of 1.5% GNP. 

(c) Two regions of the FT-IR spectra are ascribed to the carbonate vibrations in HA: 

(i) 850–890 cm
−1

 corresponding to ν2(CO3
2

) (ii) 1420–1650 cm
−1

 belonging to 

ν3 vibrations of the carbonate groups (Lafon et al., 2008). The presence of the 

carbonated groups suggests that the as-prepared powders contained some CO3
2

 

groups in the PO4
3

 sites of the apatite lattice (B-type substitution). It has been 

reported that this type of HA is more similar to biological apatite and can be 

very useful as a bone replacement material (Fathi & Mohammadi Zahrani, 2009; 

Bahman Nasiri-Tabrizi & Fahami, 2014). However, the usefulness of CHA 

depends on the powder features such as the average particle size, surface area, 

and morphology (W. Zhou et al., 2008). 

(d) For 1.5Ni6, the characteristic bands of the methylene groups (CH2), which are 

inherent in GNP, were detected at 2969 cm
−1

 and 2906 cm
−1

. 

(e) The FT-IR results indicated that in the presence of Ni, the severity of the band 

overlap increased slightly compared with that of pure HA, which implies a 

minor decrease in the fraction of the crystalline phase (crystallinity degree). This 

result is in good agreement with the XRD results. In accordance with the FT-IR 

spectra, the synthesized powders exhibited high chemical purity, which is crucial 

in biomedical applications.  

Raman spectroscopy was performed to characterize the defect density, number of 

layers and crystallinity of the GNP structure in the composites. Typical Raman spectra 

of the samples are presented in Figure 4.16. The G and 2D (Gʹ) peaks appear due to the 
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C-C bond plane stretching in GNP, where the 2D peak is related to the number of 

graphene layers, and the D peak corresponds to the defect density introduced in the 

structure. The presence of a small intensity D peak relative to the G peak in the pristine 

GNP indicates a very small defect density. Moreover, a 2D peak at ~ 2690 cm
-1

 is 

observed, which is typical of a multilayer sheet or platelet configuration of the GNP 

(Walker et al., 2011). 

The Raman spectrum of the composite powder exhibits significant changes 

compared with that of GNP. Both the G and D bands are shifted toward higher wave 

numbers of 1349 and 1584 cm
-1

, respectively. A shift in the G band toward higher wave 

numbers indicates an increase in the defect density in the graphene structure (Lahiri et 

al., 2010). The intensity ratio of the D to G bands (ID/IG) is a measure of the disorder 

degree and the average size of the sp
2
 domains. The ID/IG ratios for the GNP and 1.5Ni6 

composite powder were 0.26 and 0.71, respectively (Table 4.4). This result indicates an 

increase in the defect density in the GNP, which is most likely due to the ball-milling 

process. 

The ball milling of 1.5Ni6 powders produced strong interactions between the 

GNP and Ni6 particles. These interactions on the GNP resulted in a lower I2D/IG ratio, 

which indicates partial loss of the graphene-like structure (Nieto et al., 2013). For the 

sintered samples, the ID/IG ratio increased from 0.71 to 0.93 compared with the 

composite powder, which might indicate some defect density introduced during the 

sintering process. The sintered samples tend to have higher ID/IG and lower I2D/IG ratios 

compared with the GNP powder. Moreover, previous studies have reported that a 

decrease in the intensity ratio of I2D/IG and the appearance of a narrow and sharp 2D 

peak compared with the pristine GNP are due to the increase of graphene layers.   
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Figure 4.16 Raman spectra of pristine GNP and 1.5Ni6 before HIP and 1.5Ni6 after 

HIP. 

Moreover, the peak at ~2940 cm
-1

 is attributed to the D+Dʹ band, which is 

generally related to point defects in the basal plane or edges of single-crystalline 

graphene domains. The increase in the intensity of the D+Dʹ peak at ~2940 cm
-1

 

indicates better graphitization (Cui et al., 2011; Kiraly et al., 2013). 

The Raman spectrum of 1.5Ni6 contains an intense peak at 961 cm
-1

, which is 

associated with the symmetric (ϑ1) P-O-P stretching mode of the free tetrahedral 

phosphate ion. After the sintering process, the peak at 961 cm
-1 

was observed to have 

higher intensity than the composite powder. 
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Table 4.4 Peak position of the D and G bands and intensity ratio of ID/IG and I2D/IG 

Sample’s 

name 

D band 

Raman 

shift 

G band 

Raman 

shift 

2D band 

Raman 

shift 

D+Dʹ 

Raman 

shift 

ID/IG I2D/IG 

GNP 1347 1570 2690 2928 0.26 0.48 

1.5Ni6 BFS 1349 1584 2707 2942 0.71 0.44 

1.5Ni6 AFS 1349 1603 2708 2978 0.93 0.25 

The other peaks that are relevant to the phosphate modes appeared at different 

wave numbers, such as 1049 cm
-1

 (ϑ3 PO4), 591 cm
-1

 (ϑ4 PO4), 433 cm
-1

 (ϑ2 PO4), and a 

weak band appeared at 273 cm
-1

, which is assigned to Ca-PO4(Yilmaz & Evis, 2014). 

The above results confirmed that the composite was composed of GNP and HA. 

4.2.2 Microstructural and Mechanical Properties  

The as-received graphene sheets used in this study were 1-20 nm in thickness 

and 1-50 μm in width. FESEM images of the raw graphene at both low and high 

magnifications are presented in Figure 4.17(a and b).  

 

Figure 4.17 FESEM images of (a,b) GNPs and (c,d) 1.5Ni6. 
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It can be observed that the majority of the graphene sheets tend to agglomerate and were 

bundled together. In fact, several smaller graphene flakes are assembled into larger 

graphene blocks. In addition, the graphene sheets possess a large aspect ratio, which is 

the main factor for the intensification of the contact area with the other phases. The 

FESEM images indicate that the GNP are very thin with some wrinkles and folding 

(Yang et al., 2012; L. Zhang et al., 2013). Figure 4.17(c and d) show the typical 

microstructure of the 1.5Ni6 composite powder at both low and high magnification. As 

mentioned above, the calcined Ni6 powder as a matrix exhibited intrinsic expansion 

during the initial stage of thermal treatment. Finally, the grain coalescence and decrease 

in the number of grains occurred due to superficial diffusion and grain boundary sliding, 

respectively (Champion, 2013).  

The FESEM images reveal the nanocrystalline nature of the composite powder 

and demonstrate that the specimens are composed of spheroidal particles with an 

average particle size of approximately 100 nm. Because HA granules with a smooth 

spherical geometry are helpful in osseointegration, the synthesized powder can be 

considered in bone tissue-engineering applications (Paul & Sharma, 1999). In addition, 

it is apparent that the graphene nanoplatelets are well distributed in the composite 

powder with improved mechanical behavior and biological responses (M. Gu et al., 

2014). However, the particles exhibited a relatively high tendency to agglomerate. 

When two adjacent primary particles collide, coalescence may occur on the premise that 

these two particles share a common crystallographic orientation. As a result, the two 

primary particles attach to each other and combine to form a secondary particle. 

Because the sizes of the secondary particles are still very small, it is reasonable that the 

particles will continue to collide and coalesce. This behavior will ultimately lead to the 

agglomeration (Balaz, 2008; Bahman Nasiri-Tabrizi & Fahami, 2014).  
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To evaluate the distribution of GNPs in the composite structure, the cross-section of a 

typically sintered sample containing 1.5% GNPs (1.5Ni6) was examined (Figure 4.18). 

The FESEM micrographs show that apart from the distribution, the local contacts 

between the modified HA and the fully exfoliated graphene are obvious (Figure 4.18a).  

 

Figure 4.18 Cross-sectional image of a typical sintered sample containing 1.5% GNPs 

(1.5Ni6): (a) low and (b) high magnification. 

The position of the embedded GNPs is indicated by the red arrows. This figure 

verifies the good dispersion of graphene nanoplatelets in the composite structure. 

Moreover, the cross-sectional view of the graphene laminates reveals stacks of graphene 

platelets that might affect the degree of mechanical improvement. To overcome this 

problem, further separation of aggregates as well as the prevention of the GNP 

agglomeration would be useful (Kun et al., 2012). As observed in Figure 4.18b, nano-

scaled pores are formed during the sintering of the composite. It has been observed that 

an increase in the porosity of the HA composite might more or less deteriorate its 

mechanical properties. However, from the biological viewpoint, these nano-sized pores 

contribute to osteoblast in-growth of the composite (L. Zhang et al., 2013). 

Table 4.5 Relative density and mechanical properties of the sintered samples. 

Series Relative 

density (%) 

Elastic modulus 

(GPa) 

Microhardness 

(GPa) 

Fracture toughness 

(MPa m
0.5

) 

HA 97.13 53.20±3.41 2.98±0.06 0.94 

Ni6 97.26 117.35±3.51 4.61±0.13 1.5 

1.5Ni6 97.47 98.09±4.01 5.20±0.86 2.48 
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The relative density and mechanical properties of the samples (elastic modulus, 

hardness and fracture toughness) are summarized in Table 4.5. According to the 

presented data, the sintered monolithic HA, Ni6 and 1.5Ni6 composites exhibit high 

relative densities. All the samples are fully densified at 1150 ℃ and 160 MPa pressure 

during the HIP sintering. Previous reports demonstrated that the use of GNP as a 

reinforcement material has a significant effect on increasing or decreasing the relative 

density, which depends on the mixing process, sintering method and types of graphene. 

Zhao et al. (Y. Zhao et al., 2013) reported that the relative density of GNPs/BCP 

decreased with the addition of different ratios of GNPs  compared with pure HA. Nieto 

et al. (Nieto et al., 2013) observed that with the addition of GNP to TaC, the 

densification of the composites increased to 60% compared with that of monolithic 

TaC. Govindaraajan et al. (Govindaraajan B Yadhukulakrishnan et al., 2013) reported 

that the reinforcement of GNPs favors the high densification of composites through the 

interfacial reaction, which can be retained in the composites sintered at high 

temperature.  

However, there are no reports that discuss the effect of metal ions on the density 

of the dopant composites. Herein, the substitution of Ni in the HA lattice has little effect 

on the increase of the dopant composite density. However, the relative density of 

apatites may enhance the presence of GNPs such that the relative density of the 1.5Ni6 

(1.5% GNPs) increased compared with the monolithic HA and Ni6. This behavior was 

due to the large surface area of the GNPs, which increases the surface diffusion during 

sintering. The measurement of the elastic modulus in bioceramic applications was 

performed using the nanoindentation technique in this experiment. The results revealed 

a significant increase in the E value for the Ni dopant by 220% over the monolithic HA. 

Based on our previous studies, at a very low concentration of graphene, the elastic 

modulus of composites improved compared with that of monolithic HA due to the 
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intrinsic properties of the graphene nanosheets, the homogenous distribution of GNPs in 

the matrix and strong Ni6/GNPs interfaces. All the samples exhibited high moduli of 

elasticity between graphene concentrations of 1-1.5 % in the composites. In a similar 

trend in Table 4.5, it is clearly observed that the elastic modulus of 1.5Ni6 (1.5% GNPs) 

increases to 184% compared with that of monolithic HA.  

As mentioned previously (XRD data), severe HA decomposition occurred during 

the sintering of the composite (1.5Ni6) at 1150 °C due to the high thermal conductivity 

of the GNPs. Therefore, the coexistence of HA and β-TCP in the composite could 

explain the decrease of the elastic modulus in the composite sintered at 1150 °C. To 

calculate the hardness and fracture toughness values, micro-indentation (≥ 5 Kg) was 

conducted because indentation of presented composite did not generate a well-defined 

radial crack system. From Table 4.5, it is apparent that the Ni dopant increased the 

hardness as much as 155% due to its hard intrinsic properties compared with the 

monolithic HA. The microhardness improvement in 1.5Ni6 can be attributed to (i) the 

uniform dispersion of GNPs in the HA matrix, (ii) the prevention of localized plastic 

deformation due to presence of GNP and (iii) the small amount of porosity due to an 

appropriate sintering process. According to the results in Table 4.5, the Ni dopant plays 

a significant role in increasing the fracture toughness of the bulk samples. The Ni6 

composite exhibits improved fracture toughness, which continuously increases to 263% 

in the 1.5Ni6 composite compared with the monolithic HA. As mentioned previously, 

severe HA decomposition occurred in 1.5Ni6. However, the fracture toughness of the 

composite increased due to the intrinsic properties of both β-TCP and the GNPs. The 

increased toughening of 1.5Ni6 is most likely due to the increase of closely spaced GNP 

structures resulting from the higher GNP amount (Nieto et al., 2013). It is notable that 

when the matrix crack is started and extended through the loading, the high strength of 

nanosheets plays a key role in the load transfer from the nanosheets to the path of crack 
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(J. Liu et al., 2012). Therefore, for increased effectiveness of GNP as a filler 

reinforcement to improve fracture toughness, intact GNP sheets must be efficiently 

bonded to the ceramic matrix (the interfacial friction in the interface) to carry the load 

(J. Liu et al., 2013; Kai Wang et al., 2011). In fact, the nature of the interfacial bonding 

between the GNPs and Ni6 affects the toughening response. It is believed that the 

fracture toughness of ceramics increases with additional resistance caused by the 

strong dragging forces from the GNP. The GNPs that are distributed along the grain 

boundaries are bent and embedded between the grains due to the force applied by their 

neighboring matrix grains during the solidification in the sintering process. The 

wrapping of GNPs in the intergranular region can be illustrated as follows: (I) the 

inhibition of grain growth during sintering and (II) increased resistance to crack 

propagation when several grains are wrapped together.  

Figure 4.19(a-b) present the FESEM images of the fracture surfaces for the 

1.5Ni6 composite. It is apparent that the grains are uniform throughout the fracture 

surface with a grain size approximately 350 nm and that the layered GNP surface is well 

expanded at the intergranular region and sandwiched between the individual Ni6 grains. 

The images also reveal that large GNPs are protruding out of the fracture surface and 

run along the grain boundaries of the matrix. The increase in the strength of 1.5Ni6 and 

the delay in the rupture of the composite matrix may be related to the absorption of 

more fracture energy during the pulling out of GNPs (Lahiri et al., 2013; Nieto et al., 

2013; Walker et al., 2011). Previous reports mentioned an increased toughness value, 

which is attributed to various toughening mechanisms. Nieto et al. (Nieto et al., 2013) 

reported that the fracture toughness in the GNP composites increased due to the intrinsic 

energy dissipating mechanisms (sheet bending, kinking and sliding) of GNPs. 
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Figure 4.19 FESEM images showing the coexistence of HA and β-TCP in the 1.5Ni6 

composite: (a) low and (b) high magnification. 

In this study, various toughening mechanisms such as crack deflection, crack 

bridging and graphene necking, crack branching and pull out in radial cracks stemming 

from microhardness indents can be observed for the 1.5Ni6 composites (Figure 4.20). 

Crack deflection was observed at the interaction of the crack with larger GNPs, which 

resulted in deviation from its straight path. Due to the strength of the GNPs, the crack 

was not able to propagate through the nanosheets and therefore pursues a lower energy 

path and is arrested and deflected from the GNPs as observed in Figure 4.20a (Nieto et 

al., 2013; Walker et al., 2011). After the crack interaction with the larger and smaller 

GNPs, crack bridging could be observed.  

 

Figure 4.20 FESEM images of the various toughening mechanisms in the 1.5Ni6 

composite: (a) crack deflection, (b) crack bridging, (c) crack branching, and (d) pull out. 
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Figure 4.20b shows a typical straight crack path with mechanisms of crack bridging and 

graphene necking. The effectiveness of crack bridging by the GNP is clearly visible in 

all the figures. In the crack line, sheet pull out and GNPs that are bridging the cracks 

can be observed. A similar pull out mechanism was also observed in Figure 4.19(a and 

b) and Figure 4.20d, where GNPs pull out from the matrix. We have frequently 

observed in our systems the pull-out of graphene sheets similar to that reported by other 

researchers (Kvetková et al., 2012; Kvetková et al., 2013). However, all the figures 

show the anchoring of GNPs between the cracks, which is relevant to the crack bridging 

toughening mechanism. The basis of these mechanisms is due to the interaction of the 

propagating crack and GNPs with different sizes. In addition, crack branching was 

observed in the composites, as shown in Figure 4.20c. The crack branching primarily 

occurred in various orientations to the main crack due to the increase of the outer 

applied load. 

4.2.3 Biological Properties  

Studies of the bone-biomaterials interface reveal that a common characteristic of 

bioactive materials is the consistent presence of an interfacial apatite layer. This can be 

reproduced in-vitro by immersion experiments using a simulated physiological solution 

that mimics the typical ion concentration in the body. In this study, bone like apatite 

formation on the surface of the samples was investigated in-vitro by immersion in SBF 

solution. The FESEM micrographs of the surface of samples, before and after 

immersion in the SBF are shown in Figure 4.21(a-i). After 7 days of immersion, HA 

pure surface (Figure 4.21(b and c)) appeared to be covered by a newly formed layer, 

which was chemically similar to apatite based on EDS analysis. Figure 4.21(e and f) 

shows the apatite formation on the surface of the Ni6. As can be seen, numerous tiny 

spherical crystals precipitate on the surface of the sample separately or as an appetite 
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cluster which they did not densely cover the entire surface of Ni6. In compare, the 

1.5Ni6 composite (Figure 4.21(h and i)) shows the well covered apatite on the surface in 

presence of GNP which exhibit the ability to induce apatite formation on its surface 

only after 7 days in SBF. The significance different observations between the apatite 

layer growth on the surface of the samples are relevant to their morphologies which are 

agreed with the observations made by several research groups (Cui et al., 2011; 

Janković et al., 2015; L. Zhang et al., 2013). For instance, based on our recent study, the 

results showed that the apatite morphology varied among different rGO-containing 

calcium silicate (CS) ceramics. This morphological difference was attributed to changes 

in the ion concentrations and pH in SBF after the soaking of different rGO-containing 

CS ceramics (Mehrali et al., 2014a, 2014b).  

 

Figure 4.21 FESEM images of the samples (a, d and g) before and (b and c) pure HA, 

(e and f) Ni6 and (h and i) 1.5Ni6 after 7 days soaking in the SBF solution. 
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In addition, the EDS spectra shown in Figure 4.21, detected the elements which were 

mainly Ca and P peaks. Analyzing the Ca/P molar ratio of the apatite formed on the HA, 

Ni6 and 1.5Ni6 composites showed a range of 1.85 and 1.52 which is close to HA 

(1.67), suggesting that apatite formed on the samples. The fact of apatite formation on 

1.5Ni6 indicates that this composite ceramic has good bioactivity in compare to Ni6. 

For more understanding of apatite mineralization mechanisms, previous researcher 

mentioned to two possible mechanisms explained for the apatite forming ability of HA-

based materials (Janković et al., 2015). (i) First mechanism is based on the surface 

charge. To brief, the negative surface charges of HA (PO4
3-

 and OH
-
) interact with the 

positively charged Ca
2+

 ions in SBF forming Ca-rich amorphous calcium phosphate 

(ACP) on the surface. These Ca-rich ACP then interact with the negatively charged 

phosphate ions in SBF to form Ca-deficient ACP, which finally crystallize into bone-

like apatite deposits on HA surface (H.-M. Kim et al., 2005). Fan et al. (Fan et al., 

2014), Zhang et al. (L. Zhang et al., 2013) and Girija et al.  have indicated the apatite 

forming ability of heavy ions irradiated HA and HA/GNP composites based on this 

mechanism. (ii) Another mechanism is related to the dissolution properties (Kumar et 

al., 2012) where dissolution of HA at physiological conditions releases Ca
2+

 and PO4
3-

 

ions into the surrounding fluid, resulting in precipitation of  bone-like apatite on its 

surface.  

This process may be promoted or inhibited depending on the surrounding fluid 

and structural properties of HA. Previous researchers showed that the replacement of 

partial Ca
2+

 in HA by different cationic metal ions can change dissolution behavior and 

growth kinetics. For example, the dissolution behavior of strontium (Sr)-doped HA in 

proper amount was investigated. The results showed that this changing in structure of 

HA led to introduce more lattice distortion which increased its solubility. In fact, the 

dissolution of Sr-HA results in the release of Ca
2+

, enhancing the ionic activity product 
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of the apatite in surrounding fluid and inducing apatite precipitation. In addition, it has 

been reported that, the solubility of these apatites intensified with the increasing the Sr 

content (Christoffersen et al., 1997; Demin et al., 2001; Xue et al., 2006). Some 

researcher also investigated the effect of zinc (Zn) incorporated in HA for apatite 

formability. They found that Zn- HA shows more dissolution than HA whereas its 

apatite forming ability was less than HA. These results may be due to the inhibition of 

apatite formation by the Zn ions which is released along with calcium and phosphate 

ions during dissolution process (Hoppe et al., 2011).  

The in-vitro assessment of the biocompatibility of HA, Ni6 and Ni6/GNP 

composites was conducted by culturing osteoblasts on the surface of the samples and 

assessing their viability and proliferation kinetics. The proliferation of the osteoblast 

cells was evaluated qualitatively by observing the population of FDA stained live cells 

on the surface of HA, Ni6 and 1.5Ni6 composites using fluorescence microscopy. The 

growth and proliferation of osteoblast cells on an implant surface are particularly 

significant for bone regeneration and integration (Shirazi et al., 2014). In general, an 

osteoblast attaches initially to the orthopedic implant surface and covers the implant 

surface by proliferation and growth due to collagen deposition in the intercellular 

region, known as an osteoid (Mehrali et al., 2014b). The confocal microscopy images in 

Figure 4.22 show the live cells in green on HA and its composite surface after 1, 3, and 

5 days of growth. The cells in the images show the typical lens-shaped characteristic of 

the live osteoblasts with normal cell growth behavior. As observed in the monolithic 

HA, after 3 days of culture (Figure 4.22b), the cells became more confluent and started 

forming dense islands. After 5 days of growth, the cell population increased and 

covered the surface of the sample (Figure 4.22c).  
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Figure 4.22 Confocal microscopy images of the specimens after 1, 3 and 5 days of 

culture: (a-c) HA, (d-f) Ni6 and (g-i) 1.5Ni6. 

The increase of osteoblast cells with time indicates an increase in the cell 

proliferation and/or survival on the sample surfaces. In comparison, the cell population 

of the Ni6 samples was severely decreased on the first day but increased gradually on 

the fifth day. This finding indicates that the presence of Ni ions increased the 

cytotoxicity (Figure 4.22f). The two main factors contributing to the cytotoxicity are: (i) 

Ni ions may bind to DNA-repair enzymes and hinder the cell mitosis by disrupting the 

DNA repair, replication and recombination and (ii) Ni ions also generate oxygen-free 

radicals to cause protein degradation in situ. These adverse effects might be 

proportional to the Ni ion concentration in the medium (Shiao et al., 1998).  
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Figure 4.23 FESEM images of the osteoblast cell morphology after 1 day of culture: (a) 

monolithic HA, (b) Ni6, (c) 0.5Ni6, (d) 1Ni6, (e) 1.5Ni6, and (f) 2Ni6. 

The effect of GNPs on the growth and proliferation of osteoblast cells was 

continuously assessed qualitatively by observing the population of osteoblast cells on 

the surface of the 1.5Ni6 after different days of culture. Studies on the biocompatibility 

of HA/GNP composites by other research groups have suggested that the presence of 

GNP in HA promotes osteoblast cell proliferation. In a similar trend, Figure 4.22(g-i) 

indicates that with the addition of 1.5% GNP to Ni6, the population and proliferation of 
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the osteoblast cells increased from 1 to 3 days compared with Ni6. After 5 days of 

culture, a similar population and densification of osteoblast cells was observed in the 

1.5Ni6 composite compared with HA. This observation indicates that the HA and 

1.5Ni6 surfaces are suitable for osteoblast cell proliferation. Figure 4.23(a-f) show the 

osteoblast cell morphology on the monolithic HA, Ni6 and Ni6/GNP composites with 

different ratios of GNP after 1 day of culture. The FESEM images reveal that the hFOB 

cells on all the samples were polygonal or widespread in shape, with fine filopodia, 

globular, flat and abundant surface folds in each group. 

 

Figure 4.24 Proliferation of the hFOB cells cultured on the sintered sample surfaces. 

To obtain clear insight into the effect of the addition of Ni dopant and GNP on 

the cell response, cytotoxicity and biocompatibility of the Ni6 and 1.5Ni6, these 

samples were examined by MTT. The proliferation and viability of the osteoblast cells 

were assessed on HA, Ni6 and Ni6/GNP surfaces after in-vitro culturing for 1, 3 and 5 

days. The optical density (OD) was measured at 570 nm in an ultra-violet visible light 

spectrophotometer. Figure 4.24 shows that the OD value decreased with time when the 

osteoblast cells were cultured with Ni6 compared with HA, which indicates that Ni6 has 

a negative effect on cell viability and proliferation. Clearly, the OD value could improve 
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the viability of osteoblasts during the initial addition of GNP (0.5 wt %). This finding 

suggests that the GNP could promote the viability of the osteoblast cells. The optimum 

positive effect of GNP as a reinforcement for cell viability and proliferation is observed 

for 1.5Ni6, which exhibits a similar OD value as HA after 5 days of culture. 
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5 Chapter V: CONCLUSIONS AND SUGGESTIONS FOR FUTURE 

WORK 

5.1 Conclusion    

This dissertation presents a complete analysis of HA composites, in terms of 

synthesis, mechanical and biological behavior for orthopedic applications. 

Investigations on free standing HA composites reveal excellent improvement in the 

fracture toughness, hardness and modulus elasticity. In-vitro biocompatibility studies 

suggest a non-cytotoxic response of GNS along with a positive influence on bone cell 

activity. The specific conclusions on performance of HA composites are listed below: 

 HA composites powders were synthesized via hydrothermal (nHA/rGO) and wet 

precipitation (HA-Ni) method in different electrolytes.  

 The calcination process was performed by a precipitation method which was 

carried out at 900 °C for 1 h. No phase transformation or decomposition 

occurred after the calcination of the HA-Ni powder. 

 Both types of composites were sintered by HIP process at 1150°C and 160 MPa 

for 1h.  

i. In case of nHA/rGO, the results proved that HA does not dissociate into TCP 

and CaO during the HIP process. Also, rGO do not show any negative effect 

on phase transformation, due to the high thermal conductivity of GNS, and 

uniform densification of nHA structure occurred during HIP process. 

ii. In case of Ni-HA/GNP, thermal treatment shows a significant effect on 

phase transformation after doping with Ni, because the decomposition was 

enhanced with the presence of minute impurities or non-stoichiometric 

compositions in the HA powders. With the addition of 6% Ni, the 

decomposition of HA to β-TCP and CaO was identified and consequently, in 
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the presence of 1.5% GNPs (1.5Ni6), decomposition of HA significantly 

increased the β-TCP, due to the presence of GNPs in the composite, a 

thermal gradient was created between the GNPs and HA, which results in a 

severe decomposition.  

 Compared to the pristine HA, the composites show improvements in both their 

mechanical and biological properties as follows: 

i. The results indicate that the elastic modulus and fracture toughness of the 

sintered samples increased by 86% and 40%, respectively, with increasing rGO 

content, compared to nHA.  

ii. The hardness and fracture toughness increased by 55% and 75% and 59% and 

163% for Ni6 and 1.5Ni6, respectively, compared with the monolithic HA. 

Moreover, the elastic modulus of the composite samples of Ni6 and 1.5Ni6, was 

increased by 120% and 85%, respectively, compared to the monolithic HA. 

iii. Increasing the fracture toughness in both type of composite is imperative for 

good interfacial bonding between the GNS and HA matrix.  

iv. The various toughening mechanisms such as crack deflection, crack bridging 

and graphene necking, crack branching and pull out in radial cracks stemming 

from microhardness indents were observed. The increase in the strength of 

composites and the delay in the rupture of the composite matrix related to the 

absorption of more fracture energy, which leads to fracture toughening of HA 

with GNS composite reinforcement. 

 The cell culture and viability test results show that: 

i. The addition of the rGO promoted the osteoblast adhesion and proliferation. The 

biocompatibility of the nHA/rGO composite for different cell culture times was 

enhanced by increasing the rGO content. 
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ii. The biological properties indicated that the cytotoxicity of the Ni was improved 

with the addition of GNPs. The biological tests confirmed h-FOB osteoblast cell 

growth on the surface of the composite samples after 1, 3 and 5 days of culture. 

In addition, the effect of the GNPs on the growth and proliferation of the 

osteoblast cells was investigated in the Ni6 composite with different ratios of 

GNPs, where 1.5 wt.% was the optimum concentration.  

5.2 Suggestions for Future Work    

The aim of the current research was to explore the potential of HA and doped 

HA with different morphology/GNS composites. The criteria for judgment were the 

effect of GNS and metal ion doped reinforcement HA on mechanical and biological 

behavior of the composite. The findings of this study establish HA, HA/rGO and HA 

doped Ni/GNP composites are potential alternatives for clinical applications of HA. 

However, some of the topic need further investigations for the clinical translation of 

these composites.  

Biocompatibility Evaluation for HA/GNS 

HA/GNS was evaluated thoroughly for its biocompatibility in the present study, 

including in-vitro studies for osteoblast proliferation rate, viability, differentiation, 

mineralization. However, more biocompatibility studies (both in-vitro and in-vivo) are 

required to establish HA/GNS composites for orthopedic applications. In real life, the 

implants are in the living body for >15 years, in most of the cases. It is therefore 

important to assess the fate of HA/GNS composites, for longer in-vivo exposure, to 

assure their safe use. A systematic study of implanting HA/GNS composite in animal 

model for longer exposure period (3 months, 6 months and 1 year) followed by 

histocompatibility studies is recommended. 
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